]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/bpf/core.c
Merge branch 'ndo_xdp_xmit-cleanup'
[mirror_ubuntu-eoan-kernel.git] / kernel / bpf / core.c
CommitLineData
f5bffecd
AS
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 22 */
738cbe72 23
f5bffecd
AS
24#include <linux/filter.h>
25#include <linux/skbuff.h>
60a3b225 26#include <linux/vmalloc.h>
738cbe72
DB
27#include <linux/random.h>
28#include <linux/moduleloader.h>
09756af4 29#include <linux/bpf.h>
39853cc0 30#include <linux/frame.h>
74451e66
DB
31#include <linux/rbtree_latch.h>
32#include <linux/kallsyms.h>
33#include <linux/rcupdate.h>
c195651e 34#include <linux/perf_event.h>
f5bffecd 35
3324b584
DB
36#include <asm/unaligned.h>
37
f5bffecd
AS
38/* Registers */
39#define BPF_R0 regs[BPF_REG_0]
40#define BPF_R1 regs[BPF_REG_1]
41#define BPF_R2 regs[BPF_REG_2]
42#define BPF_R3 regs[BPF_REG_3]
43#define BPF_R4 regs[BPF_REG_4]
44#define BPF_R5 regs[BPF_REG_5]
45#define BPF_R6 regs[BPF_REG_6]
46#define BPF_R7 regs[BPF_REG_7]
47#define BPF_R8 regs[BPF_REG_8]
48#define BPF_R9 regs[BPF_REG_9]
49#define BPF_R10 regs[BPF_REG_10]
50
51/* Named registers */
52#define DST regs[insn->dst_reg]
53#define SRC regs[insn->src_reg]
54#define FP regs[BPF_REG_FP]
55#define ARG1 regs[BPF_REG_ARG1]
56#define CTX regs[BPF_REG_CTX]
57#define IMM insn->imm
58
59/* No hurry in this branch
60 *
61 * Exported for the bpf jit load helper.
62 */
63void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64{
65 u8 *ptr = NULL;
66
67 if (k >= SKF_NET_OFF)
68 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 else if (k >= SKF_LL_OFF)
70 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 71
f5bffecd
AS
72 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 return ptr;
74
75 return NULL;
76}
77
60a3b225
DB
78struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79{
19809c2d 80 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
09756af4 81 struct bpf_prog_aux *aux;
60a3b225
DB
82 struct bpf_prog *fp;
83
84 size = round_up(size, PAGE_SIZE);
85 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 if (fp == NULL)
87 return NULL;
88
09756af4
AS
89 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 if (aux == NULL) {
60a3b225
DB
91 vfree(fp);
92 return NULL;
93 }
94
95 fp->pages = size / PAGE_SIZE;
09756af4 96 fp->aux = aux;
e9d8afa9 97 fp->aux->prog = fp;
60b58afc 98 fp->jit_requested = ebpf_jit_enabled();
60a3b225 99
74451e66
DB
100 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101
60a3b225
DB
102 return fp;
103}
104EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105
106struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107 gfp_t gfp_extra_flags)
108{
19809c2d 109 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
60a3b225 110 struct bpf_prog *fp;
5ccb071e
DB
111 u32 pages, delta;
112 int ret;
60a3b225
DB
113
114 BUG_ON(fp_old == NULL);
115
116 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
117 pages = size / PAGE_SIZE;
118 if (pages <= fp_old->pages)
60a3b225
DB
119 return fp_old;
120
5ccb071e
DB
121 delta = pages - fp_old->pages;
122 ret = __bpf_prog_charge(fp_old->aux->user, delta);
123 if (ret)
124 return NULL;
125
60a3b225 126 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
5ccb071e
DB
127 if (fp == NULL) {
128 __bpf_prog_uncharge(fp_old->aux->user, delta);
129 } else {
60a3b225 130 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 131 fp->pages = pages;
e9d8afa9 132 fp->aux->prog = fp;
60a3b225 133
09756af4 134 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
135 * reallocated structure.
136 */
09756af4 137 fp_old->aux = NULL;
60a3b225
DB
138 __bpf_prog_free(fp_old);
139 }
140
141 return fp;
142}
60a3b225
DB
143
144void __bpf_prog_free(struct bpf_prog *fp)
145{
09756af4 146 kfree(fp->aux);
60a3b225
DB
147 vfree(fp);
148}
60a3b225 149
f1f7714e 150int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3
DB
151{
152 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
f1f7714e
DB
153 u32 raw_size = bpf_prog_tag_scratch_size(fp);
154 u32 digest[SHA_DIGEST_WORDS];
aafe6ae9 155 u32 ws[SHA_WORKSPACE_WORDS];
7bd509e3 156 u32 i, bsize, psize, blocks;
aafe6ae9 157 struct bpf_insn *dst;
7bd509e3 158 bool was_ld_map;
aafe6ae9 159 u8 *raw, *todo;
7bd509e3
DB
160 __be32 *result;
161 __be64 *bits;
162
aafe6ae9
DB
163 raw = vmalloc(raw_size);
164 if (!raw)
165 return -ENOMEM;
166
f1f7714e 167 sha_init(digest);
7bd509e3
DB
168 memset(ws, 0, sizeof(ws));
169
170 /* We need to take out the map fd for the digest calculation
171 * since they are unstable from user space side.
172 */
aafe6ae9 173 dst = (void *)raw;
7bd509e3
DB
174 for (i = 0, was_ld_map = false; i < fp->len; i++) {
175 dst[i] = fp->insnsi[i];
176 if (!was_ld_map &&
177 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
178 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
179 was_ld_map = true;
180 dst[i].imm = 0;
181 } else if (was_ld_map &&
182 dst[i].code == 0 &&
183 dst[i].dst_reg == 0 &&
184 dst[i].src_reg == 0 &&
185 dst[i].off == 0) {
186 was_ld_map = false;
187 dst[i].imm = 0;
188 } else {
189 was_ld_map = false;
190 }
191 }
192
aafe6ae9
DB
193 psize = bpf_prog_insn_size(fp);
194 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
195 raw[psize++] = 0x80;
196
197 bsize = round_up(psize, SHA_MESSAGE_BYTES);
198 blocks = bsize / SHA_MESSAGE_BYTES;
aafe6ae9 199 todo = raw;
7bd509e3
DB
200 if (bsize - psize >= sizeof(__be64)) {
201 bits = (__be64 *)(todo + bsize - sizeof(__be64));
202 } else {
203 bits = (__be64 *)(todo + bsize + bits_offset);
204 blocks++;
205 }
206 *bits = cpu_to_be64((psize - 1) << 3);
207
208 while (blocks--) {
f1f7714e 209 sha_transform(digest, todo, ws);
7bd509e3
DB
210 todo += SHA_MESSAGE_BYTES;
211 }
212
f1f7714e 213 result = (__force __be32 *)digest;
7bd509e3 214 for (i = 0; i < SHA_DIGEST_WORDS; i++)
f1f7714e
DB
215 result[i] = cpu_to_be32(digest[i]);
216 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
217
218 vfree(raw);
219 return 0;
7bd509e3
DB
220}
221
050fad7c
DB
222static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
223 u32 curr, const bool probe_pass)
c237ee5e 224{
050fad7c
DB
225 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
226 s64 imm = insn->imm;
227
228 if (curr < pos && curr + imm + 1 > pos)
229 imm += delta;
230 else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
231 imm -= delta;
232 if (imm < imm_min || imm > imm_max)
233 return -ERANGE;
234 if (!probe_pass)
235 insn->imm = imm;
236 return 0;
237}
238
239static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
240 u32 curr, const bool probe_pass)
241{
242 const s32 off_min = S16_MIN, off_max = S16_MAX;
243 s32 off = insn->off;
244
245 if (curr < pos && curr + off + 1 > pos)
246 off += delta;
247 else if (curr > pos + delta && curr + off + 1 <= pos + delta)
248 off -= delta;
249 if (off < off_min || off > off_max)
250 return -ERANGE;
251 if (!probe_pass)
252 insn->off = off;
253 return 0;
254}
255
256static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
257 const bool probe_pass)
258{
259 u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
c237ee5e 260 struct bpf_insn *insn = prog->insnsi;
050fad7c 261 int ret = 0;
c237ee5e
DB
262
263 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
264 u8 code;
265
266 /* In the probing pass we still operate on the original,
267 * unpatched image in order to check overflows before we
268 * do any other adjustments. Therefore skip the patchlet.
