]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/core.c
tools: bpftool: teach cfg code about JMP32
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / core.c
CommitLineData
f5bffecd
AS
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 22 */
738cbe72 23
838e9690 24#include <uapi/linux/btf.h>
f5bffecd
AS
25#include <linux/filter.h>
26#include <linux/skbuff.h>
60a3b225 27#include <linux/vmalloc.h>
738cbe72
DB
28#include <linux/random.h>
29#include <linux/moduleloader.h>
09756af4 30#include <linux/bpf.h>
838e9690 31#include <linux/btf.h>
39853cc0 32#include <linux/frame.h>
74451e66
DB
33#include <linux/rbtree_latch.h>
34#include <linux/kallsyms.h>
35#include <linux/rcupdate.h>
c195651e 36#include <linux/perf_event.h>
f5bffecd 37
3324b584
DB
38#include <asm/unaligned.h>
39
f5bffecd
AS
40/* Registers */
41#define BPF_R0 regs[BPF_REG_0]
42#define BPF_R1 regs[BPF_REG_1]
43#define BPF_R2 regs[BPF_REG_2]
44#define BPF_R3 regs[BPF_REG_3]
45#define BPF_R4 regs[BPF_REG_4]
46#define BPF_R5 regs[BPF_REG_5]
47#define BPF_R6 regs[BPF_REG_6]
48#define BPF_R7 regs[BPF_REG_7]
49#define BPF_R8 regs[BPF_REG_8]
50#define BPF_R9 regs[BPF_REG_9]
51#define BPF_R10 regs[BPF_REG_10]
52
53/* Named registers */
54#define DST regs[insn->dst_reg]
55#define SRC regs[insn->src_reg]
56#define FP regs[BPF_REG_FP]
144cd91c 57#define AX regs[BPF_REG_AX]
f5bffecd
AS
58#define ARG1 regs[BPF_REG_ARG1]
59#define CTX regs[BPF_REG_CTX]
60#define IMM insn->imm
61
62/* No hurry in this branch
63 *
64 * Exported for the bpf jit load helper.
65 */
66void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67{
68 u8 *ptr = NULL;
69
70 if (k >= SKF_NET_OFF)
71 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 else if (k >= SKF_LL_OFF)
73 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 74
f5bffecd
AS
75 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 return ptr;
77
78 return NULL;
79}
80
60a3b225
DB
81struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
82{
19809c2d 83 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
09756af4 84 struct bpf_prog_aux *aux;
60a3b225
DB
85 struct bpf_prog *fp;
86
87 size = round_up(size, PAGE_SIZE);
88 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
89 if (fp == NULL)
90 return NULL;
91
09756af4
AS
92 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
93 if (aux == NULL) {
60a3b225
DB
94 vfree(fp);
95 return NULL;
96 }
97
98 fp->pages = size / PAGE_SIZE;
09756af4 99 fp->aux = aux;
e9d8afa9 100 fp->aux->prog = fp;
60b58afc 101 fp->jit_requested = ebpf_jit_enabled();
60a3b225 102
74451e66
DB
103 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
104
60a3b225
DB
105 return fp;
106}
107EXPORT_SYMBOL_GPL(bpf_prog_alloc);
108
c454a46b
MKL
109int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
110{
111 if (!prog->aux->nr_linfo || !prog->jit_requested)
112 return 0;
113
114 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
115 sizeof(*prog->aux->jited_linfo),
116 GFP_KERNEL | __GFP_NOWARN);
117 if (!prog->aux->jited_linfo)
118 return -ENOMEM;
119
120 return 0;
121}
122
123void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
124{
125 kfree(prog->aux->jited_linfo);
126 prog->aux->jited_linfo = NULL;
127}
128
129void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
130{
131 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
132 bpf_prog_free_jited_linfo(prog);
133}
134
135/* The jit engine is responsible to provide an array
136 * for insn_off to the jited_off mapping (insn_to_jit_off).
137 *
138 * The idx to this array is the insn_off. Hence, the insn_off
139 * here is relative to the prog itself instead of the main prog.
140 * This array has one entry for each xlated bpf insn.
141 *
142 * jited_off is the byte off to the last byte of the jited insn.
143 *
144 * Hence, with
145 * insn_start:
146 * The first bpf insn off of the prog. The insn off
147 * here is relative to the main prog.
148 * e.g. if prog is a subprog, insn_start > 0
149 * linfo_idx:
150 * The prog's idx to prog->aux->linfo and jited_linfo
151 *
152 * jited_linfo[linfo_idx] = prog->bpf_func
153 *
154 * For i > linfo_idx,
155 *
156 * jited_linfo[i] = prog->bpf_func +
157 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
158 */
159void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
160 const u32 *insn_to_jit_off)
161{
162 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
163 const struct bpf_line_info *linfo;
164 void **jited_linfo;
165
166 if (!prog->aux->jited_linfo)
167 /* Userspace did not provide linfo */
168 return;
169
170 linfo_idx = prog->aux->linfo_idx;
171 linfo = &prog->aux->linfo[linfo_idx];
172 insn_start = linfo[0].insn_off;
173 insn_end = insn_start + prog->len;
174
175 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
176 jited_linfo[0] = prog->bpf_func;
177
178 nr_linfo = prog->aux->nr_linfo - linfo_idx;
179
180 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
181 /* The verifier ensures that linfo[i].insn_off is
182 * strictly increasing
183 */
184 jited_linfo[i] = prog->bpf_func +
185 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
186}
187
188void bpf_prog_free_linfo(struct bpf_prog *prog)
189{
190 bpf_prog_free_jited_linfo(prog);
191 kvfree(prog->aux->linfo);
192}
193
60a3b225
DB
194struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
195 gfp_t gfp_extra_flags)
196{
19809c2d 197 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
60a3b225 198 struct bpf_prog *fp;
5ccb071e
DB
199 u32 pages, delta;
200 int ret;
60a3b225
DB
201
202 BUG_ON(fp_old == NULL);
203
204 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
205 pages = size / PAGE_SIZE;
206 if (pages <= fp_old->pages)
60a3b225
DB
207 return fp_old;
208
5ccb071e
DB
209 delta = pages - fp_old->pages;
210 ret = __bpf_prog_charge(fp_old->aux->user, delta);
211 if (ret)
212 return NULL;
213
60a3b225 214 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
5ccb071e
DB
215 if (fp == NULL) {
216 __bpf_prog_uncharge(fp_old->aux->user, delta);
217 } else {
60a3b225 218 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 219 fp->pages = pages;
e9d8afa9 220 fp->aux->prog = fp;
60a3b225 221
09756af4 222 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
223 * reallocated structure.
224 */
09756af4 225 fp_old->aux = NULL;
60a3b225
DB
226 __bpf_prog_free(fp_old);
227 }
228
229 return fp;
230}
60a3b225
DB
231
232void __bpf_prog_free(struct bpf_prog *fp)
233{
09756af4 234 kfree(fp->aux);
60a3b225
DB
235 vfree(fp);
236}
60a3b225 237
f1f7714e 238int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3
DB
239{
240 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
f1f7714e
DB
241 u32 raw_size = bpf_prog_tag_scratch_size(fp);
242 u32 digest[SHA_DIGEST_WORDS];
aafe6ae9 243 u32 ws[SHA_WORKSPACE_WORDS];
7bd509e3 244 u32 i, bsize, psize, blocks;
aafe6ae9 245 struct bpf_insn *dst;
7bd509e3 246 bool was_ld_map;
aafe6ae9 247 u8 *raw, *todo;
7bd509e3
DB
248 __be32 *result;
249 __be64 *bits;
250
aafe6ae9
DB
251 raw = vmalloc(raw_size);
252 if (!raw)
253 return -ENOMEM;
254
f1f7714e 255 sha_init(digest);
7bd509e3
DB
256 memset(ws, 0, sizeof(ws));
257
258 /* We need to take out the map fd for the digest calculation
259 * since they are unstable from user space side.
