]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/bpf/core.c
tools/bpf: adjust rlimit RLIMIT_MEMLOCK for test_verifier_log
[mirror_ubuntu-eoan-kernel.git] / kernel / bpf / core.c
CommitLineData
f5bffecd
AS
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 22 */
738cbe72 23
f5bffecd
AS
24#include <linux/filter.h>
25#include <linux/skbuff.h>
60a3b225 26#include <linux/vmalloc.h>
738cbe72
DB
27#include <linux/random.h>
28#include <linux/moduleloader.h>
09756af4 29#include <linux/bpf.h>
39853cc0 30#include <linux/frame.h>
74451e66
DB
31#include <linux/rbtree_latch.h>
32#include <linux/kallsyms.h>
33#include <linux/rcupdate.h>
f5bffecd 34
3324b584
DB
35#include <asm/unaligned.h>
36
f5bffecd
AS
37/* Registers */
38#define BPF_R0 regs[BPF_REG_0]
39#define BPF_R1 regs[BPF_REG_1]
40#define BPF_R2 regs[BPF_REG_2]
41#define BPF_R3 regs[BPF_REG_3]
42#define BPF_R4 regs[BPF_REG_4]
43#define BPF_R5 regs[BPF_REG_5]
44#define BPF_R6 regs[BPF_REG_6]
45#define BPF_R7 regs[BPF_REG_7]
46#define BPF_R8 regs[BPF_REG_8]
47#define BPF_R9 regs[BPF_REG_9]
48#define BPF_R10 regs[BPF_REG_10]
49
50/* Named registers */
51#define DST regs[insn->dst_reg]
52#define SRC regs[insn->src_reg]
53#define FP regs[BPF_REG_FP]
54#define ARG1 regs[BPF_REG_ARG1]
55#define CTX regs[BPF_REG_CTX]
56#define IMM insn->imm
57
58/* No hurry in this branch
59 *
60 * Exported for the bpf jit load helper.
61 */
62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63{
64 u8 *ptr = NULL;
65
66 if (k >= SKF_NET_OFF)
67 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 else if (k >= SKF_LL_OFF)
69 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 70
f5bffecd
AS
71 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 return ptr;
73
74 return NULL;
75}
76
60a3b225
DB
77struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78{
19809c2d 79 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
09756af4 80 struct bpf_prog_aux *aux;
60a3b225
DB
81 struct bpf_prog *fp;
82
83 size = round_up(size, PAGE_SIZE);
84 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85 if (fp == NULL)
86 return NULL;
87
09756af4
AS
88 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 if (aux == NULL) {
60a3b225
DB
90 vfree(fp);
91 return NULL;
92 }
93
94 fp->pages = size / PAGE_SIZE;
09756af4 95 fp->aux = aux;
e9d8afa9 96 fp->aux->prog = fp;
60a3b225 97
74451e66
DB
98 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
99
60a3b225
DB
100 return fp;
101}
102EXPORT_SYMBOL_GPL(bpf_prog_alloc);
103
104struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
105 gfp_t gfp_extra_flags)
106{
19809c2d 107 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
60a3b225 108 struct bpf_prog *fp;
5ccb071e
DB
109 u32 pages, delta;
110 int ret;
60a3b225
DB
111
112 BUG_ON(fp_old == NULL);
113
114 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
115 pages = size / PAGE_SIZE;
116 if (pages <= fp_old->pages)
60a3b225
DB
117 return fp_old;
118
5ccb071e
DB
119 delta = pages - fp_old->pages;
120 ret = __bpf_prog_charge(fp_old->aux->user, delta);
121 if (ret)
122 return NULL;
123
60a3b225 124 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
5ccb071e
DB
125 if (fp == NULL) {
126 __bpf_prog_uncharge(fp_old->aux->user, delta);
127 } else {
60a3b225 128 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 129 fp->pages = pages;
e9d8afa9 130 fp->aux->prog = fp;
60a3b225 131
09756af4 132 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
133 * reallocated structure.
134 */
09756af4 135 fp_old->aux = NULL;
60a3b225
DB
136 __bpf_prog_free(fp_old);
137 }
138
139 return fp;
140}
60a3b225
DB
141
142void __bpf_prog_free(struct bpf_prog *fp)
143{
09756af4 144 kfree(fp->aux);
60a3b225
DB
145 vfree(fp);
146}
60a3b225 147
f1f7714e 148int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3
DB
149{
150 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
f1f7714e
DB
151 u32 raw_size = bpf_prog_tag_scratch_size(fp);
152 u32 digest[SHA_DIGEST_WORDS];
aafe6ae9 153 u32 ws[SHA_WORKSPACE_WORDS];
7bd509e3 154 u32 i, bsize, psize, blocks;
aafe6ae9 155 struct bpf_insn *dst;
7bd509e3 156 bool was_ld_map;
aafe6ae9 157 u8 *raw, *todo;
7bd509e3
DB
158 __be32 *result;
159 __be64 *bits;
160
aafe6ae9
DB
161 raw = vmalloc(raw_size);
162 if (!raw)
163 return -ENOMEM;
164
f1f7714e 165 sha_init(digest);
7bd509e3
DB
166 memset(ws, 0, sizeof(ws));
167
168 /* We need to take out the map fd for the digest calculation
169 * since they are unstable from user space side.
