]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
UBUNTU: Start new release
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
e8988995 282 (-i - 1) * BPF_REG_SIZE,
638f5b90 283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
abd098e0 694 int size, int value_regno, int insn_idx)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
abd098e0
AS
725 for (i = 0; i < BPF_REG_SIZE; i++) {
726 if (state->stack[spi].slot_type[i] == STACK_MISC &&
727 !env->allow_ptr_leaks) {
728 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
729 int soff = (-spi - 1) * BPF_REG_SIZE;
730
731 /* detected reuse of integer stack slot with a pointer
732 * which means either llvm is reusing stack slot or
733 * an attacker is trying to exploit CVE-2018-3639
734 * (speculative store bypass)
735 * Have to sanitize that slot with preemptive
736 * store of zero.
737 */
738 if (*poff && *poff != soff) {
739 /* disallow programs where single insn stores
740 * into two different stack slots, since verifier
741 * cannot sanitize them
742 */
743 verbose(env,
744 "insn %d cannot access two stack slots fp%d and fp%d",
745 insn_idx, *poff, soff);
746 return -EINVAL;
747 }
748 *poff = soff;
749 }
638f5b90 750 state->stack[spi].slot_type[i] = STACK_SPILL;
abd098e0 751 }
9c399760 752 } else {
17a52670 753 /* regular write of data into stack */
638f5b90 754 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
755
756 for (i = 0; i < size; i++)
638f5b90
AS
757 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
758 STACK_MISC;
17a52670
AS
759 }
760 return 0;
761}
762
dc503a8a
EC
763static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
764{
765 struct bpf_verifier_state *parent = state->parent;
766
767 while (parent) {
768 /* if read wasn't screened by an earlier write ... */
638f5b90 769 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
770 break;
771 /* ... then we depend on parent's value */
638f5b90 772 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
773 state = parent;
774 parent = state->parent;
775 }
776}
777
61bd5218
JK
778static int check_stack_read(struct bpf_verifier_env *env,
779 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
780 int value_regno)
781{
638f5b90
AS
782 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
783 u8 *stype;
17a52670 784
638f5b90
AS
785 if (state->allocated_stack <= slot) {
786 verbose(env, "invalid read from stack off %d+0 size %d\n",
787 off, size);
788 return -EACCES;
789 }
790 stype = state->stack[spi].slot_type;
17a52670 791
638f5b90 792 if (stype[0] == STACK_SPILL) {
9c399760 793 if (size != BPF_REG_SIZE) {
61bd5218 794 verbose(env, "invalid size of register spill\n");
17a52670
AS
795 return -EACCES;
796 }
9c399760 797 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 798 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 799 verbose(env, "corrupted spill memory\n");
17a52670
AS
800 return -EACCES;
801 }
802 }
803
dc503a8a 804 if (value_regno >= 0) {
17a52670 805 /* restore register state from stack */
638f5b90 806 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
807 mark_stack_slot_read(state, spi);
808 }
17a52670
AS
809 return 0;
810 } else {
811 for (i = 0; i < size; i++) {
638f5b90 812 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 813 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
814 off, i, size);
815 return -EACCES;
816 }
817 }
818 if (value_regno >= 0)
819 /* have read misc data from the stack */
61bd5218 820 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
821 return 0;
822 }
823}
824
825/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 826static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 827 int size, bool zero_size_allowed)
17a52670 828{
638f5b90
AS
829 struct bpf_reg_state *regs = cur_regs(env);
830 struct bpf_map *map = regs[regno].map_ptr;
17a52670 831
9fd29c08
YS
832 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
833 off + size > map->value_size) {
61bd5218 834 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
835 map->value_size, off, size);
836 return -EACCES;
837 }
838 return 0;
839}
840
f1174f77
EC
841/* check read/write into a map element with possible variable offset */
842static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 843 int off, int size, bool zero_size_allowed)
dbcfe5f7 844{
638f5b90 845 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
846 struct bpf_reg_state *reg = &state->regs[regno];
847 int err;
848
f1174f77
EC
849 /* We may have adjusted the register to this map value, so we
850 * need to try adding each of min_value and max_value to off
851 * to make sure our theoretical access will be safe.
dbcfe5f7 852 */
61bd5218
JK
853 if (env->log.level)
854 print_verifier_state(env, state);
dbcfe5f7
GB
855 /* The minimum value is only important with signed
856 * comparisons where we can't assume the floor of a
857 * value is 0. If we are using signed variables for our
858 * index'es we need to make sure that whatever we use
859 * will have a set floor within our range.
860 */
b03c9f9f 861 if (reg->smin_value < 0) {
61bd5218 862 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
863 regno);
864 return -EACCES;
865 }
9fd29c08
YS
866 err = __check_map_access(env, regno, reg->smin_value + off, size,
867 zero_size_allowed);
dbcfe5f7 868 if (err) {
61bd5218
JK
869 verbose(env, "R%d min value is outside of the array range\n",
870 regno);
dbcfe5f7
GB
871 return err;
872 }
873
b03c9f9f
EC
874 /* If we haven't set a max value then we need to bail since we can't be
875 * sure we won't do bad things.
876 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 877 */
b03c9f9f 878 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 879 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
880 regno);
881 return -EACCES;
882 }
9fd29c08
YS
883 err = __check_map_access(env, regno, reg->umax_value + off, size,
884 zero_size_allowed);
f1174f77 885 if (err)
61bd5218
JK
886 verbose(env, "R%d max value is outside of the array range\n",
887 regno);
f1174f77 888 return err;
dbcfe5f7
GB
889}
890
969bf05e
AS
891#define MAX_PACKET_OFF 0xffff
892
58e2af8b 893static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
894 const struct bpf_call_arg_meta *meta,
895 enum bpf_access_type t)
4acf6c0b 896{
36bbef52 897 switch (env->prog->type) {
3a0af8fd
TG
898 case BPF_PROG_TYPE_LWT_IN:
899 case BPF_PROG_TYPE_LWT_OUT:
900 /* dst_input() and dst_output() can't write for now */
901 if (t == BPF_WRITE)
902 return false;
7e57fbb2 903 /* fallthrough */
36bbef52
DB
904 case BPF_PROG_TYPE_SCHED_CLS:
905 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 906 case BPF_PROG_TYPE_XDP:
3a0af8fd 907 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 908 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
909 if (meta)
910 return meta->pkt_access;
911
912 env->seen_direct_write = true;
4acf6c0b
BB
913 return true;
914 default:
915 return false;
916 }
917}
918
f1174f77 919static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 920 int off, int size, bool zero_size_allowed)
969bf05e 921{
638f5b90 922 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 923 struct bpf_reg_state *reg = &regs[regno];
969bf05e 924
9fd29c08
YS
925 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
926 (u64)off + size > reg->range) {
61bd5218 927 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 928 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
929 return -EACCES;
930 }
931 return 0;
932}
933
f1174f77 934static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 935 int size, bool zero_size_allowed)
f1174f77 936{
638f5b90 937 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
938 struct bpf_reg_state *reg = &regs[regno];
939 int err;
940
941 /* We may have added a variable offset to the packet pointer; but any
942 * reg->range we have comes after that. We are only checking the fixed
943 * offset.
944 */
945
946 /* We don't allow negative numbers, because we aren't tracking enough
947 * detail to prove they're safe.
948 */
b03c9f9f 949 if (reg->smin_value < 0) {
61bd5218 950 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
951 regno);
952 return -EACCES;
953 }
9fd29c08 954 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 955 if (err) {
61bd5218 956 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
957 return err;
958 }
959 return err;
960}
961
962/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 963static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 964 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 965{
f96da094
DB
966 struct bpf_insn_access_aux info = {
967 .reg_type = *reg_type,
968 };
31fd8581 969
4f9218aa
JK
970 if (env->ops->is_valid_access &&
971 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
972 /* A non zero info.ctx_field_size indicates that this field is a
973 * candidate for later verifier transformation to load the whole
974 * field and then apply a mask when accessed with a narrower
975 * access than actual ctx access size. A zero info.ctx_field_size
976 * will only allow for whole field access and rejects any other
977 * type of narrower access.
31fd8581 978 */
23994631 979 *reg_type = info.reg_type;
31fd8581 980
4f9218aa 981 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
982 /* remember the offset of last byte accessed in ctx */
983 if (env->prog->aux->max_ctx_offset < off + size)
984 env->prog->aux->max_ctx_offset = off + size;
17a52670 985 return 0;
32bbe007 986 }
17a52670 987
61bd5218 988 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
989 return -EACCES;
990}
991
4cabc5b1
DB
992static bool __is_pointer_value(bool allow_ptr_leaks,
993 const struct bpf_reg_state *reg)
1be7f75d 994{
4cabc5b1 995 if (allow_ptr_leaks)
1be7f75d
AS
996 return false;
997
f1174f77 998 return reg->type != SCALAR_VALUE;
1be7f75d
AS
999}
1000
4cabc5b1
DB
1001static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1002{
638f5b90 1003 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1004}
1005
f37a8cb8
DB
1006static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1007{
1008 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1009
1010 return reg->type == PTR_TO_CTX;
1011}
1012
57b4a36e
DB
1013static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1014{
1015 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1016
1017 return type_is_pkt_pointer(reg->type);
1018}
1019
61bd5218
JK
1020static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1021 const struct bpf_reg_state *reg,
d1174416 1022 int off, int size, bool strict)
969bf05e 1023{
f1174f77 1024 struct tnum reg_off;
e07b98d9 1025 int ip_align;
d1174416
DM
1026
1027 /* Byte size accesses are always allowed. */
1028 if (!strict || size == 1)
1029 return 0;
1030
e4eda884
DM
1031 /* For platforms that do not have a Kconfig enabling
1032 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1033 * NET_IP_ALIGN is universally set to '2'. And on platforms
1034 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1035 * to this code only in strict mode where we want to emulate
1036 * the NET_IP_ALIGN==2 checking. Therefore use an
1037 * unconditional IP align value of '2'.
e07b98d9 1038 */
e4eda884 1039 ip_align = 2;
f1174f77
EC
1040
1041 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1042 if (!tnum_is_aligned(reg_off, size)) {
1043 char tn_buf[48];
1044
1045 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1046 verbose(env,
1047 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1048 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1049 return -EACCES;
1050 }
79adffcd 1051
969bf05e
AS
1052 return 0;
1053}
1054
61bd5218
JK
1055static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1056 const struct bpf_reg_state *reg,
f1174f77
EC
1057 const char *pointer_desc,
1058 int off, int size, bool strict)
79adffcd 1059{
f1174f77
EC
1060 struct tnum reg_off;
1061
1062 /* Byte size accesses are always allowed. */
1063 if (!strict || size == 1)
1064 return 0;
1065
1066 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1067 if (!tnum_is_aligned(reg_off, size)) {
1068 char tn_buf[48];
1069
1070 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1071 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1072 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1073 return -EACCES;
1074 }
1075
969bf05e
AS
1076 return 0;
1077}
1078
e07b98d9 1079static int check_ptr_alignment(struct bpf_verifier_env *env,
57b4a36e
DB
1080 const struct bpf_reg_state *reg, int off,
1081 int size, bool strict_alignment_once)
79adffcd 1082{
57b4a36e 1083 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1084 const char *pointer_desc = "";
d1174416 1085
79adffcd
DB
1086 switch (reg->type) {
1087 case PTR_TO_PACKET:
de8f3a83
DB
1088 case PTR_TO_PACKET_META:
1089 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1090 * right in front, treat it the very same way.
1091 */
61bd5218 1092 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1093 case PTR_TO_MAP_VALUE:
1094 pointer_desc = "value ";
1095 break;
1096 case PTR_TO_CTX:
1097 pointer_desc = "context ";
1098 break;
1099 case PTR_TO_STACK:
1100 pointer_desc = "stack ";
a5ec6ae1
JH
1101 /* The stack spill tracking logic in check_stack_write()
1102 * and check_stack_read() relies on stack accesses being
1103 * aligned.
1104 */
1105 strict = true;
f1174f77 1106 break;
79adffcd 1107 default:
f1174f77 1108 break;
79adffcd 1109 }
61bd5218
JK
1110 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1111 strict);
79adffcd
DB
1112}
1113
0c17d1d2
JH
1114/* truncate register to smaller size (in bytes)
1115 * must be called with size < BPF_REG_SIZE
1116 */
1117static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1118{
1119 u64 mask;
1120
1121 /* clear high bits in bit representation */
1122 reg->var_off = tnum_cast(reg->var_off, size);
1123
1124 /* fix arithmetic bounds */
1125 mask = ((u64)1 << (size * 8)) - 1;
1126 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1127 reg->umin_value &= mask;
1128 reg->umax_value &= mask;
1129 } else {
1130 reg->umin_value = 0;
1131 reg->umax_value = mask;
1132 }
1133 reg->smin_value = reg->umin_value;
1134 reg->smax_value = reg->umax_value;
1135}
1136
17a52670
AS
1137/* check whether memory at (regno + off) is accessible for t = (read | write)
1138 * if t==write, value_regno is a register which value is stored into memory
1139 * if t==read, value_regno is a register which will receive the value from memory
1140 * if t==write && value_regno==-1, some unknown value is stored into memory
1141 * if t==read && value_regno==-1, don't care what we read from memory
1142 */
57b4a36e
DB
1143static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1144 int off, int bpf_size, enum bpf_access_type t,
1145 int value_regno, bool strict_alignment_once)
17a52670 1146{
638f5b90
AS
1147 struct bpf_verifier_state *state = env->cur_state;
1148 struct bpf_reg_state *regs = cur_regs(env);
1149 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1150 int size, err = 0;
1151
1152 size = bpf_size_to_bytes(bpf_size);
1153 if (size < 0)
1154 return size;
1155
f1174f77 1156 /* alignment checks will add in reg->off themselves */
57b4a36e 1157 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1158 if (err)
1159 return err;
17a52670 1160
f1174f77
EC
1161 /* for access checks, reg->off is just part of off */
1162 off += reg->off;
1163
1164 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1165 if (t == BPF_WRITE && value_regno >= 0 &&
1166 is_pointer_value(env, value_regno)) {
61bd5218 1167 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1168 return -EACCES;
1169 }
48461135 1170
9fd29c08 1171 err = check_map_access(env, regno, off, size, false);
17a52670 1172 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1173 mark_reg_unknown(env, regs, value_regno);
17a52670 1174
1a0dc1ac 1175 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1176 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1177
1be7f75d
AS
1178 if (t == BPF_WRITE && value_regno >= 0 &&
1179 is_pointer_value(env, value_regno)) {
61bd5218 1180 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1181 return -EACCES;
1182 }
f1174f77
EC
1183 /* ctx accesses must be at a fixed offset, so that we can
1184 * determine what type of data were returned.
1185 */
28e33f9d 1186 if (reg->off) {
f8ddadc4
DM
1187 verbose(env,
1188 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1189 regno, reg->off, off - reg->off);
1190 return -EACCES;
1191 }
1192 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1193 char tn_buf[48];
1194
1195 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1196 verbose(env,
1197 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1198 tn_buf, off, size);
1199 return -EACCES;
1200 }
31fd8581 1201 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1202 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1203 /* ctx access returns either a scalar, or a
de8f3a83
DB
1204 * PTR_TO_PACKET[_META,_END]. In the latter
1205 * case, we know the offset is zero.
f1174f77
EC
1206 */
1207 if (reg_type == SCALAR_VALUE)
638f5b90 1208 mark_reg_unknown(env, regs, value_regno);
f1174f77 1209 else
638f5b90 1210 mark_reg_known_zero(env, regs,
61bd5218 1211 value_regno);
638f5b90
AS
1212 regs[value_regno].id = 0;
1213 regs[value_regno].off = 0;
1214 regs[value_regno].range = 0;
1215 regs[value_regno].type = reg_type;
969bf05e 1216 }
17a52670 1217
f1174f77
EC
1218 } else if (reg->type == PTR_TO_STACK) {
1219 /* stack accesses must be at a fixed offset, so that we can
1220 * determine what type of data were returned.
1221 * See check_stack_read().