260 */
aafe6ae9 261 dst = (void *)raw;
7bd509e3
DB
262 for (i = 0, was_ld_map = false; i < fp->len; i++) {
263 dst[i] = fp->insnsi[i];
264 if (!was_ld_map &&
265 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
266 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
267 was_ld_map = true;
268 dst[i].imm = 0;
269 } else if (was_ld_map &&
270 dst[i].code == 0 &&
271 dst[i].dst_reg == 0 &&
272 dst[i].src_reg == 0 &&
273 dst[i].off == 0) {
274 was_ld_map = false;
275 dst[i].imm = 0;
276 } else {
277 was_ld_map = false;
278 }
279 }
280
aafe6ae9
DB
281 psize = bpf_prog_insn_size(fp);
282 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
283 raw[psize++] = 0x80;
284
285 bsize = round_up(psize, SHA_MESSAGE_BYTES);
286 blocks = bsize / SHA_MESSAGE_BYTES;
aafe6ae9 287 todo = raw;
7bd509e3
DB
288 if (bsize - psize >= sizeof(__be64)) {
289 bits = (__be64 *)(todo + bsize - sizeof(__be64));
290 } else {
291 bits = (__be64 *)(todo + bsize + bits_offset);
292 blocks++;
293 }
294 *bits = cpu_to_be64((psize - 1) << 3);
295
296 while (blocks--) {
f1f7714e 297 sha_transform(digest, todo, ws);
7bd509e3
DB
298 todo += SHA_MESSAGE_BYTES;
299 }
300
f1f7714e 301 result = (__force __be32 *)digest;
7bd509e3 302 for (i = 0; i < SHA_DIGEST_WORDS; i++)
f1f7714e
DB
303 result[i] = cpu_to_be32(digest[i]);
304 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
305
306 vfree(raw);
307 return 0;
7bd509e3
DB
308}
309
2cbd95a5
JK
310static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
311 s32 end_new, u32 curr, const bool probe_pass)
c237ee5e 312{
050fad7c 313 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
2cbd95a5 314 s32 delta = end_new - end_old;
050fad7c
DB
315 s64 imm = insn->imm;
316
2cbd95a5 317 if (curr < pos && curr + imm + 1 >= end_old)
050fad7c 318 imm += delta;
2cbd95a5 319 else if (curr >= end_new && curr + imm + 1 < end_new)
050fad7c
DB
320 imm -= delta;
321 if (imm < imm_min || imm > imm_max)
322 return -ERANGE;
323 if (!probe_pass)
324 insn->imm = imm;
325 return 0;
326}
327
2cbd95a5
JK
328static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
329 s32 end_new, u32 curr, const bool probe_pass)
050fad7c
DB
330{
331 const s32 off_min = S16_MIN, off_max = S16_MAX;
2cbd95a5 332 s32 delta = end_new - end_old;
050fad7c
DB
333 s32 off = insn->off;
334
2cbd95a5 335 if (curr < pos && curr + off + 1 >= end_old)
050fad7c 336 off += delta;
2cbd95a5 337 else if (curr >= end_new && curr + off + 1 < end_new)
050fad7c
DB
338 off -= delta;
339 if (off < off_min || off > off_max)
340 return -ERANGE;
341 if (!probe_pass)
342 insn->off = off;
343 return 0;
344}
345
2cbd95a5
JK
346static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
347 s32 end_new, const bool probe_pass)
050fad7c 348{
2cbd95a5 349 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
c237ee5e 350 struct bpf_insn *insn = prog->insnsi;
050fad7c 351 int ret = 0;
c237ee5e
DB
352
353 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
354 u8 code;
355
356 /* In the probing pass we still operate on the original,
357 * unpatched image in order to check overflows before we
358 * do any other adjustments. Therefore skip the patchlet.
359 */
360 if (probe_pass && i == pos) {
2cbd95a5
JK
361 i = end_new;
362 insn = prog->insnsi + end_old;
050fad7c 363 }
1ea47e01 364 code = insn->code;
092ed096
JW
365 if ((BPF_CLASS(code) != BPF_JMP &&
366 BPF_CLASS(code) != BPF_JMP32) ||
050fad7c 367 BPF_OP(code) == BPF_EXIT)
1ea47e01 368 continue;
050fad7c 369 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 370 if (BPF_OP(code) == BPF_CALL) {
050fad7c 371 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 372 continue;
2cbd95a5
JK
373 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
374 end_new, i, probe_pass);
1ea47e01 375 } else {
2cbd95a5
JK
376 ret = bpf_adj_delta_to_off(insn, pos, end_old,
377 end_new, i, probe_pass);
1ea47e01 378 }
050fad7c
DB
379 if (ret)
380 break;
c237ee5e 381 }
050fad7c
DB
382
383 return ret;
c237ee5e
DB
384}
385
c454a46b
MKL
386static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
387{
388 struct bpf_line_info *linfo;
389 u32 i, nr_linfo;
390
391 nr_linfo = prog->aux->nr_linfo;
392 if (!nr_linfo || !delta)
393 return;
394
395 linfo = prog->aux->linfo;
396
397 for (i = 0; i < nr_linfo; i++)
398 if (off < linfo[i].insn_off)
399 break;
400
401 /* Push all off < linfo[i].insn_off by delta */
402 for (; i < nr_linfo; i++)
403 linfo[i].insn_off += delta;
404}
405
c237ee5e
DB
406struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
407 const struct bpf_insn *patch, u32 len)
408{
409 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 410 const u32 cnt_max = S16_MAX;
c237ee5e
DB
411 struct bpf_prog *prog_adj;
412
413 /* Since our patchlet doesn't expand the image, we're done. */
414 if (insn_delta == 0) {
415 memcpy(prog->insnsi + off, patch, sizeof(*patch));
416 return prog;
417 }
418
419 insn_adj_cnt = prog->len + insn_delta;
420
050fad7c
DB
421 /* Reject anything that would potentially let the insn->off
422 * target overflow when we have excessive program expansions.
423 * We need to probe here before we do any reallocation where
424 * we afterwards may not fail anymore.
425 */
426 if (insn_adj_cnt > cnt_max &&
2cbd95a5 427 bpf_adj_branches(prog, off, off + 1, off + len, true))
050fad7c
DB
428 return NULL;
429
c237ee5e
DB
430 /* Several new instructions need to be inserted. Make room
431 * for them. Likely, there's no need for a new allocation as
432 * last page could have large enough tailroom.
433 */
434 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
435 GFP_USER);
436 if (!prog_adj)
437 return NULL;
438
439 prog_adj->len = insn_adj_cnt;
440
441 /* Patching happens in 3 steps:
442 *
443 * 1) Move over tail of insnsi from next instruction onwards,
444 * so we can patch the single target insn with one or more
445 * new ones (patching is always from 1 to n insns, n > 0).
446 * 2) Inject new instructions at the target location.
447 * 3) Adjust branch offsets if necessary.
448 */
449 insn_rest = insn_adj_cnt - off - len;
450
451 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
452 sizeof(*patch) * insn_rest);
453 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
454
050fad7c
DB
455 /* We are guaranteed to not fail at this point, otherwise
456 * the ship has sailed to reverse to the original state. An
457 * overflow cannot happen at this point.
458 */
2cbd95a5 459 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
c237ee5e 460
c454a46b
MKL
461 bpf_adj_linfo(prog_adj, off, insn_delta);
462
c237ee5e
DB
463 return prog_adj;
464}
465
52875a04
JK
466int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
467{
468 /* Branch offsets can't overflow when program is shrinking, no need
469 * to call bpf_adj_branches(..., true) here
470 */
471 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
472 sizeof(struct bpf_insn) * (prog->len - off - cnt));
473 prog->len -= cnt;
474
475 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
476}
477
7d1982b4
DB
478void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
479{
480 int i;
481
482 for (i = 0; i < fp->aux->func_cnt; i++)
483 bpf_prog_kallsyms_del(fp->aux->func[i]);
484}
485
486void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
487{
488 bpf_prog_kallsyms_del_subprogs(fp);
489 bpf_prog_kallsyms_del(fp);
490}
491
b954d834 492#ifdef CONFIG_BPF_JIT
fa9dd599
DB
493/* All BPF JIT sysctl knobs here. */
494int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
495int bpf_jit_harden __read_mostly;
496int bpf_jit_kallsyms __read_mostly;
fdadd049 497long bpf_jit_limit __read_mostly;
fa9dd599 498
74451e66
DB
499static __always_inline void
500bpf_get_prog_addr_region(const struct bpf_prog *prog,
501 unsigned long *symbol_start,
502 unsigned long *symbol_end)
503{
504 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
505 unsigned long addr = (unsigned long)hdr;
506
507 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
508
509 *symbol_start = addr;
510 *symbol_end = addr + hdr->pages * PAGE_SIZE;
511}
512
513static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
514{
368211fb 515 const char *end = sym + KSYM_NAME_LEN;
838e9690
YS
516 const struct btf_type *type;
517 const char *func_name;
368211fb 518
74451e66 519 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
520 sizeof(prog->tag) * 2 +
521 /* name has been null terminated.
522 * We should need +1 for the '_' preceding
523 * the name. However, the null character
524 * is double counted between the name and the
525 * sizeof("bpf_prog_") above, so we omit
526 * the +1 here.