170 */
aafe6ae9 171 dst = (void *)raw;
7bd509e3
DB
172 for (i = 0, was_ld_map = false; i < fp->len; i++) {
173 dst[i] = fp->insnsi[i];
174 if (!was_ld_map &&
175 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
176 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
177 was_ld_map = true;
178 dst[i].imm = 0;
179 } else if (was_ld_map &&
180 dst[i].code == 0 &&
181 dst[i].dst_reg == 0 &&
182 dst[i].src_reg == 0 &&
183 dst[i].off == 0) {
184 was_ld_map = false;
185 dst[i].imm = 0;
186 } else {
187 was_ld_map = false;
188 }
189 }
190
aafe6ae9
DB
191 psize = bpf_prog_insn_size(fp);
192 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
193 raw[psize++] = 0x80;
194
195 bsize = round_up(psize, SHA_MESSAGE_BYTES);
196 blocks = bsize / SHA_MESSAGE_BYTES;
aafe6ae9 197 todo = raw;
7bd509e3
DB
198 if (bsize - psize >= sizeof(__be64)) {
199 bits = (__be64 *)(todo + bsize - sizeof(__be64));
200 } else {
201 bits = (__be64 *)(todo + bsize + bits_offset);
202 blocks++;
203 }
204 *bits = cpu_to_be64((psize - 1) << 3);
205
206 while (blocks--) {
f1f7714e 207 sha_transform(digest, todo, ws);
7bd509e3
DB
208 todo += SHA_MESSAGE_BYTES;
209 }
210
f1f7714e 211 result = (__force __be32 *)digest;
7bd509e3 212 for (i = 0; i < SHA_DIGEST_WORDS; i++)
f1f7714e
DB
213 result[i] = cpu_to_be32(digest[i]);
214 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
215
216 vfree(raw);
217 return 0;
7bd509e3
DB
218}
219
c237ee5e
DB
220static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
221{
222 return BPF_CLASS(insn->code) == BPF_JMP &&
223 /* Call and Exit are both special jumps with no
224 * target inside the BPF instruction image.
225 */
226 BPF_OP(insn->code) != BPF_CALL &&
227 BPF_OP(insn->code) != BPF_EXIT;
228}
229
230static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
231{
232 struct bpf_insn *insn = prog->insnsi;
233 u32 i, insn_cnt = prog->len;
234
235 for (i = 0; i < insn_cnt; i++, insn++) {
236 if (!bpf_is_jmp_and_has_target(insn))
237 continue;
238
239 /* Adjust offset of jmps if we cross boundaries. */
240 if (i < pos && i + insn->off + 1 > pos)
241 insn->off += delta;
242 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
243 insn->off -= delta;
244 }
245}
246
247struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
248 const struct bpf_insn *patch, u32 len)
249{
250 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
251 struct bpf_prog *prog_adj;
252
253 /* Since our patchlet doesn't expand the image, we're done. */
254 if (insn_delta == 0) {
255 memcpy(prog->insnsi + off, patch, sizeof(*patch));
256 return prog;
257 }
258
259 insn_adj_cnt = prog->len + insn_delta;
260
261 /* Several new instructions need to be inserted. Make room
262 * for them. Likely, there's no need for a new allocation as
263 * last page could have large enough tailroom.
264 */
265 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
266 GFP_USER);
267 if (!prog_adj)
268 return NULL;
269
270 prog_adj->len = insn_adj_cnt;
271
272 /* Patching happens in 3 steps:
273 *
274 * 1) Move over tail of insnsi from next instruction onwards,
275 * so we can patch the single target insn with one or more
276 * new ones (patching is always from 1 to n insns, n > 0).
277 * 2) Inject new instructions at the target location.
278 * 3) Adjust branch offsets if necessary.
279 */
280 insn_rest = insn_adj_cnt - off - len;
281
282 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
283 sizeof(*patch) * insn_rest);
284 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
285
286 bpf_adj_branches(prog_adj, off, insn_delta);
287
288 return prog_adj;
289}
290
b954d834 291#ifdef CONFIG_BPF_JIT
74451e66
DB
292static __always_inline void
293bpf_get_prog_addr_region(const struct bpf_prog *prog,
294 unsigned long *symbol_start,
295 unsigned long *symbol_end)
296{
297 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
298 unsigned long addr = (unsigned long)hdr;
299
300 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
301
302 *symbol_start = addr;
303 *symbol_end = addr + hdr->pages * PAGE_SIZE;
304}
305
306static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
307{
368211fb
MKL
308 const char *end = sym + KSYM_NAME_LEN;
309
74451e66 310 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
311 sizeof(prog->tag) * 2 +
312 /* name has been null terminated.
313 * We should need +1 for the '_' preceding
314 * the name. However, the null character
315 * is double counted between the name and the
316 * sizeof("bpf_prog_") above, so we omit
317 * the +1 here.
318 */
319 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
320
321 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
322 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
368211fb
MKL
323 if (prog->aux->name[0])
324 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
325 else
326 *sym = 0;
74451e66
DB
327}
328
329static __always_inline unsigned long
330bpf_get_prog_addr_start(struct latch_tree_node *n)
331{
332 unsigned long symbol_start, symbol_end;
333 const struct bpf_prog_aux *aux;
334
335 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
336 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
337
338 return symbol_start;
339}
340
341static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
342 struct latch_tree_node *b)
343{
344 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
345}
346
347static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
348{
349 unsigned long val = (unsigned long)key;
350 unsigned long symbol_start, symbol_end;
351 const struct bpf_prog_aux *aux;
352
353 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
354 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
355
356 if (val < symbol_start)
357 return -1;
358 if (val >= symbol_end)
359 return 1;
360
361 return 0;
362}
363
364static const struct latch_tree_ops bpf_tree_ops = {
365 .less = bpf_tree_less,
366 .comp = bpf_tree_comp,
367};
368
369static DEFINE_SPINLOCK(bpf_lock);
370static LIST_HEAD(bpf_kallsyms);
371static struct latch_tree_root bpf_tree __cacheline_aligned;
372
373int bpf_jit_kallsyms __read_mostly;
374
375static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
376{
377 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
378 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
379 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
380}
381
382static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
383{
384 if (list_empty(&aux->ksym_lnode))
385 return;
386
387 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
388 list_del_rcu(&aux->ksym_lnode);
389}
390
391static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
392{
393 return fp->jited && !bpf_prog_was_classic(fp);
394}
395
396static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
397{
398 return list_empty(&fp->aux->ksym_lnode) ||
399 fp->aux->ksym_lnode.prev == LIST_POISON2;
400}
401
402void bpf_prog_kallsyms_add(struct bpf_prog *fp)
403{
74451e66
DB
404 if (!bpf_prog_kallsyms_candidate(fp) ||
405 !capable(CAP_SYS_ADMIN))
406 return;
407
d24f7c7f 408 spin_lock_bh(&bpf_lock);
74451e66 409 bpf_prog_ksym_node_add(fp->aux);
d24f7c7f 410 spin_unlock_bh(&bpf_lock);
74451e66
DB
411}
412
413void bpf_prog_kallsyms_del(struct bpf_prog *fp)
414{
74451e66
DB
415 if (!bpf_prog_kallsyms_candidate(fp))
416 return;
417
d24f7c7f 418 spin_lock_bh(&bpf_lock);
74451e66 419 bpf_prog_ksym_node_del(fp->aux);
d24f7c7f 420 spin_unlock_bh(&bpf_lock);
74451e66
DB
421}
422
423static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
424{
425 struct latch_tree_node *n;
426
427 if (!bpf_jit_kallsyms_enabled())
428 return NULL;
429
430 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
431 return n ?