1222 */
1223 if (!tnum_is_const(reg->var_off)) {
1224 char tn_buf[48];
1225
1226 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1227 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1228 tn_buf, off, size);
1229 return -EACCES;
1230 }
1231 off += reg->var_off.value;
17a52670 1232 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1233 verbose(env, "invalid stack off=%d size=%d\n", off,
1234 size);
17a52670
AS
1235 return -EACCES;
1236 }
8726679a
AS
1237
1238 if (env->prog->aux->stack_depth < -off)
1239 env->prog->aux->stack_depth = -off;
1240
638f5b90 1241 if (t == BPF_WRITE)
61bd5218 1242 err = check_stack_write(env, state, off, size,
abd098e0 1243 value_regno, insn_idx);
638f5b90 1244 else
61bd5218
JK
1245 err = check_stack_read(env, state, off, size,
1246 value_regno);
de8f3a83 1247 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1248 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1249 verbose(env, "cannot write into packet\n");
969bf05e
AS
1250 return -EACCES;
1251 }
4acf6c0b
BB
1252 if (t == BPF_WRITE && value_regno >= 0 &&
1253 is_pointer_value(env, value_regno)) {
61bd5218
JK
1254 verbose(env, "R%d leaks addr into packet\n",
1255 value_regno);
4acf6c0b
BB
1256 return -EACCES;
1257 }
9fd29c08 1258 err = check_packet_access(env, regno, off, size, false);
969bf05e 1259 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1260 mark_reg_unknown(env, regs, value_regno);
17a52670 1261 } else {
61bd5218
JK
1262 verbose(env, "R%d invalid mem access '%s'\n", regno,
1263 reg_type_str[reg->type]);
17a52670
AS
1264 return -EACCES;
1265 }
969bf05e 1266
f1174f77 1267 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1268 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1269 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1270 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1271 }
17a52670
AS
1272 return err;
1273}
1274
31fd8581 1275static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1276{
17a52670
AS
1277 int err;
1278
1279 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1280 insn->imm != 0) {
61bd5218 1281 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1282 return -EINVAL;
1283 }
1284
1285 /* check src1 operand */
dc503a8a 1286 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1287 if (err)
1288 return err;
1289
1290 /* check src2 operand */
dc503a8a 1291 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1292 if (err)
1293 return err;
1294
6bdf6abc 1295 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1296 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1297 return -EACCES;
1298 }
1299
57b4a36e
DB
1300 if (is_ctx_reg(env, insn->dst_reg) ||
1301 is_pkt_reg(env, insn->dst_reg)) {
1302 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1303 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1304 "context" : "packet");
f37a8cb8
DB
1305 return -EACCES;
1306 }
1307
17a52670 1308 /* check whether atomic_add can read the memory */
31fd8581 1309 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
57b4a36e 1310 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1311 if (err)
1312 return err;
1313
1314 /* check whether atomic_add can write into the same memory */
31fd8581 1315 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
57b4a36e 1316 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1317}
1318
f1174f77
EC
1319/* Does this register contain a constant zero? */
1320static bool register_is_null(struct bpf_reg_state reg)
1321{
1322 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1323}
1324
17a52670
AS
1325/* when register 'regno' is passed into function that will read 'access_size'
1326 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1327 * and all elements of stack are initialized.
1328 * Unlike most pointer bounds-checking functions, this one doesn't take an
1329 * 'off' argument, so it has to add in reg->off itself.
17a52670 1330 */
58e2af8b 1331static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1332 int access_size, bool zero_size_allowed,
1333 struct bpf_call_arg_meta *meta)
17a52670 1334{
638f5b90 1335 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1336 struct bpf_reg_state *regs = state->regs;
638f5b90 1337 int off, i, slot, spi;
17a52670 1338
8e2fe1d9 1339 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1340 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1341 if (zero_size_allowed && access_size == 0 &&
f1174f77 1342 register_is_null(regs[regno]))
8e2fe1d9
DB
1343 return 0;
1344
61bd5218 1345 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1346 reg_type_str[regs[regno].type],
1347 reg_type_str[PTR_TO_STACK]);
17a52670 1348 return -EACCES;
8e2fe1d9 1349 }
17a52670 1350
f1174f77
EC
1351 /* Only allow fixed-offset stack reads */
1352 if (!tnum_is_const(regs[regno].var_off)) {
1353 char tn_buf[48];
1354
1355 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1356 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1357 regno, tn_buf);
ea25f914 1358 return -EACCES;
f1174f77
EC
1359 }
1360 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1361 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1362 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1363 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1364 regno, off, access_size);
1365 return -EACCES;
1366 }
1367
8726679a
AS
1368 if (env->prog->aux->stack_depth < -off)
1369 env->prog->aux->stack_depth = -off;
1370
435faee1
DB
1371 if (meta && meta->raw_mode) {
1372 meta->access_size = access_size;
1373 meta->regno = regno;
1374 return 0;
1375 }
1376
17a52670 1377 for (i = 0; i < access_size; i++) {
638f5b90
AS
1378 slot = -(off + i) - 1;
1379 spi = slot / BPF_REG_SIZE;
1380 if (state->allocated_stack <= slot ||
1381 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1382 STACK_MISC) {
61bd5218 1383 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1384 off, i, access_size);
1385 return -EACCES;
1386 }
1387 }
1388 return 0;
1389}
1390
06c1c049
GB
1391static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1392 int access_size, bool zero_size_allowed,
1393 struct bpf_call_arg_meta *meta)
1394{
638f5b90 1395 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1396
f1174f77 1397 switch (reg->type) {
06c1c049 1398 case PTR_TO_PACKET:
de8f3a83 1399 case PTR_TO_PACKET_META:
9fd29c08
YS
1400 return check_packet_access(env, regno, reg->off, access_size,
1401 zero_size_allowed);
06c1c049 1402 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1403 return check_map_access(env, regno, reg->off, access_size,
1404 zero_size_allowed);
f1174f77 1405 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1406 return check_stack_boundary(env, regno, access_size,
1407 zero_size_allowed, meta);
1408 }
1409}
1410
58e2af8b 1411static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1412 enum bpf_arg_type arg_type,
1413 struct bpf_call_arg_meta *meta)
17a52670 1414{
638f5b90 1415 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1416 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1417 int err = 0;
1418
80f1d68c 1419 if (arg_type == ARG_DONTCARE)
17a52670
AS
1420 return 0;
1421
dc503a8a
EC
1422 err = check_reg_arg(env, regno, SRC_OP);
1423 if (err)
1424 return err;
17a52670 1425
1be7f75d
AS
1426 if (arg_type == ARG_ANYTHING) {
1427 if (is_pointer_value(env, regno)) {
61bd5218
JK
1428 verbose(env, "R%d leaks addr into helper function\n",
1429 regno);
1be7f75d
AS
1430 return -EACCES;
1431 }
80f1d68c 1432 return 0;
1be7f75d 1433 }
80f1d68c 1434
de8f3a83 1435 if (type_is_pkt_pointer(type) &&
3a0af8fd 1436 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1437 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1438 return -EACCES;
1439 }
1440
8e2fe1d9 1441 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1442 arg_type == ARG_PTR_TO_MAP_VALUE) {
1443 expected_type = PTR_TO_STACK;
de8f3a83
DB
1444 if (!type_is_pkt_pointer(type) &&
1445 type != expected_type)
6841de8b 1446 goto err_type;
39f19ebb
AS
1447 } else if (arg_type == ARG_CONST_SIZE ||
1448 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1449 expected_type = SCALAR_VALUE;
1450 if (type != expected_type)
6841de8b 1451 goto err_type;
17a52670
AS
1452 } else if (arg_type == ARG_CONST_MAP_PTR) {
1453 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1454 if (type != expected_type)
1455 goto err_type;
608cd71a
AS
1456 } else if (arg_type == ARG_PTR_TO_CTX) {
1457 expected_type = PTR_TO_CTX;
6841de8b
AS
1458 if (type != expected_type)
1459 goto err_type;
39f19ebb 1460 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1461 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1462 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1463 expected_type = PTR_TO_STACK;
1464 /* One exception here. In case function allows for NULL to be
f1174f77 1465 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1466 * happens during stack boundary checking.
1467 */
db1ac496
GB
1468 if (register_is_null(*reg) &&
1469 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1470 /* final test in check_stack_boundary() */;
de8f3a83
DB
1471 else if (!type_is_pkt_pointer(type) &&
1472 type != PTR_TO_MAP_VALUE &&
f1174f77 1473 type != expected_type)
6841de8b 1474 goto err_type;
39f19ebb 1475 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1476 } else {
61bd5218 1477 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1478 return -EFAULT;
1479 }
1480
17a52670
AS
1481 if (arg_type == ARG_CONST_MAP_PTR) {
1482 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1483 meta->map_ptr = reg->map_ptr;
17a52670
AS
1484 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1485 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1486 * check that [key, key + map->key_size) are within
1487 * stack limits and initialized
1488 */
33ff9823 1489 if (!meta->map_ptr) {
17a52670
AS
1490 /* in function declaration map_ptr must come before
1491 * map_key, so that it's verified and known before
1492 * we have to check map_key here. Otherwise it means
1493 * that kernel subsystem misconfigured verifier
1494 */
61bd5218 1495 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1496 return -EACCES;
1497 }
de8f3a83 1498 if (type_is_pkt_pointer(type))
f1174f77 1499 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1500 meta->map_ptr->key_size,
1501 false);
6841de8b
AS
1502 else
1503 err = check_stack_boundary(env, regno,
1504 meta->map_ptr->key_size,
1505 false, NULL);
17a52670
AS
1506 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1507 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1508 * check [value, value + map->value_size) validity
1509 */
33ff9823 1510 if (!meta->map_ptr) {
17a52670 1511 /* kernel subsystem misconfigured verifier */
61bd5218 1512 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1513 return -EACCES;
1514 }
de8f3a83 1515 if (type_is_pkt_pointer(type))
f1174f77 1516 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1517 meta->map_ptr->value_size,
1518 false);
6841de8b
AS
1519 else
1520 err = check_stack_boundary(env, regno,
1521 meta->map_ptr->value_size,
1522 false, NULL);
39f19ebb
AS
1523 } else if (arg_type == ARG_CONST_SIZE ||
1524 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1525 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1526
17a52670
AS
1527 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1528 * from stack pointer 'buf'. Check it
1529 * note: regno == len, regno - 1 == buf
1530 */
1531 if (regno == 0) {
1532 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1533 verbose(env,
1534 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1535 return -EACCES;
1536 }
06c1c049 1537
f1174f77
EC
1538 /* The register is SCALAR_VALUE; the access check
1539 * happens using its boundaries.
06c1c049 1540 */
f1174f77
EC
1541
1542 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1543 /* For unprivileged variable accesses, disable raw
1544 * mode so that the program is required to
1545 * initialize all the memory that the helper could
1546 * just partially fill up.
1547 */
1548 meta = NULL;
1549
b03c9f9f 1550 if (reg->smin_value < 0) {
61bd5218 1551 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1552 regno);
1553 return -EACCES;
1554 }
06c1c049 1555
b03c9f9f 1556 if (reg->umin_value == 0) {
f1174f77
EC
1557 err = check_helper_mem_access(env, regno - 1, 0,
1558 zero_size_allowed,
1559 meta);
06c1c049
GB
1560 if (err)
1561 return err;
06c1c049 1562 }
f1174f77 1563
b03c9f9f 1564 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1565 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1566 regno);
1567 return -EACCES;
1568 }
1569 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1570 reg->umax_value,
f1174f77 1571 zero_size_allowed, meta);
17a52670
AS
1572 }
1573
1574 return err;
6841de8b 1575err_type:
61bd5218 1576 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1577 reg_type_str[type], reg_type_str[expected_type]);
1578 return -EACCES;
17a52670
AS
1579}
1580
61bd5218
JK
1581static int check_map_func_compatibility(struct bpf_verifier_env *env,
1582 struct bpf_map *map, int func_id)
35578d79 1583{
35578d79
KX
1584 if (!map)
1585 return 0;
1586
6aff67c8
AS
1587 /* We need a two way check, first is from map perspective ... */
1588 switch (map->map_type) {
1589 case BPF_MAP_TYPE_PROG_ARRAY:
1590 if (func_id != BPF_FUNC_tail_call)
1591 goto error;
1592 break;
1593 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1594 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1595 func_id != BPF_FUNC_perf_event_output &&
1596 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1597 goto error;
1598 break;
1599 case BPF_MAP_TYPE_STACK_TRACE:
1600 if (func_id != BPF_FUNC_get_stackid)
1601 goto error;
1602 break;
4ed8ec52 1603 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1604 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1605 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1606 goto error;
1607 break;
546ac1ff
JF
1608 /* devmap returns a pointer to a live net_device ifindex that we cannot
1609 * allow to be modified from bpf side. So do not allow lookup elements
1610 * for now.
1611 */
1612 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1613 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1614 goto error;
1615 break;
6710e112
JDB
1616 /* Restrict bpf side of cpumap, open when use-cases appear */
1617 case BPF_MAP_TYPE_CPUMAP:
1618 if (func_id != BPF_FUNC_redirect_map)
1619 goto error;
1620 break;
56f668df 1621 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1622 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1623 if (func_id != BPF_FUNC_map_lookup_elem)
1624 goto error;
16a43625 1625 break;
174a79ff
JF
1626 case BPF_MAP_TYPE_SOCKMAP:
1627 if (func_id != BPF_FUNC_sk_redirect_map &&
1628 func_id != BPF_FUNC_sock_map_update &&
1629 func_id != BPF_FUNC_map_delete_elem)
1630 goto error;
1631 break;
6aff67c8
AS
1632 default:
1633 break;
1634 }
1635
1636 /* ... and second from the function itself. */
1637 switch (func_id) {
1638 case BPF_FUNC_tail_call:
1639 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1640 goto error;
1641 break;
1642 case BPF_FUNC_perf_event_read:
1643 case BPF_FUNC_perf_event_output:
908432ca 1644 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1645 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1646 goto error;
1647 break;
1648 case BPF_FUNC_get_stackid:
1649 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1650 goto error;
1651 break;
60d20f91 1652 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1653 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1654 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1655 goto error;
1656 break;
97f91a7c 1657 case BPF_FUNC_redirect_map:
9c270af3
JDB
1658 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1659 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1660 goto error;
1661 break;
174a79ff
JF
1662 case BPF_FUNC_sk_redirect_map:
1663 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1664 goto error;
1665 break;
1666 case BPF_FUNC_sock_map_update:
1667 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1668 goto error;
1669 break;
6aff67c8
AS
1670 default:
1671 break;
35578d79
KX
1672 }
1673
1674 return 0;
6aff67c8 1675error:
61bd5218 1676 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1677 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1678 return -EINVAL;
35578d79
KX
1679}
1680
435faee1
DB
1681static int check_raw_mode(const struct bpf_func_proto *fn)
1682{
1683 int count = 0;
1684
39f19ebb 1685 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1686 count++;
39f19ebb 1687 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1688 count++;
39f19ebb 1689 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1690 count++;
39f19ebb 1691 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1692 count++;
39f19ebb 1693 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1694 count++;
1695
1696 return count > 1 ? -EINVAL : 0;
1697}
1698
de8f3a83
DB
1699/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1700 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1701 */
58e2af8b 1702static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1703{
638f5b90 1704 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1705 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1706 int i;
1707
1708 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1709 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1710 mark_reg_unknown(env, regs, i);
969bf05e 1711
638f5b90
AS
1712 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1713 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1714 continue;
638f5b90 1715 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1716 if (reg_is_pkt_pointer_any(reg))
1717 __mark_reg_unknown(reg);
969bf05e
AS
1718 }
1719}
1720
81ed18ab 1721static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1722{
17a52670 1723 const struct bpf_func_proto *fn = NULL;
638f5b90 1724 struct bpf_reg_state *regs;
33ff9823 1725 struct bpf_call_arg_meta meta;
969bf05e 1726 bool changes_data;
17a52670
AS
1727 int i, err;
1728
1729 /* find function prototype */
1730 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1731 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1732 func_id);
17a52670
AS
1733 return -EINVAL;
1734 }
1735
00176a34
JK
1736 if (env->ops->get_func_proto)
1737 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1738
1739 if (!fn) {
61bd5218
JK
1740 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1741 func_id);
17a52670
AS
1742 return -EINVAL;
1743 }
1744
1745 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1746 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1747 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1748 return -EINVAL;
1749 }
1750
04514d13 1751 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1752 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1753 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1754 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1755 func_id_name(func_id), func_id);
1756 return -EINVAL;
1757 }
969bf05e 1758
33ff9823 1759 memset(&meta, 0, sizeof(meta));
36bbef52 1760 meta.pkt_access = fn->pkt_access;
33ff9823 1761
435faee1
DB
1762 /* We only support one arg being in raw mode at the moment, which
1763 * is sufficient for the helper functions we have right now.
