]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/bpf/core.c
bpf: Use char in prog and map name
[mirror_ubuntu-eoan-kernel.git] / kernel / bpf / core.c
CommitLineData
f5bffecd
AS
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 22 */
738cbe72 23
f5bffecd
AS
24#include <linux/filter.h>
25#include <linux/skbuff.h>
60a3b225 26#include <linux/vmalloc.h>
738cbe72
DB
27#include <linux/random.h>
28#include <linux/moduleloader.h>
09756af4 29#include <linux/bpf.h>
39853cc0 30#include <linux/frame.h>
74451e66
DB
31#include <linux/rbtree_latch.h>
32#include <linux/kallsyms.h>
33#include <linux/rcupdate.h>
f5bffecd 34
3324b584
DB
35#include <asm/unaligned.h>
36
f5bffecd
AS
37/* Registers */
38#define BPF_R0 regs[BPF_REG_0]
39#define BPF_R1 regs[BPF_REG_1]
40#define BPF_R2 regs[BPF_REG_2]
41#define BPF_R3 regs[BPF_REG_3]
42#define BPF_R4 regs[BPF_REG_4]
43#define BPF_R5 regs[BPF_REG_5]
44#define BPF_R6 regs[BPF_REG_6]
45#define BPF_R7 regs[BPF_REG_7]
46#define BPF_R8 regs[BPF_REG_8]
47#define BPF_R9 regs[BPF_REG_9]
48#define BPF_R10 regs[BPF_REG_10]
49
50/* Named registers */
51#define DST regs[insn->dst_reg]
52#define SRC regs[insn->src_reg]
53#define FP regs[BPF_REG_FP]
54#define ARG1 regs[BPF_REG_ARG1]
55#define CTX regs[BPF_REG_CTX]
56#define IMM insn->imm
57
58/* No hurry in this branch
59 *
60 * Exported for the bpf jit load helper.
61 */
62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63{
64 u8 *ptr = NULL;
65
66 if (k >= SKF_NET_OFF)
67 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 else if (k >= SKF_LL_OFF)
69 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 70
f5bffecd
AS
71 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 return ptr;
73
74 return NULL;
75}
76
60a3b225
DB
77struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78{
19809c2d 79 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
09756af4 80 struct bpf_prog_aux *aux;
60a3b225
DB
81 struct bpf_prog *fp;
82
83 size = round_up(size, PAGE_SIZE);
84 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85 if (fp == NULL)
86 return NULL;
87
a91263d5
DB
88 kmemcheck_annotate_bitfield(fp, meta);
89
09756af4
AS
90 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
91 if (aux == NULL) {
60a3b225
DB
92 vfree(fp);
93 return NULL;
94 }
95
96 fp->pages = size / PAGE_SIZE;
09756af4 97 fp->aux = aux;
e9d8afa9 98 fp->aux->prog = fp;
60a3b225 99
74451e66
DB
100 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101
60a3b225
DB
102 return fp;
103}
104EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105
106struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107 gfp_t gfp_extra_flags)
108{
19809c2d 109 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
60a3b225 110 struct bpf_prog *fp;
5ccb071e
DB
111 u32 pages, delta;
112 int ret;
60a3b225
DB
113
114 BUG_ON(fp_old == NULL);
115
116 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
117 pages = size / PAGE_SIZE;
118 if (pages <= fp_old->pages)
60a3b225
DB
119 return fp_old;
120
5ccb071e
DB
121 delta = pages - fp_old->pages;
122 ret = __bpf_prog_charge(fp_old->aux->user, delta);
123 if (ret)
124 return NULL;
125
60a3b225 126 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
5ccb071e
DB
127 if (fp == NULL) {
128 __bpf_prog_uncharge(fp_old->aux->user, delta);
129 } else {
a91263d5
DB
130 kmemcheck_annotate_bitfield(fp, meta);
131
60a3b225 132 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 133 fp->pages = pages;
e9d8afa9 134 fp->aux->prog = fp;
60a3b225 135
09756af4 136 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
137 * reallocated structure.
138 */
09756af4 139 fp_old->aux = NULL;
60a3b225
DB
140 __bpf_prog_free(fp_old);
141 }
142
143 return fp;
144}
60a3b225
DB
145
146void __bpf_prog_free(struct bpf_prog *fp)
147{
09756af4 148 kfree(fp->aux);
60a3b225
DB
149 vfree(fp);
150}
60a3b225 151
f1f7714e 152int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3
DB
153{
154 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
f1f7714e
DB
155 u32 raw_size = bpf_prog_tag_scratch_size(fp);
156 u32 digest[SHA_DIGEST_WORDS];
aafe6ae9 157 u32 ws[SHA_WORKSPACE_WORDS];
7bd509e3 158 u32 i, bsize, psize, blocks;
aafe6ae9 159 struct bpf_insn *dst;
7bd509e3 160 bool was_ld_map;
aafe6ae9 161 u8 *raw, *todo;
7bd509e3
DB
162 __be32 *result;
163 __be64 *bits;
164
aafe6ae9
DB
165 raw = vmalloc(raw_size);
166 if (!raw)
167 return -ENOMEM;
168
f1f7714e 169 sha_init(digest);
7bd509e3
DB
170 memset(ws, 0, sizeof(ws));
171
172 /* We need to take out the map fd for the digest calculation
173 * since they are unstable from user space side.