432 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
433 NULL;
434}
435
436const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
437 unsigned long *off, char *sym)
438{
439 unsigned long symbol_start, symbol_end;
440 struct bpf_prog *prog;
441 char *ret = NULL;
442
443 rcu_read_lock();
444 prog = bpf_prog_kallsyms_find(addr);
445 if (prog) {
446 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
447 bpf_get_prog_name(prog, sym);
448
449 ret = sym;
450 if (size)
451 *size = symbol_end - symbol_start;
452 if (off)
453 *off = addr - symbol_start;
454 }
455 rcu_read_unlock();
456
457 return ret;
458}
459
460bool is_bpf_text_address(unsigned long addr)
461{
462 bool ret;
463
464 rcu_read_lock();
465 ret = bpf_prog_kallsyms_find(addr) != NULL;
466 rcu_read_unlock();
467
468 return ret;
469}
470
471int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
472 char *sym)
473{
474 unsigned long symbol_start, symbol_end;
475 struct bpf_prog_aux *aux;
476 unsigned int it = 0;
477 int ret = -ERANGE;
478
479 if (!bpf_jit_kallsyms_enabled())
480 return ret;
481
482 rcu_read_lock();
483 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
484 if (it++ != symnum)
485 continue;
486
487 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
488 bpf_get_prog_name(aux->prog, sym);
489
490 *value = symbol_start;
491 *type = BPF_SYM_ELF_TYPE;
492
493 ret = 0;
494 break;
495 }
496 rcu_read_unlock();
497
498 return ret;
499}
500
738cbe72
DB
501struct bpf_binary_header *
502bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
503 unsigned int alignment,
504 bpf_jit_fill_hole_t bpf_fill_ill_insns)
505{
506 struct bpf_binary_header *hdr;
507 unsigned int size, hole, start;
508
509 /* Most of BPF filters are really small, but if some of them
510 * fill a page, allow at least 128 extra bytes to insert a
511 * random section of illegal instructions.
512 */
513 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
514 hdr = module_alloc(size);
515 if (hdr == NULL)
516 return NULL;
517
518 /* Fill space with illegal/arch-dep instructions. */
519 bpf_fill_ill_insns(hdr, size);
520
521 hdr->pages = size / PAGE_SIZE;
522 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
523 PAGE_SIZE - sizeof(*hdr));
b7552e1b 524 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
525
526 /* Leave a random number of instructions before BPF code. */
527 *image_ptr = &hdr->image[start];
528
529 return hdr;
530}
531
532void bpf_jit_binary_free(struct bpf_binary_header *hdr)
533{
be1f221c 534 module_memfree(hdr);
738cbe72 535}
4f3446bb 536
74451e66
DB
537/* This symbol is only overridden by archs that have different
538 * requirements than the usual eBPF JITs, f.e. when they only
539 * implement cBPF JIT, do not set images read-only, etc.
540 */
541void __weak bpf_jit_free(struct bpf_prog *fp)
542{
543 if (fp->jited) {
544 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
545
546 bpf_jit_binary_unlock_ro(hdr);
547 bpf_jit_binary_free(hdr);
548
549 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
550 }
551
552 bpf_prog_unlock_free(fp);
553}
554
4f3446bb
DB
555int bpf_jit_harden __read_mostly;
556
557static int bpf_jit_blind_insn(const struct bpf_insn *from,
558 const struct bpf_insn *aux,
559 struct bpf_insn *to_buff)
560{
561 struct bpf_insn *to = to_buff;
b7552e1b 562 u32 imm_rnd = get_random_int();
4f3446bb
DB
563 s16 off;
564
565 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
566 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
567
568 if (from->imm == 0 &&
569 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
570 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
571 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
572 goto out;
573 }
574
575 switch (from->code) {
576 case BPF_ALU | BPF_ADD | BPF_K:
577 case BPF_ALU | BPF_SUB | BPF_K:
578 case BPF_ALU | BPF_AND | BPF_K:
579 case BPF_ALU | BPF_OR | BPF_K:
580 case BPF_ALU | BPF_XOR | BPF_K:
581 case BPF_ALU | BPF_MUL | BPF_K:
582 case BPF_ALU | BPF_MOV | BPF_K:
583 case BPF_ALU | BPF_DIV | BPF_K:
584 case BPF_ALU | BPF_MOD | BPF_K:
585 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
586 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
587 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
588 break;
589
590 case BPF_ALU64 | BPF_ADD | BPF_K:
591 case BPF_ALU64 | BPF_SUB | BPF_K:
592 case BPF_ALU64 | BPF_AND | BPF_K:
593 case BPF_ALU64 | BPF_OR | BPF_K:
594 case BPF_ALU64 | BPF_XOR | BPF_K:
595 case BPF_ALU64 | BPF_MUL | BPF_K:
596 case BPF_ALU64 | BPF_MOV | BPF_K:
597 case BPF_ALU64 | BPF_DIV | BPF_K:
598 case BPF_ALU64 | BPF_MOD | BPF_K:
599 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
600 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
601 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
602 break;
603
604 case BPF_JMP | BPF_JEQ | BPF_K:
605 case BPF_JMP | BPF_JNE | BPF_K:
606 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 607 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 608 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 609 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 610 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 611 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 612 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 613 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
614 case BPF_JMP | BPF_JSET | BPF_K:
615 /* Accommodate for extra offset in case of a backjump. */
616 off = from->off;
617 if (off < 0)
618 off -= 2;
619 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
620 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
621 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
622 break;
623
624 case BPF_LD | BPF_ABS | BPF_W:
625 case BPF_LD | BPF_ABS | BPF_H:
626 case BPF_LD | BPF_ABS | BPF_B:
627 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
628 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
629 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
630 break;
631
632 case BPF_LD | BPF_IND | BPF_W:
633 case BPF_LD | BPF_IND | BPF_H:
634 case BPF_LD | BPF_IND | BPF_B:
635 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
636 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
637 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
638 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
639 break;
640
641 case BPF_LD | BPF_IMM | BPF_DW:
642 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
643 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
644 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
645 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
646 break;
647 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
648 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
649 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
650 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
651 break;
652
653 case BPF_ST | BPF_MEM | BPF_DW:
654 case BPF_ST | BPF_MEM | BPF_W:
655 case BPF_ST | BPF_MEM | BPF_H:
656 case BPF_ST | BPF_MEM | BPF_B:
657 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
658 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
659 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
660 break;
661 }
662out:
663 return to - to_buff;
664}
665
666static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
667 gfp_t gfp_extra_flags)
668{
19809c2d 669 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
670 struct bpf_prog *fp;
671
672 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
673 if (fp != NULL) {
4f3446bb
DB
674 /* aux->prog still points to the fp_other one, so
675 * when promoting the clone to the real program,
676 * this still needs to be adapted.
