]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: don't mark FP reg as uninit
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
4e92024a
AS
219static void print_liveness(struct bpf_verifier_env *env,
220 enum bpf_reg_liveness live)
221{
222 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
223 verbose(env, "_");
224 if (live & REG_LIVE_READ)
225 verbose(env, "r");
226 if (live & REG_LIVE_WRITTEN)
227 verbose(env, "w");
228}
229
61bd5218
JK
230static void print_verifier_state(struct bpf_verifier_env *env,
231 struct bpf_verifier_state *state)
17a52670 232{
58e2af8b 233 struct bpf_reg_state *reg;
17a52670
AS
234 enum bpf_reg_type t;
235 int i;
236
237 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
238 reg = &state->regs[i];
239 t = reg->type;
17a52670
AS
240 if (t == NOT_INIT)
241 continue;
4e92024a
AS
242 verbose(env, " R%d", i);
243 print_liveness(env, reg->live);
244 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
245 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
246 tnum_is_const(reg->var_off)) {
247 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 248 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 249 } else {
61bd5218 250 verbose(env, "(id=%d", reg->id);
f1174f77 251 if (t != SCALAR_VALUE)
61bd5218 252 verbose(env, ",off=%d", reg->off);
de8f3a83 253 if (type_is_pkt_pointer(t))
61bd5218 254 verbose(env, ",r=%d", reg->range);
f1174f77
EC
255 else if (t == CONST_PTR_TO_MAP ||
256 t == PTR_TO_MAP_VALUE ||
257 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 258 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
259 reg->map_ptr->key_size,
260 reg->map_ptr->value_size);
7d1238f2
EC
261 if (tnum_is_const(reg->var_off)) {
262 /* Typically an immediate SCALAR_VALUE, but
263 * could be a pointer whose offset is too big
264 * for reg->off
265 */
61bd5218 266 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
267 } else {
268 if (reg->smin_value != reg->umin_value &&
269 reg->smin_value != S64_MIN)
61bd5218 270 verbose(env, ",smin_value=%lld",
7d1238f2
EC
271 (long long)reg->smin_value);
272 if (reg->smax_value != reg->umax_value &&
273 reg->smax_value != S64_MAX)
61bd5218 274 verbose(env, ",smax_value=%lld",
7d1238f2
EC
275 (long long)reg->smax_value);
276 if (reg->umin_value != 0)
61bd5218 277 verbose(env, ",umin_value=%llu",
7d1238f2
EC
278 (unsigned long long)reg->umin_value);
279 if (reg->umax_value != U64_MAX)
61bd5218 280 verbose(env, ",umax_value=%llu",
7d1238f2
EC
281 (unsigned long long)reg->umax_value);
282 if (!tnum_is_unknown(reg->var_off)) {
283 char tn_buf[48];
f1174f77 284
7d1238f2 285 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 286 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 287 }
f1174f77 288 }
61bd5218 289 verbose(env, ")");
f1174f77 290 }
17a52670 291 }
638f5b90 292 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
4e92024a
AS
293 if (state->stack[i].slot_type[0] == STACK_SPILL) {
294 verbose(env, " fp%d",
295 (-i - 1) * BPF_REG_SIZE);
296 print_liveness(env, state->stack[i].spilled_ptr.live);
297 verbose(env, "=%s",
638f5b90 298 reg_type_str[state->stack[i].spilled_ptr.type]);
4e92024a 299 }
17a52670 300 }
61bd5218 301 verbose(env, "\n");
17a52670
AS
302}
303
638f5b90
AS
304static int copy_stack_state(struct bpf_verifier_state *dst,
305 const struct bpf_verifier_state *src)
17a52670 306{
638f5b90
AS
307 if (!src->stack)
308 return 0;
309 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
310 /* internal bug, make state invalid to reject the program */
311 memset(dst, 0, sizeof(*dst));
312 return -EFAULT;
313 }
314 memcpy(dst->stack, src->stack,
315 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
316 return 0;
317}
318
319/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
320 * make it consume minimal amount of memory. check_stack_write() access from
321 * the program calls into realloc_verifier_state() to grow the stack size.
322 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
323 * which this function copies over. It points to previous bpf_verifier_state
324 * which is never reallocated
325 */
326static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
327 bool copy_old)
328{
329 u32 old_size = state->allocated_stack;
330 struct bpf_stack_state *new_stack;
331 int slot = size / BPF_REG_SIZE;
332
333 if (size <= old_size || !size) {
334 if (copy_old)
335 return 0;
336 state->allocated_stack = slot * BPF_REG_SIZE;
337 if (!size && old_size) {
338 kfree(state->stack);
339 state->stack = NULL;
340 }
341 return 0;
342 }
343 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
344 GFP_KERNEL);
345 if (!new_stack)
346 return -ENOMEM;
347 if (copy_old) {
348 if (state->stack)
349 memcpy(new_stack, state->stack,
350 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
351 memset(new_stack + old_size / BPF_REG_SIZE, 0,
352 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
353 }
354 state->allocated_stack = slot * BPF_REG_SIZE;
355 kfree(state->stack);
356 state->stack = new_stack;
357 return 0;
358}
359
1969db47
AS
360static void free_verifier_state(struct bpf_verifier_state *state,
361 bool free_self)
638f5b90
AS
362{
363 kfree(state->stack);
1969db47
AS
364 if (free_self)
365 kfree(state);
638f5b90
AS
366}
367
368/* copy verifier state from src to dst growing dst stack space
369 * when necessary to accommodate larger src stack
370 */
371static int copy_verifier_state(struct bpf_verifier_state *dst,
372 const struct bpf_verifier_state *src)
373{
374 int err;
375
376 err = realloc_verifier_state(dst, src->allocated_stack, false);
377 if (err)
378 return err;
379 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
380 return copy_stack_state(dst, src);
381}
382
383static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
384 int *insn_idx)
385{
386 struct bpf_verifier_state *cur = env->cur_state;
387 struct bpf_verifier_stack_elem *elem, *head = env->head;
388 int err;
17a52670
AS
389
390 if (env->head == NULL)
638f5b90 391 return -ENOENT;
17a52670 392
638f5b90
AS
393 if (cur) {
394 err = copy_verifier_state(cur, &head->st);
395 if (err)
396 return err;
397 }
398 if (insn_idx)
399 *insn_idx = head->insn_idx;
17a52670 400 if (prev_insn_idx)
638f5b90
AS
401 *prev_insn_idx = head->prev_insn_idx;
402 elem = head->next;
1969db47 403 free_verifier_state(&head->st, false);
638f5b90 404 kfree(head);
17a52670
AS
405 env->head = elem;
406 env->stack_size--;
638f5b90 407 return 0;
17a52670
AS
408}
409
58e2af8b
JK
410static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
411 int insn_idx, int prev_insn_idx)
17a52670 412{
638f5b90 413 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 414 struct bpf_verifier_stack_elem *elem;
638f5b90 415 int err;
17a52670 416
638f5b90 417 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
418 if (!elem)
419 goto err;
420
17a52670
AS
421 elem->insn_idx = insn_idx;
422 elem->prev_insn_idx = prev_insn_idx;
423 elem->next = env->head;
424 env->head = elem;
425 env->stack_size++;
1969db47
AS
426 err = copy_verifier_state(&elem->st, cur);
427 if (err)
428 goto err;
07016151 429 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 430 verbose(env, "BPF program is too complex\n");
17a52670
AS
431 goto err;
432 }
433 return &elem->st;
434err:
435 /* pop all elements and return */
638f5b90 436 while (!pop_stack(env, NULL, NULL));
17a52670
AS
437 return NULL;
438}
439
440#define CALLER_SAVED_REGS 6
441static const int caller_saved[CALLER_SAVED_REGS] = {
442 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
443};
444
f1174f77
EC
445static void __mark_reg_not_init(struct bpf_reg_state *reg);
446
b03c9f9f
EC
447/* Mark the unknown part of a register (variable offset or scalar value) as
448 * known to have the value @imm.
449 */
450static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
451{
452 reg->id = 0;
453 reg->var_off = tnum_const(imm);
454 reg->smin_value = (s64)imm;
455 reg->smax_value = (s64)imm;
456 reg->umin_value = imm;
457 reg->umax_value = imm;
458}
459
f1174f77
EC
460/* Mark the 'variable offset' part of a register as zero. This should be
461 * used only on registers holding a pointer type.
462 */
463static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 464{
b03c9f9f 465 __mark_reg_known(reg, 0);
f1174f77 466}
a9789ef9 467
61bd5218
JK
468static void mark_reg_known_zero(struct bpf_verifier_env *env,
469 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
470{
471 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 472 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
473 /* Something bad happened, let's kill all regs */
474 for (regno = 0; regno < MAX_BPF_REG; regno++)
475 __mark_reg_not_init(regs + regno);
476 return;
477 }
478 __mark_reg_known_zero(regs + regno);
479}
480
de8f3a83
DB
481static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
482{
483 return type_is_pkt_pointer(reg->type);
484}
485
486static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
487{
488 return reg_is_pkt_pointer(reg) ||
489 reg->type == PTR_TO_PACKET_END;
490}
491
492/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
493static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
494 enum bpf_reg_type which)
495{
496 /* The register can already have a range from prior markings.
497 * This is fine as long as it hasn't been advanced from its
498 * origin.
499 */
500 return reg->type == which &&
501 reg->id == 0 &&
502 reg->off == 0 &&
503 tnum_equals_const(reg->var_off, 0);
504}
505
b03c9f9f
EC
506/* Attempts to improve min/max values based on var_off information */
507static void __update_reg_bounds(struct bpf_reg_state *reg)
508{
509 /* min signed is max(sign bit) | min(other bits) */
510 reg->smin_value = max_t(s64, reg->smin_value,
511 reg->var_off.value | (reg->var_off.mask & S64_MIN));
512 /* max signed is min(sign bit) | max(other bits) */
513 reg->smax_value = min_t(s64, reg->smax_value,
514 reg->var_off.value | (reg->var_off.mask & S64_MAX));
515 reg->umin_value = max(reg->umin_value, reg->var_off.value);
516 reg->umax_value = min(reg->umax_value,
517 reg->var_off.value | reg->var_off.mask);
518}
519
520/* Uses signed min/max values to inform unsigned, and vice-versa */
521static void __reg_deduce_bounds(struct bpf_reg_state *reg)
522{
523 /* Learn sign from signed bounds.
524 * If we cannot cross the sign boundary, then signed and unsigned bounds
525 * are the same, so combine. This works even in the negative case, e.g.
526 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
527 */
528 if (reg->smin_value >= 0 || reg->smax_value < 0) {
529 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
530 reg->umin_value);
531 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
532 reg->umax_value);
533 return;
534 }
535 /* Learn sign from unsigned bounds. Signed bounds cross the sign
536 * boundary, so we must be careful.
537 */
538 if ((s64)reg->umax_value >= 0) {
539 /* Positive. We can't learn anything from the smin, but smax
540 * is positive, hence safe.
541 */
542 reg->smin_value = reg->umin_value;
543 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
544 reg->umax_value);
545 } else if ((s64)reg->umin_value < 0) {
546 /* Negative. We can't learn anything from the smax, but smin
547 * is negative, hence safe.
548 */
549 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
550 reg->umin_value);
551 reg->smax_value = reg->umax_value;
552 }
553}
554
555/* Attempts to improve var_off based on unsigned min/max information */
556static void __reg_bound_offset(struct bpf_reg_state *reg)
557{
558 reg->var_off = tnum_intersect(reg->var_off,
559 tnum_range(reg->umin_value,
560 reg->umax_value));
561}
562
563/* Reset the min/max bounds of a register */
564static void __mark_reg_unbounded(struct bpf_reg_state *reg)
565{
566 reg->smin_value = S64_MIN;
567 reg->smax_value = S64_MAX;
568 reg->umin_value = 0;
569 reg->umax_value = U64_MAX;
570}
571
f1174f77
EC
572/* Mark a register as having a completely unknown (scalar) value. */
573static void __mark_reg_unknown(struct bpf_reg_state *reg)
574{
575 reg->type = SCALAR_VALUE;
576 reg->id = 0;
577 reg->off = 0;
578 reg->var_off = tnum_unknown;
b03c9f9f 579 __mark_reg_unbounded(reg);
f1174f77
EC
580}
581
61bd5218
JK
582static void mark_reg_unknown(struct bpf_verifier_env *env,
583 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
584{
585 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 586 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
587 /* Something bad happened, let's kill all regs except FP */
588 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
589 __mark_reg_not_init(regs + regno);
590 return;
591 }
592 __mark_reg_unknown(regs + regno);
593}
594
595static void __mark_reg_not_init(struct bpf_reg_state *reg)
596{
597 __mark_reg_unknown(reg);
598 reg->type = NOT_INIT;
599}
600
61bd5218
JK
601static void mark_reg_not_init(struct bpf_verifier_env *env,
602 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
603{
604 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 605 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
606 /* Something bad happened, let's kill all regs except FP */
607 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
608 __mark_reg_not_init(regs + regno);
609 return;
610 }
611 __mark_reg_not_init(regs + regno);
a9789ef9
DB
612}
613
61bd5218
JK
614static void init_reg_state(struct bpf_verifier_env *env,
615 struct bpf_reg_state *regs)
17a52670
AS
616{
617 int i;
618
dc503a8a 619 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 620 mark_reg_not_init(env, regs, i);
dc503a8a
EC
621 regs[i].live = REG_LIVE_NONE;
622 }
17a52670
AS
623
624 /* frame pointer */
f1174f77 625 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 626 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
627
628 /* 1st arg to a function */
629 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 630 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
631}
632
17a52670
AS
633enum reg_arg_type {
634 SRC_OP, /* register is used as source operand */
635 DST_OP, /* register is used as destination operand */
636 DST_OP_NO_MARK /* same as above, check only, don't mark */
637};
638
dc503a8a
EC
639static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
640{
641 struct bpf_verifier_state *parent = state->parent;
642
8fe2d6cc
AS
643 if (regno == BPF_REG_FP)
644 /* We don't need to worry about FP liveness because it's read-only */
645 return;
646
dc503a8a
EC
647 while (parent) {
648 /* if read wasn't screened by an earlier write ... */
649 if (state->regs[regno].live & REG_LIVE_WRITTEN)
650 break;
651 /* ... then we depend on parent's value */
652 parent->regs[regno].live |= REG_LIVE_READ;
653 state = parent;
654 parent = state->parent;
655 }
656}
657
658static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
659 enum reg_arg_type t)
660{
638f5b90 661 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 662
17a52670 663 if (regno >= MAX_BPF_REG) {
61bd5218 664 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
665 return -EINVAL;
666 }
667
668 if (t == SRC_OP) {
669 /* check whether register used as source operand can be read */
670 if (regs[regno].type == NOT_INIT) {
61bd5218 671 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
672 return -EACCES;
673 }
638f5b90 674 mark_reg_read(env->cur_state, regno);
17a52670
AS
675 } else {
676 /* check whether register used as dest operand can be written to */
677 if (regno == BPF_REG_FP) {
61bd5218 678 verbose(env, "frame pointer is read only\n");
17a52670
AS
679 return -EACCES;
680 }
dc503a8a 681 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 682 if (t == DST_OP)
61bd5218 683 mark_reg_unknown(env, regs, regno);
17a52670
AS
684 }
685 return 0;
686}
687
1be7f75d
AS
688static bool is_spillable_regtype(enum bpf_reg_type type)
689{
690 switch (type) {
691 case PTR_TO_MAP_VALUE:
692 case PTR_TO_MAP_VALUE_OR_NULL:
693 case PTR_TO_STACK:
694 case PTR_TO_CTX:
969bf05e 695 case PTR_TO_PACKET:
de8f3a83 696 case PTR_TO_PACKET_META:
969bf05e 697 case PTR_TO_PACKET_END:
1be7f75d
AS
698 case CONST_PTR_TO_MAP:
699 return true;
700 default:
701 return false;
702 }
703}
704
17a52670
AS
705/* check_stack_read/write functions track spill/fill of registers,
706 * stack boundary and alignment are checked in check_mem_access()
707 */
61bd5218
JK
708static int check_stack_write(struct bpf_verifier_env *env,
709 struct bpf_verifier_state *state, int off,
58e2af8b 710 int size, int value_regno)
17a52670 711{
638f5b90
AS
712 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
713
714 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
715 true);
716 if (err)
717 return err;
9c399760
AS
718 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
719 * so it's aligned access and [off, off + size) are within stack limits
720 */
638f5b90
AS
721 if (!env->allow_ptr_leaks &&
722 state->stack[spi].slot_type[0] == STACK_SPILL &&
723 size != BPF_REG_SIZE) {
724 verbose(env, "attempt to corrupt spilled pointer on stack\n");
725 return -EACCES;
726 }
17a52670
AS
727
728 if (value_regno >= 0 &&
1be7f75d 729 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
730
731 /* register containing pointer is being spilled into stack */
9c399760 732 if (size != BPF_REG_SIZE) {
61bd5218 733 verbose(env, "invalid size of register spill\n");
17a52670
AS
734 return -EACCES;
735 }
736
17a52670 737 /* save register state */
638f5b90
AS
738 state->stack[spi].spilled_ptr = state->regs[value_regno];
739 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 740
9c399760 741 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 742 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 743 } else {
17a52670 744 /* regular write of data into stack */
638f5b90 745 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
746
747 for (i = 0; i < size; i++)
638f5b90
AS
748 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
749 STACK_MISC;
17a52670
AS
750 }
751 return 0;
752}
753
dc503a8a
EC
754static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
755{
756 struct bpf_verifier_state *parent = state->parent;
757
758 while (parent) {
759 /* if read wasn't screened by an earlier write ... */
638f5b90 760 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
761 break;
762 /* ... then we depend on parent's value */
638f5b90 763 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
764 state = parent;
765 parent = state->parent;
766 }
767}
768
61bd5218
JK
769static int check_stack_read(struct bpf_verifier_env *env,
770 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
771 int value_regno)
772{
638f5b90
AS
773 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
774 u8 *stype;
17a52670 775
638f5b90
AS
776 if (state->allocated_stack <= slot) {
777 verbose(env, "invalid read from stack off %d+0 size %d\n",
778 off, size);
779 return -EACCES;
780 }
781 stype = state->stack[spi].slot_type;
17a52670 782
638f5b90 783 if (stype[0] == STACK_SPILL) {
9c399760 784 if (size != BPF_REG_SIZE) {
61bd5218 785 verbose(env, "invalid size of register spill\n");
17a52670
AS
786 return -EACCES;
787 }
9c399760 788 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 789 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 790 verbose(env, "corrupted spill memory\n");
17a52670
AS
791 return -EACCES;
792 }
793 }
794
dc503a8a 795 if (value_regno >= 0) {
17a52670 796 /* restore register state from stack */
638f5b90 797 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
798 mark_stack_slot_read(state, spi);
799 }
17a52670
AS
800 return 0;
801 } else {
802 for (i = 0; i < size; i++) {
638f5b90 803 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 804 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
805 off, i, size);
806 return -EACCES;
807 }
808 }
809 if (value_regno >= 0)
810 /* have read misc data from the stack */
61bd5218 811 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
812 return 0;
813 }
814}
815
816/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 817static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 818 int size, bool zero_size_allowed)
17a52670 819{
638f5b90
AS
820 struct bpf_reg_state *regs = cur_regs(env);
821 struct bpf_map *map = regs[regno].map_ptr;
17a52670 822
9fd29c08
YS
823 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
824 off + size > map->value_size) {
61bd5218 825 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
826 map->value_size, off, size);
827 return -EACCES;
828 }
829 return 0;
830}
831
f1174f77
EC
832/* check read/write into a map element with possible variable offset */
833static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 834 int off, int size, bool zero_size_allowed)
dbcfe5f7 835{
638f5b90 836 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
837 struct bpf_reg_state *reg = &state->regs[regno];
838 int err;
839
f1174f77
EC
840 /* We may have adjusted the register to this map value, so we
841 * need to try adding each of min_value and max_value to off
842 * to make sure our theoretical access will be safe.
