]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/core.c
Merge branch 'bpf: add helpers to support BTF-based kernel'
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / core.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
f5bffecd
AS
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
f5bffecd 16 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 18 */
738cbe72 19
838e9690 20#include <uapi/linux/btf.h>
f5bffecd
AS
21#include <linux/filter.h>
22#include <linux/skbuff.h>
60a3b225 23#include <linux/vmalloc.h>
738cbe72
DB
24#include <linux/random.h>
25#include <linux/moduleloader.h>
09756af4 26#include <linux/bpf.h>
838e9690 27#include <linux/btf.h>
39853cc0 28#include <linux/frame.h>
74451e66
DB
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
c195651e 32#include <linux/perf_event.h>
3dec541b 33#include <linux/extable.h>
b7b3fc8d 34#include <linux/log2.h>
3324b584
DB
35#include <asm/unaligned.h>
36
f5bffecd
AS
37/* Registers */
38#define BPF_R0 regs[BPF_REG_0]
39#define BPF_R1 regs[BPF_REG_1]
40#define BPF_R2 regs[BPF_REG_2]
41#define BPF_R3 regs[BPF_REG_3]
42#define BPF_R4 regs[BPF_REG_4]
43#define BPF_R5 regs[BPF_REG_5]
44#define BPF_R6 regs[BPF_REG_6]
45#define BPF_R7 regs[BPF_REG_7]
46#define BPF_R8 regs[BPF_REG_8]
47#define BPF_R9 regs[BPF_REG_9]
48#define BPF_R10 regs[BPF_REG_10]
49
50/* Named registers */
51#define DST regs[insn->dst_reg]
52#define SRC regs[insn->src_reg]
53#define FP regs[BPF_REG_FP]
144cd91c 54#define AX regs[BPF_REG_AX]
f5bffecd
AS
55#define ARG1 regs[BPF_REG_ARG1]
56#define CTX regs[BPF_REG_CTX]
57#define IMM insn->imm
58
59/* No hurry in this branch
60 *
61 * Exported for the bpf jit load helper.
62 */
63void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64{
65 u8 *ptr = NULL;
66
67 if (k >= SKF_NET_OFF)
68 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 else if (k >= SKF_LL_OFF)
70 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 71
f5bffecd
AS
72 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 return ptr;
74
75 return NULL;
76}
77
492ecee8 78struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
60a3b225 79{
19809c2d 80 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
09756af4 81 struct bpf_prog_aux *aux;
60a3b225
DB
82 struct bpf_prog *fp;
83
84 size = round_up(size, PAGE_SIZE);
88dca4ca 85 fp = __vmalloc(size, gfp_flags);
60a3b225
DB
86 if (fp == NULL)
87 return NULL;
88
09756af4
AS
89 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 if (aux == NULL) {
60a3b225
DB
91 vfree(fp);
92 return NULL;
93 }
94
95 fp->pages = size / PAGE_SIZE;
09756af4 96 fp->aux = aux;
e9d8afa9 97 fp->aux->prog = fp;
60b58afc 98 fp->jit_requested = ebpf_jit_enabled();
60a3b225 99
ecb60d1c 100 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
984fe94f 101 mutex_init(&fp->aux->used_maps_mutex);
74451e66 102
60a3b225
DB
103 return fp;
104}
492ecee8
AS
105
106struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
107{
108 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
109 struct bpf_prog *prog;
4b911304 110 int cpu;
492ecee8
AS
111
112 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
113 if (!prog)
114 return NULL;
115
116 prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
117 if (!prog->aux->stats) {
118 kfree(prog->aux);
119 vfree(prog);
120 return NULL;
121 }
122
4b911304
ED
123 for_each_possible_cpu(cpu) {
124 struct bpf_prog_stats *pstats;
125
126 pstats = per_cpu_ptr(prog->aux->stats, cpu);
127 u64_stats_init(&pstats->syncp);
128 }
492ecee8
AS
129 return prog;
130}
60a3b225
DB
131EXPORT_SYMBOL_GPL(bpf_prog_alloc);
132
c454a46b
MKL
133int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
134{
135 if (!prog->aux->nr_linfo || !prog->jit_requested)
136 return 0;
137
138 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
139 sizeof(*prog->aux->jited_linfo),
140 GFP_KERNEL | __GFP_NOWARN);
141 if (!prog->aux->jited_linfo)
142 return -ENOMEM;
143
144 return 0;
145}
146
147void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
148{
149 kfree(prog->aux->jited_linfo);
150 prog->aux->jited_linfo = NULL;
151}
152
153void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
154{
155 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
156 bpf_prog_free_jited_linfo(prog);
157}
158
159/* The jit engine is responsible to provide an array
160 * for insn_off to the jited_off mapping (insn_to_jit_off).
161 *
162 * The idx to this array is the insn_off. Hence, the insn_off
163 * here is relative to the prog itself instead of the main prog.
164 * This array has one entry for each xlated bpf insn.
165 *
166 * jited_off is the byte off to the last byte of the jited insn.
167 *
168 * Hence, with
169 * insn_start:
170 * The first bpf insn off of the prog. The insn off
171 * here is relative to the main prog.
172 * e.g. if prog is a subprog, insn_start > 0
173 * linfo_idx:
174 * The prog's idx to prog->aux->linfo and jited_linfo
175 *
176 * jited_linfo[linfo_idx] = prog->bpf_func
177 *
178 * For i > linfo_idx,
179 *
180 * jited_linfo[i] = prog->bpf_func +
181 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
182 */
183void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
184 const u32 *insn_to_jit_off)
185{
186 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
187 const struct bpf_line_info *linfo;
188 void **jited_linfo;
189
190 if (!prog->aux->jited_linfo)
191 /* Userspace did not provide linfo */
192 return;
193
194 linfo_idx = prog->aux->linfo_idx;
195 linfo = &prog->aux->linfo[linfo_idx];
196 insn_start = linfo[0].insn_off;
197 insn_end = insn_start + prog->len;
198
199 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
200 jited_linfo[0] = prog->bpf_func;
201
202 nr_linfo = prog->aux->nr_linfo - linfo_idx;
203
204 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
205 /* The verifier ensures that linfo[i].insn_off is
206 * strictly increasing
207 */
208 jited_linfo[i] = prog->bpf_func +
209 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
210}
211
212void bpf_prog_free_linfo(struct bpf_prog *prog)
213{
214 bpf_prog_free_jited_linfo(prog);
215 kvfree(prog->aux->linfo);
216}
217
60a3b225
DB
218struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
219 gfp_t gfp_extra_flags)
220{
19809c2d 221 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
60a3b225 222 struct bpf_prog *fp;
5ccb071e
DB
223 u32 pages, delta;
224 int ret;
60a3b225 225
60a3b225 226 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
227 pages = size / PAGE_SIZE;
228 if (pages <= fp_old->pages)
60a3b225
DB
229 return fp_old;
230
5ccb071e
DB
231 delta = pages - fp_old->pages;
232 ret = __bpf_prog_charge(fp_old->aux->user, delta);
233 if (ret)
234 return NULL;
235
88dca4ca 236 fp = __vmalloc(size, gfp_flags);
5ccb071e
DB
237 if (fp == NULL) {
238 __bpf_prog_uncharge(fp_old->aux->user, delta);
239 } else {
60a3b225 240 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 241 fp->pages = pages;
e9d8afa9 242 fp->aux->prog = fp;
60a3b225 243
09756af4 244 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
245 * reallocated structure.
246 */
09756af4 247 fp_old->aux = NULL;
60a3b225
DB
248 __bpf_prog_free(fp_old);
249 }
250
251 return fp;
252}
60a3b225
DB
253
254void __bpf_prog_free(struct bpf_prog *fp)
255{
492ecee8 256 if (fp->aux) {
984fe94f 257 mutex_destroy(&fp->aux->used_maps_mutex);
492ecee8 258 free_percpu(fp->aux->stats);
a66886fe 259 kfree(fp->aux->poke_tab);
492ecee8
AS
260 kfree(fp->aux);
261 }
60a3b225
DB
262 vfree(fp);
263}
60a3b225 264
f1f7714e 265int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3 266{
6b0b0fa2 267 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
f1f7714e 268 u32 raw_size = bpf_prog_tag_scratch_size(fp);
6b0b0fa2
EB
269 u32 digest[SHA1_DIGEST_WORDS];
270 u32 ws[SHA1_WORKSPACE_WORDS];
7bd509e3 271 u32 i, bsize, psize, blocks;
aafe6ae9 272 struct bpf_insn *dst;
7bd509e3 273 bool was_ld_map;
aafe6ae9 274 u8 *raw, *todo;
7bd509e3
DB
275 __be32 *result;
276 __be64 *bits;
277
aafe6ae9
DB
278 raw = vmalloc(raw_size);
279 if (!raw)
280 return -ENOMEM;
281
6b0b0fa2 282 sha1_init(digest);
7bd509e3
DB
283 memset(ws, 0, sizeof(ws));
284
285 /* We need to take out the map fd for the digest calculation
286 * since they are unstable from user space side.
