]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'bpf-fix-null-arg-semantics'
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 802 int size, bool zero_size_allowed)
17a52670 803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
9fd29c08
YS
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
61bd5218 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814}
815
f1174f77
EC
816/* check read/write into a map element with possible variable offset */
817static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 818 int off, int size, bool zero_size_allowed)
dbcfe5f7 819{
638f5b90 820 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
f1174f77
EC
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
dbcfe5f7 827 */
61bd5218
JK
828 if (env->log.level)
829 print_verifier_state(env, state);
dbcfe5f7
GB
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
b03c9f9f 836 if (reg->smin_value < 0) {
61bd5218 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
838 regno);
839 return -EACCES;
840 }
9fd29c08
YS
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
dbcfe5f7 843 if (err) {
61bd5218
JK
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
dbcfe5f7
GB
846 return err;
847 }
848
b03c9f9f
EC
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 852 */
b03c9f9f 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
855 regno);
856 return -EACCES;
857 }
9fd29c08
YS
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
f1174f77 860 if (err)
61bd5218
JK
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
f1174f77 863 return err;
dbcfe5f7
GB
864}
865
969bf05e
AS
866#define MAX_PACKET_OFF 0xffff
867
58e2af8b 868static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
4acf6c0b 871{
36bbef52 872 switch (env->prog->type) {
3a0af8fd
TG
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
7e57fbb2 878 /* fallthrough */
36bbef52
DB
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 881 case BPF_PROG_TYPE_XDP:
3a0af8fd 882 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 883 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
4acf6c0b
BB
888 return true;
889 default:
890 return false;
891 }
892}
893
f1174f77 894static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 895 int off, int size, bool zero_size_allowed)
969bf05e 896{
638f5b90 897 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 898 struct bpf_reg_state *reg = &regs[regno];
969bf05e 899
9fd29c08
YS
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
61bd5218 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 910 int size, bool zero_size_allowed)
f1174f77 911{
638f5b90 912 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
61bd5218 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
926 regno);
927 return -EACCES;
928 }
9fd29c08 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 930 if (err) {
61bd5218 931 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
4f9218aa
JK
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
31fd8581 953 */
23994631 954 *reg_type = info.reg_type;
31fd8581 955
4f9218aa 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
17a52670 960 return 0;
32bbe007 961 }
17a52670 962
61bd5218 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
964 return -EACCES;
965}
966
4cabc5b1
DB
967static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
1be7f75d 969{
4cabc5b1 970 if (allow_ptr_leaks)
1be7f75d
AS
971 return false;
972
f1174f77 973 return reg->type != SCALAR_VALUE;
1be7f75d
AS
974}
975
4cabc5b1
DB
976static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977{
638f5b90 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
979}
980
61bd5218
JK
981static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
d1174416 983 int off, int size, bool strict)
969bf05e 984{
f1174f77 985 struct tnum reg_off;
e07b98d9 986 int ip_align;
d1174416
DM
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
e4eda884
DM
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
e07b98d9 999 */
e4eda884 1000 ip_align = 2;
f1174f77
EC
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1009 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1010 return -EACCES;
1011 }
79adffcd 1012
969bf05e
AS
1013 return 0;
1014}
1015
61bd5218
JK
1016static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
f1174f77
EC
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
79adffcd 1020{
f1174f77
EC
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1033 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1034 return -EACCES;
1035 }
1036
969bf05e
AS
1037 return 0;
1038}
1039
e07b98d9
DM
1040static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
79adffcd
DB
1042 int off, int size)
1043{
e07b98d9 1044 bool strict = env->strict_alignment;
f1174f77 1045 const char *pointer_desc = "";
d1174416 1046
79adffcd
DB
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
de8f3a83
DB
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
61bd5218 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
1062 break;
79adffcd 1063 default:
f1174f77 1064 break;
79adffcd 1065 }
61bd5218
JK
1066 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1067 strict);
79adffcd
DB
1068}
1069
17a52670
AS
1070/* check whether memory at (regno + off) is accessible for t = (read | write)
1071 * if t==write, value_regno is a register which value is stored into memory
1072 * if t==read, value_regno is a register which will receive the value from memory
1073 * if t==write && value_regno==-1, some unknown value is stored into memory
1074 * if t==read && value_regno==-1, don't care what we read from memory
1075 */
31fd8581 1076static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1077 int bpf_size, enum bpf_access_type t,
1078 int value_regno)
1079{
638f5b90
AS
1080 struct bpf_verifier_state *state = env->cur_state;
1081 struct bpf_reg_state *regs = cur_regs(env);
1082 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1083 int size, err = 0;
1084
1085 size = bpf_size_to_bytes(bpf_size);
1086 if (size < 0)
1087 return size;
1088
f1174f77 1089 /* alignment checks will add in reg->off themselves */
e07b98d9 1090 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1091 if (err)
1092 return err;
17a52670 1093
f1174f77
EC
1094 /* for access checks, reg->off is just part of off */
1095 off += reg->off;
1096
1097 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1098 if (t == BPF_WRITE && value_regno >= 0 &&
1099 is_pointer_value(env, value_regno)) {
61bd5218 1100 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1101 return -EACCES;
1102 }
48461135 1103
9fd29c08 1104 err = check_map_access(env, regno, off, size, false);
17a52670 1105 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1106 mark_reg_unknown(env, regs, value_regno);
17a52670 1107
1a0dc1ac 1108 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1109 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1110
1be7f75d
AS
1111 if (t == BPF_WRITE && value_regno >= 0 &&
1112 is_pointer_value(env, value_regno)) {
61bd5218 1113 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1114 return -EACCES;
1115 }
f1174f77
EC
1116 /* ctx accesses must be at a fixed offset, so that we can
1117 * determine what type of data were returned.
1118 */
28e33f9d 1119 if (reg->off) {
f8ddadc4
DM
1120 verbose(env,
1121 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1122 regno, reg->off, off - reg->off);
1123 return -EACCES;
1124 }
1125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1126 char tn_buf[48];
1127
1128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1129 verbose(env,
1130 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1131 tn_buf, off, size);
1132 return -EACCES;
1133 }
31fd8581 1134 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1135 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1136 /* ctx access returns either a scalar, or a
de8f3a83
DB
1137 * PTR_TO_PACKET[_META,_END]. In the latter
1138 * case, we know the offset is zero.
f1174f77
EC
1139 */
1140 if (reg_type == SCALAR_VALUE)
638f5b90 1141 mark_reg_unknown(env, regs, value_regno);
f1174f77 1142 else
638f5b90 1143 mark_reg_known_zero(env, regs,
61bd5218 1144 value_regno);
638f5b90
AS
1145 regs[value_regno].id = 0;
1146 regs[value_regno].off = 0;
1147 regs[value_regno].range = 0;
1148 regs[value_regno].type = reg_type;
969bf05e 1149 }
17a52670 1150
f1174f77
EC
1151 } else if (reg->type == PTR_TO_STACK) {
1152 /* stack accesses must be at a fixed offset, so that we can
1153 * determine what type of data were returned.
1154 * See check_stack_read().
1155 */
1156 if (!tnum_is_const(reg->var_off)) {
1157 char tn_buf[48];
1158
1159 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1160 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1161 tn_buf, off, size);
1162 return -EACCES;
1163 }
1164 off += reg->var_off.value;
17a52670 1165 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1166 verbose(env, "invalid stack off=%d size=%d\n", off,
1167 size);
17a52670
AS
1168 return -EACCES;
1169 }
8726679a
AS
1170
1171 if (env->prog->aux->stack_depth < -off)
1172 env->prog->aux->stack_depth = -off;
1173
638f5b90 1174 if (t == BPF_WRITE)
61bd5218
JK
1175 err = check_stack_write(env, state, off, size,
1176 value_regno);
638f5b90 1177 else
61bd5218
JK
1178 err = check_stack_read(env, state, off, size,
1179 value_regno);
de8f3a83 1180 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1181 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1182 verbose(env, "cannot write into packet\n");
969bf05e
AS
1183 return -EACCES;
1184 }
4acf6c0b
BB
1185 if (t == BPF_WRITE && value_regno >= 0 &&
1186 is_pointer_value(env, value_regno)) {
61bd5218
JK
1187 verbose(env, "R%d leaks addr into packet\n",
1188 value_regno);
4acf6c0b
BB
1189 return -EACCES;
1190 }
9fd29c08 1191 err = check_packet_access(env, regno, off, size, false);
969bf05e 1192 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1193 mark_reg_unknown(env, regs, value_regno);
17a52670 1194 } else {
61bd5218
JK
1195 verbose(env, "R%d invalid mem access '%s'\n", regno,
1196 reg_type_str[reg->type]);
17a52670
AS
1197 return -EACCES;
1198 }
969bf05e 1199
f1174f77 1200 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1201 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1202 /* b/h/w load zero-extends, mark upper bits as known 0 */
638f5b90
AS
1203 regs[value_regno].var_off =
1204 tnum_cast(regs[value_regno].var_off, size);
1205 __update_reg_bounds(&regs[value_regno]);
969bf05e 1206 }
17a52670
AS
1207 return err;
1208}
1209
31fd8581 1210static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1211{
17a52670
AS
1212 int err;
1213
1214 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 insn->imm != 0) {
61bd5218 1216 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1217 return -EINVAL;
1218 }
1219
1220 /* check src1 operand */
dc503a8a 1221 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1222 if (err)
1223 return err;
1224
1225 /* check src2 operand */
dc503a8a 1226 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1227 if (err)
1228 return err;
1229
6bdf6abc 1230 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1231 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1232 return -EACCES;
1233 }
1234
17a52670 1235 /* check whether atomic_add can read the memory */
31fd8581 1236 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1237 BPF_SIZE(insn->code), BPF_READ, -1);
1238 if (err)
1239 return err;
1240
1241 /* check whether atomic_add can write into the same memory */
31fd8581 1242 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1243 BPF_SIZE(insn->code), BPF_WRITE, -1);
1244}
1245
f1174f77
EC
1246/* Does this register contain a constant zero? */
1247static bool register_is_null(struct bpf_reg_state reg)
1248{
1249 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250}
1251
17a52670
AS
1252/* when register 'regno' is passed into function that will read 'access_size'
1253 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1254 * and all elements of stack are initialized.
1255 * Unlike most pointer bounds-checking functions, this one doesn't take an
1256 * 'off' argument, so it has to add in reg->off itself.
17a52670 1257 */
58e2af8b 1258static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1259 int access_size, bool zero_size_allowed,
1260 struct bpf_call_arg_meta *meta)
17a52670 1261{
638f5b90 1262 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1263 struct bpf_reg_state *regs = state->regs;
638f5b90 1264 int off, i, slot, spi;
17a52670 1265
8e2fe1d9 1266 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1267 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1268 if (zero_size_allowed && access_size == 0 &&
f1174f77 1269 register_is_null(regs[regno]))
8e2fe1d9
DB
1270 return 0;
1271
61bd5218 1272 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1273 reg_type_str[regs[regno].type],
1274 reg_type_str[PTR_TO_STACK]);
17a52670 1275 return -EACCES;
8e2fe1d9 1276 }
17a52670 1277
f1174f77
EC
1278 /* Only allow fixed-offset stack reads */
1279 if (!tnum_is_const(regs[regno].var_off)) {
1280 char tn_buf[48];
1281
1282 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1283 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77
EC
1284 regno, tn_buf);
1285 }
1286 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1287 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1288 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1289 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1290 regno, off, access_size);
1291 return -EACCES;
1292 }
1293
8726679a
AS
1294 if (env->prog->aux->stack_depth < -off)
1295 env->prog->aux->stack_depth = -off;
1296
435faee1
DB
1297 if (meta && meta->raw_mode) {
1298 meta->access_size = access_size;
1299 meta->regno = regno;
1300 return 0;
1301 }
1302
17a52670 1303 for (i = 0; i < access_size; i++) {
638f5b90
AS
1304 slot = -(off + i) - 1;
1305 spi = slot / BPF_REG_SIZE;
1306 if (state->allocated_stack <= slot ||
1307 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1308 STACK_MISC) {
61bd5218 1309 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1310 off, i, access_size);
1311 return -EACCES;
1312 }
1313 }
1314 return 0;
1315}
1316
06c1c049
GB
1317static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1318 int access_size, bool zero_size_allowed,
1319 struct bpf_call_arg_meta *meta)
1320{
638f5b90 1321 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1322
f1174f77 1323 switch (reg->type) {
06c1c049 1324 case PTR_TO_PACKET:
de8f3a83 1325 case PTR_TO_PACKET_META:
9fd29c08
YS
1326 return check_packet_access(env, regno, reg->off, access_size,
1327 zero_size_allowed);
06c1c049 1328 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1329 return check_map_access(env, regno, reg->off, access_size,
1330 zero_size_allowed);
f1174f77 1331 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1332 return check_stack_boundary(env, regno, access_size,
1333 zero_size_allowed, meta);
1334 }
1335}
1336
58e2af8b 1337static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1338 enum bpf_arg_type arg_type,
1339 struct bpf_call_arg_meta *meta)
17a52670 1340{
638f5b90 1341 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1342 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1343 int err = 0;
1344
80f1d68c 1345 if (arg_type == ARG_DONTCARE)
17a52670
AS
1346 return 0;
1347
dc503a8a
EC
1348 err = check_reg_arg(env, regno, SRC_OP);
1349 if (err)
1350 return err;
17a52670 1351
1be7f75d
AS
1352 if (arg_type == ARG_ANYTHING) {
1353 if (is_pointer_value(env, regno)) {
61bd5218
JK
1354 verbose(env, "R%d leaks addr into helper function\n",
1355 regno);
1be7f75d
AS
1356 return -EACCES;
1357 }
80f1d68c 1358 return 0;
1be7f75d 1359 }
80f1d68c 1360
de8f3a83 1361 if (type_is_pkt_pointer(type) &&
3a0af8fd 1362 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1363 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1364 return -EACCES;
1365 }
1366
8e2fe1d9 1367 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1368 arg_type == ARG_PTR_TO_MAP_VALUE) {
1369 expected_type = PTR_TO_STACK;
de8f3a83
DB
1370 if (!type_is_pkt_pointer(type) &&
1371 type != expected_type)
6841de8b 1372 goto err_type;
39f19ebb
AS
1373 } else if (arg_type == ARG_CONST_SIZE ||
1374 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1375 expected_type = SCALAR_VALUE;
1376 if (type != expected_type)
6841de8b 1377 goto err_type;
17a52670
AS
1378 } else if (arg_type == ARG_CONST_MAP_PTR) {
1379 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1380 if (type != expected_type)
1381 goto err_type;
608cd71a
AS
1382 } else if (arg_type == ARG_PTR_TO_CTX) {
1383 expected_type = PTR_TO_CTX;
6841de8b
AS
1384 if (type != expected_type)
1385 goto err_type;
39f19ebb 1386 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1387 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1388 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1389 expected_type = PTR_TO_STACK;
1390 /* One exception here. In case function allows for NULL to be
f1174f77 1391 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1392 * happens during stack boundary checking.