dbcfe5f7 843 */
61bd5218
JK
844 if (env->log.level)
845 print_verifier_state(env, state);
dbcfe5f7
GB
846 /* The minimum value is only important with signed
847 * comparisons where we can't assume the floor of a
848 * value is 0. If we are using signed variables for our
849 * index'es we need to make sure that whatever we use
850 * will have a set floor within our range.
851 */
b03c9f9f 852 if (reg->smin_value < 0) {
61bd5218 853 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
854 regno);
855 return -EACCES;
856 }
9fd29c08
YS
857 err = __check_map_access(env, regno, reg->smin_value + off, size,
858 zero_size_allowed);
dbcfe5f7 859 if (err) {
61bd5218
JK
860 verbose(env, "R%d min value is outside of the array range\n",
861 regno);
dbcfe5f7
GB
862 return err;
863 }
864
b03c9f9f
EC
865 /* If we haven't set a max value then we need to bail since we can't be
866 * sure we won't do bad things.
867 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 868 */
b03c9f9f 869 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 870 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
871 regno);
872 return -EACCES;
873 }
9fd29c08
YS
874 err = __check_map_access(env, regno, reg->umax_value + off, size,
875 zero_size_allowed);
f1174f77 876 if (err)
61bd5218
JK
877 verbose(env, "R%d max value is outside of the array range\n",
878 regno);
f1174f77 879 return err;
dbcfe5f7
GB
880}
881
969bf05e
AS
882#define MAX_PACKET_OFF 0xffff
883
58e2af8b 884static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
885 const struct bpf_call_arg_meta *meta,
886 enum bpf_access_type t)
4acf6c0b 887{
36bbef52 888 switch (env->prog->type) {
3a0af8fd
TG
889 case BPF_PROG_TYPE_LWT_IN:
890 case BPF_PROG_TYPE_LWT_OUT:
891 /* dst_input() and dst_output() can't write for now */
892 if (t == BPF_WRITE)
893 return false;
7e57fbb2 894 /* fallthrough */
36bbef52
DB
895 case BPF_PROG_TYPE_SCHED_CLS:
896 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 897 case BPF_PROG_TYPE_XDP:
3a0af8fd 898 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 899 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
900 if (meta)
901 return meta->pkt_access;
902
903 env->seen_direct_write = true;
4acf6c0b
BB
904 return true;
905 default:
906 return false;
907 }
908}
909
f1174f77 910static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 911 int off, int size, bool zero_size_allowed)
969bf05e 912{
638f5b90 913 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 914 struct bpf_reg_state *reg = &regs[regno];
969bf05e 915
9fd29c08
YS
916 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
917 (u64)off + size > reg->range) {
61bd5218 918 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 919 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
920 return -EACCES;
921 }
922 return 0;
923}
924
f1174f77 925static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 926 int size, bool zero_size_allowed)
f1174f77 927{
638f5b90 928 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
929 struct bpf_reg_state *reg = &regs[regno];
930 int err;
931
932 /* We may have added a variable offset to the packet pointer; but any
933 * reg->range we have comes after that. We are only checking the fixed
934 * offset.
935 */
936
937 /* We don't allow negative numbers, because we aren't tracking enough
938 * detail to prove they're safe.
939 */
b03c9f9f 940 if (reg->smin_value < 0) {
61bd5218 941 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
942 regno);
943 return -EACCES;
944 }
9fd29c08 945 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 946 if (err) {
61bd5218 947 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
948 return err;
949 }
950 return err;
951}
952
953/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 954static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 955 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 956{
f96da094
DB
957 struct bpf_insn_access_aux info = {
958 .reg_type = *reg_type,
959 };
31fd8581 960
4f9218aa
JK
961 if (env->ops->is_valid_access &&
962 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
963 /* A non zero info.ctx_field_size indicates that this field is a
964 * candidate for later verifier transformation to load the whole
965 * field and then apply a mask when accessed with a narrower
966 * access than actual ctx access size. A zero info.ctx_field_size
967 * will only allow for whole field access and rejects any other
968 * type of narrower access.
31fd8581 969 */
23994631 970 *reg_type = info.reg_type;
31fd8581 971
4f9218aa 972 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
973 /* remember the offset of last byte accessed in ctx */
974 if (env->prog->aux->max_ctx_offset < off + size)
975 env->prog->aux->max_ctx_offset = off + size;
17a52670 976 return 0;
32bbe007 977 }
17a52670 978
61bd5218 979 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
980 return -EACCES;
981}
982
4cabc5b1
DB
983static bool __is_pointer_value(bool allow_ptr_leaks,
984 const struct bpf_reg_state *reg)
1be7f75d 985{
4cabc5b1 986 if (allow_ptr_leaks)
1be7f75d
AS
987 return false;
988
f1174f77 989 return reg->type != SCALAR_VALUE;
1be7f75d
AS
990}
991
4cabc5b1
DB
992static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
993{
638f5b90 994 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
995}
996
61bd5218
JK
997static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
998 const struct bpf_reg_state *reg,
d1174416 999 int off, int size, bool strict)
969bf05e 1000{
f1174f77 1001 struct tnum reg_off;
e07b98d9 1002 int ip_align;
d1174416
DM
1003
1004 /* Byte size accesses are always allowed. */
1005 if (!strict || size == 1)
1006 return 0;
1007
e4eda884
DM
1008 /* For platforms that do not have a Kconfig enabling
1009 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1010 * NET_IP_ALIGN is universally set to '2'. And on platforms
1011 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1012 * to this code only in strict mode where we want to emulate
1013 * the NET_IP_ALIGN==2 checking. Therefore use an
1014 * unconditional IP align value of '2'.
e07b98d9 1015 */
e4eda884 1016 ip_align = 2;
f1174f77
EC
1017
1018 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1019 if (!tnum_is_aligned(reg_off, size)) {
1020 char tn_buf[48];
1021
1022 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1023 verbose(env,
1024 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1025 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1026 return -EACCES;
1027 }
79adffcd 1028
969bf05e
AS
1029 return 0;
1030}
1031
61bd5218
JK
1032static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1033 const struct bpf_reg_state *reg,
f1174f77
EC
1034 const char *pointer_desc,
1035 int off, int size, bool strict)
79adffcd 1036{
f1174f77
EC
1037 struct tnum reg_off;
1038
1039 /* Byte size accesses are always allowed. */
1040 if (!strict || size == 1)
1041 return 0;
1042
1043 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1044 if (!tnum_is_aligned(reg_off, size)) {
1045 char tn_buf[48];
1046
1047 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1048 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1049 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1050 return -EACCES;
1051 }
1052
969bf05e
AS
1053 return 0;
1054}
1055
e07b98d9
DM
1056static int check_ptr_alignment(struct bpf_verifier_env *env,
1057 const struct bpf_reg_state *reg,
79adffcd
DB
1058 int off, int size)
1059{
e07b98d9 1060 bool strict = env->strict_alignment;
f1174f77 1061 const char *pointer_desc = "";
d1174416 1062
79adffcd
DB
1063 switch (reg->type) {
1064 case PTR_TO_PACKET:
de8f3a83
DB
1065 case PTR_TO_PACKET_META:
1066 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1067 * right in front, treat it the very same way.
1068 */
61bd5218 1069 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1070 case PTR_TO_MAP_VALUE:
1071 pointer_desc = "value ";
1072 break;
1073 case PTR_TO_CTX:
1074 pointer_desc = "context ";
1075 break;
1076 case PTR_TO_STACK:
1077 pointer_desc = "stack ";
1078 break;
79adffcd 1079 default:
f1174f77 1080 break;
79adffcd 1081 }
61bd5218
JK
1082 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1083 strict);
79adffcd
DB
1084}
1085
17a52670
AS
1086/* check whether memory at (regno + off) is accessible for t = (read | write)
1087 * if t==write, value_regno is a register which value is stored into memory
1088 * if t==read, value_regno is a register which will receive the value from memory
1089 * if t==write && value_regno==-1, some unknown value is stored into memory
1090 * if t==read && value_regno==-1, don't care what we read from memory
1091 */
31fd8581 1092static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1093 int bpf_size, enum bpf_access_type t,
1094 int value_regno)
1095{
638f5b90
AS
1096 struct bpf_verifier_state *state = env->cur_state;
1097 struct bpf_reg_state *regs = cur_regs(env);
1098 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1099 int size, err = 0;
1100
1101 size = bpf_size_to_bytes(bpf_size);
1102 if (size < 0)
1103 return size;
1104
f1174f77 1105 /* alignment checks will add in reg->off themselves */
e07b98d9 1106 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1107 if (err)
1108 return err;
17a52670 1109
f1174f77
EC
1110 /* for access checks, reg->off is just part of off */
1111 off += reg->off;
1112
1113 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1114 if (t == BPF_WRITE && value_regno >= 0 &&
1115 is_pointer_value(env, value_regno)) {
61bd5218 1116 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1117 return -EACCES;
1118 }
48461135 1119
9fd29c08 1120 err = check_map_access(env, regno, off, size, false);
17a52670 1121 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1122 mark_reg_unknown(env, regs, value_regno);
17a52670 1123
1a0dc1ac 1124 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1125 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1126
1be7f75d
AS
1127 if (t == BPF_WRITE && value_regno >= 0 &&
1128 is_pointer_value(env, value_regno)) {
61bd5218 1129 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1130 return -EACCES;
1131 }
f1174f77
EC
1132 /* ctx accesses must be at a fixed offset, so that we can
1133 * determine what type of data were returned.
1134 */
28e33f9d 1135 if (reg->off) {
f8ddadc4
DM
1136 verbose(env,
1137 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1138 regno, reg->off, off - reg->off);
1139 return -EACCES;
1140 }
1141 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1142 char tn_buf[48];
1143
1144 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1145 verbose(env,
1146 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1147 tn_buf, off, size);
1148 return -EACCES;
1149 }
31fd8581 1150 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1151 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1152 /* ctx access returns either a scalar, or a
de8f3a83
DB
1153 * PTR_TO_PACKET[_META,_END]. In the latter
1154 * case, we know the offset is zero.
f1174f77
EC
1155 */
1156 if (reg_type == SCALAR_VALUE)
638f5b90 1157 mark_reg_unknown(env, regs, value_regno);
f1174f77 1158 else
638f5b90 1159 mark_reg_known_zero(env, regs,
61bd5218 1160 value_regno);
638f5b90
AS
1161 regs[value_regno].id = 0;
1162 regs[value_regno].off = 0;
1163 regs[value_regno].range = 0;
1164 regs[value_regno].type = reg_type;
969bf05e 1165 }
17a52670 1166
f1174f77
EC
1167 } else if (reg->type == PTR_TO_STACK) {
1168 /* stack accesses must be at a fixed offset, so that we can
1169 * determine what type of data were returned.
1170 * See check_stack_read().
1171 */
1172 if (!tnum_is_const(reg->var_off)) {
1173 char tn_buf[48];
1174
1175 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1176 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1177 tn_buf, off, size);
1178 return -EACCES;
1179 }
1180 off += reg->var_off.value;
17a52670 1181 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1182 verbose(env, "invalid stack off=%d size=%d\n", off,
1183 size);
17a52670
AS
1184 return -EACCES;
1185 }
8726679a
AS
1186
1187 if (env->prog->aux->stack_depth < -off)
1188 env->prog->aux->stack_depth = -off;
1189
638f5b90 1190 if (t == BPF_WRITE)
61bd5218
JK
1191 err = check_stack_write(env, state, off, size,
1192 value_regno);
638f5b90 1193 else
61bd5218
JK
1194 err = check_stack_read(env, state, off, size,
1195 value_regno);
de8f3a83 1196 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1197 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1198 verbose(env, "cannot write into packet\n");
969bf05e
AS
1199 return -EACCES;
1200 }
4acf6c0b
BB
1201 if (t == BPF_WRITE && value_regno >= 0 &&
1202 is_pointer_value(env, value_regno)) {
61bd5218
JK
1203 verbose(env, "R%d leaks addr into packet\n",
1204 value_regno);
4acf6c0b
BB
1205 return -EACCES;
1206 }
9fd29c08 1207 err = check_packet_access(env, regno, off, size, false);
969bf05e 1208 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1209 mark_reg_unknown(env, regs, value_regno);
17a52670 1210 } else {
61bd5218
JK
1211 verbose(env, "R%d invalid mem access '%s'\n", regno,
1212 reg_type_str[reg->type]);
17a52670
AS
1213 return -EACCES;
1214 }
969bf05e 1215
f1174f77 1216 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1217 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1218 /* b/h/w load zero-extends, mark upper bits as known 0 */
638f5b90
AS
1219 regs[value_regno].var_off =
1220 tnum_cast(regs[value_regno].var_off, size);
1221 __update_reg_bounds(&regs[value_regno]);
969bf05e 1222 }
17a52670
AS
1223 return err;
1224}
1225
31fd8581 1226static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1227{
17a52670
AS
1228 int err;
1229
1230 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1231 insn->imm != 0) {
61bd5218 1232 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1233 return -EINVAL;
1234 }
1235
1236 /* check src1 operand */
dc503a8a 1237 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1238 if (err)
1239 return err;
1240
1241 /* check src2 operand */
dc503a8a 1242 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1243 if (err)
1244 return err;
1245
6bdf6abc 1246 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1247 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1248 return -EACCES;
1249 }
1250
17a52670 1251 /* check whether atomic_add can read the memory */
31fd8581 1252 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1253 BPF_SIZE(insn->code), BPF_READ, -1);
1254 if (err)
1255 return err;
1256
1257 /* check whether atomic_add can write into the same memory */
31fd8581 1258 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1259 BPF_SIZE(insn->code), BPF_WRITE, -1);
1260}
1261
f1174f77
EC
1262/* Does this register contain a constant zero? */
1263static bool register_is_null(struct bpf_reg_state reg)
1264{
1265 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1266}
1267
17a52670
AS
1268/* when register 'regno' is passed into function that will read 'access_size'
1269 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1270 * and all elements of stack are initialized.
1271 * Unlike most pointer bounds-checking functions, this one doesn't take an
1272 * 'off' argument, so it has to add in reg->off itself.