287 */
aafe6ae9 288 dst = (void *)raw;
7bd509e3
DB
289 for (i = 0, was_ld_map = false; i < fp->len; i++) {
290 dst[i] = fp->insnsi[i];
291 if (!was_ld_map &&
292 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
d8eca5bb
DB
293 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
294 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
7bd509e3
DB
295 was_ld_map = true;
296 dst[i].imm = 0;
297 } else if (was_ld_map &&
298 dst[i].code == 0 &&
299 dst[i].dst_reg == 0 &&
300 dst[i].src_reg == 0 &&
301 dst[i].off == 0) {
302 was_ld_map = false;
303 dst[i].imm = 0;
304 } else {
305 was_ld_map = false;
306 }
307 }
308
aafe6ae9
DB
309 psize = bpf_prog_insn_size(fp);
310 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
311 raw[psize++] = 0x80;
312
6b0b0fa2
EB
313 bsize = round_up(psize, SHA1_BLOCK_SIZE);
314 blocks = bsize / SHA1_BLOCK_SIZE;
aafe6ae9 315 todo = raw;
7bd509e3
DB
316 if (bsize - psize >= sizeof(__be64)) {
317 bits = (__be64 *)(todo + bsize - sizeof(__be64));
318 } else {
319 bits = (__be64 *)(todo + bsize + bits_offset);
320 blocks++;
321 }
322 *bits = cpu_to_be64((psize - 1) << 3);
323
324 while (blocks--) {
6b0b0fa2
EB
325 sha1_transform(digest, todo, ws);
326 todo += SHA1_BLOCK_SIZE;
7bd509e3
DB
327 }
328
f1f7714e 329 result = (__force __be32 *)digest;
6b0b0fa2 330 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
f1f7714e
DB
331 result[i] = cpu_to_be32(digest[i]);
332 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
333
334 vfree(raw);
335 return 0;
7bd509e3
DB
336}
337
2cbd95a5 338static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 339 s32 end_new, s32 curr, const bool probe_pass)
c237ee5e 340{
050fad7c 341 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
2cbd95a5 342 s32 delta = end_new - end_old;
050fad7c
DB
343 s64 imm = insn->imm;
344
2cbd95a5 345 if (curr < pos && curr + imm + 1 >= end_old)
050fad7c 346 imm += delta;
2cbd95a5 347 else if (curr >= end_new && curr + imm + 1 < end_new)
050fad7c
DB
348 imm -= delta;
349 if (imm < imm_min || imm > imm_max)
350 return -ERANGE;
351 if (!probe_pass)
352 insn->imm = imm;
353 return 0;
354}
355
2cbd95a5 356static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 357 s32 end_new, s32 curr, const bool probe_pass)
050fad7c
DB
358{
359 const s32 off_min = S16_MIN, off_max = S16_MAX;
2cbd95a5 360 s32 delta = end_new - end_old;
050fad7c
DB
361 s32 off = insn->off;
362
2cbd95a5 363 if (curr < pos && curr + off + 1 >= end_old)
050fad7c 364 off += delta;
2cbd95a5 365 else if (curr >= end_new && curr + off + 1 < end_new)
050fad7c
DB
366 off -= delta;
367 if (off < off_min || off > off_max)
368 return -ERANGE;
369 if (!probe_pass)
370 insn->off = off;
371 return 0;
372}
373
2cbd95a5
JK
374static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
375 s32 end_new, const bool probe_pass)
050fad7c 376{
2cbd95a5 377 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
c237ee5e 378 struct bpf_insn *insn = prog->insnsi;
050fad7c 379 int ret = 0;
c237ee5e
DB
380
381 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
382 u8 code;
383
384 /* In the probing pass we still operate on the original,
385 * unpatched image in order to check overflows before we
386 * do any other adjustments. Therefore skip the patchlet.
387 */
388 if (probe_pass && i == pos) {
2cbd95a5
JK
389 i = end_new;
390 insn = prog->insnsi + end_old;
050fad7c 391 }
1ea47e01 392 code = insn->code;
092ed096
JW
393 if ((BPF_CLASS(code) != BPF_JMP &&
394 BPF_CLASS(code) != BPF_JMP32) ||
050fad7c 395 BPF_OP(code) == BPF_EXIT)
1ea47e01 396 continue;
050fad7c 397 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 398 if (BPF_OP(code) == BPF_CALL) {
050fad7c 399 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 400 continue;
2cbd95a5
JK
401 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 end_new, i, probe_pass);
1ea47e01 403 } else {
2cbd95a5
JK
404 ret = bpf_adj_delta_to_off(insn, pos, end_old,
405 end_new, i, probe_pass);
1ea47e01 406 }
050fad7c
DB
407 if (ret)
408 break;
c237ee5e 409 }
050fad7c
DB
410
411 return ret;
c237ee5e
DB
412}
413
c454a46b
MKL
414static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
415{
416 struct bpf_line_info *linfo;
417 u32 i, nr_linfo;
418
419 nr_linfo = prog->aux->nr_linfo;
420 if (!nr_linfo || !delta)
421 return;
422
423 linfo = prog->aux->linfo;
424
425 for (i = 0; i < nr_linfo; i++)
426 if (off < linfo[i].insn_off)
427 break;
428
429 /* Push all off < linfo[i].insn_off by delta */
430 for (; i < nr_linfo; i++)
431 linfo[i].insn_off += delta;
432}
433
c237ee5e
DB
434struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
435 const struct bpf_insn *patch, u32 len)
436{
437 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 438 const u32 cnt_max = S16_MAX;
c237ee5e 439 struct bpf_prog *prog_adj;
4f73379e 440 int err;
c237ee5e
DB
441
442 /* Since our patchlet doesn't expand the image, we're done. */
443 if (insn_delta == 0) {
444 memcpy(prog->insnsi + off, patch, sizeof(*patch));
445 return prog;
446 }
447
448 insn_adj_cnt = prog->len + insn_delta;
449
050fad7c
DB
450 /* Reject anything that would potentially let the insn->off
451 * target overflow when we have excessive program expansions.
452 * We need to probe here before we do any reallocation where
453 * we afterwards may not fail anymore.
454 */
455 if (insn_adj_cnt > cnt_max &&
4f73379e
AS
456 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
457 return ERR_PTR(err);
050fad7c 458
c237ee5e
DB
459 /* Several new instructions need to be inserted. Make room
460 * for them. Likely, there's no need for a new allocation as
461 * last page could have large enough tailroom.
462 */
463 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
464 GFP_USER);
465 if (!prog_adj)
4f73379e 466 return ERR_PTR(-ENOMEM);
c237ee5e
DB
467
468 prog_adj->len = insn_adj_cnt;
469
470 /* Patching happens in 3 steps:
471 *
472 * 1) Move over tail of insnsi from next instruction onwards,
473 * so we can patch the single target insn with one or more
474 * new ones (patching is always from 1 to n insns, n > 0).
475 * 2) Inject new instructions at the target location.
476 * 3) Adjust branch offsets if necessary.
477 */
478 insn_rest = insn_adj_cnt - off - len;
479
480 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
481 sizeof(*patch) * insn_rest);
482 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
483
050fad7c
DB
484 /* We are guaranteed to not fail at this point, otherwise
485 * the ship has sailed to reverse to the original state. An
486 * overflow cannot happen at this point.
487 */
2cbd95a5 488 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
c237ee5e 489
c454a46b
MKL
490 bpf_adj_linfo(prog_adj, off, insn_delta);
491
c237ee5e
DB
492 return prog_adj;
493}
494
52875a04
JK
495int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
496{
497 /* Branch offsets can't overflow when program is shrinking, no need
498 * to call bpf_adj_branches(..., true) here
499 */
500 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
501 sizeof(struct bpf_insn) * (prog->len - off - cnt));
502 prog->len -= cnt;
503
504 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
505}
506
cd7455f1 507static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
7d1982b4
DB
508{
509 int i;
510
511 for (i = 0; i < fp->aux->func_cnt; i++)
512 bpf_prog_kallsyms_del(fp->aux->func[i]);
513}
514
515void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
516{
517 bpf_prog_kallsyms_del_subprogs(fp);
518 bpf_prog_kallsyms_del(fp);
519}
520
b954d834 521#ifdef CONFIG_BPF_JIT
fa9dd599 522/* All BPF JIT sysctl knobs here. */
81c22041
DB
523int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
524int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
fa9dd599 525int bpf_jit_harden __read_mostly;
fdadd049 526long bpf_jit_limit __read_mostly;
fa9dd599 527
535911c8
JO
528static void
529bpf_prog_ksym_set_addr(struct bpf_prog *prog)
74451e66
DB
530{
531 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
532 unsigned long addr = (unsigned long)hdr;
533
534 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
535
535911c8
JO
536 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
537 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
74451e66
DB
538}
539
bfea9a85
JO
540static void
541bpf_prog_ksym_set_name(struct bpf_prog *prog)
74451e66 542{
bfea9a85 543 char *sym = prog->aux->ksym.name;
368211fb 544 const char *end = sym + KSYM_NAME_LEN;
838e9690
YS
545 const struct btf_type *type;
546 const char *func_name;
368211fb 547
74451e66 548 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
549 sizeof(prog->tag) * 2 +
550 /* name has been null terminated.
551 * We should need +1 for the '_' preceding
552 * the name. However, the null character
553 * is double counted between the name and the
554 * sizeof("bpf_prog_") above, so we omit
555 * the +1 here.
