]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/auditsc.c
userns: Convert the audit loginuid to be a kuid
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
1da177e4 71
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
1da177e4 79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82#define AUDIT_NAMES 5
1da177e4 83
9c937dcc
AG
84/* Indicates that audit should log the full pathname. */
85#define AUDIT_NAME_FULL -1
86
de6bbd1d
EP
87/* no execve audit message should be longer than this (userspace limits) */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
471a5c7c
AV
90/* number of audit rules */
91int audit_n_rules;
92
e54dc243
AG
93/* determines whether we collect data for signals sent */
94int audit_signals;
95
851f7ff5
EP
96struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103};
104
1da177e4
LT
105/* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110struct audit_names {
5195d8e2 111 struct list_head list; /* audit_context->names_list */
1da177e4
LT
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
ca57ec0f
EB
116 kuid_t uid;
117 kgid_t gid;
1da177e4 118 dev_t rdev;
1b50eed9 119 u32 osid;
851f7ff5
EP
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
5195d8e2
EP
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
124 /*
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
128 */
129 bool should_free;
1da177e4
LT
130};
131
132struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
135};
136
137#define AUDIT_AUX_IPCPERM 0
138
e54dc243
AG
139/* Number of target pids per aux struct. */
140#define AUDIT_AUX_PIDS 16
141
473ae30b
AV
142struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
bdf4c48a 146 struct mm_struct *mm;
473ae30b
AV
147};
148
e54dc243
AG
149struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 152 kuid_t target_auid[AUDIT_AUX_PIDS];
c2a7780e 153 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 155 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
157 int pid_count;
158};
159
3fc689e9
EP
160struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
166};
167
e68b75a0
EP
168struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
172};
173
74c3cbe3
AV
174struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
177};
178
1da177e4
LT
179/* The per-task audit context. */
180struct audit_context {
d51374ad 181 int dummy; /* must be the first element */
1da177e4 182 int in_syscall; /* 1 if task is in a syscall */
0590b933 183 enum audit_state state, current_state;
1da177e4 184 unsigned int serial; /* serial number for record */
1da177e4 185 int major; /* syscall number */
44e51a1b 186 struct timespec ctime; /* time of syscall entry */
1da177e4 187 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 188 long return_code;/* syscall return code */
0590b933 189 u64 prio;
44e51a1b 190 int return_valid; /* return code is valid */
5195d8e2
EP
191 /*
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
198 */
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 202 char * filterkey; /* key for rule that triggered record */
44707fdf 203 struct path pwd;
1da177e4
LT
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
e54dc243 206 struct audit_aux_data *aux_pids;
4f6b434f
AV
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
1da177e4 209 /* Save things to print about task_struct */
f46038ff 210 pid_t pid, ppid;
1da177e4
LT
211 uid_t uid, euid, suid, fsuid;
212 gid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
2fd6f58b 214 int arch;
1da177e4 215
a5cb013d 216 pid_t target_pid;
e1760bd5 217 kuid_t target_auid;
c2a7780e 218 uid_t target_uid;
4746ec5b 219 unsigned int target_sessionid;
a5cb013d 220 u32 target_sid;
c2a7780e 221 char target_comm[TASK_COMM_LEN];
a5cb013d 222
74c3cbe3 223 struct audit_tree_refs *trees, *first_trees;
916d7576 224 struct list_head killed_trees;
44e51a1b 225 int tree_count;
74c3cbe3 226
f3298dc4
AV
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
a33e6751
AV
233 struct {
234 uid_t uid;
235 gid_t gid;
2570ebbd 236 umode_t mode;
a33e6751 237 u32 osid;
e816f370
AV
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
2570ebbd 241 umode_t perm_mode;
e816f370 242 unsigned long qbytes;
a33e6751 243 } ipc;
7392906e
AV
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
20114f71
AV
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
c32c8af4
AV
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
564f6993
AV
258 struct {
259 int oflag;
df0a4283 260 umode_t mode;
564f6993
AV
261 struct mq_attr attr;
262 } mq_open;
57f71a0a
AV
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
120a795d
AV
267 struct {
268 int fd;
269 int flags;
270 } mmap;
f3298dc4 271 };
157cf649 272 int fds[2];
f3298dc4 273
1da177e4
LT
274#if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277#endif
278};
279
55669bfa
AV
280static inline int open_arg(int flags, int mask)
281{
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
286}
287
288static int audit_match_perm(struct audit_context *ctx, int mask)
289{
c4bacefb 290 unsigned n;
1a61c88d 291 if (unlikely(!ctx))
292 return 0;
c4bacefb 293 n = ctx->major;
dbda4c0b 294
55669bfa
AV
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
328 }
329}
330
5ef30ee5 331static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 332{
5195d8e2 333 struct audit_names *n;
5ef30ee5 334 umode_t mode = (umode_t)val;
1a61c88d 335
336 if (unlikely(!ctx))
337 return 0;
338
5195d8e2
EP
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
342 return 1;
343 }
5195d8e2 344
5ef30ee5 345 return 0;
8b67dca9
AV
346}
347
74c3cbe3
AV
348/*
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 */
357
358#ifdef CONFIG_AUDIT_TREE
679173b7
EP
359static void audit_set_auditable(struct audit_context *ctx)
360{
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
364 }
365}
366
74c3cbe3
AV
367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368{
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
375 }
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
384 }
385 return 0;
386}
387
388static int grow_tree_refs(struct audit_context *ctx)
389{
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
395 }
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
402}
403#endif
404
405static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
407{
408#ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
418 }
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
424 }
425 }
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
429 }
430 ctx->trees = p;
431 ctx->tree_count = count;
432#endif
433}
434
435static void free_tree_refs(struct audit_context *ctx)
436{
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
441 }
442}
443
444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445{
446#ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
462 }
463#endif
464 return 0;
465}
466
ca57ec0f
EB
467static int audit_compare_uid(kuid_t uid,
468 struct audit_names *name,
469 struct audit_field *f,
470 struct audit_context *ctx)
b34b0393
EP
471{
472 struct audit_names *n;
b34b0393 473 int rc;
ca57ec0f 474
b34b0393 475 if (name) {
ca57ec0f 476 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
477 if (rc)
478 return rc;
479 }
ca57ec0f 480
b34b0393
EP
481 if (ctx) {
482 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
483 rc = audit_uid_comparator(uid, f->op, n->uid);
484 if (rc)
485 return rc;
486 }
487 }
488 return 0;
489}
b34b0393 490
ca57ec0f
EB
491static int audit_compare_gid(kgid_t gid,
492 struct audit_names *name,
493 struct audit_field *f,
494 struct audit_context *ctx)
495{
496 struct audit_names *n;
497 int rc;
498
499 if (name) {
500 rc = audit_gid_comparator(gid, f->op, name->gid);
501 if (rc)
502 return rc;
503 }
504
505 if (ctx) {
506 list_for_each_entry(n, &ctx->names_list, list) {
507 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
508 if (rc)
509 return rc;
510 }
511 }
512 return 0;
513}
514
02d86a56
EP
515static int audit_field_compare(struct task_struct *tsk,
516 const struct cred *cred,
517 struct audit_field *f,
518 struct audit_context *ctx,
519 struct audit_names *name)
520{
02d86a56 521 switch (f->val) {
4a6633ed 522 /* process to file object comparisons */
02d86a56 523 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 524 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 525 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 526 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 527 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 528 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 529 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 530 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 531 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 532 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 534 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 535 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 536 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 537 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 538 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 539 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 540 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
541 /* uid comparisons */
542 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 543 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 544 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 545 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 546 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 547 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 548 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 549 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
550 /* auid comparisons */
551 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 552 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 553 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 554 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 555 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 556 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
557 /* euid comparisons */
558 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 559 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 560 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 561 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
562 /* suid comparisons */
563 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 564 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
565 /* gid comparisons */
566 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 567 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 568 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 569 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 570 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 571 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
572 /* egid comparisons */
573 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 574 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 575 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 576 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
577 /* sgid comparison */
578 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 579 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
580 default:
581 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
582 return 0;
583 }
584 return 0;
585}
586
f368c07d 587/* Determine if any context name data matches a rule's watch data */
1da177e4 588/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
589 * otherwise.
590 *
591 * If task_creation is true, this is an explicit indication that we are
592 * filtering a task rule at task creation time. This and tsk == current are
593 * the only situations where tsk->cred may be accessed without an rcu read lock.