174 */
aafe6ae9 175 dst = (void *)raw;
7bd509e3
DB
176 for (i = 0, was_ld_map = false; i < fp->len; i++) {
177 dst[i] = fp->insnsi[i];
178 if (!was_ld_map &&
179 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
180 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
181 was_ld_map = true;
182 dst[i].imm = 0;
183 } else if (was_ld_map &&
184 dst[i].code == 0 &&
185 dst[i].dst_reg == 0 &&
186 dst[i].src_reg == 0 &&
187 dst[i].off == 0) {
188 was_ld_map = false;
189 dst[i].imm = 0;
190 } else {
191 was_ld_map = false;
192 }
193 }
194
aafe6ae9
DB
195 psize = bpf_prog_insn_size(fp);
196 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
197 raw[psize++] = 0x80;
198
199 bsize = round_up(psize, SHA_MESSAGE_BYTES);
200 blocks = bsize / SHA_MESSAGE_BYTES;
aafe6ae9 201 todo = raw;
7bd509e3
DB
202 if (bsize - psize >= sizeof(__be64)) {
203 bits = (__be64 *)(todo + bsize - sizeof(__be64));
204 } else {
205 bits = (__be64 *)(todo + bsize + bits_offset);
206 blocks++;
207 }
208 *bits = cpu_to_be64((psize - 1) << 3);
209
210 while (blocks--) {
f1f7714e 211 sha_transform(digest, todo, ws);
7bd509e3
DB
212 todo += SHA_MESSAGE_BYTES;
213 }
214
f1f7714e 215 result = (__force __be32 *)digest;
7bd509e3 216 for (i = 0; i < SHA_DIGEST_WORDS; i++)
f1f7714e
DB
217 result[i] = cpu_to_be32(digest[i]);
218 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
219
220 vfree(raw);
221 return 0;
7bd509e3
DB
222}
223
c237ee5e
DB
224static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
225{
226 return BPF_CLASS(insn->code) == BPF_JMP &&
227 /* Call and Exit are both special jumps with no
228 * target inside the BPF instruction image.
229 */
230 BPF_OP(insn->code) != BPF_CALL &&
231 BPF_OP(insn->code) != BPF_EXIT;
232}
233
234static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
235{
236 struct bpf_insn *insn = prog->insnsi;
237 u32 i, insn_cnt = prog->len;
238
239 for (i = 0; i < insn_cnt; i++, insn++) {
240 if (!bpf_is_jmp_and_has_target(insn))
241 continue;
242
243 /* Adjust offset of jmps if we cross boundaries. */
244 if (i < pos && i + insn->off + 1 > pos)
245 insn->off += delta;
246 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
247 insn->off -= delta;
248 }
249}
250
251struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
252 const struct bpf_insn *patch, u32 len)
253{
254 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
255 struct bpf_prog *prog_adj;
256
257 /* Since our patchlet doesn't expand the image, we're done. */
258 if (insn_delta == 0) {
259 memcpy(prog->insnsi + off, patch, sizeof(*patch));
260 return prog;
261 }
262
263 insn_adj_cnt = prog->len + insn_delta;
264
265 /* Several new instructions need to be inserted. Make room
266 * for them. Likely, there's no need for a new allocation as
267 * last page could have large enough tailroom.
268 */
269 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
270 GFP_USER);
271 if (!prog_adj)
272 return NULL;
273
274 prog_adj->len = insn_adj_cnt;
275
276 /* Patching happens in 3 steps:
277 *
278 * 1) Move over tail of insnsi from next instruction onwards,
279 * so we can patch the single target insn with one or more
280 * new ones (patching is always from 1 to n insns, n > 0).
281 * 2) Inject new instructions at the target location.
282 * 3) Adjust branch offsets if necessary.
283 */
284 insn_rest = insn_adj_cnt - off - len;
285
286 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
287 sizeof(*patch) * insn_rest);
288 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
289
290 bpf_adj_branches(prog_adj, off, insn_delta);
291
292 return prog_adj;
293}
294
b954d834 295#ifdef CONFIG_BPF_JIT
74451e66
DB
296static __always_inline void
297bpf_get_prog_addr_region(const struct bpf_prog *prog,
298 unsigned long *symbol_start,
299 unsigned long *symbol_end)
300{
301 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
302 unsigned long addr = (unsigned long)hdr;
303
304 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
305
306 *symbol_start = addr;
307 *symbol_end = addr + hdr->pages * PAGE_SIZE;
308}
309
310static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
311{
312 BUILD_BUG_ON(sizeof("bpf_prog_") +
313 sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
314
315 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
316 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
317 *sym = 0;
318}
319
320static __always_inline unsigned long
321bpf_get_prog_addr_start(struct latch_tree_node *n)
322{
323 unsigned long symbol_start, symbol_end;
324 const struct bpf_prog_aux *aux;
325
326 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
327 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
328
329 return symbol_start;
330}
331
332static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
333 struct latch_tree_node *b)
334{
335 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
336}
337
338static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
339{
340 unsigned long val = (unsigned long)key;
341 unsigned long symbol_start, symbol_end;
342 const struct bpf_prog_aux *aux;
343
344 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
345 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
346
347 if (val < symbol_start)
348 return -1;
349 if (val >= symbol_end)
350 return 1;
351
352 return 0;
353}
354
355static const struct latch_tree_ops bpf_tree_ops = {
356 .less = bpf_tree_less,
357 .comp = bpf_tree_comp,
358};
359
360static DEFINE_SPINLOCK(bpf_lock);
361static LIST_HEAD(bpf_kallsyms);
362static struct latch_tree_root bpf_tree __cacheline_aligned;
363
364int bpf_jit_kallsyms __read_mostly;
365
366static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
367{
368 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
369 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
370 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
371}
372
373static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
374{
375 if (list_empty(&aux->ksym_lnode))
376 return;
377
378 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
379 list_del_rcu(&aux->ksym_lnode);
380}
381
382static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
383{
384 return fp->jited && !bpf_prog_was_classic(fp);
385}
386
387static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
388{
389 return list_empty(&fp->aux->ksym_lnode) ||
390 fp->aux->ksym_lnode.prev == LIST_POISON2;
391}
392
393void bpf_prog_kallsyms_add(struct bpf_prog *fp)
394{
74451e66
DB
395 if (!bpf_prog_kallsyms_candidate(fp) ||
396 !capable(CAP_SYS_ADMIN))
397 return;
398
d24f7c7f 399 spin_lock_bh(&bpf_lock);
74451e66 400 bpf_prog_ksym_node_add(fp->aux);
d24f7c7f 401 spin_unlock_bh(&bpf_lock);
74451e66
DB
402}
403
404void bpf_prog_kallsyms_del(struct bpf_prog *fp)
405{
74451e66
DB
406 if (!bpf_prog_kallsyms_candidate(fp))
407 return;
408
d24f7c7f 409 spin_lock_bh(&bpf_lock);
74451e66 410 bpf_prog_ksym_node_del(fp->aux);
d24f7c7f 411 spin_unlock_bh(&bpf_lock);
74451e66
DB
412}
413
414static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
415{
416 struct latch_tree_node *n;
417
418 if (!bpf_jit_kallsyms_enabled())
419 return NULL;
420
421 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
422 return n ?
