]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/auditsc.c
audit: allow interfield comparison between gid and ogid
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
d7e7528b
EP
73/* flags stating the success for a syscall */
74#define AUDITSC_INVALID 0
75#define AUDITSC_SUCCESS 1
76#define AUDITSC_FAILURE 2
77
1da177e4 78/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81#define AUDIT_NAMES 5
1da177e4 82
9c937dcc
AG
83/* Indicates that audit should log the full pathname. */
84#define AUDIT_NAME_FULL -1
85
de6bbd1d
EP
86/* no execve audit message should be longer than this (userspace limits) */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
471a5c7c
AV
89/* number of audit rules */
90int audit_n_rules;
91
e54dc243
AG
92/* determines whether we collect data for signals sent */
93int audit_signals;
94
851f7ff5
EP
95struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102};
103
1da177e4
LT
104/* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109struct audit_names {
5195d8e2 110 struct list_head list; /* audit_context->names_list */
1da177e4
LT
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
1b50eed9 118 u32 osid;
851f7ff5
EP
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
5195d8e2
EP
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
1da177e4
LT
129};
130
131struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134};
135
136#define AUDIT_AUX_IPCPERM 0
137
e54dc243
AG
138/* Number of target pids per aux struct. */
139#define AUDIT_AUX_PIDS 16
140
473ae30b
AV
141struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
bdf4c48a 145 struct mm_struct *mm;
473ae30b
AV
146};
147
e54dc243
AG
148struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 154 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
156 int pid_count;
157};
158
3fc689e9
EP
159struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165};
166
e68b75a0
EP
167struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171};
172
74c3cbe3
AV
173struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176};
177
1da177e4
LT
178/* The per-task audit context. */
179struct audit_context {
d51374ad 180 int dummy; /* must be the first element */
1da177e4 181 int in_syscall; /* 1 if task is in a syscall */
0590b933 182 enum audit_state state, current_state;
1da177e4 183 unsigned int serial; /* serial number for record */
1da177e4 184 int major; /* syscall number */
44e51a1b 185 struct timespec ctime; /* time of syscall entry */
1da177e4 186 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 187 long return_code;/* syscall return code */
0590b933 188 u64 prio;
44e51a1b 189 int return_valid; /* return code is valid */
5195d8e2
EP
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 201 char * filterkey; /* key for rule that triggered record */
44707fdf 202 struct path pwd;
1da177e4
LT
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
e54dc243 205 struct audit_aux_data *aux_pids;
4f6b434f
AV
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
1da177e4 208 /* Save things to print about task_struct */
f46038ff 209 pid_t pid, ppid;
1da177e4
LT
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
2fd6f58b 213 int arch;
1da177e4 214
a5cb013d 215 pid_t target_pid;
c2a7780e
EP
216 uid_t target_auid;
217 uid_t target_uid;
4746ec5b 218 unsigned int target_sessionid;
a5cb013d 219 u32 target_sid;
c2a7780e 220 char target_comm[TASK_COMM_LEN];
a5cb013d 221
74c3cbe3 222 struct audit_tree_refs *trees, *first_trees;
916d7576 223 struct list_head killed_trees;
44e51a1b 224 int tree_count;
74c3cbe3 225
f3298dc4
AV
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
a33e6751
AV
232 struct {
233 uid_t uid;
234 gid_t gid;
2570ebbd 235 umode_t mode;
a33e6751 236 u32 osid;
e816f370
AV
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
2570ebbd 240 umode_t perm_mode;
e816f370 241 unsigned long qbytes;
a33e6751 242 } ipc;
7392906e
AV
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
20114f71
AV
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
c32c8af4
AV
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
564f6993
AV
257 struct {
258 int oflag;
df0a4283 259 umode_t mode;
564f6993
AV
260 struct mq_attr attr;
261 } mq_open;
57f71a0a
AV
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
120a795d
AV
266 struct {
267 int fd;
268 int flags;
269 } mmap;
f3298dc4 270 };
157cf649 271 int fds[2];
f3298dc4 272
1da177e4
LT
273#if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276#endif
277};
278
55669bfa
AV
279static inline int open_arg(int flags, int mask)
280{
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285}
286
287static int audit_match_perm(struct audit_context *ctx, int mask)
288{
c4bacefb 289 unsigned n;
1a61c88d 290 if (unlikely(!ctx))
291 return 0;
c4bacefb 292 n = ctx->major;
dbda4c0b 293
55669bfa
AV
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328}
329
5ef30ee5 330static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 331{
5195d8e2 332 struct audit_names *n;
5ef30ee5 333 umode_t mode = (umode_t)val;
1a61c88d 334
335 if (unlikely(!ctx))
336 return 0;
337
5195d8e2
EP
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
341 return 1;
342 }
5195d8e2 343
5ef30ee5 344 return 0;
8b67dca9
AV
345}
346
74c3cbe3
AV
347/*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357#ifdef CONFIG_AUDIT_TREE
679173b7
EP
358static void audit_set_auditable(struct audit_context *ctx)
359{
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364}
365
74c3cbe3
AV
366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367{
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385}
386
387static int grow_tree_refs(struct audit_context *ctx)
388{
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401}
402#endif
403
404static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406{
407#ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431#endif
432}
433
434static void free_tree_refs(struct audit_context *ctx)
435{
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441}
442
443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444{
445#ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462#endif
463 return 0;
464}
465
b34b0393
EP
466static int audit_compare_id(uid_t uid1,
467 struct audit_names *name,
468 unsigned long name_offset,
469 struct audit_field *f,
470 struct audit_context *ctx)
471{
472 struct audit_names *n;
473 unsigned long addr;
474 uid_t uid2;
475 int rc;
476
c9fe685f
EP
477 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
478
b34b0393
EP
479 if (name) {
480 addr = (unsigned long)name;
481 addr += name_offset;
482
483 uid2 = *(uid_t *)addr;
484 rc = audit_comparator(uid1, f->op, uid2);
485 if (rc)
486 return rc;
487 }
488
489 if (ctx) {
490 list_for_each_entry(n, &ctx->names_list, list) {
491 addr = (unsigned long)n;
492 addr += name_offset;
493
494 uid2 = *(uid_t *)addr;
495
496 rc = audit_comparator(uid1, f->op, uid2);
497 if (rc)
498 return rc;
499 }
500 }
501 return 0;
502}
503
02d86a56
EP
504static int audit_field_compare(struct task_struct *tsk,
505 const struct cred *cred,
506 struct audit_field *f,
507 struct audit_context *ctx,
508 struct audit_names *name)
509{
02d86a56
EP
510 switch (f->val) {
511 case AUDIT_COMPARE_UID_TO_OBJ_UID:
b34b0393
EP
512 return audit_compare_id(cred->uid,
513 name, offsetof(struct audit_names, uid),
514 f, ctx);
c9fe685f
EP
515 case AUDIT_COMPARE_GID_TO_OBJ_GID:
516 return audit_compare_id(cred->gid,
517 name, offsetof(struct audit_names, gid),
518 f, ctx);
02d86a56
EP
519 default:
520 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
521 return 0;
522 }
523 return 0;
524}
525
f368c07d 526/* Determine if any context name data matches a rule's watch data */
1da177e4 527/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
528 * otherwise.
529 *
530 * If task_creation is true, this is an explicit indication that we are
531 * filtering a task rule at task creation time. This and tsk == current are
532 * the only situations where tsk->cred may be accessed without an rcu read lock.