17a52670 1273 */
58e2af8b 1274static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1275 int access_size, bool zero_size_allowed,
1276 struct bpf_call_arg_meta *meta)
17a52670 1277{
638f5b90 1278 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1279 struct bpf_reg_state *regs = state->regs;
638f5b90 1280 int off, i, slot, spi;
17a52670 1281
8e2fe1d9 1282 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1283 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1284 if (zero_size_allowed && access_size == 0 &&
f1174f77 1285 register_is_null(regs[regno]))
8e2fe1d9
DB
1286 return 0;
1287
61bd5218 1288 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1289 reg_type_str[regs[regno].type],
1290 reg_type_str[PTR_TO_STACK]);
17a52670 1291 return -EACCES;
8e2fe1d9 1292 }
17a52670 1293
f1174f77
EC
1294 /* Only allow fixed-offset stack reads */
1295 if (!tnum_is_const(regs[regno].var_off)) {
1296 char tn_buf[48];
1297
1298 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1299 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77
EC
1300 regno, tn_buf);
1301 }
1302 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1303 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1304 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1305 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1306 regno, off, access_size);
1307 return -EACCES;
1308 }
1309
8726679a
AS
1310 if (env->prog->aux->stack_depth < -off)
1311 env->prog->aux->stack_depth = -off;
1312
435faee1
DB
1313 if (meta && meta->raw_mode) {
1314 meta->access_size = access_size;
1315 meta->regno = regno;
1316 return 0;
1317 }
1318
17a52670 1319 for (i = 0; i < access_size; i++) {
638f5b90
AS
1320 slot = -(off + i) - 1;
1321 spi = slot / BPF_REG_SIZE;
1322 if (state->allocated_stack <= slot ||
1323 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1324 STACK_MISC) {
61bd5218 1325 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1326 off, i, access_size);
1327 return -EACCES;
1328 }
1329 }
1330 return 0;
1331}
1332
06c1c049
GB
1333static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1334 int access_size, bool zero_size_allowed,
1335 struct bpf_call_arg_meta *meta)
1336{
638f5b90 1337 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1338
f1174f77 1339 switch (reg->type) {
06c1c049 1340 case PTR_TO_PACKET:
de8f3a83 1341 case PTR_TO_PACKET_META:
9fd29c08
YS
1342 return check_packet_access(env, regno, reg->off, access_size,
1343 zero_size_allowed);
06c1c049 1344 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1345 return check_map_access(env, regno, reg->off, access_size,
1346 zero_size_allowed);
f1174f77 1347 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1348 return check_stack_boundary(env, regno, access_size,
1349 zero_size_allowed, meta);
1350 }
1351}
1352
58e2af8b 1353static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1354 enum bpf_arg_type arg_type,
1355 struct bpf_call_arg_meta *meta)
17a52670 1356{
638f5b90 1357 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1358 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1359 int err = 0;
1360
80f1d68c 1361 if (arg_type == ARG_DONTCARE)
17a52670
AS
1362 return 0;
1363
dc503a8a
EC
1364 err = check_reg_arg(env, regno, SRC_OP);
1365 if (err)
1366 return err;
17a52670 1367
1be7f75d
AS
1368 if (arg_type == ARG_ANYTHING) {
1369 if (is_pointer_value(env, regno)) {
61bd5218
JK
1370 verbose(env, "R%d leaks addr into helper function\n",
1371 regno);
1be7f75d
AS
1372 return -EACCES;
1373 }
80f1d68c 1374 return 0;
1be7f75d 1375 }
80f1d68c 1376
de8f3a83 1377 if (type_is_pkt_pointer(type) &&
3a0af8fd 1378 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1379 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1380 return -EACCES;
1381 }
1382
8e2fe1d9 1383 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1384 arg_type == ARG_PTR_TO_MAP_VALUE) {
1385 expected_type = PTR_TO_STACK;
de8f3a83
DB
1386 if (!type_is_pkt_pointer(type) &&
1387 type != expected_type)
6841de8b 1388 goto err_type;
39f19ebb
AS
1389 } else if (arg_type == ARG_CONST_SIZE ||
1390 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1391 expected_type = SCALAR_VALUE;
1392 if (type != expected_type)
6841de8b 1393 goto err_type;
17a52670
AS
1394 } else if (arg_type == ARG_CONST_MAP_PTR) {
1395 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1396 if (type != expected_type)
1397 goto err_type;
608cd71a
AS
1398 } else if (arg_type == ARG_PTR_TO_CTX) {
1399 expected_type = PTR_TO_CTX;
6841de8b
AS
1400 if (type != expected_type)
1401 goto err_type;
39f19ebb 1402 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1403 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1404 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1405 expected_type = PTR_TO_STACK;
1406 /* One exception here. In case function allows for NULL to be
f1174f77 1407 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1408 * happens during stack boundary checking.
1409 */
db1ac496
GB
1410 if (register_is_null(*reg) &&
1411 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1412 /* final test in check_stack_boundary() */;
de8f3a83
DB
1413 else if (!type_is_pkt_pointer(type) &&
1414 type != PTR_TO_MAP_VALUE &&
f1174f77 1415 type != expected_type)
6841de8b 1416 goto err_type;
39f19ebb 1417 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1418 } else {
61bd5218 1419 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1420 return -EFAULT;
1421 }
1422
17a52670
AS
1423 if (arg_type == ARG_CONST_MAP_PTR) {
1424 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1425 meta->map_ptr = reg->map_ptr;
17a52670
AS
1426 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1427 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1428 * check that [key, key + map->key_size) are within
1429 * stack limits and initialized
1430 */
33ff9823 1431 if (!meta->map_ptr) {
17a52670
AS
1432 /* in function declaration map_ptr must come before
1433 * map_key, so that it's verified and known before
1434 * we have to check map_key here. Otherwise it means
1435 * that kernel subsystem misconfigured verifier
1436 */
61bd5218 1437 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1438 return -EACCES;
1439 }
de8f3a83 1440 if (type_is_pkt_pointer(type))
f1174f77 1441 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1442 meta->map_ptr->key_size,
1443 false);
6841de8b
AS
1444 else
1445 err = check_stack_boundary(env, regno,
1446 meta->map_ptr->key_size,
1447 false, NULL);
17a52670
AS
1448 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1449 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1450 * check [value, value + map->value_size) validity
1451 */
33ff9823 1452 if (!meta->map_ptr) {
17a52670 1453 /* kernel subsystem misconfigured verifier */
61bd5218 1454 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1455 return -EACCES;
1456 }
de8f3a83 1457 if (type_is_pkt_pointer(type))
f1174f77 1458 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1459 meta->map_ptr->value_size,
1460 false);
6841de8b
AS
1461 else
1462 err = check_stack_boundary(env, regno,
1463 meta->map_ptr->value_size,
1464 false, NULL);
39f19ebb
AS
1465 } else if (arg_type == ARG_CONST_SIZE ||
1466 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1467 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1468
17a52670
AS
1469 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1470 * from stack pointer 'buf'. Check it
1471 * note: regno == len, regno - 1 == buf
1472 */
1473 if (regno == 0) {
1474 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1475 verbose(env,
1476 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1477 return -EACCES;
1478 }
06c1c049 1479
f1174f77
EC
1480 /* The register is SCALAR_VALUE; the access check
1481 * happens using its boundaries.
06c1c049 1482 */
f1174f77
EC
1483
1484 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1485 /* For unprivileged variable accesses, disable raw
1486 * mode so that the program is required to
1487 * initialize all the memory that the helper could
1488 * just partially fill up.
1489 */
1490 meta = NULL;
1491
b03c9f9f 1492 if (reg->smin_value < 0) {
61bd5218 1493 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1494 regno);
1495 return -EACCES;
1496 }
06c1c049 1497
b03c9f9f 1498 if (reg->umin_value == 0) {
f1174f77
EC
1499 err = check_helper_mem_access(env, regno - 1, 0,
1500 zero_size_allowed,
1501 meta);
06c1c049
GB
1502 if (err)
1503 return err;
06c1c049 1504 }
f1174f77 1505
b03c9f9f 1506 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1507 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1508 regno);
1509 return -EACCES;
1510 }
1511 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1512 reg->umax_value,
f1174f77 1513 zero_size_allowed, meta);
17a52670
AS
1514 }
1515
1516 return err;
6841de8b 1517err_type:
61bd5218 1518 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1519 reg_type_str[type], reg_type_str[expected_type]);
1520 return -EACCES;
17a52670
AS
1521}
1522
61bd5218
JK
1523static int check_map_func_compatibility(struct bpf_verifier_env *env,
1524 struct bpf_map *map, int func_id)
35578d79 1525{
35578d79
KX
1526 if (!map)
1527 return 0;
1528
6aff67c8
AS
1529 /* We need a two way check, first is from map perspective ... */
1530 switch (map->map_type) {
1531 case BPF_MAP_TYPE_PROG_ARRAY:
1532 if (func_id != BPF_FUNC_tail_call)
1533 goto error;
1534 break;
1535 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1536 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1537 func_id != BPF_FUNC_perf_event_output &&
1538 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1539 goto error;
1540 break;
1541 case BPF_MAP_TYPE_STACK_TRACE:
1542 if (func_id != BPF_FUNC_get_stackid)
1543 goto error;
1544 break;
4ed8ec52 1545 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1546 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1547 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1548 goto error;
1549 break;
546ac1ff
JF
1550 /* devmap returns a pointer to a live net_device ifindex that we cannot
1551 * allow to be modified from bpf side. So do not allow lookup elements
1552 * for now.
1553 */
1554 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1555 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1556 goto error;
1557 break;
6710e112
JDB
1558 /* Restrict bpf side of cpumap, open when use-cases appear */
1559 case BPF_MAP_TYPE_CPUMAP:
1560 if (func_id != BPF_FUNC_redirect_map)
1561 goto error;
1562 break;
56f668df 1563 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1564 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1565 if (func_id != BPF_FUNC_map_lookup_elem)
1566 goto error;
16a43625 1567 break;
174a79ff
JF
1568 case BPF_MAP_TYPE_SOCKMAP:
1569 if (func_id != BPF_FUNC_sk_redirect_map &&
1570 func_id != BPF_FUNC_sock_map_update &&
1571 func_id != BPF_FUNC_map_delete_elem)
1572 goto error;
1573 break;
6aff67c8
AS
1574 default:
1575 break;
1576 }
1577
1578 /* ... and second from the function itself. */
1579 switch (func_id) {
1580 case BPF_FUNC_tail_call:
1581 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1582 goto error;
1583 break;
1584 case BPF_FUNC_perf_event_read:
1585 case BPF_FUNC_perf_event_output:
908432ca 1586 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1587 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1588 goto error;
1589 break;
1590 case BPF_FUNC_get_stackid:
1591 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1592 goto error;
1593 break;
60d20f91 1594 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1595 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1596 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1597 goto error;
1598 break;
97f91a7c 1599 case BPF_FUNC_redirect_map:
9c270af3
JDB
1600 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1601 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1602 goto error;
1603 break;
174a79ff
JF
1604 case BPF_FUNC_sk_redirect_map:
1605 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1606 goto error;
1607 break;
1608 case BPF_FUNC_sock_map_update:
1609 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1610 goto error;
1611 break;
6aff67c8
AS
1612 default:
1613 break;
35578d79
KX
1614 }
1615
1616 return 0;
6aff67c8 1617error:
61bd5218 1618 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1619 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1620 return -EINVAL;
35578d79
KX
1621}
1622
435faee1
DB
1623static int check_raw_mode(const struct bpf_func_proto *fn)
1624{
1625 int count = 0;
1626
39f19ebb 1627 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1628 count++;
39f19ebb 1629 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1630 count++;
39f19ebb 1631 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1632 count++;
39f19ebb 1633 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1634 count++;
39f19ebb 1635 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1636 count++;
1637
1638 return count > 1 ? -EINVAL : 0;
1639}
1640
de8f3a83
DB
1641/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1642 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1643 */
58e2af8b 1644static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1645{
638f5b90 1646 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1647 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1648 int i;
1649
1650 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1651 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1652 mark_reg_unknown(env, regs, i);
969bf05e 1653
638f5b90
AS
1654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1655 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1656 continue;
638f5b90 1657 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1658 if (reg_is_pkt_pointer_any(reg))
1659 __mark_reg_unknown(reg);
969bf05e
AS
1660 }
1661}
1662
81ed18ab 1663static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1664{
17a52670 1665 const struct bpf_func_proto *fn = NULL;
638f5b90 1666 struct bpf_reg_state *regs;
33ff9823 1667 struct bpf_call_arg_meta meta;
969bf05e 1668 bool changes_data;
17a52670
AS
1669 int i, err;
1670
1671 /* find function prototype */
1672 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1673 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1674 func_id);
17a52670
AS
1675 return -EINVAL;
1676 }
1677
00176a34
JK
1678 if (env->ops->get_func_proto)
1679 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1680
1681 if (!fn) {
61bd5218
JK
1682 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1683 func_id);
17a52670
AS
1684 return -EINVAL;
1685 }
1686
1687 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1688 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1689 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1690 return -EINVAL;
1691 }
1692
17bedab2 1693 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1694
33ff9823 1695 memset(&meta, 0, sizeof(meta));
36bbef52 1696 meta.pkt_access = fn->pkt_access;
33ff9823 1697
435faee1
DB
1698 /* We only support one arg being in raw mode at the moment, which
1699 * is sufficient for the helper functions we have right now.
1700 */
1701 err = check_raw_mode(fn);
1702 if (err) {
61bd5218 1703 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1704 func_id_name(func_id), func_id);
435faee1
DB
1705 return err;
1706 }
1707
17a52670 1708 /* check args */
33ff9823 1709 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1710 if (err)
1711 return err;
33ff9823 1712 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1713 if (err)
1714 return err;
33ff9823 1715 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1716 if (err)
1717 return err;
33ff9823 1718 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1719 if (err)
1720 return err;
33ff9823 1721 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1722 if (err)
1723 return err;
1724
435faee1
DB
1725 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1726 * is inferred from register state.
1727 */
1728 for (i = 0; i < meta.access_size; i++) {
31fd8581 1729 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1730 if (err)
1731 return err;
1732 }
1733
638f5b90 1734 regs = cur_regs(env);
17a52670 1735 /* reset caller saved regs */
dc503a8a 1736 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1737 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1738 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1739 }
17a52670 1740
dc503a8a 1741 /* update return register (already marked as written above) */
17a52670 1742 if (fn->ret_type == RET_INTEGER) {
f1174f77 1743 /* sets type to SCALAR_VALUE */
61bd5218 1744 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1745 } else if (fn->ret_type == RET_VOID) {
1746 regs[BPF_REG_0].type = NOT_INIT;
1747 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1748 struct bpf_insn_aux_data *insn_aux;
1749
17a52670 1750 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1751 /* There is no offset yet applied, variable or fixed */
61bd5218 1752 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1753 regs[BPF_REG_0].off = 0;
17a52670
AS
1754 /* remember map_ptr, so that check_map_access()
1755 * can check 'value_size' boundary of memory access
1756 * to map element returned from bpf_map_lookup_elem()
1757 */
33ff9823 1758 if (meta.map_ptr == NULL) {
61bd5218
JK
1759 verbose(env,
1760 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1761 return -EINVAL;
1762 }
33ff9823 1763 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1764 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1765 insn_aux = &env->insn_aux_data[insn_idx];
1766 if (!insn_aux->map_ptr)
1767 insn_aux->map_ptr = meta.map_ptr;
1768 else if (insn_aux->map_ptr != meta.map_ptr)
1769 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1770 } else {
61bd5218 1771 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1772 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1773 return -EINVAL;
1774 }
04fd61ab 1775
61bd5218 1776 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1777 if (err)
1778 return err;
04fd61ab 1779
969bf05e
AS
1780 if (changes_data)
1781 clear_all_pkt_pointers(env);
1782 return 0;
1783}
1784
f1174f77
EC
1785static void coerce_reg_to_32(struct bpf_reg_state *reg)
1786{
f1174f77
EC
1787 /* clear high 32 bits */
1788 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1789 /* Update bounds */
1790 __update_reg_bounds(reg);
1791}
1792
1793static bool signed_add_overflows(s64 a, s64 b)
1794{
1795 /* Do the add in u64, where overflow is well-defined */
1796 s64 res = (s64)((u64)a + (u64)b);
1797
1798 if (b < 0)
1799 return res > a;
1800 return res < a;
1801}
1802
1803static bool signed_sub_overflows(s64 a, s64 b)
1804{
1805 /* Do the sub in u64, where overflow is well-defined */
1806 s64 res = (s64)((u64)a - (u64)b);
1807
1808 if (b < 0)
1809 return res < a;
1810 return res > a;
969bf05e
AS
1811}
1812
f1174f77 1813/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1814 * Caller should also handle BPF_MOV case separately.
1815 * If we return -EACCES, caller may want to try again treating pointer as a
1816 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1817 */
1818static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1819 struct bpf_insn *insn,
1820 const struct bpf_reg_state *ptr_reg,
1821 const struct bpf_reg_state *off_reg)
969bf05e 1822{
638f5b90 1823 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1824 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1825 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1826 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1827 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1828 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1829 u8 opcode = BPF_OP(insn->code);
f1174f77 1830 u32 dst = insn->dst_reg;
969bf05e 1831
f1174f77 1832 dst_reg = &regs[dst];
969bf05e 1833
b03c9f9f 1834 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1835 print_verifier_state(env, env->cur_state);
61bd5218
JK
1836 verbose(env,
1837 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1838 return -EINVAL;
1839 }
1840 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1841 print_verifier_state(env, env->cur_state);
61bd5218
JK
1842 verbose(env,
1843 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1844 return -EINVAL;
1845 }
1846
1847 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1848 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1849 if (!env->allow_ptr_leaks)
61bd5218
JK
1850 verbose(env,
1851 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1852 dst);
1853 return -EACCES;
969bf05e
AS
1854 }
1855
f1174f77
EC
1856 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1857 if (!env->allow_ptr_leaks)
61bd5218 1858 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1859 dst);
1860 return -EACCES;
1861 }
1862 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1863 if (!env->allow_ptr_leaks)
61bd5218 1864 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1865 dst);
1866 return -EACCES;
1867 }
1868 if (ptr_reg->type == PTR_TO_PACKET_END) {
1869 if (!env->allow_ptr_leaks)
61bd5218 1870 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1871 dst);
1872 return -EACCES;
1873 }
1874
1875 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1876 * The id may be overwritten later if we create a new variable offset.
969bf05e 1877 */
f1174f77
EC
1878 dst_reg->type = ptr_reg->type;
1879 dst_reg->id = ptr_reg->id;
969bf05e 1880
f1174f77
EC
1881 switch (opcode) {
1882 case BPF_ADD:
1883 /* We can take a fixed offset as long as it doesn't overflow
1884 * the s32 'off' field
969bf05e 1885 */
b03c9f9f
EC
1886 if (known && (ptr_reg->off + smin_val ==
1887 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1888 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1889 dst_reg->smin_value = smin_ptr;
1890 dst_reg->smax_value = smax_ptr;
1891 dst_reg->umin_value = umin_ptr;
1892 dst_reg->umax_value = umax_ptr;
f1174f77 1893 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1894 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1895 dst_reg->range = ptr_reg->range;
1896 break;
1897 }
f1174f77
EC
1898 /* A new variable offset is created. Note that off_reg->off
1899 * == 0, since it's a scalar.