1393 */
db1ac496
GB
1394 if (register_is_null(*reg) &&
1395 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1396 /* final test in check_stack_boundary() */;
de8f3a83
DB
1397 else if (!type_is_pkt_pointer(type) &&
1398 type != PTR_TO_MAP_VALUE &&
f1174f77 1399 type != expected_type)
6841de8b 1400 goto err_type;
39f19ebb 1401 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1402 } else {
61bd5218 1403 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1404 return -EFAULT;
1405 }
1406
17a52670
AS
1407 if (arg_type == ARG_CONST_MAP_PTR) {
1408 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1409 meta->map_ptr = reg->map_ptr;
17a52670
AS
1410 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1411 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1412 * check that [key, key + map->key_size) are within
1413 * stack limits and initialized
1414 */
33ff9823 1415 if (!meta->map_ptr) {
17a52670
AS
1416 /* in function declaration map_ptr must come before
1417 * map_key, so that it's verified and known before
1418 * we have to check map_key here. Otherwise it means
1419 * that kernel subsystem misconfigured verifier
1420 */
61bd5218 1421 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1422 return -EACCES;
1423 }
de8f3a83 1424 if (type_is_pkt_pointer(type))
f1174f77 1425 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1426 meta->map_ptr->key_size,
1427 false);
6841de8b
AS
1428 else
1429 err = check_stack_boundary(env, regno,
1430 meta->map_ptr->key_size,
1431 false, NULL);
17a52670
AS
1432 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1433 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1434 * check [value, value + map->value_size) validity
1435 */
33ff9823 1436 if (!meta->map_ptr) {
17a52670 1437 /* kernel subsystem misconfigured verifier */
61bd5218 1438 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1439 return -EACCES;
1440 }
de8f3a83 1441 if (type_is_pkt_pointer(type))
f1174f77 1442 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1443 meta->map_ptr->value_size,
1444 false);
6841de8b
AS
1445 else
1446 err = check_stack_boundary(env, regno,
1447 meta->map_ptr->value_size,
1448 false, NULL);
39f19ebb
AS
1449 } else if (arg_type == ARG_CONST_SIZE ||
1450 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1451 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1452
17a52670
AS
1453 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1454 * from stack pointer 'buf'. Check it
1455 * note: regno == len, regno - 1 == buf
1456 */
1457 if (regno == 0) {
1458 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1459 verbose(env,
1460 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1461 return -EACCES;
1462 }
06c1c049 1463
f1174f77
EC
1464 /* The register is SCALAR_VALUE; the access check
1465 * happens using its boundaries.
06c1c049 1466 */
f1174f77
EC
1467
1468 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1469 /* For unprivileged variable accesses, disable raw
1470 * mode so that the program is required to
1471 * initialize all the memory that the helper could
1472 * just partially fill up.
1473 */
1474 meta = NULL;
1475
b03c9f9f 1476 if (reg->smin_value < 0) {
61bd5218 1477 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1478 regno);
1479 return -EACCES;
1480 }
06c1c049 1481
b03c9f9f 1482 if (reg->umin_value == 0) {
f1174f77
EC
1483 err = check_helper_mem_access(env, regno - 1, 0,
1484 zero_size_allowed,
1485 meta);
06c1c049
GB
1486 if (err)
1487 return err;
06c1c049 1488 }
f1174f77 1489
b03c9f9f 1490 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1491 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1492 regno);
1493 return -EACCES;
1494 }
1495 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1496 reg->umax_value,
f1174f77 1497 zero_size_allowed, meta);
17a52670
AS
1498 }
1499
1500 return err;
6841de8b 1501err_type:
61bd5218 1502 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1503 reg_type_str[type], reg_type_str[expected_type]);
1504 return -EACCES;
17a52670
AS
1505}
1506
61bd5218
JK
1507static int check_map_func_compatibility(struct bpf_verifier_env *env,
1508 struct bpf_map *map, int func_id)
35578d79 1509{
35578d79
KX
1510 if (!map)
1511 return 0;
1512
6aff67c8
AS
1513 /* We need a two way check, first is from map perspective ... */
1514 switch (map->map_type) {
1515 case BPF_MAP_TYPE_PROG_ARRAY:
1516 if (func_id != BPF_FUNC_tail_call)
1517 goto error;
1518 break;
1519 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1520 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1521 func_id != BPF_FUNC_perf_event_output &&
1522 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1523 goto error;
1524 break;
1525 case BPF_MAP_TYPE_STACK_TRACE:
1526 if (func_id != BPF_FUNC_get_stackid)
1527 goto error;
1528 break;
4ed8ec52 1529 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1530 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1531 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1532 goto error;
1533 break;
546ac1ff
JF
1534 /* devmap returns a pointer to a live net_device ifindex that we cannot
1535 * allow to be modified from bpf side. So do not allow lookup elements
1536 * for now.
1537 */
1538 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1539 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1540 goto error;
1541 break;
6710e112
JDB
1542 /* Restrict bpf side of cpumap, open when use-cases appear */
1543 case BPF_MAP_TYPE_CPUMAP:
1544 if (func_id != BPF_FUNC_redirect_map)
1545 goto error;
1546 break;
56f668df 1547 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1548 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1549 if (func_id != BPF_FUNC_map_lookup_elem)
1550 goto error;
16a43625 1551 break;
174a79ff
JF
1552 case BPF_MAP_TYPE_SOCKMAP:
1553 if (func_id != BPF_FUNC_sk_redirect_map &&
1554 func_id != BPF_FUNC_sock_map_update &&
1555 func_id != BPF_FUNC_map_delete_elem)
1556 goto error;
1557 break;
6aff67c8
AS
1558 default:
1559 break;
1560 }
1561
1562 /* ... and second from the function itself. */
1563 switch (func_id) {
1564 case BPF_FUNC_tail_call:
1565 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1566 goto error;
1567 break;
1568 case BPF_FUNC_perf_event_read:
1569 case BPF_FUNC_perf_event_output:
908432ca 1570 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1571 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1572 goto error;
1573 break;
1574 case BPF_FUNC_get_stackid:
1575 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1576 goto error;
1577 break;
60d20f91 1578 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1579 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1580 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1581 goto error;
1582 break;
97f91a7c 1583 case BPF_FUNC_redirect_map:
9c270af3
JDB
1584 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1585 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1586 goto error;
1587 break;
174a79ff
JF
1588 case BPF_FUNC_sk_redirect_map:
1589 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1590 goto error;
1591 break;
1592 case BPF_FUNC_sock_map_update:
1593 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1594 goto error;
1595 break;
6aff67c8
AS
1596 default:
1597 break;
35578d79
KX
1598 }
1599
1600 return 0;
6aff67c8 1601error:
61bd5218 1602 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1603 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1604 return -EINVAL;
35578d79
KX
1605}
1606
435faee1
DB
1607static int check_raw_mode(const struct bpf_func_proto *fn)
1608{
1609 int count = 0;
1610
39f19ebb 1611 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1612 count++;
39f19ebb 1613 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1614 count++;
39f19ebb 1615 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1616 count++;
39f19ebb 1617 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1618 count++;
39f19ebb 1619 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1620 count++;
1621
1622 return count > 1 ? -EINVAL : 0;
1623}
1624
de8f3a83
DB
1625/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1626 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1627 */
58e2af8b 1628static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1629{
638f5b90 1630 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1631 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1632 int i;
1633
1634 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1635 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1636 mark_reg_unknown(env, regs, i);
969bf05e 1637
638f5b90
AS
1638 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1639 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1640 continue;
638f5b90 1641 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1642 if (reg_is_pkt_pointer_any(reg))
1643 __mark_reg_unknown(reg);
969bf05e
AS
1644 }
1645}
1646
81ed18ab 1647static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1648{
17a52670 1649 const struct bpf_func_proto *fn = NULL;
638f5b90 1650 struct bpf_reg_state *regs;
33ff9823 1651 struct bpf_call_arg_meta meta;
969bf05e 1652 bool changes_data;
17a52670
AS
1653 int i, err;
1654
1655 /* find function prototype */
1656 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1657 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1658 func_id);
17a52670
AS
1659 return -EINVAL;
1660 }
1661
00176a34
JK
1662 if (env->ops->get_func_proto)
1663 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1664
1665 if (!fn) {
61bd5218
JK
1666 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1667 func_id);
17a52670
AS
1668 return -EINVAL;
1669 }
1670
1671 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1672 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1673 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1674 return -EINVAL;
1675 }
1676
17bedab2 1677 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1678
33ff9823 1679 memset(&meta, 0, sizeof(meta));
36bbef52 1680 meta.pkt_access = fn->pkt_access;
33ff9823 1681
435faee1
DB
1682 /* We only support one arg being in raw mode at the moment, which
1683 * is sufficient for the helper functions we have right now.
1684 */
1685 err = check_raw_mode(fn);
1686 if (err) {
61bd5218 1687 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1688 func_id_name(func_id), func_id);
435faee1
DB
1689 return err;
1690 }
1691
17a52670 1692 /* check args */
33ff9823 1693 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1694 if (err)
1695 return err;
33ff9823 1696 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1697 if (err)
1698 return err;
33ff9823 1699 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1700 if (err)
1701 return err;
33ff9823 1702 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1703 if (err)
1704 return err;
33ff9823 1705 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1706 if (err)
1707 return err;
1708
435faee1
DB
1709 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1710 * is inferred from register state.
1711 */
1712 for (i = 0; i < meta.access_size; i++) {
31fd8581 1713 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1714 if (err)
1715 return err;
1716 }
1717
638f5b90 1718 regs = cur_regs(env);
17a52670 1719 /* reset caller saved regs */
dc503a8a 1720 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1721 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1722 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1723 }
17a52670 1724
dc503a8a 1725 /* update return register (already marked as written above) */
17a52670 1726 if (fn->ret_type == RET_INTEGER) {
f1174f77 1727 /* sets type to SCALAR_VALUE */
61bd5218 1728 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1729 } else if (fn->ret_type == RET_VOID) {
1730 regs[BPF_REG_0].type = NOT_INIT;
1731 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1732 struct bpf_insn_aux_data *insn_aux;
1733
17a52670 1734 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1735 /* There is no offset yet applied, variable or fixed */
61bd5218 1736 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1737 regs[BPF_REG_0].off = 0;
17a52670
AS
1738 /* remember map_ptr, so that check_map_access()
1739 * can check 'value_size' boundary of memory access
1740 * to map element returned from bpf_map_lookup_elem()
1741 */
33ff9823 1742 if (meta.map_ptr == NULL) {
61bd5218
JK
1743 verbose(env,
1744 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1745 return -EINVAL;
1746 }
33ff9823 1747 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1748 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1749 insn_aux = &env->insn_aux_data[insn_idx];
1750 if (!insn_aux->map_ptr)
1751 insn_aux->map_ptr = meta.map_ptr;
1752 else if (insn_aux->map_ptr != meta.map_ptr)
1753 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1754 } else {
61bd5218 1755 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1756 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1757 return -EINVAL;
1758 }
04fd61ab 1759
61bd5218 1760 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1761 if (err)
1762 return err;
04fd61ab 1763
969bf05e
AS
1764 if (changes_data)
1765 clear_all_pkt_pointers(env);
1766 return 0;
1767}
1768
f1174f77
EC
1769static void coerce_reg_to_32(struct bpf_reg_state *reg)
1770{
f1174f77
EC
1771 /* clear high 32 bits */
1772 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1773 /* Update bounds */
1774 __update_reg_bounds(reg);
1775}
1776
1777static bool signed_add_overflows(s64 a, s64 b)
1778{
1779 /* Do the add in u64, where overflow is well-defined */
1780 s64 res = (s64)((u64)a + (u64)b);
1781
1782 if (b < 0)
1783 return res > a;
1784 return res < a;
1785}
1786
1787static bool signed_sub_overflows(s64 a, s64 b)
1788{
1789 /* Do the sub in u64, where overflow is well-defined */
1790 s64 res = (s64)((u64)a - (u64)b);
1791
1792 if (b < 0)
1793 return res < a;
1794 return res > a;
969bf05e
AS
1795}
1796
f1174f77 1797/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1798 * Caller should also handle BPF_MOV case separately.
1799 * If we return -EACCES, caller may want to try again treating pointer as a
1800 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1801 */
1802static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1803 struct bpf_insn *insn,
1804 const struct bpf_reg_state *ptr_reg,
1805 const struct bpf_reg_state *off_reg)
969bf05e 1806{
638f5b90 1807 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1808 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1809 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1810 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1811 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1812 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1813 u8 opcode = BPF_OP(insn->code);
f1174f77 1814 u32 dst = insn->dst_reg;
969bf05e 1815
f1174f77 1816 dst_reg = &regs[dst];
969bf05e 1817
b03c9f9f 1818 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1819 print_verifier_state(env, env->cur_state);
61bd5218
JK
1820 verbose(env,
1821 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1822 return -EINVAL;
1823 }
1824 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1825 print_verifier_state(env, env->cur_state);
61bd5218
JK
1826 verbose(env,
1827 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1828 return -EINVAL;
1829 }
1830
1831 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1832 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1833 if (!env->allow_ptr_leaks)
61bd5218
JK
1834 verbose(env,
1835 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1836 dst);
1837 return -EACCES;
969bf05e
AS
1838 }
1839
f1174f77
EC
1840 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1841 if (!env->allow_ptr_leaks)
61bd5218 1842 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1843 dst);
1844 return -EACCES;
1845 }
1846 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1847 if (!env->allow_ptr_leaks)
61bd5218 1848 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1849 dst);
1850 return -EACCES;
1851 }
1852 if (ptr_reg->type == PTR_TO_PACKET_END) {
1853 if (!env->allow_ptr_leaks)
61bd5218 1854 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1855 dst);
1856 return -EACCES;
1857 }
1858
1859 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1860 * The id may be overwritten later if we create a new variable offset.
969bf05e 1861 */
f1174f77
EC
1862 dst_reg->type = ptr_reg->type;
1863 dst_reg->id = ptr_reg->id;
969bf05e 1864
f1174f77
EC
1865 switch (opcode) {
1866 case BPF_ADD:
1867 /* We can take a fixed offset as long as it doesn't overflow
1868 * the s32 'off' field
969bf05e 1869 */
b03c9f9f
EC
1870 if (known && (ptr_reg->off + smin_val ==
1871 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1872 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1873 dst_reg->smin_value = smin_ptr;
1874 dst_reg->smax_value = smax_ptr;
1875 dst_reg->umin_value = umin_ptr;
1876 dst_reg->umax_value = umax_ptr;
f1174f77 1877 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1878 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1879 dst_reg->range = ptr_reg->range;
1880 break;
1881 }
f1174f77
EC
1882 /* A new variable offset is created. Note that off_reg->off
1883 * == 0, since it's a scalar.