527 */
528 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
529
530 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
531 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
838e9690
YS
532
533 /* prog->aux->name will be ignored if full btf name is available */
7337224f 534 if (prog->aux->func_info_cnt) {
ba64e7d8
YS
535 type = btf_type_by_id(prog->aux->btf,
536 prog->aux->func_info[prog->aux->func_idx].type_id);
838e9690
YS
537 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
538 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
539 return;
540 }
541
368211fb
MKL
542 if (prog->aux->name[0])
543 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
544 else
545 *sym = 0;
74451e66
DB
546}
547
548static __always_inline unsigned long
549bpf_get_prog_addr_start(struct latch_tree_node *n)
550{
551 unsigned long symbol_start, symbol_end;
552 const struct bpf_prog_aux *aux;
553
554 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
555 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
556
557 return symbol_start;
558}
559
560static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
561 struct latch_tree_node *b)
562{
563 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
564}
565
566static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
567{
568 unsigned long val = (unsigned long)key;
569 unsigned long symbol_start, symbol_end;
570 const struct bpf_prog_aux *aux;
571
572 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
573 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
574
575 if (val < symbol_start)
576 return -1;
577 if (val >= symbol_end)
578 return 1;
579
580 return 0;
581}
582
583static const struct latch_tree_ops bpf_tree_ops = {
584 .less = bpf_tree_less,
585 .comp = bpf_tree_comp,
586};
587
588static DEFINE_SPINLOCK(bpf_lock);
589static LIST_HEAD(bpf_kallsyms);
590static struct latch_tree_root bpf_tree __cacheline_aligned;
591
74451e66
DB
592static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
593{
594 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
595 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
596 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
597}
598
599static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
600{
601 if (list_empty(&aux->ksym_lnode))
602 return;
603
604 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
605 list_del_rcu(&aux->ksym_lnode);
606}
607
608static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
609{
610 return fp->jited && !bpf_prog_was_classic(fp);
611}
612
613static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
614{
615 return list_empty(&fp->aux->ksym_lnode) ||
616 fp->aux->ksym_lnode.prev == LIST_POISON2;
617}
618
619void bpf_prog_kallsyms_add(struct bpf_prog *fp)
620{
74451e66
DB
621 if (!bpf_prog_kallsyms_candidate(fp) ||
622 !capable(CAP_SYS_ADMIN))
623 return;
624
d24f7c7f 625 spin_lock_bh(&bpf_lock);
74451e66 626 bpf_prog_ksym_node_add(fp->aux);
d24f7c7f 627 spin_unlock_bh(&bpf_lock);
74451e66
DB
628}
629
630void bpf_prog_kallsyms_del(struct bpf_prog *fp)
631{
74451e66
DB
632 if (!bpf_prog_kallsyms_candidate(fp))
633 return;
634
d24f7c7f 635 spin_lock_bh(&bpf_lock);
74451e66 636 bpf_prog_ksym_node_del(fp->aux);
d24f7c7f 637 spin_unlock_bh(&bpf_lock);
74451e66
DB
638}
639
640static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
641{
642 struct latch_tree_node *n;
643
644 if (!bpf_jit_kallsyms_enabled())
645 return NULL;
646
647 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
648 return n ?
649 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
650 NULL;
651}
652
653const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
654 unsigned long *off, char *sym)
655{
656 unsigned long symbol_start, symbol_end;
657 struct bpf_prog *prog;
658 char *ret = NULL;
659
660 rcu_read_lock();
661 prog = bpf_prog_kallsyms_find(addr);
662 if (prog) {
663 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
664 bpf_get_prog_name(prog, sym);
665
666 ret = sym;
667 if (size)
668 *size = symbol_end - symbol_start;
669 if (off)
670 *off = addr - symbol_start;
671 }
672 rcu_read_unlock();
673
674 return ret;
675}
676
677bool is_bpf_text_address(unsigned long addr)
678{
679 bool ret;
680
681 rcu_read_lock();
682 ret = bpf_prog_kallsyms_find(addr) != NULL;
683 rcu_read_unlock();
684
685 return ret;
686}
687
688int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
689 char *sym)
690{
74451e66
DB
691 struct bpf_prog_aux *aux;
692 unsigned int it = 0;
693 int ret = -ERANGE;
694
695 if (!bpf_jit_kallsyms_enabled())
696 return ret;
697
698 rcu_read_lock();
699 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
700 if (it++ != symnum)
701 continue;
702
74451e66
DB
703 bpf_get_prog_name(aux->prog, sym);
704
df073470 705 *value = (unsigned long)aux->prog->bpf_func;
74451e66
DB
706 *type = BPF_SYM_ELF_TYPE;
707
708 ret = 0;
709 break;
710 }
711 rcu_read_unlock();
712
713 return ret;
714}
715
ede95a63
DB
716static atomic_long_t bpf_jit_current;
717
fdadd049
DB
718/* Can be overridden by an arch's JIT compiler if it has a custom,
719 * dedicated BPF backend memory area, or if neither of the two
720 * below apply.
721 */
722u64 __weak bpf_jit_alloc_exec_limit(void)
723{
ede95a63 724#if defined(MODULES_VADDR)
fdadd049
DB
725 return MODULES_END - MODULES_VADDR;
726#else
727 return VMALLOC_END - VMALLOC_START;
728#endif
729}
730
ede95a63
DB
731static int __init bpf_jit_charge_init(void)
732{
733 /* Only used as heuristic here to derive limit. */
fdadd049
DB
734 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
735 PAGE_SIZE), LONG_MAX);
ede95a63
DB
736 return 0;
737}
738pure_initcall(bpf_jit_charge_init);
ede95a63
DB
739
740static int bpf_jit_charge_modmem(u32 pages)
741{
742 if (atomic_long_add_return(pages, &bpf_jit_current) >
743 (bpf_jit_limit >> PAGE_SHIFT)) {
744 if (!capable(CAP_SYS_ADMIN)) {
745 atomic_long_sub(pages, &bpf_jit_current);
746 return -EPERM;
747 }
748 }
749
750 return 0;
751}
752
753static void bpf_jit_uncharge_modmem(u32 pages)
754{
755 atomic_long_sub(pages, &bpf_jit_current);
756}
757
dc002bb6
AB
758void *__weak bpf_jit_alloc_exec(unsigned long size)
759{
760 return module_alloc(size);
761}
762
763void __weak bpf_jit_free_exec(void *addr)
764{
765 module_memfree(addr);
766}
767
738cbe72
DB
768struct bpf_binary_header *
769bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
770 unsigned int alignment,
771 bpf_jit_fill_hole_t bpf_fill_ill_insns)
772{
773 struct bpf_binary_header *hdr;
ede95a63 774 u32 size, hole, start, pages;
738cbe72
DB
775
776 /* Most of BPF filters are really small, but if some of them
777 * fill a page, allow at least 128 extra bytes to insert a
778 * random section of illegal instructions.
779 */
780 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
ede95a63
DB
781 pages = size / PAGE_SIZE;
782
783 if (bpf_jit_charge_modmem(pages))
784 return NULL;
dc002bb6 785 hdr = bpf_jit_alloc_exec(size);
ede95a63
DB
786 if (!hdr) {
787 bpf_jit_uncharge_modmem(pages);
738cbe72 788 return NULL;
ede95a63 789 }
738cbe72
DB
790
791 /* Fill space with illegal/arch-dep instructions. */
792 bpf_fill_ill_insns(hdr, size);
793
ede95a63 794 hdr->pages = pages;
738cbe72
DB
795 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
796 PAGE_SIZE - sizeof(*hdr));
b7552e1b 797 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
798
799 /* Leave a random number of instructions before BPF code. */
800 *image_ptr = &hdr->image[start];
801
802 return hdr;
803}
804
805void bpf_jit_binary_free(struct bpf_binary_header *hdr)
806{
ede95a63
DB
807 u32 pages = hdr->pages;
808
dc002bb6 809 bpf_jit_free_exec(hdr);
ede95a63 810 bpf_jit_uncharge_modmem(pages);
738cbe72 811}
4f3446bb 812
74451e66
DB
813/* This symbol is only overridden by archs that have different
814 * requirements than the usual eBPF JITs, f.e. when they only
815 * implement cBPF JIT, do not set images read-only, etc.
816 */
817void __weak bpf_jit_free(struct bpf_prog *fp)
818{
819 if (fp->jited) {
820 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
821
822 bpf_jit_binary_unlock_ro(hdr);
823 bpf_jit_binary_free(hdr);
824
825 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
826 }
827
828 bpf_prog_unlock_free(fp);
829}
830
e2c95a61
DB
831int bpf_jit_get_func_addr(const struct bpf_prog *prog,
832 const struct bpf_insn *insn, bool extra_pass,
833 u64 *func_addr, bool *func_addr_fixed)
834{
835 s16 off = insn->off;
836 s32 imm = insn->imm;
837 u8 *addr;
838
839 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
840 if (!*func_addr_fixed) {
841 /* Place-holder address till the last pass has collected
842 * all addresses for JITed subprograms in which case we
843 * can pick them up from prog->aux.