423 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
424 NULL;
425}
426
427const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
428 unsigned long *off, char *sym)
429{
430 unsigned long symbol_start, symbol_end;
431 struct bpf_prog *prog;
432 char *ret = NULL;
433
434 rcu_read_lock();
435 prog = bpf_prog_kallsyms_find(addr);
436 if (prog) {
437 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
438 bpf_get_prog_name(prog, sym);
439
440 ret = sym;
441 if (size)
442 *size = symbol_end - symbol_start;
443 if (off)
444 *off = addr - symbol_start;
445 }
446 rcu_read_unlock();
447
448 return ret;
449}
450
451bool is_bpf_text_address(unsigned long addr)
452{
453 bool ret;
454
455 rcu_read_lock();
456 ret = bpf_prog_kallsyms_find(addr) != NULL;
457 rcu_read_unlock();
458
459 return ret;
460}
461
462int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
463 char *sym)
464{
465 unsigned long symbol_start, symbol_end;
466 struct bpf_prog_aux *aux;
467 unsigned int it = 0;
468 int ret = -ERANGE;
469
470 if (!bpf_jit_kallsyms_enabled())
471 return ret;
472
473 rcu_read_lock();
474 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
475 if (it++ != symnum)
476 continue;
477
478 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
479 bpf_get_prog_name(aux->prog, sym);
480
481 *value = symbol_start;
482 *type = BPF_SYM_ELF_TYPE;
483
484 ret = 0;
485 break;
486 }
487 rcu_read_unlock();
488
489 return ret;
490}
491
738cbe72
DB
492struct bpf_binary_header *
493bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
494 unsigned int alignment,
495 bpf_jit_fill_hole_t bpf_fill_ill_insns)
496{
497 struct bpf_binary_header *hdr;
498 unsigned int size, hole, start;
499
500 /* Most of BPF filters are really small, but if some of them
501 * fill a page, allow at least 128 extra bytes to insert a
502 * random section of illegal instructions.
503 */
504 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
505 hdr = module_alloc(size);
506 if (hdr == NULL)
507 return NULL;
508
509 /* Fill space with illegal/arch-dep instructions. */
510 bpf_fill_ill_insns(hdr, size);
511
512 hdr->pages = size / PAGE_SIZE;
513 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
514 PAGE_SIZE - sizeof(*hdr));
b7552e1b 515 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
516
517 /* Leave a random number of instructions before BPF code. */
518 *image_ptr = &hdr->image[start];
519
520 return hdr;
521}
522
523void bpf_jit_binary_free(struct bpf_binary_header *hdr)
524{
be1f221c 525 module_memfree(hdr);
738cbe72 526}
4f3446bb 527
74451e66
DB
528/* This symbol is only overridden by archs that have different
529 * requirements than the usual eBPF JITs, f.e. when they only
530 * implement cBPF JIT, do not set images read-only, etc.