1884 * dst_reg gets the pointer type and since some positive
1885 * integer value was added to the pointer, give it a new 'id'
1886 * if it's a PTR_TO_PACKET.
1887 * this creates a new 'base' pointer, off_reg (variable) gets
1888 * added into the variable offset, and we copy the fixed offset
1889 * from ptr_reg.
969bf05e 1890 */
b03c9f9f
EC
1891 if (signed_add_overflows(smin_ptr, smin_val) ||
1892 signed_add_overflows(smax_ptr, smax_val)) {
1893 dst_reg->smin_value = S64_MIN;
1894 dst_reg->smax_value = S64_MAX;
1895 } else {
1896 dst_reg->smin_value = smin_ptr + smin_val;
1897 dst_reg->smax_value = smax_ptr + smax_val;
1898 }
1899 if (umin_ptr + umin_val < umin_ptr ||
1900 umax_ptr + umax_val < umax_ptr) {
1901 dst_reg->umin_value = 0;
1902 dst_reg->umax_value = U64_MAX;
1903 } else {
1904 dst_reg->umin_value = umin_ptr + umin_val;
1905 dst_reg->umax_value = umax_ptr + umax_val;
1906 }
f1174f77
EC
1907 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1908 dst_reg->off = ptr_reg->off;
de8f3a83 1909 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1910 dst_reg->id = ++env->id_gen;
1911 /* something was added to pkt_ptr, set range to zero */
1912 dst_reg->range = 0;
1913 }
1914 break;
1915 case BPF_SUB:
1916 if (dst_reg == off_reg) {
1917 /* scalar -= pointer. Creates an unknown scalar */
1918 if (!env->allow_ptr_leaks)
61bd5218 1919 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1920 dst);
1921 return -EACCES;
1922 }
1923 /* We don't allow subtraction from FP, because (according to
1924 * test_verifier.c test "invalid fp arithmetic", JITs might not
1925 * be able to deal with it.
969bf05e 1926 */
f1174f77
EC
1927 if (ptr_reg->type == PTR_TO_STACK) {
1928 if (!env->allow_ptr_leaks)
61bd5218 1929 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1930 dst);
1931 return -EACCES;
1932 }
b03c9f9f
EC
1933 if (known && (ptr_reg->off - smin_val ==
1934 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1935 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1936 dst_reg->smin_value = smin_ptr;
1937 dst_reg->smax_value = smax_ptr;
1938 dst_reg->umin_value = umin_ptr;
1939 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1940 dst_reg->var_off = ptr_reg->var_off;
1941 dst_reg->id = ptr_reg->id;
b03c9f9f 1942 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1943 dst_reg->range = ptr_reg->range;
1944 break;
1945 }
f1174f77
EC
1946 /* A new variable offset is created. If the subtrahend is known
1947 * nonnegative, then any reg->range we had before is still good.
969bf05e 1948 */
b03c9f9f
EC
1949 if (signed_sub_overflows(smin_ptr, smax_val) ||
1950 signed_sub_overflows(smax_ptr, smin_val)) {
1951 /* Overflow possible, we know nothing */
1952 dst_reg->smin_value = S64_MIN;
1953 dst_reg->smax_value = S64_MAX;
1954 } else {
1955 dst_reg->smin_value = smin_ptr - smax_val;
1956 dst_reg->smax_value = smax_ptr - smin_val;
1957 }
1958 if (umin_ptr < umax_val) {
1959 /* Overflow possible, we know nothing */
1960 dst_reg->umin_value = 0;
1961 dst_reg->umax_value = U64_MAX;
1962 } else {
1963 /* Cannot overflow (as long as bounds are consistent) */
1964 dst_reg->umin_value = umin_ptr - umax_val;
1965 dst_reg->umax_value = umax_ptr - umin_val;
1966 }
f1174f77
EC
1967 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1968 dst_reg->off = ptr_reg->off;
de8f3a83 1969 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1970 dst_reg->id = ++env->id_gen;
1971 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1972 if (smin_val < 0)
f1174f77 1973 dst_reg->range = 0;
43188702 1974 }
f1174f77
EC
1975 break;
1976 case BPF_AND:
1977 case BPF_OR:
1978 case BPF_XOR:
1979 /* bitwise ops on pointers are troublesome, prohibit for now.
1980 * (However, in principle we could allow some cases, e.g.
1981 * ptr &= ~3 which would reduce min_value by 3.)
1982 */
1983 if (!env->allow_ptr_leaks)
61bd5218 1984 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
1985 dst, bpf_alu_string[opcode >> 4]);
1986 return -EACCES;
1987 default:
1988 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1989 if (!env->allow_ptr_leaks)
61bd5218 1990 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
1991 dst, bpf_alu_string[opcode >> 4]);
1992 return -EACCES;
43188702
JF
1993 }
1994
b03c9f9f
EC
1995 __update_reg_bounds(dst_reg);
1996 __reg_deduce_bounds(dst_reg);
1997 __reg_bound_offset(dst_reg);
43188702
JF
1998 return 0;
1999}
2000
f1174f77
EC
2001static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2002 struct bpf_insn *insn,
2003 struct bpf_reg_state *dst_reg,
2004 struct bpf_reg_state src_reg)
969bf05e 2005{
638f5b90 2006 struct bpf_reg_state *regs = cur_regs(env);
48461135 2007 u8 opcode = BPF_OP(insn->code);
f1174f77 2008 bool src_known, dst_known;
b03c9f9f
EC
2009 s64 smin_val, smax_val;
2010 u64 umin_val, umax_val;
48461135 2011
f1174f77
EC
2012 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2013 /* 32-bit ALU ops are (32,32)->64 */
2014 coerce_reg_to_32(dst_reg);
2015 coerce_reg_to_32(&src_reg);
9305706c 2016 }
b03c9f9f
EC
2017 smin_val = src_reg.smin_value;
2018 smax_val = src_reg.smax_value;
2019 umin_val = src_reg.umin_value;
2020 umax_val = src_reg.umax_value;
f1174f77
EC
2021 src_known = tnum_is_const(src_reg.var_off);
2022 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2023
48461135
JB
2024 switch (opcode) {
2025 case BPF_ADD:
b03c9f9f
EC
2026 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2027 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2028 dst_reg->smin_value = S64_MIN;
2029 dst_reg->smax_value = S64_MAX;
2030 } else {
2031 dst_reg->smin_value += smin_val;
2032 dst_reg->smax_value += smax_val;
2033 }
2034 if (dst_reg->umin_value + umin_val < umin_val ||
2035 dst_reg->umax_value + umax_val < umax_val) {
2036 dst_reg->umin_value = 0;
2037 dst_reg->umax_value = U64_MAX;
2038 } else {
2039 dst_reg->umin_value += umin_val;
2040 dst_reg->umax_value += umax_val;
2041 }
f1174f77 2042 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2043 break;
2044 case BPF_SUB:
b03c9f9f
EC
2045 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2046 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2047 /* Overflow possible, we know nothing */
2048 dst_reg->smin_value = S64_MIN;
2049 dst_reg->smax_value = S64_MAX;
2050 } else {
2051 dst_reg->smin_value -= smax_val;
2052 dst_reg->smax_value -= smin_val;
2053 }
2054 if (dst_reg->umin_value < umax_val) {
2055 /* Overflow possible, we know nothing */
2056 dst_reg->umin_value = 0;
2057 dst_reg->umax_value = U64_MAX;
2058 } else {
2059 /* Cannot overflow (as long as bounds are consistent) */
2060 dst_reg->umin_value -= umax_val;
2061 dst_reg->umax_value -= umin_val;
2062 }
f1174f77 2063 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2064 break;
2065 case BPF_MUL:
b03c9f9f
EC
2066 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2067 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2068 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2069 __mark_reg_unbounded(dst_reg);
2070 __update_reg_bounds(dst_reg);
f1174f77
EC
2071 break;
2072 }
b03c9f9f
EC
2073 /* Both values are positive, so we can work with unsigned and
2074 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2075 */
b03c9f9f
EC
2076 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2077 /* Potential overflow, we know nothing */
2078 __mark_reg_unbounded(dst_reg);
2079 /* (except what we can learn from the var_off) */
2080 __update_reg_bounds(dst_reg);
2081 break;
2082 }
2083 dst_reg->umin_value *= umin_val;
2084 dst_reg->umax_value *= umax_val;
2085 if (dst_reg->umax_value > S64_MAX) {
2086 /* Overflow possible, we know nothing */
2087 dst_reg->smin_value = S64_MIN;
2088 dst_reg->smax_value = S64_MAX;
2089 } else {
2090 dst_reg->smin_value = dst_reg->umin_value;
2091 dst_reg->smax_value = dst_reg->umax_value;
2092 }
48461135
JB
2093 break;
2094 case BPF_AND:
f1174f77 2095 if (src_known && dst_known) {
b03c9f9f
EC
2096 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2097 src_reg.var_off.value);
f1174f77
EC
2098 break;
2099 }
b03c9f9f
EC
2100 /* We get our minimum from the var_off, since that's inherently
2101 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2102 */
f1174f77 2103 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2104 dst_reg->umin_value = dst_reg->var_off.value;
2105 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2106 if (dst_reg->smin_value < 0 || smin_val < 0) {
2107 /* Lose signed bounds when ANDing negative numbers,
2108 * ain't nobody got time for that.
2109 */
2110 dst_reg->smin_value = S64_MIN;
2111 dst_reg->smax_value = S64_MAX;
2112 } else {
2113 /* ANDing two positives gives a positive, so safe to
2114 * cast result into s64.
2115 */
2116 dst_reg->smin_value = dst_reg->umin_value;
2117 dst_reg->smax_value = dst_reg->umax_value;
2118 }
2119 /* We may learn something more from the var_off */
2120 __update_reg_bounds(dst_reg);
f1174f77
EC
2121 break;
2122 case BPF_OR:
2123 if (src_known && dst_known) {
b03c9f9f
EC
2124 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2125 src_reg.var_off.value);
f1174f77
EC
2126 break;
2127 }
b03c9f9f
EC
2128 /* We get our maximum from the var_off, and our minimum is the
2129 * maximum of the operands' minima
f1174f77
EC
2130 */
2131 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2132 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2133 dst_reg->umax_value = dst_reg->var_off.value |
2134 dst_reg->var_off.mask;
2135 if (dst_reg->smin_value < 0 || smin_val < 0) {
2136 /* Lose signed bounds when ORing negative numbers,
2137 * ain't nobody got time for that.
2138 */
2139 dst_reg->smin_value = S64_MIN;
2140 dst_reg->smax_value = S64_MAX;
f1174f77 2141 } else {
b03c9f9f
EC
2142 /* ORing two positives gives a positive, so safe to
2143 * cast result into s64.
2144 */
2145 dst_reg->smin_value = dst_reg->umin_value;
2146 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2147 }
b03c9f9f
EC
2148 /* We may learn something more from the var_off */
2149 __update_reg_bounds(dst_reg);
48461135
JB
2150 break;
2151 case BPF_LSH:
b03c9f9f
EC
2152 if (umax_val > 63) {
2153 /* Shifts greater than 63 are undefined. This includes
2154 * shifts by a negative number.
2155 */
61bd5218 2156 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2157 break;
2158 }
b03c9f9f
EC
2159 /* We lose all sign bit information (except what we can pick
2160 * up from var_off)
48461135 2161 */
b03c9f9f
EC
2162 dst_reg->smin_value = S64_MIN;
2163 dst_reg->smax_value = S64_MAX;
2164 /* If we might shift our top bit out, then we know nothing */
2165 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2166 dst_reg->umin_value = 0;
2167 dst_reg->umax_value = U64_MAX;
d1174416 2168 } else {
b03c9f9f
EC
2169 dst_reg->umin_value <<= umin_val;
2170 dst_reg->umax_value <<= umax_val;
d1174416 2171 }
b03c9f9f
EC
2172 if (src_known)
2173 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2174 else
2175 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2176 /* We may learn something more from the var_off */
2177 __update_reg_bounds(dst_reg);
48461135
JB
2178 break;
2179 case BPF_RSH:
b03c9f9f
EC
2180 if (umax_val > 63) {
2181 /* Shifts greater than 63 are undefined. This includes
2182 * shifts by a negative number.
2183 */
61bd5218 2184 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2185 break;
2186 }
2187 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2188 if (dst_reg->smin_value < 0) {
2189 if (umin_val) {
f1174f77 2190 /* Sign bit will be cleared */
b03c9f9f
EC
2191 dst_reg->smin_value = 0;
2192 } else {
2193 /* Lost sign bit information */
2194 dst_reg->smin_value = S64_MIN;
2195 dst_reg->smax_value = S64_MAX;
2196 }
d1174416 2197 } else {
b03c9f9f
EC
2198 dst_reg->smin_value =
2199 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2200 }
f1174f77 2201 if (src_known)
b03c9f9f
EC
2202 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2203 umin_val);
f1174f77 2204 else
b03c9f9f
EC
2205 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2206 dst_reg->umin_value >>= umax_val;
2207 dst_reg->umax_value >>= umin_val;
2208 /* We may learn something more from the var_off */
2209 __update_reg_bounds(dst_reg);
48461135
JB
2210 break;
2211 default:
61bd5218 2212 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2213 break;
2214 }
2215
b03c9f9f
EC
2216 __reg_deduce_bounds(dst_reg);
2217 __reg_bound_offset(dst_reg);
f1174f77
EC
2218 return 0;
2219}
2220
2221/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2222 * and var_off.
2223 */
2224static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2225 struct bpf_insn *insn)
2226{
638f5b90 2227 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2228 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2229 u8 opcode = BPF_OP(insn->code);
2230 int rc;
2231
2232 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2233 src_reg = NULL;
2234 if (dst_reg->type != SCALAR_VALUE)
2235 ptr_reg = dst_reg;
2236 if (BPF_SRC(insn->code) == BPF_X) {
2237 src_reg = &regs[insn->src_reg];
f1174f77
EC
2238 if (src_reg->type != SCALAR_VALUE) {
2239 if (dst_reg->type != SCALAR_VALUE) {
2240 /* Combining two pointers by any ALU op yields
2241 * an arbitrary scalar.
