]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/auditsc.c
audit: convert PPIDs to the inital PID namespace.
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
a6c043a8 66#include <linux/tty.h>
473ae30b 67#include <linux/binfmts.h>
a1f8e7f7 68#include <linux/highmem.h>
f46038ff 69#include <linux/syscalls.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
3f1c8250 73#include <linux/ctype.h>
1da177e4 74
fe7752ba 75#include "audit.h"
1da177e4 76
d7e7528b
EP
77/* flags stating the success for a syscall */
78#define AUDITSC_INVALID 0
79#define AUDITSC_SUCCESS 1
80#define AUDITSC_FAILURE 2
81
de6bbd1d
EP
82/* no execve audit message should be longer than this (userspace limits) */
83#define MAX_EXECVE_AUDIT_LEN 7500
84
3f1c8250
WR
85/* max length to print of cmdline/proctitle value during audit */
86#define MAX_PROCTITLE_AUDIT_LEN 128
87
471a5c7c
AV
88/* number of audit rules */
89int audit_n_rules;
90
e54dc243
AG
91/* determines whether we collect data for signals sent */
92int audit_signals;
93
1da177e4
LT
94struct audit_aux_data {
95 struct audit_aux_data *next;
96 int type;
97};
98
99#define AUDIT_AUX_IPCPERM 0
100
e54dc243
AG
101/* Number of target pids per aux struct. */
102#define AUDIT_AUX_PIDS 16
103
e54dc243
AG
104struct audit_aux_data_pids {
105 struct audit_aux_data d;
106 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 107 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 108 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 109 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 110 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 111 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
112 int pid_count;
113};
114
3fc689e9
EP
115struct audit_aux_data_bprm_fcaps {
116 struct audit_aux_data d;
117 struct audit_cap_data fcap;
118 unsigned int fcap_ver;
119 struct audit_cap_data old_pcap;
120 struct audit_cap_data new_pcap;
121};
122
74c3cbe3
AV
123struct audit_tree_refs {
124 struct audit_tree_refs *next;
125 struct audit_chunk *c[31];
126};
127
55669bfa
AV
128static inline int open_arg(int flags, int mask)
129{
130 int n = ACC_MODE(flags);
131 if (flags & (O_TRUNC | O_CREAT))
132 n |= AUDIT_PERM_WRITE;
133 return n & mask;
134}
135
136static int audit_match_perm(struct audit_context *ctx, int mask)
137{
c4bacefb 138 unsigned n;
1a61c88d 139 if (unlikely(!ctx))
140 return 0;
c4bacefb 141 n = ctx->major;
dbda4c0b 142
55669bfa
AV
143 switch (audit_classify_syscall(ctx->arch, n)) {
144 case 0: /* native */
145 if ((mask & AUDIT_PERM_WRITE) &&
146 audit_match_class(AUDIT_CLASS_WRITE, n))
147 return 1;
148 if ((mask & AUDIT_PERM_READ) &&
149 audit_match_class(AUDIT_CLASS_READ, n))
150 return 1;
151 if ((mask & AUDIT_PERM_ATTR) &&
152 audit_match_class(AUDIT_CLASS_CHATTR, n))
153 return 1;
154 return 0;
155 case 1: /* 32bit on biarch */
156 if ((mask & AUDIT_PERM_WRITE) &&
157 audit_match_class(AUDIT_CLASS_WRITE_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_READ) &&
160 audit_match_class(AUDIT_CLASS_READ_32, n))
161 return 1;
162 if ((mask & AUDIT_PERM_ATTR) &&
163 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
164 return 1;
165 return 0;
166 case 2: /* open */
167 return mask & ACC_MODE(ctx->argv[1]);
168 case 3: /* openat */
169 return mask & ACC_MODE(ctx->argv[2]);
170 case 4: /* socketcall */
171 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
172 case 5: /* execve */
173 return mask & AUDIT_PERM_EXEC;
174 default:
175 return 0;
176 }
177}
178
5ef30ee5 179static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 180{
5195d8e2 181 struct audit_names *n;
5ef30ee5 182 umode_t mode = (umode_t)val;
1a61c88d 183
184 if (unlikely(!ctx))
185 return 0;
186
5195d8e2
EP
187 list_for_each_entry(n, &ctx->names_list, list) {
188 if ((n->ino != -1) &&
189 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
190 return 1;
191 }
5195d8e2 192
5ef30ee5 193 return 0;
8b67dca9
AV
194}
195
74c3cbe3
AV
196/*
197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
198 * ->first_trees points to its beginning, ->trees - to the current end of data.
199 * ->tree_count is the number of free entries in array pointed to by ->trees.
200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
202 * it's going to remain 1-element for almost any setup) until we free context itself.
203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
204 */
205
206#ifdef CONFIG_AUDIT_TREE
679173b7
EP
207static void audit_set_auditable(struct audit_context *ctx)
208{
209 if (!ctx->prio) {
210 ctx->prio = 1;
211 ctx->current_state = AUDIT_RECORD_CONTEXT;
212 }
213}
214
74c3cbe3
AV
215static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
216{
217 struct audit_tree_refs *p = ctx->trees;
218 int left = ctx->tree_count;
219 if (likely(left)) {
220 p->c[--left] = chunk;
221 ctx->tree_count = left;
222 return 1;
223 }
224 if (!p)
225 return 0;
226 p = p->next;
227 if (p) {
228 p->c[30] = chunk;
229 ctx->trees = p;
230 ctx->tree_count = 30;
231 return 1;
232 }
233 return 0;
234}
235
236static int grow_tree_refs(struct audit_context *ctx)
237{
238 struct audit_tree_refs *p = ctx->trees;
239 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
240 if (!ctx->trees) {
241 ctx->trees = p;
242 return 0;
243 }
244 if (p)
245 p->next = ctx->trees;
246 else
247 ctx->first_trees = ctx->trees;
248 ctx->tree_count = 31;
249 return 1;
250}
251#endif
252
253static void unroll_tree_refs(struct audit_context *ctx,
254 struct audit_tree_refs *p, int count)
255{
256#ifdef CONFIG_AUDIT_TREE
257 struct audit_tree_refs *q;
258 int n;
259 if (!p) {
260 /* we started with empty chain */
261 p = ctx->first_trees;
262 count = 31;
263 /* if the very first allocation has failed, nothing to do */
264 if (!p)
265 return;
266 }
267 n = count;
268 for (q = p; q != ctx->trees; q = q->next, n = 31) {
269 while (n--) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 }
274 while (n-- > ctx->tree_count) {
275 audit_put_chunk(q->c[n]);
276 q->c[n] = NULL;
277 }
278 ctx->trees = p;
279 ctx->tree_count = count;
280#endif
281}
282
283static void free_tree_refs(struct audit_context *ctx)
284{
285 struct audit_tree_refs *p, *q;
286 for (p = ctx->first_trees; p; p = q) {
287 q = p->next;
288 kfree(p);
289 }
290}
291
292static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
293{
294#ifdef CONFIG_AUDIT_TREE
295 struct audit_tree_refs *p;
296 int n;
297 if (!tree)
298 return 0;
299 /* full ones */
300 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
301 for (n = 0; n < 31; n++)
302 if (audit_tree_match(p->c[n], tree))
303 return 1;
304 }
305 /* partial */
306 if (p) {
307 for (n = ctx->tree_count; n < 31; n++)
308 if (audit_tree_match(p->c[n], tree))
309 return 1;
310 }
311#endif
312 return 0;
313}
314
ca57ec0f
EB
315static int audit_compare_uid(kuid_t uid,
316 struct audit_names *name,
317 struct audit_field *f,
318 struct audit_context *ctx)
b34b0393
EP
319{
320 struct audit_names *n;
b34b0393 321 int rc;
ca57ec0f 322
b34b0393 323 if (name) {
ca57ec0f 324 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
325 if (rc)
326 return rc;
327 }
ca57ec0f 328
b34b0393
EP
329 if (ctx) {
330 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
331 rc = audit_uid_comparator(uid, f->op, n->uid);
332 if (rc)
333 return rc;
334 }
335 }
336 return 0;
337}
b34b0393 338
ca57ec0f
EB
339static int audit_compare_gid(kgid_t gid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343{
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_gid_comparator(gid, f->op, name->gid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361}
362
02d86a56
EP
363static int audit_field_compare(struct task_struct *tsk,
364 const struct cred *cred,
365 struct audit_field *f,
366 struct audit_context *ctx,
367 struct audit_names *name)
368{
02d86a56 369 switch (f->val) {
4a6633ed 370 /* process to file object comparisons */
02d86a56 371 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 372 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 373 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 374 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 375 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 376 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 377 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 378 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 379 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 380 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 381 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 382 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 383 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 384 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 386 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 388 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
389 /* uid comparisons */
390 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 391 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 392 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 393 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 394 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 395 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 396 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 397 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
398 /* auid comparisons */
399 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 401 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
405 /* euid comparisons */
406 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 407 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 408 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 409 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
410 /* suid comparisons */
411 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 412 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
413 /* gid comparisons */
414 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 415 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 416 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
420 /* egid comparisons */
421 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 422 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 423 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 424 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
425 /* sgid comparison */
426 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 427 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
428 default:
429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 return 0;
431 }
432 return 0;
433}
434
f368c07d 435/* Determine if any context name data matches a rule's watch data */
1da177e4 436/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
437 * otherwise.
438 *
439 * If task_creation is true, this is an explicit indication that we are
440 * filtering a task rule at task creation time. This and tsk == current are
441 * the only situations where tsk->cred may be accessed without an rcu read lock.