1900 * dst_reg gets the pointer type and since some positive
1901 * integer value was added to the pointer, give it a new 'id'
1902 * if it's a PTR_TO_PACKET.
1903 * this creates a new 'base' pointer, off_reg (variable) gets
1904 * added into the variable offset, and we copy the fixed offset
1905 * from ptr_reg.
969bf05e 1906 */
b03c9f9f
EC
1907 if (signed_add_overflows(smin_ptr, smin_val) ||
1908 signed_add_overflows(smax_ptr, smax_val)) {
1909 dst_reg->smin_value = S64_MIN;
1910 dst_reg->smax_value = S64_MAX;
1911 } else {
1912 dst_reg->smin_value = smin_ptr + smin_val;
1913 dst_reg->smax_value = smax_ptr + smax_val;
1914 }
1915 if (umin_ptr + umin_val < umin_ptr ||
1916 umax_ptr + umax_val < umax_ptr) {
1917 dst_reg->umin_value = 0;
1918 dst_reg->umax_value = U64_MAX;
1919 } else {
1920 dst_reg->umin_value = umin_ptr + umin_val;
1921 dst_reg->umax_value = umax_ptr + umax_val;
1922 }
f1174f77
EC
1923 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1924 dst_reg->off = ptr_reg->off;
de8f3a83 1925 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1926 dst_reg->id = ++env->id_gen;
1927 /* something was added to pkt_ptr, set range to zero */
1928 dst_reg->range = 0;
1929 }
1930 break;
1931 case BPF_SUB:
1932 if (dst_reg == off_reg) {
1933 /* scalar -= pointer. Creates an unknown scalar */
1934 if (!env->allow_ptr_leaks)
61bd5218 1935 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1936 dst);
1937 return -EACCES;
1938 }
1939 /* We don't allow subtraction from FP, because (according to
1940 * test_verifier.c test "invalid fp arithmetic", JITs might not
1941 * be able to deal with it.
969bf05e 1942 */
f1174f77
EC
1943 if (ptr_reg->type == PTR_TO_STACK) {
1944 if (!env->allow_ptr_leaks)
61bd5218 1945 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1946 dst);
1947 return -EACCES;
1948 }
b03c9f9f
EC
1949 if (known && (ptr_reg->off - smin_val ==
1950 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1951 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1952 dst_reg->smin_value = smin_ptr;
1953 dst_reg->smax_value = smax_ptr;
1954 dst_reg->umin_value = umin_ptr;
1955 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1956 dst_reg->var_off = ptr_reg->var_off;
1957 dst_reg->id = ptr_reg->id;
b03c9f9f 1958 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1959 dst_reg->range = ptr_reg->range;
1960 break;
1961 }
f1174f77
EC
1962 /* A new variable offset is created. If the subtrahend is known
1963 * nonnegative, then any reg->range we had before is still good.
969bf05e 1964 */
b03c9f9f
EC
1965 if (signed_sub_overflows(smin_ptr, smax_val) ||
1966 signed_sub_overflows(smax_ptr, smin_val)) {
1967 /* Overflow possible, we know nothing */
1968 dst_reg->smin_value = S64_MIN;
1969 dst_reg->smax_value = S64_MAX;
1970 } else {
1971 dst_reg->smin_value = smin_ptr - smax_val;
1972 dst_reg->smax_value = smax_ptr - smin_val;
1973 }
1974 if (umin_ptr < umax_val) {
1975 /* Overflow possible, we know nothing */
1976 dst_reg->umin_value = 0;
1977 dst_reg->umax_value = U64_MAX;
1978 } else {
1979 /* Cannot overflow (as long as bounds are consistent) */
1980 dst_reg->umin_value = umin_ptr - umax_val;
1981 dst_reg->umax_value = umax_ptr - umin_val;
1982 }
f1174f77
EC
1983 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1984 dst_reg->off = ptr_reg->off;
de8f3a83 1985 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1986 dst_reg->id = ++env->id_gen;
1987 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1988 if (smin_val < 0)
f1174f77 1989 dst_reg->range = 0;
43188702 1990 }
f1174f77
EC
1991 break;
1992 case BPF_AND:
1993 case BPF_OR:
1994 case BPF_XOR:
1995 /* bitwise ops on pointers are troublesome, prohibit for now.
1996 * (However, in principle we could allow some cases, e.g.
1997 * ptr &= ~3 which would reduce min_value by 3.)
1998 */
1999 if (!env->allow_ptr_leaks)
61bd5218 2000 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
2001 dst, bpf_alu_string[opcode >> 4]);
2002 return -EACCES;
2003 default:
2004 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2005 if (!env->allow_ptr_leaks)
61bd5218 2006 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
2007 dst, bpf_alu_string[opcode >> 4]);
2008 return -EACCES;
43188702
JF
2009 }
2010
b03c9f9f
EC
2011 __update_reg_bounds(dst_reg);
2012 __reg_deduce_bounds(dst_reg);
2013 __reg_bound_offset(dst_reg);
43188702
JF
2014 return 0;
2015}
2016
f1174f77
EC
2017static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2018 struct bpf_insn *insn,
2019 struct bpf_reg_state *dst_reg,
2020 struct bpf_reg_state src_reg)
969bf05e 2021{
638f5b90 2022 struct bpf_reg_state *regs = cur_regs(env);
48461135 2023 u8 opcode = BPF_OP(insn->code);
f1174f77 2024 bool src_known, dst_known;
b03c9f9f
EC
2025 s64 smin_val, smax_val;
2026 u64 umin_val, umax_val;
48461135 2027
f1174f77
EC
2028 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2029 /* 32-bit ALU ops are (32,32)->64 */
2030 coerce_reg_to_32(dst_reg);
2031 coerce_reg_to_32(&src_reg);
9305706c 2032 }
b03c9f9f
EC
2033 smin_val = src_reg.smin_value;
2034 smax_val = src_reg.smax_value;
2035 umin_val = src_reg.umin_value;
2036 umax_val = src_reg.umax_value;
f1174f77
EC
2037 src_known = tnum_is_const(src_reg.var_off);
2038 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2039
48461135
JB
2040 switch (opcode) {
2041 case BPF_ADD:
b03c9f9f
EC
2042 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2043 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2044 dst_reg->smin_value = S64_MIN;
2045 dst_reg->smax_value = S64_MAX;
2046 } else {
2047 dst_reg->smin_value += smin_val;
2048 dst_reg->smax_value += smax_val;
2049 }
2050 if (dst_reg->umin_value + umin_val < umin_val ||
2051 dst_reg->umax_value + umax_val < umax_val) {
2052 dst_reg->umin_value = 0;
2053 dst_reg->umax_value = U64_MAX;
2054 } else {
2055 dst_reg->umin_value += umin_val;
2056 dst_reg->umax_value += umax_val;
2057 }
f1174f77 2058 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2059 break;
2060 case BPF_SUB:
b03c9f9f
EC
2061 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2062 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2063 /* Overflow possible, we know nothing */
2064 dst_reg->smin_value = S64_MIN;
2065 dst_reg->smax_value = S64_MAX;
2066 } else {
2067 dst_reg->smin_value -= smax_val;
2068 dst_reg->smax_value -= smin_val;
2069 }
2070 if (dst_reg->umin_value < umax_val) {
2071 /* Overflow possible, we know nothing */
2072 dst_reg->umin_value = 0;
2073 dst_reg->umax_value = U64_MAX;
2074 } else {
2075 /* Cannot overflow (as long as bounds are consistent) */
2076 dst_reg->umin_value -= umax_val;
2077 dst_reg->umax_value -= umin_val;
2078 }
f1174f77 2079 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2080 break;
2081 case BPF_MUL:
b03c9f9f
EC
2082 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2083 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2084 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2085 __mark_reg_unbounded(dst_reg);
2086 __update_reg_bounds(dst_reg);
f1174f77
EC
2087 break;
2088 }
b03c9f9f
EC
2089 /* Both values are positive, so we can work with unsigned and
2090 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2091 */
b03c9f9f
EC
2092 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2093 /* Potential overflow, we know nothing */
2094 __mark_reg_unbounded(dst_reg);
2095 /* (except what we can learn from the var_off) */
2096 __update_reg_bounds(dst_reg);
2097 break;
2098 }
2099 dst_reg->umin_value *= umin_val;
2100 dst_reg->umax_value *= umax_val;
2101 if (dst_reg->umax_value > S64_MAX) {
2102 /* Overflow possible, we know nothing */
2103 dst_reg->smin_value = S64_MIN;
2104 dst_reg->smax_value = S64_MAX;
2105 } else {
2106 dst_reg->smin_value = dst_reg->umin_value;
2107 dst_reg->smax_value = dst_reg->umax_value;
2108 }
48461135
JB
2109 break;
2110 case BPF_AND:
f1174f77 2111 if (src_known && dst_known) {
b03c9f9f
EC
2112 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2113 src_reg.var_off.value);
f1174f77
EC
2114 break;
2115 }
b03c9f9f
EC
2116 /* We get our minimum from the var_off, since that's inherently
2117 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2118 */
f1174f77 2119 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2120 dst_reg->umin_value = dst_reg->var_off.value;
2121 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2122 if (dst_reg->smin_value < 0 || smin_val < 0) {
2123 /* Lose signed bounds when ANDing negative numbers,
2124 * ain't nobody got time for that.
2125 */
2126 dst_reg->smin_value = S64_MIN;
2127 dst_reg->smax_value = S64_MAX;
2128 } else {
2129 /* ANDing two positives gives a positive, so safe to
2130 * cast result into s64.
2131 */
2132 dst_reg->smin_value = dst_reg->umin_value;
2133 dst_reg->smax_value = dst_reg->umax_value;
2134 }
2135 /* We may learn something more from the var_off */
2136 __update_reg_bounds(dst_reg);
f1174f77
EC
2137 break;
2138 case BPF_OR:
2139 if (src_known && dst_known) {
b03c9f9f
EC
2140 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2141 src_reg.var_off.value);
f1174f77
EC
2142 break;
2143 }
b03c9f9f
EC
2144 /* We get our maximum from the var_off, and our minimum is the
2145 * maximum of the operands' minima
f1174f77
EC
2146 */
2147 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2148 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2149 dst_reg->umax_value = dst_reg->var_off.value |
2150 dst_reg->var_off.mask;
2151 if (dst_reg->smin_value < 0 || smin_val < 0) {
2152 /* Lose signed bounds when ORing negative numbers,
2153 * ain't nobody got time for that.
2154 */
2155 dst_reg->smin_value = S64_MIN;
2156 dst_reg->smax_value = S64_MAX;
f1174f77 2157 } else {
b03c9f9f
EC
2158 /* ORing two positives gives a positive, so safe to
2159 * cast result into s64.
2160 */
2161 dst_reg->smin_value = dst_reg->umin_value;
2162 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2163 }
b03c9f9f
EC
2164 /* We may learn something more from the var_off */
2165 __update_reg_bounds(dst_reg);
48461135
JB
2166 break;
2167 case BPF_LSH:
b03c9f9f
EC
2168 if (umax_val > 63) {
2169 /* Shifts greater than 63 are undefined. This includes
2170 * shifts by a negative number.
2171 */
61bd5218 2172 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2173 break;
2174 }
b03c9f9f
EC
2175 /* We lose all sign bit information (except what we can pick
2176 * up from var_off)
48461135 2177 */
b03c9f9f
EC
2178 dst_reg->smin_value = S64_MIN;
2179 dst_reg->smax_value = S64_MAX;
2180 /* If we might shift our top bit out, then we know nothing */
2181 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2182 dst_reg->umin_value = 0;
2183 dst_reg->umax_value = U64_MAX;
d1174416 2184 } else {
b03c9f9f
EC
2185 dst_reg->umin_value <<= umin_val;
2186 dst_reg->umax_value <<= umax_val;
d1174416 2187 }
b03c9f9f
EC
2188 if (src_known)
2189 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2190 else
2191 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2192 /* We may learn something more from the var_off */
2193 __update_reg_bounds(dst_reg);
48461135
JB
2194 break;
2195 case BPF_RSH:
b03c9f9f
EC
2196 if (umax_val > 63) {
2197 /* Shifts greater than 63 are undefined. This includes
2198 * shifts by a negative number.
2199 */
61bd5218 2200 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2201 break;
2202 }
2203 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2204 if (dst_reg->smin_value < 0) {
2205 if (umin_val) {
f1174f77 2206 /* Sign bit will be cleared */
b03c9f9f
EC
2207 dst_reg->smin_value = 0;
2208 } else {
2209 /* Lost sign bit information */
2210 dst_reg->smin_value = S64_MIN;
2211 dst_reg->smax_value = S64_MAX;
2212 }
d1174416 2213 } else {
b03c9f9f
EC
2214 dst_reg->smin_value =
2215 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2216 }
f1174f77 2217 if (src_known)
b03c9f9f
EC
2218 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2219 umin_val);
f1174f77 2220 else
b03c9f9f
EC
2221 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2222 dst_reg->umin_value >>= umax_val;
2223 dst_reg->umax_value >>= umin_val;
2224 /* We may learn something more from the var_off */
2225 __update_reg_bounds(dst_reg);
48461135
JB
2226 break;
2227 default:
61bd5218 2228 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2229 break;
2230 }
2231
b03c9f9f
EC
2232 __reg_deduce_bounds(dst_reg);
2233 __reg_bound_offset(dst_reg);
f1174f77
EC
2234 return 0;
2235}
2236
2237/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2238 * and var_off.
2239 */
2240static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2241 struct bpf_insn *insn)
2242{
638f5b90 2243 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2244 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2245 u8 opcode = BPF_OP(insn->code);
2246 int rc;
2247
2248 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2249 src_reg = NULL;
2250 if (dst_reg->type != SCALAR_VALUE)
2251 ptr_reg = dst_reg;
2252 if (BPF_SRC(insn->code) == BPF_X) {
2253 src_reg = &regs[insn->src_reg];
f1174f77
EC
2254 if (src_reg->type != SCALAR_VALUE) {
2255 if (dst_reg->type != SCALAR_VALUE) {
2256 /* Combining two pointers by any ALU op yields
2257 * an arbitrary scalar.
2258 */
2259 if (!env->allow_ptr_leaks) {
61bd5218 2260 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2261 insn->dst_reg,
2262 bpf_alu_string[opcode >> 4]);
2263 return -EACCES;
2264 }
61bd5218 2265 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2266 return 0;
2267 } else {
2268 /* scalar += pointer
2269 * This is legal, but we have to reverse our
2270 * src/dest handling in computing the range
2271 */
2272 rc = adjust_ptr_min_max_vals(env, insn,
2273 src_reg, dst_reg);
2274 if (rc == -EACCES && env->allow_ptr_leaks) {
2275 /* scalar += unknown scalar */
2276 __mark_reg_unknown(&off_reg);
2277 return adjust_scalar_min_max_vals(
2278 env, insn,
2279 dst_reg, off_reg);
2280 }
2281 return rc;
2282 }
2283 } else if (ptr_reg) {
2284 /* pointer += scalar */
2285 rc = adjust_ptr_min_max_vals(env, insn,
2286 dst_reg, src_reg);
2287 if (rc == -EACCES && env->allow_ptr_leaks) {
2288 /* unknown scalar += scalar */
2289 __mark_reg_unknown(dst_reg);
2290 return adjust_scalar_min_max_vals(
2291 env, insn, dst_reg, *src_reg);
2292 }
2293 return rc;
2294 }
2295 } else {
2296 /* Pretend the src is a reg with a known value, since we only
2297 * need to be able to read from this state.
