]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/bpf/verifier.c
UBUNTU: [Config] updateconfigs after rebase to Ubuntu-4.10.0-17.19
[mirror_ubuntu-zesty-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 32k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
33ff9823
DB
146struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
435faee1 148 bool raw_mode;
36bbef52 149 bool pkt_access;
435faee1
DB
150 int regno;
151 int access_size;
33ff9823
DB
152};
153
cbd35700
AS
154/* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
156 */
157static u32 log_level, log_size, log_len;
158static char *log_buf;
159
160static DEFINE_MUTEX(bpf_verifier_lock);
161
162/* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
165 */
1d056d9c 166static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
167{
168 va_list args;
169
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
172
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
176}
177
17a52670
AS
178/* string representation of 'enum bpf_reg_type' */
179static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
969bf05e
AS
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
192};
193
ebb676da
TG
194#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197};
198#undef __BPF_FUNC_STR_FN
199
200static const char *func_id_name(int id)
201{
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
208}
209
58e2af8b 210static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 211{
58e2af8b 212 struct bpf_reg_state *reg;
17a52670
AS
213 enum bpf_reg_type t;
214 int i;
215
216 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
217 reg = &state->regs[i];
218 t = reg->type;
17a52670
AS
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
17a52670 229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 232 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 233 reg->map_ptr->key_size,
57a09bf0
TG
234 reg->map_ptr->value_size,
235 reg->id);
48461135 236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
48461135
JB
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
17a52670 242 }
9c399760 243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 244 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
247 }
248 verbose("\n");
249}
250
cbd35700
AS
251static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
260};
261
687f0715 262static const char *const bpf_alu_string[16] = {
cbd35700
AS
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
277};
278
279static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
284};
285
687f0715 286static const char *const bpf_jmp_string[16] = {
cbd35700
AS
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
297};
298
badebe9c
DB
299static void print_bpf_insn(const struct bpf_verifier_env *env,
300 const struct bpf_insn *insn)
cbd35700
AS
301{
302 u8 class = BPF_CLASS(insn->code);
303
304 if (class == BPF_ALU || class == BPF_ALU64) {
305 if (BPF_SRC(insn->code) == BPF_X)
306 verbose("(%02x) %sr%d %s %sr%d\n",
307 insn->code, class == BPF_ALU ? "(u32) " : "",
308 insn->dst_reg,
309 bpf_alu_string[BPF_OP(insn->code) >> 4],
310 class == BPF_ALU ? "(u32) " : "",
311 insn->src_reg);
312 else
313 verbose("(%02x) %sr%d %s %s%d\n",
314 insn->code, class == BPF_ALU ? "(u32) " : "",
315 insn->dst_reg,
316 bpf_alu_string[BPF_OP(insn->code) >> 4],
317 class == BPF_ALU ? "(u32) " : "",
318 insn->imm);
319 } else if (class == BPF_STX) {
320 if (BPF_MODE(insn->code) == BPF_MEM)
321 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
322 insn->code,
323 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
324 insn->dst_reg,
325 insn->off, insn->src_reg);
326 else if (BPF_MODE(insn->code) == BPF_XADD)
327 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
328 insn->code,
329 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
330 insn->dst_reg, insn->off,
331 insn->src_reg);
332 else
333 verbose("BUG_%02x\n", insn->code);
334 } else if (class == BPF_ST) {
335 if (BPF_MODE(insn->code) != BPF_MEM) {
336 verbose("BUG_st_%02x\n", insn->code);
337 return;
338 }
339 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
340 insn->code,
341 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
342 insn->dst_reg,
343 insn->off, insn->imm);
344 } else if (class == BPF_LDX) {
345 if (BPF_MODE(insn->code) != BPF_MEM) {
346 verbose("BUG_ldx_%02x\n", insn->code);
347 return;
348 }
349 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
350 insn->code, insn->dst_reg,
351 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
352 insn->src_reg, insn->off);
353 } else if (class == BPF_LD) {
354 if (BPF_MODE(insn->code) == BPF_ABS) {
355 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
356 insn->code,
357 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
358 insn->imm);
359 } else if (BPF_MODE(insn->code) == BPF_IND) {
360 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
361 insn->code,
362 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
363 insn->src_reg, insn->imm);
badebe9c
DB
364 } else if (BPF_MODE(insn->code) == BPF_IMM &&
365 BPF_SIZE(insn->code) == BPF_DW) {
366 /* At this point, we already made sure that the second
367 * part of the ldimm64 insn is accessible.
368 */
369 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
370 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
371
372 if (map_ptr && !env->allow_ptr_leaks)
373 imm = 0;
374
375 verbose("(%02x) r%d = 0x%llx\n", insn->code,
376 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
377 } else {
378 verbose("BUG_ld_%02x\n", insn->code);
379 return;
380 }
381 } else if (class == BPF_JMP) {
382 u8 opcode = BPF_OP(insn->code);
383
384 if (opcode == BPF_CALL) {
ebb676da
TG
385 verbose("(%02x) call %s#%d\n", insn->code,
386 func_id_name(insn->imm), insn->imm);
cbd35700
AS
387 } else if (insn->code == (BPF_JMP | BPF_JA)) {
388 verbose("(%02x) goto pc%+d\n",
389 insn->code, insn->off);
390 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
391 verbose("(%02x) exit\n", insn->code);
392 } else if (BPF_SRC(insn->code) == BPF_X) {
393 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
394 insn->code, insn->dst_reg,
395 bpf_jmp_string[BPF_OP(insn->code) >> 4],
396 insn->src_reg, insn->off);
397 } else {
398 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
399 insn->code, insn->dst_reg,
400 bpf_jmp_string[BPF_OP(insn->code) >> 4],
401 insn->imm, insn->off);
402 }
403 } else {
404 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
405 }
406}
407
58e2af8b 408static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 409{
58e2af8b 410 struct bpf_verifier_stack_elem *elem;
17a52670
AS
411 int insn_idx;
412
413 if (env->head == NULL)
414 return -1;
415
416 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
417 insn_idx = env->head->insn_idx;
418 if (prev_insn_idx)
419 *prev_insn_idx = env->head->prev_insn_idx;
420 elem = env->head->next;
421 kfree(env->head);
422 env->head = elem;
423 env->stack_size--;
424 return insn_idx;
425}
426
58e2af8b
JK
427static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
428 int insn_idx, int prev_insn_idx)
17a52670 429{
58e2af8b 430 struct bpf_verifier_stack_elem *elem;
17a52670 431
58e2af8b 432 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
433 if (!elem)
434 goto err;
435
436 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
437 elem->insn_idx = insn_idx;
438 elem->prev_insn_idx = prev_insn_idx;
439 elem->next = env->head;
440 env->head = elem;
441 env->stack_size++;
07016151 442 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
443 verbose("BPF program is too complex\n");
444 goto err;
445 }
446 return &elem->st;
447err:
448 /* pop all elements and return */
449 while (pop_stack(env, NULL) >= 0);
450 return NULL;
451}
452
453#define CALLER_SAVED_REGS 6
454static const int caller_saved[CALLER_SAVED_REGS] = {
455 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
456};
457
58e2af8b 458static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
459{
460 int i;
461
462 for (i = 0; i < MAX_BPF_REG; i++) {
463 regs[i].type = NOT_INIT;
464 regs[i].imm = 0;
48461135
JB
465 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
466 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
467 }
468
469 /* frame pointer */
470 regs[BPF_REG_FP].type = FRAME_PTR;
471
472 /* 1st arg to a function */
473 regs[BPF_REG_1].type = PTR_TO_CTX;
474}
475
6760bf2d 476static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 477{
17a52670 478 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 479 regs[regno].id = 0;
17a52670 480 regs[regno].imm = 0;
17a52670
AS
481}
482
6760bf2d
DB
483static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
484{
485 BUG_ON(regno >= MAX_BPF_REG);
486 __mark_reg_unknown_value(regs, regno);
487}
488
48461135
JB
489static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
490{
491 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
492 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
493}
494
17a52670
AS
495enum reg_arg_type {
496 SRC_OP, /* register is used as source operand */
497 DST_OP, /* register is used as destination operand */
498 DST_OP_NO_MARK /* same as above, check only, don't mark */
499};
500
58e2af8b 501static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
502 enum reg_arg_type t)
503{
504 if (regno >= MAX_BPF_REG) {
505 verbose("R%d is invalid\n", regno);
506 return -EINVAL;
507 }
508
509 if (t == SRC_OP) {
510 /* check whether register used as source operand can be read */
511 if (regs[regno].type == NOT_INIT) {
512 verbose("R%d !read_ok\n", regno);
513 return -EACCES;
514 }
515 } else {
516 /* check whether register used as dest operand can be written to */
517 if (regno == BPF_REG_FP) {
518 verbose("frame pointer is read only\n");
519 return -EACCES;
520 }
521 if (t == DST_OP)
522 mark_reg_unknown_value(regs, regno);
523 }
524 return 0;
525}
526
527static int bpf_size_to_bytes(int bpf_size)
528{
529 if (bpf_size == BPF_W)
530 return 4;
531 else if (bpf_size == BPF_H)
532 return 2;
533 else if (bpf_size == BPF_B)
534 return 1;
535 else if (bpf_size == BPF_DW)
536 return 8;
537 else
538 return -EINVAL;
539}
540
1be7f75d
AS
541static bool is_spillable_regtype(enum bpf_reg_type type)
542{
543 switch (type) {
544 case PTR_TO_MAP_VALUE:
545 case PTR_TO_MAP_VALUE_OR_NULL:
546 case PTR_TO_STACK:
547 case PTR_TO_CTX:
969bf05e
AS
548 case PTR_TO_PACKET:
549 case PTR_TO_PACKET_END:
1be7f75d
AS
550 case FRAME_PTR:
551 case CONST_PTR_TO_MAP:
552 return true;
553 default:
554 return false;
555 }
556}
557
17a52670
AS
558/* check_stack_read/write functions track spill/fill of registers,
559 * stack boundary and alignment are checked in check_mem_access()
560 */
58e2af8b
JK
561static int check_stack_write(struct bpf_verifier_state *state, int off,
562 int size, int value_regno)
17a52670 563{
17a52670 564 int i;
9c399760
AS
565 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
566 * so it's aligned access and [off, off + size) are within stack limits
567 */
17a52670
AS
568
569 if (value_regno >= 0 &&
1be7f75d 570 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
571
572 /* register containing pointer is being spilled into stack */
9c399760 573 if (size != BPF_REG_SIZE) {
17a52670
AS
574 verbose("invalid size of register spill\n");
575 return -EACCES;
576 }
577
17a52670 578 /* save register state */
9c399760
AS
579 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
580 state->regs[value_regno];
17a52670 581
9c399760
AS
582 for (i = 0; i < BPF_REG_SIZE; i++)
583 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
584 } else {
17a52670 585 /* regular write of data into stack */
9c399760 586 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 587 (struct bpf_reg_state) {};
9c399760
AS
588
589 for (i = 0; i < size; i++)
590 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
591 }
592 return 0;
593}
594
58e2af8b 595static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
596 int value_regno)
597{
9c399760 598 u8 *slot_type;
17a52670 599 int i;
17a52670 600
9c399760 601 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 602
9c399760
AS
603 if (slot_type[0] == STACK_SPILL) {
604 if (size != BPF_REG_SIZE) {
17a52670
AS
605 verbose("invalid size of register spill\n");
606 return -EACCES;
607 }
9c399760
AS
608 for (i = 1; i < BPF_REG_SIZE; i++) {
609 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
610 verbose("corrupted spill memory\n");
611 return -EACCES;
612 }
613 }
614
615 if (value_regno >= 0)
616 /* restore register state from stack */
9c399760
AS
617 state->regs[value_regno] =
618 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
619 return 0;
620 } else {
621 for (i = 0; i < size; i++) {
9c399760 622 if (slot_type[i] != STACK_MISC) {
17a52670
AS
623 verbose("invalid read from stack off %d+%d size %d\n",
624 off, i, size);
625 return -EACCES;
626 }
627 }
628 if (value_regno >= 0)
629 /* have read misc data from the stack */
630 mark_reg_unknown_value(state->regs, value_regno);
631 return 0;
632 }
633}
634
635/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 636static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
637 int size)
