]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/auditsc.c
audit: remove WATCH and TREE config options
[mirror_ubuntu-hirsute-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
473ae30b 66#include <linux/binfmts.h>
a1f8e7f7 67#include <linux/highmem.h>
f46038ff 68#include <linux/syscalls.h>
84db564a 69#include <asm/syscall.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
3f1c8250 73#include <linux/ctype.h>
fcf22d82 74#include <linux/string.h>
43761473 75#include <linux/uaccess.h>
9dd813c1 76#include <linux/fsnotify_backend.h>
fcf22d82 77#include <uapi/linux/limits.h>
1da177e4 78
fe7752ba 79#include "audit.h"
1da177e4 80
d7e7528b
EP
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
43761473
PM
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
88#define MAX_EXECVE_AUDIT_LEN 7500
89
3f1c8250
WR
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
471a5c7c
AV
93/* number of audit rules */
94int audit_n_rules;
95
e54dc243
AG
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
1da177e4
LT
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
e54dc243
AG
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
e54dc243
AG
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 112 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 113 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 115 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
117 int pid_count;
118};
119
3fc689e9
EP
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
74c3cbe3
AV
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
55669bfa
AV
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
c4bacefb 135 unsigned n;
1a61c88d 136 if (unlikely(!ctx))
137 return 0;
c4bacefb 138 n = ctx->major;
dbda4c0b 139
55669bfa
AV
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
5ef30ee5 176static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 177{
5195d8e2 178 struct audit_names *n;
5ef30ee5 179 umode_t mode = (umode_t)val;
1a61c88d 180
181 if (unlikely(!ctx))
182 return 0;
183
5195d8e2 184 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 185 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 186 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
187 return 1;
188 }
5195d8e2 189
5ef30ee5 190 return 0;
8b67dca9
AV
191}
192
74c3cbe3
AV
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
679173b7
EP
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
74c3cbe3
AV
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
74c3cbe3
AV
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
74c3cbe3
AV
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
74c3cbe3
AV
274}
275
276static void free_tree_refs(struct audit_context *ctx)
277{
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283}
284
285static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286{
74c3cbe3
AV
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
74c3cbe3
AV
303 return 0;
304}
305
ca57ec0f
EB
306static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
b34b0393
EP
310{
311 struct audit_names *n;
b34b0393 312 int rc;
ca57ec0f 313
b34b0393 314 if (name) {
ca57ec0f 315 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
316 if (rc)
317 return rc;
318 }
ca57ec0f 319
b34b0393
EP
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328}
b34b0393 329
ca57ec0f
EB
330static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334{
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352}
353
02d86a56
EP
354static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359{
02d86a56 360 switch (f->val) {
4a6633ed 361 /* process to file object comparisons */
02d86a56 362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 363 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 365 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 367 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 369 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 373 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 375 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 377 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 379 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
10d68360 384 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 386 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 388 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
10d68360 394 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
10d68360 397 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
10d68360
PM
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 411 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 413 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
f368c07d 430/* Determine if any context name data matches a rule's watch data */
1da177e4 431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
1da177e4 438static int audit_filter_rules(struct task_struct *tsk,
93315ed6 439 struct audit_krule *rule,
1da177e4 440 struct audit_context *ctx,
f368c07d 441 struct audit_names *name,
f5629883
TJ
442 enum audit_state *state,
443 bool task_creation)
1da177e4 444{
f5629883 445 const struct cred *cred;
5195d8e2 446 int i, need_sid = 1;
3dc7e315 447 u32 sid;
8fae4770 448 unsigned int sessionid;
3dc7e315 449
f5629883
TJ
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
1da177e4 452 for (i = 0; i < rule->field_count; i++) {
93315ed6 453 struct audit_field *f = &rule->fields[i];
5195d8e2 454 struct audit_names *n;
1da177e4 455 int result = 0;
f1dc4867 456 pid_t pid;
1da177e4 457
93315ed6 458 switch (f->type) {
1da177e4 459 case AUDIT_PID:
fa2bea2f 460 pid = task_tgid_nr(tsk);
f1dc4867 461 result = audit_comparator(pid, f->op, f->val);
1da177e4 462 break;
3c66251e 463 case AUDIT_PPID:
419c58f1
AV
464 if (ctx) {
465 if (!ctx->ppid)
c92cdeb4 466 ctx->ppid = task_ppid_nr(tsk);
3c66251e 467 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 468 }
3c66251e 469 break;
34d99af5
RGB
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
472 if (f->op == Audit_not_equal)
473 result = !result;
34d99af5 474 break;
1da177e4 475 case AUDIT_UID:
ca57ec0f 476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_EUID:
ca57ec0f 479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_SUID:
ca57ec0f 482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_FSUID:
ca57ec0f 485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
486 break;
487 case AUDIT_GID:
ca57ec0f 488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
489 if (f->op == Audit_equal) {
490 if (!result)
af85d177 491 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
492 } else if (f->op == Audit_not_equal) {
493 if (result)
af85d177 494 result = !groups_search(cred->group_info, f->gid);
37eebe39 495 }
1da177e4
LT
496 break;
497 case AUDIT_EGID:
ca57ec0f 498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
499 if (f->op == Audit_equal) {
500 if (!result)
af85d177 501 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
502 } else if (f->op == Audit_not_equal) {
503 if (result)
af85d177 504 result = !groups_search(cred->group_info, f->gid);
37eebe39 505 }
1da177e4
LT
506 break;
507 case AUDIT_SGID:
ca57ec0f 508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_FSGID:
ca57ec0f 511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 512 break;
8fae4770 513 case AUDIT_SESSIONID:
5b713886 514 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
1da177e4 517 case AUDIT_PERS:
93315ed6 518 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 519 break;
2fd6f58b 520 case AUDIT_ARCH:
9f8dbe9c 521 if (ctx)
93315ed6 522 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 523 break;
1da177e4
LT
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
93315ed6 527 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
528 break;
529 case AUDIT_SUCCESS:
b01f2cc1 530 if (ctx && ctx->return_valid) {
93315ed6
AG
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 533 else
93315ed6 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 535 }
1da177e4
LT
536 break;
537 case AUDIT_DEVMAJOR:
16c174bd
EP
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
5195d8e2 543 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
16c174bd
EP
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
5195d8e2 558 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
f368c07d 568 if (name)
db510fc5 569 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 570 else if (ctx) {
5195d8e2
EP
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
efaffd6e
EP
579 case AUDIT_OBJ_UID:
580 if (name) {
ca57ec0f 581 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
54d3218b
EP
591 case AUDIT_OBJ_GID:
592 if (name) {
ca57ec0f 593 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
f368c07d 603 case AUDIT_WATCH:
ae7b8f41
EP
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 606 break;
74c3cbe3
AV
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
1da177e4 611 case AUDIT_LOGINUID:
38f80590
RGB
612 result = audit_uid_comparator(audit_get_loginuid(tsk),
613 f->op, f->uid);
1da177e4 614 break;
780a7654
EB
615 case AUDIT_LOGINUID_SET:
616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 break;
3a6b9f85
DG
618 case AUDIT_SUBJ_USER:
619 case AUDIT_SUBJ_ROLE:
620 case AUDIT_SUBJ_TYPE:
621 case AUDIT_SUBJ_SEN:
622 case AUDIT_SUBJ_CLR:
3dc7e315
DG
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
627 logged upon error */
04305e4a 628 if (f->lsm_rule) {
2ad312d2 629 if (need_sid) {
2a862b32 630 security_task_getsecid(tsk, &sid);
2ad312d2
SG
631 need_sid = 0;
632 }
d7a96f3a 633 result = security_audit_rule_match(sid, f->type,
3dc7e315 634 f->op,
04305e4a 635 f->lsm_rule,
3dc7e315 636 ctx);
2ad312d2 637 }
3dc7e315 638 break;
6e5a2d1d
DG
639 case AUDIT_OBJ_USER:
640 case AUDIT_OBJ_ROLE:
641 case AUDIT_OBJ_TYPE:
642 case AUDIT_OBJ_LEV_LOW:
643 case AUDIT_OBJ_LEV_HIGH:
644 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
645 also applies here */
04305e4a 646 if (f->lsm_rule) {
6e5a2d1d
DG
647 /* Find files that match */
648 if (name) {
d7a96f3a 649 result = security_audit_rule_match(
6e5a2d1d 650 name->osid, f->type, f->op,
04305e4a 651 f->lsm_rule, ctx);
6e5a2d1d 652 } else if (ctx) {
5195d8e2
EP
653 list_for_each_entry(n, &ctx->names_list, list) {
654 if (security_audit_rule_match(n->osid, f->type,
655 f->op, f->lsm_rule,
656 ctx)) {
6e5a2d1d
DG
657 ++result;
658 break;
659 }
660 }
661 }
662 /* Find ipc objects that match */
a33e6751
AV
663 if (!ctx || ctx->type != AUDIT_IPC)
664 break;
665 if (security_audit_rule_match(ctx->ipc.osid,
666 f->type, f->op,
667 f->lsm_rule, ctx))
668 ++result;
6e5a2d1d
DG
669 }
670 break;
1da177e4
LT
671 case AUDIT_ARG0:
672 case AUDIT_ARG1:
673 case AUDIT_ARG2:
674 case AUDIT_ARG3:
675 if (ctx)
93315ed6 676 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 677 break;
5adc8a6a
AG
678 case AUDIT_FILTERKEY:
679 /* ignore this field for filtering */
680 result = 1;
681 break;
55669bfa
AV
682 case AUDIT_PERM:
683 result = audit_match_perm(ctx, f->val);
684 break;
8b67dca9
AV
685 case AUDIT_FILETYPE:
686 result = audit_match_filetype(ctx, f->val);
687 break;
02d86a56
EP
688 case AUDIT_FIELD_COMPARE:
689 result = audit_field_compare(tsk, cred, f, ctx, name);
690 break;
1da177e4 691 }
f5629883 692 if (!result)
1da177e4
LT
693 return 0;
694 }
0590b933
AV
695
696 if (ctx) {
697 if (rule->prio <= ctx->prio)
698 return 0;
699 if (rule->filterkey) {
700 kfree(ctx->filterkey);
701 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
702 }
703 ctx->prio = rule->prio;
704 }
1da177e4 705 switch (rule->action) {
66b12abc
PM
706 case AUDIT_NEVER:
707 *state = AUDIT_DISABLED;
708 break;
709 case AUDIT_ALWAYS:
710 *state = AUDIT_RECORD_CONTEXT;
711 break;
1da177e4
LT
712 }
713 return 1;
714}
715
716/* At process creation time, we can determine if system-call auditing is
717 * completely disabled for this task. Since we only have the task
718 * structure at this point, we can only check uid and gid.