1764 */
1765 err = check_raw_mode(fn);
1766 if (err) {
61bd5218 1767 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1768 func_id_name(func_id), func_id);
435faee1
DB
1769 return err;
1770 }
1771
17a52670 1772 /* check args */
33ff9823 1773 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1774 if (err)
1775 return err;
33ff9823 1776 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1777 if (err)
1778 return err;
b2157399
AS
1779 if (func_id == BPF_FUNC_tail_call) {
1780 if (meta.map_ptr == NULL) {
1781 verbose(env, "verifier bug\n");
1782 return -EINVAL;
1783 }
1784 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1785 }
33ff9823 1786 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1787 if (err)
1788 return err;
33ff9823 1789 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1790 if (err)
1791 return err;
33ff9823 1792 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1793 if (err)
1794 return err;
1795
435faee1
DB
1796 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1797 * is inferred from register state.
1798 */
1799 for (i = 0; i < meta.access_size; i++) {
57b4a36e
DB
1800 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
1801 BPF_WRITE, -1, false);
435faee1
DB
1802 if (err)
1803 return err;
1804 }
1805
638f5b90 1806 regs = cur_regs(env);
17a52670 1807 /* reset caller saved regs */
dc503a8a 1808 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1809 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1810 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1811 }
17a52670 1812
dc503a8a 1813 /* update return register (already marked as written above) */
17a52670 1814 if (fn->ret_type == RET_INTEGER) {
f1174f77 1815 /* sets type to SCALAR_VALUE */
61bd5218 1816 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1817 } else if (fn->ret_type == RET_VOID) {
1818 regs[BPF_REG_0].type = NOT_INIT;
1819 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1820 struct bpf_insn_aux_data *insn_aux;
1821
17a52670 1822 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1823 /* There is no offset yet applied, variable or fixed */
61bd5218 1824 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1825 regs[BPF_REG_0].off = 0;
17a52670
AS
1826 /* remember map_ptr, so that check_map_access()
1827 * can check 'value_size' boundary of memory access
1828 * to map element returned from bpf_map_lookup_elem()
1829 */
33ff9823 1830 if (meta.map_ptr == NULL) {
61bd5218
JK
1831 verbose(env,
1832 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1833 return -EINVAL;
1834 }
33ff9823 1835 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1836 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1837 insn_aux = &env->insn_aux_data[insn_idx];
1838 if (!insn_aux->map_ptr)
1839 insn_aux->map_ptr = meta.map_ptr;
1840 else if (insn_aux->map_ptr != meta.map_ptr)
1841 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1842 } else {
61bd5218 1843 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1844 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1845 return -EINVAL;
1846 }
04fd61ab 1847
61bd5218 1848 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1849 if (err)
1850 return err;
04fd61ab 1851
969bf05e
AS
1852 if (changes_data)
1853 clear_all_pkt_pointers(env);
1854 return 0;
1855}
1856
b03c9f9f
EC
1857static bool signed_add_overflows(s64 a, s64 b)
1858{
1859 /* Do the add in u64, where overflow is well-defined */
1860 s64 res = (s64)((u64)a + (u64)b);
1861
1862 if (b < 0)
1863 return res > a;
1864 return res < a;
1865}
1866
1867static bool signed_sub_overflows(s64 a, s64 b)
1868{
1869 /* Do the sub in u64, where overflow is well-defined */
1870 s64 res = (s64)((u64)a - (u64)b);
1871
1872 if (b < 0)
1873 return res < a;
1874 return res > a;
969bf05e
AS
1875}
1876
bb7f0f98
AS
1877static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1878 const struct bpf_reg_state *reg,
1879 enum bpf_reg_type type)
1880{
1881 bool known = tnum_is_const(reg->var_off);
1882 s64 val = reg->var_off.value;
1883 s64 smin = reg->smin_value;
1884
1885 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1886 verbose(env, "math between %s pointer and %lld is not allowed\n",
1887 reg_type_str[type], val);
1888 return false;
1889 }
1890
1891 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1892 verbose(env, "%s pointer offset %d is not allowed\n",
1893 reg_type_str[type], reg->off);
1894 return false;
1895 }
1896
1897 if (smin == S64_MIN) {
1898 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1899 reg_type_str[type]);
1900 return false;
1901 }
1902
1903 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1904 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1905 smin, reg_type_str[type]);
1906 return false;
1907 }
1908
1909 return true;
1910}
1911
f1174f77 1912/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1913 * Caller should also handle BPF_MOV case separately.
1914 * If we return -EACCES, caller may want to try again treating pointer as a
1915 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1916 */
1917static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1918 struct bpf_insn *insn,
1919 const struct bpf_reg_state *ptr_reg,
1920 const struct bpf_reg_state *off_reg)
969bf05e 1921{
638f5b90 1922 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1923 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1924 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1925 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1926 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1927 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1928 u8 opcode = BPF_OP(insn->code);
f1174f77 1929 u32 dst = insn->dst_reg;
969bf05e 1930
f1174f77 1931 dst_reg = &regs[dst];
969bf05e 1932
6f16101e
DB
1933 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
1934 smin_val > smax_val || umin_val > umax_val) {
1935 /* Taint dst register if offset had invalid bounds derived from
1936 * e.g. dead branches.
1937 */
1938 __mark_reg_unknown(dst_reg);
1939 return 0;
f1174f77
EC
1940 }
1941
1942 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1943 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
1944 verbose(env,
1945 "R%d 32-bit pointer arithmetic prohibited\n",
1946 dst);
f1174f77 1947 return -EACCES;
969bf05e
AS
1948 }
1949
f1174f77 1950 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
1951 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1952 dst);
f1174f77
EC
1953 return -EACCES;
1954 }
1955 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
1956 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1957 dst);
f1174f77
EC
1958 return -EACCES;
1959 }
1960 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
1961 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1962 dst);
f1174f77
EC
1963 return -EACCES;
1964 }
1965
1966 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1967 * The id may be overwritten later if we create a new variable offset.
969bf05e 1968 */
f1174f77
EC
1969 dst_reg->type = ptr_reg->type;
1970 dst_reg->id = ptr_reg->id;
969bf05e 1971
bb7f0f98
AS
1972 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1973 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1974 return -EINVAL;
1975
f1174f77
EC
1976 switch (opcode) {
1977 case BPF_ADD:
1978 /* We can take a fixed offset as long as it doesn't overflow
1979 * the s32 'off' field
969bf05e 1980 */
b03c9f9f
EC
1981 if (known && (ptr_reg->off + smin_val ==
1982 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1983 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1984 dst_reg->smin_value = smin_ptr;
1985 dst_reg->smax_value = smax_ptr;
1986 dst_reg->umin_value = umin_ptr;
1987 dst_reg->umax_value = umax_ptr;
f1174f77 1988 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1989 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1990 dst_reg->range = ptr_reg->range;
1991 break;
1992 }
f1174f77
EC
1993 /* A new variable offset is created. Note that off_reg->off
1994 * == 0, since it's a scalar.
1995 * dst_reg gets the pointer type and since some positive
1996 * integer value was added to the pointer, give it a new 'id'
1997 * if it's a PTR_TO_PACKET.
1998 * this creates a new 'base' pointer, off_reg (variable) gets
1999 * added into the variable offset, and we copy the fixed offset
2000 * from ptr_reg.
969bf05e 2001 */
b03c9f9f
EC
2002 if (signed_add_overflows(smin_ptr, smin_val) ||
2003 signed_add_overflows(smax_ptr, smax_val)) {
2004 dst_reg->smin_value = S64_MIN;
2005 dst_reg->smax_value = S64_MAX;
2006 } else {
2007 dst_reg->smin_value = smin_ptr + smin_val;
2008 dst_reg->smax_value = smax_ptr + smax_val;
2009 }
2010 if (umin_ptr + umin_val < umin_ptr ||
2011 umax_ptr + umax_val < umax_ptr) {
2012 dst_reg->umin_value = 0;
2013 dst_reg->umax_value = U64_MAX;
2014 } else {
2015 dst_reg->umin_value = umin_ptr + umin_val;
2016 dst_reg->umax_value = umax_ptr + umax_val;
2017 }
f1174f77
EC
2018 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2019 dst_reg->off = ptr_reg->off;
de8f3a83 2020 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2021 dst_reg->id = ++env->id_gen;
2022 /* something was added to pkt_ptr, set range to zero */
2023 dst_reg->range = 0;
2024 }
2025 break;
2026 case BPF_SUB:
2027 if (dst_reg == off_reg) {
2028 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2029 verbose(env, "R%d tried to subtract pointer from scalar\n",
2030 dst);
f1174f77
EC
2031 return -EACCES;
2032 }
2033 /* We don't allow subtraction from FP, because (according to
2034 * test_verifier.c test "invalid fp arithmetic", JITs might not
2035 * be able to deal with it.
969bf05e 2036 */
f1174f77 2037 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2038 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2039 dst);
f1174f77
EC
2040 return -EACCES;
2041 }
b03c9f9f
EC
2042 if (known && (ptr_reg->off - smin_val ==
2043 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2044 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2045 dst_reg->smin_value = smin_ptr;
2046 dst_reg->smax_value = smax_ptr;
2047 dst_reg->umin_value = umin_ptr;
2048 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2049 dst_reg->var_off = ptr_reg->var_off;
2050 dst_reg->id = ptr_reg->id;
b03c9f9f 2051 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2052 dst_reg->range = ptr_reg->range;
2053 break;
2054 }
f1174f77
EC
2055 /* A new variable offset is created. If the subtrahend is known
2056 * nonnegative, then any reg->range we had before is still good.
969bf05e 2057 */
b03c9f9f
EC
2058 if (signed_sub_overflows(smin_ptr, smax_val) ||
2059 signed_sub_overflows(smax_ptr, smin_val)) {
2060 /* Overflow possible, we know nothing */
2061 dst_reg->smin_value = S64_MIN;
2062 dst_reg->smax_value = S64_MAX;
2063 } else {
2064 dst_reg->smin_value = smin_ptr - smax_val;
2065 dst_reg->smax_value = smax_ptr - smin_val;
2066 }
2067 if (umin_ptr < umax_val) {
2068 /* Overflow possible, we know nothing */
2069 dst_reg->umin_value = 0;
2070 dst_reg->umax_value = U64_MAX;
2071 } else {
2072 /* Cannot overflow (as long as bounds are consistent) */
2073 dst_reg->umin_value = umin_ptr - umax_val;
2074 dst_reg->umax_value = umax_ptr - umin_val;
2075 }
f1174f77
EC
2076 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2077 dst_reg->off = ptr_reg->off;
de8f3a83 2078 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2079 dst_reg->id = ++env->id_gen;
2080 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2081 if (smin_val < 0)
f1174f77 2082 dst_reg->range = 0;
43188702 2083 }
f1174f77
EC
2084 break;
2085 case BPF_AND:
2086 case BPF_OR:
2087 case BPF_XOR:
82abbf8d
AS
2088 /* bitwise ops on pointers are troublesome, prohibit. */
2089 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2090 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2091 return -EACCES;
2092 default:
2093 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2094 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2095 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2096 return -EACCES;
43188702
JF
2097 }
2098
bb7f0f98
AS
2099 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2100 return -EINVAL;
2101
b03c9f9f
EC
2102 __update_reg_bounds(dst_reg);
2103 __reg_deduce_bounds(dst_reg);
2104 __reg_bound_offset(dst_reg);
43188702
JF
2105 return 0;
2106}
2107
468f6eaf
JH
2108/* WARNING: This function does calculations on 64-bit values, but the actual
2109 * execution may occur on 32-bit values. Therefore, things like bitshifts
2110 * need extra checks in the 32-bit case.
2111 */
f1174f77
EC
2112static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2113 struct bpf_insn *insn,
2114 struct bpf_reg_state *dst_reg,
2115 struct bpf_reg_state src_reg)
969bf05e 2116{
638f5b90 2117 struct bpf_reg_state *regs = cur_regs(env);
48461135 2118 u8 opcode = BPF_OP(insn->code);
f1174f77 2119 bool src_known, dst_known;
b03c9f9f
EC
2120 s64 smin_val, smax_val;
2121 u64 umin_val, umax_val;
468f6eaf 2122 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2123
b03c9f9f
EC
2124 smin_val = src_reg.smin_value;
2125 smax_val = src_reg.smax_value;
2126 umin_val = src_reg.umin_value;
2127 umax_val = src_reg.umax_value;
f1174f77
EC
2128 src_known = tnum_is_const(src_reg.var_off);
2129 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2130
6f16101e
DB
2131 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2132 smin_val > smax_val || umin_val > umax_val) {
2133 /* Taint dst register if offset had invalid bounds derived from
2134 * e.g. dead branches.
2135 */
2136 __mark_reg_unknown(dst_reg);
2137 return 0;
2138 }
2139
bb7f0f98
AS
2140 if (!src_known &&
2141 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2142 __mark_reg_unknown(dst_reg);
2143 return 0;
2144 }
2145
48461135
JB
2146 switch (opcode) {
2147 case BPF_ADD:
b03c9f9f
EC
2148 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2149 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2150 dst_reg->smin_value = S64_MIN;
2151 dst_reg->smax_value = S64_MAX;
2152 } else {
2153 dst_reg->smin_value += smin_val;
2154 dst_reg->smax_value += smax_val;
2155 }
2156 if (dst_reg->umin_value + umin_val < umin_val ||
2157 dst_reg->umax_value + umax_val < umax_val) {
2158 dst_reg->umin_value = 0;
2159 dst_reg->umax_value = U64_MAX;
2160 } else {
2161 dst_reg->umin_value += umin_val;
2162 dst_reg->umax_value += umax_val;
2163 }
f1174f77 2164 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2165 break;
2166 case BPF_SUB:
b03c9f9f
EC
2167 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2168 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2169 /* Overflow possible, we know nothing */
2170 dst_reg->smin_value = S64_MIN;
2171 dst_reg->smax_value = S64_MAX;
2172 } else {
2173 dst_reg->smin_value -= smax_val;
2174 dst_reg->smax_value -= smin_val;
2175 }
2176 if (dst_reg->umin_value < umax_val) {
2177 /* Overflow possible, we know nothing */
2178 dst_reg->umin_value = 0;
2179 dst_reg->umax_value = U64_MAX;
2180 } else {
2181 /* Cannot overflow (as long as bounds are consistent) */
2182 dst_reg->umin_value -= umax_val;
2183 dst_reg->umax_value -= umin_val;
2184 }
f1174f77 2185 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2186 break;
2187 case BPF_MUL:
b03c9f9f
EC
2188 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2189 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2190 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2191 __mark_reg_unbounded(dst_reg);
2192 __update_reg_bounds(dst_reg);
f1174f77
EC
2193 break;
2194 }
b03c9f9f
EC
2195 /* Both values are positive, so we can work with unsigned and
2196 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2197 */
b03c9f9f
EC
2198 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2199 /* Potential overflow, we know nothing */
2200 __mark_reg_unbounded(dst_reg);
2201 /* (except what we can learn from the var_off) */
2202 __update_reg_bounds(dst_reg);
2203 break;
2204 }
2205 dst_reg->umin_value *= umin_val;
2206 dst_reg->umax_value *= umax_val;
2207 if (dst_reg->umax_value > S64_MAX) {
2208 /* Overflow possible, we know nothing */
2209 dst_reg->smin_value = S64_MIN;
2210 dst_reg->smax_value = S64_MAX;
2211 } else {
2212 dst_reg->smin_value = dst_reg->umin_value;
2213 dst_reg->smax_value = dst_reg->umax_value;
2214 }
48461135
JB
2215 break;
2216 case BPF_AND:
f1174f77 2217 if (src_known && dst_known) {
b03c9f9f
EC
2218 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2219 src_reg.var_off.value);
f1174f77
EC
2220 break;
2221 }
b03c9f9f
EC
2222 /* We get our minimum from the var_off, since that's inherently
2223 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2224 */
f1174f77 2225 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2226 dst_reg->umin_value = dst_reg->var_off.value;
2227 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2228 if (dst_reg->smin_value < 0 || smin_val < 0) {
2229 /* Lose signed bounds when ANDing negative numbers,
2230 * ain't nobody got time for that.