556 */
557 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
558
559 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
560 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
838e9690
YS
561
562 /* prog->aux->name will be ignored if full btf name is available */
7337224f 563 if (prog->aux->func_info_cnt) {
ba64e7d8
YS
564 type = btf_type_by_id(prog->aux->btf,
565 prog->aux->func_info[prog->aux->func_idx].type_id);
838e9690
YS
566 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
567 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
568 return;
569 }
570
368211fb
MKL
571 if (prog->aux->name[0])
572 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
573 else
574 *sym = 0;
74451e66
DB
575}
576
ca4424c9 577static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
74451e66 578{
ca4424c9 579 return container_of(n, struct bpf_ksym, tnode)->start;
74451e66
DB
580}
581
582static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
583 struct latch_tree_node *b)
584{
ca4424c9 585 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
74451e66
DB
586}
587
588static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
589{
590 unsigned long val = (unsigned long)key;
ca4424c9 591 const struct bpf_ksym *ksym;
74451e66 592
ca4424c9 593 ksym = container_of(n, struct bpf_ksym, tnode);
74451e66 594
ca4424c9 595 if (val < ksym->start)
74451e66 596 return -1;
ca4424c9 597 if (val >= ksym->end)
74451e66
DB
598 return 1;
599
600 return 0;
601}
602
603static const struct latch_tree_ops bpf_tree_ops = {
604 .less = bpf_tree_less,
605 .comp = bpf_tree_comp,
606};
607
608static DEFINE_SPINLOCK(bpf_lock);
609static LIST_HEAD(bpf_kallsyms);
610static struct latch_tree_root bpf_tree __cacheline_aligned;
611
dba122fb 612void bpf_ksym_add(struct bpf_ksym *ksym)
74451e66 613{
dba122fb
JO
614 spin_lock_bh(&bpf_lock);
615 WARN_ON_ONCE(!list_empty(&ksym->lnode));
616 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
617 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
618 spin_unlock_bh(&bpf_lock);
74451e66
DB
619}
620
dba122fb 621static void __bpf_ksym_del(struct bpf_ksym *ksym)
74451e66 622{
dba122fb 623 if (list_empty(&ksym->lnode))
74451e66
DB
624 return;
625
dba122fb
JO
626 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
627 list_del_rcu(&ksym->lnode);
628}
629
630void bpf_ksym_del(struct bpf_ksym *ksym)
631{
632 spin_lock_bh(&bpf_lock);
633 __bpf_ksym_del(ksym);
634 spin_unlock_bh(&bpf_lock);
74451e66
DB
635}
636
637static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
638{
639 return fp->jited && !bpf_prog_was_classic(fp);
640}
641
642static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
643{
ecb60d1c
JO
644 return list_empty(&fp->aux->ksym.lnode) ||
645 fp->aux->ksym.lnode.prev == LIST_POISON2;
74451e66
DB
646}
647
648void bpf_prog_kallsyms_add(struct bpf_prog *fp)
649{
74451e66 650 if (!bpf_prog_kallsyms_candidate(fp) ||
2c78ee89 651 !bpf_capable())
74451e66
DB
652 return;
653
535911c8 654 bpf_prog_ksym_set_addr(fp);
bfea9a85 655 bpf_prog_ksym_set_name(fp);
cbd76f8d 656 fp->aux->ksym.prog = true;
535911c8 657
dba122fb 658 bpf_ksym_add(&fp->aux->ksym);
74451e66
DB
659}
660
661void bpf_prog_kallsyms_del(struct bpf_prog *fp)
662{
74451e66
DB
663 if (!bpf_prog_kallsyms_candidate(fp))
664 return;
665
dba122fb 666 bpf_ksym_del(&fp->aux->ksym);
74451e66
DB
667}
668
eda0c929
JO
669static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
670{
671 struct latch_tree_node *n;
672
673 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
674 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
675}
676
74451e66
DB
677const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
678 unsigned long *off, char *sym)
679{
eda0c929 680 struct bpf_ksym *ksym;
74451e66
DB
681 char *ret = NULL;
682
683 rcu_read_lock();
eda0c929
JO
684 ksym = bpf_ksym_find(addr);
685 if (ksym) {
686 unsigned long symbol_start = ksym->start;
687 unsigned long symbol_end = ksym->end;
535911c8 688
eda0c929 689 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66
DB
690
691 ret = sym;
692 if (size)
693 *size = symbol_end - symbol_start;
694 if (off)
695 *off = addr - symbol_start;
696 }
697 rcu_read_unlock();
698
699 return ret;
700}
701
702bool is_bpf_text_address(unsigned long addr)
703{
704 bool ret;
705
706 rcu_read_lock();
eda0c929 707 ret = bpf_ksym_find(addr) != NULL;
74451e66
DB
708 rcu_read_unlock();
709
710 return ret;
711}
712
cbd76f8d
JO
713static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
714{
715 struct bpf_ksym *ksym = bpf_ksym_find(addr);
716
717 return ksym && ksym->prog ?
718 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
719 NULL;
720}
721
3dec541b
AS
722const struct exception_table_entry *search_bpf_extables(unsigned long addr)
723{
724 const struct exception_table_entry *e = NULL;
725 struct bpf_prog *prog;
726
727 rcu_read_lock();
cbd76f8d 728 prog = bpf_prog_ksym_find(addr);
3dec541b
AS
729 if (!prog)
730 goto out;
731 if (!prog->aux->num_exentries)
732 goto out;
733
734 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
735out:
736 rcu_read_unlock();
737 return e;
738}
739
74451e66
DB
740int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
741 char *sym)
742{
ecb60d1c 743 struct bpf_ksym *ksym;
74451e66
DB
744 unsigned int it = 0;
745 int ret = -ERANGE;
746
747 if (!bpf_jit_kallsyms_enabled())
748 return ret;
749
750 rcu_read_lock();
ecb60d1c 751 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
74451e66
DB
752 if (it++ != symnum)
753 continue;
754
ecb60d1c 755 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66 756
ecb60d1c 757 *value = ksym->start;
74451e66
DB
758 *type = BPF_SYM_ELF_TYPE;
759
760 ret = 0;
761 break;
762 }
763 rcu_read_unlock();
764
765 return ret;
766}
767
a66886fe
DB
768int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
769 struct bpf_jit_poke_descriptor *poke)
770{
771 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
772 static const u32 poke_tab_max = 1024;
773 u32 slot = prog->aux->size_poke_tab;
774 u32 size = slot + 1;
775
776 if (size > poke_tab_max)
777 return -ENOSPC;
cf71b174 778 if (poke->tailcall_target || poke->tailcall_target_stable ||
ebf7d1f5 779 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
a66886fe
DB
780 return -EINVAL;
781
782 switch (poke->reason) {
783 case BPF_POKE_REASON_TAIL_CALL:
784 if (!poke->tail_call.map)
785 return -EINVAL;
786 break;
787 default:
788 return -EINVAL;
789 }
790
791 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
792 if (!tab)
793 return -ENOMEM;
794
795 memcpy(&tab[slot], poke, sizeof(*poke));
796 prog->aux->size_poke_tab = size;
797 prog->aux->poke_tab = tab;
798
799 return slot;
800}
801
ede95a63
DB
802static atomic_long_t bpf_jit_current;
803
fdadd049
DB
804/* Can be overridden by an arch's JIT compiler if it has a custom,
805 * dedicated BPF backend memory area, or if neither of the two
806 * below apply.
807 */
808u64 __weak bpf_jit_alloc_exec_limit(void)
809{
ede95a63 810#if defined(MODULES_VADDR)
fdadd049
DB
811 return MODULES_END - MODULES_VADDR;
812#else
813 return VMALLOC_END - VMALLOC_START;
814#endif
815}
816
ede95a63
DB
817static int __init bpf_jit_charge_init(void)
818{
819 /* Only used as heuristic here to derive limit. */
fdadd049
DB
820 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
821 PAGE_SIZE), LONG_MAX);
ede95a63
DB
822 return 0;
823}
824pure_initcall(bpf_jit_charge_init);
ede95a63
DB
825
826static int bpf_jit_charge_modmem(u32 pages)
827{
828 if (atomic_long_add_return(pages, &bpf_jit_current) >
829 (bpf_jit_limit >> PAGE_SHIFT)) {
830 if (!capable(CAP_SYS_ADMIN)) {
831 atomic_long_sub(pages, &bpf_jit_current);
832 return -EPERM;
833 }
834 }
835
836 return 0;
837}
838
839static void bpf_jit_uncharge_modmem(u32 pages)
840{
841 atomic_long_sub(pages, &bpf_jit_current);
842}
843
dc002bb6
AB
844void *__weak bpf_jit_alloc_exec(unsigned long size)
845{
846 return module_alloc(size);
847}
848
849void __weak bpf_jit_free_exec(void *addr)
850{
851 module_memfree(addr);
852}
853
738cbe72
DB
854struct bpf_binary_header *
855bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
856 unsigned int alignment,
857 bpf_jit_fill_hole_t bpf_fill_ill_insns)
858{
859 struct bpf_binary_header *hdr;
ede95a63 860 u32 size, hole, start, pages;
738cbe72 861
b7b3fc8d
IL
862 WARN_ON_ONCE(!is_power_of_2(alignment) ||
863 alignment > BPF_IMAGE_ALIGNMENT);
864
738cbe72
DB
865 /* Most of BPF filters are really small, but if some of them
866 * fill a page, allow at least 128 extra bytes to insert a
867 * random section of illegal instructions.
868 */
869 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
ede95a63
DB
870 pages = size / PAGE_SIZE;
871
872 if (bpf_jit_charge_modmem(pages))
873 return NULL;
dc002bb6 874 hdr = bpf_jit_alloc_exec(size);
ede95a63
DB
875 if (!hdr) {
876 bpf_jit_uncharge_modmem(pages);
738cbe72 877 return NULL;
ede95a63 878 }
738cbe72
DB
879
880 /* Fill space with illegal/arch-dep instructions. */
881 bpf_fill_ill_insns(hdr, size);
882
ede95a63 883 hdr->pages = pages;
738cbe72
DB
884 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
885 PAGE_SIZE - sizeof(*hdr));
b7552e1b 886 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
887
888 /* Leave a random number of instructions before BPF code. */
889 *image_ptr = &hdr->image[start];
890
891 return hdr;
892}
893
894void bpf_jit_binary_free(struct bpf_binary_header *hdr)
895{
ede95a63
DB
896 u32 pages = hdr->pages;
897
dc002bb6 898 bpf_jit_free_exec(hdr);
ede95a63 899 bpf_jit_uncharge_modmem(pages);
738cbe72 900}
4f3446bb 901
74451e66
DB
902/* This symbol is only overridden by archs that have different
903 * requirements than the usual eBPF JITs, f.e. when they only
904 * implement cBPF JIT, do not set images read-only, etc.
905 */
906void __weak bpf_jit_free(struct bpf_prog *fp)
907{
908 if (fp->jited) {
909 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
910
74451e66
DB
911 bpf_jit_binary_free(hdr);
912
913 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
914 }
915
916 bpf_prog_unlock_free(fp);
917}
918
e2c95a61
DB
919int bpf_jit_get_func_addr(const struct bpf_prog *prog,
920 const struct bpf_insn *insn, bool extra_pass,
921 u64 *func_addr, bool *func_addr_fixed)
922{
923 s16 off = insn->off;
924 s32 imm = insn->imm;
925 u8 *addr;
926
927 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
928 if (!*func_addr_fixed) {
929 /* Place-holder address till the last pass has collected
930 * all addresses for JITed subprograms in which case we
931 * can pick them up from prog->aux.