533 */
1da177e4 534static int audit_filter_rules(struct task_struct *tsk,
93315ed6 535 struct audit_krule *rule,
1da177e4 536 struct audit_context *ctx,
f368c07d 537 struct audit_names *name,
f5629883
TJ
538 enum audit_state *state,
539 bool task_creation)
1da177e4 540{
f5629883 541 const struct cred *cred;
5195d8e2 542 int i, need_sid = 1;
3dc7e315
DG
543 u32 sid;
544
f5629883
TJ
545 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
546
1da177e4 547 for (i = 0; i < rule->field_count; i++) {
93315ed6 548 struct audit_field *f = &rule->fields[i];
5195d8e2 549 struct audit_names *n;
1da177e4
LT
550 int result = 0;
551
93315ed6 552 switch (f->type) {
1da177e4 553 case AUDIT_PID:
93315ed6 554 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 555 break;
3c66251e 556 case AUDIT_PPID:
419c58f1
AV
557 if (ctx) {
558 if (!ctx->ppid)
559 ctx->ppid = sys_getppid();
3c66251e 560 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 561 }
3c66251e 562 break;
1da177e4 563 case AUDIT_UID:
b6dff3ec 564 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
565 break;
566 case AUDIT_EUID:
b6dff3ec 567 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
568 break;
569 case AUDIT_SUID:
b6dff3ec 570 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
571 break;
572 case AUDIT_FSUID:
b6dff3ec 573 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
574 break;
575 case AUDIT_GID:
b6dff3ec 576 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
577 break;
578 case AUDIT_EGID:
b6dff3ec 579 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
580 break;
581 case AUDIT_SGID:
b6dff3ec 582 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
583 break;
584 case AUDIT_FSGID:
b6dff3ec 585 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
586 break;
587 case AUDIT_PERS:
93315ed6 588 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 589 break;
2fd6f58b 590 case AUDIT_ARCH:
9f8dbe9c 591 if (ctx)
93315ed6 592 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 593 break;
1da177e4
LT
594
595 case AUDIT_EXIT:
596 if (ctx && ctx->return_valid)
93315ed6 597 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
598 break;
599 case AUDIT_SUCCESS:
b01f2cc1 600 if (ctx && ctx->return_valid) {
93315ed6
AG
601 if (f->val)
602 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 603 else
93315ed6 604 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 605 }
1da177e4
LT
606 break;
607 case AUDIT_DEVMAJOR:
16c174bd
EP
608 if (name) {
609 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
610 audit_comparator(MAJOR(name->rdev), f->op, f->val))
611 ++result;
612 } else if (ctx) {
5195d8e2 613 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
614 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
615 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
616 ++result;
617 break;
618 }
619 }
620 }
621 break;
622 case AUDIT_DEVMINOR:
16c174bd
EP
623 if (name) {
624 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
625 audit_comparator(MINOR(name->rdev), f->op, f->val))
626 ++result;
627 } else if (ctx) {
5195d8e2 628 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
629 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
630 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
631 ++result;
632 break;
633 }
634 }
635 }
636 break;
637 case AUDIT_INODE:
f368c07d 638 if (name)
9c937dcc 639 result = (name->ino == f->val);
f368c07d 640 else if (ctx) {
5195d8e2
EP
641 list_for_each_entry(n, &ctx->names_list, list) {
642 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
643 ++result;
644 break;
645 }
646 }
647 }
648 break;
efaffd6e
EP
649 case AUDIT_OBJ_UID:
650 if (name) {
651 result = audit_comparator(name->uid, f->op, f->val);
652 } else if (ctx) {
653 list_for_each_entry(n, &ctx->names_list, list) {
654 if (audit_comparator(n->uid, f->op, f->val)) {
655 ++result;
656 break;
657 }
658 }
659 }
660 break;
54d3218b
EP
661 case AUDIT_OBJ_GID:
662 if (name) {
663 result = audit_comparator(name->gid, f->op, f->val);
664 } else if (ctx) {
665 list_for_each_entry(n, &ctx->names_list, list) {
666 if (audit_comparator(n->gid, f->op, f->val)) {
667 ++result;
668 break;
669 }
670 }
671 }
672 break;
f368c07d 673 case AUDIT_WATCH:
ae7b8f41
EP
674 if (name)
675 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 676 break;
74c3cbe3
AV
677 case AUDIT_DIR:
678 if (ctx)
679 result = match_tree_refs(ctx, rule->tree);
680 break;
1da177e4
LT
681 case AUDIT_LOGINUID:
682 result = 0;
683 if (ctx)
bfef93a5 684 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 685 break;
3a6b9f85
DG
686 case AUDIT_SUBJ_USER:
687 case AUDIT_SUBJ_ROLE:
688 case AUDIT_SUBJ_TYPE:
689 case AUDIT_SUBJ_SEN:
690 case AUDIT_SUBJ_CLR:
3dc7e315
DG
691 /* NOTE: this may return negative values indicating
692 a temporary error. We simply treat this as a
693 match for now to avoid losing information that
694 may be wanted. An error message will also be
695 logged upon error */
04305e4a 696 if (f->lsm_rule) {
2ad312d2 697 if (need_sid) {
2a862b32 698 security_task_getsecid(tsk, &sid);
2ad312d2
SG
699 need_sid = 0;
700 }
d7a96f3a 701 result = security_audit_rule_match(sid, f->type,
3dc7e315 702 f->op,
04305e4a 703 f->lsm_rule,
3dc7e315 704 ctx);
2ad312d2 705 }
3dc7e315 706 break;
6e5a2d1d
DG
707 case AUDIT_OBJ_USER:
708 case AUDIT_OBJ_ROLE:
709 case AUDIT_OBJ_TYPE:
710 case AUDIT_OBJ_LEV_LOW:
711 case AUDIT_OBJ_LEV_HIGH:
712 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
713 also applies here */
04305e4a 714 if (f->lsm_rule) {
6e5a2d1d
DG
715 /* Find files that match */
716 if (name) {
d7a96f3a 717 result = security_audit_rule_match(
6e5a2d1d 718 name->osid, f->type, f->op,
04305e4a 719 f->lsm_rule, ctx);
6e5a2d1d 720 } else if (ctx) {
5195d8e2
EP
721 list_for_each_entry(n, &ctx->names_list, list) {
722 if (security_audit_rule_match(n->osid, f->type,
723 f->op, f->lsm_rule,
724 ctx)) {
6e5a2d1d
DG
725 ++result;
726 break;
727 }
728 }
729 }
730 /* Find ipc objects that match */
a33e6751
AV
731 if (!ctx || ctx->type != AUDIT_IPC)
732 break;
733 if (security_audit_rule_match(ctx->ipc.osid,
734 f->type, f->op,
735 f->lsm_rule, ctx))
736 ++result;
6e5a2d1d
DG
737 }
738 break;
1da177e4
LT
739 case AUDIT_ARG0:
740 case AUDIT_ARG1:
741 case AUDIT_ARG2:
742 case AUDIT_ARG3:
743 if (ctx)
93315ed6 744 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 745 break;
5adc8a6a
AG
746 case AUDIT_FILTERKEY:
747 /* ignore this field for filtering */
748 result = 1;
749 break;
55669bfa
AV
750 case AUDIT_PERM:
751 result = audit_match_perm(ctx, f->val);
752 break;
8b67dca9
AV
753 case AUDIT_FILETYPE:
754 result = audit_match_filetype(ctx, f->val);
755 break;
02d86a56
EP
756 case AUDIT_FIELD_COMPARE:
757 result = audit_field_compare(tsk, cred, f, ctx, name);
758 break;
1da177e4 759 }
f5629883 760 if (!result)
1da177e4
LT
761 return 0;
762 }
0590b933
AV
763
764 if (ctx) {
765 if (rule->prio <= ctx->prio)
766 return 0;
767 if (rule->filterkey) {
768 kfree(ctx->filterkey);
769 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
770 }
771 ctx->prio = rule->prio;
772 }
1da177e4
LT
773 switch (rule->action) {
774 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
775 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
776 }
777 return 1;
778}
779
780/* At process creation time, we can determine if system-call auditing is
781 * completely disabled for this task. Since we only have the task
782 * structure at this point, we can only check uid and gid.
783 */
e048e02c 784static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
785{
786 struct audit_entry *e;
787 enum audit_state state;
788
789 rcu_read_lock();
0f45aa18 790 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
791 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
792 &state, true)) {
e048e02c
AV
793 if (state == AUDIT_RECORD_CONTEXT)
794 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
795 rcu_read_unlock();
796 return state;
797 }
798 }
799 rcu_read_unlock();
800 return AUDIT_BUILD_CONTEXT;
801}
802
803/* At syscall entry and exit time, this filter is called if the
804 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 805 * also not high enough that we already know we have to write an audit
b0dd25a8 806 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
807 */
808static enum audit_state audit_filter_syscall(struct task_struct *tsk,
809 struct audit_context *ctx,
810 struct list_head *list)
811{
812 struct audit_entry *e;
c3896495 813 enum audit_state state;
1da177e4 814
351bb722 815 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
816 return AUDIT_DISABLED;
817
1da177e4 818 rcu_read_lock();
c3896495 819 if (!list_empty(list)) {
b63862f4
DK
820 int word = AUDIT_WORD(ctx->major);
821 int bit = AUDIT_BIT(ctx->major);
822
823 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
824 if ((e->rule.mask[word] & bit) == bit &&
825 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 826 &state, false)) {
f368c07d 827 rcu_read_unlock();
0590b933 828 ctx->current_state = state;
f368c07d
AG
829 return state;
830 }
831 }
832 }
833 rcu_read_unlock();
834 return AUDIT_BUILD_CONTEXT;
835}
836
5195d8e2
EP
837/*
838 * Given an audit_name check the inode hash table to see if they match.
839 * Called holding the rcu read lock to protect the use of audit_inode_hash
840 */
841static int audit_filter_inode_name(struct task_struct *tsk,
842 struct audit_names *n,
843 struct audit_context *ctx) {
844 int word, bit;
845 int h = audit_hash_ino((u32)n->ino);
846 struct list_head *list = &audit_inode_hash[h];
847 struct audit_entry *e;
848 enum audit_state state;
849
850 word = AUDIT_WORD(ctx->major);
851 bit = AUDIT_BIT(ctx->major);
852
853 if (list_empty(list))
854 return 0;
855
856 list_for_each_entry_rcu(e, list, list) {
857 if ((e->rule.mask[word] & bit) == bit &&
858 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
859 ctx->current_state = state;
860 return 1;
861 }
862 }
863
864 return 0;
865}
866
867/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 868 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 869 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
870 * Regarding audit_state, same rules apply as for audit_filter_syscall().