442 */
1da177e4 443static int audit_filter_rules(struct task_struct *tsk,
93315ed6 444 struct audit_krule *rule,
1da177e4 445 struct audit_context *ctx,
f368c07d 446 struct audit_names *name,
f5629883
TJ
447 enum audit_state *state,
448 bool task_creation)
1da177e4 449{
f5629883 450 const struct cred *cred;
5195d8e2 451 int i, need_sid = 1;
3dc7e315
DG
452 u32 sid;
453
f5629883
TJ
454 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
455
1da177e4 456 for (i = 0; i < rule->field_count; i++) {
93315ed6 457 struct audit_field *f = &rule->fields[i];
5195d8e2 458 struct audit_names *n;
1da177e4
LT
459 int result = 0;
460
93315ed6 461 switch (f->type) {
1da177e4 462 case AUDIT_PID:
93315ed6 463 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 464 break;
3c66251e 465 case AUDIT_PPID:
419c58f1
AV
466 if (ctx) {
467 if (!ctx->ppid)
c92cdeb4 468 ctx->ppid = task_ppid_nr(tsk);
3c66251e 469 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 470 }
3c66251e 471 break;
1da177e4 472 case AUDIT_UID:
ca57ec0f 473 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
474 break;
475 case AUDIT_EUID:
ca57ec0f 476 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_SUID:
ca57ec0f 479 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_FSUID:
ca57ec0f 482 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_GID:
ca57ec0f 485 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
486 if (f->op == Audit_equal) {
487 if (!result)
488 result = in_group_p(f->gid);
489 } else if (f->op == Audit_not_equal) {
490 if (result)
491 result = !in_group_p(f->gid);
492 }
1da177e4
LT
493 break;
494 case AUDIT_EGID:
ca57ec0f 495 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
496 if (f->op == Audit_equal) {
497 if (!result)
498 result = in_egroup_p(f->gid);
499 } else if (f->op == Audit_not_equal) {
500 if (result)
501 result = !in_egroup_p(f->gid);
502 }
1da177e4
LT
503 break;
504 case AUDIT_SGID:
ca57ec0f 505 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
506 break;
507 case AUDIT_FSGID:
ca57ec0f 508 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_PERS:
93315ed6 511 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 512 break;
2fd6f58b 513 case AUDIT_ARCH:
9f8dbe9c 514 if (ctx)
93315ed6 515 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 516 break;
1da177e4
LT
517
518 case AUDIT_EXIT:
519 if (ctx && ctx->return_valid)
93315ed6 520 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
521 break;
522 case AUDIT_SUCCESS:
b01f2cc1 523 if (ctx && ctx->return_valid) {
93315ed6
AG
524 if (f->val)
525 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 526 else
93315ed6 527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 528 }
1da177e4
LT
529 break;
530 case AUDIT_DEVMAJOR:
16c174bd
EP
531 if (name) {
532 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
533 audit_comparator(MAJOR(name->rdev), f->op, f->val))
534 ++result;
535 } else if (ctx) {
5195d8e2 536 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
537 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
538 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
539 ++result;
540 break;
541 }
542 }
543 }
544 break;
545 case AUDIT_DEVMINOR:
16c174bd
EP
546 if (name) {
547 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
548 audit_comparator(MINOR(name->rdev), f->op, f->val))
549 ++result;
550 } else if (ctx) {
5195d8e2 551 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
552 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
553 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
554 ++result;
555 break;
556 }
557 }
558 }
559 break;
560 case AUDIT_INODE:
f368c07d 561 if (name)
db510fc5 562 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 563 else if (ctx) {
5195d8e2
EP
564 list_for_each_entry(n, &ctx->names_list, list) {
565 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
566 ++result;
567 break;
568 }
569 }
570 }
571 break;
efaffd6e
EP
572 case AUDIT_OBJ_UID:
573 if (name) {
ca57ec0f 574 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 577 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
578 ++result;
579 break;
580 }
581 }
582 }
583 break;
54d3218b
EP
584 case AUDIT_OBJ_GID:
585 if (name) {
ca57ec0f 586 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
587 } else if (ctx) {
588 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 589 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
f368c07d 596 case AUDIT_WATCH:
ae7b8f41
EP
597 if (name)
598 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 599 break;
74c3cbe3
AV
600 case AUDIT_DIR:
601 if (ctx)
602 result = match_tree_refs(ctx, rule->tree);
603 break;
1da177e4
LT
604 case AUDIT_LOGINUID:
605 result = 0;
606 if (ctx)
ca57ec0f 607 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 608 break;
780a7654
EB
609 case AUDIT_LOGINUID_SET:
610 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
611 break;
3a6b9f85
DG
612 case AUDIT_SUBJ_USER:
613 case AUDIT_SUBJ_ROLE:
614 case AUDIT_SUBJ_TYPE:
615 case AUDIT_SUBJ_SEN:
616 case AUDIT_SUBJ_CLR:
3dc7e315
DG
617 /* NOTE: this may return negative values indicating
618 a temporary error. We simply treat this as a
619 match for now to avoid losing information that
620 may be wanted. An error message will also be
621 logged upon error */
04305e4a 622 if (f->lsm_rule) {
2ad312d2 623 if (need_sid) {
2a862b32 624 security_task_getsecid(tsk, &sid);
2ad312d2
SG
625 need_sid = 0;
626 }
d7a96f3a 627 result = security_audit_rule_match(sid, f->type,
3dc7e315 628 f->op,
04305e4a 629 f->lsm_rule,
3dc7e315 630 ctx);
2ad312d2 631 }
3dc7e315 632 break;
6e5a2d1d
DG
633 case AUDIT_OBJ_USER:
634 case AUDIT_OBJ_ROLE:
635 case AUDIT_OBJ_TYPE:
636 case AUDIT_OBJ_LEV_LOW:
637 case AUDIT_OBJ_LEV_HIGH:
638 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
639 also applies here */
04305e4a 640 if (f->lsm_rule) {
6e5a2d1d
DG
641 /* Find files that match */
642 if (name) {
d7a96f3a 643 result = security_audit_rule_match(
6e5a2d1d 644 name->osid, f->type, f->op,
04305e4a 645 f->lsm_rule, ctx);
6e5a2d1d 646 } else if (ctx) {
5195d8e2
EP
647 list_for_each_entry(n, &ctx->names_list, list) {
648 if (security_audit_rule_match(n->osid, f->type,
649 f->op, f->lsm_rule,
650 ctx)) {
6e5a2d1d
DG
651 ++result;
652 break;
653 }
654 }
655 }
656 /* Find ipc objects that match */
a33e6751
AV
657 if (!ctx || ctx->type != AUDIT_IPC)
658 break;
659 if (security_audit_rule_match(ctx->ipc.osid,
660 f->type, f->op,
661 f->lsm_rule, ctx))
662 ++result;
6e5a2d1d
DG
663 }
664 break;
1da177e4
LT
665 case AUDIT_ARG0:
666 case AUDIT_ARG1:
667 case AUDIT_ARG2:
668 case AUDIT_ARG3:
669 if (ctx)
93315ed6 670 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 671 break;
5adc8a6a
AG
672 case AUDIT_FILTERKEY:
673 /* ignore this field for filtering */
674 result = 1;
675 break;
55669bfa
AV
676 case AUDIT_PERM:
677 result = audit_match_perm(ctx, f->val);
678 break;
8b67dca9
AV
679 case AUDIT_FILETYPE:
680 result = audit_match_filetype(ctx, f->val);
681 break;
02d86a56
EP
682 case AUDIT_FIELD_COMPARE:
683 result = audit_field_compare(tsk, cred, f, ctx, name);
684 break;
1da177e4 685 }
f5629883 686 if (!result)
1da177e4
LT
687 return 0;
688 }
0590b933
AV
689
690 if (ctx) {
691 if (rule->prio <= ctx->prio)
692 return 0;
693 if (rule->filterkey) {
694 kfree(ctx->filterkey);
695 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
696 }
697 ctx->prio = rule->prio;
698 }
1da177e4
LT
699 switch (rule->action) {
700 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
701 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
702 }
703 return 1;
704}
705
706/* At process creation time, we can determine if system-call auditing is
707 * completely disabled for this task. Since we only have the task
708 * structure at this point, we can only check uid and gid.
709 */
e048e02c 710static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
711{
712 struct audit_entry *e;
713 enum audit_state state;
714
715 rcu_read_lock();
0f45aa18 716 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
717 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
718 &state, true)) {
e048e02c
AV
719 if (state == AUDIT_RECORD_CONTEXT)
720 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
721 rcu_read_unlock();
722 return state;
723 }
724 }
725 rcu_read_unlock();
726 return AUDIT_BUILD_CONTEXT;
727}
728
729/* At syscall entry and exit time, this filter is called if the
730 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 731 * also not high enough that we already know we have to write an audit
b0dd25a8 732 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
733 */
734static enum audit_state audit_filter_syscall(struct task_struct *tsk,
735 struct audit_context *ctx,
736 struct list_head *list)
737{
738 struct audit_entry *e;
c3896495 739 enum audit_state state;
1da177e4 740
351bb722 741 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
742 return AUDIT_DISABLED;
743
1da177e4 744 rcu_read_lock();
c3896495 745 if (!list_empty(list)) {
b63862f4
DK
746 int word = AUDIT_WORD(ctx->major);
747 int bit = AUDIT_BIT(ctx->major);
748
749 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
750 if ((e->rule.mask[word] & bit) == bit &&
751 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 752 &state, false)) {
f368c07d 753 rcu_read_unlock();
0590b933 754 ctx->current_state = state;
f368c07d
AG
755 return state;
756 }
757 }
758 }
759 rcu_read_unlock();
760 return AUDIT_BUILD_CONTEXT;
761}
762
5195d8e2
EP
763/*
764 * Given an audit_name check the inode hash table to see if they match.