932 */
933 if (!extra_pass)
934 addr = NULL;
935 else if (prog->aux->func &&
936 off >= 0 && off < prog->aux->func_cnt)
937 addr = (u8 *)prog->aux->func[off]->bpf_func;
938 else
939 return -EINVAL;
940 } else {
941 /* Address of a BPF helper call. Since part of the core
942 * kernel, it's always at a fixed location. __bpf_call_base
943 * and the helper with imm relative to it are both in core
944 * kernel.
945 */
946 addr = (u8 *)__bpf_call_base + imm;
947 }
948
949 *func_addr = (unsigned long)addr;
950 return 0;
951}
952
4f3446bb
DB
953static int bpf_jit_blind_insn(const struct bpf_insn *from,
954 const struct bpf_insn *aux,
ede7c460
NR
955 struct bpf_insn *to_buff,
956 bool emit_zext)
4f3446bb
DB
957{
958 struct bpf_insn *to = to_buff;
b7552e1b 959 u32 imm_rnd = get_random_int();
4f3446bb
DB
960 s16 off;
961
962 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
963 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
964
9b73bfdd
DB
965 /* Constraints on AX register:
966 *
967 * AX register is inaccessible from user space. It is mapped in
968 * all JITs, and used here for constant blinding rewrites. It is
969 * typically "stateless" meaning its contents are only valid within
970 * the executed instruction, but not across several instructions.
971 * There are a few exceptions however which are further detailed
972 * below.
973 *
974 * Constant blinding is only used by JITs, not in the interpreter.
975 * The interpreter uses AX in some occasions as a local temporary
976 * register e.g. in DIV or MOD instructions.
977 *
978 * In restricted circumstances, the verifier can also use the AX
979 * register for rewrites as long as they do not interfere with
980 * the above cases!
981 */
982 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
983 goto out;
984
4f3446bb
DB
985 if (from->imm == 0 &&
986 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
987 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
988 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
989 goto out;
990 }
991
992 switch (from->code) {
993 case BPF_ALU | BPF_ADD | BPF_K:
994 case BPF_ALU | BPF_SUB | BPF_K:
995 case BPF_ALU | BPF_AND | BPF_K:
996 case BPF_ALU | BPF_OR | BPF_K:
997 case BPF_ALU | BPF_XOR | BPF_K:
998 case BPF_ALU | BPF_MUL | BPF_K:
999 case BPF_ALU | BPF_MOV | BPF_K:
1000 case BPF_ALU | BPF_DIV | BPF_K:
1001 case BPF_ALU | BPF_MOD | BPF_K:
1002 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1003 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1004 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1005 break;
1006
1007 case BPF_ALU64 | BPF_ADD | BPF_K:
1008 case BPF_ALU64 | BPF_SUB | BPF_K:
1009 case BPF_ALU64 | BPF_AND | BPF_K:
1010 case BPF_ALU64 | BPF_OR | BPF_K:
1011 case BPF_ALU64 | BPF_XOR | BPF_K:
1012 case BPF_ALU64 | BPF_MUL | BPF_K:
1013 case BPF_ALU64 | BPF_MOV | BPF_K:
1014 case BPF_ALU64 | BPF_DIV | BPF_K:
1015 case BPF_ALU64 | BPF_MOD | BPF_K:
1016 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1017 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1019 break;
1020
1021 case BPF_JMP | BPF_JEQ | BPF_K:
1022 case BPF_JMP | BPF_JNE | BPF_K:
1023 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 1024 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 1025 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 1026 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 1027 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 1028 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 1029 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 1030 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
1031 case BPF_JMP | BPF_JSET | BPF_K:
1032 /* Accommodate for extra offset in case of a backjump. */
1033 off = from->off;
1034 if (off < 0)
1035 off -= 2;
1036 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1037 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1038 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1039 break;
1040
a7b76c88
JW
1041 case BPF_JMP32 | BPF_JEQ | BPF_K:
1042 case BPF_JMP32 | BPF_JNE | BPF_K:
1043 case BPF_JMP32 | BPF_JGT | BPF_K:
1044 case BPF_JMP32 | BPF_JLT | BPF_K:
1045 case BPF_JMP32 | BPF_JGE | BPF_K:
1046 case BPF_JMP32 | BPF_JLE | BPF_K:
1047 case BPF_JMP32 | BPF_JSGT | BPF_K:
1048 case BPF_JMP32 | BPF_JSLT | BPF_K:
1049 case BPF_JMP32 | BPF_JSGE | BPF_K:
1050 case BPF_JMP32 | BPF_JSLE | BPF_K:
1051 case BPF_JMP32 | BPF_JSET | BPF_K:
1052 /* Accommodate for extra offset in case of a backjump. */
1053 off = from->off;
1054 if (off < 0)
1055 off -= 2;
1056 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1057 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1058 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1059 off);
1060 break;
1061
4f3446bb
DB
1062 case BPF_LD | BPF_IMM | BPF_DW:
1063 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1064 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1066 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1067 break;
1068 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1069 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1070 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
ede7c460
NR
1071 if (emit_zext)
1072 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
4f3446bb
DB
1073 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1074 break;
1075
1076 case BPF_ST | BPF_MEM | BPF_DW:
1077 case BPF_ST | BPF_MEM | BPF_W:
1078 case BPF_ST | BPF_MEM | BPF_H:
1079 case BPF_ST | BPF_MEM | BPF_B:
1080 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1081 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1082 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1083 break;
1084 }
1085out:
1086 return to - to_buff;
1087}
1088
1089static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1090 gfp_t gfp_extra_flags)
1091{
19809c2d 1092 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
1093 struct bpf_prog *fp;
1094
88dca4ca 1095 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
4f3446bb 1096 if (fp != NULL) {
4f3446bb
DB
1097 /* aux->prog still points to the fp_other one, so
1098 * when promoting the clone to the real program,
1099 * this still needs to be adapted.
1100 */
1101 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1102 }
1103
1104 return fp;
1105}
1106
1107static void bpf_prog_clone_free(struct bpf_prog *fp)
1108{
1109 /* aux was stolen by the other clone, so we cannot free
1110 * it from this path! It will be freed eventually by the
1111 * other program on release.
1112 *
1113 * At this point, we don't need a deferred release since
1114 * clone is guaranteed to not be locked.
1115 */
1116 fp->aux = NULL;
1117 __bpf_prog_free(fp);
1118}
1119
1120void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1121{
1122 /* We have to repoint aux->prog to self, as we don't
1123 * know whether fp here is the clone or the original.
1124 */
1125 fp->aux->prog = fp;
1126 bpf_prog_clone_free(fp_other);
1127}
1128
1129struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1130{
1131 struct bpf_insn insn_buff[16], aux[2];
1132 struct bpf_prog *clone, *tmp;
1133 int insn_delta, insn_cnt;
1134 struct bpf_insn *insn;
1135 int i, rewritten;
1136
1c2a088a 1137 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
4f3446bb
DB
1138 return prog;
1139
1140 clone = bpf_prog_clone_create(prog, GFP_USER);
1141 if (!clone)
1142 return ERR_PTR(-ENOMEM);
1143
1144 insn_cnt = clone->len;
1145 insn = clone->insnsi;
1146
1147 for (i = 0; i < insn_cnt; i++, insn++) {
1148 /* We temporarily need to hold the original ld64 insn
1149 * so that we can still access the first part in the
1150 * second blinding run.
1151 */
1152 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1153 insn[1].code == 0)
1154 memcpy(aux, insn, sizeof(aux));
1155
ede7c460
NR
1156 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1157 clone->aux->verifier_zext);
4f3446bb
DB
1158 if (!rewritten)
1159 continue;
1160
1161 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
4f73379e 1162 if (IS_ERR(tmp)) {
4f3446bb
DB
1163 /* Patching may have repointed aux->prog during
1164 * realloc from the original one, so we need to
1165 * fix it up here on error.
1166 */
1167 bpf_jit_prog_release_other(prog, clone);
4f73379e 1168 return tmp;
4f3446bb
DB
1169 }
1170
1171 clone = tmp;
1172 insn_delta = rewritten - 1;
1173
1174 /* Walk new program and skip insns we just inserted. */
1175 insn = clone->insnsi + i + insn_delta;
1176 insn_cnt += insn_delta;
1177 i += insn_delta;
1178 }
1179
1c2a088a 1180 clone->blinded = 1;
4f3446bb
DB
1181 return clone;
1182}
b954d834 1183#endif /* CONFIG_BPF_JIT */
738cbe72 1184
f5bffecd
AS
1185/* Base function for offset calculation. Needs to go into .text section,
1186 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
1187 * anyway later on, so do not let the compiler omit it. This also needs
1188 * to go into kallsyms for correlation from e.g. bpftool, so naming
1189 * must not change.