871 */
0590b933 872void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 873{
5195d8e2 874 struct audit_names *n;
f368c07d
AG
875
876 if (audit_pid && tsk->tgid == audit_pid)
0590b933 877 return;
f368c07d
AG
878
879 rcu_read_lock();
f368c07d 880
5195d8e2
EP
881 list_for_each_entry(n, &ctx->names_list, list) {
882 if (audit_filter_inode_name(tsk, n, ctx))
883 break;
0f45aa18
DW
884 }
885 rcu_read_unlock();
0f45aa18
DW
886}
887
1da177e4
LT
888static inline struct audit_context *audit_get_context(struct task_struct *tsk,
889 int return_valid,
6d208da8 890 long return_code)
1da177e4
LT
891{
892 struct audit_context *context = tsk->audit_context;
893
56179a6e 894 if (!context)
1da177e4
LT
895 return NULL;
896 context->return_valid = return_valid;
f701b75e
EP
897
898 /*
899 * we need to fix up the return code in the audit logs if the actual
900 * return codes are later going to be fixed up by the arch specific
901 * signal handlers
902 *
903 * This is actually a test for:
904 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
905 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
906 *
907 * but is faster than a bunch of ||
908 */
909 if (unlikely(return_code <= -ERESTARTSYS) &&
910 (return_code >= -ERESTART_RESTARTBLOCK) &&
911 (return_code != -ENOIOCTLCMD))
912 context->return_code = -EINTR;
913 else
914 context->return_code = return_code;
1da177e4 915
0590b933
AV
916 if (context->in_syscall && !context->dummy) {
917 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
918 audit_filter_inodes(tsk, context);
1da177e4
LT
919 }
920
1da177e4
LT
921 tsk->audit_context = NULL;
922 return context;
923}
924
925static inline void audit_free_names(struct audit_context *context)
926{
5195d8e2 927 struct audit_names *n, *next;
1da177e4
LT
928
929#if AUDIT_DEBUG == 2
0590b933 930 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 931 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
932 " name_count=%d put_count=%d"
933 " ino_count=%d [NOT freeing]\n",
73241ccc 934 __FILE__, __LINE__,
1da177e4
LT
935 context->serial, context->major, context->in_syscall,
936 context->name_count, context->put_count,
937 context->ino_count);
5195d8e2 938 list_for_each_entry(n, &context->names_list, list) {
1da177e4 939 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 940 n->name, n->name ?: "(null)");
8c8570fb 941 }
1da177e4
LT
942 dump_stack();
943 return;
944 }
945#endif
946#if AUDIT_DEBUG
947 context->put_count = 0;
948 context->ino_count = 0;
949#endif
950
5195d8e2
EP
951 list_for_each_entry_safe(n, next, &context->names_list, list) {
952 list_del(&n->list);
953 if (n->name && n->name_put)
954 __putname(n->name);
955 if (n->should_free)
956 kfree(n);
8c8570fb 957 }
1da177e4 958 context->name_count = 0;
44707fdf
JB
959 path_put(&context->pwd);
960 context->pwd.dentry = NULL;
961 context->pwd.mnt = NULL;
1da177e4
LT
962}
963
964static inline void audit_free_aux(struct audit_context *context)
965{
966 struct audit_aux_data *aux;
967
968 while ((aux = context->aux)) {
969 context->aux = aux->next;
970 kfree(aux);
971 }
e54dc243
AG
972 while ((aux = context->aux_pids)) {
973 context->aux_pids = aux->next;
974 kfree(aux);
975 }
1da177e4
LT
976}
977
978static inline void audit_zero_context(struct audit_context *context,
979 enum audit_state state)
980{
1da177e4
LT
981 memset(context, 0, sizeof(*context));
982 context->state = state;
0590b933 983 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
984}
985
986static inline struct audit_context *audit_alloc_context(enum audit_state state)
987{
988 struct audit_context *context;
989
990 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
991 return NULL;
992 audit_zero_context(context, state);
916d7576 993 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 994 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
995 return context;
996}
997
b0dd25a8
RD
998/**
999 * audit_alloc - allocate an audit context block for a task
1000 * @tsk: task
1001 *
1002 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1003 * if necessary. Doing so turns on system call auditing for the
1004 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1005 * needed.
1006 */
1da177e4
LT
1007int audit_alloc(struct task_struct *tsk)
1008{
1009 struct audit_context *context;
1010 enum audit_state state;
e048e02c 1011 char *key = NULL;
1da177e4 1012
b593d384 1013 if (likely(!audit_ever_enabled))
1da177e4
LT
1014 return 0; /* Return if not auditing. */
1015
e048e02c 1016 state = audit_filter_task(tsk, &key);
56179a6e 1017 if (state == AUDIT_DISABLED)
1da177e4
LT
1018 return 0;
1019
1020 if (!(context = audit_alloc_context(state))) {
e048e02c 1021 kfree(key);
1da177e4
LT
1022 audit_log_lost("out of memory in audit_alloc");
1023 return -ENOMEM;
1024 }
e048e02c 1025 context->filterkey = key;
1da177e4 1026
1da177e4
LT
1027 tsk->audit_context = context;
1028 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1029 return 0;
1030}
1031
1032static inline void audit_free_context(struct audit_context *context)
1033{
1034 struct audit_context *previous;
1035 int count = 0;
1036
1037 do {
1038 previous = context->previous;
1039 if (previous || (count && count < 10)) {
1040 ++count;
1041 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1042 " freeing multiple contexts (%d)\n",
1043 context->serial, context->major,
1044 context->name_count, count);
1045 }
1046 audit_free_names(context);
74c3cbe3
AV
1047 unroll_tree_refs(context, NULL, 0);
1048 free_tree_refs(context);
1da177e4 1049 audit_free_aux(context);
5adc8a6a 1050 kfree(context->filterkey);
4f6b434f 1051 kfree(context->sockaddr);
1da177e4
LT
1052 kfree(context);
1053 context = previous;
1054 } while (context);
1055 if (count >= 10)
1056 printk(KERN_ERR "audit: freed %d contexts\n", count);
1057}
1058
161a09e7 1059void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1060{
1061 char *ctx = NULL;
c4823bce
AV
1062 unsigned len;
1063 int error;
1064 u32 sid;
1065
2a862b32 1066 security_task_getsecid(current, &sid);
c4823bce
AV
1067 if (!sid)
1068 return;
8c8570fb 1069
2a862b32 1070 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1071 if (error) {
1072 if (error != -EINVAL)
8c8570fb
DK
1073 goto error_path;
1074 return;
1075 }
1076
8c8570fb 1077 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1078 security_release_secctx(ctx, len);
7306a0b9 1079 return;
8c8570fb
DK
1080
1081error_path:
7306a0b9 1082 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1083 return;
1084}
1085
161a09e7
JL
1086EXPORT_SYMBOL(audit_log_task_context);
1087
e495149b 1088static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1089{
45d9bb0e
AV
1090 char name[sizeof(tsk->comm)];
1091 struct mm_struct *mm = tsk->mm;
219f0817
SS
1092 struct vm_area_struct *vma;
1093
e495149b
AV
1094 /* tsk == current */
1095
45d9bb0e 1096 get_task_comm(name, tsk);
99e45eea
DW
1097 audit_log_format(ab, " comm=");
1098 audit_log_untrustedstring(ab, name);
219f0817 1099
e495149b
AV
1100 if (mm) {
1101 down_read(&mm->mmap_sem);
1102 vma = mm->mmap;
1103 while (vma) {
1104 if ((vma->vm_flags & VM_EXECUTABLE) &&
1105 vma->vm_file) {
1106 audit_log_d_path(ab, "exe=",
44707fdf 1107 &vma->vm_file->f_path);
e495149b
AV
1108 break;
1109 }
1110 vma = vma->vm_next;
219f0817 1111 }
e495149b 1112 up_read(&mm->mmap_sem);
219f0817 1113 }
e495149b 1114 audit_log_task_context(ab);
219f0817
SS
1115}
1116
e54dc243 1117static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
1118 uid_t auid, uid_t uid, unsigned int sessionid,
1119 u32 sid, char *comm)
e54dc243
AG
1120{
1121 struct audit_buffer *ab;
2a862b32 1122 char *ctx = NULL;
e54dc243
AG
1123 u32 len;
1124 int rc = 0;
1125
1126 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1127 if (!ab)
6246ccab 1128 return rc;
e54dc243 1129
4746ec5b
EP
1130 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1131 uid, sessionid);
2a862b32 1132 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1133 audit_log_format(ab, " obj=(none)");
e54dc243 1134 rc = 1;
2a862b32
AD
1135 } else {
1136 audit_log_format(ab, " obj=%s", ctx);
1137 security_release_secctx(ctx, len);
1138 }
c2a7780e
EP
1139 audit_log_format(ab, " ocomm=");
1140 audit_log_untrustedstring(ab, comm);
e54dc243 1141 audit_log_end(ab);
e54dc243
AG
1142
1143 return rc;
1144}
1145
de6bbd1d
EP
1146/*
1147 * to_send and len_sent accounting are very loose estimates. We aren't
1148 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1149 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1150 *
1151 * why snprintf? an int is up to 12 digits long. if we just assumed when
1152 * logging that a[%d]= was going to be 16 characters long we would be wasting
1153 * space in every audit message. In one 7500 byte message we can log up to
1154 * about 1000 min size arguments. That comes down to about 50% waste of space
1155 * if we didn't do the snprintf to find out how long arg_num_len was.
1156 */
1157static int audit_log_single_execve_arg(struct audit_context *context,
1158 struct audit_buffer **ab,
1159 int arg_num,
1160 size_t *len_sent,
1161 const char __user *p,
1162 char *buf)
bdf4c48a 1163{
de6bbd1d
EP
1164 char arg_num_len_buf[12];
1165 const char __user *tmp_p = p;
b87ce6e4
EP
1166 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1167 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1168 size_t len, len_left, to_send;
1169 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1170 unsigned int i, has_cntl = 0, too_long = 0;
1171 int ret;
1172
1173 /* strnlen_user includes the null we don't want to send */
1174 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1175
de6bbd1d
EP
1176 /*
1177 * We just created this mm, if we can't find the strings
1178 * we just copied into it something is _very_ wrong. Similar
1179 * for strings that are too long, we should not have created
1180 * any.
