]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/core.c
Merge tag 'pci-v5.15-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / core.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
f5bffecd
AS
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
f5bffecd 16 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 18 */
738cbe72 19
838e9690 20#include <uapi/linux/btf.h>
f5bffecd
AS
21#include <linux/filter.h>
22#include <linux/skbuff.h>
60a3b225 23#include <linux/vmalloc.h>
738cbe72
DB
24#include <linux/random.h>
25#include <linux/moduleloader.h>
09756af4 26#include <linux/bpf.h>
838e9690 27#include <linux/btf.h>
00089c04 28#include <linux/objtool.h>
74451e66
DB
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
c195651e 32#include <linux/perf_event.h>
3dec541b 33#include <linux/extable.h>
b7b3fc8d 34#include <linux/log2.h>
f5e81d11
DB
35
36#include <asm/barrier.h>
3324b584
DB
37#include <asm/unaligned.h>
38
f5bffecd
AS
39/* Registers */
40#define BPF_R0 regs[BPF_REG_0]
41#define BPF_R1 regs[BPF_REG_1]
42#define BPF_R2 regs[BPF_REG_2]
43#define BPF_R3 regs[BPF_REG_3]
44#define BPF_R4 regs[BPF_REG_4]
45#define BPF_R5 regs[BPF_REG_5]
46#define BPF_R6 regs[BPF_REG_6]
47#define BPF_R7 regs[BPF_REG_7]
48#define BPF_R8 regs[BPF_REG_8]
49#define BPF_R9 regs[BPF_REG_9]
50#define BPF_R10 regs[BPF_REG_10]
51
52/* Named registers */
53#define DST regs[insn->dst_reg]
54#define SRC regs[insn->src_reg]
55#define FP regs[BPF_REG_FP]
144cd91c 56#define AX regs[BPF_REG_AX]
f5bffecd
AS
57#define ARG1 regs[BPF_REG_ARG1]
58#define CTX regs[BPF_REG_CTX]
59#define IMM insn->imm
60
61/* No hurry in this branch
62 *
63 * Exported for the bpf jit load helper.
64 */
65void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66{
67 u8 *ptr = NULL;
68
69 if (k >= SKF_NET_OFF)
70 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 else if (k >= SKF_LL_OFF)
72 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 73
f5bffecd
AS
74 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 return ptr;
76
77 return NULL;
78}
79
492ecee8 80struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
60a3b225 81{
ddf8503c 82 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
09756af4 83 struct bpf_prog_aux *aux;
60a3b225
DB
84 struct bpf_prog *fp;
85
86 size = round_up(size, PAGE_SIZE);
88dca4ca 87 fp = __vmalloc(size, gfp_flags);
60a3b225
DB
88 if (fp == NULL)
89 return NULL;
90
ddf8503c 91 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
09756af4 92 if (aux == NULL) {
60a3b225
DB
93 vfree(fp);
94 return NULL;
95 }
ca06f55b
AS
96 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
97 if (!fp->active) {
98 vfree(fp);
99 kfree(aux);
100 return NULL;
101 }
60a3b225
DB
102
103 fp->pages = size / PAGE_SIZE;
09756af4 104 fp->aux = aux;
e9d8afa9 105 fp->aux->prog = fp;
60b58afc 106 fp->jit_requested = ebpf_jit_enabled();
60a3b225 107
ecb60d1c 108 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
984fe94f 109 mutex_init(&fp->aux->used_maps_mutex);
3aac1ead 110 mutex_init(&fp->aux->dst_mutex);
74451e66 111
60a3b225
DB
112 return fp;
113}
492ecee8
AS
114
115struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
116{
ddf8503c 117 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
492ecee8 118 struct bpf_prog *prog;
4b911304 119 int cpu;
492ecee8
AS
120
121 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
122 if (!prog)
123 return NULL;
124
700d4796
AS
125 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
126 if (!prog->stats) {
ca06f55b 127 free_percpu(prog->active);
492ecee8
AS
128 kfree(prog->aux);
129 vfree(prog);
130 return NULL;
131 }
132
4b911304
ED
133 for_each_possible_cpu(cpu) {
134 struct bpf_prog_stats *pstats;
135
700d4796 136 pstats = per_cpu_ptr(prog->stats, cpu);
4b911304
ED
137 u64_stats_init(&pstats->syncp);
138 }
492ecee8
AS
139 return prog;
140}
60a3b225
DB
141EXPORT_SYMBOL_GPL(bpf_prog_alloc);
142
c454a46b
MKL
143int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
144{
145 if (!prog->aux->nr_linfo || !prog->jit_requested)
146 return 0;
147
e16301fb
MKL
148 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
149 sizeof(*prog->aux->jited_linfo),
150 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
c454a46b
MKL
151 if (!prog->aux->jited_linfo)
152 return -ENOMEM;
153
154 return 0;
155}
156
e16301fb 157void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
c454a46b 158{
e16301fb
MKL
159 if (prog->aux->jited_linfo &&
160 (!prog->jited || !prog->aux->jited_linfo[0])) {
161 kvfree(prog->aux->jited_linfo);
162 prog->aux->jited_linfo = NULL;
163 }
e6ac2450
MKL
164
165 kfree(prog->aux->kfunc_tab);
166 prog->aux->kfunc_tab = NULL;
c454a46b
MKL
167}
168
169/* The jit engine is responsible to provide an array
170 * for insn_off to the jited_off mapping (insn_to_jit_off).
171 *
172 * The idx to this array is the insn_off. Hence, the insn_off
173 * here is relative to the prog itself instead of the main prog.
174 * This array has one entry for each xlated bpf insn.
175 *
176 * jited_off is the byte off to the last byte of the jited insn.
177 *
178 * Hence, with
179 * insn_start:
180 * The first bpf insn off of the prog. The insn off
181 * here is relative to the main prog.
182 * e.g. if prog is a subprog, insn_start > 0
183 * linfo_idx:
184 * The prog's idx to prog->aux->linfo and jited_linfo
185 *
186 * jited_linfo[linfo_idx] = prog->bpf_func
187 *
188 * For i > linfo_idx,
189 *
190 * jited_linfo[i] = prog->bpf_func +
191 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
192 */
193void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
194 const u32 *insn_to_jit_off)
195{
196 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
197 const struct bpf_line_info *linfo;
198 void **jited_linfo;
199
200 if (!prog->aux->jited_linfo)
201 /* Userspace did not provide linfo */
202 return;
203
204 linfo_idx = prog->aux->linfo_idx;
205 linfo = &prog->aux->linfo[linfo_idx];
206 insn_start = linfo[0].insn_off;
207 insn_end = insn_start + prog->len;
208
209 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
210 jited_linfo[0] = prog->bpf_func;
211
212 nr_linfo = prog->aux->nr_linfo - linfo_idx;
213
214 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
215 /* The verifier ensures that linfo[i].insn_off is
216 * strictly increasing
217 */
218 jited_linfo[i] = prog->bpf_func +
219 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
220}
221
60a3b225
DB
222struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
223 gfp_t gfp_extra_flags)
224{
ddf8503c 225 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
60a3b225 226 struct bpf_prog *fp;
3ac1f01b 227 u32 pages;
60a3b225 228
60a3b225 229 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
230 pages = size / PAGE_SIZE;
231 if (pages <= fp_old->pages)
60a3b225
DB
232 return fp_old;
233
88dca4ca 234 fp = __vmalloc(size, gfp_flags);
3ac1f01b 235 if (fp) {
60a3b225 236 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 237 fp->pages = pages;
e9d8afa9 238 fp->aux->prog = fp;
60a3b225 239
09756af4 240 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
241 * reallocated structure.
242 */
09756af4 243 fp_old->aux = NULL;
1336c662
AS
244 fp_old->stats = NULL;
245 fp_old->active = NULL;
60a3b225
DB
246 __bpf_prog_free(fp_old);
247 }
248
249 return fp;
250}
60a3b225
DB
251
252void __bpf_prog_free(struct bpf_prog *fp)
253{
492ecee8 254 if (fp->aux) {
984fe94f 255 mutex_destroy(&fp->aux->used_maps_mutex);
3aac1ead 256 mutex_destroy(&fp->aux->dst_mutex);
a66886fe 257 kfree(fp->aux->poke_tab);
492ecee8
AS
258 kfree(fp->aux);
259 }
700d4796 260 free_percpu(fp->stats);
ca06f55b 261 free_percpu(fp->active);
60a3b225
DB
262 vfree(fp);
263}
60a3b225 264
f1f7714e 265int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3 266{
6b0b0fa2 267 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
f1f7714e 268 u32 raw_size = bpf_prog_tag_scratch_size(fp);
6b0b0fa2
EB
269 u32 digest[SHA1_DIGEST_WORDS];
270 u32 ws[SHA1_WORKSPACE_WORDS];
7bd509e3 271 u32 i, bsize, psize, blocks;
aafe6ae9 272 struct bpf_insn *dst;
7bd509e3 273 bool was_ld_map;
aafe6ae9 274 u8 *raw, *todo;
7bd509e3
DB
275 __be32 *result;
276 __be64 *bits;
277
aafe6ae9
DB
278 raw = vmalloc(raw_size);
279 if (!raw)
280 return -ENOMEM;
281
6b0b0fa2 282 sha1_init(digest);
7bd509e3
DB
283 memset(ws, 0, sizeof(ws));
284
285 /* We need to take out the map fd for the digest calculation
286 * since they are unstable from user space side.
