]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: allow helpers access to variable memory
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 32k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
33ff9823
DB
146struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
435faee1 148 bool raw_mode;
36bbef52 149 bool pkt_access;
435faee1
DB
150 int regno;
151 int access_size;
33ff9823
DB
152};
153
cbd35700
AS
154/* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
156 */
157static u32 log_level, log_size, log_len;
158static char *log_buf;
159
160static DEFINE_MUTEX(bpf_verifier_lock);
161
162/* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
165 */
1d056d9c 166static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
167{
168 va_list args;
169
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
172
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
176}
177
17a52670
AS
178/* string representation of 'enum bpf_reg_type' */
179static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
969bf05e
AS
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
192};
193
ebb676da
TG
194#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197};
198#undef __BPF_FUNC_STR_FN
199
200static const char *func_id_name(int id)
201{
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
208}
209
58e2af8b 210static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 211{
58e2af8b 212 struct bpf_reg_state *reg;
17a52670
AS
213 enum bpf_reg_type t;
214 int i;
215
216 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
217 reg = &state->regs[i];
218 t = reg->type;
17a52670
AS
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
17a52670 229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 232 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 233 reg->map_ptr->key_size,
57a09bf0
TG
234 reg->map_ptr->value_size,
235 reg->id);
48461135 236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
48461135
JB
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
17a52670 242 }
9c399760 243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 244 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
247 }
248 verbose("\n");
249}
250
cbd35700
AS
251static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
260};
261
687f0715 262static const char *const bpf_alu_string[16] = {
cbd35700
AS
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
277};
278
279static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
284};
285
687f0715 286static const char *const bpf_jmp_string[16] = {
cbd35700
AS
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
297};
298
299static void print_bpf_insn(struct bpf_insn *insn)
300{
301 u8 class = BPF_CLASS(insn->code);
302
303 if (class == BPF_ALU || class == BPF_ALU64) {
304 if (BPF_SRC(insn->code) == BPF_X)
305 verbose("(%02x) %sr%d %s %sr%d\n",
306 insn->code, class == BPF_ALU ? "(u32) " : "",
307 insn->dst_reg,
308 bpf_alu_string[BPF_OP(insn->code) >> 4],
309 class == BPF_ALU ? "(u32) " : "",
310 insn->src_reg);
311 else
312 verbose("(%02x) %sr%d %s %s%d\n",
313 insn->code, class == BPF_ALU ? "(u32) " : "",
314 insn->dst_reg,
315 bpf_alu_string[BPF_OP(insn->code) >> 4],
316 class == BPF_ALU ? "(u32) " : "",
317 insn->imm);
318 } else if (class == BPF_STX) {
319 if (BPF_MODE(insn->code) == BPF_MEM)
320 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 insn->code,
322 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 insn->dst_reg,
324 insn->off, insn->src_reg);
325 else if (BPF_MODE(insn->code) == BPF_XADD)
326 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 insn->code,
328 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 insn->dst_reg, insn->off,
330 insn->src_reg);
331 else
332 verbose("BUG_%02x\n", insn->code);
333 } else if (class == BPF_ST) {
334 if (BPF_MODE(insn->code) != BPF_MEM) {
335 verbose("BUG_st_%02x\n", insn->code);
336 return;
337 }
338 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->imm);
343 } else if (class == BPF_LDX) {
344 if (BPF_MODE(insn->code) != BPF_MEM) {
345 verbose("BUG_ldx_%02x\n", insn->code);
346 return;
347 }
348 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 insn->code, insn->dst_reg,
350 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 insn->src_reg, insn->off);
352 } else if (class == BPF_LD) {
353 if (BPF_MODE(insn->code) == BPF_ABS) {
354 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->imm);
358 } else if (BPF_MODE(insn->code) == BPF_IND) {
359 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 insn->code,
361 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 insn->src_reg, insn->imm);
363 } else if (BPF_MODE(insn->code) == BPF_IMM) {
364 verbose("(%02x) r%d = 0x%x\n",
365 insn->code, insn->dst_reg, insn->imm);
366 } else {
367 verbose("BUG_ld_%02x\n", insn->code);
368 return;
369 }
370 } else if (class == BPF_JMP) {
371 u8 opcode = BPF_OP(insn->code);
372
373 if (opcode == BPF_CALL) {
ebb676da
TG
374 verbose("(%02x) call %s#%d\n", insn->code,
375 func_id_name(insn->imm), insn->imm);
cbd35700
AS
376 } else if (insn->code == (BPF_JMP | BPF_JA)) {
377 verbose("(%02x) goto pc%+d\n",
378 insn->code, insn->off);
379 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 verbose("(%02x) exit\n", insn->code);
381 } else if (BPF_SRC(insn->code) == BPF_X) {
382 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 insn->code, insn->dst_reg,
384 bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 insn->src_reg, insn->off);
386 } else {
387 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 insn->code, insn->dst_reg,
389 bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 insn->imm, insn->off);
391 }
392 } else {
393 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 }
395}
396
58e2af8b 397static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 398{
58e2af8b 399 struct bpf_verifier_stack_elem *elem;
17a52670
AS
400 int insn_idx;
401
402 if (env->head == NULL)
403 return -1;
404
405 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 insn_idx = env->head->insn_idx;
407 if (prev_insn_idx)
408 *prev_insn_idx = env->head->prev_insn_idx;
409 elem = env->head->next;
410 kfree(env->head);
411 env->head = elem;
412 env->stack_size--;
413 return insn_idx;
414}
415
58e2af8b
JK
416static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 int insn_idx, int prev_insn_idx)
17a52670 418{
58e2af8b 419 struct bpf_verifier_stack_elem *elem;
17a52670 420
58e2af8b 421 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
422 if (!elem)
423 goto err;
424
425 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 elem->insn_idx = insn_idx;
427 elem->prev_insn_idx = prev_insn_idx;
428 elem->next = env->head;
429 env->head = elem;
430 env->stack_size++;
07016151 431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
432 verbose("BPF program is too complex\n");
433 goto err;
434 }
435 return &elem->st;
436err:
437 /* pop all elements and return */
438 while (pop_stack(env, NULL) >= 0);
439 return NULL;
440}
441
442#define CALLER_SAVED_REGS 6
443static const int caller_saved[CALLER_SAVED_REGS] = {
444 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445};
446
58e2af8b 447static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
448{
449 int i;
450
451 for (i = 0; i < MAX_BPF_REG; i++) {
452 regs[i].type = NOT_INIT;
453 regs[i].imm = 0;
48461135
JB
454 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
456 }
457
458 /* frame pointer */
459 regs[BPF_REG_FP].type = FRAME_PTR;
460
461 /* 1st arg to a function */
462 regs[BPF_REG_1].type = PTR_TO_CTX;
463}
464
6760bf2d 465static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 466{
17a52670 467 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 468 regs[regno].id = 0;
17a52670 469 regs[regno].imm = 0;
17a52670
AS
470}
471
6760bf2d
DB
472static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
473{
474 BUG_ON(regno >= MAX_BPF_REG);
475 __mark_reg_unknown_value(regs, regno);
476}
477
48461135
JB
478static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
479{
480 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
481 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
482}
483
f0318d01
GB
484static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
485 u32 regno)
486{
487 mark_reg_unknown_value(regs, regno);
488 reset_reg_range_values(regs, regno);
489}
490
17a52670
AS
491enum reg_arg_type {
492 SRC_OP, /* register is used as source operand */
493 DST_OP, /* register is used as destination operand */
494 DST_OP_NO_MARK /* same as above, check only, don't mark */
495};
496
58e2af8b 497static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
498 enum reg_arg_type t)
499{
500 if (regno >= MAX_BPF_REG) {
501 verbose("R%d is invalid\n", regno);
502 return -EINVAL;
503 }
504
505 if (t == SRC_OP) {
506 /* check whether register used as source operand can be read */
507 if (regs[regno].type == NOT_INIT) {
508 verbose("R%d !read_ok\n", regno);
509 return -EACCES;
510 }
511 } else {
512 /* check whether register used as dest operand can be written to */
513 if (regno == BPF_REG_FP) {
514 verbose("frame pointer is read only\n");
515 return -EACCES;
516 }
517 if (t == DST_OP)
518 mark_reg_unknown_value(regs, regno);
519 }
520 return 0;
521}
522
523static int bpf_size_to_bytes(int bpf_size)
524{
525 if (bpf_size == BPF_W)
526 return 4;
527 else if (bpf_size == BPF_H)
528 return 2;
529 else if (bpf_size == BPF_B)
530 return 1;
531 else if (bpf_size == BPF_DW)
532 return 8;
533 else
534 return -EINVAL;
535}
536
1be7f75d
AS
537static bool is_spillable_regtype(enum bpf_reg_type type)
538{
539 switch (type) {
540 case PTR_TO_MAP_VALUE:
541 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 542 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
543 case PTR_TO_STACK:
544 case PTR_TO_CTX:
969bf05e
AS
545 case PTR_TO_PACKET:
546 case PTR_TO_PACKET_END:
1be7f75d
AS
547 case FRAME_PTR:
548 case CONST_PTR_TO_MAP:
549 return true;
550 default:
551 return false;
552 }
553}
554
17a52670
AS
555/* check_stack_read/write functions track spill/fill of registers,
556 * stack boundary and alignment are checked in check_mem_access()
557 */
58e2af8b
JK
558static int check_stack_write(struct bpf_verifier_state *state, int off,
559 int size, int value_regno)
17a52670 560{
17a52670 561 int i;
9c399760
AS
562 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
563 * so it's aligned access and [off, off + size) are within stack limits
564 */
17a52670
AS
565
566 if (value_regno >= 0 &&
1be7f75d 567 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
568
569 /* register containing pointer is being spilled into stack */
9c399760 570 if (size != BPF_REG_SIZE) {
17a52670
AS
571 verbose("invalid size of register spill\n");
572 return -EACCES;
573 }
574
17a52670 575 /* save register state */
9c399760
AS
576 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
577 state->regs[value_regno];
17a52670 578
9c399760
AS
579 for (i = 0; i < BPF_REG_SIZE; i++)
580 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
581 } else {
17a52670 582 /* regular write of data into stack */
9c399760 583 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 584 (struct bpf_reg_state) {};
9c399760
AS
585
586 for (i = 0; i < size; i++)
587 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
588 }
589 return 0;
590}
591
58e2af8b 592static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
593 int value_regno)
594{
9c399760 595 u8 *slot_type;
17a52670 596 int i;
17a52670 597
9c399760 598 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 599
9c399760
AS
600 if (slot_type[0] == STACK_SPILL) {
601 if (size != BPF_REG_SIZE) {
17a52670
AS
602 verbose("invalid size of register spill\n");
603 return -EACCES;
604 }
9c399760
AS
605 for (i = 1; i < BPF_REG_SIZE; i++) {
606 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
607 verbose("corrupted spill memory\n");
608 return -EACCES;
609 }
610 }
611
612 if (value_regno >= 0)
613 /* restore register state from stack */
9c399760
AS
614 state->regs[value_regno] =
615 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
616 return 0;
617 } else {
618 for (i = 0; i < size; i++) {
9c399760 619 if (slot_type[i] != STACK_MISC) {
17a52670
AS
620 verbose("invalid read from stack off %d+%d size %d\n",
621 off, i, size);
622 return -EACCES;
623 }
624 }
625 if (value_regno >= 0)
626 /* have read misc data from the stack */
f0318d01
GB
627 mark_reg_unknown_value_and_range(state->regs,
628 value_regno);
17a52670
AS
629 return 0;
630 }
631}
632
633/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 634static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
635 int size)
636{
637 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
638
5722569b 639 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
640 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
641 map->value_size, off, size);
642 return -EACCES;
643 }
644 return 0;
645}
646
dbcfe5f7
GB
647/* check read/write into an adjusted map element */
648static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
649 int off, int size)
650{
651 struct bpf_verifier_state *state = &env->cur_state;
652 struct bpf_reg_state *reg = &state->regs[regno];
653 int err;
654
655 /* We adjusted the register to this map value, so we
656 * need to change off and size to min_value and max_value
657 * respectively to make sure our theoretical access will be
658 * safe.
659 */
660 if (log_level)
661 print_verifier_state(state);
662 env->varlen_map_value_access = true;
663 /* The minimum value is only important with signed
664 * comparisons where we can't assume the floor of a
665 * value is 0. If we are using signed variables for our
666 * index'es we need to make sure that whatever we use
667 * will have a set floor within our range.
