]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
bpf: fix incorrect pruning decision when alignment must be tracked
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
3c2ce60b 143#define BPF_COMPLEXITY_LIMIT_INSNS 98304
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
d1174416
DM
244 if (reg->min_align)
245 verbose(",min_align=%u", reg->min_align);
246 if (reg->aux_off)
247 verbose(",aux_off=%u", reg->aux_off);
248 if (reg->aux_off_align)
249 verbose(",aux_off_align=%u", reg->aux_off_align);
17a52670 250 }
9c399760 251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 252 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 253 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
255 }
256 verbose("\n");
257}
258
cbd35700
AS
259static const char *const bpf_class_string[] = {
260 [BPF_LD] = "ld",
261 [BPF_LDX] = "ldx",
262 [BPF_ST] = "st",
263 [BPF_STX] = "stx",
264 [BPF_ALU] = "alu",
265 [BPF_JMP] = "jmp",
266 [BPF_RET] = "BUG",
267 [BPF_ALU64] = "alu64",
268};
269
687f0715 270static const char *const bpf_alu_string[16] = {
cbd35700
AS
271 [BPF_ADD >> 4] = "+=",
272 [BPF_SUB >> 4] = "-=",
273 [BPF_MUL >> 4] = "*=",
274 [BPF_DIV >> 4] = "/=",
275 [BPF_OR >> 4] = "|=",
276 [BPF_AND >> 4] = "&=",
277 [BPF_LSH >> 4] = "<<=",
278 [BPF_RSH >> 4] = ">>=",
279 [BPF_NEG >> 4] = "neg",
280 [BPF_MOD >> 4] = "%=",
281 [BPF_XOR >> 4] = "^=",
282 [BPF_MOV >> 4] = "=",
283 [BPF_ARSH >> 4] = "s>>=",
284 [BPF_END >> 4] = "endian",
285};
286
287static const char *const bpf_ldst_string[] = {
288 [BPF_W >> 3] = "u32",
289 [BPF_H >> 3] = "u16",
290 [BPF_B >> 3] = "u8",
291 [BPF_DW >> 3] = "u64",
292};
293
687f0715 294static const char *const bpf_jmp_string[16] = {
cbd35700
AS
295 [BPF_JA >> 4] = "jmp",
296 [BPF_JEQ >> 4] = "==",
297 [BPF_JGT >> 4] = ">",
298 [BPF_JGE >> 4] = ">=",
299 [BPF_JSET >> 4] = "&",
300 [BPF_JNE >> 4] = "!=",
301 [BPF_JSGT >> 4] = "s>",
302 [BPF_JSGE >> 4] = "s>=",
303 [BPF_CALL >> 4] = "call",
304 [BPF_EXIT >> 4] = "exit",
305};
306
0d0e5769
DB
307static void print_bpf_insn(const struct bpf_verifier_env *env,
308 const struct bpf_insn *insn)
cbd35700
AS
309{
310 u8 class = BPF_CLASS(insn->code);
311
312 if (class == BPF_ALU || class == BPF_ALU64) {
313 if (BPF_SRC(insn->code) == BPF_X)
314 verbose("(%02x) %sr%d %s %sr%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->src_reg);
320 else
321 verbose("(%02x) %sr%d %s %s%d\n",
322 insn->code, class == BPF_ALU ? "(u32) " : "",
323 insn->dst_reg,
324 bpf_alu_string[BPF_OP(insn->code) >> 4],
325 class == BPF_ALU ? "(u32) " : "",
326 insn->imm);
327 } else if (class == BPF_STX) {
328 if (BPF_MODE(insn->code) == BPF_MEM)
329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg,
333 insn->off, insn->src_reg);
334 else if (BPF_MODE(insn->code) == BPF_XADD)
335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 insn->code,
337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 insn->dst_reg, insn->off,
339 insn->src_reg);
340 else
341 verbose("BUG_%02x\n", insn->code);
342 } else if (class == BPF_ST) {
343 if (BPF_MODE(insn->code) != BPF_MEM) {
344 verbose("BUG_st_%02x\n", insn->code);
345 return;
346 }
347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 insn->code,
349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 insn->dst_reg,
351 insn->off, insn->imm);
352 } else if (class == BPF_LDX) {
353 if (BPF_MODE(insn->code) != BPF_MEM) {
354 verbose("BUG_ldx_%02x\n", insn->code);
355 return;
356 }
357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 insn->code, insn->dst_reg,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->src_reg, insn->off);
361 } else if (class == BPF_LD) {
362 if (BPF_MODE(insn->code) == BPF_ABS) {
363 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 insn->code,
365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 insn->imm);
367 } else if (BPF_MODE(insn->code) == BPF_IND) {
368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->src_reg, insn->imm);
0d0e5769
DB
372 } else if (BPF_MODE(insn->code) == BPF_IMM &&
373 BPF_SIZE(insn->code) == BPF_DW) {
374 /* At this point, we already made sure that the second
375 * part of the ldimm64 insn is accessible.