2242 */
2243 if (!env->allow_ptr_leaks) {
61bd5218 2244 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2245 insn->dst_reg,
2246 bpf_alu_string[opcode >> 4]);
2247 return -EACCES;
2248 }
61bd5218 2249 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2250 return 0;
2251 } else {
2252 /* scalar += pointer
2253 * This is legal, but we have to reverse our
2254 * src/dest handling in computing the range
2255 */
2256 rc = adjust_ptr_min_max_vals(env, insn,
2257 src_reg, dst_reg);
2258 if (rc == -EACCES && env->allow_ptr_leaks) {
2259 /* scalar += unknown scalar */
2260 __mark_reg_unknown(&off_reg);
2261 return adjust_scalar_min_max_vals(
2262 env, insn,
2263 dst_reg, off_reg);
2264 }
2265 return rc;
2266 }
2267 } else if (ptr_reg) {
2268 /* pointer += scalar */
2269 rc = adjust_ptr_min_max_vals(env, insn,
2270 dst_reg, src_reg);
2271 if (rc == -EACCES && env->allow_ptr_leaks) {
2272 /* unknown scalar += scalar */
2273 __mark_reg_unknown(dst_reg);
2274 return adjust_scalar_min_max_vals(
2275 env, insn, dst_reg, *src_reg);
2276 }
2277 return rc;
2278 }
2279 } else {
2280 /* Pretend the src is a reg with a known value, since we only
2281 * need to be able to read from this state.
2282 */
2283 off_reg.type = SCALAR_VALUE;
b03c9f9f 2284 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2285 src_reg = &off_reg;
f1174f77
EC
2286 if (ptr_reg) { /* pointer += K */
2287 rc = adjust_ptr_min_max_vals(env, insn,
2288 ptr_reg, src_reg);
2289 if (rc == -EACCES && env->allow_ptr_leaks) {
2290 /* unknown scalar += K */
2291 __mark_reg_unknown(dst_reg);
2292 return adjust_scalar_min_max_vals(
2293 env, insn, dst_reg, off_reg);
2294 }
2295 return rc;
2296 }
2297 }
2298
2299 /* Got here implies adding two SCALAR_VALUEs */
2300 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2301 print_verifier_state(env, env->cur_state);
61bd5218 2302 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2303 return -EINVAL;
2304 }
2305 if (WARN_ON(!src_reg)) {
638f5b90 2306 print_verifier_state(env, env->cur_state);
61bd5218 2307 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2308 return -EINVAL;
2309 }
2310 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2311}
2312
17a52670 2313/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2314static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2315{
638f5b90 2316 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2317 u8 opcode = BPF_OP(insn->code);
2318 int err;
2319
2320 if (opcode == BPF_END || opcode == BPF_NEG) {
2321 if (opcode == BPF_NEG) {
2322 if (BPF_SRC(insn->code) != 0 ||
2323 insn->src_reg != BPF_REG_0 ||
2324 insn->off != 0 || insn->imm != 0) {
61bd5218 2325 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2326 return -EINVAL;
2327 }
2328 } else {
2329 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2330 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2331 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2332 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2333 return -EINVAL;
2334 }
2335 }
2336
2337 /* check src operand */
dc503a8a 2338 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2339 if (err)
2340 return err;
2341
1be7f75d 2342 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2343 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2344 insn->dst_reg);
2345 return -EACCES;
2346 }
2347
17a52670 2348 /* check dest operand */
dc503a8a 2349 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2350 if (err)
2351 return err;
2352
2353 } else if (opcode == BPF_MOV) {
2354
2355 if (BPF_SRC(insn->code) == BPF_X) {
2356 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2357 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2358 return -EINVAL;
2359 }
2360
2361 /* check src operand */
dc503a8a 2362 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2363 if (err)
2364 return err;
2365 } else {
2366 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2367 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2368 return -EINVAL;
2369 }
2370 }
2371
2372 /* check dest operand */
dc503a8a 2373 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2374 if (err)
2375 return err;
2376
2377 if (BPF_SRC(insn->code) == BPF_X) {
2378 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2379 /* case: R1 = R2
2380 * copy register state to dest reg
2381 */
2382 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2383 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2384 } else {
f1174f77 2385 /* R1 = (u32) R2 */
1be7f75d 2386 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2387 verbose(env,
2388 "R%d partial copy of pointer\n",
1be7f75d
AS
2389 insn->src_reg);
2390 return -EACCES;
2391 }
61bd5218 2392 mark_reg_unknown(env, regs, insn->dst_reg);
b03c9f9f 2393 /* high 32 bits are known zero. */
f1174f77
EC
2394 regs[insn->dst_reg].var_off = tnum_cast(
2395 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2396 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2397 }
2398 } else {
2399 /* case: R = imm
2400 * remember the value we stored into this reg
2401 */
f1174f77 2402 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2403 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2404 }
2405
2406 } else if (opcode > BPF_END) {
61bd5218 2407 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2408 return -EINVAL;
2409
2410 } else { /* all other ALU ops: and, sub, xor, add, ... */
2411
17a52670
AS
2412 if (BPF_SRC(insn->code) == BPF_X) {
2413 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2414 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2415 return -EINVAL;
2416 }
2417 /* check src1 operand */
dc503a8a 2418 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2419 if (err)
2420 return err;
2421 } else {
2422 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2423 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2424 return -EINVAL;
2425 }
2426 }
2427
2428 /* check src2 operand */
dc503a8a 2429 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2430 if (err)
2431 return err;
2432
2433 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2434 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2435 verbose(env, "div by zero\n");
17a52670
AS
2436 return -EINVAL;
2437 }
2438
229394e8
RV
2439 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2440 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2441 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2442
2443 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2444 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2445 return -EINVAL;
2446 }
2447 }
2448
1a0dc1ac 2449 /* check dest operand */
dc503a8a 2450 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2451 if (err)
2452 return err;
2453
f1174f77 2454 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2455 }
2456
2457 return 0;
2458}
2459
58e2af8b 2460static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2461 struct bpf_reg_state *dst_reg,
f8ddadc4 2462 enum bpf_reg_type type,
fb2a311a 2463 bool range_right_open)
969bf05e 2464{
58e2af8b 2465 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2466 u16 new_range;
969bf05e 2467 int i;
2d2be8ca 2468
fb2a311a
DB
2469 if (dst_reg->off < 0 ||
2470 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2471 /* This doesn't give us any range */
2472 return;
2473
b03c9f9f
EC
2474 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2475 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2476 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2477 * than pkt_end, but that's because it's also less than pkt.
2478 */
2479 return;
2480
fb2a311a
DB
2481 new_range = dst_reg->off;
2482 if (range_right_open)
2483 new_range--;
2484
2485 /* Examples for register markings:
2d2be8ca 2486 *
fb2a311a 2487 * pkt_data in dst register:
2d2be8ca
DB
2488 *
2489 * r2 = r3;
2490 * r2 += 8;
2491 * if (r2 > pkt_end) goto <handle exception>
2492 * <access okay>
2493 *
b4e432f1
DB
2494 * r2 = r3;
2495 * r2 += 8;
2496 * if (r2 < pkt_end) goto <access okay>
2497 * <handle exception>
2498 *
2d2be8ca
DB
2499 * Where:
2500 * r2 == dst_reg, pkt_end == src_reg
2501 * r2=pkt(id=n,off=8,r=0)
2502 * r3=pkt(id=n,off=0,r=0)
2503 *
fb2a311a 2504 * pkt_data in src register:
2d2be8ca
DB
2505 *
2506 * r2 = r3;
2507 * r2 += 8;
2508 * if (pkt_end >= r2) goto <access okay>
2509 * <handle exception>
2510 *
b4e432f1
DB
2511 * r2 = r3;
2512 * r2 += 8;
2513 * if (pkt_end <= r2) goto <handle exception>
2514 * <access okay>
2515 *
2d2be8ca
DB
2516 * Where:
2517 * pkt_end == dst_reg, r2 == src_reg
2518 * r2=pkt(id=n,off=8,r=0)
2519 * r3=pkt(id=n,off=0,r=0)
2520 *
2521 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2522 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2523 * and [r3, r3 + 8-1) respectively is safe to access depending on
2524 * the check.
969bf05e 2525 */
2d2be8ca 2526
f1174f77
EC
2527 /* If our ids match, then we must have the same max_value. And we
2528 * don't care about the other reg's fixed offset, since if it's too big
2529 * the range won't allow anything.
2530 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2531 */
969bf05e 2532 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2533 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2534 /* keep the maximum range already checked */
fb2a311a 2535 regs[i].range = max(regs[i].range, new_range);
969bf05e 2536
638f5b90
AS
2537 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2538 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2539 continue;
638f5b90 2540 reg = &state->stack[i].spilled_ptr;
de8f3a83 2541 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2542 reg->range = max(reg->range, new_range);
969bf05e
AS
2543 }
2544}
2545
48461135
JB
2546/* Adjusts the register min/max values in the case that the dst_reg is the
2547 * variable register that we are working on, and src_reg is a constant or we're
2548 * simply doing a BPF_K check.
f1174f77 2549 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2550 */
2551static void reg_set_min_max(struct bpf_reg_state *true_reg,
2552 struct bpf_reg_state *false_reg, u64 val,
2553 u8 opcode)
2554{
f1174f77
EC
2555 /* If the dst_reg is a pointer, we can't learn anything about its
2556 * variable offset from the compare (unless src_reg were a pointer into
2557 * the same object, but we don't bother with that.
2558 * Since false_reg and true_reg have the same type by construction, we
2559 * only need to check one of them for pointerness.
2560 */
2561 if (__is_pointer_value(false, false_reg))
2562 return;
4cabc5b1 2563
48461135
JB
2564 switch (opcode) {
2565 case BPF_JEQ:
2566 /* If this is false then we know nothing Jon Snow, but if it is
2567 * true then we know for sure.
2568 */
b03c9f9f 2569 __mark_reg_known(true_reg, val);
48461135
JB
2570 break;
2571 case BPF_JNE:
2572 /* If this is true we know nothing Jon Snow, but if it is false
2573 * we know the value for sure;
2574 */
b03c9f9f 2575 __mark_reg_known(false_reg, val);
48461135
JB
2576 break;
2577 case BPF_JGT:
b03c9f9f
EC
2578 false_reg->umax_value = min(false_reg->umax_value, val);
2579 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2580 break;
48461135 2581 case BPF_JSGT:
b03c9f9f
EC
2582 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2583 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2584 break;
b4e432f1
DB
2585 case BPF_JLT:
2586 false_reg->umin_value = max(false_reg->umin_value, val);
2587 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2588 break;
2589 case BPF_JSLT:
2590 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2591 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2592 break;
48461135 2593 case BPF_JGE:
b03c9f9f
EC
2594 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2595 true_reg->umin_value = max(true_reg->umin_value, val);
2596 break;
48461135 2597 case BPF_JSGE:
b03c9f9f
EC
2598 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2599 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2600 break;
b4e432f1
DB
2601 case BPF_JLE:
2602 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2603 true_reg->umax_value = min(true_reg->umax_value, val);
2604 break;
2605 case BPF_JSLE:
2606 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2607 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2608 break;
48461135
JB
2609 default:
2610 break;
2611 }
2612
b03c9f9f
EC
2613 __reg_deduce_bounds(false_reg);
2614 __reg_deduce_bounds(true_reg);
2615 /* We might have learned some bits from the bounds. */
2616 __reg_bound_offset(false_reg);
2617 __reg_bound_offset(true_reg);
2618 /* Intersecting with the old var_off might have improved our bounds
2619 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2620 * then new var_off is (0; 0x7f...fc) which improves our umax.
2621 */
2622 __update_reg_bounds(false_reg);
2623 __update_reg_bounds(true_reg);
48461135
JB
2624}
2625
f1174f77
EC
2626/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2627 * the variable reg.
48461135
JB
2628 */
2629static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2630 struct bpf_reg_state *false_reg, u64 val,
2631 u8 opcode)
2632{
f1174f77
EC
2633 if (__is_pointer_value(false, false_reg))
2634 return;
4cabc5b1 2635
48461135
JB
2636 switch (opcode) {
2637 case BPF_JEQ:
2638 /* If this is false then we know nothing Jon Snow, but if it is
2639 * true then we know for sure.
2640 */
b03c9f9f 2641 __mark_reg_known(true_reg, val);
48461135
JB
2642 break;
2643 case BPF_JNE:
2644 /* If this is true we know nothing Jon Snow, but if it is false
2645 * we know the value for sure;
2646 */
b03c9f9f 2647 __mark_reg_known(false_reg, val);
48461135
JB
2648 break;
2649 case BPF_JGT:
b03c9f9f
EC
2650 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2651 false_reg->umin_value = max(false_reg->umin_value, val);
2652 break;
48461135 2653 case BPF_JSGT:
b03c9f9f
EC
2654 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2655 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2656 break;
b4e432f1
DB
2657 case BPF_JLT:
2658 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2659 false_reg->umax_value = min(false_reg->umax_value, val);
2660 break;
2661 case BPF_JSLT:
2662 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2663 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2664 break;
48461135 2665 case BPF_JGE:
b03c9f9f
EC
2666 true_reg->umax_value = min(true_reg->umax_value, val);
2667 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2668 break;
48461135 2669 case BPF_JSGE:
b03c9f9f
EC
2670 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2671 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2672 break;
b4e432f1
DB
2673 case BPF_JLE:
2674 true_reg->umin_value = max(true_reg->umin_value, val);
2675 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2676 break;
2677 case BPF_JSLE:
2678 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2679 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2680 break;
48461135
JB
2681 default:
2682 break;
2683 }
2684
b03c9f9f
EC
2685 __reg_deduce_bounds(false_reg);
2686 __reg_deduce_bounds(true_reg);
2687 /* We might have learned some bits from the bounds. */
2688 __reg_bound_offset(false_reg);
2689 __reg_bound_offset(true_reg);
2690 /* Intersecting with the old var_off might have improved our bounds
2691 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2692 * then new var_off is (0; 0x7f...fc) which improves our umax.
2693 */
2694 __update_reg_bounds(false_reg);
2695 __update_reg_bounds(true_reg);
f1174f77
EC
2696}
2697
2698/* Regs are known to be equal, so intersect their min/max/var_off */
2699static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2700 struct bpf_reg_state *dst_reg)
2701{
b03c9f9f
EC
2702 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2703 dst_reg->umin_value);
2704 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2705 dst_reg->umax_value);
2706 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2707 dst_reg->smin_value);
2708 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2709 dst_reg->smax_value);
f1174f77
EC
2710 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2711 dst_reg->var_off);
b03c9f9f
EC
2712 /* We might have learned new bounds from the var_off. */
2713 __update_reg_bounds(src_reg);
2714 __update_reg_bounds(dst_reg);
2715 /* We might have learned something about the sign bit. */
2716 __reg_deduce_bounds(src_reg);
2717 __reg_deduce_bounds(dst_reg);
2718 /* We might have learned some bits from the bounds. */
2719 __reg_bound_offset(src_reg);
2720 __reg_bound_offset(dst_reg);
2721 /* Intersecting with the old var_off might have improved our bounds
2722 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2723 * then new var_off is (0; 0x7f...fc) which improves our umax.