531 */
532void __weak bpf_jit_free(struct bpf_prog *fp)
533{
534 if (fp->jited) {
535 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
536
537 bpf_jit_binary_unlock_ro(hdr);
538 bpf_jit_binary_free(hdr);
539
540 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
541 }
542
543 bpf_prog_unlock_free(fp);
544}
545
4f3446bb
DB
546int bpf_jit_harden __read_mostly;
547
548static int bpf_jit_blind_insn(const struct bpf_insn *from,
549 const struct bpf_insn *aux,
550 struct bpf_insn *to_buff)
551{
552 struct bpf_insn *to = to_buff;
b7552e1b 553 u32 imm_rnd = get_random_int();
4f3446bb
DB
554 s16 off;
555
556 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
557 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
558
559 if (from->imm == 0 &&
560 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
561 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
562 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
563 goto out;
564 }
565
566 switch (from->code) {
567 case BPF_ALU | BPF_ADD | BPF_K:
568 case BPF_ALU | BPF_SUB | BPF_K:
569 case BPF_ALU | BPF_AND | BPF_K:
570 case BPF_ALU | BPF_OR | BPF_K:
571 case BPF_ALU | BPF_XOR | BPF_K:
572 case BPF_ALU | BPF_MUL | BPF_K:
573 case BPF_ALU | BPF_MOV | BPF_K:
574 case BPF_ALU | BPF_DIV | BPF_K:
575 case BPF_ALU | BPF_MOD | BPF_K:
576 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
577 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
578 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
579 break;
580
581 case BPF_ALU64 | BPF_ADD | BPF_K:
582 case BPF_ALU64 | BPF_SUB | BPF_K:
583 case BPF_ALU64 | BPF_AND | BPF_K:
584 case BPF_ALU64 | BPF_OR | BPF_K:
585 case BPF_ALU64 | BPF_XOR | BPF_K:
586 case BPF_ALU64 | BPF_MUL | BPF_K:
587 case BPF_ALU64 | BPF_MOV | BPF_K:
588 case BPF_ALU64 | BPF_DIV | BPF_K:
589 case BPF_ALU64 | BPF_MOD | BPF_K:
590 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
591 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
592 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
593 break;
594
595 case BPF_JMP | BPF_JEQ | BPF_K:
596 case BPF_JMP | BPF_JNE | BPF_K:
597 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 598 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 599 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 600 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 601 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 602 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 603 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 604 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
605 case BPF_JMP | BPF_JSET | BPF_K:
606 /* Accommodate for extra offset in case of a backjump. */
607 off = from->off;
608 if (off < 0)
609 off -= 2;
610 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
611 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
612 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
613 break;
614
615 case BPF_LD | BPF_ABS | BPF_W:
616 case BPF_LD | BPF_ABS | BPF_H:
617 case BPF_LD | BPF_ABS | BPF_B:
618 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
619 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
620 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
621 break;
622
623 case BPF_LD | BPF_IND | BPF_W:
624 case BPF_LD | BPF_IND | BPF_H:
625 case BPF_LD | BPF_IND | BPF_B:
626 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
627 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
628 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
629 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
630 break;
631
632 case BPF_LD | BPF_IMM | BPF_DW:
633 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
634 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
635 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
636 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
637 break;
638 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
639 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
640 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
641 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
642 break;
643
644 case BPF_ST | BPF_MEM | BPF_DW:
645 case BPF_ST | BPF_MEM | BPF_W:
646 case BPF_ST | BPF_MEM | BPF_H:
647 case BPF_ST | BPF_MEM | BPF_B:
648 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
649 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
650 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
651 break;
652 }
653out:
654 return to - to_buff;
655}
656
657static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
658 gfp_t gfp_extra_flags)
659{
19809c2d 660 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
661 struct bpf_prog *fp;
662
663 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
664 if (fp != NULL) {
665 kmemcheck_annotate_bitfield(fp, meta);
666
667 /* aux->prog still points to the fp_other one, so
668 * when promoting the clone to the real program,
669 * this still needs to be adapted.
670 */
671 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
672 }
673
674 return fp;
675}
676
677static void bpf_prog_clone_free(struct bpf_prog *fp)
678{
679 /* aux was stolen by the other clone, so we cannot free
680 * it from this path! It will be freed eventually by the
681 * other program on release.
682 *
683 * At this point, we don't need a deferred release since
684 * clone is guaranteed to not be locked.
685 */
686 fp->aux = NULL;
687 __bpf_prog_free(fp);
688}
689
690void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
691{
692 /* We have to repoint aux->prog to self, as we don't
693 * know whether fp here is the clone or the original.
694 */
695 fp->aux->prog = fp;
696 bpf_prog_clone_free(fp_other);
697}
698
699struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
700{
701 struct bpf_insn insn_buff[16], aux[2];
702 struct bpf_prog *clone, *tmp;
703 int insn_delta, insn_cnt;
704 struct bpf_insn *insn;
705 int i, rewritten;
706
707 if (!bpf_jit_blinding_enabled())
708 return prog;
709
710 clone = bpf_prog_clone_create(prog, GFP_USER);
711 if (!clone)
712 return ERR_PTR(-ENOMEM);
713
714 insn_cnt = clone->len;
715 insn = clone->insnsi;
716
717 for (i = 0; i < insn_cnt; i++, insn++) {
718 /* We temporarily need to hold the original ld64 insn
719 * so that we can still access the first part in the
720 * second blinding run.
721 */
722 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
723 insn[1].code == 0)
724 memcpy(aux, insn, sizeof(aux));
725
726 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
727 if (!rewritten)
728 continue;
729
730 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
731 if (!tmp) {
732 /* Patching may have repointed aux->prog during
733 * realloc from the original one, so we need to
734 * fix it up here on error.
735 */
736 bpf_jit_prog_release_other(prog, clone);
737 return ERR_PTR(-ENOMEM);
738 }
739
740 clone = tmp;
741 insn_delta = rewritten - 1;
742
743 /* Walk new program and skip insns we just inserted. */
744 insn = clone->insnsi + i + insn_delta;
745 insn_cnt += insn_delta;
746 i += insn_delta;
747 }
748
749 return clone;
750}
b954d834 751#endif /* CONFIG_BPF_JIT */
738cbe72 752
f5bffecd
AS
753/* Base function for offset calculation. Needs to go into .text section,
754 * therefore keeping it non-static as well; will also be used by JITs
755 * anyway later on, so do not let the compiler omit it.
