]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: improve stacksafe state comparison
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
8e17c1b1 179#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151 180#define BPF_COMPLEXITY_LIMIT_STACK 1024
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
195 return aux->map_state & BPF_MAP_PTR_UNPRIV;
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
203 aux->map_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
fad73a1a 206
33ff9823
DB
207struct bpf_call_arg_meta {
208 struct bpf_map *map_ptr;
435faee1 209 bool raw_mode;
36bbef52 210 bool pkt_access;
435faee1
DB
211 int regno;
212 int access_size;
849fa506
YS
213 s64 msize_smax_value;
214 u64 msize_umax_value;
fd978bf7 215 int ptr_id;
33ff9823
DB
216};
217
cbd35700
AS
218static DEFINE_MUTEX(bpf_verifier_lock);
219
d9762e84
MKL
220static const struct bpf_line_info *
221find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222{
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239}
240
77d2e05a
MKL
241void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
cbd35700 243{
a2a7d570 244 unsigned int n;
cbd35700 245
a2a7d570 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
cbd35700 258}
abe08840
JO
259
260/* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
430e68d1 263 */
abe08840
JO
264__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266{
267 va_list args;
268
77d2e05a
MKL
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
abe08840 272 va_start(args, fmt);
77d2e05a 273 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
274 va_end(args);
275}
276EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279{
77d2e05a 280 struct bpf_verifier_env *env = private_data;
abe08840
JO
281 va_list args;
282
77d2e05a
MKL
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
abe08840 286 va_start(args, fmt);
77d2e05a 287 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
288 va_end(args);
289}
cbd35700 290
d9762e84
MKL
291static const char *ltrim(const char *s)
292{
293 while (isspace(*s))
294 s++;
295
296 return s;
297}
298
299__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302{
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325}
326
de8f3a83
DB
327static bool type_is_pkt_pointer(enum bpf_reg_type type)
328{
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7
JS
335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 type == PTR_TO_SOCKET_OR_NULL;
337}
338
339static bool type_is_refcounted(enum bpf_reg_type type)
340{
341 return type == PTR_TO_SOCKET;
342}
343
344static bool type_is_refcounted_or_null(enum bpf_reg_type type)
345{
346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
347}
348
349static bool reg_is_refcounted(const struct bpf_reg_state *reg)
350{
351 return type_is_refcounted(reg->type);
352}
353
354static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
355{
356 return type_is_refcounted_or_null(reg->type);
357}
358
359static bool arg_type_is_refcounted(enum bpf_arg_type type)
360{
361 return type == ARG_PTR_TO_SOCKET;
362}
363
364/* Determine whether the function releases some resources allocated by another
365 * function call. The first reference type argument will be assumed to be
366 * released by release_reference().
367 */
368static bool is_release_function(enum bpf_func_id func_id)
369{
6acc9b43 370 return func_id == BPF_FUNC_sk_release;
840b9615
JS
371}
372
17a52670
AS
373/* string representation of 'enum bpf_reg_type' */
374static const char * const reg_type_str[] = {
375 [NOT_INIT] = "?",
f1174f77 376 [SCALAR_VALUE] = "inv",
17a52670
AS
377 [PTR_TO_CTX] = "ctx",
378 [CONST_PTR_TO_MAP] = "map_ptr",
379 [PTR_TO_MAP_VALUE] = "map_value",
380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 381 [PTR_TO_STACK] = "fp",
969bf05e 382 [PTR_TO_PACKET] = "pkt",
de8f3a83 383 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 384 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 385 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
386 [PTR_TO_SOCKET] = "sock",
387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
388};
389
8efea21d
EC
390static char slot_type_char[] = {
391 [STACK_INVALID] = '?',
392 [STACK_SPILL] = 'r',
393 [STACK_MISC] = 'm',
394 [STACK_ZERO] = '0',
395};
396
4e92024a
AS
397static void print_liveness(struct bpf_verifier_env *env,
398 enum bpf_reg_liveness live)
399{
400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
401 verbose(env, "_");
402 if (live & REG_LIVE_READ)
403 verbose(env, "r");
404 if (live & REG_LIVE_WRITTEN)
405 verbose(env, "w");
406}
407
f4d7e40a
AS
408static struct bpf_func_state *func(struct bpf_verifier_env *env,
409 const struct bpf_reg_state *reg)
410{
411 struct bpf_verifier_state *cur = env->cur_state;
412
413 return cur->frame[reg->frameno];
414}
415
61bd5218 416static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 417 const struct bpf_func_state *state)
17a52670 418{
f4d7e40a 419 const struct bpf_reg_state *reg;
17a52670
AS
420 enum bpf_reg_type t;
421 int i;
422
f4d7e40a
AS
423 if (state->frameno)
424 verbose(env, " frame%d:", state->frameno);
17a52670 425 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
426 reg = &state->regs[i];
427 t = reg->type;
17a52670
AS
428 if (t == NOT_INIT)
429 continue;
4e92024a
AS
430 verbose(env, " R%d", i);
431 print_liveness(env, reg->live);
432 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
433 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
434 tnum_is_const(reg->var_off)) {
435 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 436 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
437 if (t == PTR_TO_STACK)
438 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 439 } else {
61bd5218 440 verbose(env, "(id=%d", reg->id);
f1174f77 441 if (t != SCALAR_VALUE)
61bd5218 442 verbose(env, ",off=%d", reg->off);
de8f3a83 443 if (type_is_pkt_pointer(t))
61bd5218 444 verbose(env, ",r=%d", reg->range);
f1174f77
EC
445 else if (t == CONST_PTR_TO_MAP ||
446 t == PTR_TO_MAP_VALUE ||
447 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 448 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
449 reg->map_ptr->key_size,
450 reg->map_ptr->value_size);
7d1238f2
EC
451 if (tnum_is_const(reg->var_off)) {
452 /* Typically an immediate SCALAR_VALUE, but
453 * could be a pointer whose offset is too big
454 * for reg->off
455 */
61bd5218 456 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
457 } else {
458 if (reg->smin_value != reg->umin_value &&
459 reg->smin_value != S64_MIN)
61bd5218 460 verbose(env, ",smin_value=%lld",
7d1238f2
EC
461 (long long)reg->smin_value);
462 if (reg->smax_value != reg->umax_value &&
463 reg->smax_value != S64_MAX)
61bd5218 464 verbose(env, ",smax_value=%lld",
7d1238f2
EC
465 (long long)reg->smax_value);
466 if (reg->umin_value != 0)
61bd5218 467 verbose(env, ",umin_value=%llu",
7d1238f2
EC
468 (unsigned long long)reg->umin_value);
469 if (reg->umax_value != U64_MAX)
61bd5218 470 verbose(env, ",umax_value=%llu",
7d1238f2
EC
471 (unsigned long long)reg->umax_value);
472 if (!tnum_is_unknown(reg->var_off)) {
473 char tn_buf[48];
f1174f77 474
7d1238f2 475 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 476 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 477 }
f1174f77 478 }
61bd5218 479 verbose(env, ")");
f1174f77 480 }
17a52670 481 }
638f5b90 482 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
483 char types_buf[BPF_REG_SIZE + 1];
484 bool valid = false;
485 int j;
486
487 for (j = 0; j < BPF_REG_SIZE; j++) {
488 if (state->stack[i].slot_type[j] != STACK_INVALID)
489 valid = true;
490 types_buf[j] = slot_type_char[
491 state->stack[i].slot_type[j]];
492 }
493 types_buf[BPF_REG_SIZE] = 0;
494 if (!valid)
495 continue;
496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
497 print_liveness(env, state->stack[i].spilled_ptr.live);
498 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 499 verbose(env, "=%s",
638f5b90 500 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
501 else
502 verbose(env, "=%s", types_buf);
17a52670 503 }
fd978bf7
JS
504 if (state->acquired_refs && state->refs[0].id) {
505 verbose(env, " refs=%d", state->refs[0].id);
506 for (i = 1; i < state->acquired_refs; i++)
507 if (state->refs[i].id)
508 verbose(env, ",%d", state->refs[i].id);
509 }
61bd5218 510 verbose(env, "\n");
17a52670
AS
511}
512
84dbf350
JS
513#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
514static int copy_##NAME##_state(struct bpf_func_state *dst, \
515 const struct bpf_func_state *src) \
516{ \
517 if (!src->FIELD) \
518 return 0; \
519 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
520 /* internal bug, make state invalid to reject the program */ \
521 memset(dst, 0, sizeof(*dst)); \
522 return -EFAULT; \
523 } \
524 memcpy(dst->FIELD, src->FIELD, \
525 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
526 return 0; \
638f5b90 527}
fd978bf7
JS
528/* copy_reference_state() */
529COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
530/* copy_stack_state() */
531COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
532#undef COPY_STATE_FN
533
534#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
535static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
536 bool copy_old) \
537{ \
538 u32 old_size = state->COUNT; \
539 struct bpf_##NAME##_state *new_##FIELD; \
540 int slot = size / SIZE; \
541 \
542 if (size <= old_size || !size) { \
543 if (copy_old) \
544 return 0; \
545 state->COUNT = slot * SIZE; \
546 if (!size && old_size) { \
547 kfree(state->FIELD); \
548 state->FIELD = NULL; \
549 } \
550 return 0; \
551 } \
552 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
553 GFP_KERNEL); \
554 if (!new_##FIELD) \
555 return -ENOMEM; \
556 if (copy_old) { \
557 if (state->FIELD) \
558 memcpy(new_##FIELD, state->FIELD, \
559 sizeof(*new_##FIELD) * (old_size / SIZE)); \
560 memset(new_##FIELD + old_size / SIZE, 0, \
561 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
562 } \
563 state->COUNT = slot * SIZE; \
564 kfree(state->FIELD); \
565 state->FIELD = new_##FIELD; \
566 return 0; \
567}
fd978bf7
JS
568/* realloc_reference_state() */
569REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
570/* realloc_stack_state() */
571REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
572#undef REALLOC_STATE_FN
638f5b90
AS
573
574/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
575 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 576 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
577 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
578 * which realloc_stack_state() copies over. It points to previous
579 * bpf_verifier_state which is never reallocated.
638f5b90 580 */
fd978bf7
JS
581static int realloc_func_state(struct bpf_func_state *state, int stack_size,
582 int refs_size, bool copy_old)
638f5b90 583{
fd978bf7
JS
584 int err = realloc_reference_state(state, refs_size, copy_old);
585 if (err)
586 return err;
587 return realloc_stack_state(state, stack_size, copy_old);
588}
589
590/* Acquire a pointer id from the env and update the state->refs to include
591 * this new pointer reference.
592 * On success, returns a valid pointer id to associate with the register
593 * On failure, returns a negative errno.
638f5b90 594 */
fd978bf7 595static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 596{
fd978bf7
JS
597 struct bpf_func_state *state = cur_func(env);
598 int new_ofs = state->acquired_refs;
599 int id, err;
600
601 err = realloc_reference_state(state, state->acquired_refs + 1, true);
602 if (err)
603 return err;
604 id = ++env->id_gen;
605 state->refs[new_ofs].id = id;
606 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 607
fd978bf7
JS
608 return id;
609}
610
611/* release function corresponding to acquire_reference_state(). Idempotent. */
612static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
613{
614 int i, last_idx;
615
616 if (!ptr_id)
617 return -EFAULT;
618
619 last_idx = state->acquired_refs - 1;
620 for (i = 0; i < state->acquired_refs; i++) {
621 if (state->refs[i].id == ptr_id) {
622 if (last_idx && i != last_idx)
623 memcpy(&state->refs[i], &state->refs[last_idx],
624 sizeof(*state->refs));
625 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
626 state->acquired_refs--;
638f5b90 627 return 0;
638f5b90 628 }
638f5b90 629 }
fd978bf7
JS
630 return -EFAULT;
631}
632
633/* variation on the above for cases where we expect that there must be an
634 * outstanding reference for the specified ptr_id.
635 */
636static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
637{
638 struct bpf_func_state *state = cur_func(env);
639 int err;
640
641 err = __release_reference_state(state, ptr_id);
642 if (WARN_ON_ONCE(err != 0))
643 verbose(env, "verifier internal error: can't release reference\n");
644 return err;
645}
646
647static int transfer_reference_state(struct bpf_func_state *dst,
648 struct bpf_func_state *src)
649{
650 int err = realloc_reference_state(dst, src->acquired_refs, false);
651 if (err)
652 return err;
653 err = copy_reference_state(dst, src);
654 if (err)
655 return err;
638f5b90
AS
656 return 0;
657}
658
f4d7e40a
AS
659static void free_func_state(struct bpf_func_state *state)
660{
5896351e
AS
661 if (!state)
662 return;
fd978bf7 663 kfree(state->refs);
f4d7e40a
AS
664 kfree(state->stack);
665 kfree(state);
666}
667
1969db47
AS
668static void free_verifier_state(struct bpf_verifier_state *state,
669 bool free_self)
638f5b90 670{
f4d7e40a
AS
671 int i;
672
673 for (i = 0; i <= state->curframe; i++) {
674 free_func_state(state->frame[i]);
675 state->frame[i] = NULL;
676 }
1969db47
AS
677 if (free_self)
678 kfree(state);
638f5b90
AS
679}
680
681/* copy verifier state from src to dst growing dst stack space
682 * when necessary to accommodate larger src stack
683 */
f4d7e40a
AS
684static int copy_func_state(struct bpf_func_state *dst,
685 const struct bpf_func_state *src)
638f5b90
AS
686{
687 int err;
688
fd978bf7
JS
689 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
690 false);
691 if (err)
692 return err;
693 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
694 err = copy_reference_state(dst, src);
638f5b90
AS
695 if (err)
696 return err;
638f5b90
AS
697 return copy_stack_state(dst, src);
698}
699
f4d7e40a
AS
700static int copy_verifier_state(struct bpf_verifier_state *dst_state,
701 const struct bpf_verifier_state *src)
702{
703 struct bpf_func_state *dst;
704 int i, err;
705
706 /* if dst has more stack frames then src frame, free them */
707 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
708 free_func_state(dst_state->frame[i]);
709 dst_state->frame[i] = NULL;
710 }
711 dst_state->curframe = src->curframe;
f4d7e40a
AS
712 for (i = 0; i <= src->curframe; i++) {
713 dst = dst_state->frame[i];
714 if (!dst) {
715 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
716 if (!dst)
717 return -ENOMEM;
718 dst_state->frame[i] = dst;
719 }
720 err = copy_func_state(dst, src->frame[i]);
721 if (err)
722 return err;
723 }
724 return 0;
725}
726
638f5b90
AS
727static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
728 int *insn_idx)
729{
730 struct bpf_verifier_state *cur = env->cur_state;
731 struct bpf_verifier_stack_elem *elem, *head = env->head;
732 int err;
17a52670
AS
733
734 if (env->head == NULL)
638f5b90 735 return -ENOENT;
17a52670 736
638f5b90
AS
737 if (cur) {
738 err = copy_verifier_state(cur, &head->st);
739 if (err)
740 return err;
741 }
742 if (insn_idx)
743 *insn_idx = head->insn_idx;
17a52670 744 if (prev_insn_idx)
638f5b90
AS
745 *prev_insn_idx = head->prev_insn_idx;
746 elem = head->next;
1969db47 747 free_verifier_state(&head->st, false);
638f5b90 748 kfree(head);
17a52670
AS
749 env->head = elem;
750 env->stack_size--;
638f5b90 751 return 0;
17a52670
AS
752}
753
58e2af8b
JK
754static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
755 int insn_idx, int prev_insn_idx)
17a52670 756{
638f5b90 757 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 758 struct bpf_verifier_stack_elem *elem;
638f5b90 759 int err;
17a52670 760
638f5b90 761 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
762 if (!elem)
763 goto err;
764
17a52670
AS
765 elem->insn_idx = insn_idx;
766 elem->prev_insn_idx = prev_insn_idx;
767 elem->next = env->head;
768 env->head = elem;
769 env->stack_size++;
1969db47
AS
770 err = copy_verifier_state(&elem->st, cur);
771 if (err)
772 goto err;
07016151 773 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 774 verbose(env, "BPF program is too complex\n");
17a52670
AS
775 goto err;
776 }
777 return &elem->st;
778err:
5896351e
AS
779 free_verifier_state(env->cur_state, true);
780 env->cur_state = NULL;
17a52670 781 /* pop all elements and return */
638f5b90 782 while (!pop_stack(env, NULL, NULL));
17a52670
AS
783 return NULL;
784}
785
786#define CALLER_SAVED_REGS 6
787static const int caller_saved[CALLER_SAVED_REGS] = {
788 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
789};
790
f1174f77
EC
791static void __mark_reg_not_init(struct bpf_reg_state *reg);
792
b03c9f9f
EC
793/* Mark the unknown part of a register (variable offset or scalar value) as
794 * known to have the value @imm.
795 */
796static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
797{
a9c676bc
AS
798 /* Clear id, off, and union(map_ptr, range) */
799 memset(((u8 *)reg) + sizeof(reg->type), 0,
800 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
801 reg->var_off = tnum_const(imm);
802 reg->smin_value = (s64)imm;
803 reg->smax_value = (s64)imm;
804 reg->umin_value = imm;
805 reg->umax_value = imm;
806}
807
f1174f77
EC
808/* Mark the 'variable offset' part of a register as zero. This should be
809 * used only on registers holding a pointer type.
810 */
811static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 812{
b03c9f9f 813 __mark_reg_known(reg, 0);
f1174f77 814}
a9789ef9 815
cc2b14d5
AS
816static void __mark_reg_const_zero(struct bpf_reg_state *reg)
817{
818 __mark_reg_known(reg, 0);
cc2b14d5
AS
819 reg->type = SCALAR_VALUE;
820}
821
61bd5218
JK
822static void mark_reg_known_zero(struct bpf_verifier_env *env,
823 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
824{
825 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 826 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
827 /* Something bad happened, let's kill all regs */
828 for (regno = 0; regno < MAX_BPF_REG; regno++)
829 __mark_reg_not_init(regs + regno);
830 return;
831 }
832 __mark_reg_known_zero(regs + regno);
833}
834
de8f3a83
DB
835static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
836{
837 return type_is_pkt_pointer(reg->type);
838}
839
840static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
841{
842 return reg_is_pkt_pointer(reg) ||
843 reg->type == PTR_TO_PACKET_END;
844}
845
846/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
847static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
848 enum bpf_reg_type which)
849{
850 /* The register can already have a range from prior markings.
851 * This is fine as long as it hasn't been advanced from its
852 * origin.
853 */
854 return reg->type == which &&
855 reg->id == 0 &&
856 reg->off == 0 &&
857 tnum_equals_const(reg->var_off, 0);
858}
859
b03c9f9f
EC
860/* Attempts to improve min/max values based on var_off information */
861static void __update_reg_bounds(struct bpf_reg_state *reg)
862{
863 /* min signed is max(sign bit) | min(other bits) */
864 reg->smin_value = max_t(s64, reg->smin_value,
865 reg->var_off.value | (reg->var_off.mask & S64_MIN));
866 /* max signed is min(sign bit) | max(other bits) */
867 reg->smax_value = min_t(s64, reg->smax_value,
868 reg->var_off.value | (reg->var_off.mask & S64_MAX));
869 reg->umin_value = max(reg->umin_value, reg->var_off.value);
870 reg->umax_value = min(reg->umax_value,
871 reg->var_off.value | reg->var_off.mask);
872}
873
874/* Uses signed min/max values to inform unsigned, and vice-versa */
875static void __reg_deduce_bounds(struct bpf_reg_state *reg)
876{
877 /* Learn sign from signed bounds.
878 * If we cannot cross the sign boundary, then signed and unsigned bounds
879 * are the same, so combine. This works even in the negative case, e.g.
880 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
881 */
882 if (reg->smin_value >= 0 || reg->smax_value < 0) {
883 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
884 reg->umin_value);
885 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
886 reg->umax_value);
887 return;
888 }
889 /* Learn sign from unsigned bounds. Signed bounds cross the sign
890 * boundary, so we must be careful.
891 */
892 if ((s64)reg->umax_value >= 0) {
893 /* Positive. We can't learn anything from the smin, but smax
894 * is positive, hence safe.
895 */
896 reg->smin_value = reg->umin_value;
897 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
898 reg->umax_value);
899 } else if ((s64)reg->umin_value < 0) {
900 /* Negative. We can't learn anything from the smax, but smin
901 * is negative, hence safe.
902 */
903 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
904 reg->umin_value);
905 reg->smax_value = reg->umax_value;
906 }
907}
908
909/* Attempts to improve var_off based on unsigned min/max information */
910static void __reg_bound_offset(struct bpf_reg_state *reg)
911{
912 reg->var_off = tnum_intersect(reg->var_off,
913 tnum_range(reg->umin_value,
914 reg->umax_value));
915}
916
917/* Reset the min/max bounds of a register */
918static void __mark_reg_unbounded(struct bpf_reg_state *reg)
919{
920 reg->smin_value = S64_MIN;
921 reg->smax_value = S64_MAX;
922 reg->umin_value = 0;
923 reg->umax_value = U64_MAX;
924}
925
f1174f77
EC
926/* Mark a register as having a completely unknown (scalar) value. */
927static void __mark_reg_unknown(struct bpf_reg_state *reg)
928{
a9c676bc
AS
929 /*
930 * Clear type, id, off, and union(map_ptr, range) and
931 * padding between 'type' and union
932 */
933 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 934 reg->type = SCALAR_VALUE;
f1174f77 935 reg->var_off = tnum_unknown;
f4d7e40a 936 reg->frameno = 0;
b03c9f9f 937 __mark_reg_unbounded(reg);
f1174f77
EC
938}
939
61bd5218
JK
940static void mark_reg_unknown(struct bpf_verifier_env *env,
941 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
942{
943 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 944 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
945 /* Something bad happened, let's kill all regs except FP */
946 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
947 __mark_reg_not_init(regs + regno);
948 return;
949 }
950 __mark_reg_unknown(regs + regno);
951}
952
953static void __mark_reg_not_init(struct bpf_reg_state *reg)
954{
955 __mark_reg_unknown(reg);
956 reg->type = NOT_INIT;
957}
958
61bd5218
JK
959static void mark_reg_not_init(struct bpf_verifier_env *env,
960 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
961{
962 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 963 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
964 /* Something bad happened, let's kill all regs except FP */
965 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
966 __mark_reg_not_init(regs + regno);
967 return;
968 }
969 __mark_reg_not_init(regs + regno);
a9789ef9
DB
970}
971
61bd5218 972static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 973 struct bpf_func_state *state)
17a52670 974{
f4d7e40a 975 struct bpf_reg_state *regs = state->regs;
17a52670
AS
976 int i;
977
dc503a8a 978 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 979 mark_reg_not_init(env, regs, i);
dc503a8a 980 regs[i].live = REG_LIVE_NONE;
679c782d 981 regs[i].parent = NULL;
dc503a8a 982 }
17a52670
AS
983
984 /* frame pointer */
f1174f77 985 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 986 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 987 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
988
989 /* 1st arg to a function */
990 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 991 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
992}
993
f4d7e40a
AS
994#define BPF_MAIN_FUNC (-1)
995static void init_func_state(struct bpf_verifier_env *env,
996 struct bpf_func_state *state,
997 int callsite, int frameno, int subprogno)
998{
999 state->callsite = callsite;
1000 state->frameno = frameno;
1001 state->subprogno = subprogno;
1002 init_reg_state(env, state);
1003}
1004
17a52670
AS
1005enum reg_arg_type {
1006 SRC_OP, /* register is used as source operand */
1007 DST_OP, /* register is used as destination operand */
1008 DST_OP_NO_MARK /* same as above, check only, don't mark */
1009};
1010
cc8b0b92
AS
1011static int cmp_subprogs(const void *a, const void *b)
1012{
9c8105bd
JW
1013 return ((struct bpf_subprog_info *)a)->start -
1014 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1015}
1016
1017static int find_subprog(struct bpf_verifier_env *env, int off)
1018{
9c8105bd 1019 struct bpf_subprog_info *p;
cc8b0b92 1020
9c8105bd
JW
1021 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1022 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1023 if (!p)
1024 return -ENOENT;
9c8105bd 1025 return p - env->subprog_info;
cc8b0b92
AS
1026
1027}
1028
1029static int add_subprog(struct bpf_verifier_env *env, int off)
1030{
1031 int insn_cnt = env->prog->len;
1032 int ret;
1033
1034 if (off >= insn_cnt || off < 0) {
1035 verbose(env, "call to invalid destination\n");
1036 return -EINVAL;
1037 }
1038 ret = find_subprog(env, off);
1039 if (ret >= 0)
1040 return 0;
4cb3d99c 1041 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1042 verbose(env, "too many subprograms\n");
1043 return -E2BIG;
1044 }
9c8105bd
JW
1045 env->subprog_info[env->subprog_cnt++].start = off;
1046 sort(env->subprog_info, env->subprog_cnt,
1047 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1048 return 0;
1049}
1050
1051static int check_subprogs(struct bpf_verifier_env *env)
1052{
1053 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1054 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1055 struct bpf_insn *insn = env->prog->insnsi;
1056 int insn_cnt = env->prog->len;
1057
f910cefa
JW
1058 /* Add entry function. */
1059 ret = add_subprog(env, 0);
1060 if (ret < 0)
1061 return ret;
1062
cc8b0b92
AS
1063 /* determine subprog starts. The end is one before the next starts */
1064 for (i = 0; i < insn_cnt; i++) {
1065 if (insn[i].code != (BPF_JMP | BPF_CALL))
1066 continue;
1067 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1068 continue;
1069 if (!env->allow_ptr_leaks) {
1070 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1071 return -EPERM;
1072 }
cc8b0b92
AS
1073 ret = add_subprog(env, i + insn[i].imm + 1);
1074 if (ret < 0)
1075 return ret;
1076 }
1077
4cb3d99c
JW
1078 /* Add a fake 'exit' subprog which could simplify subprog iteration
1079 * logic. 'subprog_cnt' should not be increased.
1080 */
1081 subprog[env->subprog_cnt].start = insn_cnt;
1082
cc8b0b92
AS
1083 if (env->log.level > 1)
1084 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1085 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1086
1087 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1088 subprog_start = subprog[cur_subprog].start;
1089 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1090 for (i = 0; i < insn_cnt; i++) {
1091 u8 code = insn[i].code;
1092
1093 if (BPF_CLASS(code) != BPF_JMP)
1094 goto next;
1095 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1096 goto next;
1097 off = i + insn[i].off + 1;
1098 if (off < subprog_start || off >= subprog_end) {
1099 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1100 return -EINVAL;
1101 }
1102next:
1103 if (i == subprog_end - 1) {
1104 /* to avoid fall-through from one subprog into another
1105 * the last insn of the subprog should be either exit
1106 * or unconditional jump back
1107 */
1108 if (code != (BPF_JMP | BPF_EXIT) &&
1109 code != (BPF_JMP | BPF_JA)) {
1110 verbose(env, "last insn is not an exit or jmp\n");
1111 return -EINVAL;
1112 }
1113 subprog_start = subprog_end;
4cb3d99c
JW
1114 cur_subprog++;
1115 if (cur_subprog < env->subprog_cnt)
9c8105bd 1116 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1117 }
1118 }
1119 return 0;
1120}
1121
679c782d
EC
1122/* Parentage chain of this register (or stack slot) should take care of all
1123 * issues like callee-saved registers, stack slot allocation time, etc.