668 */
669 if (reg->min_value < 0) {
670 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
671 regno);
672 return -EACCES;
673 }
674 err = check_map_access(env, regno, reg->min_value + off, size);
675 if (err) {
676 verbose("R%d min value is outside of the array range\n",
677 regno);
678 return err;
679 }
680
681 /* If we haven't set a max value then we need to bail
682 * since we can't be sure we won't do bad things.
683 */
684 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
685 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
686 regno);
687 return -EACCES;
688 }
689 return check_map_access(env, regno, reg->max_value + off, size);
690}
691
969bf05e
AS
692#define MAX_PACKET_OFF 0xffff
693
58e2af8b 694static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
695 const struct bpf_call_arg_meta *meta,
696 enum bpf_access_type t)
4acf6c0b 697{
36bbef52 698 switch (env->prog->type) {
3a0af8fd
TG
699 case BPF_PROG_TYPE_LWT_IN:
700 case BPF_PROG_TYPE_LWT_OUT:
701 /* dst_input() and dst_output() can't write for now */
702 if (t == BPF_WRITE)
703 return false;
36bbef52
DB
704 case BPF_PROG_TYPE_SCHED_CLS:
705 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 706 case BPF_PROG_TYPE_XDP:
3a0af8fd 707 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
708 if (meta)
709 return meta->pkt_access;
710
711 env->seen_direct_write = true;
4acf6c0b
BB
712 return true;
713 default:
714 return false;
715 }
716}
717
58e2af8b 718static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
719 int size)
720{
58e2af8b
JK
721 struct bpf_reg_state *regs = env->cur_state.regs;
722 struct bpf_reg_state *reg = &regs[regno];
969bf05e 723
d91b28ed 724 off += reg->off;
b399cf64 725 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
726 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
727 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
728 return -EACCES;
729 }
730 return 0;
731}
732
17a52670 733/* check access to 'struct bpf_context' fields */
58e2af8b 734static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 735 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 736{
13a27dfc
JK
737 /* for analyzer ctx accesses are already validated and converted */
738 if (env->analyzer_ops)
739 return 0;
740
17a52670 741 if (env->prog->aux->ops->is_valid_access &&
19de99f7 742 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
743 /* remember the offset of last byte accessed in ctx */
744 if (env->prog->aux->max_ctx_offset < off + size)
745 env->prog->aux->max_ctx_offset = off + size;
17a52670 746 return 0;
32bbe007 747 }
17a52670
AS
748
749 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
750 return -EACCES;
751}
752
58e2af8b 753static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
754{
755 if (env->allow_ptr_leaks)
756 return false;
757
758 switch (env->cur_state.regs[regno].type) {
759 case UNKNOWN_VALUE:
760 case CONST_IMM:
761 return false;
762 default:
763 return true;
764 }
765}
766
58e2af8b
JK
767static int check_ptr_alignment(struct bpf_verifier_env *env,
768 struct bpf_reg_state *reg, int off, int size)
969bf05e 769{
48461135 770 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
969bf05e 771 if (off % size != 0) {
58e2af8b
JK
772 verbose("misaligned access off %d size %d\n",
773 off, size);
969bf05e
AS
774 return -EACCES;
775 } else {
776 return 0;
777 }
778 }
779
969bf05e
AS
780 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
781 /* misaligned access to packet is ok on x86,arm,arm64 */
782 return 0;
783
784 if (reg->id && size != 1) {
785 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
786 return -EACCES;
787 }
788
789 /* skb->data is NET_IP_ALIGN-ed */
48461135
JB
790 if (reg->type == PTR_TO_PACKET &&
791 (NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
792 verbose("misaligned packet access off %d+%d+%d size %d\n",
793 NET_IP_ALIGN, reg->off, off, size);
794 return -EACCES;
795 }
796 return 0;
797}
798
17a52670
AS
799/* check whether memory at (regno + off) is accessible for t = (read | write)
800 * if t==write, value_regno is a register which value is stored into memory
801 * if t==read, value_regno is a register which will receive the value from memory
802 * if t==write && value_regno==-1, some unknown value is stored into memory
803 * if t==read && value_regno==-1, don't care what we read from memory
804 */
58e2af8b 805static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
806 int bpf_size, enum bpf_access_type t,
807 int value_regno)
808{
58e2af8b
JK
809 struct bpf_verifier_state *state = &env->cur_state;
810 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
811 int size, err = 0;
812
1a0dc1ac
AS
813 if (reg->type == PTR_TO_STACK)
814 off += reg->imm;
24b4d2ab 815
17a52670
AS
816 size = bpf_size_to_bytes(bpf_size);
817 if (size < 0)
818 return size;
819
969bf05e
AS
820 err = check_ptr_alignment(env, reg, off, size);
821 if (err)
822 return err;
17a52670 823
48461135
JB
824 if (reg->type == PTR_TO_MAP_VALUE ||
825 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
826 if (t == BPF_WRITE && value_regno >= 0 &&
827 is_pointer_value(env, value_regno)) {
828 verbose("R%d leaks addr into map\n", value_regno);
829 return -EACCES;
830 }
48461135 831
dbcfe5f7
GB
832 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
833 err = check_map_access_adj(env, regno, off, size);
834 else
835 err = check_map_access(env, regno, off, size);
17a52670 836 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
837 mark_reg_unknown_value_and_range(state->regs,
838 value_regno);
17a52670 839
1a0dc1ac 840 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
841 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
842
1be7f75d
AS
843 if (t == BPF_WRITE && value_regno >= 0 &&
844 is_pointer_value(env, value_regno)) {
845 verbose("R%d leaks addr into ctx\n", value_regno);
846 return -EACCES;
847 }
19de99f7 848 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 849 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
850 mark_reg_unknown_value_and_range(state->regs,
851 value_regno);
1955351d
MS
852 /* note that reg.[id|off|range] == 0 */
853 state->regs[value_regno].type = reg_type;
969bf05e 854 }
17a52670 855
1a0dc1ac 856 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
857 if (off >= 0 || off < -MAX_BPF_STACK) {
858 verbose("invalid stack off=%d size=%d\n", off, size);
859 return -EACCES;
860 }
1be7f75d
AS
861 if (t == BPF_WRITE) {
862 if (!env->allow_ptr_leaks &&
863 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
864 size != BPF_REG_SIZE) {
865 verbose("attempt to corrupt spilled pointer on stack\n");
866 return -EACCES;
867 }
17a52670 868 err = check_stack_write(state, off, size, value_regno);
1be7f75d 869 } else {
17a52670 870 err = check_stack_read(state, off, size, value_regno);
1be7f75d 871 }
969bf05e 872 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 873 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
874 verbose("cannot write into packet\n");
875 return -EACCES;
876 }
4acf6c0b
BB
877 if (t == BPF_WRITE && value_regno >= 0 &&
878 is_pointer_value(env, value_regno)) {
879 verbose("R%d leaks addr into packet\n", value_regno);
880 return -EACCES;
881 }
969bf05e
AS
882 err = check_packet_access(env, regno, off, size);
883 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
884 mark_reg_unknown_value_and_range(state->regs,
885 value_regno);
17a52670
AS
886 } else {
887 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 888 regno, reg_type_str[reg->type]);
17a52670
AS
889 return -EACCES;
890 }
969bf05e
AS
891
892 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
893 state->regs[value_regno].type == UNKNOWN_VALUE) {
894 /* 1 or 2 byte load zero-extends, determine the number of
895 * zero upper bits. Not doing it fo 4 byte load, since
896 * such values cannot be added to ptr_to_packet anyway.
897 */
898 state->regs[value_regno].imm = 64 - size * 8;
899 }
17a52670
AS
900 return err;
901}
902
58e2af8b 903static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 904{
58e2af8b 905 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
906 int err;
907
908 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
909 insn->imm != 0) {
910 verbose("BPF_XADD uses reserved fields\n");
911 return -EINVAL;
912 }
913
914 /* check src1 operand */
915 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
916 if (err)
917 return err;
918
919 /* check src2 operand */
920 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
921 if (err)
922 return err;
923
924 /* check whether atomic_add can read the memory */
925 err = check_mem_access(env, insn->dst_reg, insn->off,
926 BPF_SIZE(insn->code), BPF_READ, -1);
927 if (err)
928 return err;
929
930 /* check whether atomic_add can write into the same memory */
931 return check_mem_access(env, insn->dst_reg, insn->off,
932 BPF_SIZE(insn->code), BPF_WRITE, -1);
933}
934
935/* when register 'regno' is passed into function that will read 'access_size'
936 * bytes from that pointer, make sure that it's within stack boundary
937 * and all elements of stack are initialized
938 */
58e2af8b 939static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
940 int access_size, bool zero_size_allowed,
941 struct bpf_call_arg_meta *meta)
17a52670 942{
58e2af8b
JK
943 struct bpf_verifier_state *state = &env->cur_state;
944 struct bpf_reg_state *regs = state->regs;
17a52670
AS
945 int off, i;
946
8e2fe1d9
DB
947 if (regs[regno].type != PTR_TO_STACK) {
948 if (zero_size_allowed && access_size == 0 &&
949 regs[regno].type == CONST_IMM &&
950 regs[regno].imm == 0)
951 return 0;
952
953 verbose("R%d type=%s expected=%s\n", regno,
954 reg_type_str[regs[regno].type],
955 reg_type_str[PTR_TO_STACK]);
17a52670 956 return -EACCES;
8e2fe1d9 957 }
17a52670
AS
958
959 off = regs[regno].imm;
960 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
961 access_size <= 0) {
962 verbose("invalid stack type R%d off=%d access_size=%d\n",
963 regno, off, access_size);
964 return -EACCES;
965 }
966
435faee1
DB
967 if (meta && meta->raw_mode) {
968 meta->access_size = access_size;
969 meta->regno = regno;
970 return 0;
971 }
972
17a52670 973 for (i = 0; i < access_size; i++) {
9c399760 974 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
975 verbose("invalid indirect read from stack off %d+%d size %d\n",
976 off, i, access_size);
977 return -EACCES;
978 }
979 }
980 return 0;
981}
982
06c1c049
GB
983static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
984 int access_size, bool zero_size_allowed,
985 struct bpf_call_arg_meta *meta)
986{
987 struct bpf_reg_state *regs = env->cur_state.regs;
988
989 switch (regs[regno].type) {
990 case PTR_TO_PACKET:
991 return check_packet_access(env, regno, 0, access_size);
992 case PTR_TO_MAP_VALUE:
993 return check_map_access(env, regno, 0, access_size);
994 case PTR_TO_MAP_VALUE_ADJ:
995 return check_map_access_adj(env, regno, 0, access_size);
996 default: /* const_imm|ptr_to_stack or invalid ptr */
997 return check_stack_boundary(env, regno, access_size,
998 zero_size_allowed, meta);
999 }
1000}
1001
58e2af8b 1002static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1003 enum bpf_arg_type arg_type,
1004 struct bpf_call_arg_meta *meta)
17a52670 1005{
58e2af8b 1006 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1007 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1008 int err = 0;
1009
80f1d68c 1010 if (arg_type == ARG_DONTCARE)
17a52670
AS
1011 return 0;
1012
6841de8b 1013 if (type == NOT_INIT) {
17a52670
AS
1014 verbose("R%d !read_ok\n", regno);
1015 return -EACCES;
1016 }
1017
1be7f75d
AS
1018 if (arg_type == ARG_ANYTHING) {
1019 if (is_pointer_value(env, regno)) {
1020 verbose("R%d leaks addr into helper function\n", regno);
1021 return -EACCES;
1022 }
80f1d68c 1023 return 0;
1be7f75d 1024 }
80f1d68c 1025
3a0af8fd
TG
1026 if (type == PTR_TO_PACKET &&
1027 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1028 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1029 return -EACCES;
1030 }
1031
8e2fe1d9 1032 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1033 arg_type == ARG_PTR_TO_MAP_VALUE) {
1034 expected_type = PTR_TO_STACK;
6841de8b
AS
1035 if (type != PTR_TO_PACKET && type != expected_type)
1036 goto err_type;
8e2fe1d9
DB
1037 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1038 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 1039 expected_type = CONST_IMM;
06c1c049
GB
1040 /* One exception. Allow UNKNOWN_VALUE registers when the
1041 * boundaries are known and don't cause unsafe memory accesses
1042 */
1043 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1044 goto err_type;
17a52670
AS
1045 } else if (arg_type == ARG_CONST_MAP_PTR) {
1046 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1047 if (type != expected_type)
1048 goto err_type;
608cd71a
AS
1049 } else if (arg_type == ARG_PTR_TO_CTX) {
1050 expected_type = PTR_TO_CTX;
6841de8b
AS
1051 if (type != expected_type)
1052 goto err_type;
435faee1
DB
1053 } else if (arg_type == ARG_PTR_TO_STACK ||
1054 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
1055 expected_type = PTR_TO_STACK;
1056 /* One exception here. In case function allows for NULL to be
1057 * passed in as argument, it's a CONST_IMM type. Final test
1058 * happens during stack boundary checking.