1181 */
b0abcfc1 1182 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1183 WARN_ON(1);
1184 send_sig(SIGKILL, current, 0);
b0abcfc1 1185 return -1;
de6bbd1d 1186 }
040b3a2d 1187
de6bbd1d
EP
1188 /* walk the whole argument looking for non-ascii chars */
1189 do {
1190 if (len_left > MAX_EXECVE_AUDIT_LEN)
1191 to_send = MAX_EXECVE_AUDIT_LEN;
1192 else
1193 to_send = len_left;
1194 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1195 /*
de6bbd1d
EP
1196 * There is no reason for this copy to be short. We just
1197 * copied them here, and the mm hasn't been exposed to user-
1198 * space yet.
bdf4c48a 1199 */
de6bbd1d 1200 if (ret) {
bdf4c48a
PZ
1201 WARN_ON(1);
1202 send_sig(SIGKILL, current, 0);
b0abcfc1 1203 return -1;
bdf4c48a 1204 }
de6bbd1d
EP
1205 buf[to_send] = '\0';
1206 has_cntl = audit_string_contains_control(buf, to_send);
1207 if (has_cntl) {
1208 /*
1209 * hex messages get logged as 2 bytes, so we can only
1210 * send half as much in each message
1211 */
1212 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1213 break;
1214 }
de6bbd1d
EP
1215 len_left -= to_send;
1216 tmp_p += to_send;
1217 } while (len_left > 0);
1218
1219 len_left = len;
1220
1221 if (len > max_execve_audit_len)
1222 too_long = 1;
1223
1224 /* rewalk the argument actually logging the message */
1225 for (i = 0; len_left > 0; i++) {
1226 int room_left;
1227
1228 if (len_left > max_execve_audit_len)
1229 to_send = max_execve_audit_len;
1230 else
1231 to_send = len_left;
1232
1233 /* do we have space left to send this argument in this ab? */
1234 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1235 if (has_cntl)
1236 room_left -= (to_send * 2);
1237 else
1238 room_left -= to_send;
1239 if (room_left < 0) {
1240 *len_sent = 0;
1241 audit_log_end(*ab);
1242 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1243 if (!*ab)
1244 return 0;
1245 }
bdf4c48a 1246
bdf4c48a 1247 /*
de6bbd1d
EP
1248 * first record needs to say how long the original string was
1249 * so we can be sure nothing was lost.
1250 */
1251 if ((i == 0) && (too_long))
ca96a895 1252 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1253 has_cntl ? 2*len : len);
1254
1255 /*
1256 * normally arguments are small enough to fit and we already
1257 * filled buf above when we checked for control characters
1258 * so don't bother with another copy_from_user
bdf4c48a 1259 */
de6bbd1d
EP
1260 if (len >= max_execve_audit_len)
1261 ret = copy_from_user(buf, p, to_send);
1262 else
1263 ret = 0;
040b3a2d 1264 if (ret) {
bdf4c48a
PZ
1265 WARN_ON(1);
1266 send_sig(SIGKILL, current, 0);
b0abcfc1 1267 return -1;
bdf4c48a 1268 }
de6bbd1d
EP
1269 buf[to_send] = '\0';
1270
1271 /* actually log it */
ca96a895 1272 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1273 if (too_long)
1274 audit_log_format(*ab, "[%d]", i);
1275 audit_log_format(*ab, "=");
1276 if (has_cntl)
b556f8ad 1277 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1278 else
9d960985 1279 audit_log_string(*ab, buf);
de6bbd1d
EP
1280
1281 p += to_send;
1282 len_left -= to_send;
1283 *len_sent += arg_num_len;
1284 if (has_cntl)
1285 *len_sent += to_send * 2;
1286 else
1287 *len_sent += to_send;
1288 }
1289 /* include the null we didn't log */
1290 return len + 1;
1291}
1292
1293static void audit_log_execve_info(struct audit_context *context,
1294 struct audit_buffer **ab,
1295 struct audit_aux_data_execve *axi)
1296{
1297 int i;
1298 size_t len, len_sent = 0;
1299 const char __user *p;
1300 char *buf;
bdf4c48a 1301
de6bbd1d
EP
1302 if (axi->mm != current->mm)
1303 return; /* execve failed, no additional info */
1304
1305 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1306
ca96a895 1307 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1308
1309 /*
1310 * we need some kernel buffer to hold the userspace args. Just
1311 * allocate one big one rather than allocating one of the right size
1312 * for every single argument inside audit_log_single_execve_arg()
1313 * should be <8k allocation so should be pretty safe.
1314 */
1315 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1316 if (!buf) {
1317 audit_panic("out of memory for argv string\n");
1318 return;
bdf4c48a 1319 }
de6bbd1d
EP
1320
1321 for (i = 0; i < axi->argc; i++) {
1322 len = audit_log_single_execve_arg(context, ab, i,
1323 &len_sent, p, buf);
1324 if (len <= 0)
1325 break;
1326 p += len;
1327 }
1328 kfree(buf);
bdf4c48a
PZ
1329}
1330
851f7ff5
EP
1331static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1332{
1333 int i;
1334
1335 audit_log_format(ab, " %s=", prefix);
1336 CAP_FOR_EACH_U32(i) {
1337 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1338 }
1339}
1340
1341static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1342{
1343 kernel_cap_t *perm = &name->fcap.permitted;
1344 kernel_cap_t *inh = &name->fcap.inheritable;
1345 int log = 0;
1346
1347 if (!cap_isclear(*perm)) {
1348 audit_log_cap(ab, "cap_fp", perm);
1349 log = 1;
1350 }
1351 if (!cap_isclear(*inh)) {
1352 audit_log_cap(ab, "cap_fi", inh);
1353 log = 1;
1354 }
1355
1356 if (log)
1357 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1358}
1359
a33e6751 1360static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1361{
1362 struct audit_buffer *ab;
1363 int i;
1364
1365 ab = audit_log_start(context, GFP_KERNEL, context->type);
1366 if (!ab)
1367 return;
1368
1369 switch (context->type) {
1370 case AUDIT_SOCKETCALL: {
1371 int nargs = context->socketcall.nargs;
1372 audit_log_format(ab, "nargs=%d", nargs);
1373 for (i = 0; i < nargs; i++)
1374 audit_log_format(ab, " a%d=%lx", i,
1375 context->socketcall.args[i]);
1376 break; }
a33e6751
AV
1377 case AUDIT_IPC: {
1378 u32 osid = context->ipc.osid;
1379
2570ebbd 1380 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1381 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1382 if (osid) {
1383 char *ctx = NULL;
1384 u32 len;
1385 if (security_secid_to_secctx(osid, &ctx, &len)) {
1386 audit_log_format(ab, " osid=%u", osid);
1387 *call_panic = 1;
1388 } else {
1389 audit_log_format(ab, " obj=%s", ctx);
1390 security_release_secctx(ctx, len);
1391 }
1392 }
e816f370
AV
1393 if (context->ipc.has_perm) {
1394 audit_log_end(ab);
1395 ab = audit_log_start(context, GFP_KERNEL,
1396 AUDIT_IPC_SET_PERM);
1397 audit_log_format(ab,
2570ebbd 1398 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1399 context->ipc.qbytes,
1400 context->ipc.perm_uid,
1401 context->ipc.perm_gid,
1402 context->ipc.perm_mode);
1403 if (!ab)
1404 return;
1405 }
a33e6751 1406 break; }
564f6993
AV
1407 case AUDIT_MQ_OPEN: {
1408 audit_log_format(ab,
df0a4283 1409 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1410 "mq_msgsize=%ld mq_curmsgs=%ld",
1411 context->mq_open.oflag, context->mq_open.mode,
1412 context->mq_open.attr.mq_flags,
1413 context->mq_open.attr.mq_maxmsg,
1414 context->mq_open.attr.mq_msgsize,
1415 context->mq_open.attr.mq_curmsgs);
1416 break; }
c32c8af4
AV
1417 case AUDIT_MQ_SENDRECV: {
1418 audit_log_format(ab,
1419 "mqdes=%d msg_len=%zd msg_prio=%u "
1420 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1421 context->mq_sendrecv.mqdes,
1422 context->mq_sendrecv.msg_len,
1423 context->mq_sendrecv.msg_prio,
1424 context->mq_sendrecv.abs_timeout.tv_sec,
1425 context->mq_sendrecv.abs_timeout.tv_nsec);
1426 break; }
20114f71
AV
1427 case AUDIT_MQ_NOTIFY: {
1428 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1429 context->mq_notify.mqdes,
1430 context->mq_notify.sigev_signo);
1431 break; }
7392906e
AV
1432 case AUDIT_MQ_GETSETATTR: {
1433 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1434 audit_log_format(ab,
1435 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1436 "mq_curmsgs=%ld ",
1437 context->mq_getsetattr.mqdes,
1438 attr->mq_flags, attr->mq_maxmsg,
1439 attr->mq_msgsize, attr->mq_curmsgs);
1440 break; }
57f71a0a
AV
1441 case AUDIT_CAPSET: {
1442 audit_log_format(ab, "pid=%d", context->capset.pid);
1443 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1444 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1445 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1446 break; }
120a795d
AV
1447 case AUDIT_MMAP: {
1448 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1449 context->mmap.flags);
1450 break; }
f3298dc4
AV
1451 }
1452 audit_log_end(ab);
1453}
1454
5195d8e2
EP
1455static void audit_log_name(struct audit_context *context, struct audit_names *n,
1456 int record_num, int *call_panic)
1457{
1458 struct audit_buffer *ab;
1459 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1460 if (!ab)
1461 return; /* audit_panic has been called */
1462
1463 audit_log_format(ab, "item=%d", record_num);
1464
1465 if (n->name) {
1466 switch (n->name_len) {
1467 case AUDIT_NAME_FULL:
1468 /* log the full path */
1469 audit_log_format(ab, " name=");
1470 audit_log_untrustedstring(ab, n->name);
1471 break;
1472 case 0:
1473 /* name was specified as a relative path and the
1474 * directory component is the cwd */
1475 audit_log_d_path(ab, "name=", &context->pwd);
1476 break;
1477 default:
1478 /* log the name's directory component */
1479 audit_log_format(ab, " name=");
1480 audit_log_n_untrustedstring(ab, n->name,
1481 n->name_len);
1482 }
1483 } else
1484 audit_log_format(ab, " name=(null)");
1485
1486 if (n->ino != (unsigned long)-1) {
1487 audit_log_format(ab, " inode=%lu"
1488 " dev=%02x:%02x mode=%#ho"
1489 " ouid=%u ogid=%u rdev=%02x:%02x",
1490 n->ino,
1491 MAJOR(n->dev),
1492 MINOR(n->dev),
1493 n->mode,
1494 n->uid,
1495 n->gid,
1496 MAJOR(n->rdev),
1497 MINOR(n->rdev));
1498 }
1499 if (n->osid != 0) {
1500 char *ctx = NULL;
1501 u32 len;
1502 if (security_secid_to_secctx(
1503 n->osid, &ctx, &len)) {
1504 audit_log_format(ab, " osid=%u", n->osid);
1505 *call_panic = 2;
1506 } else {
1507 audit_log_format(ab, " obj=%s", ctx);
1508 security_release_secctx(ctx, len);
1509 }
1510 }
1511
1512 audit_log_fcaps(ab, n);
1513
1514 audit_log_end(ab);
1515}
1516
e495149b 1517static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1518{
c69e8d9c 1519 const struct cred *cred;
9c7aa6aa 1520 int i, call_panic = 0;
1da177e4 1521 struct audit_buffer *ab;
7551ced3 1522 struct audit_aux_data *aux;
a6c043a8 1523 const char *tty;