594 */
1da177e4 595static int audit_filter_rules(struct task_struct *tsk,
93315ed6 596 struct audit_krule *rule,
1da177e4 597 struct audit_context *ctx,
f368c07d 598 struct audit_names *name,
f5629883
TJ
599 enum audit_state *state,
600 bool task_creation)
1da177e4 601{
f5629883 602 const struct cred *cred;
5195d8e2 603 int i, need_sid = 1;
3dc7e315
DG
604 u32 sid;
605
f5629883
TJ
606 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
607
1da177e4 608 for (i = 0; i < rule->field_count; i++) {
93315ed6 609 struct audit_field *f = &rule->fields[i];
5195d8e2 610 struct audit_names *n;
1da177e4
LT
611 int result = 0;
612
93315ed6 613 switch (f->type) {
1da177e4 614 case AUDIT_PID:
93315ed6 615 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 616 break;
3c66251e 617 case AUDIT_PPID:
419c58f1
AV
618 if (ctx) {
619 if (!ctx->ppid)
620 ctx->ppid = sys_getppid();
3c66251e 621 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 622 }
3c66251e 623 break;
1da177e4 624 case AUDIT_UID:
ca57ec0f 625 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
626 break;
627 case AUDIT_EUID:
ca57ec0f 628 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
629 break;
630 case AUDIT_SUID:
ca57ec0f 631 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
632 break;
633 case AUDIT_FSUID:
ca57ec0f 634 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
635 break;
636 case AUDIT_GID:
ca57ec0f 637 result = audit_gid_comparator(cred->gid, f->op, f->gid);
1da177e4
LT
638 break;
639 case AUDIT_EGID:
ca57ec0f 640 result = audit_gid_comparator(cred->egid, f->op, f->gid);
1da177e4
LT
641 break;
642 case AUDIT_SGID:
ca57ec0f 643 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
644 break;
645 case AUDIT_FSGID:
ca57ec0f 646 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
647 break;
648 case AUDIT_PERS:
93315ed6 649 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 650 break;
2fd6f58b 651 case AUDIT_ARCH:
9f8dbe9c 652 if (ctx)
93315ed6 653 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 654 break;
1da177e4
LT
655
656 case AUDIT_EXIT:
657 if (ctx && ctx->return_valid)
93315ed6 658 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
659 break;
660 case AUDIT_SUCCESS:
b01f2cc1 661 if (ctx && ctx->return_valid) {
93315ed6
AG
662 if (f->val)
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 664 else
93315ed6 665 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 666 }
1da177e4
LT
667 break;
668 case AUDIT_DEVMAJOR:
16c174bd
EP
669 if (name) {
670 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
671 audit_comparator(MAJOR(name->rdev), f->op, f->val))
672 ++result;
673 } else if (ctx) {
5195d8e2 674 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
675 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
676 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
677 ++result;
678 break;
679 }
680 }
681 }
682 break;
683 case AUDIT_DEVMINOR:
16c174bd
EP
684 if (name) {
685 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
686 audit_comparator(MINOR(name->rdev), f->op, f->val))
687 ++result;
688 } else if (ctx) {
5195d8e2 689 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
690 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
691 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
692 ++result;
693 break;
694 }
695 }
696 }
697 break;
698 case AUDIT_INODE:
f368c07d 699 if (name)
9c937dcc 700 result = (name->ino == f->val);
f368c07d 701 else if (ctx) {
5195d8e2
EP
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
704 ++result;
705 break;
706 }
707 }
708 }
709 break;
efaffd6e
EP
710 case AUDIT_OBJ_UID:
711 if (name) {
ca57ec0f 712 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
713 } else if (ctx) {
714 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 715 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
716 ++result;
717 break;
718 }
719 }
720 }
721 break;
54d3218b
EP
722 case AUDIT_OBJ_GID:
723 if (name) {
ca57ec0f 724 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
725 } else if (ctx) {
726 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 727 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
728 ++result;
729 break;
730 }
731 }
732 }
733 break;
f368c07d 734 case AUDIT_WATCH:
ae7b8f41
EP
735 if (name)
736 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 737 break;
74c3cbe3
AV
738 case AUDIT_DIR:
739 if (ctx)
740 result = match_tree_refs(ctx, rule->tree);
741 break;
1da177e4
LT
742 case AUDIT_LOGINUID:
743 result = 0;
744 if (ctx)
ca57ec0f 745 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 746 break;
3a6b9f85
DG
747 case AUDIT_SUBJ_USER:
748 case AUDIT_SUBJ_ROLE:
749 case AUDIT_SUBJ_TYPE:
750 case AUDIT_SUBJ_SEN:
751 case AUDIT_SUBJ_CLR:
3dc7e315
DG
752 /* NOTE: this may return negative values indicating
753 a temporary error. We simply treat this as a
754 match for now to avoid losing information that
755 may be wanted. An error message will also be
756 logged upon error */
04305e4a 757 if (f->lsm_rule) {
2ad312d2 758 if (need_sid) {
2a862b32 759 security_task_getsecid(tsk, &sid);
2ad312d2
SG
760 need_sid = 0;
761 }
d7a96f3a 762 result = security_audit_rule_match(sid, f->type,
3dc7e315 763 f->op,
04305e4a 764 f->lsm_rule,
3dc7e315 765 ctx);
2ad312d2 766 }
3dc7e315 767 break;
6e5a2d1d
DG
768 case AUDIT_OBJ_USER:
769 case AUDIT_OBJ_ROLE:
770 case AUDIT_OBJ_TYPE:
771 case AUDIT_OBJ_LEV_LOW:
772 case AUDIT_OBJ_LEV_HIGH:
773 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
774 also applies here */
04305e4a 775 if (f->lsm_rule) {
6e5a2d1d
DG
776 /* Find files that match */
777 if (name) {
d7a96f3a 778 result = security_audit_rule_match(
6e5a2d1d 779 name->osid, f->type, f->op,
04305e4a 780 f->lsm_rule, ctx);
6e5a2d1d 781 } else if (ctx) {
5195d8e2
EP
782 list_for_each_entry(n, &ctx->names_list, list) {
783 if (security_audit_rule_match(n->osid, f->type,
784 f->op, f->lsm_rule,
785 ctx)) {
6e5a2d1d
DG
786 ++result;
787 break;
788 }
789 }
790 }
791 /* Find ipc objects that match */
a33e6751
AV
792 if (!ctx || ctx->type != AUDIT_IPC)
793 break;
794 if (security_audit_rule_match(ctx->ipc.osid,
795 f->type, f->op,
796 f->lsm_rule, ctx))
797 ++result;
6e5a2d1d
DG
798 }
799 break;
1da177e4
LT
800 case AUDIT_ARG0:
801 case AUDIT_ARG1:
802 case AUDIT_ARG2:
803 case AUDIT_ARG3:
804 if (ctx)
93315ed6 805 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 806 break;
5adc8a6a
AG
807 case AUDIT_FILTERKEY:
808 /* ignore this field for filtering */
809 result = 1;
810 break;
55669bfa
AV
811 case AUDIT_PERM:
812 result = audit_match_perm(ctx, f->val);
813 break;
8b67dca9
AV
814 case AUDIT_FILETYPE:
815 result = audit_match_filetype(ctx, f->val);
816 break;
02d86a56
EP
817 case AUDIT_FIELD_COMPARE:
818 result = audit_field_compare(tsk, cred, f, ctx, name);
819 break;
1da177e4 820 }
f5629883 821 if (!result)
1da177e4
LT
822 return 0;
823 }
0590b933
AV
824
825 if (ctx) {
826 if (rule->prio <= ctx->prio)
827 return 0;
828 if (rule->filterkey) {
829 kfree(ctx->filterkey);
830 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
831 }
832 ctx->prio = rule->prio;
833 }
1da177e4
LT
834 switch (rule->action) {
835 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
836 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
837 }
838 return 1;
839}
840
841/* At process creation time, we can determine if system-call auditing is
842 * completely disabled for this task. Since we only have the task
843 * structure at this point, we can only check uid and gid.
844 */
e048e02c 845static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
846{
847 struct audit_entry *e;
848 enum audit_state state;
849
850 rcu_read_lock();
0f45aa18 851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
852 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
853 &state, true)) {
e048e02c
AV
854 if (state == AUDIT_RECORD_CONTEXT)
855 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
856 rcu_read_unlock();
857 return state;
858 }
859 }
860 rcu_read_unlock();
861 return AUDIT_BUILD_CONTEXT;
862}
863
864/* At syscall entry and exit time, this filter is called if the
865 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 866 * also not high enough that we already know we have to write an audit
b0dd25a8 867 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
868 */
869static enum audit_state audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx,
871 struct list_head *list)
872{
873 struct audit_entry *e;
c3896495 874 enum audit_state state;
1da177e4 875
351bb722 876 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
877 return AUDIT_DISABLED;
878
1da177e4 879 rcu_read_lock();
c3896495 880 if (!list_empty(list)) {
b63862f4
DK
881 int word = AUDIT_WORD(ctx->major);
882 int bit = AUDIT_BIT(ctx->major);
883
884 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
885 if ((e->rule.mask[word] & bit) == bit &&
886 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 887 &state, false)) {
f368c07d 888 rcu_read_unlock();
0590b933 889 ctx->current_state = state;
f368c07d
AG
890 return state;
891 }
892 }
893 }
894 rcu_read_unlock();
895 return AUDIT_BUILD_CONTEXT;
896}
897
5195d8e2
EP
898/*
899 * Given an audit_name check the inode hash table to see if they match.
900 * Called holding the rcu read lock to protect the use of audit_inode_hash
901 */
902static int audit_filter_inode_name(struct task_struct *tsk,
903 struct audit_names *n,
904 struct audit_context *ctx) {
905 int word, bit;
906 int h = audit_hash_ino((u32)n->ino);
907 struct list_head *list = &audit_inode_hash[h];
908 struct audit_entry *e;
909 enum audit_state state;
910
911 word = AUDIT_WORD(ctx->major);
912 bit = AUDIT_BIT(ctx->major);
913
914 if (list_empty(list))
915 return 0;
916
917 list_for_each_entry_rcu(e, list, list) {
918 if ((e->rule.mask[word] & bit) == bit &&
919 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
920 ctx->current_state = state;
921 return 1;
922 }
923 }
924
925 return 0;
926}
927
928/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 929 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 930 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
931 * Regarding audit_state, same rules apply as for audit_filter_syscall().