638{
639 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
640
641 if (off < 0 || off + size > map->value_size) {
642 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
643 map->value_size, off, size);
644 return -EACCES;
645 }
646 return 0;
647}
648
969bf05e
AS
649#define MAX_PACKET_OFF 0xffff
650
58e2af8b 651static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
652 const struct bpf_call_arg_meta *meta,
653 enum bpf_access_type t)
4acf6c0b 654{
36bbef52 655 switch (env->prog->type) {
3a0af8fd
TG
656 case BPF_PROG_TYPE_LWT_IN:
657 case BPF_PROG_TYPE_LWT_OUT:
658 /* dst_input() and dst_output() can't write for now */
659 if (t == BPF_WRITE)
660 return false;
36bbef52
DB
661 case BPF_PROG_TYPE_SCHED_CLS:
662 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 663 case BPF_PROG_TYPE_XDP:
3a0af8fd 664 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
665 if (meta)
666 return meta->pkt_access;
667
668 env->seen_direct_write = true;
4acf6c0b
BB
669 return true;
670 default:
671 return false;
672 }
673}
674
58e2af8b 675static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
676 int size)
677{
58e2af8b
JK
678 struct bpf_reg_state *regs = env->cur_state.regs;
679 struct bpf_reg_state *reg = &regs[regno];
969bf05e 680
d91b28ed 681 off += reg->off;
b399cf64 682 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
683 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
684 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
685 return -EACCES;
686 }
687 return 0;
688}
689
17a52670 690/* check access to 'struct bpf_context' fields */
58e2af8b 691static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 692 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 693{
13a27dfc
JK
694 /* for analyzer ctx accesses are already validated and converted */
695 if (env->analyzer_ops)
696 return 0;
697
17a52670 698 if (env->prog->aux->ops->is_valid_access &&
19de99f7 699 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
700 /* remember the offset of last byte accessed in ctx */
701 if (env->prog->aux->max_ctx_offset < off + size)
702 env->prog->aux->max_ctx_offset = off + size;
17a52670 703 return 0;
32bbe007 704 }
17a52670
AS
705
706 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
707 return -EACCES;
708}
709
58e2af8b 710static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
711{
712 if (env->allow_ptr_leaks)
713 return false;
714
715 switch (env->cur_state.regs[regno].type) {
716 case UNKNOWN_VALUE:
717 case CONST_IMM:
718 return false;
719 default:
720 return true;
721 }
722}
723
58e2af8b
JK
724static int check_ptr_alignment(struct bpf_verifier_env *env,
725 struct bpf_reg_state *reg, int off, int size)
969bf05e 726{
48461135 727 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
969bf05e 728 if (off % size != 0) {
58e2af8b
JK
729 verbose("misaligned access off %d size %d\n",
730 off, size);
969bf05e
AS
731 return -EACCES;
732 } else {
733 return 0;
734 }
735 }
736
969bf05e
AS
737 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
738 /* misaligned access to packet is ok on x86,arm,arm64 */
739 return 0;
740
741 if (reg->id && size != 1) {
742 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
743 return -EACCES;
744 }
745
746 /* skb->data is NET_IP_ALIGN-ed */
48461135
JB
747 if (reg->type == PTR_TO_PACKET &&
748 (NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
749 verbose("misaligned packet access off %d+%d+%d size %d\n",
750 NET_IP_ALIGN, reg->off, off, size);
751 return -EACCES;
752 }
753 return 0;
754}
755
17a52670
AS
756/* check whether memory at (regno + off) is accessible for t = (read | write)
757 * if t==write, value_regno is a register which value is stored into memory
758 * if t==read, value_regno is a register which will receive the value from memory
759 * if t==write && value_regno==-1, some unknown value is stored into memory
760 * if t==read && value_regno==-1, don't care what we read from memory
761 */
58e2af8b 762static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
763 int bpf_size, enum bpf_access_type t,
764 int value_regno)
765{
58e2af8b
JK
766 struct bpf_verifier_state *state = &env->cur_state;
767 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
768 int size, err = 0;
769
1a0dc1ac
AS
770 if (reg->type == PTR_TO_STACK)
771 off += reg->imm;
24b4d2ab 772
17a52670
AS
773 size = bpf_size_to_bytes(bpf_size);
774 if (size < 0)
775 return size;
776
969bf05e
AS
777 err = check_ptr_alignment(env, reg, off, size);
778 if (err)
779 return err;
17a52670 780
48461135
JB
781 if (reg->type == PTR_TO_MAP_VALUE ||
782 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
783 if (t == BPF_WRITE && value_regno >= 0 &&
784 is_pointer_value(env, value_regno)) {
785 verbose("R%d leaks addr into map\n", value_regno);
786 return -EACCES;
787 }
48461135
JB
788
789 /* If we adjusted the register to this map value at all then we
790 * need to change off and size to min_value and max_value
791 * respectively to make sure our theoretical access will be
792 * safe.
793 */
794 if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
795 if (log_level)
796 print_verifier_state(state);
797 env->varlen_map_value_access = true;
798 /* The minimum value is only important with signed
799 * comparisons where we can't assume the floor of a
800 * value is 0. If we are using signed variables for our
801 * index'es we need to make sure that whatever we use
802 * will have a set floor within our range.
803 */
f23cc643 804 if (reg->min_value < 0) {
48461135
JB
805 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
806 regno);
807 return -EACCES;
808 }
809 err = check_map_access(env, regno, reg->min_value + off,
810 size);
811 if (err) {
812 verbose("R%d min value is outside of the array range\n",
813 regno);
814 return err;
815 }
816
817 /* If we haven't set a max value then we need to bail
818 * since we can't be sure we won't do bad things.
819 */
820 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
821 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
822 regno);
823 return -EACCES;
824 }
825 off += reg->max_value;
826 }
17a52670
AS
827 err = check_map_access(env, regno, off, size);
828 if (!err && t == BPF_READ && value_regno >= 0)
829 mark_reg_unknown_value(state->regs, value_regno);
830
1a0dc1ac 831 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
832 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
833
1be7f75d
AS
834 if (t == BPF_WRITE && value_regno >= 0 &&
835 is_pointer_value(env, value_regno)) {
836 verbose("R%d leaks addr into ctx\n", value_regno);
837 return -EACCES;
838 }
19de99f7 839 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 840 if (!err && t == BPF_READ && value_regno >= 0) {
17a52670 841 mark_reg_unknown_value(state->regs, value_regno);
1955351d
MS
842 /* note that reg.[id|off|range] == 0 */
843 state->regs[value_regno].type = reg_type;
969bf05e 844 }
17a52670 845
1a0dc1ac 846 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
847 if (off >= 0 || off < -MAX_BPF_STACK) {
848 verbose("invalid stack off=%d size=%d\n", off, size);
849 return -EACCES;
850 }
1be7f75d
AS
851 if (t == BPF_WRITE) {
852 if (!env->allow_ptr_leaks &&
853 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
854 size != BPF_REG_SIZE) {
855 verbose("attempt to corrupt spilled pointer on stack\n");
856 return -EACCES;
857 }
17a52670 858 err = check_stack_write(state, off, size, value_regno);
1be7f75d 859 } else {
17a52670 860 err = check_stack_read(state, off, size, value_regno);
1be7f75d 861 }
969bf05e 862 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 863 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
864 verbose("cannot write into packet\n");
865 return -EACCES;
866 }
4acf6c0b
BB
867 if (t == BPF_WRITE && value_regno >= 0 &&
868 is_pointer_value(env, value_regno)) {
869 verbose("R%d leaks addr into packet\n", value_regno);
870 return -EACCES;
871 }
969bf05e
AS
872 err = check_packet_access(env, regno, off, size);
873 if (!err && t == BPF_READ && value_regno >= 0)
874 mark_reg_unknown_value(state->regs, value_regno);
17a52670
AS
875 } else {
876 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 877 regno, reg_type_str[reg->type]);
17a52670
AS
878 return -EACCES;
879 }
969bf05e
AS
880
881 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
882 state->regs[value_regno].type == UNKNOWN_VALUE) {
883 /* 1 or 2 byte load zero-extends, determine the number of
884 * zero upper bits. Not doing it fo 4 byte load, since
885 * such values cannot be added to ptr_to_packet anyway.
886 */
887 state->regs[value_regno].imm = 64 - size * 8;
888 }
17a52670
AS
889 return err;
890}
891
58e2af8b 892static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 893{
58e2af8b 894 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
895 int err;
896
897 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
898 insn->imm != 0) {
899 verbose("BPF_XADD uses reserved fields\n");
900 return -EINVAL;
901 }
902
903 /* check src1 operand */
904 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
905 if (err)
906 return err;
907
908 /* check src2 operand */
909 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
910 if (err)
911 return err;
912
913 /* check whether atomic_add can read the memory */
914 err = check_mem_access(env, insn->dst_reg, insn->off,
915 BPF_SIZE(insn->code), BPF_READ, -1);
916 if (err)
917 return err;
918
919 /* check whether atomic_add can write into the same memory */
920 return check_mem_access(env, insn->dst_reg, insn->off,
921 BPF_SIZE(insn->code), BPF_WRITE, -1);
922}
923
924/* when register 'regno' is passed into function that will read 'access_size'
925 * bytes from that pointer, make sure that it's within stack boundary
926 * and all elements of stack are initialized
927 */
58e2af8b 928static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
929 int access_size, bool zero_size_allowed,
930 struct bpf_call_arg_meta *meta)
17a52670 931{
58e2af8b
JK
932 struct bpf_verifier_state *state = &env->cur_state;
933 struct bpf_reg_state *regs = state->regs;
17a52670
AS
934 int off, i;
935
8e2fe1d9
DB
936 if (regs[regno].type != PTR_TO_STACK) {
937 if (zero_size_allowed && access_size == 0 &&
938 regs[regno].type == CONST_IMM &&
939 regs[regno].imm == 0)
940 return 0;
941
942 verbose("R%d type=%s expected=%s\n", regno,
943 reg_type_str[regs[regno].type],
944 reg_type_str[PTR_TO_STACK]);
17a52670 945 return -EACCES;
8e2fe1d9 946 }
17a52670
AS
947
948 off = regs[regno].imm;
949 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
950 access_size <= 0) {
951 verbose("invalid stack type R%d off=%d access_size=%d\n",
952 regno, off, access_size);
953 return -EACCES;
954 }
955
435faee1
DB
956 if (meta && meta->raw_mode) {
957 meta->access_size = access_size;
958 meta->regno = regno;
959 return 0;
960 }
961
17a52670 962 for (i = 0; i < access_size; i++) {
9c399760 963 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
964 verbose("invalid indirect read from stack off %d+%d size %d\n",
965 off, i, access_size);
966 return -EACCES;
967 }
968 }
969 return 0;
970}
971
58e2af8b 972static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
973 enum bpf_arg_type arg_type,
974 struct bpf_call_arg_meta *meta)
17a52670 975{
58e2af8b 976 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 977 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
978 int err = 0;
979
80f1d68c 980 if (arg_type == ARG_DONTCARE)
17a52670
AS
981 return 0;
982
6841de8b 983 if (type == NOT_INIT) {
17a52670
AS
984 verbose("R%d !read_ok\n", regno);
985 return -EACCES;
986 }
987
1be7f75d
AS
988 if (arg_type == ARG_ANYTHING) {
989 if (is_pointer_value(env, regno)) {
990 verbose("R%d leaks addr into helper function\n", regno);
991 return -EACCES;
992 }
80f1d68c 993 return 0;
1be7f75d 994 }
80f1d68c 995
3a0af8fd
TG
996 if (type == PTR_TO_PACKET &&
997 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 998 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
999 return -EACCES;
1000 }
1001
8e2fe1d9 1002 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1003 arg_type == ARG_PTR_TO_MAP_VALUE) {
1004 expected_type = PTR_TO_STACK;
6841de8b
AS
1005 if (type != PTR_TO_PACKET && type != expected_type)
1006 goto err_type;
8e2fe1d9
DB
1007 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1008 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 1009 expected_type = CONST_IMM;
6841de8b
AS
1010 if (type != expected_type)
1011 goto err_type;
17a52670
AS
1012 } else if (arg_type == ARG_CONST_MAP_PTR) {
1013 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1014 if (type != expected_type)
1015 goto err_type;
608cd71a
AS
1016 } else if (arg_type == ARG_PTR_TO_CTX) {
1017 expected_type = PTR_TO_CTX;
6841de8b
AS
1018 if (type != expected_type)
1019 goto err_type;
435faee1
DB
1020 } else if (arg_type == ARG_PTR_TO_STACK ||
1021 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
1022 expected_type = PTR_TO_STACK;
1023 /* One exception here. In case function allows for NULL to be
1024 * passed in as argument, it's a CONST_IMM type. Final test
1025 * happens during stack boundary checking.