765 * Called holding the rcu read lock to protect the use of audit_inode_hash
766 */
767static int audit_filter_inode_name(struct task_struct *tsk,
768 struct audit_names *n,
769 struct audit_context *ctx) {
770 int word, bit;
771 int h = audit_hash_ino((u32)n->ino);
772 struct list_head *list = &audit_inode_hash[h];
773 struct audit_entry *e;
774 enum audit_state state;
775
776 word = AUDIT_WORD(ctx->major);
777 bit = AUDIT_BIT(ctx->major);
778
779 if (list_empty(list))
780 return 0;
781
782 list_for_each_entry_rcu(e, list, list) {
783 if ((e->rule.mask[word] & bit) == bit &&
784 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
785 ctx->current_state = state;
786 return 1;
787 }
788 }
789
790 return 0;
791}
792
793/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 794 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 795 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
796 * Regarding audit_state, same rules apply as for audit_filter_syscall().
797 */
0590b933 798void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 799{
5195d8e2 800 struct audit_names *n;
f368c07d
AG
801
802 if (audit_pid && tsk->tgid == audit_pid)
0590b933 803 return;
f368c07d
AG
804
805 rcu_read_lock();
f368c07d 806
5195d8e2
EP
807 list_for_each_entry(n, &ctx->names_list, list) {
808 if (audit_filter_inode_name(tsk, n, ctx))
809 break;
0f45aa18
DW
810 }
811 rcu_read_unlock();
0f45aa18
DW
812}
813
4a3eb726
RGB
814/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
815static inline struct audit_context *audit_take_context(struct task_struct *tsk,
1da177e4 816 int return_valid,
6d208da8 817 long return_code)
1da177e4
LT
818{
819 struct audit_context *context = tsk->audit_context;
820
56179a6e 821 if (!context)
1da177e4
LT
822 return NULL;
823 context->return_valid = return_valid;
f701b75e
EP
824
825 /*
826 * we need to fix up the return code in the audit logs if the actual
827 * return codes are later going to be fixed up by the arch specific
828 * signal handlers
829 *
830 * This is actually a test for:
831 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
832 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
833 *
834 * but is faster than a bunch of ||
835 */
836 if (unlikely(return_code <= -ERESTARTSYS) &&
837 (return_code >= -ERESTART_RESTARTBLOCK) &&
838 (return_code != -ENOIOCTLCMD))
839 context->return_code = -EINTR;
840 else
841 context->return_code = return_code;
1da177e4 842
0590b933
AV
843 if (context->in_syscall && !context->dummy) {
844 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
845 audit_filter_inodes(tsk, context);
1da177e4
LT
846 }
847
1da177e4
LT
848 tsk->audit_context = NULL;
849 return context;
850}
851
3f1c8250
WR
852static inline void audit_proctitle_free(struct audit_context *context)
853{
854 kfree(context->proctitle.value);
855 context->proctitle.value = NULL;
856 context->proctitle.len = 0;
857}
858
1da177e4
LT
859static inline void audit_free_names(struct audit_context *context)
860{
5195d8e2 861 struct audit_names *n, *next;
1da177e4
LT
862
863#if AUDIT_DEBUG == 2
0590b933 864 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
865 int i = 0;
866
f952d10f
RGB
867 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
868 " name_count=%d put_count=%d ino_count=%d"
869 " [NOT freeing]\n", __FILE__, __LINE__,
1da177e4
LT
870 context->serial, context->major, context->in_syscall,
871 context->name_count, context->put_count,
872 context->ino_count);
5195d8e2 873 list_for_each_entry(n, &context->names_list, list) {
f952d10f
RGB
874 pr_err("names[%d] = %p = %s\n", i++, n->name,
875 n->name->name ?: "(null)");
8c8570fb 876 }
1da177e4
LT
877 dump_stack();
878 return;
879 }
880#endif
881#if AUDIT_DEBUG
882 context->put_count = 0;
883 context->ino_count = 0;
884#endif
885
5195d8e2
EP
886 list_for_each_entry_safe(n, next, &context->names_list, list) {
887 list_del(&n->list);
888 if (n->name && n->name_put)
65ada7bc 889 final_putname(n->name);
5195d8e2
EP
890 if (n->should_free)
891 kfree(n);
8c8570fb 892 }
1da177e4 893 context->name_count = 0;
44707fdf
JB
894 path_put(&context->pwd);
895 context->pwd.dentry = NULL;
896 context->pwd.mnt = NULL;
1da177e4
LT
897}
898
899static inline void audit_free_aux(struct audit_context *context)
900{
901 struct audit_aux_data *aux;
902
903 while ((aux = context->aux)) {
904 context->aux = aux->next;
905 kfree(aux);
906 }
e54dc243
AG
907 while ((aux = context->aux_pids)) {
908 context->aux_pids = aux->next;
909 kfree(aux);
910 }
1da177e4
LT
911}
912
1da177e4
LT
913static inline struct audit_context *audit_alloc_context(enum audit_state state)
914{
915 struct audit_context *context;
916
17c6ee70
RM
917 context = kzalloc(sizeof(*context), GFP_KERNEL);
918 if (!context)
1da177e4 919 return NULL;
e2c5adc8
AM
920 context->state = state;
921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 922 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 923 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
924 return context;
925}
926
b0dd25a8
RD
927/**
928 * audit_alloc - allocate an audit context block for a task
929 * @tsk: task
930 *
931 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
932 * if necessary. Doing so turns on system call auditing for the
933 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
934 * needed.
935 */
1da177e4
LT
936int audit_alloc(struct task_struct *tsk)
937{
938 struct audit_context *context;
939 enum audit_state state;
e048e02c 940 char *key = NULL;
1da177e4 941
b593d384 942 if (likely(!audit_ever_enabled))
1da177e4
LT
943 return 0; /* Return if not auditing. */
944
e048e02c 945 state = audit_filter_task(tsk, &key);
d48d8051
ON
946 if (state == AUDIT_DISABLED) {
947 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 948 return 0;
d48d8051 949 }
1da177e4
LT
950
951 if (!(context = audit_alloc_context(state))) {
e048e02c 952 kfree(key);
1da177e4
LT
953 audit_log_lost("out of memory in audit_alloc");
954 return -ENOMEM;
955 }
e048e02c 956 context->filterkey = key;
1da177e4 957
1da177e4
LT
958 tsk->audit_context = context;
959 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
960 return 0;
961}
962
963static inline void audit_free_context(struct audit_context *context)
964{
c62d773a
AV
965 audit_free_names(context);
966 unroll_tree_refs(context, NULL, 0);
967 free_tree_refs(context);
968 audit_free_aux(context);
969 kfree(context->filterkey);
970 kfree(context->sockaddr);
3f1c8250 971 audit_proctitle_free(context);
c62d773a 972 kfree(context);
1da177e4
LT
973}
974
e54dc243 975static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 976 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 977 u32 sid, char *comm)
e54dc243
AG
978{
979 struct audit_buffer *ab;
2a862b32 980 char *ctx = NULL;
e54dc243
AG
981 u32 len;
982 int rc = 0;
983
984 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
985 if (!ab)
6246ccab 986 return rc;
e54dc243 987
e1760bd5
EB
988 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
989 from_kuid(&init_user_ns, auid),
cca080d9 990 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
991 if (sid) {
992 if (security_secid_to_secctx(sid, &ctx, &len)) {
993 audit_log_format(ab, " obj=(none)");
994 rc = 1;
995 } else {
996 audit_log_format(ab, " obj=%s", ctx);
997 security_release_secctx(ctx, len);
998 }
2a862b32 999 }
c2a7780e
EP
1000 audit_log_format(ab, " ocomm=");
1001 audit_log_untrustedstring(ab, comm);
e54dc243 1002 audit_log_end(ab);
e54dc243
AG
1003
1004 return rc;
1005}
1006
de6bbd1d
EP
1007/*
1008 * to_send and len_sent accounting are very loose estimates. We aren't
1009 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1010 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1011 *
1012 * why snprintf? an int is up to 12 digits long. if we just assumed when
1013 * logging that a[%d]= was going to be 16 characters long we would be wasting
1014 * space in every audit message. In one 7500 byte message we can log up to
1015 * about 1000 min size arguments. That comes down to about 50% waste of space
1016 * if we didn't do the snprintf to find out how long arg_num_len was.
1017 */
1018static int audit_log_single_execve_arg(struct audit_context *context,
1019 struct audit_buffer **ab,
1020 int arg_num,
1021 size_t *len_sent,
1022 const char __user *p,
1023 char *buf)
bdf4c48a 1024{
de6bbd1d
EP
1025 char arg_num_len_buf[12];
1026 const char __user *tmp_p = p;
b87ce6e4
EP
1027 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1028 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1029 size_t len, len_left, to_send;
1030 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1031 unsigned int i, has_cntl = 0, too_long = 0;
1032 int ret;
1033
1034 /* strnlen_user includes the null we don't want to send */
1035 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1036
de6bbd1d
EP
1037 /*
1038 * We just created this mm, if we can't find the strings
1039 * we just copied into it something is _very_ wrong. Similar
1040 * for strings that are too long, we should not have created
1041 * any.