677 */
678 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
679 }
680
681 return fp;
682}
683
684static void bpf_prog_clone_free(struct bpf_prog *fp)
685{
686 /* aux was stolen by the other clone, so we cannot free
687 * it from this path! It will be freed eventually by the
688 * other program on release.
689 *
690 * At this point, we don't need a deferred release since
691 * clone is guaranteed to not be locked.
692 */
693 fp->aux = NULL;
694 __bpf_prog_free(fp);
695}
696
697void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
698{
699 /* We have to repoint aux->prog to self, as we don't
700 * know whether fp here is the clone or the original.
701 */
702 fp->aux->prog = fp;
703 bpf_prog_clone_free(fp_other);
704}
705
706struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
707{
708 struct bpf_insn insn_buff[16], aux[2];
709 struct bpf_prog *clone, *tmp;
710 int insn_delta, insn_cnt;
711 struct bpf_insn *insn;
712 int i, rewritten;
713
714 if (!bpf_jit_blinding_enabled())
715 return prog;
716
717 clone = bpf_prog_clone_create(prog, GFP_USER);
718 if (!clone)
719 return ERR_PTR(-ENOMEM);
720
721 insn_cnt = clone->len;
722 insn = clone->insnsi;
723
724 for (i = 0; i < insn_cnt; i++, insn++) {
725 /* We temporarily need to hold the original ld64 insn
726 * so that we can still access the first part in the
727 * second blinding run.
728 */
729 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
730 insn[1].code == 0)
731 memcpy(aux, insn, sizeof(aux));
732
733 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
734 if (!rewritten)
735 continue;
736
737 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
738 if (!tmp) {
739 /* Patching may have repointed aux->prog during
740 * realloc from the original one, so we need to
741 * fix it up here on error.
742 */
743 bpf_jit_prog_release_other(prog, clone);
744 return ERR_PTR(-ENOMEM);
745 }
746
747 clone = tmp;
748 insn_delta = rewritten - 1;
749
750 /* Walk new program and skip insns we just inserted. */
751 insn = clone->insnsi + i + insn_delta;
752 insn_cnt += insn_delta;
753 i += insn_delta;
754 }
755
756 return clone;
757}
b954d834 758#endif /* CONFIG_BPF_JIT */
738cbe72 759
f5bffecd
AS
760/* Base function for offset calculation. Needs to go into .text section,
761 * therefore keeping it non-static as well; will also be used by JITs
762 * anyway later on, so do not let the compiler omit it.
763 */
764noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
765{
766 return 0;
767}
4d9c5c53 768EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd
AS
769
770/**
7ae457c1
AS
771 * __bpf_prog_run - run eBPF program on a given context
772 * @ctx: is the data we are operating on
773 * @insn: is the array of eBPF instructions
f5bffecd 774 *
7ae457c1 775 * Decode and execute eBPF instructions.