376 */
377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379
380 if (map_ptr && !env->allow_ptr_leaks)
381 imm = 0;
382
383 verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
385 } else {
386 verbose("BUG_ld_%02x\n", insn->code);
387 return;
388 }
389 } else if (class == BPF_JMP) {
390 u8 opcode = BPF_OP(insn->code);
391
392 if (opcode == BPF_CALL) {
ebb676da
TG
393 verbose("(%02x) call %s#%d\n", insn->code,
394 func_id_name(insn->imm), insn->imm);
cbd35700
AS
395 } else if (insn->code == (BPF_JMP | BPF_JA)) {
396 verbose("(%02x) goto pc%+d\n",
397 insn->code, insn->off);
398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 verbose("(%02x) exit\n", insn->code);
400 } else if (BPF_SRC(insn->code) == BPF_X) {
401 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 insn->code, insn->dst_reg,
403 bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 insn->src_reg, insn->off);
405 } else {
406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 insn->code, insn->dst_reg,
408 bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 insn->imm, insn->off);
410 }
411 } else {
412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 }
414}
415
58e2af8b 416static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 417{
58e2af8b 418 struct bpf_verifier_stack_elem *elem;
17a52670
AS
419 int insn_idx;
420
421 if (env->head == NULL)
422 return -1;
423
424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 insn_idx = env->head->insn_idx;
426 if (prev_insn_idx)
427 *prev_insn_idx = env->head->prev_insn_idx;
428 elem = env->head->next;
429 kfree(env->head);
430 env->head = elem;
431 env->stack_size--;
432 return insn_idx;
433}
434
58e2af8b
JK
435static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 int insn_idx, int prev_insn_idx)
17a52670 437{
58e2af8b 438 struct bpf_verifier_stack_elem *elem;
17a52670 439
58e2af8b 440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
441 if (!elem)
442 goto err;
443
444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 elem->insn_idx = insn_idx;
446 elem->prev_insn_idx = prev_insn_idx;
447 elem->next = env->head;
448 env->head = elem;
449 env->stack_size++;
07016151 450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
451 verbose("BPF program is too complex\n");
452 goto err;
453 }
454 return &elem->st;
455err:
456 /* pop all elements and return */
457 while (pop_stack(env, NULL) >= 0);
458 return NULL;
459}
460
461#define CALLER_SAVED_REGS 6
462static const int caller_saved[CALLER_SAVED_REGS] = {
463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464};
465
58e2af8b 466static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
467{
468 int i;
469
470 for (i = 0; i < MAX_BPF_REG; i++) {
471 regs[i].type = NOT_INIT;
472 regs[i].imm = 0;
48461135
JB
473 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
474 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
d1174416
DM
475 regs[i].min_align = 0;
476 regs[i].aux_off = 0;
477 regs[i].aux_off_align = 0;
17a52670
AS
478 }
479
480 /* frame pointer */
481 regs[BPF_REG_FP].type = FRAME_PTR;
482
483 /* 1st arg to a function */
484 regs[BPF_REG_1].type = PTR_TO_CTX;
485}
486
6760bf2d 487static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 488{
17a52670 489 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 490 regs[regno].id = 0;