269 */
270 if (probe_pass && i == pos) {
271 i += delta + 1;
272 insn++;
273 }
1ea47e01 274 code = insn->code;
050fad7c
DB
275 if (BPF_CLASS(code) != BPF_JMP ||
276 BPF_OP(code) == BPF_EXIT)
1ea47e01 277 continue;
050fad7c 278 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 279 if (BPF_OP(code) == BPF_CALL) {
050fad7c 280 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 281 continue;
050fad7c
DB
282 ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
283 probe_pass);
1ea47e01 284 } else {
050fad7c
DB
285 ret = bpf_adj_delta_to_off(insn, pos, delta, i,
286 probe_pass);
1ea47e01 287 }
050fad7c
DB
288 if (ret)
289 break;
c237ee5e 290 }
050fad7c
DB
291
292 return ret;
c237ee5e
DB
293}
294
295struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
296 const struct bpf_insn *patch, u32 len)
297{
298 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 299 const u32 cnt_max = S16_MAX;
c237ee5e
DB
300 struct bpf_prog *prog_adj;
301
302 /* Since our patchlet doesn't expand the image, we're done. */
303 if (insn_delta == 0) {
304 memcpy(prog->insnsi + off, patch, sizeof(*patch));
305 return prog;
306 }
307
308 insn_adj_cnt = prog->len + insn_delta;
309
050fad7c
DB
310 /* Reject anything that would potentially let the insn->off
311 * target overflow when we have excessive program expansions.
312 * We need to probe here before we do any reallocation where
313 * we afterwards may not fail anymore.
314 */
315 if (insn_adj_cnt > cnt_max &&
316 bpf_adj_branches(prog, off, insn_delta, true))
317 return NULL;
318
c237ee5e
DB
319 /* Several new instructions need to be inserted. Make room
320 * for them. Likely, there's no need for a new allocation as
321 * last page could have large enough tailroom.
322 */
323 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
324 GFP_USER);
325 if (!prog_adj)
326 return NULL;
327
328 prog_adj->len = insn_adj_cnt;
329
330 /* Patching happens in 3 steps:
331 *
332 * 1) Move over tail of insnsi from next instruction onwards,
333 * so we can patch the single target insn with one or more
334 * new ones (patching is always from 1 to n insns, n > 0).
335 * 2) Inject new instructions at the target location.
336 * 3) Adjust branch offsets if necessary.
337 */
338 insn_rest = insn_adj_cnt - off - len;
339
340 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
341 sizeof(*patch) * insn_rest);
342 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
343
050fad7c
DB
344 /* We are guaranteed to not fail at this point, otherwise
345 * the ship has sailed to reverse to the original state. An
346 * overflow cannot happen at this point.
347 */
348 BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
c237ee5e
DB
349
350 return prog_adj;
351}
352
b954d834 353#ifdef CONFIG_BPF_JIT
fa9dd599
DB
354/* All BPF JIT sysctl knobs here. */
355int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
356int bpf_jit_harden __read_mostly;
357int bpf_jit_kallsyms __read_mostly;
358
74451e66
DB
359static __always_inline void
360bpf_get_prog_addr_region(const struct bpf_prog *prog,
361 unsigned long *symbol_start,
362 unsigned long *symbol_end)
363{
364 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
365 unsigned long addr = (unsigned long)hdr;
366
367 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
368
369 *symbol_start = addr;
370 *symbol_end = addr + hdr->pages * PAGE_SIZE;
371}
372
373static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
374{
368211fb
MKL
375 const char *end = sym + KSYM_NAME_LEN;
376
74451e66 377 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
378 sizeof(prog->tag) * 2 +
379 /* name has been null terminated.
380 * We should need +1 for the '_' preceding
381 * the name. However, the null character
382 * is double counted between the name and the
383 * sizeof("bpf_prog_") above, so we omit
384 * the +1 here.
385 */
386 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
387
388 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
389 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
368211fb
MKL
390 if (prog->aux->name[0])
391 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
392 else
393 *sym = 0;
74451e66
DB
394}
395
396static __always_inline unsigned long
397bpf_get_prog_addr_start(struct latch_tree_node *n)
398{
399 unsigned long symbol_start, symbol_end;
400 const struct bpf_prog_aux *aux;
401
402 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
403 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
404
405 return symbol_start;
406}
407
408static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
409 struct latch_tree_node *b)
410{
411 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
412}
413
414static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
415{
416 unsigned long val = (unsigned long)key;
417 unsigned long symbol_start, symbol_end;
418 const struct bpf_prog_aux *aux;
419
420 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
421 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
422
423 if (val < symbol_start)
424 return -1;
425 if (val >= symbol_end)
426 return 1;
427
428 return 0;
429}
430
431static const struct latch_tree_ops bpf_tree_ops = {
432 .less = bpf_tree_less,
433 .comp = bpf_tree_comp,
434};
435
436static DEFINE_SPINLOCK(bpf_lock);
437static LIST_HEAD(bpf_kallsyms);
438static struct latch_tree_root bpf_tree __cacheline_aligned;
439
74451e66
DB
440static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
441{
442 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
443 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
444 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
445}
446
447static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
448{
449 if (list_empty(&aux->ksym_lnode))
450 return;
451
452 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
453 list_del_rcu(&aux->ksym_lnode);
454}
455
456static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
457{
458 return fp->jited && !bpf_prog_was_classic(fp);
459}
460
461static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
462{
463 return list_empty(&fp->aux->ksym_lnode) ||
464 fp->aux->ksym_lnode.prev == LIST_POISON2;
465}
466
467void bpf_prog_kallsyms_add(struct bpf_prog *fp)
468{
74451e66
DB
469 if (!bpf_prog_kallsyms_candidate(fp) ||
470 !capable(CAP_SYS_ADMIN))
471 return;
472
d24f7c7f 473 spin_lock_bh(&bpf_lock);
74451e66 474 bpf_prog_ksym_node_add(fp->aux);
d24f7c7f 475 spin_unlock_bh(&bpf_lock);
74451e66
DB
476}
477
478void bpf_prog_kallsyms_del(struct bpf_prog *fp)
479{
74451e66
DB
480 if (!bpf_prog_kallsyms_candidate(fp))
481 return;
482
d24f7c7f 483 spin_lock_bh(&bpf_lock);
74451e66 484 bpf_prog_ksym_node_del(fp->aux);
d24f7c7f 485 spin_unlock_bh(&bpf_lock);
74451e66
DB
486}
487
488static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
489{
490 struct latch_tree_node *n;
491
492 if (!bpf_jit_kallsyms_enabled())
493 return NULL;
494
495 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
496 return n ?