5195d8e2 1524 struct audit_names *n;
1da177e4 1525
e495149b 1526 /* tsk == current */
3f2792ff 1527 context->pid = tsk->pid;
419c58f1
AV
1528 if (!context->ppid)
1529 context->ppid = sys_getppid();
c69e8d9c
DH
1530 cred = current_cred();
1531 context->uid = cred->uid;
1532 context->gid = cred->gid;
1533 context->euid = cred->euid;
1534 context->suid = cred->suid;
b6dff3ec 1535 context->fsuid = cred->fsuid;
c69e8d9c
DH
1536 context->egid = cred->egid;
1537 context->sgid = cred->sgid;
b6dff3ec 1538 context->fsgid = cred->fsgid;
3f2792ff 1539 context->personality = tsk->personality;
e495149b
AV
1540
1541 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1542 if (!ab)
1543 return; /* audit_panic has been called */
bccf6ae0
DW
1544 audit_log_format(ab, "arch=%x syscall=%d",
1545 context->arch, context->major);
1da177e4
LT
1546 if (context->personality != PER_LINUX)
1547 audit_log_format(ab, " per=%lx", context->personality);
1548 if (context->return_valid)
9f8dbe9c 1549 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1550 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1551 context->return_code);
eb84a20e 1552
dbda4c0b 1553 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1554 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1555 tty = tsk->signal->tty->name;
a6c043a8
SG
1556 else
1557 tty = "(none)";
dbda4c0b
AC
1558 spin_unlock_irq(&tsk->sighand->siglock);
1559
1da177e4
LT
1560 audit_log_format(ab,
1561 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1562 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1563 " euid=%u suid=%u fsuid=%u"
4746ec5b 1564 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1565 context->argv[0],
1566 context->argv[1],
1567 context->argv[2],
1568 context->argv[3],
1569 context->name_count,
f46038ff 1570 context->ppid,
1da177e4 1571 context->pid,
bfef93a5 1572 tsk->loginuid,
1da177e4
LT
1573 context->uid,
1574 context->gid,
1575 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1576 context->egid, context->sgid, context->fsgid, tty,
1577 tsk->sessionid);
eb84a20e 1578
eb84a20e 1579
e495149b 1580 audit_log_task_info(ab, tsk);
9d960985 1581 audit_log_key(ab, context->filterkey);
1da177e4 1582 audit_log_end(ab);
1da177e4 1583
7551ced3 1584 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1585
e495149b 1586 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1587 if (!ab)
1588 continue; /* audit_panic has been called */
1589
1da177e4 1590 switch (aux->type) {
20ca73bc 1591
473ae30b
AV
1592 case AUDIT_EXECVE: {
1593 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1594 audit_log_execve_info(context, &ab, axi);
473ae30b 1595 break; }
073115d6 1596
3fc689e9
EP
1597 case AUDIT_BPRM_FCAPS: {
1598 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1599 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1600 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1601 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1602 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1603 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1604 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1605 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1606 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1607 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1608 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1609 break; }
1610
1da177e4
LT
1611 }
1612 audit_log_end(ab);
1da177e4
LT
1613 }
1614
f3298dc4 1615 if (context->type)
a33e6751 1616 show_special(context, &call_panic);
f3298dc4 1617
157cf649
AV
1618 if (context->fds[0] >= 0) {
1619 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1620 if (ab) {
1621 audit_log_format(ab, "fd0=%d fd1=%d",
1622 context->fds[0], context->fds[1]);
1623 audit_log_end(ab);
1624 }
1625 }
1626
4f6b434f
AV
1627 if (context->sockaddr_len) {
1628 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1629 if (ab) {
1630 audit_log_format(ab, "saddr=");
1631 audit_log_n_hex(ab, (void *)context->sockaddr,
1632 context->sockaddr_len);
1633 audit_log_end(ab);
1634 }
1635 }
1636
e54dc243
AG
1637 for (aux = context->aux_pids; aux; aux = aux->next) {
1638 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1639
1640 for (i = 0; i < axs->pid_count; i++)
1641 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1642 axs->target_auid[i],
1643 axs->target_uid[i],
4746ec5b 1644 axs->target_sessionid[i],
c2a7780e
EP
1645 axs->target_sid[i],
1646 axs->target_comm[i]))
e54dc243 1647 call_panic = 1;
a5cb013d
AV
1648 }
1649
e54dc243
AG
1650 if (context->target_pid &&
1651 audit_log_pid_context(context, context->target_pid,
c2a7780e 1652 context->target_auid, context->target_uid,
4746ec5b 1653 context->target_sessionid,
c2a7780e 1654 context->target_sid, context->target_comm))
e54dc243
AG
1655 call_panic = 1;
1656
44707fdf 1657 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1658 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1659 if (ab) {
44707fdf 1660 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1661 audit_log_end(ab);
1662 }
1663 }
73241ccc 1664
5195d8e2
EP
1665 i = 0;
1666 list_for_each_entry(n, &context->names_list, list)
1667 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1668
1669 /* Send end of event record to help user space know we are finished */
1670 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1671 if (ab)
1672 audit_log_end(ab);
9c7aa6aa
SG
1673 if (call_panic)
1674 audit_panic("error converting sid to string");
1da177e4
LT
1675}
1676
b0dd25a8
RD
1677/**
1678 * audit_free - free a per-task audit context
1679 * @tsk: task whose audit context block to free
1680 *
fa84cb93 1681 * Called from copy_process and do_exit
b0dd25a8 1682 */
a4ff8dba 1683void __audit_free(struct task_struct *tsk)
1da177e4
LT
1684{
1685 struct audit_context *context;
1686
1da177e4 1687 context = audit_get_context(tsk, 0, 0);
56179a6e 1688 if (!context)
1da177e4
LT
1689 return;
1690
1691 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1692 * function (e.g., exit_group), then free context block.
1693 * We use GFP_ATOMIC here because we might be doing this
f5561964 1694 * in the context of the idle thread */
e495149b 1695 /* that can happen only if we are called from do_exit() */
0590b933 1696 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1697 audit_log_exit(context, tsk);
916d7576
AV
1698 if (!list_empty(&context->killed_trees))
1699 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1700
1701 audit_free_context(context);
1702}
1703
b0dd25a8
RD
1704/**
1705 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1706 * @arch: architecture type
1707 * @major: major syscall type (function)
1708 * @a1: additional syscall register 1
1709 * @a2: additional syscall register 2
1710 * @a3: additional syscall register 3
1711 * @a4: additional syscall register 4
1712 *
1713 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1714 * audit context was created when the task was created and the state or
1715 * filters demand the audit context be built. If the state from the
1716 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1717 * then the record will be written at syscall exit time (otherwise, it
1718 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1719 * be written).
1720 */
b05d8447 1721void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1722 unsigned long a1, unsigned long a2,
1723 unsigned long a3, unsigned long a4)
1724{
5411be59 1725 struct task_struct *tsk = current;
1da177e4
LT
1726 struct audit_context *context = tsk->audit_context;
1727 enum audit_state state;
1728
56179a6e 1729 if (!context)
86a1c34a 1730 return;
1da177e4 1731
b0dd25a8
RD
1732 /*
1733 * This happens only on certain architectures that make system
1da177e4
LT
1734 * calls in kernel_thread via the entry.S interface, instead of
1735 * with direct calls. (If you are porting to a new
1736 * architecture, hitting this condition can indicate that you
1737 * got the _exit/_leave calls backward in entry.S.)
1738 *
1739 * i386 no
1740 * x86_64 no
2ef9481e 1741 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1742 *
1743 * This also happens with vm86 emulation in a non-nested manner
1744 * (entries without exits), so this case must be caught.
1745 */
1746 if (context->in_syscall) {
1747 struct audit_context *newctx;
1748
1da177e4
LT
1749#if AUDIT_DEBUG
1750 printk(KERN_ERR
1751 "audit(:%d) pid=%d in syscall=%d;"
1752 " entering syscall=%d\n",
1753 context->serial, tsk->pid, context->major, major);
1754#endif
1755 newctx = audit_alloc_context(context->state);
1756 if (newctx) {
1757 newctx->previous = context;
1758 context = newctx;
1759 tsk->audit_context = newctx;
1760 } else {
1761 /* If we can't alloc a new context, the best we
1762 * can do is to leak memory (any pending putname
1763 * will be lost). The only other alternative is
1764 * to abandon auditing. */
1765 audit_zero_context(context, context->state);
1766 }
1767 }
1768 BUG_ON(context->in_syscall || context->name_count);
1769
1770 if (!audit_enabled)
1771 return;
1772
2fd6f58b 1773 context->arch = arch;
1da177e4
LT
1774 context->major = major;
1775 context->argv[0] = a1;
1776 context->argv[1] = a2;
1777 context->argv[2] = a3;
1778 context->argv[3] = a4;
1779
1780 state = context->state;
d51374ad 1781 context->dummy = !audit_n_rules;
0590b933
AV
1782 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1783 context->prio = 0;
0f45aa18 1784 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1785 }
56179a6e 1786 if (state == AUDIT_DISABLED)
1da177e4
LT
1787 return;
1788
ce625a80 1789 context->serial = 0;
1da177e4
LT
1790 context->ctime = CURRENT_TIME;
1791 context->in_syscall = 1;
0590b933 1792 context->current_state = state;
419c58f1 1793 context->ppid = 0;
1da177e4
LT
1794}
1795
b0dd25a8
RD
1796/**
1797 * audit_syscall_exit - deallocate audit context after a system call
d7e7528b 1798 * @pt_regs: syscall registers
b0dd25a8
RD
1799 *
1800 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1801 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1802 * filtering, or because some other part of the kernel write an audit
1803 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1804 * free the names stored from getname().