287 */
aafe6ae9 288 dst = (void *)raw;
7bd509e3
DB
289 for (i = 0, was_ld_map = false; i < fp->len; i++) {
290 dst[i] = fp->insnsi[i];
291 if (!was_ld_map &&
292 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
d8eca5bb
DB
293 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
294 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
7bd509e3
DB
295 was_ld_map = true;
296 dst[i].imm = 0;
297 } else if (was_ld_map &&
298 dst[i].code == 0 &&
299 dst[i].dst_reg == 0 &&
300 dst[i].src_reg == 0 &&
301 dst[i].off == 0) {
302 was_ld_map = false;
303 dst[i].imm = 0;
304 } else {
305 was_ld_map = false;
306 }
307 }
308
aafe6ae9
DB
309 psize = bpf_prog_insn_size(fp);
310 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
311 raw[psize++] = 0x80;
312
6b0b0fa2
EB
313 bsize = round_up(psize, SHA1_BLOCK_SIZE);
314 blocks = bsize / SHA1_BLOCK_SIZE;
aafe6ae9 315 todo = raw;
7bd509e3
DB
316 if (bsize - psize >= sizeof(__be64)) {
317 bits = (__be64 *)(todo + bsize - sizeof(__be64));
318 } else {
319 bits = (__be64 *)(todo + bsize + bits_offset);
320 blocks++;
321 }
322 *bits = cpu_to_be64((psize - 1) << 3);
323
324 while (blocks--) {
6b0b0fa2
EB
325 sha1_transform(digest, todo, ws);
326 todo += SHA1_BLOCK_SIZE;
7bd509e3
DB
327 }
328
f1f7714e 329 result = (__force __be32 *)digest;
6b0b0fa2 330 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
f1f7714e
DB
331 result[i] = cpu_to_be32(digest[i]);
332 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
333
334 vfree(raw);
335 return 0;
7bd509e3
DB
336}
337
2cbd95a5 338static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 339 s32 end_new, s32 curr, const bool probe_pass)
c237ee5e 340{
050fad7c 341 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
2cbd95a5 342 s32 delta = end_new - end_old;
050fad7c
DB
343 s64 imm = insn->imm;
344
2cbd95a5 345 if (curr < pos && curr + imm + 1 >= end_old)
050fad7c 346 imm += delta;
2cbd95a5 347 else if (curr >= end_new && curr + imm + 1 < end_new)
050fad7c
DB
348 imm -= delta;
349 if (imm < imm_min || imm > imm_max)
350 return -ERANGE;
351 if (!probe_pass)
352 insn->imm = imm;
353 return 0;
354}
355
2cbd95a5 356static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 357 s32 end_new, s32 curr, const bool probe_pass)
050fad7c
DB
358{
359 const s32 off_min = S16_MIN, off_max = S16_MAX;
2cbd95a5 360 s32 delta = end_new - end_old;
050fad7c
DB
361 s32 off = insn->off;
362
2cbd95a5 363 if (curr < pos && curr + off + 1 >= end_old)
050fad7c 364 off += delta;
2cbd95a5 365 else if (curr >= end_new && curr + off + 1 < end_new)
050fad7c
DB
366 off -= delta;
367 if (off < off_min || off > off_max)
368 return -ERANGE;
369 if (!probe_pass)
370 insn->off = off;
371 return 0;
372}
373
2cbd95a5
JK
374static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
375 s32 end_new, const bool probe_pass)
050fad7c 376{
2cbd95a5 377 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
c237ee5e 378 struct bpf_insn *insn = prog->insnsi;
050fad7c 379 int ret = 0;
c237ee5e
DB
380
381 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
382 u8 code;
383
384 /* In the probing pass we still operate on the original,
385 * unpatched image in order to check overflows before we
386 * do any other adjustments. Therefore skip the patchlet.
387 */
388 if (probe_pass && i == pos) {
2cbd95a5
JK
389 i = end_new;
390 insn = prog->insnsi + end_old;
050fad7c 391 }
1ea47e01 392 code = insn->code;
092ed096
JW
393 if ((BPF_CLASS(code) != BPF_JMP &&
394 BPF_CLASS(code) != BPF_JMP32) ||
050fad7c 395 BPF_OP(code) == BPF_EXIT)
1ea47e01 396 continue;
050fad7c 397 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 398 if (BPF_OP(code) == BPF_CALL) {
050fad7c 399 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 400 continue;
2cbd95a5
JK
401 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 end_new, i, probe_pass);
1ea47e01 403 } else {
2cbd95a5
JK
404 ret = bpf_adj_delta_to_off(insn, pos, end_old,
405 end_new, i, probe_pass);
1ea47e01 406 }
050fad7c
DB
407 if (ret)
408 break;
c237ee5e 409 }
050fad7c
DB
410
411 return ret;
c237ee5e
DB
412}
413
c454a46b
MKL
414static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
415{
416 struct bpf_line_info *linfo;
417 u32 i, nr_linfo;
418
419 nr_linfo = prog->aux->nr_linfo;
420 if (!nr_linfo || !delta)
421 return;
422
423 linfo = prog->aux->linfo;
424
425 for (i = 0; i < nr_linfo; i++)
426 if (off < linfo[i].insn_off)
427 break;
428
429 /* Push all off < linfo[i].insn_off by delta */
430 for (; i < nr_linfo; i++)
431 linfo[i].insn_off += delta;
432}
433
c237ee5e
DB
434struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
435 const struct bpf_insn *patch, u32 len)
436{
437 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 438 const u32 cnt_max = S16_MAX;
c237ee5e 439 struct bpf_prog *prog_adj;
4f73379e 440 int err;
c237ee5e
DB
441
442 /* Since our patchlet doesn't expand the image, we're done. */
443 if (insn_delta == 0) {
444 memcpy(prog->insnsi + off, patch, sizeof(*patch));
445 return prog;
446 }
447
448 insn_adj_cnt = prog->len + insn_delta;
449
050fad7c
DB
450 /* Reject anything that would potentially let the insn->off
451 * target overflow when we have excessive program expansions.
452 * We need to probe here before we do any reallocation where
453 * we afterwards may not fail anymore.
454 */
455 if (insn_adj_cnt > cnt_max &&
4f73379e
AS
456 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
457 return ERR_PTR(err);
050fad7c 458
c237ee5e
DB
459 /* Several new instructions need to be inserted. Make room
460 * for them. Likely, there's no need for a new allocation as
461 * last page could have large enough tailroom.
462 */
463 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
464 GFP_USER);
465 if (!prog_adj)
4f73379e 466 return ERR_PTR(-ENOMEM);
c237ee5e
DB
467
468 prog_adj->len = insn_adj_cnt;
469
470 /* Patching happens in 3 steps:
471 *
472 * 1) Move over tail of insnsi from next instruction onwards,
473 * so we can patch the single target insn with one or more
474 * new ones (patching is always from 1 to n insns, n > 0).
475 * 2) Inject new instructions at the target location.
476 * 3) Adjust branch offsets if necessary.
477 */
478 insn_rest = insn_adj_cnt - off - len;
479
480 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
481 sizeof(*patch) * insn_rest);
482 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
483
050fad7c
DB
484 /* We are guaranteed to not fail at this point, otherwise
485 * the ship has sailed to reverse to the original state. An
486 * overflow cannot happen at this point.
487 */
2cbd95a5 488 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
c237ee5e 489
c454a46b
MKL
490 bpf_adj_linfo(prog_adj, off, insn_delta);
491
c237ee5e
DB
492 return prog_adj;
493}
494
52875a04
JK
495int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
496{
497 /* Branch offsets can't overflow when program is shrinking, no need
498 * to call bpf_adj_branches(..., true) here
499 */
500 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
501 sizeof(struct bpf_insn) * (prog->len - off - cnt));
502 prog->len -= cnt;
503
504 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
505}
506
cd7455f1 507static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
7d1982b4
DB
508{
509 int i;
510
511 for (i = 0; i < fp->aux->func_cnt; i++)
512 bpf_prog_kallsyms_del(fp->aux->func[i]);
513}
514
515void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
516{
517 bpf_prog_kallsyms_del_subprogs(fp);
518 bpf_prog_kallsyms_del(fp);
519}
520
b954d834 521#ifdef CONFIG_BPF_JIT
fa9dd599 522/* All BPF JIT sysctl knobs here. */
81c22041
DB
523int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
524int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
fa9dd599 525int bpf_jit_harden __read_mostly;
fdadd049 526long bpf_jit_limit __read_mostly;
fa9dd599 527
535911c8
JO
528static void
529bpf_prog_ksym_set_addr(struct bpf_prog *prog)
74451e66
DB
530{
531 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
532 unsigned long addr = (unsigned long)hdr;
533
534 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
535
535911c8
JO
536 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
537 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
74451e66
DB
538}
539
bfea9a85
JO
540static void
541bpf_prog_ksym_set_name(struct bpf_prog *prog)
74451e66 542{
bfea9a85 543 char *sym = prog->aux->ksym.name;
368211fb 544 const char *end = sym + KSYM_NAME_LEN;
838e9690
YS
545 const struct btf_type *type;
546 const char *func_name;
368211fb 547
74451e66 548 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
549 sizeof(prog->tag) * 2 +
550 /* name has been null terminated.
551 * We should need +1 for the '_' preceding
552 * the name. However, the null character
553 * is double counted between the name and the
554 * sizeof("bpf_prog_") above, so we omit
555 * the +1 here.
556 */
557 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
558
559 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
560 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
838e9690
YS
561
562 /* prog->aux->name will be ignored if full btf name is available */
7337224f 563 if (prog->aux->func_info_cnt) {
ba64e7d8
YS
564 type = btf_type_by_id(prog->aux->btf,
565 prog->aux->func_info[prog->aux->func_idx].type_id);
838e9690
YS
566 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
567 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
568 return;
569 }
570
368211fb
MKL
571 if (prog->aux->name[0])
572 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
573 else
574 *sym = 0;
74451e66
DB
575}
576
ca4424c9 577static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
74451e66 578{
ca4424c9 579 return container_of(n, struct bpf_ksym, tnode)->start;
74451e66
DB
580}
581
582static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
583 struct latch_tree_node *b)
584{
ca4424c9 585 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
74451e66
DB
586}
587
588static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
589{
590 unsigned long val = (unsigned long)key;
ca4424c9 591 const struct bpf_ksym *ksym;
74451e66 592
ca4424c9 593 ksym = container_of(n, struct bpf_ksym, tnode);
74451e66 594
ca4424c9 595 if (val < ksym->start)
74451e66 596 return -1;
ca4424c9 597 if (val >= ksym->end)
74451e66
DB
598 return 1;
599
600 return 0;
601}
602
603static const struct latch_tree_ops bpf_tree_ops = {
604 .less = bpf_tree_less,
605 .comp = bpf_tree_comp,
606};
607
608static DEFINE_SPINLOCK(bpf_lock);
609static LIST_HEAD(bpf_kallsyms);
610static struct latch_tree_root bpf_tree __cacheline_aligned;
611
dba122fb 612void bpf_ksym_add(struct bpf_ksym *ksym)
74451e66 613{
dba122fb
JO
614 spin_lock_bh(&bpf_lock);
615 WARN_ON_ONCE(!list_empty(&ksym->lnode));
616 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
617 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
618 spin_unlock_bh(&bpf_lock);
74451e66
DB
619}
620
dba122fb 621static void __bpf_ksym_del(struct bpf_ksym *ksym)
74451e66 622{
dba122fb 623 if (list_empty(&ksym->lnode))
74451e66
DB
624 return;
625
dba122fb
JO
626 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
627 list_del_rcu(&ksym->lnode);
628}
629
630void bpf_ksym_del(struct bpf_ksym *ksym)
631{
632 spin_lock_bh(&bpf_lock);
633 __bpf_ksym_del(ksym);
634 spin_unlock_bh(&bpf_lock);
74451e66
DB
635}
636
637static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
638{
639 return fp->jited && !bpf_prog_was_classic(fp);
640}
641
642static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
643{
ecb60d1c
JO
644 return list_empty(&fp->aux->ksym.lnode) ||
645 fp->aux->ksym.lnode.prev == LIST_POISON2;
74451e66
DB
646}
647
648void bpf_prog_kallsyms_add(struct bpf_prog *fp)
649{
74451e66 650 if (!bpf_prog_kallsyms_candidate(fp) ||
2c78ee89 651 !bpf_capable())
74451e66
DB
652 return;
653
535911c8 654 bpf_prog_ksym_set_addr(fp);
bfea9a85 655 bpf_prog_ksym_set_name(fp);
cbd76f8d 656 fp->aux->ksym.prog = true;
535911c8 657
dba122fb 658 bpf_ksym_add(&fp->aux->ksym);
74451e66
DB
659}
660
661void bpf_prog_kallsyms_del(struct bpf_prog *fp)
662{
74451e66
DB
663 if (!bpf_prog_kallsyms_candidate(fp))
664 return;
665
dba122fb 666 bpf_ksym_del(&fp->aux->ksym);
74451e66
DB
667}
668
eda0c929
JO
669static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
670{
671 struct latch_tree_node *n;
672
673 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
674 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
675}
676
74451e66
DB
677const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
678 unsigned long *off, char *sym)
679{
eda0c929 680 struct bpf_ksym *ksym;
74451e66
DB
681 char *ret = NULL;
682
683 rcu_read_lock();
eda0c929
JO
684 ksym = bpf_ksym_find(addr);
685 if (ksym) {
686 unsigned long symbol_start = ksym->start;
687 unsigned long symbol_end = ksym->end;
535911c8 688
eda0c929 689 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66
DB
690
691 ret = sym;
692 if (size)
693 *size = symbol_end - symbol_start;
694 if (off)
695 *off = addr - symbol_start;
696 }
697 rcu_read_unlock();
698
699 return ret;
700}
701
702bool is_bpf_text_address(unsigned long addr)
703{
704 bool ret;
705
706 rcu_read_lock();
eda0c929 707 ret = bpf_ksym_find(addr) != NULL;
74451e66
DB
708 rcu_read_unlock();
709
710 return ret;
711}
712
cbd76f8d
JO
713static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
714{
715 struct bpf_ksym *ksym = bpf_ksym_find(addr);
716
717 return ksym && ksym->prog ?