2298 */
2299 off_reg.type = SCALAR_VALUE;
b03c9f9f 2300 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2301 src_reg = &off_reg;
f1174f77
EC
2302 if (ptr_reg) { /* pointer += K */
2303 rc = adjust_ptr_min_max_vals(env, insn,
2304 ptr_reg, src_reg);
2305 if (rc == -EACCES && env->allow_ptr_leaks) {
2306 /* unknown scalar += K */
2307 __mark_reg_unknown(dst_reg);
2308 return adjust_scalar_min_max_vals(
2309 env, insn, dst_reg, off_reg);
2310 }
2311 return rc;
2312 }
2313 }
2314
2315 /* Got here implies adding two SCALAR_VALUEs */
2316 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2317 print_verifier_state(env, env->cur_state);
61bd5218 2318 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2319 return -EINVAL;
2320 }
2321 if (WARN_ON(!src_reg)) {
638f5b90 2322 print_verifier_state(env, env->cur_state);
61bd5218 2323 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2324 return -EINVAL;
2325 }
2326 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2327}
2328
17a52670 2329/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2330static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2331{
638f5b90 2332 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2333 u8 opcode = BPF_OP(insn->code);
2334 int err;
2335
2336 if (opcode == BPF_END || opcode == BPF_NEG) {
2337 if (opcode == BPF_NEG) {
2338 if (BPF_SRC(insn->code) != 0 ||
2339 insn->src_reg != BPF_REG_0 ||
2340 insn->off != 0 || insn->imm != 0) {
61bd5218 2341 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2342 return -EINVAL;
2343 }
2344 } else {
2345 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2346 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2347 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2348 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2349 return -EINVAL;
2350 }
2351 }
2352
2353 /* check src operand */
dc503a8a 2354 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2355 if (err)
2356 return err;
2357
1be7f75d 2358 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2359 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2360 insn->dst_reg);
2361 return -EACCES;
2362 }
2363
17a52670 2364 /* check dest operand */
dc503a8a 2365 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2366 if (err)
2367 return err;
2368
2369 } else if (opcode == BPF_MOV) {
2370
2371 if (BPF_SRC(insn->code) == BPF_X) {
2372 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2373 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2374 return -EINVAL;
2375 }
2376
2377 /* check src operand */
dc503a8a 2378 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2379 if (err)
2380 return err;
2381 } else {
2382 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2383 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2384 return -EINVAL;
2385 }
2386 }
2387
2388 /* check dest operand */
dc503a8a 2389 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2390 if (err)
2391 return err;
2392
2393 if (BPF_SRC(insn->code) == BPF_X) {
2394 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2395 /* case: R1 = R2
2396 * copy register state to dest reg
2397 */
2398 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2399 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2400 } else {
f1174f77 2401 /* R1 = (u32) R2 */
1be7f75d 2402 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2403 verbose(env,
2404 "R%d partial copy of pointer\n",
1be7f75d
AS
2405 insn->src_reg);
2406 return -EACCES;
2407 }
61bd5218 2408 mark_reg_unknown(env, regs, insn->dst_reg);
b03c9f9f 2409 /* high 32 bits are known zero. */
f1174f77
EC
2410 regs[insn->dst_reg].var_off = tnum_cast(
2411 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2412 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2413 }
2414 } else {
2415 /* case: R = imm
2416 * remember the value we stored into this reg
2417 */
f1174f77 2418 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2419 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2420 }
2421
2422 } else if (opcode > BPF_END) {
61bd5218 2423 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2424 return -EINVAL;
2425
2426 } else { /* all other ALU ops: and, sub, xor, add, ... */
2427
17a52670
AS
2428 if (BPF_SRC(insn->code) == BPF_X) {
2429 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2430 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2431 return -EINVAL;
2432 }
2433 /* check src1 operand */
dc503a8a 2434 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2435 if (err)
2436 return err;
2437 } else {
2438 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2439 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2440 return -EINVAL;
2441 }
2442 }
2443
2444 /* check src2 operand */
dc503a8a 2445 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2446 if (err)
2447 return err;
2448
2449 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2450 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2451 verbose(env, "div by zero\n");
17a52670
AS
2452 return -EINVAL;
2453 }
2454
229394e8
RV
2455 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2456 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2457 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2458
2459 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2460 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2461 return -EINVAL;
2462 }
2463 }
2464
1a0dc1ac 2465 /* check dest operand */
dc503a8a 2466 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2467 if (err)
2468 return err;
2469
f1174f77 2470 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2471 }
2472
2473 return 0;
2474}
2475
58e2af8b 2476static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2477 struct bpf_reg_state *dst_reg,
f8ddadc4 2478 enum bpf_reg_type type,
fb2a311a 2479 bool range_right_open)
969bf05e 2480{
58e2af8b 2481 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2482 u16 new_range;
969bf05e 2483 int i;
2d2be8ca 2484
fb2a311a
DB
2485 if (dst_reg->off < 0 ||
2486 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2487 /* This doesn't give us any range */
2488 return;
2489
b03c9f9f
EC
2490 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2491 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2492 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2493 * than pkt_end, but that's because it's also less than pkt.
2494 */
2495 return;
2496
fb2a311a
DB
2497 new_range = dst_reg->off;
2498 if (range_right_open)
2499 new_range--;
2500
2501 /* Examples for register markings:
2d2be8ca 2502 *
fb2a311a 2503 * pkt_data in dst register:
2d2be8ca
DB
2504 *
2505 * r2 = r3;
2506 * r2 += 8;
2507 * if (r2 > pkt_end) goto <handle exception>
2508 * <access okay>
2509 *
b4e432f1
DB
2510 * r2 = r3;
2511 * r2 += 8;
2512 * if (r2 < pkt_end) goto <access okay>
2513 * <handle exception>
2514 *
2d2be8ca
DB
2515 * Where:
2516 * r2 == dst_reg, pkt_end == src_reg
2517 * r2=pkt(id=n,off=8,r=0)
2518 * r3=pkt(id=n,off=0,r=0)
2519 *
fb2a311a 2520 * pkt_data in src register:
2d2be8ca
DB
2521 *
2522 * r2 = r3;
2523 * r2 += 8;
2524 * if (pkt_end >= r2) goto <access okay>
2525 * <handle exception>
2526 *
b4e432f1
DB
2527 * r2 = r3;
2528 * r2 += 8;
2529 * if (pkt_end <= r2) goto <handle exception>
2530 * <access okay>
2531 *
2d2be8ca
DB
2532 * Where:
2533 * pkt_end == dst_reg, r2 == src_reg
2534 * r2=pkt(id=n,off=8,r=0)
2535 * r3=pkt(id=n,off=0,r=0)
2536 *
2537 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2538 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2539 * and [r3, r3 + 8-1) respectively is safe to access depending on
2540 * the check.
969bf05e 2541 */
2d2be8ca 2542
f1174f77
EC
2543 /* If our ids match, then we must have the same max_value. And we
2544 * don't care about the other reg's fixed offset, since if it's too big
2545 * the range won't allow anything.
2546 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2547 */
969bf05e 2548 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2549 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2550 /* keep the maximum range already checked */
fb2a311a 2551 regs[i].range = max(regs[i].range, new_range);
969bf05e 2552
638f5b90
AS
2553 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2554 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2555 continue;
638f5b90 2556 reg = &state->stack[i].spilled_ptr;
de8f3a83 2557 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2558 reg->range = max(reg->range, new_range);
969bf05e
AS
2559 }
2560}
2561
48461135
JB
2562/* Adjusts the register min/max values in the case that the dst_reg is the
2563 * variable register that we are working on, and src_reg is a constant or we're
2564 * simply doing a BPF_K check.
f1174f77 2565 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2566 */
2567static void reg_set_min_max(struct bpf_reg_state *true_reg,
2568 struct bpf_reg_state *false_reg, u64 val,
2569 u8 opcode)
2570{
f1174f77
EC
2571 /* If the dst_reg is a pointer, we can't learn anything about its
2572 * variable offset from the compare (unless src_reg were a pointer into
2573 * the same object, but we don't bother with that.
2574 * Since false_reg and true_reg have the same type by construction, we
2575 * only need to check one of them for pointerness.
2576 */
2577 if (__is_pointer_value(false, false_reg))
2578 return;
4cabc5b1 2579
48461135
JB
2580 switch (opcode) {
2581 case BPF_JEQ:
2582 /* If this is false then we know nothing Jon Snow, but if it is
2583 * true then we know for sure.
2584 */
b03c9f9f 2585 __mark_reg_known(true_reg, val);
48461135
JB
2586 break;
2587 case BPF_JNE:
2588 /* If this is true we know nothing Jon Snow, but if it is false
2589 * we know the value for sure;
2590 */
b03c9f9f 2591 __mark_reg_known(false_reg, val);
48461135
JB
2592 break;
2593 case BPF_JGT:
b03c9f9f
EC
2594 false_reg->umax_value = min(false_reg->umax_value, val);
2595 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2596 break;
48461135 2597 case BPF_JSGT:
b03c9f9f
EC
2598 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2599 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2600 break;
b4e432f1
DB
2601 case BPF_JLT:
2602 false_reg->umin_value = max(false_reg->umin_value, val);
2603 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2604 break;
2605 case BPF_JSLT:
2606 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2607 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2608 break;
48461135 2609 case BPF_JGE:
b03c9f9f
EC
2610 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2611 true_reg->umin_value = max(true_reg->umin_value, val);
2612 break;
48461135 2613 case BPF_JSGE:
b03c9f9f
EC
2614 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2615 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2616 break;
b4e432f1
DB
2617 case BPF_JLE:
2618 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2619 true_reg->umax_value = min(true_reg->umax_value, val);
2620 break;
2621 case BPF_JSLE:
2622 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2623 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2624 break;
48461135
JB
2625 default:
2626 break;
2627 }
2628
b03c9f9f
EC
2629 __reg_deduce_bounds(false_reg);
2630 __reg_deduce_bounds(true_reg);
2631 /* We might have learned some bits from the bounds. */
2632 __reg_bound_offset(false_reg);
2633 __reg_bound_offset(true_reg);
2634 /* Intersecting with the old var_off might have improved our bounds
2635 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2636 * then new var_off is (0; 0x7f...fc) which improves our umax.
2637 */
2638 __update_reg_bounds(false_reg);
2639 __update_reg_bounds(true_reg);
48461135
JB
2640}
2641
f1174f77
EC
2642/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2643 * the variable reg.
48461135
JB
2644 */
2645static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2646 struct bpf_reg_state *false_reg, u64 val,
2647 u8 opcode)
2648{
f1174f77
EC
2649 if (__is_pointer_value(false, false_reg))
2650 return;
4cabc5b1 2651
48461135
JB
2652 switch (opcode) {
2653 case BPF_JEQ:
2654 /* If this is false then we know nothing Jon Snow, but if it is
2655 * true then we know for sure.
2656 */
b03c9f9f 2657 __mark_reg_known(true_reg, val);
48461135
JB
2658 break;
2659 case BPF_JNE:
2660 /* If this is true we know nothing Jon Snow, but if it is false
2661 * we know the value for sure;
2662 */
b03c9f9f 2663 __mark_reg_known(false_reg, val);
48461135
JB
2664 break;
2665 case BPF_JGT:
b03c9f9f
EC
2666 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2667 false_reg->umin_value = max(false_reg->umin_value, val);
2668 break;
48461135 2669 case BPF_JSGT:
b03c9f9f
EC
2670 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2671 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2672 break;
b4e432f1
DB
2673 case BPF_JLT:
2674 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2675 false_reg->umax_value = min(false_reg->umax_value, val);
2676 break;
2677 case BPF_JSLT:
2678 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2679 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2680 break;
48461135 2681 case BPF_JGE:
b03c9f9f
EC
2682 true_reg->umax_value = min(true_reg->umax_value, val);
2683 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2684 break;
48461135 2685 case BPF_JSGE:
b03c9f9f
EC
2686 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2687 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2688 break;
b4e432f1
DB
2689 case BPF_JLE:
2690 true_reg->umin_value = max(true_reg->umin_value, val);
2691 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2692 break;
2693 case BPF_JSLE:
2694 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2695 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2696 break;
48461135
JB
2697 default:
2698 break;
2699 }
2700
b03c9f9f
EC
2701 __reg_deduce_bounds(false_reg);
2702 __reg_deduce_bounds(true_reg);
2703 /* We might have learned some bits from the bounds. */
2704 __reg_bound_offset(false_reg);
2705 __reg_bound_offset(true_reg);
2706 /* Intersecting with the old var_off might have improved our bounds
2707 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2708 * then new var_off is (0; 0x7f...fc) which improves our umax.
2709 */
2710 __update_reg_bounds(false_reg);
2711 __update_reg_bounds(true_reg);
f1174f77
EC
2712}
2713
2714/* Regs are known to be equal, so intersect their min/max/var_off */
2715static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2716 struct bpf_reg_state *dst_reg)
2717{
b03c9f9f
EC
2718 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2719 dst_reg->umin_value);
2720 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2721 dst_reg->umax_value);
2722 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2723 dst_reg->smin_value);
2724 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2725 dst_reg->smax_value);
f1174f77
EC
2726 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2727 dst_reg->var_off);
b03c9f9f
EC
2728 /* We might have learned new bounds from the var_off. */
2729 __update_reg_bounds(src_reg);
2730 __update_reg_bounds(dst_reg);
2731 /* We might have learned something about the sign bit. */
2732 __reg_deduce_bounds(src_reg);
2733 __reg_deduce_bounds(dst_reg);
2734 /* We might have learned some bits from the bounds. */
2735 __reg_bound_offset(src_reg);
2736 __reg_bound_offset(dst_reg);
2737 /* Intersecting with the old var_off might have improved our bounds
2738 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2739 * then new var_off is (0; 0x7f...fc) which improves our umax.
2740 */
2741 __update_reg_bounds(src_reg);
2742 __update_reg_bounds(dst_reg);
f1174f77
EC
2743}
2744
2745static void reg_combine_min_max(struct bpf_reg_state *true_src,
2746 struct bpf_reg_state *true_dst,
2747 struct bpf_reg_state *false_src,
2748 struct bpf_reg_state *false_dst,
2749 u8 opcode)
2750{
2751 switch (opcode) {
2752 case BPF_JEQ:
2753 __reg_combine_min_max(true_src, true_dst);
2754 break;
2755 case BPF_JNE:
2756 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2757 break;
4cabc5b1 2758 }
48461135
JB
2759}
2760
57a09bf0 2761static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2762 bool is_null)
57a09bf0
TG
2763{
2764 struct bpf_reg_state *reg = &regs[regno];
2765
2766 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2767 /* Old offset (both fixed and variable parts) should
2768 * have been known-zero, because we don't allow pointer
2769 * arithmetic on pointers that might be NULL.
2770 */
b03c9f9f
EC
2771 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2772 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2773 reg->off)) {
b03c9f9f
EC
2774 __mark_reg_known_zero(reg);
2775 reg->off = 0;
f1174f77
EC
2776 }
2777 if (is_null) {
2778 reg->type = SCALAR_VALUE;
56f668df
MKL
2779 } else if (reg->map_ptr->inner_map_meta) {
2780 reg->type = CONST_PTR_TO_MAP;
2781 reg->map_ptr = reg->map_ptr->inner_map_meta;
2782 } else {
f1174f77 2783 reg->type = PTR_TO_MAP_VALUE;
56f668df 2784 }
a08dd0da
DB
2785 /* We don't need id from this point onwards anymore, thus we
2786 * should better reset it, so that state pruning has chances
2787 * to take effect.
2788 */
2789 reg->id = 0;
57a09bf0
TG
2790 }
2791}
2792
2793/* The logic is similar to find_good_pkt_pointers(), both could eventually
2794 * be folded together at some point.
2795 */
2796static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2797 bool is_null)
57a09bf0
TG
2798{
2799 struct bpf_reg_state *regs = state->regs;
a08dd0da 2800 u32 id = regs[regno].id;
57a09bf0
TG
2801 int i;
2802
2803 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2804 mark_map_reg(regs, i, id, is_null);
57a09bf0 2805
638f5b90
AS
2806 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2807 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2808 continue;
638f5b90 2809 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2810 }
2811}
2812
5beca081
DB
2813static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2814 struct bpf_reg_state *dst_reg,
2815 struct bpf_reg_state *src_reg,
2816 struct bpf_verifier_state *this_branch,
2817 struct bpf_verifier_state *other_branch)
2818{
2819 if (BPF_SRC(insn->code) != BPF_X)
2820 return false;
2821
2822 switch (BPF_OP(insn->code)) {
2823 case BPF_JGT:
2824 if ((dst_reg->type == PTR_TO_PACKET &&
2825 src_reg->type == PTR_TO_PACKET_END) ||
2826 (dst_reg->type == PTR_TO_PACKET_META &&
2827 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2828 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2829 find_good_pkt_pointers(this_branch, dst_reg,
2830 dst_reg->type, false);
2831 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2832 src_reg->type == PTR_TO_PACKET) ||
2833 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2834 src_reg->type == PTR_TO_PACKET_META)) {
2835 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2836 find_good_pkt_pointers(other_branch, src_reg,
2837 src_reg->type, true);
2838 } else {
2839 return false;
2840 }
2841 break;
2842 case BPF_JLT:
2843 if ((dst_reg->type == PTR_TO_PACKET &&
2844 src_reg->type == PTR_TO_PACKET_END) ||
2845 (dst_reg->type == PTR_TO_PACKET_META &&
2846 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2847 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2848 find_good_pkt_pointers(other_branch, dst_reg,
2849 dst_reg->type, true);
2850 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2851 src_reg->type == PTR_TO_PACKET) ||
2852 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2853 src_reg->type == PTR_TO_PACKET_META)) {
2854 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2855 find_good_pkt_pointers(this_branch, src_reg,
2856 src_reg->type, false);
2857 } else {
2858 return false;
2859 }
2860 break;
2861 case BPF_JGE:
2862 if ((dst_reg->type == PTR_TO_PACKET &&
2863 src_reg->type == PTR_TO_PACKET_END) ||
2864 (dst_reg->type == PTR_TO_PACKET_META &&
2865 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2866 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2867 find_good_pkt_pointers(this_branch, dst_reg,
2868 dst_reg->type, true);
2869 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2870 src_reg->type == PTR_TO_PACKET) ||
2871 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2872 src_reg->type == PTR_TO_PACKET_META)) {
2873 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2874 find_good_pkt_pointers(other_branch, src_reg,
2875 src_reg->type, false);
2876 } else {
2877 return false;
2878 }
2879 break;
2880 case BPF_JLE:
2881 if ((dst_reg->type == PTR_TO_PACKET &&
2882 src_reg->type == PTR_TO_PACKET_END) ||
2883 (dst_reg->type == PTR_TO_PACKET_META &&
2884 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2885 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2886 find_good_pkt_pointers(other_branch, dst_reg,
2887 dst_reg->type, false);
2888 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2889 src_reg->type == PTR_TO_PACKET) ||
2890 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2891 src_reg->type == PTR_TO_PACKET_META)) {
2892 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2893 find_good_pkt_pointers(this_branch, src_reg,
2894 src_reg->type, true);
2895 } else {
2896 return false;
2897 }
2898 break;
2899 default:
2900 return false;
2901 }
2902
2903 return true;
2904}
2905
58e2af8b 2906static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2907 struct bpf_insn *insn, int *insn_idx)
2908{
638f5b90 2909 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2910 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2911 u8 opcode = BPF_OP(insn->code);
2912 int err;
2913
b4e432f1 2914 if (opcode > BPF_JSLE) {
61bd5218 2915 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2916 return -EINVAL;
2917 }
2918
2919 if (BPF_SRC(insn->code) == BPF_X) {
2920 if (insn->imm != 0) {
61bd5218 2921 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2922 return -EINVAL;
2923 }
2924
2925 /* check src1 operand */
dc503a8a 2926 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2927 if (err)
2928 return err;
1be7f75d
AS
2929
2930 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2931 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2932 insn->src_reg);
2933 return -EACCES;
2934 }
17a52670
AS
2935 } else {
2936 if (insn->src_reg != BPF_REG_0) {
61bd5218 2937 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2938 return -EINVAL;
2939 }
2940 }
2941
2942 /* check src2 operand */
dc503a8a 2943 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2944 if (err)
2945 return err;
2946
1a0dc1ac
AS
2947 dst_reg = &regs[insn->dst_reg];
2948
17a52670
AS
2949 /* detect if R == 0 where R was initialized to zero earlier */
2950 if (BPF_SRC(insn->code) == BPF_K &&
2951 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2952 dst_reg->type == SCALAR_VALUE &&
2953 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2954 if (opcode == BPF_JEQ) {
2955 /* if (imm == imm) goto pc+off;
2956 * only follow the goto, ignore fall-through
2957 */
2958 *insn_idx += insn->off;
2959 return 0;
2960 } else {
2961 /* if (imm != imm) goto pc+off;
2962 * only follow fall-through branch, since
2963 * that's where the program will go
2964 */
2965 return 0;
2966 }
2967 }
2968
2969 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2970 if (!other_branch)
2971 return -EFAULT;
2972
48461135
JB
2973 /* detect if we are comparing against a constant value so we can adjust
2974 * our min/max values for our dst register.
f1174f77
EC
2975 * this is only legit if both are scalars (or pointers to the same
2976 * object, I suppose, but we don't support that right now), because
2977 * otherwise the different base pointers mean the offsets aren't
2978 * comparable.