2231 */
2232 dst_reg->smin_value = S64_MIN;
2233 dst_reg->smax_value = S64_MAX;
2234 } else {
2235 /* ANDing two positives gives a positive, so safe to
2236 * cast result into s64.
2237 */
2238 dst_reg->smin_value = dst_reg->umin_value;
2239 dst_reg->smax_value = dst_reg->umax_value;
2240 }
2241 /* We may learn something more from the var_off */
2242 __update_reg_bounds(dst_reg);
f1174f77
EC
2243 break;
2244 case BPF_OR:
2245 if (src_known && dst_known) {
b03c9f9f
EC
2246 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2247 src_reg.var_off.value);
f1174f77
EC
2248 break;
2249 }
b03c9f9f
EC
2250 /* We get our maximum from the var_off, and our minimum is the
2251 * maximum of the operands' minima
f1174f77
EC
2252 */
2253 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2254 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2255 dst_reg->umax_value = dst_reg->var_off.value |
2256 dst_reg->var_off.mask;
2257 if (dst_reg->smin_value < 0 || smin_val < 0) {
2258 /* Lose signed bounds when ORing negative numbers,
2259 * ain't nobody got time for that.
2260 */
2261 dst_reg->smin_value = S64_MIN;
2262 dst_reg->smax_value = S64_MAX;
f1174f77 2263 } else {
b03c9f9f
EC
2264 /* ORing two positives gives a positive, so safe to
2265 * cast result into s64.
2266 */
2267 dst_reg->smin_value = dst_reg->umin_value;
2268 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2269 }
b03c9f9f
EC
2270 /* We may learn something more from the var_off */
2271 __update_reg_bounds(dst_reg);
48461135
JB
2272 break;
2273 case BPF_LSH:
468f6eaf
JH
2274 if (umax_val >= insn_bitness) {
2275 /* Shifts greater than 31 or 63 are undefined.
2276 * This includes shifts by a negative number.
b03c9f9f 2277 */
61bd5218 2278 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2279 break;
2280 }
b03c9f9f
EC
2281 /* We lose all sign bit information (except what we can pick
2282 * up from var_off)
48461135 2283 */
b03c9f9f
EC
2284 dst_reg->smin_value = S64_MIN;
2285 dst_reg->smax_value = S64_MAX;
2286 /* If we might shift our top bit out, then we know nothing */
2287 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2288 dst_reg->umin_value = 0;
2289 dst_reg->umax_value = U64_MAX;
d1174416 2290 } else {
b03c9f9f
EC
2291 dst_reg->umin_value <<= umin_val;
2292 dst_reg->umax_value <<= umax_val;
d1174416 2293 }
b03c9f9f
EC
2294 if (src_known)
2295 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2296 else
2297 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2298 /* We may learn something more from the var_off */
2299 __update_reg_bounds(dst_reg);
48461135
JB
2300 break;
2301 case BPF_RSH:
468f6eaf
JH
2302 if (umax_val >= insn_bitness) {
2303 /* Shifts greater than 31 or 63 are undefined.
2304 * This includes shifts by a negative number.
b03c9f9f 2305 */
61bd5218 2306 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2307 break;
2308 }
4374f256
EC
2309 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2310 * be negative, then either:
2311 * 1) src_reg might be zero, so the sign bit of the result is
2312 * unknown, so we lose our signed bounds
2313 * 2) it's known negative, thus the unsigned bounds capture the
2314 * signed bounds
2315 * 3) the signed bounds cross zero, so they tell us nothing
2316 * about the result
2317 * If the value in dst_reg is known nonnegative, then again the
2318 * unsigned bounts capture the signed bounds.
2319 * Thus, in all cases it suffices to blow away our signed bounds
2320 * and rely on inferring new ones from the unsigned bounds and
2321 * var_off of the result.
2322 */
2323 dst_reg->smin_value = S64_MIN;
2324 dst_reg->smax_value = S64_MAX;
f1174f77 2325 if (src_known)
b03c9f9f
EC
2326 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2327 umin_val);
f1174f77 2328 else
b03c9f9f
EC
2329 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2330 dst_reg->umin_value >>= umax_val;
2331 dst_reg->umax_value >>= umin_val;
2332 /* We may learn something more from the var_off */
2333 __update_reg_bounds(dst_reg);
48461135
JB
2334 break;
2335 default:
61bd5218 2336 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2337 break;
2338 }
2339
468f6eaf
JH
2340 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2341 /* 32-bit ALU ops are (32,32)->32 */
2342 coerce_reg_to_size(dst_reg, 4);
2343 coerce_reg_to_size(&src_reg, 4);
2344 }
2345
b03c9f9f
EC
2346 __reg_deduce_bounds(dst_reg);
2347 __reg_bound_offset(dst_reg);
f1174f77
EC
2348 return 0;
2349}
2350
2351/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2352 * and var_off.
2353 */
2354static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2355 struct bpf_insn *insn)
2356{
638f5b90 2357 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2358 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2359 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
2360
2361 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2362 src_reg = NULL;
2363 if (dst_reg->type != SCALAR_VALUE)
2364 ptr_reg = dst_reg;
2365 if (BPF_SRC(insn->code) == BPF_X) {
2366 src_reg = &regs[insn->src_reg];
f1174f77
EC
2367 if (src_reg->type != SCALAR_VALUE) {
2368 if (dst_reg->type != SCALAR_VALUE) {
2369 /* Combining two pointers by any ALU op yields
82abbf8d
AS
2370 * an arbitrary scalar. Disallow all math except
2371 * pointer subtraction
f1174f77 2372 */
82abbf8d
AS
2373 if (opcode == BPF_SUB){
2374 mark_reg_unknown(env, regs, insn->dst_reg);
2375 return 0;
f1174f77 2376 }
82abbf8d
AS
2377 verbose(env, "R%d pointer %s pointer prohibited\n",
2378 insn->dst_reg,
2379 bpf_alu_string[opcode >> 4]);
2380 return -EACCES;
f1174f77
EC
2381 } else {
2382 /* scalar += pointer
2383 * This is legal, but we have to reverse our
2384 * src/dest handling in computing the range
2385 */
82abbf8d
AS
2386 return adjust_ptr_min_max_vals(env, insn,
2387 src_reg, dst_reg);
f1174f77
EC
2388 }
2389 } else if (ptr_reg) {
2390 /* pointer += scalar */
82abbf8d
AS
2391 return adjust_ptr_min_max_vals(env, insn,
2392 dst_reg, src_reg);
f1174f77
EC
2393 }
2394 } else {
2395 /* Pretend the src is a reg with a known value, since we only
2396 * need to be able to read from this state.
2397 */
2398 off_reg.type = SCALAR_VALUE;
b03c9f9f 2399 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2400 src_reg = &off_reg;
82abbf8d
AS
2401 if (ptr_reg) /* pointer += K */
2402 return adjust_ptr_min_max_vals(env, insn,
2403 ptr_reg, src_reg);
f1174f77
EC
2404 }
2405
2406 /* Got here implies adding two SCALAR_VALUEs */
2407 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2408 print_verifier_state(env, env->cur_state);
61bd5218 2409 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2410 return -EINVAL;
2411 }
2412 if (WARN_ON(!src_reg)) {
638f5b90 2413 print_verifier_state(env, env->cur_state);
61bd5218 2414 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2415 return -EINVAL;
2416 }
2417 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2418}
2419
17a52670 2420/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2421static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2422{
638f5b90 2423 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2424 u8 opcode = BPF_OP(insn->code);
2425 int err;
2426
2427 if (opcode == BPF_END || opcode == BPF_NEG) {
2428 if (opcode == BPF_NEG) {
2429 if (BPF_SRC(insn->code) != 0 ||
2430 insn->src_reg != BPF_REG_0 ||
2431 insn->off != 0 || insn->imm != 0) {
61bd5218 2432 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2433 return -EINVAL;
2434 }
2435 } else {
2436 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2437 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2438 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2439 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2440 return -EINVAL;
2441 }
2442 }
2443
2444 /* check src operand */
dc503a8a 2445 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2446 if (err)
2447 return err;
2448
1be7f75d 2449 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2450 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2451 insn->dst_reg);
2452 return -EACCES;
2453 }
2454
17a52670 2455 /* check dest operand */
dc503a8a 2456 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2457 if (err)
2458 return err;
2459
2460 } else if (opcode == BPF_MOV) {
2461
2462 if (BPF_SRC(insn->code) == BPF_X) {
2463 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2464 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2465 return -EINVAL;
2466 }
2467
2468 /* check src operand */
dc503a8a 2469 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2470 if (err)
2471 return err;
2472 } else {
2473 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2474 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2475 return -EINVAL;
2476 }
2477 }
2478
2479 /* check dest operand */
dc503a8a 2480 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2481 if (err)
2482 return err;
2483
2484 if (BPF_SRC(insn->code) == BPF_X) {
2485 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2486 /* case: R1 = R2
2487 * copy register state to dest reg
2488 */
2489 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2490 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2491 } else {
f1174f77 2492 /* R1 = (u32) R2 */
1be7f75d 2493 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2494 verbose(env,
2495 "R%d partial copy of pointer\n",
1be7f75d
AS
2496 insn->src_reg);
2497 return -EACCES;
2498 }
61bd5218 2499 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2500 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2501 }
2502 } else {
2503 /* case: R = imm
2504 * remember the value we stored into this reg
2505 */
f1174f77 2506 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2507 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2508 __mark_reg_known(regs + insn->dst_reg,
2509 insn->imm);
2510 } else {
2511 __mark_reg_known(regs + insn->dst_reg,
2512 (u32)insn->imm);
2513 }
17a52670
AS
2514 }
2515
2516 } else if (opcode > BPF_END) {
61bd5218 2517 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2518 return -EINVAL;
2519
2520 } else { /* all other ALU ops: and, sub, xor, add, ... */
2521
17a52670
AS
2522 if (BPF_SRC(insn->code) == BPF_X) {
2523 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2524 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2525 return -EINVAL;
2526 }
2527 /* check src1 operand */
dc503a8a 2528 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2529 if (err)
2530 return err;
2531 } else {
2532 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2533 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2534 return -EINVAL;
2535 }
2536 }
2537
2538 /* check src2 operand */
dc503a8a 2539 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2540 if (err)
2541 return err;
2542
2543 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2544 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2545 verbose(env, "div by zero\n");
17a52670
AS
2546 return -EINVAL;
2547 }
2548
7891a87e
DB
2549 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2550 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
2551 return -EINVAL;
2552 }
2553
229394e8
RV
2554 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2555 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2556 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2557
2558 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2559 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2560 return -EINVAL;
2561 }
2562 }
2563
1a0dc1ac 2564 /* check dest operand */
dc503a8a 2565 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2566 if (err)
2567 return err;
2568
f1174f77 2569 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2570 }
2571
2572 return 0;
2573}
2574
58e2af8b 2575static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2576 struct bpf_reg_state *dst_reg,
f8ddadc4 2577 enum bpf_reg_type type,
fb2a311a 2578 bool range_right_open)
969bf05e 2579{
58e2af8b 2580 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2581 u16 new_range;
969bf05e 2582 int i;
2d2be8ca 2583
fb2a311a
DB
2584 if (dst_reg->off < 0 ||
2585 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2586 /* This doesn't give us any range */
2587 return;
2588
b03c9f9f
EC
2589 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2590 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2591 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2592 * than pkt_end, but that's because it's also less than pkt.
2593 */
2594 return;
2595
fb2a311a
DB
2596 new_range = dst_reg->off;
2597 if (range_right_open)
2598 new_range--;
2599
2600 /* Examples for register markings:
2d2be8ca 2601 *
fb2a311a 2602 * pkt_data in dst register:
2d2be8ca
DB
2603 *
2604 * r2 = r3;
2605 * r2 += 8;
2606 * if (r2 > pkt_end) goto <handle exception>
2607 * <access okay>
2608 *
b4e432f1
DB
2609 * r2 = r3;
2610 * r2 += 8;
2611 * if (r2 < pkt_end) goto <access okay>
2612 * <handle exception>
2613 *
2d2be8ca
DB
2614 * Where:
2615 * r2 == dst_reg, pkt_end == src_reg
2616 * r2=pkt(id=n,off=8,r=0)
2617 * r3=pkt(id=n,off=0,r=0)
2618 *
fb2a311a 2619 * pkt_data in src register:
2d2be8ca
DB
2620 *
2621 * r2 = r3;
2622 * r2 += 8;
2623 * if (pkt_end >= r2) goto <access okay>
2624 * <handle exception>
2625 *
b4e432f1
DB
2626 * r2 = r3;
2627 * r2 += 8;
2628 * if (pkt_end <= r2) goto <handle exception>
2629 * <access okay>
2630 *
2d2be8ca
DB
2631 * Where:
2632 * pkt_end == dst_reg, r2 == src_reg
2633 * r2=pkt(id=n,off=8,r=0)
2634 * r3=pkt(id=n,off=0,r=0)
2635 *
2636 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2637 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2638 * and [r3, r3 + 8-1) respectively is safe to access depending on
2639 * the check.
969bf05e 2640 */
2d2be8ca 2641
f1174f77
EC
2642 /* If our ids match, then we must have the same max_value. And we
2643 * don't care about the other reg's fixed offset, since if it's too big
2644 * the range won't allow anything.
2645 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2646 */
969bf05e 2647 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2648 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2649 /* keep the maximum range already checked */
fb2a311a 2650 regs[i].range = max(regs[i].range, new_range);
969bf05e 2651
638f5b90
AS
2652 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2653 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2654 continue;
638f5b90 2655 reg = &state->stack[i].spilled_ptr;
de8f3a83 2656 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2657 reg->range = max(reg->range, new_range);
969bf05e
AS
2658 }
2659}
2660
48461135
JB
2661/* Adjusts the register min/max values in the case that the dst_reg is the
2662 * variable register that we are working on, and src_reg is a constant or we're
2663 * simply doing a BPF_K check.
f1174f77 2664 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2665 */
2666static void reg_set_min_max(struct bpf_reg_state *true_reg,
2667 struct bpf_reg_state *false_reg, u64 val,
2668 u8 opcode)
2669{
f1174f77
EC
2670 /* If the dst_reg is a pointer, we can't learn anything about its
2671 * variable offset from the compare (unless src_reg were a pointer into
2672 * the same object, but we don't bother with that.
2673 * Since false_reg and true_reg have the same type by construction, we
2674 * only need to check one of them for pointerness.
2675 */
2676 if (__is_pointer_value(false, false_reg))
2677 return;
4cabc5b1 2678
48461135
JB
2679 switch (opcode) {
2680 case BPF_JEQ:
2681 /* If this is false then we know nothing Jon Snow, but if it is
2682 * true then we know for sure.
2683 */
b03c9f9f 2684 __mark_reg_known(true_reg, val);
48461135
JB
2685 break;
2686 case BPF_JNE:
2687 /* If this is true we know nothing Jon Snow, but if it is false
2688 * we know the value for sure;
2689 */
b03c9f9f 2690 __mark_reg_known(false_reg, val);
48461135
JB
2691 break;
2692 case BPF_JGT:
b03c9f9f
EC
2693 false_reg->umax_value = min(false_reg->umax_value, val);
2694 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2695 break;
48461135 2696 case BPF_JSGT:
b03c9f9f
EC
2697 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2698 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2699 break;
b4e432f1
DB
2700 case BPF_JLT:
2701 false_reg->umin_value = max(false_reg->umin_value, val);
2702 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2703 break;
2704 case BPF_JSLT:
2705 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2706 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2707 break;
48461135 2708 case BPF_JGE:
b03c9f9f
EC
2709 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2710 true_reg->umin_value = max(true_reg->umin_value, val);
2711 break;
48461135 2712 case BPF_JSGE:
b03c9f9f
EC
2713 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2714 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2715 break;
b4e432f1
DB
2716 case BPF_JLE:
2717 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2718 true_reg->umax_value = min(true_reg->umax_value, val);
2719 break;
2720 case BPF_JSLE:
2721 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2722 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2723 break;
48461135
JB
2724 default:
2725 break;
2726 }
2727
b03c9f9f
EC
2728 __reg_deduce_bounds(false_reg);
2729 __reg_deduce_bounds(true_reg);
2730 /* We might have learned some bits from the bounds. */
2731 __reg_bound_offset(false_reg);
2732 __reg_bound_offset(true_reg);
2733 /* Intersecting with the old var_off might have improved our bounds
2734 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2735 * then new var_off is (0; 0x7f...fc) which improves our umax.