718 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
719 NULL;
720}
721
3dec541b
AS
722const struct exception_table_entry *search_bpf_extables(unsigned long addr)
723{
724 const struct exception_table_entry *e = NULL;
725 struct bpf_prog *prog;
726
727 rcu_read_lock();
cbd76f8d 728 prog = bpf_prog_ksym_find(addr);
3dec541b
AS
729 if (!prog)
730 goto out;
731 if (!prog->aux->num_exentries)
732 goto out;
733
734 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
735out:
736 rcu_read_unlock();
737 return e;
738}
739
74451e66
DB
740int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
741 char *sym)
742{
ecb60d1c 743 struct bpf_ksym *ksym;
74451e66
DB
744 unsigned int it = 0;
745 int ret = -ERANGE;
746
747 if (!bpf_jit_kallsyms_enabled())
748 return ret;
749
750 rcu_read_lock();
ecb60d1c 751 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
74451e66
DB
752 if (it++ != symnum)
753 continue;
754
ecb60d1c 755 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66 756
ecb60d1c 757 *value = ksym->start;
74451e66
DB
758 *type = BPF_SYM_ELF_TYPE;
759
760 ret = 0;
761 break;
762 }
763 rcu_read_unlock();
764
765 return ret;
766}
767
a66886fe
DB
768int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
769 struct bpf_jit_poke_descriptor *poke)
770{
771 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
772 static const u32 poke_tab_max = 1024;
773 u32 slot = prog->aux->size_poke_tab;
774 u32 size = slot + 1;
775
776 if (size > poke_tab_max)
777 return -ENOSPC;
cf71b174 778 if (poke->tailcall_target || poke->tailcall_target_stable ||
ebf7d1f5 779 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
a66886fe
DB
780 return -EINVAL;
781
782 switch (poke->reason) {
783 case BPF_POKE_REASON_TAIL_CALL:
784 if (!poke->tail_call.map)
785 return -EINVAL;
786 break;
787 default:
788 return -EINVAL;
789 }
790
791 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
792 if (!tab)
793 return -ENOMEM;
794
795 memcpy(&tab[slot], poke, sizeof(*poke));
796 prog->aux->size_poke_tab = size;
797 prog->aux->poke_tab = tab;
798
799 return slot;
800}
801
ede95a63
DB
802static atomic_long_t bpf_jit_current;
803
fdadd049
DB
804/* Can be overridden by an arch's JIT compiler if it has a custom,
805 * dedicated BPF backend memory area, or if neither of the two
806 * below apply.
807 */
808u64 __weak bpf_jit_alloc_exec_limit(void)
809{
ede95a63 810#if defined(MODULES_VADDR)
fdadd049
DB
811 return MODULES_END - MODULES_VADDR;
812#else
813 return VMALLOC_END - VMALLOC_START;
814#endif
815}
816
ede95a63
DB
817static int __init bpf_jit_charge_init(void)
818{
819 /* Only used as heuristic here to derive limit. */
fdadd049
DB
820 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
821 PAGE_SIZE), LONG_MAX);
ede95a63
DB
822 return 0;
823}
824pure_initcall(bpf_jit_charge_init);
ede95a63 825
e21aa341 826int bpf_jit_charge_modmem(u32 pages)
ede95a63
DB
827{
828 if (atomic_long_add_return(pages, &bpf_jit_current) >
829 (bpf_jit_limit >> PAGE_SHIFT)) {
8a98ae12 830 if (!bpf_capable()) {
ede95a63
DB
831 atomic_long_sub(pages, &bpf_jit_current);
832 return -EPERM;
833 }
834 }
835
836 return 0;
837}
838
e21aa341 839void bpf_jit_uncharge_modmem(u32 pages)
ede95a63
DB
840{
841 atomic_long_sub(pages, &bpf_jit_current);
842}
843
dc002bb6
AB
844void *__weak bpf_jit_alloc_exec(unsigned long size)
845{
846 return module_alloc(size);
847}
848
849void __weak bpf_jit_free_exec(void *addr)
850{
851 module_memfree(addr);
852}
853
738cbe72
DB
854struct bpf_binary_header *
855bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
856 unsigned int alignment,
857 bpf_jit_fill_hole_t bpf_fill_ill_insns)
858{
859 struct bpf_binary_header *hdr;
ede95a63 860 u32 size, hole, start, pages;
738cbe72 861
b7b3fc8d
IL
862 WARN_ON_ONCE(!is_power_of_2(alignment) ||
863 alignment > BPF_IMAGE_ALIGNMENT);
864
738cbe72
DB
865 /* Most of BPF filters are really small, but if some of them
866 * fill a page, allow at least 128 extra bytes to insert a
867 * random section of illegal instructions.
868 */
869 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
ede95a63
DB
870 pages = size / PAGE_SIZE;
871
872 if (bpf_jit_charge_modmem(pages))
873 return NULL;
dc002bb6 874 hdr = bpf_jit_alloc_exec(size);
ede95a63
DB
875 if (!hdr) {
876 bpf_jit_uncharge_modmem(pages);
738cbe72 877 return NULL;
ede95a63 878 }
738cbe72
DB
879
880 /* Fill space with illegal/arch-dep instructions. */
881 bpf_fill_ill_insns(hdr, size);
882
ede95a63 883 hdr->pages = pages;
738cbe72
DB
884 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
885 PAGE_SIZE - sizeof(*hdr));
b7552e1b 886 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
887
888 /* Leave a random number of instructions before BPF code. */
889 *image_ptr = &hdr->image[start];
890
891 return hdr;
892}
893
894void bpf_jit_binary_free(struct bpf_binary_header *hdr)
895{
ede95a63
DB
896 u32 pages = hdr->pages;
897
dc002bb6 898 bpf_jit_free_exec(hdr);
ede95a63 899 bpf_jit_uncharge_modmem(pages);
738cbe72 900}
4f3446bb 901
74451e66
DB
902/* This symbol is only overridden by archs that have different
903 * requirements than the usual eBPF JITs, f.e. when they only
904 * implement cBPF JIT, do not set images read-only, etc.
905 */
906void __weak bpf_jit_free(struct bpf_prog *fp)
907{
908 if (fp->jited) {
909 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
910
74451e66
DB
911 bpf_jit_binary_free(hdr);
912
913 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
914 }
915
916 bpf_prog_unlock_free(fp);
917}
918
e2c95a61
DB
919int bpf_jit_get_func_addr(const struct bpf_prog *prog,
920 const struct bpf_insn *insn, bool extra_pass,
921 u64 *func_addr, bool *func_addr_fixed)
922{
923 s16 off = insn->off;
924 s32 imm = insn->imm;
925 u8 *addr;
926
927 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
928 if (!*func_addr_fixed) {
929 /* Place-holder address till the last pass has collected
930 * all addresses for JITed subprograms in which case we
931 * can pick them up from prog->aux.
932 */
933 if (!extra_pass)
934 addr = NULL;
935 else if (prog->aux->func &&
936 off >= 0 && off < prog->aux->func_cnt)
937 addr = (u8 *)prog->aux->func[off]->bpf_func;
938 else
939 return -EINVAL;
940 } else {
941 /* Address of a BPF helper call. Since part of the core
942 * kernel, it's always at a fixed location. __bpf_call_base
943 * and the helper with imm relative to it are both in core
944 * kernel.
945 */
946 addr = (u8 *)__bpf_call_base + imm;
947 }
948
949 *func_addr = (unsigned long)addr;
950 return 0;
951}
952
4f3446bb
DB
953static int bpf_jit_blind_insn(const struct bpf_insn *from,
954 const struct bpf_insn *aux,
ede7c460
NR
955 struct bpf_insn *to_buff,
956 bool emit_zext)
4f3446bb
DB
957{
958 struct bpf_insn *to = to_buff;
b7552e1b 959 u32 imm_rnd = get_random_int();
4f3446bb
DB
960 s16 off;
961
962 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
963 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
964
9b73bfdd
DB
965 /* Constraints on AX register:
966 *
967 * AX register is inaccessible from user space. It is mapped in
968 * all JITs, and used here for constant blinding rewrites. It is
969 * typically "stateless" meaning its contents are only valid within
970 * the executed instruction, but not across several instructions.
971 * There are a few exceptions however which are further detailed
972 * below.
973 *
974 * Constant blinding is only used by JITs, not in the interpreter.
975 * The interpreter uses AX in some occasions as a local temporary
976 * register e.g. in DIV or MOD instructions.
977 *
978 * In restricted circumstances, the verifier can also use the AX
979 * register for rewrites as long as they do not interfere with
980 * the above cases!