1026 */
6841de8b
AS
1027 if (type == CONST_IMM && reg->imm == 0)
1028 /* final test in check_stack_boundary() */;
1029 else if (type != PTR_TO_PACKET && type != expected_type)
1030 goto err_type;
435faee1 1031 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
1032 } else {
1033 verbose("unsupported arg_type %d\n", arg_type);
1034 return -EFAULT;
1035 }
1036
17a52670
AS
1037 if (arg_type == ARG_CONST_MAP_PTR) {
1038 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1039 meta->map_ptr = reg->map_ptr;
17a52670
AS
1040 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1041 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1042 * check that [key, key + map->key_size) are within
1043 * stack limits and initialized
1044 */
33ff9823 1045 if (!meta->map_ptr) {
17a52670
AS
1046 /* in function declaration map_ptr must come before
1047 * map_key, so that it's verified and known before
1048 * we have to check map_key here. Otherwise it means
1049 * that kernel subsystem misconfigured verifier
1050 */
1051 verbose("invalid map_ptr to access map->key\n");
1052 return -EACCES;
1053 }
6841de8b
AS
1054 if (type == PTR_TO_PACKET)
1055 err = check_packet_access(env, regno, 0,
1056 meta->map_ptr->key_size);
1057 else
1058 err = check_stack_boundary(env, regno,
1059 meta->map_ptr->key_size,
1060 false, NULL);
17a52670
AS
1061 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1062 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1063 * check [value, value + map->value_size) validity
1064 */
33ff9823 1065 if (!meta->map_ptr) {
17a52670
AS
1066 /* kernel subsystem misconfigured verifier */
1067 verbose("invalid map_ptr to access map->value\n");
1068 return -EACCES;
1069 }
6841de8b
AS
1070 if (type == PTR_TO_PACKET)
1071 err = check_packet_access(env, regno, 0,
1072 meta->map_ptr->value_size);
1073 else
1074 err = check_stack_boundary(env, regno,
1075 meta->map_ptr->value_size,
1076 false, NULL);
8e2fe1d9
DB
1077 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1078 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1079 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1080
17a52670
AS
1081 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1082 * from stack pointer 'buf'. Check it
1083 * note: regno == len, regno - 1 == buf
1084 */
1085 if (regno == 0) {
1086 /* kernel subsystem misconfigured verifier */
1087 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1088 return -EACCES;
1089 }
6841de8b
AS
1090 if (regs[regno - 1].type == PTR_TO_PACKET)
1091 err = check_packet_access(env, regno - 1, 0, reg->imm);
1092 else
1093 err = check_stack_boundary(env, regno - 1, reg->imm,
1094 zero_size_allowed, meta);
17a52670
AS
1095 }
1096
1097 return err;
6841de8b
AS
1098err_type:
1099 verbose("R%d type=%s expected=%s\n", regno,
1100 reg_type_str[type], reg_type_str[expected_type]);
1101 return -EACCES;
17a52670
AS
1102}
1103
35578d79
KX
1104static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1105{
35578d79
KX
1106 if (!map)
1107 return 0;
1108
6aff67c8
AS
1109 /* We need a two way check, first is from map perspective ... */
1110 switch (map->map_type) {
1111 case BPF_MAP_TYPE_PROG_ARRAY:
1112 if (func_id != BPF_FUNC_tail_call)
1113 goto error;
1114 break;
1115 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1116 if (func_id != BPF_FUNC_perf_event_read &&
1117 func_id != BPF_FUNC_perf_event_output)
1118 goto error;
1119 break;
1120 case BPF_MAP_TYPE_STACK_TRACE:
1121 if (func_id != BPF_FUNC_get_stackid)
1122 goto error;
1123 break;
4ed8ec52 1124 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1125 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1126 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1127 goto error;
1128 break;
6aff67c8
AS
1129 default:
1130 break;
1131 }
1132
1133 /* ... and second from the function itself. */
1134 switch (func_id) {
1135 case BPF_FUNC_tail_call:
1136 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1137 goto error;
1138 break;
1139 case BPF_FUNC_perf_event_read:
1140 case BPF_FUNC_perf_event_output:
1141 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1142 goto error;
1143 break;
1144 case BPF_FUNC_get_stackid:
1145 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1146 goto error;
1147 break;
60d20f91 1148 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1149 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1150 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1151 goto error;
1152 break;
6aff67c8
AS
1153 default:
1154 break;
35578d79
KX
1155 }
1156
1157 return 0;
6aff67c8 1158error:
ebb676da
TG
1159 verbose("cannot pass map_type %d into func %s#%d\n",
1160 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1161 return -EINVAL;
35578d79
KX
1162}
1163
435faee1
DB
1164static int check_raw_mode(const struct bpf_func_proto *fn)
1165{
1166 int count = 0;
1167
1168 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1169 count++;
1170 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1171 count++;
1172 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1173 count++;
1174 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1175 count++;
1176 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1177 count++;
1178
1179 return count > 1 ? -EINVAL : 0;
1180}
1181
58e2af8b 1182static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1183{
58e2af8b
JK
1184 struct bpf_verifier_state *state = &env->cur_state;
1185 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1186 int i;
1187
1188 for (i = 0; i < MAX_BPF_REG; i++)
1189 if (regs[i].type == PTR_TO_PACKET ||
1190 regs[i].type == PTR_TO_PACKET_END)
1191 mark_reg_unknown_value(regs, i);
1192
1193 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1194 if (state->stack_slot_type[i] != STACK_SPILL)
1195 continue;
1196 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1197 if (reg->type != PTR_TO_PACKET &&
1198 reg->type != PTR_TO_PACKET_END)
1199 continue;
1200 reg->type = UNKNOWN_VALUE;
1201 reg->imm = 0;
1202 }
1203}
1204
58e2af8b 1205static int check_call(struct bpf_verifier_env *env, int func_id)
17a52670 1206{
58e2af8b 1207 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1208 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1209 struct bpf_reg_state *regs = state->regs;
1210 struct bpf_reg_state *reg;
33ff9823 1211 struct bpf_call_arg_meta meta;
969bf05e 1212 bool changes_data;
17a52670
AS
1213 int i, err;
1214
1215 /* find function prototype */
1216 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1217 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1218 return -EINVAL;
1219 }
1220
1221 if (env->prog->aux->ops->get_func_proto)
1222 fn = env->prog->aux->ops->get_func_proto(func_id);
1223
1224 if (!fn) {
ebb676da 1225 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1226 return -EINVAL;
1227 }
1228
1229 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1230 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1231 verbose("cannot call GPL only function from proprietary program\n");
1232 return -EINVAL;
1233 }
1234
17bedab2 1235 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1236
33ff9823 1237 memset(&meta, 0, sizeof(meta));
36bbef52 1238 meta.pkt_access = fn->pkt_access;
33ff9823 1239
435faee1
DB
1240 /* We only support one arg being in raw mode at the moment, which
1241 * is sufficient for the helper functions we have right now.
1242 */
1243 err = check_raw_mode(fn);
1244 if (err) {
ebb676da
TG
1245 verbose("kernel subsystem misconfigured func %s#%d\n",
1246 func_id_name(func_id), func_id);
435faee1
DB
1247 return err;
1248 }
1249
17a52670 1250 /* check args */
33ff9823 1251 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1252 if (err)
1253 return err;
33ff9823 1254 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1255 if (err)
1256 return err;
33ff9823 1257 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1258 if (err)
1259 return err;
33ff9823 1260 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1261 if (err)
1262 return err;
33ff9823 1263 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1264 if (err)
1265 return err;
1266
435faee1
DB
1267 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1268 * is inferred from register state.
1269 */
1270 for (i = 0; i < meta.access_size; i++) {
1271 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1272 if (err)
1273 return err;
1274 }
1275
17a52670
AS
1276 /* reset caller saved regs */
1277 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1278 reg = regs + caller_saved[i];
1279 reg->type = NOT_INIT;
1280 reg->imm = 0;
1281 }
1282
1283 /* update return register */
1284 if (fn->ret_type == RET_INTEGER) {
1285 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1286 } else if (fn->ret_type == RET_VOID) {
1287 regs[BPF_REG_0].type = NOT_INIT;
1288 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1289 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1290 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1291 /* remember map_ptr, so that check_map_access()
1292 * can check 'value_size' boundary of memory access
1293 * to map element returned from bpf_map_lookup_elem()
1294 */
33ff9823 1295 if (meta.map_ptr == NULL) {
17a52670
AS
1296 verbose("kernel subsystem misconfigured verifier\n");
1297 return -EINVAL;
1298 }
33ff9823 1299 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1300 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 1301 } else {
ebb676da
TG
1302 verbose("unknown return type %d of func %s#%d\n",
1303 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1304 return -EINVAL;
1305 }
04fd61ab 1306
33ff9823 1307 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1308 if (err)
1309 return err;
04fd61ab 1310
969bf05e
AS
1311 if (changes_data)
1312 clear_all_pkt_pointers(env);
1313 return 0;
1314}
1315
58e2af8b
JK
1316static int check_packet_ptr_add(struct bpf_verifier_env *env,
1317 struct bpf_insn *insn)
969bf05e 1318{
58e2af8b
JK
1319 struct bpf_reg_state *regs = env->cur_state.regs;
1320 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1321 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1322 struct bpf_reg_state tmp_reg;
969bf05e
AS
1323 s32 imm;
1324
1325 if (BPF_SRC(insn->code) == BPF_K) {
1326 /* pkt_ptr += imm */
1327 imm = insn->imm;
1328
1329add_imm:
1330 if (imm <= 0) {
1331 verbose("addition of negative constant to packet pointer is not allowed\n");
1332 return -EACCES;
1333 }
1334 if (imm >= MAX_PACKET_OFF ||
1335 imm + dst_reg->off >= MAX_PACKET_OFF) {
1336 verbose("constant %d is too large to add to packet pointer\n",
1337 imm);
1338 return -EACCES;
1339 }
1340 /* a constant was added to pkt_ptr.
1341 * Remember it while keeping the same 'id'
1342 */
1343 dst_reg->off += imm;
1344 } else {
1b9b69ec
AS
1345 if (src_reg->type == PTR_TO_PACKET) {
1346 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1347 tmp_reg = *dst_reg; /* save r7 state */
1348 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1349 src_reg = &tmp_reg; /* pretend it's src_reg state */
1350 /* if the checks below reject it, the copy won't matter,
1351 * since we're rejecting the whole program. If all ok,
1352 * then imm22 state will be added to r7
1353 * and r7 will be pkt(id=0,off=22,r=62) while
1354 * r6 will stay as pkt(id=0,off=0,r=62)
1355 */
1356 }
1357
969bf05e
AS
1358 if (src_reg->type == CONST_IMM) {
1359 /* pkt_ptr += reg where reg is known constant */
1360 imm = src_reg->imm;
1361 goto add_imm;
1362 }
1363 /* disallow pkt_ptr += reg
1364 * if reg is not uknown_value with guaranteed zero upper bits
1365 * otherwise pkt_ptr may overflow and addition will become
1366 * subtraction which is not allowed
1367 */
1368 if (src_reg->type != UNKNOWN_VALUE) {
1369 verbose("cannot add '%s' to ptr_to_packet\n",
1370 reg_type_str[src_reg->type]);
1371 return -EACCES;
1372 }
1373 if (src_reg->imm < 48) {
1374 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1375 src_reg->imm);
1376 return -EACCES;
1377 }
1378 /* dst_reg stays as pkt_ptr type and since some positive
1379 * integer value was added to the pointer, increment its 'id'
1380 */
1f415a74 1381 dst_reg->id = ++env->id_gen;
969bf05e
AS
1382
1383 /* something was added to pkt_ptr, set range and off to zero */
1384 dst_reg->off = 0;
1385 dst_reg->range = 0;
1386 }
1387 return 0;
1388}
1389
58e2af8b 1390static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1391{
58e2af8b
JK
1392 struct bpf_reg_state *regs = env->cur_state.regs;
1393 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1394 u8 opcode = BPF_OP(insn->code);
1395 s64 imm_log2;
1396
1397 /* for type == UNKNOWN_VALUE:
1398 * imm > 0 -> number of zero upper bits
1399 * imm == 0 -> don't track which is the same as all bits can be non-zero
1400 */
1401
1402 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1403 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1404
1405 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1406 dst_reg->imm && opcode == BPF_ADD) {
1407 /* dreg += sreg
1408 * where both have zero upper bits. Adding them
1409 * can only result making one more bit non-zero
1410 * in the larger value.