1124 */
f4d7e40a 1125static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1126 const struct bpf_reg_state *state,
1127 struct bpf_reg_state *parent)
f4d7e40a
AS
1128{
1129 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1130
1131 while (parent) {
1132 /* if read wasn't screened by an earlier write ... */
679c782d 1133 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a
EC
1134 break;
1135 /* ... then we depend on parent's value */
679c782d 1136 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1137 state = parent;
1138 parent = state->parent;
f4d7e40a 1139 writes = true;
dc503a8a 1140 }
f4d7e40a 1141 return 0;
dc503a8a
EC
1142}
1143
1144static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1145 enum reg_arg_type t)
1146{
f4d7e40a
AS
1147 struct bpf_verifier_state *vstate = env->cur_state;
1148 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1149 struct bpf_reg_state *regs = state->regs;
dc503a8a 1150
17a52670 1151 if (regno >= MAX_BPF_REG) {
61bd5218 1152 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1153 return -EINVAL;
1154 }
1155
1156 if (t == SRC_OP) {
1157 /* check whether register used as source operand can be read */
1158 if (regs[regno].type == NOT_INIT) {
61bd5218 1159 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1160 return -EACCES;
1161 }
679c782d
EC
1162 /* We don't need to worry about FP liveness because it's read-only */
1163 if (regno != BPF_REG_FP)
1164 return mark_reg_read(env, &regs[regno],
1165 regs[regno].parent);
17a52670
AS
1166 } else {
1167 /* check whether register used as dest operand can be written to */
1168 if (regno == BPF_REG_FP) {
61bd5218 1169 verbose(env, "frame pointer is read only\n");
17a52670
AS
1170 return -EACCES;
1171 }
dc503a8a 1172 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1173 if (t == DST_OP)
61bd5218 1174 mark_reg_unknown(env, regs, regno);
17a52670
AS
1175 }
1176 return 0;
1177}
1178
1be7f75d
AS
1179static bool is_spillable_regtype(enum bpf_reg_type type)
1180{
1181 switch (type) {
1182 case PTR_TO_MAP_VALUE:
1183 case PTR_TO_MAP_VALUE_OR_NULL:
1184 case PTR_TO_STACK:
1185 case PTR_TO_CTX:
969bf05e 1186 case PTR_TO_PACKET:
de8f3a83 1187 case PTR_TO_PACKET_META:
969bf05e 1188 case PTR_TO_PACKET_END:
d58e468b 1189 case PTR_TO_FLOW_KEYS:
1be7f75d 1190 case CONST_PTR_TO_MAP:
c64b7983
JS
1191 case PTR_TO_SOCKET:
1192 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1193 return true;
1194 default:
1195 return false;
1196 }
1197}
1198
cc2b14d5
AS
1199/* Does this register contain a constant zero? */
1200static bool register_is_null(struct bpf_reg_state *reg)
1201{
1202 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1203}
1204
17a52670
AS
1205/* check_stack_read/write functions track spill/fill of registers,
1206 * stack boundary and alignment are checked in check_mem_access()
1207 */
61bd5218 1208static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1209 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1210 int off, int size, int value_regno, int insn_idx)
17a52670 1211{
f4d7e40a 1212 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1213 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1214 enum bpf_reg_type type;
638f5b90 1215
f4d7e40a 1216 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1217 state->acquired_refs, true);
638f5b90
AS
1218 if (err)
1219 return err;
9c399760
AS
1220 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1221 * so it's aligned access and [off, off + size) are within stack limits
1222 */
638f5b90
AS
1223 if (!env->allow_ptr_leaks &&
1224 state->stack[spi].slot_type[0] == STACK_SPILL &&
1225 size != BPF_REG_SIZE) {
1226 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1227 return -EACCES;
1228 }
17a52670 1229
f4d7e40a 1230 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1231 if (value_regno >= 0 &&
f4d7e40a 1232 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1233
1234 /* register containing pointer is being spilled into stack */
9c399760 1235 if (size != BPF_REG_SIZE) {
61bd5218 1236 verbose(env, "invalid size of register spill\n");
17a52670
AS
1237 return -EACCES;
1238 }
1239
f4d7e40a
AS
1240 if (state != cur && type == PTR_TO_STACK) {
1241 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1242 return -EINVAL;
1243 }
1244
17a52670 1245 /* save register state */
f4d7e40a 1246 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1247 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1248
af86ca4e
AS
1249 for (i = 0; i < BPF_REG_SIZE; i++) {
1250 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1251 !env->allow_ptr_leaks) {
1252 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1253 int soff = (-spi - 1) * BPF_REG_SIZE;
1254
1255 /* detected reuse of integer stack slot with a pointer
1256 * which means either llvm is reusing stack slot or
1257 * an attacker is trying to exploit CVE-2018-3639
1258 * (speculative store bypass)
1259 * Have to sanitize that slot with preemptive
1260 * store of zero.
1261 */
1262 if (*poff && *poff != soff) {
1263 /* disallow programs where single insn stores
1264 * into two different stack slots, since verifier
1265 * cannot sanitize them
1266 */
1267 verbose(env,
1268 "insn %d cannot access two stack slots fp%d and fp%d",
1269 insn_idx, *poff, soff);
1270 return -EINVAL;
1271 }
1272 *poff = soff;
1273 }
638f5b90 1274 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1275 }
9c399760 1276 } else {
cc2b14d5
AS
1277 u8 type = STACK_MISC;
1278
679c782d
EC
1279 /* regular write of data into stack destroys any spilled ptr */
1280 state->stack[spi].spilled_ptr.type = NOT_INIT;
9c399760 1281
cc2b14d5
AS
1282 /* only mark the slot as written if all 8 bytes were written
1283 * otherwise read propagation may incorrectly stop too soon
1284 * when stack slots are partially written.
1285 * This heuristic means that read propagation will be
1286 * conservative, since it will add reg_live_read marks
1287 * to stack slots all the way to first state when programs
1288 * writes+reads less than 8 bytes
1289 */
1290 if (size == BPF_REG_SIZE)
1291 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1292
1293 /* when we zero initialize stack slots mark them as such */
1294 if (value_regno >= 0 &&
1295 register_is_null(&cur->regs[value_regno]))
1296 type = STACK_ZERO;
1297
9c399760 1298 for (i = 0; i < size; i++)
638f5b90 1299 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1300 type;
17a52670
AS
1301 }
1302 return 0;
1303}
1304
61bd5218 1305static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1306 struct bpf_func_state *reg_state /* func where register points to */,
1307 int off, int size, int value_regno)
17a52670 1308{
f4d7e40a
AS
1309 struct bpf_verifier_state *vstate = env->cur_state;
1310 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1311 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1312 u8 *stype;
17a52670 1313
f4d7e40a 1314 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1315 verbose(env, "invalid read from stack off %d+0 size %d\n",
1316 off, size);
1317 return -EACCES;
1318 }
f4d7e40a 1319 stype = reg_state->stack[spi].slot_type;
17a52670 1320
638f5b90 1321 if (stype[0] == STACK_SPILL) {
9c399760 1322 if (size != BPF_REG_SIZE) {
61bd5218 1323 verbose(env, "invalid size of register spill\n");
17a52670
AS
1324 return -EACCES;
1325 }
9c399760 1326 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1327 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1328 verbose(env, "corrupted spill memory\n");
17a52670
AS
1329 return -EACCES;
1330 }
1331 }
1332
dc503a8a 1333 if (value_regno >= 0) {
17a52670 1334 /* restore register state from stack */
f4d7e40a 1335 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1336 /* mark reg as written since spilled pointer state likely
1337 * has its liveness marks cleared by is_state_visited()
1338 * which resets stack/reg liveness for state transitions
1339 */
1340 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1341 }
679c782d
EC
1342 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1343 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1344 return 0;
1345 } else {
cc2b14d5
AS
1346 int zeros = 0;
1347
17a52670 1348 for (i = 0; i < size; i++) {
cc2b14d5
AS
1349 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1350 continue;
1351 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1352 zeros++;
1353 continue;
17a52670 1354 }
cc2b14d5
AS
1355 verbose(env, "invalid read from stack off %d+%d size %d\n",
1356 off, i, size);
1357 return -EACCES;
1358 }
679c782d
EC
1359 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1360 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1361 if (value_regno >= 0) {
1362 if (zeros == size) {
1363 /* any size read into register is zero extended,
1364 * so the whole register == const_zero
1365 */
1366 __mark_reg_const_zero(&state->regs[value_regno]);
1367 } else {
1368 /* have read misc data from the stack */
1369 mark_reg_unknown(env, state->regs, value_regno);
1370 }
1371 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1372 }
17a52670
AS
1373 return 0;
1374 }
1375}
1376
1377/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1378static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1379 int size, bool zero_size_allowed)
17a52670 1380{
638f5b90
AS
1381 struct bpf_reg_state *regs = cur_regs(env);
1382 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1383
9fd29c08
YS
1384 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1385 off + size > map->value_size) {
61bd5218 1386 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1387 map->value_size, off, size);
1388 return -EACCES;
1389 }
1390 return 0;
1391}
1392
f1174f77
EC
1393/* check read/write into a map element with possible variable offset */
1394static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1395 int off, int size, bool zero_size_allowed)
dbcfe5f7 1396{
f4d7e40a
AS
1397 struct bpf_verifier_state *vstate = env->cur_state;
1398 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1399 struct bpf_reg_state *reg = &state->regs[regno];
1400 int err;
1401
f1174f77
EC
1402 /* We may have adjusted the register to this map value, so we
1403 * need to try adding each of min_value and max_value to off
1404 * to make sure our theoretical access will be safe.
dbcfe5f7 1405 */
61bd5218
JK
1406 if (env->log.level)
1407 print_verifier_state(env, state);
dbcfe5f7
GB
1408 /* The minimum value is only important with signed
1409 * comparisons where we can't assume the floor of a
1410 * value is 0. If we are using signed variables for our
1411 * index'es we need to make sure that whatever we use
1412 * will have a set floor within our range.
1413 */
b03c9f9f 1414 if (reg->smin_value < 0) {
61bd5218 1415 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1416 regno);
1417 return -EACCES;
1418 }
9fd29c08
YS
1419 err = __check_map_access(env, regno, reg->smin_value + off, size,
1420 zero_size_allowed);
dbcfe5f7 1421 if (err) {
61bd5218
JK
1422 verbose(env, "R%d min value is outside of the array range\n",
1423 regno);
dbcfe5f7
GB
1424 return err;
1425 }
1426
b03c9f9f
EC
1427 /* If we haven't set a max value then we need to bail since we can't be
1428 * sure we won't do bad things.
1429 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1430 */
b03c9f9f 1431 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1432 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1433 regno);
1434 return -EACCES;
1435 }
9fd29c08
YS
1436 err = __check_map_access(env, regno, reg->umax_value + off, size,
1437 zero_size_allowed);
f1174f77 1438 if (err)
61bd5218
JK
1439 verbose(env, "R%d max value is outside of the array range\n",
1440 regno);
f1174f77 1441 return err;
dbcfe5f7
GB
1442}
1443
969bf05e
AS
1444#define MAX_PACKET_OFF 0xffff
1445
58e2af8b 1446static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1447 const struct bpf_call_arg_meta *meta,
1448 enum bpf_access_type t)
4acf6c0b 1449{
36bbef52 1450 switch (env->prog->type) {
5d66fa7d 1451 /* Program types only with direct read access go here! */
3a0af8fd
TG
1452 case BPF_PROG_TYPE_LWT_IN:
1453 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1454 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1455 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1456 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1457 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1458 if (t == BPF_WRITE)
1459 return false;
7e57fbb2 1460 /* fallthrough */
5d66fa7d
DB
1461
1462 /* Program types with direct read + write access go here! */
36bbef52
DB
1463 case BPF_PROG_TYPE_SCHED_CLS:
1464 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1465 case BPF_PROG_TYPE_XDP:
3a0af8fd 1466 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1467 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1468 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1469 if (meta)
1470 return meta->pkt_access;
1471
1472 env->seen_direct_write = true;
4acf6c0b
BB
1473 return true;
1474 default:
1475 return false;
1476 }
1477}
1478
f1174f77 1479static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1480 int off, int size, bool zero_size_allowed)
969bf05e 1481{
638f5b90 1482 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1483 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1484
9fd29c08
YS
1485 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1486 (u64)off + size > reg->range) {
61bd5218 1487 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1488 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1489 return -EACCES;
1490 }
1491 return 0;
1492}
1493
f1174f77 1494static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1495 int size, bool zero_size_allowed)
f1174f77 1496{
638f5b90 1497 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1498 struct bpf_reg_state *reg = &regs[regno];
1499 int err;
1500
1501 /* We may have added a variable offset to the packet pointer; but any
1502 * reg->range we have comes after that. We are only checking the fixed
1503 * offset.
1504 */
1505
1506 /* We don't allow negative numbers, because we aren't tracking enough
1507 * detail to prove they're safe.
1508 */
b03c9f9f 1509 if (reg->smin_value < 0) {
61bd5218 1510 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1511 regno);
1512 return -EACCES;
1513 }
9fd29c08 1514 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1515 if (err) {
61bd5218 1516 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1517 return err;
1518 }
e647815a
JW
1519
1520 /* __check_packet_access has made sure "off + size - 1" is within u16.
1521 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1522 * otherwise find_good_pkt_pointers would have refused to set range info
1523 * that __check_packet_access would have rejected this pkt access.
1524 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1525 */
1526 env->prog->aux->max_pkt_offset =
1527 max_t(u32, env->prog->aux->max_pkt_offset,
1528 off + reg->umax_value + size - 1);
1529
f1174f77
EC
1530 return err;
1531}
1532
1533/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1534static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1535 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1536{
f96da094
DB
1537 struct bpf_insn_access_aux info = {
1538 .reg_type = *reg_type,
1539 };
31fd8581 1540
4f9218aa 1541 if (env->ops->is_valid_access &&
5e43f899 1542 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1543 /* A non zero info.ctx_field_size indicates that this field is a
1544 * candidate for later verifier transformation to load the whole
1545 * field and then apply a mask when accessed with a narrower
1546 * access than actual ctx access size. A zero info.ctx_field_size
1547 * will only allow for whole field access and rejects any other
1548 * type of narrower access.
31fd8581 1549 */
23994631 1550 *reg_type = info.reg_type;
31fd8581 1551
4f9218aa 1552 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1553 /* remember the offset of last byte accessed in ctx */
1554 if (env->prog->aux->max_ctx_offset < off + size)
1555 env->prog->aux->max_ctx_offset = off + size;
17a52670 1556 return 0;
32bbe007 1557 }
17a52670 1558
61bd5218 1559 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1560 return -EACCES;
1561}
1562
d58e468b
PP
1563static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1564 int size)
1565{
1566 if (size < 0 || off < 0 ||
1567 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1568 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1569 off, size);
1570 return -EACCES;
1571 }
1572 return 0;
1573}
1574
c64b7983
JS
1575static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1576 int size, enum bpf_access_type t)
1577{
1578 struct bpf_reg_state *regs = cur_regs(env);
1579 struct bpf_reg_state *reg = &regs[regno];
1580 struct bpf_insn_access_aux info;
1581
1582 if (reg->smin_value < 0) {
1583 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1584 regno);
1585 return -EACCES;
1586 }
1587
1588 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1589 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1590 off, size);
1591 return -EACCES;
1592 }
1593
1594 return 0;
1595}
1596
4cabc5b1
DB
1597static bool __is_pointer_value(bool allow_ptr_leaks,
1598 const struct bpf_reg_state *reg)
1be7f75d 1599{
4cabc5b1 1600 if (allow_ptr_leaks)
1be7f75d
AS
1601 return false;
1602
f1174f77 1603 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1604}
1605
2a159c6f
DB
1606static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1607{
1608 return cur_regs(env) + regno;
1609}
1610
4cabc5b1
DB
1611static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1612{
2a159c6f 1613 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1614}
1615
f37a8cb8
DB
1616static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1617{
2a159c6f 1618 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1619
fd978bf7
JS
1620 return reg->type == PTR_TO_CTX ||
1621 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1622}
1623
ca369602
DB
1624static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1625{
2a159c6f 1626 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1627
1628 return type_is_pkt_pointer(reg->type);
1629}
1630
4b5defde
DB
1631static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1632{
1633 const struct bpf_reg_state *reg = reg_state(env, regno);
1634
1635 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1636 return reg->type == PTR_TO_FLOW_KEYS;
1637}
1638
61bd5218
JK
1639static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1640 const struct bpf_reg_state *reg,
d1174416 1641 int off, int size, bool strict)
969bf05e 1642{
f1174f77 1643 struct tnum reg_off;
e07b98d9 1644 int ip_align;
d1174416
DM
1645
1646 /* Byte size accesses are always allowed. */
1647 if (!strict || size == 1)
1648 return 0;
1649
e4eda884
DM
1650 /* For platforms that do not have a Kconfig enabling
1651 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1652 * NET_IP_ALIGN is universally set to '2'. And on platforms
1653 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1654 * to this code only in strict mode where we want to emulate
1655 * the NET_IP_ALIGN==2 checking. Therefore use an
1656 * unconditional IP align value of '2'.
e07b98d9 1657 */
e4eda884 1658 ip_align = 2;
f1174f77
EC
1659
1660 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1661 if (!tnum_is_aligned(reg_off, size)) {
1662 char tn_buf[48];
1663
1664 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1665 verbose(env,
1666 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1667 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1668 return -EACCES;
1669 }
79adffcd 1670
969bf05e
AS
1671 return 0;
1672}
1673
61bd5218
JK
1674static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1675 const struct bpf_reg_state *reg,
f1174f77
EC
1676 const char *pointer_desc,
1677 int off, int size, bool strict)
79adffcd 1678{
f1174f77
EC
1679 struct tnum reg_off;
1680
1681 /* Byte size accesses are always allowed. */
1682 if (!strict || size == 1)
1683 return 0;
1684
1685 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1686 if (!tnum_is_aligned(reg_off, size)) {
1687 char tn_buf[48];
1688
1689 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1690 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1691 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1692 return -EACCES;
1693 }
1694
969bf05e
AS
1695 return 0;
1696}
1697
e07b98d9 1698static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1699 const struct bpf_reg_state *reg, int off,
1700 int size, bool strict_alignment_once)
79adffcd 1701{
ca369602 1702 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1703 const char *pointer_desc = "";
d1174416 1704
79adffcd
DB
1705 switch (reg->type) {
1706 case PTR_TO_PACKET:
de8f3a83
DB
1707 case PTR_TO_PACKET_META:
1708 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1709 * right in front, treat it the very same way.
1710 */
61bd5218 1711 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1712 case PTR_TO_FLOW_KEYS:
1713 pointer_desc = "flow keys ";
1714 break;
f1174f77
EC
1715 case PTR_TO_MAP_VALUE:
1716 pointer_desc = "value ";
1717 break;
1718 case PTR_TO_CTX:
1719 pointer_desc = "context ";
1720 break;
1721 case PTR_TO_STACK:
1722 pointer_desc = "stack ";
a5ec6ae1
JH
1723 /* The stack spill tracking logic in check_stack_write()
1724 * and check_stack_read() relies on stack accesses being
1725 * aligned.
1726 */
1727 strict = true;
f1174f77 1728 break;
c64b7983
JS
1729 case PTR_TO_SOCKET:
1730 pointer_desc = "sock ";
1731 break;
79adffcd 1732 default:
f1174f77 1733 break;
79adffcd 1734 }
61bd5218
JK
1735 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1736 strict);
79adffcd
DB
1737}
1738
f4d7e40a
AS
1739static int update_stack_depth(struct bpf_verifier_env *env,
1740 const struct bpf_func_state *func,
1741 int off)
1742{
9c8105bd 1743 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1744
1745 if (stack >= -off)
1746 return 0;
1747
1748 /* update known max for given subprogram */
9c8105bd 1749 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1750 return 0;
1751}
f4d7e40a 1752
70a87ffe
AS
1753/* starting from main bpf function walk all instructions of the function
1754 * and recursively walk all callees that given function can call.
1755 * Ignore jump and exit insns.
1756 * Since recursion is prevented by check_cfg() this algorithm
1757 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1758 */
1759static int check_max_stack_depth(struct bpf_verifier_env *env)
1760{
9c8105bd
JW
1761 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1762 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1763 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1764 int ret_insn[MAX_CALL_FRAMES];
1765 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1766
70a87ffe
AS
1767process_func:
1768 /* round up to 32-bytes, since this is granularity
1769 * of interpreter stack size
1770 */
9c8105bd 1771 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1772 if (depth > MAX_BPF_STACK) {
f4d7e40a 1773 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1774 frame + 1, depth);
f4d7e40a
AS
1775 return -EACCES;
1776 }
70a87ffe 1777continue_func:
4cb3d99c 1778 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1779 for (; i < subprog_end; i++) {
1780 if (insn[i].code != (BPF_JMP | BPF_CALL))
1781 continue;
1782 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1783 continue;
1784 /* remember insn and function to return to */
1785 ret_insn[frame] = i + 1;
9c8105bd 1786 ret_prog[frame] = idx;
70a87ffe
AS
1787
1788 /* find the callee */
1789 i = i + insn[i].imm + 1;
9c8105bd
JW
1790 idx = find_subprog(env, i);
1791 if (idx < 0) {
70a87ffe
AS
1792 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1793 i);
1794 return -EFAULT;
1795 }
70a87ffe
AS
1796 frame++;
1797 if (frame >= MAX_CALL_FRAMES) {
1798 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1799 return -EFAULT;
1800 }
1801 goto process_func;
1802 }
1803 /* end of for() loop means the last insn of the 'subprog'
1804 * was reached. Doesn't matter whether it was JA or EXIT
1805 */
1806 if (frame == 0)
1807 return 0;
9c8105bd 1808 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1809 frame--;
1810 i = ret_insn[frame];
9c8105bd 1811 idx = ret_prog[frame];
70a87ffe 1812 goto continue_func;
f4d7e40a
AS
1813}
1814
19d28fbd 1815#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1816static int get_callee_stack_depth(struct bpf_verifier_env *env,
1817 const struct bpf_insn *insn, int idx)
1818{
1819 int start = idx + insn->imm + 1, subprog;
1820
1821 subprog = find_subprog(env, start);
1822 if (subprog < 0) {
1823 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1824 start);
1825 return -EFAULT;
1826 }
9c8105bd 1827 return env->subprog_info[subprog].stack_depth;
1ea47e01 1828}
19d28fbd 1829#endif
1ea47e01 1830
58990d1f
DB
1831static int check_ctx_reg(struct bpf_verifier_env *env,
1832 const struct bpf_reg_state *reg, int regno)
1833{
1834 /* Access to ctx or passing it to a helper is only allowed in
1835 * its original, unmodified form.
1836 */
1837
1838 if (reg->off) {
1839 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1840 regno, reg->off);
1841 return -EACCES;
1842 }
1843
1844 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1845 char tn_buf[48];
1846
1847 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1848 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1849 return -EACCES;
1850 }
1851
1852 return 0;
1853}
1854
0c17d1d2
JH
1855/* truncate register to smaller size (in bytes)
1856 * must be called with size < BPF_REG_SIZE
1857 */
1858static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1859{
1860 u64 mask;
1861
1862 /* clear high bits in bit representation */
1863 reg->var_off = tnum_cast(reg->var_off, size);
1864
1865 /* fix arithmetic bounds */
1866 mask = ((u64)1 << (size * 8)) - 1;
1867 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1868 reg->umin_value &= mask;
1869 reg->umax_value &= mask;
1870 } else {
1871 reg->umin_value = 0;
1872 reg->umax_value = mask;
1873 }
1874 reg->smin_value = reg->umin_value;
1875 reg->smax_value = reg->umax_value;
1876}
1877
17a52670
AS
1878/* check whether memory at (regno + off) is accessible for t = (read | write)
1879 * if t==write, value_regno is a register which value is stored into memory
1880 * if t==read, value_regno is a register which will receive the value from memory
1881 * if t==write && value_regno==-1, some unknown value is stored into memory
1882 * if t==read && value_regno==-1, don't care what we read from memory
1883 */
ca369602
DB
1884static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1885 int off, int bpf_size, enum bpf_access_type t,
1886 int value_regno, bool strict_alignment_once)
17a52670 1887{
638f5b90
AS
1888 struct bpf_reg_state *regs = cur_regs(env);
1889 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1890 struct bpf_func_state *state;
17a52670
AS
1891 int size, err = 0;
1892
1893 size = bpf_size_to_bytes(bpf_size);
1894 if (size < 0)
1895 return size;
1896
f1174f77 1897 /* alignment checks will add in reg->off themselves */
ca369602 1898 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1899 if (err)
1900 return err;
17a52670 1901
f1174f77
EC
1902 /* for access checks, reg->off is just part of off */
1903 off += reg->off;
1904
1905 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1906 if (t == BPF_WRITE && value_regno >= 0 &&
1907 is_pointer_value(env, value_regno)) {
61bd5218 1908 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1909 return -EACCES;
1910 }
48461135 1911
9fd29c08 1912 err = check_map_access(env, regno, off, size, false);
17a52670 1913 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1914 mark_reg_unknown(env, regs, value_regno);
17a52670 1915
1a0dc1ac 1916 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1917 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1918
1be7f75d
AS
1919 if (t == BPF_WRITE && value_regno >= 0 &&
1920 is_pointer_value(env, value_regno)) {
61bd5218 1921 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1922 return -EACCES;
1923 }
f1174f77 1924
58990d1f
DB
1925 err = check_ctx_reg(env, reg, regno);
1926 if (err < 0)
1927 return err;
1928
31fd8581 1929 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1930 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1931 /* ctx access returns either a scalar, or a
de8f3a83
DB
1932 * PTR_TO_PACKET[_META,_END]. In the latter
1933 * case, we know the offset is zero.
f1174f77
EC
1934 */
1935 if (reg_type == SCALAR_VALUE)
638f5b90 1936 mark_reg_unknown(env, regs, value_regno);
f1174f77 1937 else
638f5b90 1938 mark_reg_known_zero(env, regs,
61bd5218 1939 value_regno);
638f5b90 1940 regs[value_regno].type = reg_type;
969bf05e 1941 }
17a52670 1942
f1174f77
EC
1943 } else if (reg->type == PTR_TO_STACK) {
1944 /* stack accesses must be at a fixed offset, so that we can
1945 * determine what type of data were returned.
1946 * See check_stack_read().