497 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
498 NULL;
499}
500
501const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
502 unsigned long *off, char *sym)
503{
504 unsigned long symbol_start, symbol_end;
505 struct bpf_prog *prog;
506 char *ret = NULL;
507
508 rcu_read_lock();
509 prog = bpf_prog_kallsyms_find(addr);
510 if (prog) {
511 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
512 bpf_get_prog_name(prog, sym);
513
514 ret = sym;
515 if (size)
516 *size = symbol_end - symbol_start;
517 if (off)
518 *off = addr - symbol_start;
519 }
520 rcu_read_unlock();
521
522 return ret;
523}
524
525bool is_bpf_text_address(unsigned long addr)
526{
527 bool ret;
528
529 rcu_read_lock();
530 ret = bpf_prog_kallsyms_find(addr) != NULL;
531 rcu_read_unlock();
532
533 return ret;
534}
535
536int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
537 char *sym)
538{
539 unsigned long symbol_start, symbol_end;
540 struct bpf_prog_aux *aux;
541 unsigned int it = 0;
542 int ret = -ERANGE;
543
544 if (!bpf_jit_kallsyms_enabled())
545 return ret;
546
547 rcu_read_lock();
548 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
549 if (it++ != symnum)
550 continue;
551
552 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
553 bpf_get_prog_name(aux->prog, sym);
554
555 *value = symbol_start;
556 *type = BPF_SYM_ELF_TYPE;
557
558 ret = 0;
559 break;
560 }
561 rcu_read_unlock();
562
563 return ret;
564}
565
738cbe72
DB
566struct bpf_binary_header *
567bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
568 unsigned int alignment,
569 bpf_jit_fill_hole_t bpf_fill_ill_insns)
570{
571 struct bpf_binary_header *hdr;
572 unsigned int size, hole, start;
573
574 /* Most of BPF filters are really small, but if some of them
575 * fill a page, allow at least 128 extra bytes to insert a
576 * random section of illegal instructions.
577 */
578 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
579 hdr = module_alloc(size);
580 if (hdr == NULL)
581 return NULL;
582
583 /* Fill space with illegal/arch-dep instructions. */
584 bpf_fill_ill_insns(hdr, size);
585
586 hdr->pages = size / PAGE_SIZE;
587 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
588 PAGE_SIZE - sizeof(*hdr));
b7552e1b 589 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
590
591 /* Leave a random number of instructions before BPF code. */
592 *image_ptr = &hdr->image[start];
593
594 return hdr;
595}
596
597void bpf_jit_binary_free(struct bpf_binary_header *hdr)
598{
be1f221c 599 module_memfree(hdr);
738cbe72 600}
4f3446bb 601
74451e66
DB
602/* This symbol is only overridden by archs that have different
603 * requirements than the usual eBPF JITs, f.e. when they only
604 * implement cBPF JIT, do not set images read-only, etc.
605 */
606void __weak bpf_jit_free(struct bpf_prog *fp)
607{
608 if (fp->jited) {
609 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
610
611 bpf_jit_binary_unlock_ro(hdr);
612 bpf_jit_binary_free(hdr);
613
614 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
615 }
616
617 bpf_prog_unlock_free(fp);
618}
619
4f3446bb
DB
620static int bpf_jit_blind_insn(const struct bpf_insn *from,
621 const struct bpf_insn *aux,
622 struct bpf_insn *to_buff)
623{
624 struct bpf_insn *to = to_buff;
b7552e1b 625 u32 imm_rnd = get_random_int();
4f3446bb
DB
626 s16 off;
627
628 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
629 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
630
631 if (from->imm == 0 &&
632 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
633 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
634 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
635 goto out;
636 }
637
638 switch (from->code) {
639 case BPF_ALU | BPF_ADD | BPF_K:
640 case BPF_ALU | BPF_SUB | BPF_K:
641 case BPF_ALU | BPF_AND | BPF_K:
642 case BPF_ALU | BPF_OR | BPF_K:
643 case BPF_ALU | BPF_XOR | BPF_K:
644 case BPF_ALU | BPF_MUL | BPF_K:
645 case BPF_ALU | BPF_MOV | BPF_K:
646 case BPF_ALU | BPF_DIV | BPF_K:
647 case BPF_ALU | BPF_MOD | BPF_K:
648 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
649 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
650 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
651 break;
652
653 case BPF_ALU64 | BPF_ADD | BPF_K:
654 case BPF_ALU64 | BPF_SUB | BPF_K:
655 case BPF_ALU64 | BPF_AND | BPF_K:
656 case BPF_ALU64 | BPF_OR | BPF_K:
657 case BPF_ALU64 | BPF_XOR | BPF_K:
658 case BPF_ALU64 | BPF_MUL | BPF_K:
659 case BPF_ALU64 | BPF_MOV | BPF_K:
660 case BPF_ALU64 | BPF_DIV | BPF_K:
661 case BPF_ALU64 | BPF_MOD | BPF_K:
662 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
663 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
664 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
665 break;
666
667 case BPF_JMP | BPF_JEQ | BPF_K:
668 case BPF_JMP | BPF_JNE | BPF_K:
669 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 670 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 671 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 672 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 673 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 674 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 675 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 676 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
677 case BPF_JMP | BPF_JSET | BPF_K:
678 /* Accommodate for extra offset in case of a backjump. */
679 off = from->off;
680 if (off < 0)
681 off -= 2;
682 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
683 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
684 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
685 break;
686
4f3446bb
DB
687 case BPF_LD | BPF_IMM | BPF_DW:
688 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
689 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
690 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
691 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
692 break;
693 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
694 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
695 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
696 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
697 break;
698
699 case BPF_ST | BPF_MEM | BPF_DW:
700 case BPF_ST | BPF_MEM | BPF_W:
701 case BPF_ST | BPF_MEM | BPF_H:
702 case BPF_ST | BPF_MEM | BPF_B:
703 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
704 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
705 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
706 break;
707 }
708out:
709 return to - to_buff;
710}
711
712static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
713 gfp_t gfp_extra_flags)
714{
19809c2d 715 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
716 struct bpf_prog *fp;
717
718 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
719 if (fp != NULL) {
4f3446bb
DB
720 /* aux->prog still points to the fp_other one, so
721 * when promoting the clone to the real program,
722 * this still needs to be adapted.
723 */
724 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
725 }
726
727 return fp;
728}
729
730static void bpf_prog_clone_free(struct bpf_prog *fp)
731{
732 /* aux was stolen by the other clone, so we cannot free
733 * it from this path! It will be freed eventually by the
734 * other program on release.
735 *
736 * At this point, we don't need a deferred release since
737 * clone is guaranteed to not be locked.
738 */
739 fp->aux = NULL;
740 __bpf_prog_free(fp);
741}
742
743void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
744{
745 /* We have to repoint aux->prog to self, as we don't
746 * know whether fp here is the clone or the original.