719 */
e048e02c 720static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
721{
722 struct audit_entry *e;
723 enum audit_state state;
724
725 rcu_read_lock();
0f45aa18 726 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
727 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
728 &state, true)) {
e048e02c
AV
729 if (state == AUDIT_RECORD_CONTEXT)
730 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
731 rcu_read_unlock();
732 return state;
733 }
734 }
735 rcu_read_unlock();
736 return AUDIT_BUILD_CONTEXT;
737}
738
a3c54931
AL
739static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
740{
741 int word, bit;
742
743 if (val > 0xffffffff)
744 return false;
745
746 word = AUDIT_WORD(val);
747 if (word >= AUDIT_BITMASK_SIZE)
748 return false;
749
750 bit = AUDIT_BIT(val);
751
752 return rule->mask[word] & bit;
753}
754
1da177e4
LT
755/* At syscall entry and exit time, this filter is called if the
756 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 757 * also not high enough that we already know we have to write an audit
b0dd25a8 758 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
759 */
760static enum audit_state audit_filter_syscall(struct task_struct *tsk,
761 struct audit_context *ctx,
762 struct list_head *list)
763{
764 struct audit_entry *e;
c3896495 765 enum audit_state state;
1da177e4 766
5b52330b 767 if (auditd_test_task(tsk))
f7056d64
DW
768 return AUDIT_DISABLED;
769
1da177e4 770 rcu_read_lock();
c3896495 771 if (!list_empty(list)) {
b63862f4 772 list_for_each_entry_rcu(e, list, list) {
a3c54931 773 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 774 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 775 &state, false)) {
f368c07d 776 rcu_read_unlock();
0590b933 777 ctx->current_state = state;
f368c07d
AG
778 return state;
779 }
780 }
781 }
782 rcu_read_unlock();
783 return AUDIT_BUILD_CONTEXT;
784}
785
5195d8e2
EP
786/*
787 * Given an audit_name check the inode hash table to see if they match.
788 * Called holding the rcu read lock to protect the use of audit_inode_hash
789 */
790static int audit_filter_inode_name(struct task_struct *tsk,
791 struct audit_names *n,
792 struct audit_context *ctx) {
5195d8e2
EP
793 int h = audit_hash_ino((u32)n->ino);
794 struct list_head *list = &audit_inode_hash[h];
795 struct audit_entry *e;
796 enum audit_state state;
797
5195d8e2
EP
798 if (list_empty(list))
799 return 0;
800
801 list_for_each_entry_rcu(e, list, list) {
a3c54931 802 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
803 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
804 ctx->current_state = state;
805 return 1;
806 }
807 }
808
809 return 0;
810}
811
812/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 813 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 814 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
815 * Regarding audit_state, same rules apply as for audit_filter_syscall().
816 */
0590b933 817void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 818{
5195d8e2 819 struct audit_names *n;
f368c07d 820
5b52330b 821 if (auditd_test_task(tsk))
0590b933 822 return;
f368c07d
AG
823
824 rcu_read_lock();
f368c07d 825
5195d8e2
EP
826 list_for_each_entry(n, &ctx->names_list, list) {
827 if (audit_filter_inode_name(tsk, n, ctx))
828 break;
0f45aa18
DW
829 }
830 rcu_read_unlock();
0f45aa18
DW
831}
832
4a3eb726
RGB
833/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
834static inline struct audit_context *audit_take_context(struct task_struct *tsk,
1da177e4 835 int return_valid,
6d208da8 836 long return_code)
1da177e4
LT
837{
838 struct audit_context *context = tsk->audit_context;
839
56179a6e 840 if (!context)
1da177e4
LT
841 return NULL;
842 context->return_valid = return_valid;
f701b75e
EP
843
844 /*
845 * we need to fix up the return code in the audit logs if the actual
846 * return codes are later going to be fixed up by the arch specific
847 * signal handlers
848 *
849 * This is actually a test for:
850 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
851 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
852 *
853 * but is faster than a bunch of ||
854 */
855 if (unlikely(return_code <= -ERESTARTSYS) &&
856 (return_code >= -ERESTART_RESTARTBLOCK) &&
857 (return_code != -ENOIOCTLCMD))
858 context->return_code = -EINTR;
859 else
860 context->return_code = return_code;
1da177e4 861
0590b933
AV
862 if (context->in_syscall && !context->dummy) {
863 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
864 audit_filter_inodes(tsk, context);
1da177e4
LT
865 }
866
c0b0ae8a 867 audit_set_context(tsk, NULL);
1da177e4
LT
868 return context;
869}
870
3f1c8250
WR
871static inline void audit_proctitle_free(struct audit_context *context)
872{
873 kfree(context->proctitle.value);
874 context->proctitle.value = NULL;
875 context->proctitle.len = 0;
876}
877
1da177e4
LT
878static inline void audit_free_names(struct audit_context *context)
879{
5195d8e2 880 struct audit_names *n, *next;
1da177e4 881
5195d8e2
EP
882 list_for_each_entry_safe(n, next, &context->names_list, list) {
883 list_del(&n->list);
55422d0b
PM
884 if (n->name)
885 putname(n->name);
5195d8e2
EP
886 if (n->should_free)
887 kfree(n);
8c8570fb 888 }
1da177e4 889 context->name_count = 0;
44707fdf
JB
890 path_put(&context->pwd);
891 context->pwd.dentry = NULL;
892 context->pwd.mnt = NULL;
1da177e4
LT
893}
894
895static inline void audit_free_aux(struct audit_context *context)
896{
897 struct audit_aux_data *aux;
898
899 while ((aux = context->aux)) {
900 context->aux = aux->next;
901 kfree(aux);
902 }
e54dc243
AG
903 while ((aux = context->aux_pids)) {
904 context->aux_pids = aux->next;
905 kfree(aux);
906 }
1da177e4
LT
907}
908
1da177e4
LT
909static inline struct audit_context *audit_alloc_context(enum audit_state state)
910{
911 struct audit_context *context;
912
17c6ee70
RM
913 context = kzalloc(sizeof(*context), GFP_KERNEL);
914 if (!context)
1da177e4 915 return NULL;
e2c5adc8
AM
916 context->state = state;
917 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 918 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 919 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
920 return context;
921}
922
b0dd25a8
RD
923/**
924 * audit_alloc - allocate an audit context block for a task
925 * @tsk: task
926 *
927 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
928 * if necessary. Doing so turns on system call auditing for the
929 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
930 * needed.