2724 */
2725 __update_reg_bounds(src_reg);
2726 __update_reg_bounds(dst_reg);
f1174f77
EC
2727}
2728
2729static void reg_combine_min_max(struct bpf_reg_state *true_src,
2730 struct bpf_reg_state *true_dst,
2731 struct bpf_reg_state *false_src,
2732 struct bpf_reg_state *false_dst,
2733 u8 opcode)
2734{
2735 switch (opcode) {
2736 case BPF_JEQ:
2737 __reg_combine_min_max(true_src, true_dst);
2738 break;
2739 case BPF_JNE:
2740 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2741 break;
4cabc5b1 2742 }
48461135
JB
2743}
2744
57a09bf0 2745static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2746 bool is_null)
57a09bf0
TG
2747{
2748 struct bpf_reg_state *reg = &regs[regno];
2749
2750 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2751 /* Old offset (both fixed and variable parts) should
2752 * have been known-zero, because we don't allow pointer
2753 * arithmetic on pointers that might be NULL.
2754 */
b03c9f9f
EC
2755 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2756 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2757 reg->off)) {
b03c9f9f
EC
2758 __mark_reg_known_zero(reg);
2759 reg->off = 0;
f1174f77
EC
2760 }
2761 if (is_null) {
2762 reg->type = SCALAR_VALUE;
56f668df
MKL
2763 } else if (reg->map_ptr->inner_map_meta) {
2764 reg->type = CONST_PTR_TO_MAP;
2765 reg->map_ptr = reg->map_ptr->inner_map_meta;
2766 } else {
f1174f77 2767 reg->type = PTR_TO_MAP_VALUE;
56f668df 2768 }
a08dd0da
DB
2769 /* We don't need id from this point onwards anymore, thus we
2770 * should better reset it, so that state pruning has chances
2771 * to take effect.
2772 */
2773 reg->id = 0;
57a09bf0
TG
2774 }
2775}
2776
2777/* The logic is similar to find_good_pkt_pointers(), both could eventually
2778 * be folded together at some point.
2779 */
2780static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2781 bool is_null)
57a09bf0
TG
2782{
2783 struct bpf_reg_state *regs = state->regs;
a08dd0da 2784 u32 id = regs[regno].id;
57a09bf0
TG
2785 int i;
2786
2787 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2788 mark_map_reg(regs, i, id, is_null);
57a09bf0 2789
638f5b90
AS
2790 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2791 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2792 continue;
638f5b90 2793 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2794 }
2795}
2796
5beca081
DB
2797static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2798 struct bpf_reg_state *dst_reg,
2799 struct bpf_reg_state *src_reg,
2800 struct bpf_verifier_state *this_branch,
2801 struct bpf_verifier_state *other_branch)
2802{
2803 if (BPF_SRC(insn->code) != BPF_X)
2804 return false;
2805
2806 switch (BPF_OP(insn->code)) {
2807 case BPF_JGT:
2808 if ((dst_reg->type == PTR_TO_PACKET &&
2809 src_reg->type == PTR_TO_PACKET_END) ||
2810 (dst_reg->type == PTR_TO_PACKET_META &&
2811 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2812 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2813 find_good_pkt_pointers(this_branch, dst_reg,
2814 dst_reg->type, false);
2815 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2816 src_reg->type == PTR_TO_PACKET) ||
2817 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2818 src_reg->type == PTR_TO_PACKET_META)) {
2819 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2820 find_good_pkt_pointers(other_branch, src_reg,
2821 src_reg->type, true);
2822 } else {
2823 return false;
2824 }
2825 break;
2826 case BPF_JLT:
2827 if ((dst_reg->type == PTR_TO_PACKET &&
2828 src_reg->type == PTR_TO_PACKET_END) ||
2829 (dst_reg->type == PTR_TO_PACKET_META &&
2830 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2831 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2832 find_good_pkt_pointers(other_branch, dst_reg,
2833 dst_reg->type, true);
2834 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2835 src_reg->type == PTR_TO_PACKET) ||
2836 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2837 src_reg->type == PTR_TO_PACKET_META)) {
2838 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2839 find_good_pkt_pointers(this_branch, src_reg,
2840 src_reg->type, false);
2841 } else {
2842 return false;
2843 }
2844 break;
2845 case BPF_JGE:
2846 if ((dst_reg->type == PTR_TO_PACKET &&
2847 src_reg->type == PTR_TO_PACKET_END) ||
2848 (dst_reg->type == PTR_TO_PACKET_META &&
2849 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2850 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2851 find_good_pkt_pointers(this_branch, dst_reg,
2852 dst_reg->type, true);
2853 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2854 src_reg->type == PTR_TO_PACKET) ||
2855 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2856 src_reg->type == PTR_TO_PACKET_META)) {
2857 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2858 find_good_pkt_pointers(other_branch, src_reg,
2859 src_reg->type, false);
2860 } else {
2861 return false;
2862 }
2863 break;
2864 case BPF_JLE:
2865 if ((dst_reg->type == PTR_TO_PACKET &&
2866 src_reg->type == PTR_TO_PACKET_END) ||
2867 (dst_reg->type == PTR_TO_PACKET_META &&
2868 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2869 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2870 find_good_pkt_pointers(other_branch, dst_reg,
2871 dst_reg->type, false);
2872 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2873 src_reg->type == PTR_TO_PACKET) ||
2874 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2875 src_reg->type == PTR_TO_PACKET_META)) {
2876 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2877 find_good_pkt_pointers(this_branch, src_reg,
2878 src_reg->type, true);
2879 } else {
2880 return false;
2881 }
2882 break;
2883 default:
2884 return false;
2885 }
2886
2887 return true;
2888}
2889
58e2af8b 2890static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2891 struct bpf_insn *insn, int *insn_idx)
2892{
638f5b90 2893 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2894 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2895 u8 opcode = BPF_OP(insn->code);
2896 int err;
2897
b4e432f1 2898 if (opcode > BPF_JSLE) {
61bd5218 2899 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2900 return -EINVAL;
2901 }
2902
2903 if (BPF_SRC(insn->code) == BPF_X) {
2904 if (insn->imm != 0) {
61bd5218 2905 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2906 return -EINVAL;
2907 }
2908
2909 /* check src1 operand */
dc503a8a 2910 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2911 if (err)
2912 return err;
1be7f75d
AS
2913
2914 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2915 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2916 insn->src_reg);
2917 return -EACCES;
2918 }
17a52670
AS
2919 } else {
2920 if (insn->src_reg != BPF_REG_0) {
61bd5218 2921 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2922 return -EINVAL;
2923 }
2924 }
2925
2926 /* check src2 operand */
dc503a8a 2927 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2928 if (err)
2929 return err;
2930
1a0dc1ac
AS
2931 dst_reg = &regs[insn->dst_reg];
2932
17a52670
AS
2933 /* detect if R == 0 where R was initialized to zero earlier */
2934 if (BPF_SRC(insn->code) == BPF_K &&
2935 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2936 dst_reg->type == SCALAR_VALUE &&
2937 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2938 if (opcode == BPF_JEQ) {
2939 /* if (imm == imm) goto pc+off;
2940 * only follow the goto, ignore fall-through
2941 */
2942 *insn_idx += insn->off;
2943 return 0;
2944 } else {
2945 /* if (imm != imm) goto pc+off;
2946 * only follow fall-through branch, since
2947 * that's where the program will go
2948 */
2949 return 0;
2950 }
2951 }
2952
2953 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2954 if (!other_branch)
2955 return -EFAULT;
2956
48461135
JB
2957 /* detect if we are comparing against a constant value so we can adjust
2958 * our min/max values for our dst register.
f1174f77
EC
2959 * this is only legit if both are scalars (or pointers to the same
2960 * object, I suppose, but we don't support that right now), because
2961 * otherwise the different base pointers mean the offsets aren't
2962 * comparable.
48461135
JB
2963 */
2964 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2965 if (dst_reg->type == SCALAR_VALUE &&
2966 regs[insn->src_reg].type == SCALAR_VALUE) {
2967 if (tnum_is_const(regs[insn->src_reg].var_off))
2968 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2969 dst_reg, regs[insn->src_reg].var_off.value,
2970 opcode);
2971 else if (tnum_is_const(dst_reg->var_off))
2972 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2973 &regs[insn->src_reg],
2974 dst_reg->var_off.value, opcode);
2975 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2976 /* Comparing for equality, we can combine knowledge */
2977 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2978 &other_branch->regs[insn->dst_reg],
2979 &regs[insn->src_reg],
2980 &regs[insn->dst_reg], opcode);
2981 }
2982 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2983 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2984 dst_reg, insn->imm, opcode);
2985 }
2986
58e2af8b 2987 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2988 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2989 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2990 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2991 /* Mark all identical map registers in each branch as either
2992 * safe or unknown depending R == 0 or R != 0 conditional.
2993 */
f1174f77
EC
2994 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2995 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
2996 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2997 this_branch, other_branch) &&
2998 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
2999 verbose(env, "R%d pointer comparison prohibited\n",
3000 insn->dst_reg);
1be7f75d 3001 return -EACCES;
17a52670 3002 }
61bd5218
JK
3003 if (env->log.level)
3004 print_verifier_state(env, this_branch);
17a52670
AS
3005 return 0;
3006}
3007
0246e64d
AS
3008/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3009static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3010{
3011 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3012
3013 return (struct bpf_map *) (unsigned long) imm64;
3014}
3015
17a52670 3016/* verify BPF_LD_IMM64 instruction */
58e2af8b 3017static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3018{
638f5b90 3019 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3020 int err;
3021
3022 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3023 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3024 return -EINVAL;
3025 }
3026 if (insn->off != 0) {
61bd5218 3027 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3028 return -EINVAL;
3029 }
3030
dc503a8a 3031 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3032 if (err)
3033 return err;
3034
6b173873 3035 if (insn->src_reg == 0) {
6b173873
JK
3036 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3037
f1174f77 3038 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3039 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3040 return 0;
6b173873 3041 }
17a52670
AS
3042
3043 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3044 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3045
3046 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3047 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3048 return 0;
3049}
3050
96be4325
DB
3051static bool may_access_skb(enum bpf_prog_type type)
3052{
3053 switch (type) {
3054 case BPF_PROG_TYPE_SOCKET_FILTER:
3055 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3056 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3057 return true;
3058 default:
3059 return false;
3060 }
3061}
3062
ddd872bc
AS
3063/* verify safety of LD_ABS|LD_IND instructions:
3064 * - they can only appear in the programs where ctx == skb
3065 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3066 * preserve R6-R9, and store return value into R0
3067 *
3068 * Implicit input:
3069 * ctx == skb == R6 == CTX
3070 *
3071 * Explicit input:
3072 * SRC == any register
3073 * IMM == 32-bit immediate
3074 *
3075 * Output:
3076 * R0 - 8/16/32-bit skb data converted to cpu endianness
3077 */
58e2af8b 3078static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3079{
638f5b90 3080 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3081 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3082 int i, err;
3083
24701ece 3084 if (!may_access_skb(env->prog->type)) {
61bd5218 3085 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3086 return -EINVAL;
3087 }
3088
3089 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3090 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3091 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3092 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3093 return -EINVAL;
3094 }
3095
3096 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3097 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3098 if (err)
3099 return err;
3100
3101 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3102 verbose(env,
3103 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3104 return -EINVAL;
3105 }
3106
3107 if (mode == BPF_IND) {
3108 /* check explicit source operand */
dc503a8a 3109 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3110 if (err)
3111 return err;
3112 }
3113
3114 /* reset caller saved regs to unreadable */
dc503a8a 3115 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3116 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3117 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3118 }
ddd872bc
AS
3119
3120 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3121 * the value fetched from the packet.
3122 * Already marked as written above.