932 */
0590b933 933void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 934{
5195d8e2 935 struct audit_names *n;
f368c07d
AG
936
937 if (audit_pid && tsk->tgid == audit_pid)
0590b933 938 return;
f368c07d
AG
939
940 rcu_read_lock();
f368c07d 941
5195d8e2
EP
942 list_for_each_entry(n, &ctx->names_list, list) {
943 if (audit_filter_inode_name(tsk, n, ctx))
944 break;
0f45aa18
DW
945 }
946 rcu_read_unlock();
0f45aa18
DW
947}
948
1da177e4
LT
949static inline struct audit_context *audit_get_context(struct task_struct *tsk,
950 int return_valid,
6d208da8 951 long return_code)
1da177e4
LT
952{
953 struct audit_context *context = tsk->audit_context;
954
56179a6e 955 if (!context)
1da177e4
LT
956 return NULL;
957 context->return_valid = return_valid;
f701b75e
EP
958
959 /*
960 * we need to fix up the return code in the audit logs if the actual
961 * return codes are later going to be fixed up by the arch specific
962 * signal handlers
963 *
964 * This is actually a test for:
965 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
966 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 *
968 * but is faster than a bunch of ||
969 */
970 if (unlikely(return_code <= -ERESTARTSYS) &&
971 (return_code >= -ERESTART_RESTARTBLOCK) &&
972 (return_code != -ENOIOCTLCMD))
973 context->return_code = -EINTR;
974 else
975 context->return_code = return_code;
1da177e4 976
0590b933
AV
977 if (context->in_syscall && !context->dummy) {
978 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
979 audit_filter_inodes(tsk, context);
1da177e4
LT
980 }
981
1da177e4
LT
982 tsk->audit_context = NULL;
983 return context;
984}
985
986static inline void audit_free_names(struct audit_context *context)
987{
5195d8e2 988 struct audit_names *n, *next;
1da177e4
LT
989
990#if AUDIT_DEBUG == 2
0590b933 991 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 992 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
993 " name_count=%d put_count=%d"
994 " ino_count=%d [NOT freeing]\n",
73241ccc 995 __FILE__, __LINE__,
1da177e4
LT
996 context->serial, context->major, context->in_syscall,
997 context->name_count, context->put_count,
998 context->ino_count);
5195d8e2 999 list_for_each_entry(n, &context->names_list, list) {
1da177e4 1000 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 1001 n->name, n->name ?: "(null)");
8c8570fb 1002 }
1da177e4
LT
1003 dump_stack();
1004 return;
1005 }
1006#endif
1007#if AUDIT_DEBUG
1008 context->put_count = 0;
1009 context->ino_count = 0;
1010#endif
1011
5195d8e2
EP
1012 list_for_each_entry_safe(n, next, &context->names_list, list) {
1013 list_del(&n->list);
1014 if (n->name && n->name_put)
1015 __putname(n->name);
1016 if (n->should_free)
1017 kfree(n);
8c8570fb 1018 }
1da177e4 1019 context->name_count = 0;
44707fdf
JB
1020 path_put(&context->pwd);
1021 context->pwd.dentry = NULL;
1022 context->pwd.mnt = NULL;
1da177e4
LT
1023}
1024
1025static inline void audit_free_aux(struct audit_context *context)
1026{
1027 struct audit_aux_data *aux;
1028
1029 while ((aux = context->aux)) {
1030 context->aux = aux->next;
1031 kfree(aux);
1032 }
e54dc243
AG
1033 while ((aux = context->aux_pids)) {
1034 context->aux_pids = aux->next;
1035 kfree(aux);
1036 }
1da177e4
LT
1037}
1038
1039static inline void audit_zero_context(struct audit_context *context,
1040 enum audit_state state)
1041{
1da177e4
LT
1042 memset(context, 0, sizeof(*context));
1043 context->state = state;
0590b933 1044 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
1045}
1046
1047static inline struct audit_context *audit_alloc_context(enum audit_state state)
1048{
1049 struct audit_context *context;
1050
1051 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1052 return NULL;
1053 audit_zero_context(context, state);
916d7576 1054 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1055 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
1056 return context;
1057}
1058
b0dd25a8
RD
1059/**
1060 * audit_alloc - allocate an audit context block for a task
1061 * @tsk: task
1062 *
1063 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1064 * if necessary. Doing so turns on system call auditing for the
1065 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1066 * needed.
1067 */
1da177e4
LT
1068int audit_alloc(struct task_struct *tsk)
1069{
1070 struct audit_context *context;
1071 enum audit_state state;
e048e02c 1072 char *key = NULL;
1da177e4 1073
b593d384 1074 if (likely(!audit_ever_enabled))
1da177e4
LT
1075 return 0; /* Return if not auditing. */
1076
e048e02c 1077 state = audit_filter_task(tsk, &key);
56179a6e 1078 if (state == AUDIT_DISABLED)
1da177e4
LT
1079 return 0;
1080
1081 if (!(context = audit_alloc_context(state))) {
e048e02c 1082 kfree(key);
1da177e4
LT
1083 audit_log_lost("out of memory in audit_alloc");
1084 return -ENOMEM;
1085 }
e048e02c 1086 context->filterkey = key;
1da177e4 1087
1da177e4
LT
1088 tsk->audit_context = context;
1089 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1090 return 0;
1091}
1092
1093static inline void audit_free_context(struct audit_context *context)
1094{
1095 struct audit_context *previous;
1096 int count = 0;
1097
1098 do {
1099 previous = context->previous;
1100 if (previous || (count && count < 10)) {
1101 ++count;
1102 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1103 " freeing multiple contexts (%d)\n",
1104 context->serial, context->major,
1105 context->name_count, count);
1106 }
1107 audit_free_names(context);
74c3cbe3
AV
1108 unroll_tree_refs(context, NULL, 0);
1109 free_tree_refs(context);
1da177e4 1110 audit_free_aux(context);
5adc8a6a 1111 kfree(context->filterkey);
4f6b434f 1112 kfree(context->sockaddr);
1da177e4
LT
1113 kfree(context);
1114 context = previous;
1115 } while (context);
1116 if (count >= 10)
1117 printk(KERN_ERR "audit: freed %d contexts\n", count);
1118}
1119
161a09e7 1120void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1121{
1122 char *ctx = NULL;
c4823bce
AV
1123 unsigned len;
1124 int error;
1125 u32 sid;
1126
2a862b32 1127 security_task_getsecid(current, &sid);
c4823bce
AV
1128 if (!sid)
1129 return;
8c8570fb 1130
2a862b32 1131 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1132 if (error) {
1133 if (error != -EINVAL)
8c8570fb
DK
1134 goto error_path;
1135 return;
1136 }
1137
8c8570fb 1138 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1139 security_release_secctx(ctx, len);
7306a0b9 1140 return;
8c8570fb
DK
1141
1142error_path:
7306a0b9 1143 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1144 return;
1145}
1146
161a09e7
JL
1147EXPORT_SYMBOL(audit_log_task_context);
1148
e495149b 1149static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1150{
45d9bb0e
AV
1151 char name[sizeof(tsk->comm)];
1152 struct mm_struct *mm = tsk->mm;
219f0817
SS
1153 struct vm_area_struct *vma;
1154
e495149b
AV
1155 /* tsk == current */
1156
45d9bb0e 1157 get_task_comm(name, tsk);
99e45eea
DW
1158 audit_log_format(ab, " comm=");
1159 audit_log_untrustedstring(ab, name);
219f0817 1160
e495149b
AV
1161 if (mm) {
1162 down_read(&mm->mmap_sem);
1163 vma = mm->mmap;
1164 while (vma) {
1165 if ((vma->vm_flags & VM_EXECUTABLE) &&
1166 vma->vm_file) {
c158a35c 1167 audit_log_d_path(ab, " exe=",
44707fdf 1168 &vma->vm_file->f_path);
e495149b
AV
1169 break;
1170 }
1171 vma = vma->vm_next;
219f0817 1172 }
e495149b 1173 up_read(&mm->mmap_sem);
219f0817 1174 }
e495149b 1175 audit_log_task_context(ab);
219f0817
SS
1176}
1177
e54dc243 1178static int audit_log_pid_context(struct audit_context *context, pid_t pid,
e1760bd5 1179 kuid_t auid, uid_t uid, unsigned int sessionid,
4746ec5b 1180 u32 sid, char *comm)
e54dc243
AG
1181{
1182 struct audit_buffer *ab;
2a862b32 1183 char *ctx = NULL;
e54dc243
AG
1184 u32 len;
1185 int rc = 0;
1186
1187 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1188 if (!ab)
6246ccab 1189 return rc;
e54dc243 1190
e1760bd5
EB
1191 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1192 from_kuid(&init_user_ns, auid),
4746ec5b 1193 uid, sessionid);
2a862b32 1194 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1195 audit_log_format(ab, " obj=(none)");
e54dc243 1196 rc = 1;
2a862b32
AD
1197 } else {
1198 audit_log_format(ab, " obj=%s", ctx);
1199 security_release_secctx(ctx, len);
1200 }
c2a7780e
EP
1201 audit_log_format(ab, " ocomm=");
1202 audit_log_untrustedstring(ab, comm);
e54dc243 1203 audit_log_end(ab);
e54dc243
AG
1204
1205 return rc;
1206}
1207
de6bbd1d
EP
1208/*
1209 * to_send and len_sent accounting are very loose estimates. We aren't
1210 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1211 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1212 *
1213 * why snprintf? an int is up to 12 digits long. if we just assumed when
1214 * logging that a[%d]= was going to be 16 characters long we would be wasting
1215 * space in every audit message. In one 7500 byte message we can log up to
1216 * about 1000 min size arguments. That comes down to about 50% waste of space
1217 * if we didn't do the snprintf to find out how long arg_num_len was.
1218 */
1219static int audit_log_single_execve_arg(struct audit_context *context,
1220 struct audit_buffer **ab,
1221 int arg_num,
1222 size_t *len_sent,
1223 const char __user *p,
1224 char *buf)
bdf4c48a 1225{
de6bbd1d
EP
1226 char arg_num_len_buf[12];
1227 const char __user *tmp_p = p;
b87ce6e4
EP
1228 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1229 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1230 size_t len, len_left, to_send;
1231 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1232 unsigned int i, has_cntl = 0, too_long = 0;
1233 int ret;
1234
1235 /* strnlen_user includes the null we don't want to send */
1236 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1237
de6bbd1d
EP
1238 /*
1239 * We just created this mm, if we can't find the strings
1240 * we just copied into it something is _very_ wrong. Similar
1241 * for strings that are too long, we should not have created
1242 * any.