981 */
982 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
983 goto out;
984
4f3446bb
DB
985 if (from->imm == 0 &&
986 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
987 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
988 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
989 goto out;
990 }
991
992 switch (from->code) {
993 case BPF_ALU | BPF_ADD | BPF_K:
994 case BPF_ALU | BPF_SUB | BPF_K:
995 case BPF_ALU | BPF_AND | BPF_K:
996 case BPF_ALU | BPF_OR | BPF_K:
997 case BPF_ALU | BPF_XOR | BPF_K:
998 case BPF_ALU | BPF_MUL | BPF_K:
999 case BPF_ALU | BPF_MOV | BPF_K:
1000 case BPF_ALU | BPF_DIV | BPF_K:
1001 case BPF_ALU | BPF_MOD | BPF_K:
1002 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1003 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1004 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1005 break;
1006
1007 case BPF_ALU64 | BPF_ADD | BPF_K:
1008 case BPF_ALU64 | BPF_SUB | BPF_K:
1009 case BPF_ALU64 | BPF_AND | BPF_K:
1010 case BPF_ALU64 | BPF_OR | BPF_K:
1011 case BPF_ALU64 | BPF_XOR | BPF_K:
1012 case BPF_ALU64 | BPF_MUL | BPF_K:
1013 case BPF_ALU64 | BPF_MOV | BPF_K:
1014 case BPF_ALU64 | BPF_DIV | BPF_K:
1015 case BPF_ALU64 | BPF_MOD | BPF_K:
1016 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1017 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1019 break;
1020
1021 case BPF_JMP | BPF_JEQ | BPF_K:
1022 case BPF_JMP | BPF_JNE | BPF_K:
1023 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 1024 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 1025 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 1026 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 1027 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 1028 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 1029 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 1030 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
1031 case BPF_JMP | BPF_JSET | BPF_K:
1032 /* Accommodate for extra offset in case of a backjump. */
1033 off = from->off;
1034 if (off < 0)
1035 off -= 2;
1036 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1037 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1038 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1039 break;
1040
a7b76c88
JW
1041 case BPF_JMP32 | BPF_JEQ | BPF_K:
1042 case BPF_JMP32 | BPF_JNE | BPF_K:
1043 case BPF_JMP32 | BPF_JGT | BPF_K:
1044 case BPF_JMP32 | BPF_JLT | BPF_K:
1045 case BPF_JMP32 | BPF_JGE | BPF_K:
1046 case BPF_JMP32 | BPF_JLE | BPF_K:
1047 case BPF_JMP32 | BPF_JSGT | BPF_K:
1048 case BPF_JMP32 | BPF_JSLT | BPF_K:
1049 case BPF_JMP32 | BPF_JSGE | BPF_K:
1050 case BPF_JMP32 | BPF_JSLE | BPF_K:
1051 case BPF_JMP32 | BPF_JSET | BPF_K:
1052 /* Accommodate for extra offset in case of a backjump. */
1053 off = from->off;
1054 if (off < 0)
1055 off -= 2;
1056 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1057 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1058 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1059 off);
1060 break;
1061
4f3446bb
DB
1062 case BPF_LD | BPF_IMM | BPF_DW:
1063 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1064 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1066 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1067 break;
1068 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1069 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1070 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
ede7c460
NR
1071 if (emit_zext)
1072 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
4f3446bb
DB
1073 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1074 break;
1075
1076 case BPF_ST | BPF_MEM | BPF_DW:
1077 case BPF_ST | BPF_MEM | BPF_W:
1078 case BPF_ST | BPF_MEM | BPF_H:
1079 case BPF_ST | BPF_MEM | BPF_B:
1080 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1081 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1082 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1083 break;
1084 }
1085out:
1086 return to - to_buff;
1087}
1088
1089static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1090 gfp_t gfp_extra_flags)
1091{
19809c2d 1092 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
1093 struct bpf_prog *fp;
1094
88dca4ca 1095 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
4f3446bb 1096 if (fp != NULL) {
4f3446bb
DB
1097 /* aux->prog still points to the fp_other one, so
1098 * when promoting the clone to the real program,
1099 * this still needs to be adapted.
1100 */
1101 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1102 }
1103
1104 return fp;
1105}
1106
1107static void bpf_prog_clone_free(struct bpf_prog *fp)
1108{
1109 /* aux was stolen by the other clone, so we cannot free
1110 * it from this path! It will be freed eventually by the
1111 * other program on release.
1112 *
1113 * At this point, we don't need a deferred release since
1114 * clone is guaranteed to not be locked.
1115 */
1116 fp->aux = NULL;
53f523f3
CW
1117 fp->stats = NULL;
1118 fp->active = NULL;
4f3446bb
DB
1119 __bpf_prog_free(fp);
1120}
1121
1122void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1123{
1124 /* We have to repoint aux->prog to self, as we don't
1125 * know whether fp here is the clone or the original.
1126 */
1127 fp->aux->prog = fp;
1128 bpf_prog_clone_free(fp_other);
1129}
1130
1131struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1132{
1133 struct bpf_insn insn_buff[16], aux[2];
1134 struct bpf_prog *clone, *tmp;
1135 int insn_delta, insn_cnt;
1136 struct bpf_insn *insn;
1137 int i, rewritten;
1138
1c2a088a 1139 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
4f3446bb
DB
1140 return prog;
1141
1142 clone = bpf_prog_clone_create(prog, GFP_USER);
1143 if (!clone)
1144 return ERR_PTR(-ENOMEM);
1145
1146 insn_cnt = clone->len;
1147 insn = clone->insnsi;
1148
1149 for (i = 0; i < insn_cnt; i++, insn++) {
1150 /* We temporarily need to hold the original ld64 insn
1151 * so that we can still access the first part in the
1152 * second blinding run.
1153 */
1154 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1155 insn[1].code == 0)
1156 memcpy(aux, insn, sizeof(aux));
1157
ede7c460
NR
1158 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1159 clone->aux->verifier_zext);
4f3446bb
DB
1160 if (!rewritten)
1161 continue;
1162
1163 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
4f73379e 1164 if (IS_ERR(tmp)) {
4f3446bb
DB
1165 /* Patching may have repointed aux->prog during
1166 * realloc from the original one, so we need to
1167 * fix it up here on error.
1168 */
1169 bpf_jit_prog_release_other(prog, clone);
4f73379e 1170 return tmp;
4f3446bb
DB
1171 }
1172
1173 clone = tmp;
1174 insn_delta = rewritten - 1;
1175
1176 /* Walk new program and skip insns we just inserted. */
1177 insn = clone->insnsi + i + insn_delta;
1178 insn_cnt += insn_delta;
1179 i += insn_delta;
1180 }
1181
1c2a088a 1182 clone->blinded = 1;
4f3446bb
DB
1183 return clone;
1184}
b954d834 1185#endif /* CONFIG_BPF_JIT */
738cbe72 1186
f5bffecd
AS
1187/* Base function for offset calculation. Needs to go into .text section,
1188 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
1189 * anyway later on, so do not let the compiler omit it. This also needs
1190 * to go into kallsyms for correlation from e.g. bpftool, so naming
1191 * must not change.
f5bffecd
AS
1192 */
1193noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1194{
1195 return 0;
1196}
4d9c5c53 1197EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 1198
5e581dad
DB
1199/* All UAPI available opcodes. */
1200#define BPF_INSN_MAP(INSN_2, INSN_3) \
1201 /* 32 bit ALU operations. */ \
1202 /* Register based. */ \
2dc6b100
JW
1203 INSN_3(ALU, ADD, X), \
1204 INSN_3(ALU, SUB, X), \
1205 INSN_3(ALU, AND, X), \
1206 INSN_3(ALU, OR, X), \
1207 INSN_3(ALU, LSH, X), \
1208 INSN_3(ALU, RSH, X), \
1209 INSN_3(ALU, XOR, X), \
1210 INSN_3(ALU, MUL, X), \
1211 INSN_3(ALU, MOV, X), \
1212 INSN_3(ALU, ARSH, X), \
1213 INSN_3(ALU, DIV, X), \
1214 INSN_3(ALU, MOD, X), \
5e581dad
DB
1215 INSN_2(ALU, NEG), \
1216 INSN_3(ALU, END, TO_BE), \
1217 INSN_3(ALU, END, TO_LE), \
1218 /* Immediate based. */ \
2dc6b100
JW
1219 INSN_3(ALU, ADD, K), \
1220 INSN_3(ALU, SUB, K), \
1221 INSN_3(ALU, AND, K), \
1222 INSN_3(ALU, OR, K), \
1223 INSN_3(ALU, LSH, K), \
1224 INSN_3(ALU, RSH, K), \
1225 INSN_3(ALU, XOR, K), \
1226 INSN_3(ALU, MUL, K), \
1227 INSN_3(ALU, MOV, K), \
1228 INSN_3(ALU, ARSH, K), \
1229 INSN_3(ALU, DIV, K), \
1230 INSN_3(ALU, MOD, K), \
5e581dad
DB
1231 /* 64 bit ALU operations. */ \
1232 /* Register based. */ \
1233 INSN_3(ALU64, ADD, X), \
1234 INSN_3(ALU64, SUB, X), \
1235 INSN_3(ALU64, AND, X), \
1236 INSN_3(ALU64, OR, X), \
1237 INSN_3(ALU64, LSH, X), \
1238 INSN_3(ALU64, RSH, X), \
1239 INSN_3(ALU64, XOR, X), \
1240 INSN_3(ALU64, MUL, X), \
1241 INSN_3(ALU64, MOV, X), \
1242 INSN_3(ALU64, ARSH, X), \
1243 INSN_3(ALU64, DIV, X), \
1244 INSN_3(ALU64, MOD, X), \
1245 INSN_2(ALU64, NEG), \
1246 /* Immediate based. */ \
1247 INSN_3(ALU64, ADD, K), \
1248 INSN_3(ALU64, SUB, K), \
1249 INSN_3(ALU64, AND, K), \
1250 INSN_3(ALU64, OR, K), \