17a52670 491 regs[regno].imm = 0;
17a52670
AS
492}
493
6760bf2d
DB
494static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
495{
496 BUG_ON(regno >= MAX_BPF_REG);
497 __mark_reg_unknown_value(regs, regno);
498}
499
48461135
JB
500static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
501{
502 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
503 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
d1174416 504 regs[regno].min_align = 0;
48461135
JB
505}
506
f0318d01
GB
507static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
508 u32 regno)
509{
510 mark_reg_unknown_value(regs, regno);
511 reset_reg_range_values(regs, regno);
512}
513
17a52670
AS
514enum reg_arg_type {
515 SRC_OP, /* register is used as source operand */
516 DST_OP, /* register is used as destination operand */
517 DST_OP_NO_MARK /* same as above, check only, don't mark */
518};
519
58e2af8b 520static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
521 enum reg_arg_type t)
522{
523 if (regno >= MAX_BPF_REG) {
524 verbose("R%d is invalid\n", regno);
525 return -EINVAL;
526 }
527
528 if (t == SRC_OP) {
529 /* check whether register used as source operand can be read */
530 if (regs[regno].type == NOT_INIT) {
531 verbose("R%d !read_ok\n", regno);
532 return -EACCES;
533 }
534 } else {
535 /* check whether register used as dest operand can be written to */
536 if (regno == BPF_REG_FP) {
537 verbose("frame pointer is read only\n");
538 return -EACCES;
539 }
540 if (t == DST_OP)
541 mark_reg_unknown_value(regs, regno);
542 }
543 return 0;
544}
545
546static int bpf_size_to_bytes(int bpf_size)
547{
548 if (bpf_size == BPF_W)
549 return 4;
550 else if (bpf_size == BPF_H)
551 return 2;
552 else if (bpf_size == BPF_B)
553 return 1;
554 else if (bpf_size == BPF_DW)
555 return 8;
556 else
557 return -EINVAL;
558}
559
1be7f75d
AS
560static bool is_spillable_regtype(enum bpf_reg_type type)
561{
562 switch (type) {
563 case PTR_TO_MAP_VALUE:
564 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 565 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
566 case PTR_TO_STACK:
567 case PTR_TO_CTX:
969bf05e
AS
568 case PTR_TO_PACKET:
569 case PTR_TO_PACKET_END:
1be7f75d
AS
570 case FRAME_PTR:
571 case CONST_PTR_TO_MAP:
572 return true;
573 default:
574 return false;
575 }
576}
577
17a52670
AS
578/* check_stack_read/write functions track spill/fill of registers,
579 * stack boundary and alignment are checked in check_mem_access()
580 */
58e2af8b
JK
581static int check_stack_write(struct bpf_verifier_state *state, int off,
582 int size, int value_regno)
17a52670 583{
17a52670 584 int i;
9c399760
AS
585 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
586 * so it's aligned access and [off, off + size) are within stack limits
587 */
17a52670
AS
588
589 if (value_regno >= 0 &&
1be7f75d 590 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
591
592 /* register containing pointer is being spilled into stack */
9c399760 593 if (size != BPF_REG_SIZE) {
17a52670
AS
594 verbose("invalid size of register spill\n");
595 return -EACCES;
596 }
597
17a52670 598 /* save register state */
9c399760
AS
599 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
600 state->regs[value_regno];
17a52670 601