1042 */
b0abcfc1 1043 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1044 WARN_ON(1);
1045 send_sig(SIGKILL, current, 0);
b0abcfc1 1046 return -1;
de6bbd1d 1047 }
040b3a2d 1048
de6bbd1d
EP
1049 /* walk the whole argument looking for non-ascii chars */
1050 do {
1051 if (len_left > MAX_EXECVE_AUDIT_LEN)
1052 to_send = MAX_EXECVE_AUDIT_LEN;
1053 else
1054 to_send = len_left;
1055 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1056 /*
de6bbd1d
EP
1057 * There is no reason for this copy to be short. We just
1058 * copied them here, and the mm hasn't been exposed to user-
1059 * space yet.
bdf4c48a 1060 */
de6bbd1d 1061 if (ret) {
bdf4c48a
PZ
1062 WARN_ON(1);
1063 send_sig(SIGKILL, current, 0);
b0abcfc1 1064 return -1;
bdf4c48a 1065 }
de6bbd1d
EP
1066 buf[to_send] = '\0';
1067 has_cntl = audit_string_contains_control(buf, to_send);
1068 if (has_cntl) {
1069 /*
1070 * hex messages get logged as 2 bytes, so we can only
1071 * send half as much in each message
1072 */
1073 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1074 break;
1075 }
de6bbd1d
EP
1076 len_left -= to_send;
1077 tmp_p += to_send;
1078 } while (len_left > 0);
1079
1080 len_left = len;
1081
1082 if (len > max_execve_audit_len)
1083 too_long = 1;
1084
1085 /* rewalk the argument actually logging the message */
1086 for (i = 0; len_left > 0; i++) {
1087 int room_left;
1088
1089 if (len_left > max_execve_audit_len)
1090 to_send = max_execve_audit_len;
1091 else
1092 to_send = len_left;
1093
1094 /* do we have space left to send this argument in this ab? */
1095 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1096 if (has_cntl)
1097 room_left -= (to_send * 2);
1098 else
1099 room_left -= to_send;
1100 if (room_left < 0) {
1101 *len_sent = 0;
1102 audit_log_end(*ab);
1103 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1104 if (!*ab)
1105 return 0;
1106 }
bdf4c48a 1107
bdf4c48a 1108 /*
de6bbd1d
EP
1109 * first record needs to say how long the original string was
1110 * so we can be sure nothing was lost.
1111 */
1112 if ((i == 0) && (too_long))
ca96a895 1113 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1114 has_cntl ? 2*len : len);
1115
1116 /*
1117 * normally arguments are small enough to fit and we already
1118 * filled buf above when we checked for control characters
1119 * so don't bother with another copy_from_user
bdf4c48a 1120 */
de6bbd1d
EP
1121 if (len >= max_execve_audit_len)
1122 ret = copy_from_user(buf, p, to_send);
1123 else
1124 ret = 0;
040b3a2d 1125 if (ret) {
bdf4c48a
PZ
1126 WARN_ON(1);
1127 send_sig(SIGKILL, current, 0);
b0abcfc1 1128 return -1;
bdf4c48a 1129 }
de6bbd1d
EP
1130 buf[to_send] = '\0';
1131
1132 /* actually log it */
ca96a895 1133 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1134 if (too_long)
1135 audit_log_format(*ab, "[%d]", i);
1136 audit_log_format(*ab, "=");
1137 if (has_cntl)
b556f8ad 1138 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1139 else
9d960985 1140 audit_log_string(*ab, buf);
de6bbd1d
EP
1141
1142 p += to_send;
1143 len_left -= to_send;
1144 *len_sent += arg_num_len;
1145 if (has_cntl)
1146 *len_sent += to_send * 2;
1147 else
1148 *len_sent += to_send;
1149 }
1150 /* include the null we didn't log */
1151 return len + 1;
1152}
1153
1154static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1155 struct audit_buffer **ab)
de6bbd1d 1156{
5afb8a3f
XW
1157 int i, len;
1158 size_t len_sent = 0;
de6bbd1d
EP
1159 const char __user *p;
1160 char *buf;
bdf4c48a 1161
d9cfea91 1162 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1163
d9cfea91 1164 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1165
1166 /*
1167 * we need some kernel buffer to hold the userspace args. Just
1168 * allocate one big one rather than allocating one of the right size
1169 * for every single argument inside audit_log_single_execve_arg()
1170 * should be <8k allocation so should be pretty safe.
1171 */
1172 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1173 if (!buf) {
1174 audit_panic("out of memory for argv string\n");
1175 return;
bdf4c48a 1176 }
de6bbd1d 1177
d9cfea91 1178 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1179 len = audit_log_single_execve_arg(context, ab, i,
1180 &len_sent, p, buf);
1181 if (len <= 0)
1182 break;
1183 p += len;
1184 }
1185 kfree(buf);
bdf4c48a
PZ
1186}
1187
a33e6751 1188static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1189{
1190 struct audit_buffer *ab;
1191 int i;
1192
1193 ab = audit_log_start(context, GFP_KERNEL, context->type);
1194 if (!ab)
1195 return;
1196
1197 switch (context->type) {
1198 case AUDIT_SOCKETCALL: {
1199 int nargs = context->socketcall.nargs;
1200 audit_log_format(ab, "nargs=%d", nargs);
1201 for (i = 0; i < nargs; i++)
1202 audit_log_format(ab, " a%d=%lx", i,
1203 context->socketcall.args[i]);
1204 break; }
a33e6751
AV
1205 case AUDIT_IPC: {
1206 u32 osid = context->ipc.osid;
1207
2570ebbd 1208 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1209 from_kuid(&init_user_ns, context->ipc.uid),
1210 from_kgid(&init_user_ns, context->ipc.gid),
1211 context->ipc.mode);
a33e6751
AV
1212 if (osid) {
1213 char *ctx = NULL;
1214 u32 len;
1215 if (security_secid_to_secctx(osid, &ctx, &len)) {
1216 audit_log_format(ab, " osid=%u", osid);
1217 *call_panic = 1;
1218 } else {
1219 audit_log_format(ab, " obj=%s", ctx);
1220 security_release_secctx(ctx, len);
1221 }
1222 }
e816f370
AV
1223 if (context->ipc.has_perm) {
1224 audit_log_end(ab);
1225 ab = audit_log_start(context, GFP_KERNEL,
1226 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1227 if (unlikely(!ab))
1228 return;
e816f370 1229 audit_log_format(ab,
2570ebbd 1230 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1231 context->ipc.qbytes,
1232 context->ipc.perm_uid,
1233 context->ipc.perm_gid,
1234 context->ipc.perm_mode);
e816f370 1235 }
a33e6751 1236 break; }
564f6993
AV
1237 case AUDIT_MQ_OPEN: {
1238 audit_log_format(ab,
df0a4283 1239 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1240 "mq_msgsize=%ld mq_curmsgs=%ld",
1241 context->mq_open.oflag, context->mq_open.mode,
1242 context->mq_open.attr.mq_flags,
1243 context->mq_open.attr.mq_maxmsg,
1244 context->mq_open.attr.mq_msgsize,
1245 context->mq_open.attr.mq_curmsgs);
1246 break; }
c32c8af4
AV
1247 case AUDIT_MQ_SENDRECV: {
1248 audit_log_format(ab,
1249 "mqdes=%d msg_len=%zd msg_prio=%u "
1250 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1251 context->mq_sendrecv.mqdes,
1252 context->mq_sendrecv.msg_len,
1253 context->mq_sendrecv.msg_prio,
1254 context->mq_sendrecv.abs_timeout.tv_sec,
1255 context->mq_sendrecv.abs_timeout.tv_nsec);
1256 break; }
20114f71
AV
1257 case AUDIT_MQ_NOTIFY: {
1258 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1259 context->mq_notify.mqdes,
1260 context->mq_notify.sigev_signo);
1261 break; }
7392906e
AV
1262 case AUDIT_MQ_GETSETATTR: {
1263 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1264 audit_log_format(ab,
1265 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1266 "mq_curmsgs=%ld ",
1267 context->mq_getsetattr.mqdes,
1268 attr->mq_flags, attr->mq_maxmsg,
1269 attr->mq_msgsize, attr->mq_curmsgs);
1270 break; }
57f71a0a
AV
1271 case AUDIT_CAPSET: {
1272 audit_log_format(ab, "pid=%d", context->capset.pid);
1273 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1274 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1275 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1276 break; }
120a795d
AV
1277 case AUDIT_MMAP: {
1278 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1279 context->mmap.flags);
1280 break; }
d9cfea91
RGB
1281 case AUDIT_EXECVE: {
1282 audit_log_execve_info(context, &ab);
1283 break; }
f3298dc4
AV
1284 }
1285 audit_log_end(ab);
1286}
1287
3f1c8250
WR
1288static inline int audit_proctitle_rtrim(char *proctitle, int len)
1289{
1290 char *end = proctitle + len - 1;
1291 while (end > proctitle && !isprint(*end))
1292 end--;
1293
1294 /* catch the case where proctitle is only 1 non-print character */
1295 len = end - proctitle + 1;
1296 len -= isprint(proctitle[len-1]) == 0;
1297 return len;
1298}
1299
1300static void audit_log_proctitle(struct task_struct *tsk,
1301 struct audit_context *context)
1302{
1303 int res;
1304 char *buf;
1305 char *msg = "(null)";
1306 int len = strlen(msg);
1307 struct audit_buffer *ab;
1308
1309 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1310 if (!ab)
1311 return; /* audit_panic or being filtered */
1312
1313 audit_log_format(ab, "proctitle=");
1314
1315 /* Not cached */
1316 if (!context->proctitle.value) {