931 */
1da177e4
LT
932int audit_alloc(struct task_struct *tsk)
933{
934 struct audit_context *context;
935 enum audit_state state;
e048e02c 936 char *key = NULL;
1da177e4 937
b593d384 938 if (likely(!audit_ever_enabled))
1da177e4
LT
939 return 0; /* Return if not auditing. */
940
e048e02c 941 state = audit_filter_task(tsk, &key);
d48d8051
ON
942 if (state == AUDIT_DISABLED) {
943 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 944 return 0;
d48d8051 945 }
1da177e4
LT
946
947 if (!(context = audit_alloc_context(state))) {
e048e02c 948 kfree(key);
1da177e4
LT
949 audit_log_lost("out of memory in audit_alloc");
950 return -ENOMEM;
951 }
e048e02c 952 context->filterkey = key;
1da177e4 953
c0b0ae8a 954 audit_set_context(tsk, context);
1da177e4
LT
955 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
956 return 0;
957}
958
959static inline void audit_free_context(struct audit_context *context)
960{
c62d773a
AV
961 audit_free_names(context);
962 unroll_tree_refs(context, NULL, 0);
963 free_tree_refs(context);
964 audit_free_aux(context);
965 kfree(context->filterkey);
966 kfree(context->sockaddr);
3f1c8250 967 audit_proctitle_free(context);
c62d773a 968 kfree(context);
1da177e4
LT
969}
970
e54dc243 971static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 972 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 973 u32 sid, char *comm)
e54dc243
AG
974{
975 struct audit_buffer *ab;
2a862b32 976 char *ctx = NULL;
e54dc243
AG
977 u32 len;
978 int rc = 0;
979
980 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
981 if (!ab)
6246ccab 982 return rc;
e54dc243 983
e1760bd5
EB
984 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
985 from_kuid(&init_user_ns, auid),
cca080d9 986 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
987 if (sid) {
988 if (security_secid_to_secctx(sid, &ctx, &len)) {
989 audit_log_format(ab, " obj=(none)");
990 rc = 1;
991 } else {
992 audit_log_format(ab, " obj=%s", ctx);
993 security_release_secctx(ctx, len);
994 }
2a862b32 995 }
c2a7780e
EP
996 audit_log_format(ab, " ocomm=");
997 audit_log_untrustedstring(ab, comm);
e54dc243 998 audit_log_end(ab);
e54dc243
AG
999
1000 return rc;
1001}
1002
43761473
PM
1003static void audit_log_execve_info(struct audit_context *context,
1004 struct audit_buffer **ab)
bdf4c48a 1005{
43761473
PM
1006 long len_max;
1007 long len_rem;
1008 long len_full;
1009 long len_buf;
8443075e 1010 long len_abuf = 0;
43761473
PM
1011 long len_tmp;
1012 bool require_data;
1013 bool encode;
1014 unsigned int iter;
1015 unsigned int arg;
1016 char *buf_head;
1017 char *buf;
1018 const char __user *p = (const char __user *)current->mm->arg_start;
1019
1020 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1021 * data we put in the audit record for this argument (see the
1022 * code below) ... at this point in time 96 is plenty */
1023 char abuf[96];
1024
1025 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1026 * current value of 7500 is not as important as the fact that it
1027 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1028 * room if we go over a little bit in the logging below */
1029 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1030 len_max = MAX_EXECVE_AUDIT_LEN;
1031
1032 /* scratch buffer to hold the userspace args */
1033 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1034 if (!buf_head) {
1035 audit_panic("out of memory for argv string");
1036 return;
de6bbd1d 1037 }
43761473 1038 buf = buf_head;
040b3a2d 1039
43761473 1040 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1041
43761473
PM
1042 len_rem = len_max;
1043 len_buf = 0;
1044 len_full = 0;
1045 require_data = true;
1046 encode = false;
1047 iter = 0;
1048 arg = 0;
de6bbd1d 1049 do {
43761473
PM
1050 /* NOTE: we don't ever want to trust this value for anything
1051 * serious, but the audit record format insists we
1052 * provide an argument length for really long arguments,
1053 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1054 * to use strncpy_from_user() to obtain this value for
1055 * recording in the log, although we don't use it
1056 * anywhere here to avoid a double-fetch problem */
1057 if (len_full == 0)
1058 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1059
1060 /* read more data from userspace */
1061 if (require_data) {
1062 /* can we make more room in the buffer? */
1063 if (buf != buf_head) {
1064 memmove(buf_head, buf, len_buf);
1065 buf = buf_head;
1066 }
1067
1068 /* fetch as much as we can of the argument */
1069 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1070 len_max - len_buf);
1071 if (len_tmp == -EFAULT) {
1072 /* unable to copy from userspace */
1073 send_sig(SIGKILL, current, 0);
1074 goto out;
1075 } else if (len_tmp == (len_max - len_buf)) {
1076 /* buffer is not large enough */
1077 require_data = true;
1078 /* NOTE: if we are going to span multiple
1079 * buffers force the encoding so we stand
1080 * a chance at a sane len_full value and
1081 * consistent record encoding */
1082 encode = true;
1083 len_full = len_full * 2;
1084 p += len_tmp;
1085 } else {
1086 require_data = false;
1087 if (!encode)
1088 encode = audit_string_contains_control(
1089 buf, len_tmp);
1090 /* try to use a trusted value for len_full */
1091 if (len_full < len_max)
1092 len_full = (encode ?
1093 len_tmp * 2 : len_tmp);
1094 p += len_tmp + 1;
1095 }
1096 len_buf += len_tmp;
1097 buf_head[len_buf] = '\0';
bdf4c48a 1098
43761473
PM
1099 /* length of the buffer in the audit record? */
1100 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1101 }
de6bbd1d 1102
43761473 1103 /* write as much as we can to the audit log */
ea956d8b 1104 if (len_buf >= 0) {
43761473
PM
1105 /* NOTE: some magic numbers here - basically if we
1106 * can't fit a reasonable amount of data into the
1107 * existing audit buffer, flush it and start with
1108 * a new buffer */
1109 if ((sizeof(abuf) + 8) > len_rem) {
1110 len_rem = len_max;
1111 audit_log_end(*ab);
1112 *ab = audit_log_start(context,
1113 GFP_KERNEL, AUDIT_EXECVE);
1114 if (!*ab)
1115 goto out;
1116 }
bdf4c48a 1117
43761473
PM
1118 /* create the non-arg portion of the arg record */
1119 len_tmp = 0;
1120 if (require_data || (iter > 0) ||
1121 ((len_abuf + sizeof(abuf)) > len_rem)) {
1122 if (iter == 0) {
1123 len_tmp += snprintf(&abuf[len_tmp],
1124 sizeof(abuf) - len_tmp,
1125 " a%d_len=%lu",
1126 arg, len_full);
1127 }
1128 len_tmp += snprintf(&abuf[len_tmp],
1129 sizeof(abuf) - len_tmp,
1130 " a%d[%d]=", arg, iter++);
1131 } else
1132 len_tmp += snprintf(&abuf[len_tmp],
1133 sizeof(abuf) - len_tmp,
1134 " a%d=", arg);
1135 WARN_ON(len_tmp >= sizeof(abuf));
1136 abuf[sizeof(abuf) - 1] = '\0';
1137
1138 /* log the arg in the audit record */
1139 audit_log_format(*ab, "%s", abuf);
1140 len_rem -= len_tmp;
1141 len_tmp = len_buf;
1142 if (encode) {
1143 if (len_abuf > len_rem)
1144 len_tmp = len_rem / 2; /* encoding */
1145 audit_log_n_hex(*ab, buf, len_tmp);
1146 len_rem -= len_tmp * 2;
1147 len_abuf -= len_tmp * 2;
1148 } else {
1149 if (len_abuf > len_rem)
1150 len_tmp = len_rem - 2; /* quotes */
1151 audit_log_n_string(*ab, buf, len_tmp);
1152 len_rem -= len_tmp + 2;
1153 /* don't subtract the "2" because we still need
1154 * to add quotes to the remaining string */
1155 len_abuf -= len_tmp;
1156 }
1157 len_buf -= len_tmp;
1158 buf += len_tmp;
1159 }
bdf4c48a 1160
43761473
PM
1161 /* ready to move to the next argument? */
1162 if ((len_buf == 0) && !require_data) {
1163 arg++;
1164 iter = 0;
1165 len_full = 0;
1166 require_data = true;
1167 encode = false;
1168 }
1169 } while (arg < context->execve.argc);
de6bbd1d 1170
43761473 1171 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1172
43761473
PM
1173out:
1174 kfree(buf_head);
bdf4c48a
PZ
1175}
1176
a33e6751 1177static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1178{
1179 struct audit_buffer *ab;
1180 int i;
1181
1182 ab = audit_log_start(context, GFP_KERNEL, context->type);
1183 if (!ab)
1184 return;
1185
1186 switch (context->type) {
1187 case AUDIT_SOCKETCALL: {
1188 int nargs = context->socketcall.nargs;
1189 audit_log_format(ab, "nargs=%d", nargs);
1190 for (i = 0; i < nargs; i++)
1191 audit_log_format(ab, " a%d=%lx", i,
1192 context->socketcall.args[i]);
1193 break; }
a33e6751
AV
1194 case AUDIT_IPC: {
1195 u32 osid = context->ipc.osid;
1196
2570ebbd 1197 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1198 from_kuid(&init_user_ns, context->ipc.uid),
1199 from_kgid(&init_user_ns, context->ipc.gid),
1200 context->ipc.mode);
a33e6751
AV
1201 if (osid) {
1202 char *ctx = NULL;
1203 u32 len;
1204 if (security_secid_to_secctx(osid, &ctx, &len)) {
1205 audit_log_format(ab, " osid=%u", osid);
1206 *call_panic = 1;
1207 } else {
1208 audit_log_format(ab, " obj=%s", ctx);
1209 security_release_secctx(ctx, len);
1210 }
1211 }
e816f370
AV
1212 if (context->ipc.has_perm) {
1213 audit_log_end(ab);
1214 ab = audit_log_start(context, GFP_KERNEL,
1215 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1216 if (unlikely(!ab))
1217 return;
e816f370 1218 audit_log_format(ab,