9c399760
AS
602 for (i = 0; i < BPF_REG_SIZE; i++)
603 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
604 } else {
17a52670 605 /* regular write of data into stack */
9c399760 606 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 607 (struct bpf_reg_state) {};
9c399760
AS
608
609 for (i = 0; i < size; i++)
610 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
611 }
612 return 0;
613}
614
58e2af8b 615static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
616 int value_regno)
617{
9c399760 618 u8 *slot_type;
17a52670 619 int i;
17a52670 620
9c399760 621 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 622
9c399760
AS
623 if (slot_type[0] == STACK_SPILL) {
624 if (size != BPF_REG_SIZE) {
17a52670
AS
625 verbose("invalid size of register spill\n");
626 return -EACCES;
627 }
9c399760
AS
628 for (i = 1; i < BPF_REG_SIZE; i++) {
629 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
630 verbose("corrupted spill memory\n");
631 return -EACCES;
632 }
633 }
634
635 if (value_regno >= 0)
636 /* restore register state from stack */
9c399760
AS
637 state->regs[value_regno] =
638 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
639 return 0;
640 } else {
641 for (i = 0; i < size; i++) {
9c399760 642 if (slot_type[i] != STACK_MISC) {
17a52670
AS
643 verbose("invalid read from stack off %d+%d size %d\n",
644 off, i, size);
645 return -EACCES;
646 }
647 }
648 if (value_regno >= 0)
649 /* have read misc data from the stack */
f0318d01
GB
650 mark_reg_unknown_value_and_range(state->regs,
651 value_regno);
17a52670
AS
652 return 0;
653 }
654}
655
656/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 657static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
658 int size)
659{
660 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
661
5722569b 662 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
663 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
664 map->value_size, off, size);
665 return -EACCES;
666 }
667 return 0;
668}
669
dbcfe5f7
GB
670/* check read/write into an adjusted map element */
671static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
672 int off, int size)
673{
674 struct bpf_verifier_state *state = &env->cur_state;
675 struct bpf_reg_state *reg = &state->regs[regno];
676 int err;
677
678 /* We adjusted the register to this map value, so we
679 * need to change off and size to min_value and max_value
680 * respectively to make sure our theoretical access will be
681 * safe.
682 */
683 if (log_level)
684 print_verifier_state(state);
685 env->varlen_map_value_access = true;
686 /* The minimum value is only important with signed
687 * comparisons where we can't assume the floor of a
688 * value is 0. If we are using signed variables for our
689 * index'es we need to make sure that whatever we use
690 * will have a set floor within our range.
691 */
692 if (reg->min_value < 0) {
693 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
694 regno);
695 return -EACCES;
696 }
697 err = check_map_access(env, regno, reg->min_value + off, size);
698 if (err) {
699 verbose("R%d min value is outside of the array range\n",
700 regno);
701 return err;
702 }
703
704 /* If we haven't set a max value then we need to bail
705 * since we can't be sure we won't do bad things.