1317 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1318 if (!buf)
1319 goto out;
1320 /* Historically called this from procfs naming */
1321 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1322 if (res == 0) {
1323 kfree(buf);
1324 goto out;
1325 }
1326 res = audit_proctitle_rtrim(buf, res);
1327 if (res == 0) {
1328 kfree(buf);
1329 goto out;
1330 }
1331 context->proctitle.value = buf;
1332 context->proctitle.len = res;
1333 }
1334 msg = context->proctitle.value;
1335 len = context->proctitle.len;
1336out:
1337 audit_log_n_untrustedstring(ab, msg, len);
1338 audit_log_end(ab);
1339}
1340
e495149b 1341static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1342{
9c7aa6aa 1343 int i, call_panic = 0;
1da177e4 1344 struct audit_buffer *ab;
7551ced3 1345 struct audit_aux_data *aux;
5195d8e2 1346 struct audit_names *n;
1da177e4 1347
e495149b 1348 /* tsk == current */
3f2792ff 1349 context->personality = tsk->personality;
e495149b
AV
1350
1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1352 if (!ab)
1353 return; /* audit_panic has been called */
bccf6ae0
DW
1354 audit_log_format(ab, "arch=%x syscall=%d",
1355 context->arch, context->major);
1da177e4
LT
1356 if (context->personality != PER_LINUX)
1357 audit_log_format(ab, " per=%lx", context->personality);
1358 if (context->return_valid)
9f8dbe9c 1359 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1360 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1361 context->return_code);
eb84a20e 1362
1da177e4 1363 audit_log_format(ab,
e23eb920
PM
1364 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1365 context->argv[0],
1366 context->argv[1],
1367 context->argv[2],
1368 context->argv[3],
1369 context->name_count);
eb84a20e 1370
e495149b 1371 audit_log_task_info(ab, tsk);
9d960985 1372 audit_log_key(ab, context->filterkey);
1da177e4 1373 audit_log_end(ab);
1da177e4 1374
7551ced3 1375 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1376
e495149b 1377 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1378 if (!ab)
1379 continue; /* audit_panic has been called */
1380
1da177e4 1381 switch (aux->type) {
20ca73bc 1382
3fc689e9
EP
1383 case AUDIT_BPRM_FCAPS: {
1384 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1385 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1386 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1387 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1388 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1389 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1390 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1391 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1392 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1393 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1394 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1395 break; }
1396
1da177e4
LT
1397 }
1398 audit_log_end(ab);
1da177e4
LT
1399 }
1400
f3298dc4 1401 if (context->type)
a33e6751 1402 show_special(context, &call_panic);
f3298dc4 1403
157cf649
AV
1404 if (context->fds[0] >= 0) {
1405 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1406 if (ab) {
1407 audit_log_format(ab, "fd0=%d fd1=%d",
1408 context->fds[0], context->fds[1]);
1409 audit_log_end(ab);
1410 }
1411 }
1412
4f6b434f
AV
1413 if (context->sockaddr_len) {
1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1415 if (ab) {
1416 audit_log_format(ab, "saddr=");
1417 audit_log_n_hex(ab, (void *)context->sockaddr,
1418 context->sockaddr_len);
1419 audit_log_end(ab);
1420 }
1421 }
1422
e54dc243
AG
1423 for (aux = context->aux_pids; aux; aux = aux->next) {
1424 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1425
1426 for (i = 0; i < axs->pid_count; i++)
1427 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1428 axs->target_auid[i],
1429 axs->target_uid[i],
4746ec5b 1430 axs->target_sessionid[i],
c2a7780e
EP
1431 axs->target_sid[i],
1432 axs->target_comm[i]))
e54dc243 1433 call_panic = 1;
a5cb013d
AV
1434 }
1435
e54dc243
AG
1436 if (context->target_pid &&
1437 audit_log_pid_context(context, context->target_pid,
c2a7780e 1438 context->target_auid, context->target_uid,
4746ec5b 1439 context->target_sessionid,
c2a7780e 1440 context->target_sid, context->target_comm))
e54dc243
AG
1441 call_panic = 1;
1442
44707fdf 1443 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1444 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1445 if (ab) {
c158a35c 1446 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1447 audit_log_end(ab);
1448 }
1449 }
73241ccc 1450
5195d8e2 1451 i = 0;
79f6530c
JL
1452 list_for_each_entry(n, &context->names_list, list) {
1453 if (n->hidden)
1454 continue;
b24a30a7 1455 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1456 }
c0641f28 1457
3f1c8250
WR
1458 audit_log_proctitle(tsk, context);
1459
c0641f28
EP
1460 /* Send end of event record to help user space know we are finished */
1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1462 if (ab)
1463 audit_log_end(ab);
9c7aa6aa
SG
1464 if (call_panic)
1465 audit_panic("error converting sid to string");
1da177e4
LT
1466}
1467
b0dd25a8
RD
1468/**
1469 * audit_free - free a per-task audit context
1470 * @tsk: task whose audit context block to free
1471 *
fa84cb93 1472 * Called from copy_process and do_exit
b0dd25a8 1473 */
a4ff8dba 1474void __audit_free(struct task_struct *tsk)
1da177e4
LT
1475{
1476 struct audit_context *context;
1477
4a3eb726 1478 context = audit_take_context(tsk, 0, 0);
56179a6e 1479 if (!context)
1da177e4
LT
1480 return;
1481
1482 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1483 * function (e.g., exit_group), then free context block.
1484 * We use GFP_ATOMIC here because we might be doing this
f5561964 1485 * in the context of the idle thread */
e495149b 1486 /* that can happen only if we are called from do_exit() */
0590b933 1487 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1488 audit_log_exit(context, tsk);
916d7576
AV
1489 if (!list_empty(&context->killed_trees))
1490 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1491
1492 audit_free_context(context);
1493}
1494
b0dd25a8
RD
1495/**
1496 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1497 * @arch: architecture type
1498 * @major: major syscall type (function)
1499 * @a1: additional syscall register 1
1500 * @a2: additional syscall register 2
1501 * @a3: additional syscall register 3
1502 * @a4: additional syscall register 4
1503 *
1504 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1505 * audit context was created when the task was created and the state or
1506 * filters demand the audit context be built. If the state from the
1507 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1508 * then the record will be written at syscall exit time (otherwise, it
1509 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1510 * be written).
1511 */
b05d8447 1512void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1513 unsigned long a1, unsigned long a2,
1514 unsigned long a3, unsigned long a4)
1515{
5411be59 1516 struct task_struct *tsk = current;
1da177e4
LT
1517 struct audit_context *context = tsk->audit_context;
1518 enum audit_state state;
1519
56179a6e 1520 if (!context)
86a1c34a 1521 return;
1da177e4 1522
1da177e4
LT
1523 BUG_ON(context->in_syscall || context->name_count);
1524
1525 if (!audit_enabled)
1526 return;
1527
2fd6f58b 1528 context->arch = arch;
1da177e4
LT
1529 context->major = major;
1530 context->argv[0] = a1;
1531 context->argv[1] = a2;
1532 context->argv[2] = a3;
1533 context->argv[3] = a4;
1534
1535 state = context->state;
d51374ad 1536 context->dummy = !audit_n_rules;
0590b933
AV
1537 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1538 context->prio = 0;
0f45aa18 1539 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1540 }
56179a6e 1541 if (state == AUDIT_DISABLED)
1da177e4
LT
1542 return;
1543
ce625a80 1544 context->serial = 0;
1da177e4
LT
1545 context->ctime = CURRENT_TIME;
1546 context->in_syscall = 1;
0590b933 1547 context->current_state = state;
419c58f1 1548 context->ppid = 0;
1da177e4
LT
1549}
1550
b0dd25a8
RD
1551/**
1552 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1553 * @success: success value of the syscall
1554 * @return_code: return value of the syscall
b0dd25a8
RD
1555 *
1556 * Tear down after system call. If the audit context has been marked as
1da177e4 1557 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1558 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1559 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1560 * free the names stored from getname().