1411 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1412 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1413 */
1414 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1415 dst_reg->imm--;
1416 return 0;
1417 }
1418 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1419 dst_reg->imm && opcode == BPF_ADD) {
1420 /* dreg += sreg
1421 * where dreg has zero upper bits and sreg is const.
1422 * Adding them can only result making one more bit
1423 * non-zero in the larger value.
1424 */
1425 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1426 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1427 dst_reg->imm--;
1428 return 0;
1429 }
1430 /* all other cases non supported yet, just mark dst_reg */
1431 dst_reg->imm = 0;
1432 return 0;
1433 }
1434
1435 /* sign extend 32-bit imm into 64-bit to make sure that
1436 * negative values occupy bit 63. Note ilog2() would have
1437 * been incorrect, since sizeof(insn->imm) == 4
1438 */
1439 imm_log2 = __ilog2_u64((long long)insn->imm);
1440
1441 if (dst_reg->imm && opcode == BPF_LSH) {
1442 /* reg <<= imm
1443 * if reg was a result of 2 byte load, then its imm == 48
1444 * which means that upper 48 bits are zero and shifting this reg
1445 * left by 4 would mean that upper 44 bits are still zero
1446 */
1447 dst_reg->imm -= insn->imm;
1448 } else if (dst_reg->imm && opcode == BPF_MUL) {
1449 /* reg *= imm
1450 * if multiplying by 14 subtract 4
1451 * This is conservative calculation of upper zero bits.
1452 * It's not trying to special case insn->imm == 1 or 0 cases
1453 */
1454 dst_reg->imm -= imm_log2 + 1;
1455 } else if (opcode == BPF_AND) {
1456 /* reg &= imm */
1457 dst_reg->imm = 63 - imm_log2;
1458 } else if (dst_reg->imm && opcode == BPF_ADD) {
1459 /* reg += imm */
1460 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1461 dst_reg->imm--;
1462 } else if (opcode == BPF_RSH) {
1463 /* reg >>= imm
1464 * which means that after right shift, upper bits will be zero
1465 * note that verifier already checked that
1466 * 0 <= imm < 64 for shift insn
1467 */
1468 dst_reg->imm += insn->imm;
1469 if (unlikely(dst_reg->imm > 64))
1470 /* some dumb code did:
1471 * r2 = *(u32 *)mem;
1472 * r2 >>= 32;
1473 * and all bits are zero now */
1474 dst_reg->imm = 64;
1475 } else {
1476 /* all other alu ops, means that we don't know what will
1477 * happen to the value, mark it with unknown number of zero bits
1478 */
1479 dst_reg->imm = 0;
1480 }
1481
1482 if (dst_reg->imm < 0) {
1483 /* all 64 bits of the register can contain non-zero bits
1484 * and such value cannot be added to ptr_to_packet, since it
1485 * may overflow, mark it as unknown to avoid further eval
1486 */
1487 dst_reg->imm = 0;
1488 }
1489 return 0;
1490}
1491
58e2af8b
JK
1492static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1493 struct bpf_insn *insn)
969bf05e 1494{
58e2af8b
JK
1495 struct bpf_reg_state *regs = env->cur_state.regs;
1496 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1497 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1498 u8 opcode = BPF_OP(insn->code);
1499
3c839744
GB
1500 /* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or'
1501 * insn. Don't care about overflow or negative values, just add them
969bf05e
AS
1502 */
1503 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1504 dst_reg->imm += insn->imm;
1505 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1506 src_reg->type == CONST_IMM)
1507 dst_reg->imm += src_reg->imm;
3c839744
GB
1508 else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K)
1509 dst_reg->imm |= insn->imm;
1510 else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1511 src_reg->type == CONST_IMM)
1512 dst_reg->imm |= src_reg->imm;
969bf05e
AS
1513 else
1514 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1515 return 0;
1516}
1517
48461135
JB
1518static void check_reg_overflow(struct bpf_reg_state *reg)
1519{
1520 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1521 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1522 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1523 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1524 reg->min_value = BPF_REGISTER_MIN_RANGE;
1525}
1526
1527static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1528 struct bpf_insn *insn)
1529{
1530 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1531 s64 min_val = BPF_REGISTER_MIN_RANGE;
1532 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1533 u8 opcode = BPF_OP(insn->code);
1534
1535 dst_reg = &regs[insn->dst_reg];
1536 if (BPF_SRC(insn->code) == BPF_X) {
1537 check_reg_overflow(&regs[insn->src_reg]);
1538 min_val = regs[insn->src_reg].min_value;
1539 max_val = regs[insn->src_reg].max_value;
1540
1541 /* If the source register is a random pointer then the
1542 * min_value/max_value values represent the range of the known
1543 * accesses into that value, not the actual min/max value of the
1544 * register itself. In this case we have to reset the reg range
1545 * values so we know it is not safe to look at.
1546 */
1547 if (regs[insn->src_reg].type != CONST_IMM &&
1548 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1549 min_val = BPF_REGISTER_MIN_RANGE;
1550 max_val = BPF_REGISTER_MAX_RANGE;
1551 }
1552 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1553 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1554 min_val = max_val = insn->imm;
48461135
JB
1555 }
1556
1557 /* We don't know anything about what was done to this register, mark it
1558 * as unknown.
1559 */
1560 if (min_val == BPF_REGISTER_MIN_RANGE &&
1561 max_val == BPF_REGISTER_MAX_RANGE) {
1562 reset_reg_range_values(regs, insn->dst_reg);
1563 return;
1564 }
1565
f23cc643
JB
1566 /* If one of our values was at the end of our ranges then we can't just
1567 * do our normal operations to the register, we need to set the values
1568 * to the min/max since they are undefined.
1569 */
1570 if (min_val == BPF_REGISTER_MIN_RANGE)
1571 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1572 if (max_val == BPF_REGISTER_MAX_RANGE)
1573 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1574
48461135
JB
1575 switch (opcode) {
1576 case BPF_ADD:
f23cc643
JB
1577 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1578 dst_reg->min_value += min_val;
1579 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1580 dst_reg->max_value += max_val;
48461135
JB
1581 break;
1582 case BPF_SUB:
f23cc643
JB
1583 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1584 dst_reg->min_value -= min_val;
1585 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1586 dst_reg->max_value -= max_val;
48461135
JB
1587 break;
1588 case BPF_MUL:
f23cc643
JB
1589 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1590 dst_reg->min_value *= min_val;
1591 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1592 dst_reg->max_value *= max_val;
48461135
JB
1593 break;
1594 case BPF_AND:
f23cc643
JB
1595 /* Disallow AND'ing of negative numbers, ain't nobody got time
1596 * for that. Otherwise the minimum is 0 and the max is the max
1597 * value we could AND against.
1598 */
1599 if (min_val < 0)
1600 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1601 else
1602 dst_reg->min_value = 0;
48461135
JB
1603 dst_reg->max_value = max_val;
1604 break;
1605 case BPF_LSH:
1606 /* Gotta have special overflow logic here, if we're shifting
1607 * more than MAX_RANGE then just assume we have an invalid
1608 * range.
1609 */
1610 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1611 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1612 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1613 dst_reg->min_value <<= min_val;
1614
1615 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1616 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1617 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1618 dst_reg->max_value <<= max_val;
1619 break;
1620 case BPF_RSH:
f23cc643
JB
1621 /* RSH by a negative number is undefined, and the BPF_RSH is an
1622 * unsigned shift, so make the appropriate casts.
48461135 1623 */
f23cc643
JB
1624 if (min_val < 0 || dst_reg->min_value < 0)
1625 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1626 else
1627 dst_reg->min_value =
1628 (u64)(dst_reg->min_value) >> min_val;
1629 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1630 dst_reg->max_value >>= max_val;
48461135
JB
1631 break;
1632 default:
1633 reset_reg_range_values(regs, insn->dst_reg);
1634 break;
1635 }
1636
1637 check_reg_overflow(dst_reg);
1638}
1639
17a52670 1640/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1641static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1642{
58e2af8b 1643 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1644 u8 opcode = BPF_OP(insn->code);
1645 int err;
1646
1647 if (opcode == BPF_END || opcode == BPF_NEG) {
1648 if (opcode == BPF_NEG) {
1649 if (BPF_SRC(insn->code) != 0 ||
1650 insn->src_reg != BPF_REG_0 ||
1651 insn->off != 0 || insn->imm != 0) {
1652 verbose("BPF_NEG uses reserved fields\n");
1653 return -EINVAL;
1654 }
1655 } else {
1656 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1657 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1658 verbose("BPF_END uses reserved fields\n");
1659 return -EINVAL;
1660 }
1661 }
1662
1663 /* check src operand */
1664 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1665 if (err)
1666 return err;
1667
1be7f75d
AS
1668 if (is_pointer_value(env, insn->dst_reg)) {
1669 verbose("R%d pointer arithmetic prohibited\n",
1670 insn->dst_reg);
1671 return -EACCES;
1672 }
1673
17a52670
AS
1674 /* check dest operand */
1675 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1676 if (err)
1677 return err;
1678
1679 } else if (opcode == BPF_MOV) {
1680
1681 if (BPF_SRC(insn->code) == BPF_X) {
1682 if (insn->imm != 0 || insn->off != 0) {
1683 verbose("BPF_MOV uses reserved fields\n");
1684 return -EINVAL;
1685 }
1686
1687 /* check src operand */
1688 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1689 if (err)
1690 return err;
1691 } else {
1692 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1693 verbose("BPF_MOV uses reserved fields\n");
1694 return -EINVAL;
1695 }
1696 }
1697
1698 /* check dest operand */
1699 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1700 if (err)
1701 return err;
1702
48461135
JB
1703 /* we are setting our register to something new, we need to
1704 * reset its range values.