706 */
707 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
708 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
709 regno);
710 return -EACCES;
711 }
712 return check_map_access(env, regno, reg->max_value + off, size);
713}
714
969bf05e
AS
715#define MAX_PACKET_OFF 0xffff
716
58e2af8b 717static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
718 const struct bpf_call_arg_meta *meta,
719 enum bpf_access_type t)
4acf6c0b 720{
36bbef52 721 switch (env->prog->type) {
3a0af8fd
TG
722 case BPF_PROG_TYPE_LWT_IN:
723 case BPF_PROG_TYPE_LWT_OUT:
724 /* dst_input() and dst_output() can't write for now */
725 if (t == BPF_WRITE)
726 return false;
7e57fbb2 727 /* fallthrough */
36bbef52
DB
728 case BPF_PROG_TYPE_SCHED_CLS:
729 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 730 case BPF_PROG_TYPE_XDP:
3a0af8fd 731 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
732 if (meta)
733 return meta->pkt_access;
734
735 env->seen_direct_write = true;
4acf6c0b
BB
736 return true;
737 default:
738 return false;
739 }
740}
741
58e2af8b 742static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
743 int size)
744{
58e2af8b
JK
745 struct bpf_reg_state *regs = env->cur_state.regs;
746 struct bpf_reg_state *reg = &regs[regno];
969bf05e 747
d91b28ed 748 off += reg->off;
b399cf64 749 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
750 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
751 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
752 return -EACCES;
753 }
754 return 0;
755}
756
17a52670 757/* check access to 'struct bpf_context' fields */
58e2af8b 758static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 759 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 760{
13a27dfc
JK
761 /* for analyzer ctx accesses are already validated and converted */
762 if (env->analyzer_ops)
763 return 0;
764
17a52670 765 if (env->prog->aux->ops->is_valid_access &&
19de99f7 766 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
767 /* remember the offset of last byte accessed in ctx */
768 if (env->prog->aux->max_ctx_offset < off + size)
769 env->prog->aux->max_ctx_offset = off + size;
17a52670 770 return 0;
32bbe007 771 }
17a52670
AS
772
773 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
774 return -EACCES;
775}
776
58e2af8b 777static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
778{
779 if (env->allow_ptr_leaks)
780 return false;
781
782 switch (env->cur_state.regs[regno].type) {
783 case UNKNOWN_VALUE:
784 case CONST_IMM:
785 return false;
786 default:
787 return true;
788 }
789}
790
79adffcd 791static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 792 int off, int size, bool strict)
969bf05e 793{
e07b98d9 794 int ip_align;
d1174416
DM
795 int reg_off;
796
797 /* Byte size accesses are always allowed. */
798 if (!strict || size == 1)
799 return 0;
800
801 reg_off = reg->off;
802 if (reg->id) {
803 if (reg->aux_off_align % size) {
804 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
805 reg->aux_off_align, size);
806 return -EACCES;
807 }
808 reg_off += reg->aux_off;
969bf05e
AS
809 }
810
e4eda884
DM
811 /* For platforms that do not have a Kconfig enabling
812 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
813 * NET_IP_ALIGN is universally set to '2'. And on platforms
814 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
815 * to this code only in strict mode where we want to emulate
816 * the NET_IP_ALIGN==2 checking. Therefore use an
817 * unconditional IP align value of '2'.
e07b98d9 818 */
e4eda884 819 ip_align = 2;
e07b98d9 820 if ((ip_align + reg_off + off) % size != 0) {
969bf05e 821 verbose("misaligned packet access off %d+%d+%d size %d\n",
e07b98d9 822 ip_align, reg_off, off, size);
969bf05e
AS
823 return -EACCES;
824 }
79adffcd 825
969bf05e
AS
826 return 0;
827}
828
79adffcd 829static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 830 int size, bool strict)
79adffcd 831{
d1174416 832 if (strict && size != 1) {
79adffcd
DB
833 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
834 return -EACCES;
835 }
836
969bf05e
AS
837 return 0;
838}
839
e07b98d9
DM
840static int check_ptr_alignment(struct bpf_verifier_env *env,
841 const struct bpf_reg_state *reg,
79adffcd
DB
842 int off, int size)
843{
e07b98d9 844 bool strict = env->strict_alignment;
d1174416 845
79adffcd
DB
846 switch (reg->type) {
847 case PTR_TO_PACKET:
d1174416 848 return check_pkt_ptr_alignment(reg, off, size, strict);
79adffcd 849 case PTR_TO_MAP_VALUE_ADJ:
d1174416 850 return check_val_ptr_alignment(reg, size, strict);