f5bffecd
AS
1190 */
1191noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1192{
1193 return 0;
1194}
4d9c5c53 1195EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 1196
5e581dad
DB
1197/* All UAPI available opcodes. */
1198#define BPF_INSN_MAP(INSN_2, INSN_3) \
1199 /* 32 bit ALU operations. */ \
1200 /* Register based. */ \
2dc6b100
JW
1201 INSN_3(ALU, ADD, X), \
1202 INSN_3(ALU, SUB, X), \
1203 INSN_3(ALU, AND, X), \
1204 INSN_3(ALU, OR, X), \
1205 INSN_3(ALU, LSH, X), \
1206 INSN_3(ALU, RSH, X), \
1207 INSN_3(ALU, XOR, X), \
1208 INSN_3(ALU, MUL, X), \
1209 INSN_3(ALU, MOV, X), \
1210 INSN_3(ALU, ARSH, X), \
1211 INSN_3(ALU, DIV, X), \
1212 INSN_3(ALU, MOD, X), \
5e581dad
DB
1213 INSN_2(ALU, NEG), \
1214 INSN_3(ALU, END, TO_BE), \
1215 INSN_3(ALU, END, TO_LE), \
1216 /* Immediate based. */ \
2dc6b100
JW
1217 INSN_3(ALU, ADD, K), \
1218 INSN_3(ALU, SUB, K), \
1219 INSN_3(ALU, AND, K), \
1220 INSN_3(ALU, OR, K), \
1221 INSN_3(ALU, LSH, K), \
1222 INSN_3(ALU, RSH, K), \
1223 INSN_3(ALU, XOR, K), \
1224 INSN_3(ALU, MUL, K), \
1225 INSN_3(ALU, MOV, K), \
1226 INSN_3(ALU, ARSH, K), \
1227 INSN_3(ALU, DIV, K), \
1228 INSN_3(ALU, MOD, K), \
5e581dad
DB
1229 /* 64 bit ALU operations. */ \
1230 /* Register based. */ \
1231 INSN_3(ALU64, ADD, X), \
1232 INSN_3(ALU64, SUB, X), \
1233 INSN_3(ALU64, AND, X), \
1234 INSN_3(ALU64, OR, X), \
1235 INSN_3(ALU64, LSH, X), \
1236 INSN_3(ALU64, RSH, X), \
1237 INSN_3(ALU64, XOR, X), \
1238 INSN_3(ALU64, MUL, X), \
1239 INSN_3(ALU64, MOV, X), \
1240 INSN_3(ALU64, ARSH, X), \
1241 INSN_3(ALU64, DIV, X), \
1242 INSN_3(ALU64, MOD, X), \
1243 INSN_2(ALU64, NEG), \
1244 /* Immediate based. */ \
1245 INSN_3(ALU64, ADD, K), \
1246 INSN_3(ALU64, SUB, K), \
1247 INSN_3(ALU64, AND, K), \
1248 INSN_3(ALU64, OR, K), \
1249 INSN_3(ALU64, LSH, K), \
1250 INSN_3(ALU64, RSH, K), \
1251 INSN_3(ALU64, XOR, K), \
1252 INSN_3(ALU64, MUL, K), \
1253 INSN_3(ALU64, MOV, K), \
1254 INSN_3(ALU64, ARSH, K), \
1255 INSN_3(ALU64, DIV, K), \
1256 INSN_3(ALU64, MOD, K), \
1257 /* Call instruction. */ \
1258 INSN_2(JMP, CALL), \
1259 /* Exit instruction. */ \
1260 INSN_2(JMP, EXIT), \
503a8865
JW
1261 /* 32-bit Jump instructions. */ \
1262 /* Register based. */ \
1263 INSN_3(JMP32, JEQ, X), \
1264 INSN_3(JMP32, JNE, X), \
1265 INSN_3(JMP32, JGT, X), \
1266 INSN_3(JMP32, JLT, X), \
1267 INSN_3(JMP32, JGE, X), \
1268 INSN_3(JMP32, JLE, X), \
1269 INSN_3(JMP32, JSGT, X), \
1270 INSN_3(JMP32, JSLT, X), \
1271 INSN_3(JMP32, JSGE, X), \
1272 INSN_3(JMP32, JSLE, X), \
1273 INSN_3(JMP32, JSET, X), \
1274 /* Immediate based. */ \
1275 INSN_3(JMP32, JEQ, K), \
1276 INSN_3(JMP32, JNE, K), \
1277 INSN_3(JMP32, JGT, K), \
1278 INSN_3(JMP32, JLT, K), \
1279 INSN_3(JMP32, JGE, K), \
1280 INSN_3(JMP32, JLE, K), \
1281 INSN_3(JMP32, JSGT, K), \
1282 INSN_3(JMP32, JSLT, K), \
1283 INSN_3(JMP32, JSGE, K), \
1284 INSN_3(JMP32, JSLE, K), \
1285 INSN_3(JMP32, JSET, K), \
5e581dad
DB
1286 /* Jump instructions. */ \
1287 /* Register based. */ \
1288 INSN_3(JMP, JEQ, X), \
1289 INSN_3(JMP, JNE, X), \
1290 INSN_3(JMP, JGT, X), \
1291 INSN_3(JMP, JLT, X), \
1292 INSN_3(JMP, JGE, X), \
1293 INSN_3(JMP, JLE, X), \
1294 INSN_3(JMP, JSGT, X), \
1295 INSN_3(JMP, JSLT, X), \
1296 INSN_3(JMP, JSGE, X), \
1297 INSN_3(JMP, JSLE, X), \
1298 INSN_3(JMP, JSET, X), \
1299 /* Immediate based. */ \
1300 INSN_3(JMP, JEQ, K), \
1301 INSN_3(JMP, JNE, K), \
1302 INSN_3(JMP, JGT, K), \
1303 INSN_3(JMP, JLT, K), \
1304 INSN_3(JMP, JGE, K), \
1305 INSN_3(JMP, JLE, K), \
1306 INSN_3(JMP, JSGT, K), \
1307 INSN_3(JMP, JSLT, K), \
1308 INSN_3(JMP, JSGE, K), \
1309 INSN_3(JMP, JSLE, K), \
1310 INSN_3(JMP, JSET, K), \
1311 INSN_2(JMP, JA), \
1312 /* Store instructions. */ \
1313 /* Register based. */ \
1314 INSN_3(STX, MEM, B), \
1315 INSN_3(STX, MEM, H), \
1316 INSN_3(STX, MEM, W), \
1317 INSN_3(STX, MEM, DW), \
1318 INSN_3(STX, XADD, W), \
1319 INSN_3(STX, XADD, DW), \
1320 /* Immediate based. */ \
1321 INSN_3(ST, MEM, B), \
1322 INSN_3(ST, MEM, H), \
1323 INSN_3(ST, MEM, W), \
1324 INSN_3(ST, MEM, DW), \
1325 /* Load instructions. */ \
1326 /* Register based. */ \
1327 INSN_3(LDX, MEM, B), \
1328 INSN_3(LDX, MEM, H), \
1329 INSN_3(LDX, MEM, W), \
1330 INSN_3(LDX, MEM, DW), \
1331 /* Immediate based. */ \
e0cea7ce 1332 INSN_3(LD, IMM, DW)
5e581dad
DB
1333
1334bool bpf_opcode_in_insntable(u8 code)
1335{
1336#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1337#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1338 static const bool public_insntable[256] = {
1339 [0 ... 255] = false,
1340 /* Now overwrite non-defaults ... */
1341 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
1342 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1343 [BPF_LD | BPF_ABS | BPF_B] = true,
1344 [BPF_LD | BPF_ABS | BPF_H] = true,
1345 [BPF_LD | BPF_ABS | BPF_W] = true,
1346 [BPF_LD | BPF_IND | BPF_B] = true,
1347 [BPF_LD | BPF_IND | BPF_H] = true,
1348 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
1349 };
1350#undef BPF_INSN_3_TBL
1351#undef BPF_INSN_2_TBL
1352 return public_insntable[code];
1353}
1354
290af866 1355#ifndef CONFIG_BPF_JIT_ALWAYS_ON
6e07a634 1356u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2a02759e
AS
1357{
1358 memset(dst, 0, size);
1359 return -EFAULT;
1360}
6e07a634 1361
f5bffecd 1362/**
7ae457c1 1363 * __bpf_prog_run - run eBPF program on a given context
de1da68d 1364 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
7ae457c1 1365 * @insn: is the array of eBPF instructions
de1da68d 1366 * @stack: is the eBPF storage stack
f5bffecd 1367 *
7ae457c1 1368 * Decode and execute eBPF instructions.