ddd872bc 3123 */
61bd5218 3124 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3125 return 0;
3126}
3127
390ee7e2
AS
3128static int check_return_code(struct bpf_verifier_env *env)
3129{
3130 struct bpf_reg_state *reg;
3131 struct tnum range = tnum_range(0, 1);
3132
3133 switch (env->prog->type) {
3134 case BPF_PROG_TYPE_CGROUP_SKB:
3135 case BPF_PROG_TYPE_CGROUP_SOCK:
3136 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3137 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3138 break;
3139 default:
3140 return 0;
3141 }
3142
638f5b90 3143 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3144 if (reg->type != SCALAR_VALUE) {
61bd5218 3145 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3146 reg_type_str[reg->type]);
3147 return -EINVAL;
3148 }
3149
3150 if (!tnum_in(range, reg->var_off)) {
61bd5218 3151 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3152 if (!tnum_is_unknown(reg->var_off)) {
3153 char tn_buf[48];
3154
3155 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3156 verbose(env, "has value %s", tn_buf);
390ee7e2 3157 } else {
61bd5218 3158 verbose(env, "has unknown scalar value");
390ee7e2 3159 }
61bd5218 3160 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3161 return -EINVAL;
3162 }
3163 return 0;
3164}
3165
475fb78f
AS
3166/* non-recursive DFS pseudo code
3167 * 1 procedure DFS-iterative(G,v):
3168 * 2 label v as discovered
3169 * 3 let S be a stack
3170 * 4 S.push(v)
3171 * 5 while S is not empty
3172 * 6 t <- S.pop()
3173 * 7 if t is what we're looking for:
3174 * 8 return t
3175 * 9 for all edges e in G.adjacentEdges(t) do
3176 * 10 if edge e is already labelled
3177 * 11 continue with the next edge
3178 * 12 w <- G.adjacentVertex(t,e)
3179 * 13 if vertex w is not discovered and not explored
3180 * 14 label e as tree-edge
3181 * 15 label w as discovered
3182 * 16 S.push(w)
3183 * 17 continue at 5
3184 * 18 else if vertex w is discovered
3185 * 19 label e as back-edge
3186 * 20 else
3187 * 21 // vertex w is explored
3188 * 22 label e as forward- or cross-edge
3189 * 23 label t as explored
3190 * 24 S.pop()
3191 *
3192 * convention:
3193 * 0x10 - discovered
3194 * 0x11 - discovered and fall-through edge labelled
3195 * 0x12 - discovered and fall-through and branch edges labelled
3196 * 0x20 - explored
3197 */
3198
3199enum {
3200 DISCOVERED = 0x10,
3201 EXPLORED = 0x20,
3202 FALLTHROUGH = 1,
3203 BRANCH = 2,
3204};
3205
58e2af8b 3206#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3207
475fb78f
AS
3208static int *insn_stack; /* stack of insns to process */
3209static int cur_stack; /* current stack index */
3210static int *insn_state;
3211
3212/* t, w, e - match pseudo-code above:
3213 * t - index of current instruction
3214 * w - next instruction
3215 * e - edge
3216 */
58e2af8b 3217static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3218{
3219 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3220 return 0;
3221
3222 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3223 return 0;
3224
3225 if (w < 0 || w >= env->prog->len) {
61bd5218 3226 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3227 return -EINVAL;
3228 }
3229
f1bca824
AS
3230 if (e == BRANCH)
3231 /* mark branch target for state pruning */
3232 env->explored_states[w] = STATE_LIST_MARK;
3233
475fb78f
AS
3234 if (insn_state[w] == 0) {
3235 /* tree-edge */
3236 insn_state[t] = DISCOVERED | e;
3237 insn_state[w] = DISCOVERED;
3238 if (cur_stack >= env->prog->len)
3239 return -E2BIG;
3240 insn_stack[cur_stack++] = w;
3241 return 1;
3242 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3243 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3244 return -EINVAL;
3245 } else if (insn_state[w] == EXPLORED) {
3246 /* forward- or cross-edge */
3247 insn_state[t] = DISCOVERED | e;
3248 } else {
61bd5218 3249 verbose(env, "insn state internal bug\n");
475fb78f
AS
3250 return -EFAULT;
3251 }
3252 return 0;
3253}
3254
3255/* non-recursive depth-first-search to detect loops in BPF program
3256 * loop == back-edge in directed graph
3257 */
58e2af8b 3258static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3259{
3260 struct bpf_insn *insns = env->prog->insnsi;
3261 int insn_cnt = env->prog->len;
3262 int ret = 0;
3263 int i, t;
3264
3265 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3266 if (!insn_state)
3267 return -ENOMEM;
3268
3269 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3270 if (!insn_stack) {
3271 kfree(insn_state);
3272 return -ENOMEM;
3273 }
3274
3275 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3276 insn_stack[0] = 0; /* 0 is the first instruction */
3277 cur_stack = 1;
3278
3279peek_stack:
3280 if (cur_stack == 0)
3281 goto check_state;
3282 t = insn_stack[cur_stack - 1];
3283
3284 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3285 u8 opcode = BPF_OP(insns[t].code);
3286
3287 if (opcode == BPF_EXIT) {
3288 goto mark_explored;
3289 } else if (opcode == BPF_CALL) {
3290 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3291 if (ret == 1)
3292 goto peek_stack;
3293 else if (ret < 0)
3294 goto err_free;
07016151
DB
3295 if (t + 1 < insn_cnt)
3296 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3297 } else if (opcode == BPF_JA) {
3298 if (BPF_SRC(insns[t].code) != BPF_K) {
3299 ret = -EINVAL;
3300 goto err_free;
3301 }
3302 /* unconditional jump with single edge */
3303 ret = push_insn(t, t + insns[t].off + 1,
3304 FALLTHROUGH, env);
3305 if (ret == 1)
3306 goto peek_stack;
3307 else if (ret < 0)
3308 goto err_free;
f1bca824
AS
3309 /* tell verifier to check for equivalent states
3310 * after every call and jump
3311 */
c3de6317
AS
3312 if (t + 1 < insn_cnt)
3313 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3314 } else {
3315 /* conditional jump with two edges */
3c2ce60b 3316 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3317 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3318 if (ret == 1)
3319 goto peek_stack;
3320 else if (ret < 0)
3321 goto err_free;
3322
3323 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3324 if (ret == 1)
3325 goto peek_stack;
3326 else if (ret < 0)
3327 goto err_free;
3328 }
3329 } else {
3330 /* all other non-branch instructions with single
3331 * fall-through edge
3332 */
3333 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3334 if (ret == 1)
3335 goto peek_stack;
3336 else if (ret < 0)
3337 goto err_free;
3338 }
3339
3340mark_explored:
3341 insn_state[t] = EXPLORED;
3342 if (cur_stack-- <= 0) {
61bd5218 3343 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3344 ret = -EFAULT;
3345 goto err_free;
3346 }
3347 goto peek_stack;
3348
3349check_state:
3350 for (i = 0; i < insn_cnt; i++) {
3351 if (insn_state[i] != EXPLORED) {
61bd5218 3352 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3353 ret = -EINVAL;
3354 goto err_free;
3355 }
3356 }
3357 ret = 0; /* cfg looks good */
3358
3359err_free:
3360 kfree(insn_state);
3361 kfree(insn_stack);
3362 return ret;
3363}
3364
f1174f77
EC
3365/* check %cur's range satisfies %old's */
3366static bool range_within(struct bpf_reg_state *old,
3367 struct bpf_reg_state *cur)
3368{
b03c9f9f
EC
3369 return old->umin_value <= cur->umin_value &&
3370 old->umax_value >= cur->umax_value &&
3371 old->smin_value <= cur->smin_value &&
3372 old->smax_value >= cur->smax_value;
f1174f77
EC
3373}
3374
3375/* Maximum number of register states that can exist at once */
3376#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3377struct idpair {
3378 u32 old;
3379 u32 cur;
3380};
3381
3382/* If in the old state two registers had the same id, then they need to have
3383 * the same id in the new state as well. But that id could be different from
3384 * the old state, so we need to track the mapping from old to new ids.
3385 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3386 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3387 * regs with a different old id could still have new id 9, we don't care about
3388 * that.
3389 * So we look through our idmap to see if this old id has been seen before. If
3390 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3391 */
f1174f77 3392static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3393{
f1174f77 3394 unsigned int i;
969bf05e 3395
f1174f77
EC
3396 for (i = 0; i < ID_MAP_SIZE; i++) {
3397 if (!idmap[i].old) {
3398 /* Reached an empty slot; haven't seen this id before */
3399 idmap[i].old = old_id;
3400 idmap[i].cur = cur_id;
3401 return true;
3402 }
3403 if (idmap[i].old == old_id)
3404 return idmap[i].cur == cur_id;
3405 }
3406 /* We ran out of idmap slots, which should be impossible */
3407 WARN_ON_ONCE(1);
3408 return false;
3409}
3410
3411/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3412static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3413 struct idpair *idmap)
f1174f77 3414{
dc503a8a
EC
3415 if (!(rold->live & REG_LIVE_READ))
3416 /* explored state didn't use this */
3417 return true;
3418
3419 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3420 return true;
3421
f1174f77
EC
3422 if (rold->type == NOT_INIT)
3423 /* explored state can't have used this */
969bf05e 3424 return true;
f1174f77
EC
3425 if (rcur->type == NOT_INIT)
3426 return false;
3427 switch (rold->type) {
3428 case SCALAR_VALUE:
3429 if (rcur->type == SCALAR_VALUE) {
3430 /* new val must satisfy old val knowledge */
3431 return range_within(rold, rcur) &&
3432 tnum_in(rold->var_off, rcur->var_off);
3433 } else {
3434 /* if we knew anything about the old value, we're not
3435 * equal, because we can't know anything about the
3436 * scalar value of the pointer in the new value.
3437 */
b03c9f9f
EC
3438 return rold->umin_value == 0 &&
3439 rold->umax_value == U64_MAX &&
3440 rold->smin_value == S64_MIN &&
3441 rold->smax_value == S64_MAX &&
f1174f77
EC
3442 tnum_is_unknown(rold->var_off);
3443 }
3444 case PTR_TO_MAP_VALUE:
1b688a19
EC
3445 /* If the new min/max/var_off satisfy the old ones and
3446 * everything else matches, we are OK.
3447 * We don't care about the 'id' value, because nothing
3448 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3449 */
3450 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3451 range_within(rold, rcur) &&
3452 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3453 case PTR_TO_MAP_VALUE_OR_NULL:
3454 /* a PTR_TO_MAP_VALUE could be safe to use as a
3455 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3456 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3457 * checked, doing so could have affected others with the same
3458 * id, and we can't check for that because we lost the id when
3459 * we converted to a PTR_TO_MAP_VALUE.
3460 */
3461 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3462 return false;
3463 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3464 return false;
3465 /* Check our ids match any regs they're supposed to */
3466 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3467 case PTR_TO_PACKET_META:
f1174f77 3468 case PTR_TO_PACKET:
de8f3a83 3469 if (rcur->type != rold->type)
f1174f77
EC
3470 return false;
3471 /* We must have at least as much range as the old ptr
3472 * did, so that any accesses which were safe before are
3473 * still safe. This is true even if old range < old off,
3474 * since someone could have accessed through (ptr - k), or
3475 * even done ptr -= k in a register, to get a safe access.
3476 */
3477 if (rold->range > rcur->range)
3478 return false;
3479 /* If the offsets don't match, we can't trust our alignment;
3480 * nor can we be sure that we won't fall out of range.
3481 */
3482 if (rold->off != rcur->off)
3483 return false;
3484 /* id relations must be preserved */
3485 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3486 return false;
3487 /* new val must satisfy old val knowledge */
3488 return range_within(rold, rcur) &&
3489 tnum_in(rold->var_off, rcur->var_off);
3490 case PTR_TO_CTX:
3491 case CONST_PTR_TO_MAP:
3492 case PTR_TO_STACK:
3493 case PTR_TO_PACKET_END:
3494 /* Only valid matches are exact, which memcmp() above
3495 * would have accepted
3496 */
3497 default:
3498 /* Don't know what's going on, just say it's not safe */
3499 return false;
3500 }
969bf05e 3501
f1174f77
EC
3502 /* Shouldn't get here; if we do, say it's not safe */
3503 WARN_ON_ONCE(1);
969bf05e
AS
3504 return false;
3505}
3506
638f5b90
AS
3507static bool stacksafe(struct bpf_verifier_state *old,
3508 struct bpf_verifier_state *cur,
3509 struct idpair *idmap)
3510{
3511 int i, spi;
3512
3513 /* if explored stack has more populated slots than current stack
3514 * such stacks are not equivalent
3515 */
3516 if (old->allocated_stack > cur->allocated_stack)
3517 return false;
3518
3519 /* walk slots of the explored stack and ignore any additional
3520 * slots in the current stack, since explored(safe) state
3521 * didn't use them
3522 */
3523 for (i = 0; i < old->allocated_stack; i++) {
3524 spi = i / BPF_REG_SIZE;
3525
3526 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3527 continue;
3528 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3529 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3530 /* Ex: old explored (safe) state has STACK_SPILL in
3531 * this stack slot, but current has has STACK_MISC ->
3532 * this verifier states are not equivalent,
3533 * return false to continue verification of this path
3534 */
3535 return false;
3536 if (i % BPF_REG_SIZE)
3537 continue;
3538 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3539 continue;
3540 if (!regsafe(&old->stack[spi].spilled_ptr,
3541 &cur->stack[spi].spilled_ptr,
3542 idmap))
3543 /* when explored and current stack slot are both storing
3544 * spilled registers, check that stored pointers types
3545 * are the same as well.
3546 * Ex: explored safe path could have stored
3547 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3548 * but current path has stored:
3549 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3550 * such verifier states are not equivalent.
3551 * return false to continue verification of this path
3552 */
3553 return false;
3554 }
3555 return true;
3556}
3557
f1bca824
AS
3558/* compare two verifier states
3559 *
3560 * all states stored in state_list are known to be valid, since
3561 * verifier reached 'bpf_exit' instruction through them
3562 *
3563 * this function is called when verifier exploring different branches of
3564 * execution popped from the state stack. If it sees an old state that has
3565 * more strict register state and more strict stack state then this execution
3566 * branch doesn't need to be explored further, since verifier already
3567 * concluded that more strict state leads to valid finish.
3568 *
3569 * Therefore two states are equivalent if register state is more conservative
3570 * and explored stack state is more conservative than the current one.
3571 * Example:
3572 * explored current
3573 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3574 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3575 *
3576 * In other words if current stack state (one being explored) has more
3577 * valid slots than old one that already passed validation, it means
3578 * the verifier can stop exploring and conclude that current state is valid too
3579 *
3580 * Similarly with registers. If explored state has register type as invalid
3581 * whereas register type in current state is meaningful, it means that
3582 * the current state will reach 'bpf_exit' instruction safely
3583 */
48461135
JB
3584static bool states_equal(struct bpf_verifier_env *env,
3585 struct bpf_verifier_state *old,
58e2af8b 3586 struct bpf_verifier_state *cur)
f1bca824 3587{
f1174f77
EC
3588 struct idpair *idmap;
3589 bool ret = false;
f1bca824
AS
3590 int i;
3591
f1174f77
EC
3592 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3593 /* If we failed to allocate the idmap, just say it's not safe */
3594 if (!idmap)
1a0dc1ac 3595 return false;
f1174f77
EC
3596
3597 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3598 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3599 goto out_free;
f1bca824
AS
3600 }
3601
638f5b90
AS
3602 if (!stacksafe(old, cur, idmap))
3603 goto out_free;
f1174f77
EC
3604 ret = true;
3605out_free:
3606 kfree(idmap);
3607 return ret;
f1bca824
AS
3608}
3609
8e9cd9ce
EC
3610/* A write screens off any subsequent reads; but write marks come from the
3611 * straight-line code between a state and its parent. When we arrive at a
3612 * jump target (in the first iteration of the propagate_liveness() loop),
3613 * we didn't arrive by the straight-line code, so read marks in state must
3614 * propagate to parent regardless of state's write marks.
3615 */
dc503a8a
EC
3616static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3617 struct bpf_verifier_state *parent)
3618{
63f45f84 3619 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3620 bool touched = false; /* any changes made? */
3621 int i;
3622
3623 if (!parent)
3624 return touched;
3625 /* Propagate read liveness of registers... */
3626 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3627 /* We don't need to worry about FP liveness because it's read-only */
3628 for (i = 0; i < BPF_REG_FP; i++) {
3629 if (parent->regs[i].live & REG_LIVE_READ)
3630 continue;
63f45f84
EC
3631 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3632 continue;
3633 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3634 parent->regs[i].live |= REG_LIVE_READ;
3635 touched = true;
3636 }
3637 }
3638 /* ... and stack slots */
638f5b90
AS
3639 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3640 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3641 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3642 continue;
638f5b90 3643 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3644 continue;
638f5b90 3645 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3646 continue;
638f5b90
AS
3647 if (writes &&
3648 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3649 continue;
638f5b90
AS
3650 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3651 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3652 touched = true;
3653 }
3654 }
3655 return touched;
3656}
3657
8e9cd9ce
EC
3658/* "parent" is "a state from which we reach the current state", but initially
3659 * it is not the state->parent (i.e. "the state whose straight-line code leads
3660 * to the current state"), instead it is the state that happened to arrive at
3661 * a (prunable) equivalent of the current state. See comment above
3662 * do_propagate_liveness() for consequences of this.