1705 */
1706 reset_reg_range_values(regs, insn->dst_reg);
1707
17a52670
AS
1708 if (BPF_SRC(insn->code) == BPF_X) {
1709 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1710 /* case: R1 = R2
1711 * copy register state to dest reg
1712 */
1713 regs[insn->dst_reg] = regs[insn->src_reg];
1714 } else {
1be7f75d
AS
1715 if (is_pointer_value(env, insn->src_reg)) {
1716 verbose("R%d partial copy of pointer\n",
1717 insn->src_reg);
1718 return -EACCES;
1719 }
57a09bf0 1720 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1721 }
1722 } else {
1723 /* case: R = imm
1724 * remember the value we stored into this reg
1725 */
1726 regs[insn->dst_reg].type = CONST_IMM;
1727 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1728 regs[insn->dst_reg].max_value = insn->imm;
1729 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1730 }
1731
1732 } else if (opcode > BPF_END) {
1733 verbose("invalid BPF_ALU opcode %x\n", opcode);
1734 return -EINVAL;
1735
1736 } else { /* all other ALU ops: and, sub, xor, add, ... */
1737
17a52670
AS
1738 if (BPF_SRC(insn->code) == BPF_X) {
1739 if (insn->imm != 0 || insn->off != 0) {
1740 verbose("BPF_ALU uses reserved fields\n");
1741 return -EINVAL;
1742 }
1743 /* check src1 operand */
1744 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1745 if (err)
1746 return err;
1747 } else {
1748 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1749 verbose("BPF_ALU uses reserved fields\n");
1750 return -EINVAL;
1751 }
1752 }
1753
1754 /* check src2 operand */
1755 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1756 if (err)
1757 return err;
1758
1759 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1760 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1761 verbose("div by zero\n");
1762 return -EINVAL;
1763 }
1764
229394e8
RV
1765 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1766 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1767 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1768
1769 if (insn->imm < 0 || insn->imm >= size) {
1770 verbose("invalid shift %d\n", insn->imm);
1771 return -EINVAL;
1772 }
1773 }
1774
1a0dc1ac
AS
1775 /* check dest operand */
1776 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1777 if (err)
1778 return err;
1779
1780 dst_reg = &regs[insn->dst_reg];
1781
48461135
JB
1782 /* first we want to adjust our ranges. */
1783 adjust_reg_min_max_vals(env, insn);
1784
17a52670
AS
1785 /* pattern match 'bpf_add Rx, imm' instruction */
1786 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1787 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1788 dst_reg->type = PTR_TO_STACK;
1789 dst_reg->imm = insn->imm;
1790 return 0;
969bf05e
AS
1791 } else if (opcode == BPF_ADD &&
1792 BPF_CLASS(insn->code) == BPF_ALU64 &&
fe390aa5
YS
1793 dst_reg->type == PTR_TO_STACK &&
1794 ((BPF_SRC(insn->code) == BPF_X &&
1795 regs[insn->src_reg].type == CONST_IMM) ||
1796 BPF_SRC(insn->code) == BPF_K)) {
1797 if (BPF_SRC(insn->code) == BPF_X)
1798 dst_reg->imm += regs[insn->src_reg].imm;
1799 else
1800 dst_reg->imm += insn->imm;
1801 return 0;
1802 } else if (opcode == BPF_ADD &&
1803 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1804 (dst_reg->type == PTR_TO_PACKET ||
1805 (BPF_SRC(insn->code) == BPF_X &&
1806 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1807 /* ptr_to_packet += K|X */
1808 return check_packet_ptr_add(env, insn);
1809 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1810 dst_reg->type == UNKNOWN_VALUE &&
1811 env->allow_ptr_leaks) {
1812 /* unknown += K|X */
1813 return evaluate_reg_alu(env, insn);
1814 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1815 dst_reg->type == CONST_IMM &&
1816 env->allow_ptr_leaks) {
1817 /* reg_imm += K|X */
1818 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1819 } else if (is_pointer_value(env, insn->dst_reg)) {
1820 verbose("R%d pointer arithmetic prohibited\n",
1821 insn->dst_reg);
1822 return -EACCES;
1823 } else if (BPF_SRC(insn->code) == BPF_X &&
1824 is_pointer_value(env, insn->src_reg)) {
1825 verbose("R%d pointer arithmetic prohibited\n",
1826 insn->src_reg);
1827 return -EACCES;
1828 }
17a52670 1829
48461135
JB
1830 /* If we did pointer math on a map value then just set it to our
1831 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1832 * loads to this register appropriately, otherwise just mark the
1833 * register as unknown.
1834 */
1835 if (env->allow_ptr_leaks &&
1836 (dst_reg->type == PTR_TO_MAP_VALUE ||
1837 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1838 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1839 else
1840 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1841 }
1842
1843 return 0;
1844}
1845
58e2af8b
JK
1846static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1847 struct bpf_reg_state *dst_reg)
969bf05e 1848{
58e2af8b 1849 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1850 int i;
2d2be8ca
DB
1851
1852 /* LLVM can generate two kind of checks:
1853 *
1854 * Type 1:
1855 *
1856 * r2 = r3;
1857 * r2 += 8;
1858 * if (r2 > pkt_end) goto <handle exception>
1859 * <access okay>
1860 *
1861 * Where:
1862 * r2 == dst_reg, pkt_end == src_reg
1863 * r2=pkt(id=n,off=8,r=0)
1864 * r3=pkt(id=n,off=0,r=0)
1865 *
1866 * Type 2:
1867 *
1868 * r2 = r3;
1869 * r2 += 8;
1870 * if (pkt_end >= r2) goto <access okay>
1871 * <handle exception>
1872 *
1873 * Where:
1874 * pkt_end == dst_reg, r2 == src_reg
1875 * r2=pkt(id=n,off=8,r=0)
1876 * r3=pkt(id=n,off=0,r=0)
1877 *
1878 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1879 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1880 */
2d2be8ca 1881
969bf05e
AS
1882 for (i = 0; i < MAX_BPF_REG; i++)
1883 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
ff6caf60
AS
1884 /* keep the maximum range already checked */
1885 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
1886
1887 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1888 if (state->stack_slot_type[i] != STACK_SPILL)
1889 continue;
1890 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1891 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
ff6caf60 1892 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
1893 }
1894}
1895
48461135
JB
1896/* Adjusts the register min/max values in the case that the dst_reg is the
1897 * variable register that we are working on, and src_reg is a constant or we're
1898 * simply doing a BPF_K check.
1899 */
1900static void reg_set_min_max(struct bpf_reg_state *true_reg,
1901 struct bpf_reg_state *false_reg, u64 val,
1902 u8 opcode)
1903{
1904 switch (opcode) {
1905 case BPF_JEQ:
1906 /* If this is false then we know nothing Jon Snow, but if it is
1907 * true then we know for sure.
1908 */
1909 true_reg->max_value = true_reg->min_value = val;
1910 break;
1911 case BPF_JNE:
1912 /* If this is true we know nothing Jon Snow, but if it is false
1913 * we know the value for sure;
1914 */
1915 false_reg->max_value = false_reg->min_value = val;
1916 break;
1917 case BPF_JGT:
1918 /* Unsigned comparison, the minimum value is 0. */
1919 false_reg->min_value = 0;
1920 case BPF_JSGT:
1921 /* If this is false then we know the maximum val is val,
1922 * otherwise we know the min val is val+1.
1923 */
1924 false_reg->max_value = val;
1925 true_reg->min_value = val + 1;
1926 break;
1927 case BPF_JGE:
1928 /* Unsigned comparison, the minimum value is 0. */
1929 false_reg->min_value = 0;
1930 case BPF_JSGE:
1931 /* If this is false then we know the maximum value is val - 1,
1932 * otherwise we know the mimimum value is val.
1933 */
1934 false_reg->max_value = val - 1;
1935 true_reg->min_value = val;
1936 break;
1937 default:
1938 break;
1939 }
1940
1941 check_reg_overflow(false_reg);
1942 check_reg_overflow(true_reg);
1943}
1944
1945/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
1946 * is the variable reg.
1947 */
1948static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
1949 struct bpf_reg_state *false_reg, u64 val,
1950 u8 opcode)
1951{
1952 switch (opcode) {
1953 case BPF_JEQ:
1954 /* If this is false then we know nothing Jon Snow, but if it is
1955 * true then we know for sure.
1956 */
1957 true_reg->max_value = true_reg->min_value = val;
1958 break;
1959 case BPF_JNE:
1960 /* If this is true we know nothing Jon Snow, but if it is false
1961 * we know the value for sure;
1962 */
1963 false_reg->max_value = false_reg->min_value = val;
1964 break;
1965 case BPF_JGT:
1966 /* Unsigned comparison, the minimum value is 0. */
1967 true_reg->min_value = 0;
1968 case BPF_JSGT:
1969 /*
1970 * If this is false, then the val is <= the register, if it is
1971 * true the register <= to the val.
1972 */
1973 false_reg->min_value = val;
1974 true_reg->max_value = val - 1;
1975 break;
1976 case BPF_JGE:
1977 /* Unsigned comparison, the minimum value is 0. */
1978 true_reg->min_value = 0;
1979 case BPF_JSGE:
1980 /* If this is false then constant < register, if it is true then
1981 * the register < constant.
1982 */
1983 false_reg->min_value = val + 1;
1984 true_reg->max_value = val;
1985 break;
1986 default:
1987 break;
1988 }
1989
1990 check_reg_overflow(false_reg);
1991 check_reg_overflow(true_reg);
1992}
1993
57a09bf0
TG
1994static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
1995 enum bpf_reg_type type)
1996{
1997 struct bpf_reg_state *reg = &regs[regno];
1998
1999 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2000 reg->type = type;
a08dd0da
DB
2001 /* We don't need id from this point onwards anymore, thus we
2002 * should better reset it, so that state pruning has chances
2003 * to take effect.
2004 */
2005 reg->id = 0;
57a09bf0 2006 if (type == UNKNOWN_VALUE)
6760bf2d 2007 __mark_reg_unknown_value(regs, regno);
57a09bf0
TG
2008 }
2009}
2010
2011/* The logic is similar to find_good_pkt_pointers(), both could eventually
2012 * be folded together at some point.
2013 */
2014static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2015 enum bpf_reg_type type)
2016{
2017 struct bpf_reg_state *regs = state->regs;
a08dd0da 2018 u32 id = regs[regno].id;
57a09bf0
TG
2019 int i;
2020
2021 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2022 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2023
2024 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2025 if (state->stack_slot_type[i] != STACK_SPILL)
2026 continue;
a08dd0da 2027 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2028 }
2029}
2030
58e2af8b 2031static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2032 struct bpf_insn *insn, int *insn_idx)
2033{
58e2af8b
JK
2034 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2035 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2036 u8 opcode = BPF_OP(insn->code);
2037 int err;
2038
2039 if (opcode > BPF_EXIT) {
2040 verbose("invalid BPF_JMP opcode %x\n", opcode);
2041 return -EINVAL;
2042 }
2043
2044 if (BPF_SRC(insn->code) == BPF_X) {
2045 if (insn->imm != 0) {
2046 verbose("BPF_JMP uses reserved fields\n");
2047 return -EINVAL;
2048 }
2049
2050 /* check src1 operand */
2051 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2052 if (err)
2053 return err;
1be7f75d
AS
2054
2055 if (is_pointer_value(env, insn->src_reg)) {
2056 verbose("R%d pointer comparison prohibited\n",
2057 insn->src_reg);
2058 return -EACCES;
2059 }
17a52670
AS
2060 } else {
2061 if (insn->src_reg != BPF_REG_0) {
2062 verbose("BPF_JMP uses reserved fields\n");
2063 return -EINVAL;
2064 }
2065 }
2066
2067 /* check src2 operand */
2068 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2069 if (err)
2070 return err;
2071
1a0dc1ac
AS
2072 dst_reg = &regs[insn->dst_reg];
2073
17a52670
AS
2074 /* detect if R == 0 where R was initialized to zero earlier */
2075 if (BPF_SRC(insn->code) == BPF_K &&
2076 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2077 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2078 if (opcode == BPF_JEQ) {
2079 /* if (imm == imm) goto pc+off;
2080 * only follow the goto, ignore fall-through
2081 */
2082 *insn_idx += insn->off;
2083 return 0;
2084 } else {
2085 /* if (imm != imm) goto pc+off;
2086 * only follow fall-through branch, since
2087 * that's where the program will go
2088 */
2089 return 0;
2090 }
2091 }
2092
2093 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2094 if (!other_branch)
2095 return -EFAULT;
2096
48461135
JB
2097 /* detect if we are comparing against a constant value so we can adjust
2098 * our min/max values for our dst register.
2099 */
2100 if (BPF_SRC(insn->code) == BPF_X) {
2101 if (regs[insn->src_reg].type == CONST_IMM)
2102 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2103 dst_reg, regs[insn->src_reg].imm,
2104 opcode);
2105 else if (dst_reg->type == CONST_IMM)
2106 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2107 &regs[insn->src_reg], dst_reg->imm,
2108 opcode);
2109 } else {
2110 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2111 dst_reg, insn->imm, opcode);
2112 }
2113
58e2af8b 2114 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2115 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2116 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2117 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2118 /* Mark all identical map registers in each branch as either
2119 * safe or unknown depending R == 0 or R != 0 conditional.
2120 */
2121 mark_map_regs(this_branch, insn->dst_reg,
2122 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2123 mark_map_regs(other_branch, insn->dst_reg,
2124 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2125 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2126 dst_reg->type == PTR_TO_PACKET &&
2127 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2128 find_good_pkt_pointers(this_branch, dst_reg);
2129 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2130 dst_reg->type == PTR_TO_PACKET_END &&
2131 regs[insn->src_reg].type == PTR_TO_PACKET) {
2132 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2133 } else if (is_pointer_value(env, insn->dst_reg)) {
2134 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2135 return -EACCES;
17a52670
AS
2136 }
2137 if (log_level)
2d2be8ca 2138 print_verifier_state(this_branch);
17a52670
AS
2139 return 0;
2140}
2141
0246e64d
AS
2142/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2143static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2144{
2145 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2146
2147 return (struct bpf_map *) (unsigned long) imm64;
2148}
2149
17a52670 2150/* verify BPF_LD_IMM64 instruction */
58e2af8b 2151static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2152{
58e2af8b 2153 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2154 int err;
2155
2156 if (BPF_SIZE(insn->code) != BPF_DW) {
2157 verbose("invalid BPF_LD_IMM insn\n");
2158 return -EINVAL;
2159 }
2160 if (insn->off != 0) {
2161 verbose("BPF_LD_IMM64 uses reserved fields\n");
2162 return -EINVAL;
2163 }
2164
2165 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2166 if (err)
2167 return err;
2168
6b173873
JK
2169 if (insn->src_reg == 0) {
2170 /* generic move 64-bit immediate into a register,
2171 * only analyzer needs to collect the ld_imm value.