1251 INSN_3(ALU64, LSH, K), \
1252 INSN_3(ALU64, RSH, K), \
1253 INSN_3(ALU64, XOR, K), \
1254 INSN_3(ALU64, MUL, K), \
1255 INSN_3(ALU64, MOV, K), \
1256 INSN_3(ALU64, ARSH, K), \
1257 INSN_3(ALU64, DIV, K), \
1258 INSN_3(ALU64, MOD, K), \
1259 /* Call instruction. */ \
1260 INSN_2(JMP, CALL), \
1261 /* Exit instruction. */ \
1262 INSN_2(JMP, EXIT), \
503a8865
JW
1263 /* 32-bit Jump instructions. */ \
1264 /* Register based. */ \
1265 INSN_3(JMP32, JEQ, X), \
1266 INSN_3(JMP32, JNE, X), \
1267 INSN_3(JMP32, JGT, X), \
1268 INSN_3(JMP32, JLT, X), \
1269 INSN_3(JMP32, JGE, X), \
1270 INSN_3(JMP32, JLE, X), \
1271 INSN_3(JMP32, JSGT, X), \
1272 INSN_3(JMP32, JSLT, X), \
1273 INSN_3(JMP32, JSGE, X), \
1274 INSN_3(JMP32, JSLE, X), \
1275 INSN_3(JMP32, JSET, X), \
1276 /* Immediate based. */ \
1277 INSN_3(JMP32, JEQ, K), \
1278 INSN_3(JMP32, JNE, K), \
1279 INSN_3(JMP32, JGT, K), \
1280 INSN_3(JMP32, JLT, K), \
1281 INSN_3(JMP32, JGE, K), \
1282 INSN_3(JMP32, JLE, K), \
1283 INSN_3(JMP32, JSGT, K), \
1284 INSN_3(JMP32, JSLT, K), \
1285 INSN_3(JMP32, JSGE, K), \
1286 INSN_3(JMP32, JSLE, K), \
1287 INSN_3(JMP32, JSET, K), \
5e581dad
DB
1288 /* Jump instructions. */ \
1289 /* Register based. */ \
1290 INSN_3(JMP, JEQ, X), \
1291 INSN_3(JMP, JNE, X), \
1292 INSN_3(JMP, JGT, X), \
1293 INSN_3(JMP, JLT, X), \
1294 INSN_3(JMP, JGE, X), \
1295 INSN_3(JMP, JLE, X), \
1296 INSN_3(JMP, JSGT, X), \
1297 INSN_3(JMP, JSLT, X), \
1298 INSN_3(JMP, JSGE, X), \
1299 INSN_3(JMP, JSLE, X), \
1300 INSN_3(JMP, JSET, X), \
1301 /* Immediate based. */ \
1302 INSN_3(JMP, JEQ, K), \
1303 INSN_3(JMP, JNE, K), \
1304 INSN_3(JMP, JGT, K), \
1305 INSN_3(JMP, JLT, K), \
1306 INSN_3(JMP, JGE, K), \
1307 INSN_3(JMP, JLE, K), \
1308 INSN_3(JMP, JSGT, K), \
1309 INSN_3(JMP, JSLT, K), \
1310 INSN_3(JMP, JSGE, K), \
1311 INSN_3(JMP, JSLE, K), \
1312 INSN_3(JMP, JSET, K), \
1313 INSN_2(JMP, JA), \
1314 /* Store instructions. */ \
1315 /* Register based. */ \
1316 INSN_3(STX, MEM, B), \
1317 INSN_3(STX, MEM, H), \
1318 INSN_3(STX, MEM, W), \
1319 INSN_3(STX, MEM, DW), \
91c960b0
BJ
1320 INSN_3(STX, ATOMIC, W), \
1321 INSN_3(STX, ATOMIC, DW), \
5e581dad
DB
1322 /* Immediate based. */ \
1323 INSN_3(ST, MEM, B), \
1324 INSN_3(ST, MEM, H), \
1325 INSN_3(ST, MEM, W), \
1326 INSN_3(ST, MEM, DW), \
1327 /* Load instructions. */ \
1328 /* Register based. */ \
1329 INSN_3(LDX, MEM, B), \
1330 INSN_3(LDX, MEM, H), \
1331 INSN_3(LDX, MEM, W), \
1332 INSN_3(LDX, MEM, DW), \
1333 /* Immediate based. */ \
e0cea7ce 1334 INSN_3(LD, IMM, DW)
5e581dad
DB
1335
1336bool bpf_opcode_in_insntable(u8 code)
1337{
1338#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1339#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1340 static const bool public_insntable[256] = {
1341 [0 ... 255] = false,
1342 /* Now overwrite non-defaults ... */
1343 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
1344 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1345 [BPF_LD | BPF_ABS | BPF_B] = true,
1346 [BPF_LD | BPF_ABS | BPF_H] = true,
1347 [BPF_LD | BPF_ABS | BPF_W] = true,
1348 [BPF_LD | BPF_IND | BPF_B] = true,
1349 [BPF_LD | BPF_IND | BPF_H] = true,
1350 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
1351 };
1352#undef BPF_INSN_3_TBL
1353#undef BPF_INSN_2_TBL
1354 return public_insntable[code];
1355}
1356
290af866 1357#ifndef CONFIG_BPF_JIT_ALWAYS_ON
6e07a634 1358u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2a02759e
AS
1359{
1360 memset(dst, 0, size);
1361 return -EFAULT;
1362}
6e07a634 1363
f5bffecd 1364/**
019d0454 1365 * ___bpf_prog_run - run eBPF program on a given context
de1da68d 1366 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
7ae457c1 1367 * @insn: is the array of eBPF instructions
f5bffecd 1368 *
7ae457c1 1369 * Decode and execute eBPF instructions.
019d0454
RD
1370 *
1371 * Return: whatever value is in %BPF_R0 at program exit
f5bffecd 1372 */
2ec9898e 1373static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
f5bffecd 1374{
5e581dad
DB
1375#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1376#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
e55a7325 1377 static const void * const jumptable[256] __annotate_jump_table = {
f5bffecd
AS
1378 [0 ... 255] = &&default_label,
1379 /* Now overwrite non-defaults ... */
5e581dad
DB
1380 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1381 /* Non-UAPI available opcodes. */
1ea47e01 1382 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 1383 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5e81d11 1384 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
2a02759e
AS
1385 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1386 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1387 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1388 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
f5bffecd 1389 };
5e581dad
DB
1390#undef BPF_INSN_3_LBL
1391#undef BPF_INSN_2_LBL
04fd61ab 1392 u32 tail_call_cnt = 0;
f5bffecd
AS
1393
1394#define CONT ({ insn++; goto select_insn; })
1395#define CONT_JMP ({ insn++; goto select_insn; })
1396
f5bffecd
AS
1397select_insn:
1398 goto *jumptable[insn->code];
1399
28131e9d
DB
1400 /* Explicitly mask the register-based shift amounts with 63 or 31
1401 * to avoid undefined behavior. Normally this won't affect the
1402 * generated code, for example, in case of native 64 bit archs such
1403 * as x86-64 or arm64, the compiler is optimizing the AND away for
1404 * the interpreter. In case of JITs, each of the JIT backends compiles
1405 * the BPF shift operations to machine instructions which produce
1406 * implementation-defined results in such a case; the resulting
1407 * contents of the register may be arbitrary, but program behaviour
1408 * as a whole remains defined. In other words, in case of JIT backends,
1409 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1410 */
1411 /* ALU (shifts) */
1412#define SHT(OPCODE, OP) \
1413 ALU64_##OPCODE##_X: \
1414 DST = DST OP (SRC & 63); \
1415 CONT; \
1416 ALU_##OPCODE##_X: \
1417 DST = (u32) DST OP ((u32) SRC & 31); \
1418 CONT; \
1419 ALU64_##OPCODE##_K: \
1420 DST = DST OP IMM; \
1421 CONT; \
1422 ALU_##OPCODE##_K: \
1423 DST = (u32) DST OP (u32) IMM; \
1424 CONT;
1425 /* ALU (rest) */
1426#define ALU(OPCODE, OP) \
1427 ALU64_##OPCODE##_X: \
1428 DST = DST OP SRC; \
1429 CONT; \
1430 ALU_##OPCODE##_X: \
1431 DST = (u32) DST OP (u32) SRC; \
1432 CONT; \
1433 ALU64_##OPCODE##_K: \
1434 DST = DST OP IMM; \
1435 CONT; \
1436 ALU_##OPCODE##_K: \
1437 DST = (u32) DST OP (u32) IMM; \
f5bffecd 1438 CONT;
f5bffecd
AS
1439 ALU(ADD, +)
1440 ALU(SUB, -)
1441 ALU(AND, &)
1442 ALU(OR, |)
f5bffecd
AS
1443 ALU(XOR, ^)
1444 ALU(MUL, *)
28131e9d
DB
1445 SHT(LSH, <<)
1446 SHT(RSH, >>)
1447#undef SHT
f5bffecd
AS
1448#undef ALU
1449 ALU_NEG:
1450 DST = (u32) -DST;
1451 CONT;
1452 ALU64_NEG:
1453 DST = -DST;
1454 CONT;
1455 ALU_MOV_X:
1456 DST = (u32) SRC;
1457 CONT;
1458 ALU_MOV_K:
1459 DST = (u32) IMM;
1460 CONT;
1461 ALU64_MOV_X:
1462 DST = SRC;
1463 CONT;
1464 ALU64_MOV_K:
1465 DST = IMM;
1466 CONT;
02ab695b
AS
1467 LD_IMM_DW:
1468 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1469 insn++;
1470 CONT;
2dc6b100 1471 ALU_ARSH_X:
28131e9d 1472 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
2dc6b100
JW
1473 CONT;
1474 ALU_ARSH_K:
75672dda 1475 DST = (u64) (u32) (((s32) DST) >> IMM);
2dc6b100 1476 CONT;
f5bffecd 1477 ALU64_ARSH_X:
28131e9d 1478 (*(s64 *) &DST) >>= (SRC & 63);
f5bffecd
AS
1479 CONT;
1480 ALU64_ARSH_K:
1481 (*(s64 *) &DST) >>= IMM;
1482 CONT;
1483 ALU64_MOD_X:
144cd91c
DB
1484 div64_u64_rem(DST, SRC, &AX);
1485 DST = AX;
f5bffecd
AS
1486 CONT;
1487 ALU_MOD_X:
144cd91c
DB
1488 AX = (u32) DST;
1489 DST = do_div(AX, (u32) SRC);
f5bffecd
AS
1490 CONT;
1491 ALU64_MOD_K:
144cd91c
DB
1492 div64_u64_rem(DST, IMM, &AX);
1493 DST = AX;
f5bffecd
AS
1494 CONT;
1495 ALU_MOD_K:
144cd91c
DB
1496 AX = (u32) DST;
1497 DST = do_div(AX, (u32) IMM);
f5bffecd
AS
1498 CONT;
1499 ALU64_DIV_X:
876a7ae6 1500 DST = div64_u64(DST, SRC);
f5bffecd
AS
1501 CONT;
1502 ALU_DIV_X:
144cd91c
DB
1503 AX = (u32) DST;
1504 do_div(AX, (u32) SRC);
1505 DST = (u32) AX;
f5bffecd
AS
1506 CONT;
1507 ALU64_DIV_K:
876a7ae6 1508 DST = div64_u64(DST, IMM);
f5bffecd
AS
1509 CONT;
1510 ALU_DIV_K:
144cd91c
DB
1511 AX = (u32) DST;
1512 do_div(AX, (u32) IMM);
1513 DST = (u32) AX;
f5bffecd
AS
1514 CONT;
1515 ALU_END_TO_BE:
1516 switch (IMM) {
1517 case 16:
1518 DST = (__force u16) cpu_to_be16(DST);
1519 break;
1520 case 32:
1521 DST = (__force u32) cpu_to_be32(DST);
1522 break;
1523 case 64:
1524 DST = (__force u64) cpu_to_be64(DST);
1525 break;
1526 }
1527 CONT;
1528 ALU_END_TO_LE:
1529 switch (IMM) {
1530 case 16:
1531 DST = (__force u16) cpu_to_le16(DST);
1532 break;
1533 case 32:
1534 DST = (__force u32) cpu_to_le32(DST);
1535 break;
1536 case 64:
1537 DST = (__force u64) cpu_to_le64(DST);
1538 break;
1539 }
1540 CONT;
1541
1542 /* CALL */
1543 JMP_CALL:
1544 /* Function call scratches BPF_R1-BPF_R5 registers,
1545 * preserves BPF_R6-BPF_R9, and stores return value
1546 * into BPF_R0.