756 */
757noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
758{
759 return 0;
760}
4d9c5c53 761EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd
AS
762
763/**
7ae457c1
AS
764 * __bpf_prog_run - run eBPF program on a given context
765 * @ctx: is the data we are operating on
766 * @insn: is the array of eBPF instructions
f5bffecd 767 *
7ae457c1 768 * Decode and execute eBPF instructions.
f5bffecd 769 */
f696b8f4
AS
770static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
771 u64 *stack)
f5bffecd 772{
f696b8f4 773 u64 tmp;
f5bffecd
AS
774 static const void *jumptable[256] = {
775 [0 ... 255] = &&default_label,
776 /* Now overwrite non-defaults ... */
777 /* 32 bit ALU operations */
778 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
779 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
780 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
781 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
782 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
783 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
784 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
785 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
786 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
787 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
788 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
789 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
790 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
791 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
792 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
793 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
794 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
795 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
796 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
797 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
798 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
799 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
800 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
801 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
802 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
803 /* 64 bit ALU operations */
804 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
805 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
806 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
807 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
808 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
809 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
810 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
811 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
812 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
813 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
814 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
815 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
816 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
817 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
818 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
819 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
820 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
821 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
822 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
823 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
824 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
825 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
826 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
827 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
828 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
829 /* Call instruction */
830 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
71189fa9 831 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5bffecd
AS
832 /* Jumps */
833 [BPF_JMP | BPF_JA] = &&JMP_JA,
834 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
835 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
836 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
837 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
838 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
839 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
92b31a9a
DB
840 [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
841 [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
f5bffecd
AS
842 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
843 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
92b31a9a
DB
844 [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
845 [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
f5bffecd
AS
846 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
847 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
92b31a9a
DB
848 [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
849 [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
f5bffecd
AS
850 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
851 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
92b31a9a
DB
852 [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
853 [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
f5bffecd
AS
854 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
855 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
856 /* Program return */
857 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
858 /* Store instructions */
859 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
860 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
861 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
862 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
863 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
864 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
865 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
866 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
867 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
868 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
869 /* Load instructions */
870 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
871 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
872 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
873 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
874 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
875 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
876 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
877 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
878 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
879 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
02ab695b 880 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
f5bffecd 881 };
04fd61ab 882 u32 tail_call_cnt = 0;
f5bffecd
AS
883 void *ptr;
884 int off;
885
886#define CONT ({ insn++; goto select_insn; })
887#define CONT_JMP ({ insn++; goto select_insn; })
888
f5bffecd
AS
889select_insn:
890 goto *jumptable[insn->code];
891
892 /* ALU */
893#define ALU(OPCODE, OP) \
894 ALU64_##OPCODE##_X: \
895 DST = DST OP SRC; \
896 CONT; \
897 ALU_##OPCODE##_X: \
898 DST = (u32) DST OP (u32) SRC; \
899 CONT; \
900 ALU64_##OPCODE##_K: \
901 DST = DST OP IMM; \
902 CONT; \
903 ALU_##OPCODE##_K: \
904 DST = (u32) DST OP (u32) IMM; \
905 CONT;
906
907 ALU(ADD, +)
908 ALU(SUB, -)
909 ALU(AND, &)
910 ALU(OR, |)
911 ALU(LSH, <<)
912 ALU(RSH, >>)
913 ALU(XOR, ^)
914 ALU(MUL, *)
915#undef ALU
916 ALU_NEG:
917 DST = (u32) -DST;
918 CONT;
919 ALU64_NEG:
920 DST = -DST;
921 CONT;
922 ALU_MOV_X:
923 DST = (u32) SRC;
924 CONT;
925 ALU_MOV_K:
926 DST = (u32) IMM;
927 CONT;
928 ALU64_MOV_X:
929 DST = SRC;
930 CONT;
931 ALU64_MOV_K:
932 DST = IMM;
933 CONT;
02ab695b
AS
934 LD_IMM_DW:
935 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
936 insn++;
937 CONT;
f5bffecd
AS
938 ALU64_ARSH_X:
939 (*(s64 *) &DST) >>= SRC;
940 CONT;
941 ALU64_ARSH_K:
942 (*(s64 *) &DST) >>= IMM;
943 CONT;
944 ALU64_MOD_X:
945 if (unlikely(SRC == 0))
946 return 0;
876a7ae6
AS
947 div64_u64_rem(DST, SRC, &tmp);
948 DST = tmp;
f5bffecd
AS
949 CONT;
950 ALU_MOD_X:
951 if (unlikely(SRC == 0))
952 return 0;
953 tmp = (u32) DST;
954 DST = do_div(tmp, (u32) SRC);
955 CONT;
956 ALU64_MOD_K:
876a7ae6
AS
957 div64_u64_rem(DST, IMM, &tmp);
958 DST = tmp;
f5bffecd
AS
959 CONT;
960 ALU_MOD_K:
961 tmp = (u32) DST;
962 DST = do_div(tmp, (u32) IMM);
963 CONT;
964 ALU64_DIV_X:
965 if (unlikely(SRC == 0))
966 return 0;
876a7ae6 967 DST = div64_u64(DST, SRC);
f5bffecd
AS
968 CONT;
969 ALU_DIV_X:
970 if (unlikely(SRC == 0))
971 return 0;
972 tmp = (u32) DST;
973 do_div(tmp, (u32) SRC);
974 DST = (u32) tmp;
975 CONT;
976 ALU64_DIV_K:
876a7ae6 977 DST = div64_u64(DST, IMM);
f5bffecd
AS
978 CONT;
979 ALU_DIV_K:
980 tmp = (u32) DST;
981 do_div(tmp, (u32) IMM);
982 DST = (u32) tmp;
983 CONT;
984 ALU_END_TO_BE:
985 switch (IMM) {
986 case 16:
987 DST = (__force u16) cpu_to_be16(DST);
988 break;
989 case 32:
990 DST = (__force u32) cpu_to_be32(DST);
991 break;
992 case 64:
993 DST = (__force u64) cpu_to_be64(DST);
994 break;
995 }
996 CONT;
997 ALU_END_TO_LE:
998 switch (IMM) {
999 case 16:
1000 DST = (__force u16) cpu_to_le16(DST);
1001 break;
1002 case 32:
1003 DST = (__force u32) cpu_to_le32(DST);
1004 break;
1005 case 64:
1006 DST = (__force u64) cpu_to_le64(DST);
1007 break;
1008 }
1009 CONT;
1010
1011 /* CALL */
1012 JMP_CALL:
1013 /* Function call scratches BPF_R1-BPF_R5 registers,
1014 * preserves BPF_R6-BPF_R9, and stores return value
1015 * into BPF_R0.