1059 */
6841de8b
AS
1060 if (type == CONST_IMM && reg->imm == 0)
1061 /* final test in check_stack_boundary() */;
5722569b
GB
1062 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1063 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1064 goto err_type;
435faee1 1065 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
1066 } else {
1067 verbose("unsupported arg_type %d\n", arg_type);
1068 return -EFAULT;
1069 }
1070
17a52670
AS
1071 if (arg_type == ARG_CONST_MAP_PTR) {
1072 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1073 meta->map_ptr = reg->map_ptr;
17a52670
AS
1074 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1075 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1076 * check that [key, key + map->key_size) are within
1077 * stack limits and initialized
1078 */
33ff9823 1079 if (!meta->map_ptr) {
17a52670
AS
1080 /* in function declaration map_ptr must come before
1081 * map_key, so that it's verified and known before
1082 * we have to check map_key here. Otherwise it means
1083 * that kernel subsystem misconfigured verifier
1084 */
1085 verbose("invalid map_ptr to access map->key\n");
1086 return -EACCES;
1087 }
6841de8b
AS
1088 if (type == PTR_TO_PACKET)
1089 err = check_packet_access(env, regno, 0,
1090 meta->map_ptr->key_size);
1091 else
1092 err = check_stack_boundary(env, regno,
1093 meta->map_ptr->key_size,
1094 false, NULL);
17a52670
AS
1095 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1096 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1097 * check [value, value + map->value_size) validity
1098 */
33ff9823 1099 if (!meta->map_ptr) {
17a52670
AS
1100 /* kernel subsystem misconfigured verifier */
1101 verbose("invalid map_ptr to access map->value\n");
1102 return -EACCES;
1103 }
6841de8b
AS
1104 if (type == PTR_TO_PACKET)
1105 err = check_packet_access(env, regno, 0,
1106 meta->map_ptr->value_size);
1107 else
1108 err = check_stack_boundary(env, regno,
1109 meta->map_ptr->value_size,
1110 false, NULL);
8e2fe1d9
DB
1111 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1112 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1113 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1114
17a52670
AS
1115 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1116 * from stack pointer 'buf'. Check it
1117 * note: regno == len, regno - 1 == buf
1118 */
1119 if (regno == 0) {
1120 /* kernel subsystem misconfigured verifier */
1121 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1122 return -EACCES;
1123 }
06c1c049
GB
1124
1125 /* If the register is UNKNOWN_VALUE, the access check happens
1126 * using its boundaries. Otherwise, just use its imm
1127 */
1128 if (type == UNKNOWN_VALUE) {
1129 /* For unprivileged variable accesses, disable raw
1130 * mode so that the program is required to
1131 * initialize all the memory that the helper could
1132 * just partially fill up.
1133 */
1134 meta = NULL;
1135
1136 if (reg->min_value < 0) {
1137 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1138 regno);
1139 return -EACCES;
1140 }
1141
1142 if (reg->min_value == 0) {
1143 err = check_helper_mem_access(env, regno - 1, 0,
1144 zero_size_allowed,
1145 meta);
1146 if (err)
1147 return err;
1148 }
1149
1150 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1151 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1152 regno);
1153 return -EACCES;
1154 }
1155 err = check_helper_mem_access(env, regno - 1,
1156 reg->max_value,
1157 zero_size_allowed, meta);
1158 if (err)
1159 return err;
1160 } else {
1161 /* register is CONST_IMM */
1162 err = check_helper_mem_access(env, regno - 1, reg->imm,
1163 zero_size_allowed, meta);
1164 }
17a52670
AS
1165 }
1166
1167 return err;
6841de8b
AS
1168err_type:
1169 verbose("R%d type=%s expected=%s\n", regno,
1170 reg_type_str[type], reg_type_str[expected_type]);
1171 return -EACCES;
17a52670
AS
1172}
1173
35578d79
KX
1174static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1175{
35578d79
KX
1176 if (!map)
1177 return 0;
1178
6aff67c8
AS
1179 /* We need a two way check, first is from map perspective ... */
1180 switch (map->map_type) {
1181 case BPF_MAP_TYPE_PROG_ARRAY:
1182 if (func_id != BPF_FUNC_tail_call)
1183 goto error;
1184 break;
1185 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1186 if (func_id != BPF_FUNC_perf_event_read &&
1187 func_id != BPF_FUNC_perf_event_output)
1188 goto error;
1189 break;
1190 case BPF_MAP_TYPE_STACK_TRACE:
1191 if (func_id != BPF_FUNC_get_stackid)
1192 goto error;
1193 break;
4ed8ec52 1194 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1195 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1196 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1197 goto error;
1198 break;
6aff67c8
AS
1199 default:
1200 break;
1201 }
1202
1203 /* ... and second from the function itself. */
1204 switch (func_id) {
1205 case BPF_FUNC_tail_call:
1206 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1207 goto error;
1208 break;
1209 case BPF_FUNC_perf_event_read:
1210 case BPF_FUNC_perf_event_output:
1211 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1212 goto error;
1213 break;
1214 case BPF_FUNC_get_stackid:
1215 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1216 goto error;
1217 break;
60d20f91 1218 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1219 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1220 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1221 goto error;
1222 break;
6aff67c8
AS
1223 default:
1224 break;
35578d79
KX
1225 }
1226
1227 return 0;
6aff67c8 1228error:
ebb676da
TG
1229 verbose("cannot pass map_type %d into func %s#%d\n",
1230 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1231 return -EINVAL;
35578d79
KX
1232}
1233
435faee1
DB
1234static int check_raw_mode(const struct bpf_func_proto *fn)
1235{
1236 int count = 0;
1237
1238 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1239 count++;
1240 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1241 count++;
1242 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1243 count++;
1244 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1245 count++;
1246 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1247 count++;
1248
1249 return count > 1 ? -EINVAL : 0;
1250}
1251
58e2af8b 1252static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1253{
58e2af8b
JK
1254 struct bpf_verifier_state *state = &env->cur_state;
1255 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1256 int i;
1257
1258 for (i = 0; i < MAX_BPF_REG; i++)
1259 if (regs[i].type == PTR_TO_PACKET ||
1260 regs[i].type == PTR_TO_PACKET_END)
1261 mark_reg_unknown_value(regs, i);
1262
1263 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1264 if (state->stack_slot_type[i] != STACK_SPILL)
1265 continue;
1266 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1267 if (reg->type != PTR_TO_PACKET &&
1268 reg->type != PTR_TO_PACKET_END)
1269 continue;
1270 reg->type = UNKNOWN_VALUE;
1271 reg->imm = 0;
1272 }
1273}
1274
58e2af8b 1275static int check_call(struct bpf_verifier_env *env, int func_id)
17a52670 1276{
58e2af8b 1277 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1278 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1279 struct bpf_reg_state *regs = state->regs;
1280 struct bpf_reg_state *reg;
33ff9823 1281 struct bpf_call_arg_meta meta;
969bf05e 1282 bool changes_data;
17a52670
AS
1283 int i, err;
1284
1285 /* find function prototype */
1286 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1287 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1288 return -EINVAL;
1289 }
1290
1291 if (env->prog->aux->ops->get_func_proto)
1292 fn = env->prog->aux->ops->get_func_proto(func_id);
1293
1294 if (!fn) {
ebb676da 1295 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1296 return -EINVAL;
1297 }
1298
1299 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1300 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1301 verbose("cannot call GPL only function from proprietary program\n");
1302 return -EINVAL;
1303 }
1304
17bedab2 1305 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1306
33ff9823 1307 memset(&meta, 0, sizeof(meta));
36bbef52 1308 meta.pkt_access = fn->pkt_access;
33ff9823 1309
435faee1
DB
1310 /* We only support one arg being in raw mode at the moment, which
1311 * is sufficient for the helper functions we have right now.
1312 */
1313 err = check_raw_mode(fn);
1314 if (err) {
ebb676da
TG
1315 verbose("kernel subsystem misconfigured func %s#%d\n",
1316 func_id_name(func_id), func_id);
435faee1
DB
1317 return err;
1318 }
1319
17a52670 1320 /* check args */
33ff9823 1321 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1322 if (err)
1323 return err;
33ff9823 1324 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1325 if (err)
1326 return err;
33ff9823 1327 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1328 if (err)
1329 return err;
33ff9823 1330 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1331 if (err)
1332 return err;
33ff9823 1333 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1334 if (err)
1335 return err;
1336
435faee1
DB
1337 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1338 * is inferred from register state.
1339 */
1340 for (i = 0; i < meta.access_size; i++) {
1341 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1342 if (err)
1343 return err;
1344 }
1345
17a52670
AS
1346 /* reset caller saved regs */
1347 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1348 reg = regs + caller_saved[i];
1349 reg->type = NOT_INIT;
1350 reg->imm = 0;
1351 }
1352
1353 /* update return register */
1354 if (fn->ret_type == RET_INTEGER) {
1355 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1356 } else if (fn->ret_type == RET_VOID) {
1357 regs[BPF_REG_0].type = NOT_INIT;
1358 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1359 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1360 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1361 /* remember map_ptr, so that check_map_access()
1362 * can check 'value_size' boundary of memory access
1363 * to map element returned from bpf_map_lookup_elem()
1364 */
33ff9823 1365 if (meta.map_ptr == NULL) {
17a52670
AS
1366 verbose("kernel subsystem misconfigured verifier\n");
1367 return -EINVAL;
1368 }
33ff9823 1369 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1370 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 1371 } else {
ebb676da
TG
1372 verbose("unknown return type %d of func %s#%d\n",
1373 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1374 return -EINVAL;
1375 }
04fd61ab 1376
33ff9823 1377 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1378 if (err)
1379 return err;
04fd61ab 1380
969bf05e
AS
1381 if (changes_data)
1382 clear_all_pkt_pointers(env);
1383 return 0;
1384}
1385
58e2af8b
JK
1386static int check_packet_ptr_add(struct bpf_verifier_env *env,
1387 struct bpf_insn *insn)
969bf05e 1388{
58e2af8b
JK
1389 struct bpf_reg_state *regs = env->cur_state.regs;
1390 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1391 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1392 struct bpf_reg_state tmp_reg;
969bf05e
AS
1393 s32 imm;
1394
1395 if (BPF_SRC(insn->code) == BPF_K) {
1396 /* pkt_ptr += imm */
1397 imm = insn->imm;
1398
1399add_imm:
1400 if (imm <= 0) {
1401 verbose("addition of negative constant to packet pointer is not allowed\n");
1402 return -EACCES;
1403 }
1404 if (imm >= MAX_PACKET_OFF ||
1405 imm + dst_reg->off >= MAX_PACKET_OFF) {
1406 verbose("constant %d is too large to add to packet pointer\n",
1407 imm);
1408 return -EACCES;
1409 }
1410 /* a constant was added to pkt_ptr.