1547 */
1548 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1549 BPF_R4, BPF_R5);
1550 CONT;
1551
1ea47e01
AS
1552 JMP_CALL_ARGS:
1553 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1554 BPF_R3, BPF_R4,
1555 BPF_R5,
1556 insn + insn->off + 1);
1557 CONT;
1558
04fd61ab
AS
1559 JMP_TAIL_CALL: {
1560 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1561 struct bpf_array *array = container_of(map, struct bpf_array, map);
1562 struct bpf_prog *prog;
90caccdd 1563 u32 index = BPF_R3;
04fd61ab
AS
1564
1565 if (unlikely(index >= array->map.max_entries))
1566 goto out;
f9dabe01 1567 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
04fd61ab
AS
1568 goto out;
1569
1570 tail_call_cnt++;
1571
2a36f0b9 1572 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1573 if (!prog)
04fd61ab
AS
1574 goto out;
1575
c4675f93
DB
1576 /* ARG1 at this point is guaranteed to point to CTX from
1577 * the verifier side due to the fact that the tail call is
0142dddc 1578 * handled like a helper, that is, bpf_tail_call_proto,
c4675f93
DB
1579 * where arg1_type is ARG_PTR_TO_CTX.
1580 */
04fd61ab
AS
1581 insn = prog->insnsi;
1582 goto select_insn;
1583out:
1584 CONT;
1585 }
f5bffecd
AS
1586 JMP_JA:
1587 insn += insn->off;
1588 CONT;
f5bffecd
AS
1589 JMP_EXIT:
1590 return BPF_R0;
503a8865
JW
1591 /* JMP */
1592#define COND_JMP(SIGN, OPCODE, CMP_OP) \
1593 JMP_##OPCODE##_X: \
1594 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1595 insn += insn->off; \
1596 CONT_JMP; \
1597 } \
1598 CONT; \
1599 JMP32_##OPCODE##_X: \
1600 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1601 insn += insn->off; \
1602 CONT_JMP; \
1603 } \
1604 CONT; \
1605 JMP_##OPCODE##_K: \
1606 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1607 insn += insn->off; \
1608 CONT_JMP; \
1609 } \
1610 CONT; \
1611 JMP32_##OPCODE##_K: \
1612 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1613 insn += insn->off; \
1614 CONT_JMP; \
1615 } \
1616 CONT;
1617 COND_JMP(u, JEQ, ==)
1618 COND_JMP(u, JNE, !=)
1619 COND_JMP(u, JGT, >)
1620 COND_JMP(u, JLT, <)
1621 COND_JMP(u, JGE, >=)
1622 COND_JMP(u, JLE, <=)
1623 COND_JMP(u, JSET, &)
1624 COND_JMP(s, JSGT, >)
1625 COND_JMP(s, JSLT, <)
1626 COND_JMP(s, JSGE, >=)
1627 COND_JMP(s, JSLE, <=)
1628#undef COND_JMP
f5e81d11
DB
1629 /* ST, STX and LDX*/
1630 ST_NOSPEC:
1631 /* Speculation barrier for mitigating Speculative Store Bypass.
1632 * In case of arm64, we rely on the firmware mitigation as
1633 * controlled via the ssbd kernel parameter. Whenever the
1634 * mitigation is enabled, it works for all of the kernel code
1635 * with no need to provide any additional instructions here.
1636 * In case of x86, we use 'lfence' insn for mitigation. We
1637 * reuse preexisting logic from Spectre v1 mitigation that
1638 * happens to produce the required code on x86 for v4 as well.
1639 */
1640#ifdef CONFIG_X86
1641 barrier_nospec();
1642#endif
1643 CONT;
f5bffecd
AS
1644#define LDST(SIZEOP, SIZE) \
1645 STX_MEM_##SIZEOP: \
1646 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1647 CONT; \
1648 ST_MEM_##SIZEOP: \
1649 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1650 CONT; \
1651 LDX_MEM_##SIZEOP: \
1652 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1653 CONT;
1654
1655 LDST(B, u8)
1656 LDST(H, u16)
1657 LDST(W, u32)
1658 LDST(DW, u64)
1659#undef LDST
6e07a634
DB
1660#define LDX_PROBE(SIZEOP, SIZE) \
1661 LDX_PROBE_MEM_##SIZEOP: \
85d31dd0 1662 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
2a02759e
AS
1663 CONT;
1664 LDX_PROBE(B, 1)
1665 LDX_PROBE(H, 2)
1666 LDX_PROBE(W, 4)
1667 LDX_PROBE(DW, 8)
1668#undef LDX_PROBE
1669
46291067
BJ
1670#define ATOMIC_ALU_OP(BOP, KOP) \
1671 case BOP: \
1672 if (BPF_SIZE(insn->code) == BPF_W) \
1673 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1674 (DST + insn->off)); \
1675 else \
1676 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1677 (DST + insn->off)); \
1678 break; \
1679 case BOP | BPF_FETCH: \
1680 if (BPF_SIZE(insn->code) == BPF_W) \
1681 SRC = (u32) atomic_fetch_##KOP( \
1682 (u32) SRC, \
1683 (atomic_t *)(unsigned long) (DST + insn->off)); \
1684 else \
1685 SRC = (u64) atomic64_fetch_##KOP( \
1686 (u64) SRC, \
1687 (atomic64_t *)(unsigned long) (DST + insn->off)); \
5ffa2550 1688 break;
5ca419f2 1689
91c960b0 1690 STX_ATOMIC_DW:
46291067 1691 STX_ATOMIC_W:
91c960b0 1692 switch (IMM) {
46291067 1693 ATOMIC_ALU_OP(BPF_ADD, add)
981f94c3
BJ
1694 ATOMIC_ALU_OP(BPF_AND, and)
1695 ATOMIC_ALU_OP(BPF_OR, or)
1696 ATOMIC_ALU_OP(BPF_XOR, xor)
46291067
BJ
1697#undef ATOMIC_ALU_OP
1698
5ffa2550 1699 case BPF_XCHG:
46291067
BJ
1700 if (BPF_SIZE(insn->code) == BPF_W)
1701 SRC = (u32) atomic_xchg(
1702 (atomic_t *)(unsigned long) (DST + insn->off),
1703 (u32) SRC);
1704 else
1705 SRC = (u64) atomic64_xchg(
1706 (atomic64_t *)(unsigned long) (DST + insn->off),
1707 (u64) SRC);
5ffa2550
BJ
1708 break;
1709 case BPF_CMPXCHG:
46291067
BJ
1710 if (BPF_SIZE(insn->code) == BPF_W)
1711 BPF_R0 = (u32) atomic_cmpxchg(
1712 (atomic_t *)(unsigned long) (DST + insn->off),
1713 (u32) BPF_R0, (u32) SRC);
1714 else
1715 BPF_R0 = (u64) atomic64_cmpxchg(
1716 (atomic64_t *)(unsigned long) (DST + insn->off),
1717 (u64) BPF_R0, (u64) SRC);
5ffa2550 1718 break;
46291067 1719
91c960b0
BJ
1720 default:
1721 goto default_label;
1722 }
f5bffecd 1723 CONT;
f5bffecd
AS
1724
1725 default_label:
5e581dad
DB
1726 /* If we ever reach this, we have a bug somewhere. Die hard here
1727 * instead of just returning 0; we could be somewhere in a subprog,
1728 * so execution could continue otherwise which we do /not/ want.
1729 *
1730 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1731 */
91c960b0
BJ
1732 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1733 insn->code, insn->imm);
5e581dad 1734 BUG_ON(1);
f5bffecd
AS
1735 return 0;
1736}
f696b8f4 1737
b870aa90
AS
1738#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1739#define DEFINE_BPF_PROG_RUN(stack_size) \
1740static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1741{ \
1742 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1743 u64 regs[MAX_BPF_EXT_REG]; \
b870aa90
AS
1744\
1745 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1746 ARG1 = (u64) (unsigned long) ctx; \
2ec9898e 1747 return ___bpf_prog_run(regs, insn); \
f696b8f4 1748}
f5bffecd 1749
1ea47e01
AS
1750#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1751#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1752static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1753 const struct bpf_insn *insn) \
1754{ \
1755 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1756 u64 regs[MAX_BPF_EXT_REG]; \
1ea47e01
AS
1757\
1758 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1759 BPF_R1 = r1; \
1760 BPF_R2 = r2; \
1761 BPF_R3 = r3; \
1762 BPF_R4 = r4; \
1763 BPF_R5 = r5; \
2ec9898e 1764 return ___bpf_prog_run(regs, insn); \
1ea47e01
AS
1765}
1766
b870aa90
AS
1767#define EVAL1(FN, X) FN(X)
1768#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1769#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1770#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1771#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1772#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1773
1774EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1775EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1776EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1777
1ea47e01
AS
1778EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1779EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1780EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1781
b870aa90
AS
1782#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1783
1784static unsigned int (*interpreters[])(const void *ctx,
1785 const struct bpf_insn *insn) = {
1786EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1787EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1788EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1789};
1ea47e01
AS
1790#undef PROG_NAME_LIST
1791#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1792static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1793 const struct bpf_insn *insn) = {
1794EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1795EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1796EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1797};
1798#undef PROG_NAME_LIST
1799
1800void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1801{
1802 stack_depth = max_t(u32, stack_depth, 1);
1803 insn->off = (s16) insn->imm;
1804 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1805 __bpf_call_base_args;
1806 insn->code = BPF_JMP | BPF_CALL_ARGS;
1807}
b870aa90 1808
290af866 1809#else
fa9dd599
DB
1810static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1811 const struct bpf_insn *insn)
290af866 1812{
fa9dd599
DB
1813 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1814 * is not working properly, so warn about it!