1243 */
b0abcfc1 1244 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1245 WARN_ON(1);
1246 send_sig(SIGKILL, current, 0);
b0abcfc1 1247 return -1;
de6bbd1d 1248 }
040b3a2d 1249
de6bbd1d
EP
1250 /* walk the whole argument looking for non-ascii chars */
1251 do {
1252 if (len_left > MAX_EXECVE_AUDIT_LEN)
1253 to_send = MAX_EXECVE_AUDIT_LEN;
1254 else
1255 to_send = len_left;
1256 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1257 /*
de6bbd1d
EP
1258 * There is no reason for this copy to be short. We just
1259 * copied them here, and the mm hasn't been exposed to user-
1260 * space yet.
bdf4c48a 1261 */
de6bbd1d 1262 if (ret) {
bdf4c48a
PZ
1263 WARN_ON(1);
1264 send_sig(SIGKILL, current, 0);
b0abcfc1 1265 return -1;
bdf4c48a 1266 }
de6bbd1d
EP
1267 buf[to_send] = '\0';
1268 has_cntl = audit_string_contains_control(buf, to_send);
1269 if (has_cntl) {
1270 /*
1271 * hex messages get logged as 2 bytes, so we can only
1272 * send half as much in each message
1273 */
1274 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1275 break;
1276 }
de6bbd1d
EP
1277 len_left -= to_send;
1278 tmp_p += to_send;
1279 } while (len_left > 0);
1280
1281 len_left = len;
1282
1283 if (len > max_execve_audit_len)
1284 too_long = 1;
1285
1286 /* rewalk the argument actually logging the message */
1287 for (i = 0; len_left > 0; i++) {
1288 int room_left;
1289
1290 if (len_left > max_execve_audit_len)
1291 to_send = max_execve_audit_len;
1292 else
1293 to_send = len_left;
1294
1295 /* do we have space left to send this argument in this ab? */
1296 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1297 if (has_cntl)
1298 room_left -= (to_send * 2);
1299 else
1300 room_left -= to_send;
1301 if (room_left < 0) {
1302 *len_sent = 0;
1303 audit_log_end(*ab);
1304 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1305 if (!*ab)
1306 return 0;
1307 }
bdf4c48a 1308
bdf4c48a 1309 /*
de6bbd1d
EP
1310 * first record needs to say how long the original string was
1311 * so we can be sure nothing was lost.
1312 */
1313 if ((i == 0) && (too_long))
ca96a895 1314 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1315 has_cntl ? 2*len : len);
1316
1317 /*
1318 * normally arguments are small enough to fit and we already
1319 * filled buf above when we checked for control characters
1320 * so don't bother with another copy_from_user
bdf4c48a 1321 */
de6bbd1d
EP
1322 if (len >= max_execve_audit_len)
1323 ret = copy_from_user(buf, p, to_send);
1324 else
1325 ret = 0;
040b3a2d 1326 if (ret) {
bdf4c48a
PZ
1327 WARN_ON(1);
1328 send_sig(SIGKILL, current, 0);
b0abcfc1 1329 return -1;
bdf4c48a 1330 }
de6bbd1d
EP
1331 buf[to_send] = '\0';
1332
1333 /* actually log it */
ca96a895 1334 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1335 if (too_long)
1336 audit_log_format(*ab, "[%d]", i);
1337 audit_log_format(*ab, "=");
1338 if (has_cntl)
b556f8ad 1339 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1340 else
9d960985 1341 audit_log_string(*ab, buf);
de6bbd1d
EP
1342
1343 p += to_send;
1344 len_left -= to_send;
1345 *len_sent += arg_num_len;
1346 if (has_cntl)
1347 *len_sent += to_send * 2;
1348 else
1349 *len_sent += to_send;
1350 }
1351 /* include the null we didn't log */
1352 return len + 1;
1353}
1354
1355static void audit_log_execve_info(struct audit_context *context,
1356 struct audit_buffer **ab,
1357 struct audit_aux_data_execve *axi)
1358{
5afb8a3f
XW
1359 int i, len;
1360 size_t len_sent = 0;
de6bbd1d
EP
1361 const char __user *p;
1362 char *buf;
bdf4c48a 1363
de6bbd1d
EP
1364 if (axi->mm != current->mm)
1365 return; /* execve failed, no additional info */
1366
1367 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1368
ca96a895 1369 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1370
1371 /*
1372 * we need some kernel buffer to hold the userspace args. Just
1373 * allocate one big one rather than allocating one of the right size
1374 * for every single argument inside audit_log_single_execve_arg()
1375 * should be <8k allocation so should be pretty safe.
1376 */
1377 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1378 if (!buf) {
1379 audit_panic("out of memory for argv string\n");
1380 return;
bdf4c48a 1381 }
de6bbd1d
EP
1382
1383 for (i = 0; i < axi->argc; i++) {
1384 len = audit_log_single_execve_arg(context, ab, i,
1385 &len_sent, p, buf);
1386 if (len <= 0)
1387 break;
1388 p += len;
1389 }
1390 kfree(buf);
bdf4c48a
PZ
1391}
1392
851f7ff5
EP
1393static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1394{
1395 int i;
1396
1397 audit_log_format(ab, " %s=", prefix);
1398 CAP_FOR_EACH_U32(i) {
1399 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1400 }
1401}
1402
1403static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1404{
1405 kernel_cap_t *perm = &name->fcap.permitted;
1406 kernel_cap_t *inh = &name->fcap.inheritable;
1407 int log = 0;
1408
1409 if (!cap_isclear(*perm)) {
1410 audit_log_cap(ab, "cap_fp", perm);
1411 log = 1;
1412 }
1413 if (!cap_isclear(*inh)) {
1414 audit_log_cap(ab, "cap_fi", inh);
1415 log = 1;
1416 }
1417
1418 if (log)
1419 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1420}
1421
a33e6751 1422static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1423{
1424 struct audit_buffer *ab;
1425 int i;
1426
1427 ab = audit_log_start(context, GFP_KERNEL, context->type);
1428 if (!ab)
1429 return;
1430
1431 switch (context->type) {
1432 case AUDIT_SOCKETCALL: {
1433 int nargs = context->socketcall.nargs;
1434 audit_log_format(ab, "nargs=%d", nargs);
1435 for (i = 0; i < nargs; i++)
1436 audit_log_format(ab, " a%d=%lx", i,
1437 context->socketcall.args[i]);
1438 break; }
a33e6751
AV
1439 case AUDIT_IPC: {
1440 u32 osid = context->ipc.osid;
1441
2570ebbd 1442 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1443 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1444 if (osid) {
1445 char *ctx = NULL;
1446 u32 len;
1447 if (security_secid_to_secctx(osid, &ctx, &len)) {
1448 audit_log_format(ab, " osid=%u", osid);
1449 *call_panic = 1;
1450 } else {
1451 audit_log_format(ab, " obj=%s", ctx);
1452 security_release_secctx(ctx, len);
1453 }
1454 }
e816f370
AV
1455 if (context->ipc.has_perm) {
1456 audit_log_end(ab);
1457 ab = audit_log_start(context, GFP_KERNEL,
1458 AUDIT_IPC_SET_PERM);
1459 audit_log_format(ab,
2570ebbd 1460 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1461 context->ipc.qbytes,
1462 context->ipc.perm_uid,
1463 context->ipc.perm_gid,
1464 context->ipc.perm_mode);
1465 if (!ab)
1466 return;
1467 }
a33e6751 1468 break; }
564f6993
AV
1469 case AUDIT_MQ_OPEN: {
1470 audit_log_format(ab,
df0a4283 1471 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1472 "mq_msgsize=%ld mq_curmsgs=%ld",
1473 context->mq_open.oflag, context->mq_open.mode,
1474 context->mq_open.attr.mq_flags,
1475 context->mq_open.attr.mq_maxmsg,
1476 context->mq_open.attr.mq_msgsize,
1477 context->mq_open.attr.mq_curmsgs);
1478 break; }
c32c8af4
AV
1479 case AUDIT_MQ_SENDRECV: {
1480 audit_log_format(ab,
1481 "mqdes=%d msg_len=%zd msg_prio=%u "
1482 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1483 context->mq_sendrecv.mqdes,
1484 context->mq_sendrecv.msg_len,
1485 context->mq_sendrecv.msg_prio,
1486 context->mq_sendrecv.abs_timeout.tv_sec,
1487 context->mq_sendrecv.abs_timeout.tv_nsec);
1488 break; }
20114f71
AV
1489 case AUDIT_MQ_NOTIFY: {
1490 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1491 context->mq_notify.mqdes,
1492 context->mq_notify.sigev_signo);
1493 break; }
7392906e
AV
1494 case AUDIT_MQ_GETSETATTR: {
1495 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1496 audit_log_format(ab,
1497 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1498 "mq_curmsgs=%ld ",
1499 context->mq_getsetattr.mqdes,
1500 attr->mq_flags, attr->mq_maxmsg,
1501 attr->mq_msgsize, attr->mq_curmsgs);
1502 break; }
57f71a0a
AV
1503 case AUDIT_CAPSET: {
1504 audit_log_format(ab, "pid=%d", context->capset.pid);
1505 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1506 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1507 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1508 break; }
120a795d
AV
1509 case AUDIT_MMAP: {
1510 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1511 context->mmap.flags);
1512 break; }
f3298dc4
AV
1513 }
1514 audit_log_end(ab);
1515}
1516
5195d8e2
EP
1517static void audit_log_name(struct audit_context *context, struct audit_names *n,
1518 int record_num, int *call_panic)
1519{
1520 struct audit_buffer *ab;
1521 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1522 if (!ab)
1523 return; /* audit_panic has been called */
1524
1525 audit_log_format(ab, "item=%d", record_num);
1526
1527 if (n->name) {
1528 switch (n->name_len) {
1529 case AUDIT_NAME_FULL:
1530 /* log the full path */
1531 audit_log_format(ab, " name=");
1532 audit_log_untrustedstring(ab, n->name);
1533 break;
1534 case 0:
1535 /* name was specified as a relative path and the
1536 * directory component is the cwd */
c158a35c 1537 audit_log_d_path(ab, " name=", &context->pwd);
5195d8e2
EP
1538 break;
1539 default:
1540 /* log the name's directory component */
1541 audit_log_format(ab, " name=");
1542 audit_log_n_untrustedstring(ab, n->name,
1543 n->name_len);
1544 }
1545 } else
1546 audit_log_format(ab, " name=(null)");
1547
1548 if (n->ino != (unsigned long)-1) {
1549 audit_log_format(ab, " inode=%lu"
1550 " dev=%02x:%02x mode=%#ho"
1551 " ouid=%u ogid=%u rdev=%02x:%02x",
1552 n->ino,
1553 MAJOR(n->dev),
1554 MINOR(n->dev),
1555 n->mode,
1556 n->uid,
1557 n->gid,
1558 MAJOR(n->rdev),
1559 MINOR(n->rdev));
1560 }
1561 if (n->osid != 0) {
1562 char *ctx = NULL;
1563 u32 len;
1564 if (security_secid_to_secctx(
1565 n->osid, &ctx, &len)) {
1566 audit_log_format(ab, " osid=%u", n->osid);
1567 *call_panic = 2;
1568 } else {
1569 audit_log_format(ab, " obj=%s", ctx);
1570 security_release_secctx(ctx, len);
1571 }
1572 }
1573
1574 audit_log_fcaps(ab, n);
1575
1576 audit_log_end(ab);
1577}
1578
e495149b 1579static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1580{
c69e8d9c 1581 const struct cred *cred;
9c7aa6aa 1582 int i, call_panic = 0;
1da177e4 1583 struct audit_buffer *ab;
7551ced3 1584 struct audit_aux_data *aux;
a6c043a8 1585 const char *tty;