3663 * This function is just a more efficient way of calling mark_reg_read() or
3664 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3665 * though it requires that parent != state->parent in the call arguments.
3666 */
dc503a8a
EC
3667static void propagate_liveness(const struct bpf_verifier_state *state,
3668 struct bpf_verifier_state *parent)
3669{
3670 while (do_propagate_liveness(state, parent)) {
3671 /* Something changed, so we need to feed those changes onward */
3672 state = parent;
3673 parent = state->parent;
3674 }
3675}
3676
58e2af8b 3677static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3678{
58e2af8b
JK
3679 struct bpf_verifier_state_list *new_sl;
3680 struct bpf_verifier_state_list *sl;
638f5b90 3681 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3682 int i, err;
f1bca824
AS
3683
3684 sl = env->explored_states[insn_idx];
3685 if (!sl)
3686 /* this 'insn_idx' instruction wasn't marked, so we will not
3687 * be doing state search here
3688 */
3689 return 0;
3690
3691 while (sl != STATE_LIST_MARK) {
638f5b90 3692 if (states_equal(env, &sl->state, cur)) {
f1bca824 3693 /* reached equivalent register/stack state,
dc503a8a
EC
3694 * prune the search.
3695 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3696 * If we have any write marks in env->cur_state, they
3697 * will prevent corresponding reads in the continuation
3698 * from reaching our parent (an explored_state). Our
3699 * own state will get the read marks recorded, but
3700 * they'll be immediately forgotten as we're pruning
3701 * this state and will pop a new one.
f1bca824 3702 */
638f5b90 3703 propagate_liveness(&sl->state, cur);
f1bca824 3704 return 1;
dc503a8a 3705 }
f1bca824
AS
3706 sl = sl->next;
3707 }
3708
3709 /* there were no equivalent states, remember current one.
3710 * technically the current state is not proven to be safe yet,
3711 * but it will either reach bpf_exit (which means it's safe) or
3712 * it will be rejected. Since there are no loops, we won't be
3713 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3714 */
638f5b90 3715 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3716 if (!new_sl)
3717 return -ENOMEM;
3718
3719 /* add new state to the head of linked list */
1969db47
AS
3720 err = copy_verifier_state(&new_sl->state, cur);
3721 if (err) {
3722 free_verifier_state(&new_sl->state, false);
3723 kfree(new_sl);
3724 return err;
3725 }
f1bca824
AS
3726 new_sl->next = env->explored_states[insn_idx];
3727 env->explored_states[insn_idx] = new_sl;
dc503a8a 3728 /* connect new state to parentage chain */
638f5b90 3729 cur->parent = &new_sl->state;
8e9cd9ce
EC
3730 /* clear write marks in current state: the writes we did are not writes
3731 * our child did, so they don't screen off its reads from us.
3732 * (There are no read marks in current state, because reads always mark
3733 * their parent and current state never has children yet. Only
3734 * explored_states can get read marks.)
3735 */
dc503a8a 3736 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3737 cur->regs[i].live = REG_LIVE_NONE;
3738 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3739 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3740 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3741 return 0;
3742}
3743
13a27dfc
JK
3744static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3745 int insn_idx, int prev_insn_idx)
3746{
ab3f0063
JK
3747 if (env->dev_ops && env->dev_ops->insn_hook)
3748 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3749
ab3f0063 3750 return 0;
13a27dfc
JK
3751}
3752
58e2af8b 3753static int do_check(struct bpf_verifier_env *env)
17a52670 3754{
638f5b90 3755 struct bpf_verifier_state *state;
17a52670 3756 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3757 struct bpf_reg_state *regs;
17a52670
AS
3758 int insn_cnt = env->prog->len;
3759 int insn_idx, prev_insn_idx = 0;
3760 int insn_processed = 0;
3761 bool do_print_state = false;
3762
638f5b90
AS
3763 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3764 if (!state)
3765 return -ENOMEM;
3766 env->cur_state = state;
3767 init_reg_state(env, state->regs);
dc503a8a 3768 state->parent = NULL;
17a52670
AS
3769 insn_idx = 0;
3770 for (;;) {
3771 struct bpf_insn *insn;
3772 u8 class;
3773 int err;
3774
3775 if (insn_idx >= insn_cnt) {
61bd5218 3776 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3777 insn_idx, insn_cnt);
3778 return -EFAULT;
3779 }
3780
3781 insn = &insns[insn_idx];
3782 class = BPF_CLASS(insn->code);
3783
07016151 3784 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3785 verbose(env,
3786 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3787 insn_processed);
3788 return -E2BIG;
3789 }
3790
f1bca824
AS
3791 err = is_state_visited(env, insn_idx);
3792 if (err < 0)
3793 return err;
3794 if (err == 1) {
3795 /* found equivalent state, can prune the search */
61bd5218 3796 if (env->log.level) {
f1bca824 3797 if (do_print_state)
61bd5218 3798 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3799 prev_insn_idx, insn_idx);
3800 else
61bd5218 3801 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3802 }
3803 goto process_bpf_exit;
3804 }
3805
3c2ce60b
DB
3806 if (need_resched())
3807 cond_resched();
3808
61bd5218
JK
3809 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3810 if (env->log.level > 1)
3811 verbose(env, "%d:", insn_idx);
c5fc9692 3812 else
61bd5218 3813 verbose(env, "\nfrom %d to %d:",
c5fc9692 3814 prev_insn_idx, insn_idx);
638f5b90 3815 print_verifier_state(env, state);
17a52670
AS
3816 do_print_state = false;
3817 }
3818
61bd5218
JK
3819 if (env->log.level) {
3820 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3821 print_bpf_insn(verbose, env, insn,
3822 env->allow_ptr_leaks);
17a52670
AS
3823 }
3824
13a27dfc
JK
3825 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3826 if (err)
3827 return err;
3828
638f5b90 3829 regs = cur_regs(env);
17a52670 3830 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3831 err = check_alu_op(env, insn);
17a52670
AS
3832 if (err)
3833 return err;
3834
3835 } else if (class == BPF_LDX) {
3df126f3 3836 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3837
3838 /* check for reserved fields is already done */
3839
17a52670 3840 /* check src operand */
dc503a8a 3841 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3842 if (err)
3843 return err;
3844
dc503a8a 3845 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3846 if (err)
3847 return err;
3848
725f9dcd
AS
3849 src_reg_type = regs[insn->src_reg].type;
3850
17a52670
AS
3851 /* check that memory (src_reg + off) is readable,
3852 * the state of dst_reg will be updated by this func
3853 */
31fd8581 3854 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3855 BPF_SIZE(insn->code), BPF_READ,
3856 insn->dst_reg);
3857 if (err)
3858 return err;
3859
3df126f3
JK
3860 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3861
3862 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3863 /* saw a valid insn
3864 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3865 * save type to validate intersecting paths
9bac3d6d 3866 */
3df126f3 3867 *prev_src_type = src_reg_type;
9bac3d6d 3868
3df126f3 3869 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3870 (src_reg_type == PTR_TO_CTX ||
3df126f3 3871 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3872 /* ABuser program is trying to use the same insn
3873 * dst_reg = *(u32*) (src_reg + off)
3874 * with different pointer types:
3875 * src_reg == ctx in one branch and
3876 * src_reg == stack|map in some other branch.
3877 * Reject it.
3878 */
61bd5218 3879 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3880 return -EINVAL;
3881 }
3882
17a52670 3883 } else if (class == BPF_STX) {
3df126f3 3884 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3885
17a52670 3886 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3887 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3888 if (err)
3889 return err;
3890 insn_idx++;
3891 continue;
3892 }
3893
17a52670 3894 /* check src1 operand */
dc503a8a 3895 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3896 if (err)
3897 return err;
3898 /* check src2 operand */
dc503a8a 3899 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3900 if (err)
3901 return err;
3902
d691f9e8
AS
3903 dst_reg_type = regs[insn->dst_reg].type;
3904
17a52670 3905 /* check that memory (dst_reg + off) is writeable */
31fd8581 3906 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3907 BPF_SIZE(insn->code), BPF_WRITE,
3908 insn->src_reg);
3909 if (err)
3910 return err;
3911
3df126f3
JK
3912 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3913
3914 if (*prev_dst_type == NOT_INIT) {
3915 *prev_dst_type = dst_reg_type;
3916 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3917 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3918 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3919 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3920 return -EINVAL;
3921 }
3922
17a52670
AS
3923 } else if (class == BPF_ST) {
3924 if (BPF_MODE(insn->code) != BPF_MEM ||
3925 insn->src_reg != BPF_REG_0) {
61bd5218 3926 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3927 return -EINVAL;
3928 }
3929 /* check src operand */
dc503a8a 3930 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3931 if (err)
3932 return err;
3933
3934 /* check that memory (dst_reg + off) is writeable */
31fd8581 3935 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3936 BPF_SIZE(insn->code), BPF_WRITE,
3937 -1);
3938 if (err)
3939 return err;
3940
3941 } else if (class == BPF_JMP) {
3942 u8 opcode = BPF_OP(insn->code);
3943
3944 if (opcode == BPF_CALL) {
3945 if (BPF_SRC(insn->code) != BPF_K ||
3946 insn->off != 0 ||
3947 insn->src_reg != BPF_REG_0 ||
3948 insn->dst_reg != BPF_REG_0) {
61bd5218 3949 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3950 return -EINVAL;
3951 }
3952
81ed18ab 3953 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3954 if (err)
3955 return err;
3956
3957 } else if (opcode == BPF_JA) {
3958 if (BPF_SRC(insn->code) != BPF_K ||
3959 insn->imm != 0 ||
3960 insn->src_reg != BPF_REG_0 ||
3961 insn->dst_reg != BPF_REG_0) {
61bd5218 3962 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
3963 return -EINVAL;
3964 }
3965
3966 insn_idx += insn->off + 1;
3967 continue;
3968
3969 } else if (opcode == BPF_EXIT) {
3970 if (BPF_SRC(insn->code) != BPF_K ||
3971 insn->imm != 0 ||
3972 insn->src_reg != BPF_REG_0 ||
3973 insn->dst_reg != BPF_REG_0) {
61bd5218 3974 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
3975 return -EINVAL;
3976 }
3977
3978 /* eBPF calling convetion is such that R0 is used
3979 * to return the value from eBPF program.
3980 * Make sure that it's readable at this time
3981 * of bpf_exit, which means that program wrote
3982 * something into it earlier
3983 */
dc503a8a 3984 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3985 if (err)
3986 return err;
3987
1be7f75d 3988 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 3989 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
3990 return -EACCES;
3991 }
3992
390ee7e2
AS
3993 err = check_return_code(env);
3994 if (err)
3995 return err;
f1bca824 3996process_bpf_exit:
638f5b90
AS
3997 err = pop_stack(env, &prev_insn_idx, &insn_idx);
3998 if (err < 0) {
3999 if (err != -ENOENT)
4000 return err;
17a52670
AS
4001 break;
4002 } else {
4003 do_print_state = true;
4004 continue;
4005 }
4006 } else {
4007 err = check_cond_jmp_op(env, insn, &insn_idx);
4008 if (err)
4009 return err;
4010 }
4011 } else if (class == BPF_LD) {
4012 u8 mode = BPF_MODE(insn->code);
4013
4014 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4015 err = check_ld_abs(env, insn);
4016 if (err)
4017 return err;
4018
17a52670
AS
4019 } else if (mode == BPF_IMM) {
4020 err = check_ld_imm(env, insn);
4021 if (err)
4022 return err;
4023
4024 insn_idx++;
4025 } else {
61bd5218 4026 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4027 return -EINVAL;
4028 }
4029 } else {
61bd5218 4030 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4031 return -EINVAL;
4032 }
4033
4034 insn_idx++;
4035 }
4036
61bd5218
JK
4037 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4038 env->prog->aux->stack_depth);
17a52670
AS
4039 return 0;
4040}
4041
56f668df
MKL
4042static int check_map_prealloc(struct bpf_map *map)
4043{
4044 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4045 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4046 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4047 !(map->map_flags & BPF_F_NO_PREALLOC);
4048}
4049
61bd5218
JK
4050static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4051 struct bpf_map *map,
fdc15d38
AS
4052 struct bpf_prog *prog)
4053
4054{
56f668df
MKL
4055 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4056 * preallocated hash maps, since doing memory allocation
4057 * in overflow_handler can crash depending on where nmi got
4058 * triggered.
4059 */
4060 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4061 if (!check_map_prealloc(map)) {
61bd5218 4062 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4063 return -EINVAL;
4064 }
4065 if (map->inner_map_meta &&
4066 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4067 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4068 return -EINVAL;
4069 }
fdc15d38
AS
4070 }
4071 return 0;
4072}
4073
0246e64d
AS
4074/* look for pseudo eBPF instructions that access map FDs and
4075 * replace them with actual map pointers
4076 */
58e2af8b 4077static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4078{
4079 struct bpf_insn *insn = env->prog->insnsi;
4080 int insn_cnt = env->prog->len;
fdc15d38 4081 int i, j, err;
0246e64d 4082
f1f7714e 4083 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4084 if (err)
4085 return err;
4086
0246e64d 4087 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4088 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4089 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4090 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4091 return -EINVAL;
4092 }
4093
d691f9e8
AS
4094 if (BPF_CLASS(insn->code) == BPF_STX &&
4095 ((BPF_MODE(insn->code) != BPF_MEM &&
4096 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4097 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4098 return -EINVAL;
4099 }
4100
0246e64d
AS
4101 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4102 struct bpf_map *map;
4103 struct fd f;
4104
4105 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4106 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4107 insn[1].off != 0) {
61bd5218 4108 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4109 return -EINVAL;
4110 }
4111
4112 if (insn->src_reg == 0)
4113 /* valid generic load 64-bit imm */
4114 goto next_insn;
4115
4116 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4117 verbose(env,
4118 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4119 return -EINVAL;
4120 }
4121
4122 f = fdget(insn->imm);
c2101297 4123 map = __bpf_map_get(f);
0246e64d 4124 if (IS_ERR(map)) {
61bd5218 4125 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4126 insn->imm);
0246e64d
AS
4127 return PTR_ERR(map);
4128 }
4129
61bd5218 4130 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4131 if (err) {
4132 fdput(f);
4133 return err;
4134 }
4135
0246e64d
AS
4136 /* store map pointer inside BPF_LD_IMM64 instruction */
4137 insn[0].imm = (u32) (unsigned long) map;
4138 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4139
4140 /* check whether we recorded this map already */
4141 for (j = 0; j < env->used_map_cnt; j++)
4142 if (env->used_maps[j] == map) {
4143 fdput(f);
4144 goto next_insn;
4145 }
4146
4147 if (env->used_map_cnt >= MAX_USED_MAPS) {
4148 fdput(f);
4149 return -E2BIG;
4150 }
4151
0246e64d
AS
4152 /* hold the map. If the program is rejected by verifier,
4153 * the map will be released by release_maps() or it
4154 * will be used by the valid program until it's unloaded
4155 * and all maps are released in free_bpf_prog_info()
4156 */
92117d84
AS
4157 map = bpf_map_inc(map, false);
4158 if (IS_ERR(map)) {
4159 fdput(f);
4160 return PTR_ERR(map);
4161 }
4162 env->used_maps[env->used_map_cnt++] = map;
4163
0246e64d
AS
4164 fdput(f);
4165next_insn:
4166 insn++;
4167 i++;
4168 }
4169 }
4170
4171 /* now all pseudo BPF_LD_IMM64 instructions load valid
4172 * 'struct bpf_map *' into a register instead of user map_fd.