747 */
748 fp->aux->prog = fp;
749 bpf_prog_clone_free(fp_other);
750}
751
752struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
753{
754 struct bpf_insn insn_buff[16], aux[2];
755 struct bpf_prog *clone, *tmp;
756 int insn_delta, insn_cnt;
757 struct bpf_insn *insn;
758 int i, rewritten;
759
1c2a088a 760 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
4f3446bb
DB
761 return prog;
762
763 clone = bpf_prog_clone_create(prog, GFP_USER);
764 if (!clone)
765 return ERR_PTR(-ENOMEM);
766
767 insn_cnt = clone->len;
768 insn = clone->insnsi;
769
770 for (i = 0; i < insn_cnt; i++, insn++) {
771 /* We temporarily need to hold the original ld64 insn
772 * so that we can still access the first part in the
773 * second blinding run.
774 */
775 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
776 insn[1].code == 0)
777 memcpy(aux, insn, sizeof(aux));
778
779 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
780 if (!rewritten)
781 continue;
782
783 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
784 if (!tmp) {
785 /* Patching may have repointed aux->prog during
786 * realloc from the original one, so we need to
787 * fix it up here on error.
788 */
789 bpf_jit_prog_release_other(prog, clone);
790 return ERR_PTR(-ENOMEM);
791 }
792
793 clone = tmp;
794 insn_delta = rewritten - 1;
795
796 /* Walk new program and skip insns we just inserted. */
797 insn = clone->insnsi + i + insn_delta;
798 insn_cnt += insn_delta;
799 i += insn_delta;
800 }
801
1c2a088a 802 clone->blinded = 1;
4f3446bb
DB
803 return clone;
804}
b954d834 805#endif /* CONFIG_BPF_JIT */
738cbe72 806
f5bffecd
AS
807/* Base function for offset calculation. Needs to go into .text section,
808 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
809 * anyway later on, so do not let the compiler omit it. This also needs
810 * to go into kallsyms for correlation from e.g. bpftool, so naming
811 * must not change.
f5bffecd
AS
812 */
813noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
814{
815 return 0;
816}
4d9c5c53 817EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 818
5e581dad
DB
819/* All UAPI available opcodes. */
820#define BPF_INSN_MAP(INSN_2, INSN_3) \
821 /* 32 bit ALU operations. */ \
822 /* Register based. */ \
823 INSN_3(ALU, ADD, X), \
824 INSN_3(ALU, SUB, X), \
825 INSN_3(ALU, AND, X), \
826 INSN_3(ALU, OR, X), \
827 INSN_3(ALU, LSH, X), \
828 INSN_3(ALU, RSH, X), \
829 INSN_3(ALU, XOR, X), \
830 INSN_3(ALU, MUL, X), \
831 INSN_3(ALU, MOV, X), \
832 INSN_3(ALU, DIV, X), \
833 INSN_3(ALU, MOD, X), \
834 INSN_2(ALU, NEG), \
835 INSN_3(ALU, END, TO_BE), \
836 INSN_3(ALU, END, TO_LE), \
837 /* Immediate based. */ \
838 INSN_3(ALU, ADD, K), \
839 INSN_3(ALU, SUB, K), \
840 INSN_3(ALU, AND, K), \
841 INSN_3(ALU, OR, K), \
842 INSN_3(ALU, LSH, K), \
843 INSN_3(ALU, RSH, K), \
844 INSN_3(ALU, XOR, K), \
845 INSN_3(ALU, MUL, K), \
846 INSN_3(ALU, MOV, K), \
847 INSN_3(ALU, DIV, K), \
848 INSN_3(ALU, MOD, K), \
849 /* 64 bit ALU operations. */ \
850 /* Register based. */ \
851 INSN_3(ALU64, ADD, X), \
852 INSN_3(ALU64, SUB, X), \
853 INSN_3(ALU64, AND, X), \
854 INSN_3(ALU64, OR, X), \
855 INSN_3(ALU64, LSH, X), \
856 INSN_3(ALU64, RSH, X), \
857 INSN_3(ALU64, XOR, X), \
858 INSN_3(ALU64, MUL, X), \
859 INSN_3(ALU64, MOV, X), \
860 INSN_3(ALU64, ARSH, X), \
861 INSN_3(ALU64, DIV, X), \
862 INSN_3(ALU64, MOD, X), \
863 INSN_2(ALU64, NEG), \
864 /* Immediate based. */ \
865 INSN_3(ALU64, ADD, K), \
866 INSN_3(ALU64, SUB, K), \
867 INSN_3(ALU64, AND, K), \
868 INSN_3(ALU64, OR, K), \
869 INSN_3(ALU64, LSH, K), \
870 INSN_3(ALU64, RSH, K), \
871 INSN_3(ALU64, XOR, K), \
872 INSN_3(ALU64, MUL, K), \
873 INSN_3(ALU64, MOV, K), \
874 INSN_3(ALU64, ARSH, K), \
875 INSN_3(ALU64, DIV, K), \
876 INSN_3(ALU64, MOD, K), \
877 /* Call instruction. */ \
878 INSN_2(JMP, CALL), \
879 /* Exit instruction. */ \
880 INSN_2(JMP, EXIT), \
881 /* Jump instructions. */ \
882 /* Register based. */ \
883 INSN_3(JMP, JEQ, X), \
884 INSN_3(JMP, JNE, X), \
885 INSN_3(JMP, JGT, X), \
886 INSN_3(JMP, JLT, X), \
887 INSN_3(JMP, JGE, X), \
888 INSN_3(JMP, JLE, X), \
889 INSN_3(JMP, JSGT, X), \
890 INSN_3(JMP, JSLT, X), \
891 INSN_3(JMP, JSGE, X), \
892 INSN_3(JMP, JSLE, X), \
893 INSN_3(JMP, JSET, X), \
894 /* Immediate based. */ \
895 INSN_3(JMP, JEQ, K), \
896 INSN_3(JMP, JNE, K), \
897 INSN_3(JMP, JGT, K), \
898 INSN_3(JMP, JLT, K), \
899 INSN_3(JMP, JGE, K), \
900 INSN_3(JMP, JLE, K), \
901 INSN_3(JMP, JSGT, K), \
902 INSN_3(JMP, JSLT, K), \
903 INSN_3(JMP, JSGE, K), \
904 INSN_3(JMP, JSLE, K), \
905 INSN_3(JMP, JSET, K), \
906 INSN_2(JMP, JA), \
907 /* Store instructions. */ \
908 /* Register based. */ \
909 INSN_3(STX, MEM, B), \
910 INSN_3(STX, MEM, H), \
911 INSN_3(STX, MEM, W), \
912 INSN_3(STX, MEM, DW), \
913 INSN_3(STX, XADD, W), \
914 INSN_3(STX, XADD, DW), \
915 /* Immediate based. */ \
916 INSN_3(ST, MEM, B), \
917 INSN_3(ST, MEM, H), \
918 INSN_3(ST, MEM, W), \
919 INSN_3(ST, MEM, DW), \
920 /* Load instructions. */ \
921 /* Register based. */ \
922 INSN_3(LDX, MEM, B), \
923 INSN_3(LDX, MEM, H), \
924 INSN_3(LDX, MEM, W), \
925 INSN_3(LDX, MEM, DW), \
926 /* Immediate based. */ \
e0cea7ce 927 INSN_3(LD, IMM, DW)
5e581dad
DB
928
929bool bpf_opcode_in_insntable(u8 code)
930{
931#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
932#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
933 static const bool public_insntable[256] = {
934 [0 ... 255] = false,
935 /* Now overwrite non-defaults ... */
936 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
937 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
938 [BPF_LD | BPF_ABS | BPF_B] = true,
939 [BPF_LD | BPF_ABS | BPF_H] = true,
940 [BPF_LD | BPF_ABS | BPF_W] = true,
941 [BPF_LD | BPF_IND | BPF_B] = true,
942 [BPF_LD | BPF_IND | BPF_H] = true,
943 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
944 };
945#undef BPF_INSN_3_TBL
946#undef BPF_INSN_2_TBL
947 return public_insntable[code];
948}
949
290af866 950#ifndef CONFIG_BPF_JIT_ALWAYS_ON
f5bffecd 951/**
7ae457c1
AS
952 * __bpf_prog_run - run eBPF program on a given context
953 * @ctx: is the data we are operating on
954 * @insn: is the array of eBPF instructions
f5bffecd 955 *
7ae457c1 956 * Decode and execute eBPF instructions.