1411 * Remember it while keeping the same 'id'
1412 */
1413 dst_reg->off += imm;
1414 } else {
1b9b69ec
AS
1415 if (src_reg->type == PTR_TO_PACKET) {
1416 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1417 tmp_reg = *dst_reg; /* save r7 state */
1418 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1419 src_reg = &tmp_reg; /* pretend it's src_reg state */
1420 /* if the checks below reject it, the copy won't matter,
1421 * since we're rejecting the whole program. If all ok,
1422 * then imm22 state will be added to r7
1423 * and r7 will be pkt(id=0,off=22,r=62) while
1424 * r6 will stay as pkt(id=0,off=0,r=62)
1425 */
1426 }
1427
969bf05e
AS
1428 if (src_reg->type == CONST_IMM) {
1429 /* pkt_ptr += reg where reg is known constant */
1430 imm = src_reg->imm;
1431 goto add_imm;
1432 }
1433 /* disallow pkt_ptr += reg
1434 * if reg is not uknown_value with guaranteed zero upper bits
1435 * otherwise pkt_ptr may overflow and addition will become
1436 * subtraction which is not allowed
1437 */
1438 if (src_reg->type != UNKNOWN_VALUE) {
1439 verbose("cannot add '%s' to ptr_to_packet\n",
1440 reg_type_str[src_reg->type]);
1441 return -EACCES;
1442 }
1443 if (src_reg->imm < 48) {
1444 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1445 src_reg->imm);
1446 return -EACCES;
1447 }
1448 /* dst_reg stays as pkt_ptr type and since some positive
1449 * integer value was added to the pointer, increment its 'id'
1450 */
1f415a74 1451 dst_reg->id = ++env->id_gen;
969bf05e
AS
1452
1453 /* something was added to pkt_ptr, set range and off to zero */
1454 dst_reg->off = 0;
1455 dst_reg->range = 0;
1456 }
1457 return 0;
1458}
1459
58e2af8b 1460static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1461{
58e2af8b
JK
1462 struct bpf_reg_state *regs = env->cur_state.regs;
1463 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1464 u8 opcode = BPF_OP(insn->code);
1465 s64 imm_log2;
1466
1467 /* for type == UNKNOWN_VALUE:
1468 * imm > 0 -> number of zero upper bits
1469 * imm == 0 -> don't track which is the same as all bits can be non-zero
1470 */
1471
1472 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1473 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1474
1475 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1476 dst_reg->imm && opcode == BPF_ADD) {
1477 /* dreg += sreg
1478 * where both have zero upper bits. Adding them
1479 * can only result making one more bit non-zero
1480 * in the larger value.
1481 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1482 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1483 */
1484 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1485 dst_reg->imm--;
1486 return 0;
1487 }
1488 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1489 dst_reg->imm && opcode == BPF_ADD) {
1490 /* dreg += sreg
1491 * where dreg has zero upper bits and sreg is const.
1492 * Adding them can only result making one more bit
1493 * non-zero in the larger value.
1494 */
1495 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1496 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1497 dst_reg->imm--;
1498 return 0;
1499 }
1500 /* all other cases non supported yet, just mark dst_reg */
1501 dst_reg->imm = 0;
1502 return 0;
1503 }
1504
1505 /* sign extend 32-bit imm into 64-bit to make sure that
1506 * negative values occupy bit 63. Note ilog2() would have
1507 * been incorrect, since sizeof(insn->imm) == 4
1508 */
1509 imm_log2 = __ilog2_u64((long long)insn->imm);
1510
1511 if (dst_reg->imm && opcode == BPF_LSH) {
1512 /* reg <<= imm
1513 * if reg was a result of 2 byte load, then its imm == 48
1514 * which means that upper 48 bits are zero and shifting this reg
1515 * left by 4 would mean that upper 44 bits are still zero
1516 */
1517 dst_reg->imm -= insn->imm;
1518 } else if (dst_reg->imm && opcode == BPF_MUL) {
1519 /* reg *= imm
1520 * if multiplying by 14 subtract 4
1521 * This is conservative calculation of upper zero bits.
1522 * It's not trying to special case insn->imm == 1 or 0 cases
1523 */
1524 dst_reg->imm -= imm_log2 + 1;
1525 } else if (opcode == BPF_AND) {
1526 /* reg &= imm */
1527 dst_reg->imm = 63 - imm_log2;
1528 } else if (dst_reg->imm && opcode == BPF_ADD) {
1529 /* reg += imm */
1530 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1531 dst_reg->imm--;
1532 } else if (opcode == BPF_RSH) {
1533 /* reg >>= imm
1534 * which means that after right shift, upper bits will be zero
1535 * note that verifier already checked that
1536 * 0 <= imm < 64 for shift insn
1537 */
1538 dst_reg->imm += insn->imm;
1539 if (unlikely(dst_reg->imm > 64))
1540 /* some dumb code did:
1541 * r2 = *(u32 *)mem;
1542 * r2 >>= 32;
1543 * and all bits are zero now */
1544 dst_reg->imm = 64;
1545 } else {
1546 /* all other alu ops, means that we don't know what will
1547 * happen to the value, mark it with unknown number of zero bits
1548 */
1549 dst_reg->imm = 0;
1550 }
1551
1552 if (dst_reg->imm < 0) {
1553 /* all 64 bits of the register can contain non-zero bits
1554 * and such value cannot be added to ptr_to_packet, since it
1555 * may overflow, mark it as unknown to avoid further eval
1556 */
1557 dst_reg->imm = 0;
1558 }
1559 return 0;
1560}
1561
58e2af8b
JK
1562static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1563 struct bpf_insn *insn)
969bf05e 1564{
58e2af8b
JK
1565 struct bpf_reg_state *regs = env->cur_state.regs;
1566 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1567 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1568 u8 opcode = BPF_OP(insn->code);
1569
3c839744
GB
1570 /* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or'
1571 * insn. Don't care about overflow or negative values, just add them
969bf05e
AS
1572 */
1573 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1574 dst_reg->imm += insn->imm;
1575 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1576 src_reg->type == CONST_IMM)
1577 dst_reg->imm += src_reg->imm;
3c839744
GB
1578 else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K)
1579 dst_reg->imm |= insn->imm;
1580 else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1581 src_reg->type == CONST_IMM)
1582 dst_reg->imm |= src_reg->imm;
969bf05e
AS
1583 else
1584 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1585 return 0;
1586}
1587
48461135
JB
1588static void check_reg_overflow(struct bpf_reg_state *reg)
1589{
1590 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1591 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1592 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1593 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1594 reg->min_value = BPF_REGISTER_MIN_RANGE;
1595}
1596
1597static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1598 struct bpf_insn *insn)
1599{
1600 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1601 s64 min_val = BPF_REGISTER_MIN_RANGE;
1602 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1603 u8 opcode = BPF_OP(insn->code);
1604
1605 dst_reg = &regs[insn->dst_reg];
1606 if (BPF_SRC(insn->code) == BPF_X) {
1607 check_reg_overflow(&regs[insn->src_reg]);
1608 min_val = regs[insn->src_reg].min_value;
1609 max_val = regs[insn->src_reg].max_value;
1610
1611 /* If the source register is a random pointer then the
1612 * min_value/max_value values represent the range of the known
1613 * accesses into that value, not the actual min/max value of the
1614 * register itself. In this case we have to reset the reg range
1615 * values so we know it is not safe to look at.
1616 */
1617 if (regs[insn->src_reg].type != CONST_IMM &&
1618 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1619 min_val = BPF_REGISTER_MIN_RANGE;
1620 max_val = BPF_REGISTER_MAX_RANGE;
1621 }
1622 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1623 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1624 min_val = max_val = insn->imm;
48461135
JB
1625 }
1626
1627 /* We don't know anything about what was done to this register, mark it
1628 * as unknown.
1629 */
1630 if (min_val == BPF_REGISTER_MIN_RANGE &&
1631 max_val == BPF_REGISTER_MAX_RANGE) {
1632 reset_reg_range_values(regs, insn->dst_reg);
1633 return;
1634 }
1635
f23cc643
JB
1636 /* If one of our values was at the end of our ranges then we can't just
1637 * do our normal operations to the register, we need to set the values
1638 * to the min/max since they are undefined.
1639 */
1640 if (min_val == BPF_REGISTER_MIN_RANGE)
1641 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1642 if (max_val == BPF_REGISTER_MAX_RANGE)
1643 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1644
48461135
JB
1645 switch (opcode) {
1646 case BPF_ADD:
f23cc643
JB
1647 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1648 dst_reg->min_value += min_val;
1649 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1650 dst_reg->max_value += max_val;
48461135
JB
1651 break;
1652 case BPF_SUB:
f23cc643
JB
1653 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1654 dst_reg->min_value -= min_val;
1655 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1656 dst_reg->max_value -= max_val;
48461135
JB
1657 break;
1658 case BPF_MUL:
f23cc643
JB
1659 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1660 dst_reg->min_value *= min_val;
1661 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1662 dst_reg->max_value *= max_val;
48461135
JB
1663 break;
1664 case BPF_AND:
f23cc643
JB
1665 /* Disallow AND'ing of negative numbers, ain't nobody got time
1666 * for that. Otherwise the minimum is 0 and the max is the max
1667 * value we could AND against.
1668 */
1669 if (min_val < 0)
1670 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1671 else
1672 dst_reg->min_value = 0;
48461135
JB
1673 dst_reg->max_value = max_val;
1674 break;
1675 case BPF_LSH:
1676 /* Gotta have special overflow logic here, if we're shifting
1677 * more than MAX_RANGE then just assume we have an invalid
1678 * range.
1679 */
1680 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1681 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1682 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1683 dst_reg->min_value <<= min_val;
1684
1685 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1686 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1687 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1688 dst_reg->max_value <<= max_val;
1689 break;
1690 case BPF_RSH:
f23cc643
JB
1691 /* RSH by a negative number is undefined, and the BPF_RSH is an
1692 * unsigned shift, so make the appropriate casts.
48461135 1693 */
f23cc643
JB
1694 if (min_val < 0 || dst_reg->min_value < 0)
1695 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1696 else
1697 dst_reg->min_value =
1698 (u64)(dst_reg->min_value) >> min_val;
1699 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1700 dst_reg->max_value >>= max_val;
48461135
JB
1701 break;
1702 default:
1703 reset_reg_range_values(regs, insn->dst_reg);
1704 break;
1705 }
1706
1707 check_reg_overflow(dst_reg);
1708}
1709
17a52670 1710/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1711static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1712{
58e2af8b 1713 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1714 u8 opcode = BPF_OP(insn->code);
1715 int err;
1716
1717 if (opcode == BPF_END || opcode == BPF_NEG) {
1718 if (opcode == BPF_NEG) {
1719 if (BPF_SRC(insn->code) != 0 ||
1720 insn->src_reg != BPF_REG_0 ||
1721 insn->off != 0 || insn->imm != 0) {
1722 verbose("BPF_NEG uses reserved fields\n");
1723 return -EINVAL;
1724 }
1725 } else {
1726 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1727 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1728 verbose("BPF_END uses reserved fields\n");
1729 return -EINVAL;
1730 }
1731 }
1732
1733 /* check src operand */
1734 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1735 if (err)
1736 return err;
1737
1be7f75d
AS
1738 if (is_pointer_value(env, insn->dst_reg)) {
1739 verbose("R%d pointer arithmetic prohibited\n",
1740 insn->dst_reg);
1741 return -EACCES;
1742 }
1743
17a52670
AS
1744 /* check dest operand */
1745 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1746 if (err)
1747 return err;
1748
1749 } else if (opcode == BPF_MOV) {
1750
1751 if (BPF_SRC(insn->code) == BPF_X) {
1752 if (insn->imm != 0 || insn->off != 0) {
1753 verbose("BPF_MOV uses reserved fields\n");
1754 return -EINVAL;
1755 }
1756
1757 /* check src operand */
1758 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1759 if (err)
1760 return err;
1761 } else {
1762 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1763 verbose("BPF_MOV uses reserved fields\n");
1764 return -EINVAL;
1765 }
1766 }
1767
1768 /* check dest operand */
1769 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1770 if (err)
1771 return err;
1772
48461135
JB
1773 /* we are setting our register to something new, we need to
1774 * reset its range values.