2570ebbd 1219 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1220 context->ipc.qbytes,
1221 context->ipc.perm_uid,
1222 context->ipc.perm_gid,
1223 context->ipc.perm_mode);
e816f370 1224 }
a33e6751 1225 break; }
fe8e52b9 1226 case AUDIT_MQ_OPEN:
564f6993 1227 audit_log_format(ab,
df0a4283 1228 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1229 "mq_msgsize=%ld mq_curmsgs=%ld",
1230 context->mq_open.oflag, context->mq_open.mode,
1231 context->mq_open.attr.mq_flags,
1232 context->mq_open.attr.mq_maxmsg,
1233 context->mq_open.attr.mq_msgsize,
1234 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1235 break;
1236 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1237 audit_log_format(ab,
1238 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1239 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1240 context->mq_sendrecv.mqdes,
1241 context->mq_sendrecv.msg_len,
1242 context->mq_sendrecv.msg_prio,
b9047726 1243 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1244 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1245 break;
1246 case AUDIT_MQ_NOTIFY:
20114f71
AV
1247 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1248 context->mq_notify.mqdes,
1249 context->mq_notify.sigev_signo);
fe8e52b9 1250 break;
7392906e
AV
1251 case AUDIT_MQ_GETSETATTR: {
1252 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1253 audit_log_format(ab,
1254 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1255 "mq_curmsgs=%ld ",
1256 context->mq_getsetattr.mqdes,
1257 attr->mq_flags, attr->mq_maxmsg,
1258 attr->mq_msgsize, attr->mq_curmsgs);
1259 break; }
fe8e52b9 1260 case AUDIT_CAPSET:
57f71a0a
AV
1261 audit_log_format(ab, "pid=%d", context->capset.pid);
1262 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1263 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1264 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1265 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1266 break;
1267 case AUDIT_MMAP:
120a795d
AV
1268 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1269 context->mmap.flags);
fe8e52b9
PM
1270 break;
1271 case AUDIT_EXECVE:
d9cfea91 1272 audit_log_execve_info(context, &ab);
fe8e52b9 1273 break;
ca86cad7
RGB
1274 case AUDIT_KERN_MODULE:
1275 audit_log_format(ab, "name=");
b305f7ed
YW
1276 if (context->module.name) {
1277 audit_log_untrustedstring(ab, context->module.name);
1278 kfree(context->module.name);
1279 } else
1280 audit_log_format(ab, "(null)");
1281
ca86cad7 1282 break;
f3298dc4
AV
1283 }
1284 audit_log_end(ab);
1285}
1286
3f1c8250
WR
1287static inline int audit_proctitle_rtrim(char *proctitle, int len)
1288{
1289 char *end = proctitle + len - 1;
1290 while (end > proctitle && !isprint(*end))
1291 end--;
1292
1293 /* catch the case where proctitle is only 1 non-print character */
1294 len = end - proctitle + 1;
1295 len -= isprint(proctitle[len-1]) == 0;
1296 return len;
1297}
1298
1299static void audit_log_proctitle(struct task_struct *tsk,
1300 struct audit_context *context)
1301{
1302 int res;
1303 char *buf;
1304 char *msg = "(null)";
1305 int len = strlen(msg);
1306 struct audit_buffer *ab;
1307
1308 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1309 if (!ab)
1310 return; /* audit_panic or being filtered */
1311
1312 audit_log_format(ab, "proctitle=");
1313
1314 /* Not cached */
1315 if (!context->proctitle.value) {
1316 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1317 if (!buf)
1318 goto out;
1319 /* Historically called this from procfs naming */
1320 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1321 if (res == 0) {
1322 kfree(buf);
1323 goto out;
1324 }
1325 res = audit_proctitle_rtrim(buf, res);
1326 if (res == 0) {
1327 kfree(buf);
1328 goto out;
1329 }
1330 context->proctitle.value = buf;
1331 context->proctitle.len = res;
1332 }
1333 msg = context->proctitle.value;
1334 len = context->proctitle.len;
1335out:
1336 audit_log_n_untrustedstring(ab, msg, len);
1337 audit_log_end(ab);
1338}
1339
e495149b 1340static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1341{
9c7aa6aa 1342 int i, call_panic = 0;
1da177e4 1343 struct audit_buffer *ab;
7551ced3 1344 struct audit_aux_data *aux;
5195d8e2 1345 struct audit_names *n;
1da177e4 1346
e495149b 1347 /* tsk == current */
3f2792ff 1348 context->personality = tsk->personality;
e495149b
AV
1349
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1351 if (!ab)
1352 return; /* audit_panic has been called */
bccf6ae0
DW
1353 audit_log_format(ab, "arch=%x syscall=%d",
1354 context->arch, context->major);
1da177e4
LT
1355 if (context->personality != PER_LINUX)
1356 audit_log_format(ab, " per=%lx", context->personality);
1357 if (context->return_valid)
9f8dbe9c 1358 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 context->return_code);
eb84a20e 1361
1da177e4 1362 audit_log_format(ab,
e23eb920
PM
1363 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1364 context->argv[0],
1365 context->argv[1],
1366 context->argv[2],
1367 context->argv[3],
1368 context->name_count);
eb84a20e 1369
e495149b 1370 audit_log_task_info(ab, tsk);
9d960985 1371 audit_log_key(ab, context->filterkey);
1da177e4 1372 audit_log_end(ab);
1da177e4 1373
7551ced3 1374 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1375
e495149b 1376 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1377 if (!ab)
1378 continue; /* audit_panic has been called */
1379
1da177e4 1380 switch (aux->type) {
20ca73bc 1381
3fc689e9
EP
1382 case AUDIT_BPRM_FCAPS: {
1383 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1384 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1385 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1386 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1387 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1388 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1389 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1390 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1391 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1392 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1393 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1394 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1395 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
3fc689e9
EP
1396 break; }
1397
1da177e4
LT
1398 }
1399 audit_log_end(ab);
1da177e4
LT
1400 }
1401
f3298dc4 1402 if (context->type)
a33e6751 1403 show_special(context, &call_panic);
f3298dc4 1404
157cf649
AV
1405 if (context->fds[0] >= 0) {
1406 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1407 if (ab) {
1408 audit_log_format(ab, "fd0=%d fd1=%d",
1409 context->fds[0], context->fds[1]);
1410 audit_log_end(ab);
1411 }
1412 }
1413
4f6b434f
AV
1414 if (context->sockaddr_len) {
1415 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1416 if (ab) {
1417 audit_log_format(ab, "saddr=");
1418 audit_log_n_hex(ab, (void *)context->sockaddr,
1419 context->sockaddr_len);
1420 audit_log_end(ab);
1421 }
1422 }
1423
e54dc243
AG
1424 for (aux = context->aux_pids; aux; aux = aux->next) {
1425 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1426
1427 for (i = 0; i < axs->pid_count; i++)
1428 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1429 axs->target_auid[i],
1430 axs->target_uid[i],
4746ec5b 1431 axs->target_sessionid[i],
c2a7780e
EP
1432 axs->target_sid[i],
1433 axs->target_comm[i]))
e54dc243 1434 call_panic = 1;
a5cb013d
AV
1435 }
1436
e54dc243
AG
1437 if (context->target_pid &&
1438 audit_log_pid_context(context, context->target_pid,
c2a7780e 1439 context->target_auid, context->target_uid,
4746ec5b 1440 context->target_sessionid,
c2a7780e 1441 context->target_sid, context->target_comm))
e54dc243
AG
1442 call_panic = 1;
1443
44707fdf 1444 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1445 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1446 if (ab) {
0b7a0fdb 1447 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1448 audit_log_end(ab);
1449 }
1450 }
73241ccc 1451
5195d8e2 1452 i = 0;
79f6530c
JL
1453 list_for_each_entry(n, &context->names_list, list) {
1454 if (n->hidden)
1455 continue;
b24a30a7 1456 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1457 }
c0641f28 1458
3f1c8250
WR
1459 audit_log_proctitle(tsk, context);
1460
c0641f28
EP
1461 /* Send end of event record to help user space know we are finished */
1462 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1463 if (ab)
1464 audit_log_end(ab);
9c7aa6aa
SG
1465 if (call_panic)
1466 audit_panic("error converting sid to string");
1da177e4
LT
1467}
1468
b0dd25a8 1469/**
196a5085 1470 * __audit_free - free a per-task audit context
b0dd25a8
RD
1471 * @tsk: task whose audit context block to free
1472 *
fa84cb93 1473 * Called from copy_process and do_exit
b0dd25a8 1474 */
a4ff8dba 1475void __audit_free(struct task_struct *tsk)
1da177e4
LT
1476{
1477 struct audit_context *context;
1478
4a3eb726 1479 context = audit_take_context(tsk, 0, 0);
56179a6e 1480 if (!context)
1da177e4
LT
1481 return;
1482
1483 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1484 * function (e.g., exit_group), then free context block.