5195d8e2 1586 struct audit_names *n;
1da177e4 1587
e495149b 1588 /* tsk == current */
3f2792ff 1589 context->pid = tsk->pid;
419c58f1
AV
1590 if (!context->ppid)
1591 context->ppid = sys_getppid();
c69e8d9c
DH
1592 cred = current_cred();
1593 context->uid = cred->uid;
1594 context->gid = cred->gid;
1595 context->euid = cred->euid;
1596 context->suid = cred->suid;
b6dff3ec 1597 context->fsuid = cred->fsuid;
c69e8d9c
DH
1598 context->egid = cred->egid;
1599 context->sgid = cred->sgid;
b6dff3ec 1600 context->fsgid = cred->fsgid;
3f2792ff 1601 context->personality = tsk->personality;
e495149b
AV
1602
1603 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1604 if (!ab)
1605 return; /* audit_panic has been called */
bccf6ae0
DW
1606 audit_log_format(ab, "arch=%x syscall=%d",
1607 context->arch, context->major);
1da177e4
LT
1608 if (context->personality != PER_LINUX)
1609 audit_log_format(ab, " per=%lx", context->personality);
1610 if (context->return_valid)
9f8dbe9c 1611 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1612 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1613 context->return_code);
eb84a20e 1614
dbda4c0b 1615 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1616 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1617 tty = tsk->signal->tty->name;
a6c043a8
SG
1618 else
1619 tty = "(none)";
dbda4c0b
AC
1620 spin_unlock_irq(&tsk->sighand->siglock);
1621
1da177e4
LT
1622 audit_log_format(ab,
1623 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1624 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1625 " euid=%u suid=%u fsuid=%u"
4746ec5b 1626 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1627 context->argv[0],
1628 context->argv[1],
1629 context->argv[2],
1630 context->argv[3],
1631 context->name_count,
f46038ff 1632 context->ppid,
1da177e4 1633 context->pid,
e1760bd5 1634 from_kuid(&init_user_ns, tsk->loginuid),
1da177e4
LT
1635 context->uid,
1636 context->gid,
1637 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1638 context->egid, context->sgid, context->fsgid, tty,
1639 tsk->sessionid);
eb84a20e 1640
eb84a20e 1641
e495149b 1642 audit_log_task_info(ab, tsk);
9d960985 1643 audit_log_key(ab, context->filterkey);
1da177e4 1644 audit_log_end(ab);
1da177e4 1645
7551ced3 1646 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1647
e495149b 1648 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1649 if (!ab)
1650 continue; /* audit_panic has been called */
1651
1da177e4 1652 switch (aux->type) {
20ca73bc 1653
473ae30b
AV
1654 case AUDIT_EXECVE: {
1655 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1656 audit_log_execve_info(context, &ab, axi);
473ae30b 1657 break; }
073115d6 1658
3fc689e9
EP
1659 case AUDIT_BPRM_FCAPS: {
1660 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1661 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1662 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1663 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1664 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1665 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1666 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1667 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1668 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1669 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1670 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1671 break; }
1672
1da177e4
LT
1673 }
1674 audit_log_end(ab);
1da177e4
LT
1675 }
1676
f3298dc4 1677 if (context->type)
a33e6751 1678 show_special(context, &call_panic);
f3298dc4 1679
157cf649
AV
1680 if (context->fds[0] >= 0) {
1681 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1682 if (ab) {
1683 audit_log_format(ab, "fd0=%d fd1=%d",
1684 context->fds[0], context->fds[1]);
1685 audit_log_end(ab);
1686 }
1687 }
1688
4f6b434f
AV
1689 if (context->sockaddr_len) {
1690 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1691 if (ab) {
1692 audit_log_format(ab, "saddr=");
1693 audit_log_n_hex(ab, (void *)context->sockaddr,
1694 context->sockaddr_len);
1695 audit_log_end(ab);
1696 }
1697 }
1698
e54dc243
AG
1699 for (aux = context->aux_pids; aux; aux = aux->next) {
1700 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1701
1702 for (i = 0; i < axs->pid_count; i++)
1703 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1704 axs->target_auid[i],
1705 axs->target_uid[i],
4746ec5b 1706 axs->target_sessionid[i],
c2a7780e
EP
1707 axs->target_sid[i],
1708 axs->target_comm[i]))
e54dc243 1709 call_panic = 1;
a5cb013d
AV
1710 }
1711
e54dc243
AG
1712 if (context->target_pid &&
1713 audit_log_pid_context(context, context->target_pid,
c2a7780e 1714 context->target_auid, context->target_uid,
4746ec5b 1715 context->target_sessionid,
c2a7780e 1716 context->target_sid, context->target_comm))
e54dc243
AG
1717 call_panic = 1;
1718
44707fdf 1719 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1720 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1721 if (ab) {
c158a35c 1722 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1723 audit_log_end(ab);
1724 }
1725 }
73241ccc 1726
5195d8e2
EP
1727 i = 0;
1728 list_for_each_entry(n, &context->names_list, list)
1729 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1730
1731 /* Send end of event record to help user space know we are finished */
1732 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1733 if (ab)
1734 audit_log_end(ab);
9c7aa6aa
SG
1735 if (call_panic)
1736 audit_panic("error converting sid to string");
1da177e4
LT
1737}
1738
b0dd25a8
RD
1739/**
1740 * audit_free - free a per-task audit context
1741 * @tsk: task whose audit context block to free
1742 *
fa84cb93 1743 * Called from copy_process and do_exit
b0dd25a8 1744 */
a4ff8dba 1745void __audit_free(struct task_struct *tsk)
1da177e4
LT
1746{
1747 struct audit_context *context;
1748
1da177e4 1749 context = audit_get_context(tsk, 0, 0);
56179a6e 1750 if (!context)
1da177e4
LT
1751 return;
1752
1753 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1754 * function (e.g., exit_group), then free context block.
1755 * We use GFP_ATOMIC here because we might be doing this
f5561964 1756 * in the context of the idle thread */
e495149b 1757 /* that can happen only if we are called from do_exit() */
0590b933 1758 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1759 audit_log_exit(context, tsk);
916d7576
AV
1760 if (!list_empty(&context->killed_trees))
1761 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1762
1763 audit_free_context(context);
1764}
1765
b0dd25a8
RD
1766/**
1767 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1768 * @arch: architecture type
1769 * @major: major syscall type (function)
1770 * @a1: additional syscall register 1
1771 * @a2: additional syscall register 2
1772 * @a3: additional syscall register 3
1773 * @a4: additional syscall register 4
1774 *
1775 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1776 * audit context was created when the task was created and the state or
1777 * filters demand the audit context be built. If the state from the
1778 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1779 * then the record will be written at syscall exit time (otherwise, it
1780 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1781 * be written).
1782 */
b05d8447 1783void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1784 unsigned long a1, unsigned long a2,
1785 unsigned long a3, unsigned long a4)
1786{
5411be59 1787 struct task_struct *tsk = current;
1da177e4
LT
1788 struct audit_context *context = tsk->audit_context;
1789 enum audit_state state;
1790
56179a6e 1791 if (!context)
86a1c34a 1792 return;
1da177e4 1793
b0dd25a8
RD
1794 /*
1795 * This happens only on certain architectures that make system
1da177e4
LT
1796 * calls in kernel_thread via the entry.S interface, instead of
1797 * with direct calls. (If you are porting to a new
1798 * architecture, hitting this condition can indicate that you
1799 * got the _exit/_leave calls backward in entry.S.)
1800 *
1801 * i386 no
1802 * x86_64 no
2ef9481e 1803 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1804 *
1805 * This also happens with vm86 emulation in a non-nested manner
1806 * (entries without exits), so this case must be caught.
1807 */
1808 if (context->in_syscall) {
1809 struct audit_context *newctx;
1810
1da177e4
LT
1811#if AUDIT_DEBUG
1812 printk(KERN_ERR
1813 "audit(:%d) pid=%d in syscall=%d;"
1814 " entering syscall=%d\n",
1815 context->serial, tsk->pid, context->major, major);
1816#endif
1817 newctx = audit_alloc_context(context->state);
1818 if (newctx) {
1819 newctx->previous = context;
1820 context = newctx;
1821 tsk->audit_context = newctx;
1822 } else {
1823 /* If we can't alloc a new context, the best we
1824 * can do is to leak memory (any pending putname
1825 * will be lost). The only other alternative is
1826 * to abandon auditing. */
1827 audit_zero_context(context, context->state);
1828 }
1829 }
1830 BUG_ON(context->in_syscall || context->name_count);
1831
1832 if (!audit_enabled)
1833 return;
1834
2fd6f58b 1835 context->arch = arch;
1da177e4
LT
1836 context->major = major;
1837 context->argv[0] = a1;
1838 context->argv[1] = a2;
1839 context->argv[2] = a3;
1840 context->argv[3] = a4;
1841
1842 state = context->state;
d51374ad 1843 context->dummy = !audit_n_rules;
0590b933
AV
1844 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1845 context->prio = 0;
0f45aa18 1846 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1847 }
56179a6e 1848 if (state == AUDIT_DISABLED)
1da177e4
LT
1849 return;
1850
ce625a80 1851 context->serial = 0;
1da177e4
LT
1852 context->ctime = CURRENT_TIME;
1853 context->in_syscall = 1;
0590b933 1854 context->current_state = state;
419c58f1 1855 context->ppid = 0;
1da177e4
LT
1856}
1857
b0dd25a8
RD
1858/**
1859 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1860 * @success: success value of the syscall
1861 * @return_code: return value of the syscall
b0dd25a8
RD
1862 *
1863 * Tear down after system call. If the audit context has been marked as
1da177e4 1864 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1865 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1866 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1867 * free the names stored from getname().