1805 */
d7e7528b 1806void __audit_syscall_exit(int success, long return_code)
1da177e4 1807{
5411be59 1808 struct task_struct *tsk = current;
1da177e4
LT
1809 struct audit_context *context;
1810
d7e7528b
EP
1811 if (success)
1812 success = AUDITSC_SUCCESS;
1813 else
1814 success = AUDITSC_FAILURE;
1da177e4 1815
d7e7528b 1816 context = audit_get_context(tsk, success, return_code);
56179a6e 1817 if (!context)
97e94c45 1818 return;
1da177e4 1819
0590b933 1820 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1821 audit_log_exit(context, tsk);
1da177e4
LT
1822
1823 context->in_syscall = 0;
0590b933 1824 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1825
916d7576
AV
1826 if (!list_empty(&context->killed_trees))
1827 audit_kill_trees(&context->killed_trees);
1828
1da177e4
LT
1829 if (context->previous) {
1830 struct audit_context *new_context = context->previous;
1831 context->previous = NULL;
1832 audit_free_context(context);
1833 tsk->audit_context = new_context;
1834 } else {
1835 audit_free_names(context);
74c3cbe3 1836 unroll_tree_refs(context, NULL, 0);
1da177e4 1837 audit_free_aux(context);
e54dc243
AG
1838 context->aux = NULL;
1839 context->aux_pids = NULL;
a5cb013d 1840 context->target_pid = 0;
e54dc243 1841 context->target_sid = 0;
4f6b434f 1842 context->sockaddr_len = 0;
f3298dc4 1843 context->type = 0;
157cf649 1844 context->fds[0] = -1;
e048e02c
AV
1845 if (context->state != AUDIT_RECORD_CONTEXT) {
1846 kfree(context->filterkey);
1847 context->filterkey = NULL;
1848 }
1da177e4
LT
1849 tsk->audit_context = context;
1850 }
1da177e4
LT
1851}
1852
74c3cbe3
AV
1853static inline void handle_one(const struct inode *inode)
1854{
1855#ifdef CONFIG_AUDIT_TREE
1856 struct audit_context *context;
1857 struct audit_tree_refs *p;
1858 struct audit_chunk *chunk;
1859 int count;
e61ce867 1860 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1861 return;
1862 context = current->audit_context;
1863 p = context->trees;
1864 count = context->tree_count;
1865 rcu_read_lock();
1866 chunk = audit_tree_lookup(inode);
1867 rcu_read_unlock();
1868 if (!chunk)
1869 return;
1870 if (likely(put_tree_ref(context, chunk)))
1871 return;
1872 if (unlikely(!grow_tree_refs(context))) {
436c405c 1873 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1874 audit_set_auditable(context);
1875 audit_put_chunk(chunk);
1876 unroll_tree_refs(context, p, count);
1877 return;
1878 }
1879 put_tree_ref(context, chunk);
1880#endif
1881}
1882
1883static void handle_path(const struct dentry *dentry)
1884{
1885#ifdef CONFIG_AUDIT_TREE
1886 struct audit_context *context;
1887 struct audit_tree_refs *p;
1888 const struct dentry *d, *parent;
1889 struct audit_chunk *drop;
1890 unsigned long seq;
1891 int count;
1892
1893 context = current->audit_context;
1894 p = context->trees;
1895 count = context->tree_count;
1896retry:
1897 drop = NULL;
1898 d = dentry;
1899 rcu_read_lock();
1900 seq = read_seqbegin(&rename_lock);
1901 for(;;) {
1902 struct inode *inode = d->d_inode;
e61ce867 1903 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1904 struct audit_chunk *chunk;
1905 chunk = audit_tree_lookup(inode);
1906 if (chunk) {
1907 if (unlikely(!put_tree_ref(context, chunk))) {
1908 drop = chunk;
1909 break;
1910 }
1911 }
1912 }
1913 parent = d->d_parent;
1914 if (parent == d)
1915 break;
1916 d = parent;
1917 }
1918 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1919 rcu_read_unlock();
1920 if (!drop) {
1921 /* just a race with rename */
1922 unroll_tree_refs(context, p, count);
1923 goto retry;
1924 }
1925 audit_put_chunk(drop);
1926 if (grow_tree_refs(context)) {
1927 /* OK, got more space */
1928 unroll_tree_refs(context, p, count);
1929 goto retry;
1930 }
1931 /* too bad */
1932 printk(KERN_WARNING
436c405c 1933 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1934 unroll_tree_refs(context, p, count);
1935 audit_set_auditable(context);
1936 return;
1937 }
1938 rcu_read_unlock();
1939#endif
1940}
1941
5195d8e2
EP
1942static struct audit_names *audit_alloc_name(struct audit_context *context)
1943{
1944 struct audit_names *aname;
1945
1946 if (context->name_count < AUDIT_NAMES) {
1947 aname = &context->preallocated_names[context->name_count];
1948 memset(aname, 0, sizeof(*aname));
1949 } else {
1950 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1951 if (!aname)
1952 return NULL;
1953 aname->should_free = true;
1954 }
1955
1956 aname->ino = (unsigned long)-1;
1957 list_add_tail(&aname->list, &context->names_list);
1958
1959 context->name_count++;
1960#if AUDIT_DEBUG
1961 context->ino_count++;
1962#endif
1963 return aname;
1964}
1965
b0dd25a8
RD
1966/**
1967 * audit_getname - add a name to the list
1968 * @name: name to add
1969 *
1970 * Add a name to the list of audit names for this context.
1971 * Called from fs/namei.c:getname().
1972 */
d8945bb5 1973void __audit_getname(const char *name)
1da177e4
LT
1974{
1975 struct audit_context *context = current->audit_context;
5195d8e2 1976 struct audit_names *n;
1da177e4 1977
1da177e4
LT
1978 if (!context->in_syscall) {
1979#if AUDIT_DEBUG == 2
1980 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1981 __FILE__, __LINE__, context->serial, name);
1982 dump_stack();
1983#endif
1984 return;
1985 }
5195d8e2
EP
1986
1987 n = audit_alloc_name(context);
1988 if (!n)
1989 return;
1990
1991 n->name = name;
1992 n->name_len = AUDIT_NAME_FULL;
1993 n->name_put = true;
1994
f7ad3c6b
MS
1995 if (!context->pwd.dentry)
1996 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1997}
1998
b0dd25a8
RD
1999/* audit_putname - intercept a putname request
2000 * @name: name to intercept and delay for putname
2001 *
2002 * If we have stored the name from getname in the audit context,
2003 * then we delay the putname until syscall exit.
2004 * Called from include/linux/fs.h:putname().
2005 */
1da177e4
LT
2006void audit_putname(const char *name)
2007{
2008 struct audit_context *context = current->audit_context;
2009
2010 BUG_ON(!context);
2011 if (!context->in_syscall) {
2012#if AUDIT_DEBUG == 2
2013 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2014 __FILE__, __LINE__, context->serial, name);
2015 if (context->name_count) {
5195d8e2 2016 struct audit_names *n;
1da177e4 2017 int i;
5195d8e2
EP
2018
2019 list_for_each_entry(n, &context->names_list, list)
1da177e4 2020 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
2021 n->name, n->name ?: "(null)");
2022 }
1da177e4
LT
2023#endif
2024 __putname(name);
2025 }
2026#if AUDIT_DEBUG
2027 else {
2028 ++context->put_count;
2029 if (context->put_count > context->name_count) {
2030 printk(KERN_ERR "%s:%d(:%d): major=%d"
2031 " in_syscall=%d putname(%p) name_count=%d"
2032 " put_count=%d\n",
2033 __FILE__, __LINE__,
2034 context->serial, context->major,
2035 context->in_syscall, name, context->name_count,
2036 context->put_count);
2037 dump_stack();
2038 }
2039 }
2040#endif
2041}
2042
851f7ff5
EP
2043static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2044{
2045 struct cpu_vfs_cap_data caps;
2046 int rc;
2047
851f7ff5
EP
2048 if (!dentry)
2049 return 0;
2050
2051 rc = get_vfs_caps_from_disk(dentry, &caps);
2052 if (rc)
2053 return rc;
2054
2055 name->fcap.permitted = caps.permitted;
2056 name->fcap.inheritable = caps.inheritable;
2057 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2058 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2059
2060 return 0;
2061}
2062
2063
3e2efce0 2064/* Copy inode data into an audit_names. */
851f7ff5
EP
2065static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2066 const struct inode *inode)
8c8570fb 2067{
3e2efce0
AG
2068 name->ino = inode->i_ino;
2069 name->dev = inode->i_sb->s_dev;
2070 name->mode = inode->i_mode;
2071 name->uid = inode->i_uid;
2072 name->gid = inode->i_gid;
2073 name->rdev = inode->i_rdev;
2a862b32 2074 security_inode_getsecid(inode, &name->osid);
851f7ff5 2075 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2076}
2077
b0dd25a8
RD
2078/**
2079 * audit_inode - store the inode and device from a lookup
2080 * @name: name being audited
481968f4 2081 * @dentry: dentry being audited
b0dd25a8
RD
2082 *
2083 * Called from fs/namei.c:path_lookup().