1561 */
d7e7528b 1562void __audit_syscall_exit(int success, long return_code)
1da177e4 1563{
5411be59 1564 struct task_struct *tsk = current;
1da177e4
LT
1565 struct audit_context *context;
1566
d7e7528b
EP
1567 if (success)
1568 success = AUDITSC_SUCCESS;
1569 else
1570 success = AUDITSC_FAILURE;
1da177e4 1571
4a3eb726 1572 context = audit_take_context(tsk, success, return_code);
56179a6e 1573 if (!context)
97e94c45 1574 return;
1da177e4 1575
0590b933 1576 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1577 audit_log_exit(context, tsk);
1da177e4
LT
1578
1579 context->in_syscall = 0;
0590b933 1580 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1581
916d7576
AV
1582 if (!list_empty(&context->killed_trees))
1583 audit_kill_trees(&context->killed_trees);
1584
c62d773a
AV
1585 audit_free_names(context);
1586 unroll_tree_refs(context, NULL, 0);
1587 audit_free_aux(context);
1588 context->aux = NULL;
1589 context->aux_pids = NULL;
1590 context->target_pid = 0;
1591 context->target_sid = 0;
1592 context->sockaddr_len = 0;
1593 context->type = 0;
1594 context->fds[0] = -1;
1595 if (context->state != AUDIT_RECORD_CONTEXT) {
1596 kfree(context->filterkey);
1597 context->filterkey = NULL;
1da177e4 1598 }
c62d773a 1599 tsk->audit_context = context;
1da177e4
LT
1600}
1601
74c3cbe3
AV
1602static inline void handle_one(const struct inode *inode)
1603{
1604#ifdef CONFIG_AUDIT_TREE
1605 struct audit_context *context;
1606 struct audit_tree_refs *p;
1607 struct audit_chunk *chunk;
1608 int count;
e61ce867 1609 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1610 return;
1611 context = current->audit_context;
1612 p = context->trees;
1613 count = context->tree_count;
1614 rcu_read_lock();
1615 chunk = audit_tree_lookup(inode);
1616 rcu_read_unlock();
1617 if (!chunk)
1618 return;
1619 if (likely(put_tree_ref(context, chunk)))
1620 return;
1621 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1622 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1623 audit_set_auditable(context);
1624 audit_put_chunk(chunk);
1625 unroll_tree_refs(context, p, count);
1626 return;
1627 }
1628 put_tree_ref(context, chunk);
1629#endif
1630}
1631
1632static void handle_path(const struct dentry *dentry)
1633{
1634#ifdef CONFIG_AUDIT_TREE
1635 struct audit_context *context;
1636 struct audit_tree_refs *p;
1637 const struct dentry *d, *parent;
1638 struct audit_chunk *drop;
1639 unsigned long seq;
1640 int count;
1641
1642 context = current->audit_context;
1643 p = context->trees;
1644 count = context->tree_count;
1645retry:
1646 drop = NULL;
1647 d = dentry;
1648 rcu_read_lock();
1649 seq = read_seqbegin(&rename_lock);
1650 for(;;) {
1651 struct inode *inode = d->d_inode;
e61ce867 1652 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1653 struct audit_chunk *chunk;
1654 chunk = audit_tree_lookup(inode);
1655 if (chunk) {
1656 if (unlikely(!put_tree_ref(context, chunk))) {
1657 drop = chunk;
1658 break;
1659 }
1660 }
1661 }
1662 parent = d->d_parent;
1663 if (parent == d)
1664 break;
1665 d = parent;
1666 }
1667 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1668 rcu_read_unlock();
1669 if (!drop) {
1670 /* just a race with rename */
1671 unroll_tree_refs(context, p, count);
1672 goto retry;
1673 }
1674 audit_put_chunk(drop);
1675 if (grow_tree_refs(context)) {
1676 /* OK, got more space */
1677 unroll_tree_refs(context, p, count);
1678 goto retry;
1679 }
1680 /* too bad */
f952d10f 1681 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1682 unroll_tree_refs(context, p, count);
1683 audit_set_auditable(context);
1684 return;
1685 }
1686 rcu_read_unlock();
1687#endif
1688}
1689
78e2e802
JL
1690static struct audit_names *audit_alloc_name(struct audit_context *context,
1691 unsigned char type)
5195d8e2
EP
1692{
1693 struct audit_names *aname;
1694
1695 if (context->name_count < AUDIT_NAMES) {
1696 aname = &context->preallocated_names[context->name_count];
1697 memset(aname, 0, sizeof(*aname));
1698 } else {
1699 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1700 if (!aname)
1701 return NULL;
1702 aname->should_free = true;
1703 }
1704
1705 aname->ino = (unsigned long)-1;
78e2e802 1706 aname->type = type;
5195d8e2
EP
1707 list_add_tail(&aname->list, &context->names_list);
1708
1709 context->name_count++;
1710#if AUDIT_DEBUG
1711 context->ino_count++;
1712#endif
1713 return aname;
1714}
1715
7ac86265
JL
1716/**
1717 * audit_reusename - fill out filename with info from existing entry
1718 * @uptr: userland ptr to pathname
1719 *
1720 * Search the audit_names list for the current audit context. If there is an
1721 * existing entry with a matching "uptr" then return the filename
1722 * associated with that audit_name. If not, return NULL.
1723 */
1724struct filename *
1725__audit_reusename(const __user char *uptr)
1726{
1727 struct audit_context *context = current->audit_context;
1728 struct audit_names *n;
1729
1730 list_for_each_entry(n, &context->names_list, list) {
1731 if (!n->name)
1732 continue;
1733 if (n->name->uptr == uptr)
1734 return n->name;
1735 }
1736 return NULL;
1737}
1738
b0dd25a8
RD
1739/**
1740 * audit_getname - add a name to the list
1741 * @name: name to add
1742 *
1743 * Add a name to the list of audit names for this context.
1744 * Called from fs/namei.c:getname().
1745 */
91a27b2a 1746void __audit_getname(struct filename *name)
1da177e4
LT
1747{
1748 struct audit_context *context = current->audit_context;
5195d8e2 1749 struct audit_names *n;
1da177e4 1750
1da177e4
LT
1751 if (!context->in_syscall) {
1752#if AUDIT_DEBUG == 2
f952d10f 1753 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1da177e4
LT
1754 __FILE__, __LINE__, context->serial, name);
1755 dump_stack();
1756#endif
1757 return;
1758 }
5195d8e2 1759
91a27b2a
JL
1760#if AUDIT_DEBUG
1761 /* The filename _must_ have a populated ->name */
1762 BUG_ON(!name->name);
1763#endif
1764
78e2e802 1765 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1766 if (!n)
1767 return;
1768
1769 n->name = name;
1770 n->name_len = AUDIT_NAME_FULL;
1771 n->name_put = true;
adb5c247 1772 name->aname = n;
5195d8e2 1773
f7ad3c6b
MS
1774 if (!context->pwd.dentry)
1775 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1776}
1777
b0dd25a8
RD
1778/* audit_putname - intercept a putname request
1779 * @name: name to intercept and delay for putname
1780 *
1781 * If we have stored the name from getname in the audit context,
1782 * then we delay the putname until syscall exit.
1783 * Called from include/linux/fs.h:putname().
1784 */
91a27b2a 1785void audit_putname(struct filename *name)
1da177e4
LT
1786{
1787 struct audit_context *context = current->audit_context;
1788
1789 BUG_ON(!context);
1790 if (!context->in_syscall) {
1791#if AUDIT_DEBUG == 2
f952d10f 1792 pr_err("%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1793 __FILE__, __LINE__, context->serial, name);
1794 if (context->name_count) {
5195d8e2 1795 struct audit_names *n;
34c474de 1796 int i = 0;
5195d8e2
EP
1797
1798 list_for_each_entry(n, &context->names_list, list)
f952d10f
RGB
1799 pr_err("name[%d] = %p = %s\n", i++, n->name,
1800 n->name->name ?: "(null)");
5195d8e2 1801 }
1da177e4 1802#endif
65ada7bc 1803 final_putname(name);
1da177e4
LT
1804 }
1805#if AUDIT_DEBUG
1806 else {
1807 ++context->put_count;
1808 if (context->put_count > context->name_count) {
f952d10f
RGB
1809 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1810 " name_count=%d put_count=%d\n",
1da177e4
LT
1811 __FILE__, __LINE__,
1812 context->serial, context->major,
91a27b2a
JL
1813 context->in_syscall, name->name,
1814 context->name_count, context->put_count);
1da177e4
LT
1815 dump_stack();
1816 }
1817 }
1818#endif
1819}
1820
b0dd25a8 1821/**
bfcec708 1822 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1823 * @name: name being audited
481968f4 1824 * @dentry: dentry being audited
79f6530c 1825 * @flags: attributes for this particular entry
b0dd25a8 1826 */
adb5c247 1827void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1828 unsigned int flags)
1da177e4 1829{
1da177e4 1830 struct audit_context *context = current->audit_context;
74c3cbe3 1831 const struct inode *inode = dentry->d_inode;
5195d8e2 1832 struct audit_names *n;
79f6530c 1833 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1834
1835 if (!context->in_syscall)
1836 return;
5195d8e2 1837
9cec9d68
JL
1838 if (!name)
1839 goto out_alloc;
1840
adb5c247
JL
1841#if AUDIT_DEBUG
1842 /* The struct filename _must_ have a populated ->name */
1843 BUG_ON(!name->name);
1844#endif
1845 /*
1846 * If we have a pointer to an audit_names entry already, then we can
1847 * just use it directly if the type is correct.
1848 */
1849 n = name->aname;
1850 if (n) {
1851 if (parent) {
1852 if (n->type == AUDIT_TYPE_PARENT ||
1853 n->type == AUDIT_TYPE_UNKNOWN)
1854 goto out;
1855 } else {
1856 if (n->type != AUDIT_TYPE_PARENT)
1857 goto out;
1858 }
1859 }
1860
5195d8e2 1861 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1862 /* does the name pointer match? */
adb5c247 1863 if (!n->name || n->name->name != name->name)
bfcec708
JL
1864 continue;
1865
1866 /* match the correct record type */
1867 if (parent) {
1868 if (n->type == AUDIT_TYPE_PARENT ||
1869 n->type == AUDIT_TYPE_UNKNOWN)
1870 goto out;
1871 } else {
1872 if (n->type != AUDIT_TYPE_PARENT)
1873 goto out;
1874 }
1da177e4 1875 }
5195d8e2 1876
9cec9d68 1877out_alloc:
bfcec708
JL
1878 /* unable to find the name from a previous getname(). Allocate a new
1879 * anonymous entry.
1880 */
78e2e802 1881 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1882 if (!n)
1883 return;
1884out:
bfcec708 1885 if (parent) {
91a27b2a 1886 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1887 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1888 if (flags & AUDIT_INODE_HIDDEN)
1889 n->hidden = true;
bfcec708
JL
1890 } else {
1891 n->name_len = AUDIT_NAME_FULL;
1892 n->type = AUDIT_TYPE_NORMAL;
1893 }
74c3cbe3 1894 handle_path(dentry);
5195d8e2 1895 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1896}
1897
1898/**
c43a25ab 1899 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1900 * @parent: inode of dentry parent
c43a25ab 1901 * @dentry: dentry being audited
4fa6b5ec 1902 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1903 *
1904 * For syscalls that create or remove filesystem objects, audit_inode
1905 * can only collect information for the filesystem object's parent.
1906 * This call updates the audit context with the child's information.
1907 * Syscalls that create a new filesystem object must be hooked after
1908 * the object is created. Syscalls that remove a filesystem object
1909 * must be hooked prior, in order to capture the target inode during
1910 * unsuccessful attempts.