f5bffecd 1369 */
3193c083 1370static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
f5bffecd 1371{
5e581dad
DB
1372#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1373#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
e55a7325 1374 static const void * const jumptable[256] __annotate_jump_table = {
f5bffecd
AS
1375 [0 ... 255] = &&default_label,
1376 /* Now overwrite non-defaults ... */
5e581dad
DB
1377 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1378 /* Non-UAPI available opcodes. */
1ea47e01 1379 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 1380 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
2a02759e
AS
1381 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1382 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1383 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1384 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
f5bffecd 1385 };
5e581dad
DB
1386#undef BPF_INSN_3_LBL
1387#undef BPF_INSN_2_LBL
04fd61ab 1388 u32 tail_call_cnt = 0;
f5bffecd
AS
1389
1390#define CONT ({ insn++; goto select_insn; })
1391#define CONT_JMP ({ insn++; goto select_insn; })
1392
f5bffecd
AS
1393select_insn:
1394 goto *jumptable[insn->code];
1395
1396 /* ALU */
1397#define ALU(OPCODE, OP) \
1398 ALU64_##OPCODE##_X: \
1399 DST = DST OP SRC; \
1400 CONT; \
1401 ALU_##OPCODE##_X: \
1402 DST = (u32) DST OP (u32) SRC; \
1403 CONT; \
1404 ALU64_##OPCODE##_K: \
1405 DST = DST OP IMM; \
1406 CONT; \
1407 ALU_##OPCODE##_K: \
1408 DST = (u32) DST OP (u32) IMM; \
1409 CONT;
1410
1411 ALU(ADD, +)
1412 ALU(SUB, -)
1413 ALU(AND, &)
1414 ALU(OR, |)
1415 ALU(LSH, <<)
1416 ALU(RSH, >>)
1417 ALU(XOR, ^)
1418 ALU(MUL, *)
1419#undef ALU
1420 ALU_NEG:
1421 DST = (u32) -DST;
1422 CONT;
1423 ALU64_NEG:
1424 DST = -DST;
1425 CONT;
1426 ALU_MOV_X:
1427 DST = (u32) SRC;
1428 CONT;
1429 ALU_MOV_K:
1430 DST = (u32) IMM;
1431 CONT;
1432 ALU64_MOV_X:
1433 DST = SRC;
1434 CONT;
1435 ALU64_MOV_K:
1436 DST = IMM;
1437 CONT;
02ab695b
AS
1438 LD_IMM_DW:
1439 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1440 insn++;
1441 CONT;
2dc6b100 1442 ALU_ARSH_X:
75672dda 1443 DST = (u64) (u32) (((s32) DST) >> SRC);
2dc6b100
JW
1444 CONT;
1445 ALU_ARSH_K:
75672dda 1446 DST = (u64) (u32) (((s32) DST) >> IMM);
2dc6b100 1447 CONT;
f5bffecd
AS
1448 ALU64_ARSH_X:
1449 (*(s64 *) &DST) >>= SRC;
1450 CONT;
1451 ALU64_ARSH_K:
1452 (*(s64 *) &DST) >>= IMM;
1453 CONT;
1454 ALU64_MOD_X:
144cd91c
DB
1455 div64_u64_rem(DST, SRC, &AX);
1456 DST = AX;
f5bffecd
AS
1457 CONT;
1458 ALU_MOD_X:
144cd91c
DB
1459 AX = (u32) DST;
1460 DST = do_div(AX, (u32) SRC);
f5bffecd
AS
1461 CONT;
1462 ALU64_MOD_K:
144cd91c
DB
1463 div64_u64_rem(DST, IMM, &AX);
1464 DST = AX;
f5bffecd
AS
1465 CONT;
1466 ALU_MOD_K:
144cd91c
DB
1467 AX = (u32) DST;
1468 DST = do_div(AX, (u32) IMM);
f5bffecd
AS
1469 CONT;
1470 ALU64_DIV_X:
876a7ae6 1471 DST = div64_u64(DST, SRC);
f5bffecd
AS
1472 CONT;
1473 ALU_DIV_X:
144cd91c
DB
1474 AX = (u32) DST;
1475 do_div(AX, (u32) SRC);
1476 DST = (u32) AX;
f5bffecd
AS
1477 CONT;
1478 ALU64_DIV_K:
876a7ae6 1479 DST = div64_u64(DST, IMM);
f5bffecd
AS
1480 CONT;
1481 ALU_DIV_K:
144cd91c
DB
1482 AX = (u32) DST;
1483 do_div(AX, (u32) IMM);
1484 DST = (u32) AX;
f5bffecd
AS
1485 CONT;
1486 ALU_END_TO_BE:
1487 switch (IMM) {
1488 case 16:
1489 DST = (__force u16) cpu_to_be16(DST);
1490 break;
1491 case 32:
1492 DST = (__force u32) cpu_to_be32(DST);
1493 break;
1494 case 64:
1495 DST = (__force u64) cpu_to_be64(DST);
1496 break;
1497 }
1498 CONT;
1499 ALU_END_TO_LE:
1500 switch (IMM) {
1501 case 16:
1502 DST = (__force u16) cpu_to_le16(DST);
1503 break;
1504 case 32:
1505 DST = (__force u32) cpu_to_le32(DST);
1506 break;
1507 case 64:
1508 DST = (__force u64) cpu_to_le64(DST);
1509 break;
1510 }
1511 CONT;
1512
1513 /* CALL */
1514 JMP_CALL:
1515 /* Function call scratches BPF_R1-BPF_R5 registers,
1516 * preserves BPF_R6-BPF_R9, and stores return value
1517 * into BPF_R0.
1518 */
1519 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1520 BPF_R4, BPF_R5);
1521 CONT;
1522
1ea47e01
AS
1523 JMP_CALL_ARGS:
1524 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1525 BPF_R3, BPF_R4,
1526 BPF_R5,
1527 insn + insn->off + 1);
1528 CONT;
1529
04fd61ab
AS
1530 JMP_TAIL_CALL: {
1531 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1532 struct bpf_array *array = container_of(map, struct bpf_array, map);
1533 struct bpf_prog *prog;
90caccdd 1534 u32 index = BPF_R3;
04fd61ab
AS
1535
1536 if (unlikely(index >= array->map.max_entries))
1537 goto out;
04fd61ab
AS
1538 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1539 goto out;
1540
1541 tail_call_cnt++;
1542
2a36f0b9 1543 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1544 if (!prog)
04fd61ab
AS
1545 goto out;
1546
c4675f93
DB
1547 /* ARG1 at this point is guaranteed to point to CTX from
1548 * the verifier side due to the fact that the tail call is
0142dddc 1549 * handled like a helper, that is, bpf_tail_call_proto,
c4675f93
DB
1550 * where arg1_type is ARG_PTR_TO_CTX.
1551 */
04fd61ab
AS
1552 insn = prog->insnsi;
1553 goto select_insn;
1554out:
1555 CONT;
1556 }
f5bffecd
AS
1557 JMP_JA:
1558 insn += insn->off;
1559 CONT;
f5bffecd
AS
1560 JMP_EXIT:
1561 return BPF_R0;
503a8865
JW
1562 /* JMP */
1563#define COND_JMP(SIGN, OPCODE, CMP_OP) \
1564 JMP_##OPCODE##_X: \
1565 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1566 insn += insn->off; \
1567 CONT_JMP; \
1568 } \
1569 CONT; \
1570 JMP32_##OPCODE##_X: \
1571 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1572 insn += insn->off; \
1573 CONT_JMP; \
1574 } \
1575 CONT; \
1576 JMP_##OPCODE##_K: \
1577 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1578 insn += insn->off; \
1579 CONT_JMP; \
1580 } \
1581 CONT; \
1582 JMP32_##OPCODE##_K: \
1583 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1584 insn += insn->off; \
1585 CONT_JMP; \
1586 } \
1587 CONT;
1588 COND_JMP(u, JEQ, ==)
1589 COND_JMP(u, JNE, !=)
1590 COND_JMP(u, JGT, >)
1591 COND_JMP(u, JLT, <)
1592 COND_JMP(u, JGE, >=)
1593 COND_JMP(u, JLE, <=)
1594 COND_JMP(u, JSET, &)
1595 COND_JMP(s, JSGT, >)
1596 COND_JMP(s, JSLT, <)
1597 COND_JMP(s, JSGE, >=)
1598 COND_JMP(s, JSLE, <=)
1599#undef COND_JMP
f5bffecd
AS
1600 /* STX and ST and LDX*/
1601#define LDST(SIZEOP, SIZE) \
1602 STX_MEM_##SIZEOP: \
1603 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1604 CONT; \
1605 ST_MEM_##SIZEOP: \
1606 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1607 CONT; \
1608 LDX_MEM_##SIZEOP: \
1609 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1610 CONT;
1611
1612 LDST(B, u8)
1613 LDST(H, u16)
1614 LDST(W, u32)
1615 LDST(DW, u64)
1616#undef LDST
6e07a634
DB
1617#define LDX_PROBE(SIZEOP, SIZE) \
1618 LDX_PROBE_MEM_##SIZEOP: \
85d31dd0 1619 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
2a02759e
AS
1620 CONT;
1621 LDX_PROBE(B, 1)
1622 LDX_PROBE(H, 2)
1623 LDX_PROBE(W, 4)
1624 LDX_PROBE(DW, 8)
1625#undef LDX_PROBE
1626
f5bffecd
AS
1627 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1628 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1629 (DST + insn->off));
1630 CONT;
1631 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1632 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1633 (DST + insn->off));
1634 CONT;
f5bffecd
AS
1635
1636 default_label:
5e581dad
DB
1637 /* If we ever reach this, we have a bug somewhere. Die hard here
1638 * instead of just returning 0; we could be somewhere in a subprog,
1639 * so execution could continue otherwise which we do /not/ want.
1640 *
1641 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1642 */
1643 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1644 BUG_ON(1);
f5bffecd
AS
1645 return 0;
1646}
f696b8f4 1647
b870aa90
AS
1648#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1649#define DEFINE_BPF_PROG_RUN(stack_size) \
1650static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1651{ \
1652 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1653 u64 regs[MAX_BPF_EXT_REG]; \
b870aa90
AS
1654\
1655 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1656 ARG1 = (u64) (unsigned long) ctx; \
1657 return ___bpf_prog_run(regs, insn, stack); \
f696b8f4 1658}
f5bffecd 1659
1ea47e01
AS
1660#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1661#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1662static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1663 const struct bpf_insn *insn) \
1664{ \
1665 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1666 u64 regs[MAX_BPF_EXT_REG]; \
1ea47e01
AS
1667\
1668 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1669 BPF_R1 = r1; \
1670 BPF_R2 = r2; \
1671 BPF_R3 = r3; \
1672 BPF_R4 = r4; \
1673 BPF_R5 = r5; \
1674 return ___bpf_prog_run(regs, insn, stack); \
1675}
1676
b870aa90
AS
1677#define EVAL1(FN, X) FN(X)
1678#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1679#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1680#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1681#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1682#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1683
1684EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1685EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1686EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1687
1ea47e01
AS
1688EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1689EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1690EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1691
b870aa90
AS
1692#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1693
1694static unsigned int (*interpreters[])(const void *ctx,
1695 const struct bpf_insn *insn) = {
1696EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1697EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1698EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1699};
1ea47e01
AS
1700#undef PROG_NAME_LIST
1701#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1702static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1703 const struct bpf_insn *insn) = {
1704EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1705EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1706EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1707};
1708#undef PROG_NAME_LIST
1709
1710void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1711{
1712 stack_depth = max_t(u32, stack_depth, 1);
1713 insn->off = (s16) insn->imm;
1714 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1715 __bpf_call_base_args;
1716 insn->code = BPF_JMP | BPF_CALL_ARGS;
1717}
b870aa90 1718
290af866 1719#else
fa9dd599
DB
1720static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1721 const struct bpf_insn *insn)
290af866 1722{
fa9dd599
DB
1723 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1724 * is not working properly, so warn about it!