f5bffecd 776 */
f696b8f4
AS
777static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
778 u64 *stack)
f5bffecd 779{
f696b8f4 780 u64 tmp;
f5bffecd
AS
781 static const void *jumptable[256] = {
782 [0 ... 255] = &&default_label,
783 /* Now overwrite non-defaults ... */
784 /* 32 bit ALU operations */
785 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
786 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
787 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
788 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
789 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
790 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
791 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
792 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
793 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
794 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
795 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
796 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
797 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
798 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
799 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
800 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
801 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
802 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
803 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
804 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
805 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
806 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
807 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
808 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
809 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
810 /* 64 bit ALU operations */
811 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
812 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
813 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
814 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
815 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
816 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
817 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
818 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
819 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
820 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
821 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
822 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
823 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
824 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
825 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
826 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
827 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
828 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
829 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
830 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
831 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
832 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
833 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
834 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
835 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
836 /* Call instruction */
837 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
71189fa9 838 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5bffecd
AS
839 /* Jumps */
840 [BPF_JMP | BPF_JA] = &&JMP_JA,
841 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
842 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
843 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
844 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
845 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
846 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
92b31a9a
DB
847 [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
848 [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
f5bffecd
AS
849 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
850 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
92b31a9a
DB
851 [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
852 [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
f5bffecd
AS
853 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
854 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
92b31a9a
DB
855 [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
856 [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
f5bffecd
AS
857 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
858 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
92b31a9a
DB
859 [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
860 [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
f5bffecd
AS
861 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
862 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
863 /* Program return */
864 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
865 /* Store instructions */
866 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
867 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
868 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
869 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
870 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
871 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
872 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
873 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
874 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
875 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
876 /* Load instructions */
877 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
878 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
879 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
880 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
881 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
882 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
883 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
884 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
885 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
886 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
02ab695b 887 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
f5bffecd 888 };
04fd61ab 889 u32 tail_call_cnt = 0;
f5bffecd
AS
890 void *ptr;
891 int off;
892
893#define CONT ({ insn++; goto select_insn; })
894#define CONT_JMP ({ insn++; goto select_insn; })
895
f5bffecd
AS
896select_insn:
897 goto *jumptable[insn->code];
898
899 /* ALU */
900#define ALU(OPCODE, OP) \
901 ALU64_##OPCODE##_X: \
902 DST = DST OP SRC; \
903 CONT; \
904 ALU_##OPCODE##_X: \
905 DST = (u32) DST OP (u32) SRC; \
906 CONT; \
907 ALU64_##OPCODE##_K: \
908 DST = DST OP IMM; \
909 CONT; \
910 ALU_##OPCODE##_K: \
911 DST = (u32) DST OP (u32) IMM; \
912 CONT;
913
914 ALU(ADD, +)
915 ALU(SUB, -)
916 ALU(AND, &)
917 ALU(OR, |)
918 ALU(LSH, <<)
919 ALU(RSH, >>)
920 ALU(XOR, ^)
921 ALU(MUL, *)
922#undef ALU
923 ALU_NEG:
924 DST = (u32) -DST;
925 CONT;
926 ALU64_NEG:
927 DST = -DST;
928 CONT;
929 ALU_MOV_X:
930 DST = (u32) SRC;
931 CONT;
932 ALU_MOV_K:
933 DST = (u32) IMM;
934 CONT;
935 ALU64_MOV_X:
936 DST = SRC;
937 CONT;
938 ALU64_MOV_K:
939 DST = IMM;
940 CONT;
02ab695b
AS
941 LD_IMM_DW:
942 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
943 insn++;
944 CONT;
f5bffecd
AS
945 ALU64_ARSH_X:
946 (*(s64 *) &DST) >>= SRC;
947 CONT;
948 ALU64_ARSH_K:
949 (*(s64 *) &DST) >>= IMM;
950 CONT;
951 ALU64_MOD_X:
952 if (unlikely(SRC == 0))
953 return 0;
876a7ae6
AS
954 div64_u64_rem(DST, SRC, &tmp);
955 DST = tmp;
f5bffecd
AS
956 CONT;
957 ALU_MOD_X:
958 if (unlikely(SRC == 0))
959 return 0;
960 tmp = (u32) DST;
961 DST = do_div(tmp, (u32) SRC);
962 CONT;
963 ALU64_MOD_K:
876a7ae6
AS
964 div64_u64_rem(DST, IMM, &tmp);
965 DST = tmp;
f5bffecd
AS
966 CONT;
967 ALU_MOD_K:
968 tmp = (u32) DST;
969 DST = do_div(tmp, (u32) IMM);
970 CONT;
971 ALU64_DIV_X:
972 if (unlikely(SRC == 0))
973 return 0;
876a7ae6 974 DST = div64_u64(DST, SRC);
f5bffecd
AS
975 CONT;
976 ALU_DIV_X:
977 if (unlikely(SRC == 0))
978 return 0;
979 tmp = (u32) DST;
980 do_div(tmp, (u32) SRC);
981 DST = (u32) tmp;
982 CONT;
983 ALU64_DIV_K:
876a7ae6 984 DST = div64_u64(DST, IMM);
f5bffecd
AS
985 CONT;
986 ALU_DIV_K:
987 tmp = (u32) DST;
988 do_div(tmp, (u32) IMM);
989 DST = (u32) tmp;
990 CONT;
991 ALU_END_TO_BE:
992 switch (IMM) {
993 case 16:
994 DST = (__force u16) cpu_to_be16(DST);
995 break;
996 case 32:
997 DST = (__force u32) cpu_to_be32(DST);
998 break;
999 case 64:
1000 DST = (__force u64) cpu_to_be64(DST);
1001 break;
1002 }
1003 CONT;
1004 ALU_END_TO_LE:
1005 switch (IMM) {
1006 case 16:
1007 DST = (__force u16) cpu_to_le16(DST);
1008 break;
1009 case 32:
1010 DST = (__force u32) cpu_to_le32(DST);
1011 break;
1012 case 64:
1013 DST = (__force u64) cpu_to_le64(DST);
1014 break;
1015 }
1016 CONT;
1017
1018 /* CALL */
1019 JMP_CALL:
1020 /* Function call scratches BPF_R1-BPF_R5 registers,
1021 * preserves BPF_R6-BPF_R9, and stores return value
1022 * into BPF_R0.
1023 */
1024 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1025 BPF_R4, BPF_R5);
1026 CONT;
1027
04fd61ab
AS
1028 JMP_TAIL_CALL: {
1029 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1030 struct bpf_array *array = container_of(map, struct bpf_array, map);
1031 struct bpf_prog *prog;
90caccdd 1032 u32 index = BPF_R3;
04fd61ab
AS
1033
1034 if (unlikely(index >= array->map.max_entries))
1035 goto out;
04fd61ab
AS
1036 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1037 goto out;
1038
1039 tail_call_cnt++;
1040
2a36f0b9 1041 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1042 if (!prog)
04fd61ab
AS
1043 goto out;
1044
c4675f93
DB
1045 /* ARG1 at this point is guaranteed to point to CTX from
1046 * the verifier side due to the fact that the tail call is
1047 * handeled like a helper, that is, bpf_tail_call_proto,
1048 * where arg1_type is ARG_PTR_TO_CTX.