f5bffecd 957 */
1ea47e01 958static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
f5bffecd 959{
f696b8f4 960 u64 tmp;
5e581dad
DB
961#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
962#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
f5bffecd
AS
963 static const void *jumptable[256] = {
964 [0 ... 255] = &&default_label,
965 /* Now overwrite non-defaults ... */
5e581dad
DB
966 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
967 /* Non-UAPI available opcodes. */
1ea47e01 968 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 969 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5bffecd 970 };
5e581dad
DB
971#undef BPF_INSN_3_LBL
972#undef BPF_INSN_2_LBL
04fd61ab 973 u32 tail_call_cnt = 0;
f5bffecd
AS
974
975#define CONT ({ insn++; goto select_insn; })
976#define CONT_JMP ({ insn++; goto select_insn; })
977
f5bffecd
AS
978select_insn:
979 goto *jumptable[insn->code];
980
981 /* ALU */
982#define ALU(OPCODE, OP) \
983 ALU64_##OPCODE##_X: \
984 DST = DST OP SRC; \
985 CONT; \
986 ALU_##OPCODE##_X: \
987 DST = (u32) DST OP (u32) SRC; \
988 CONT; \
989 ALU64_##OPCODE##_K: \
990 DST = DST OP IMM; \
991 CONT; \
992 ALU_##OPCODE##_K: \
993 DST = (u32) DST OP (u32) IMM; \
994 CONT;
995
996 ALU(ADD, +)
997 ALU(SUB, -)
998 ALU(AND, &)
999 ALU(OR, |)
1000 ALU(LSH, <<)
1001 ALU(RSH, >>)
1002 ALU(XOR, ^)
1003 ALU(MUL, *)
1004#undef ALU
1005 ALU_NEG:
1006 DST = (u32) -DST;
1007 CONT;
1008 ALU64_NEG:
1009 DST = -DST;
1010 CONT;
1011 ALU_MOV_X:
1012 DST = (u32) SRC;
1013 CONT;
1014 ALU_MOV_K:
1015 DST = (u32) IMM;
1016 CONT;
1017 ALU64_MOV_X:
1018 DST = SRC;
1019 CONT;
1020 ALU64_MOV_K:
1021 DST = IMM;
1022 CONT;
02ab695b
AS
1023 LD_IMM_DW:
1024 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1025 insn++;
1026 CONT;
f5bffecd
AS
1027 ALU64_ARSH_X:
1028 (*(s64 *) &DST) >>= SRC;
1029 CONT;
1030 ALU64_ARSH_K:
1031 (*(s64 *) &DST) >>= IMM;
1032 CONT;
1033 ALU64_MOD_X:
876a7ae6
AS
1034 div64_u64_rem(DST, SRC, &tmp);
1035 DST = tmp;
f5bffecd
AS
1036 CONT;
1037 ALU_MOD_X:
f5bffecd
AS
1038 tmp = (u32) DST;
1039 DST = do_div(tmp, (u32) SRC);
1040 CONT;
1041 ALU64_MOD_K:
876a7ae6
AS
1042 div64_u64_rem(DST, IMM, &tmp);
1043 DST = tmp;
f5bffecd
AS
1044 CONT;
1045 ALU_MOD_K:
1046 tmp = (u32) DST;
1047 DST = do_div(tmp, (u32) IMM);
1048 CONT;
1049 ALU64_DIV_X:
876a7ae6 1050 DST = div64_u64(DST, SRC);
f5bffecd
AS
1051 CONT;
1052 ALU_DIV_X:
f5bffecd
AS
1053 tmp = (u32) DST;
1054 do_div(tmp, (u32) SRC);
1055 DST = (u32) tmp;
1056 CONT;
1057 ALU64_DIV_K:
876a7ae6 1058 DST = div64_u64(DST, IMM);
f5bffecd
AS
1059 CONT;
1060 ALU_DIV_K:
1061 tmp = (u32) DST;
1062 do_div(tmp, (u32) IMM);
1063 DST = (u32) tmp;
1064 CONT;
1065 ALU_END_TO_BE:
1066 switch (IMM) {
1067 case 16:
1068 DST = (__force u16) cpu_to_be16(DST);
1069 break;
1070 case 32:
1071 DST = (__force u32) cpu_to_be32(DST);
1072 break;
1073 case 64:
1074 DST = (__force u64) cpu_to_be64(DST);
1075 break;
1076 }
1077 CONT;
1078 ALU_END_TO_LE:
1079 switch (IMM) {
1080 case 16:
1081 DST = (__force u16) cpu_to_le16(DST);
1082 break;
1083 case 32:
1084 DST = (__force u32) cpu_to_le32(DST);
1085 break;
1086 case 64:
1087 DST = (__force u64) cpu_to_le64(DST);
1088 break;
1089 }
1090 CONT;
1091
1092 /* CALL */
1093 JMP_CALL:
1094 /* Function call scratches BPF_R1-BPF_R5 registers,
1095 * preserves BPF_R6-BPF_R9, and stores return value
1096 * into BPF_R0.
1097 */
1098 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1099 BPF_R4, BPF_R5);
1100 CONT;
1101
1ea47e01
AS
1102 JMP_CALL_ARGS:
1103 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1104 BPF_R3, BPF_R4,
1105 BPF_R5,
1106 insn + insn->off + 1);
1107 CONT;
1108
04fd61ab
AS
1109 JMP_TAIL_CALL: {
1110 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1111 struct bpf_array *array = container_of(map, struct bpf_array, map);
1112 struct bpf_prog *prog;
90caccdd 1113 u32 index = BPF_R3;
04fd61ab
AS
1114
1115 if (unlikely(index >= array->map.max_entries))
1116 goto out;
04fd61ab
AS
1117 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1118 goto out;
1119
1120 tail_call_cnt++;
1121
2a36f0b9 1122 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1123 if (!prog)
04fd61ab
AS
1124 goto out;
1125
c4675f93
DB
1126 /* ARG1 at this point is guaranteed to point to CTX from
1127 * the verifier side due to the fact that the tail call is
1128 * handeled like a helper, that is, bpf_tail_call_proto,
1129 * where arg1_type is ARG_PTR_TO_CTX.