1485 * We use GFP_ATOMIC here because we might be doing this
f5561964 1486 * in the context of the idle thread */
e495149b 1487 /* that can happen only if we are called from do_exit() */
0590b933 1488 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1489 audit_log_exit(context, tsk);
916d7576
AV
1490 if (!list_empty(&context->killed_trees))
1491 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1492
1493 audit_free_context(context);
1494}
1495
b0dd25a8 1496/**
196a5085 1497 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1498 * @major: major syscall type (function)
1499 * @a1: additional syscall register 1
1500 * @a2: additional syscall register 2
1501 * @a3: additional syscall register 3
1502 * @a4: additional syscall register 4
1503 *
1504 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1505 * audit context was created when the task was created and the state or
1506 * filters demand the audit context be built. If the state from the
1507 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1508 * then the record will be written at syscall exit time (otherwise, it
1509 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1510 * be written).
1511 */
b4f0d375
RGB
1512void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1513 unsigned long a3, unsigned long a4)
1da177e4 1514{
cdfb6b34 1515 struct audit_context *context = audit_context();
1da177e4
LT
1516 enum audit_state state;
1517
94d14e3e 1518 if (!audit_enabled || !context)
86a1c34a 1519 return;
1da177e4 1520
1da177e4
LT
1521 BUG_ON(context->in_syscall || context->name_count);
1522
1da177e4 1523 state = context->state;
5260ecc2
RGB
1524 if (state == AUDIT_DISABLED)
1525 return;
1526
d51374ad 1527 context->dummy = !audit_n_rules;
0590b933
AV
1528 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1529 context->prio = 0;
cdfb6b34 1530 if (auditd_test_task(current))
5260ecc2 1531 return;
0590b933 1532 }
1da177e4 1533
5260ecc2
RGB
1534 context->arch = syscall_get_arch();
1535 context->major = major;
1536 context->argv[0] = a1;
1537 context->argv[1] = a2;
1538 context->argv[2] = a3;
1539 context->argv[3] = a4;
ce625a80 1540 context->serial = 0;
1da177e4 1541 context->in_syscall = 1;
0590b933 1542 context->current_state = state;
419c58f1 1543 context->ppid = 0;
290e44b7 1544 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
1545}
1546
b0dd25a8 1547/**
196a5085 1548 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1549 * @success: success value of the syscall
1550 * @return_code: return value of the syscall
b0dd25a8
RD
1551 *
1552 * Tear down after system call. If the audit context has been marked as
1da177e4 1553 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1554 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1555 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1556 * free the names stored from getname().
1557 */
d7e7528b 1558void __audit_syscall_exit(int success, long return_code)
1da177e4
LT
1559{
1560 struct audit_context *context;
1561
d7e7528b
EP
1562 if (success)
1563 success = AUDITSC_SUCCESS;
1564 else
1565 success = AUDITSC_FAILURE;
1da177e4 1566
cdfb6b34 1567 context = audit_take_context(current, success, return_code);
56179a6e 1568 if (!context)
97e94c45 1569 return;
1da177e4 1570
0590b933 1571 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
cdfb6b34 1572 audit_log_exit(context, current);
1da177e4
LT
1573
1574 context->in_syscall = 0;
0590b933 1575 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1576
916d7576
AV
1577 if (!list_empty(&context->killed_trees))
1578 audit_kill_trees(&context->killed_trees);
1579
c62d773a
AV
1580 audit_free_names(context);
1581 unroll_tree_refs(context, NULL, 0);
1582 audit_free_aux(context);
1583 context->aux = NULL;
1584 context->aux_pids = NULL;
1585 context->target_pid = 0;
1586 context->target_sid = 0;
1587 context->sockaddr_len = 0;
1588 context->type = 0;
1589 context->fds[0] = -1;
1590 if (context->state != AUDIT_RECORD_CONTEXT) {
1591 kfree(context->filterkey);
1592 context->filterkey = NULL;
1da177e4 1593 }
c0b0ae8a 1594 audit_set_context(current, context);
1da177e4
LT
1595}
1596
74c3cbe3
AV
1597static inline void handle_one(const struct inode *inode)
1598{
74c3cbe3
AV
1599 struct audit_context *context;
1600 struct audit_tree_refs *p;
1601 struct audit_chunk *chunk;
1602 int count;
08991e83 1603 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 1604 return;
cdfb6b34 1605 context = audit_context();
74c3cbe3
AV
1606 p = context->trees;
1607 count = context->tree_count;
1608 rcu_read_lock();
1609 chunk = audit_tree_lookup(inode);
1610 rcu_read_unlock();
1611 if (!chunk)
1612 return;
1613 if (likely(put_tree_ref(context, chunk)))
1614 return;
1615 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1616 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1617 audit_set_auditable(context);
1618 audit_put_chunk(chunk);
1619 unroll_tree_refs(context, p, count);
1620 return;
1621 }
1622 put_tree_ref(context, chunk);
74c3cbe3
AV
1623}
1624
1625static void handle_path(const struct dentry *dentry)
1626{
74c3cbe3
AV
1627 struct audit_context *context;
1628 struct audit_tree_refs *p;
1629 const struct dentry *d, *parent;
1630 struct audit_chunk *drop;
1631 unsigned long seq;
1632 int count;
1633
cdfb6b34 1634 context = audit_context();
74c3cbe3
AV
1635 p = context->trees;
1636 count = context->tree_count;
1637retry:
1638 drop = NULL;
1639 d = dentry;
1640 rcu_read_lock();
1641 seq = read_seqbegin(&rename_lock);
1642 for(;;) {
3b362157 1643 struct inode *inode = d_backing_inode(d);
08991e83 1644 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3
AV
1645 struct audit_chunk *chunk;
1646 chunk = audit_tree_lookup(inode);
1647 if (chunk) {
1648 if (unlikely(!put_tree_ref(context, chunk))) {
1649 drop = chunk;
1650 break;
1651 }
1652 }
1653 }
1654 parent = d->d_parent;
1655 if (parent == d)
1656 break;
1657 d = parent;
1658 }
1659 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1660 rcu_read_unlock();
1661 if (!drop) {
1662 /* just a race with rename */
1663 unroll_tree_refs(context, p, count);
1664 goto retry;
1665 }
1666 audit_put_chunk(drop);
1667 if (grow_tree_refs(context)) {
1668 /* OK, got more space */
1669 unroll_tree_refs(context, p, count);
1670 goto retry;
1671 }
1672 /* too bad */
f952d10f 1673 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1674 unroll_tree_refs(context, p, count);
1675 audit_set_auditable(context);
1676 return;
1677 }
1678 rcu_read_unlock();
74c3cbe3
AV
1679}
1680
78e2e802
JL
1681static struct audit_names *audit_alloc_name(struct audit_context *context,
1682 unsigned char type)
5195d8e2
EP
1683{
1684 struct audit_names *aname;
1685
1686 if (context->name_count < AUDIT_NAMES) {
1687 aname = &context->preallocated_names[context->name_count];
1688 memset(aname, 0, sizeof(*aname));
1689 } else {
1690 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1691 if (!aname)
1692 return NULL;
1693 aname->should_free = true;
1694 }
1695
84cb777e 1696 aname->ino = AUDIT_INO_UNSET;
78e2e802 1697 aname->type = type;
5195d8e2
EP
1698 list_add_tail(&aname->list, &context->names_list);
1699
1700 context->name_count++;
5195d8e2
EP
1701 return aname;
1702}
1703
7ac86265 1704/**
196a5085 1705 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
1706 * @uptr: userland ptr to pathname
1707 *
1708 * Search the audit_names list for the current audit context. If there is an
1709 * existing entry with a matching "uptr" then return the filename
1710 * associated with that audit_name. If not, return NULL.
1711 */
1712struct filename *
1713__audit_reusename(const __user char *uptr)
1714{
cdfb6b34 1715 struct audit_context *context = audit_context();
7ac86265
JL
1716 struct audit_names *n;
1717
1718 list_for_each_entry(n, &context->names_list, list) {
1719 if (!n->name)
1720 continue;
55422d0b
PM
1721 if (n->name->uptr == uptr) {
1722 n->name->refcnt++;
7ac86265 1723 return n->name;
55422d0b 1724 }
7ac86265
JL
1725 }
1726 return NULL;
1727}
1728
b0dd25a8 1729/**
196a5085 1730 * __audit_getname - add a name to the list
b0dd25a8
RD
1731 * @name: name to add
1732 *
1733 * Add a name to the list of audit names for this context.
1734 * Called from fs/namei.c:getname().