1725 */
1726 WARN_ON_ONCE(1);
290af866
AS
1727 return 0;
1728}
1729#endif
1730
3324b584
DB
1731bool bpf_prog_array_compatible(struct bpf_array *array,
1732 const struct bpf_prog *fp)
04fd61ab 1733{
9802d865
JB
1734 if (fp->kprobe_override)
1735 return false;
1736
2beee5f5 1737 if (!array->aux->type) {
3324b584
DB
1738 /* There's no owner yet where we could check for
1739 * compatibility.
1740 */
2beee5f5
DB
1741 array->aux->type = fp->type;
1742 array->aux->jited = fp->jited;
3324b584 1743 return true;
04fd61ab 1744 }
3324b584 1745
2beee5f5
DB
1746 return array->aux->type == fp->type &&
1747 array->aux->jited == fp->jited;
04fd61ab
AS
1748}
1749
3324b584 1750static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1751{
1752 struct bpf_prog_aux *aux = fp->aux;
984fe94f 1753 int i, ret = 0;
04fd61ab 1754
984fe94f 1755 mutex_lock(&aux->used_maps_mutex);
04fd61ab 1756 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1757 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1758 struct bpf_array *array;
04fd61ab 1759
04fd61ab
AS
1760 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1761 continue;
3324b584 1762
04fd61ab 1763 array = container_of(map, struct bpf_array, map);
984fe94f
YZ
1764 if (!bpf_prog_array_compatible(array, fp)) {
1765 ret = -EINVAL;
1766 goto out;
1767 }
04fd61ab
AS
1768 }
1769
984fe94f
YZ
1770out:
1771 mutex_unlock(&aux->used_maps_mutex);
1772 return ret;
04fd61ab
AS
1773}
1774
9facc336
DB
1775static void bpf_prog_select_func(struct bpf_prog *fp)
1776{
1777#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1778 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1779
1780 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1781#else
1782 fp->bpf_func = __bpf_prog_ret0_warn;
1783#endif
1784}
1785
f5bffecd 1786/**
3324b584 1787 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1788 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1789 * @err: pointer to error variable
f5bffecd 1790 *
3324b584
DB
1791 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1792 * The BPF program will be executed via BPF_PROG_RUN() macro.
f5bffecd 1793 */
d1c55ab5 1794struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1795{
9facc336
DB
1796 /* In case of BPF to BPF calls, verifier did all the prep
1797 * work with regards to JITing, etc.
1798 */
1799 if (fp->bpf_func)
1800 goto finalize;
8007e40a 1801
9facc336 1802 bpf_prog_select_func(fp);
f5bffecd 1803
d1c55ab5
DB
1804 /* eBPF JITs can rewrite the program in case constant
1805 * blinding is active. However, in case of error during
1806 * blinding, bpf_int_jit_compile() must always return a
1807 * valid program, which in this case would simply not
1808 * be JITed, but falls back to the interpreter.
1809 */
ab3f0063 1810 if (!bpf_prog_is_dev_bound(fp->aux)) {
c454a46b
MKL
1811 *err = bpf_prog_alloc_jited_linfo(fp);
1812 if (*err)
1813 return fp;
1814
ab3f0063 1815 fp = bpf_int_jit_compile(fp);
290af866 1816 if (!fp->jited) {
c454a46b
MKL
1817 bpf_prog_free_jited_linfo(fp);
1818#ifdef CONFIG_BPF_JIT_ALWAYS_ON
290af866
AS
1819 *err = -ENOTSUPP;
1820 return fp;
290af866 1821#endif
c454a46b
MKL
1822 } else {
1823 bpf_prog_free_unused_jited_linfo(fp);
1824 }
ab3f0063
JK
1825 } else {
1826 *err = bpf_prog_offload_compile(fp);
1827 if (*err)
1828 return fp;
1829 }
9facc336
DB
1830
1831finalize:
60a3b225 1832 bpf_prog_lock_ro(fp);
04fd61ab 1833
3324b584
DB
1834 /* The tail call compatibility check can only be done at
1835 * this late stage as we need to determine, if we deal
1836 * with JITed or non JITed program concatenations and not
1837 * all eBPF JITs might immediately support all features.
1838 */
d1c55ab5 1839 *err = bpf_check_tail_call(fp);
85782e03 1840
d1c55ab5 1841 return fp;
f5bffecd 1842}
7ae457c1 1843EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1844
e87c6bc3
YS
1845static unsigned int __bpf_prog_ret1(const void *ctx,
1846 const struct bpf_insn *insn)
1847{
1848 return 1;
1849}
1850
1851static struct bpf_prog_dummy {
1852 struct bpf_prog prog;
1853} dummy_bpf_prog = {
1854 .prog = {
1855 .bpf_func = __bpf_prog_ret1,
1856 },
1857};
1858
324bda9e
AS
1859/* to avoid allocating empty bpf_prog_array for cgroups that
1860 * don't have bpf program attached use one global 'empty_prog_array'
1861 * It will not be modified the caller of bpf_prog_array_alloc()
1862 * (since caller requested prog_cnt == 0)
1863 * that pointer should be 'freed' by bpf_prog_array_free()
1864 */
1865static struct {
1866 struct bpf_prog_array hdr;
1867 struct bpf_prog *null_prog;
1868} empty_prog_array = {
1869 .null_prog = NULL,
1870};
1871
d29ab6e1 1872struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
324bda9e
AS
1873{
1874 if (prog_cnt)
1875 return kzalloc(sizeof(struct bpf_prog_array) +
394e40a2
RG
1876 sizeof(struct bpf_prog_array_item) *
1877 (prog_cnt + 1),
324bda9e
AS
1878 flags);
1879
1880 return &empty_prog_array.hdr;
1881}
1882
54e9c9d4 1883void bpf_prog_array_free(struct bpf_prog_array *progs)
324bda9e 1884{
54e9c9d4 1885 if (!progs || progs == &empty_prog_array.hdr)
324bda9e
AS
1886 return;
1887 kfree_rcu(progs, rcu);
1888}
1889
54e9c9d4 1890int bpf_prog_array_length(struct bpf_prog_array *array)
468e2f64 1891{
394e40a2 1892 struct bpf_prog_array_item *item;
468e2f64
AS
1893 u32 cnt = 0;
1894
54e9c9d4 1895 for (item = array->items; item->prog; item++)
394e40a2 1896 if (item->prog != &dummy_bpf_prog.prog)
c8c088ba 1897 cnt++;
468e2f64
AS
1898 return cnt;
1899}
1900
0d01da6a
SF
1901bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1902{
1903 struct bpf_prog_array_item *item;
1904
1905 for (item = array->items; item->prog; item++)
1906 if (item->prog != &dummy_bpf_prog.prog)
1907 return false;
1908 return true;
1909}
394e40a2 1910
54e9c9d4 1911static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
3a38bb98
YS
1912 u32 *prog_ids,
1913 u32 request_cnt)
1914{
394e40a2 1915 struct bpf_prog_array_item *item;
3a38bb98
YS
1916 int i = 0;
1917
54e9c9d4 1918 for (item = array->items; item->prog; item++) {
394e40a2 1919 if (item->prog == &dummy_bpf_prog.prog)
3a38bb98 1920 continue;
394e40a2 1921 prog_ids[i] = item->prog->aux->id;
3a38bb98 1922 if (++i == request_cnt) {
394e40a2 1923 item++;
3a38bb98
YS
1924 break;
1925 }
1926 }
1927
394e40a2 1928 return !!(item->prog);
3a38bb98
YS
1929}
1930
54e9c9d4 1931int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
468e2f64
AS
1932 __u32 __user *prog_ids, u32 cnt)
1933{
0911287c 1934 unsigned long err = 0;
0911287c 1935 bool nospc;
3a38bb98 1936 u32 *ids;
0911287c
AS
1937
1938 /* users of this function are doing:
1939 * cnt = bpf_prog_array_length();
1940 * if (cnt > 0)
1941 * bpf_prog_array_copy_to_user(..., cnt);
54e9c9d4 1942 * so below kcalloc doesn't need extra cnt > 0 check.
0911287c 1943 */
9c481b90 1944 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
1945 if (!ids)
1946 return -ENOMEM;
394e40a2 1947 nospc = bpf_prog_array_copy_core(array, ids, cnt);
0911287c
AS
1948 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1949 kfree(ids);
1950 if (err)
1951 return -EFAULT;
1952 if (nospc)
468e2f64
AS
1953 return -ENOSPC;
1954 return 0;
1955}
1956
54e9c9d4 1957void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
e87c6bc3
YS
1958 struct bpf_prog *old_prog)
1959{
54e9c9d4 1960 struct bpf_prog_array_item *item;
e87c6bc3 1961
54e9c9d4 1962 for (item = array->items; item->prog; item++)
394e40a2
RG
1963 if (item->prog == old_prog) {
1964 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
e87c6bc3
YS
1965 break;
1966 }
1967}
1968
ce3aa9cc
JS
1969/**
1970 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
1971 * index into the program array with
1972 * a dummy no-op program.
1973 * @array: a bpf_prog_array
1974 * @index: the index of the program to replace
1975 *
1976 * Skips over dummy programs, by not counting them, when calculating
b8c1a309 1977 * the position of the program to replace.
ce3aa9cc
JS
1978 *
1979 * Return:
1980 * * 0 - Success
1981 * * -EINVAL - Invalid index value. Must be a non-negative integer.
1982 * * -ENOENT - Index out of range
1983 */
1984int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
1985{
1986 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
1987}
1988
1989/**
1990 * bpf_prog_array_update_at() - Updates the program at the given index
1991 * into the program array.
1992 * @array: a bpf_prog_array
1993 * @index: the index of the program to update
1994 * @prog: the program to insert into the array
1995 *
1996 * Skips over dummy programs, by not counting them, when calculating
1997 * the position of the program to update.