1016 */
1017 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1018 BPF_R4, BPF_R5);
1019 CONT;
1020
04fd61ab
AS
1021 JMP_TAIL_CALL: {
1022 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1023 struct bpf_array *array = container_of(map, struct bpf_array, map);
1024 struct bpf_prog *prog;
90caccdd 1025 u32 index = BPF_R3;
04fd61ab
AS
1026
1027 if (unlikely(index >= array->map.max_entries))
1028 goto out;
04fd61ab
AS
1029 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1030 goto out;
1031
1032 tail_call_cnt++;
1033
2a36f0b9 1034 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1035 if (!prog)
04fd61ab
AS
1036 goto out;
1037
c4675f93
DB
1038 /* ARG1 at this point is guaranteed to point to CTX from
1039 * the verifier side due to the fact that the tail call is
1040 * handeled like a helper, that is, bpf_tail_call_proto,
1041 * where arg1_type is ARG_PTR_TO_CTX.
1042 */
04fd61ab
AS
1043 insn = prog->insnsi;
1044 goto select_insn;
1045out:
1046 CONT;
1047 }
f5bffecd
AS
1048 /* JMP */
1049 JMP_JA:
1050 insn += insn->off;
1051 CONT;
1052 JMP_JEQ_X:
1053 if (DST == SRC) {
1054 insn += insn->off;
1055 CONT_JMP;
1056 }
1057 CONT;
1058 JMP_JEQ_K:
1059 if (DST == IMM) {
1060 insn += insn->off;
1061 CONT_JMP;
1062 }
1063 CONT;
1064 JMP_JNE_X:
1065 if (DST != SRC) {
1066 insn += insn->off;
1067 CONT_JMP;
1068 }
1069 CONT;
1070 JMP_JNE_K:
1071 if (DST != IMM) {
1072 insn += insn->off;
1073 CONT_JMP;
1074 }
1075 CONT;
1076 JMP_JGT_X:
1077 if (DST > SRC) {
1078 insn += insn->off;
1079 CONT_JMP;
1080 }
1081 CONT;
1082 JMP_JGT_K:
1083 if (DST > IMM) {
1084 insn += insn->off;
1085 CONT_JMP;
1086 }
1087 CONT;
92b31a9a
DB
1088 JMP_JLT_X:
1089 if (DST < SRC) {
1090 insn += insn->off;
1091 CONT_JMP;
1092 }
1093 CONT;
1094 JMP_JLT_K:
1095 if (DST < IMM) {
1096 insn += insn->off;
1097 CONT_JMP;
1098 }
1099 CONT;
f5bffecd
AS
1100 JMP_JGE_X:
1101 if (DST >= SRC) {
1102 insn += insn->off;
1103 CONT_JMP;
1104 }
1105 CONT;
1106 JMP_JGE_K:
1107 if (DST >= IMM) {
1108 insn += insn->off;
1109 CONT_JMP;
1110 }
1111 CONT;
92b31a9a
DB
1112 JMP_JLE_X:
1113 if (DST <= SRC) {
1114 insn += insn->off;
1115 CONT_JMP;
1116 }
1117 CONT;
1118 JMP_JLE_K:
1119 if (DST <= IMM) {
1120 insn += insn->off;
1121 CONT_JMP;
1122 }
1123 CONT;
f5bffecd
AS
1124 JMP_JSGT_X:
1125 if (((s64) DST) > ((s64) SRC)) {
1126 insn += insn->off;
1127 CONT_JMP;
1128 }
1129 CONT;
1130 JMP_JSGT_K:
1131 if (((s64) DST) > ((s64) IMM)) {
1132 insn += insn->off;
1133 CONT_JMP;
1134 }
1135 CONT;
92b31a9a
DB
1136 JMP_JSLT_X:
1137 if (((s64) DST) < ((s64) SRC)) {
1138 insn += insn->off;
1139 CONT_JMP;
1140 }
1141 CONT;
1142 JMP_JSLT_K:
1143 if (((s64) DST) < ((s64) IMM)) {
1144 insn += insn->off;
1145 CONT_JMP;
1146 }
1147 CONT;
f5bffecd
AS
1148 JMP_JSGE_X:
1149 if (((s64) DST) >= ((s64) SRC)) {
1150 insn += insn->off;
1151 CONT_JMP;
1152 }
1153 CONT;
1154 JMP_JSGE_K:
1155 if (((s64) DST) >= ((s64) IMM)) {
1156 insn += insn->off;
1157 CONT_JMP;
1158 }
1159 CONT;
92b31a9a
DB
1160 JMP_JSLE_X:
1161 if (((s64) DST) <= ((s64) SRC)) {
1162 insn += insn->off;
1163 CONT_JMP;
1164 }
1165 CONT;
1166 JMP_JSLE_K:
1167 if (((s64) DST) <= ((s64) IMM)) {
1168 insn += insn->off;
1169 CONT_JMP;
1170 }
1171 CONT;
f5bffecd
AS
1172 JMP_JSET_X:
1173 if (DST & SRC) {
1174 insn += insn->off;
1175 CONT_JMP;
1176 }
1177 CONT;
1178 JMP_JSET_K:
1179 if (DST & IMM) {
1180 insn += insn->off;
1181 CONT_JMP;
1182 }
1183 CONT;
1184 JMP_EXIT:
1185 return BPF_R0;
1186
1187 /* STX and ST and LDX*/
1188#define LDST(SIZEOP, SIZE) \
1189 STX_MEM_##SIZEOP: \
1190 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1191 CONT; \
1192 ST_MEM_##SIZEOP: \
1193 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1194 CONT; \
1195 LDX_MEM_##SIZEOP: \
1196 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1197 CONT;
1198
1199 LDST(B, u8)
1200 LDST(H, u16)
1201 LDST(W, u32)
1202 LDST(DW, u64)
1203#undef LDST
1204 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1205 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1206 (DST + insn->off));
1207 CONT;
1208 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1209 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1210 (DST + insn->off));
1211 CONT;
1212 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1213 off = IMM;
1214load_word:
96a94cc5
JB
1215 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1216 * appearing in the programs where ctx == skb
1217 * (see may_access_skb() in the verifier). All programs
1218 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1219 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1220 * verifier will check that BPF_R6 == ctx.