1735 */
91a27b2a 1736void __audit_getname(struct filename *name)
1da177e4 1737{
cdfb6b34 1738 struct audit_context *context = audit_context();
5195d8e2 1739 struct audit_names *n;
1da177e4 1740
55422d0b 1741 if (!context->in_syscall)
1da177e4 1742 return;
91a27b2a 1743
78e2e802 1744 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1745 if (!n)
1746 return;
1747
1748 n->name = name;
1749 n->name_len = AUDIT_NAME_FULL;
adb5c247 1750 name->aname = n;
55422d0b 1751 name->refcnt++;
5195d8e2 1752
f7ad3c6b
MS
1753 if (!context->pwd.dentry)
1754 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1755}
1756
b0dd25a8 1757/**
bfcec708 1758 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1759 * @name: name being audited
481968f4 1760 * @dentry: dentry being audited
79f6530c 1761 * @flags: attributes for this particular entry
b0dd25a8 1762 */
adb5c247 1763void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1764 unsigned int flags)
1da177e4 1765{
cdfb6b34 1766 struct audit_context *context = audit_context();
d6335d77 1767 struct inode *inode = d_backing_inode(dentry);
5195d8e2 1768 struct audit_names *n;
79f6530c 1769 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1770
1771 if (!context->in_syscall)
1772 return;
5195d8e2 1773
9cec9d68
JL
1774 if (!name)
1775 goto out_alloc;
1776
adb5c247
JL
1777 /*
1778 * If we have a pointer to an audit_names entry already, then we can
1779 * just use it directly if the type is correct.
1780 */
1781 n = name->aname;
1782 if (n) {
1783 if (parent) {
1784 if (n->type == AUDIT_TYPE_PARENT ||
1785 n->type == AUDIT_TYPE_UNKNOWN)
1786 goto out;
1787 } else {
1788 if (n->type != AUDIT_TYPE_PARENT)
1789 goto out;
1790 }
1791 }
1792
5195d8e2 1793 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
1794 if (n->ino) {
1795 /* valid inode number, use that for the comparison */
1796 if (n->ino != inode->i_ino ||
1797 n->dev != inode->i_sb->s_dev)
1798 continue;
1799 } else if (n->name) {
1800 /* inode number has not been set, check the name */
1801 if (strcmp(n->name->name, name->name))
1802 continue;
1803 } else
1804 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
1805 continue;
1806
1807 /* match the correct record type */
1808 if (parent) {
1809 if (n->type == AUDIT_TYPE_PARENT ||
1810 n->type == AUDIT_TYPE_UNKNOWN)
1811 goto out;
1812 } else {
1813 if (n->type != AUDIT_TYPE_PARENT)
1814 goto out;
1815 }
1da177e4 1816 }
5195d8e2 1817
9cec9d68 1818out_alloc:
4a928436
PM
1819 /* unable to find an entry with both a matching name and type */
1820 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1821 if (!n)
1822 return;
fcf22d82 1823 if (name) {
fd3522fd 1824 n->name = name;
55422d0b 1825 name->refcnt++;
fcf22d82 1826 }
4a928436 1827
5195d8e2 1828out:
bfcec708 1829 if (parent) {
91a27b2a 1830 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1831 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1832 if (flags & AUDIT_INODE_HIDDEN)
1833 n->hidden = true;
bfcec708
JL
1834 } else {
1835 n->name_len = AUDIT_NAME_FULL;
1836 n->type = AUDIT_TYPE_NORMAL;
1837 }
74c3cbe3 1838 handle_path(dentry);
5195d8e2 1839 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1840}
1841
9f45f5bf
AV
1842void __audit_file(const struct file *file)
1843{
1844 __audit_inode(NULL, file->f_path.dentry, 0);
1845}
1846
73241ccc 1847/**
c43a25ab 1848 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1849 * @parent: inode of dentry parent
c43a25ab 1850 * @dentry: dentry being audited
4fa6b5ec 1851 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1852 *
1853 * For syscalls that create or remove filesystem objects, audit_inode
1854 * can only collect information for the filesystem object's parent.
1855 * This call updates the audit context with the child's information.
1856 * Syscalls that create a new filesystem object must be hooked after
1857 * the object is created. Syscalls that remove a filesystem object
1858 * must be hooked prior, in order to capture the target inode during
1859 * unsuccessful attempts.
1860 */
d6335d77 1861void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
1862 const struct dentry *dentry,
1863 const unsigned char type)
73241ccc 1864{
cdfb6b34 1865 struct audit_context *context = audit_context();
d6335d77 1866 struct inode *inode = d_backing_inode(dentry);
cccc6bba 1867 const char *dname = dentry->d_name.name;
4fa6b5ec 1868 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
1869 struct audit_entry *e;
1870 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1871 int i;
73241ccc
AG
1872
1873 if (!context->in_syscall)
1874 return;
1875
42d5e376
RGB
1876 rcu_read_lock();
1877 if (!list_empty(list)) {
1878 list_for_each_entry_rcu(e, list, list) {
1879 for (i = 0; i < e->rule.field_count; i++) {
1880 struct audit_field *f = &e->rule.fields[i];
1881
1882 if (f->type == AUDIT_FSTYPE) {
1883 if (audit_comparator(parent->i_sb->s_magic,
1884 f->op, f->val)) {
1885 if (e->rule.action == AUDIT_NEVER) {
1886 rcu_read_unlock();
1887 return;
1888 }
1889 }
1890 }
1891 }
1892 }
1893 }
1894 rcu_read_unlock();
1895
74c3cbe3
AV
1896 if (inode)
1897 handle_one(inode);
73241ccc 1898
4fa6b5ec 1899 /* look for a parent entry first */
5195d8e2 1900 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
1901 if (!n->name ||
1902 (n->type != AUDIT_TYPE_PARENT &&
1903 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1904 continue;
1905
57c59f58
PM
1906 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1907 !audit_compare_dname_path(dname,
1908 n->name->name, n->name_len)) {
1909 if (n->type == AUDIT_TYPE_UNKNOWN)
1910 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
1911 found_parent = n;
1912 break;
f368c07d 1913 }
5712e88f 1914 }
73241ccc 1915
4fa6b5ec 1916 /* is there a matching child entry? */
5195d8e2 1917 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1918 /* can only match entries that have a name */
57c59f58
PM
1919 if (!n->name ||
1920 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1921 continue;
1922
91a27b2a
JL
1923 if (!strcmp(dname, n->name->name) ||
1924 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1925 found_parent ?
1926 found_parent->name_len :
e3d6b07b 1927 AUDIT_NAME_FULL)) {
57c59f58
PM
1928 if (n->type == AUDIT_TYPE_UNKNOWN)
1929 n->type = type;
4fa6b5ec
JL
1930 found_child = n;
1931 break;
5712e88f 1932 }
ac9910ce 1933 }
5712e88f 1934
5712e88f 1935 if (!found_parent) {
4fa6b5ec
JL
1936 /* create a new, "anonymous" parent record */
1937 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1938 if (!n)
ac9910ce 1939 return;
5195d8e2 1940 audit_copy_inode(n, NULL, parent);
73d3ec5a 1941 }
5712e88f
AG
1942
1943 if (!found_child) {
4fa6b5ec
JL
1944 found_child = audit_alloc_name(context, type);
1945 if (!found_child)
5712e88f 1946 return;
5712e88f
AG
1947
1948 /* Re-use the name belonging to the slot for a matching parent
1949 * directory. All names for this context are relinquished in
1950 * audit_free_names() */
1951 if (found_parent) {
4fa6b5ec
JL
1952 found_child->name = found_parent->name;
1953 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 1954 found_child->name->refcnt++;
5712e88f 1955 }
5712e88f 1956 }
57c59f58 1957
4fa6b5ec
JL
1958 if (inode)
1959 audit_copy_inode(found_child, dentry, inode);
1960 else
84cb777e 1961 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 1962}
50e437d5 1963EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1964
b0dd25a8
RD
1965/**
1966 * auditsc_get_stamp - get local copies of audit_context values
1967 * @ctx: audit_context for the task
2115bb25 1968 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
1969 * @serial: serial value that is recorded in the audit_context
1970 *
1971 * Also sets the context as auditable.