1775 */
1776 reset_reg_range_values(regs, insn->dst_reg);
1777
17a52670
AS
1778 if (BPF_SRC(insn->code) == BPF_X) {
1779 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1780 /* case: R1 = R2
1781 * copy register state to dest reg
1782 */
1783 regs[insn->dst_reg] = regs[insn->src_reg];
1784 } else {
1be7f75d
AS
1785 if (is_pointer_value(env, insn->src_reg)) {
1786 verbose("R%d partial copy of pointer\n",
1787 insn->src_reg);
1788 return -EACCES;
1789 }
57a09bf0 1790 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1791 }
1792 } else {
1793 /* case: R = imm
1794 * remember the value we stored into this reg
1795 */
1796 regs[insn->dst_reg].type = CONST_IMM;
1797 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1798 regs[insn->dst_reg].max_value = insn->imm;
1799 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1800 }
1801
1802 } else if (opcode > BPF_END) {
1803 verbose("invalid BPF_ALU opcode %x\n", opcode);
1804 return -EINVAL;
1805
1806 } else { /* all other ALU ops: and, sub, xor, add, ... */
1807
17a52670
AS
1808 if (BPF_SRC(insn->code) == BPF_X) {
1809 if (insn->imm != 0 || insn->off != 0) {
1810 verbose("BPF_ALU uses reserved fields\n");
1811 return -EINVAL;
1812 }
1813 /* check src1 operand */
1814 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1815 if (err)
1816 return err;
1817 } else {
1818 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1819 verbose("BPF_ALU uses reserved fields\n");
1820 return -EINVAL;
1821 }
1822 }
1823
1824 /* check src2 operand */
1825 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1826 if (err)
1827 return err;
1828
1829 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1830 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1831 verbose("div by zero\n");
1832 return -EINVAL;
1833 }
1834
229394e8
RV
1835 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1836 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1837 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1838
1839 if (insn->imm < 0 || insn->imm >= size) {
1840 verbose("invalid shift %d\n", insn->imm);
1841 return -EINVAL;
1842 }
1843 }
1844
1a0dc1ac
AS
1845 /* check dest operand */
1846 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1847 if (err)
1848 return err;
1849
1850 dst_reg = &regs[insn->dst_reg];
1851
48461135
JB
1852 /* first we want to adjust our ranges. */
1853 adjust_reg_min_max_vals(env, insn);
1854
17a52670
AS
1855 /* pattern match 'bpf_add Rx, imm' instruction */
1856 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1857 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1858 dst_reg->type = PTR_TO_STACK;
1859 dst_reg->imm = insn->imm;
1860 return 0;
969bf05e
AS
1861 } else if (opcode == BPF_ADD &&
1862 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1863 (dst_reg->type == PTR_TO_PACKET ||
1864 (BPF_SRC(insn->code) == BPF_X &&
1865 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1866 /* ptr_to_packet += K|X */
1867 return check_packet_ptr_add(env, insn);
1868 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1869 dst_reg->type == UNKNOWN_VALUE &&
1870 env->allow_ptr_leaks) {
1871 /* unknown += K|X */
1872 return evaluate_reg_alu(env, insn);
1873 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1874 dst_reg->type == CONST_IMM &&
1875 env->allow_ptr_leaks) {
1876 /* reg_imm += K|X */
1877 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1878 } else if (is_pointer_value(env, insn->dst_reg)) {
1879 verbose("R%d pointer arithmetic prohibited\n",
1880 insn->dst_reg);
1881 return -EACCES;
1882 } else if (BPF_SRC(insn->code) == BPF_X &&
1883 is_pointer_value(env, insn->src_reg)) {
1884 verbose("R%d pointer arithmetic prohibited\n",
1885 insn->src_reg);
1886 return -EACCES;
1887 }
17a52670 1888
48461135
JB
1889 /* If we did pointer math on a map value then just set it to our
1890 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1891 * loads to this register appropriately, otherwise just mark the
1892 * register as unknown.
1893 */
1894 if (env->allow_ptr_leaks &&
1895 (dst_reg->type == PTR_TO_MAP_VALUE ||
1896 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1897 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1898 else
1899 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1900 }
1901
1902 return 0;
1903}
1904
58e2af8b
JK
1905static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1906 struct bpf_reg_state *dst_reg)
969bf05e 1907{
58e2af8b 1908 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1909 int i;
2d2be8ca
DB
1910
1911 /* LLVM can generate two kind of checks:
1912 *
1913 * Type 1:
1914 *
1915 * r2 = r3;
1916 * r2 += 8;
1917 * if (r2 > pkt_end) goto <handle exception>
1918 * <access okay>
1919 *
1920 * Where:
1921 * r2 == dst_reg, pkt_end == src_reg
1922 * r2=pkt(id=n,off=8,r=0)
1923 * r3=pkt(id=n,off=0,r=0)
1924 *
1925 * Type 2:
1926 *
1927 * r2 = r3;
1928 * r2 += 8;
1929 * if (pkt_end >= r2) goto <access okay>
1930 * <handle exception>
1931 *
1932 * Where:
1933 * pkt_end == dst_reg, r2 == src_reg
1934 * r2=pkt(id=n,off=8,r=0)
1935 * r3=pkt(id=n,off=0,r=0)
1936 *
1937 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1938 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1939 */
2d2be8ca 1940
969bf05e
AS
1941 for (i = 0; i < MAX_BPF_REG; i++)
1942 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1943 regs[i].range = dst_reg->off;
1944
1945 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1946 if (state->stack_slot_type[i] != STACK_SPILL)
1947 continue;
1948 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1949 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1950 reg->range = dst_reg->off;
1951 }
1952}
1953
48461135
JB
1954/* Adjusts the register min/max values in the case that the dst_reg is the
1955 * variable register that we are working on, and src_reg is a constant or we're
1956 * simply doing a BPF_K check.
1957 */
1958static void reg_set_min_max(struct bpf_reg_state *true_reg,
1959 struct bpf_reg_state *false_reg, u64 val,
1960 u8 opcode)
1961{
1962 switch (opcode) {
1963 case BPF_JEQ:
1964 /* If this is false then we know nothing Jon Snow, but if it is
1965 * true then we know for sure.
1966 */
1967 true_reg->max_value = true_reg->min_value = val;
1968 break;
1969 case BPF_JNE:
1970 /* If this is true we know nothing Jon Snow, but if it is false
1971 * we know the value for sure;
1972 */
1973 false_reg->max_value = false_reg->min_value = val;
1974 break;
1975 case BPF_JGT:
1976 /* Unsigned comparison, the minimum value is 0. */
1977 false_reg->min_value = 0;
1978 case BPF_JSGT:
1979 /* If this is false then we know the maximum val is val,
1980 * otherwise we know the min val is val+1.
1981 */
1982 false_reg->max_value = val;
1983 true_reg->min_value = val + 1;
1984 break;
1985 case BPF_JGE:
1986 /* Unsigned comparison, the minimum value is 0. */
1987 false_reg->min_value = 0;
1988 case BPF_JSGE:
1989 /* If this is false then we know the maximum value is val - 1,
1990 * otherwise we know the mimimum value is val.
1991 */
1992 false_reg->max_value = val - 1;
1993 true_reg->min_value = val;
1994 break;
1995 default:
1996 break;
1997 }
1998
1999 check_reg_overflow(false_reg);
2000 check_reg_overflow(true_reg);
2001}
2002
2003/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2004 * is the variable reg.
2005 */
2006static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2007 struct bpf_reg_state *false_reg, u64 val,
2008 u8 opcode)
2009{
2010 switch (opcode) {
2011 case BPF_JEQ:
2012 /* If this is false then we know nothing Jon Snow, but if it is
2013 * true then we know for sure.
2014 */
2015 true_reg->max_value = true_reg->min_value = val;
2016 break;
2017 case BPF_JNE:
2018 /* If this is true we know nothing Jon Snow, but if it is false
2019 * we know the value for sure;
2020 */
2021 false_reg->max_value = false_reg->min_value = val;
2022 break;
2023 case BPF_JGT:
2024 /* Unsigned comparison, the minimum value is 0. */
2025 true_reg->min_value = 0;
2026 case BPF_JSGT:
2027 /*
2028 * If this is false, then the val is <= the register, if it is
2029 * true the register <= to the val.
2030 */
2031 false_reg->min_value = val;
2032 true_reg->max_value = val - 1;
2033 break;
2034 case BPF_JGE:
2035 /* Unsigned comparison, the minimum value is 0. */
2036 true_reg->min_value = 0;
2037 case BPF_JSGE:
2038 /* If this is false then constant < register, if it is true then
2039 * the register < constant.
2040 */
2041 false_reg->min_value = val + 1;
2042 true_reg->max_value = val;
2043 break;
2044 default:
2045 break;
2046 }
2047
2048 check_reg_overflow(false_reg);
2049 check_reg_overflow(true_reg);
2050}
2051
57a09bf0
TG
2052static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2053 enum bpf_reg_type type)
2054{
2055 struct bpf_reg_state *reg = &regs[regno];
2056
2057 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2058 reg->type = type;
a08dd0da
DB
2059 /* We don't need id from this point onwards anymore, thus we
2060 * should better reset it, so that state pruning has chances
2061 * to take effect.
2062 */
2063 reg->id = 0;
57a09bf0 2064 if (type == UNKNOWN_VALUE)
6760bf2d 2065 __mark_reg_unknown_value(regs, regno);
57a09bf0
TG
2066 }
2067}
2068
2069/* The logic is similar to find_good_pkt_pointers(), both could eventually
2070 * be folded together at some point.
2071 */
2072static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2073 enum bpf_reg_type type)
2074{
2075 struct bpf_reg_state *regs = state->regs;
a08dd0da 2076 u32 id = regs[regno].id;
57a09bf0
TG
2077 int i;
2078
2079 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2080 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2081
2082 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2083 if (state->stack_slot_type[i] != STACK_SPILL)
2084 continue;
a08dd0da 2085 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2086 }
2087}
2088
58e2af8b 2089static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2090 struct bpf_insn *insn, int *insn_idx)
2091{
58e2af8b
JK
2092 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2093 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2094 u8 opcode = BPF_OP(insn->code);
2095 int err;
2096
2097 if (opcode > BPF_EXIT) {
2098 verbose("invalid BPF_JMP opcode %x\n", opcode);
2099 return -EINVAL;
2100 }
2101
2102 if (BPF_SRC(insn->code) == BPF_X) {
2103 if (insn->imm != 0) {
2104 verbose("BPF_JMP uses reserved fields\n");
2105 return -EINVAL;
2106 }
2107
2108 /* check src1 operand */
2109 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2110 if (err)
2111 return err;
1be7f75d
AS
2112
2113 if (is_pointer_value(env, insn->src_reg)) {
2114 verbose("R%d pointer comparison prohibited\n",
2115 insn->src_reg);
2116 return -EACCES;
2117 }
17a52670
AS
2118 } else {
2119 if (insn->src_reg != BPF_REG_0) {
2120 verbose("BPF_JMP uses reserved fields\n");
2121 return -EINVAL;
2122 }
2123 }
2124
2125 /* check src2 operand */
2126 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2127 if (err)
2128 return err;
2129
1a0dc1ac
AS
2130 dst_reg = &regs[insn->dst_reg];
2131
17a52670
AS
2132 /* detect if R == 0 where R was initialized to zero earlier */
2133 if (BPF_SRC(insn->code) == BPF_K &&
2134 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2135 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2136 if (opcode == BPF_JEQ) {
2137 /* if (imm == imm) goto pc+off;
2138 * only follow the goto, ignore fall-through
2139 */
2140 *insn_idx += insn->off;
2141 return 0;
2142 } else {
2143 /* if (imm != imm) goto pc+off;
2144 * only follow fall-through branch, since
2145 * that's where the program will go
2146 */
2147 return 0;
2148 }
2149 }
2150
2151 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2152 if (!other_branch)
2153 return -EFAULT;
2154
48461135
JB
2155 /* detect if we are comparing against a constant value so we can adjust
2156 * our min/max values for our dst register.
2157 */
2158 if (BPF_SRC(insn->code) == BPF_X) {
2159 if (regs[insn->src_reg].type == CONST_IMM)
2160 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2161 dst_reg, regs[insn->src_reg].imm,
2162 opcode);
2163 else if (dst_reg->type == CONST_IMM)
2164 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2165 &regs[insn->src_reg], dst_reg->imm,
2166 opcode);
2167 } else {
2168 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2169 dst_reg, insn->imm, opcode);
2170 }
2171
58e2af8b 2172 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2173 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2174 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2175 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2176 /* Mark all identical map registers in each branch as either
2177 * safe or unknown depending R == 0 or R != 0 conditional.