1947 */
1948 if (!tnum_is_const(reg->var_off)) {
1949 char tn_buf[48];
1950
1951 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1952 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1953 tn_buf, off, size);
1954 return -EACCES;
1955 }
1956 off += reg->var_off.value;
17a52670 1957 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1958 verbose(env, "invalid stack off=%d size=%d\n", off,
1959 size);
17a52670
AS
1960 return -EACCES;
1961 }
8726679a 1962
f4d7e40a
AS
1963 state = func(env, reg);
1964 err = update_stack_depth(env, state, off);
1965 if (err)
1966 return err;
8726679a 1967
638f5b90 1968 if (t == BPF_WRITE)
61bd5218 1969 err = check_stack_write(env, state, off, size,
af86ca4e 1970 value_regno, insn_idx);
638f5b90 1971 else
61bd5218
JK
1972 err = check_stack_read(env, state, off, size,
1973 value_regno);
de8f3a83 1974 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1975 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1976 verbose(env, "cannot write into packet\n");
969bf05e
AS
1977 return -EACCES;
1978 }
4acf6c0b
BB
1979 if (t == BPF_WRITE && value_regno >= 0 &&
1980 is_pointer_value(env, value_regno)) {
61bd5218
JK
1981 verbose(env, "R%d leaks addr into packet\n",
1982 value_regno);
4acf6c0b
BB
1983 return -EACCES;
1984 }
9fd29c08 1985 err = check_packet_access(env, regno, off, size, false);
969bf05e 1986 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1987 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
1988 } else if (reg->type == PTR_TO_FLOW_KEYS) {
1989 if (t == BPF_WRITE && value_regno >= 0 &&
1990 is_pointer_value(env, value_regno)) {
1991 verbose(env, "R%d leaks addr into flow keys\n",
1992 value_regno);
1993 return -EACCES;
1994 }
1995
1996 err = check_flow_keys_access(env, off, size);
1997 if (!err && t == BPF_READ && value_regno >= 0)
1998 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
1999 } else if (reg->type == PTR_TO_SOCKET) {
2000 if (t == BPF_WRITE) {
2001 verbose(env, "cannot write into socket\n");
2002 return -EACCES;
2003 }
2004 err = check_sock_access(env, regno, off, size, t);
2005 if (!err && value_regno >= 0)
2006 mark_reg_unknown(env, regs, value_regno);
17a52670 2007 } else {
61bd5218
JK
2008 verbose(env, "R%d invalid mem access '%s'\n", regno,
2009 reg_type_str[reg->type]);
17a52670
AS
2010 return -EACCES;
2011 }
969bf05e 2012
f1174f77 2013 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2014 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2015 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2016 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2017 }
17a52670
AS
2018 return err;
2019}
2020
31fd8581 2021static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2022{
17a52670
AS
2023 int err;
2024
2025 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2026 insn->imm != 0) {
61bd5218 2027 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2028 return -EINVAL;
2029 }
2030
2031 /* check src1 operand */
dc503a8a 2032 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2033 if (err)
2034 return err;
2035
2036 /* check src2 operand */
dc503a8a 2037 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2038 if (err)
2039 return err;
2040
6bdf6abc 2041 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2042 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2043 return -EACCES;
2044 }
2045
ca369602 2046 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde
DB
2047 is_pkt_reg(env, insn->dst_reg) ||
2048 is_flow_key_reg(env, insn->dst_reg)) {
ca369602 2049 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2050 insn->dst_reg,
2051 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2052 return -EACCES;
2053 }
2054
17a52670 2055 /* check whether atomic_add can read the memory */
31fd8581 2056 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2057 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2058 if (err)
2059 return err;
2060
2061 /* check whether atomic_add can write into the same memory */
31fd8581 2062 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2063 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2064}
2065
2066/* when register 'regno' is passed into function that will read 'access_size'
2067 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2068 * and all elements of stack are initialized.
2069 * Unlike most pointer bounds-checking functions, this one doesn't take an
2070 * 'off' argument, so it has to add in reg->off itself.
17a52670 2071 */
58e2af8b 2072static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2073 int access_size, bool zero_size_allowed,
2074 struct bpf_call_arg_meta *meta)
17a52670 2075{
2a159c6f 2076 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2077 struct bpf_func_state *state = func(env, reg);
638f5b90 2078 int off, i, slot, spi;
17a52670 2079
914cb781 2080 if (reg->type != PTR_TO_STACK) {
f1174f77 2081 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2082 if (zero_size_allowed && access_size == 0 &&
914cb781 2083 register_is_null(reg))
8e2fe1d9
DB
2084 return 0;
2085
61bd5218 2086 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2087 reg_type_str[reg->type],
8e2fe1d9 2088 reg_type_str[PTR_TO_STACK]);
17a52670 2089 return -EACCES;
8e2fe1d9 2090 }
17a52670 2091
f1174f77 2092 /* Only allow fixed-offset stack reads */
914cb781 2093 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2094 char tn_buf[48];
2095
914cb781 2096 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2097 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2098 regno, tn_buf);
ea25f914 2099 return -EACCES;
f1174f77 2100 }
914cb781 2101 off = reg->off + reg->var_off.value;
17a52670 2102 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2103 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2104 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2105 regno, off, access_size);
2106 return -EACCES;
2107 }
2108
435faee1
DB
2109 if (meta && meta->raw_mode) {
2110 meta->access_size = access_size;
2111 meta->regno = regno;
2112 return 0;
2113 }
2114
17a52670 2115 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2116 u8 *stype;
2117
638f5b90
AS
2118 slot = -(off + i) - 1;
2119 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2120 if (state->allocated_stack <= slot)
2121 goto err;
2122 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2123 if (*stype == STACK_MISC)
2124 goto mark;
2125 if (*stype == STACK_ZERO) {
2126 /* helper can write anything into the stack */
2127 *stype = STACK_MISC;
2128 goto mark;
17a52670 2129 }
cc2b14d5
AS
2130err:
2131 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2132 off, i, access_size);
2133 return -EACCES;
2134mark:
2135 /* reading any byte out of 8-byte 'spill_slot' will cause
2136 * the whole slot to be marked as 'read'
2137 */
679c782d
EC
2138 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2139 state->stack[spi].spilled_ptr.parent);
17a52670 2140 }
f4d7e40a 2141 return update_stack_depth(env, state, off);
17a52670
AS
2142}
2143
06c1c049
GB
2144static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2145 int access_size, bool zero_size_allowed,
2146 struct bpf_call_arg_meta *meta)
2147{
638f5b90 2148 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2149
f1174f77 2150 switch (reg->type) {
06c1c049 2151 case PTR_TO_PACKET:
de8f3a83 2152 case PTR_TO_PACKET_META:
9fd29c08
YS
2153 return check_packet_access(env, regno, reg->off, access_size,
2154 zero_size_allowed);
06c1c049 2155 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2156 return check_map_access(env, regno, reg->off, access_size,
2157 zero_size_allowed);
f1174f77 2158 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2159 return check_stack_boundary(env, regno, access_size,
2160 zero_size_allowed, meta);
2161 }
2162}
2163
90133415
DB
2164static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2165{
2166 return type == ARG_PTR_TO_MEM ||
2167 type == ARG_PTR_TO_MEM_OR_NULL ||
2168 type == ARG_PTR_TO_UNINIT_MEM;
2169}
2170
2171static bool arg_type_is_mem_size(enum bpf_arg_type type)
2172{
2173 return type == ARG_CONST_SIZE ||
2174 type == ARG_CONST_SIZE_OR_ZERO;
2175}
2176
58e2af8b 2177static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2178 enum bpf_arg_type arg_type,
2179 struct bpf_call_arg_meta *meta)
17a52670 2180{
638f5b90 2181 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2182 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2183 int err = 0;
2184
80f1d68c 2185 if (arg_type == ARG_DONTCARE)
17a52670
AS
2186 return 0;
2187
dc503a8a
EC
2188 err = check_reg_arg(env, regno, SRC_OP);
2189 if (err)
2190 return err;
17a52670 2191
1be7f75d
AS
2192 if (arg_type == ARG_ANYTHING) {
2193 if (is_pointer_value(env, regno)) {
61bd5218
JK
2194 verbose(env, "R%d leaks addr into helper function\n",
2195 regno);
1be7f75d
AS
2196 return -EACCES;
2197 }
80f1d68c 2198 return 0;
1be7f75d 2199 }
80f1d68c 2200
de8f3a83 2201 if (type_is_pkt_pointer(type) &&
3a0af8fd 2202 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2203 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2204 return -EACCES;
2205 }
2206
8e2fe1d9 2207 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2208 arg_type == ARG_PTR_TO_MAP_VALUE ||
2209 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2210 expected_type = PTR_TO_STACK;
d71962f3 2211 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2212 type != expected_type)
6841de8b 2213 goto err_type;
39f19ebb
AS
2214 } else if (arg_type == ARG_CONST_SIZE ||
2215 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2216 expected_type = SCALAR_VALUE;
2217 if (type != expected_type)
6841de8b 2218 goto err_type;
17a52670
AS
2219 } else if (arg_type == ARG_CONST_MAP_PTR) {
2220 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2221 if (type != expected_type)
2222 goto err_type;
608cd71a
AS
2223 } else if (arg_type == ARG_PTR_TO_CTX) {
2224 expected_type = PTR_TO_CTX;
6841de8b
AS
2225 if (type != expected_type)
2226 goto err_type;
58990d1f
DB
2227 err = check_ctx_reg(env, reg, regno);
2228 if (err < 0)
2229 return err;
c64b7983
JS
2230 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2231 expected_type = PTR_TO_SOCKET;
2232 if (type != expected_type)
2233 goto err_type;
fd978bf7
JS
2234 if (meta->ptr_id || !reg->id) {
2235 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2236 meta->ptr_id, reg->id);
2237 return -EFAULT;
2238 }
2239 meta->ptr_id = reg->id;
90133415 2240 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2241 expected_type = PTR_TO_STACK;
2242 /* One exception here. In case function allows for NULL to be
f1174f77 2243 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2244 * happens during stack boundary checking.
2245 */
914cb781 2246 if (register_is_null(reg) &&
db1ac496 2247 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2248 /* final test in check_stack_boundary() */;
de8f3a83
DB
2249 else if (!type_is_pkt_pointer(type) &&
2250 type != PTR_TO_MAP_VALUE &&
f1174f77 2251 type != expected_type)
6841de8b 2252 goto err_type;
39f19ebb 2253 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2254 } else {
61bd5218 2255 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2256 return -EFAULT;
2257 }
2258
17a52670
AS
2259 if (arg_type == ARG_CONST_MAP_PTR) {
2260 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2261 meta->map_ptr = reg->map_ptr;
17a52670
AS
2262 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2263 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2264 * check that [key, key + map->key_size) are within
2265 * stack limits and initialized
2266 */
33ff9823 2267 if (!meta->map_ptr) {
17a52670
AS
2268 /* in function declaration map_ptr must come before
2269 * map_key, so that it's verified and known before
2270 * we have to check map_key here. Otherwise it means
2271 * that kernel subsystem misconfigured verifier
2272 */
61bd5218 2273 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2274 return -EACCES;
2275 }
d71962f3
PC
2276 err = check_helper_mem_access(env, regno,
2277 meta->map_ptr->key_size, false,
2278 NULL);
2ea864c5
MV
2279 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2280 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2281 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2282 * check [value, value + map->value_size) validity
2283 */
33ff9823 2284 if (!meta->map_ptr) {
17a52670 2285 /* kernel subsystem misconfigured verifier */
61bd5218 2286 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2287 return -EACCES;
2288 }
2ea864c5 2289 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2290 err = check_helper_mem_access(env, regno,
2291 meta->map_ptr->value_size, false,
2ea864c5 2292 meta);
90133415 2293 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2294 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2295
849fa506
YS
2296 /* remember the mem_size which may be used later
2297 * to refine return values.
2298 */
2299 meta->msize_smax_value = reg->smax_value;
2300 meta->msize_umax_value = reg->umax_value;
2301
f1174f77
EC
2302 /* The register is SCALAR_VALUE; the access check
2303 * happens using its boundaries.
06c1c049 2304 */
f1174f77 2305 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2306 /* For unprivileged variable accesses, disable raw
2307 * mode so that the program is required to
2308 * initialize all the memory that the helper could
2309 * just partially fill up.
2310 */
2311 meta = NULL;
2312
b03c9f9f 2313 if (reg->smin_value < 0) {
61bd5218 2314 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2315 regno);
2316 return -EACCES;
2317 }
06c1c049 2318
b03c9f9f 2319 if (reg->umin_value == 0) {
f1174f77
EC
2320 err = check_helper_mem_access(env, regno - 1, 0,
2321 zero_size_allowed,
2322 meta);
06c1c049
GB
2323 if (err)
2324 return err;
06c1c049 2325 }
f1174f77 2326
b03c9f9f 2327 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2328 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2329 regno);
2330 return -EACCES;
2331 }
2332 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2333 reg->umax_value,
f1174f77 2334 zero_size_allowed, meta);
17a52670
AS
2335 }
2336
2337 return err;
6841de8b 2338err_type:
61bd5218 2339 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2340 reg_type_str[type], reg_type_str[expected_type]);
2341 return -EACCES;
17a52670
AS
2342}
2343
61bd5218
JK
2344static int check_map_func_compatibility(struct bpf_verifier_env *env,
2345 struct bpf_map *map, int func_id)
35578d79 2346{
35578d79
KX
2347 if (!map)
2348 return 0;
2349
6aff67c8
AS
2350 /* We need a two way check, first is from map perspective ... */
2351 switch (map->map_type) {
2352 case BPF_MAP_TYPE_PROG_ARRAY:
2353 if (func_id != BPF_FUNC_tail_call)
2354 goto error;
2355 break;
2356 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2357 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2358 func_id != BPF_FUNC_perf_event_output &&
2359 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2360 goto error;
2361 break;
2362 case BPF_MAP_TYPE_STACK_TRACE:
2363 if (func_id != BPF_FUNC_get_stackid)
2364 goto error;
2365 break;
4ed8ec52 2366 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2367 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2368 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2369 goto error;
2370 break;
cd339431 2371 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2372 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2373 if (func_id != BPF_FUNC_get_local_storage)
2374 goto error;
2375 break;
546ac1ff
JF
2376 /* devmap returns a pointer to a live net_device ifindex that we cannot
2377 * allow to be modified from bpf side. So do not allow lookup elements
2378 * for now.
2379 */
2380 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2381 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2382 goto error;
2383 break;
fbfc504a
BT
2384 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2385 * appear.
2386 */
6710e112 2387 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2388 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2389 if (func_id != BPF_FUNC_redirect_map)
2390 goto error;
2391 break;
56f668df 2392 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2393 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2394 if (func_id != BPF_FUNC_map_lookup_elem)
2395 goto error;
16a43625 2396 break;
174a79ff
JF
2397 case BPF_MAP_TYPE_SOCKMAP:
2398 if (func_id != BPF_FUNC_sk_redirect_map &&
2399 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2400 func_id != BPF_FUNC_map_delete_elem &&
2401 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2402 goto error;
2403 break;
81110384
JF
2404 case BPF_MAP_TYPE_SOCKHASH:
2405 if (func_id != BPF_FUNC_sk_redirect_hash &&
2406 func_id != BPF_FUNC_sock_hash_update &&
2407 func_id != BPF_FUNC_map_delete_elem &&
2408 func_id != BPF_FUNC_msg_redirect_hash)
2409 goto error;
2410 break;
2dbb9b9e
MKL
2411 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2412 if (func_id != BPF_FUNC_sk_select_reuseport)
2413 goto error;
2414 break;
f1a2e44a
MV
2415 case BPF_MAP_TYPE_QUEUE:
2416 case BPF_MAP_TYPE_STACK:
2417 if (func_id != BPF_FUNC_map_peek_elem &&
2418 func_id != BPF_FUNC_map_pop_elem &&
2419 func_id != BPF_FUNC_map_push_elem)
2420 goto error;
2421 break;
6aff67c8
AS
2422 default:
2423 break;
2424 }
2425
2426 /* ... and second from the function itself. */
2427 switch (func_id) {
2428 case BPF_FUNC_tail_call:
2429 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2430 goto error;
f910cefa 2431 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2432 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2433 return -EINVAL;
2434 }
6aff67c8
AS
2435 break;
2436 case BPF_FUNC_perf_event_read:
2437 case BPF_FUNC_perf_event_output:
908432ca 2438 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2439 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2440 goto error;
2441 break;
2442 case BPF_FUNC_get_stackid:
2443 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2444 goto error;
2445 break;
60d20f91 2446 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2447 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2448 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2449 goto error;
2450 break;
97f91a7c 2451 case BPF_FUNC_redirect_map:
9c270af3 2452 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2453 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2454 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2455 goto error;
2456 break;
174a79ff 2457 case BPF_FUNC_sk_redirect_map:
4f738adb 2458 case BPF_FUNC_msg_redirect_map:
81110384 2459 case BPF_FUNC_sock_map_update:
174a79ff
JF
2460 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2461 goto error;
2462 break;
81110384
JF
2463 case BPF_FUNC_sk_redirect_hash:
2464 case BPF_FUNC_msg_redirect_hash:
2465 case BPF_FUNC_sock_hash_update:
2466 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2467 goto error;
2468 break;
cd339431 2469 case BPF_FUNC_get_local_storage:
b741f163
RG
2470 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2471 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2472 goto error;
2473 break;
2dbb9b9e
MKL
2474 case BPF_FUNC_sk_select_reuseport:
2475 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2476 goto error;
2477 break;
f1a2e44a
MV
2478 case BPF_FUNC_map_peek_elem:
2479 case BPF_FUNC_map_pop_elem:
2480 case BPF_FUNC_map_push_elem:
2481 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2482 map->map_type != BPF_MAP_TYPE_STACK)
2483 goto error;
2484 break;
6aff67c8
AS
2485 default:
2486 break;
35578d79
KX
2487 }
2488
2489 return 0;
6aff67c8 2490error:
61bd5218 2491 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2492 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2493 return -EINVAL;
35578d79
KX
2494}
2495
90133415 2496static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2497{
2498 int count = 0;
2499
39f19ebb 2500 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2501 count++;
39f19ebb 2502 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2503 count++;
39f19ebb 2504 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2505 count++;
39f19ebb 2506 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2507 count++;
39f19ebb 2508 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2509 count++;
2510
90133415
DB
2511 /* We only support one arg being in raw mode at the moment,
2512 * which is sufficient for the helper functions we have
2513 * right now.
2514 */
2515 return count <= 1;
2516}
2517
2518static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2519 enum bpf_arg_type arg_next)
2520{
2521 return (arg_type_is_mem_ptr(arg_curr) &&
2522 !arg_type_is_mem_size(arg_next)) ||
2523 (!arg_type_is_mem_ptr(arg_curr) &&
2524 arg_type_is_mem_size(arg_next));
2525}
2526
2527static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2528{
2529 /* bpf_xxx(..., buf, len) call will access 'len'
2530 * bytes from memory 'buf'. Both arg types need
2531 * to be paired, so make sure there's no buggy
2532 * helper function specification.
2533 */
2534 if (arg_type_is_mem_size(fn->arg1_type) ||
2535 arg_type_is_mem_ptr(fn->arg5_type) ||
2536 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2537 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2538 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2539 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2540 return false;
2541
2542 return true;
2543}
2544
fd978bf7
JS
2545static bool check_refcount_ok(const struct bpf_func_proto *fn)
2546{
2547 int count = 0;
2548
2549 if (arg_type_is_refcounted(fn->arg1_type))
2550 count++;
2551 if (arg_type_is_refcounted(fn->arg2_type))
2552 count++;
2553 if (arg_type_is_refcounted(fn->arg3_type))
2554 count++;
2555 if (arg_type_is_refcounted(fn->arg4_type))
2556 count++;
2557 if (arg_type_is_refcounted(fn->arg5_type))
2558 count++;
2559
2560 /* We only support one arg being unreferenced at the moment,
2561 * which is sufficient for the helper functions we have right now.
2562 */
2563 return count <= 1;
2564}
2565
90133415
DB
2566static int check_func_proto(const struct bpf_func_proto *fn)
2567{
2568 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2569 check_arg_pair_ok(fn) &&
2570 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2571}
2572
de8f3a83
DB
2573/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2574 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2575 */
f4d7e40a
AS
2576static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2577 struct bpf_func_state *state)
969bf05e 2578{
58e2af8b 2579 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2580 int i;
2581
2582 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2583 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2584 mark_reg_unknown(env, regs, i);
969bf05e 2585
f3709f69
JS
2586 bpf_for_each_spilled_reg(i, state, reg) {
2587 if (!reg)
969bf05e 2588 continue;
de8f3a83
DB
2589 if (reg_is_pkt_pointer_any(reg))
2590 __mark_reg_unknown(reg);
969bf05e
AS
2591 }
2592}
2593
f4d7e40a
AS
2594static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2595{
2596 struct bpf_verifier_state *vstate = env->cur_state;
2597 int i;
2598
2599 for (i = 0; i <= vstate->curframe; i++)
2600 __clear_all_pkt_pointers(env, vstate->frame[i]);
2601}
2602
fd978bf7
JS
2603static void release_reg_references(struct bpf_verifier_env *env,
2604 struct bpf_func_state *state, int id)
2605{
2606 struct bpf_reg_state *regs = state->regs, *reg;
2607 int i;
2608
2609 for (i = 0; i < MAX_BPF_REG; i++)
2610 if (regs[i].id == id)
2611 mark_reg_unknown(env, regs, i);
2612
2613 bpf_for_each_spilled_reg(i, state, reg) {
2614 if (!reg)
2615 continue;
2616 if (reg_is_refcounted(reg) && reg->id == id)
2617 __mark_reg_unknown(reg);
2618 }
2619}
2620
2621/* The pointer with the specified id has released its reference to kernel
2622 * resources. Identify all copies of the same pointer and clear the reference.
2623 */
2624static int release_reference(struct bpf_verifier_env *env,
2625 struct bpf_call_arg_meta *meta)
2626{
2627 struct bpf_verifier_state *vstate = env->cur_state;
2628 int i;
2629
2630 for (i = 0; i <= vstate->curframe; i++)
2631 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2632
2633 return release_reference_state(env, meta->ptr_id);
2634}
2635
f4d7e40a
AS
2636static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2637 int *insn_idx)
2638{
2639 struct bpf_verifier_state *state = env->cur_state;
2640 struct bpf_func_state *caller, *callee;
fd978bf7 2641 int i, err, subprog, target_insn;
f4d7e40a 2642
aada9ce6 2643 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2644 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2645 state->curframe + 2);
f4d7e40a
AS
2646 return -E2BIG;
2647 }
2648
2649 target_insn = *insn_idx + insn->imm;
2650 subprog = find_subprog(env, target_insn + 1);
2651 if (subprog < 0) {
2652 verbose(env, "verifier bug. No program starts at insn %d\n",
2653 target_insn + 1);
2654 return -EFAULT;
2655 }
2656
2657 caller = state->frame[state->curframe];
2658 if (state->frame[state->curframe + 1]) {
2659 verbose(env, "verifier bug. Frame %d already allocated\n",
2660 state->curframe + 1);
2661 return -EFAULT;
2662 }
2663
2664 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2665 if (!callee)
2666 return -ENOMEM;
2667 state->frame[state->curframe + 1] = callee;
2668
2669 /* callee cannot access r0, r6 - r9 for reading and has to write
2670 * into its own stack before reading from it.
2671 * callee can read/write into caller's stack
2672 */
2673 init_func_state(env, callee,
2674 /* remember the callsite, it will be used by bpf_exit */
2675 *insn_idx /* callsite */,
2676 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2677 subprog /* subprog number within this prog */);
f4d7e40a 2678
fd978bf7
JS
2679 /* Transfer references to the callee */
2680 err = transfer_reference_state(callee, caller);
2681 if (err)
2682 return err;
2683
679c782d
EC
2684 /* copy r1 - r5 args that callee can access. The copy includes parent
2685 * pointers, which connects us up to the liveness chain
2686 */
f4d7e40a
AS
2687 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2688 callee->regs[i] = caller->regs[i];
2689
679c782d 2690 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2691 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2692 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2693 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2694 }
2695
2696 /* only increment it after check_reg_arg() finished */
2697 state->curframe++;
2698
2699 /* and go analyze first insn of the callee */
2700 *insn_idx = target_insn;
2701
2702 if (env->log.level) {
2703 verbose(env, "caller:\n");
2704 print_verifier_state(env, caller);
2705 verbose(env, "callee:\n");
2706 print_verifier_state(env, callee);
2707 }
2708 return 0;
2709}
2710
2711static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2712{
2713 struct bpf_verifier_state *state = env->cur_state;
2714 struct bpf_func_state *caller, *callee;
2715 struct bpf_reg_state *r0;
fd978bf7 2716 int err;
f4d7e40a
AS
2717
2718 callee = state->frame[state->curframe];
2719 r0 = &callee->regs[BPF_REG_0];
2720 if (r0->type == PTR_TO_STACK) {
2721 /* technically it's ok to return caller's stack pointer
2722 * (or caller's caller's pointer) back to the caller,
2723 * since these pointers are valid. Only current stack
2724 * pointer will be invalid as soon as function exits,
2725 * but let's be conservative
2726 */
2727 verbose(env, "cannot return stack pointer to the caller\n");
2728 return -EINVAL;
2729 }
2730
2731 state->curframe--;
2732 caller = state->frame[state->curframe];
2733 /* return to the caller whatever r0 had in the callee */
2734 caller->regs[BPF_REG_0] = *r0;
2735
fd978bf7
JS
2736 /* Transfer references to the caller */
2737 err = transfer_reference_state(caller, callee);
2738 if (err)
2739 return err;
2740
f4d7e40a
AS
2741 *insn_idx = callee->callsite + 1;
2742 if (env->log.level) {
2743 verbose(env, "returning from callee:\n");
2744 print_verifier_state(env, callee);
2745 verbose(env, "to caller at %d:\n", *insn_idx);
2746 print_verifier_state(env, caller);
2747 }
2748 /* clear everything in the callee */
2749 free_func_state(callee);
2750 state->frame[state->curframe + 1] = NULL;
2751 return 0;
2752}
2753
849fa506
YS
2754static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2755 int func_id,
2756 struct bpf_call_arg_meta *meta)
2757{
2758 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2759
2760 if (ret_type != RET_INTEGER ||
2761 (func_id != BPF_FUNC_get_stack &&
2762 func_id != BPF_FUNC_probe_read_str))
2763 return;
2764
2765 ret_reg->smax_value = meta->msize_smax_value;
2766 ret_reg->umax_value = meta->msize_umax_value;
2767 __reg_deduce_bounds(ret_reg);
2768 __reg_bound_offset(ret_reg);
2769}
2770
c93552c4
DB
2771static int
2772record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2773 int func_id, int insn_idx)
2774{
2775 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2776
2777 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2778 func_id != BPF_FUNC_map_lookup_elem &&
2779 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2780 func_id != BPF_FUNC_map_delete_elem &&
2781 func_id != BPF_FUNC_map_push_elem &&
2782 func_id != BPF_FUNC_map_pop_elem &&
2783 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2784 return 0;
09772d92 2785
c93552c4
DB
2786 if (meta->map_ptr == NULL) {
2787 verbose(env, "kernel subsystem misconfigured verifier\n");
2788 return -EINVAL;
2789 }
2790
2791 if (!BPF_MAP_PTR(aux->map_state))
2792 bpf_map_ptr_store(aux, meta->map_ptr,
2793 meta->map_ptr->unpriv_array);
2794 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2795 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2796 meta->map_ptr->unpriv_array);
2797 return 0;
2798}
2799
fd978bf7
JS
2800static int check_reference_leak(struct bpf_verifier_env *env)
2801{
2802 struct bpf_func_state *state = cur_func(env);
2803 int i;
2804
2805 for (i = 0; i < state->acquired_refs; i++) {
2806 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2807 state->refs[i].id, state->refs[i].insn_idx);
2808 }
2809 return state->acquired_refs ? -EINVAL : 0;
2810}
2811
f4d7e40a 2812static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2813{
17a52670 2814 const struct bpf_func_proto *fn = NULL;
638f5b90 2815 struct bpf_reg_state *regs;
33ff9823 2816 struct bpf_call_arg_meta meta;
969bf05e 2817 bool changes_data;
17a52670
AS
2818 int i, err;
2819
2820 /* find function prototype */
2821 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2822 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2823 func_id);
17a52670
AS
2824 return -EINVAL;
2825 }
2826
00176a34 2827 if (env->ops->get_func_proto)
5e43f899 2828 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2829 if (!fn) {
61bd5218
JK
2830 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2831 func_id);
17a52670
AS
2832 return -EINVAL;
2833 }
2834
2835 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2836 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2837 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2838 return -EINVAL;
2839 }
2840
04514d13 2841 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2842 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2843 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2844 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2845 func_id_name(func_id), func_id);
2846 return -EINVAL;
2847 }
969bf05e 2848
33ff9823 2849 memset(&meta, 0, sizeof(meta));
36bbef52 2850 meta.pkt_access = fn->pkt_access;
33ff9823 2851
90133415 2852 err = check_func_proto(fn);
435faee1 2853 if (err) {
61bd5218 2854 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2855 func_id_name(func_id), func_id);
435faee1
DB
2856 return err;
2857 }
2858
17a52670 2859 /* check args */
33ff9823 2860 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2861 if (err)
2862 return err;
33ff9823 2863 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2864 if (err)
2865 return err;
33ff9823 2866 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2867 if (err)
2868 return err;
33ff9823 2869 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2870 if (err)
2871 return err;
33ff9823 2872 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2873 if (err)
2874 return err;
2875
c93552c4
DB
2876 err = record_func_map(env, &meta, func_id, insn_idx);
2877 if (err)
2878 return err;
2879
435faee1
DB
2880 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2881 * is inferred from register state.