1815 */
1816 WARN_ON_ONCE(1);
290af866
AS
1817 return 0;
1818}
1819#endif
1820
3324b584
DB
1821bool bpf_prog_array_compatible(struct bpf_array *array,
1822 const struct bpf_prog *fp)
04fd61ab 1823{
9802d865
JB
1824 if (fp->kprobe_override)
1825 return false;
1826
2beee5f5 1827 if (!array->aux->type) {
3324b584
DB
1828 /* There's no owner yet where we could check for
1829 * compatibility.
1830 */
2beee5f5
DB
1831 array->aux->type = fp->type;
1832 array->aux->jited = fp->jited;
3324b584 1833 return true;
04fd61ab 1834 }
3324b584 1835
2beee5f5
DB
1836 return array->aux->type == fp->type &&
1837 array->aux->jited == fp->jited;
04fd61ab
AS
1838}
1839
3324b584 1840static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1841{
1842 struct bpf_prog_aux *aux = fp->aux;
984fe94f 1843 int i, ret = 0;
04fd61ab 1844
984fe94f 1845 mutex_lock(&aux->used_maps_mutex);
04fd61ab 1846 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1847 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1848 struct bpf_array *array;
04fd61ab 1849
04fd61ab
AS
1850 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1851 continue;
3324b584 1852
04fd61ab 1853 array = container_of(map, struct bpf_array, map);
984fe94f
YZ
1854 if (!bpf_prog_array_compatible(array, fp)) {
1855 ret = -EINVAL;
1856 goto out;
1857 }
04fd61ab
AS
1858 }
1859
984fe94f
YZ
1860out:
1861 mutex_unlock(&aux->used_maps_mutex);
1862 return ret;
04fd61ab
AS
1863}
1864
9facc336
DB
1865static void bpf_prog_select_func(struct bpf_prog *fp)
1866{
1867#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1868 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1869
1870 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1871#else
1872 fp->bpf_func = __bpf_prog_ret0_warn;
1873#endif
1874}
1875
f5bffecd 1876/**
3324b584 1877 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1878 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1879 * @err: pointer to error variable
f5bffecd 1880 *
3324b584 1881 * Try to JIT eBPF program, if JIT is not available, use interpreter.
fb7dd8bc 1882 * The BPF program will be executed via bpf_prog_run() function.
019d0454
RD
1883 *
1884 * Return: the &fp argument along with &err set to 0 for success or
1885 * a negative errno code on failure
f5bffecd 1886 */
d1c55ab5 1887struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1888{
9facc336
DB
1889 /* In case of BPF to BPF calls, verifier did all the prep
1890 * work with regards to JITing, etc.
1891 */
e6ac2450
MKL
1892 bool jit_needed = false;
1893
9facc336
DB
1894 if (fp->bpf_func)
1895 goto finalize;
8007e40a 1896
e6ac2450
MKL
1897 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1898 bpf_prog_has_kfunc_call(fp))
1899 jit_needed = true;
1900
9facc336 1901 bpf_prog_select_func(fp);
f5bffecd 1902
d1c55ab5
DB
1903 /* eBPF JITs can rewrite the program in case constant
1904 * blinding is active. However, in case of error during
1905 * blinding, bpf_int_jit_compile() must always return a
1906 * valid program, which in this case would simply not
1907 * be JITed, but falls back to the interpreter.
1908 */
ab3f0063 1909 if (!bpf_prog_is_dev_bound(fp->aux)) {
c454a46b
MKL
1910 *err = bpf_prog_alloc_jited_linfo(fp);
1911 if (*err)
1912 return fp;
1913
ab3f0063 1914 fp = bpf_int_jit_compile(fp);
e16301fb 1915 bpf_prog_jit_attempt_done(fp);
e6ac2450 1916 if (!fp->jited && jit_needed) {
290af866
AS
1917 *err = -ENOTSUPP;
1918 return fp;
c454a46b 1919 }
ab3f0063
JK
1920 } else {
1921 *err = bpf_prog_offload_compile(fp);
1922 if (*err)
1923 return fp;
1924 }
9facc336
DB
1925
1926finalize:
60a3b225 1927 bpf_prog_lock_ro(fp);
04fd61ab 1928
3324b584
DB
1929 /* The tail call compatibility check can only be done at
1930 * this late stage as we need to determine, if we deal
1931 * with JITed or non JITed program concatenations and not
1932 * all eBPF JITs might immediately support all features.
1933 */
d1c55ab5 1934 *err = bpf_check_tail_call(fp);
85782e03 1935
d1c55ab5 1936 return fp;
f5bffecd 1937}
7ae457c1 1938EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1939
e87c6bc3
YS
1940static unsigned int __bpf_prog_ret1(const void *ctx,
1941 const struct bpf_insn *insn)
1942{
1943 return 1;
1944}
1945
1946static struct bpf_prog_dummy {
1947 struct bpf_prog prog;
1948} dummy_bpf_prog = {
1949 .prog = {
1950 .bpf_func = __bpf_prog_ret1,
1951 },
1952};
1953
324bda9e
AS
1954/* to avoid allocating empty bpf_prog_array for cgroups that
1955 * don't have bpf program attached use one global 'empty_prog_array'
1956 * It will not be modified the caller of bpf_prog_array_alloc()
1957 * (since caller requested prog_cnt == 0)
1958 * that pointer should be 'freed' by bpf_prog_array_free()
1959 */
1960static struct {
1961 struct bpf_prog_array hdr;
1962 struct bpf_prog *null_prog;
1963} empty_prog_array = {
1964 .null_prog = NULL,
1965};
1966
d29ab6e1 1967struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
324bda9e
AS
1968{
1969 if (prog_cnt)
1970 return kzalloc(sizeof(struct bpf_prog_array) +
394e40a2
RG
1971 sizeof(struct bpf_prog_array_item) *
1972 (prog_cnt + 1),
324bda9e
AS
1973 flags);
1974
1975 return &empty_prog_array.hdr;
1976}
1977
54e9c9d4 1978void bpf_prog_array_free(struct bpf_prog_array *progs)
324bda9e 1979{
54e9c9d4 1980 if (!progs || progs == &empty_prog_array.hdr)
324bda9e
AS
1981 return;
1982 kfree_rcu(progs, rcu);
1983}
1984
54e9c9d4 1985int bpf_prog_array_length(struct bpf_prog_array *array)
468e2f64 1986{
394e40a2 1987 struct bpf_prog_array_item *item;
468e2f64
AS
1988 u32 cnt = 0;
1989
54e9c9d4 1990 for (item = array->items; item->prog; item++)
394e40a2 1991 if (item->prog != &dummy_bpf_prog.prog)
c8c088ba 1992 cnt++;
468e2f64
AS
1993 return cnt;
1994}
1995
0d01da6a
SF
1996bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1997{
1998 struct bpf_prog_array_item *item;
1999
2000 for (item = array->items; item->prog; item++)
2001 if (item->prog != &dummy_bpf_prog.prog)
2002 return false;
2003 return true;
2004}
394e40a2 2005
54e9c9d4 2006static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
3a38bb98
YS
2007 u32 *prog_ids,
2008 u32 request_cnt)
2009{
394e40a2 2010 struct bpf_prog_array_item *item;
3a38bb98
YS
2011 int i = 0;
2012
54e9c9d4 2013 for (item = array->items; item->prog; item++) {
394e40a2 2014 if (item->prog == &dummy_bpf_prog.prog)
3a38bb98 2015 continue;
394e40a2 2016 prog_ids[i] = item->prog->aux->id;
3a38bb98 2017 if (++i == request_cnt) {
394e40a2 2018 item++;
3a38bb98
YS
2019 break;
2020 }
2021 }
2022
394e40a2 2023 return !!(item->prog);
3a38bb98
YS
2024}
2025
54e9c9d4 2026int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
468e2f64
AS
2027 __u32 __user *prog_ids, u32 cnt)
2028{
0911287c 2029 unsigned long err = 0;
0911287c 2030 bool nospc;
3a38bb98 2031 u32 *ids;
0911287c
AS
2032
2033 /* users of this function are doing:
2034 * cnt = bpf_prog_array_length();
2035 * if (cnt > 0)
2036 * bpf_prog_array_copy_to_user(..., cnt);
54e9c9d4 2037 * so below kcalloc doesn't need extra cnt > 0 check.
0911287c 2038 */
9c481b90 2039 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
2040 if (!ids)
2041 return -ENOMEM;
394e40a2 2042 nospc = bpf_prog_array_copy_core(array, ids, cnt);
0911287c
AS
2043 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2044 kfree(ids);
2045 if (err)
2046 return -EFAULT;
2047 if (nospc)
468e2f64
AS
2048 return -ENOSPC;
2049 return 0;
2050}
2051
54e9c9d4 2052void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
e87c6bc3
YS
2053 struct bpf_prog *old_prog)
2054{
54e9c9d4 2055 struct bpf_prog_array_item *item;
e87c6bc3 2056
54e9c9d4 2057 for (item = array->items; item->prog; item++)
394e40a2
RG
2058 if (item->prog == old_prog) {
2059 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
e87c6bc3
YS
2060 break;
2061 }
2062}
2063
ce3aa9cc
JS
2064/**
2065 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2066 * index into the program array with
2067 * a dummy no-op program.
2068 * @array: a bpf_prog_array
2069 * @index: the index of the program to replace
2070 *
2071 * Skips over dummy programs, by not counting them, when calculating
b8c1a309 2072 * the position of the program to replace.
ce3aa9cc
JS
2073 *
2074 * Return:
2075 * * 0 - Success
2076 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2077 * * -ENOENT - Index out of range
2078 */
2079int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2080{
2081 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2082}
2083
2084/**
2085 * bpf_prog_array_update_at() - Updates the program at the given index
2086 * into the program array.
2087 * @array: a bpf_prog_array
2088 * @index: the index of the program to update
2089 * @prog: the program to insert into the array
2090 *
2091 * Skips over dummy programs, by not counting them, when calculating
2092 * the position of the program to update.
2093 *
2094 * Return:
2095 * * 0 - Success
2096 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2097 * * -ENOENT - Index out of range
2098 */
2099int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2100 struct bpf_prog *prog)
2101{
2102 struct bpf_prog_array_item *item;
2103
2104 if (unlikely(index < 0))
2105 return -EINVAL;
2106
2107 for (item = array->items; item->prog; item++) {
2108 if (item->prog == &dummy_bpf_prog.prog)
2109 continue;
2110 if (!index) {
2111 WRITE_ONCE(item->prog, prog);
2112 return 0;
2113 }
2114 index--;
2115 }
2116 return -ENOENT;
2117}
2118
54e9c9d4 2119int bpf_prog_array_copy(struct bpf_prog_array *old_array,
e87c6bc3
YS
2120 struct bpf_prog *exclude_prog,
2121 struct bpf_prog *include_prog,
82e6b1ee 2122 u64 bpf_cookie,
e87c6bc3
YS
2123 struct bpf_prog_array **new_array)
2124{
2125 int new_prog_cnt, carry_prog_cnt = 0;
82e6b1ee 2126 struct bpf_prog_array_item *existing, *new;
e87c6bc3 2127 struct bpf_prog_array *array;
170a7e3e 2128 bool found_exclude = false;
e87c6bc3
YS
2129
2130 /* Figure out how many existing progs we need to carry over to
2131 * the new array.