2172 */
2173 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2174
2175 if (!env->analyzer_ops)
2176 return 0;
2177
2178 regs[insn->dst_reg].type = CONST_IMM;
2179 regs[insn->dst_reg].imm = imm;
17a52670 2180 return 0;
6b173873 2181 }
17a52670
AS
2182
2183 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2184 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2185
2186 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2187 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2188 return 0;
2189}
2190
96be4325
DB
2191static bool may_access_skb(enum bpf_prog_type type)
2192{
2193 switch (type) {
2194 case BPF_PROG_TYPE_SOCKET_FILTER:
2195 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2196 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2197 return true;
2198 default:
2199 return false;
2200 }
2201}
2202
ddd872bc
AS
2203/* verify safety of LD_ABS|LD_IND instructions:
2204 * - they can only appear in the programs where ctx == skb
2205 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2206 * preserve R6-R9, and store return value into R0
2207 *
2208 * Implicit input:
2209 * ctx == skb == R6 == CTX
2210 *
2211 * Explicit input:
2212 * SRC == any register
2213 * IMM == 32-bit immediate
2214 *
2215 * Output:
2216 * R0 - 8/16/32-bit skb data converted to cpu endianness
2217 */
58e2af8b 2218static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2219{
58e2af8b 2220 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2221 u8 mode = BPF_MODE(insn->code);
58e2af8b 2222 struct bpf_reg_state *reg;
ddd872bc
AS
2223 int i, err;
2224
24701ece 2225 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2226 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2227 return -EINVAL;
2228 }
2229
2230 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2231 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2232 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2233 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2234 return -EINVAL;
2235 }
2236
2237 /* check whether implicit source operand (register R6) is readable */
2238 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2239 if (err)
2240 return err;
2241
2242 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2243 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2244 return -EINVAL;
2245 }
2246
2247 if (mode == BPF_IND) {
2248 /* check explicit source operand */
2249 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2250 if (err)
2251 return err;
2252 }
2253
2254 /* reset caller saved regs to unreadable */
2255 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2256 reg = regs + caller_saved[i];
2257 reg->type = NOT_INIT;
2258 reg->imm = 0;
2259 }
2260
2261 /* mark destination R0 register as readable, since it contains
2262 * the value fetched from the packet
2263 */
2264 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2265 return 0;
2266}
2267
475fb78f
AS
2268/* non-recursive DFS pseudo code
2269 * 1 procedure DFS-iterative(G,v):
2270 * 2 label v as discovered
2271 * 3 let S be a stack
2272 * 4 S.push(v)
2273 * 5 while S is not empty
2274 * 6 t <- S.pop()
2275 * 7 if t is what we're looking for:
2276 * 8 return t
2277 * 9 for all edges e in G.adjacentEdges(t) do
2278 * 10 if edge e is already labelled
2279 * 11 continue with the next edge
2280 * 12 w <- G.adjacentVertex(t,e)
2281 * 13 if vertex w is not discovered and not explored
2282 * 14 label e as tree-edge
2283 * 15 label w as discovered
2284 * 16 S.push(w)
2285 * 17 continue at 5
2286 * 18 else if vertex w is discovered
2287 * 19 label e as back-edge
2288 * 20 else
2289 * 21 // vertex w is explored
2290 * 22 label e as forward- or cross-edge
2291 * 23 label t as explored
2292 * 24 S.pop()
2293 *
2294 * convention:
2295 * 0x10 - discovered
2296 * 0x11 - discovered and fall-through edge labelled
2297 * 0x12 - discovered and fall-through and branch edges labelled
2298 * 0x20 - explored
2299 */
2300
2301enum {
2302 DISCOVERED = 0x10,
2303 EXPLORED = 0x20,
2304 FALLTHROUGH = 1,
2305 BRANCH = 2,
2306};
2307
58e2af8b 2308#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2309
475fb78f
AS
2310static int *insn_stack; /* stack of insns to process */
2311static int cur_stack; /* current stack index */
2312static int *insn_state;
2313
2314/* t, w, e - match pseudo-code above:
2315 * t - index of current instruction
2316 * w - next instruction
2317 * e - edge
2318 */
58e2af8b 2319static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2320{
2321 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2322 return 0;
2323
2324 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2325 return 0;
2326
2327 if (w < 0 || w >= env->prog->len) {
2328 verbose("jump out of range from insn %d to %d\n", t, w);
2329 return -EINVAL;
2330 }
2331
f1bca824
AS
2332 if (e == BRANCH)
2333 /* mark branch target for state pruning */
2334 env->explored_states[w] = STATE_LIST_MARK;
2335
475fb78f
AS
2336 if (insn_state[w] == 0) {
2337 /* tree-edge */
2338 insn_state[t] = DISCOVERED | e;
2339 insn_state[w] = DISCOVERED;
2340 if (cur_stack >= env->prog->len)
2341 return -E2BIG;
2342 insn_stack[cur_stack++] = w;
2343 return 1;
2344 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2345 verbose("back-edge from insn %d to %d\n", t, w);
2346 return -EINVAL;
2347 } else if (insn_state[w] == EXPLORED) {
2348 /* forward- or cross-edge */
2349 insn_state[t] = DISCOVERED | e;
2350 } else {
2351 verbose("insn state internal bug\n");
2352 return -EFAULT;
2353 }
2354 return 0;
2355}
2356
2357/* non-recursive depth-first-search to detect loops in BPF program
2358 * loop == back-edge in directed graph
2359 */
58e2af8b 2360static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2361{
2362 struct bpf_insn *insns = env->prog->insnsi;
2363 int insn_cnt = env->prog->len;
2364 int ret = 0;
2365 int i, t;
2366
2367 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2368 if (!insn_state)
2369 return -ENOMEM;
2370
2371 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2372 if (!insn_stack) {
2373 kfree(insn_state);
2374 return -ENOMEM;
2375 }
2376
2377 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2378 insn_stack[0] = 0; /* 0 is the first instruction */
2379 cur_stack = 1;
2380
2381peek_stack:
2382 if (cur_stack == 0)
2383 goto check_state;
2384 t = insn_stack[cur_stack - 1];
2385
2386 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2387 u8 opcode = BPF_OP(insns[t].code);
2388
2389 if (opcode == BPF_EXIT) {
2390 goto mark_explored;
2391 } else if (opcode == BPF_CALL) {
2392 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2393 if (ret == 1)
2394 goto peek_stack;
2395 else if (ret < 0)
2396 goto err_free;
07016151
DB
2397 if (t + 1 < insn_cnt)
2398 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2399 } else if (opcode == BPF_JA) {
2400 if (BPF_SRC(insns[t].code) != BPF_K) {
2401 ret = -EINVAL;
2402 goto err_free;
2403 }
2404 /* unconditional jump with single edge */
2405 ret = push_insn(t, t + insns[t].off + 1,
2406 FALLTHROUGH, env);
2407 if (ret == 1)
2408 goto peek_stack;
2409 else if (ret < 0)
2410 goto err_free;
f1bca824
AS
2411 /* tell verifier to check for equivalent states
2412 * after every call and jump
2413 */
c3de6317
AS
2414 if (t + 1 < insn_cnt)
2415 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2416 } else {
2417 /* conditional jump with two edges */
2418 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2419 if (ret == 1)
2420 goto peek_stack;
2421 else if (ret < 0)
2422 goto err_free;
2423
2424 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2425 if (ret == 1)
2426 goto peek_stack;
2427 else if (ret < 0)
2428 goto err_free;
2429 }
2430 } else {
2431 /* all other non-branch instructions with single
2432 * fall-through edge
2433 */
2434 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2435 if (ret == 1)
2436 goto peek_stack;
2437 else if (ret < 0)
2438 goto err_free;
2439 }
2440
2441mark_explored:
2442 insn_state[t] = EXPLORED;
2443 if (cur_stack-- <= 0) {
2444 verbose("pop stack internal bug\n");
2445 ret = -EFAULT;
2446 goto err_free;
2447 }
2448 goto peek_stack;
2449
2450check_state:
2451 for (i = 0; i < insn_cnt; i++) {
2452 if (insn_state[i] != EXPLORED) {
2453 verbose("unreachable insn %d\n", i);
2454 ret = -EINVAL;
2455 goto err_free;
2456 }
2457 }
2458 ret = 0; /* cfg looks good */
2459
2460err_free:
2461 kfree(insn_state);
2462 kfree(insn_stack);
2463 return ret;
2464}
2465
969bf05e
AS
2466/* the following conditions reduce the number of explored insns
2467 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2468 */
58e2af8b
JK
2469static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2470 struct bpf_reg_state *cur)
969bf05e
AS
2471{
2472 if (old->id != cur->id)
2473 return false;
2474
2475 /* old ptr_to_packet is more conservative, since it allows smaller
2476 * range. Ex:
2477 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2478 * old(off=0,r=10) means that with range=10 the verifier proceeded
2479 * further and found no issues with the program. Now we're in the same
2480 * spot with cur(off=0,r=20), so we're safe too, since anything further
2481 * will only be looking at most 10 bytes after this pointer.
2482 */
2483 if (old->off == cur->off && old->range < cur->range)
2484 return true;
2485
2486 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2487 * since both cannot be used for packet access and safe(old)
2488 * pointer has smaller off that could be used for further
2489 * 'if (ptr > data_end)' check
2490 * Ex:
2491 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2492 * that we cannot access the packet.
2493 * The safe range is:
2494 * [ptr, ptr + range - off)
2495 * so whenever off >=range, it means no safe bytes from this pointer.
2496 * When comparing old->off <= cur->off, it means that older code
2497 * went with smaller offset and that offset was later
2498 * used to figure out the safe range after 'if (ptr > data_end)' check
2499 * Say, 'old' state was explored like:
2500 * ... R3(off=0, r=0)
2501 * R4 = R3 + 20
2502 * ... now R4(off=20,r=0) <-- here
2503 * if (R4 > data_end)
2504 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2505 * ... the code further went all the way to bpf_exit.
2506 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2507 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2508 * goes further, such cur_R4 will give larger safe packet range after
2509 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2510 * so they will be good with r=30 and we can prune the search.
2511 */
2512 if (old->off <= cur->off &&
2513 old->off >= old->range && cur->off >= cur->range)
2514 return true;
2515
2516 return false;
2517}
2518
f1bca824
AS
2519/* compare two verifier states
2520 *
2521 * all states stored in state_list are known to be valid, since
2522 * verifier reached 'bpf_exit' instruction through them
2523 *
2524 * this function is called when verifier exploring different branches of
2525 * execution popped from the state stack. If it sees an old state that has
2526 * more strict register state and more strict stack state then this execution
2527 * branch doesn't need to be explored further, since verifier already
2528 * concluded that more strict state leads to valid finish.
2529 *
2530 * Therefore two states are equivalent if register state is more conservative
2531 * and explored stack state is more conservative than the current one.
2532 * Example:
2533 * explored current
2534 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2535 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2536 *
2537 * In other words if current stack state (one being explored) has more
2538 * valid slots than old one that already passed validation, it means
2539 * the verifier can stop exploring and conclude that current state is valid too
2540 *
2541 * Similarly with registers. If explored state has register type as invalid
2542 * whereas register type in current state is meaningful, it means that
2543 * the current state will reach 'bpf_exit' instruction safely
2544 */
48461135
JB
2545static bool states_equal(struct bpf_verifier_env *env,
2546 struct bpf_verifier_state *old,
58e2af8b 2547 struct bpf_verifier_state *cur)
f1bca824 2548{
e2d2afe1 2549 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2550 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2551 int i;
2552
2553 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2554 rold = &old->regs[i];
2555 rcur = &cur->regs[i];
2556
2557 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2558 continue;
2559
48461135
JB
2560 /* If the ranges were not the same, but everything else was and
2561 * we didn't do a variable access into a map then we are a-ok.