844 */
845 if (!extra_pass)
846 addr = NULL;
847 else if (prog->aux->func &&
848 off >= 0 && off < prog->aux->func_cnt)
849 addr = (u8 *)prog->aux->func[off]->bpf_func;
850 else
851 return -EINVAL;
852 } else {
853 /* Address of a BPF helper call. Since part of the core
854 * kernel, it's always at a fixed location. __bpf_call_base
855 * and the helper with imm relative to it are both in core
856 * kernel.
857 */
858 addr = (u8 *)__bpf_call_base + imm;
859 }
860
861 *func_addr = (unsigned long)addr;
862 return 0;
863}
864
4f3446bb
DB
865static int bpf_jit_blind_insn(const struct bpf_insn *from,
866 const struct bpf_insn *aux,
867 struct bpf_insn *to_buff)
868{
869 struct bpf_insn *to = to_buff;
b7552e1b 870 u32 imm_rnd = get_random_int();
4f3446bb
DB
871 s16 off;
872
873 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
874 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
875
9b73bfdd
DB
876 /* Constraints on AX register:
877 *
878 * AX register is inaccessible from user space. It is mapped in
879 * all JITs, and used here for constant blinding rewrites. It is
880 * typically "stateless" meaning its contents are only valid within
881 * the executed instruction, but not across several instructions.
882 * There are a few exceptions however which are further detailed
883 * below.
884 *
885 * Constant blinding is only used by JITs, not in the interpreter.
886 * The interpreter uses AX in some occasions as a local temporary
887 * register e.g. in DIV or MOD instructions.
888 *
889 * In restricted circumstances, the verifier can also use the AX
890 * register for rewrites as long as they do not interfere with
891 * the above cases!
892 */
893 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
894 goto out;
895
4f3446bb
DB
896 if (from->imm == 0 &&
897 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
898 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
899 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
900 goto out;
901 }
902
903 switch (from->code) {
904 case BPF_ALU | BPF_ADD | BPF_K:
905 case BPF_ALU | BPF_SUB | BPF_K:
906 case BPF_ALU | BPF_AND | BPF_K:
907 case BPF_ALU | BPF_OR | BPF_K:
908 case BPF_ALU | BPF_XOR | BPF_K:
909 case BPF_ALU | BPF_MUL | BPF_K:
910 case BPF_ALU | BPF_MOV | BPF_K:
911 case BPF_ALU | BPF_DIV | BPF_K:
912 case BPF_ALU | BPF_MOD | BPF_K:
913 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
914 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
915 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
916 break;
917
918 case BPF_ALU64 | BPF_ADD | BPF_K:
919 case BPF_ALU64 | BPF_SUB | BPF_K:
920 case BPF_ALU64 | BPF_AND | BPF_K:
921 case BPF_ALU64 | BPF_OR | BPF_K:
922 case BPF_ALU64 | BPF_XOR | BPF_K:
923 case BPF_ALU64 | BPF_MUL | BPF_K:
924 case BPF_ALU64 | BPF_MOV | BPF_K:
925 case BPF_ALU64 | BPF_DIV | BPF_K:
926 case BPF_ALU64 | BPF_MOD | BPF_K:
927 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
928 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
929 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
930 break;
931
932 case BPF_JMP | BPF_JEQ | BPF_K:
933 case BPF_JMP | BPF_JNE | BPF_K:
934 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 935 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 936 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 937 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 938 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 939 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 940 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 941 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
942 case BPF_JMP | BPF_JSET | BPF_K:
943 /* Accommodate for extra offset in case of a backjump. */
944 off = from->off;
945 if (off < 0)
946 off -= 2;
947 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
948 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
949 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
950 break;
951
4f3446bb
DB
952 case BPF_LD | BPF_IMM | BPF_DW:
953 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
954 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
955 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
956 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
957 break;
958 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
959 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
960 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
961 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
962 break;
963
964 case BPF_ST | BPF_MEM | BPF_DW:
965 case BPF_ST | BPF_MEM | BPF_W:
966 case BPF_ST | BPF_MEM | BPF_H:
967 case BPF_ST | BPF_MEM | BPF_B:
968 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
969 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
970 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
971 break;
972 }
973out:
974 return to - to_buff;
975}
976
977static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
978 gfp_t gfp_extra_flags)
979{
19809c2d 980 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
981 struct bpf_prog *fp;
982
983 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
984 if (fp != NULL) {
4f3446bb
DB
985 /* aux->prog still points to the fp_other one, so
986 * when promoting the clone to the real program,
987 * this still needs to be adapted.
988 */
989 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
990 }
991
992 return fp;
993}
994
995static void bpf_prog_clone_free(struct bpf_prog *fp)
996{
997 /* aux was stolen by the other clone, so we cannot free
998 * it from this path! It will be freed eventually by the
999 * other program on release.
1000 *
1001 * At this point, we don't need a deferred release since
1002 * clone is guaranteed to not be locked.
1003 */
1004 fp->aux = NULL;
1005 __bpf_prog_free(fp);
1006}
1007
1008void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1009{
1010 /* We have to repoint aux->prog to self, as we don't
1011 * know whether fp here is the clone or the original.
1012 */
1013 fp->aux->prog = fp;
1014 bpf_prog_clone_free(fp_other);
1015}
1016
1017struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1018{
1019 struct bpf_insn insn_buff[16], aux[2];
1020 struct bpf_prog *clone, *tmp;
1021 int insn_delta, insn_cnt;
1022 struct bpf_insn *insn;
1023 int i, rewritten;
1024
1c2a088a 1025 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
4f3446bb
DB
1026 return prog;
1027
1028 clone = bpf_prog_clone_create(prog, GFP_USER);
1029 if (!clone)
1030 return ERR_PTR(-ENOMEM);
1031
1032 insn_cnt = clone->len;
1033 insn = clone->insnsi;
1034
1035 for (i = 0; i < insn_cnt; i++, insn++) {
1036 /* We temporarily need to hold the original ld64 insn
1037 * so that we can still access the first part in the
1038 * second blinding run.
1039 */
1040 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1041 insn[1].code == 0)
1042 memcpy(aux, insn, sizeof(aux));
1043
1044 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
1045 if (!rewritten)
1046 continue;
1047
1048 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1049 if (!tmp) {
1050 /* Patching may have repointed aux->prog during
1051 * realloc from the original one, so we need to
1052 * fix it up here on error.
1053 */
1054 bpf_jit_prog_release_other(prog, clone);
1055 return ERR_PTR(-ENOMEM);
1056 }
1057
1058 clone = tmp;
1059 insn_delta = rewritten - 1;
1060
1061 /* Walk new program and skip insns we just inserted. */
1062 insn = clone->insnsi + i + insn_delta;
1063 insn_cnt += insn_delta;
1064 i += insn_delta;
1065 }
1066
1c2a088a 1067 clone->blinded = 1;
4f3446bb
DB
1068 return clone;
1069}
b954d834 1070#endif /* CONFIG_BPF_JIT */
738cbe72 1071
f5bffecd
AS
1072/* Base function for offset calculation. Needs to go into .text section,
1073 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
1074 * anyway later on, so do not let the compiler omit it. This also needs
1075 * to go into kallsyms for correlation from e.g. bpftool, so naming
1076 * must not change.