2736 */
2737 __update_reg_bounds(false_reg);
2738 __update_reg_bounds(true_reg);
48461135
JB
2739}
2740
f1174f77
EC
2741/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2742 * the variable reg.
48461135
JB
2743 */
2744static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2745 struct bpf_reg_state *false_reg, u64 val,
2746 u8 opcode)
2747{
f1174f77
EC
2748 if (__is_pointer_value(false, false_reg))
2749 return;
4cabc5b1 2750
48461135
JB
2751 switch (opcode) {
2752 case BPF_JEQ:
2753 /* If this is false then we know nothing Jon Snow, but if it is
2754 * true then we know for sure.
2755 */
b03c9f9f 2756 __mark_reg_known(true_reg, val);
48461135
JB
2757 break;
2758 case BPF_JNE:
2759 /* If this is true we know nothing Jon Snow, but if it is false
2760 * we know the value for sure;
2761 */
b03c9f9f 2762 __mark_reg_known(false_reg, val);
48461135
JB
2763 break;
2764 case BPF_JGT:
b03c9f9f
EC
2765 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2766 false_reg->umin_value = max(false_reg->umin_value, val);
2767 break;
48461135 2768 case BPF_JSGT:
b03c9f9f
EC
2769 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2770 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2771 break;
b4e432f1
DB
2772 case BPF_JLT:
2773 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2774 false_reg->umax_value = min(false_reg->umax_value, val);
2775 break;
2776 case BPF_JSLT:
2777 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2778 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2779 break;
48461135 2780 case BPF_JGE:
b03c9f9f
EC
2781 true_reg->umax_value = min(true_reg->umax_value, val);
2782 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2783 break;
48461135 2784 case BPF_JSGE:
b03c9f9f
EC
2785 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2786 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2787 break;
b4e432f1
DB
2788 case BPF_JLE:
2789 true_reg->umin_value = max(true_reg->umin_value, val);
2790 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2791 break;
2792 case BPF_JSLE:
2793 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2794 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2795 break;
48461135
JB
2796 default:
2797 break;
2798 }
2799
b03c9f9f
EC
2800 __reg_deduce_bounds(false_reg);
2801 __reg_deduce_bounds(true_reg);
2802 /* We might have learned some bits from the bounds. */
2803 __reg_bound_offset(false_reg);
2804 __reg_bound_offset(true_reg);
2805 /* Intersecting with the old var_off might have improved our bounds
2806 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2807 * then new var_off is (0; 0x7f...fc) which improves our umax.
2808 */
2809 __update_reg_bounds(false_reg);
2810 __update_reg_bounds(true_reg);
f1174f77
EC
2811}
2812
2813/* Regs are known to be equal, so intersect their min/max/var_off */
2814static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2815 struct bpf_reg_state *dst_reg)
2816{
b03c9f9f
EC
2817 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2818 dst_reg->umin_value);
2819 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2820 dst_reg->umax_value);
2821 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2822 dst_reg->smin_value);
2823 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2824 dst_reg->smax_value);
f1174f77
EC
2825 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2826 dst_reg->var_off);
b03c9f9f
EC
2827 /* We might have learned new bounds from the var_off. */
2828 __update_reg_bounds(src_reg);
2829 __update_reg_bounds(dst_reg);
2830 /* We might have learned something about the sign bit. */
2831 __reg_deduce_bounds(src_reg);
2832 __reg_deduce_bounds(dst_reg);
2833 /* We might have learned some bits from the bounds. */
2834 __reg_bound_offset(src_reg);
2835 __reg_bound_offset(dst_reg);
2836 /* Intersecting with the old var_off might have improved our bounds
2837 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2838 * then new var_off is (0; 0x7f...fc) which improves our umax.
2839 */
2840 __update_reg_bounds(src_reg);
2841 __update_reg_bounds(dst_reg);
f1174f77
EC
2842}
2843
2844static void reg_combine_min_max(struct bpf_reg_state *true_src,
2845 struct bpf_reg_state *true_dst,
2846 struct bpf_reg_state *false_src,
2847 struct bpf_reg_state *false_dst,
2848 u8 opcode)
2849{
2850 switch (opcode) {
2851 case BPF_JEQ:
2852 __reg_combine_min_max(true_src, true_dst);
2853 break;
2854 case BPF_JNE:
2855 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2856 break;
4cabc5b1 2857 }
48461135
JB
2858}
2859
57a09bf0 2860static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2861 bool is_null)
57a09bf0
TG
2862{
2863 struct bpf_reg_state *reg = &regs[regno];
2864
2865 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2866 /* Old offset (both fixed and variable parts) should
2867 * have been known-zero, because we don't allow pointer
2868 * arithmetic on pointers that might be NULL.
2869 */
b03c9f9f
EC
2870 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2871 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2872 reg->off)) {
b03c9f9f
EC
2873 __mark_reg_known_zero(reg);
2874 reg->off = 0;
f1174f77
EC
2875 }
2876 if (is_null) {
2877 reg->type = SCALAR_VALUE;
56f668df
MKL
2878 } else if (reg->map_ptr->inner_map_meta) {
2879 reg->type = CONST_PTR_TO_MAP;
2880 reg->map_ptr = reg->map_ptr->inner_map_meta;
2881 } else {
f1174f77 2882 reg->type = PTR_TO_MAP_VALUE;
56f668df 2883 }
a08dd0da
DB
2884 /* We don't need id from this point onwards anymore, thus we
2885 * should better reset it, so that state pruning has chances
2886 * to take effect.
2887 */
2888 reg->id = 0;
57a09bf0
TG
2889 }
2890}
2891
2892/* The logic is similar to find_good_pkt_pointers(), both could eventually
2893 * be folded together at some point.
2894 */
2895static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2896 bool is_null)
57a09bf0
TG
2897{
2898 struct bpf_reg_state *regs = state->regs;
a08dd0da 2899 u32 id = regs[regno].id;
57a09bf0
TG
2900 int i;
2901
2902 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2903 mark_map_reg(regs, i, id, is_null);
57a09bf0 2904
638f5b90
AS
2905 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2906 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2907 continue;
638f5b90 2908 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2909 }
2910}
2911
5beca081
DB
2912static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2913 struct bpf_reg_state *dst_reg,
2914 struct bpf_reg_state *src_reg,
2915 struct bpf_verifier_state *this_branch,
2916 struct bpf_verifier_state *other_branch)
2917{
2918 if (BPF_SRC(insn->code) != BPF_X)
2919 return false;
2920
2921 switch (BPF_OP(insn->code)) {
2922 case BPF_JGT:
2923 if ((dst_reg->type == PTR_TO_PACKET &&
2924 src_reg->type == PTR_TO_PACKET_END) ||
2925 (dst_reg->type == PTR_TO_PACKET_META &&
2926 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2927 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2928 find_good_pkt_pointers(this_branch, dst_reg,
2929 dst_reg->type, false);
2930 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2931 src_reg->type == PTR_TO_PACKET) ||
2932 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2933 src_reg->type == PTR_TO_PACKET_META)) {
2934 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2935 find_good_pkt_pointers(other_branch, src_reg,
2936 src_reg->type, true);
2937 } else {
2938 return false;
2939 }
2940 break;
2941 case BPF_JLT:
2942 if ((dst_reg->type == PTR_TO_PACKET &&
2943 src_reg->type == PTR_TO_PACKET_END) ||
2944 (dst_reg->type == PTR_TO_PACKET_META &&
2945 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2946 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2947 find_good_pkt_pointers(other_branch, dst_reg,
2948 dst_reg->type, true);
2949 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2950 src_reg->type == PTR_TO_PACKET) ||
2951 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2952 src_reg->type == PTR_TO_PACKET_META)) {
2953 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2954 find_good_pkt_pointers(this_branch, src_reg,
2955 src_reg->type, false);
2956 } else {
2957 return false;
2958 }
2959 break;
2960 case BPF_JGE:
2961 if ((dst_reg->type == PTR_TO_PACKET &&
2962 src_reg->type == PTR_TO_PACKET_END) ||
2963 (dst_reg->type == PTR_TO_PACKET_META &&
2964 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2965 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2966 find_good_pkt_pointers(this_branch, dst_reg,
2967 dst_reg->type, true);
2968 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2969 src_reg->type == PTR_TO_PACKET) ||
2970 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2971 src_reg->type == PTR_TO_PACKET_META)) {
2972 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2973 find_good_pkt_pointers(other_branch, src_reg,
2974 src_reg->type, false);
2975 } else {
2976 return false;
2977 }
2978 break;
2979 case BPF_JLE:
2980 if ((dst_reg->type == PTR_TO_PACKET &&
2981 src_reg->type == PTR_TO_PACKET_END) ||
2982 (dst_reg->type == PTR_TO_PACKET_META &&
2983 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2984 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2985 find_good_pkt_pointers(other_branch, dst_reg,
2986 dst_reg->type, false);
2987 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2988 src_reg->type == PTR_TO_PACKET) ||
2989 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2990 src_reg->type == PTR_TO_PACKET_META)) {
2991 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2992 find_good_pkt_pointers(this_branch, src_reg,
2993 src_reg->type, true);
2994 } else {
2995 return false;
2996 }
2997 break;
2998 default:
2999 return false;
3000 }
3001
3002 return true;
3003}
3004
58e2af8b 3005static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3006 struct bpf_insn *insn, int *insn_idx)
3007{
638f5b90 3008 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 3009 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
3010 u8 opcode = BPF_OP(insn->code);
3011 int err;
3012
b4e432f1 3013 if (opcode > BPF_JSLE) {
61bd5218 3014 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3015 return -EINVAL;
3016 }
3017
3018 if (BPF_SRC(insn->code) == BPF_X) {
3019 if (insn->imm != 0) {
61bd5218 3020 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3021 return -EINVAL;
3022 }
3023
3024 /* check src1 operand */
dc503a8a 3025 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3026 if (err)
3027 return err;
1be7f75d
AS
3028
3029 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3030 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3031 insn->src_reg);
3032 return -EACCES;
3033 }
17a52670
AS
3034 } else {
3035 if (insn->src_reg != BPF_REG_0) {
61bd5218 3036 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3037 return -EINVAL;
3038 }
3039 }
3040
3041 /* check src2 operand */
dc503a8a 3042 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3043 if (err)
3044 return err;
3045
1a0dc1ac
AS
3046 dst_reg = &regs[insn->dst_reg];
3047
17a52670
AS
3048 /* detect if R == 0 where R was initialized to zero earlier */
3049 if (BPF_SRC(insn->code) == BPF_K &&
3050 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
3051 dst_reg->type == SCALAR_VALUE &&
3052 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
3053 if (opcode == BPF_JEQ) {
3054 /* if (imm == imm) goto pc+off;
3055 * only follow the goto, ignore fall-through
3056 */
3057 *insn_idx += insn->off;
3058 return 0;
3059 } else {
3060 /* if (imm != imm) goto pc+off;
3061 * only follow fall-through branch, since
3062 * that's where the program will go
3063 */
3064 return 0;
3065 }
3066 }
3067
3068 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3069 if (!other_branch)
3070 return -EFAULT;
3071
48461135
JB
3072 /* detect if we are comparing against a constant value so we can adjust
3073 * our min/max values for our dst register.
f1174f77
EC
3074 * this is only legit if both are scalars (or pointers to the same
3075 * object, I suppose, but we don't support that right now), because
3076 * otherwise the different base pointers mean the offsets aren't
3077 * comparable.
48461135
JB
3078 */
3079 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3080 if (dst_reg->type == SCALAR_VALUE &&
3081 regs[insn->src_reg].type == SCALAR_VALUE) {
3082 if (tnum_is_const(regs[insn->src_reg].var_off))
3083 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3084 dst_reg, regs[insn->src_reg].var_off.value,
3085 opcode);
3086 else if (tnum_is_const(dst_reg->var_off))
3087 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3088 &regs[insn->src_reg],
3089 dst_reg->var_off.value, opcode);
3090 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3091 /* Comparing for equality, we can combine knowledge */
3092 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3093 &other_branch->regs[insn->dst_reg],
3094 &regs[insn->src_reg],
3095 &regs[insn->dst_reg], opcode);
3096 }
3097 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3098 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3099 dst_reg, insn->imm, opcode);
3100 }
3101
58e2af8b 3102 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3103 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3104 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3105 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3106 /* Mark all identical map registers in each branch as either
3107 * safe or unknown depending R == 0 or R != 0 conditional.
3108 */
f1174f77
EC
3109 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3110 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3111 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3112 this_branch, other_branch) &&
3113 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3114 verbose(env, "R%d pointer comparison prohibited\n",
3115 insn->dst_reg);
1be7f75d 3116 return -EACCES;
17a52670 3117 }
61bd5218
JK
3118 if (env->log.level)
3119 print_verifier_state(env, this_branch);
17a52670
AS
3120 return 0;
3121}
3122
0246e64d
AS
3123/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3124static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3125{
3126 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3127
3128 return (struct bpf_map *) (unsigned long) imm64;
3129}
3130
17a52670 3131/* verify BPF_LD_IMM64 instruction */
58e2af8b 3132static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3133{
638f5b90 3134 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3135 int err;
3136
3137 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3138 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3139 return -EINVAL;
3140 }
3141 if (insn->off != 0) {
61bd5218 3142 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3143 return -EINVAL;
3144 }
3145
dc503a8a 3146 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3147 if (err)
3148 return err;
3149
6b173873 3150 if (insn->src_reg == 0) {
6b173873
JK
3151 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3152
f1174f77 3153 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3154 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3155 return 0;
6b173873 3156 }
17a52670
AS
3157
3158 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3159 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3160
3161 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3162 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3163 return 0;
3164}
3165
96be4325
DB
3166static bool may_access_skb(enum bpf_prog_type type)
3167{
3168 switch (type) {
3169 case BPF_PROG_TYPE_SOCKET_FILTER:
3170 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3171 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3172 return true;
3173 default:
3174 return false;
3175 }
3176}
3177
ddd872bc
AS
3178/* verify safety of LD_ABS|LD_IND instructions:
3179 * - they can only appear in the programs where ctx == skb
3180 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3181 * preserve R6-R9, and store return value into R0
3182 *
3183 * Implicit input:
3184 * ctx == skb == R6 == CTX
3185 *
3186 * Explicit input:
3187 * SRC == any register
3188 * IMM == 32-bit immediate
3189 *
3190 * Output:
3191 * R0 - 8/16/32-bit skb data converted to cpu endianness
3192 */
58e2af8b 3193static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3194{
638f5b90 3195 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3196 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3197 int i, err;
3198
24701ece 3199 if (!may_access_skb(env->prog->type)) {
61bd5218 3200 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3201 return -EINVAL;
3202 }
3203
3204 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3205 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3206 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3207 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3208 return -EINVAL;
3209 }
3210
3211 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3212 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3213 if (err)
3214 return err;
3215
3216 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3217 verbose(env,
3218 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3219 return -EINVAL;
3220 }
3221
3222 if (mode == BPF_IND) {
3223 /* check explicit source operand */
dc503a8a 3224 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3225 if (err)
3226 return err;
3227 }
3228
3229 /* reset caller saved regs to unreadable */
dc503a8a 3230 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3231 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3232 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3233 }
ddd872bc
AS
3234
3235 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3236 * the value fetched from the packet.