48461135
JB
2979 */
2980 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2981 if (dst_reg->type == SCALAR_VALUE &&
2982 regs[insn->src_reg].type == SCALAR_VALUE) {
2983 if (tnum_is_const(regs[insn->src_reg].var_off))
2984 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2985 dst_reg, regs[insn->src_reg].var_off.value,
2986 opcode);
2987 else if (tnum_is_const(dst_reg->var_off))
2988 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2989 &regs[insn->src_reg],
2990 dst_reg->var_off.value, opcode);
2991 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2992 /* Comparing for equality, we can combine knowledge */
2993 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2994 &other_branch->regs[insn->dst_reg],
2995 &regs[insn->src_reg],
2996 &regs[insn->dst_reg], opcode);
2997 }
2998 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2999 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3000 dst_reg, insn->imm, opcode);
3001 }
3002
58e2af8b 3003 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3004 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3005 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3006 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3007 /* Mark all identical map registers in each branch as either
3008 * safe or unknown depending R == 0 or R != 0 conditional.
3009 */
f1174f77
EC
3010 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3011 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3012 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3013 this_branch, other_branch) &&
3014 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3015 verbose(env, "R%d pointer comparison prohibited\n",
3016 insn->dst_reg);
1be7f75d 3017 return -EACCES;
17a52670 3018 }
61bd5218
JK
3019 if (env->log.level)
3020 print_verifier_state(env, this_branch);
17a52670
AS
3021 return 0;
3022}
3023
0246e64d
AS
3024/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3025static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3026{
3027 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3028
3029 return (struct bpf_map *) (unsigned long) imm64;
3030}
3031
17a52670 3032/* verify BPF_LD_IMM64 instruction */
58e2af8b 3033static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3034{
638f5b90 3035 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3036 int err;
3037
3038 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3039 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3040 return -EINVAL;
3041 }
3042 if (insn->off != 0) {
61bd5218 3043 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3044 return -EINVAL;
3045 }
3046
dc503a8a 3047 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3048 if (err)
3049 return err;
3050
6b173873 3051 if (insn->src_reg == 0) {
6b173873
JK
3052 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3053
f1174f77 3054 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3055 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3056 return 0;
6b173873 3057 }
17a52670
AS
3058
3059 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3060 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3061
3062 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3063 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3064 return 0;
3065}
3066
96be4325
DB
3067static bool may_access_skb(enum bpf_prog_type type)
3068{
3069 switch (type) {
3070 case BPF_PROG_TYPE_SOCKET_FILTER:
3071 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3072 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3073 return true;
3074 default:
3075 return false;
3076 }
3077}
3078
ddd872bc
AS
3079/* verify safety of LD_ABS|LD_IND instructions:
3080 * - they can only appear in the programs where ctx == skb
3081 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3082 * preserve R6-R9, and store return value into R0
3083 *
3084 * Implicit input:
3085 * ctx == skb == R6 == CTX
3086 *
3087 * Explicit input:
3088 * SRC == any register
3089 * IMM == 32-bit immediate
3090 *
3091 * Output:
3092 * R0 - 8/16/32-bit skb data converted to cpu endianness
3093 */
58e2af8b 3094static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3095{
638f5b90 3096 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3097 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3098 int i, err;
3099
24701ece 3100 if (!may_access_skb(env->prog->type)) {
61bd5218 3101 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3102 return -EINVAL;
3103 }
3104
3105 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3106 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3107 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3108 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3109 return -EINVAL;
3110 }
3111
3112 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3113 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3114 if (err)
3115 return err;
3116
3117 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3118 verbose(env,
3119 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3120 return -EINVAL;
3121 }
3122
3123 if (mode == BPF_IND) {
3124 /* check explicit source operand */
dc503a8a 3125 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3126 if (err)
3127 return err;
3128 }
3129
3130 /* reset caller saved regs to unreadable */
dc503a8a 3131 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3132 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3133 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3134 }
ddd872bc
AS
3135
3136 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3137 * the value fetched from the packet.
3138 * Already marked as written above.
ddd872bc 3139 */
61bd5218 3140 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3141 return 0;
3142}
3143
390ee7e2
AS
3144static int check_return_code(struct bpf_verifier_env *env)
3145{
3146 struct bpf_reg_state *reg;
3147 struct tnum range = tnum_range(0, 1);
3148
3149 switch (env->prog->type) {
3150 case BPF_PROG_TYPE_CGROUP_SKB:
3151 case BPF_PROG_TYPE_CGROUP_SOCK:
3152 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3153 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3154 break;
3155 default:
3156 return 0;
3157 }
3158
638f5b90 3159 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3160 if (reg->type != SCALAR_VALUE) {
61bd5218 3161 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3162 reg_type_str[reg->type]);
3163 return -EINVAL;
3164 }
3165
3166 if (!tnum_in(range, reg->var_off)) {
61bd5218 3167 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3168 if (!tnum_is_unknown(reg->var_off)) {
3169 char tn_buf[48];
3170
3171 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3172 verbose(env, "has value %s", tn_buf);
390ee7e2 3173 } else {
61bd5218 3174 verbose(env, "has unknown scalar value");
390ee7e2 3175 }
61bd5218 3176 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3177 return -EINVAL;
3178 }
3179 return 0;
3180}
3181
475fb78f
AS
3182/* non-recursive DFS pseudo code
3183 * 1 procedure DFS-iterative(G,v):
3184 * 2 label v as discovered
3185 * 3 let S be a stack
3186 * 4 S.push(v)
3187 * 5 while S is not empty
3188 * 6 t <- S.pop()
3189 * 7 if t is what we're looking for:
3190 * 8 return t
3191 * 9 for all edges e in G.adjacentEdges(t) do
3192 * 10 if edge e is already labelled
3193 * 11 continue with the next edge
3194 * 12 w <- G.adjacentVertex(t,e)
3195 * 13 if vertex w is not discovered and not explored
3196 * 14 label e as tree-edge
3197 * 15 label w as discovered
3198 * 16 S.push(w)
3199 * 17 continue at 5
3200 * 18 else if vertex w is discovered
3201 * 19 label e as back-edge
3202 * 20 else
3203 * 21 // vertex w is explored
3204 * 22 label e as forward- or cross-edge
3205 * 23 label t as explored
3206 * 24 S.pop()
3207 *
3208 * convention:
3209 * 0x10 - discovered
3210 * 0x11 - discovered and fall-through edge labelled
3211 * 0x12 - discovered and fall-through and branch edges labelled
3212 * 0x20 - explored
3213 */
3214
3215enum {
3216 DISCOVERED = 0x10,
3217 EXPLORED = 0x20,
3218 FALLTHROUGH = 1,
3219 BRANCH = 2,
3220};
3221
58e2af8b 3222#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3223
475fb78f
AS
3224static int *insn_stack; /* stack of insns to process */
3225static int cur_stack; /* current stack index */
3226static int *insn_state;
3227
3228/* t, w, e - match pseudo-code above:
3229 * t - index of current instruction
3230 * w - next instruction
3231 * e - edge
3232 */
58e2af8b 3233static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3234{
3235 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3236 return 0;
3237
3238 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3239 return 0;
3240
3241 if (w < 0 || w >= env->prog->len) {
61bd5218 3242 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3243 return -EINVAL;
3244 }
3245
f1bca824
AS
3246 if (e == BRANCH)
3247 /* mark branch target for state pruning */
3248 env->explored_states[w] = STATE_LIST_MARK;
3249
475fb78f
AS
3250 if (insn_state[w] == 0) {
3251 /* tree-edge */
3252 insn_state[t] = DISCOVERED | e;
3253 insn_state[w] = DISCOVERED;
3254 if (cur_stack >= env->prog->len)
3255 return -E2BIG;
3256 insn_stack[cur_stack++] = w;
3257 return 1;
3258 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3259 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3260 return -EINVAL;
3261 } else if (insn_state[w] == EXPLORED) {
3262 /* forward- or cross-edge */
3263 insn_state[t] = DISCOVERED | e;
3264 } else {
61bd5218 3265 verbose(env, "insn state internal bug\n");
475fb78f
AS
3266 return -EFAULT;
3267 }
3268 return 0;
3269}
3270
3271/* non-recursive depth-first-search to detect loops in BPF program
3272 * loop == back-edge in directed graph
3273 */
58e2af8b 3274static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3275{
3276 struct bpf_insn *insns = env->prog->insnsi;
3277 int insn_cnt = env->prog->len;
3278 int ret = 0;
3279 int i, t;
3280
3281 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3282 if (!insn_state)
3283 return -ENOMEM;
3284
3285 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3286 if (!insn_stack) {
3287 kfree(insn_state);
3288 return -ENOMEM;
3289 }
3290
3291 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3292 insn_stack[0] = 0; /* 0 is the first instruction */
3293 cur_stack = 1;
3294
3295peek_stack:
3296 if (cur_stack == 0)
3297 goto check_state;
3298 t = insn_stack[cur_stack - 1];
3299
3300 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3301 u8 opcode = BPF_OP(insns[t].code);
3302
3303 if (opcode == BPF_EXIT) {
3304 goto mark_explored;
3305 } else if (opcode == BPF_CALL) {
3306 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3307 if (ret == 1)
3308 goto peek_stack;
3309 else if (ret < 0)
3310 goto err_free;
07016151
DB
3311 if (t + 1 < insn_cnt)
3312 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3313 } else if (opcode == BPF_JA) {
3314 if (BPF_SRC(insns[t].code) != BPF_K) {
3315 ret = -EINVAL;
3316 goto err_free;
3317 }
3318 /* unconditional jump with single edge */
3319 ret = push_insn(t, t + insns[t].off + 1,
3320 FALLTHROUGH, env);
3321 if (ret == 1)
3322 goto peek_stack;
3323 else if (ret < 0)
3324 goto err_free;
f1bca824
AS
3325 /* tell verifier to check for equivalent states
3326 * after every call and jump
3327 */
c3de6317
AS
3328 if (t + 1 < insn_cnt)
3329 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3330 } else {
3331 /* conditional jump with two edges */
3c2ce60b 3332 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3333 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3334 if (ret == 1)
3335 goto peek_stack;
3336 else if (ret < 0)
3337 goto err_free;
3338
3339 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3340 if (ret == 1)
3341 goto peek_stack;
3342 else if (ret < 0)
3343 goto err_free;
3344 }
3345 } else {
3346 /* all other non-branch instructions with single
3347 * fall-through edge
3348 */
3349 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3350 if (ret == 1)
3351 goto peek_stack;
3352 else if (ret < 0)
3353 goto err_free;
3354 }
3355
3356mark_explored:
3357 insn_state[t] = EXPLORED;
3358 if (cur_stack-- <= 0) {
61bd5218 3359 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3360 ret = -EFAULT;
3361 goto err_free;
3362 }
3363 goto peek_stack;
3364
3365check_state:
3366 for (i = 0; i < insn_cnt; i++) {
3367 if (insn_state[i] != EXPLORED) {
61bd5218 3368 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3369 ret = -EINVAL;
3370 goto err_free;
3371 }
3372 }
3373 ret = 0; /* cfg looks good */
3374
3375err_free:
3376 kfree(insn_state);
3377 kfree(insn_stack);
3378 return ret;
3379}
3380
f1174f77
EC
3381/* check %cur's range satisfies %old's */
3382static bool range_within(struct bpf_reg_state *old,
3383 struct bpf_reg_state *cur)
3384{
b03c9f9f
EC
3385 return old->umin_value <= cur->umin_value &&
3386 old->umax_value >= cur->umax_value &&
3387 old->smin_value <= cur->smin_value &&
3388 old->smax_value >= cur->smax_value;
f1174f77
EC
3389}
3390
3391/* Maximum number of register states that can exist at once */
3392#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3393struct idpair {
3394 u32 old;
3395 u32 cur;
3396};
3397
3398/* If in the old state two registers had the same id, then they need to have
3399 * the same id in the new state as well. But that id could be different from
3400 * the old state, so we need to track the mapping from old to new ids.
3401 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3402 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3403 * regs with a different old id could still have new id 9, we don't care about
3404 * that.
3405 * So we look through our idmap to see if this old id has been seen before. If
3406 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3407 */
f1174f77 3408static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3409{
f1174f77 3410 unsigned int i;
969bf05e 3411
f1174f77
EC
3412 for (i = 0; i < ID_MAP_SIZE; i++) {
3413 if (!idmap[i].old) {
3414 /* Reached an empty slot; haven't seen this id before */
3415 idmap[i].old = old_id;
3416 idmap[i].cur = cur_id;
3417 return true;
3418 }
3419 if (idmap[i].old == old_id)
3420 return idmap[i].cur == cur_id;
3421 }
3422 /* We ran out of idmap slots, which should be impossible */
3423 WARN_ON_ONCE(1);
3424 return false;
3425}
3426
3427/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3428static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3429 struct idpair *idmap)
f1174f77 3430{
dc503a8a
EC
3431 if (!(rold->live & REG_LIVE_READ))
3432 /* explored state didn't use this */
3433 return true;
3434
3435 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3436 return true;
3437
f1174f77
EC
3438 if (rold->type == NOT_INIT)
3439 /* explored state can't have used this */
969bf05e 3440 return true;
f1174f77
EC
3441 if (rcur->type == NOT_INIT)
3442 return false;
3443 switch (rold->type) {
3444 case SCALAR_VALUE:
3445 if (rcur->type == SCALAR_VALUE) {
3446 /* new val must satisfy old val knowledge */
3447 return range_within(rold, rcur) &&
3448 tnum_in(rold->var_off, rcur->var_off);
3449 } else {
3450 /* if we knew anything about the old value, we're not
3451 * equal, because we can't know anything about the
3452 * scalar value of the pointer in the new value.
3453 */
b03c9f9f
EC
3454 return rold->umin_value == 0 &&
3455 rold->umax_value == U64_MAX &&
3456 rold->smin_value == S64_MIN &&
3457 rold->smax_value == S64_MAX &&
f1174f77
EC
3458 tnum_is_unknown(rold->var_off);
3459 }
3460 case PTR_TO_MAP_VALUE:
1b688a19
EC
3461 /* If the new min/max/var_off satisfy the old ones and
3462 * everything else matches, we are OK.
3463 * We don't care about the 'id' value, because nothing
3464 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3465 */
3466 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3467 range_within(rold, rcur) &&
3468 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3469 case PTR_TO_MAP_VALUE_OR_NULL:
3470 /* a PTR_TO_MAP_VALUE could be safe to use as a
3471 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3472 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3473 * checked, doing so could have affected others with the same
3474 * id, and we can't check for that because we lost the id when
3475 * we converted to a PTR_TO_MAP_VALUE.
3476 */
3477 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3478 return false;
3479 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3480 return false;
3481 /* Check our ids match any regs they're supposed to */
3482 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3483 case PTR_TO_PACKET_META:
f1174f77 3484 case PTR_TO_PACKET:
de8f3a83 3485 if (rcur->type != rold->type)
f1174f77
EC
3486 return false;
3487 /* We must have at least as much range as the old ptr
3488 * did, so that any accesses which were safe before are
3489 * still safe. This is true even if old range < old off,
3490 * since someone could have accessed through (ptr - k), or
3491 * even done ptr -= k in a register, to get a safe access.
3492 */
3493 if (rold->range > rcur->range)
3494 return false;
3495 /* If the offsets don't match, we can't trust our alignment;
3496 * nor can we be sure that we won't fall out of range.