f5bffecd
AS
1077 */
1078noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1079{
1080 return 0;
1081}
4d9c5c53 1082EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 1083
5e581dad
DB
1084/* All UAPI available opcodes. */
1085#define BPF_INSN_MAP(INSN_2, INSN_3) \
1086 /* 32 bit ALU operations. */ \
1087 /* Register based. */ \
2dc6b100
JW
1088 INSN_3(ALU, ADD, X), \
1089 INSN_3(ALU, SUB, X), \
1090 INSN_3(ALU, AND, X), \
1091 INSN_3(ALU, OR, X), \
1092 INSN_3(ALU, LSH, X), \
1093 INSN_3(ALU, RSH, X), \
1094 INSN_3(ALU, XOR, X), \
1095 INSN_3(ALU, MUL, X), \
1096 INSN_3(ALU, MOV, X), \
1097 INSN_3(ALU, ARSH, X), \
1098 INSN_3(ALU, DIV, X), \
1099 INSN_3(ALU, MOD, X), \
5e581dad
DB
1100 INSN_2(ALU, NEG), \
1101 INSN_3(ALU, END, TO_BE), \
1102 INSN_3(ALU, END, TO_LE), \
1103 /* Immediate based. */ \
2dc6b100
JW
1104 INSN_3(ALU, ADD, K), \
1105 INSN_3(ALU, SUB, K), \
1106 INSN_3(ALU, AND, K), \
1107 INSN_3(ALU, OR, K), \
1108 INSN_3(ALU, LSH, K), \
1109 INSN_3(ALU, RSH, K), \
1110 INSN_3(ALU, XOR, K), \
1111 INSN_3(ALU, MUL, K), \
1112 INSN_3(ALU, MOV, K), \
1113 INSN_3(ALU, ARSH, K), \
1114 INSN_3(ALU, DIV, K), \
1115 INSN_3(ALU, MOD, K), \
5e581dad
DB
1116 /* 64 bit ALU operations. */ \
1117 /* Register based. */ \
1118 INSN_3(ALU64, ADD, X), \
1119 INSN_3(ALU64, SUB, X), \
1120 INSN_3(ALU64, AND, X), \
1121 INSN_3(ALU64, OR, X), \
1122 INSN_3(ALU64, LSH, X), \
1123 INSN_3(ALU64, RSH, X), \
1124 INSN_3(ALU64, XOR, X), \
1125 INSN_3(ALU64, MUL, X), \
1126 INSN_3(ALU64, MOV, X), \
1127 INSN_3(ALU64, ARSH, X), \
1128 INSN_3(ALU64, DIV, X), \
1129 INSN_3(ALU64, MOD, X), \
1130 INSN_2(ALU64, NEG), \
1131 /* Immediate based. */ \
1132 INSN_3(ALU64, ADD, K), \
1133 INSN_3(ALU64, SUB, K), \
1134 INSN_3(ALU64, AND, K), \
1135 INSN_3(ALU64, OR, K), \
1136 INSN_3(ALU64, LSH, K), \
1137 INSN_3(ALU64, RSH, K), \
1138 INSN_3(ALU64, XOR, K), \
1139 INSN_3(ALU64, MUL, K), \
1140 INSN_3(ALU64, MOV, K), \
1141 INSN_3(ALU64, ARSH, K), \
1142 INSN_3(ALU64, DIV, K), \
1143 INSN_3(ALU64, MOD, K), \
1144 /* Call instruction. */ \
1145 INSN_2(JMP, CALL), \
1146 /* Exit instruction. */ \
1147 INSN_2(JMP, EXIT), \
1148 /* Jump instructions. */ \
1149 /* Register based. */ \
1150 INSN_3(JMP, JEQ, X), \
1151 INSN_3(JMP, JNE, X), \
1152 INSN_3(JMP, JGT, X), \
1153 INSN_3(JMP, JLT, X), \
1154 INSN_3(JMP, JGE, X), \
1155 INSN_3(JMP, JLE, X), \
1156 INSN_3(JMP, JSGT, X), \
1157 INSN_3(JMP, JSLT, X), \
1158 INSN_3(JMP, JSGE, X), \
1159 INSN_3(JMP, JSLE, X), \
1160 INSN_3(JMP, JSET, X), \
1161 /* Immediate based. */ \
1162 INSN_3(JMP, JEQ, K), \
1163 INSN_3(JMP, JNE, K), \
1164 INSN_3(JMP, JGT, K), \
1165 INSN_3(JMP, JLT, K), \
1166 INSN_3(JMP, JGE, K), \
1167 INSN_3(JMP, JLE, K), \
1168 INSN_3(JMP, JSGT, K), \
1169 INSN_3(JMP, JSLT, K), \
1170 INSN_3(JMP, JSGE, K), \
1171 INSN_3(JMP, JSLE, K), \
1172 INSN_3(JMP, JSET, K), \
1173 INSN_2(JMP, JA), \
1174 /* Store instructions. */ \
1175 /* Register based. */ \
1176 INSN_3(STX, MEM, B), \
1177 INSN_3(STX, MEM, H), \
1178 INSN_3(STX, MEM, W), \
1179 INSN_3(STX, MEM, DW), \
1180 INSN_3(STX, XADD, W), \
1181 INSN_3(STX, XADD, DW), \
1182 /* Immediate based. */ \
1183 INSN_3(ST, MEM, B), \
1184 INSN_3(ST, MEM, H), \
1185 INSN_3(ST, MEM, W), \
1186 INSN_3(ST, MEM, DW), \
1187 /* Load instructions. */ \
1188 /* Register based. */ \
1189 INSN_3(LDX, MEM, B), \
1190 INSN_3(LDX, MEM, H), \
1191 INSN_3(LDX, MEM, W), \
1192 INSN_3(LDX, MEM, DW), \
1193 /* Immediate based. */ \
e0cea7ce 1194 INSN_3(LD, IMM, DW)
5e581dad
DB
1195
1196bool bpf_opcode_in_insntable(u8 code)
1197{
1198#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1199#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1200 static const bool public_insntable[256] = {
1201 [0 ... 255] = false,
1202 /* Now overwrite non-defaults ... */
1203 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
1204 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1205 [BPF_LD | BPF_ABS | BPF_B] = true,
1206 [BPF_LD | BPF_ABS | BPF_H] = true,
1207 [BPF_LD | BPF_ABS | BPF_W] = true,
1208 [BPF_LD | BPF_IND | BPF_B] = true,
1209 [BPF_LD | BPF_IND | BPF_H] = true,
1210 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
1211 };
1212#undef BPF_INSN_3_TBL
1213#undef BPF_INSN_2_TBL
1214 return public_insntable[code];
1215}
1216
290af866 1217#ifndef CONFIG_BPF_JIT_ALWAYS_ON
f5bffecd 1218/**
7ae457c1
AS
1219 * __bpf_prog_run - run eBPF program on a given context
1220 * @ctx: is the data we are operating on
1221 * @insn: is the array of eBPF instructions
f5bffecd 1222 *
7ae457c1 1223 * Decode and execute eBPF instructions.
f5bffecd 1224 */
1ea47e01 1225static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
f5bffecd 1226{
5e581dad
DB
1227#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1228#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
f5bffecd
AS
1229 static const void *jumptable[256] = {
1230 [0 ... 255] = &&default_label,
1231 /* Now overwrite non-defaults ... */
5e581dad
DB
1232 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1233 /* Non-UAPI available opcodes. */
1ea47e01 1234 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 1235 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5bffecd 1236 };
5e581dad
DB
1237#undef BPF_INSN_3_LBL
1238#undef BPF_INSN_2_LBL
04fd61ab 1239 u32 tail_call_cnt = 0;
f5bffecd
AS
1240
1241#define CONT ({ insn++; goto select_insn; })
1242#define CONT_JMP ({ insn++; goto select_insn; })
1243
f5bffecd
AS
1244select_insn:
1245 goto *jumptable[insn->code];
1246
1247 /* ALU */
1248#define ALU(OPCODE, OP) \
1249 ALU64_##OPCODE##_X: \
1250 DST = DST OP SRC; \
1251 CONT; \
1252 ALU_##OPCODE##_X: \
1253 DST = (u32) DST OP (u32) SRC; \
1254 CONT; \
1255 ALU64_##OPCODE##_K: \
1256 DST = DST OP IMM; \
1257 CONT; \
1258 ALU_##OPCODE##_K: \
1259 DST = (u32) DST OP (u32) IMM; \
1260 CONT;
1261
1262 ALU(ADD, +)
1263 ALU(SUB, -)
1264 ALU(AND, &)
1265 ALU(OR, |)
1266 ALU(LSH, <<)
1267 ALU(RSH, >>)
1268 ALU(XOR, ^)
1269 ALU(MUL, *)
1270#undef ALU
1271 ALU_NEG:
1272 DST = (u32) -DST;
1273 CONT;
1274 ALU64_NEG:
1275 DST = -DST;
1276 CONT;
1277 ALU_MOV_X:
1278 DST = (u32) SRC;
1279 CONT;
1280 ALU_MOV_K:
1281 DST = (u32) IMM;
1282 CONT;
1283 ALU64_MOV_X:
1284 DST = SRC;
1285 CONT;
1286 ALU64_MOV_K:
1287 DST = IMM;
1288 CONT;
02ab695b
AS
1289 LD_IMM_DW:
1290 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1291 insn++;
1292 CONT;
2dc6b100
JW
1293 ALU_ARSH_X:
1294 DST = (u64) (u32) ((*(s32 *) &DST) >> SRC);
1295 CONT;
1296 ALU_ARSH_K:
1297 DST = (u64) (u32) ((*(s32 *) &DST) >> IMM);
1298 CONT;
f5bffecd
AS
1299 ALU64_ARSH_X:
1300 (*(s64 *) &DST) >>= SRC;
1301 CONT;
1302 ALU64_ARSH_K:
1303 (*(s64 *) &DST) >>= IMM;
1304 CONT;
1305 ALU64_MOD_X:
144cd91c
DB
1306 div64_u64_rem(DST, SRC, &AX);
1307 DST = AX;
f5bffecd
AS
1308 CONT;
1309 ALU_MOD_X:
144cd91c
DB
1310 AX = (u32) DST;
1311 DST = do_div(AX, (u32) SRC);
f5bffecd
AS
1312 CONT;
1313 ALU64_MOD_K:
144cd91c
DB
1314 div64_u64_rem(DST, IMM, &AX);
1315 DST = AX;
f5bffecd
AS
1316 CONT;
1317 ALU_MOD_K:
144cd91c
DB
1318 AX = (u32) DST;
1319 DST = do_div(AX, (u32) IMM);
f5bffecd
AS
1320 CONT;
1321 ALU64_DIV_X:
876a7ae6 1322 DST = div64_u64(DST, SRC);
f5bffecd
AS
1323 CONT;
1324 ALU_DIV_X:
144cd91c
DB
1325 AX = (u32) DST;
1326 do_div(AX, (u32) SRC);
1327 DST = (u32) AX;
f5bffecd
AS
1328 CONT;
1329 ALU64_DIV_K:
876a7ae6 1330 DST = div64_u64(DST, IMM);
f5bffecd
AS
1331 CONT;
1332 ALU_DIV_K:
144cd91c
DB
1333 AX = (u32) DST;
1334 do_div(AX, (u32) IMM);
1335 DST = (u32) AX;
f5bffecd
AS
1336 CONT;
1337 ALU_END_TO_BE:
1338 switch (IMM) {
1339 case 16:
1340 DST = (__force u16) cpu_to_be16(DST);
1341 break;
1342 case 32:
1343 DST = (__force u32) cpu_to_be32(DST);
1344 break;
1345 case 64:
1346 DST = (__force u64) cpu_to_be64(DST);
1347 break;
1348 }
1349 CONT;
1350 ALU_END_TO_LE:
1351 switch (IMM) {
1352 case 16:
1353 DST = (__force u16) cpu_to_le16(DST);
1354 break;
1355 case 32:
1356 DST = (__force u32) cpu_to_le32(DST);
1357 break;
1358 case 64:
1359 DST = (__force u64) cpu_to_le64(DST);
1360 break;
1361 }
1362 CONT;
1363
1364 /* CALL */
1365 JMP_CALL:
1366 /* Function call scratches BPF_R1-BPF_R5 registers,
1367 * preserves BPF_R6-BPF_R9, and stores return value
1368 * into BPF_R0.