1972 */
48887e63 1973int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 1974 struct timespec64 *t, unsigned int *serial)
1da177e4 1975{
48887e63
AV
1976 if (!ctx->in_syscall)
1977 return 0;
ce625a80
DW
1978 if (!ctx->serial)
1979 ctx->serial = audit_serial();
bfb4496e
DW
1980 t->tv_sec = ctx->ctime.tv_sec;
1981 t->tv_nsec = ctx->ctime.tv_nsec;
1982 *serial = ctx->serial;
0590b933
AV
1983 if (!ctx->prio) {
1984 ctx->prio = 1;
1985 ctx->current_state = AUDIT_RECORD_CONTEXT;
1986 }
48887e63 1987 return 1;
1da177e4
LT
1988}
1989
4746ec5b
EP
1990/* global counter which is incremented every time something logs in */
1991static atomic_t session_id = ATOMIC_INIT(0);
1992
da0a6104
EP
1993static int audit_set_loginuid_perm(kuid_t loginuid)
1994{
da0a6104
EP
1995 /* if we are unset, we don't need privs */
1996 if (!audit_loginuid_set(current))
1997 return 0;
21b85c31
EP
1998 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1999 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2000 return -EPERM;
83fa6bbe
EP
2001 /* it is set, you need permission */
2002 if (!capable(CAP_AUDIT_CONTROL))
2003 return -EPERM;
d040e5af
EP
2004 /* reject if this is not an unset and we don't allow that */
2005 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2006 return -EPERM;
83fa6bbe 2007 return 0;
da0a6104
EP
2008}
2009
2010static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2011 unsigned int oldsessionid, unsigned int sessionid,
2012 int rc)
2013{
2014 struct audit_buffer *ab;
5ee9a75c 2015 uid_t uid, oldloginuid, loginuid;
db0a6fb5 2016 struct tty_struct *tty;
da0a6104 2017
c2412d91
G
2018 if (!audit_enabled)
2019 return;
2020
76a658c2
RGB
2021 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2022 if (!ab)
2023 return;
2024
da0a6104 2025 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
2026 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2027 loginuid = from_kuid(&init_user_ns, kloginuid),
db0a6fb5 2028 tty = audit_get_tty(current);
da0a6104 2029
fa2bea2f 2030 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
ddfad8af 2031 audit_log_task_context(ab);
db0a6fb5
RGB
2032 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2033 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2034 oldsessionid, sessionid, !rc);
2035 audit_put_tty(tty);
da0a6104
EP
2036 audit_log_end(ab);
2037}
2038
b0dd25a8 2039/**
0a300be6 2040 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2041 * @loginuid: loginuid value
2042 *
2043 * Returns 0.
2044 *
2045 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2046 */
e1760bd5 2047int audit_set_loginuid(kuid_t loginuid)
1da177e4 2048{
0a300be6 2049 struct task_struct *task = current;
f0b75216 2050 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
9175c9d2 2051 kuid_t oldloginuid;
da0a6104 2052 int rc;
41757106 2053
da0a6104
EP
2054 oldloginuid = audit_get_loginuid(current);
2055 oldsessionid = audit_get_sessionid(current);
2056
2057 rc = audit_set_loginuid_perm(loginuid);
2058 if (rc)
2059 goto out;
633b4545 2060
81407c84 2061 /* are we setting or clearing? */
833fc48d 2062 if (uid_valid(loginuid)) {
4440e854 2063 sessionid = (unsigned int)atomic_inc_return(&session_id);
f0b75216 2064 if (unlikely(sessionid == AUDIT_SID_UNSET))
833fc48d
RGB
2065 sessionid = (unsigned int)atomic_inc_return(&session_id);
2066 }
bfef93a5 2067
4746ec5b 2068 task->sessionid = sessionid;
bfef93a5 2069 task->loginuid = loginuid;
da0a6104
EP
2070out:
2071 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2072 return rc;
1da177e4
LT
2073}
2074
20ca73bc
GW
2075/**
2076 * __audit_mq_open - record audit data for a POSIX MQ open
2077 * @oflag: open flag
2078 * @mode: mode bits
6b962559 2079 * @attr: queue attributes
20ca73bc 2080 *
20ca73bc 2081 */
df0a4283 2082void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2083{
cdfb6b34 2084 struct audit_context *context = audit_context();
20ca73bc 2085
564f6993
AV
2086 if (attr)
2087 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2088 else
2089 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2090
564f6993
AV
2091 context->mq_open.oflag = oflag;
2092 context->mq_open.mode = mode;
20ca73bc 2093
564f6993 2094 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2095}
2096
2097/**
c32c8af4 2098 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2099 * @mqdes: MQ descriptor
2100 * @msg_len: Message length
2101 * @msg_prio: Message priority
c32c8af4 2102 * @abs_timeout: Message timeout in absolute time
20ca73bc 2103 *
20ca73bc 2104 */
c32c8af4 2105void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2106 const struct timespec64 *abs_timeout)
20ca73bc 2107{
cdfb6b34 2108 struct audit_context *context = audit_context();
b9047726 2109 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2110
c32c8af4 2111 if (abs_timeout)
b9047726 2112 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2113 else
b9047726 2114 memset(p, 0, sizeof(*p));
20ca73bc 2115
c32c8af4
AV
2116 context->mq_sendrecv.mqdes = mqdes;
2117 context->mq_sendrecv.msg_len = msg_len;
2118 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2119
c32c8af4 2120 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2121}
2122
2123/**
2124 * __audit_mq_notify - record audit data for a POSIX MQ notify
2125 * @mqdes: MQ descriptor
6b962559 2126 * @notification: Notification event
20ca73bc 2127 *
20ca73bc
GW
2128 */
2129
20114f71 2130void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2131{
cdfb6b34 2132 struct audit_context *context = audit_context();
20ca73bc 2133
20114f71
AV
2134 if (notification)
2135 context->mq_notify.sigev_signo = notification->sigev_signo;
2136 else
2137 context->mq_notify.sigev_signo = 0;
20ca73bc 2138
20114f71
AV
2139 context->mq_notify.mqdes = mqdes;
2140 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2141}
2142
2143/**
2144 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2145 * @mqdes: MQ descriptor
2146 * @mqstat: MQ flags
2147 *
20ca73bc 2148 */
7392906e 2149void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2150{
cdfb6b34 2151 struct audit_context *context = audit_context();
7392906e
AV
2152 context->mq_getsetattr.mqdes = mqdes;
2153 context->mq_getsetattr.mqstat = *mqstat;
2154 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2155}
2156
b0dd25a8 2157/**
196a5085 2158 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2159 * @ipcp: ipc permissions
2160 *
073115d6 2161 */
a33e6751 2162void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2163{
cdfb6b34 2164 struct audit_context *context = audit_context();
a33e6751
AV
2165 context->ipc.uid = ipcp->uid;
2166 context->ipc.gid = ipcp->gid;
2167 context->ipc.mode = ipcp->mode;
e816f370 2168 context->ipc.has_perm = 0;
a33e6751
AV
2169 security_ipc_getsecid(ipcp, &context->ipc.osid);
2170 context->type = AUDIT_IPC;
073115d6
SG
2171}
2172
2173/**
196a5085 2174 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2175 * @qbytes: msgq bytes
2176 * @uid: msgq user id
2177 * @gid: msgq group id
2178 * @mode: msgq mode (permissions)
2179 *
e816f370 2180 * Called only after audit_ipc_obj().
b0dd25a8 2181 */
2570ebbd 2182void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2183{
cdfb6b34 2184 struct audit_context *context = audit_context();
1da177e4 2185
e816f370
AV
2186 context->ipc.qbytes = qbytes;
2187 context->ipc.perm_uid = uid;
2188 context->ipc.perm_gid = gid;
2189 context->ipc.perm_mode = mode;
2190 context->ipc.has_perm = 1;
1da177e4 2191}
c2f0c7c3 2192
d9cfea91 2193void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2194{
cdfb6b34 2195 struct audit_context *context = audit_context();
473ae30b 2196
d9cfea91
RGB
2197 context->type = AUDIT_EXECVE;
2198 context->execve.argc = bprm->argc;
473ae30b
AV
2199}
2200
2201
b0dd25a8 2202/**
196a5085 2203 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2204 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2205 * @args: args array
2206 *
b0dd25a8 2207 */
2950fa9d 2208int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2209{
cdfb6b34 2210 struct audit_context *context = audit_context();
3ec3b2fb 2211
2950fa9d
CG
2212 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2213 return -EINVAL;
f3298dc4
AV
2214 context->type = AUDIT_SOCKETCALL;
2215 context->socketcall.nargs = nargs;
2216 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2217 return 0;
3ec3b2fb
DW
2218}
2219
db349509
AV
2220/**
2221 * __audit_fd_pair - record audit data for pipe and socketpair
2222 * @fd1: the first file descriptor
2223 * @fd2: the second file descriptor
2224 *
db349509 2225 */
157cf649 2226void __audit_fd_pair(int fd1, int fd2)
db349509 2227{
cdfb6b34 2228 struct audit_context *context = audit_context();
157cf649
AV
2229 context->fds[0] = fd1;
2230 context->fds[1] = fd2;
db349509
AV
2231}
2232
b0dd25a8 2233/**
196a5085 2234 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2235 * @len: data length in user space
2236 * @a: data address in kernel space
2237 *
2238 * Returns 0 for success or NULL context or < 0 on error.