2084 */
5a190ae6 2085void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2086{
1da177e4 2087 struct audit_context *context = current->audit_context;
74c3cbe3 2088 const struct inode *inode = dentry->d_inode;
5195d8e2 2089 struct audit_names *n;
1da177e4
LT
2090
2091 if (!context->in_syscall)
2092 return;
5195d8e2
EP
2093
2094 list_for_each_entry_reverse(n, &context->names_list, list) {
2095 if (n->name && (n->name == name))
2096 goto out;
1da177e4 2097 }
5195d8e2
EP
2098
2099 /* unable to find the name from a previous getname() */
2100 n = audit_alloc_name(context);
2101 if (!n)
2102 return;
2103out:
74c3cbe3 2104 handle_path(dentry);
5195d8e2 2105 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2106}
2107
2108/**
2109 * audit_inode_child - collect inode info for created/removed objects
481968f4 2110 * @dentry: dentry being audited
73d3ec5a 2111 * @parent: inode of dentry parent
73241ccc
AG
2112 *
2113 * For syscalls that create or remove filesystem objects, audit_inode
2114 * can only collect information for the filesystem object's parent.
2115 * This call updates the audit context with the child's information.
2116 * Syscalls that create a new filesystem object must be hooked after
2117 * the object is created. Syscalls that remove a filesystem object
2118 * must be hooked prior, in order to capture the target inode during
2119 * unsuccessful attempts.
2120 */
cccc6bba 2121void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2122 const struct inode *parent)
73241ccc 2123{
73241ccc 2124 struct audit_context *context = current->audit_context;
5712e88f 2125 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2126 const struct inode *inode = dentry->d_inode;
cccc6bba 2127 const char *dname = dentry->d_name.name;
5195d8e2 2128 struct audit_names *n;
9c937dcc 2129 int dirlen = 0;
73241ccc
AG
2130
2131 if (!context->in_syscall)
2132 return;
2133
74c3cbe3
AV
2134 if (inode)
2135 handle_one(inode);
73241ccc 2136
5712e88f 2137 /* parent is more likely, look for it first */
5195d8e2 2138 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2139 if (!n->name)
2140 continue;
2141
2142 if (n->ino == parent->i_ino &&
2143 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2144 n->name_len = dirlen; /* update parent data in place */
2145 found_parent = n->name;
2146 goto add_names;
f368c07d 2147 }
5712e88f 2148 }
73241ccc 2149
5712e88f 2150 /* no matching parent, look for matching child */
5195d8e2 2151 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2152 if (!n->name)
2153 continue;
2154
2155 /* strcmp() is the more likely scenario */
2156 if (!strcmp(dname, n->name) ||
2157 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2158 if (inode)
851f7ff5 2159 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2160 else
2161 n->ino = (unsigned long)-1;
2162 found_child = n->name;
2163 goto add_names;
2164 }
ac9910ce 2165 }
5712e88f
AG
2166
2167add_names:
2168 if (!found_parent) {
5195d8e2
EP
2169 n = audit_alloc_name(context);
2170 if (!n)
ac9910ce 2171 return;
5195d8e2 2172 audit_copy_inode(n, NULL, parent);
73d3ec5a 2173 }
5712e88f
AG
2174
2175 if (!found_child) {
5195d8e2
EP
2176 n = audit_alloc_name(context);
2177 if (!n)
5712e88f 2178 return;
5712e88f
AG
2179
2180 /* Re-use the name belonging to the slot for a matching parent
2181 * directory. All names for this context are relinquished in
2182 * audit_free_names() */
2183 if (found_parent) {
5195d8e2
EP
2184 n->name = found_parent;
2185 n->name_len = AUDIT_NAME_FULL;
5712e88f 2186 /* don't call __putname() */
5195d8e2 2187 n->name_put = false;
5712e88f
AG
2188 }
2189
2190 if (inode)
5195d8e2 2191 audit_copy_inode(n, NULL, inode);
5712e88f 2192 }
3e2efce0 2193}
50e437d5 2194EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2195
b0dd25a8
RD
2196/**
2197 * auditsc_get_stamp - get local copies of audit_context values
2198 * @ctx: audit_context for the task
2199 * @t: timespec to store time recorded in the audit_context
2200 * @serial: serial value that is recorded in the audit_context
2201 *
2202 * Also sets the context as auditable.
2203 */
48887e63 2204int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2205 struct timespec *t, unsigned int *serial)
1da177e4 2206{
48887e63
AV
2207 if (!ctx->in_syscall)
2208 return 0;
ce625a80
DW
2209 if (!ctx->serial)
2210 ctx->serial = audit_serial();
bfb4496e
DW
2211 t->tv_sec = ctx->ctime.tv_sec;
2212 t->tv_nsec = ctx->ctime.tv_nsec;
2213 *serial = ctx->serial;
0590b933
AV
2214 if (!ctx->prio) {
2215 ctx->prio = 1;
2216 ctx->current_state = AUDIT_RECORD_CONTEXT;
2217 }
48887e63 2218 return 1;
1da177e4
LT
2219}
2220
4746ec5b
EP
2221/* global counter which is incremented every time something logs in */
2222static atomic_t session_id = ATOMIC_INIT(0);
2223
b0dd25a8 2224/**
0a300be6 2225 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2226 * @loginuid: loginuid value
2227 *
2228 * Returns 0.
2229 *
2230 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2231 */
0a300be6 2232int audit_set_loginuid(uid_t loginuid)
1da177e4 2233{
0a300be6 2234 struct task_struct *task = current;
41757106 2235 struct audit_context *context = task->audit_context;
633b4545 2236 unsigned int sessionid;
41757106 2237
633b4545
EP
2238#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2239 if (task->loginuid != -1)
2240 return -EPERM;
2241#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2242 if (!capable(CAP_AUDIT_CONTROL))
2243 return -EPERM;
2244#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2245
2246 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2247 if (context && context->in_syscall) {
2248 struct audit_buffer *ab;
2249
2250 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2251 if (ab) {
2252 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2253 "old auid=%u new auid=%u"
2254 " old ses=%u new ses=%u",
c69e8d9c 2255 task->pid, task_uid(task),
4746ec5b
EP
2256 task->loginuid, loginuid,
2257 task->sessionid, sessionid);
bfef93a5 2258 audit_log_end(ab);
c0404993 2259 }
1da177e4 2260 }
4746ec5b 2261 task->sessionid = sessionid;
bfef93a5 2262 task->loginuid = loginuid;
1da177e4
LT
2263 return 0;
2264}
2265
20ca73bc
GW
2266/**
2267 * __audit_mq_open - record audit data for a POSIX MQ open
2268 * @oflag: open flag
2269 * @mode: mode bits
6b962559 2270 * @attr: queue attributes
20ca73bc 2271 *
20ca73bc 2272 */
df0a4283 2273void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2274{
20ca73bc
GW
2275 struct audit_context *context = current->audit_context;
2276
564f6993
AV
2277 if (attr)
2278 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2279 else
2280 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2281
564f6993
AV
2282 context->mq_open.oflag = oflag;
2283 context->mq_open.mode = mode;
20ca73bc 2284
564f6993 2285 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2286}
2287
2288/**
c32c8af4 2289 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2290 * @mqdes: MQ descriptor
2291 * @msg_len: Message length
2292 * @msg_prio: Message priority
c32c8af4 2293 * @abs_timeout: Message timeout in absolute time
20ca73bc 2294 *
20ca73bc 2295 */
c32c8af4
AV
2296void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2297 const struct timespec *abs_timeout)
20ca73bc 2298{
20ca73bc 2299 struct audit_context *context = current->audit_context;
c32c8af4 2300 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2301
c32c8af4
AV
2302 if (abs_timeout)
2303 memcpy(p, abs_timeout, sizeof(struct timespec));
2304 else
2305 memset(p, 0, sizeof(struct timespec));
20ca73bc 2306
c32c8af4
AV
2307 context->mq_sendrecv.mqdes = mqdes;
2308 context->mq_sendrecv.msg_len = msg_len;
2309 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2310
c32c8af4 2311 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2312}
2313
2314/**
2315 * __audit_mq_notify - record audit data for a POSIX MQ notify
2316 * @mqdes: MQ descriptor
6b962559 2317 * @notification: Notification event
20ca73bc 2318 *
20ca73bc
GW
2319 */
2320
20114f71 2321void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2322{
20ca73bc
GW
2323 struct audit_context *context = current->audit_context;
2324
20114f71
AV
2325 if (notification)
2326 context->mq_notify.sigev_signo = notification->sigev_signo;
2327 else
2328 context->mq_notify.sigev_signo = 0;
20ca73bc 2329
20114f71
AV
2330 context->mq_notify.mqdes = mqdes;
2331 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2332}
2333
2334/**
2335 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2336 * @mqdes: MQ descriptor
2337 * @mqstat: MQ flags
2338 *
20ca73bc 2339 */
7392906e 2340void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2341{
20ca73bc 2342 struct audit_context *context = current->audit_context;
7392906e
AV
2343 context->mq_getsetattr.mqdes = mqdes;
2344 context->mq_getsetattr.mqstat = *mqstat;
2345 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2346}
2347
b0dd25a8 2348/**
073115d6
SG
2349 * audit_ipc_obj - record audit data for ipc object
2350 * @ipcp: ipc permissions
2351 *
073115d6 2352 */
a33e6751 2353void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2354{
073115d6 2355 struct audit_context *context = current->audit_context;
a33e6751
AV
2356 context->ipc.uid = ipcp->uid;
2357 context->ipc.gid = ipcp->gid;
2358 context->ipc.mode = ipcp->mode;
e816f370 2359 context->ipc.has_perm = 0;
a33e6751
AV
2360 security_ipc_getsecid(ipcp, &context->ipc.osid);
2361 context->type = AUDIT_IPC;
073115d6
SG
2362}
2363
2364/**
2365 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2366 * @qbytes: msgq bytes
2367 * @uid: msgq user id
2368 * @gid: msgq group id
2369 * @mode: msgq mode (permissions)
2370 *
e816f370 2371 * Called only after audit_ipc_obj().