3237 * Already marked as written above.
ddd872bc 3238 */
61bd5218 3239 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3240 return 0;
3241}
3242
390ee7e2
AS
3243static int check_return_code(struct bpf_verifier_env *env)
3244{
3245 struct bpf_reg_state *reg;
3246 struct tnum range = tnum_range(0, 1);
3247
3248 switch (env->prog->type) {
3249 case BPF_PROG_TYPE_CGROUP_SKB:
3250 case BPF_PROG_TYPE_CGROUP_SOCK:
3251 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3252 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3253 break;
3254 default:
3255 return 0;
3256 }
3257
638f5b90 3258 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3259 if (reg->type != SCALAR_VALUE) {
61bd5218 3260 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3261 reg_type_str[reg->type]);
3262 return -EINVAL;
3263 }
3264
3265 if (!tnum_in(range, reg->var_off)) {
61bd5218 3266 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3267 if (!tnum_is_unknown(reg->var_off)) {
3268 char tn_buf[48];
3269
3270 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3271 verbose(env, "has value %s", tn_buf);
390ee7e2 3272 } else {
61bd5218 3273 verbose(env, "has unknown scalar value");
390ee7e2 3274 }
61bd5218 3275 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3276 return -EINVAL;
3277 }
3278 return 0;
3279}
3280
475fb78f
AS
3281/* non-recursive DFS pseudo code
3282 * 1 procedure DFS-iterative(G,v):
3283 * 2 label v as discovered
3284 * 3 let S be a stack
3285 * 4 S.push(v)
3286 * 5 while S is not empty
3287 * 6 t <- S.pop()
3288 * 7 if t is what we're looking for:
3289 * 8 return t
3290 * 9 for all edges e in G.adjacentEdges(t) do
3291 * 10 if edge e is already labelled
3292 * 11 continue with the next edge
3293 * 12 w <- G.adjacentVertex(t,e)
3294 * 13 if vertex w is not discovered and not explored
3295 * 14 label e as tree-edge
3296 * 15 label w as discovered
3297 * 16 S.push(w)
3298 * 17 continue at 5
3299 * 18 else if vertex w is discovered
3300 * 19 label e as back-edge
3301 * 20 else
3302 * 21 // vertex w is explored
3303 * 22 label e as forward- or cross-edge
3304 * 23 label t as explored
3305 * 24 S.pop()
3306 *
3307 * convention:
3308 * 0x10 - discovered
3309 * 0x11 - discovered and fall-through edge labelled
3310 * 0x12 - discovered and fall-through and branch edges labelled
3311 * 0x20 - explored
3312 */
3313
3314enum {
3315 DISCOVERED = 0x10,
3316 EXPLORED = 0x20,
3317 FALLTHROUGH = 1,
3318 BRANCH = 2,
3319};
3320
58e2af8b 3321#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3322
475fb78f
AS
3323static int *insn_stack; /* stack of insns to process */
3324static int cur_stack; /* current stack index */
3325static int *insn_state;
3326
3327/* t, w, e - match pseudo-code above:
3328 * t - index of current instruction
3329 * w - next instruction
3330 * e - edge
3331 */
58e2af8b 3332static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3333{
3334 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3335 return 0;
3336
3337 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3338 return 0;
3339
3340 if (w < 0 || w >= env->prog->len) {
61bd5218 3341 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3342 return -EINVAL;
3343 }
3344
f1bca824
AS
3345 if (e == BRANCH)
3346 /* mark branch target for state pruning */
3347 env->explored_states[w] = STATE_LIST_MARK;
3348
475fb78f
AS
3349 if (insn_state[w] == 0) {
3350 /* tree-edge */
3351 insn_state[t] = DISCOVERED | e;
3352 insn_state[w] = DISCOVERED;
3353 if (cur_stack >= env->prog->len)
3354 return -E2BIG;
3355 insn_stack[cur_stack++] = w;
3356 return 1;
3357 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3358 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3359 return -EINVAL;
3360 } else if (insn_state[w] == EXPLORED) {
3361 /* forward- or cross-edge */
3362 insn_state[t] = DISCOVERED | e;
3363 } else {
61bd5218 3364 verbose(env, "insn state internal bug\n");
475fb78f
AS
3365 return -EFAULT;
3366 }
3367 return 0;
3368}
3369
3370/* non-recursive depth-first-search to detect loops in BPF program
3371 * loop == back-edge in directed graph
3372 */
58e2af8b 3373static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3374{
3375 struct bpf_insn *insns = env->prog->insnsi;
3376 int insn_cnt = env->prog->len;
3377 int ret = 0;
3378 int i, t;
3379
3380 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3381 if (!insn_state)
3382 return -ENOMEM;
3383
3384 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3385 if (!insn_stack) {
3386 kfree(insn_state);
3387 return -ENOMEM;
3388 }
3389
3390 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3391 insn_stack[0] = 0; /* 0 is the first instruction */
3392 cur_stack = 1;
3393
3394peek_stack:
3395 if (cur_stack == 0)
3396 goto check_state;
3397 t = insn_stack[cur_stack - 1];
3398
3399 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3400 u8 opcode = BPF_OP(insns[t].code);
3401
3402 if (opcode == BPF_EXIT) {
3403 goto mark_explored;
3404 } else if (opcode == BPF_CALL) {
3405 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3406 if (ret == 1)
3407 goto peek_stack;
3408 else if (ret < 0)
3409 goto err_free;
07016151
DB
3410 if (t + 1 < insn_cnt)
3411 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3412 } else if (opcode == BPF_JA) {
3413 if (BPF_SRC(insns[t].code) != BPF_K) {
3414 ret = -EINVAL;
3415 goto err_free;
3416 }
3417 /* unconditional jump with single edge */
3418 ret = push_insn(t, t + insns[t].off + 1,
3419 FALLTHROUGH, env);
3420 if (ret == 1)
3421 goto peek_stack;
3422 else if (ret < 0)
3423 goto err_free;
f1bca824
AS
3424 /* tell verifier to check for equivalent states
3425 * after every call and jump
3426 */
c3de6317
AS
3427 if (t + 1 < insn_cnt)
3428 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3429 } else {
3430 /* conditional jump with two edges */
3c2ce60b 3431 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3432 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3433 if (ret == 1)
3434 goto peek_stack;
3435 else if (ret < 0)
3436 goto err_free;
3437
3438 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3439 if (ret == 1)
3440 goto peek_stack;
3441 else if (ret < 0)
3442 goto err_free;
3443 }
3444 } else {
3445 /* all other non-branch instructions with single
3446 * fall-through edge
3447 */
3448 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3449 if (ret == 1)
3450 goto peek_stack;
3451 else if (ret < 0)
3452 goto err_free;
3453 }
3454
3455mark_explored:
3456 insn_state[t] = EXPLORED;
3457 if (cur_stack-- <= 0) {
61bd5218 3458 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3459 ret = -EFAULT;
3460 goto err_free;
3461 }
3462 goto peek_stack;
3463
3464check_state:
3465 for (i = 0; i < insn_cnt; i++) {
3466 if (insn_state[i] != EXPLORED) {
61bd5218 3467 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3468 ret = -EINVAL;
3469 goto err_free;
3470 }
3471 }
3472 ret = 0; /* cfg looks good */
3473
3474err_free:
3475 kfree(insn_state);
3476 kfree(insn_stack);
3477 return ret;
3478}
3479
f1174f77
EC
3480/* check %cur's range satisfies %old's */
3481static bool range_within(struct bpf_reg_state *old,
3482 struct bpf_reg_state *cur)
3483{
b03c9f9f
EC
3484 return old->umin_value <= cur->umin_value &&
3485 old->umax_value >= cur->umax_value &&
3486 old->smin_value <= cur->smin_value &&
3487 old->smax_value >= cur->smax_value;
f1174f77
EC
3488}
3489
3490/* Maximum number of register states that can exist at once */
3491#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3492struct idpair {
3493 u32 old;
3494 u32 cur;
3495};
3496
3497/* If in the old state two registers had the same id, then they need to have
3498 * the same id in the new state as well. But that id could be different from
3499 * the old state, so we need to track the mapping from old to new ids.
3500 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3501 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3502 * regs with a different old id could still have new id 9, we don't care about
3503 * that.
3504 * So we look through our idmap to see if this old id has been seen before. If
3505 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3506 */
f1174f77 3507static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3508{
f1174f77 3509 unsigned int i;
969bf05e 3510
f1174f77
EC
3511 for (i = 0; i < ID_MAP_SIZE; i++) {
3512 if (!idmap[i].old) {
3513 /* Reached an empty slot; haven't seen this id before */
3514 idmap[i].old = old_id;
3515 idmap[i].cur = cur_id;
3516 return true;
3517 }
3518 if (idmap[i].old == old_id)
3519 return idmap[i].cur == cur_id;
3520 }
3521 /* We ran out of idmap slots, which should be impossible */
3522 WARN_ON_ONCE(1);
3523 return false;
3524}
3525
3526/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3527static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3528 struct idpair *idmap)
f1174f77 3529{
dc503a8a
EC
3530 if (!(rold->live & REG_LIVE_READ))
3531 /* explored state didn't use this */
3532 return true;
3533
3534 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3535 return true;
3536
f1174f77
EC
3537 if (rold->type == NOT_INIT)
3538 /* explored state can't have used this */
969bf05e 3539 return true;
f1174f77
EC
3540 if (rcur->type == NOT_INIT)
3541 return false;
3542 switch (rold->type) {
3543 case SCALAR_VALUE:
3544 if (rcur->type == SCALAR_VALUE) {
3545 /* new val must satisfy old val knowledge */
3546 return range_within(rold, rcur) &&
3547 tnum_in(rold->var_off, rcur->var_off);
3548 } else {
179d1c56
JH
3549 /* We're trying to use a pointer in place of a scalar.
3550 * Even if the scalar was unbounded, this could lead to
3551 * pointer leaks because scalars are allowed to leak
3552 * while pointers are not. We could make this safe in
3553 * special cases if root is calling us, but it's
3554 * probably not worth the hassle.
f1174f77 3555 */
179d1c56 3556 return false;
f1174f77
EC
3557 }
3558 case PTR_TO_MAP_VALUE:
1b688a19
EC
3559 /* If the new min/max/var_off satisfy the old ones and
3560 * everything else matches, we are OK.
3561 * We don't care about the 'id' value, because nothing
3562 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3563 */
3564 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3565 range_within(rold, rcur) &&
3566 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3567 case PTR_TO_MAP_VALUE_OR_NULL:
3568 /* a PTR_TO_MAP_VALUE could be safe to use as a
3569 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3570 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3571 * checked, doing so could have affected others with the same
3572 * id, and we can't check for that because we lost the id when
3573 * we converted to a PTR_TO_MAP_VALUE.
3574 */
3575 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3576 return false;
3577 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3578 return false;
3579 /* Check our ids match any regs they're supposed to */
3580 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3581 case PTR_TO_PACKET_META:
f1174f77 3582 case PTR_TO_PACKET:
de8f3a83 3583 if (rcur->type != rold->type)
f1174f77
EC
3584 return false;
3585 /* We must have at least as much range as the old ptr
3586 * did, so that any accesses which were safe before are
3587 * still safe. This is true even if old range < old off,
3588 * since someone could have accessed through (ptr - k), or
3589 * even done ptr -= k in a register, to get a safe access.
3590 */
3591 if (rold->range > rcur->range)
3592 return false;
3593 /* If the offsets don't match, we can't trust our alignment;
3594 * nor can we be sure that we won't fall out of range.
3595 */
3596 if (rold->off != rcur->off)
3597 return false;
3598 /* id relations must be preserved */
3599 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3600 return false;
3601 /* new val must satisfy old val knowledge */
3602 return range_within(rold, rcur) &&
3603 tnum_in(rold->var_off, rcur->var_off);
3604 case PTR_TO_CTX:
3605 case CONST_PTR_TO_MAP:
3606 case PTR_TO_STACK:
3607 case PTR_TO_PACKET_END:
3608 /* Only valid matches are exact, which memcmp() above
3609 * would have accepted
3610 */
3611 default:
3612 /* Don't know what's going on, just say it's not safe */
3613 return false;
3614 }
969bf05e 3615
f1174f77
EC
3616 /* Shouldn't get here; if we do, say it's not safe */
3617 WARN_ON_ONCE(1);
969bf05e
AS
3618 return false;
3619}
3620
638f5b90
AS
3621static bool stacksafe(struct bpf_verifier_state *old,
3622 struct bpf_verifier_state *cur,
3623 struct idpair *idmap)
3624{
3625 int i, spi;
3626
3627 /* if explored stack has more populated slots than current stack
3628 * such stacks are not equivalent
3629 */
3630 if (old->allocated_stack > cur->allocated_stack)
3631 return false;
3632
3633 /* walk slots of the explored stack and ignore any additional
3634 * slots in the current stack, since explored(safe) state
3635 * didn't use them
3636 */
3637 for (i = 0; i < old->allocated_stack; i++) {
3638 spi = i / BPF_REG_SIZE;
3639
3640 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3641 continue;
3642 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3643 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3644 /* Ex: old explored (safe) state has STACK_SPILL in
3645 * this stack slot, but current has has STACK_MISC ->
3646 * this verifier states are not equivalent,
3647 * return false to continue verification of this path
3648 */
3649 return false;
3650 if (i % BPF_REG_SIZE)
3651 continue;
3652 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3653 continue;
3654 if (!regsafe(&old->stack[spi].spilled_ptr,
3655 &cur->stack[spi].spilled_ptr,
3656 idmap))
3657 /* when explored and current stack slot are both storing
3658 * spilled registers, check that stored pointers types
3659 * are the same as well.
3660 * Ex: explored safe path could have stored
3661 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3662 * but current path has stored:
3663 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3664 * such verifier states are not equivalent.
3665 * return false to continue verification of this path
3666 */
3667 return false;
3668 }
3669 return true;
3670}
3671
f1bca824
AS
3672/* compare two verifier states
3673 *
3674 * all states stored in state_list are known to be valid, since
3675 * verifier reached 'bpf_exit' instruction through them
3676 *
3677 * this function is called when verifier exploring different branches of
3678 * execution popped from the state stack. If it sees an old state that has
3679 * more strict register state and more strict stack state then this execution
3680 * branch doesn't need to be explored further, since verifier already
3681 * concluded that more strict state leads to valid finish.
3682 *
3683 * Therefore two states are equivalent if register state is more conservative
3684 * and explored stack state is more conservative than the current one.
3685 * Example:
3686 * explored current
3687 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3688 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3689 *
3690 * In other words if current stack state (one being explored) has more
3691 * valid slots than old one that already passed validation, it means
3692 * the verifier can stop exploring and conclude that current state is valid too
3693 *
3694 * Similarly with registers. If explored state has register type as invalid
3695 * whereas register type in current state is meaningful, it means that
3696 * the current state will reach 'bpf_exit' instruction safely
3697 */
48461135
JB
3698static bool states_equal(struct bpf_verifier_env *env,
3699 struct bpf_verifier_state *old,
58e2af8b 3700 struct bpf_verifier_state *cur)
f1bca824 3701{
f1174f77
EC
3702 struct idpair *idmap;
3703 bool ret = false;
f1bca824
AS
3704 int i;
3705
f1174f77
EC
3706 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3707 /* If we failed to allocate the idmap, just say it's not safe */
3708 if (!idmap)
1a0dc1ac 3709 return false;
f1174f77
EC
3710
3711 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3712 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3713 goto out_free;
f1bca824
AS
3714 }
3715
638f5b90
AS
3716 if (!stacksafe(old, cur, idmap))
3717 goto out_free;
f1174f77
EC
3718 ret = true;
3719out_free:
3720 kfree(idmap);
3721 return ret;
f1bca824
AS
3722}
3723
8e9cd9ce
EC
3724/* A write screens off any subsequent reads; but write marks come from the
3725 * straight-line code between a state and its parent. When we arrive at a
3726 * jump target (in the first iteration of the propagate_liveness() loop),
3727 * we didn't arrive by the straight-line code, so read marks in state must
3728 * propagate to parent regardless of state's write marks.
3729 */
dc503a8a
EC
3730static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3731 struct bpf_verifier_state *parent)
3732{
63f45f84 3733 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3734 bool touched = false; /* any changes made? */
3735 int i;
3736
3737 if (!parent)
3738 return touched;
3739 /* Propagate read liveness of registers... */
3740 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3741 /* We don't need to worry about FP liveness because it's read-only */
3742 for (i = 0; i < BPF_REG_FP; i++) {
3743 if (parent->regs[i].live & REG_LIVE_READ)
3744 continue;
63f45f84
EC
3745 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3746 continue;
3747 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3748 parent->regs[i].live |= REG_LIVE_READ;
3749 touched = true;
3750 }
3751 }
3752 /* ... and stack slots */
638f5b90
AS
3753 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3754 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3755 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3756 continue;
638f5b90 3757 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3758 continue;
638f5b90 3759 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3760 continue;
638f5b90
AS
3761 if (writes &&
3762 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3763 continue;
638f5b90
AS
3764 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3765 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3766 touched = true;
3767 }
3768 }
3769 return touched;
3770}
3771
8e9cd9ce
EC
3772/* "parent" is "a state from which we reach the current state", but initially
3773 * it is not the state->parent (i.e. "the state whose straight-line code leads
3774 * to the current state"), instead it is the state that happened to arrive at
3775 * a (prunable) equivalent of the current state. See comment above
3776 * do_propagate_liveness() for consequences of this.