2562 */
e2d2afe1 2563 if (!varlen_map_access &&
d2a4dd37 2564 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2565 continue;
2566
e2d2afe1
JB
2567 /* If we didn't map access then again we don't care about the
2568 * mismatched range values and it's ok if our old type was
2569 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2570 */
1a0dc1ac 2571 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2572 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2573 rcur->type != NOT_INIT))
1a0dc1ac
AS
2574 continue;
2575
969bf05e
AS
2576 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2577 compare_ptrs_to_packet(rold, rcur))
2578 continue;
2579
1a0dc1ac 2580 return false;
f1bca824
AS
2581 }
2582
2583 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2584 if (old->stack_slot_type[i] == STACK_INVALID)
2585 continue;
2586 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2587 /* Ex: old explored (safe) state has STACK_SPILL in
2588 * this stack slot, but current has has STACK_MISC ->
2589 * this verifier states are not equivalent,
2590 * return false to continue verification of this path
2591 */
f1bca824 2592 return false;
9c399760
AS
2593 if (i % BPF_REG_SIZE)
2594 continue;
2595 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2596 &cur->spilled_regs[i / BPF_REG_SIZE],
2597 sizeof(old->spilled_regs[0])))
2598 /* when explored and current stack slot types are
2599 * the same, check that stored pointers types
2600 * are the same as well.
2601 * Ex: explored safe path could have stored
58e2af8b 2602 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2603 * but current path has stored:
58e2af8b 2604 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2605 * such verifier states are not equivalent.
2606 * return false to continue verification of this path
2607 */
2608 return false;
2609 else
2610 continue;
f1bca824
AS
2611 }
2612 return true;
2613}
2614
58e2af8b 2615static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2616{
58e2af8b
JK
2617 struct bpf_verifier_state_list *new_sl;
2618 struct bpf_verifier_state_list *sl;
f1bca824
AS
2619
2620 sl = env->explored_states[insn_idx];
2621 if (!sl)
2622 /* this 'insn_idx' instruction wasn't marked, so we will not
2623 * be doing state search here
2624 */
2625 return 0;
2626
2627 while (sl != STATE_LIST_MARK) {
48461135 2628 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2629 /* reached equivalent register/stack state,
2630 * prune the search
2631 */
2632 return 1;
2633 sl = sl->next;
2634 }
2635
2636 /* there were no equivalent states, remember current one.
2637 * technically the current state is not proven to be safe yet,
2638 * but it will either reach bpf_exit (which means it's safe) or
2639 * it will be rejected. Since there are no loops, we won't be
2640 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2641 */
58e2af8b 2642 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2643 if (!new_sl)
2644 return -ENOMEM;
2645
2646 /* add new state to the head of linked list */
2647 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2648 new_sl->next = env->explored_states[insn_idx];
2649 env->explored_states[insn_idx] = new_sl;
2650 return 0;
2651}
2652
13a27dfc
JK
2653static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2654 int insn_idx, int prev_insn_idx)
2655{
2656 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2657 return 0;
2658
2659 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2660}
2661
58e2af8b 2662static int do_check(struct bpf_verifier_env *env)
17a52670 2663{
58e2af8b 2664 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2665 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2666 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2667 int insn_cnt = env->prog->len;
2668 int insn_idx, prev_insn_idx = 0;
2669 int insn_processed = 0;
2670 bool do_print_state = false;
2671
2672 init_reg_state(regs);
2673 insn_idx = 0;
48461135 2674 env->varlen_map_value_access = false;
17a52670
AS
2675 for (;;) {
2676 struct bpf_insn *insn;
2677 u8 class;
2678 int err;
2679
2680 if (insn_idx >= insn_cnt) {
2681 verbose("invalid insn idx %d insn_cnt %d\n",
2682 insn_idx, insn_cnt);
2683 return -EFAULT;
2684 }
2685
2686 insn = &insns[insn_idx];
2687 class = BPF_CLASS(insn->code);
2688
07016151 2689 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2690 verbose("BPF program is too large. Proccessed %d insn\n",
2691 insn_processed);
2692 return -E2BIG;
2693 }
2694
f1bca824
AS
2695 err = is_state_visited(env, insn_idx);
2696 if (err < 0)
2697 return err;
2698 if (err == 1) {
2699 /* found equivalent state, can prune the search */
2700 if (log_level) {
2701 if (do_print_state)
2702 verbose("\nfrom %d to %d: safe\n",
2703 prev_insn_idx, insn_idx);
2704 else
2705 verbose("%d: safe\n", insn_idx);
2706 }
2707 goto process_bpf_exit;
2708 }
2709
17a52670
AS
2710 if (log_level && do_print_state) {
2711 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2712 print_verifier_state(&env->cur_state);
17a52670
AS
2713 do_print_state = false;
2714 }
2715
2716 if (log_level) {
2717 verbose("%d: ", insn_idx);
badebe9c 2718 print_bpf_insn(env, insn);
17a52670
AS
2719 }
2720
13a27dfc
JK
2721 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2722 if (err)
2723 return err;
2724
17a52670 2725 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2726 err = check_alu_op(env, insn);
17a52670
AS
2727 if (err)
2728 return err;
2729
2730 } else if (class == BPF_LDX) {
3df126f3 2731 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2732
2733 /* check for reserved fields is already done */
2734
17a52670
AS
2735 /* check src operand */
2736 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2737 if (err)
2738 return err;
2739
2740 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2741 if (err)
2742 return err;
2743
725f9dcd
AS
2744 src_reg_type = regs[insn->src_reg].type;
2745
17a52670
AS
2746 /* check that memory (src_reg + off) is readable,
2747 * the state of dst_reg will be updated by this func
2748 */
2749 err = check_mem_access(env, insn->src_reg, insn->off,
2750 BPF_SIZE(insn->code), BPF_READ,
2751 insn->dst_reg);
2752 if (err)
2753 return err;
2754
48461135 2755 reset_reg_range_values(regs, insn->dst_reg);
ea2e7ce5
AS
2756 if (BPF_SIZE(insn->code) != BPF_W &&
2757 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2758 insn_idx++;
2759 continue;
2760 }
9bac3d6d 2761
3df126f3
JK
2762 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2763
2764 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2765 /* saw a valid insn
2766 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2767 * save type to validate intersecting paths
9bac3d6d 2768 */
3df126f3 2769 *prev_src_type = src_reg_type;
9bac3d6d 2770
3df126f3 2771 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2772 (src_reg_type == PTR_TO_CTX ||
3df126f3 2773 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2774 /* ABuser program is trying to use the same insn
2775 * dst_reg = *(u32*) (src_reg + off)
2776 * with different pointer types:
2777 * src_reg == ctx in one branch and
2778 * src_reg == stack|map in some other branch.
2779 * Reject it.
2780 */
2781 verbose("same insn cannot be used with different pointers\n");
2782 return -EINVAL;
2783 }
2784
17a52670 2785 } else if (class == BPF_STX) {
3df126f3 2786 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2787
17a52670
AS
2788 if (BPF_MODE(insn->code) == BPF_XADD) {
2789 err = check_xadd(env, insn);
2790 if (err)
2791 return err;
2792 insn_idx++;
2793 continue;
2794 }
2795
17a52670
AS
2796 /* check src1 operand */
2797 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2798 if (err)
2799 return err;
2800 /* check src2 operand */
2801 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2802 if (err)
2803 return err;
2804
d691f9e8
AS
2805 dst_reg_type = regs[insn->dst_reg].type;
2806
17a52670
AS
2807 /* check that memory (dst_reg + off) is writeable */
2808 err = check_mem_access(env, insn->dst_reg, insn->off,
2809 BPF_SIZE(insn->code), BPF_WRITE,
2810 insn->src_reg);
2811 if (err)
2812 return err;
2813
3df126f3
JK
2814 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2815
2816 if (*prev_dst_type == NOT_INIT) {
2817 *prev_dst_type = dst_reg_type;
2818 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2819 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2820 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2821 verbose("same insn cannot be used with different pointers\n");
2822 return -EINVAL;
2823 }
2824
17a52670
AS
2825 } else if (class == BPF_ST) {
2826 if (BPF_MODE(insn->code) != BPF_MEM ||
2827 insn->src_reg != BPF_REG_0) {
2828 verbose("BPF_ST uses reserved fields\n");
2829 return -EINVAL;
2830 }
2831 /* check src operand */
2832 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2833 if (err)
2834 return err;
2835
2836 /* check that memory (dst_reg + off) is writeable */
2837 err = check_mem_access(env, insn->dst_reg, insn->off,
2838 BPF_SIZE(insn->code), BPF_WRITE,
2839 -1);
2840 if (err)
2841 return err;
2842
2843 } else if (class == BPF_JMP) {
2844 u8 opcode = BPF_OP(insn->code);
2845
2846 if (opcode == BPF_CALL) {
2847 if (BPF_SRC(insn->code) != BPF_K ||
2848 insn->off != 0 ||
2849 insn->src_reg != BPF_REG_0 ||
2850 insn->dst_reg != BPF_REG_0) {
2851 verbose("BPF_CALL uses reserved fields\n");
2852 return -EINVAL;
2853 }
2854
2855 err = check_call(env, insn->imm);
2856 if (err)
2857 return err;
2858
2859 } else if (opcode == BPF_JA) {
2860 if (BPF_SRC(insn->code) != BPF_K ||
2861 insn->imm != 0 ||
2862 insn->src_reg != BPF_REG_0 ||
2863 insn->dst_reg != BPF_REG_0) {
2864 verbose("BPF_JA uses reserved fields\n");
2865 return -EINVAL;
2866 }
2867
2868 insn_idx += insn->off + 1;
2869 continue;
2870
2871 } else if (opcode == BPF_EXIT) {
2872 if (BPF_SRC(insn->code) != BPF_K ||
2873 insn->imm != 0 ||
2874 insn->src_reg != BPF_REG_0 ||
2875 insn->dst_reg != BPF_REG_0) {
2876 verbose("BPF_EXIT uses reserved fields\n");
2877 return -EINVAL;
2878 }
2879
2880 /* eBPF calling convetion is such that R0 is used
2881 * to return the value from eBPF program.