2178 */
2179 mark_map_regs(this_branch, insn->dst_reg,
2180 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2181 mark_map_regs(other_branch, insn->dst_reg,
2182 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2183 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2184 dst_reg->type == PTR_TO_PACKET &&
2185 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2186 find_good_pkt_pointers(this_branch, dst_reg);
2187 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2188 dst_reg->type == PTR_TO_PACKET_END &&
2189 regs[insn->src_reg].type == PTR_TO_PACKET) {
2190 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2191 } else if (is_pointer_value(env, insn->dst_reg)) {
2192 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2193 return -EACCES;
17a52670
AS
2194 }
2195 if (log_level)
2d2be8ca 2196 print_verifier_state(this_branch);
17a52670
AS
2197 return 0;
2198}
2199
0246e64d
AS
2200/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2201static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2202{
2203 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2204
2205 return (struct bpf_map *) (unsigned long) imm64;
2206}
2207
17a52670 2208/* verify BPF_LD_IMM64 instruction */
58e2af8b 2209static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2210{
58e2af8b 2211 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2212 int err;
2213
2214 if (BPF_SIZE(insn->code) != BPF_DW) {
2215 verbose("invalid BPF_LD_IMM insn\n");
2216 return -EINVAL;
2217 }
2218 if (insn->off != 0) {
2219 verbose("BPF_LD_IMM64 uses reserved fields\n");
2220 return -EINVAL;
2221 }
2222
2223 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2224 if (err)
2225 return err;
2226
6b173873
JK
2227 if (insn->src_reg == 0) {
2228 /* generic move 64-bit immediate into a register,
2229 * only analyzer needs to collect the ld_imm value.
2230 */
2231 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2232
2233 if (!env->analyzer_ops)
2234 return 0;
2235
2236 regs[insn->dst_reg].type = CONST_IMM;
2237 regs[insn->dst_reg].imm = imm;
17a52670 2238 return 0;
6b173873 2239 }
17a52670
AS
2240
2241 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2242 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2243
2244 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2245 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2246 return 0;
2247}
2248
96be4325
DB
2249static bool may_access_skb(enum bpf_prog_type type)
2250{
2251 switch (type) {
2252 case BPF_PROG_TYPE_SOCKET_FILTER:
2253 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2254 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2255 return true;
2256 default:
2257 return false;
2258 }
2259}
2260
ddd872bc
AS
2261/* verify safety of LD_ABS|LD_IND instructions:
2262 * - they can only appear in the programs where ctx == skb
2263 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2264 * preserve R6-R9, and store return value into R0
2265 *
2266 * Implicit input:
2267 * ctx == skb == R6 == CTX
2268 *
2269 * Explicit input:
2270 * SRC == any register
2271 * IMM == 32-bit immediate
2272 *
2273 * Output:
2274 * R0 - 8/16/32-bit skb data converted to cpu endianness
2275 */
58e2af8b 2276static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2277{
58e2af8b 2278 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2279 u8 mode = BPF_MODE(insn->code);
58e2af8b 2280 struct bpf_reg_state *reg;
ddd872bc
AS
2281 int i, err;
2282
24701ece 2283 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2284 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2285 return -EINVAL;
2286 }
2287
2288 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2289 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2290 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2291 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2292 return -EINVAL;
2293 }
2294
2295 /* check whether implicit source operand (register R6) is readable */
2296 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2297 if (err)
2298 return err;
2299
2300 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2301 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2302 return -EINVAL;
2303 }
2304
2305 if (mode == BPF_IND) {
2306 /* check explicit source operand */
2307 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2308 if (err)
2309 return err;
2310 }
2311
2312 /* reset caller saved regs to unreadable */
2313 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2314 reg = regs + caller_saved[i];
2315 reg->type = NOT_INIT;
2316 reg->imm = 0;
2317 }
2318
2319 /* mark destination R0 register as readable, since it contains
2320 * the value fetched from the packet
2321 */
2322 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2323 return 0;
2324}
2325
475fb78f
AS
2326/* non-recursive DFS pseudo code
2327 * 1 procedure DFS-iterative(G,v):
2328 * 2 label v as discovered
2329 * 3 let S be a stack
2330 * 4 S.push(v)
2331 * 5 while S is not empty
2332 * 6 t <- S.pop()
2333 * 7 if t is what we're looking for:
2334 * 8 return t
2335 * 9 for all edges e in G.adjacentEdges(t) do
2336 * 10 if edge e is already labelled
2337 * 11 continue with the next edge
2338 * 12 w <- G.adjacentVertex(t,e)
2339 * 13 if vertex w is not discovered and not explored
2340 * 14 label e as tree-edge
2341 * 15 label w as discovered
2342 * 16 S.push(w)
2343 * 17 continue at 5
2344 * 18 else if vertex w is discovered
2345 * 19 label e as back-edge
2346 * 20 else
2347 * 21 // vertex w is explored
2348 * 22 label e as forward- or cross-edge
2349 * 23 label t as explored
2350 * 24 S.pop()
2351 *
2352 * convention:
2353 * 0x10 - discovered
2354 * 0x11 - discovered and fall-through edge labelled
2355 * 0x12 - discovered and fall-through and branch edges labelled
2356 * 0x20 - explored
2357 */
2358
2359enum {
2360 DISCOVERED = 0x10,
2361 EXPLORED = 0x20,
2362 FALLTHROUGH = 1,
2363 BRANCH = 2,
2364};
2365
58e2af8b 2366#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2367
475fb78f
AS
2368static int *insn_stack; /* stack of insns to process */
2369static int cur_stack; /* current stack index */
2370static int *insn_state;
2371
2372/* t, w, e - match pseudo-code above:
2373 * t - index of current instruction
2374 * w - next instruction
2375 * e - edge
2376 */
58e2af8b 2377static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2378{
2379 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2380 return 0;
2381
2382 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2383 return 0;
2384
2385 if (w < 0 || w >= env->prog->len) {
2386 verbose("jump out of range from insn %d to %d\n", t, w);
2387 return -EINVAL;
2388 }
2389
f1bca824
AS
2390 if (e == BRANCH)
2391 /* mark branch target for state pruning */
2392 env->explored_states[w] = STATE_LIST_MARK;
2393
475fb78f
AS
2394 if (insn_state[w] == 0) {
2395 /* tree-edge */
2396 insn_state[t] = DISCOVERED | e;
2397 insn_state[w] = DISCOVERED;
2398 if (cur_stack >= env->prog->len)
2399 return -E2BIG;
2400 insn_stack[cur_stack++] = w;
2401 return 1;
2402 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2403 verbose("back-edge from insn %d to %d\n", t, w);
2404 return -EINVAL;
2405 } else if (insn_state[w] == EXPLORED) {
2406 /* forward- or cross-edge */
2407 insn_state[t] = DISCOVERED | e;
2408 } else {
2409 verbose("insn state internal bug\n");
2410 return -EFAULT;
2411 }
2412 return 0;
2413}
2414
2415/* non-recursive depth-first-search to detect loops in BPF program
2416 * loop == back-edge in directed graph
2417 */
58e2af8b 2418static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2419{
2420 struct bpf_insn *insns = env->prog->insnsi;
2421 int insn_cnt = env->prog->len;
2422 int ret = 0;
2423 int i, t;
2424
2425 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2426 if (!insn_state)
2427 return -ENOMEM;
2428
2429 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2430 if (!insn_stack) {
2431 kfree(insn_state);
2432 return -ENOMEM;
2433 }
2434
2435 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2436 insn_stack[0] = 0; /* 0 is the first instruction */
2437 cur_stack = 1;
2438
2439peek_stack:
2440 if (cur_stack == 0)
2441 goto check_state;
2442 t = insn_stack[cur_stack - 1];
2443
2444 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2445 u8 opcode = BPF_OP(insns[t].code);
2446
2447 if (opcode == BPF_EXIT) {
2448 goto mark_explored;
2449 } else if (opcode == BPF_CALL) {
2450 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2451 if (ret == 1)
2452 goto peek_stack;
2453 else if (ret < 0)
2454 goto err_free;
07016151
DB
2455 if (t + 1 < insn_cnt)
2456 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2457 } else if (opcode == BPF_JA) {
2458 if (BPF_SRC(insns[t].code) != BPF_K) {
2459 ret = -EINVAL;
2460 goto err_free;
2461 }
2462 /* unconditional jump with single edge */
2463 ret = push_insn(t, t + insns[t].off + 1,
2464 FALLTHROUGH, env);
2465 if (ret == 1)
2466 goto peek_stack;
2467 else if (ret < 0)
2468 goto err_free;
f1bca824
AS
2469 /* tell verifier to check for equivalent states
2470 * after every call and jump
2471 */
c3de6317
AS
2472 if (t + 1 < insn_cnt)
2473 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2474 } else {
2475 /* conditional jump with two edges */
2476 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2477 if (ret == 1)
2478 goto peek_stack;
2479 else if (ret < 0)
2480 goto err_free;
2481
2482 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2483 if (ret == 1)
2484 goto peek_stack;
2485 else if (ret < 0)
2486 goto err_free;
2487 }
2488 } else {
2489 /* all other non-branch instructions with single
2490 * fall-through edge
2491 */
2492 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2493 if (ret == 1)
2494 goto peek_stack;
2495 else if (ret < 0)
2496 goto err_free;
2497 }
2498
2499mark_explored:
2500 insn_state[t] = EXPLORED;
2501 if (cur_stack-- <= 0) {
2502 verbose("pop stack internal bug\n");
2503 ret = -EFAULT;
2504 goto err_free;
2505 }
2506 goto peek_stack;
2507
2508check_state:
2509 for (i = 0; i < insn_cnt; i++) {
2510 if (insn_state[i] != EXPLORED) {
2511 verbose("unreachable insn %d\n", i);
2512 ret = -EINVAL;
2513 goto err_free;
2514 }
2515 }
2516 ret = 0; /* cfg looks good */
2517
2518err_free:
2519 kfree(insn_state);
2520 kfree(insn_stack);
2521 return ret;
2522}
2523
969bf05e
AS
2524/* the following conditions reduce the number of explored insns
2525 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2526 */
58e2af8b
JK
2527static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2528 struct bpf_reg_state *cur)
969bf05e
AS
2529{
2530 if (old->id != cur->id)
2531 return false;
2532
2533 /* old ptr_to_packet is more conservative, since it allows smaller
2534 * range. Ex:
2535 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2536 * old(off=0,r=10) means that with range=10 the verifier proceeded
2537 * further and found no issues with the program. Now we're in the same
2538 * spot with cur(off=0,r=20), so we're safe too, since anything further
2539 * will only be looking at most 10 bytes after this pointer.
2540 */
2541 if (old->off == cur->off && old->range < cur->range)
2542 return true;
2543
2544 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2545 * since both cannot be used for packet access and safe(old)
2546 * pointer has smaller off that could be used for further
2547 * 'if (ptr > data_end)' check
2548 * Ex:
2549 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2550 * that we cannot access the packet.
2551 * The safe range is:
2552 * [ptr, ptr + range - off)
2553 * so whenever off >=range, it means no safe bytes from this pointer.
2554 * When comparing old->off <= cur->off, it means that older code
2555 * went with smaller offset and that offset was later
2556 * used to figure out the safe range after 'if (ptr > data_end)' check
2557 * Say, 'old' state was explored like:
2558 * ... R3(off=0, r=0)
2559 * R4 = R3 + 20
2560 * ... now R4(off=20,r=0) <-- here
2561 * if (R4 > data_end)
2562 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2563 * ... the code further went all the way to bpf_exit.
2564 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2565 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2566 * goes further, such cur_R4 will give larger safe packet range after
2567 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2568 * so they will be good with r=30 and we can prune the search.
2569 */
2570 if (old->off <= cur->off &&
2571 old->off >= old->range && cur->off >= cur->range)
2572 return true;
2573
2574 return false;
2575}
2576
f1bca824
AS
2577/* compare two verifier states
2578 *
2579 * all states stored in state_list are known to be valid, since
2580 * verifier reached 'bpf_exit' instruction through them
2581 *
2582 * this function is called when verifier exploring different branches of
2583 * execution popped from the state stack. If it sees an old state that has
2584 * more strict register state and more strict stack state then this execution
2585 * branch doesn't need to be explored further, since verifier already
2586 * concluded that more strict state leads to valid finish.
2587 *
2588 * Therefore two states are equivalent if register state is more conservative
2589 * and explored stack state is more conservative than the current one.
2590 * Example:
2591 * explored current
2592 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2593 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2594 *
2595 * In other words if current stack state (one being explored) has more
2596 * valid slots than old one that already passed validation, it means
2597 * the verifier can stop exploring and conclude that current state is valid too
2598 *
2599 * Similarly with registers. If explored state has register type as invalid
2600 * whereas register type in current state is meaningful, it means that
2601 * the current state will reach 'bpf_exit' instruction safely
2602 */
48461135
JB
2603static bool states_equal(struct bpf_verifier_env *env,
2604 struct bpf_verifier_state *old,
58e2af8b 2605 struct bpf_verifier_state *cur)
f1bca824 2606{
e2d2afe1 2607 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2608 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2609 int i;
2610
2611 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2612 rold = &old->regs[i];
2613 rcur = &cur->regs[i];
2614
2615 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2616 continue;
2617
48461135
JB
2618 /* If the ranges were not the same, but everything else was and
2619 * we didn't do a variable access into a map then we are a-ok.