1911 */
c43a25ab 1912void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1913 const struct dentry *dentry,
1914 const unsigned char type)
73241ccc 1915{
73241ccc 1916 struct audit_context *context = current->audit_context;
5a190ae6 1917 const struct inode *inode = dentry->d_inode;
cccc6bba 1918 const char *dname = dentry->d_name.name;
4fa6b5ec 1919 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1920
1921 if (!context->in_syscall)
1922 return;
1923
74c3cbe3
AV
1924 if (inode)
1925 handle_one(inode);
73241ccc 1926
4fa6b5ec 1927 /* look for a parent entry first */
5195d8e2 1928 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1929 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1930 continue;
1931
1932 if (n->ino == parent->i_ino &&
91a27b2a 1933 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1934 found_parent = n;
1935 break;
f368c07d 1936 }
5712e88f 1937 }
73241ccc 1938
4fa6b5ec 1939 /* is there a matching child entry? */
5195d8e2 1940 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1941 /* can only match entries that have a name */
1942 if (!n->name || n->type != type)
1943 continue;
1944
1945 /* if we found a parent, make sure this one is a child of it */
1946 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1947 continue;
1948
91a27b2a
JL
1949 if (!strcmp(dname, n->name->name) ||
1950 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1951 found_parent ?
1952 found_parent->name_len :
e3d6b07b 1953 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1954 found_child = n;
1955 break;
5712e88f 1956 }
ac9910ce 1957 }
5712e88f 1958
5712e88f 1959 if (!found_parent) {
4fa6b5ec
JL
1960 /* create a new, "anonymous" parent record */
1961 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1962 if (!n)
ac9910ce 1963 return;
5195d8e2 1964 audit_copy_inode(n, NULL, parent);
73d3ec5a 1965 }
5712e88f
AG
1966
1967 if (!found_child) {
4fa6b5ec
JL
1968 found_child = audit_alloc_name(context, type);
1969 if (!found_child)
5712e88f 1970 return;
5712e88f
AG
1971
1972 /* Re-use the name belonging to the slot for a matching parent
1973 * directory. All names for this context are relinquished in
1974 * audit_free_names() */
1975 if (found_parent) {
4fa6b5ec
JL
1976 found_child->name = found_parent->name;
1977 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1978 /* don't call __putname() */
4fa6b5ec 1979 found_child->name_put = false;
5712e88f 1980 }
5712e88f 1981 }
4fa6b5ec
JL
1982 if (inode)
1983 audit_copy_inode(found_child, dentry, inode);
1984 else
1985 found_child->ino = (unsigned long)-1;
3e2efce0 1986}
50e437d5 1987EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1988
b0dd25a8
RD
1989/**
1990 * auditsc_get_stamp - get local copies of audit_context values
1991 * @ctx: audit_context for the task
1992 * @t: timespec to store time recorded in the audit_context
1993 * @serial: serial value that is recorded in the audit_context
1994 *
1995 * Also sets the context as auditable.
1996 */
48887e63 1997int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1998 struct timespec *t, unsigned int *serial)
1da177e4 1999{
48887e63
AV
2000 if (!ctx->in_syscall)
2001 return 0;
ce625a80
DW
2002 if (!ctx->serial)
2003 ctx->serial = audit_serial();
bfb4496e
DW
2004 t->tv_sec = ctx->ctime.tv_sec;
2005 t->tv_nsec = ctx->ctime.tv_nsec;
2006 *serial = ctx->serial;
0590b933
AV
2007 if (!ctx->prio) {
2008 ctx->prio = 1;
2009 ctx->current_state = AUDIT_RECORD_CONTEXT;
2010 }
48887e63 2011 return 1;
1da177e4
LT
2012}
2013
4746ec5b
EP
2014/* global counter which is incremented every time something logs in */
2015static atomic_t session_id = ATOMIC_INIT(0);
2016
da0a6104
EP
2017static int audit_set_loginuid_perm(kuid_t loginuid)
2018{
da0a6104
EP
2019 /* if we are unset, we don't need privs */
2020 if (!audit_loginuid_set(current))
2021 return 0;
21b85c31
EP
2022 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2023 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2024 return -EPERM;
83fa6bbe
EP
2025 /* it is set, you need permission */
2026 if (!capable(CAP_AUDIT_CONTROL))
2027 return -EPERM;
d040e5af
EP
2028 /* reject if this is not an unset and we don't allow that */
2029 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2030 return -EPERM;
83fa6bbe 2031 return 0;
da0a6104
EP
2032}
2033
2034static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2035 unsigned int oldsessionid, unsigned int sessionid,
2036 int rc)
2037{
2038 struct audit_buffer *ab;
5ee9a75c 2039 uid_t uid, oldloginuid, loginuid;
da0a6104 2040
c2412d91
G
2041 if (!audit_enabled)
2042 return;
2043
da0a6104 2044 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
2045 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2046 loginuid = from_kuid(&init_user_ns, kloginuid),
da0a6104
EP
2047
2048 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2049 if (!ab)
2050 return;
5ee9a75c
RGB
2051 audit_log_format(ab, "pid=%d uid=%u"
2052 " old-auid=%u new-auid=%u old-ses=%u new-ses=%u"
2053 " res=%d",
2054 current->pid, uid,
2055 oldloginuid, loginuid, oldsessionid, sessionid,
2056 !rc);
da0a6104
EP
2057 audit_log_end(ab);
2058}
2059
b0dd25a8 2060/**
0a300be6 2061 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2062 * @loginuid: loginuid value
2063 *
2064 * Returns 0.
2065 *
2066 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2067 */
e1760bd5 2068int audit_set_loginuid(kuid_t loginuid)
1da177e4 2069{
0a300be6 2070 struct task_struct *task = current;
9175c9d2
EP
2071 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2072 kuid_t oldloginuid;
da0a6104 2073 int rc;
41757106 2074
da0a6104
EP
2075 oldloginuid = audit_get_loginuid(current);
2076 oldsessionid = audit_get_sessionid(current);
2077
2078 rc = audit_set_loginuid_perm(loginuid);
2079 if (rc)
2080 goto out;
633b4545 2081
81407c84
EP
2082 /* are we setting or clearing? */
2083 if (uid_valid(loginuid))
4440e854 2084 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2085
4746ec5b 2086 task->sessionid = sessionid;
bfef93a5 2087 task->loginuid = loginuid;
da0a6104
EP
2088out:
2089 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2090 return rc;
1da177e4
LT
2091}
2092
20ca73bc
GW
2093/**
2094 * __audit_mq_open - record audit data for a POSIX MQ open
2095 * @oflag: open flag
2096 * @mode: mode bits
6b962559 2097 * @attr: queue attributes
20ca73bc 2098 *
20ca73bc 2099 */
df0a4283 2100void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2101{
20ca73bc
GW
2102 struct audit_context *context = current->audit_context;
2103
564f6993
AV
2104 if (attr)
2105 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2106 else
2107 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2108
564f6993
AV
2109 context->mq_open.oflag = oflag;
2110 context->mq_open.mode = mode;
20ca73bc 2111
564f6993 2112 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2113}
2114
2115/**
c32c8af4 2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2117 * @mqdes: MQ descriptor
2118 * @msg_len: Message length
2119 * @msg_prio: Message priority
c32c8af4 2120 * @abs_timeout: Message timeout in absolute time
20ca73bc 2121 *
20ca73bc 2122 */
c32c8af4
AV
2123void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2124 const struct timespec *abs_timeout)
20ca73bc 2125{
20ca73bc 2126 struct audit_context *context = current->audit_context;
c32c8af4 2127 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2128
c32c8af4
AV
2129 if (abs_timeout)
2130 memcpy(p, abs_timeout, sizeof(struct timespec));
2131 else
2132 memset(p, 0, sizeof(struct timespec));
20ca73bc 2133
c32c8af4
AV
2134 context->mq_sendrecv.mqdes = mqdes;
2135 context->mq_sendrecv.msg_len = msg_len;
2136 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2137
c32c8af4 2138 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2139}
2140
2141/**
2142 * __audit_mq_notify - record audit data for a POSIX MQ notify
2143 * @mqdes: MQ descriptor
6b962559 2144 * @notification: Notification event
20ca73bc 2145 *
20ca73bc
GW
2146 */
2147
20114f71 2148void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2149{
20ca73bc
GW
2150 struct audit_context *context = current->audit_context;
2151
20114f71
AV
2152 if (notification)
2153 context->mq_notify.sigev_signo = notification->sigev_signo;
2154 else
2155 context->mq_notify.sigev_signo = 0;
20ca73bc 2156
20114f71
AV
2157 context->mq_notify.mqdes = mqdes;
2158 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2159}
2160
2161/**
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2164 * @mqstat: MQ flags
2165 *
20ca73bc 2166 */
7392906e 2167void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2168{
20ca73bc 2169 struct audit_context *context = current->audit_context;
7392906e
AV
2170 context->mq_getsetattr.mqdes = mqdes;
2171 context->mq_getsetattr.mqstat = *mqstat;
2172 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2173}
2174
b0dd25a8 2175/**
073115d6
SG
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2178 *
073115d6 2179 */
a33e6751 2180void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2181{
073115d6 2182 struct audit_context *context = current->audit_context;
a33e6751
AV
2183 context->ipc.uid = ipcp->uid;
2184 context->ipc.gid = ipcp->gid;
2185 context->ipc.mode = ipcp->mode;
e816f370 2186 context->ipc.has_perm = 0;
a33e6751
AV
2187 security_ipc_getsecid(ipcp, &context->ipc.osid);
2188 context->type = AUDIT_IPC;
073115d6
SG
2189}
2190
2191/**
2192 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2193 * @qbytes: msgq bytes
2194 * @uid: msgq user id
2195 * @gid: msgq group id
2196 * @mode: msgq mode (permissions)
2197 *
e816f370 2198 * Called only after audit_ipc_obj().