2882 */
2883 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2884 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2885 BPF_WRITE, -1, false);
435faee1
DB
2886 if (err)
2887 return err;
2888 }
2889
fd978bf7
JS
2890 if (func_id == BPF_FUNC_tail_call) {
2891 err = check_reference_leak(env);
2892 if (err) {
2893 verbose(env, "tail_call would lead to reference leak\n");
2894 return err;
2895 }
2896 } else if (is_release_function(func_id)) {
2897 err = release_reference(env, &meta);
2898 if (err)
2899 return err;
2900 }
2901
638f5b90 2902 regs = cur_regs(env);
cd339431
RG
2903
2904 /* check that flags argument in get_local_storage(map, flags) is 0,
2905 * this is required because get_local_storage() can't return an error.
2906 */
2907 if (func_id == BPF_FUNC_get_local_storage &&
2908 !register_is_null(&regs[BPF_REG_2])) {
2909 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2910 return -EINVAL;
2911 }
2912
17a52670 2913 /* reset caller saved regs */
dc503a8a 2914 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2915 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2916 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2917 }
17a52670 2918
dc503a8a 2919 /* update return register (already marked as written above) */
17a52670 2920 if (fn->ret_type == RET_INTEGER) {
f1174f77 2921 /* sets type to SCALAR_VALUE */
61bd5218 2922 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2923 } else if (fn->ret_type == RET_VOID) {
2924 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2925 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2926 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 2927 /* There is no offset yet applied, variable or fixed */
61bd5218 2928 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2929 /* remember map_ptr, so that check_map_access()
2930 * can check 'value_size' boundary of memory access
2931 * to map element returned from bpf_map_lookup_elem()
2932 */
33ff9823 2933 if (meta.map_ptr == NULL) {
61bd5218
JK
2934 verbose(env,
2935 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2936 return -EINVAL;
2937 }
33ff9823 2938 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
2939 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2940 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2941 } else {
2942 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2943 regs[BPF_REG_0].id = ++env->id_gen;
2944 }
c64b7983 2945 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
2946 int id = acquire_reference_state(env, insn_idx);
2947 if (id < 0)
2948 return id;
c64b7983
JS
2949 mark_reg_known_zero(env, regs, BPF_REG_0);
2950 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 2951 regs[BPF_REG_0].id = id;
17a52670 2952 } else {
61bd5218 2953 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2954 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2955 return -EINVAL;
2956 }
04fd61ab 2957
849fa506
YS
2958 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2959
61bd5218 2960 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2961 if (err)
2962 return err;
04fd61ab 2963
c195651e
YS
2964 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2965 const char *err_str;
2966
2967#ifdef CONFIG_PERF_EVENTS
2968 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2969 err_str = "cannot get callchain buffer for func %s#%d\n";
2970#else
2971 err = -ENOTSUPP;
2972 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2973#endif
2974 if (err) {
2975 verbose(env, err_str, func_id_name(func_id), func_id);
2976 return err;
2977 }
2978
2979 env->prog->has_callchain_buf = true;
2980 }
2981
969bf05e
AS
2982 if (changes_data)
2983 clear_all_pkt_pointers(env);
2984 return 0;
2985}
2986
b03c9f9f
EC
2987static bool signed_add_overflows(s64 a, s64 b)
2988{
2989 /* Do the add in u64, where overflow is well-defined */
2990 s64 res = (s64)((u64)a + (u64)b);
2991
2992 if (b < 0)
2993 return res > a;
2994 return res < a;
2995}
2996
2997static bool signed_sub_overflows(s64 a, s64 b)
2998{
2999 /* Do the sub in u64, where overflow is well-defined */
3000 s64 res = (s64)((u64)a - (u64)b);
3001
3002 if (b < 0)
3003 return res < a;
3004 return res > a;
969bf05e
AS
3005}
3006
bb7f0f98
AS
3007static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3008 const struct bpf_reg_state *reg,
3009 enum bpf_reg_type type)
3010{
3011 bool known = tnum_is_const(reg->var_off);
3012 s64 val = reg->var_off.value;
3013 s64 smin = reg->smin_value;
3014
3015 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3016 verbose(env, "math between %s pointer and %lld is not allowed\n",
3017 reg_type_str[type], val);
3018 return false;
3019 }
3020
3021 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3022 verbose(env, "%s pointer offset %d is not allowed\n",
3023 reg_type_str[type], reg->off);
3024 return false;
3025 }
3026
3027 if (smin == S64_MIN) {
3028 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3029 reg_type_str[type]);
3030 return false;
3031 }
3032
3033 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3034 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3035 smin, reg_type_str[type]);
3036 return false;
3037 }
3038
3039 return true;
3040}
3041
f1174f77 3042/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3043 * Caller should also handle BPF_MOV case separately.
3044 * If we return -EACCES, caller may want to try again treating pointer as a
3045 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3046 */
3047static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3048 struct bpf_insn *insn,
3049 const struct bpf_reg_state *ptr_reg,
3050 const struct bpf_reg_state *off_reg)
969bf05e 3051{
f4d7e40a
AS
3052 struct bpf_verifier_state *vstate = env->cur_state;
3053 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3054 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3055 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3056 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3057 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3058 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3059 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 3060 u8 opcode = BPF_OP(insn->code);
f1174f77 3061 u32 dst = insn->dst_reg;
969bf05e 3062
f1174f77 3063 dst_reg = &regs[dst];
969bf05e 3064
6f16101e
DB
3065 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3066 smin_val > smax_val || umin_val > umax_val) {
3067 /* Taint dst register if offset had invalid bounds derived from
3068 * e.g. dead branches.
3069 */
3070 __mark_reg_unknown(dst_reg);
3071 return 0;
f1174f77
EC
3072 }
3073
3074 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3075 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3076 verbose(env,
3077 "R%d 32-bit pointer arithmetic prohibited\n",
3078 dst);
f1174f77 3079 return -EACCES;
969bf05e
AS
3080 }
3081
aad2eeaf
JS
3082 switch (ptr_reg->type) {
3083 case PTR_TO_MAP_VALUE_OR_NULL:
3084 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3085 dst, reg_type_str[ptr_reg->type]);
f1174f77 3086 return -EACCES;
aad2eeaf
JS
3087 case CONST_PTR_TO_MAP:
3088 case PTR_TO_PACKET_END:
c64b7983
JS
3089 case PTR_TO_SOCKET:
3090 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
3091 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3092 dst, reg_type_str[ptr_reg->type]);
f1174f77 3093 return -EACCES;
aad2eeaf
JS
3094 default:
3095 break;
f1174f77
EC
3096 }
3097
3098 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3099 * The id may be overwritten later if we create a new variable offset.
969bf05e 3100 */
f1174f77
EC
3101 dst_reg->type = ptr_reg->type;
3102 dst_reg->id = ptr_reg->id;
969bf05e 3103
bb7f0f98
AS
3104 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3105 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3106 return -EINVAL;
3107
f1174f77
EC
3108 switch (opcode) {
3109 case BPF_ADD:
3110 /* We can take a fixed offset as long as it doesn't overflow
3111 * the s32 'off' field
969bf05e 3112 */
b03c9f9f
EC
3113 if (known && (ptr_reg->off + smin_val ==
3114 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3115 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3116 dst_reg->smin_value = smin_ptr;
3117 dst_reg->smax_value = smax_ptr;
3118 dst_reg->umin_value = umin_ptr;
3119 dst_reg->umax_value = umax_ptr;
f1174f77 3120 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3121 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3122 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3123 break;
3124 }
f1174f77
EC
3125 /* A new variable offset is created. Note that off_reg->off
3126 * == 0, since it's a scalar.
3127 * dst_reg gets the pointer type and since some positive
3128 * integer value was added to the pointer, give it a new 'id'
3129 * if it's a PTR_TO_PACKET.
3130 * this creates a new 'base' pointer, off_reg (variable) gets
3131 * added into the variable offset, and we copy the fixed offset
3132 * from ptr_reg.
969bf05e 3133 */
b03c9f9f
EC
3134 if (signed_add_overflows(smin_ptr, smin_val) ||
3135 signed_add_overflows(smax_ptr, smax_val)) {
3136 dst_reg->smin_value = S64_MIN;
3137 dst_reg->smax_value = S64_MAX;
3138 } else {
3139 dst_reg->smin_value = smin_ptr + smin_val;
3140 dst_reg->smax_value = smax_ptr + smax_val;
3141 }
3142 if (umin_ptr + umin_val < umin_ptr ||
3143 umax_ptr + umax_val < umax_ptr) {
3144 dst_reg->umin_value = 0;
3145 dst_reg->umax_value = U64_MAX;
3146 } else {
3147 dst_reg->umin_value = umin_ptr + umin_val;
3148 dst_reg->umax_value = umax_ptr + umax_val;
3149 }
f1174f77
EC
3150 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3151 dst_reg->off = ptr_reg->off;
0962590e 3152 dst_reg->raw = ptr_reg->raw;
de8f3a83 3153 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3154 dst_reg->id = ++env->id_gen;
3155 /* something was added to pkt_ptr, set range to zero */
0962590e 3156 dst_reg->raw = 0;
f1174f77
EC
3157 }
3158 break;
3159 case BPF_SUB:
3160 if (dst_reg == off_reg) {
3161 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3162 verbose(env, "R%d tried to subtract pointer from scalar\n",
3163 dst);
f1174f77
EC
3164 return -EACCES;
3165 }
3166 /* We don't allow subtraction from FP, because (according to
3167 * test_verifier.c test "invalid fp arithmetic", JITs might not
3168 * be able to deal with it.
969bf05e 3169 */
f1174f77 3170 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3171 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3172 dst);
f1174f77
EC
3173 return -EACCES;
3174 }
b03c9f9f
EC
3175 if (known && (ptr_reg->off - smin_val ==
3176 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3177 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3178 dst_reg->smin_value = smin_ptr;
3179 dst_reg->smax_value = smax_ptr;
3180 dst_reg->umin_value = umin_ptr;
3181 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3182 dst_reg->var_off = ptr_reg->var_off;
3183 dst_reg->id = ptr_reg->id;
b03c9f9f 3184 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3185 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3186 break;
3187 }
f1174f77
EC
3188 /* A new variable offset is created. If the subtrahend is known
3189 * nonnegative, then any reg->range we had before is still good.
969bf05e 3190 */
b03c9f9f
EC
3191 if (signed_sub_overflows(smin_ptr, smax_val) ||
3192 signed_sub_overflows(smax_ptr, smin_val)) {
3193 /* Overflow possible, we know nothing */
3194 dst_reg->smin_value = S64_MIN;
3195 dst_reg->smax_value = S64_MAX;
3196 } else {
3197 dst_reg->smin_value = smin_ptr - smax_val;
3198 dst_reg->smax_value = smax_ptr - smin_val;
3199 }
3200 if (umin_ptr < umax_val) {
3201 /* Overflow possible, we know nothing */
3202 dst_reg->umin_value = 0;
3203 dst_reg->umax_value = U64_MAX;
3204 } else {
3205 /* Cannot overflow (as long as bounds are consistent) */
3206 dst_reg->umin_value = umin_ptr - umax_val;
3207 dst_reg->umax_value = umax_ptr - umin_val;
3208 }
f1174f77
EC
3209 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3210 dst_reg->off = ptr_reg->off;
0962590e 3211 dst_reg->raw = ptr_reg->raw;
de8f3a83 3212 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3213 dst_reg->id = ++env->id_gen;
3214 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3215 if (smin_val < 0)
0962590e 3216 dst_reg->raw = 0;
43188702 3217 }
f1174f77
EC
3218 break;
3219 case BPF_AND:
3220 case BPF_OR:
3221 case BPF_XOR:
82abbf8d
AS
3222 /* bitwise ops on pointers are troublesome, prohibit. */
3223 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3224 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3225 return -EACCES;
3226 default:
3227 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3228 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3229 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3230 return -EACCES;
43188702
JF
3231 }
3232
bb7f0f98
AS
3233 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3234 return -EINVAL;
3235
b03c9f9f
EC
3236 __update_reg_bounds(dst_reg);
3237 __reg_deduce_bounds(dst_reg);
3238 __reg_bound_offset(dst_reg);
43188702
JF
3239 return 0;
3240}
3241
468f6eaf
JH
3242/* WARNING: This function does calculations on 64-bit values, but the actual
3243 * execution may occur on 32-bit values. Therefore, things like bitshifts
3244 * need extra checks in the 32-bit case.
3245 */
f1174f77
EC
3246static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3247 struct bpf_insn *insn,
3248 struct bpf_reg_state *dst_reg,
3249 struct bpf_reg_state src_reg)
969bf05e 3250{
638f5b90 3251 struct bpf_reg_state *regs = cur_regs(env);
48461135 3252 u8 opcode = BPF_OP(insn->code);
f1174f77 3253 bool src_known, dst_known;
b03c9f9f
EC
3254 s64 smin_val, smax_val;
3255 u64 umin_val, umax_val;
468f6eaf 3256 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 3257
b799207e
JH
3258 if (insn_bitness == 32) {
3259 /* Relevant for 32-bit RSH: Information can propagate towards
3260 * LSB, so it isn't sufficient to only truncate the output to
3261 * 32 bits.
3262 */
3263 coerce_reg_to_size(dst_reg, 4);
3264 coerce_reg_to_size(&src_reg, 4);
3265 }
3266
b03c9f9f
EC
3267 smin_val = src_reg.smin_value;
3268 smax_val = src_reg.smax_value;
3269 umin_val = src_reg.umin_value;
3270 umax_val = src_reg.umax_value;
f1174f77
EC
3271 src_known = tnum_is_const(src_reg.var_off);
3272 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3273
6f16101e
DB
3274 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3275 smin_val > smax_val || umin_val > umax_val) {
3276 /* Taint dst register if offset had invalid bounds derived from
3277 * e.g. dead branches.
3278 */
3279 __mark_reg_unknown(dst_reg);
3280 return 0;
3281 }
3282
bb7f0f98
AS
3283 if (!src_known &&
3284 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3285 __mark_reg_unknown(dst_reg);
3286 return 0;
3287 }
3288
48461135
JB
3289 switch (opcode) {
3290 case BPF_ADD:
b03c9f9f
EC
3291 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3292 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3293 dst_reg->smin_value = S64_MIN;
3294 dst_reg->smax_value = S64_MAX;
3295 } else {
3296 dst_reg->smin_value += smin_val;
3297 dst_reg->smax_value += smax_val;
3298 }
3299 if (dst_reg->umin_value + umin_val < umin_val ||
3300 dst_reg->umax_value + umax_val < umax_val) {
3301 dst_reg->umin_value = 0;
3302 dst_reg->umax_value = U64_MAX;
3303 } else {
3304 dst_reg->umin_value += umin_val;
3305 dst_reg->umax_value += umax_val;
3306 }
f1174f77 3307 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3308 break;
3309 case BPF_SUB:
b03c9f9f
EC
3310 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3311 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3312 /* Overflow possible, we know nothing */
3313 dst_reg->smin_value = S64_MIN;
3314 dst_reg->smax_value = S64_MAX;
3315 } else {
3316 dst_reg->smin_value -= smax_val;
3317 dst_reg->smax_value -= smin_val;
3318 }
3319 if (dst_reg->umin_value < umax_val) {
3320 /* Overflow possible, we know nothing */
3321 dst_reg->umin_value = 0;
3322 dst_reg->umax_value = U64_MAX;
3323 } else {
3324 /* Cannot overflow (as long as bounds are consistent) */
3325 dst_reg->umin_value -= umax_val;
3326 dst_reg->umax_value -= umin_val;
3327 }
f1174f77 3328 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3329 break;
3330 case BPF_MUL:
b03c9f9f
EC
3331 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3332 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3333 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3334 __mark_reg_unbounded(dst_reg);
3335 __update_reg_bounds(dst_reg);
f1174f77
EC
3336 break;
3337 }
b03c9f9f
EC
3338 /* Both values are positive, so we can work with unsigned and
3339 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3340 */
b03c9f9f
EC
3341 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3342 /* Potential overflow, we know nothing */
3343 __mark_reg_unbounded(dst_reg);
3344 /* (except what we can learn from the var_off) */
3345 __update_reg_bounds(dst_reg);
3346 break;
3347 }
3348 dst_reg->umin_value *= umin_val;
3349 dst_reg->umax_value *= umax_val;
3350 if (dst_reg->umax_value > S64_MAX) {
3351 /* Overflow possible, we know nothing */
3352 dst_reg->smin_value = S64_MIN;
3353 dst_reg->smax_value = S64_MAX;
3354 } else {
3355 dst_reg->smin_value = dst_reg->umin_value;
3356 dst_reg->smax_value = dst_reg->umax_value;
3357 }
48461135
JB
3358 break;
3359 case BPF_AND:
f1174f77 3360 if (src_known && dst_known) {
b03c9f9f
EC
3361 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3362 src_reg.var_off.value);
f1174f77
EC
3363 break;
3364 }
b03c9f9f
EC
3365 /* We get our minimum from the var_off, since that's inherently
3366 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3367 */
f1174f77 3368 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3369 dst_reg->umin_value = dst_reg->var_off.value;
3370 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3371 if (dst_reg->smin_value < 0 || smin_val < 0) {
3372 /* Lose signed bounds when ANDing negative numbers,
3373 * ain't nobody got time for that.
3374 */
3375 dst_reg->smin_value = S64_MIN;
3376 dst_reg->smax_value = S64_MAX;
3377 } else {
3378 /* ANDing two positives gives a positive, so safe to
3379 * cast result into s64.
3380 */
3381 dst_reg->smin_value = dst_reg->umin_value;
3382 dst_reg->smax_value = dst_reg->umax_value;
3383 }
3384 /* We may learn something more from the var_off */
3385 __update_reg_bounds(dst_reg);
f1174f77
EC
3386 break;
3387 case BPF_OR:
3388 if (src_known && dst_known) {
b03c9f9f
EC
3389 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3390 src_reg.var_off.value);
f1174f77
EC
3391 break;
3392 }
b03c9f9f
EC
3393 /* We get our maximum from the var_off, and our minimum is the
3394 * maximum of the operands' minima
f1174f77
EC
3395 */
3396 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3397 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3398 dst_reg->umax_value = dst_reg->var_off.value |
3399 dst_reg->var_off.mask;
3400 if (dst_reg->smin_value < 0 || smin_val < 0) {
3401 /* Lose signed bounds when ORing negative numbers,
3402 * ain't nobody got time for that.
3403 */
3404 dst_reg->smin_value = S64_MIN;
3405 dst_reg->smax_value = S64_MAX;
f1174f77 3406 } else {
b03c9f9f
EC
3407 /* ORing two positives gives a positive, so safe to
3408 * cast result into s64.
3409 */
3410 dst_reg->smin_value = dst_reg->umin_value;
3411 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3412 }
b03c9f9f
EC
3413 /* We may learn something more from the var_off */
3414 __update_reg_bounds(dst_reg);
48461135
JB
3415 break;
3416 case BPF_LSH:
468f6eaf
JH
3417 if (umax_val >= insn_bitness) {
3418 /* Shifts greater than 31 or 63 are undefined.
3419 * This includes shifts by a negative number.
b03c9f9f 3420 */
61bd5218 3421 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3422 break;
3423 }
b03c9f9f
EC
3424 /* We lose all sign bit information (except what we can pick
3425 * up from var_off)
48461135 3426 */
b03c9f9f
EC
3427 dst_reg->smin_value = S64_MIN;
3428 dst_reg->smax_value = S64_MAX;
3429 /* If we might shift our top bit out, then we know nothing */
3430 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3431 dst_reg->umin_value = 0;
3432 dst_reg->umax_value = U64_MAX;
d1174416 3433 } else {
b03c9f9f
EC
3434 dst_reg->umin_value <<= umin_val;
3435 dst_reg->umax_value <<= umax_val;
d1174416 3436 }
afbe1a5b 3437 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3438 /* We may learn something more from the var_off */
3439 __update_reg_bounds(dst_reg);
48461135
JB
3440 break;
3441 case BPF_RSH:
468f6eaf
JH
3442 if (umax_val >= insn_bitness) {
3443 /* Shifts greater than 31 or 63 are undefined.
3444 * This includes shifts by a negative number.
b03c9f9f 3445 */
61bd5218 3446 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3447 break;
3448 }
4374f256
EC
3449 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3450 * be negative, then either:
3451 * 1) src_reg might be zero, so the sign bit of the result is
3452 * unknown, so we lose our signed bounds
3453 * 2) it's known negative, thus the unsigned bounds capture the
3454 * signed bounds
3455 * 3) the signed bounds cross zero, so they tell us nothing
3456 * about the result
3457 * If the value in dst_reg is known nonnegative, then again the
3458 * unsigned bounts capture the signed bounds.
3459 * Thus, in all cases it suffices to blow away our signed bounds
3460 * and rely on inferring new ones from the unsigned bounds and
3461 * var_off of the result.
3462 */
3463 dst_reg->smin_value = S64_MIN;
3464 dst_reg->smax_value = S64_MAX;
afbe1a5b 3465 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3466 dst_reg->umin_value >>= umax_val;
3467 dst_reg->umax_value >>= umin_val;
3468 /* We may learn something more from the var_off */
3469 __update_reg_bounds(dst_reg);
48461135 3470 break;
9cbe1f5a
YS
3471 case BPF_ARSH:
3472 if (umax_val >= insn_bitness) {
3473 /* Shifts greater than 31 or 63 are undefined.
3474 * This includes shifts by a negative number.
3475 */
3476 mark_reg_unknown(env, regs, insn->dst_reg);
3477 break;
3478 }
3479
3480 /* Upon reaching here, src_known is true and
3481 * umax_val is equal to umin_val.
3482 */
3483 dst_reg->smin_value >>= umin_val;
3484 dst_reg->smax_value >>= umin_val;
3485 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3486
3487 /* blow away the dst_reg umin_value/umax_value and rely on
3488 * dst_reg var_off to refine the result.
3489 */
3490 dst_reg->umin_value = 0;
3491 dst_reg->umax_value = U64_MAX;
3492 __update_reg_bounds(dst_reg);
3493 break;
48461135 3494 default:
61bd5218 3495 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3496 break;
3497 }
3498
468f6eaf
JH
3499 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3500 /* 32-bit ALU ops are (32,32)->32 */
3501 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3502 }
3503
b03c9f9f
EC
3504 __reg_deduce_bounds(dst_reg);
3505 __reg_bound_offset(dst_reg);
f1174f77
EC
3506 return 0;
3507}
3508
3509/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3510 * and var_off.
3511 */
3512static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3513 struct bpf_insn *insn)
3514{
f4d7e40a
AS
3515 struct bpf_verifier_state *vstate = env->cur_state;
3516 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3517 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3518 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3519 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3520
3521 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3522 src_reg = NULL;
3523 if (dst_reg->type != SCALAR_VALUE)
3524 ptr_reg = dst_reg;
3525 if (BPF_SRC(insn->code) == BPF_X) {
3526 src_reg = &regs[insn->src_reg];
f1174f77
EC
3527 if (src_reg->type != SCALAR_VALUE) {
3528 if (dst_reg->type != SCALAR_VALUE) {
3529 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3530 * an arbitrary scalar. Disallow all math except
3531 * pointer subtraction
f1174f77 3532 */
dd066823 3533 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3534 mark_reg_unknown(env, regs, insn->dst_reg);
3535 return 0;
f1174f77 3536 }
82abbf8d
AS
3537 verbose(env, "R%d pointer %s pointer prohibited\n",
3538 insn->dst_reg,
3539 bpf_alu_string[opcode >> 4]);
3540 return -EACCES;
f1174f77
EC
3541 } else {
3542 /* scalar += pointer
3543 * This is legal, but we have to reverse our
3544 * src/dest handling in computing the range
3545 */
82abbf8d
AS
3546 return adjust_ptr_min_max_vals(env, insn,
3547 src_reg, dst_reg);
f1174f77
EC
3548 }
3549 } else if (ptr_reg) {
3550 /* pointer += scalar */
82abbf8d
AS
3551 return adjust_ptr_min_max_vals(env, insn,
3552 dst_reg, src_reg);
f1174f77
EC
3553 }
3554 } else {
3555 /* Pretend the src is a reg with a known value, since we only
3556 * need to be able to read from this state.