1369 */
1370 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1371 BPF_R4, BPF_R5);
1372 CONT;
1373
1ea47e01
AS
1374 JMP_CALL_ARGS:
1375 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1376 BPF_R3, BPF_R4,
1377 BPF_R5,
1378 insn + insn->off + 1);
1379 CONT;
1380
04fd61ab
AS
1381 JMP_TAIL_CALL: {
1382 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1383 struct bpf_array *array = container_of(map, struct bpf_array, map);
1384 struct bpf_prog *prog;
90caccdd 1385 u32 index = BPF_R3;
04fd61ab
AS
1386
1387 if (unlikely(index >= array->map.max_entries))
1388 goto out;
04fd61ab
AS
1389 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1390 goto out;
1391
1392 tail_call_cnt++;
1393
2a36f0b9 1394 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1395 if (!prog)
04fd61ab
AS
1396 goto out;
1397
c4675f93
DB
1398 /* ARG1 at this point is guaranteed to point to CTX from
1399 * the verifier side due to the fact that the tail call is
1400 * handeled like a helper, that is, bpf_tail_call_proto,
1401 * where arg1_type is ARG_PTR_TO_CTX.
1402 */
04fd61ab
AS
1403 insn = prog->insnsi;
1404 goto select_insn;
1405out:
1406 CONT;
1407 }
f5bffecd
AS
1408 /* JMP */
1409 JMP_JA:
1410 insn += insn->off;
1411 CONT;
1412 JMP_JEQ_X:
1413 if (DST == SRC) {
1414 insn += insn->off;
1415 CONT_JMP;
1416 }
1417 CONT;
1418 JMP_JEQ_K:
1419 if (DST == IMM) {
1420 insn += insn->off;
1421 CONT_JMP;
1422 }
1423 CONT;
1424 JMP_JNE_X:
1425 if (DST != SRC) {
1426 insn += insn->off;
1427 CONT_JMP;
1428 }
1429 CONT;
1430 JMP_JNE_K:
1431 if (DST != IMM) {
1432 insn += insn->off;
1433 CONT_JMP;
1434 }
1435 CONT;
1436 JMP_JGT_X:
1437 if (DST > SRC) {
1438 insn += insn->off;
1439 CONT_JMP;
1440 }
1441 CONT;
1442 JMP_JGT_K:
1443 if (DST > IMM) {
1444 insn += insn->off;
1445 CONT_JMP;
1446 }
1447 CONT;
92b31a9a
DB
1448 JMP_JLT_X:
1449 if (DST < SRC) {
1450 insn += insn->off;
1451 CONT_JMP;
1452 }
1453 CONT;
1454 JMP_JLT_K:
1455 if (DST < IMM) {
1456 insn += insn->off;
1457 CONT_JMP;
1458 }
1459 CONT;
f5bffecd
AS
1460 JMP_JGE_X:
1461 if (DST >= SRC) {
1462 insn += insn->off;
1463 CONT_JMP;
1464 }
1465 CONT;
1466 JMP_JGE_K:
1467 if (DST >= IMM) {
1468 insn += insn->off;
1469 CONT_JMP;
1470 }
1471 CONT;
92b31a9a
DB
1472 JMP_JLE_X:
1473 if (DST <= SRC) {
1474 insn += insn->off;
1475 CONT_JMP;
1476 }
1477 CONT;
1478 JMP_JLE_K:
1479 if (DST <= IMM) {
1480 insn += insn->off;
1481 CONT_JMP;
1482 }
1483 CONT;
f5bffecd
AS
1484 JMP_JSGT_X:
1485 if (((s64) DST) > ((s64) SRC)) {
1486 insn += insn->off;
1487 CONT_JMP;
1488 }
1489 CONT;
1490 JMP_JSGT_K:
1491 if (((s64) DST) > ((s64) IMM)) {
1492 insn += insn->off;
1493 CONT_JMP;
1494 }
1495 CONT;
92b31a9a
DB
1496 JMP_JSLT_X:
1497 if (((s64) DST) < ((s64) SRC)) {
1498 insn += insn->off;
1499 CONT_JMP;
1500 }
1501 CONT;
1502 JMP_JSLT_K:
1503 if (((s64) DST) < ((s64) IMM)) {
1504 insn += insn->off;
1505 CONT_JMP;
1506 }
1507 CONT;
f5bffecd
AS
1508 JMP_JSGE_X:
1509 if (((s64) DST) >= ((s64) SRC)) {
1510 insn += insn->off;
1511 CONT_JMP;
1512 }
1513 CONT;
1514 JMP_JSGE_K:
1515 if (((s64) DST) >= ((s64) IMM)) {
1516 insn += insn->off;
1517 CONT_JMP;
1518 }
1519 CONT;
92b31a9a
DB
1520 JMP_JSLE_X:
1521 if (((s64) DST) <= ((s64) SRC)) {
1522 insn += insn->off;
1523 CONT_JMP;
1524 }
1525 CONT;
1526 JMP_JSLE_K:
1527 if (((s64) DST) <= ((s64) IMM)) {
1528 insn += insn->off;
1529 CONT_JMP;
1530 }
1531 CONT;
f5bffecd
AS
1532 JMP_JSET_X:
1533 if (DST & SRC) {
1534 insn += insn->off;
1535 CONT_JMP;
1536 }
1537 CONT;
1538 JMP_JSET_K:
1539 if (DST & IMM) {
1540 insn += insn->off;
1541 CONT_JMP;
1542 }
1543 CONT;
1544 JMP_EXIT:
1545 return BPF_R0;
1546
1547 /* STX and ST and LDX*/
1548#define LDST(SIZEOP, SIZE) \
1549 STX_MEM_##SIZEOP: \
1550 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1551 CONT; \
1552 ST_MEM_##SIZEOP: \
1553 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1554 CONT; \
1555 LDX_MEM_##SIZEOP: \
1556 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1557 CONT;
1558
1559 LDST(B, u8)
1560 LDST(H, u16)
1561 LDST(W, u32)
1562 LDST(DW, u64)
1563#undef LDST
1564 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1565 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1566 (DST + insn->off));
1567 CONT;
1568 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1569 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1570 (DST + insn->off));
1571 CONT;
f5bffecd
AS
1572
1573 default_label:
5e581dad
DB
1574 /* If we ever reach this, we have a bug somewhere. Die hard here
1575 * instead of just returning 0; we could be somewhere in a subprog,
1576 * so execution could continue otherwise which we do /not/ want.