1130 */
04fd61ab
AS
1131 insn = prog->insnsi;
1132 goto select_insn;
1133out:
1134 CONT;
1135 }
f5bffecd
AS
1136 /* JMP */
1137 JMP_JA:
1138 insn += insn->off;
1139 CONT;
1140 JMP_JEQ_X:
1141 if (DST == SRC) {
1142 insn += insn->off;
1143 CONT_JMP;
1144 }
1145 CONT;
1146 JMP_JEQ_K:
1147 if (DST == IMM) {
1148 insn += insn->off;
1149 CONT_JMP;
1150 }
1151 CONT;
1152 JMP_JNE_X:
1153 if (DST != SRC) {
1154 insn += insn->off;
1155 CONT_JMP;
1156 }
1157 CONT;
1158 JMP_JNE_K:
1159 if (DST != IMM) {
1160 insn += insn->off;
1161 CONT_JMP;
1162 }
1163 CONT;
1164 JMP_JGT_X:
1165 if (DST > SRC) {
1166 insn += insn->off;
1167 CONT_JMP;
1168 }
1169 CONT;
1170 JMP_JGT_K:
1171 if (DST > IMM) {
1172 insn += insn->off;
1173 CONT_JMP;
1174 }
1175 CONT;
92b31a9a
DB
1176 JMP_JLT_X:
1177 if (DST < SRC) {
1178 insn += insn->off;
1179 CONT_JMP;
1180 }
1181 CONT;
1182 JMP_JLT_K:
1183 if (DST < IMM) {
1184 insn += insn->off;
1185 CONT_JMP;
1186 }
1187 CONT;
f5bffecd
AS
1188 JMP_JGE_X:
1189 if (DST >= SRC) {
1190 insn += insn->off;
1191 CONT_JMP;
1192 }
1193 CONT;
1194 JMP_JGE_K:
1195 if (DST >= IMM) {
1196 insn += insn->off;
1197 CONT_JMP;
1198 }
1199 CONT;
92b31a9a
DB
1200 JMP_JLE_X:
1201 if (DST <= SRC) {
1202 insn += insn->off;
1203 CONT_JMP;
1204 }
1205 CONT;
1206 JMP_JLE_K:
1207 if (DST <= IMM) {
1208 insn += insn->off;
1209 CONT_JMP;
1210 }
1211 CONT;
f5bffecd
AS
1212 JMP_JSGT_X:
1213 if (((s64) DST) > ((s64) SRC)) {
1214 insn += insn->off;
1215 CONT_JMP;
1216 }
1217 CONT;
1218 JMP_JSGT_K:
1219 if (((s64) DST) > ((s64) IMM)) {
1220 insn += insn->off;
1221 CONT_JMP;
1222 }
1223 CONT;
92b31a9a
DB
1224 JMP_JSLT_X:
1225 if (((s64) DST) < ((s64) SRC)) {
1226 insn += insn->off;
1227 CONT_JMP;
1228 }
1229 CONT;
1230 JMP_JSLT_K:
1231 if (((s64) DST) < ((s64) IMM)) {
1232 insn += insn->off;
1233 CONT_JMP;
1234 }
1235 CONT;
f5bffecd
AS
1236 JMP_JSGE_X:
1237 if (((s64) DST) >= ((s64) SRC)) {
1238 insn += insn->off;
1239 CONT_JMP;
1240 }
1241 CONT;
1242 JMP_JSGE_K:
1243 if (((s64) DST) >= ((s64) IMM)) {
1244 insn += insn->off;
1245 CONT_JMP;
1246 }
1247 CONT;
92b31a9a
DB
1248 JMP_JSLE_X:
1249 if (((s64) DST) <= ((s64) SRC)) {
1250 insn += insn->off;
1251 CONT_JMP;
1252 }
1253 CONT;
1254 JMP_JSLE_K:
1255 if (((s64) DST) <= ((s64) IMM)) {
1256 insn += insn->off;
1257 CONT_JMP;
1258 }
1259 CONT;
f5bffecd
AS
1260 JMP_JSET_X:
1261 if (DST & SRC) {
1262 insn += insn->off;
1263 CONT_JMP;
1264 }
1265 CONT;
1266 JMP_JSET_K:
1267 if (DST & IMM) {
1268 insn += insn->off;
1269 CONT_JMP;
1270 }
1271 CONT;
1272 JMP_EXIT:
1273 return BPF_R0;
1274
1275 /* STX and ST and LDX*/
1276#define LDST(SIZEOP, SIZE) \
1277 STX_MEM_##SIZEOP: \
1278 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1279 CONT; \
1280 ST_MEM_##SIZEOP: \
1281 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1282 CONT; \
1283 LDX_MEM_##SIZEOP: \
1284 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1285 CONT;
1286
1287 LDST(B, u8)
1288 LDST(H, u16)
1289 LDST(W, u32)
1290 LDST(DW, u64)
1291#undef LDST
1292 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1293 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1294 (DST + insn->off));
1295 CONT;
1296 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1297 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1298 (DST + insn->off));
1299 CONT;
f5bffecd
AS
1300
1301 default_label:
5e581dad
DB
1302 /* If we ever reach this, we have a bug somewhere. Die hard here
1303 * instead of just returning 0; we could be somewhere in a subprog,
1304 * so execution could continue otherwise which we do /not/ want.
1305 *
1306 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1307 */
1308 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1309 BUG_ON(1);
f5bffecd
AS
1310 return 0;
1311}
f696b8f4
AS
1312STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1313
b870aa90
AS
1314#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1315#define DEFINE_BPF_PROG_RUN(stack_size) \
1316static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1317{ \
1318 u64 stack[stack_size / sizeof(u64)]; \
1319 u64 regs[MAX_BPF_REG]; \
1320\
1321 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1322 ARG1 = (u64) (unsigned long) ctx; \
1323 return ___bpf_prog_run(regs, insn, stack); \
f696b8f4 1324}
f5bffecd 1325
1ea47e01
AS
1326#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1327#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1328static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1329 const struct bpf_insn *insn) \
1330{ \
1331 u64 stack[stack_size / sizeof(u64)]; \
1332 u64 regs[MAX_BPF_REG]; \
1333\
1334 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1335 BPF_R1 = r1; \
1336 BPF_R2 = r2; \
1337 BPF_R3 = r3; \
1338 BPF_R4 = r4; \
1339 BPF_R5 = r5; \
1340 return ___bpf_prog_run(regs, insn, stack); \
1341}
1342
b870aa90
AS
1343#define EVAL1(FN, X) FN(X)
1344#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1345#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1346#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1347#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1348#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1349
1350EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1351EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1352EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1353
1ea47e01
AS
1354EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1355EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1356EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1357
b870aa90
AS
1358#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1359
1360static unsigned int (*interpreters[])(const void *ctx,
1361 const struct bpf_insn *insn) = {
1362EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1363EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1364EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1365};
1ea47e01
AS
1366#undef PROG_NAME_LIST
1367#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1368static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1369 const struct bpf_insn *insn) = {
1370EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1371EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1372EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1373};
1374#undef PROG_NAME_LIST
1375
1376void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1377{
1378 stack_depth = max_t(u32, stack_depth, 1);
1379 insn->off = (s16) insn->imm;
1380 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1381 __bpf_call_base_args;
1382 insn->code = BPF_JMP | BPF_CALL_ARGS;
1383}
b870aa90 1384
290af866 1385#else
fa9dd599
DB
1386static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1387 const struct bpf_insn *insn)
290af866 1388{
fa9dd599
DB
1389 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1390 * is not working properly, so warn about it!