4173 * These pointers will be used later by verifier to validate map access.
4174 */
4175 return 0;
4176}
4177
4178/* drop refcnt of maps used by the rejected program */
58e2af8b 4179static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4180{
4181 int i;
4182
4183 for (i = 0; i < env->used_map_cnt; i++)
4184 bpf_map_put(env->used_maps[i]);
4185}
4186
4187/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4188static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4189{
4190 struct bpf_insn *insn = env->prog->insnsi;
4191 int insn_cnt = env->prog->len;
4192 int i;
4193
4194 for (i = 0; i < insn_cnt; i++, insn++)
4195 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4196 insn->src_reg = 0;
4197}
4198
8041902d
AS
4199/* single env->prog->insni[off] instruction was replaced with the range
4200 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4201 * [0, off) and [off, end) to new locations, so the patched range stays zero
4202 */
4203static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4204 u32 off, u32 cnt)
4205{
4206 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4207
4208 if (cnt == 1)
4209 return 0;
4210 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4211 if (!new_data)
4212 return -ENOMEM;
4213 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4214 memcpy(new_data + off + cnt - 1, old_data + off,
4215 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4216 env->insn_aux_data = new_data;
4217 vfree(old_data);
4218 return 0;
4219}
4220
4221static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4222 const struct bpf_insn *patch, u32 len)
4223{
4224 struct bpf_prog *new_prog;
4225
4226 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4227 if (!new_prog)
4228 return NULL;
4229 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4230 return NULL;
4231 return new_prog;
4232}
4233
9bac3d6d
AS
4234/* convert load instructions that access fields of 'struct __sk_buff'
4235 * into sequence of instructions that access fields of 'struct sk_buff'
4236 */
58e2af8b 4237static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4238{
00176a34 4239 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4240 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4241 const int insn_cnt = env->prog->len;
36bbef52 4242 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4243 struct bpf_prog *new_prog;
d691f9e8 4244 enum bpf_access_type type;
f96da094
DB
4245 bool is_narrower_load;
4246 u32 target_size;
9bac3d6d 4247
36bbef52
DB
4248 if (ops->gen_prologue) {
4249 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4250 env->prog);
4251 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4252 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4253 return -EINVAL;
4254 } else if (cnt) {
8041902d 4255 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4256 if (!new_prog)
4257 return -ENOMEM;
8041902d 4258
36bbef52 4259 env->prog = new_prog;
3df126f3 4260 delta += cnt - 1;
36bbef52
DB
4261 }
4262 }
4263
4264 if (!ops->convert_ctx_access)
9bac3d6d
AS
4265 return 0;
4266
3df126f3 4267 insn = env->prog->insnsi + delta;
36bbef52 4268
9bac3d6d 4269 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4270 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4271 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4272 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4273 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4274 type = BPF_READ;
62c7989b
DB
4275 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4276 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4277 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4278 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4279 type = BPF_WRITE;
4280 else
9bac3d6d
AS
4281 continue;
4282
8041902d 4283 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4284 continue;
9bac3d6d 4285
31fd8581 4286 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4287 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4288
4289 /* If the read access is a narrower load of the field,
4290 * convert to a 4/8-byte load, to minimum program type specific
4291 * convert_ctx_access changes. If conversion is successful,
4292 * we will apply proper mask to the result.
4293 */
f96da094 4294 is_narrower_load = size < ctx_field_size;
31fd8581 4295 if (is_narrower_load) {
f96da094
DB
4296 u32 off = insn->off;
4297 u8 size_code;
4298
4299 if (type == BPF_WRITE) {
61bd5218 4300 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4301 return -EINVAL;
4302 }
31fd8581 4303
f96da094 4304 size_code = BPF_H;
31fd8581
YS
4305 if (ctx_field_size == 4)
4306 size_code = BPF_W;
4307 else if (ctx_field_size == 8)
4308 size_code = BPF_DW;
f96da094 4309
31fd8581
YS
4310 insn->off = off & ~(ctx_field_size - 1);
4311 insn->code = BPF_LDX | BPF_MEM | size_code;
4312 }
f96da094
DB
4313
4314 target_size = 0;
4315 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4316 &target_size);
4317 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4318 (ctx_field_size && !target_size)) {
61bd5218 4319 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4320 return -EINVAL;
4321 }
f96da094
DB
4322
4323 if (is_narrower_load && size < target_size) {
31fd8581
YS
4324 if (ctx_field_size <= 4)
4325 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4326 (1 << size * 8) - 1);
31fd8581
YS
4327 else
4328 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4329 (1 << size * 8) - 1);
31fd8581 4330 }
9bac3d6d 4331
8041902d 4332 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4333 if (!new_prog)
4334 return -ENOMEM;
4335
3df126f3 4336 delta += cnt - 1;
9bac3d6d
AS
4337
4338 /* keep walking new program and skip insns we just inserted */
4339 env->prog = new_prog;
3df126f3 4340 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4341 }
4342
4343 return 0;
4344}
4345
79741b3b 4346/* fixup insn->imm field of bpf_call instructions
81ed18ab 4347 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4348 *
4349 * this function is called after eBPF program passed verification
4350 */
79741b3b 4351static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4352{
79741b3b
AS
4353 struct bpf_prog *prog = env->prog;
4354 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4355 const struct bpf_func_proto *fn;
79741b3b 4356 const int insn_cnt = prog->len;
81ed18ab
AS
4357 struct bpf_insn insn_buf[16];
4358 struct bpf_prog *new_prog;
4359 struct bpf_map *map_ptr;
4360 int i, cnt, delta = 0;
e245c5c6 4361
79741b3b
AS
4362 for (i = 0; i < insn_cnt; i++, insn++) {
4363 if (insn->code != (BPF_JMP | BPF_CALL))
4364 continue;
e245c5c6 4365
79741b3b
AS
4366 if (insn->imm == BPF_FUNC_get_route_realm)
4367 prog->dst_needed = 1;
4368 if (insn->imm == BPF_FUNC_get_prandom_u32)
4369 bpf_user_rnd_init_once();
79741b3b 4370 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4371 /* If we tail call into other programs, we
4372 * cannot make any assumptions since they can
4373 * be replaced dynamically during runtime in
4374 * the program array.
4375 */
4376 prog->cb_access = 1;
80a58d02 4377 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4378
79741b3b
AS
4379 /* mark bpf_tail_call as different opcode to avoid
4380 * conditional branch in the interpeter for every normal
4381 * call and to prevent accidental JITing by JIT compiler
4382 * that doesn't support bpf_tail_call yet
e245c5c6 4383 */
79741b3b 4384 insn->imm = 0;
71189fa9 4385 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4386 continue;
4387 }
e245c5c6 4388
89c63074
DB
4389 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4390 * handlers are currently limited to 64 bit only.
4391 */
4392 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4393 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4394 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4395 if (map_ptr == BPF_MAP_PTR_POISON ||
4396 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4397 goto patch_call_imm;
4398
4399 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4400 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4401 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4402 return -EINVAL;
4403 }
4404
4405 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4406 cnt);
4407 if (!new_prog)
4408 return -ENOMEM;
4409
4410 delta += cnt - 1;
4411
4412 /* keep walking new program and skip insns we just inserted */
4413 env->prog = prog = new_prog;
4414 insn = new_prog->insnsi + i + delta;
4415 continue;
4416 }
4417
109980b8 4418 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4419 /* Note, we cannot use prog directly as imm as subsequent
4420 * rewrites would still change the prog pointer. The only
4421 * stable address we can use is aux, which also works with
4422 * prog clones during blinding.
4423 */
4424 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4425 struct bpf_insn r4_ld[] = {
4426 BPF_LD_IMM64(BPF_REG_4, addr),
4427 *insn,
4428 };
4429 cnt = ARRAY_SIZE(r4_ld);
4430
4431 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4432 if (!new_prog)
4433 return -ENOMEM;
4434
4435 delta += cnt - 1;
4436 env->prog = prog = new_prog;
4437 insn = new_prog->insnsi + i + delta;
4438 }
81ed18ab 4439patch_call_imm:
00176a34 4440 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4441 /* all functions that have prototype and verifier allowed
4442 * programs to call them, must be real in-kernel functions
4443 */
4444 if (!fn->func) {
61bd5218
JK
4445 verbose(env,
4446 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4447 func_id_name(insn->imm), insn->imm);
4448 return -EFAULT;
e245c5c6 4449 }
79741b3b 4450 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4451 }
e245c5c6 4452
79741b3b
AS
4453 return 0;
4454}
e245c5c6 4455
58e2af8b 4456static void free_states(struct bpf_verifier_env *env)
f1bca824 4457{
58e2af8b 4458 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4459 int i;
4460
4461 if (!env->explored_states)
4462 return;
4463
4464 for (i = 0; i < env->prog->len; i++) {
4465 sl = env->explored_states[i];
4466
4467 if (sl)
4468 while (sl != STATE_LIST_MARK) {
4469 sln = sl->next;
1969db47 4470 free_verifier_state(&sl->state, false);
f1bca824
AS
4471 kfree(sl);
4472 sl = sln;
4473 }
4474 }
4475
4476 kfree(env->explored_states);
4477}
4478
9bac3d6d 4479int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4480{
58e2af8b 4481 struct bpf_verifier_env *env;
61bd5218 4482 struct bpf_verifer_log *log;
51580e79
AS
4483 int ret = -EINVAL;
4484
eba0c929
AB
4485 /* no program is valid */
4486 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4487 return -EINVAL;
4488
58e2af8b 4489 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4490 * allocate/free it every time bpf_check() is called
4491 */
58e2af8b 4492 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4493 if (!env)
4494 return -ENOMEM;
61bd5218 4495 log = &env->log;
cbd35700 4496
3df126f3
JK
4497 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4498 (*prog)->len);
4499 ret = -ENOMEM;
4500 if (!env->insn_aux_data)
4501 goto err_free_env;
9bac3d6d 4502 env->prog = *prog;
00176a34 4503 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4504
cbd35700
AS
4505 /* grab the mutex to protect few globals used by verifier */
4506 mutex_lock(&bpf_verifier_lock);
4507
4508 if (attr->log_level || attr->log_buf || attr->log_size) {
4509 /* user requested verbose verifier output
4510 * and supplied buffer to store the verification trace
4511 */
e7bf8249
JK
4512 log->level = attr->log_level;
4513 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4514 log->len_total = attr->log_size;
cbd35700
AS
4515
4516 ret = -EINVAL;
e7bf8249
JK
4517 /* log attributes have to be sane */
4518 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4519 !log->level || !log->ubuf)
3df126f3 4520 goto err_unlock;
cbd35700 4521 }
1ad2f583
DB
4522
4523 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4524 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4525 env->strict_alignment = true;
cbd35700 4526
ab3f0063
JK
4527 if (env->prog->aux->offload) {
4528 ret = bpf_prog_offload_verifier_prep(env);
4529 if (ret)
4530 goto err_unlock;
4531 }
4532
0246e64d
AS
4533 ret = replace_map_fd_with_map_ptr(env);
4534 if (ret < 0)
4535 goto skip_full_check;
4536
9bac3d6d 4537 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4538 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4539 GFP_USER);
4540 ret = -ENOMEM;
4541 if (!env->explored_states)
4542 goto skip_full_check;
4543
475fb78f
AS
4544 ret = check_cfg(env);
4545 if (ret < 0)
4546 goto skip_full_check;
4547
1be7f75d
AS
4548 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4549
17a52670 4550 ret = do_check(env);
8c01c4f8
CG
4551 if (env->cur_state) {
4552 free_verifier_state(env->cur_state, true);
4553 env->cur_state = NULL;
4554 }
cbd35700 4555
0246e64d 4556skip_full_check:
638f5b90 4557 while (!pop_stack(env, NULL, NULL));
f1bca824 4558 free_states(env);
0246e64d 4559
9bac3d6d
AS
4560 if (ret == 0)
4561 /* program is valid, convert *(u32*)(ctx + off) accesses */
4562 ret = convert_ctx_accesses(env);
4563
e245c5c6 4564 if (ret == 0)
79741b3b 4565 ret = fixup_bpf_calls(env);
e245c5c6 4566
a2a7d570 4567 if (log->level && bpf_verifier_log_full(log))
cbd35700 4568 ret = -ENOSPC;
a2a7d570 4569 if (log->level && !log->ubuf) {
cbd35700 4570 ret = -EFAULT;
a2a7d570 4571 goto err_release_maps;
cbd35700
AS
4572 }
4573
0246e64d
AS
4574 if (ret == 0 && env->used_map_cnt) {
4575 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4576 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4577 sizeof(env->used_maps[0]),
4578 GFP_KERNEL);
0246e64d 4579
9bac3d6d 4580 if (!env->prog->aux->used_maps) {
0246e64d 4581 ret = -ENOMEM;
a2a7d570 4582 goto err_release_maps;
0246e64d
AS
4583 }
4584
9bac3d6d 4585 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4586 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4587 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4588
4589 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4590 * bpf_ld_imm64 instructions
4591 */
4592 convert_pseudo_ld_imm64(env);
4593 }
cbd35700 4594
a2a7d570 4595err_release_maps:
9bac3d6d 4596 if (!env->prog->aux->used_maps)
0246e64d
AS
4597 /* if we didn't copy map pointers into bpf_prog_info, release
4598 * them now. Otherwise free_bpf_prog_info() will release them.
4599 */
4600 release_maps(env);
9bac3d6d 4601 *prog = env->prog;
3df126f3 4602err_unlock:
cbd35700 4603 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4604 vfree(env->insn_aux_data);
4605err_free_env:
4606 kfree(env);
51580e79
AS
4607 return ret;
4608}