2620 */
e2d2afe1 2621 if (!varlen_map_access &&
d2a4dd37 2622 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2623 continue;
2624
e2d2afe1
JB
2625 /* If we didn't map access then again we don't care about the
2626 * mismatched range values and it's ok if our old type was
2627 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2628 */
1a0dc1ac 2629 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2630 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2631 rcur->type != NOT_INIT))
1a0dc1ac
AS
2632 continue;
2633
969bf05e
AS
2634 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2635 compare_ptrs_to_packet(rold, rcur))
2636 continue;
2637
1a0dc1ac 2638 return false;
f1bca824
AS
2639 }
2640
2641 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2642 if (old->stack_slot_type[i] == STACK_INVALID)
2643 continue;
2644 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2645 /* Ex: old explored (safe) state has STACK_SPILL in
2646 * this stack slot, but current has has STACK_MISC ->
2647 * this verifier states are not equivalent,
2648 * return false to continue verification of this path
2649 */
f1bca824 2650 return false;
9c399760
AS
2651 if (i % BPF_REG_SIZE)
2652 continue;
2653 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2654 &cur->spilled_regs[i / BPF_REG_SIZE],
2655 sizeof(old->spilled_regs[0])))
2656 /* when explored and current stack slot types are
2657 * the same, check that stored pointers types
2658 * are the same as well.
2659 * Ex: explored safe path could have stored
58e2af8b 2660 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2661 * but current path has stored:
58e2af8b 2662 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2663 * such verifier states are not equivalent.
2664 * return false to continue verification of this path
2665 */
2666 return false;
2667 else
2668 continue;
f1bca824
AS
2669 }
2670 return true;
2671}
2672
58e2af8b 2673static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2674{
58e2af8b
JK
2675 struct bpf_verifier_state_list *new_sl;
2676 struct bpf_verifier_state_list *sl;
f1bca824
AS
2677
2678 sl = env->explored_states[insn_idx];
2679 if (!sl)
2680 /* this 'insn_idx' instruction wasn't marked, so we will not
2681 * be doing state search here
2682 */
2683 return 0;
2684
2685 while (sl != STATE_LIST_MARK) {
48461135 2686 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2687 /* reached equivalent register/stack state,
2688 * prune the search
2689 */
2690 return 1;
2691 sl = sl->next;
2692 }
2693
2694 /* there were no equivalent states, remember current one.
2695 * technically the current state is not proven to be safe yet,
2696 * but it will either reach bpf_exit (which means it's safe) or
2697 * it will be rejected. Since there are no loops, we won't be
2698 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2699 */
58e2af8b 2700 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2701 if (!new_sl)
2702 return -ENOMEM;
2703
2704 /* add new state to the head of linked list */
2705 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2706 new_sl->next = env->explored_states[insn_idx];
2707 env->explored_states[insn_idx] = new_sl;
2708 return 0;
2709}
2710
13a27dfc
JK
2711static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2712 int insn_idx, int prev_insn_idx)
2713{
2714 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2715 return 0;
2716
2717 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2718}
2719
58e2af8b 2720static int do_check(struct bpf_verifier_env *env)
17a52670 2721{
58e2af8b 2722 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2723 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2724 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2725 int insn_cnt = env->prog->len;
2726 int insn_idx, prev_insn_idx = 0;
2727 int insn_processed = 0;
2728 bool do_print_state = false;
2729
2730 init_reg_state(regs);
2731 insn_idx = 0;
48461135 2732 env->varlen_map_value_access = false;
17a52670
AS
2733 for (;;) {
2734 struct bpf_insn *insn;
2735 u8 class;
2736 int err;
2737
2738 if (insn_idx >= insn_cnt) {
2739 verbose("invalid insn idx %d insn_cnt %d\n",
2740 insn_idx, insn_cnt);
2741 return -EFAULT;
2742 }
2743
2744 insn = &insns[insn_idx];
2745 class = BPF_CLASS(insn->code);
2746
07016151 2747 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2748 verbose("BPF program is too large. Proccessed %d insn\n",
2749 insn_processed);
2750 return -E2BIG;
2751 }
2752
f1bca824
AS
2753 err = is_state_visited(env, insn_idx);
2754 if (err < 0)
2755 return err;
2756 if (err == 1) {
2757 /* found equivalent state, can prune the search */
2758 if (log_level) {
2759 if (do_print_state)
2760 verbose("\nfrom %d to %d: safe\n",
2761 prev_insn_idx, insn_idx);
2762 else
2763 verbose("%d: safe\n", insn_idx);
2764 }
2765 goto process_bpf_exit;
2766 }
2767
17a52670
AS
2768 if (log_level && do_print_state) {
2769 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2770 print_verifier_state(&env->cur_state);
17a52670
AS
2771 do_print_state = false;
2772 }
2773
2774 if (log_level) {
2775 verbose("%d: ", insn_idx);
2776 print_bpf_insn(insn);
2777 }
2778
13a27dfc
JK
2779 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2780 if (err)
2781 return err;
2782
17a52670 2783 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2784 err = check_alu_op(env, insn);
17a52670
AS
2785 if (err)
2786 return err;
2787
2788 } else if (class == BPF_LDX) {
3df126f3 2789 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2790
2791 /* check for reserved fields is already done */
2792
17a52670
AS
2793 /* check src operand */
2794 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2795 if (err)
2796 return err;
2797
2798 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2799 if (err)
2800 return err;
2801
725f9dcd
AS
2802 src_reg_type = regs[insn->src_reg].type;
2803
17a52670
AS
2804 /* check that memory (src_reg + off) is readable,
2805 * the state of dst_reg will be updated by this func
2806 */
2807 err = check_mem_access(env, insn->src_reg, insn->off,
2808 BPF_SIZE(insn->code), BPF_READ,
2809 insn->dst_reg);
2810 if (err)
2811 return err;
2812
ea2e7ce5
AS
2813 if (BPF_SIZE(insn->code) != BPF_W &&
2814 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2815 insn_idx++;
2816 continue;
2817 }
9bac3d6d 2818
3df126f3
JK
2819 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2820
2821 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2822 /* saw a valid insn
2823 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2824 * save type to validate intersecting paths
9bac3d6d 2825 */
3df126f3 2826 *prev_src_type = src_reg_type;
9bac3d6d 2827
3df126f3 2828 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2829 (src_reg_type == PTR_TO_CTX ||
3df126f3 2830 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2831 /* ABuser program is trying to use the same insn
2832 * dst_reg = *(u32*) (src_reg + off)
2833 * with different pointer types:
2834 * src_reg == ctx in one branch and
2835 * src_reg == stack|map in some other branch.
2836 * Reject it.
2837 */
2838 verbose("same insn cannot be used with different pointers\n");
2839 return -EINVAL;
2840 }
2841
17a52670 2842 } else if (class == BPF_STX) {
3df126f3 2843 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2844
17a52670
AS
2845 if (BPF_MODE(insn->code) == BPF_XADD) {
2846 err = check_xadd(env, insn);
2847 if (err)
2848 return err;
2849 insn_idx++;
2850 continue;
2851 }
2852
17a52670
AS
2853 /* check src1 operand */
2854 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2855 if (err)
2856 return err;
2857 /* check src2 operand */
2858 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2859 if (err)
2860 return err;
2861
d691f9e8
AS
2862 dst_reg_type = regs[insn->dst_reg].type;
2863
17a52670
AS
2864 /* check that memory (dst_reg + off) is writeable */
2865 err = check_mem_access(env, insn->dst_reg, insn->off,
2866 BPF_SIZE(insn->code), BPF_WRITE,
2867 insn->src_reg);
2868 if (err)
2869 return err;
2870
3df126f3
JK
2871 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2872
2873 if (*prev_dst_type == NOT_INIT) {
2874 *prev_dst_type = dst_reg_type;
2875 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2876 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2877 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2878 verbose("same insn cannot be used with different pointers\n");
2879 return -EINVAL;
2880 }
2881
17a52670
AS
2882 } else if (class == BPF_ST) {
2883 if (BPF_MODE(insn->code) != BPF_MEM ||
2884 insn->src_reg != BPF_REG_0) {
2885 verbose("BPF_ST uses reserved fields\n");
2886 return -EINVAL;
2887 }
2888 /* check src operand */
2889 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2890 if (err)
2891 return err;
2892
2893 /* check that memory (dst_reg + off) is writeable */
2894 err = check_mem_access(env, insn->dst_reg, insn->off,
2895 BPF_SIZE(insn->code), BPF_WRITE,
2896 -1);
2897 if (err)
2898 return err;
2899
2900 } else if (class == BPF_JMP) {
2901 u8 opcode = BPF_OP(insn->code);
2902
2903 if (opcode == BPF_CALL) {
2904 if (BPF_SRC(insn->code) != BPF_K ||
2905 insn->off != 0 ||
2906 insn->src_reg != BPF_REG_0 ||
2907 insn->dst_reg != BPF_REG_0) {
2908 verbose("BPF_CALL uses reserved fields\n");
2909 return -EINVAL;
2910 }
2911
2912 err = check_call(env, insn->imm);
2913 if (err)
2914 return err;
2915
2916 } else if (opcode == BPF_JA) {
2917 if (BPF_SRC(insn->code) != BPF_K ||
2918 insn->imm != 0 ||
2919 insn->src_reg != BPF_REG_0 ||
2920 insn->dst_reg != BPF_REG_0) {
2921 verbose("BPF_JA uses reserved fields\n");
2922 return -EINVAL;
2923 }
2924
2925 insn_idx += insn->off + 1;
2926 continue;
2927
2928 } else if (opcode == BPF_EXIT) {
2929 if (BPF_SRC(insn->code) != BPF_K ||
2930 insn->imm != 0 ||
2931 insn->src_reg != BPF_REG_0 ||
2932 insn->dst_reg != BPF_REG_0) {
2933 verbose("BPF_EXIT uses reserved fields\n");
2934 return -EINVAL;
2935 }
2936
2937 /* eBPF calling convetion is such that R0 is used
2938 * to return the value from eBPF program.