3557 */
3558 off_reg.type = SCALAR_VALUE;
b03c9f9f 3559 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3560 src_reg = &off_reg;
82abbf8d
AS
3561 if (ptr_reg) /* pointer += K */
3562 return adjust_ptr_min_max_vals(env, insn,
3563 ptr_reg, src_reg);
f1174f77
EC
3564 }
3565
3566 /* Got here implies adding two SCALAR_VALUEs */
3567 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3568 print_verifier_state(env, state);
61bd5218 3569 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3570 return -EINVAL;
3571 }
3572 if (WARN_ON(!src_reg)) {
f4d7e40a 3573 print_verifier_state(env, state);
61bd5218 3574 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3575 return -EINVAL;
3576 }
3577 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3578}
3579
17a52670 3580/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3581static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3582{
638f5b90 3583 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3584 u8 opcode = BPF_OP(insn->code);
3585 int err;
3586
3587 if (opcode == BPF_END || opcode == BPF_NEG) {
3588 if (opcode == BPF_NEG) {
3589 if (BPF_SRC(insn->code) != 0 ||
3590 insn->src_reg != BPF_REG_0 ||
3591 insn->off != 0 || insn->imm != 0) {
61bd5218 3592 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3593 return -EINVAL;
3594 }
3595 } else {
3596 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3597 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3598 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3599 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3600 return -EINVAL;
3601 }
3602 }
3603
3604 /* check src operand */
dc503a8a 3605 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3606 if (err)
3607 return err;
3608
1be7f75d 3609 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3610 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3611 insn->dst_reg);
3612 return -EACCES;
3613 }
3614
17a52670 3615 /* check dest operand */
dc503a8a 3616 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3617 if (err)
3618 return err;
3619
3620 } else if (opcode == BPF_MOV) {
3621
3622 if (BPF_SRC(insn->code) == BPF_X) {
3623 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3624 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3625 return -EINVAL;
3626 }
3627
3628 /* check src operand */
dc503a8a 3629 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3630 if (err)
3631 return err;
3632 } else {
3633 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3634 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3635 return -EINVAL;
3636 }
3637 }
3638
fbeb1603
AF
3639 /* check dest operand, mark as required later */
3640 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3641 if (err)
3642 return err;
3643
3644 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
3645 struct bpf_reg_state *src_reg = regs + insn->src_reg;
3646 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
3647
17a52670
AS
3648 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3649 /* case: R1 = R2
3650 * copy register state to dest reg
3651 */
e434b8cd
JW
3652 *dst_reg = *src_reg;
3653 dst_reg->live |= REG_LIVE_WRITTEN;
17a52670 3654 } else {
f1174f77 3655 /* R1 = (u32) R2 */
1be7f75d 3656 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3657 verbose(env,
3658 "R%d partial copy of pointer\n",
1be7f75d
AS
3659 insn->src_reg);
3660 return -EACCES;
e434b8cd
JW
3661 } else if (src_reg->type == SCALAR_VALUE) {
3662 *dst_reg = *src_reg;
3663 dst_reg->live |= REG_LIVE_WRITTEN;
3664 } else {
3665 mark_reg_unknown(env, regs,
3666 insn->dst_reg);
1be7f75d 3667 }
e434b8cd 3668 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
3669 }
3670 } else {
3671 /* case: R = imm
3672 * remember the value we stored into this reg
3673 */
fbeb1603
AF
3674 /* clear any state __mark_reg_known doesn't set */
3675 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3676 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3677 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3678 __mark_reg_known(regs + insn->dst_reg,
3679 insn->imm);
3680 } else {
3681 __mark_reg_known(regs + insn->dst_reg,
3682 (u32)insn->imm);
3683 }
17a52670
AS
3684 }
3685
3686 } else if (opcode > BPF_END) {
61bd5218 3687 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3688 return -EINVAL;
3689
3690 } else { /* all other ALU ops: and, sub, xor, add, ... */
3691
17a52670
AS
3692 if (BPF_SRC(insn->code) == BPF_X) {
3693 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3694 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3695 return -EINVAL;
3696 }
3697 /* check src1 operand */
dc503a8a 3698 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3699 if (err)
3700 return err;
3701 } else {
3702 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3703 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3704 return -EINVAL;
3705 }
3706 }
3707
3708 /* check src2 operand */
dc503a8a 3709 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3710 if (err)
3711 return err;
3712
3713 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3714 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3715 verbose(env, "div by zero\n");
17a52670
AS
3716 return -EINVAL;
3717 }
3718
229394e8
RV
3719 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3720 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3721 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3722
3723 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3724 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3725 return -EINVAL;
3726 }
3727 }
3728
1a0dc1ac 3729 /* check dest operand */
dc503a8a 3730 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3731 if (err)
3732 return err;
3733
f1174f77 3734 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3735 }
3736
3737 return 0;
3738}
3739
f4d7e40a 3740static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3741 struct bpf_reg_state *dst_reg,
f8ddadc4 3742 enum bpf_reg_type type,
fb2a311a 3743 bool range_right_open)
969bf05e 3744{
f4d7e40a 3745 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3746 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3747 u16 new_range;
f4d7e40a 3748 int i, j;
2d2be8ca 3749
fb2a311a
DB
3750 if (dst_reg->off < 0 ||
3751 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3752 /* This doesn't give us any range */
3753 return;
3754
b03c9f9f
EC
3755 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3756 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3757 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3758 * than pkt_end, but that's because it's also less than pkt.
3759 */
3760 return;
3761
fb2a311a
DB
3762 new_range = dst_reg->off;
3763 if (range_right_open)
3764 new_range--;
3765
3766 /* Examples for register markings:
2d2be8ca 3767 *
fb2a311a 3768 * pkt_data in dst register:
2d2be8ca
DB
3769 *
3770 * r2 = r3;
3771 * r2 += 8;
3772 * if (r2 > pkt_end) goto <handle exception>
3773 * <access okay>
3774 *
b4e432f1
DB
3775 * r2 = r3;
3776 * r2 += 8;
3777 * if (r2 < pkt_end) goto <access okay>
3778 * <handle exception>
3779 *
2d2be8ca
DB
3780 * Where:
3781 * r2 == dst_reg, pkt_end == src_reg
3782 * r2=pkt(id=n,off=8,r=0)
3783 * r3=pkt(id=n,off=0,r=0)
3784 *
fb2a311a 3785 * pkt_data in src register:
2d2be8ca
DB
3786 *
3787 * r2 = r3;
3788 * r2 += 8;
3789 * if (pkt_end >= r2) goto <access okay>
3790 * <handle exception>
3791 *
b4e432f1
DB
3792 * r2 = r3;
3793 * r2 += 8;
3794 * if (pkt_end <= r2) goto <handle exception>
3795 * <access okay>
3796 *
2d2be8ca
DB
3797 * Where:
3798 * pkt_end == dst_reg, r2 == src_reg
3799 * r2=pkt(id=n,off=8,r=0)
3800 * r3=pkt(id=n,off=0,r=0)
3801 *
3802 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3803 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3804 * and [r3, r3 + 8-1) respectively is safe to access depending on
3805 * the check.
969bf05e 3806 */
2d2be8ca 3807
f1174f77
EC
3808 /* If our ids match, then we must have the same max_value. And we
3809 * don't care about the other reg's fixed offset, since if it's too big
3810 * the range won't allow anything.
3811 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3812 */
969bf05e 3813 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3814 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3815 /* keep the maximum range already checked */
fb2a311a 3816 regs[i].range = max(regs[i].range, new_range);
969bf05e 3817
f4d7e40a
AS
3818 for (j = 0; j <= vstate->curframe; j++) {
3819 state = vstate->frame[j];
f3709f69
JS
3820 bpf_for_each_spilled_reg(i, state, reg) {
3821 if (!reg)
f4d7e40a 3822 continue;
f4d7e40a
AS
3823 if (reg->type == type && reg->id == dst_reg->id)
3824 reg->range = max(reg->range, new_range);
3825 }
969bf05e
AS
3826 }
3827}
3828
4f7b3e82
AS
3829/* compute branch direction of the expression "if (reg opcode val) goto target;"
3830 * and return:
3831 * 1 - branch will be taken and "goto target" will be executed
3832 * 0 - branch will not be taken and fall-through to next insn
3833 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3834 */
3835static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3836{
3837 if (__is_pointer_value(false, reg))
3838 return -1;
3839
3840 switch (opcode) {
3841 case BPF_JEQ:
3842 if (tnum_is_const(reg->var_off))
3843 return !!tnum_equals_const(reg->var_off, val);
3844 break;
3845 case BPF_JNE:
3846 if (tnum_is_const(reg->var_off))
3847 return !tnum_equals_const(reg->var_off, val);
3848 break;
3849 case BPF_JGT:
3850 if (reg->umin_value > val)
3851 return 1;
3852 else if (reg->umax_value <= val)
3853 return 0;
3854 break;
3855 case BPF_JSGT:
3856 if (reg->smin_value > (s64)val)
3857 return 1;
3858 else if (reg->smax_value < (s64)val)
3859 return 0;
3860 break;
3861 case BPF_JLT:
3862 if (reg->umax_value < val)
3863 return 1;
3864 else if (reg->umin_value >= val)
3865 return 0;
3866 break;
3867 case BPF_JSLT:
3868 if (reg->smax_value < (s64)val)
3869 return 1;
3870 else if (reg->smin_value >= (s64)val)
3871 return 0;
3872 break;
3873 case BPF_JGE:
3874 if (reg->umin_value >= val)
3875 return 1;
3876 else if (reg->umax_value < val)
3877 return 0;
3878 break;
3879 case BPF_JSGE:
3880 if (reg->smin_value >= (s64)val)
3881 return 1;
3882 else if (reg->smax_value < (s64)val)
3883 return 0;
3884 break;
3885 case BPF_JLE:
3886 if (reg->umax_value <= val)
3887 return 1;
3888 else if (reg->umin_value > val)
3889 return 0;
3890 break;
3891 case BPF_JSLE:
3892 if (reg->smax_value <= (s64)val)
3893 return 1;
3894 else if (reg->smin_value > (s64)val)
3895 return 0;
3896 break;
3897 }
3898
3899 return -1;
3900}
3901
48461135
JB
3902/* Adjusts the register min/max values in the case that the dst_reg is the
3903 * variable register that we are working on, and src_reg is a constant or we're
3904 * simply doing a BPF_K check.
f1174f77 3905 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3906 */
3907static void reg_set_min_max(struct bpf_reg_state *true_reg,
3908 struct bpf_reg_state *false_reg, u64 val,
3909 u8 opcode)
3910{
f1174f77
EC
3911 /* If the dst_reg is a pointer, we can't learn anything about its
3912 * variable offset from the compare (unless src_reg were a pointer into
3913 * the same object, but we don't bother with that.
3914 * Since false_reg and true_reg have the same type by construction, we
3915 * only need to check one of them for pointerness.
3916 */
3917 if (__is_pointer_value(false, false_reg))
3918 return;
4cabc5b1 3919
48461135
JB
3920 switch (opcode) {
3921 case BPF_JEQ:
3922 /* If this is false then we know nothing Jon Snow, but if it is
3923 * true then we know for sure.
3924 */
b03c9f9f 3925 __mark_reg_known(true_reg, val);
48461135
JB
3926 break;
3927 case BPF_JNE:
3928 /* If this is true we know nothing Jon Snow, but if it is false
3929 * we know the value for sure;
3930 */
b03c9f9f 3931 __mark_reg_known(false_reg, val);
48461135
JB
3932 break;
3933 case BPF_JGT:
b03c9f9f
EC
3934 false_reg->umax_value = min(false_reg->umax_value, val);
3935 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3936 break;
48461135 3937 case BPF_JSGT:
b03c9f9f
EC
3938 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3939 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3940 break;
b4e432f1
DB
3941 case BPF_JLT:
3942 false_reg->umin_value = max(false_reg->umin_value, val);
3943 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3944 break;
3945 case BPF_JSLT:
3946 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3947 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3948 break;
48461135 3949 case BPF_JGE:
b03c9f9f
EC
3950 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3951 true_reg->umin_value = max(true_reg->umin_value, val);
3952 break;
48461135 3953 case BPF_JSGE:
b03c9f9f
EC
3954 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3955 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3956 break;
b4e432f1
DB
3957 case BPF_JLE:
3958 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3959 true_reg->umax_value = min(true_reg->umax_value, val);
3960 break;
3961 case BPF_JSLE:
3962 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3963 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3964 break;
48461135
JB
3965 default:
3966 break;
3967 }
3968
b03c9f9f
EC
3969 __reg_deduce_bounds(false_reg);
3970 __reg_deduce_bounds(true_reg);
3971 /* We might have learned some bits from the bounds. */
3972 __reg_bound_offset(false_reg);
3973 __reg_bound_offset(true_reg);
3974 /* Intersecting with the old var_off might have improved our bounds
3975 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3976 * then new var_off is (0; 0x7f...fc) which improves our umax.
3977 */
3978 __update_reg_bounds(false_reg);
3979 __update_reg_bounds(true_reg);
48461135
JB
3980}
3981
f1174f77
EC
3982/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3983 * the variable reg.
48461135
JB
3984 */
3985static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3986 struct bpf_reg_state *false_reg, u64 val,
3987 u8 opcode)
3988{
f1174f77
EC
3989 if (__is_pointer_value(false, false_reg))
3990 return;
4cabc5b1 3991
48461135
JB
3992 switch (opcode) {
3993 case BPF_JEQ:
3994 /* If this is false then we know nothing Jon Snow, but if it is
3995 * true then we know for sure.
3996 */
b03c9f9f 3997 __mark_reg_known(true_reg, val);
48461135
JB
3998 break;
3999 case BPF_JNE:
4000 /* If this is true we know nothing Jon Snow, but if it is false
4001 * we know the value for sure;
4002 */
b03c9f9f 4003 __mark_reg_known(false_reg, val);
48461135
JB
4004 break;
4005 case BPF_JGT:
b03c9f9f
EC
4006 true_reg->umax_value = min(true_reg->umax_value, val - 1);
4007 false_reg->umin_value = max(false_reg->umin_value, val);
4008 break;
48461135 4009 case BPF_JSGT:
b03c9f9f
EC
4010 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
4011 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 4012 break;
b4e432f1
DB
4013 case BPF_JLT:
4014 true_reg->umin_value = max(true_reg->umin_value, val + 1);
4015 false_reg->umax_value = min(false_reg->umax_value, val);
4016 break;
4017 case BPF_JSLT:
4018 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
4019 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
4020 break;
48461135 4021 case BPF_JGE:
b03c9f9f
EC
4022 true_reg->umax_value = min(true_reg->umax_value, val);
4023 false_reg->umin_value = max(false_reg->umin_value, val + 1);
4024 break;
48461135 4025 case BPF_JSGE:
b03c9f9f
EC
4026 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
4027 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 4028 break;
b4e432f1
DB
4029 case BPF_JLE:
4030 true_reg->umin_value = max(true_reg->umin_value, val);
4031 false_reg->umax_value = min(false_reg->umax_value, val - 1);
4032 break;
4033 case BPF_JSLE:
4034 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
4035 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
4036 break;
48461135
JB
4037 default:
4038 break;
4039 }
4040
b03c9f9f
EC
4041 __reg_deduce_bounds(false_reg);
4042 __reg_deduce_bounds(true_reg);
4043 /* We might have learned some bits from the bounds. */
4044 __reg_bound_offset(false_reg);
4045 __reg_bound_offset(true_reg);
4046 /* Intersecting with the old var_off might have improved our bounds
4047 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4048 * then new var_off is (0; 0x7f...fc) which improves our umax.
4049 */
4050 __update_reg_bounds(false_reg);
4051 __update_reg_bounds(true_reg);
f1174f77
EC
4052}
4053
4054/* Regs are known to be equal, so intersect their min/max/var_off */
4055static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4056 struct bpf_reg_state *dst_reg)
4057{
b03c9f9f
EC
4058 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4059 dst_reg->umin_value);
4060 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4061 dst_reg->umax_value);
4062 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4063 dst_reg->smin_value);
4064 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4065 dst_reg->smax_value);
f1174f77
EC
4066 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4067 dst_reg->var_off);
b03c9f9f
EC
4068 /* We might have learned new bounds from the var_off. */
4069 __update_reg_bounds(src_reg);
4070 __update_reg_bounds(dst_reg);
4071 /* We might have learned something about the sign bit. */
4072 __reg_deduce_bounds(src_reg);
4073 __reg_deduce_bounds(dst_reg);
4074 /* We might have learned some bits from the bounds. */
4075 __reg_bound_offset(src_reg);
4076 __reg_bound_offset(dst_reg);
4077 /* Intersecting with the old var_off might have improved our bounds
4078 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4079 * then new var_off is (0; 0x7f...fc) which improves our umax.
4080 */
4081 __update_reg_bounds(src_reg);
4082 __update_reg_bounds(dst_reg);
f1174f77
EC
4083}
4084
4085static void reg_combine_min_max(struct bpf_reg_state *true_src,
4086 struct bpf_reg_state *true_dst,
4087 struct bpf_reg_state *false_src,
4088 struct bpf_reg_state *false_dst,
4089 u8 opcode)
4090{
4091 switch (opcode) {
4092 case BPF_JEQ:
4093 __reg_combine_min_max(true_src, true_dst);
4094 break;
4095 case BPF_JNE:
4096 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4097 break;
4cabc5b1 4098 }
48461135
JB
4099}
4100
fd978bf7
JS
4101static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4102 struct bpf_reg_state *reg, u32 id,
840b9615 4103 bool is_null)
57a09bf0 4104{
840b9615 4105 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4106 /* Old offset (both fixed and variable parts) should
4107 * have been known-zero, because we don't allow pointer
4108 * arithmetic on pointers that might be NULL.
4109 */
b03c9f9f
EC
4110 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4111 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4112 reg->off)) {
b03c9f9f
EC
4113 __mark_reg_known_zero(reg);
4114 reg->off = 0;
f1174f77
EC
4115 }
4116 if (is_null) {
4117 reg->type = SCALAR_VALUE;
840b9615
JS
4118 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4119 if (reg->map_ptr->inner_map_meta) {
4120 reg->type = CONST_PTR_TO_MAP;
4121 reg->map_ptr = reg->map_ptr->inner_map_meta;
4122 } else {
4123 reg->type = PTR_TO_MAP_VALUE;
4124 }
c64b7983
JS
4125 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4126 reg->type = PTR_TO_SOCKET;
56f668df 4127 }
fd978bf7
JS
4128 if (is_null || !reg_is_refcounted(reg)) {
4129 /* We don't need id from this point onwards anymore,
4130 * thus we should better reset it, so that state
4131 * pruning has chances to take effect.
4132 */
4133 reg->id = 0;
56f668df 4134 }
57a09bf0
TG
4135 }
4136}
4137
4138/* The logic is similar to find_good_pkt_pointers(), both could eventually
4139 * be folded together at some point.
4140 */
840b9615
JS
4141static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4142 bool is_null)
57a09bf0 4143{
f4d7e40a 4144 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4145 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 4146 u32 id = regs[regno].id;
f4d7e40a 4147 int i, j;
57a09bf0 4148
fd978bf7
JS
4149 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4150 __release_reference_state(state, id);
4151
57a09bf0 4152 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4153 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4154
f4d7e40a
AS
4155 for (j = 0; j <= vstate->curframe; j++) {
4156 state = vstate->frame[j];
f3709f69
JS
4157 bpf_for_each_spilled_reg(i, state, reg) {
4158 if (!reg)
f4d7e40a 4159 continue;
fd978bf7 4160 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4161 }
57a09bf0
TG
4162 }
4163}
4164
5beca081
DB
4165static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4166 struct bpf_reg_state *dst_reg,
4167 struct bpf_reg_state *src_reg,
4168 struct bpf_verifier_state *this_branch,
4169 struct bpf_verifier_state *other_branch)
4170{
4171 if (BPF_SRC(insn->code) != BPF_X)
4172 return false;
4173
4174 switch (BPF_OP(insn->code)) {
4175 case BPF_JGT:
4176 if ((dst_reg->type == PTR_TO_PACKET &&
4177 src_reg->type == PTR_TO_PACKET_END) ||
4178 (dst_reg->type == PTR_TO_PACKET_META &&
4179 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4180 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4181 find_good_pkt_pointers(this_branch, dst_reg,
4182 dst_reg->type, false);
4183 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4184 src_reg->type == PTR_TO_PACKET) ||
4185 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4186 src_reg->type == PTR_TO_PACKET_META)) {
4187 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4188 find_good_pkt_pointers(other_branch, src_reg,
4189 src_reg->type, true);
4190 } else {
4191 return false;
4192 }
4193 break;
4194 case BPF_JLT:
4195 if ((dst_reg->type == PTR_TO_PACKET &&
4196 src_reg->type == PTR_TO_PACKET_END) ||
4197 (dst_reg->type == PTR_TO_PACKET_META &&
4198 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4199 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4200 find_good_pkt_pointers(other_branch, dst_reg,
4201 dst_reg->type, true);
4202 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4203 src_reg->type == PTR_TO_PACKET) ||
4204 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4205 src_reg->type == PTR_TO_PACKET_META)) {
4206 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4207 find_good_pkt_pointers(this_branch, src_reg,
4208 src_reg->type, false);
4209 } else {
4210 return false;
4211 }
4212 break;
4213 case BPF_JGE:
4214 if ((dst_reg->type == PTR_TO_PACKET &&
4215 src_reg->type == PTR_TO_PACKET_END) ||
4216 (dst_reg->type == PTR_TO_PACKET_META &&
4217 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4218 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4219 find_good_pkt_pointers(this_branch, dst_reg,
4220 dst_reg->type, true);
4221 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4222 src_reg->type == PTR_TO_PACKET) ||
4223 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4224 src_reg->type == PTR_TO_PACKET_META)) {
4225 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4226 find_good_pkt_pointers(other_branch, src_reg,
4227 src_reg->type, false);
4228 } else {
4229 return false;
4230 }
4231 break;
4232 case BPF_JLE:
4233 if ((dst_reg->type == PTR_TO_PACKET &&
4234 src_reg->type == PTR_TO_PACKET_END) ||
4235 (dst_reg->type == PTR_TO_PACKET_META &&
4236 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4237 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4238 find_good_pkt_pointers(other_branch, dst_reg,
4239 dst_reg->type, false);
4240 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4241 src_reg->type == PTR_TO_PACKET) ||
4242 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4243 src_reg->type == PTR_TO_PACKET_META)) {
4244 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4245 find_good_pkt_pointers(this_branch, src_reg,
4246 src_reg->type, true);
4247 } else {
4248 return false;
4249 }
4250 break;
4251 default:
4252 return false;
4253 }
4254
4255 return true;
4256}
4257
58e2af8b 4258static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4259 struct bpf_insn *insn, int *insn_idx)
4260{
f4d7e40a
AS
4261 struct bpf_verifier_state *this_branch = env->cur_state;
4262 struct bpf_verifier_state *other_branch;
4263 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4264 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
4265 u8 opcode = BPF_OP(insn->code);
4266 int err;
4267
b4e432f1 4268 if (opcode > BPF_JSLE) {
61bd5218 4269 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
4270 return -EINVAL;
4271 }
4272
4273 if (BPF_SRC(insn->code) == BPF_X) {
4274 if (insn->imm != 0) {
61bd5218 4275 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4276 return -EINVAL;
4277 }
4278
4279 /* check src1 operand */
dc503a8a 4280 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4281 if (err)
4282 return err;
1be7f75d
AS
4283
4284 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4285 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4286 insn->src_reg);
4287 return -EACCES;
4288 }
17a52670
AS
4289 } else {
4290 if (insn->src_reg != BPF_REG_0) {
61bd5218 4291 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4292 return -EINVAL;
4293 }
4294 }
4295
4296 /* check src2 operand */
dc503a8a 4297 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4298 if (err)
4299 return err;
4300
1a0dc1ac
AS
4301 dst_reg = &regs[insn->dst_reg];
4302
4f7b3e82
AS
4303 if (BPF_SRC(insn->code) == BPF_K) {
4304 int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4305
4306 if (pred == 1) {
4307 /* only follow the goto, ignore fall-through */
17a52670
AS
4308 *insn_idx += insn->off;
4309 return 0;
4f7b3e82
AS
4310 } else if (pred == 0) {
4311 /* only follow fall-through branch, since
17a52670
AS
4312 * that's where the program will go
4313 */
4314 return 0;
4315 }
4316 }
4317
4318 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4319 if (!other_branch)
4320 return -EFAULT;
f4d7e40a 4321 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4322
48461135
JB
4323 /* detect if we are comparing against a constant value so we can adjust
4324 * our min/max values for our dst register.
f1174f77
EC
4325 * this is only legit if both are scalars (or pointers to the same
4326 * object, I suppose, but we don't support that right now), because
4327 * otherwise the different base pointers mean the offsets aren't
4328 * comparable.
48461135
JB
4329 */
4330 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
4331 if (dst_reg->type == SCALAR_VALUE &&
4332 regs[insn->src_reg].type == SCALAR_VALUE) {
4333 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 4334 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
4335 dst_reg, regs[insn->src_reg].var_off.value,
4336 opcode);
4337 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 4338 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
4339 &regs[insn->src_reg],
4340 dst_reg->var_off.value, opcode);
4341 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4342 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4343 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4344 &other_branch_regs[insn->dst_reg],
f1174f77
EC
4345 &regs[insn->src_reg],
4346 &regs[insn->dst_reg], opcode);
4347 }
4348 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4349 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
4350 dst_reg, insn->imm, opcode);
4351 }
4352
58e2af8b 4353 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 4354 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4355 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4356 reg_type_may_be_null(dst_reg->type)) {
4357 /* Mark all identical registers in each branch as either
57a09bf0
TG
4358 * safe or unknown depending R == 0 or R != 0 conditional.