1049 */
04fd61ab
AS
1050 insn = prog->insnsi;
1051 goto select_insn;
1052out:
1053 CONT;
1054 }
f5bffecd
AS
1055 /* JMP */
1056 JMP_JA:
1057 insn += insn->off;
1058 CONT;
1059 JMP_JEQ_X:
1060 if (DST == SRC) {
1061 insn += insn->off;
1062 CONT_JMP;
1063 }
1064 CONT;
1065 JMP_JEQ_K:
1066 if (DST == IMM) {
1067 insn += insn->off;
1068 CONT_JMP;
1069 }
1070 CONT;
1071 JMP_JNE_X:
1072 if (DST != SRC) {
1073 insn += insn->off;
1074 CONT_JMP;
1075 }
1076 CONT;
1077 JMP_JNE_K:
1078 if (DST != IMM) {
1079 insn += insn->off;
1080 CONT_JMP;
1081 }
1082 CONT;
1083 JMP_JGT_X:
1084 if (DST > SRC) {
1085 insn += insn->off;
1086 CONT_JMP;
1087 }
1088 CONT;
1089 JMP_JGT_K:
1090 if (DST > IMM) {
1091 insn += insn->off;
1092 CONT_JMP;
1093 }
1094 CONT;
92b31a9a
DB
1095 JMP_JLT_X:
1096 if (DST < SRC) {
1097 insn += insn->off;
1098 CONT_JMP;
1099 }
1100 CONT;
1101 JMP_JLT_K:
1102 if (DST < IMM) {
1103 insn += insn->off;
1104 CONT_JMP;
1105 }
1106 CONT;
f5bffecd
AS
1107 JMP_JGE_X:
1108 if (DST >= SRC) {
1109 insn += insn->off;
1110 CONT_JMP;
1111 }
1112 CONT;
1113 JMP_JGE_K:
1114 if (DST >= IMM) {
1115 insn += insn->off;
1116 CONT_JMP;
1117 }
1118 CONT;
92b31a9a
DB
1119 JMP_JLE_X:
1120 if (DST <= SRC) {
1121 insn += insn->off;
1122 CONT_JMP;
1123 }
1124 CONT;
1125 JMP_JLE_K:
1126 if (DST <= IMM) {
1127 insn += insn->off;
1128 CONT_JMP;
1129 }
1130 CONT;
f5bffecd
AS
1131 JMP_JSGT_X:
1132 if (((s64) DST) > ((s64) SRC)) {
1133 insn += insn->off;
1134 CONT_JMP;
1135 }
1136 CONT;
1137 JMP_JSGT_K:
1138 if (((s64) DST) > ((s64) IMM)) {
1139 insn += insn->off;
1140 CONT_JMP;
1141 }
1142 CONT;
92b31a9a
DB
1143 JMP_JSLT_X:
1144 if (((s64) DST) < ((s64) SRC)) {
1145 insn += insn->off;
1146 CONT_JMP;
1147 }
1148 CONT;
1149 JMP_JSLT_K:
1150 if (((s64) DST) < ((s64) IMM)) {
1151 insn += insn->off;
1152 CONT_JMP;
1153 }
1154 CONT;
f5bffecd
AS
1155 JMP_JSGE_X:
1156 if (((s64) DST) >= ((s64) SRC)) {
1157 insn += insn->off;
1158 CONT_JMP;
1159 }
1160 CONT;
1161 JMP_JSGE_K:
1162 if (((s64) DST) >= ((s64) IMM)) {
1163 insn += insn->off;
1164 CONT_JMP;
1165 }
1166 CONT;
92b31a9a
DB
1167 JMP_JSLE_X:
1168 if (((s64) DST) <= ((s64) SRC)) {
1169 insn += insn->off;
1170 CONT_JMP;
1171 }
1172 CONT;
1173 JMP_JSLE_K:
1174 if (((s64) DST) <= ((s64) IMM)) {
1175 insn += insn->off;
1176 CONT_JMP;
1177 }
1178 CONT;
f5bffecd
AS
1179 JMP_JSET_X:
1180 if (DST & SRC) {
1181 insn += insn->off;
1182 CONT_JMP;
1183 }
1184 CONT;
1185 JMP_JSET_K:
1186 if (DST & IMM) {
1187 insn += insn->off;
1188 CONT_JMP;
1189 }
1190 CONT;
1191 JMP_EXIT:
1192 return BPF_R0;
1193
1194 /* STX and ST and LDX*/
1195#define LDST(SIZEOP, SIZE) \
1196 STX_MEM_##SIZEOP: \
1197 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1198 CONT; \
1199 ST_MEM_##SIZEOP: \
1200 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1201 CONT; \
1202 LDX_MEM_##SIZEOP: \
1203 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1204 CONT;
1205
1206 LDST(B, u8)
1207 LDST(H, u16)
1208 LDST(W, u32)
1209 LDST(DW, u64)
1210#undef LDST
1211 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1212 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1213 (DST + insn->off));
1214 CONT;
1215 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1216 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1217 (DST + insn->off));
1218 CONT;
1219 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1220 off = IMM;
1221load_word:
96a94cc5
JB
1222 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1223 * appearing in the programs where ctx == skb
1224 * (see may_access_skb() in the verifier). All programs
1225 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1226 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1227 * verifier will check that BPF_R6 == ctx.