3777 * This function is just a more efficient way of calling mark_reg_read() or
3778 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3779 * though it requires that parent != state->parent in the call arguments.
3780 */
dc503a8a
EC
3781static void propagate_liveness(const struct bpf_verifier_state *state,
3782 struct bpf_verifier_state *parent)
3783{
3784 while (do_propagate_liveness(state, parent)) {
3785 /* Something changed, so we need to feed those changes onward */
3786 state = parent;
3787 parent = state->parent;
3788 }
3789}
3790
58e2af8b 3791static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3792{
58e2af8b
JK
3793 struct bpf_verifier_state_list *new_sl;
3794 struct bpf_verifier_state_list *sl;
638f5b90 3795 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3796 int i, err;
f1bca824
AS
3797
3798 sl = env->explored_states[insn_idx];
3799 if (!sl)
3800 /* this 'insn_idx' instruction wasn't marked, so we will not
3801 * be doing state search here
3802 */
3803 return 0;
3804
3805 while (sl != STATE_LIST_MARK) {
638f5b90 3806 if (states_equal(env, &sl->state, cur)) {
f1bca824 3807 /* reached equivalent register/stack state,
dc503a8a
EC
3808 * prune the search.
3809 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3810 * If we have any write marks in env->cur_state, they
3811 * will prevent corresponding reads in the continuation
3812 * from reaching our parent (an explored_state). Our
3813 * own state will get the read marks recorded, but
3814 * they'll be immediately forgotten as we're pruning
3815 * this state and will pop a new one.
f1bca824 3816 */
638f5b90 3817 propagate_liveness(&sl->state, cur);
f1bca824 3818 return 1;
dc503a8a 3819 }
f1bca824
AS
3820 sl = sl->next;
3821 }
3822
3823 /* there were no equivalent states, remember current one.
3824 * technically the current state is not proven to be safe yet,
3825 * but it will either reach bpf_exit (which means it's safe) or
3826 * it will be rejected. Since there are no loops, we won't be
3827 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3828 */
638f5b90 3829 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3830 if (!new_sl)
3831 return -ENOMEM;
3832
3833 /* add new state to the head of linked list */
1969db47
AS
3834 err = copy_verifier_state(&new_sl->state, cur);
3835 if (err) {
3836 free_verifier_state(&new_sl->state, false);
3837 kfree(new_sl);
3838 return err;
3839 }
f1bca824
AS
3840 new_sl->next = env->explored_states[insn_idx];
3841 env->explored_states[insn_idx] = new_sl;
dc503a8a 3842 /* connect new state to parentage chain */
638f5b90 3843 cur->parent = &new_sl->state;
8e9cd9ce
EC
3844 /* clear write marks in current state: the writes we did are not writes
3845 * our child did, so they don't screen off its reads from us.
3846 * (There are no read marks in current state, because reads always mark
3847 * their parent and current state never has children yet. Only
3848 * explored_states can get read marks.)
3849 */
dc503a8a 3850 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3851 cur->regs[i].live = REG_LIVE_NONE;
3852 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3853 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3854 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3855 return 0;
3856}
3857
13a27dfc
JK
3858static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3859 int insn_idx, int prev_insn_idx)
3860{
ab3f0063
JK
3861 if (env->dev_ops && env->dev_ops->insn_hook)
3862 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3863
ab3f0063 3864 return 0;
13a27dfc
JK
3865}
3866
58e2af8b 3867static int do_check(struct bpf_verifier_env *env)
17a52670 3868{
638f5b90 3869 struct bpf_verifier_state *state;
17a52670 3870 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3871 struct bpf_reg_state *regs;
17a52670
AS
3872 int insn_cnt = env->prog->len;
3873 int insn_idx, prev_insn_idx = 0;
3874 int insn_processed = 0;
3875 bool do_print_state = false;
3876
638f5b90
AS
3877 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3878 if (!state)
3879 return -ENOMEM;
3880 env->cur_state = state;
3881 init_reg_state(env, state->regs);
dc503a8a 3882 state->parent = NULL;
17a52670
AS
3883 insn_idx = 0;
3884 for (;;) {
3885 struct bpf_insn *insn;
3886 u8 class;
3887 int err;
3888
3889 if (insn_idx >= insn_cnt) {
61bd5218 3890 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3891 insn_idx, insn_cnt);
3892 return -EFAULT;
3893 }
3894
3895 insn = &insns[insn_idx];
3896 class = BPF_CLASS(insn->code);
3897
07016151 3898 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3899 verbose(env,
3900 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3901 insn_processed);
3902 return -E2BIG;
3903 }
3904
f1bca824
AS
3905 err = is_state_visited(env, insn_idx);
3906 if (err < 0)
3907 return err;
3908 if (err == 1) {
3909 /* found equivalent state, can prune the search */
61bd5218 3910 if (env->log.level) {
f1bca824 3911 if (do_print_state)
61bd5218 3912 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3913 prev_insn_idx, insn_idx);
3914 else
61bd5218 3915 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3916 }
3917 goto process_bpf_exit;
3918 }
3919
3c2ce60b
DB
3920 if (need_resched())
3921 cond_resched();
3922
61bd5218
JK
3923 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3924 if (env->log.level > 1)
3925 verbose(env, "%d:", insn_idx);
c5fc9692 3926 else
61bd5218 3927 verbose(env, "\nfrom %d to %d:",
c5fc9692 3928 prev_insn_idx, insn_idx);
638f5b90 3929 print_verifier_state(env, state);
17a52670
AS
3930 do_print_state = false;
3931 }
3932
61bd5218
JK
3933 if (env->log.level) {
3934 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3935 print_bpf_insn(verbose, env, insn,
3936 env->allow_ptr_leaks);
17a52670
AS
3937 }
3938
13a27dfc
JK
3939 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3940 if (err)
3941 return err;
3942
638f5b90 3943 regs = cur_regs(env);
c131187d 3944 env->insn_aux_data[insn_idx].seen = true;
17a52670 3945 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3946 err = check_alu_op(env, insn);
17a52670
AS
3947 if (err)
3948 return err;
3949
3950 } else if (class == BPF_LDX) {
3df126f3 3951 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3952
3953 /* check for reserved fields is already done */
3954
17a52670 3955 /* check src operand */
dc503a8a 3956 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3957 if (err)
3958 return err;
3959
dc503a8a 3960 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3961 if (err)
3962 return err;
3963
725f9dcd
AS
3964 src_reg_type = regs[insn->src_reg].type;
3965
17a52670
AS
3966 /* check that memory (src_reg + off) is readable,
3967 * the state of dst_reg will be updated by this func
3968 */
31fd8581 3969 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 3970 BPF_SIZE(insn->code), BPF_READ,
57b4a36e 3971 insn->dst_reg, false);
17a52670
AS
3972 if (err)
3973 return err;
3974
3df126f3
JK
3975 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3976
3977 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3978 /* saw a valid insn
3979 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3980 * save type to validate intersecting paths
9bac3d6d 3981 */
3df126f3 3982 *prev_src_type = src_reg_type;
9bac3d6d 3983
3df126f3 3984 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3985 (src_reg_type == PTR_TO_CTX ||
3df126f3 3986 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3987 /* ABuser program is trying to use the same insn
3988 * dst_reg = *(u32*) (src_reg + off)
3989 * with different pointer types:
3990 * src_reg == ctx in one branch and
3991 * src_reg == stack|map in some other branch.
3992 * Reject it.
3993 */
61bd5218 3994 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3995 return -EINVAL;
3996 }
3997
17a52670 3998 } else if (class == BPF_STX) {
3df126f3 3999 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4000
17a52670 4001 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4002 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4003 if (err)
4004 return err;
4005 insn_idx++;
4006 continue;
4007 }
4008
17a52670 4009 /* check src1 operand */
dc503a8a 4010 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4011 if (err)
4012 return err;
4013 /* check src2 operand */
dc503a8a 4014 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4015 if (err)
4016 return err;
4017
d691f9e8
AS
4018 dst_reg_type = regs[insn->dst_reg].type;
4019
17a52670 4020 /* check that memory (dst_reg + off) is writeable */
31fd8581 4021 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4022 BPF_SIZE(insn->code), BPF_WRITE,
57b4a36e 4023 insn->src_reg, false);
17a52670
AS
4024 if (err)
4025 return err;
4026
3df126f3
JK
4027 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4028
4029 if (*prev_dst_type == NOT_INIT) {
4030 *prev_dst_type = dst_reg_type;
4031 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4032 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4033 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4034 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4035 return -EINVAL;
4036 }
4037
17a52670
AS
4038 } else if (class == BPF_ST) {
4039 if (BPF_MODE(insn->code) != BPF_MEM ||
4040 insn->src_reg != BPF_REG_0) {
61bd5218 4041 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4042 return -EINVAL;
4043 }
4044 /* check src operand */
dc503a8a 4045 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4046 if (err)
4047 return err;
4048
f37a8cb8
DB
4049 if (is_ctx_reg(env, insn->dst_reg)) {
4050 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4051 insn->dst_reg);
4052 return -EACCES;
4053 }
4054
17a52670 4055 /* check that memory (dst_reg + off) is writeable */
31fd8581 4056 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4057 BPF_SIZE(insn->code), BPF_WRITE,
57b4a36e 4058 -1, false);
17a52670
AS
4059 if (err)
4060 return err;
4061
4062 } else if (class == BPF_JMP) {
4063 u8 opcode = BPF_OP(insn->code);
4064
4065 if (opcode == BPF_CALL) {
4066 if (BPF_SRC(insn->code) != BPF_K ||
4067 insn->off != 0 ||
4068 insn->src_reg != BPF_REG_0 ||
4069 insn->dst_reg != BPF_REG_0) {
61bd5218 4070 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4071 return -EINVAL;
4072 }
4073
81ed18ab 4074 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
4075 if (err)
4076 return err;
4077
4078 } else if (opcode == BPF_JA) {
4079 if (BPF_SRC(insn->code) != BPF_K ||
4080 insn->imm != 0 ||
4081 insn->src_reg != BPF_REG_0 ||
4082 insn->dst_reg != BPF_REG_0) {
61bd5218 4083 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4084 return -EINVAL;
4085 }
4086
4087 insn_idx += insn->off + 1;
4088 continue;
4089
4090 } else if (opcode == BPF_EXIT) {
4091 if (BPF_SRC(insn->code) != BPF_K ||
4092 insn->imm != 0 ||
4093 insn->src_reg != BPF_REG_0 ||
4094 insn->dst_reg != BPF_REG_0) {
61bd5218 4095 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4096 return -EINVAL;
4097 }
4098
4099 /* eBPF calling convetion is such that R0 is used
4100 * to return the value from eBPF program.
4101 * Make sure that it's readable at this time
4102 * of bpf_exit, which means that program wrote
4103 * something into it earlier
4104 */
dc503a8a 4105 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4106 if (err)
4107 return err;
4108
1be7f75d 4109 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4110 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4111 return -EACCES;
4112 }
4113
390ee7e2
AS
4114 err = check_return_code(env);
4115 if (err)
4116 return err;
f1bca824 4117process_bpf_exit:
638f5b90
AS
4118 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4119 if (err < 0) {
4120 if (err != -ENOENT)
4121 return err;
17a52670
AS
4122 break;
4123 } else {
4124 do_print_state = true;
4125 continue;
4126 }
4127 } else {
4128 err = check_cond_jmp_op(env, insn, &insn_idx);
4129 if (err)
4130 return err;
4131 }
4132 } else if (class == BPF_LD) {
4133 u8 mode = BPF_MODE(insn->code);
4134
4135 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4136 err = check_ld_abs(env, insn);
4137 if (err)
4138 return err;
4139
17a52670
AS
4140 } else if (mode == BPF_IMM) {
4141 err = check_ld_imm(env, insn);
4142 if (err)
4143 return err;
4144
4145 insn_idx++;
c131187d 4146 env->insn_aux_data[insn_idx].seen = true;
17a52670 4147 } else {
61bd5218 4148 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4149 return -EINVAL;
4150 }
4151 } else {
61bd5218 4152 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4153 return -EINVAL;
4154 }
4155
4156 insn_idx++;
4157 }
4158
61bd5218
JK
4159 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4160 env->prog->aux->stack_depth);
17a52670
AS
4161 return 0;
4162}
4163
56f668df
MKL
4164static int check_map_prealloc(struct bpf_map *map)
4165{
4166 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4167 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4168 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4169 !(map->map_flags & BPF_F_NO_PREALLOC);
4170}
4171
61bd5218
JK
4172static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4173 struct bpf_map *map,
fdc15d38
AS
4174 struct bpf_prog *prog)
4175
4176{
56f668df
MKL
4177 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4178 * preallocated hash maps, since doing memory allocation
4179 * in overflow_handler can crash depending on where nmi got
4180 * triggered.
4181 */
4182 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4183 if (!check_map_prealloc(map)) {
61bd5218 4184 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4185 return -EINVAL;
4186 }
4187 if (map->inner_map_meta &&
4188 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4189 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4190 return -EINVAL;
4191 }
fdc15d38
AS
4192 }
4193 return 0;
4194}
4195
0246e64d
AS
4196/* look for pseudo eBPF instructions that access map FDs and
4197 * replace them with actual map pointers
4198 */
58e2af8b 4199static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4200{
4201 struct bpf_insn *insn = env->prog->insnsi;
4202 int insn_cnt = env->prog->len;
fdc15d38 4203 int i, j, err;
0246e64d 4204
f1f7714e 4205 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4206 if (err)
4207 return err;
4208
0246e64d 4209 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4210 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4211 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4212 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4213 return -EINVAL;
4214 }
4215
d691f9e8
AS
4216 if (BPF_CLASS(insn->code) == BPF_STX &&
4217 ((BPF_MODE(insn->code) != BPF_MEM &&
4218 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4219 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4220 return -EINVAL;
4221 }
4222
0246e64d
AS
4223 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4224 struct bpf_map *map;
4225 struct fd f;
4226
4227 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4228 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4229 insn[1].off != 0) {
61bd5218 4230 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4231 return -EINVAL;
4232 }
4233
4234 if (insn->src_reg == 0)
4235 /* valid generic load 64-bit imm */
4236 goto next_insn;
4237
4238 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4239 verbose(env,
4240 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4241 return -EINVAL;
4242 }
4243
4244 f = fdget(insn->imm);
c2101297 4245 map = __bpf_map_get(f);
0246e64d 4246 if (IS_ERR(map)) {
61bd5218 4247 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4248 insn->imm);
0246e64d
AS
4249 return PTR_ERR(map);
4250 }
4251
61bd5218 4252 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4253 if (err) {
4254 fdput(f);
4255 return err;
4256 }
4257
0246e64d
AS
4258 /* store map pointer inside BPF_LD_IMM64 instruction */
4259 insn[0].imm = (u32) (unsigned long) map;
4260 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4261
4262 /* check whether we recorded this map already */
4263 for (j = 0; j < env->used_map_cnt; j++)
4264 if (env->used_maps[j] == map) {
4265 fdput(f);
4266 goto next_insn;
4267 }
4268
4269 if (env->used_map_cnt >= MAX_USED_MAPS) {
4270 fdput(f);
4271 return -E2BIG;
4272 }
4273
0246e64d
AS
4274 /* hold the map. If the program is rejected by verifier,
4275 * the map will be released by release_maps() or it
4276 * will be used by the valid program until it's unloaded
4277 * and all maps are released in free_bpf_prog_info()
4278 */
92117d84
AS
4279 map = bpf_map_inc(map, false);
4280 if (IS_ERR(map)) {
4281 fdput(f);
4282 return PTR_ERR(map);
4283 }
4284 env->used_maps[env->used_map_cnt++] = map;
4285
0246e64d
AS
4286 fdput(f);
4287next_insn:
4288 insn++;
4289 i++;
4290 }
4291 }
4292
4293 /* now all pseudo BPF_LD_IMM64 instructions load valid
4294 * 'struct bpf_map *' into a register instead of user map_fd.
4295 * These pointers will be used later by verifier to validate map access.