4359 */
840b9615
JS
4360 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4361 opcode == BPF_JNE);
4362 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4363 opcode == BPF_JEQ);
5beca081
DB
4364 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4365 this_branch, other_branch) &&
4366 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4367 verbose(env, "R%d pointer comparison prohibited\n",
4368 insn->dst_reg);
1be7f75d 4369 return -EACCES;
17a52670 4370 }
61bd5218 4371 if (env->log.level)
f4d7e40a 4372 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4373 return 0;
4374}
4375
0246e64d
AS
4376/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4377static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4378{
4379 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4380
4381 return (struct bpf_map *) (unsigned long) imm64;
4382}
4383
17a52670 4384/* verify BPF_LD_IMM64 instruction */
58e2af8b 4385static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4386{
638f5b90 4387 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4388 int err;
4389
4390 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4391 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4392 return -EINVAL;
4393 }
4394 if (insn->off != 0) {
61bd5218 4395 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4396 return -EINVAL;
4397 }
4398
dc503a8a 4399 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4400 if (err)
4401 return err;
4402
6b173873 4403 if (insn->src_reg == 0) {
6b173873
JK
4404 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4405
f1174f77 4406 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4407 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4408 return 0;
6b173873 4409 }
17a52670
AS
4410
4411 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4412 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4413
4414 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4415 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4416 return 0;
4417}
4418
96be4325
DB
4419static bool may_access_skb(enum bpf_prog_type type)
4420{
4421 switch (type) {
4422 case BPF_PROG_TYPE_SOCKET_FILTER:
4423 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4424 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4425 return true;
4426 default:
4427 return false;
4428 }
4429}
4430
ddd872bc
AS
4431/* verify safety of LD_ABS|LD_IND instructions:
4432 * - they can only appear in the programs where ctx == skb
4433 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4434 * preserve R6-R9, and store return value into R0
4435 *
4436 * Implicit input:
4437 * ctx == skb == R6 == CTX
4438 *
4439 * Explicit input:
4440 * SRC == any register
4441 * IMM == 32-bit immediate
4442 *
4443 * Output:
4444 * R0 - 8/16/32-bit skb data converted to cpu endianness
4445 */
58e2af8b 4446static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4447{
638f5b90 4448 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4449 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4450 int i, err;
4451
24701ece 4452 if (!may_access_skb(env->prog->type)) {
61bd5218 4453 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4454 return -EINVAL;
4455 }
4456
e0cea7ce
DB
4457 if (!env->ops->gen_ld_abs) {
4458 verbose(env, "bpf verifier is misconfigured\n");
4459 return -EINVAL;
4460 }
4461
f910cefa 4462 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4463 /* when program has LD_ABS insn JITs and interpreter assume
4464 * that r1 == ctx == skb which is not the case for callees
4465 * that can have arbitrary arguments. It's problematic
4466 * for main prog as well since JITs would need to analyze
4467 * all functions in order to make proper register save/restore
4468 * decisions in the main prog. Hence disallow LD_ABS with calls
4469 */
4470 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4471 return -EINVAL;
4472 }
4473
ddd872bc 4474 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4475 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4476 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4477 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4478 return -EINVAL;
4479 }
4480
4481 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4482 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4483 if (err)
4484 return err;
4485
fd978bf7
JS
4486 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4487 * gen_ld_abs() may terminate the program at runtime, leading to
4488 * reference leak.
4489 */
4490 err = check_reference_leak(env);
4491 if (err) {
4492 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4493 return err;
4494 }
4495
ddd872bc 4496 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4497 verbose(env,
4498 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4499 return -EINVAL;
4500 }
4501
4502 if (mode == BPF_IND) {
4503 /* check explicit source operand */
dc503a8a 4504 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4505 if (err)
4506 return err;
4507 }
4508
4509 /* reset caller saved regs to unreadable */
dc503a8a 4510 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4511 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4512 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4513 }
ddd872bc
AS
4514
4515 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4516 * the value fetched from the packet.
4517 * Already marked as written above.
ddd872bc 4518 */
61bd5218 4519 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4520 return 0;
4521}
4522
390ee7e2
AS
4523static int check_return_code(struct bpf_verifier_env *env)
4524{
4525 struct bpf_reg_state *reg;
4526 struct tnum range = tnum_range(0, 1);
4527
4528 switch (env->prog->type) {
4529 case BPF_PROG_TYPE_CGROUP_SKB:
4530 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4531 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4532 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4533 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4534 break;
4535 default:
4536 return 0;
4537 }
4538
638f5b90 4539 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4540 if (reg->type != SCALAR_VALUE) {
61bd5218 4541 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4542 reg_type_str[reg->type]);
4543 return -EINVAL;
4544 }
4545
4546 if (!tnum_in(range, reg->var_off)) {
61bd5218 4547 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4548 if (!tnum_is_unknown(reg->var_off)) {
4549 char tn_buf[48];
4550
4551 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4552 verbose(env, "has value %s", tn_buf);
390ee7e2 4553 } else {
61bd5218 4554 verbose(env, "has unknown scalar value");
390ee7e2 4555 }
61bd5218 4556 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4557 return -EINVAL;
4558 }
4559 return 0;
4560}
4561
475fb78f
AS
4562/* non-recursive DFS pseudo code
4563 * 1 procedure DFS-iterative(G,v):
4564 * 2 label v as discovered
4565 * 3 let S be a stack
4566 * 4 S.push(v)
4567 * 5 while S is not empty
4568 * 6 t <- S.pop()
4569 * 7 if t is what we're looking for:
4570 * 8 return t
4571 * 9 for all edges e in G.adjacentEdges(t) do
4572 * 10 if edge e is already labelled
4573 * 11 continue with the next edge
4574 * 12 w <- G.adjacentVertex(t,e)
4575 * 13 if vertex w is not discovered and not explored
4576 * 14 label e as tree-edge
4577 * 15 label w as discovered
4578 * 16 S.push(w)
4579 * 17 continue at 5
4580 * 18 else if vertex w is discovered
4581 * 19 label e as back-edge
4582 * 20 else
4583 * 21 // vertex w is explored
4584 * 22 label e as forward- or cross-edge
4585 * 23 label t as explored
4586 * 24 S.pop()
4587 *
4588 * convention:
4589 * 0x10 - discovered
4590 * 0x11 - discovered and fall-through edge labelled
4591 * 0x12 - discovered and fall-through and branch edges labelled
4592 * 0x20 - explored
4593 */
4594
4595enum {
4596 DISCOVERED = 0x10,
4597 EXPLORED = 0x20,
4598 FALLTHROUGH = 1,
4599 BRANCH = 2,
4600};
4601
58e2af8b 4602#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4603
475fb78f
AS
4604static int *insn_stack; /* stack of insns to process */
4605static int cur_stack; /* current stack index */
4606static int *insn_state;
4607
4608/* t, w, e - match pseudo-code above:
4609 * t - index of current instruction
4610 * w - next instruction
4611 * e - edge
4612 */
58e2af8b 4613static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4614{
4615 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4616 return 0;
4617
4618 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4619 return 0;
4620
4621 if (w < 0 || w >= env->prog->len) {
d9762e84 4622 verbose_linfo(env, t, "%d: ", t);
61bd5218 4623 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4624 return -EINVAL;
4625 }
4626
f1bca824
AS
4627 if (e == BRANCH)
4628 /* mark branch target for state pruning */
4629 env->explored_states[w] = STATE_LIST_MARK;
4630
475fb78f
AS
4631 if (insn_state[w] == 0) {
4632 /* tree-edge */
4633 insn_state[t] = DISCOVERED | e;
4634 insn_state[w] = DISCOVERED;
4635 if (cur_stack >= env->prog->len)
4636 return -E2BIG;
4637 insn_stack[cur_stack++] = w;
4638 return 1;
4639 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
4640 verbose_linfo(env, t, "%d: ", t);
4641 verbose_linfo(env, w, "%d: ", w);
61bd5218 4642 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4643 return -EINVAL;
4644 } else if (insn_state[w] == EXPLORED) {
4645 /* forward- or cross-edge */
4646 insn_state[t] = DISCOVERED | e;
4647 } else {
61bd5218 4648 verbose(env, "insn state internal bug\n");
475fb78f
AS
4649 return -EFAULT;
4650 }
4651 return 0;
4652}
4653
4654/* non-recursive depth-first-search to detect loops in BPF program
4655 * loop == back-edge in directed graph
4656 */
58e2af8b 4657static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4658{
4659 struct bpf_insn *insns = env->prog->insnsi;
4660 int insn_cnt = env->prog->len;
4661 int ret = 0;
4662 int i, t;
4663
4664 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4665 if (!insn_state)
4666 return -ENOMEM;
4667
4668 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4669 if (!insn_stack) {
4670 kfree(insn_state);
4671 return -ENOMEM;
4672 }
4673
4674 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4675 insn_stack[0] = 0; /* 0 is the first instruction */
4676 cur_stack = 1;
4677
4678peek_stack:
4679 if (cur_stack == 0)
4680 goto check_state;
4681 t = insn_stack[cur_stack - 1];
4682
4683 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4684 u8 opcode = BPF_OP(insns[t].code);
4685
4686 if (opcode == BPF_EXIT) {
4687 goto mark_explored;
4688 } else if (opcode == BPF_CALL) {
4689 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4690 if (ret == 1)
4691 goto peek_stack;
4692 else if (ret < 0)
4693 goto err_free;
07016151
DB
4694 if (t + 1 < insn_cnt)
4695 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4696 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4697 env->explored_states[t] = STATE_LIST_MARK;
4698 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4699 if (ret == 1)
4700 goto peek_stack;
4701 else if (ret < 0)
4702 goto err_free;
4703 }
475fb78f
AS
4704 } else if (opcode == BPF_JA) {
4705 if (BPF_SRC(insns[t].code) != BPF_K) {
4706 ret = -EINVAL;
4707 goto err_free;
4708 }
4709 /* unconditional jump with single edge */
4710 ret = push_insn(t, t + insns[t].off + 1,
4711 FALLTHROUGH, env);
4712 if (ret == 1)
4713 goto peek_stack;
4714 else if (ret < 0)
4715 goto err_free;
f1bca824
AS
4716 /* tell verifier to check for equivalent states
4717 * after every call and jump
4718 */
c3de6317
AS
4719 if (t + 1 < insn_cnt)
4720 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4721 } else {
4722 /* conditional jump with two edges */
3c2ce60b 4723 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4724 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4725 if (ret == 1)
4726 goto peek_stack;
4727 else if (ret < 0)
4728 goto err_free;
4729
4730 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4731 if (ret == 1)
4732 goto peek_stack;
4733 else if (ret < 0)
4734 goto err_free;
4735 }
4736 } else {
4737 /* all other non-branch instructions with single
4738 * fall-through edge
4739 */
4740 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4741 if (ret == 1)
4742 goto peek_stack;
4743 else if (ret < 0)
4744 goto err_free;
4745 }
4746
4747mark_explored:
4748 insn_state[t] = EXPLORED;
4749 if (cur_stack-- <= 0) {
61bd5218 4750 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4751 ret = -EFAULT;
4752 goto err_free;
4753 }
4754 goto peek_stack;
4755
4756check_state:
4757 for (i = 0; i < insn_cnt; i++) {
4758 if (insn_state[i] != EXPLORED) {
61bd5218 4759 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4760 ret = -EINVAL;
4761 goto err_free;
4762 }
4763 }
4764 ret = 0; /* cfg looks good */
4765
4766err_free:
4767 kfree(insn_state);
4768 kfree(insn_stack);
4769 return ret;
4770}
4771
838e9690
YS
4772/* The minimum supported BTF func info size */
4773#define MIN_BPF_FUNCINFO_SIZE 8
4774#define MAX_FUNCINFO_REC_SIZE 252
4775
c454a46b
MKL
4776static int check_btf_func(struct bpf_verifier_env *env,
4777 const union bpf_attr *attr,
4778 union bpf_attr __user *uattr)
838e9690
YS
4779{
4780 u32 i, nfuncs, urec_size, min_size, prev_offset;
4781 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 4782 struct bpf_func_info *krecord;
838e9690 4783 const struct btf_type *type;
c454a46b
MKL
4784 struct bpf_prog *prog;
4785 const struct btf *btf;
838e9690 4786 void __user *urecord;
838e9690
YS
4787 int ret = 0;
4788
4789 nfuncs = attr->func_info_cnt;
4790 if (!nfuncs)
4791 return 0;
4792
4793 if (nfuncs != env->subprog_cnt) {
4794 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
4795 return -EINVAL;
4796 }
4797
4798 urec_size = attr->func_info_rec_size;
4799 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
4800 urec_size > MAX_FUNCINFO_REC_SIZE ||
4801 urec_size % sizeof(u32)) {
4802 verbose(env, "invalid func info rec size %u\n", urec_size);
4803 return -EINVAL;
4804 }
4805
c454a46b
MKL
4806 prog = env->prog;
4807 btf = prog->aux->btf;
838e9690
YS
4808
4809 urecord = u64_to_user_ptr(attr->func_info);
4810 min_size = min_t(u32, krec_size, urec_size);
4811
ba64e7d8 4812 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
4813 if (!krecord)
4814 return -ENOMEM;
ba64e7d8 4815
838e9690
YS
4816 for (i = 0; i < nfuncs; i++) {
4817 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
4818 if (ret) {
4819 if (ret == -E2BIG) {
4820 verbose(env, "nonzero tailing record in func info");
4821 /* set the size kernel expects so loader can zero
4822 * out the rest of the record.
4823 */
4824 if (put_user(min_size, &uattr->func_info_rec_size))
4825 ret = -EFAULT;
4826 }
c454a46b 4827 goto err_free;
838e9690
YS
4828 }
4829
ba64e7d8 4830 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 4831 ret = -EFAULT;
c454a46b 4832 goto err_free;
838e9690
YS
4833 }
4834
d30d42e0 4835 /* check insn_off */
838e9690 4836 if (i == 0) {
d30d42e0 4837 if (krecord[i].insn_off) {
838e9690 4838 verbose(env,
d30d42e0
MKL
4839 "nonzero insn_off %u for the first func info record",
4840 krecord[i].insn_off);
838e9690 4841 ret = -EINVAL;
c454a46b 4842 goto err_free;
838e9690 4843 }
d30d42e0 4844 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
4845 verbose(env,
4846 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 4847 krecord[i].insn_off, prev_offset);
838e9690 4848 ret = -EINVAL;
c454a46b 4849 goto err_free;
838e9690
YS
4850 }
4851
d30d42e0 4852 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
4853 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
4854 ret = -EINVAL;
c454a46b 4855 goto err_free;
838e9690
YS
4856 }
4857
4858 /* check type_id */
ba64e7d8 4859 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
4860 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
4861 verbose(env, "invalid type id %d in func info",
ba64e7d8 4862 krecord[i].type_id);
838e9690 4863 ret = -EINVAL;
c454a46b 4864 goto err_free;
838e9690
YS
4865 }
4866
d30d42e0 4867 prev_offset = krecord[i].insn_off;
838e9690
YS
4868 urecord += urec_size;
4869 }
4870
ba64e7d8
YS
4871 prog->aux->func_info = krecord;
4872 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
4873 return 0;
4874
c454a46b 4875err_free:
ba64e7d8 4876 kvfree(krecord);
838e9690
YS
4877 return ret;
4878}
4879
ba64e7d8
YS
4880static void adjust_btf_func(struct bpf_verifier_env *env)
4881{
4882 int i;
4883
4884 if (!env->prog->aux->func_info)
4885 return;
4886
4887 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 4888 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
4889}
4890
c454a46b
MKL
4891#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
4892 sizeof(((struct bpf_line_info *)(0))->line_col))
4893#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
4894
4895static int check_btf_line(struct bpf_verifier_env *env,
4896 const union bpf_attr *attr,
4897 union bpf_attr __user *uattr)
4898{
4899 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
4900 struct bpf_subprog_info *sub;
4901 struct bpf_line_info *linfo;
4902 struct bpf_prog *prog;
4903 const struct btf *btf;
4904 void __user *ulinfo;
4905 int err;
4906
4907 nr_linfo = attr->line_info_cnt;
4908 if (!nr_linfo)
4909 return 0;
4910
4911 rec_size = attr->line_info_rec_size;
4912 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
4913 rec_size > MAX_LINEINFO_REC_SIZE ||
4914 rec_size & (sizeof(u32) - 1))
4915 return -EINVAL;
4916
4917 /* Need to zero it in case the userspace may
4918 * pass in a smaller bpf_line_info object.
4919 */
4920 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
4921 GFP_KERNEL | __GFP_NOWARN);
4922 if (!linfo)
4923 return -ENOMEM;
4924
4925 prog = env->prog;
4926 btf = prog->aux->btf;
4927
4928 s = 0;
4929 sub = env->subprog_info;
4930 ulinfo = u64_to_user_ptr(attr->line_info);
4931 expected_size = sizeof(struct bpf_line_info);
4932 ncopy = min_t(u32, expected_size, rec_size);
4933 for (i = 0; i < nr_linfo; i++) {
4934 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
4935 if (err) {
4936 if (err == -E2BIG) {
4937 verbose(env, "nonzero tailing record in line_info");
4938 if (put_user(expected_size,
4939 &uattr->line_info_rec_size))
4940 err = -EFAULT;
4941 }
4942 goto err_free;
4943 }
4944
4945 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
4946 err = -EFAULT;
4947 goto err_free;
4948 }
4949
4950 /*
4951 * Check insn_off to ensure
4952 * 1) strictly increasing AND
4953 * 2) bounded by prog->len
4954 *
4955 * The linfo[0].insn_off == 0 check logically falls into
4956 * the later "missing bpf_line_info for func..." case
4957 * because the first linfo[0].insn_off must be the
4958 * first sub also and the first sub must have
4959 * subprog_info[0].start == 0.
4960 */
4961 if ((i && linfo[i].insn_off <= prev_offset) ||
4962 linfo[i].insn_off >= prog->len) {
4963 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
4964 i, linfo[i].insn_off, prev_offset,
4965 prog->len);
4966 err = -EINVAL;
4967 goto err_free;
4968 }
4969
23127b33
MKL
4970 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
4971 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
4972 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
4973 err = -EINVAL;
4974 goto err_free;
4975 }
4976
4977 if (s != env->subprog_cnt) {
4978 if (linfo[i].insn_off == sub[s].start) {
4979 sub[s].linfo_idx = i;
4980 s++;
4981 } else if (sub[s].start < linfo[i].insn_off) {
4982 verbose(env, "missing bpf_line_info for func#%u\n", s);
4983 err = -EINVAL;
4984 goto err_free;
4985 }
4986 }
4987
4988 prev_offset = linfo[i].insn_off;
4989 ulinfo += rec_size;
4990 }
4991
4992 if (s != env->subprog_cnt) {
4993 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
4994 env->subprog_cnt - s, s);
4995 err = -EINVAL;
4996 goto err_free;
4997 }
4998
4999 prog->aux->linfo = linfo;
5000 prog->aux->nr_linfo = nr_linfo;
5001
5002 return 0;
5003
5004err_free:
5005 kvfree(linfo);
5006 return err;
5007}
5008
5009static int check_btf_info(struct bpf_verifier_env *env,
5010 const union bpf_attr *attr,
5011 union bpf_attr __user *uattr)
5012{
5013 struct btf *btf;
5014 int err;
5015
5016 if (!attr->func_info_cnt && !attr->line_info_cnt)
5017 return 0;
5018
5019 btf = btf_get_by_fd(attr->prog_btf_fd);
5020 if (IS_ERR(btf))
5021 return PTR_ERR(btf);
5022 env->prog->aux->btf = btf;
5023
5024 err = check_btf_func(env, attr, uattr);
5025 if (err)
5026 return err;
5027
5028 err = check_btf_line(env, attr, uattr);
5029 if (err)
5030 return err;
5031
5032 return 0;
ba64e7d8
YS
5033}
5034
f1174f77
EC
5035/* check %cur's range satisfies %old's */
5036static bool range_within(struct bpf_reg_state *old,
5037 struct bpf_reg_state *cur)
5038{
b03c9f9f
EC
5039 return old->umin_value <= cur->umin_value &&
5040 old->umax_value >= cur->umax_value &&
5041 old->smin_value <= cur->smin_value &&
5042 old->smax_value >= cur->smax_value;
f1174f77
EC
5043}
5044
5045/* Maximum number of register states that can exist at once */
5046#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5047struct idpair {
5048 u32 old;
5049 u32 cur;
5050};
5051
5052/* If in the old state two registers had the same id, then they need to have
5053 * the same id in the new state as well. But that id could be different from
5054 * the old state, so we need to track the mapping from old to new ids.
5055 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5056 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5057 * regs with a different old id could still have new id 9, we don't care about
5058 * that.
5059 * So we look through our idmap to see if this old id has been seen before. If
5060 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 5061 */
f1174f77 5062static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 5063{
f1174f77 5064 unsigned int i;
969bf05e 5065
f1174f77
EC
5066 for (i = 0; i < ID_MAP_SIZE; i++) {
5067 if (!idmap[i].old) {
5068 /* Reached an empty slot; haven't seen this id before */
5069 idmap[i].old = old_id;
5070 idmap[i].cur = cur_id;
5071 return true;
5072 }
5073 if (idmap[i].old == old_id)
5074 return idmap[i].cur == cur_id;
5075 }
5076 /* We ran out of idmap slots, which should be impossible */
5077 WARN_ON_ONCE(1);
5078 return false;
5079}
5080
5081/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
5082static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5083 struct idpair *idmap)
f1174f77 5084{
f4d7e40a
AS
5085 bool equal;
5086
dc503a8a
EC
5087 if (!(rold->live & REG_LIVE_READ))
5088 /* explored state didn't use this */
5089 return true;
5090
679c782d 5091 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
5092
5093 if (rold->type == PTR_TO_STACK)
5094 /* two stack pointers are equal only if they're pointing to
5095 * the same stack frame, since fp-8 in foo != fp-8 in bar
5096 */
5097 return equal && rold->frameno == rcur->frameno;
5098
5099 if (equal)
969bf05e
AS
5100 return true;
5101
f1174f77
EC
5102 if (rold->type == NOT_INIT)
5103 /* explored state can't have used this */
969bf05e 5104 return true;
f1174f77
EC
5105 if (rcur->type == NOT_INIT)
5106 return false;
5107 switch (rold->type) {
5108 case SCALAR_VALUE:
5109 if (rcur->type == SCALAR_VALUE) {
5110 /* new val must satisfy old val knowledge */
5111 return range_within(rold, rcur) &&
5112 tnum_in(rold->var_off, rcur->var_off);
5113 } else {
179d1c56
JH
5114 /* We're trying to use a pointer in place of a scalar.
5115 * Even if the scalar was unbounded, this could lead to
5116 * pointer leaks because scalars are allowed to leak
5117 * while pointers are not. We could make this safe in
5118 * special cases if root is calling us, but it's
5119 * probably not worth the hassle.
f1174f77 5120 */
179d1c56 5121 return false;
f1174f77
EC
5122 }
5123 case PTR_TO_MAP_VALUE:
1b688a19
EC
5124 /* If the new min/max/var_off satisfy the old ones and
5125 * everything else matches, we are OK.
5126 * We don't care about the 'id' value, because nothing
5127 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
5128 */
5129 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5130 range_within(rold, rcur) &&
5131 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
5132 case PTR_TO_MAP_VALUE_OR_NULL:
5133 /* a PTR_TO_MAP_VALUE could be safe to use as a
5134 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5135 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5136 * checked, doing so could have affected others with the same
5137 * id, and we can't check for that because we lost the id when
5138 * we converted to a PTR_TO_MAP_VALUE.
5139 */
5140 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5141 return false;
5142 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5143 return false;
5144 /* Check our ids match any regs they're supposed to */
5145 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 5146 case PTR_TO_PACKET_META:
f1174f77 5147 case PTR_TO_PACKET:
de8f3a83 5148 if (rcur->type != rold->type)
f1174f77
EC
5149 return false;
5150 /* We must have at least as much range as the old ptr
5151 * did, so that any accesses which were safe before are
5152 * still safe. This is true even if old range < old off,
5153 * since someone could have accessed through (ptr - k), or
5154 * even done ptr -= k in a register, to get a safe access.
5155 */
5156 if (rold->range > rcur->range)
5157 return false;
5158 /* If the offsets don't match, we can't trust our alignment;
5159 * nor can we be sure that we won't fall out of range.
5160 */
5161 if (rold->off != rcur->off)
5162 return false;
5163 /* id relations must be preserved */
5164 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5165 return false;
5166 /* new val must satisfy old val knowledge */
5167 return range_within(rold, rcur) &&
5168 tnum_in(rold->var_off, rcur->var_off);
5169 case PTR_TO_CTX:
5170 case CONST_PTR_TO_MAP:
f1174f77 5171 case PTR_TO_PACKET_END:
d58e468b 5172 case PTR_TO_FLOW_KEYS:
c64b7983
JS
5173 case PTR_TO_SOCKET:
5174 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
5175 /* Only valid matches are exact, which memcmp() above
5176 * would have accepted
5177 */
5178 default:
5179 /* Don't know what's going on, just say it's not safe */
5180 return false;
5181 }
969bf05e 5182
f1174f77
EC
5183 /* Shouldn't get here; if we do, say it's not safe */
5184 WARN_ON_ONCE(1);
969bf05e
AS
5185 return false;
5186}
5187
f4d7e40a
AS
5188static bool stacksafe(struct bpf_func_state *old,
5189 struct bpf_func_state *cur,
638f5b90
AS
5190 struct idpair *idmap)
5191{
5192 int i, spi;
5193
638f5b90
AS
5194 /* walk slots of the explored stack and ignore any additional
5195 * slots in the current stack, since explored(safe) state
5196 * didn't use them
5197 */
5198 for (i = 0; i < old->allocated_stack; i++) {
5199 spi = i / BPF_REG_SIZE;
5200
b233920c
AS
5201 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5202 i += BPF_REG_SIZE - 1;
cc2b14d5 5203 /* explored state didn't use this */
fd05e57b 5204 continue;
b233920c 5205 }
cc2b14d5 5206
638f5b90
AS
5207 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5208 continue;
19e2dbb7
AS
5209
5210 /* explored stack has more populated slots than current stack
5211 * and these slots were used
5212 */
5213 if (i >= cur->allocated_stack)
5214 return false;
5215
cc2b14d5
AS
5216 /* if old state was safe with misc data in the stack
5217 * it will be safe with zero-initialized stack.
5218 * The opposite is not true
5219 */
5220 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5221 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5222 continue;
638f5b90
AS
5223 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5224 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5225 /* Ex: old explored (safe) state has STACK_SPILL in
5226 * this stack slot, but current has has STACK_MISC ->
5227 * this verifier states are not equivalent,
5228 * return false to continue verification of this path
5229 */
5230 return false;
5231 if (i % BPF_REG_SIZE)
5232 continue;
5233 if (old->stack[spi].slot_type[0] != STACK_SPILL)
5234 continue;
5235 if (!regsafe(&old->stack[spi].spilled_ptr,
5236 &cur->stack[spi].spilled_ptr,
5237 idmap))
5238 /* when explored and current stack slot are both storing
5239 * spilled registers, check that stored pointers types
5240 * are the same as well.
5241 * Ex: explored safe path could have stored
5242 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5243 * but current path has stored:
5244 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5245 * such verifier states are not equivalent.
5246 * return false to continue verification of this path
5247 */
5248 return false;
5249 }
5250 return true;
5251}
5252
fd978bf7
JS
5253static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5254{
5255 if (old->acquired_refs != cur->acquired_refs)
5256 return false;
5257 return !memcmp(old->refs, cur->refs,
5258 sizeof(*old->refs) * old->acquired_refs);
5259}
5260
f1bca824
AS
5261/* compare two verifier states
5262 *
5263 * all states stored in state_list are known to be valid, since
5264 * verifier reached 'bpf_exit' instruction through them
5265 *
5266 * this function is called when verifier exploring different branches of
5267 * execution popped from the state stack. If it sees an old state that has
5268 * more strict register state and more strict stack state then this execution
5269 * branch doesn't need to be explored further, since verifier already
5270 * concluded that more strict state leads to valid finish.