2132 */
2133 if (old_array) {
394e40a2
RG
2134 existing = old_array->items;
2135 for (; existing->prog; existing++) {
2136 if (existing->prog == exclude_prog) {
170a7e3e
SY
2137 found_exclude = true;
2138 continue;
2139 }
394e40a2 2140 if (existing->prog != &dummy_bpf_prog.prog)
e87c6bc3 2141 carry_prog_cnt++;
394e40a2 2142 if (existing->prog == include_prog)
e87c6bc3
YS
2143 return -EEXIST;
2144 }
2145 }
2146
170a7e3e
SY
2147 if (exclude_prog && !found_exclude)
2148 return -ENOENT;
2149
e87c6bc3
YS
2150 /* How many progs (not NULL) will be in the new array? */
2151 new_prog_cnt = carry_prog_cnt;
2152 if (include_prog)
2153 new_prog_cnt += 1;
2154
2155 /* Do we have any prog (not NULL) in the new array? */
2156 if (!new_prog_cnt) {
2157 *new_array = NULL;
2158 return 0;
2159 }
2160
2161 /* +1 as the end of prog_array is marked with NULL */
2162 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2163 if (!array)
2164 return -ENOMEM;
82e6b1ee 2165 new = array->items;
e87c6bc3
YS
2166
2167 /* Fill in the new prog array */
2168 if (carry_prog_cnt) {
394e40a2 2169 existing = old_array->items;
82e6b1ee
AN
2170 for (; existing->prog; existing++) {
2171 if (existing->prog == exclude_prog ||
2172 existing->prog == &dummy_bpf_prog.prog)
2173 continue;
2174
2175 new->prog = existing->prog;
2176 new->bpf_cookie = existing->bpf_cookie;
2177 new++;
2178 }
e87c6bc3 2179 }
82e6b1ee
AN
2180 if (include_prog) {
2181 new->prog = include_prog;
2182 new->bpf_cookie = bpf_cookie;
2183 new++;
2184 }
2185 new->prog = NULL;
e87c6bc3
YS
2186 *new_array = array;
2187 return 0;
2188}
2189
54e9c9d4 2190int bpf_prog_array_copy_info(struct bpf_prog_array *array,
3a38bb98
YS
2191 u32 *prog_ids, u32 request_cnt,
2192 u32 *prog_cnt)
f371b304
YS
2193{
2194 u32 cnt = 0;
2195
2196 if (array)
2197 cnt = bpf_prog_array_length(array);
2198
3a38bb98 2199 *prog_cnt = cnt;
f371b304
YS
2200
2201 /* return early if user requested only program count or nothing to copy */
2202 if (!request_cnt || !cnt)
2203 return 0;
2204
3a38bb98 2205 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
394e40a2 2206 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
3a38bb98 2207 : 0;
f371b304
YS
2208}
2209
a2ea0746
DB
2210void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2211 struct bpf_map **used_maps, u32 len)
6332be04 2212{
da765a2f 2213 struct bpf_map *map;
a2ea0746 2214 u32 i;
6332be04 2215
a2ea0746
DB
2216 for (i = 0; i < len; i++) {
2217 map = used_maps[i];
da765a2f
DB
2218 if (map->ops->map_poke_untrack)
2219 map->ops->map_poke_untrack(map, aux);
2220 bpf_map_put(map);
2221 }
a2ea0746
DB
2222}
2223
2224static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2225{
2226 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
6332be04
DB
2227 kfree(aux->used_maps);
2228}
2229
541c3bad
AN
2230void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2231 struct btf_mod_pair *used_btfs, u32 len)
2232{
2233#ifdef CONFIG_BPF_SYSCALL
2234 struct btf_mod_pair *btf_mod;
2235 u32 i;
2236
2237 for (i = 0; i < len; i++) {
2238 btf_mod = &used_btfs[i];
2239 if (btf_mod->module)
2240 module_put(btf_mod->module);
2241 btf_put(btf_mod->btf);
2242 }
2243#endif
2244}
2245
2246static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2247{
2248 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2249 kfree(aux->used_btfs);
2250}
2251
60a3b225
DB
2252static void bpf_prog_free_deferred(struct work_struct *work)
2253{
09756af4 2254 struct bpf_prog_aux *aux;
1c2a088a 2255 int i;
60a3b225 2256
09756af4 2257 aux = container_of(work, struct bpf_prog_aux, work);
6332be04 2258 bpf_free_used_maps(aux);
541c3bad 2259 bpf_free_used_btfs(aux);
ab3f0063
JK
2260 if (bpf_prog_is_dev_bound(aux))
2261 bpf_prog_offload_destroy(aux->prog);
c195651e
YS
2262#ifdef CONFIG_PERF_EVENTS
2263 if (aux->prog->has_callchain_buf)
2264 put_callchain_buffers();
2265#endif
3aac1ead
THJ
2266 if (aux->dst_trampoline)
2267 bpf_trampoline_put(aux->dst_trampoline);
f263a814
JF
2268 for (i = 0; i < aux->func_cnt; i++) {
2269 /* We can just unlink the subprog poke descriptor table as
2270 * it was originally linked to the main program and is also
2271 * released along with it.
2272 */
2273 aux->func[i]->aux->poke_tab = NULL;
1c2a088a 2274 bpf_jit_free(aux->func[i]);
f263a814 2275 }
1c2a088a
AS
2276 if (aux->func_cnt) {
2277 kfree(aux->func);
2278 bpf_prog_unlock_free(aux->prog);
2279 } else {
2280 bpf_jit_free(aux->prog);
2281 }
60a3b225
DB
2282}
2283
2284/* Free internal BPF program */
7ae457c1 2285void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 2286{
09756af4 2287 struct bpf_prog_aux *aux = fp->aux;
60a3b225 2288
3aac1ead
THJ
2289 if (aux->dst_prog)
2290 bpf_prog_put(aux->dst_prog);
09756af4 2291 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 2292 schedule_work(&aux->work);
f5bffecd 2293}
7ae457c1 2294EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 2295
3ad00405
DB
2296/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2297static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2298
2299void bpf_user_rnd_init_once(void)
2300{
2301 prandom_init_once(&bpf_user_rnd_state);
2302}
2303
f3694e00 2304BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
2305{
2306 /* Should someone ever have the rather unwise idea to use some
2307 * of the registers passed into this function, then note that
2308 * this function is called from native eBPF and classic-to-eBPF
2309 * transformations. Register assignments from both sides are
2310 * different, f.e. classic always sets fn(ctx, A, X) here.
2311 */
2312 struct rnd_state *state;
2313 u32 res;
2314
2315 state = &get_cpu_var(bpf_user_rnd_state);
2316 res = prandom_u32_state(state);
b761fe22 2317 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
2318
2319 return res;
2320}
2321
6890896b
SF
2322BPF_CALL_0(bpf_get_raw_cpu_id)
2323{
2324 return raw_smp_processor_id();
2325}
2326
3ba67dab
DB
2327/* Weak definitions of helper functions in case we don't have bpf syscall. */
2328const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2329const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2330const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
f1a2e44a
MV
2331const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2332const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2333const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
d83525ca
AS
2334const struct bpf_func_proto bpf_spin_lock_proto __weak;
2335const struct bpf_func_proto bpf_spin_unlock_proto __weak;
5576b991 2336const struct bpf_func_proto bpf_jiffies64_proto __weak;
3ba67dab 2337
03e69b50 2338const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 2339const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 2340const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 2341const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
71d19214 2342const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
d0551261 2343const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
bd570ff9 2344
ffeedafb
AS
2345const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2346const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2347const struct bpf_func_proto bpf_get_current_comm_proto __weak;
bf6fa2c8 2348const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
0f09abd1 2349const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
cd339431 2350const struct bpf_func_proto bpf_get_local_storage_proto __weak;
b4490c5c 2351const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
c4d0bfb4 2352const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
eb411377 2353const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
bd570ff9 2354
0756ea3e
AS
2355const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2356{
2357 return NULL;
2358}
03e69b50 2359
555c8a86
DB
2360u64 __weak
2361bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2362 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 2363{
555c8a86 2364 return -ENOTSUPP;
bd570ff9 2365}
6cb5fb38 2366EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 2367
3324b584
DB
2368/* Always built-in helper functions. */
2369const struct bpf_func_proto bpf_tail_call_proto = {
2370 .func = NULL,
2371 .gpl_only = false,
2372 .ret_type = RET_VOID,
2373 .arg1_type = ARG_PTR_TO_CTX,
2374 .arg2_type = ARG_CONST_MAP_PTR,
2375 .arg3_type = ARG_ANYTHING,
2376};
2377
9383191d
DB
2378/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2379 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2380 * eBPF and implicitly also cBPF can get JITed!
2381 */
d1c55ab5 2382struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 2383{
d1c55ab5 2384 return prog;
3324b584
DB
2385}
2386
9383191d
DB
2387/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2388 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2389 */
2390void __weak bpf_jit_compile(struct bpf_prog *prog)
2391{
2392}
2393
17bedab2 2394bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
2395{
2396 return false;
2397}
2398
a4b1d3c1
JW
2399/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2400 * analysis code and wants explicit zero extension inserted by verifier.
2401 * Otherwise, return FALSE.
39491867
BJ
2402 *
2403 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2404 * you don't override this. JITs that don't want these extra insns can detect
2405 * them using insn_is_zext.
a4b1d3c1
JW
2406 */
2407bool __weak bpf_jit_needs_zext(void)
2408{
2409 return false;
2410}
2411
e6ac2450
MKL
2412bool __weak bpf_jit_supports_kfunc_call(void)
2413{
2414 return false;
2415}
2416
f89b7755
AS
2417/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2418 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2419 */
2420int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2421 int len)
2422{
2423 return -EFAULT;
2424}
a67edbf4 2425
5964b200
AS
2426int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2427 void *addr1, void *addr2)
2428{
2429 return -ENOTSUPP;
2430}
2431
492ecee8
AS
2432DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2433EXPORT_SYMBOL(bpf_stats_enabled_key);
492ecee8 2434
a67edbf4
DB
2435/* All definitions of tracepoints related to BPF. */
2436#define CREATE_TRACE_POINTS
2437#include <linux/bpf_trace.h>
2438
2439EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
e7d47989 2440EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);