4296 */
4297 return 0;
4298}
4299
4300/* drop refcnt of maps used by the rejected program */
58e2af8b 4301static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4302{
4303 int i;
4304
4305 for (i = 0; i < env->used_map_cnt; i++)
4306 bpf_map_put(env->used_maps[i]);
4307}
4308
4309/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4310static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4311{
4312 struct bpf_insn *insn = env->prog->insnsi;
4313 int insn_cnt = env->prog->len;
4314 int i;
4315
4316 for (i = 0; i < insn_cnt; i++, insn++)
4317 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4318 insn->src_reg = 0;
4319}
4320
8041902d
AS
4321/* single env->prog->insni[off] instruction was replaced with the range
4322 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4323 * [0, off) and [off, end) to new locations, so the patched range stays zero
4324 */
4325static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4326 u32 off, u32 cnt)
4327{
4328 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4329 int i;
8041902d
AS
4330
4331 if (cnt == 1)
4332 return 0;
4333 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4334 if (!new_data)
4335 return -ENOMEM;
4336 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4337 memcpy(new_data + off + cnt - 1, old_data + off,
4338 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4339 for (i = off; i < off + cnt - 1; i++)
4340 new_data[i].seen = true;
8041902d
AS
4341 env->insn_aux_data = new_data;
4342 vfree(old_data);
4343 return 0;
4344}
4345
4346static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4347 const struct bpf_insn *patch, u32 len)
4348{
4349 struct bpf_prog *new_prog;
4350
4351 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4352 if (!new_prog)
4353 return NULL;
4354 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4355 return NULL;
4356 return new_prog;
4357}
4358
c131187d
AS
4359/* The verifier does more data flow analysis than llvm and will not explore
4360 * branches that are dead at run time. Malicious programs can have dead code
4361 * too. Therefore replace all dead at-run-time code with nops.
4362 */
4363static void sanitize_dead_code(struct bpf_verifier_env *env)
4364{
4365 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4366 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4367 struct bpf_insn *insn = env->prog->insnsi;
4368 const int insn_cnt = env->prog->len;
4369 int i;
4370
4371 for (i = 0; i < insn_cnt; i++) {
4372 if (aux_data[i].seen)
4373 continue;
4374 memcpy(insn + i, &nop, sizeof(nop));
4375 }
4376}
4377
9bac3d6d
AS
4378/* convert load instructions that access fields of 'struct __sk_buff'
4379 * into sequence of instructions that access fields of 'struct sk_buff'
4380 */
58e2af8b 4381static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4382{
00176a34 4383 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4384 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4385 const int insn_cnt = env->prog->len;
36bbef52 4386 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4387 struct bpf_prog *new_prog;
d691f9e8 4388 enum bpf_access_type type;
f96da094
DB
4389 bool is_narrower_load;
4390 u32 target_size;
9bac3d6d 4391
36bbef52
DB
4392 if (ops->gen_prologue) {
4393 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4394 env->prog);
4395 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4396 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4397 return -EINVAL;
4398 } else if (cnt) {
8041902d 4399 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4400 if (!new_prog)
4401 return -ENOMEM;
8041902d 4402
36bbef52 4403 env->prog = new_prog;
3df126f3 4404 delta += cnt - 1;
36bbef52
DB
4405 }
4406 }
4407
4408 if (!ops->convert_ctx_access)
9bac3d6d
AS
4409 return 0;
4410
3df126f3 4411 insn = env->prog->insnsi + delta;
36bbef52 4412
9bac3d6d 4413 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4414 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4415 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4416 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4417 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4418 type = BPF_READ;
62c7989b
DB
4419 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4420 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4421 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4422 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4423 type = BPF_WRITE;
4424 else
9bac3d6d
AS
4425 continue;
4426
abd098e0
AS
4427 if (type == BPF_WRITE &&
4428 env->insn_aux_data[i + delta].sanitize_stack_off) {
4429 struct bpf_insn patch[] = {
4430 /* Sanitize suspicious stack slot with zero.
4431 * There are no memory dependencies for this store,
4432 * since it's only using frame pointer and immediate
4433 * constant of zero
4434 */
4435 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
4436 env->insn_aux_data[i + delta].sanitize_stack_off,
4437 0),
4438 /* the original STX instruction will immediately
4439 * overwrite the same stack slot with appropriate value
4440 */
4441 *insn,
4442 };
4443
4444 cnt = ARRAY_SIZE(patch);
4445 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
4446 if (!new_prog)
4447 return -ENOMEM;
4448
4449 delta += cnt - 1;
4450 env->prog = new_prog;
4451 insn = new_prog->insnsi + i + delta;
4452 continue;
4453 }
4454
8041902d 4455 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4456 continue;
9bac3d6d 4457
31fd8581 4458 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4459 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4460
4461 /* If the read access is a narrower load of the field,
4462 * convert to a 4/8-byte load, to minimum program type specific
4463 * convert_ctx_access changes. If conversion is successful,
4464 * we will apply proper mask to the result.
4465 */
f96da094 4466 is_narrower_load = size < ctx_field_size;
31fd8581 4467 if (is_narrower_load) {
f96da094
DB
4468 u32 off = insn->off;
4469 u8 size_code;
4470
4471 if (type == BPF_WRITE) {
61bd5218 4472 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4473 return -EINVAL;
4474 }
31fd8581 4475
f96da094 4476 size_code = BPF_H;
31fd8581
YS
4477 if (ctx_field_size == 4)
4478 size_code = BPF_W;
4479 else if (ctx_field_size == 8)
4480 size_code = BPF_DW;
f96da094 4481
31fd8581
YS
4482 insn->off = off & ~(ctx_field_size - 1);
4483 insn->code = BPF_LDX | BPF_MEM | size_code;
4484 }
f96da094
DB
4485
4486 target_size = 0;
4487 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4488 &target_size);
4489 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4490 (ctx_field_size && !target_size)) {
61bd5218 4491 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4492 return -EINVAL;
4493 }
f96da094
DB
4494
4495 if (is_narrower_load && size < target_size) {
31fd8581
YS
4496 if (ctx_field_size <= 4)
4497 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4498 (1 << size * 8) - 1);
31fd8581
YS
4499 else
4500 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4501 (1 << size * 8) - 1);
31fd8581 4502 }
9bac3d6d 4503
8041902d 4504 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4505 if (!new_prog)
4506 return -ENOMEM;
4507
3df126f3 4508 delta += cnt - 1;
9bac3d6d
AS
4509
4510 /* keep walking new program and skip insns we just inserted */
4511 env->prog = new_prog;
3df126f3 4512 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4513 }
4514
4515 return 0;
4516}
4517
79741b3b 4518/* fixup insn->imm field of bpf_call instructions
81ed18ab 4519 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4520 *
4521 * this function is called after eBPF program passed verification
4522 */
79741b3b 4523static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4524{
79741b3b
AS
4525 struct bpf_prog *prog = env->prog;
4526 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4527 const struct bpf_func_proto *fn;
79741b3b 4528 const int insn_cnt = prog->len;
81ed18ab
AS
4529 struct bpf_insn insn_buf[16];
4530 struct bpf_prog *new_prog;
4531 struct bpf_map *map_ptr;
4532 int i, cnt, delta = 0;
e245c5c6 4533
79741b3b 4534 for (i = 0; i < insn_cnt; i++, insn++) {
68fda450
AS
4535 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4536 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4537 /* due to JIT bugs clear upper 32-bits of src register
4538 * before div/mod operation
4539 */
4540 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4541 insn_buf[1] = *insn;
4542 cnt = 2;
4543 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4544 if (!new_prog)
4545 return -ENOMEM;
4546
4547 delta += cnt - 1;
4548 env->prog = prog = new_prog;
4549 insn = new_prog->insnsi + i + delta;
4550 continue;
4551 }
4552
79741b3b
AS
4553 if (insn->code != (BPF_JMP | BPF_CALL))
4554 continue;
e245c5c6 4555
79741b3b
AS
4556 if (insn->imm == BPF_FUNC_get_route_realm)
4557 prog->dst_needed = 1;
4558 if (insn->imm == BPF_FUNC_get_prandom_u32)
4559 bpf_user_rnd_init_once();
79741b3b 4560 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4561 /* If we tail call into other programs, we
4562 * cannot make any assumptions since they can
4563 * be replaced dynamically during runtime in
4564 * the program array.
4565 */
4566 prog->cb_access = 1;
80a58d02 4567 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4568
79741b3b
AS
4569 /* mark bpf_tail_call as different opcode to avoid
4570 * conditional branch in the interpeter for every normal
4571 * call and to prevent accidental JITing by JIT compiler
4572 * that doesn't support bpf_tail_call yet
e245c5c6 4573 */
79741b3b 4574 insn->imm = 0;
71189fa9 4575 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
4576
4577 /* instead of changing every JIT dealing with tail_call
4578 * emit two extra insns:
4579 * if (index >= max_entries) goto out;
4580 * index &= array->index_mask;
4581 * to avoid out-of-bounds cpu speculation
4582 */
4583 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4584 if (map_ptr == BPF_MAP_PTR_POISON) {
40950343 4585 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
4586 return -EINVAL;
4587 }
4588 if (!map_ptr->unpriv_array)
4589 continue;
4590 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4591 map_ptr->max_entries, 2);
4592 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4593 container_of(map_ptr,
4594 struct bpf_array,
4595 map)->index_mask);
4596 insn_buf[2] = *insn;
4597 cnt = 3;
4598 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4599 if (!new_prog)
4600 return -ENOMEM;
4601
4602 delta += cnt - 1;
4603 env->prog = prog = new_prog;
4604 insn = new_prog->insnsi + i + delta;
79741b3b
AS
4605 continue;
4606 }
e245c5c6 4607
89c63074
DB
4608 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4609 * handlers are currently limited to 64 bit only.
4610 */
4611 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4612 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4613 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4614 if (map_ptr == BPF_MAP_PTR_POISON ||
4615 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4616 goto patch_call_imm;
4617
4618 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4619 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4620 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4621 return -EINVAL;
4622 }
4623
4624 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4625 cnt);
4626 if (!new_prog)
4627 return -ENOMEM;
4628
4629 delta += cnt - 1;
4630
4631 /* keep walking new program and skip insns we just inserted */
4632 env->prog = prog = new_prog;
4633 insn = new_prog->insnsi + i + delta;
4634 continue;
4635 }
4636
109980b8 4637 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4638 /* Note, we cannot use prog directly as imm as subsequent
4639 * rewrites would still change the prog pointer. The only
4640 * stable address we can use is aux, which also works with
4641 * prog clones during blinding.
4642 */
4643 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4644 struct bpf_insn r4_ld[] = {
4645 BPF_LD_IMM64(BPF_REG_4, addr),
4646 *insn,
4647 };
4648 cnt = ARRAY_SIZE(r4_ld);
4649
4650 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4651 if (!new_prog)
4652 return -ENOMEM;
4653
4654 delta += cnt - 1;
4655 env->prog = prog = new_prog;
4656 insn = new_prog->insnsi + i + delta;
4657 }
81ed18ab 4658patch_call_imm:
00176a34 4659 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4660 /* all functions that have prototype and verifier allowed
4661 * programs to call them, must be real in-kernel functions
4662 */
4663 if (!fn->func) {
61bd5218
JK
4664 verbose(env,
4665 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4666 func_id_name(insn->imm), insn->imm);
4667 return -EFAULT;
e245c5c6 4668 }
79741b3b 4669 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4670 }
e245c5c6 4671
79741b3b
AS
4672 return 0;
4673}
e245c5c6 4674
58e2af8b 4675static void free_states(struct bpf_verifier_env *env)
f1bca824 4676{
58e2af8b 4677 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4678 int i;
4679
4680 if (!env->explored_states)
4681 return;
4682
4683 for (i = 0; i < env->prog->len; i++) {
4684 sl = env->explored_states[i];
4685
4686 if (sl)
4687 while (sl != STATE_LIST_MARK) {
4688 sln = sl->next;
1969db47 4689 free_verifier_state(&sl->state, false);
f1bca824
AS
4690 kfree(sl);
4691 sl = sln;
4692 }
4693 }
4694
4695 kfree(env->explored_states);
4696}
4697
9bac3d6d 4698int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4699{
58e2af8b 4700 struct bpf_verifier_env *env;
61bd5218 4701 struct bpf_verifer_log *log;
51580e79
AS
4702 int ret = -EINVAL;
4703
eba0c929
AB
4704 /* no program is valid */
4705 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4706 return -EINVAL;
4707
58e2af8b 4708 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4709 * allocate/free it every time bpf_check() is called
4710 */
58e2af8b 4711 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4712 if (!env)
4713 return -ENOMEM;
61bd5218 4714 log = &env->log;
cbd35700 4715
3df126f3
JK
4716 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4717 (*prog)->len);
4718 ret = -ENOMEM;
4719 if (!env->insn_aux_data)
4720 goto err_free_env;
9bac3d6d 4721 env->prog = *prog;
00176a34 4722 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4723
cbd35700
AS
4724 /* grab the mutex to protect few globals used by verifier */
4725 mutex_lock(&bpf_verifier_lock);
4726
4727 if (attr->log_level || attr->log_buf || attr->log_size) {
4728 /* user requested verbose verifier output
4729 * and supplied buffer to store the verification trace
4730 */
e7bf8249
JK
4731 log->level = attr->log_level;
4732 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4733 log->len_total = attr->log_size;
cbd35700
AS
4734
4735 ret = -EINVAL;
e7bf8249
JK
4736 /* log attributes have to be sane */
4737 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4738 !log->level || !log->ubuf)
3df126f3 4739 goto err_unlock;
cbd35700 4740 }
1ad2f583
DB
4741
4742 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4743 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4744 env->strict_alignment = true;
cbd35700 4745
ab3f0063
JK
4746 if (env->prog->aux->offload) {
4747 ret = bpf_prog_offload_verifier_prep(env);
4748 if (ret)
4749 goto err_unlock;
4750 }
4751
0246e64d
AS
4752 ret = replace_map_fd_with_map_ptr(env);
4753 if (ret < 0)
4754 goto skip_full_check;
4755
9bac3d6d 4756 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4757 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4758 GFP_USER);
4759 ret = -ENOMEM;
4760 if (!env->explored_states)
4761 goto skip_full_check;
4762
475fb78f
AS
4763 ret = check_cfg(env);
4764 if (ret < 0)
4765 goto skip_full_check;
4766
1be7f75d
AS
4767 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4768
17a52670 4769 ret = do_check(env);
8c01c4f8
CG
4770 if (env->cur_state) {
4771 free_verifier_state(env->cur_state, true);
4772 env->cur_state = NULL;
4773 }
cbd35700 4774
0246e64d 4775skip_full_check:
638f5b90 4776 while (!pop_stack(env, NULL, NULL));
f1bca824 4777 free_states(env);
0246e64d 4778
c131187d
AS
4779 if (ret == 0)
4780 sanitize_dead_code(env);
4781
9bac3d6d
AS
4782 if (ret == 0)
4783 /* program is valid, convert *(u32*)(ctx + off) accesses */
4784 ret = convert_ctx_accesses(env);
4785
e245c5c6 4786 if (ret == 0)
79741b3b 4787 ret = fixup_bpf_calls(env);
e245c5c6 4788
a2a7d570 4789 if (log->level && bpf_verifier_log_full(log))
cbd35700 4790 ret = -ENOSPC;
a2a7d570 4791 if (log->level && !log->ubuf) {
cbd35700 4792 ret = -EFAULT;
a2a7d570 4793 goto err_release_maps;
cbd35700
AS
4794 }
4795
0246e64d
AS
4796 if (ret == 0 && env->used_map_cnt) {
4797 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4798 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4799 sizeof(env->used_maps[0]),
4800 GFP_KERNEL);
0246e64d 4801
9bac3d6d 4802 if (!env->prog->aux->used_maps) {
0246e64d 4803 ret = -ENOMEM;
a2a7d570 4804 goto err_release_maps;
0246e64d
AS
4805 }
4806
9bac3d6d 4807 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4808 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4809 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4810
4811 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4812 * bpf_ld_imm64 instructions
4813 */
4814 convert_pseudo_ld_imm64(env);
4815 }
cbd35700 4816
a2a7d570 4817err_release_maps:
9bac3d6d 4818 if (!env->prog->aux->used_maps)
0246e64d
AS
4819 /* if we didn't copy map pointers into bpf_prog_info, release
4820 * them now. Otherwise free_bpf_prog_info() will release them.
4821 */
4822 release_maps(env);
9bac3d6d 4823 *prog = env->prog;
3df126f3 4824err_unlock:
cbd35700 4825 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4826 vfree(env->insn_aux_data);
4827err_free_env:
4828 kfree(env);
51580e79
AS
4829 return ret;
4830}