5271 *
5272 * Therefore two states are equivalent if register state is more conservative
5273 * and explored stack state is more conservative than the current one.
5274 * Example:
5275 * explored current
5276 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5277 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5278 *
5279 * In other words if current stack state (one being explored) has more
5280 * valid slots than old one that already passed validation, it means
5281 * the verifier can stop exploring and conclude that current state is valid too
5282 *
5283 * Similarly with registers. If explored state has register type as invalid
5284 * whereas register type in current state is meaningful, it means that
5285 * the current state will reach 'bpf_exit' instruction safely
5286 */
f4d7e40a
AS
5287static bool func_states_equal(struct bpf_func_state *old,
5288 struct bpf_func_state *cur)
f1bca824 5289{
f1174f77
EC
5290 struct idpair *idmap;
5291 bool ret = false;
f1bca824
AS
5292 int i;
5293
f1174f77
EC
5294 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5295 /* If we failed to allocate the idmap, just say it's not safe */
5296 if (!idmap)
1a0dc1ac 5297 return false;
f1174f77
EC
5298
5299 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 5300 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 5301 goto out_free;
f1bca824
AS
5302 }
5303
638f5b90
AS
5304 if (!stacksafe(old, cur, idmap))
5305 goto out_free;
fd978bf7
JS
5306
5307 if (!refsafe(old, cur))
5308 goto out_free;
f1174f77
EC
5309 ret = true;
5310out_free:
5311 kfree(idmap);
5312 return ret;
f1bca824
AS
5313}
5314
f4d7e40a
AS
5315static bool states_equal(struct bpf_verifier_env *env,
5316 struct bpf_verifier_state *old,
5317 struct bpf_verifier_state *cur)
5318{
5319 int i;
5320
5321 if (old->curframe != cur->curframe)
5322 return false;
5323
5324 /* for states to be equal callsites have to be the same
5325 * and all frame states need to be equivalent
5326 */
5327 for (i = 0; i <= old->curframe; i++) {
5328 if (old->frame[i]->callsite != cur->frame[i]->callsite)
5329 return false;
5330 if (!func_states_equal(old->frame[i], cur->frame[i]))
5331 return false;
5332 }
5333 return true;
5334}
5335
8e9cd9ce 5336/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
5337 * straight-line code between a state and its parent. When we arrive at an
5338 * equivalent state (jump target or such) we didn't arrive by the straight-line
5339 * code, so read marks in the state must propagate to the parent regardless
5340 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 5341 * in mark_reg_read() is for.
8e9cd9ce 5342 */
f4d7e40a
AS
5343static int propagate_liveness(struct bpf_verifier_env *env,
5344 const struct bpf_verifier_state *vstate,
5345 struct bpf_verifier_state *vparent)
dc503a8a 5346{
f4d7e40a
AS
5347 int i, frame, err = 0;
5348 struct bpf_func_state *state, *parent;
dc503a8a 5349
f4d7e40a
AS
5350 if (vparent->curframe != vstate->curframe) {
5351 WARN(1, "propagate_live: parent frame %d current frame %d\n",
5352 vparent->curframe, vstate->curframe);
5353 return -EFAULT;
5354 }
dc503a8a
EC
5355 /* Propagate read liveness of registers... */
5356 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5357 /* We don't need to worry about FP liveness because it's read-only */
5358 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 5359 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 5360 continue;
f4d7e40a 5361 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
5362 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5363 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
5364 if (err)
5365 return err;
dc503a8a
EC
5366 }
5367 }
f4d7e40a 5368
dc503a8a 5369 /* ... and stack slots */
f4d7e40a
AS
5370 for (frame = 0; frame <= vstate->curframe; frame++) {
5371 state = vstate->frame[frame];
5372 parent = vparent->frame[frame];
5373 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5374 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
5375 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5376 continue;
5377 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
5378 mark_reg_read(env, &state->stack[i].spilled_ptr,
5379 &parent->stack[i].spilled_ptr);
dc503a8a
EC
5380 }
5381 }
f4d7e40a 5382 return err;
dc503a8a
EC
5383}
5384
58e2af8b 5385static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 5386{
58e2af8b
JK
5387 struct bpf_verifier_state_list *new_sl;
5388 struct bpf_verifier_state_list *sl;
679c782d 5389 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 5390 int i, j, err, states_cnt = 0;
f1bca824
AS
5391
5392 sl = env->explored_states[insn_idx];
5393 if (!sl)
5394 /* this 'insn_idx' instruction wasn't marked, so we will not
5395 * be doing state search here
5396 */
5397 return 0;
5398
5399 while (sl != STATE_LIST_MARK) {
638f5b90 5400 if (states_equal(env, &sl->state, cur)) {
f1bca824 5401 /* reached equivalent register/stack state,
dc503a8a
EC
5402 * prune the search.
5403 * Registers read by the continuation are read by us.
8e9cd9ce
EC
5404 * If we have any write marks in env->cur_state, they
5405 * will prevent corresponding reads in the continuation
5406 * from reaching our parent (an explored_state). Our
5407 * own state will get the read marks recorded, but
5408 * they'll be immediately forgotten as we're pruning
5409 * this state and will pop a new one.
f1bca824 5410 */
f4d7e40a
AS
5411 err = propagate_liveness(env, &sl->state, cur);
5412 if (err)
5413 return err;
f1bca824 5414 return 1;
dc503a8a 5415 }
f1bca824 5416 sl = sl->next;
ceefbc96 5417 states_cnt++;
f1bca824
AS
5418 }
5419
ceefbc96
AS
5420 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5421 return 0;
5422
f1bca824
AS
5423 /* there were no equivalent states, remember current one.
5424 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
5425 * but it will either reach outer most bpf_exit (which means it's safe)
5426 * or it will be rejected. Since there are no loops, we won't be
5427 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5428 * again on the way to bpf_exit
f1bca824 5429 */
638f5b90 5430 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
5431 if (!new_sl)
5432 return -ENOMEM;
5433
5434 /* add new state to the head of linked list */
679c782d
EC
5435 new = &new_sl->state;
5436 err = copy_verifier_state(new, cur);
1969db47 5437 if (err) {
679c782d 5438 free_verifier_state(new, false);
1969db47
AS
5439 kfree(new_sl);
5440 return err;
5441 }
f1bca824
AS
5442 new_sl->next = env->explored_states[insn_idx];
5443 env->explored_states[insn_idx] = new_sl;
dc503a8a 5444 /* connect new state to parentage chain */
679c782d
EC
5445 for (i = 0; i < BPF_REG_FP; i++)
5446 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
8e9cd9ce
EC
5447 /* clear write marks in current state: the writes we did are not writes
5448 * our child did, so they don't screen off its reads from us.
5449 * (There are no read marks in current state, because reads always mark
5450 * their parent and current state never has children yet. Only
5451 * explored_states can get read marks.)
5452 */
dc503a8a 5453 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
5454 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5455
5456 /* all stack frames are accessible from callee, clear them all */
5457 for (j = 0; j <= cur->curframe; j++) {
5458 struct bpf_func_state *frame = cur->frame[j];
679c782d 5459 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 5460
679c782d 5461 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 5462 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
5463 frame->stack[i].spilled_ptr.parent =
5464 &newframe->stack[i].spilled_ptr;
5465 }
f4d7e40a 5466 }
f1bca824
AS
5467 return 0;
5468}
5469
c64b7983
JS
5470/* Return true if it's OK to have the same insn return a different type. */
5471static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5472{
5473 switch (type) {
5474 case PTR_TO_CTX:
5475 case PTR_TO_SOCKET:
5476 case PTR_TO_SOCKET_OR_NULL:
5477 return false;
5478 default:
5479 return true;
5480 }
5481}
5482
5483/* If an instruction was previously used with particular pointer types, then we
5484 * need to be careful to avoid cases such as the below, where it may be ok
5485 * for one branch accessing the pointer, but not ok for the other branch:
5486 *
5487 * R1 = sock_ptr
5488 * goto X;
5489 * ...
5490 * R1 = some_other_valid_ptr;
5491 * goto X;
5492 * ...
5493 * R2 = *(u32 *)(R1 + 0);
5494 */
5495static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5496{
5497 return src != prev && (!reg_type_mismatch_ok(src) ||
5498 !reg_type_mismatch_ok(prev));
5499}
5500
58e2af8b 5501static int do_check(struct bpf_verifier_env *env)
17a52670 5502{
638f5b90 5503 struct bpf_verifier_state *state;
17a52670 5504 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 5505 struct bpf_reg_state *regs;
f4d7e40a 5506 int insn_cnt = env->prog->len, i;
17a52670
AS
5507 int insn_idx, prev_insn_idx = 0;
5508 int insn_processed = 0;
5509 bool do_print_state = false;
5510
d9762e84
MKL
5511 env->prev_linfo = NULL;
5512
638f5b90
AS
5513 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5514 if (!state)
5515 return -ENOMEM;
f4d7e40a 5516 state->curframe = 0;
f4d7e40a
AS
5517 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5518 if (!state->frame[0]) {
5519 kfree(state);
5520 return -ENOMEM;
5521 }
5522 env->cur_state = state;
5523 init_func_state(env, state->frame[0],
5524 BPF_MAIN_FUNC /* callsite */,
5525 0 /* frameno */,
5526 0 /* subprogno, zero == main subprog */);
17a52670
AS
5527 insn_idx = 0;
5528 for (;;) {
5529 struct bpf_insn *insn;
5530 u8 class;
5531 int err;
5532
5533 if (insn_idx >= insn_cnt) {
61bd5218 5534 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
5535 insn_idx, insn_cnt);
5536 return -EFAULT;
5537 }
5538
5539 insn = &insns[insn_idx];
5540 class = BPF_CLASS(insn->code);
5541
07016151 5542 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
5543 verbose(env,
5544 "BPF program is too large. Processed %d insn\n",
17a52670
AS
5545 insn_processed);
5546 return -E2BIG;
5547 }
5548
f1bca824
AS
5549 err = is_state_visited(env, insn_idx);
5550 if (err < 0)
5551 return err;
5552 if (err == 1) {
5553 /* found equivalent state, can prune the search */
61bd5218 5554 if (env->log.level) {
f1bca824 5555 if (do_print_state)
61bd5218 5556 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
5557 prev_insn_idx, insn_idx);
5558 else
61bd5218 5559 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
5560 }
5561 goto process_bpf_exit;
5562 }
5563
c3494801
AS
5564 if (signal_pending(current))
5565 return -EAGAIN;
5566
3c2ce60b
DB
5567 if (need_resched())
5568 cond_resched();
5569
61bd5218
JK
5570 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5571 if (env->log.level > 1)
5572 verbose(env, "%d:", insn_idx);
c5fc9692 5573 else
61bd5218 5574 verbose(env, "\nfrom %d to %d:",
c5fc9692 5575 prev_insn_idx, insn_idx);
f4d7e40a 5576 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
5577 do_print_state = false;
5578 }
5579
61bd5218 5580 if (env->log.level) {
7105e828
DB
5581 const struct bpf_insn_cbs cbs = {
5582 .cb_print = verbose,
abe08840 5583 .private_data = env,
7105e828
DB
5584 };
5585
d9762e84 5586 verbose_linfo(env, insn_idx, "; ");
61bd5218 5587 verbose(env, "%d: ", insn_idx);
abe08840 5588 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
5589 }
5590
cae1927c
JK
5591 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5592 err = bpf_prog_offload_verify_insn(env, insn_idx,
5593 prev_insn_idx);
5594 if (err)
5595 return err;
5596 }
13a27dfc 5597
638f5b90 5598 regs = cur_regs(env);
c131187d 5599 env->insn_aux_data[insn_idx].seen = true;
fd978bf7 5600
17a52670 5601 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 5602 err = check_alu_op(env, insn);
17a52670
AS
5603 if (err)
5604 return err;
5605
5606 } else if (class == BPF_LDX) {
3df126f3 5607 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
5608
5609 /* check for reserved fields is already done */
5610
17a52670 5611 /* check src operand */
dc503a8a 5612 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5613 if (err)
5614 return err;
5615
dc503a8a 5616 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5617 if (err)
5618 return err;
5619
725f9dcd
AS
5620 src_reg_type = regs[insn->src_reg].type;
5621
17a52670
AS
5622 /* check that memory (src_reg + off) is readable,
5623 * the state of dst_reg will be updated by this func
5624 */
31fd8581 5625 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 5626 BPF_SIZE(insn->code), BPF_READ,
ca369602 5627 insn->dst_reg, false);
17a52670
AS
5628 if (err)
5629 return err;
5630
3df126f3
JK
5631 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5632
5633 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
5634 /* saw a valid insn
5635 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 5636 * save type to validate intersecting paths
9bac3d6d 5637 */
3df126f3 5638 *prev_src_type = src_reg_type;
9bac3d6d 5639
c64b7983 5640 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
5641 /* ABuser program is trying to use the same insn
5642 * dst_reg = *(u32*) (src_reg + off)
5643 * with different pointer types:
5644 * src_reg == ctx in one branch and
5645 * src_reg == stack|map in some other branch.
5646 * Reject it.
5647 */
61bd5218 5648 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
5649 return -EINVAL;
5650 }
5651
17a52670 5652 } else if (class == BPF_STX) {
3df126f3 5653 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 5654
17a52670 5655 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 5656 err = check_xadd(env, insn_idx, insn);
17a52670
AS
5657 if (err)
5658 return err;
5659 insn_idx++;
5660 continue;
5661 }
5662
17a52670 5663 /* check src1 operand */
dc503a8a 5664 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5665 if (err)
5666 return err;
5667 /* check src2 operand */
dc503a8a 5668 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5669 if (err)
5670 return err;
5671
d691f9e8
AS
5672 dst_reg_type = regs[insn->dst_reg].type;
5673
17a52670 5674 /* check that memory (dst_reg + off) is writeable */
31fd8581 5675 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5676 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5677 insn->src_reg, false);
17a52670
AS
5678 if (err)
5679 return err;
5680
3df126f3
JK
5681 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5682
5683 if (*prev_dst_type == NOT_INIT) {
5684 *prev_dst_type = dst_reg_type;
c64b7983 5685 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 5686 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
5687 return -EINVAL;
5688 }
5689
17a52670
AS
5690 } else if (class == BPF_ST) {
5691 if (BPF_MODE(insn->code) != BPF_MEM ||
5692 insn->src_reg != BPF_REG_0) {
61bd5218 5693 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
5694 return -EINVAL;
5695 }
5696 /* check src operand */
dc503a8a 5697 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5698 if (err)
5699 return err;
5700
f37a8cb8 5701 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 5702 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
5703 insn->dst_reg,
5704 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
5705 return -EACCES;
5706 }
5707
17a52670 5708 /* check that memory (dst_reg + off) is writeable */
31fd8581 5709 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5710 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5711 -1, false);
17a52670
AS
5712 if (err)
5713 return err;
5714
5715 } else if (class == BPF_JMP) {
5716 u8 opcode = BPF_OP(insn->code);
5717
5718 if (opcode == BPF_CALL) {
5719 if (BPF_SRC(insn->code) != BPF_K ||
5720 insn->off != 0 ||
f4d7e40a
AS
5721 (insn->src_reg != BPF_REG_0 &&
5722 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 5723 insn->dst_reg != BPF_REG_0) {
61bd5218 5724 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
5725 return -EINVAL;
5726 }
5727
f4d7e40a
AS
5728 if (insn->src_reg == BPF_PSEUDO_CALL)
5729 err = check_func_call(env, insn, &insn_idx);
5730 else
5731 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
5732 if (err)
5733 return err;
5734
5735 } else if (opcode == BPF_JA) {
5736 if (BPF_SRC(insn->code) != BPF_K ||
5737 insn->imm != 0 ||
5738 insn->src_reg != BPF_REG_0 ||
5739 insn->dst_reg != BPF_REG_0) {
61bd5218 5740 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
5741 return -EINVAL;
5742 }
5743
5744 insn_idx += insn->off + 1;
5745 continue;
5746
5747 } else if (opcode == BPF_EXIT) {
5748 if (BPF_SRC(insn->code) != BPF_K ||
5749 insn->imm != 0 ||
5750 insn->src_reg != BPF_REG_0 ||
5751 insn->dst_reg != BPF_REG_0) {
61bd5218 5752 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5753 return -EINVAL;
5754 }
5755
f4d7e40a
AS
5756 if (state->curframe) {
5757 /* exit from nested function */
5758 prev_insn_idx = insn_idx;
5759 err = prepare_func_exit(env, &insn_idx);
5760 if (err)
5761 return err;
5762 do_print_state = true;
5763 continue;
5764 }
5765
fd978bf7
JS
5766 err = check_reference_leak(env);
5767 if (err)
5768 return err;
5769
17a52670
AS
5770 /* eBPF calling convetion is such that R0 is used
5771 * to return the value from eBPF program.
5772 * Make sure that it's readable at this time
5773 * of bpf_exit, which means that program wrote
5774 * something into it earlier
5775 */
dc503a8a 5776 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5777 if (err)
5778 return err;
5779
1be7f75d 5780 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5781 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5782 return -EACCES;
5783 }
5784
390ee7e2
AS
5785 err = check_return_code(env);
5786 if (err)
5787 return err;
f1bca824 5788process_bpf_exit:
638f5b90
AS
5789 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5790 if (err < 0) {
5791 if (err != -ENOENT)
5792 return err;
17a52670
AS
5793 break;
5794 } else {
5795 do_print_state = true;
5796 continue;
5797 }
5798 } else {
5799 err = check_cond_jmp_op(env, insn, &insn_idx);
5800 if (err)
5801 return err;
5802 }
5803 } else if (class == BPF_LD) {
5804 u8 mode = BPF_MODE(insn->code);
5805
5806 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5807 err = check_ld_abs(env, insn);
5808 if (err)
5809 return err;
5810
17a52670
AS
5811 } else if (mode == BPF_IMM) {
5812 err = check_ld_imm(env, insn);
5813 if (err)
5814 return err;
5815
5816 insn_idx++;
c131187d 5817 env->insn_aux_data[insn_idx].seen = true;
17a52670 5818 } else {
61bd5218 5819 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5820 return -EINVAL;
5821 }
5822 } else {
61bd5218 5823 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5824 return -EINVAL;
5825 }
5826
5827 insn_idx++;
5828 }
5829
4bd95f4b
DB
5830 verbose(env, "processed %d insns (limit %d), stack depth ",
5831 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5832 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5833 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5834
5835 verbose(env, "%d", depth);
f910cefa 5836 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5837 verbose(env, "+");
5838 }
5839 verbose(env, "\n");
9c8105bd 5840 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5841 return 0;
5842}
5843
56f668df
MKL
5844static int check_map_prealloc(struct bpf_map *map)
5845{
5846 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5847 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5848 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5849 !(map->map_flags & BPF_F_NO_PREALLOC);
5850}
5851
61bd5218
JK
5852static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5853 struct bpf_map *map,
fdc15d38
AS
5854 struct bpf_prog *prog)
5855
5856{
56f668df
MKL
5857 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5858 * preallocated hash maps, since doing memory allocation
5859 * in overflow_handler can crash depending on where nmi got
5860 * triggered.
5861 */
5862 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5863 if (!check_map_prealloc(map)) {
61bd5218 5864 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
5865 return -EINVAL;
5866 }
5867 if (map->inner_map_meta &&
5868 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 5869 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
5870 return -EINVAL;
5871 }
fdc15d38 5872 }
a3884572
JK
5873
5874 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 5875 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
5876 verbose(env, "offload device mismatch between prog and map\n");
5877 return -EINVAL;
5878 }
5879
fdc15d38
AS
5880 return 0;
5881}
5882
b741f163
RG
5883static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5884{
5885 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5886 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5887}
5888
0246e64d
AS
5889/* look for pseudo eBPF instructions that access map FDs and
5890 * replace them with actual map pointers
5891 */
58e2af8b 5892static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
5893{
5894 struct bpf_insn *insn = env->prog->insnsi;
5895 int insn_cnt = env->prog->len;
fdc15d38 5896 int i, j, err;
0246e64d 5897
f1f7714e 5898 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
5899 if (err)
5900 return err;
5901
0246e64d 5902 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5903 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5904 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5905 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5906 return -EINVAL;
5907 }
5908
d691f9e8
AS
5909 if (BPF_CLASS(insn->code) == BPF_STX &&
5910 ((BPF_MODE(insn->code) != BPF_MEM &&
5911 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5912 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5913 return -EINVAL;
5914 }
5915
0246e64d
AS
5916 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5917 struct bpf_map *map;
5918 struct fd f;
5919
5920 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5921 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5922 insn[1].off != 0) {
61bd5218 5923 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5924 return -EINVAL;
5925 }
5926
5927 if (insn->src_reg == 0)
5928 /* valid generic load 64-bit imm */
5929 goto next_insn;
5930
5931 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5932 verbose(env,
5933 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5934 return -EINVAL;
5935 }
5936
5937 f = fdget(insn->imm);
c2101297 5938 map = __bpf_map_get(f);
0246e64d 5939 if (IS_ERR(map)) {
61bd5218 5940 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5941 insn->imm);
0246e64d
AS
5942 return PTR_ERR(map);
5943 }
5944
61bd5218 5945 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5946 if (err) {
5947 fdput(f);
5948 return err;
5949 }
5950
0246e64d
AS
5951 /* store map pointer inside BPF_LD_IMM64 instruction */
5952 insn[0].imm = (u32) (unsigned long) map;
5953 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5954
5955 /* check whether we recorded this map already */
5956 for (j = 0; j < env->used_map_cnt; j++)
5957 if (env->used_maps[j] == map) {
5958 fdput(f);
5959 goto next_insn;
5960 }
5961
5962 if (env->used_map_cnt >= MAX_USED_MAPS) {
5963 fdput(f);
5964 return -E2BIG;
5965 }
5966
0246e64d
AS
5967 /* hold the map. If the program is rejected by verifier,
5968 * the map will be released by release_maps() or it
5969 * will be used by the valid program until it's unloaded
ab7f5bf0 5970 * and all maps are released in free_used_maps()
0246e64d 5971 */
92117d84
AS
5972 map = bpf_map_inc(map, false);
5973 if (IS_ERR(map)) {
5974 fdput(f);
5975 return PTR_ERR(map);
5976 }
5977 env->used_maps[env->used_map_cnt++] = map;
5978
b741f163 5979 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 5980 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 5981 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
5982 fdput(f);
5983 return -EBUSY;
5984 }
5985
0246e64d
AS
5986 fdput(f);
5987next_insn:
5988 insn++;
5989 i++;
5e581dad
DB
5990 continue;
5991 }
5992
5993 /* Basic sanity check before we invest more work here. */
5994 if (!bpf_opcode_in_insntable(insn->code)) {
5995 verbose(env, "unknown opcode %02x\n", insn->code);
5996 return -EINVAL;
0246e64d
AS
5997 }
5998 }
5999
6000 /* now all pseudo BPF_LD_IMM64 instructions load valid
6001 * 'struct bpf_map *' into a register instead of user map_fd.
6002 * These pointers will be used later by verifier to validate map access.
6003 */
6004 return 0;
6005}
6006
6007/* drop refcnt of maps used by the rejected program */
58e2af8b 6008static void release_maps(struct bpf_verifier_env *env)
0246e64d 6009{
8bad74f9 6010 enum bpf_cgroup_storage_type stype;
0246e64d
AS
6011 int i;
6012
8bad74f9
RG
6013 for_each_cgroup_storage_type(stype) {
6014 if (!env->prog->aux->cgroup_storage[stype])
6015 continue;
de9cbbaa 6016 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
6017 env->prog->aux->cgroup_storage[stype]);
6018 }
de9cbbaa 6019
0246e64d
AS
6020 for (i = 0; i < env->used_map_cnt; i++)
6021 bpf_map_put(env->used_maps[i]);
6022}
6023
6024/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 6025static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
6026{
6027 struct bpf_insn *insn = env->prog->insnsi;
6028 int insn_cnt = env->prog->len;
6029 int i;
6030
6031 for (i = 0; i < insn_cnt; i++, insn++)
6032 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6033 insn->src_reg = 0;
6034}
6035
8041902d
AS
6036/* single env->prog->insni[off] instruction was replaced with the range
6037 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
6038 * [0, off) and [off, end) to new locations, so the patched range stays zero
6039 */
6040static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6041 u32 off, u32 cnt)
6042{
6043 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 6044 int i;
8041902d
AS
6045
6046 if (cnt == 1)
6047 return 0;
fad953ce
KC
6048 new_data = vzalloc(array_size(prog_len,
6049 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
6050 if (!new_data)
6051 return -ENOMEM;
6052 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6053 memcpy(new_data + off + cnt - 1, old_data + off,
6054 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
6055 for (i = off; i < off + cnt - 1; i++)
6056 new_data[i].seen = true;
8041902d
AS
6057 env->insn_aux_data = new_data;
6058 vfree(old_data);
6059 return 0;
6060}
6061
cc8b0b92
AS
6062static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6063{
6064 int i;
6065
6066 if (len == 1)
6067 return;
4cb3d99c
JW
6068 /* NOTE: fake 'exit' subprog should be updated as well. */
6069 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 6070 if (env->subprog_info[i].start <= off)
cc8b0b92 6071 continue;
9c8105bd 6072 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
6073 }
6074}
6075
8041902d
AS
6076static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6077 const struct bpf_insn *patch, u32 len)
6078{
6079 struct bpf_prog *new_prog;
6080
6081 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6082 if (!new_prog)
6083 return NULL;
6084 if (adjust_insn_aux_data(env, new_prog->len, off, len))
6085 return NULL;
cc8b0b92 6086 adjust_subprog_starts(env, off, len);
8041902d
AS
6087 return new_prog;
6088}
6089
2a5418a1
DB
6090/* The verifier does more data flow analysis than llvm and will not
6091 * explore branches that are dead at run time. Malicious programs can
6092 * have dead code too. Therefore replace all dead at-run-time code
6093 * with 'ja -1'.