1577 *
1578 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1579 */
1580 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1581 BUG_ON(1);
f5bffecd
AS
1582 return 0;
1583}
f696b8f4
AS
1584STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1585
b870aa90
AS
1586#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1587#define DEFINE_BPF_PROG_RUN(stack_size) \
1588static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1589{ \
1590 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1591 u64 regs[MAX_BPF_EXT_REG]; \
b870aa90
AS
1592\
1593 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1594 ARG1 = (u64) (unsigned long) ctx; \
1595 return ___bpf_prog_run(regs, insn, stack); \
f696b8f4 1596}
f5bffecd 1597
1ea47e01
AS
1598#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1599#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1600static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1601 const struct bpf_insn *insn) \
1602{ \
1603 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1604 u64 regs[MAX_BPF_EXT_REG]; \
1ea47e01
AS
1605\
1606 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1607 BPF_R1 = r1; \
1608 BPF_R2 = r2; \
1609 BPF_R3 = r3; \
1610 BPF_R4 = r4; \
1611 BPF_R5 = r5; \
1612 return ___bpf_prog_run(regs, insn, stack); \
1613}
1614
b870aa90
AS
1615#define EVAL1(FN, X) FN(X)
1616#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1617#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1618#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1619#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1620#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1621
1622EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1623EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1624EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1625
1ea47e01
AS
1626EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1627EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1628EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1629
b870aa90
AS
1630#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1631
1632static unsigned int (*interpreters[])(const void *ctx,
1633 const struct bpf_insn *insn) = {
1634EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1635EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1636EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1637};
1ea47e01
AS
1638#undef PROG_NAME_LIST
1639#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1640static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1641 const struct bpf_insn *insn) = {
1642EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1643EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1644EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1645};
1646#undef PROG_NAME_LIST
1647
1648void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1649{
1650 stack_depth = max_t(u32, stack_depth, 1);
1651 insn->off = (s16) insn->imm;
1652 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1653 __bpf_call_base_args;
1654 insn->code = BPF_JMP | BPF_CALL_ARGS;
1655}
b870aa90 1656
290af866 1657#else
fa9dd599
DB
1658static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1659 const struct bpf_insn *insn)
290af866 1660{
fa9dd599
DB
1661 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1662 * is not working properly, so warn about it!
1663 */
1664 WARN_ON_ONCE(1);
290af866
AS
1665 return 0;
1666}
1667#endif
1668
3324b584
DB
1669bool bpf_prog_array_compatible(struct bpf_array *array,
1670 const struct bpf_prog *fp)
04fd61ab 1671{
9802d865
JB
1672 if (fp->kprobe_override)
1673 return false;
1674
3324b584
DB
1675 if (!array->owner_prog_type) {
1676 /* There's no owner yet where we could check for
1677 * compatibility.
1678 */
04fd61ab
AS
1679 array->owner_prog_type = fp->type;
1680 array->owner_jited = fp->jited;
3324b584
DB
1681
1682 return true;
04fd61ab 1683 }
3324b584
DB
1684
1685 return array->owner_prog_type == fp->type &&
1686 array->owner_jited == fp->jited;
04fd61ab
AS
1687}
1688
3324b584 1689static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1690{
1691 struct bpf_prog_aux *aux = fp->aux;
1692 int i;
1693
1694 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1695 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1696 struct bpf_array *array;
04fd61ab 1697
04fd61ab
AS
1698 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1699 continue;
3324b584 1700
04fd61ab
AS
1701 array = container_of(map, struct bpf_array, map);
1702 if (!bpf_prog_array_compatible(array, fp))
1703 return -EINVAL;
1704 }
1705
1706 return 0;
1707}
1708
9facc336
DB
1709static void bpf_prog_select_func(struct bpf_prog *fp)
1710{
1711#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1712 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1713
1714 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1715#else
1716 fp->bpf_func = __bpf_prog_ret0_warn;
1717#endif
1718}
1719
f5bffecd 1720/**
3324b584 1721 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1722 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1723 * @err: pointer to error variable
f5bffecd 1724 *
3324b584
DB
1725 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1726 * The BPF program will be executed via BPF_PROG_RUN() macro.
f5bffecd 1727 */
d1c55ab5 1728struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1729{
9facc336
DB
1730 /* In case of BPF to BPF calls, verifier did all the prep
1731 * work with regards to JITing, etc.
1732 */
1733 if (fp->bpf_func)
1734 goto finalize;
8007e40a 1735
9facc336 1736 bpf_prog_select_func(fp);
f5bffecd 1737
d1c55ab5
DB
1738 /* eBPF JITs can rewrite the program in case constant
1739 * blinding is active. However, in case of error during
1740 * blinding, bpf_int_jit_compile() must always return a
1741 * valid program, which in this case would simply not
1742 * be JITed, but falls back to the interpreter.
1743 */
ab3f0063 1744 if (!bpf_prog_is_dev_bound(fp->aux)) {
c454a46b
MKL
1745 *err = bpf_prog_alloc_jited_linfo(fp);
1746 if (*err)
1747 return fp;
1748
ab3f0063 1749 fp = bpf_int_jit_compile(fp);
290af866 1750 if (!fp->jited) {
c454a46b
MKL
1751 bpf_prog_free_jited_linfo(fp);
1752#ifdef CONFIG_BPF_JIT_ALWAYS_ON
290af866
AS
1753 *err = -ENOTSUPP;
1754 return fp;
290af866 1755#endif
c454a46b
MKL
1756 } else {
1757 bpf_prog_free_unused_jited_linfo(fp);
1758 }
ab3f0063
JK
1759 } else {
1760 *err = bpf_prog_offload_compile(fp);
1761 if (*err)
1762 return fp;
1763 }
9facc336
DB
1764
1765finalize:
60a3b225 1766 bpf_prog_lock_ro(fp);
04fd61ab 1767
3324b584
DB
1768 /* The tail call compatibility check can only be done at
1769 * this late stage as we need to determine, if we deal
1770 * with JITed or non JITed program concatenations and not
1771 * all eBPF JITs might immediately support all features.
1772 */
d1c55ab5 1773 *err = bpf_check_tail_call(fp);
85782e03 1774
d1c55ab5 1775 return fp;
f5bffecd 1776}
7ae457c1 1777EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1778
e87c6bc3
YS
1779static unsigned int __bpf_prog_ret1(const void *ctx,
1780 const struct bpf_insn *insn)
1781{
1782 return 1;
1783}
1784
1785static struct bpf_prog_dummy {
1786 struct bpf_prog prog;
1787} dummy_bpf_prog = {
1788 .prog = {
1789 .bpf_func = __bpf_prog_ret1,
1790 },
1791};
1792
324bda9e
AS
1793/* to avoid allocating empty bpf_prog_array for cgroups that
1794 * don't have bpf program attached use one global 'empty_prog_array'
1795 * It will not be modified the caller of bpf_prog_array_alloc()
1796 * (since caller requested prog_cnt == 0)
1797 * that pointer should be 'freed' by bpf_prog_array_free()
1798 */
1799static struct {
1800 struct bpf_prog_array hdr;
1801 struct bpf_prog *null_prog;
1802} empty_prog_array = {
1803 .null_prog = NULL,
1804};
1805
d29ab6e1 1806struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
324bda9e
AS
1807{
1808 if (prog_cnt)
1809 return kzalloc(sizeof(struct bpf_prog_array) +
394e40a2
RG
1810 sizeof(struct bpf_prog_array_item) *
1811 (prog_cnt + 1),
324bda9e
AS
1812 flags);
1813
1814 return &empty_prog_array.hdr;
1815}
1816
1817void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1818{
1819 if (!progs ||
1820 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1821 return;
1822 kfree_rcu(progs, rcu);
1823}
1824
394e40a2 1825int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
468e2f64 1826{
394e40a2 1827 struct bpf_prog_array_item *item;
468e2f64
AS
1828 u32 cnt = 0;
1829
1830 rcu_read_lock();
394e40a2
RG
1831 item = rcu_dereference(array)->items;
1832 for (; item->prog; item++)
1833 if (item->prog != &dummy_bpf_prog.prog)
c8c088ba 1834 cnt++;
468e2f64
AS
1835 rcu_read_unlock();
1836 return cnt;
1837}
1838
394e40a2
RG
1839
1840static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
3a38bb98
YS
1841 u32 *prog_ids,
1842 u32 request_cnt)
1843{
394e40a2 1844 struct bpf_prog_array_item *item;
3a38bb98
YS
1845 int i = 0;
1846
965931e3 1847 item = rcu_dereference_check(array, 1)->items;
394e40a2
RG
1848 for (; item->prog; item++) {
1849 if (item->prog == &dummy_bpf_prog.prog)
3a38bb98 1850 continue;
394e40a2 1851 prog_ids[i] = item->prog->aux->id;
3a38bb98 1852 if (++i == request_cnt) {
394e40a2 1853 item++;
3a38bb98
YS
1854 break;
1855 }
1856 }
1857
394e40a2 1858 return !!(item->prog);
3a38bb98
YS
1859}
1860
394e40a2 1861int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
468e2f64
AS
1862 __u32 __user *prog_ids, u32 cnt)
1863{
0911287c 1864 unsigned long err = 0;
0911287c 1865 bool nospc;
3a38bb98 1866 u32 *ids;
0911287c
AS
1867
1868 /* users of this function are doing:
1869 * cnt = bpf_prog_array_length();
1870 * if (cnt > 0)
1871 * bpf_prog_array_copy_to_user(..., cnt);
1872 * so below kcalloc doesn't need extra cnt > 0 check, but
1873 * bpf_prog_array_length() releases rcu lock and
1874 * prog array could have been swapped with empty or larger array,
1875 * so always copy 'cnt' prog_ids to the user.