1998 *
1999 * Return:
2000 * * 0 - Success
2001 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2002 * * -ENOENT - Index out of range
2003 */
2004int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2005 struct bpf_prog *prog)
2006{
2007 struct bpf_prog_array_item *item;
2008
2009 if (unlikely(index < 0))
2010 return -EINVAL;
2011
2012 for (item = array->items; item->prog; item++) {
2013 if (item->prog == &dummy_bpf_prog.prog)
2014 continue;
2015 if (!index) {
2016 WRITE_ONCE(item->prog, prog);
2017 return 0;
2018 }
2019 index--;
2020 }
2021 return -ENOENT;
2022}
2023
54e9c9d4 2024int bpf_prog_array_copy(struct bpf_prog_array *old_array,
e87c6bc3
YS
2025 struct bpf_prog *exclude_prog,
2026 struct bpf_prog *include_prog,
2027 struct bpf_prog_array **new_array)
2028{
2029 int new_prog_cnt, carry_prog_cnt = 0;
394e40a2 2030 struct bpf_prog_array_item *existing;
e87c6bc3 2031 struct bpf_prog_array *array;
170a7e3e 2032 bool found_exclude = false;
e87c6bc3
YS
2033 int new_prog_idx = 0;
2034
2035 /* Figure out how many existing progs we need to carry over to
2036 * the new array.
2037 */
2038 if (old_array) {
394e40a2
RG
2039 existing = old_array->items;
2040 for (; existing->prog; existing++) {
2041 if (existing->prog == exclude_prog) {
170a7e3e
SY
2042 found_exclude = true;
2043 continue;
2044 }
394e40a2 2045 if (existing->prog != &dummy_bpf_prog.prog)
e87c6bc3 2046 carry_prog_cnt++;
394e40a2 2047 if (existing->prog == include_prog)
e87c6bc3
YS
2048 return -EEXIST;
2049 }
2050 }
2051
170a7e3e
SY
2052 if (exclude_prog && !found_exclude)
2053 return -ENOENT;
2054
e87c6bc3
YS
2055 /* How many progs (not NULL) will be in the new array? */
2056 new_prog_cnt = carry_prog_cnt;
2057 if (include_prog)
2058 new_prog_cnt += 1;
2059
2060 /* Do we have any prog (not NULL) in the new array? */
2061 if (!new_prog_cnt) {
2062 *new_array = NULL;
2063 return 0;
2064 }
2065
2066 /* +1 as the end of prog_array is marked with NULL */
2067 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2068 if (!array)
2069 return -ENOMEM;
2070
2071 /* Fill in the new prog array */
2072 if (carry_prog_cnt) {
394e40a2
RG
2073 existing = old_array->items;
2074 for (; existing->prog; existing++)
2075 if (existing->prog != exclude_prog &&
2076 existing->prog != &dummy_bpf_prog.prog) {
2077 array->items[new_prog_idx++].prog =
2078 existing->prog;
2079 }
e87c6bc3
YS
2080 }
2081 if (include_prog)
394e40a2
RG
2082 array->items[new_prog_idx++].prog = include_prog;
2083 array->items[new_prog_idx].prog = NULL;
e87c6bc3
YS
2084 *new_array = array;
2085 return 0;
2086}
2087
54e9c9d4 2088int bpf_prog_array_copy_info(struct bpf_prog_array *array,
3a38bb98
YS
2089 u32 *prog_ids, u32 request_cnt,
2090 u32 *prog_cnt)
f371b304
YS
2091{
2092 u32 cnt = 0;
2093
2094 if (array)
2095 cnt = bpf_prog_array_length(array);
2096
3a38bb98 2097 *prog_cnt = cnt;
f371b304
YS
2098
2099 /* return early if user requested only program count or nothing to copy */
2100 if (!request_cnt || !cnt)
2101 return 0;
2102
3a38bb98 2103 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
394e40a2 2104 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
3a38bb98 2105 : 0;
f371b304
YS
2106}
2107
a2ea0746
DB
2108void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2109 struct bpf_map **used_maps, u32 len)
6332be04 2110{
da765a2f 2111 struct bpf_map *map;
a2ea0746 2112 u32 i;
6332be04 2113
a2ea0746
DB
2114 for (i = 0; i < len; i++) {
2115 map = used_maps[i];
da765a2f
DB
2116 if (map->ops->map_poke_untrack)
2117 map->ops->map_poke_untrack(map, aux);
2118 bpf_map_put(map);
2119 }
a2ea0746
DB
2120}
2121
2122static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2123{
2124 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
6332be04
DB
2125 kfree(aux->used_maps);
2126}
2127
60a3b225
DB
2128static void bpf_prog_free_deferred(struct work_struct *work)
2129{
09756af4 2130 struct bpf_prog_aux *aux;
1c2a088a 2131 int i;
60a3b225 2132
09756af4 2133 aux = container_of(work, struct bpf_prog_aux, work);
6332be04 2134 bpf_free_used_maps(aux);
ab3f0063
JK
2135 if (bpf_prog_is_dev_bound(aux))
2136 bpf_prog_offload_destroy(aux->prog);
c195651e
YS
2137#ifdef CONFIG_PERF_EVENTS
2138 if (aux->prog->has_callchain_buf)
2139 put_callchain_buffers();
2140#endif
fec56f58 2141 bpf_trampoline_put(aux->trampoline);
1c2a088a
AS
2142 for (i = 0; i < aux->func_cnt; i++)
2143 bpf_jit_free(aux->func[i]);
2144 if (aux->func_cnt) {
2145 kfree(aux->func);
2146 bpf_prog_unlock_free(aux->prog);
2147 } else {
2148 bpf_jit_free(aux->prog);
2149 }
60a3b225
DB
2150}
2151
2152/* Free internal BPF program */
7ae457c1 2153void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 2154{
09756af4 2155 struct bpf_prog_aux *aux = fp->aux;
60a3b225 2156
5b92a28a
AS
2157 if (aux->linked_prog)
2158 bpf_prog_put(aux->linked_prog);
09756af4 2159 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 2160 schedule_work(&aux->work);
f5bffecd 2161}
7ae457c1 2162EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 2163
3ad00405
DB
2164/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2165static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2166
2167void bpf_user_rnd_init_once(void)
2168{
2169 prandom_init_once(&bpf_user_rnd_state);
2170}
2171
f3694e00 2172BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
2173{
2174 /* Should someone ever have the rather unwise idea to use some
2175 * of the registers passed into this function, then note that
2176 * this function is called from native eBPF and classic-to-eBPF
2177 * transformations. Register assignments from both sides are
2178 * different, f.e. classic always sets fn(ctx, A, X) here.
2179 */
2180 struct rnd_state *state;
2181 u32 res;
2182
2183 state = &get_cpu_var(bpf_user_rnd_state);
2184 res = prandom_u32_state(state);
b761fe22 2185 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
2186
2187 return res;
2188}
2189
6890896b
SF
2190BPF_CALL_0(bpf_get_raw_cpu_id)
2191{
2192 return raw_smp_processor_id();
2193}
2194
3ba67dab
DB
2195/* Weak definitions of helper functions in case we don't have bpf syscall. */
2196const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2197const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2198const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
f1a2e44a
MV
2199const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2200const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2201const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
d83525ca
AS
2202const struct bpf_func_proto bpf_spin_lock_proto __weak;
2203const struct bpf_func_proto bpf_spin_unlock_proto __weak;
5576b991 2204const struct bpf_func_proto bpf_jiffies64_proto __weak;
3ba67dab 2205
03e69b50 2206const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 2207const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 2208const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 2209const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
71d19214 2210const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
bd570ff9 2211
ffeedafb
AS
2212const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2213const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2214const struct bpf_func_proto bpf_get_current_comm_proto __weak;
bf6fa2c8 2215const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
0f09abd1 2216const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
cd339431 2217const struct bpf_func_proto bpf_get_local_storage_proto __weak;
b4490c5c 2218const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
c4d0bfb4 2219const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
eb411377 2220const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
bd570ff9 2221
0756ea3e
AS
2222const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2223{
2224 return NULL;
2225}
03e69b50 2226
555c8a86
DB
2227u64 __weak
2228bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2229 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 2230{
555c8a86 2231 return -ENOTSUPP;
bd570ff9 2232}
6cb5fb38 2233EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 2234
3324b584
DB
2235/* Always built-in helper functions. */
2236const struct bpf_func_proto bpf_tail_call_proto = {
2237 .func = NULL,
2238 .gpl_only = false,
2239 .ret_type = RET_VOID,
2240 .arg1_type = ARG_PTR_TO_CTX,
2241 .arg2_type = ARG_CONST_MAP_PTR,
2242 .arg3_type = ARG_ANYTHING,
2243};
2244
9383191d
DB
2245/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2246 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2247 * eBPF and implicitly also cBPF can get JITed!
2248 */
d1c55ab5 2249struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 2250{
d1c55ab5 2251 return prog;
3324b584
DB
2252}
2253
9383191d
DB
2254/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2255 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2256 */
2257void __weak bpf_jit_compile(struct bpf_prog *prog)
2258{
2259}
2260
17bedab2 2261bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
2262{
2263 return false;
2264}
2265
a4b1d3c1
JW
2266/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2267 * analysis code and wants explicit zero extension inserted by verifier.
2268 * Otherwise, return FALSE.
2269 */
2270bool __weak bpf_jit_needs_zext(void)
2271{
2272 return false;
2273}
2274
f89b7755
AS
2275/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2276 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2277 */
2278int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2279 int len)
2280{
2281 return -EFAULT;
2282}
a67edbf4 2283
5964b200
AS
2284int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2285 void *addr1, void *addr2)
2286{
2287 return -ENOTSUPP;
2288}
2289
492ecee8
AS
2290DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2291EXPORT_SYMBOL(bpf_stats_enabled_key);
492ecee8 2292
a67edbf4
DB
2293/* All definitions of tracepoints related to BPF. */
2294#define CREATE_TRACE_POINTS
2295#include <linux/bpf_trace.h>
2296
2297EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
e7d47989 2298EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);