2882 * Make sure that it's readable at this time
2883 * of bpf_exit, which means that program wrote
2884 * something into it earlier
2885 */
2886 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2887 if (err)
2888 return err;
2889
1be7f75d
AS
2890 if (is_pointer_value(env, BPF_REG_0)) {
2891 verbose("R0 leaks addr as return value\n");
2892 return -EACCES;
2893 }
2894
f1bca824 2895process_bpf_exit:
17a52670
AS
2896 insn_idx = pop_stack(env, &prev_insn_idx);
2897 if (insn_idx < 0) {
2898 break;
2899 } else {
2900 do_print_state = true;
2901 continue;
2902 }
2903 } else {
2904 err = check_cond_jmp_op(env, insn, &insn_idx);
2905 if (err)
2906 return err;
2907 }
2908 } else if (class == BPF_LD) {
2909 u8 mode = BPF_MODE(insn->code);
2910
2911 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2912 err = check_ld_abs(env, insn);
2913 if (err)
2914 return err;
2915
17a52670
AS
2916 } else if (mode == BPF_IMM) {
2917 err = check_ld_imm(env, insn);
2918 if (err)
2919 return err;
2920
2921 insn_idx++;
2922 } else {
2923 verbose("invalid BPF_LD mode\n");
2924 return -EINVAL;
2925 }
48461135 2926 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
2927 } else {
2928 verbose("unknown insn class %d\n", class);
2929 return -EINVAL;
2930 }
2931
2932 insn_idx++;
2933 }
2934
1a0dc1ac 2935 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2936 return 0;
2937}
2938
fdc15d38
AS
2939static int check_map_prog_compatibility(struct bpf_map *map,
2940 struct bpf_prog *prog)
2941
2942{
2943 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2944 (map->map_type == BPF_MAP_TYPE_HASH ||
2945 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2946 (map->map_flags & BPF_F_NO_PREALLOC)) {
2947 verbose("perf_event programs can only use preallocated hash map\n");
2948 return -EINVAL;
2949 }
2950 return 0;
2951}
2952
0246e64d
AS
2953/* look for pseudo eBPF instructions that access map FDs and
2954 * replace them with actual map pointers
2955 */
58e2af8b 2956static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
2957{
2958 struct bpf_insn *insn = env->prog->insnsi;
2959 int insn_cnt = env->prog->len;
fdc15d38 2960 int i, j, err;
0246e64d 2961
f1f7714e 2962 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
2963 if (err)
2964 return err;
2965
0246e64d 2966 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2967 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2968 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2969 verbose("BPF_LDX uses reserved fields\n");
2970 return -EINVAL;
2971 }
2972
d691f9e8
AS
2973 if (BPF_CLASS(insn->code) == BPF_STX &&
2974 ((BPF_MODE(insn->code) != BPF_MEM &&
2975 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2976 verbose("BPF_STX uses reserved fields\n");
2977 return -EINVAL;
2978 }
2979
0246e64d
AS
2980 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2981 struct bpf_map *map;
2982 struct fd f;
2983
2984 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2985 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2986 insn[1].off != 0) {
2987 verbose("invalid bpf_ld_imm64 insn\n");
2988 return -EINVAL;
2989 }
2990
2991 if (insn->src_reg == 0)
2992 /* valid generic load 64-bit imm */
2993 goto next_insn;
2994
2995 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2996 verbose("unrecognized bpf_ld_imm64 insn\n");
2997 return -EINVAL;
2998 }
2999
3000 f = fdget(insn->imm);
c2101297 3001 map = __bpf_map_get(f);
0246e64d
AS
3002 if (IS_ERR(map)) {
3003 verbose("fd %d is not pointing to valid bpf_map\n",
3004 insn->imm);
0246e64d
AS
3005 return PTR_ERR(map);
3006 }
3007
fdc15d38
AS
3008 err = check_map_prog_compatibility(map, env->prog);
3009 if (err) {
3010 fdput(f);
3011 return err;
3012 }
3013
0246e64d
AS
3014 /* store map pointer inside BPF_LD_IMM64 instruction */
3015 insn[0].imm = (u32) (unsigned long) map;
3016 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3017
3018 /* check whether we recorded this map already */
3019 for (j = 0; j < env->used_map_cnt; j++)
3020 if (env->used_maps[j] == map) {
3021 fdput(f);
3022 goto next_insn;
3023 }
3024
3025 if (env->used_map_cnt >= MAX_USED_MAPS) {
3026 fdput(f);
3027 return -E2BIG;
3028 }
3029
0246e64d
AS
3030 /* hold the map. If the program is rejected by verifier,
3031 * the map will be released by release_maps() or it
3032 * will be used by the valid program until it's unloaded
3033 * and all maps are released in free_bpf_prog_info()
3034 */
92117d84
AS
3035 map = bpf_map_inc(map, false);
3036 if (IS_ERR(map)) {
3037 fdput(f);
3038 return PTR_ERR(map);
3039 }
3040 env->used_maps[env->used_map_cnt++] = map;
3041
0246e64d
AS
3042 fdput(f);
3043next_insn:
3044 insn++;
3045 i++;
3046 }
3047 }
3048
3049 /* now all pseudo BPF_LD_IMM64 instructions load valid
3050 * 'struct bpf_map *' into a register instead of user map_fd.
3051 * These pointers will be used later by verifier to validate map access.
3052 */
3053 return 0;
3054}
3055
3056/* drop refcnt of maps used by the rejected program */
58e2af8b 3057static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3058{
3059 int i;
3060
3061 for (i = 0; i < env->used_map_cnt; i++)
3062 bpf_map_put(env->used_maps[i]);
3063}
3064
3065/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3066static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3067{
3068 struct bpf_insn *insn = env->prog->insnsi;
3069 int insn_cnt = env->prog->len;
3070 int i;
3071
3072 for (i = 0; i < insn_cnt; i++, insn++)
3073 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3074 insn->src_reg = 0;
3075}
3076
9bac3d6d
AS
3077/* convert load instructions that access fields of 'struct __sk_buff'
3078 * into sequence of instructions that access fields of 'struct sk_buff'
3079 */
58e2af8b 3080static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3081{
36bbef52 3082 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3083 const int insn_cnt = env->prog->len;
36bbef52 3084 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3085 struct bpf_prog *new_prog;
d691f9e8 3086 enum bpf_access_type type;
3df126f3 3087 int i, cnt, delta = 0;
9bac3d6d 3088
36bbef52
DB
3089 if (ops->gen_prologue) {
3090 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3091 env->prog);
3092 if (cnt >= ARRAY_SIZE(insn_buf)) {
3093 verbose("bpf verifier is misconfigured\n");
3094 return -EINVAL;
3095 } else if (cnt) {
3096 new_prog = bpf_patch_insn_single(env->prog, 0,
3097 insn_buf, cnt);
3098 if (!new_prog)
3099 return -ENOMEM;
3100 env->prog = new_prog;
3df126f3 3101 delta += cnt - 1;
36bbef52
DB
3102 }
3103 }
3104
3105 if (!ops->convert_ctx_access)
9bac3d6d
AS
3106 return 0;
3107
3df126f3 3108 insn = env->prog->insnsi + delta;
36bbef52 3109
9bac3d6d 3110 for (i = 0; i < insn_cnt; i++, insn++) {
ea2e7ce5
AS
3111 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3112 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3113 type = BPF_READ;
ea2e7ce5
AS
3114 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3115 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3116 type = BPF_WRITE;
3117 else
9bac3d6d
AS
3118 continue;
3119
3df126f3 3120 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
9bac3d6d 3121 continue;
9bac3d6d 3122
36bbef52
DB
3123 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3124 insn->off, insn_buf, env->prog);
9bac3d6d
AS
3125 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3126 verbose("bpf verifier is misconfigured\n");
3127 return -EINVAL;
3128 }
3129
3df126f3
JK
3130 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3131 cnt);
9bac3d6d
AS
3132 if (!new_prog)
3133 return -ENOMEM;
3134
3df126f3 3135 delta += cnt - 1;
9bac3d6d
AS
3136
3137 /* keep walking new program and skip insns we just inserted */
3138 env->prog = new_prog;
3df126f3 3139 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3140 }
3141
3142 return 0;
3143}
3144
58e2af8b 3145static void free_states(struct bpf_verifier_env *env)
f1bca824 3146{
58e2af8b 3147 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3148 int i;
3149
3150 if (!env->explored_states)
3151 return;
3152
3153 for (i = 0; i < env->prog->len; i++) {
3154 sl = env->explored_states[i];
3155
3156 if (sl)
3157 while (sl != STATE_LIST_MARK) {
3158 sln = sl->next;
3159 kfree(sl);
3160 sl = sln;
3161 }
3162 }
3163
3164 kfree(env->explored_states);
3165}
3166
9bac3d6d 3167int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3168{
cbd35700 3169 char __user *log_ubuf = NULL;
58e2af8b 3170 struct bpf_verifier_env *env;
51580e79
AS
3171 int ret = -EINVAL;
3172
58e2af8b 3173 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3174 * allocate/free it every time bpf_check() is called
3175 */
58e2af8b 3176 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3177 if (!env)
3178 return -ENOMEM;
3179
3df126f3
JK
3180 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3181 (*prog)->len);
3182 ret = -ENOMEM;
3183 if (!env->insn_aux_data)
3184 goto err_free_env;
9bac3d6d 3185 env->prog = *prog;
0246e64d 3186
cbd35700
AS
3187 /* grab the mutex to protect few globals used by verifier */
3188 mutex_lock(&bpf_verifier_lock);
3189
3190 if (attr->log_level || attr->log_buf || attr->log_size) {
3191 /* user requested verbose verifier output
3192 * and supplied buffer to store the verification trace
3193 */
3194 log_level = attr->log_level;
3195 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3196 log_size = attr->log_size;
3197 log_len = 0;
3198
3199 ret = -EINVAL;
3200 /* log_* values have to be sane */
3201 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3202 log_level == 0 || log_ubuf == NULL)
3df126f3 3203 goto err_unlock;
cbd35700
AS
3204
3205 ret = -ENOMEM;
3206 log_buf = vmalloc(log_size);
3207 if (!log_buf)
3df126f3 3208 goto err_unlock;
cbd35700
AS
3209 } else {
3210 log_level = 0;
3211 }
3212
0246e64d
AS
3213 ret = replace_map_fd_with_map_ptr(env);
3214 if (ret < 0)
3215 goto skip_full_check;
3216
9bac3d6d 3217 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3218 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3219 GFP_USER);
3220 ret = -ENOMEM;
3221 if (!env->explored_states)
3222 goto skip_full_check;
3223
475fb78f
AS
3224 ret = check_cfg(env);
3225 if (ret < 0)
3226 goto skip_full_check;
3227
1be7f75d
AS
3228 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3229
17a52670 3230 ret = do_check(env);
cbd35700 3231
0246e64d 3232skip_full_check:
17a52670 3233 while (pop_stack(env, NULL) >= 0);
f1bca824 3234 free_states(env);
0246e64d 3235
9bac3d6d
AS
3236 if (ret == 0)
3237 /* program is valid, convert *(u32*)(ctx + off) accesses */
3238 ret = convert_ctx_accesses(env);
3239
cbd35700
AS
3240 if (log_level && log_len >= log_size - 1) {
3241 BUG_ON(log_len >= log_size);
3242 /* verifier log exceeded user supplied buffer */
3243 ret = -ENOSPC;
3244 /* fall through to return what was recorded */
3245 }
3246
3247 /* copy verifier log back to user space including trailing zero */
3248 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3249 ret = -EFAULT;
3250 goto free_log_buf;
3251 }
3252
0246e64d
AS
3253 if (ret == 0 && env->used_map_cnt) {
3254 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3255 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3256 sizeof(env->used_maps[0]),
3257 GFP_KERNEL);
0246e64d 3258
9bac3d6d 3259 if (!env->prog->aux->used_maps) {
0246e64d
AS
3260 ret = -ENOMEM;
3261 goto free_log_buf;
3262 }
3263
9bac3d6d 3264 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3265 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3266 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3267
3268 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3269 * bpf_ld_imm64 instructions
3270 */
3271 convert_pseudo_ld_imm64(env);
3272 }
cbd35700
AS
3273
3274free_log_buf:
3275 if (log_level)
3276 vfree(log_buf);
9bac3d6d 3277 if (!env->prog->aux->used_maps)
0246e64d
AS
3278 /* if we didn't copy map pointers into bpf_prog_info, release
3279 * them now. Otherwise free_bpf_prog_info() will release them.
3280 */
3281 release_maps(env);
9bac3d6d 3282 *prog = env->prog;
3df126f3 3283err_unlock:
cbd35700 3284 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3285 vfree(env->insn_aux_data);
3286err_free_env:
3287 kfree(env);
51580e79
AS
3288 return ret;
3289}
13a27dfc
JK
3290
3291int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3292 void *priv)
3293{
3294 struct bpf_verifier_env *env;
3295 int ret;
3296
3297 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3298 if (!env)
3299 return -ENOMEM;
3300
3301 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3302 prog->len);
3303 ret = -ENOMEM;
3304 if (!env->insn_aux_data)
3305 goto err_free_env;
3306 env->prog = prog;
3307 env->analyzer_ops = ops;
3308 env->analyzer_priv = priv;
3309
3310 /* grab the mutex to protect few globals used by verifier */
3311 mutex_lock(&bpf_verifier_lock);
3312
3313 log_level = 0;
3314
3315 env->explored_states = kcalloc(env->prog->len,
3316 sizeof(struct bpf_verifier_state_list *),
3317 GFP_KERNEL);
3318 ret = -ENOMEM;
3319 if (!env->explored_states)
3320 goto skip_full_check;
3321
3322 ret = check_cfg(env);
3323 if (ret < 0)
3324 goto skip_full_check;
3325
3326 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3327
3328 ret = do_check(env);
3329
3330skip_full_check:
3331 while (pop_stack(env, NULL) >= 0);
3332 free_states(env);
3333
3334 mutex_unlock(&bpf_verifier_lock);
3335 vfree(env->insn_aux_data);
3336err_free_env:
3337 kfree(env);
3338 return ret;
3339}
3340EXPORT_SYMBOL_GPL(bpf_analyzer);