1391 */
1392 WARN_ON_ONCE(1);
290af866
AS
1393 return 0;
1394}
1395#endif
1396
3324b584
DB
1397bool bpf_prog_array_compatible(struct bpf_array *array,
1398 const struct bpf_prog *fp)
04fd61ab 1399{
9802d865
JB
1400 if (fp->kprobe_override)
1401 return false;
1402
3324b584
DB
1403 if (!array->owner_prog_type) {
1404 /* There's no owner yet where we could check for
1405 * compatibility.
1406 */
04fd61ab
AS
1407 array->owner_prog_type = fp->type;
1408 array->owner_jited = fp->jited;
3324b584
DB
1409
1410 return true;
04fd61ab 1411 }
3324b584
DB
1412
1413 return array->owner_prog_type == fp->type &&
1414 array->owner_jited == fp->jited;
04fd61ab
AS
1415}
1416
3324b584 1417static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1418{
1419 struct bpf_prog_aux *aux = fp->aux;
1420 int i;
1421
1422 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1423 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1424 struct bpf_array *array;
04fd61ab 1425
04fd61ab
AS
1426 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1427 continue;
3324b584 1428
04fd61ab
AS
1429 array = container_of(map, struct bpf_array, map);
1430 if (!bpf_prog_array_compatible(array, fp))
1431 return -EINVAL;
1432 }
1433
1434 return 0;
1435}
1436
f5bffecd 1437/**
3324b584 1438 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1439 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1440 * @err: pointer to error variable
f5bffecd 1441 *
3324b584
DB
1442 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1443 * The BPF program will be executed via BPF_PROG_RUN() macro.
f5bffecd 1444 */
d1c55ab5 1445struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1446{
290af866 1447#ifndef CONFIG_BPF_JIT_ALWAYS_ON
8007e40a
MKL
1448 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1449
1450 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
290af866 1451#else
fa9dd599 1452 fp->bpf_func = __bpf_prog_ret0_warn;
290af866 1453#endif
f5bffecd 1454
d1c55ab5
DB
1455 /* eBPF JITs can rewrite the program in case constant
1456 * blinding is active. However, in case of error during
1457 * blinding, bpf_int_jit_compile() must always return a
1458 * valid program, which in this case would simply not
1459 * be JITed, but falls back to the interpreter.
1460 */
ab3f0063
JK
1461 if (!bpf_prog_is_dev_bound(fp->aux)) {
1462 fp = bpf_int_jit_compile(fp);
290af866
AS
1463#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1464 if (!fp->jited) {
1465 *err = -ENOTSUPP;
1466 return fp;
1467 }
1468#endif
ab3f0063
JK
1469 } else {
1470 *err = bpf_prog_offload_compile(fp);
1471 if (*err)
1472 return fp;
1473 }
60a3b225 1474 bpf_prog_lock_ro(fp);
04fd61ab 1475
3324b584
DB
1476 /* The tail call compatibility check can only be done at
1477 * this late stage as we need to determine, if we deal
1478 * with JITed or non JITed program concatenations and not
1479 * all eBPF JITs might immediately support all features.
1480 */
d1c55ab5
DB
1481 *err = bpf_check_tail_call(fp);
1482
1483 return fp;
f5bffecd 1484}
7ae457c1 1485EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1486
e87c6bc3
YS
1487static unsigned int __bpf_prog_ret1(const void *ctx,
1488 const struct bpf_insn *insn)
1489{
1490 return 1;
1491}
1492
1493static struct bpf_prog_dummy {
1494 struct bpf_prog prog;
1495} dummy_bpf_prog = {
1496 .prog = {
1497 .bpf_func = __bpf_prog_ret1,
1498 },
1499};
1500
324bda9e
AS
1501/* to avoid allocating empty bpf_prog_array for cgroups that
1502 * don't have bpf program attached use one global 'empty_prog_array'
1503 * It will not be modified the caller of bpf_prog_array_alloc()
1504 * (since caller requested prog_cnt == 0)
1505 * that pointer should be 'freed' by bpf_prog_array_free()
1506 */
1507static struct {
1508 struct bpf_prog_array hdr;
1509 struct bpf_prog *null_prog;
1510} empty_prog_array = {
1511 .null_prog = NULL,
1512};
1513
1514struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1515{
1516 if (prog_cnt)
1517 return kzalloc(sizeof(struct bpf_prog_array) +
1518 sizeof(struct bpf_prog *) * (prog_cnt + 1),
1519 flags);
1520
1521 return &empty_prog_array.hdr;
1522}
1523
1524void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1525{
1526 if (!progs ||
1527 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1528 return;
1529 kfree_rcu(progs, rcu);
1530}
1531
468e2f64
AS
1532int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1533{
1534 struct bpf_prog **prog;
1535 u32 cnt = 0;
1536
1537 rcu_read_lock();
1538 prog = rcu_dereference(progs)->progs;
1539 for (; *prog; prog++)
c8c088ba
YS
1540 if (*prog != &dummy_bpf_prog.prog)
1541 cnt++;
468e2f64
AS
1542 rcu_read_unlock();
1543 return cnt;
1544}
1545
3a38bb98
YS
1546static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1547 u32 *prog_ids,
1548 u32 request_cnt)
1549{
1550 int i = 0;
1551
1552 for (; *prog; prog++) {
1553 if (*prog == &dummy_bpf_prog.prog)
1554 continue;
1555 prog_ids[i] = (*prog)->aux->id;
1556 if (++i == request_cnt) {
1557 prog++;
1558 break;
1559 }
1560 }
1561
1562 return !!(*prog);
1563}
1564
468e2f64
AS
1565int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1566 __u32 __user *prog_ids, u32 cnt)
1567{
1568 struct bpf_prog **prog;
0911287c 1569 unsigned long err = 0;
0911287c 1570 bool nospc;
3a38bb98 1571 u32 *ids;
0911287c
AS
1572
1573 /* users of this function are doing:
1574 * cnt = bpf_prog_array_length();
1575 * if (cnt > 0)
1576 * bpf_prog_array_copy_to_user(..., cnt);
1577 * so below kcalloc doesn't need extra cnt > 0 check, but
1578 * bpf_prog_array_length() releases rcu lock and
1579 * prog array could have been swapped with empty or larger array,
1580 * so always copy 'cnt' prog_ids to the user.