6094 *
6095 * Just nops are not optimal, e.g. if they would sit at the end of the
6096 * program and through another bug we would manage to jump there, then
6097 * we'd execute beyond program memory otherwise. Returning exception
6098 * code also wouldn't work since we can have subprogs where the dead
6099 * code could be located.
c131187d
AS
6100 */
6101static void sanitize_dead_code(struct bpf_verifier_env *env)
6102{
6103 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 6104 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
6105 struct bpf_insn *insn = env->prog->insnsi;
6106 const int insn_cnt = env->prog->len;
6107 int i;
6108
6109 for (i = 0; i < insn_cnt; i++) {
6110 if (aux_data[i].seen)
6111 continue;
2a5418a1 6112 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
6113 }
6114}
6115
c64b7983
JS
6116/* convert load instructions that access fields of a context type into a
6117 * sequence of instructions that access fields of the underlying structure:
6118 * struct __sk_buff -> struct sk_buff
6119 * struct bpf_sock_ops -> struct sock
9bac3d6d 6120 */
58e2af8b 6121static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 6122{
00176a34 6123 const struct bpf_verifier_ops *ops = env->ops;
f96da094 6124 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 6125 const int insn_cnt = env->prog->len;
36bbef52 6126 struct bpf_insn insn_buf[16], *insn;
46f53a65 6127 u32 target_size, size_default, off;
9bac3d6d 6128 struct bpf_prog *new_prog;
d691f9e8 6129 enum bpf_access_type type;
f96da094 6130 bool is_narrower_load;
9bac3d6d 6131
b09928b9
DB
6132 if (ops->gen_prologue || env->seen_direct_write) {
6133 if (!ops->gen_prologue) {
6134 verbose(env, "bpf verifier is misconfigured\n");
6135 return -EINVAL;
6136 }
36bbef52
DB
6137 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
6138 env->prog);
6139 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 6140 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
6141 return -EINVAL;
6142 } else if (cnt) {
8041902d 6143 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
6144 if (!new_prog)
6145 return -ENOMEM;
8041902d 6146
36bbef52 6147 env->prog = new_prog;
3df126f3 6148 delta += cnt - 1;
36bbef52
DB
6149 }
6150 }
6151
c64b7983 6152 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
6153 return 0;
6154
3df126f3 6155 insn = env->prog->insnsi + delta;
36bbef52 6156
9bac3d6d 6157 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
6158 bpf_convert_ctx_access_t convert_ctx_access;
6159
62c7989b
DB
6160 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
6161 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
6162 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 6163 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 6164 type = BPF_READ;
62c7989b
DB
6165 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
6166 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
6167 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 6168 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
6169 type = BPF_WRITE;
6170 else
9bac3d6d
AS
6171 continue;
6172
af86ca4e
AS
6173 if (type == BPF_WRITE &&
6174 env->insn_aux_data[i + delta].sanitize_stack_off) {
6175 struct bpf_insn patch[] = {
6176 /* Sanitize suspicious stack slot with zero.
6177 * There are no memory dependencies for this store,
6178 * since it's only using frame pointer and immediate
6179 * constant of zero
6180 */
6181 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
6182 env->insn_aux_data[i + delta].sanitize_stack_off,
6183 0),
6184 /* the original STX instruction will immediately
6185 * overwrite the same stack slot with appropriate value
6186 */
6187 *insn,
6188 };
6189
6190 cnt = ARRAY_SIZE(patch);
6191 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
6192 if (!new_prog)
6193 return -ENOMEM;
6194
6195 delta += cnt - 1;
6196 env->prog = new_prog;
6197 insn = new_prog->insnsi + i + delta;
6198 continue;
6199 }
6200
c64b7983
JS
6201 switch (env->insn_aux_data[i + delta].ptr_type) {
6202 case PTR_TO_CTX:
6203 if (!ops->convert_ctx_access)
6204 continue;
6205 convert_ctx_access = ops->convert_ctx_access;
6206 break;
6207 case PTR_TO_SOCKET:
6208 convert_ctx_access = bpf_sock_convert_ctx_access;
6209 break;
6210 default:
9bac3d6d 6211 continue;
c64b7983 6212 }
9bac3d6d 6213
31fd8581 6214 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 6215 size = BPF_LDST_BYTES(insn);
31fd8581
YS
6216
6217 /* If the read access is a narrower load of the field,
6218 * convert to a 4/8-byte load, to minimum program type specific
6219 * convert_ctx_access changes. If conversion is successful,
6220 * we will apply proper mask to the result.
6221 */
f96da094 6222 is_narrower_load = size < ctx_field_size;
46f53a65
AI
6223 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
6224 off = insn->off;
31fd8581 6225 if (is_narrower_load) {
f96da094
DB
6226 u8 size_code;
6227
6228 if (type == BPF_WRITE) {
61bd5218 6229 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
6230 return -EINVAL;
6231 }
31fd8581 6232
f96da094 6233 size_code = BPF_H;
31fd8581
YS
6234 if (ctx_field_size == 4)
6235 size_code = BPF_W;
6236 else if (ctx_field_size == 8)
6237 size_code = BPF_DW;
f96da094 6238
bc23105c 6239 insn->off = off & ~(size_default - 1);
31fd8581
YS
6240 insn->code = BPF_LDX | BPF_MEM | size_code;
6241 }
f96da094
DB
6242
6243 target_size = 0;
c64b7983
JS
6244 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
6245 &target_size);
f96da094
DB
6246 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
6247 (ctx_field_size && !target_size)) {
61bd5218 6248 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
6249 return -EINVAL;
6250 }
f96da094
DB
6251
6252 if (is_narrower_load && size < target_size) {
46f53a65
AI
6253 u8 shift = (off & (size_default - 1)) * 8;
6254
6255 if (ctx_field_size <= 4) {
6256 if (shift)
6257 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
6258 insn->dst_reg,
6259 shift);
31fd8581 6260 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 6261 (1 << size * 8) - 1);
46f53a65
AI
6262 } else {
6263 if (shift)
6264 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
6265 insn->dst_reg,
6266 shift);
31fd8581 6267 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 6268 (1 << size * 8) - 1);
46f53a65 6269 }
31fd8581 6270 }
9bac3d6d 6271
8041902d 6272 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
6273 if (!new_prog)
6274 return -ENOMEM;
6275
3df126f3 6276 delta += cnt - 1;
9bac3d6d
AS
6277
6278 /* keep walking new program and skip insns we just inserted */
6279 env->prog = new_prog;
3df126f3 6280 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
6281 }
6282
6283 return 0;
6284}
6285
1c2a088a
AS
6286static int jit_subprogs(struct bpf_verifier_env *env)
6287{
6288 struct bpf_prog *prog = env->prog, **func, *tmp;
6289 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 6290 struct bpf_insn *insn;
1c2a088a 6291 void *old_bpf_func;
c454a46b 6292 int err;
1c2a088a 6293
f910cefa 6294 if (env->subprog_cnt <= 1)
1c2a088a
AS
6295 return 0;
6296
7105e828 6297 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
6298 if (insn->code != (BPF_JMP | BPF_CALL) ||
6299 insn->src_reg != BPF_PSEUDO_CALL)
6300 continue;
c7a89784
DB
6301 /* Upon error here we cannot fall back to interpreter but
6302 * need a hard reject of the program. Thus -EFAULT is
6303 * propagated in any case.
6304 */
1c2a088a
AS
6305 subprog = find_subprog(env, i + insn->imm + 1);
6306 if (subprog < 0) {
6307 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6308 i + insn->imm + 1);
6309 return -EFAULT;
6310 }
6311 /* temporarily remember subprog id inside insn instead of
6312 * aux_data, since next loop will split up all insns into funcs
6313 */
f910cefa 6314 insn->off = subprog;
1c2a088a
AS
6315 /* remember original imm in case JIT fails and fallback
6316 * to interpreter will be needed
6317 */
6318 env->insn_aux_data[i].call_imm = insn->imm;
6319 /* point imm to __bpf_call_base+1 from JITs point of view */
6320 insn->imm = 1;
6321 }
6322
c454a46b
MKL
6323 err = bpf_prog_alloc_jited_linfo(prog);
6324 if (err)
6325 goto out_undo_insn;
6326
6327 err = -ENOMEM;
6396bb22 6328 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 6329 if (!func)
c7a89784 6330 goto out_undo_insn;
1c2a088a 6331
f910cefa 6332 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 6333 subprog_start = subprog_end;
4cb3d99c 6334 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
6335
6336 len = subprog_end - subprog_start;
6337 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
6338 if (!func[i])
6339 goto out_free;
6340 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
6341 len * sizeof(struct bpf_insn));
4f74d809 6342 func[i]->type = prog->type;
1c2a088a 6343 func[i]->len = len;
4f74d809
DB
6344 if (bpf_prog_calc_tag(func[i]))
6345 goto out_free;
1c2a088a 6346 func[i]->is_func = 1;
ba64e7d8
YS
6347 func[i]->aux->func_idx = i;
6348 /* the btf and func_info will be freed only at prog->aux */
6349 func[i]->aux->btf = prog->aux->btf;
6350 func[i]->aux->func_info = prog->aux->func_info;
6351
1c2a088a
AS
6352 /* Use bpf_prog_F_tag to indicate functions in stack traces.
6353 * Long term would need debug info to populate names
6354 */
6355 func[i]->aux->name[0] = 'F';
9c8105bd 6356 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 6357 func[i]->jit_requested = 1;
c454a46b
MKL
6358 func[i]->aux->linfo = prog->aux->linfo;
6359 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
6360 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
6361 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
6362 func[i] = bpf_int_jit_compile(func[i]);
6363 if (!func[i]->jited) {
6364 err = -ENOTSUPP;
6365 goto out_free;
6366 }
6367 cond_resched();
6368 }
6369 /* at this point all bpf functions were successfully JITed
6370 * now populate all bpf_calls with correct addresses and
6371 * run last pass of JIT
6372 */
f910cefa 6373 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6374 insn = func[i]->insnsi;
6375 for (j = 0; j < func[i]->len; j++, insn++) {
6376 if (insn->code != (BPF_JMP | BPF_CALL) ||
6377 insn->src_reg != BPF_PSEUDO_CALL)
6378 continue;
6379 subprog = insn->off;
1c2a088a
AS
6380 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6381 func[subprog]->bpf_func -
6382 __bpf_call_base;
6383 }
2162fed4
SD
6384
6385 /* we use the aux data to keep a list of the start addresses
6386 * of the JITed images for each function in the program
6387 *
6388 * for some architectures, such as powerpc64, the imm field
6389 * might not be large enough to hold the offset of the start
6390 * address of the callee's JITed image from __bpf_call_base
6391 *
6392 * in such cases, we can lookup the start address of a callee
6393 * by using its subprog id, available from the off field of
6394 * the call instruction, as an index for this list
6395 */
6396 func[i]->aux->func = func;
6397 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 6398 }
f910cefa 6399 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6400 old_bpf_func = func[i]->bpf_func;
6401 tmp = bpf_int_jit_compile(func[i]);
6402 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6403 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 6404 err = -ENOTSUPP;
1c2a088a
AS
6405 goto out_free;
6406 }
6407 cond_resched();
6408 }
6409
6410 /* finally lock prog and jit images for all functions and
6411 * populate kallsysm
6412 */
f910cefa 6413 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6414 bpf_prog_lock_ro(func[i]);
6415 bpf_prog_kallsyms_add(func[i]);
6416 }
7105e828
DB
6417
6418 /* Last step: make now unused interpreter insns from main
6419 * prog consistent for later dump requests, so they can
6420 * later look the same as if they were interpreted only.
6421 */
6422 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
6423 if (insn->code != (BPF_JMP | BPF_CALL) ||
6424 insn->src_reg != BPF_PSEUDO_CALL)
6425 continue;
6426 insn->off = env->insn_aux_data[i].call_imm;
6427 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 6428 insn->imm = subprog;
7105e828
DB
6429 }
6430
1c2a088a
AS
6431 prog->jited = 1;
6432 prog->bpf_func = func[0]->bpf_func;
6433 prog->aux->func = func;
f910cefa 6434 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 6435 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
6436 return 0;
6437out_free:
f910cefa 6438 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
6439 if (func[i])
6440 bpf_jit_free(func[i]);
6441 kfree(func);
c7a89784 6442out_undo_insn:
1c2a088a
AS
6443 /* cleanup main prog to be interpreted */
6444 prog->jit_requested = 0;
6445 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6446 if (insn->code != (BPF_JMP | BPF_CALL) ||
6447 insn->src_reg != BPF_PSEUDO_CALL)
6448 continue;
6449 insn->off = 0;
6450 insn->imm = env->insn_aux_data[i].call_imm;
6451 }
c454a46b 6452 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
6453 return err;
6454}
6455
1ea47e01
AS
6456static int fixup_call_args(struct bpf_verifier_env *env)
6457{
19d28fbd 6458#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6459 struct bpf_prog *prog = env->prog;
6460 struct bpf_insn *insn = prog->insnsi;
6461 int i, depth;
19d28fbd 6462#endif
e4052d06 6463 int err = 0;
1ea47e01 6464
e4052d06
QM
6465 if (env->prog->jit_requested &&
6466 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
6467 err = jit_subprogs(env);
6468 if (err == 0)
1c2a088a 6469 return 0;
c7a89784
DB
6470 if (err == -EFAULT)
6471 return err;
19d28fbd
DM
6472 }
6473#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6474 for (i = 0; i < prog->len; i++, insn++) {
6475 if (insn->code != (BPF_JMP | BPF_CALL) ||
6476 insn->src_reg != BPF_PSEUDO_CALL)
6477 continue;
6478 depth = get_callee_stack_depth(env, insn, i);
6479 if (depth < 0)
6480 return depth;
6481 bpf_patch_call_args(insn, depth);
6482 }
19d28fbd
DM
6483 err = 0;
6484#endif
6485 return err;
1ea47e01
AS
6486}
6487
79741b3b 6488/* fixup insn->imm field of bpf_call instructions
81ed18ab 6489 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
6490 *
6491 * this function is called after eBPF program passed verification
6492 */
79741b3b 6493static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 6494{
79741b3b
AS
6495 struct bpf_prog *prog = env->prog;
6496 struct bpf_insn *insn = prog->insnsi;
e245c5c6 6497 const struct bpf_func_proto *fn;
79741b3b 6498 const int insn_cnt = prog->len;
09772d92 6499 const struct bpf_map_ops *ops;
c93552c4 6500 struct bpf_insn_aux_data *aux;
81ed18ab
AS
6501 struct bpf_insn insn_buf[16];
6502 struct bpf_prog *new_prog;
6503 struct bpf_map *map_ptr;
6504 int i, cnt, delta = 0;
e245c5c6 6505
79741b3b 6506 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
6507 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6508 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6509 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 6510 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
6511 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6512 struct bpf_insn mask_and_div[] = {
6513 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6514 /* Rx div 0 -> 0 */
6515 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6516 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6517 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6518 *insn,
6519 };
6520 struct bpf_insn mask_and_mod[] = {
6521 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6522 /* Rx mod 0 -> Rx */
6523 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6524 *insn,
6525 };
6526 struct bpf_insn *patchlet;
6527
6528 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6529 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6530 patchlet = mask_and_div + (is64 ? 1 : 0);
6531 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6532 } else {
6533 patchlet = mask_and_mod + (is64 ? 1 : 0);
6534 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6535 }
6536
6537 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
6538 if (!new_prog)
6539 return -ENOMEM;
6540
6541 delta += cnt - 1;
6542 env->prog = prog = new_prog;
6543 insn = new_prog->insnsi + i + delta;
6544 continue;
6545 }
6546
e0cea7ce
DB
6547 if (BPF_CLASS(insn->code) == BPF_LD &&
6548 (BPF_MODE(insn->code) == BPF_ABS ||
6549 BPF_MODE(insn->code) == BPF_IND)) {
6550 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6551 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6552 verbose(env, "bpf verifier is misconfigured\n");
6553 return -EINVAL;
6554 }
6555
6556 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6557 if (!new_prog)
6558 return -ENOMEM;
6559
6560 delta += cnt - 1;
6561 env->prog = prog = new_prog;
6562 insn = new_prog->insnsi + i + delta;
6563 continue;
6564 }
6565
79741b3b
AS
6566 if (insn->code != (BPF_JMP | BPF_CALL))
6567 continue;
cc8b0b92
AS
6568 if (insn->src_reg == BPF_PSEUDO_CALL)
6569 continue;
e245c5c6 6570
79741b3b
AS
6571 if (insn->imm == BPF_FUNC_get_route_realm)
6572 prog->dst_needed = 1;
6573 if (insn->imm == BPF_FUNC_get_prandom_u32)
6574 bpf_user_rnd_init_once();
9802d865
JB
6575 if (insn->imm == BPF_FUNC_override_return)
6576 prog->kprobe_override = 1;
79741b3b 6577 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
6578 /* If we tail call into other programs, we
6579 * cannot make any assumptions since they can
6580 * be replaced dynamically during runtime in
6581 * the program array.
6582 */
6583 prog->cb_access = 1;
80a58d02 6584 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 6585 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 6586
79741b3b
AS
6587 /* mark bpf_tail_call as different opcode to avoid
6588 * conditional branch in the interpeter for every normal
6589 * call and to prevent accidental JITing by JIT compiler
6590 * that doesn't support bpf_tail_call yet
e245c5c6 6591 */
79741b3b 6592 insn->imm = 0;
71189fa9 6593 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 6594
c93552c4
DB
6595 aux = &env->insn_aux_data[i + delta];
6596 if (!bpf_map_ptr_unpriv(aux))
6597 continue;
6598
b2157399
AS
6599 /* instead of changing every JIT dealing with tail_call
6600 * emit two extra insns:
6601 * if (index >= max_entries) goto out;
6602 * index &= array->index_mask;
6603 * to avoid out-of-bounds cpu speculation
6604 */
c93552c4 6605 if (bpf_map_ptr_poisoned(aux)) {
40950343 6606 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
6607 return -EINVAL;
6608 }
c93552c4
DB
6609
6610 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
6611 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6612 map_ptr->max_entries, 2);
6613 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6614 container_of(map_ptr,
6615 struct bpf_array,
6616 map)->index_mask);
6617 insn_buf[2] = *insn;
6618 cnt = 3;
6619 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6620 if (!new_prog)
6621 return -ENOMEM;
6622
6623 delta += cnt - 1;
6624 env->prog = prog = new_prog;
6625 insn = new_prog->insnsi + i + delta;
79741b3b
AS
6626 continue;
6627 }
e245c5c6 6628
89c63074 6629 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
6630 * and other inlining handlers are currently limited to 64 bit
6631 * only.
89c63074 6632 */
60b58afc 6633 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
6634 (insn->imm == BPF_FUNC_map_lookup_elem ||
6635 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
6636 insn->imm == BPF_FUNC_map_delete_elem ||
6637 insn->imm == BPF_FUNC_map_push_elem ||
6638 insn->imm == BPF_FUNC_map_pop_elem ||
6639 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
6640 aux = &env->insn_aux_data[i + delta];
6641 if (bpf_map_ptr_poisoned(aux))
6642 goto patch_call_imm;
6643
6644 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
6645 ops = map_ptr->ops;
6646 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6647 ops->map_gen_lookup) {
6648 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6649 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6650 verbose(env, "bpf verifier is misconfigured\n");
6651 return -EINVAL;
6652 }
81ed18ab 6653
09772d92
DB
6654 new_prog = bpf_patch_insn_data(env, i + delta,
6655 insn_buf, cnt);
6656 if (!new_prog)
6657 return -ENOMEM;
81ed18ab 6658
09772d92
DB
6659 delta += cnt - 1;
6660 env->prog = prog = new_prog;
6661 insn = new_prog->insnsi + i + delta;
6662 continue;
6663 }
81ed18ab 6664
09772d92
DB
6665 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6666 (void *(*)(struct bpf_map *map, void *key))NULL));
6667 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6668 (int (*)(struct bpf_map *map, void *key))NULL));
6669 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6670 (int (*)(struct bpf_map *map, void *key, void *value,
6671 u64 flags))NULL));
84430d42
DB
6672 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6673 (int (*)(struct bpf_map *map, void *value,
6674 u64 flags))NULL));
6675 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6676 (int (*)(struct bpf_map *map, void *value))NULL));
6677 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6678 (int (*)(struct bpf_map *map, void *value))NULL));
6679
09772d92
DB
6680 switch (insn->imm) {
6681 case BPF_FUNC_map_lookup_elem:
6682 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6683 __bpf_call_base;
6684 continue;
6685 case BPF_FUNC_map_update_elem:
6686 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6687 __bpf_call_base;
6688 continue;
6689 case BPF_FUNC_map_delete_elem:
6690 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6691 __bpf_call_base;
6692 continue;
84430d42
DB
6693 case BPF_FUNC_map_push_elem:
6694 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6695 __bpf_call_base;
6696 continue;
6697 case BPF_FUNC_map_pop_elem:
6698 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6699 __bpf_call_base;
6700 continue;
6701 case BPF_FUNC_map_peek_elem:
6702 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6703 __bpf_call_base;
6704 continue;
09772d92 6705 }
81ed18ab 6706
09772d92 6707 goto patch_call_imm;
81ed18ab
AS
6708 }
6709
6710patch_call_imm:
5e43f899 6711 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
6712 /* all functions that have prototype and verifier allowed
6713 * programs to call them, must be real in-kernel functions
6714 */
6715 if (!fn->func) {
61bd5218
JK
6716 verbose(env,
6717 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
6718 func_id_name(insn->imm), insn->imm);
6719 return -EFAULT;
e245c5c6 6720 }
79741b3b 6721 insn->imm = fn->func - __bpf_call_base;
e245c5c6 6722 }
e245c5c6 6723
79741b3b
AS
6724 return 0;
6725}
e245c5c6 6726
58e2af8b 6727static void free_states(struct bpf_verifier_env *env)
f1bca824 6728{
58e2af8b 6729 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
6730 int i;
6731
6732 if (!env->explored_states)
6733 return;
6734
6735 for (i = 0; i < env->prog->len; i++) {
6736 sl = env->explored_states[i];
6737
6738 if (sl)
6739 while (sl != STATE_LIST_MARK) {
6740 sln = sl->next;
1969db47 6741 free_verifier_state(&sl->state, false);
f1bca824
AS
6742 kfree(sl);
6743 sl = sln;
6744 }
6745 }
6746
6747 kfree(env->explored_states);
6748}
6749
838e9690
YS
6750int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
6751 union bpf_attr __user *uattr)
51580e79 6752{
58e2af8b 6753 struct bpf_verifier_env *env;
b9193c1b 6754 struct bpf_verifier_log *log;
51580e79
AS
6755 int ret = -EINVAL;
6756
eba0c929
AB
6757 /* no program is valid */
6758 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6759 return -EINVAL;
6760
58e2af8b 6761 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
6762 * allocate/free it every time bpf_check() is called
6763 */
58e2af8b 6764 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
6765 if (!env)
6766 return -ENOMEM;
61bd5218 6767 log = &env->log;
cbd35700 6768
fad953ce
KC
6769 env->insn_aux_data =
6770 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6771 (*prog)->len));
3df126f3
JK
6772 ret = -ENOMEM;
6773 if (!env->insn_aux_data)
6774 goto err_free_env;
9bac3d6d 6775 env->prog = *prog;
00176a34 6776 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 6777
cbd35700
AS
6778 /* grab the mutex to protect few globals used by verifier */
6779 mutex_lock(&bpf_verifier_lock);
6780
6781 if (attr->log_level || attr->log_buf || attr->log_size) {
6782 /* user requested verbose verifier output
6783 * and supplied buffer to store the verification trace
6784 */
e7bf8249
JK
6785 log->level = attr->log_level;
6786 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6787 log->len_total = attr->log_size;
cbd35700
AS
6788
6789 ret = -EINVAL;
e7bf8249
JK
6790 /* log attributes have to be sane */
6791 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6792 !log->level || !log->ubuf)
3df126f3 6793 goto err_unlock;
cbd35700 6794 }
1ad2f583
DB
6795
6796 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6797 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 6798 env->strict_alignment = true;
e9ee9efc
DM
6799 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
6800 env->strict_alignment = false;
cbd35700 6801
f4e3ec0d
JK
6802 ret = replace_map_fd_with_map_ptr(env);
6803 if (ret < 0)
6804 goto skip_full_check;
6805
cae1927c 6806 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 6807 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 6808 if (ret)
f4e3ec0d 6809 goto skip_full_check;
ab3f0063
JK
6810 }
6811
9bac3d6d 6812 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6813 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6814 GFP_USER);
6815 ret = -ENOMEM;
6816 if (!env->explored_states)
6817 goto skip_full_check;
6818
cc8b0b92
AS
6819 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6820
d9762e84 6821 ret = check_subprogs(env);
475fb78f
AS
6822 if (ret < 0)
6823 goto skip_full_check;
6824
c454a46b 6825 ret = check_btf_info(env, attr, uattr);
838e9690
YS
6826 if (ret < 0)
6827 goto skip_full_check;
6828
d9762e84
MKL
6829 ret = check_cfg(env);
6830 if (ret < 0)
6831 goto skip_full_check;
6832
17a52670 6833 ret = do_check(env);
8c01c4f8
CG
6834 if (env->cur_state) {
6835 free_verifier_state(env->cur_state, true);
6836 env->cur_state = NULL;
6837 }
cbd35700 6838
c941ce9c
QM
6839 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6840 ret = bpf_prog_offload_finalize(env);
6841
0246e64d 6842skip_full_check:
638f5b90 6843 while (!pop_stack(env, NULL, NULL));
f1bca824 6844 free_states(env);
0246e64d 6845
c131187d
AS
6846 if (ret == 0)
6847 sanitize_dead_code(env);
6848
70a87ffe
AS
6849 if (ret == 0)
6850 ret = check_max_stack_depth(env);
6851
9bac3d6d
AS
6852 if (ret == 0)
6853 /* program is valid, convert *(u32*)(ctx + off) accesses */
6854 ret = convert_ctx_accesses(env);
6855
e245c5c6 6856 if (ret == 0)
79741b3b 6857 ret = fixup_bpf_calls(env);
e245c5c6 6858
1ea47e01
AS
6859 if (ret == 0)
6860 ret = fixup_call_args(env);
6861
a2a7d570 6862 if (log->level && bpf_verifier_log_full(log))
cbd35700 6863 ret = -ENOSPC;
a2a7d570 6864 if (log->level && !log->ubuf) {
cbd35700 6865 ret = -EFAULT;
a2a7d570 6866 goto err_release_maps;
cbd35700
AS
6867 }
6868
0246e64d
AS
6869 if (ret == 0 && env->used_map_cnt) {
6870 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
6871 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6872 sizeof(env->used_maps[0]),
6873 GFP_KERNEL);
0246e64d 6874
9bac3d6d 6875 if (!env->prog->aux->used_maps) {
0246e64d 6876 ret = -ENOMEM;
a2a7d570 6877 goto err_release_maps;
0246e64d
AS
6878 }
6879
9bac3d6d 6880 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 6881 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 6882 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
6883
6884 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
6885 * bpf_ld_imm64 instructions
6886 */
6887 convert_pseudo_ld_imm64(env);
6888 }
cbd35700 6889
ba64e7d8
YS
6890 if (ret == 0)
6891 adjust_btf_func(env);
6892
a2a7d570 6893err_release_maps:
9bac3d6d 6894 if (!env->prog->aux->used_maps)
0246e64d 6895 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 6896 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
6897 */
6898 release_maps(env);
9bac3d6d 6899 *prog = env->prog;
3df126f3 6900err_unlock:
cbd35700 6901 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
6902 vfree(env->insn_aux_data);
6903err_free_env:
6904 kfree(env);
51580e79
AS
6905 return ret;
6906}