2239 */
07c49417 2240int __audit_sockaddr(int len, void *a)
3ec3b2fb 2241{
cdfb6b34 2242 struct audit_context *context = audit_context();
3ec3b2fb 2243
4f6b434f
AV
2244 if (!context->sockaddr) {
2245 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2246 if (!p)
2247 return -ENOMEM;
2248 context->sockaddr = p;
2249 }
3ec3b2fb 2250
4f6b434f
AV
2251 context->sockaddr_len = len;
2252 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2253 return 0;
2254}
2255
a5cb013d
AV
2256void __audit_ptrace(struct task_struct *t)
2257{
cdfb6b34 2258 struct audit_context *context = audit_context();
a5cb013d 2259
fa2bea2f 2260 context->target_pid = task_tgid_nr(t);
c2a7780e 2261 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2262 context->target_uid = task_uid(t);
4746ec5b 2263 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2264 security_task_getsecid(t, &context->target_sid);
c2a7780e 2265 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2266}
2267
b0dd25a8
RD
2268/**
2269 * audit_signal_info - record signal info for shutting down audit subsystem
2270 * @sig: signal value
2271 * @t: task being signaled
2272 *
2273 * If the audit subsystem is being terminated, record the task (pid)
2274 * and uid that is doing that.
2275 */
ab6434a1 2276int audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2277{
e54dc243 2278 struct audit_aux_data_pids *axp;
cdfb6b34 2279 struct audit_context *ctx = audit_context();
38f80590 2280 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
e1396065 2281
ab6434a1
PM
2282 if (auditd_test_task(t) &&
2283 (sig == SIGTERM || sig == SIGHUP ||
2284 sig == SIGUSR1 || sig == SIGUSR2)) {
cdfb6b34 2285 audit_sig_pid = task_tgid_nr(current);
38f80590
RGB
2286 auid = audit_get_loginuid(current);
2287 if (uid_valid(auid))
2288 audit_sig_uid = auid;
ab6434a1
PM
2289 else
2290 audit_sig_uid = uid;
cdfb6b34 2291 security_task_getsecid(current, &audit_sig_sid);
c2f0c7c3 2292 }
e54dc243 2293
ab6434a1
PM
2294 if (!audit_signals || audit_dummy_context())
2295 return 0;
2296
e54dc243
AG
2297 /* optimize the common case by putting first signal recipient directly
2298 * in audit_context */
2299 if (!ctx->target_pid) {
f1dc4867 2300 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2301 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2302 ctx->target_uid = t_uid;
4746ec5b 2303 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2304 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2305 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2306 return 0;
2307 }
2308
2309 axp = (void *)ctx->aux_pids;
2310 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2311 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2312 if (!axp)
2313 return -ENOMEM;
2314
2315 axp->d.type = AUDIT_OBJ_PID;
2316 axp->d.next = ctx->aux_pids;
2317 ctx->aux_pids = (void *)axp;
2318 }
88ae704c 2319 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2320
f1dc4867 2321 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2322 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2323 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2324 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2325 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2326 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2327 axp->pid_count++;
2328
2329 return 0;
c2f0c7c3 2330}
0a4ff8c2 2331
3fc689e9
EP
2332/**
2333 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2334 * @bprm: pointer to the bprm being processed
2335 * @new: the proposed new credentials
2336 * @old: the old credentials
3fc689e9
EP
2337 *
2338 * Simply check if the proc already has the caps given by the file and if not
2339 * store the priv escalation info for later auditing at the end of the syscall
2340 *
3fc689e9
EP
2341 * -Eric
2342 */
d84f4f99
DH
2343int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2344 const struct cred *new, const struct cred *old)
3fc689e9
EP
2345{
2346 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2347 struct audit_context *context = audit_context();
3fc689e9 2348 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2349
2350 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2351 if (!ax)
d84f4f99 2352 return -ENOMEM;
3fc689e9
EP
2353
2354 ax->d.type = AUDIT_BPRM_FCAPS;
2355 ax->d.next = context->aux;
2356 context->aux = (void *)ax;
2357
f4a4a8b1 2358 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2359
2360 ax->fcap.permitted = vcaps.permitted;
2361 ax->fcap.inheritable = vcaps.inheritable;
2362 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2363 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2364
d84f4f99
DH
2365 ax->old_pcap.permitted = old->cap_permitted;
2366 ax->old_pcap.inheritable = old->cap_inheritable;
2367 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2368 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2369
d84f4f99
DH
2370 ax->new_pcap.permitted = new->cap_permitted;
2371 ax->new_pcap.inheritable = new->cap_inheritable;
2372 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2373 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2374 return 0;
3fc689e9
EP
2375}
2376
e68b75a0
EP
2377/**
2378 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2379 * @new: the new credentials
2380 * @old: the old (current) credentials
e68b75a0 2381 *
da3dae54 2382 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2383 * audit system if applicable
2384 */
ca24a23e 2385void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2386{
cdfb6b34 2387 struct audit_context *context = audit_context();
fa2bea2f 2388 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2389 context->capset.cap.effective = new->cap_effective;
2390 context->capset.cap.inheritable = new->cap_effective;
2391 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2392 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2393 context->type = AUDIT_CAPSET;
e68b75a0
EP
2394}
2395
120a795d
AV
2396void __audit_mmap_fd(int fd, int flags)
2397{
cdfb6b34 2398 struct audit_context *context = audit_context();
120a795d
AV
2399 context->mmap.fd = fd;
2400 context->mmap.flags = flags;
2401 context->type = AUDIT_MMAP;
2402}
2403
ca86cad7
RGB
2404void __audit_log_kern_module(char *name)
2405{
cdfb6b34 2406 struct audit_context *context = audit_context();
ca86cad7 2407
b305f7ed
YW
2408 context->module.name = kstrdup(name, GFP_KERNEL);
2409 if (!context->module.name)
2410 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2411 context->type = AUDIT_KERN_MODULE;
2412}
2413
de8cd83e
SG
2414void __audit_fanotify(unsigned int response)
2415{
cdfb6b34 2416 audit_log(audit_context(), GFP_KERNEL,
de8cd83e
SG
2417 AUDIT_FANOTIFY, "resp=%u", response);
2418}
2419
7b9205bd 2420static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2421{
cca080d9
EB
2422 kuid_t auid, uid;
2423 kgid_t gid;
85e7bac3 2424 unsigned int sessionid;
9eab339b 2425 char comm[sizeof(current->comm)];
85e7bac3
EP
2426
2427 auid = audit_get_loginuid(current);
2428 sessionid = audit_get_sessionid(current);
2429 current_uid_gid(&uid, &gid);
2430
2431 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2432 from_kuid(&init_user_ns, auid),
2433 from_kuid(&init_user_ns, uid),
2434 from_kgid(&init_user_ns, gid),
2435 sessionid);
85e7bac3 2436 audit_log_task_context(ab);
fa2bea2f 2437 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2438 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2439 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2440}
2441
0a4ff8c2
SG
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2444 * @signr: signal value
0a4ff8c2
SG
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451 struct audit_buffer *ab;
0a4ff8c2
SG
2452
2453 if (!audit_enabled)
2454 return;
2455
2456 if (signr == SIGQUIT) /* don't care for those */
2457 return;
2458
d87de4a8 2459 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2460 if (unlikely(!ab))
2461 return;
61c0ee87 2462 audit_log_task(ab);
89670aff 2463 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2464 audit_log_end(ab);
2465}
0a4ff8c2 2466
326bee02
TH
2467/**
2468 * audit_seccomp - record information about a seccomp action
2469 * @syscall: syscall number
2470 * @signr: signal value
2471 * @code: the seccomp action
2472 *
2473 * Record the information associated with a seccomp action. Event filtering for
2474 * seccomp actions that are not to be logged is done in seccomp_log().
2475 * Therefore, this function forces auditing independent of the audit_enabled
2476 * and dummy context state because seccomp actions should be logged even when
2477 * audit is not in use.
2478 */
2479void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2480{
2481 struct audit_buffer *ab;
2482
9b8753ff 2483 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
2484 if (unlikely(!ab))
2485 return;
2486 audit_log_task(ab);
84db564a 2487 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
efbc0fbf
AL
2488 signr, syscall_get_arch(), syscall,
2489 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
2490 audit_log_end(ab);
2491}
916d7576 2492
ea6eca77
TH
2493void audit_seccomp_actions_logged(const char *names, const char *old_names,
2494 int res)
2495{
2496 struct audit_buffer *ab;
2497
2498 if (!audit_enabled)
2499 return;
2500
8982a1fb 2501 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
2502 AUDIT_CONFIG_CHANGE);
2503 if (unlikely(!ab))
2504 return;
2505
2506 audit_log_format(ab, "op=seccomp-logging");
2507 audit_log_format(ab, " actions=%s", names);
2508 audit_log_format(ab, " old-actions=%s", old_names);
2509 audit_log_format(ab, " res=%d", res);
2510 audit_log_end(ab);
2511}
2512
916d7576
AV
2513struct list_head *audit_killed_trees(void)
2514{
cdfb6b34 2515 struct audit_context *ctx = audit_context();
916d7576
AV
2516 if (likely(!ctx || !ctx->in_syscall))
2517 return NULL;
2518 return &ctx->killed_trees;
2519}