1581 * In a rare race the user will see zero prog_ids
1582 */
9c481b90 1583 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
1584 if (!ids)
1585 return -ENOMEM;
468e2f64
AS
1586 rcu_read_lock();
1587 prog = rcu_dereference(progs)->progs;
3a38bb98 1588 nospc = bpf_prog_array_copy_core(prog, ids, cnt);
468e2f64 1589 rcu_read_unlock();
0911287c
AS
1590 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1591 kfree(ids);
1592 if (err)
1593 return -EFAULT;
1594 if (nospc)
468e2f64
AS
1595 return -ENOSPC;
1596 return 0;
1597}
1598
e87c6bc3
YS
1599void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1600 struct bpf_prog *old_prog)
1601{
1602 struct bpf_prog **prog = progs->progs;
1603
1604 for (; *prog; prog++)
1605 if (*prog == old_prog) {
1606 WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1607 break;
1608 }
1609}
1610
1611int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1612 struct bpf_prog *exclude_prog,
1613 struct bpf_prog *include_prog,
1614 struct bpf_prog_array **new_array)
1615{
1616 int new_prog_cnt, carry_prog_cnt = 0;
1617 struct bpf_prog **existing_prog;
1618 struct bpf_prog_array *array;
170a7e3e 1619 bool found_exclude = false;
e87c6bc3
YS
1620 int new_prog_idx = 0;
1621
1622 /* Figure out how many existing progs we need to carry over to
1623 * the new array.
1624 */
1625 if (old_array) {
1626 existing_prog = old_array->progs;
1627 for (; *existing_prog; existing_prog++) {
170a7e3e
SY
1628 if (*existing_prog == exclude_prog) {
1629 found_exclude = true;
1630 continue;
1631 }
1632 if (*existing_prog != &dummy_bpf_prog.prog)
e87c6bc3
YS
1633 carry_prog_cnt++;
1634 if (*existing_prog == include_prog)
1635 return -EEXIST;
1636 }
1637 }
1638
170a7e3e
SY
1639 if (exclude_prog && !found_exclude)
1640 return -ENOENT;
1641
e87c6bc3
YS
1642 /* How many progs (not NULL) will be in the new array? */
1643 new_prog_cnt = carry_prog_cnt;
1644 if (include_prog)
1645 new_prog_cnt += 1;
1646
1647 /* Do we have any prog (not NULL) in the new array? */
1648 if (!new_prog_cnt) {
1649 *new_array = NULL;
1650 return 0;
1651 }
1652
1653 /* +1 as the end of prog_array is marked with NULL */
1654 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1655 if (!array)
1656 return -ENOMEM;
1657
1658 /* Fill in the new prog array */
1659 if (carry_prog_cnt) {
1660 existing_prog = old_array->progs;
1661 for (; *existing_prog; existing_prog++)
1662 if (*existing_prog != exclude_prog &&
1663 *existing_prog != &dummy_bpf_prog.prog)
1664 array->progs[new_prog_idx++] = *existing_prog;
1665 }
1666 if (include_prog)
1667 array->progs[new_prog_idx++] = include_prog;
1668 array->progs[new_prog_idx] = NULL;
1669 *new_array = array;
1670 return 0;
1671}
1672
f371b304 1673int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
3a38bb98
YS
1674 u32 *prog_ids, u32 request_cnt,
1675 u32 *prog_cnt)
f371b304 1676{
3a38bb98 1677 struct bpf_prog **prog;
f371b304
YS
1678 u32 cnt = 0;
1679
1680 if (array)
1681 cnt = bpf_prog_array_length(array);
1682
3a38bb98 1683 *prog_cnt = cnt;
f371b304
YS
1684
1685 /* return early if user requested only program count or nothing to copy */
1686 if (!request_cnt || !cnt)
1687 return 0;
1688
3a38bb98
YS
1689 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1690 prog = rcu_dereference_check(array, 1)->progs;
1691 return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1692 : 0;
f371b304
YS
1693}
1694
60a3b225
DB
1695static void bpf_prog_free_deferred(struct work_struct *work)
1696{
09756af4 1697 struct bpf_prog_aux *aux;
1c2a088a 1698 int i;
60a3b225 1699
09756af4 1700 aux = container_of(work, struct bpf_prog_aux, work);
ab3f0063
JK
1701 if (bpf_prog_is_dev_bound(aux))
1702 bpf_prog_offload_destroy(aux->prog);
c195651e
YS
1703#ifdef CONFIG_PERF_EVENTS
1704 if (aux->prog->has_callchain_buf)
1705 put_callchain_buffers();
1706#endif
1c2a088a
AS
1707 for (i = 0; i < aux->func_cnt; i++)
1708 bpf_jit_free(aux->func[i]);
1709 if (aux->func_cnt) {
1710 kfree(aux->func);
1711 bpf_prog_unlock_free(aux->prog);
1712 } else {
1713 bpf_jit_free(aux->prog);
1714 }
60a3b225
DB
1715}
1716
1717/* Free internal BPF program */
7ae457c1 1718void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 1719{
09756af4 1720 struct bpf_prog_aux *aux = fp->aux;
60a3b225 1721
09756af4 1722 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 1723 schedule_work(&aux->work);
f5bffecd 1724}
7ae457c1 1725EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 1726
3ad00405
DB
1727/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1728static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1729
1730void bpf_user_rnd_init_once(void)
1731{
1732 prandom_init_once(&bpf_user_rnd_state);
1733}
1734
f3694e00 1735BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
1736{
1737 /* Should someone ever have the rather unwise idea to use some
1738 * of the registers passed into this function, then note that
1739 * this function is called from native eBPF and classic-to-eBPF
1740 * transformations. Register assignments from both sides are
1741 * different, f.e. classic always sets fn(ctx, A, X) here.
1742 */
1743 struct rnd_state *state;
1744 u32 res;
1745
1746 state = &get_cpu_var(bpf_user_rnd_state);
1747 res = prandom_u32_state(state);
b761fe22 1748 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
1749
1750 return res;
1751}
1752
3ba67dab
DB
1753/* Weak definitions of helper functions in case we don't have bpf syscall. */
1754const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1755const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1756const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1757
03e69b50 1758const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 1759const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 1760const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 1761const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
bd570ff9 1762
ffeedafb
AS
1763const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1764const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1765const struct bpf_func_proto bpf_get_current_comm_proto __weak;
6bdc9c4c 1766const struct bpf_func_proto bpf_sock_map_update_proto __weak;
81110384 1767const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
bd570ff9 1768
0756ea3e
AS
1769const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1770{
1771 return NULL;
1772}
03e69b50 1773
555c8a86
DB
1774u64 __weak
1775bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1776 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 1777{
555c8a86 1778 return -ENOTSUPP;
bd570ff9 1779}
6cb5fb38 1780EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 1781
3324b584
DB
1782/* Always built-in helper functions. */
1783const struct bpf_func_proto bpf_tail_call_proto = {
1784 .func = NULL,
1785 .gpl_only = false,
1786 .ret_type = RET_VOID,
1787 .arg1_type = ARG_PTR_TO_CTX,
1788 .arg2_type = ARG_CONST_MAP_PTR,
1789 .arg3_type = ARG_ANYTHING,
1790};
1791
9383191d
DB
1792/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1793 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1794 * eBPF and implicitly also cBPF can get JITed!
1795 */
d1c55ab5 1796struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 1797{
d1c55ab5 1798 return prog;
3324b584
DB
1799}
1800
9383191d
DB
1801/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1802 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1803 */
1804void __weak bpf_jit_compile(struct bpf_prog *prog)
1805{
1806}
1807
17bedab2 1808bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
1809{
1810 return false;
1811}
1812
f89b7755
AS
1813/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1814 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1815 */
1816int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1817 int len)
1818{
1819 return -EFAULT;
1820}
a67edbf4
DB
1821
1822/* All definitions of tracepoints related to BPF. */
1823#define CREATE_TRACE_POINTS
1824#include <linux/bpf_trace.h>
1825
1826EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);