3497 */
3498 if (rold->off != rcur->off)
3499 return false;
3500 /* id relations must be preserved */
3501 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3502 return false;
3503 /* new val must satisfy old val knowledge */
3504 return range_within(rold, rcur) &&
3505 tnum_in(rold->var_off, rcur->var_off);
3506 case PTR_TO_CTX:
3507 case CONST_PTR_TO_MAP:
3508 case PTR_TO_STACK:
3509 case PTR_TO_PACKET_END:
3510 /* Only valid matches are exact, which memcmp() above
3511 * would have accepted
3512 */
3513 default:
3514 /* Don't know what's going on, just say it's not safe */
3515 return false;
3516 }
969bf05e 3517
f1174f77
EC
3518 /* Shouldn't get here; if we do, say it's not safe */
3519 WARN_ON_ONCE(1);
969bf05e
AS
3520 return false;
3521}
3522
638f5b90
AS
3523static bool stacksafe(struct bpf_verifier_state *old,
3524 struct bpf_verifier_state *cur,
3525 struct idpair *idmap)
3526{
3527 int i, spi;
3528
3529 /* if explored stack has more populated slots than current stack
3530 * such stacks are not equivalent
3531 */
3532 if (old->allocated_stack > cur->allocated_stack)
3533 return false;
3534
3535 /* walk slots of the explored stack and ignore any additional
3536 * slots in the current stack, since explored(safe) state
3537 * didn't use them
3538 */
3539 for (i = 0; i < old->allocated_stack; i++) {
3540 spi = i / BPF_REG_SIZE;
3541
3542 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3543 continue;
3544 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3545 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3546 /* Ex: old explored (safe) state has STACK_SPILL in
3547 * this stack slot, but current has has STACK_MISC ->
3548 * this verifier states are not equivalent,
3549 * return false to continue verification of this path
3550 */
3551 return false;
3552 if (i % BPF_REG_SIZE)
3553 continue;
3554 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3555 continue;
3556 if (!regsafe(&old->stack[spi].spilled_ptr,
3557 &cur->stack[spi].spilled_ptr,
3558 idmap))
3559 /* when explored and current stack slot are both storing
3560 * spilled registers, check that stored pointers types
3561 * are the same as well.
3562 * Ex: explored safe path could have stored
3563 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3564 * but current path has stored:
3565 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3566 * such verifier states are not equivalent.
3567 * return false to continue verification of this path
3568 */
3569 return false;
3570 }
3571 return true;
3572}
3573
f1bca824
AS
3574/* compare two verifier states
3575 *
3576 * all states stored in state_list are known to be valid, since
3577 * verifier reached 'bpf_exit' instruction through them
3578 *
3579 * this function is called when verifier exploring different branches of
3580 * execution popped from the state stack. If it sees an old state that has
3581 * more strict register state and more strict stack state then this execution
3582 * branch doesn't need to be explored further, since verifier already
3583 * concluded that more strict state leads to valid finish.
3584 *
3585 * Therefore two states are equivalent if register state is more conservative
3586 * and explored stack state is more conservative than the current one.
3587 * Example:
3588 * explored current
3589 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3590 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3591 *
3592 * In other words if current stack state (one being explored) has more
3593 * valid slots than old one that already passed validation, it means
3594 * the verifier can stop exploring and conclude that current state is valid too
3595 *
3596 * Similarly with registers. If explored state has register type as invalid
3597 * whereas register type in current state is meaningful, it means that
3598 * the current state will reach 'bpf_exit' instruction safely
3599 */
48461135
JB
3600static bool states_equal(struct bpf_verifier_env *env,
3601 struct bpf_verifier_state *old,
58e2af8b 3602 struct bpf_verifier_state *cur)
f1bca824 3603{
f1174f77
EC
3604 struct idpair *idmap;
3605 bool ret = false;
f1bca824
AS
3606 int i;
3607
f1174f77
EC
3608 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3609 /* If we failed to allocate the idmap, just say it's not safe */
3610 if (!idmap)
1a0dc1ac 3611 return false;
f1174f77
EC
3612
3613 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3614 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3615 goto out_free;
f1bca824
AS
3616 }
3617
638f5b90
AS
3618 if (!stacksafe(old, cur, idmap))
3619 goto out_free;
f1174f77
EC
3620 ret = true;
3621out_free:
3622 kfree(idmap);
3623 return ret;
f1bca824
AS
3624}
3625
8e9cd9ce
EC
3626/* A write screens off any subsequent reads; but write marks come from the
3627 * straight-line code between a state and its parent. When we arrive at a
3628 * jump target (in the first iteration of the propagate_liveness() loop),
3629 * we didn't arrive by the straight-line code, so read marks in state must
3630 * propagate to parent regardless of state's write marks.
3631 */
dc503a8a
EC
3632static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3633 struct bpf_verifier_state *parent)
3634{
63f45f84 3635 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3636 bool touched = false; /* any changes made? */
3637 int i;
3638
3639 if (!parent)
3640 return touched;
3641 /* Propagate read liveness of registers... */
3642 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3643 /* We don't need to worry about FP liveness because it's read-only */
3644 for (i = 0; i < BPF_REG_FP; i++) {
3645 if (parent->regs[i].live & REG_LIVE_READ)
3646 continue;
63f45f84
EC
3647 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3648 continue;
3649 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3650 parent->regs[i].live |= REG_LIVE_READ;
3651 touched = true;
3652 }
3653 }
3654 /* ... and stack slots */
638f5b90
AS
3655 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3656 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3657 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3658 continue;
638f5b90 3659 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3660 continue;
638f5b90 3661 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3662 continue;
638f5b90
AS
3663 if (writes &&
3664 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3665 continue;
638f5b90
AS
3666 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3667 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3668 touched = true;
3669 }
3670 }
3671 return touched;
3672}
3673
8e9cd9ce
EC
3674/* "parent" is "a state from which we reach the current state", but initially
3675 * it is not the state->parent (i.e. "the state whose straight-line code leads
3676 * to the current state"), instead it is the state that happened to arrive at
3677 * a (prunable) equivalent of the current state. See comment above
3678 * do_propagate_liveness() for consequences of this.
3679 * This function is just a more efficient way of calling mark_reg_read() or
3680 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3681 * though it requires that parent != state->parent in the call arguments.
3682 */
dc503a8a
EC
3683static void propagate_liveness(const struct bpf_verifier_state *state,
3684 struct bpf_verifier_state *parent)
3685{
3686 while (do_propagate_liveness(state, parent)) {
3687 /* Something changed, so we need to feed those changes onward */
3688 state = parent;
3689 parent = state->parent;
3690 }
3691}
3692
58e2af8b 3693static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3694{
58e2af8b
JK
3695 struct bpf_verifier_state_list *new_sl;
3696 struct bpf_verifier_state_list *sl;
638f5b90 3697 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3698 int i, err;
f1bca824
AS
3699
3700 sl = env->explored_states[insn_idx];
3701 if (!sl)
3702 /* this 'insn_idx' instruction wasn't marked, so we will not
3703 * be doing state search here
3704 */
3705 return 0;
3706
3707 while (sl != STATE_LIST_MARK) {
638f5b90 3708 if (states_equal(env, &sl->state, cur)) {
f1bca824 3709 /* reached equivalent register/stack state,
dc503a8a
EC
3710 * prune the search.
3711 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3712 * If we have any write marks in env->cur_state, they
3713 * will prevent corresponding reads in the continuation
3714 * from reaching our parent (an explored_state). Our
3715 * own state will get the read marks recorded, but
3716 * they'll be immediately forgotten as we're pruning
3717 * this state and will pop a new one.
f1bca824 3718 */
638f5b90 3719 propagate_liveness(&sl->state, cur);
f1bca824 3720 return 1;
dc503a8a 3721 }
f1bca824
AS
3722 sl = sl->next;
3723 }
3724
3725 /* there were no equivalent states, remember current one.
3726 * technically the current state is not proven to be safe yet,
3727 * but it will either reach bpf_exit (which means it's safe) or
3728 * it will be rejected. Since there are no loops, we won't be
3729 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3730 */
638f5b90 3731 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3732 if (!new_sl)
3733 return -ENOMEM;
3734
3735 /* add new state to the head of linked list */
1969db47
AS
3736 err = copy_verifier_state(&new_sl->state, cur);
3737 if (err) {
3738 free_verifier_state(&new_sl->state, false);
3739 kfree(new_sl);
3740 return err;
3741 }
f1bca824
AS
3742 new_sl->next = env->explored_states[insn_idx];
3743 env->explored_states[insn_idx] = new_sl;
dc503a8a 3744 /* connect new state to parentage chain */
638f5b90 3745 cur->parent = &new_sl->state;
8e9cd9ce
EC
3746 /* clear write marks in current state: the writes we did are not writes
3747 * our child did, so they don't screen off its reads from us.
3748 * (There are no read marks in current state, because reads always mark
3749 * their parent and current state never has children yet. Only
3750 * explored_states can get read marks.)
3751 */
dc503a8a 3752 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3753 cur->regs[i].live = REG_LIVE_NONE;
3754 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3755 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3756 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3757 return 0;
3758}
3759
13a27dfc
JK
3760static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3761 int insn_idx, int prev_insn_idx)
3762{
ab3f0063
JK
3763 if (env->dev_ops && env->dev_ops->insn_hook)
3764 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3765
ab3f0063 3766 return 0;
13a27dfc
JK
3767}
3768
58e2af8b 3769static int do_check(struct bpf_verifier_env *env)
17a52670 3770{
638f5b90 3771 struct bpf_verifier_state *state;
17a52670 3772 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3773 struct bpf_reg_state *regs;
17a52670
AS
3774 int insn_cnt = env->prog->len;
3775 int insn_idx, prev_insn_idx = 0;
3776 int insn_processed = 0;
3777 bool do_print_state = false;
3778
638f5b90
AS
3779 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3780 if (!state)
3781 return -ENOMEM;
3782 env->cur_state = state;
3783 init_reg_state(env, state->regs);
dc503a8a 3784 state->parent = NULL;
17a52670
AS
3785 insn_idx = 0;
3786 for (;;) {
3787 struct bpf_insn *insn;
3788 u8 class;
3789 int err;
3790
3791 if (insn_idx >= insn_cnt) {
61bd5218 3792 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3793 insn_idx, insn_cnt);
3794 return -EFAULT;
3795 }
3796
3797 insn = &insns[insn_idx];
3798 class = BPF_CLASS(insn->code);
3799
07016151 3800 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3801 verbose(env,
3802 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3803 insn_processed);
3804 return -E2BIG;
3805 }
3806
f1bca824
AS
3807 err = is_state_visited(env, insn_idx);
3808 if (err < 0)
3809 return err;
3810 if (err == 1) {
3811 /* found equivalent state, can prune the search */
61bd5218 3812 if (env->log.level) {
f1bca824 3813 if (do_print_state)
61bd5218 3814 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3815 prev_insn_idx, insn_idx);
3816 else
61bd5218 3817 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3818 }
3819 goto process_bpf_exit;
3820 }
3821
3c2ce60b
DB
3822 if (need_resched())
3823 cond_resched();
3824
61bd5218
JK
3825 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3826 if (env->log.level > 1)
3827 verbose(env, "%d:", insn_idx);
c5fc9692 3828 else
61bd5218 3829 verbose(env, "\nfrom %d to %d:",
c5fc9692 3830 prev_insn_idx, insn_idx);
638f5b90 3831 print_verifier_state(env, state);
17a52670
AS
3832 do_print_state = false;
3833 }
3834
61bd5218
JK
3835 if (env->log.level) {
3836 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3837 print_bpf_insn(verbose, env, insn,
3838 env->allow_ptr_leaks);
17a52670
AS
3839 }
3840
13a27dfc
JK
3841 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3842 if (err)
3843 return err;
3844
638f5b90 3845 regs = cur_regs(env);
c131187d 3846 env->insn_aux_data[insn_idx].seen = true;
17a52670 3847 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3848 err = check_alu_op(env, insn);
17a52670
AS
3849 if (err)
3850 return err;
3851
3852 } else if (class == BPF_LDX) {
3df126f3 3853 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3854
3855 /* check for reserved fields is already done */
3856
17a52670 3857 /* check src operand */
dc503a8a 3858 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3859 if (err)
3860 return err;
3861
dc503a8a 3862 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3863 if (err)
3864 return err;
3865
725f9dcd
AS
3866 src_reg_type = regs[insn->src_reg].type;
3867
17a52670
AS
3868 /* check that memory (src_reg + off) is readable,
3869 * the state of dst_reg will be updated by this func
3870 */
31fd8581 3871 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3872 BPF_SIZE(insn->code), BPF_READ,
3873 insn->dst_reg);
3874 if (err)
3875 return err;
3876
3df126f3
JK
3877 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3878
3879 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3880 /* saw a valid insn
3881 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3882 * save type to validate intersecting paths
9bac3d6d 3883 */
3df126f3 3884 *prev_src_type = src_reg_type;
9bac3d6d 3885
3df126f3 3886 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3887 (src_reg_type == PTR_TO_CTX ||
3df126f3 3888 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3889 /* ABuser program is trying to use the same insn
3890 * dst_reg = *(u32*) (src_reg + off)
3891 * with different pointer types:
3892 * src_reg == ctx in one branch and
3893 * src_reg == stack|map in some other branch.
3894 * Reject it.
3895 */
61bd5218 3896 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3897 return -EINVAL;
3898 }
3899
17a52670 3900 } else if (class == BPF_STX) {
3df126f3 3901 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3902
17a52670 3903 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3904 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3905 if (err)
3906 return err;
3907 insn_idx++;
3908 continue;
3909 }
3910
17a52670 3911 /* check src1 operand */
dc503a8a 3912 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3913 if (err)
3914 return err;
3915 /* check src2 operand */
dc503a8a 3916 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3917 if (err)
3918 return err;
3919
d691f9e8
AS
3920 dst_reg_type = regs[insn->dst_reg].type;
3921
17a52670 3922 /* check that memory (dst_reg + off) is writeable */
31fd8581 3923 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3924 BPF_SIZE(insn->code), BPF_WRITE,
3925 insn->src_reg);
3926 if (err)
3927 return err;
3928
3df126f3
JK
3929 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3930
3931 if (*prev_dst_type == NOT_INIT) {
3932 *prev_dst_type = dst_reg_type;
3933 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3934 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3935 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3936 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3937 return -EINVAL;
3938 }
3939
17a52670
AS
3940 } else if (class == BPF_ST) {
3941 if (BPF_MODE(insn->code) != BPF_MEM ||
3942 insn->src_reg != BPF_REG_0) {
61bd5218 3943 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3944 return -EINVAL;
3945 }
3946 /* check src operand */
dc503a8a 3947 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3948 if (err)
3949 return err;
3950
3951 /* check that memory (dst_reg + off) is writeable */
31fd8581 3952 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3953 BPF_SIZE(insn->code), BPF_WRITE,
3954 -1);
3955 if (err)
3956 return err;
3957
3958 } else if (class == BPF_JMP) {
3959 u8 opcode = BPF_OP(insn->code);
3960
3961 if (opcode == BPF_CALL) {
3962 if (BPF_SRC(insn->code) != BPF_K ||
3963 insn->off != 0 ||
3964 insn->src_reg != BPF_REG_0 ||
3965 insn->dst_reg != BPF_REG_0) {
61bd5218 3966 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3967 return -EINVAL;
3968 }
3969
81ed18ab 3970 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3971 if (err)
3972 return err;
3973
3974 } else if (opcode == BPF_JA) {
3975 if (BPF_SRC(insn->code) != BPF_K ||
3976 insn->imm != 0 ||
3977 insn->src_reg != BPF_REG_0 ||
3978 insn->dst_reg != BPF_REG_0) {
61bd5218 3979 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
3980 return -EINVAL;
3981 }
3982
3983 insn_idx += insn->off + 1;
3984 continue;
3985
3986 } else if (opcode == BPF_EXIT) {
3987 if (BPF_SRC(insn->code) != BPF_K ||
3988 insn->imm != 0 ||
3989 insn->src_reg != BPF_REG_0 ||
3990 insn->dst_reg != BPF_REG_0) {
61bd5218 3991 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
3992 return -EINVAL;
3993 }
3994
3995 /* eBPF calling convetion is such that R0 is used
3996 * to return the value from eBPF program.
3997 * Make sure that it's readable at this time
3998 * of bpf_exit, which means that program wrote
3999 * something into it earlier
4000 */
dc503a8a 4001 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4002 if (err)
4003 return err;
4004
1be7f75d 4005 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4006 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4007 return -EACCES;
4008 }
4009
390ee7e2
AS
4010 err = check_return_code(env);
4011 if (err)
4012 return err;
f1bca824 4013process_bpf_exit:
638f5b90
AS
4014 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4015 if (err < 0) {
4016 if (err != -ENOENT)
4017 return err;
17a52670
AS
4018 break;
4019 } else {
4020 do_print_state = true;
4021 continue;
4022 }
4023 } else {
4024 err = check_cond_jmp_op(env, insn, &insn_idx);
4025 if (err)
4026 return err;
4027 }
4028 } else if (class == BPF_LD) {
4029 u8 mode = BPF_MODE(insn->code);
4030
4031 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4032 err = check_ld_abs(env, insn);
4033 if (err)
4034 return err;
4035
17a52670
AS
4036 } else if (mode == BPF_IMM) {
4037 err = check_ld_imm(env, insn);
4038 if (err)
4039 return err;
4040
4041 insn_idx++;
c131187d 4042 env->insn_aux_data[insn_idx].seen = true;
17a52670 4043 } else {
61bd5218 4044 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4045 return -EINVAL;
4046 }
4047 } else {
61bd5218 4048 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4049 return -EINVAL;
4050 }
4051
4052 insn_idx++;
4053 }
4054
61bd5218
JK
4055 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4056 env->prog->aux->stack_depth);
17a52670
AS
4057 return 0;
4058}
4059
56f668df
MKL
4060static int check_map_prealloc(struct bpf_map *map)
4061{
4062 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4063 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4064 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4065 !(map->map_flags & BPF_F_NO_PREALLOC);
4066}
4067
61bd5218
JK
4068static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4069 struct bpf_map *map,
fdc15d38
AS
4070 struct bpf_prog *prog)
4071
4072{
56f668df
MKL
4073 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4074 * preallocated hash maps, since doing memory allocation
4075 * in overflow_handler can crash depending on where nmi got
4076 * triggered.