1868 */
d7e7528b 1869void __audit_syscall_exit(int success, long return_code)
1da177e4 1870{
5411be59 1871 struct task_struct *tsk = current;
1da177e4
LT
1872 struct audit_context *context;
1873
d7e7528b
EP
1874 if (success)
1875 success = AUDITSC_SUCCESS;
1876 else
1877 success = AUDITSC_FAILURE;
1da177e4 1878
d7e7528b 1879 context = audit_get_context(tsk, success, return_code);
56179a6e 1880 if (!context)
97e94c45 1881 return;
1da177e4 1882
0590b933 1883 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1884 audit_log_exit(context, tsk);
1da177e4
LT
1885
1886 context->in_syscall = 0;
0590b933 1887 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1888
916d7576
AV
1889 if (!list_empty(&context->killed_trees))
1890 audit_kill_trees(&context->killed_trees);
1891
1da177e4
LT
1892 if (context->previous) {
1893 struct audit_context *new_context = context->previous;
1894 context->previous = NULL;
1895 audit_free_context(context);
1896 tsk->audit_context = new_context;
1897 } else {
1898 audit_free_names(context);
74c3cbe3 1899 unroll_tree_refs(context, NULL, 0);
1da177e4 1900 audit_free_aux(context);
e54dc243
AG
1901 context->aux = NULL;
1902 context->aux_pids = NULL;
a5cb013d 1903 context->target_pid = 0;
e54dc243 1904 context->target_sid = 0;
4f6b434f 1905 context->sockaddr_len = 0;
f3298dc4 1906 context->type = 0;
157cf649 1907 context->fds[0] = -1;
e048e02c
AV
1908 if (context->state != AUDIT_RECORD_CONTEXT) {
1909 kfree(context->filterkey);
1910 context->filterkey = NULL;
1911 }
1da177e4
LT
1912 tsk->audit_context = context;
1913 }
1da177e4
LT
1914}
1915
74c3cbe3
AV
1916static inline void handle_one(const struct inode *inode)
1917{
1918#ifdef CONFIG_AUDIT_TREE
1919 struct audit_context *context;
1920 struct audit_tree_refs *p;
1921 struct audit_chunk *chunk;
1922 int count;
e61ce867 1923 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1924 return;
1925 context = current->audit_context;
1926 p = context->trees;
1927 count = context->tree_count;
1928 rcu_read_lock();
1929 chunk = audit_tree_lookup(inode);
1930 rcu_read_unlock();
1931 if (!chunk)
1932 return;
1933 if (likely(put_tree_ref(context, chunk)))
1934 return;
1935 if (unlikely(!grow_tree_refs(context))) {
436c405c 1936 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1937 audit_set_auditable(context);
1938 audit_put_chunk(chunk);
1939 unroll_tree_refs(context, p, count);
1940 return;
1941 }
1942 put_tree_ref(context, chunk);
1943#endif
1944}
1945
1946static void handle_path(const struct dentry *dentry)
1947{
1948#ifdef CONFIG_AUDIT_TREE
1949 struct audit_context *context;
1950 struct audit_tree_refs *p;
1951 const struct dentry *d, *parent;
1952 struct audit_chunk *drop;
1953 unsigned long seq;
1954 int count;
1955
1956 context = current->audit_context;
1957 p = context->trees;
1958 count = context->tree_count;
1959retry:
1960 drop = NULL;
1961 d = dentry;
1962 rcu_read_lock();
1963 seq = read_seqbegin(&rename_lock);
1964 for(;;) {
1965 struct inode *inode = d->d_inode;
e61ce867 1966 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1967 struct audit_chunk *chunk;
1968 chunk = audit_tree_lookup(inode);
1969 if (chunk) {
1970 if (unlikely(!put_tree_ref(context, chunk))) {
1971 drop = chunk;
1972 break;
1973 }
1974 }
1975 }
1976 parent = d->d_parent;
1977 if (parent == d)
1978 break;
1979 d = parent;
1980 }
1981 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1982 rcu_read_unlock();
1983 if (!drop) {
1984 /* just a race with rename */
1985 unroll_tree_refs(context, p, count);
1986 goto retry;
1987 }
1988 audit_put_chunk(drop);
1989 if (grow_tree_refs(context)) {
1990 /* OK, got more space */
1991 unroll_tree_refs(context, p, count);
1992 goto retry;
1993 }
1994 /* too bad */
1995 printk(KERN_WARNING
436c405c 1996 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1997 unroll_tree_refs(context, p, count);
1998 audit_set_auditable(context);
1999 return;
2000 }
2001 rcu_read_unlock();
2002#endif
2003}
2004
5195d8e2
EP
2005static struct audit_names *audit_alloc_name(struct audit_context *context)
2006{
2007 struct audit_names *aname;
2008
2009 if (context->name_count < AUDIT_NAMES) {
2010 aname = &context->preallocated_names[context->name_count];
2011 memset(aname, 0, sizeof(*aname));
2012 } else {
2013 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2014 if (!aname)
2015 return NULL;
2016 aname->should_free = true;
2017 }
2018
2019 aname->ino = (unsigned long)-1;
2020 list_add_tail(&aname->list, &context->names_list);
2021
2022 context->name_count++;
2023#if AUDIT_DEBUG
2024 context->ino_count++;
2025#endif
2026 return aname;
2027}
2028
b0dd25a8
RD
2029/**
2030 * audit_getname - add a name to the list
2031 * @name: name to add
2032 *
2033 * Add a name to the list of audit names for this context.
2034 * Called from fs/namei.c:getname().
2035 */
d8945bb5 2036void __audit_getname(const char *name)
1da177e4
LT
2037{
2038 struct audit_context *context = current->audit_context;
5195d8e2 2039 struct audit_names *n;
1da177e4 2040
1da177e4
LT
2041 if (!context->in_syscall) {
2042#if AUDIT_DEBUG == 2
2043 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2044 __FILE__, __LINE__, context->serial, name);
2045 dump_stack();
2046#endif
2047 return;
2048 }
5195d8e2
EP
2049
2050 n = audit_alloc_name(context);
2051 if (!n)
2052 return;
2053
2054 n->name = name;
2055 n->name_len = AUDIT_NAME_FULL;
2056 n->name_put = true;
2057
f7ad3c6b
MS
2058 if (!context->pwd.dentry)
2059 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
2060}
2061
b0dd25a8
RD
2062/* audit_putname - intercept a putname request
2063 * @name: name to intercept and delay for putname
2064 *
2065 * If we have stored the name from getname in the audit context,
2066 * then we delay the putname until syscall exit.
2067 * Called from include/linux/fs.h:putname().
2068 */
1da177e4
LT
2069void audit_putname(const char *name)
2070{
2071 struct audit_context *context = current->audit_context;
2072
2073 BUG_ON(!context);
2074 if (!context->in_syscall) {
2075#if AUDIT_DEBUG == 2
2076 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2077 __FILE__, __LINE__, context->serial, name);
2078 if (context->name_count) {
5195d8e2 2079 struct audit_names *n;
1da177e4 2080 int i;
5195d8e2
EP
2081
2082 list_for_each_entry(n, &context->names_list, list)
1da177e4 2083 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
2084 n->name, n->name ?: "(null)");
2085 }
1da177e4
LT
2086#endif
2087 __putname(name);
2088 }
2089#if AUDIT_DEBUG
2090 else {
2091 ++context->put_count;
2092 if (context->put_count > context->name_count) {
2093 printk(KERN_ERR "%s:%d(:%d): major=%d"
2094 " in_syscall=%d putname(%p) name_count=%d"
2095 " put_count=%d\n",
2096 __FILE__, __LINE__,
2097 context->serial, context->major,
2098 context->in_syscall, name, context->name_count,
2099 context->put_count);
2100 dump_stack();
2101 }
2102 }
2103#endif
2104}
2105
851f7ff5
EP
2106static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2107{
2108 struct cpu_vfs_cap_data caps;
2109 int rc;
2110
851f7ff5
EP
2111 if (!dentry)
2112 return 0;
2113
2114 rc = get_vfs_caps_from_disk(dentry, &caps);
2115 if (rc)
2116 return rc;
2117
2118 name->fcap.permitted = caps.permitted;
2119 name->fcap.inheritable = caps.inheritable;
2120 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2121 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2122
2123 return 0;
2124}
2125
2126
3e2efce0 2127/* Copy inode data into an audit_names. */
851f7ff5
EP
2128static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2129 const struct inode *inode)
8c8570fb 2130{
3e2efce0
AG
2131 name->ino = inode->i_ino;
2132 name->dev = inode->i_sb->s_dev;
2133 name->mode = inode->i_mode;
2134 name->uid = inode->i_uid;
2135 name->gid = inode->i_gid;
2136 name->rdev = inode->i_rdev;
2a862b32 2137 security_inode_getsecid(inode, &name->osid);
851f7ff5 2138 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2139}
2140
b0dd25a8
RD
2141/**
2142 * audit_inode - store the inode and device from a lookup
2143 * @name: name being audited
481968f4 2144 * @dentry: dentry being audited
b0dd25a8
RD
2145 *
2146 * Called from fs/namei.c:path_lookup().