f5bffecd
AS
1228 *
1229 * BPF_ABS and BPF_IND are wrappers of function calls,
1230 * so they scratch BPF_R1-BPF_R5 registers, preserve
1231 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1232 *
1233 * Implicit input:
1234 * ctx == skb == BPF_R6 == CTX
1235 *
1236 * Explicit input:
1237 * SRC == any register
1238 * IMM == 32-bit immediate
1239 *
1240 * Output:
1241 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1242 */
1243
1244 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1245 if (likely(ptr != NULL)) {
1246 BPF_R0 = get_unaligned_be32(ptr);
1247 CONT;
1248 }
1249
1250 return 0;
1251 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1252 off = IMM;
1253load_half:
1254 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1255 if (likely(ptr != NULL)) {
1256 BPF_R0 = get_unaligned_be16(ptr);
1257 CONT;
1258 }
1259
1260 return 0;
1261 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1262 off = IMM;
1263load_byte:
1264 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1265 if (likely(ptr != NULL)) {
1266 BPF_R0 = *(u8 *)ptr;
1267 CONT;
1268 }
1269
1270 return 0;
1271 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1272 off = IMM + SRC;
1273 goto load_word;
1274 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1275 off = IMM + SRC;
1276 goto load_half;
1277 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1278 off = IMM + SRC;
1279 goto load_byte;
1280
1281 default_label:
1282 /* If we ever reach this, we have a bug somewhere. */
1283 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1284 return 0;
1285}
f696b8f4
AS
1286STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1287
b870aa90
AS
1288#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1289#define DEFINE_BPF_PROG_RUN(stack_size) \
1290static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1291{ \
1292 u64 stack[stack_size / sizeof(u64)]; \
1293 u64 regs[MAX_BPF_REG]; \
1294\
1295 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1296 ARG1 = (u64) (unsigned long) ctx; \
1297 return ___bpf_prog_run(regs, insn, stack); \
f696b8f4 1298}
f5bffecd 1299
b870aa90
AS
1300#define EVAL1(FN, X) FN(X)
1301#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1302#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1303#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1304#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1305#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1306
1307EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1308EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1309EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1310
1311#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1312
1313static unsigned int (*interpreters[])(const void *ctx,
1314 const struct bpf_insn *insn) = {
1315EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1316EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1317EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1318};
1319
3324b584
DB
1320bool bpf_prog_array_compatible(struct bpf_array *array,
1321 const struct bpf_prog *fp)
04fd61ab 1322{
3324b584
DB
1323 if (!array->owner_prog_type) {
1324 /* There's no owner yet where we could check for
1325 * compatibility.
1326 */
04fd61ab
AS
1327 array->owner_prog_type = fp->type;
1328 array->owner_jited = fp->jited;
3324b584
DB
1329
1330 return true;
04fd61ab 1331 }
3324b584
DB
1332
1333 return array->owner_prog_type == fp->type &&
1334 array->owner_jited == fp->jited;
04fd61ab
AS
1335}
1336
3324b584 1337static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1338{
1339 struct bpf_prog_aux *aux = fp->aux;
1340 int i;
1341
1342 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1343 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1344 struct bpf_array *array;
04fd61ab 1345
04fd61ab
AS
1346 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1347 continue;
3324b584 1348
04fd61ab
AS
1349 array = container_of(map, struct bpf_array, map);
1350 if (!bpf_prog_array_compatible(array, fp))
1351 return -EINVAL;
1352 }
1353
1354 return 0;
1355}
1356
f5bffecd 1357/**
3324b584 1358 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1359 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1360 * @err: pointer to error variable
f5bffecd 1361 *
3324b584
DB
1362 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1363 * The BPF program will be executed via BPF_PROG_RUN() macro.
f5bffecd 1364 */
d1c55ab5 1365struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1366{
8007e40a
MKL
1367 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1368
1369 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
f5bffecd 1370
d1c55ab5
DB
1371 /* eBPF JITs can rewrite the program in case constant
1372 * blinding is active. However, in case of error during
1373 * blinding, bpf_int_jit_compile() must always return a
1374 * valid program, which in this case would simply not
1375 * be JITed, but falls back to the interpreter.
1376 */
ab3f0063
JK
1377 if (!bpf_prog_is_dev_bound(fp->aux)) {
1378 fp = bpf_int_jit_compile(fp);
1379 } else {
1380 *err = bpf_prog_offload_compile(fp);
1381 if (*err)
1382 return fp;
1383 }
60a3b225 1384 bpf_prog_lock_ro(fp);
04fd61ab 1385
3324b584
DB
1386 /* The tail call compatibility check can only be done at
1387 * this late stage as we need to determine, if we deal
1388 * with JITed or non JITed program concatenations and not
1389 * all eBPF JITs might immediately support all features.
1390 */
d1c55ab5
DB
1391 *err = bpf_check_tail_call(fp);
1392
1393 return fp;
f5bffecd 1394}
7ae457c1 1395EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1396
e87c6bc3
YS
1397static unsigned int __bpf_prog_ret1(const void *ctx,
1398 const struct bpf_insn *insn)
1399{
1400 return 1;
1401}
1402
1403static struct bpf_prog_dummy {
1404 struct bpf_prog prog;
1405} dummy_bpf_prog = {
1406 .prog = {
1407 .bpf_func = __bpf_prog_ret1,
1408 },
1409};
1410
324bda9e
AS
1411/* to avoid allocating empty bpf_prog_array for cgroups that
1412 * don't have bpf program attached use one global 'empty_prog_array'
1413 * It will not be modified the caller of bpf_prog_array_alloc()
1414 * (since caller requested prog_cnt == 0)
1415 * that pointer should be 'freed' by bpf_prog_array_free()
1416 */
1417static struct {
1418 struct bpf_prog_array hdr;
1419 struct bpf_prog *null_prog;
1420} empty_prog_array = {
1421 .null_prog = NULL,
1422};
1423
1424struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1425{
1426 if (prog_cnt)
1427 return kzalloc(sizeof(struct bpf_prog_array) +
1428 sizeof(struct bpf_prog *) * (prog_cnt + 1),
1429 flags);
1430
1431 return &empty_prog_array.hdr;
1432}
1433
1434void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1435{
1436 if (!progs ||
1437 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1438 return;
1439 kfree_rcu(progs, rcu);
1440}
1441
468e2f64
AS
1442int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1443{
1444 struct bpf_prog **prog;
1445 u32 cnt = 0;
1446
1447 rcu_read_lock();
1448 prog = rcu_dereference(progs)->progs;
1449 for (; *prog; prog++)
1450 cnt++;
1451 rcu_read_unlock();
1452 return cnt;
1453}
1454
1455int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1456 __u32 __user *prog_ids, u32 cnt)
1457{
1458 struct bpf_prog **prog;
1459 u32 i = 0, id;
1460
1461 rcu_read_lock();
1462 prog = rcu_dereference(progs)->progs;
1463 for (; *prog; prog++) {
1464 id = (*prog)->aux->id;
1465 if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
1466 rcu_read_unlock();
1467 return -EFAULT;
1468 }
1469 if (++i == cnt) {
1470 prog++;
1471 break;
1472 }
1473 }
1474 rcu_read_unlock();
1475 if (*prog)
1476 return -ENOSPC;
1477 return 0;
1478}
1479
e87c6bc3
YS
1480void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1481 struct bpf_prog *old_prog)
1482{
1483 struct bpf_prog **prog = progs->progs;
1484
1485 for (; *prog; prog++)
1486 if (*prog == old_prog) {
1487 WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1488 break;
1489 }
1490}
1491
1492int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1493 struct bpf_prog *exclude_prog,
1494 struct bpf_prog *include_prog,
1495 struct bpf_prog_array **new_array)
1496{
1497 int new_prog_cnt, carry_prog_cnt = 0;
1498 struct bpf_prog **existing_prog;
1499 struct bpf_prog_array *array;
1500 int new_prog_idx = 0;
1501
1502 /* Figure out how many existing progs we need to carry over to
1503 * the new array.