4077 */
4078 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4079 if (!check_map_prealloc(map)) {
61bd5218 4080 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4081 return -EINVAL;
4082 }
4083 if (map->inner_map_meta &&
4084 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4085 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4086 return -EINVAL;
4087 }
fdc15d38
AS
4088 }
4089 return 0;
4090}
4091
0246e64d
AS
4092/* look for pseudo eBPF instructions that access map FDs and
4093 * replace them with actual map pointers
4094 */
58e2af8b 4095static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4096{
4097 struct bpf_insn *insn = env->prog->insnsi;
4098 int insn_cnt = env->prog->len;
fdc15d38 4099 int i, j, err;
0246e64d 4100
f1f7714e 4101 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4102 if (err)
4103 return err;
4104
0246e64d 4105 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4106 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4107 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4108 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4109 return -EINVAL;
4110 }
4111
d691f9e8
AS
4112 if (BPF_CLASS(insn->code) == BPF_STX &&
4113 ((BPF_MODE(insn->code) != BPF_MEM &&
4114 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4115 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4116 return -EINVAL;
4117 }
4118
0246e64d
AS
4119 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4120 struct bpf_map *map;
4121 struct fd f;
4122
4123 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4124 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4125 insn[1].off != 0) {
61bd5218 4126 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4127 return -EINVAL;
4128 }
4129
4130 if (insn->src_reg == 0)
4131 /* valid generic load 64-bit imm */
4132 goto next_insn;
4133
4134 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4135 verbose(env,
4136 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4137 return -EINVAL;
4138 }
4139
4140 f = fdget(insn->imm);
c2101297 4141 map = __bpf_map_get(f);
0246e64d 4142 if (IS_ERR(map)) {
61bd5218 4143 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4144 insn->imm);
0246e64d
AS
4145 return PTR_ERR(map);
4146 }
4147
61bd5218 4148 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4149 if (err) {
4150 fdput(f);
4151 return err;
4152 }
4153
0246e64d
AS
4154 /* store map pointer inside BPF_LD_IMM64 instruction */
4155 insn[0].imm = (u32) (unsigned long) map;
4156 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4157
4158 /* check whether we recorded this map already */
4159 for (j = 0; j < env->used_map_cnt; j++)
4160 if (env->used_maps[j] == map) {
4161 fdput(f);
4162 goto next_insn;
4163 }
4164
4165 if (env->used_map_cnt >= MAX_USED_MAPS) {
4166 fdput(f);
4167 return -E2BIG;
4168 }
4169
0246e64d
AS
4170 /* hold the map. If the program is rejected by verifier,
4171 * the map will be released by release_maps() or it
4172 * will be used by the valid program until it's unloaded
4173 * and all maps are released in free_bpf_prog_info()
4174 */
92117d84
AS
4175 map = bpf_map_inc(map, false);
4176 if (IS_ERR(map)) {
4177 fdput(f);
4178 return PTR_ERR(map);
4179 }
4180 env->used_maps[env->used_map_cnt++] = map;
4181
0246e64d
AS
4182 fdput(f);
4183next_insn:
4184 insn++;
4185 i++;
4186 }
4187 }
4188
4189 /* now all pseudo BPF_LD_IMM64 instructions load valid
4190 * 'struct bpf_map *' into a register instead of user map_fd.
4191 * These pointers will be used later by verifier to validate map access.
4192 */
4193 return 0;
4194}
4195
4196/* drop refcnt of maps used by the rejected program */
58e2af8b 4197static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4198{
4199 int i;
4200
4201 for (i = 0; i < env->used_map_cnt; i++)
4202 bpf_map_put(env->used_maps[i]);
4203}
4204
4205/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4206static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4207{
4208 struct bpf_insn *insn = env->prog->insnsi;
4209 int insn_cnt = env->prog->len;
4210 int i;
4211
4212 for (i = 0; i < insn_cnt; i++, insn++)
4213 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4214 insn->src_reg = 0;
4215}
4216
8041902d
AS
4217/* single env->prog->insni[off] instruction was replaced with the range
4218 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4219 * [0, off) and [off, end) to new locations, so the patched range stays zero
4220 */
4221static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4222 u32 off, u32 cnt)
4223{
4224 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4225 int i;
8041902d
AS
4226
4227 if (cnt == 1)
4228 return 0;
4229 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4230 if (!new_data)
4231 return -ENOMEM;
4232 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4233 memcpy(new_data + off + cnt - 1, old_data + off,
4234 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4235 for (i = off; i < off + cnt - 1; i++)
4236 new_data[i].seen = true;
8041902d
AS
4237 env->insn_aux_data = new_data;
4238 vfree(old_data);
4239 return 0;
4240}
4241
4242static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4243 const struct bpf_insn *patch, u32 len)
4244{
4245 struct bpf_prog *new_prog;
4246
4247 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4248 if (!new_prog)
4249 return NULL;
4250 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4251 return NULL;
4252 return new_prog;
4253}
4254
c131187d
AS
4255/* The verifier does more data flow analysis than llvm and will not explore
4256 * branches that are dead at run time. Malicious programs can have dead code
4257 * too. Therefore replace all dead at-run-time code with nops.
4258 */
4259static void sanitize_dead_code(struct bpf_verifier_env *env)
4260{
4261 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4262 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4263 struct bpf_insn *insn = env->prog->insnsi;
4264 const int insn_cnt = env->prog->len;
4265 int i;
4266
4267 for (i = 0; i < insn_cnt; i++) {
4268 if (aux_data[i].seen)
4269 continue;
4270 memcpy(insn + i, &nop, sizeof(nop));
4271 }
4272}
4273
9bac3d6d
AS
4274/* convert load instructions that access fields of 'struct __sk_buff'
4275 * into sequence of instructions that access fields of 'struct sk_buff'
4276 */
58e2af8b 4277static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4278{
00176a34 4279 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4280 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4281 const int insn_cnt = env->prog->len;
36bbef52 4282 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4283 struct bpf_prog *new_prog;
d691f9e8 4284 enum bpf_access_type type;
f96da094
DB
4285 bool is_narrower_load;
4286 u32 target_size;
9bac3d6d 4287
36bbef52
DB
4288 if (ops->gen_prologue) {
4289 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4290 env->prog);
4291 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4292 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4293 return -EINVAL;
4294 } else if (cnt) {
8041902d 4295 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4296 if (!new_prog)
4297 return -ENOMEM;
8041902d 4298
36bbef52 4299 env->prog = new_prog;
3df126f3 4300 delta += cnt - 1;
36bbef52
DB
4301 }
4302 }
4303
4304 if (!ops->convert_ctx_access)
9bac3d6d
AS
4305 return 0;
4306
3df126f3 4307 insn = env->prog->insnsi + delta;
36bbef52 4308
9bac3d6d 4309 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4310 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4311 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4312 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4313 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4314 type = BPF_READ;
62c7989b
DB
4315 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4316 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4317 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4318 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4319 type = BPF_WRITE;
4320 else
9bac3d6d
AS
4321 continue;
4322
8041902d 4323 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4324 continue;
9bac3d6d 4325
31fd8581 4326 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4327 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4328
4329 /* If the read access is a narrower load of the field,
4330 * convert to a 4/8-byte load, to minimum program type specific
4331 * convert_ctx_access changes. If conversion is successful,
4332 * we will apply proper mask to the result.
4333 */
f96da094 4334 is_narrower_load = size < ctx_field_size;
31fd8581 4335 if (is_narrower_load) {
f96da094
DB
4336 u32 off = insn->off;
4337 u8 size_code;
4338
4339 if (type == BPF_WRITE) {
61bd5218 4340 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4341 return -EINVAL;
4342 }
31fd8581 4343
f96da094 4344 size_code = BPF_H;
31fd8581
YS
4345 if (ctx_field_size == 4)
4346 size_code = BPF_W;
4347 else if (ctx_field_size == 8)
4348 size_code = BPF_DW;
f96da094 4349
31fd8581
YS
4350 insn->off = off & ~(ctx_field_size - 1);
4351 insn->code = BPF_LDX | BPF_MEM | size_code;
4352 }
f96da094
DB
4353
4354 target_size = 0;
4355 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4356 &target_size);
4357 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4358 (ctx_field_size && !target_size)) {
61bd5218 4359 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4360 return -EINVAL;
4361 }
f96da094
DB
4362
4363 if (is_narrower_load && size < target_size) {
31fd8581
YS
4364 if (ctx_field_size <= 4)
4365 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4366 (1 << size * 8) - 1);
31fd8581
YS
4367 else
4368 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4369 (1 << size * 8) - 1);
31fd8581 4370 }
9bac3d6d 4371
8041902d 4372 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4373 if (!new_prog)
4374 return -ENOMEM;
4375
3df126f3 4376 delta += cnt - 1;
9bac3d6d
AS
4377
4378 /* keep walking new program and skip insns we just inserted */
4379 env->prog = new_prog;
3df126f3 4380 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4381 }
4382
4383 return 0;
4384}
4385
79741b3b 4386/* fixup insn->imm field of bpf_call instructions
81ed18ab 4387 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4388 *
4389 * this function is called after eBPF program passed verification
4390 */
79741b3b 4391static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4392{
79741b3b
AS
4393 struct bpf_prog *prog = env->prog;
4394 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4395 const struct bpf_func_proto *fn;
79741b3b 4396 const int insn_cnt = prog->len;
81ed18ab
AS
4397 struct bpf_insn insn_buf[16];
4398 struct bpf_prog *new_prog;
4399 struct bpf_map *map_ptr;
4400 int i, cnt, delta = 0;
e245c5c6 4401
79741b3b
AS
4402 for (i = 0; i < insn_cnt; i++, insn++) {
4403 if (insn->code != (BPF_JMP | BPF_CALL))
4404 continue;
e245c5c6 4405
79741b3b
AS
4406 if (insn->imm == BPF_FUNC_get_route_realm)
4407 prog->dst_needed = 1;
4408 if (insn->imm == BPF_FUNC_get_prandom_u32)
4409 bpf_user_rnd_init_once();
79741b3b 4410 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4411 /* If we tail call into other programs, we
4412 * cannot make any assumptions since they can
4413 * be replaced dynamically during runtime in
4414 * the program array.
4415 */
4416 prog->cb_access = 1;
80a58d02 4417 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4418
79741b3b
AS
4419 /* mark bpf_tail_call as different opcode to avoid
4420 * conditional branch in the interpeter for every normal
4421 * call and to prevent accidental JITing by JIT compiler
4422 * that doesn't support bpf_tail_call yet
e245c5c6 4423 */
79741b3b 4424 insn->imm = 0;
71189fa9 4425 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4426 continue;
4427 }
e245c5c6 4428
89c63074
DB
4429 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4430 * handlers are currently limited to 64 bit only.
4431 */
4432 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4433 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4434 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4435 if (map_ptr == BPF_MAP_PTR_POISON ||
4436 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4437 goto patch_call_imm;
4438
4439 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4440 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4441 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4442 return -EINVAL;
4443 }
4444
4445 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4446 cnt);
4447 if (!new_prog)
4448 return -ENOMEM;
4449
4450 delta += cnt - 1;
4451
4452 /* keep walking new program and skip insns we just inserted */
4453 env->prog = prog = new_prog;
4454 insn = new_prog->insnsi + i + delta;
4455 continue;
4456 }
4457
109980b8 4458 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4459 /* Note, we cannot use prog directly as imm as subsequent
4460 * rewrites would still change the prog pointer. The only
4461 * stable address we can use is aux, which also works with
4462 * prog clones during blinding.
4463 */
4464 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4465 struct bpf_insn r4_ld[] = {
4466 BPF_LD_IMM64(BPF_REG_4, addr),
4467 *insn,
4468 };
4469 cnt = ARRAY_SIZE(r4_ld);
4470
4471 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4472 if (!new_prog)
4473 return -ENOMEM;
4474
4475 delta += cnt - 1;
4476 env->prog = prog = new_prog;
4477 insn = new_prog->insnsi + i + delta;
4478 }
81ed18ab 4479patch_call_imm:
00176a34 4480 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4481 /* all functions that have prototype and verifier allowed
4482 * programs to call them, must be real in-kernel functions
4483 */
4484 if (!fn->func) {
61bd5218
JK
4485 verbose(env,
4486 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4487 func_id_name(insn->imm), insn->imm);
4488 return -EFAULT;
e245c5c6 4489 }
79741b3b 4490 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4491 }
e245c5c6 4492
79741b3b
AS
4493 return 0;
4494}
e245c5c6 4495
58e2af8b 4496static void free_states(struct bpf_verifier_env *env)
f1bca824 4497{
58e2af8b 4498 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4499 int i;
4500
4501 if (!env->explored_states)
4502 return;
4503
4504 for (i = 0; i < env->prog->len; i++) {
4505 sl = env->explored_states[i];
4506
4507 if (sl)
4508 while (sl != STATE_LIST_MARK) {
4509 sln = sl->next;
1969db47 4510 free_verifier_state(&sl->state, false);
f1bca824
AS
4511 kfree(sl);
4512 sl = sln;
4513 }
4514 }
4515
4516 kfree(env->explored_states);
4517}
4518
9bac3d6d 4519int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4520{
58e2af8b 4521 struct bpf_verifier_env *env;
61bd5218 4522 struct bpf_verifer_log *log;
51580e79
AS
4523 int ret = -EINVAL;
4524
eba0c929
AB
4525 /* no program is valid */
4526 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4527 return -EINVAL;
4528
58e2af8b 4529 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4530 * allocate/free it every time bpf_check() is called
4531 */
58e2af8b 4532 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4533 if (!env)
4534 return -ENOMEM;
61bd5218 4535 log = &env->log;
cbd35700 4536
3df126f3
JK
4537 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4538 (*prog)->len);
4539 ret = -ENOMEM;
4540 if (!env->insn_aux_data)
4541 goto err_free_env;
9bac3d6d 4542 env->prog = *prog;
00176a34 4543 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4544
cbd35700
AS
4545 /* grab the mutex to protect few globals used by verifier */
4546 mutex_lock(&bpf_verifier_lock);
4547
4548 if (attr->log_level || attr->log_buf || attr->log_size) {
4549 /* user requested verbose verifier output
4550 * and supplied buffer to store the verification trace
4551 */
e7bf8249
JK
4552 log->level = attr->log_level;
4553 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4554 log->len_total = attr->log_size;
cbd35700
AS
4555
4556 ret = -EINVAL;
e7bf8249
JK
4557 /* log attributes have to be sane */
4558 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4559 !log->level || !log->ubuf)
3df126f3 4560 goto err_unlock;
cbd35700 4561 }
1ad2f583
DB
4562
4563 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4564 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4565 env->strict_alignment = true;
cbd35700 4566
ab3f0063
JK
4567 if (env->prog->aux->offload) {
4568 ret = bpf_prog_offload_verifier_prep(env);
4569 if (ret)
4570 goto err_unlock;
4571 }
4572
0246e64d
AS
4573 ret = replace_map_fd_with_map_ptr(env);
4574 if (ret < 0)
4575 goto skip_full_check;
4576
9bac3d6d 4577 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4578 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4579 GFP_USER);
4580 ret = -ENOMEM;
4581 if (!env->explored_states)
4582 goto skip_full_check;
4583
475fb78f
AS
4584 ret = check_cfg(env);
4585 if (ret < 0)
4586 goto skip_full_check;
4587
1be7f75d
AS
4588 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4589
17a52670 4590 ret = do_check(env);
8c01c4f8
CG
4591 if (env->cur_state) {
4592 free_verifier_state(env->cur_state, true);
4593 env->cur_state = NULL;
4594 }
cbd35700 4595
0246e64d 4596skip_full_check:
638f5b90 4597 while (!pop_stack(env, NULL, NULL));
f1bca824 4598 free_states(env);
0246e64d 4599
c131187d
AS
4600 if (ret == 0)
4601 sanitize_dead_code(env);
4602
9bac3d6d
AS
4603 if (ret == 0)
4604 /* program is valid, convert *(u32*)(ctx + off) accesses */
4605 ret = convert_ctx_accesses(env);
4606
e245c5c6 4607 if (ret == 0)
79741b3b 4608 ret = fixup_bpf_calls(env);
e245c5c6 4609
a2a7d570 4610 if (log->level && bpf_verifier_log_full(log))
cbd35700 4611 ret = -ENOSPC;
a2a7d570 4612 if (log->level && !log->ubuf) {
cbd35700 4613 ret = -EFAULT;
a2a7d570 4614 goto err_release_maps;
cbd35700
AS
4615 }
4616
0246e64d
AS
4617 if (ret == 0 && env->used_map_cnt) {
4618 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4619 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4620 sizeof(env->used_maps[0]),
4621 GFP_KERNEL);
0246e64d 4622
9bac3d6d 4623 if (!env->prog->aux->used_maps) {
0246e64d 4624 ret = -ENOMEM;
a2a7d570 4625 goto err_release_maps;
0246e64d
AS
4626 }
4627
9bac3d6d 4628 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4629 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4630 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4631
4632 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4633 * bpf_ld_imm64 instructions
4634 */
4635 convert_pseudo_ld_imm64(env);
4636 }
cbd35700 4637
a2a7d570 4638err_release_maps:
9bac3d6d 4639 if (!env->prog->aux->used_maps)
0246e64d
AS
4640 /* if we didn't copy map pointers into bpf_prog_info, release
4641 * them now. Otherwise free_bpf_prog_info() will release them.
4642 */
4643 release_maps(env);
9bac3d6d 4644 *prog = env->prog;
3df126f3 4645err_unlock:
cbd35700 4646 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4647 vfree(env->insn_aux_data);
4648err_free_env:
4649 kfree(env);
51580e79
AS
4650 return ret;
4651}