2939 * Make sure that it's readable at this time
2940 * of bpf_exit, which means that program wrote
2941 * something into it earlier
2942 */
2943 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2944 if (err)
2945 return err;
2946
1be7f75d
AS
2947 if (is_pointer_value(env, BPF_REG_0)) {
2948 verbose("R0 leaks addr as return value\n");
2949 return -EACCES;
2950 }
2951
f1bca824 2952process_bpf_exit:
17a52670
AS
2953 insn_idx = pop_stack(env, &prev_insn_idx);
2954 if (insn_idx < 0) {
2955 break;
2956 } else {
2957 do_print_state = true;
2958 continue;
2959 }
2960 } else {
2961 err = check_cond_jmp_op(env, insn, &insn_idx);
2962 if (err)
2963 return err;
2964 }
2965 } else if (class == BPF_LD) {
2966 u8 mode = BPF_MODE(insn->code);
2967
2968 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2969 err = check_ld_abs(env, insn);
2970 if (err)
2971 return err;
2972
17a52670
AS
2973 } else if (mode == BPF_IMM) {
2974 err = check_ld_imm(env, insn);
2975 if (err)
2976 return err;
2977
2978 insn_idx++;
2979 } else {
2980 verbose("invalid BPF_LD mode\n");
2981 return -EINVAL;
2982 }
48461135 2983 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
2984 } else {
2985 verbose("unknown insn class %d\n", class);
2986 return -EINVAL;
2987 }
2988
2989 insn_idx++;
2990 }
2991
1a0dc1ac 2992 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2993 return 0;
2994}
2995
fdc15d38
AS
2996static int check_map_prog_compatibility(struct bpf_map *map,
2997 struct bpf_prog *prog)
2998
2999{
3000 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3001 (map->map_type == BPF_MAP_TYPE_HASH ||
3002 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3003 (map->map_flags & BPF_F_NO_PREALLOC)) {
3004 verbose("perf_event programs can only use preallocated hash map\n");
3005 return -EINVAL;
3006 }
3007 return 0;
3008}
3009
0246e64d
AS
3010/* look for pseudo eBPF instructions that access map FDs and
3011 * replace them with actual map pointers
3012 */
58e2af8b 3013static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3014{
3015 struct bpf_insn *insn = env->prog->insnsi;
3016 int insn_cnt = env->prog->len;
fdc15d38 3017 int i, j, err;
0246e64d 3018
aafe6ae9
DB
3019 err = bpf_prog_calc_digest(env->prog);
3020 if (err)
3021 return err;
3022
0246e64d 3023 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3024 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3025 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3026 verbose("BPF_LDX uses reserved fields\n");
3027 return -EINVAL;
3028 }
3029
d691f9e8
AS
3030 if (BPF_CLASS(insn->code) == BPF_STX &&
3031 ((BPF_MODE(insn->code) != BPF_MEM &&
3032 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3033 verbose("BPF_STX uses reserved fields\n");
3034 return -EINVAL;
3035 }
3036
0246e64d
AS
3037 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3038 struct bpf_map *map;
3039 struct fd f;
3040
3041 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3042 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3043 insn[1].off != 0) {
3044 verbose("invalid bpf_ld_imm64 insn\n");
3045 return -EINVAL;
3046 }
3047
3048 if (insn->src_reg == 0)
3049 /* valid generic load 64-bit imm */
3050 goto next_insn;
3051
3052 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3053 verbose("unrecognized bpf_ld_imm64 insn\n");
3054 return -EINVAL;
3055 }
3056
3057 f = fdget(insn->imm);
c2101297 3058 map = __bpf_map_get(f);
0246e64d
AS
3059 if (IS_ERR(map)) {
3060 verbose("fd %d is not pointing to valid bpf_map\n",
3061 insn->imm);
0246e64d
AS
3062 return PTR_ERR(map);
3063 }
3064
fdc15d38
AS
3065 err = check_map_prog_compatibility(map, env->prog);
3066 if (err) {
3067 fdput(f);
3068 return err;
3069 }
3070
0246e64d
AS
3071 /* store map pointer inside BPF_LD_IMM64 instruction */
3072 insn[0].imm = (u32) (unsigned long) map;
3073 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3074
3075 /* check whether we recorded this map already */
3076 for (j = 0; j < env->used_map_cnt; j++)
3077 if (env->used_maps[j] == map) {
3078 fdput(f);
3079 goto next_insn;
3080 }
3081
3082 if (env->used_map_cnt >= MAX_USED_MAPS) {
3083 fdput(f);
3084 return -E2BIG;
3085 }
3086
0246e64d
AS
3087 /* hold the map. If the program is rejected by verifier,
3088 * the map will be released by release_maps() or it
3089 * will be used by the valid program until it's unloaded
3090 * and all maps are released in free_bpf_prog_info()
3091 */
92117d84
AS
3092 map = bpf_map_inc(map, false);
3093 if (IS_ERR(map)) {
3094 fdput(f);
3095 return PTR_ERR(map);
3096 }
3097 env->used_maps[env->used_map_cnt++] = map;
3098
0246e64d
AS
3099 fdput(f);
3100next_insn:
3101 insn++;
3102 i++;
3103 }
3104 }
3105
3106 /* now all pseudo BPF_LD_IMM64 instructions load valid
3107 * 'struct bpf_map *' into a register instead of user map_fd.
3108 * These pointers will be used later by verifier to validate map access.
3109 */
3110 return 0;
3111}
3112
3113/* drop refcnt of maps used by the rejected program */
58e2af8b 3114static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3115{
3116 int i;
3117
3118 for (i = 0; i < env->used_map_cnt; i++)
3119 bpf_map_put(env->used_maps[i]);
3120}
3121
3122/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3123static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3124{
3125 struct bpf_insn *insn = env->prog->insnsi;
3126 int insn_cnt = env->prog->len;
3127 int i;
3128
3129 for (i = 0; i < insn_cnt; i++, insn++)
3130 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3131 insn->src_reg = 0;
3132}
3133
9bac3d6d
AS
3134/* convert load instructions that access fields of 'struct __sk_buff'
3135 * into sequence of instructions that access fields of 'struct sk_buff'
3136 */
58e2af8b 3137static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3138{
36bbef52 3139 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3140 const int insn_cnt = env->prog->len;
36bbef52 3141 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3142 struct bpf_prog *new_prog;
d691f9e8 3143 enum bpf_access_type type;
3df126f3 3144 int i, cnt, delta = 0;
9bac3d6d 3145
36bbef52
DB
3146 if (ops->gen_prologue) {
3147 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3148 env->prog);
3149 if (cnt >= ARRAY_SIZE(insn_buf)) {
3150 verbose("bpf verifier is misconfigured\n");
3151 return -EINVAL;
3152 } else if (cnt) {
3153 new_prog = bpf_patch_insn_single(env->prog, 0,
3154 insn_buf, cnt);
3155 if (!new_prog)
3156 return -ENOMEM;
3157 env->prog = new_prog;
3df126f3 3158 delta += cnt - 1;
36bbef52
DB
3159 }
3160 }
3161
3162 if (!ops->convert_ctx_access)
9bac3d6d
AS
3163 return 0;
3164
3df126f3 3165 insn = env->prog->insnsi + delta;
36bbef52 3166
9bac3d6d 3167 for (i = 0; i < insn_cnt; i++, insn++) {
ea2e7ce5
AS
3168 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3169 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3170 type = BPF_READ;
ea2e7ce5
AS
3171 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3172 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3173 type = BPF_WRITE;
3174 else
9bac3d6d
AS
3175 continue;
3176
3df126f3 3177 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
9bac3d6d 3178 continue;
9bac3d6d 3179
36bbef52
DB
3180 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3181 insn->off, insn_buf, env->prog);
9bac3d6d
AS
3182 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3183 verbose("bpf verifier is misconfigured\n");
3184 return -EINVAL;
3185 }
3186
3df126f3
JK
3187 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3188 cnt);
9bac3d6d
AS
3189 if (!new_prog)
3190 return -ENOMEM;
3191
3df126f3 3192 delta += cnt - 1;
9bac3d6d
AS
3193
3194 /* keep walking new program and skip insns we just inserted */
3195 env->prog = new_prog;
3df126f3 3196 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3197 }
3198
3199 return 0;
3200}
3201
58e2af8b 3202static void free_states(struct bpf_verifier_env *env)
f1bca824 3203{
58e2af8b 3204 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3205 int i;
3206
3207 if (!env->explored_states)
3208 return;
3209
3210 for (i = 0; i < env->prog->len; i++) {
3211 sl = env->explored_states[i];
3212
3213 if (sl)
3214 while (sl != STATE_LIST_MARK) {
3215 sln = sl->next;
3216 kfree(sl);
3217 sl = sln;
3218 }
3219 }
3220
3221 kfree(env->explored_states);
3222}
3223
9bac3d6d 3224int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3225{
cbd35700 3226 char __user *log_ubuf = NULL;
58e2af8b 3227 struct bpf_verifier_env *env;
51580e79
AS
3228 int ret = -EINVAL;
3229
58e2af8b 3230 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3231 * allocate/free it every time bpf_check() is called
3232 */
58e2af8b 3233 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3234 if (!env)
3235 return -ENOMEM;
3236
3df126f3
JK
3237 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3238 (*prog)->len);
3239 ret = -ENOMEM;
3240 if (!env->insn_aux_data)
3241 goto err_free_env;
9bac3d6d 3242 env->prog = *prog;
0246e64d 3243
cbd35700
AS
3244 /* grab the mutex to protect few globals used by verifier */
3245 mutex_lock(&bpf_verifier_lock);
3246
3247 if (attr->log_level || attr->log_buf || attr->log_size) {
3248 /* user requested verbose verifier output
3249 * and supplied buffer to store the verification trace
3250 */
3251 log_level = attr->log_level;
3252 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3253 log_size = attr->log_size;
3254 log_len = 0;
3255
3256 ret = -EINVAL;
3257 /* log_* values have to be sane */
3258 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3259 log_level == 0 || log_ubuf == NULL)
3df126f3 3260 goto err_unlock;
cbd35700
AS
3261
3262 ret = -ENOMEM;
3263 log_buf = vmalloc(log_size);
3264 if (!log_buf)
3df126f3 3265 goto err_unlock;
cbd35700
AS
3266 } else {
3267 log_level = 0;
3268 }
3269
0246e64d
AS
3270 ret = replace_map_fd_with_map_ptr(env);
3271 if (ret < 0)
3272 goto skip_full_check;
3273
9bac3d6d 3274 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3275 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3276 GFP_USER);
3277 ret = -ENOMEM;
3278 if (!env->explored_states)
3279 goto skip_full_check;
3280
475fb78f
AS
3281 ret = check_cfg(env);
3282 if (ret < 0)
3283 goto skip_full_check;
3284
1be7f75d
AS
3285 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3286
17a52670 3287 ret = do_check(env);
cbd35700 3288
0246e64d 3289skip_full_check:
17a52670 3290 while (pop_stack(env, NULL) >= 0);
f1bca824 3291 free_states(env);
0246e64d 3292
9bac3d6d
AS
3293 if (ret == 0)
3294 /* program is valid, convert *(u32*)(ctx + off) accesses */
3295 ret = convert_ctx_accesses(env);
3296
cbd35700
AS
3297 if (log_level && log_len >= log_size - 1) {
3298 BUG_ON(log_len >= log_size);
3299 /* verifier log exceeded user supplied buffer */
3300 ret = -ENOSPC;
3301 /* fall through to return what was recorded */
3302 }
3303
3304 /* copy verifier log back to user space including trailing zero */
3305 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3306 ret = -EFAULT;
3307 goto free_log_buf;
3308 }
3309
0246e64d
AS
3310 if (ret == 0 && env->used_map_cnt) {
3311 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3312 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3313 sizeof(env->used_maps[0]),
3314 GFP_KERNEL);
0246e64d 3315
9bac3d6d 3316 if (!env->prog->aux->used_maps) {
0246e64d
AS
3317 ret = -ENOMEM;
3318 goto free_log_buf;
3319 }
3320
9bac3d6d 3321 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3322 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3323 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3324
3325 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3326 * bpf_ld_imm64 instructions
3327 */
3328 convert_pseudo_ld_imm64(env);
3329 }
cbd35700
AS
3330
3331free_log_buf:
3332 if (log_level)
3333 vfree(log_buf);
9bac3d6d 3334 if (!env->prog->aux->used_maps)
0246e64d
AS
3335 /* if we didn't copy map pointers into bpf_prog_info, release
3336 * them now. Otherwise free_bpf_prog_info() will release them.
3337 */
3338 release_maps(env);
9bac3d6d 3339 *prog = env->prog;
3df126f3 3340err_unlock:
cbd35700 3341 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3342 vfree(env->insn_aux_data);
3343err_free_env:
3344 kfree(env);
51580e79
AS
3345 return ret;
3346}
13a27dfc
JK
3347
3348int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3349 void *priv)
3350{
3351 struct bpf_verifier_env *env;
3352 int ret;
3353
3354 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3355 if (!env)
3356 return -ENOMEM;
3357
3358 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3359 prog->len);
3360 ret = -ENOMEM;
3361 if (!env->insn_aux_data)
3362 goto err_free_env;
3363 env->prog = prog;
3364 env->analyzer_ops = ops;
3365 env->analyzer_priv = priv;
3366
3367 /* grab the mutex to protect few globals used by verifier */
3368 mutex_lock(&bpf_verifier_lock);
3369
3370 log_level = 0;
3371
3372 env->explored_states = kcalloc(env->prog->len,
3373 sizeof(struct bpf_verifier_state_list *),
3374 GFP_KERNEL);
3375 ret = -ENOMEM;
3376 if (!env->explored_states)
3377 goto skip_full_check;
3378
3379 ret = check_cfg(env);
3380 if (ret < 0)
3381 goto skip_full_check;
3382
3383 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3384
3385 ret = do_check(env);
3386
3387skip_full_check:
3388 while (pop_stack(env, NULL) >= 0);
3389 free_states(env);
3390
3391 mutex_unlock(&bpf_verifier_lock);
3392 vfree(env->insn_aux_data);
3393err_free_env:
3394 kfree(env);
3395 return ret;
3396}
3397EXPORT_SYMBOL_GPL(bpf_analyzer);