2147 */
5a190ae6 2148void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2149{
1da177e4 2150 struct audit_context *context = current->audit_context;
74c3cbe3 2151 const struct inode *inode = dentry->d_inode;
5195d8e2 2152 struct audit_names *n;
1da177e4
LT
2153
2154 if (!context->in_syscall)
2155 return;
5195d8e2
EP
2156
2157 list_for_each_entry_reverse(n, &context->names_list, list) {
2158 if (n->name && (n->name == name))
2159 goto out;
1da177e4 2160 }
5195d8e2
EP
2161
2162 /* unable to find the name from a previous getname() */
2163 n = audit_alloc_name(context);
2164 if (!n)
2165 return;
2166out:
74c3cbe3 2167 handle_path(dentry);
5195d8e2 2168 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2169}
2170
2171/**
2172 * audit_inode_child - collect inode info for created/removed objects
481968f4 2173 * @dentry: dentry being audited
73d3ec5a 2174 * @parent: inode of dentry parent
73241ccc
AG
2175 *
2176 * For syscalls that create or remove filesystem objects, audit_inode
2177 * can only collect information for the filesystem object's parent.
2178 * This call updates the audit context with the child's information.
2179 * Syscalls that create a new filesystem object must be hooked after
2180 * the object is created. Syscalls that remove a filesystem object
2181 * must be hooked prior, in order to capture the target inode during
2182 * unsuccessful attempts.
2183 */
cccc6bba 2184void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2185 const struct inode *parent)
73241ccc 2186{
73241ccc 2187 struct audit_context *context = current->audit_context;
5712e88f 2188 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2189 const struct inode *inode = dentry->d_inode;
cccc6bba 2190 const char *dname = dentry->d_name.name;
5195d8e2 2191 struct audit_names *n;
9c937dcc 2192 int dirlen = 0;
73241ccc
AG
2193
2194 if (!context->in_syscall)
2195 return;
2196
74c3cbe3
AV
2197 if (inode)
2198 handle_one(inode);
73241ccc 2199
5712e88f 2200 /* parent is more likely, look for it first */
5195d8e2 2201 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2202 if (!n->name)
2203 continue;
2204
2205 if (n->ino == parent->i_ino &&
2206 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2207 n->name_len = dirlen; /* update parent data in place */
2208 found_parent = n->name;
2209 goto add_names;
f368c07d 2210 }
5712e88f 2211 }
73241ccc 2212
5712e88f 2213 /* no matching parent, look for matching child */
5195d8e2 2214 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2215 if (!n->name)
2216 continue;
2217
2218 /* strcmp() is the more likely scenario */
2219 if (!strcmp(dname, n->name) ||
2220 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2221 if (inode)
851f7ff5 2222 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2223 else
2224 n->ino = (unsigned long)-1;
2225 found_child = n->name;
2226 goto add_names;
2227 }
ac9910ce 2228 }
5712e88f
AG
2229
2230add_names:
2231 if (!found_parent) {
5195d8e2
EP
2232 n = audit_alloc_name(context);
2233 if (!n)
ac9910ce 2234 return;
5195d8e2 2235 audit_copy_inode(n, NULL, parent);
73d3ec5a 2236 }
5712e88f
AG
2237
2238 if (!found_child) {
5195d8e2
EP
2239 n = audit_alloc_name(context);
2240 if (!n)
5712e88f 2241 return;
5712e88f
AG
2242
2243 /* Re-use the name belonging to the slot for a matching parent
2244 * directory. All names for this context are relinquished in
2245 * audit_free_names() */
2246 if (found_parent) {
5195d8e2
EP
2247 n->name = found_parent;
2248 n->name_len = AUDIT_NAME_FULL;
5712e88f 2249 /* don't call __putname() */
5195d8e2 2250 n->name_put = false;
5712e88f
AG
2251 }
2252
2253 if (inode)
5195d8e2 2254 audit_copy_inode(n, NULL, inode);
5712e88f 2255 }
3e2efce0 2256}
50e437d5 2257EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2258
b0dd25a8
RD
2259/**
2260 * auditsc_get_stamp - get local copies of audit_context values
2261 * @ctx: audit_context for the task
2262 * @t: timespec to store time recorded in the audit_context
2263 * @serial: serial value that is recorded in the audit_context
2264 *
2265 * Also sets the context as auditable.
2266 */
48887e63 2267int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2268 struct timespec *t, unsigned int *serial)
1da177e4 2269{
48887e63
AV
2270 if (!ctx->in_syscall)
2271 return 0;
ce625a80
DW
2272 if (!ctx->serial)
2273 ctx->serial = audit_serial();
bfb4496e
DW
2274 t->tv_sec = ctx->ctime.tv_sec;
2275 t->tv_nsec = ctx->ctime.tv_nsec;
2276 *serial = ctx->serial;
0590b933
AV
2277 if (!ctx->prio) {
2278 ctx->prio = 1;
2279 ctx->current_state = AUDIT_RECORD_CONTEXT;
2280 }
48887e63 2281 return 1;
1da177e4
LT
2282}
2283
4746ec5b
EP
2284/* global counter which is incremented every time something logs in */
2285static atomic_t session_id = ATOMIC_INIT(0);
2286
b0dd25a8 2287/**
0a300be6 2288 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2289 * @loginuid: loginuid value
2290 *
2291 * Returns 0.
2292 *
2293 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2294 */
e1760bd5 2295int audit_set_loginuid(kuid_t loginuid)
1da177e4 2296{
0a300be6 2297 struct task_struct *task = current;
41757106 2298 struct audit_context *context = task->audit_context;
633b4545 2299 unsigned int sessionid;
41757106 2300
633b4545 2301#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
e1760bd5 2302 if (uid_valid(task->loginuid))
633b4545
EP
2303 return -EPERM;
2304#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2305 if (!capable(CAP_AUDIT_CONTROL))
2306 return -EPERM;
2307#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2308
2309 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2310 if (context && context->in_syscall) {
2311 struct audit_buffer *ab;
2312
2313 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2314 if (ab) {
2315 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2316 "old auid=%u new auid=%u"
2317 " old ses=%u new ses=%u",
c69e8d9c 2318 task->pid, task_uid(task),
e1760bd5
EB
2319 from_kuid(&init_user_ns, task->loginuid),
2320 from_kuid(&init_user_ns, loginuid),
4746ec5b 2321 task->sessionid, sessionid);
bfef93a5 2322 audit_log_end(ab);
c0404993 2323 }
1da177e4 2324 }
4746ec5b 2325 task->sessionid = sessionid;
bfef93a5 2326 task->loginuid = loginuid;
1da177e4
LT
2327 return 0;
2328}
2329
20ca73bc
GW
2330/**
2331 * __audit_mq_open - record audit data for a POSIX MQ open
2332 * @oflag: open flag
2333 * @mode: mode bits
6b962559 2334 * @attr: queue attributes
20ca73bc 2335 *
20ca73bc 2336 */
df0a4283 2337void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2338{
20ca73bc
GW
2339 struct audit_context *context = current->audit_context;
2340
564f6993
AV
2341 if (attr)
2342 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2343 else
2344 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2345
564f6993
AV
2346 context->mq_open.oflag = oflag;
2347 context->mq_open.mode = mode;
20ca73bc 2348
564f6993 2349 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2350}
2351
2352/**
c32c8af4 2353 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2354 * @mqdes: MQ descriptor
2355 * @msg_len: Message length
2356 * @msg_prio: Message priority
c32c8af4 2357 * @abs_timeout: Message timeout in absolute time
20ca73bc 2358 *
20ca73bc 2359 */
c32c8af4
AV
2360void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2361 const struct timespec *abs_timeout)
20ca73bc 2362{
20ca73bc 2363 struct audit_context *context = current->audit_context;
c32c8af4 2364 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2365
c32c8af4
AV
2366 if (abs_timeout)
2367 memcpy(p, abs_timeout, sizeof(struct timespec));
2368 else
2369 memset(p, 0, sizeof(struct timespec));
20ca73bc 2370
c32c8af4
AV
2371 context->mq_sendrecv.mqdes = mqdes;
2372 context->mq_sendrecv.msg_len = msg_len;
2373 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2374
c32c8af4 2375 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2376}
2377
2378/**
2379 * __audit_mq_notify - record audit data for a POSIX MQ notify
2380 * @mqdes: MQ descriptor
6b962559 2381 * @notification: Notification event
20ca73bc 2382 *
20ca73bc
GW
2383 */
2384
20114f71 2385void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2386{
20ca73bc
GW
2387 struct audit_context *context = current->audit_context;
2388
20114f71
AV
2389 if (notification)
2390 context->mq_notify.sigev_signo = notification->sigev_signo;
2391 else
2392 context->mq_notify.sigev_signo = 0;
20ca73bc 2393
20114f71
AV
2394 context->mq_notify.mqdes = mqdes;
2395 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2396}
2397
2398/**
2399 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2400 * @mqdes: MQ descriptor
2401 * @mqstat: MQ flags
2402 *
20ca73bc 2403 */
7392906e 2404void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2405{
20ca73bc 2406 struct audit_context *context = current->audit_context;
7392906e
AV
2407 context->mq_getsetattr.mqdes = mqdes;
2408 context->mq_getsetattr.mqstat = *mqstat;
2409 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2410}
2411
b0dd25a8 2412/**
073115d6
SG
2413 * audit_ipc_obj - record audit data for ipc object
2414 * @ipcp: ipc permissions
2415 *
073115d6 2416 */
a33e6751 2417void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2418{
073115d6 2419 struct audit_context *context = current->audit_context;
a33e6751
AV
2420 context->ipc.uid = ipcp->uid;
2421 context->ipc.gid = ipcp->gid;
2422 context->ipc.mode = ipcp->mode;
e816f370 2423 context->ipc.has_perm = 0;
a33e6751
AV
2424 security_ipc_getsecid(ipcp, &context->ipc.osid);
2425 context->type = AUDIT_IPC;
073115d6
SG
2426}
2427
2428/**
2429 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2430 * @qbytes: msgq bytes
2431 * @uid: msgq user id
2432 * @gid: msgq group id
2433 * @mode: msgq mode (permissions)
2434 *
e816f370 2435 * Called only after audit_ipc_obj().