f5bffecd
AS
1221 *
1222 * BPF_ABS and BPF_IND are wrappers of function calls,
1223 * so they scratch BPF_R1-BPF_R5 registers, preserve
1224 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1225 *
1226 * Implicit input:
1227 * ctx == skb == BPF_R6 == CTX
1228 *
1229 * Explicit input:
1230 * SRC == any register
1231 * IMM == 32-bit immediate
1232 *
1233 * Output:
1234 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1235 */
1236
1237 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1238 if (likely(ptr != NULL)) {
1239 BPF_R0 = get_unaligned_be32(ptr);
1240 CONT;
1241 }
1242
1243 return 0;
1244 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1245 off = IMM;
1246load_half:
1247 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1248 if (likely(ptr != NULL)) {
1249 BPF_R0 = get_unaligned_be16(ptr);
1250 CONT;
1251 }
1252
1253 return 0;
1254 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1255 off = IMM;
1256load_byte:
1257 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1258 if (likely(ptr != NULL)) {
1259 BPF_R0 = *(u8 *)ptr;
1260 CONT;
1261 }
1262
1263 return 0;
1264 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1265 off = IMM + SRC;
1266 goto load_word;
1267 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1268 off = IMM + SRC;
1269 goto load_half;
1270 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1271 off = IMM + SRC;
1272 goto load_byte;
1273
1274 default_label:
1275 /* If we ever reach this, we have a bug somewhere. */
1276 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1277 return 0;
1278}
f696b8f4
AS
1279STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1280
b870aa90
AS
1281#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1282#define DEFINE_BPF_PROG_RUN(stack_size) \
1283static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1284{ \
1285 u64 stack[stack_size / sizeof(u64)]; \
1286 u64 regs[MAX_BPF_REG]; \
1287\
1288 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1289 ARG1 = (u64) (unsigned long) ctx; \
1290 return ___bpf_prog_run(regs, insn, stack); \
f696b8f4 1291}
f5bffecd 1292
b870aa90
AS
1293#define EVAL1(FN, X) FN(X)
1294#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1295#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1296#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1297#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1298#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1299
1300EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1301EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1302EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1303
1304#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1305
1306static unsigned int (*interpreters[])(const void *ctx,
1307 const struct bpf_insn *insn) = {
1308EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1309EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1310EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1311};
1312
3324b584
DB
1313bool bpf_prog_array_compatible(struct bpf_array *array,
1314 const struct bpf_prog *fp)
04fd61ab 1315{
3324b584
DB
1316 if (!array->owner_prog_type) {
1317 /* There's no owner yet where we could check for
1318 * compatibility.
1319 */
04fd61ab
AS
1320 array->owner_prog_type = fp->type;
1321 array->owner_jited = fp->jited;
3324b584
DB
1322
1323 return true;
04fd61ab 1324 }
3324b584
DB
1325
1326 return array->owner_prog_type == fp->type &&
1327 array->owner_jited == fp->jited;
04fd61ab
AS
1328}
1329
3324b584 1330static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1331{
1332 struct bpf_prog_aux *aux = fp->aux;
1333 int i;
1334
1335 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1336 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1337 struct bpf_array *array;
04fd61ab 1338
04fd61ab
AS
1339 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1340 continue;
3324b584 1341
04fd61ab
AS
1342 array = container_of(map, struct bpf_array, map);
1343 if (!bpf_prog_array_compatible(array, fp))
1344 return -EINVAL;
1345 }
1346
1347 return 0;
1348}
1349
f5bffecd 1350/**
3324b584 1351 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1352 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1353 * @err: pointer to error variable
f5bffecd 1354 *
3324b584
DB
1355 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1356 * The BPF program will be executed via BPF_PROG_RUN() macro.
f5bffecd 1357 */
d1c55ab5 1358struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1359{
8007e40a
MKL
1360 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1361
1362 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
f5bffecd 1363
d1c55ab5
DB
1364 /* eBPF JITs can rewrite the program in case constant
1365 * blinding is active. However, in case of error during
1366 * blinding, bpf_int_jit_compile() must always return a
1367 * valid program, which in this case would simply not
1368 * be JITed, but falls back to the interpreter.
1369 */
1370 fp = bpf_int_jit_compile(fp);
60a3b225 1371 bpf_prog_lock_ro(fp);
04fd61ab 1372
3324b584
DB
1373 /* The tail call compatibility check can only be done at
1374 * this late stage as we need to determine, if we deal
1375 * with JITed or non JITed program concatenations and not
1376 * all eBPF JITs might immediately support all features.