1876 * In a rare race the user will see zero prog_ids
1877 */
9c481b90 1878 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
1879 if (!ids)
1880 return -ENOMEM;
468e2f64 1881 rcu_read_lock();
394e40a2 1882 nospc = bpf_prog_array_copy_core(array, ids, cnt);
468e2f64 1883 rcu_read_unlock();
0911287c
AS
1884 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1885 kfree(ids);
1886 if (err)
1887 return -EFAULT;
1888 if (nospc)
468e2f64
AS
1889 return -ENOSPC;
1890 return 0;
1891}
1892
394e40a2 1893void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
e87c6bc3
YS
1894 struct bpf_prog *old_prog)
1895{
394e40a2 1896 struct bpf_prog_array_item *item = array->items;
e87c6bc3 1897
394e40a2
RG
1898 for (; item->prog; item++)
1899 if (item->prog == old_prog) {
1900 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
e87c6bc3
YS
1901 break;
1902 }
1903}
1904
1905int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1906 struct bpf_prog *exclude_prog,
1907 struct bpf_prog *include_prog,
1908 struct bpf_prog_array **new_array)
1909{
1910 int new_prog_cnt, carry_prog_cnt = 0;
394e40a2 1911 struct bpf_prog_array_item *existing;
e87c6bc3 1912 struct bpf_prog_array *array;
170a7e3e 1913 bool found_exclude = false;
e87c6bc3
YS
1914 int new_prog_idx = 0;
1915
1916 /* Figure out how many existing progs we need to carry over to
1917 * the new array.
1918 */
1919 if (old_array) {
394e40a2
RG
1920 existing = old_array->items;
1921 for (; existing->prog; existing++) {
1922 if (existing->prog == exclude_prog) {
170a7e3e
SY
1923 found_exclude = true;
1924 continue;
1925 }
394e40a2 1926 if (existing->prog != &dummy_bpf_prog.prog)
e87c6bc3 1927 carry_prog_cnt++;
394e40a2 1928 if (existing->prog == include_prog)
e87c6bc3
YS
1929 return -EEXIST;
1930 }
1931 }
1932
170a7e3e
SY
1933 if (exclude_prog && !found_exclude)
1934 return -ENOENT;
1935
e87c6bc3
YS
1936 /* How many progs (not NULL) will be in the new array? */
1937 new_prog_cnt = carry_prog_cnt;
1938 if (include_prog)
1939 new_prog_cnt += 1;
1940
1941 /* Do we have any prog (not NULL) in the new array? */
1942 if (!new_prog_cnt) {
1943 *new_array = NULL;
1944 return 0;
1945 }
1946
1947 /* +1 as the end of prog_array is marked with NULL */
1948 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1949 if (!array)
1950 return -ENOMEM;
1951
1952 /* Fill in the new prog array */
1953 if (carry_prog_cnt) {
394e40a2
RG
1954 existing = old_array->items;
1955 for (; existing->prog; existing++)
1956 if (existing->prog != exclude_prog &&
1957 existing->prog != &dummy_bpf_prog.prog) {
1958 array->items[new_prog_idx++].prog =
1959 existing->prog;
1960 }
e87c6bc3
YS
1961 }
1962 if (include_prog)
394e40a2
RG
1963 array->items[new_prog_idx++].prog = include_prog;
1964 array->items[new_prog_idx].prog = NULL;
e87c6bc3
YS
1965 *new_array = array;
1966 return 0;
1967}
1968
f371b304 1969int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
3a38bb98
YS
1970 u32 *prog_ids, u32 request_cnt,
1971 u32 *prog_cnt)
f371b304
YS
1972{
1973 u32 cnt = 0;
1974
1975 if (array)
1976 cnt = bpf_prog_array_length(array);
1977
3a38bb98 1978 *prog_cnt = cnt;
f371b304
YS
1979
1980 /* return early if user requested only program count or nothing to copy */
1981 if (!request_cnt || !cnt)
1982 return 0;
1983
3a38bb98 1984 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
394e40a2 1985 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
3a38bb98 1986 : 0;
f371b304
YS
1987}
1988
60a3b225
DB
1989static void bpf_prog_free_deferred(struct work_struct *work)
1990{
09756af4 1991 struct bpf_prog_aux *aux;
1c2a088a 1992 int i;
60a3b225 1993
09756af4 1994 aux = container_of(work, struct bpf_prog_aux, work);
ab3f0063
JK
1995 if (bpf_prog_is_dev_bound(aux))
1996 bpf_prog_offload_destroy(aux->prog);
c195651e
YS
1997#ifdef CONFIG_PERF_EVENTS
1998 if (aux->prog->has_callchain_buf)
1999 put_callchain_buffers();
2000#endif
1c2a088a
AS
2001 for (i = 0; i < aux->func_cnt; i++)
2002 bpf_jit_free(aux->func[i]);
2003 if (aux->func_cnt) {
2004 kfree(aux->func);
2005 bpf_prog_unlock_free(aux->prog);
2006 } else {
2007 bpf_jit_free(aux->prog);
2008 }
60a3b225
DB
2009}
2010
2011/* Free internal BPF program */
7ae457c1 2012void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 2013{
09756af4 2014 struct bpf_prog_aux *aux = fp->aux;
60a3b225 2015
09756af4 2016 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 2017 schedule_work(&aux->work);
f5bffecd 2018}
7ae457c1 2019EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 2020
3ad00405
DB
2021/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2022static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2023
2024void bpf_user_rnd_init_once(void)
2025{
2026 prandom_init_once(&bpf_user_rnd_state);
2027}
2028
f3694e00 2029BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
2030{
2031 /* Should someone ever have the rather unwise idea to use some
2032 * of the registers passed into this function, then note that
2033 * this function is called from native eBPF and classic-to-eBPF
2034 * transformations. Register assignments from both sides are
2035 * different, f.e. classic always sets fn(ctx, A, X) here.
2036 */
2037 struct rnd_state *state;
2038 u32 res;
2039
2040 state = &get_cpu_var(bpf_user_rnd_state);
2041 res = prandom_u32_state(state);
b761fe22 2042 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
2043
2044 return res;
2045}
2046
3ba67dab
DB
2047/* Weak definitions of helper functions in case we don't have bpf syscall. */
2048const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2049const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2050const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
f1a2e44a
MV
2051const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2052const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2053const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
3ba67dab 2054
03e69b50 2055const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 2056const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 2057const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 2058const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
bd570ff9 2059
ffeedafb
AS
2060const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2061const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2062const struct bpf_func_proto bpf_get_current_comm_proto __weak;
bf6fa2c8 2063const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
cd339431 2064const struct bpf_func_proto bpf_get_local_storage_proto __weak;
bd570ff9 2065
0756ea3e
AS
2066const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2067{
2068 return NULL;
2069}
03e69b50 2070
555c8a86
DB
2071u64 __weak
2072bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2073 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 2074{
555c8a86 2075 return -ENOTSUPP;
bd570ff9 2076}
6cb5fb38 2077EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 2078
3324b584
DB
2079/* Always built-in helper functions. */
2080const struct bpf_func_proto bpf_tail_call_proto = {
2081 .func = NULL,
2082 .gpl_only = false,
2083 .ret_type = RET_VOID,
2084 .arg1_type = ARG_PTR_TO_CTX,
2085 .arg2_type = ARG_CONST_MAP_PTR,
2086 .arg3_type = ARG_ANYTHING,
2087};
2088
9383191d
DB
2089/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2090 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2091 * eBPF and implicitly also cBPF can get JITed!
2092 */
d1c55ab5 2093struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 2094{
d1c55ab5 2095 return prog;
3324b584
DB
2096}
2097
9383191d
DB
2098/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2099 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2100 */
2101void __weak bpf_jit_compile(struct bpf_prog *prog)
2102{
2103}
2104
17bedab2 2105bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
2106{
2107 return false;
2108}
2109
f89b7755
AS
2110/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2111 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2112 */
2113int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2114 int len)
2115{
2116 return -EFAULT;
2117}
a67edbf4
DB
2118
2119/* All definitions of tracepoints related to BPF. */
2120#define CREATE_TRACE_POINTS
2121#include <linux/bpf_trace.h>
2122
2123EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);