b0dd25a8 2436 */
2570ebbd 2437void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2438{
1da177e4
LT
2439 struct audit_context *context = current->audit_context;
2440
e816f370
AV
2441 context->ipc.qbytes = qbytes;
2442 context->ipc.perm_uid = uid;
2443 context->ipc.perm_gid = gid;
2444 context->ipc.perm_mode = mode;
2445 context->ipc.has_perm = 1;
1da177e4 2446}
c2f0c7c3 2447
07c49417 2448int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2449{
2450 struct audit_aux_data_execve *ax;
2451 struct audit_context *context = current->audit_context;
473ae30b 2452
bdf4c48a 2453 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2454 if (!ax)
2455 return -ENOMEM;
2456
2457 ax->argc = bprm->argc;
2458 ax->envc = bprm->envc;
bdf4c48a 2459 ax->mm = bprm->mm;
473ae30b
AV
2460 ax->d.type = AUDIT_EXECVE;
2461 ax->d.next = context->aux;
2462 context->aux = (void *)ax;
2463 return 0;
2464}
2465
2466
b0dd25a8
RD
2467/**
2468 * audit_socketcall - record audit data for sys_socketcall
2469 * @nargs: number of args
2470 * @args: args array
2471 *
b0dd25a8 2472 */
07c49417 2473void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2474{
3ec3b2fb
DW
2475 struct audit_context *context = current->audit_context;
2476
f3298dc4
AV
2477 context->type = AUDIT_SOCKETCALL;
2478 context->socketcall.nargs = nargs;
2479 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2480}
2481
db349509
AV
2482/**
2483 * __audit_fd_pair - record audit data for pipe and socketpair
2484 * @fd1: the first file descriptor
2485 * @fd2: the second file descriptor
2486 *
db349509 2487 */
157cf649 2488void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2489{
2490 struct audit_context *context = current->audit_context;
157cf649
AV
2491 context->fds[0] = fd1;
2492 context->fds[1] = fd2;
db349509
AV
2493}
2494
b0dd25a8
RD
2495/**
2496 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2497 * @len: data length in user space
2498 * @a: data address in kernel space
2499 *
2500 * Returns 0 for success or NULL context or < 0 on error.
2501 */
07c49417 2502int __audit_sockaddr(int len, void *a)
3ec3b2fb 2503{
3ec3b2fb
DW
2504 struct audit_context *context = current->audit_context;
2505
4f6b434f
AV
2506 if (!context->sockaddr) {
2507 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2508 if (!p)
2509 return -ENOMEM;
2510 context->sockaddr = p;
2511 }
3ec3b2fb 2512
4f6b434f
AV
2513 context->sockaddr_len = len;
2514 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2515 return 0;
2516}
2517
a5cb013d
AV
2518void __audit_ptrace(struct task_struct *t)
2519{
2520 struct audit_context *context = current->audit_context;
2521
2522 context->target_pid = t->pid;
c2a7780e 2523 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2524 context->target_uid = task_uid(t);
4746ec5b 2525 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2526 security_task_getsecid(t, &context->target_sid);
c2a7780e 2527 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2528}
2529
b0dd25a8
RD
2530/**
2531 * audit_signal_info - record signal info for shutting down audit subsystem
2532 * @sig: signal value
2533 * @t: task being signaled
2534 *
2535 * If the audit subsystem is being terminated, record the task (pid)
2536 * and uid that is doing that.
2537 */
e54dc243 2538int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2539{
e54dc243
AG
2540 struct audit_aux_data_pids *axp;
2541 struct task_struct *tsk = current;
2542 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2543 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2544
175fc484 2545 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2546 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2547 audit_sig_pid = tsk->pid;
e1760bd5 2548 if (uid_valid(tsk->loginuid))
bfef93a5 2549 audit_sig_uid = tsk->loginuid;
175fc484 2550 else
c69e8d9c 2551 audit_sig_uid = uid;
2a862b32 2552 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2553 }
2554 if (!audit_signals || audit_dummy_context())
2555 return 0;
c2f0c7c3 2556 }
e54dc243 2557
e54dc243
AG
2558 /* optimize the common case by putting first signal recipient directly
2559 * in audit_context */
2560 if (!ctx->target_pid) {
2561 ctx->target_pid = t->tgid;
c2a7780e 2562 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2563 ctx->target_uid = t_uid;
4746ec5b 2564 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2565 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2566 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2567 return 0;
2568 }
2569
2570 axp = (void *)ctx->aux_pids;
2571 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2572 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2573 if (!axp)
2574 return -ENOMEM;
2575
2576 axp->d.type = AUDIT_OBJ_PID;
2577 axp->d.next = ctx->aux_pids;
2578 ctx->aux_pids = (void *)axp;
2579 }
88ae704c 2580 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2581
2582 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2583 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2584 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2585 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2586 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2587 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2588 axp->pid_count++;
2589
2590 return 0;
c2f0c7c3 2591}
0a4ff8c2 2592
3fc689e9
EP
2593/**
2594 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2595 * @bprm: pointer to the bprm being processed
2596 * @new: the proposed new credentials
2597 * @old: the old credentials
3fc689e9
EP
2598 *
2599 * Simply check if the proc already has the caps given by the file and if not
2600 * store the priv escalation info for later auditing at the end of the syscall
2601 *
3fc689e9
EP
2602 * -Eric
2603 */
d84f4f99
DH
2604int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2605 const struct cred *new, const struct cred *old)
3fc689e9
EP
2606{
2607 struct audit_aux_data_bprm_fcaps *ax;
2608 struct audit_context *context = current->audit_context;
2609 struct cpu_vfs_cap_data vcaps;
2610 struct dentry *dentry;
2611
2612 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2613 if (!ax)
d84f4f99 2614 return -ENOMEM;
3fc689e9
EP
2615
2616 ax->d.type = AUDIT_BPRM_FCAPS;
2617 ax->d.next = context->aux;
2618 context->aux = (void *)ax;
2619
2620 dentry = dget(bprm->file->f_dentry);
2621 get_vfs_caps_from_disk(dentry, &vcaps);
2622 dput(dentry);
2623
2624 ax->fcap.permitted = vcaps.permitted;
2625 ax->fcap.inheritable = vcaps.inheritable;
2626 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2627 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2628
d84f4f99
DH
2629 ax->old_pcap.permitted = old->cap_permitted;
2630 ax->old_pcap.inheritable = old->cap_inheritable;
2631 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2632
d84f4f99
DH
2633 ax->new_pcap.permitted = new->cap_permitted;
2634 ax->new_pcap.inheritable = new->cap_inheritable;
2635 ax->new_pcap.effective = new->cap_effective;
2636 return 0;
3fc689e9
EP
2637}
2638
e68b75a0
EP
2639/**
2640 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2641 * @pid: target pid of the capset call
2642 * @new: the new credentials
2643 * @old: the old (current) credentials
e68b75a0
EP
2644 *
2645 * Record the aguments userspace sent to sys_capset for later printing by the
2646 * audit system if applicable
2647 */
57f71a0a 2648void __audit_log_capset(pid_t pid,
d84f4f99 2649 const struct cred *new, const struct cred *old)
e68b75a0 2650{
e68b75a0 2651 struct audit_context *context = current->audit_context;
57f71a0a
AV
2652 context->capset.pid = pid;
2653 context->capset.cap.effective = new->cap_effective;
2654 context->capset.cap.inheritable = new->cap_effective;
2655 context->capset.cap.permitted = new->cap_permitted;
2656 context->type = AUDIT_CAPSET;
e68b75a0
EP
2657}
2658
120a795d
AV
2659void __audit_mmap_fd(int fd, int flags)
2660{
2661 struct audit_context *context = current->audit_context;
2662 context->mmap.fd = fd;
2663 context->mmap.flags = flags;
2664 context->type = AUDIT_MMAP;
2665}
2666
85e7bac3
EP
2667static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2668{
2669 uid_t auid, uid;
2670 gid_t gid;
2671 unsigned int sessionid;
2672
2673 auid = audit_get_loginuid(current);
2674 sessionid = audit_get_sessionid(current);
2675 current_uid_gid(&uid, &gid);
2676
2677 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2678 auid, uid, gid, sessionid);
2679 audit_log_task_context(ab);
2680 audit_log_format(ab, " pid=%d comm=", current->pid);
2681 audit_log_untrustedstring(ab, current->comm);
2682 audit_log_format(ab, " reason=");
2683 audit_log_string(ab, reason);
2684 audit_log_format(ab, " sig=%ld", signr);
2685}
0a4ff8c2
SG
2686/**
2687 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2688 * @signr: signal value
0a4ff8c2
SG
2689 *
2690 * If a process ends with a core dump, something fishy is going on and we
2691 * should record the event for investigation.
2692 */
2693void audit_core_dumps(long signr)
2694{
2695 struct audit_buffer *ab;
0a4ff8c2
SG
2696
2697 if (!audit_enabled)
2698 return;
2699
2700 if (signr == SIGQUIT) /* don't care for those */
2701 return;
2702
2703 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2704 audit_log_abend(ab, "memory violation", signr);
2705 audit_log_end(ab);
2706}
0a4ff8c2 2707
3dc1c1b2 2708void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2709{
2710 struct audit_buffer *ab;
2711
2712 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
3dc1c1b2 2713 audit_log_abend(ab, "seccomp", signr);
85e7bac3 2714 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2715 audit_log_format(ab, " compat=%d", is_compat_task());
2716 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2717 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2718 audit_log_end(ab);
2719}
916d7576
AV
2720
2721struct list_head *audit_killed_trees(void)
2722{
2723 struct audit_context *ctx = current->audit_context;
2724 if (likely(!ctx || !ctx->in_syscall))
2725 return NULL;
2726 return &ctx->killed_trees;
2727}