1377 */
d1c55ab5
DB
1378 *err = bpf_check_tail_call(fp);
1379
1380 return fp;
f5bffecd 1381}
7ae457c1 1382EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1383
324bda9e
AS
1384/* to avoid allocating empty bpf_prog_array for cgroups that
1385 * don't have bpf program attached use one global 'empty_prog_array'
1386 * It will not be modified the caller of bpf_prog_array_alloc()
1387 * (since caller requested prog_cnt == 0)
1388 * that pointer should be 'freed' by bpf_prog_array_free()
1389 */
1390static struct {
1391 struct bpf_prog_array hdr;
1392 struct bpf_prog *null_prog;
1393} empty_prog_array = {
1394 .null_prog = NULL,
1395};
1396
1397struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1398{
1399 if (prog_cnt)
1400 return kzalloc(sizeof(struct bpf_prog_array) +
1401 sizeof(struct bpf_prog *) * (prog_cnt + 1),
1402 flags);
1403
1404 return &empty_prog_array.hdr;
1405}
1406
1407void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1408{
1409 if (!progs ||
1410 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1411 return;
1412 kfree_rcu(progs, rcu);
1413}
1414
468e2f64
AS
1415int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1416{
1417 struct bpf_prog **prog;
1418 u32 cnt = 0;
1419
1420 rcu_read_lock();
1421 prog = rcu_dereference(progs)->progs;
1422 for (; *prog; prog++)
1423 cnt++;
1424 rcu_read_unlock();
1425 return cnt;
1426}
1427
1428int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1429 __u32 __user *prog_ids, u32 cnt)
1430{
1431 struct bpf_prog **prog;
1432 u32 i = 0, id;
1433
1434 rcu_read_lock();
1435 prog = rcu_dereference(progs)->progs;
1436 for (; *prog; prog++) {
1437 id = (*prog)->aux->id;
1438 if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
1439 rcu_read_unlock();
1440 return -EFAULT;
1441 }
1442 if (++i == cnt) {
1443 prog++;
1444 break;
1445 }
1446 }
1447 rcu_read_unlock();
1448 if (*prog)
1449 return -ENOSPC;
1450 return 0;
1451}
1452
60a3b225
DB
1453static void bpf_prog_free_deferred(struct work_struct *work)
1454{
09756af4 1455 struct bpf_prog_aux *aux;
60a3b225 1456
09756af4
AS
1457 aux = container_of(work, struct bpf_prog_aux, work);
1458 bpf_jit_free(aux->prog);
60a3b225
DB
1459}
1460
1461/* Free internal BPF program */
7ae457c1 1462void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 1463{
09756af4 1464 struct bpf_prog_aux *aux = fp->aux;
60a3b225 1465
09756af4 1466 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 1467 schedule_work(&aux->work);
f5bffecd 1468}
7ae457c1 1469EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 1470
3ad00405
DB
1471/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1472static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1473
1474void bpf_user_rnd_init_once(void)
1475{
1476 prandom_init_once(&bpf_user_rnd_state);
1477}
1478
f3694e00 1479BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
1480{
1481 /* Should someone ever have the rather unwise idea to use some
1482 * of the registers passed into this function, then note that
1483 * this function is called from native eBPF and classic-to-eBPF
1484 * transformations. Register assignments from both sides are
1485 * different, f.e. classic always sets fn(ctx, A, X) here.
1486 */
1487 struct rnd_state *state;
1488 u32 res;
1489
1490 state = &get_cpu_var(bpf_user_rnd_state);
1491 res = prandom_u32_state(state);
b761fe22 1492 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
1493
1494 return res;
1495}
1496
3ba67dab
DB
1497/* Weak definitions of helper functions in case we don't have bpf syscall. */
1498const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1499const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1500const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1501
03e69b50 1502const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 1503const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 1504const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 1505const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
bd570ff9 1506
ffeedafb
AS
1507const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1508const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1509const struct bpf_func_proto bpf_get_current_comm_proto __weak;
6bdc9c4c 1510const struct bpf_func_proto bpf_sock_map_update_proto __weak;
bd570ff9 1511
0756ea3e
AS
1512const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1513{
1514 return NULL;
1515}
03e69b50 1516
555c8a86
DB
1517u64 __weak
1518bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1519 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 1520{
555c8a86 1521 return -ENOTSUPP;
bd570ff9
DB
1522}
1523
3324b584
DB
1524/* Always built-in helper functions. */
1525const struct bpf_func_proto bpf_tail_call_proto = {
1526 .func = NULL,
1527 .gpl_only = false,
1528 .ret_type = RET_VOID,
1529 .arg1_type = ARG_PTR_TO_CTX,
1530 .arg2_type = ARG_CONST_MAP_PTR,
1531 .arg3_type = ARG_ANYTHING,
1532};
1533
9383191d
DB
1534/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1535 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1536 * eBPF and implicitly also cBPF can get JITed!
1537 */
d1c55ab5 1538struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 1539{
d1c55ab5 1540 return prog;
3324b584
DB
1541}
1542
9383191d
DB
1543/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1544 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1545 */
1546void __weak bpf_jit_compile(struct bpf_prog *prog)
1547{
1548}
1549
17bedab2 1550bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
1551{
1552 return false;
1553}
1554
f89b7755
AS
1555/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1556 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1557 */
1558int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1559 int len)
1560{
1561 return -EFAULT;
1562}
a67edbf4
DB
1563
1564/* All definitions of tracepoints related to BPF. */
1565#define CREATE_TRACE_POINTS
1566#include <linux/bpf_trace.h>
1567
1568EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1569
1570EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1571EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);