1504 */
1505 if (old_array) {
1506 existing_prog = old_array->progs;
1507 for (; *existing_prog; existing_prog++) {
1508 if (*existing_prog != exclude_prog &&
1509 *existing_prog != &dummy_bpf_prog.prog)
1510 carry_prog_cnt++;
1511 if (*existing_prog == include_prog)
1512 return -EEXIST;
1513 }
1514 }
1515
1516 /* How many progs (not NULL) will be in the new array? */
1517 new_prog_cnt = carry_prog_cnt;
1518 if (include_prog)
1519 new_prog_cnt += 1;
1520
1521 /* Do we have any prog (not NULL) in the new array? */
1522 if (!new_prog_cnt) {
1523 *new_array = NULL;
1524 return 0;
1525 }
1526
1527 /* +1 as the end of prog_array is marked with NULL */
1528 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1529 if (!array)
1530 return -ENOMEM;
1531
1532 /* Fill in the new prog array */
1533 if (carry_prog_cnt) {
1534 existing_prog = old_array->progs;
1535 for (; *existing_prog; existing_prog++)
1536 if (*existing_prog != exclude_prog &&
1537 *existing_prog != &dummy_bpf_prog.prog)
1538 array->progs[new_prog_idx++] = *existing_prog;
1539 }
1540 if (include_prog)
1541 array->progs[new_prog_idx++] = include_prog;
1542 array->progs[new_prog_idx] = NULL;
1543 *new_array = array;
1544 return 0;
1545}
1546
60a3b225
DB
1547static void bpf_prog_free_deferred(struct work_struct *work)
1548{
09756af4 1549 struct bpf_prog_aux *aux;
60a3b225 1550
09756af4 1551 aux = container_of(work, struct bpf_prog_aux, work);
ab3f0063
JK
1552 if (bpf_prog_is_dev_bound(aux))
1553 bpf_prog_offload_destroy(aux->prog);
09756af4 1554 bpf_jit_free(aux->prog);
60a3b225
DB
1555}
1556
1557/* Free internal BPF program */
7ae457c1 1558void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 1559{
09756af4 1560 struct bpf_prog_aux *aux = fp->aux;
60a3b225 1561
09756af4 1562 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 1563 schedule_work(&aux->work);
f5bffecd 1564}
7ae457c1 1565EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 1566
3ad00405
DB
1567/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1568static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1569
1570void bpf_user_rnd_init_once(void)
1571{
1572 prandom_init_once(&bpf_user_rnd_state);
1573}
1574
f3694e00 1575BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
1576{
1577 /* Should someone ever have the rather unwise idea to use some
1578 * of the registers passed into this function, then note that
1579 * this function is called from native eBPF and classic-to-eBPF
1580 * transformations. Register assignments from both sides are
1581 * different, f.e. classic always sets fn(ctx, A, X) here.
1582 */
1583 struct rnd_state *state;
1584 u32 res;
1585
1586 state = &get_cpu_var(bpf_user_rnd_state);
1587 res = prandom_u32_state(state);
b761fe22 1588 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
1589
1590 return res;
1591}
1592
3ba67dab
DB
1593/* Weak definitions of helper functions in case we don't have bpf syscall. */
1594const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1595const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1596const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1597
03e69b50 1598const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 1599const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 1600const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 1601const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
bd570ff9 1602
ffeedafb
AS
1603const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1604const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1605const struct bpf_func_proto bpf_get_current_comm_proto __weak;
6bdc9c4c 1606const struct bpf_func_proto bpf_sock_map_update_proto __weak;
bd570ff9 1607
0756ea3e
AS
1608const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1609{
1610 return NULL;
1611}
03e69b50 1612
555c8a86
DB
1613u64 __weak
1614bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1615 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 1616{
555c8a86 1617 return -ENOTSUPP;
bd570ff9
DB
1618}
1619
3324b584
DB
1620/* Always built-in helper functions. */
1621const struct bpf_func_proto bpf_tail_call_proto = {
1622 .func = NULL,
1623 .gpl_only = false,
1624 .ret_type = RET_VOID,
1625 .arg1_type = ARG_PTR_TO_CTX,
1626 .arg2_type = ARG_CONST_MAP_PTR,
1627 .arg3_type = ARG_ANYTHING,
1628};
1629
9383191d
DB
1630/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1631 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1632 * eBPF and implicitly also cBPF can get JITed!
1633 */
d1c55ab5 1634struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 1635{
d1c55ab5 1636 return prog;
3324b584
DB
1637}
1638
9383191d
DB
1639/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1640 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1641 */
1642void __weak bpf_jit_compile(struct bpf_prog *prog)
1643{
1644}
1645
17bedab2 1646bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
1647{
1648 return false;
1649}
1650
f89b7755
AS
1651/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1652 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1653 */
1654int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1655 int len)
1656{
1657 return -EFAULT;
1658}
a67edbf4
DB
1659
1660/* All definitions of tracepoints related to BPF. */
1661#define CREATE_TRACE_POINTS
1662#include <linux/bpf_trace.h>
1663
1664EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1665
9185a610
SRV
1666/* These are only used within the BPF_SYSCALL code */
1667#ifdef CONFIG_BPF_SYSCALL
a67edbf4
DB
1668EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1669EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
9185a610 1670#endif