b0dd25a8 2372 */
2570ebbd 2373void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2374{
1da177e4
LT
2375 struct audit_context *context = current->audit_context;
2376
e816f370
AV
2377 context->ipc.qbytes = qbytes;
2378 context->ipc.perm_uid = uid;
2379 context->ipc.perm_gid = gid;
2380 context->ipc.perm_mode = mode;
2381 context->ipc.has_perm = 1;
1da177e4 2382}
c2f0c7c3 2383
07c49417 2384int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2385{
2386 struct audit_aux_data_execve *ax;
2387 struct audit_context *context = current->audit_context;
473ae30b 2388
bdf4c48a 2389 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2390 if (!ax)
2391 return -ENOMEM;
2392
2393 ax->argc = bprm->argc;
2394 ax->envc = bprm->envc;
bdf4c48a 2395 ax->mm = bprm->mm;
473ae30b
AV
2396 ax->d.type = AUDIT_EXECVE;
2397 ax->d.next = context->aux;
2398 context->aux = (void *)ax;
2399 return 0;
2400}
2401
2402
b0dd25a8
RD
2403/**
2404 * audit_socketcall - record audit data for sys_socketcall
2405 * @nargs: number of args
2406 * @args: args array
2407 *
b0dd25a8 2408 */
07c49417 2409void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2410{
3ec3b2fb
DW
2411 struct audit_context *context = current->audit_context;
2412
f3298dc4
AV
2413 context->type = AUDIT_SOCKETCALL;
2414 context->socketcall.nargs = nargs;
2415 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2416}
2417
db349509
AV
2418/**
2419 * __audit_fd_pair - record audit data for pipe and socketpair
2420 * @fd1: the first file descriptor
2421 * @fd2: the second file descriptor
2422 *
db349509 2423 */
157cf649 2424void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2425{
2426 struct audit_context *context = current->audit_context;
157cf649
AV
2427 context->fds[0] = fd1;
2428 context->fds[1] = fd2;
db349509
AV
2429}
2430
b0dd25a8
RD
2431/**
2432 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2433 * @len: data length in user space
2434 * @a: data address in kernel space
2435 *
2436 * Returns 0 for success or NULL context or < 0 on error.
2437 */
07c49417 2438int __audit_sockaddr(int len, void *a)
3ec3b2fb 2439{
3ec3b2fb
DW
2440 struct audit_context *context = current->audit_context;
2441
4f6b434f
AV
2442 if (!context->sockaddr) {
2443 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2444 if (!p)
2445 return -ENOMEM;
2446 context->sockaddr = p;
2447 }
3ec3b2fb 2448
4f6b434f
AV
2449 context->sockaddr_len = len;
2450 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2451 return 0;
2452}
2453
a5cb013d
AV
2454void __audit_ptrace(struct task_struct *t)
2455{
2456 struct audit_context *context = current->audit_context;
2457
2458 context->target_pid = t->pid;
c2a7780e 2459 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2460 context->target_uid = task_uid(t);
4746ec5b 2461 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2462 security_task_getsecid(t, &context->target_sid);
c2a7780e 2463 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2464}
2465
b0dd25a8
RD
2466/**
2467 * audit_signal_info - record signal info for shutting down audit subsystem
2468 * @sig: signal value
2469 * @t: task being signaled
2470 *
2471 * If the audit subsystem is being terminated, record the task (pid)
2472 * and uid that is doing that.
2473 */
e54dc243 2474int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2475{
e54dc243
AG
2476 struct audit_aux_data_pids *axp;
2477 struct task_struct *tsk = current;
2478 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2479 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2480
175fc484 2481 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2482 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2483 audit_sig_pid = tsk->pid;
bfef93a5
AV
2484 if (tsk->loginuid != -1)
2485 audit_sig_uid = tsk->loginuid;
175fc484 2486 else
c69e8d9c 2487 audit_sig_uid = uid;
2a862b32 2488 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2489 }
2490 if (!audit_signals || audit_dummy_context())
2491 return 0;
c2f0c7c3 2492 }
e54dc243 2493
e54dc243
AG
2494 /* optimize the common case by putting first signal recipient directly
2495 * in audit_context */
2496 if (!ctx->target_pid) {
2497 ctx->target_pid = t->tgid;
c2a7780e 2498 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2499 ctx->target_uid = t_uid;
4746ec5b 2500 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2501 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2502 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2503 return 0;
2504 }
2505
2506 axp = (void *)ctx->aux_pids;
2507 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2508 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2509 if (!axp)
2510 return -ENOMEM;
2511
2512 axp->d.type = AUDIT_OBJ_PID;
2513 axp->d.next = ctx->aux_pids;
2514 ctx->aux_pids = (void *)axp;
2515 }
88ae704c 2516 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2517
2518 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2519 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2520 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2521 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2522 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2523 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2524 axp->pid_count++;
2525
2526 return 0;
c2f0c7c3 2527}
0a4ff8c2 2528
3fc689e9
EP
2529/**
2530 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2531 * @bprm: pointer to the bprm being processed
2532 * @new: the proposed new credentials
2533 * @old: the old credentials
3fc689e9
EP
2534 *
2535 * Simply check if the proc already has the caps given by the file and if not
2536 * store the priv escalation info for later auditing at the end of the syscall
2537 *
3fc689e9
EP
2538 * -Eric
2539 */
d84f4f99
DH
2540int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2541 const struct cred *new, const struct cred *old)
3fc689e9
EP
2542{
2543 struct audit_aux_data_bprm_fcaps *ax;
2544 struct audit_context *context = current->audit_context;
2545 struct cpu_vfs_cap_data vcaps;
2546 struct dentry *dentry;
2547
2548 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2549 if (!ax)
d84f4f99 2550 return -ENOMEM;
3fc689e9
EP
2551
2552 ax->d.type = AUDIT_BPRM_FCAPS;
2553 ax->d.next = context->aux;
2554 context->aux = (void *)ax;
2555
2556 dentry = dget(bprm->file->f_dentry);
2557 get_vfs_caps_from_disk(dentry, &vcaps);
2558 dput(dentry);
2559
2560 ax->fcap.permitted = vcaps.permitted;
2561 ax->fcap.inheritable = vcaps.inheritable;
2562 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2563 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2564
d84f4f99
DH
2565 ax->old_pcap.permitted = old->cap_permitted;
2566 ax->old_pcap.inheritable = old->cap_inheritable;
2567 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2568
d84f4f99
DH
2569 ax->new_pcap.permitted = new->cap_permitted;
2570 ax->new_pcap.inheritable = new->cap_inheritable;
2571 ax->new_pcap.effective = new->cap_effective;
2572 return 0;
3fc689e9
EP
2573}
2574
e68b75a0
EP
2575/**
2576 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2577 * @pid: target pid of the capset call
2578 * @new: the new credentials
2579 * @old: the old (current) credentials
e68b75a0
EP
2580 *
2581 * Record the aguments userspace sent to sys_capset for later printing by the
2582 * audit system if applicable
2583 */
57f71a0a 2584void __audit_log_capset(pid_t pid,
d84f4f99 2585 const struct cred *new, const struct cred *old)
e68b75a0 2586{
e68b75a0 2587 struct audit_context *context = current->audit_context;
57f71a0a
AV
2588 context->capset.pid = pid;
2589 context->capset.cap.effective = new->cap_effective;
2590 context->capset.cap.inheritable = new->cap_effective;
2591 context->capset.cap.permitted = new->cap_permitted;
2592 context->type = AUDIT_CAPSET;
e68b75a0
EP
2593}
2594
120a795d
AV
2595void __audit_mmap_fd(int fd, int flags)
2596{
2597 struct audit_context *context = current->audit_context;
2598 context->mmap.fd = fd;
2599 context->mmap.flags = flags;
2600 context->type = AUDIT_MMAP;
2601}
2602
85e7bac3
EP
2603static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2604{
2605 uid_t auid, uid;
2606 gid_t gid;
2607 unsigned int sessionid;
2608
2609 auid = audit_get_loginuid(current);
2610 sessionid = audit_get_sessionid(current);
2611 current_uid_gid(&uid, &gid);
2612
2613 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2614 auid, uid, gid, sessionid);
2615 audit_log_task_context(ab);
2616 audit_log_format(ab, " pid=%d comm=", current->pid);
2617 audit_log_untrustedstring(ab, current->comm);
2618 audit_log_format(ab, " reason=");
2619 audit_log_string(ab, reason);
2620 audit_log_format(ab, " sig=%ld", signr);
2621}
0a4ff8c2
SG
2622/**
2623 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2624 * @signr: signal value
0a4ff8c2
SG
2625 *
2626 * If a process ends with a core dump, something fishy is going on and we
2627 * should record the event for investigation.
2628 */
2629void audit_core_dumps(long signr)
2630{
2631 struct audit_buffer *ab;
0a4ff8c2
SG
2632
2633 if (!audit_enabled)
2634 return;
2635
2636 if (signr == SIGQUIT) /* don't care for those */
2637 return;
2638
2639 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2640 audit_log_abend(ab, "memory violation", signr);
2641 audit_log_end(ab);
2642}
0a4ff8c2 2643
85e7bac3
EP
2644void __audit_seccomp(unsigned long syscall)
2645{
2646 struct audit_buffer *ab;
2647
2648 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2649 audit_log_abend(ab, "seccomp", SIGKILL);
2650 audit_log_format(ab, " syscall=%ld", syscall);
0a4ff8c2
SG
2651 audit_log_end(ab);
2652}
916d7576
AV
2653
2654struct list_head *audit_killed_trees(void)
2655{
2656 struct audit_context *ctx = current->audit_context;
2657 if (likely(!ctx || !ctx->in_syscall))
2658 return NULL;
2659 return &ctx->killed_trees;
2660}