b0dd25a8 2199 */
2570ebbd 2200void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2201{
1da177e4
LT
2202 struct audit_context *context = current->audit_context;
2203
e816f370
AV
2204 context->ipc.qbytes = qbytes;
2205 context->ipc.perm_uid = uid;
2206 context->ipc.perm_gid = gid;
2207 context->ipc.perm_mode = mode;
2208 context->ipc.has_perm = 1;
1da177e4 2209}
c2f0c7c3 2210
d9cfea91 2211void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2212{
473ae30b 2213 struct audit_context *context = current->audit_context;
473ae30b 2214
d9cfea91
RGB
2215 context->type = AUDIT_EXECVE;
2216 context->execve.argc = bprm->argc;
473ae30b
AV
2217}
2218
2219
b0dd25a8
RD
2220/**
2221 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2223 * @args: args array
2224 *
b0dd25a8 2225 */
2950fa9d 2226int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2227{
3ec3b2fb
DW
2228 struct audit_context *context = current->audit_context;
2229
2950fa9d
CG
2230 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2231 return -EINVAL;
f3298dc4
AV
2232 context->type = AUDIT_SOCKETCALL;
2233 context->socketcall.nargs = nargs;
2234 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2235 return 0;
3ec3b2fb
DW
2236}
2237
db349509
AV
2238/**
2239 * __audit_fd_pair - record audit data for pipe and socketpair
2240 * @fd1: the first file descriptor
2241 * @fd2: the second file descriptor
2242 *
db349509 2243 */
157cf649 2244void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2245{
2246 struct audit_context *context = current->audit_context;
157cf649
AV
2247 context->fds[0] = fd1;
2248 context->fds[1] = fd2;
db349509
AV
2249}
2250
b0dd25a8
RD
2251/**
2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253 * @len: data length in user space
2254 * @a: data address in kernel space
2255 *
2256 * Returns 0 for success or NULL context or < 0 on error.
2257 */
07c49417 2258int __audit_sockaddr(int len, void *a)
3ec3b2fb 2259{
3ec3b2fb
DW
2260 struct audit_context *context = current->audit_context;
2261
4f6b434f
AV
2262 if (!context->sockaddr) {
2263 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2264 if (!p)
2265 return -ENOMEM;
2266 context->sockaddr = p;
2267 }
3ec3b2fb 2268
4f6b434f
AV
2269 context->sockaddr_len = len;
2270 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2271 return 0;
2272}
2273
a5cb013d
AV
2274void __audit_ptrace(struct task_struct *t)
2275{
2276 struct audit_context *context = current->audit_context;
2277
2278 context->target_pid = t->pid;
c2a7780e 2279 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2280 context->target_uid = task_uid(t);
4746ec5b 2281 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2282 security_task_getsecid(t, &context->target_sid);
c2a7780e 2283 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2284}
2285
b0dd25a8
RD
2286/**
2287 * audit_signal_info - record signal info for shutting down audit subsystem
2288 * @sig: signal value
2289 * @t: task being signaled
2290 *
2291 * If the audit subsystem is being terminated, record the task (pid)
2292 * and uid that is doing that.
2293 */
e54dc243 2294int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2295{
e54dc243
AG
2296 struct audit_aux_data_pids *axp;
2297 struct task_struct *tsk = current;
2298 struct audit_context *ctx = tsk->audit_context;
cca080d9 2299 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2300
175fc484 2301 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2302 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2303 audit_sig_pid = tsk->pid;
e1760bd5 2304 if (uid_valid(tsk->loginuid))
bfef93a5 2305 audit_sig_uid = tsk->loginuid;
175fc484 2306 else
c69e8d9c 2307 audit_sig_uid = uid;
2a862b32 2308 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2309 }
2310 if (!audit_signals || audit_dummy_context())
2311 return 0;
c2f0c7c3 2312 }
e54dc243 2313
e54dc243
AG
2314 /* optimize the common case by putting first signal recipient directly
2315 * in audit_context */
2316 if (!ctx->target_pid) {
2317 ctx->target_pid = t->tgid;
c2a7780e 2318 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2319 ctx->target_uid = t_uid;
4746ec5b 2320 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2321 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2322 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2323 return 0;
2324 }
2325
2326 axp = (void *)ctx->aux_pids;
2327 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2328 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2329 if (!axp)
2330 return -ENOMEM;
2331
2332 axp->d.type = AUDIT_OBJ_PID;
2333 axp->d.next = ctx->aux_pids;
2334 ctx->aux_pids = (void *)axp;
2335 }
88ae704c 2336 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2337
2338 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2339 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2340 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2341 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2342 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2343 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2344 axp->pid_count++;
2345
2346 return 0;
c2f0c7c3 2347}
0a4ff8c2 2348
3fc689e9
EP
2349/**
2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2351 * @bprm: pointer to the bprm being processed
2352 * @new: the proposed new credentials
2353 * @old: the old credentials
3fc689e9
EP
2354 *
2355 * Simply check if the proc already has the caps given by the file and if not
2356 * store the priv escalation info for later auditing at the end of the syscall
2357 *
3fc689e9
EP
2358 * -Eric
2359 */
d84f4f99
DH
2360int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2361 const struct cred *new, const struct cred *old)
3fc689e9
EP
2362{
2363 struct audit_aux_data_bprm_fcaps *ax;
2364 struct audit_context *context = current->audit_context;
2365 struct cpu_vfs_cap_data vcaps;
2366 struct dentry *dentry;
2367
2368 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2369 if (!ax)
d84f4f99 2370 return -ENOMEM;
3fc689e9
EP
2371
2372 ax->d.type = AUDIT_BPRM_FCAPS;
2373 ax->d.next = context->aux;
2374 context->aux = (void *)ax;
2375
2376 dentry = dget(bprm->file->f_dentry);
2377 get_vfs_caps_from_disk(dentry, &vcaps);
2378 dput(dentry);
2379
2380 ax->fcap.permitted = vcaps.permitted;
2381 ax->fcap.inheritable = vcaps.inheritable;
2382 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2383 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2384
d84f4f99
DH
2385 ax->old_pcap.permitted = old->cap_permitted;
2386 ax->old_pcap.inheritable = old->cap_inheritable;
2387 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2388
d84f4f99
DH
2389 ax->new_pcap.permitted = new->cap_permitted;
2390 ax->new_pcap.inheritable = new->cap_inheritable;
2391 ax->new_pcap.effective = new->cap_effective;
2392 return 0;
3fc689e9
EP
2393}
2394
e68b75a0
EP
2395/**
2396 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2397 * @new: the new credentials
2398 * @old: the old (current) credentials
e68b75a0
EP
2399 *
2400 * Record the aguments userspace sent to sys_capset for later printing by the
2401 * audit system if applicable
2402 */
ca24a23e 2403void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2404{
e68b75a0 2405 struct audit_context *context = current->audit_context;
ca24a23e 2406 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2407 context->capset.cap.effective = new->cap_effective;
2408 context->capset.cap.inheritable = new->cap_effective;
2409 context->capset.cap.permitted = new->cap_permitted;
2410 context->type = AUDIT_CAPSET;
e68b75a0
EP
2411}
2412
120a795d
AV
2413void __audit_mmap_fd(int fd, int flags)
2414{
2415 struct audit_context *context = current->audit_context;
2416 context->mmap.fd = fd;
2417 context->mmap.flags = flags;
2418 context->type = AUDIT_MMAP;
2419}
2420
7b9205bd 2421static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2422{
cca080d9
EB
2423 kuid_t auid, uid;
2424 kgid_t gid;
85e7bac3 2425 unsigned int sessionid;
ff235f51 2426 struct mm_struct *mm = current->mm;
85e7bac3
EP
2427
2428 auid = audit_get_loginuid(current);
2429 sessionid = audit_get_sessionid(current);
2430 current_uid_gid(&uid, &gid);
2431
2432 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2433 from_kuid(&init_user_ns, auid),
2434 from_kuid(&init_user_ns, uid),
2435 from_kgid(&init_user_ns, gid),
2436 sessionid);
85e7bac3
EP
2437 audit_log_task_context(ab);
2438 audit_log_format(ab, " pid=%d comm=", current->pid);
2439 audit_log_untrustedstring(ab, current->comm);
ff235f51
PD
2440 if (mm) {
2441 down_read(&mm->mmap_sem);
2442 if (mm->exe_file)
2443 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2444 up_read(&mm->mmap_sem);
2445 } else
2446 audit_log_format(ab, " exe=(null)");
7b9205bd
KC
2447}
2448
0a4ff8c2
SG
2449/**
2450 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2451 * @signr: signal value
0a4ff8c2
SG
2452 *
2453 * If a process ends with a core dump, something fishy is going on and we
2454 * should record the event for investigation.
2455 */
2456void audit_core_dumps(long signr)
2457{
2458 struct audit_buffer *ab;
0a4ff8c2
SG
2459
2460 if (!audit_enabled)
2461 return;
2462
2463 if (signr == SIGQUIT) /* don't care for those */
2464 return;
2465
2466 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2467 if (unlikely(!ab))
2468 return;
61c0ee87
PD
2469 audit_log_task(ab);
2470 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2471 audit_log_end(ab);
2472}
0a4ff8c2 2473
3dc1c1b2 2474void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2475{
2476 struct audit_buffer *ab;
2477
7b9205bd
KC
2478 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2479 if (unlikely(!ab))
2480 return;
2481 audit_log_task(ab);
2482 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2483 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2484 audit_log_format(ab, " compat=%d", is_compat_task());
2485 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2486 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2487 audit_log_end(ab);
2488}
916d7576
AV
2489
2490struct list_head *audit_killed_trees(void)
2491{
2492 struct audit_context *ctx = current->audit_context;
2493 if (likely(!ctx || !ctx->in_syscall))
2494 return NULL;
2495 return &ctx->killed_trees;
2496}