79adffcd
DB
851 default:
852 if (off % size != 0) {
853 verbose("misaligned access off %d size %d\n",
854 off, size);
855 return -EACCES;
856 }
857
858 return 0;
859 }
860}
861
17a52670
AS
862/* check whether memory at (regno + off) is accessible for t = (read | write)
863 * if t==write, value_regno is a register which value is stored into memory
864 * if t==read, value_regno is a register which will receive the value from memory
865 * if t==write && value_regno==-1, some unknown value is stored into memory
866 * if t==read && value_regno==-1, don't care what we read from memory
867 */
58e2af8b 868static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
869 int bpf_size, enum bpf_access_type t,
870 int value_regno)
871{
58e2af8b
JK
872 struct bpf_verifier_state *state = &env->cur_state;
873 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
874 int size, err = 0;
875
1a0dc1ac
AS
876 if (reg->type == PTR_TO_STACK)
877 off += reg->imm;
24b4d2ab 878
17a52670
AS
879 size = bpf_size_to_bytes(bpf_size);
880 if (size < 0)
881 return size;
882
e07b98d9 883 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
884 if (err)
885 return err;
17a52670 886
48461135
JB
887 if (reg->type == PTR_TO_MAP_VALUE ||
888 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
889 if (t == BPF_WRITE && value_regno >= 0 &&
890 is_pointer_value(env, value_regno)) {
891 verbose("R%d leaks addr into map\n", value_regno);
892 return -EACCES;
893 }
48461135 894
dbcfe5f7
GB
895 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
896 err = check_map_access_adj(env, regno, off, size);
897 else
898 err = check_map_access(env, regno, off, size);
17a52670 899 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
900 mark_reg_unknown_value_and_range(state->regs,
901 value_regno);
17a52670 902
1a0dc1ac 903 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
904 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
905
1be7f75d
AS
906 if (t == BPF_WRITE && value_regno >= 0 &&
907 is_pointer_value(env, value_regno)) {
908 verbose("R%d leaks addr into ctx\n", value_regno);
909 return -EACCES;
910 }
19de99f7 911 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 912 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
913 mark_reg_unknown_value_and_range(state->regs,
914 value_regno);
1955351d
MS
915 /* note that reg.[id|off|range] == 0 */
916 state->regs[value_regno].type = reg_type;
d1174416
DM
917 state->regs[value_regno].aux_off = 0;
918 state->regs[value_regno].aux_off_align = 0;
969bf05e 919 }
17a52670 920
1a0dc1ac 921 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
922 if (off >= 0 || off < -MAX_BPF_STACK) {
923 verbose("invalid stack off=%d size=%d\n", off, size);
924 return -EACCES;
925 }
1be7f75d
AS
926 if (t == BPF_WRITE) {
927 if (!env->allow_ptr_leaks &&
928 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
929 size != BPF_REG_SIZE) {
930 verbose("attempt to corrupt spilled pointer on stack\n");
931 return -EACCES;
932 }
17a52670 933 err = check_stack_write(state, off, size, value_regno);
1be7f75d 934 } else {
17a52670 935 err = check_stack_read(state, off, size, value_regno);
1be7f75d 936 }
969bf05e 937 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 938 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
939 verbose("cannot write into packet\n");
940 return -EACCES;
941 }
4acf6c0b
BB
942 if (t == BPF_WRITE && value_regno >= 0 &&
943 is_pointer_value(env, value_regno)) {
944 verbose("R%d leaks addr into packet\n", value_regno);
945 return -EACCES;
946 }
969bf05e
AS
947 err = check_packet_access(env, regno, off, size);
948 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
949 mark_reg_unknown_value_and_range(state->regs,
950 value_regno);
17a52670
AS
951 } else {
952 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 953 regno, reg_type_str[reg->type]);
17a52670
AS
954 return -EACCES;
955 }
969bf05e
AS
956
957 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
958 state->regs[value_regno].type == UNKNOWN_VALUE) {
959 /* 1 or 2 byte load zero-extends, determine the number of
960 * zero upper bits. Not doing it fo 4 byte load, since
961 * such values cannot be added to ptr_to_packet anyway.
962 */
963 state->regs[value_regno].imm = 64 - size * 8;
964 }
17a52670
AS
965 return err;
966}
967
58e2af8b 968static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 969{
58e2af8b 970 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
971 int err;
972
973 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
974 insn->imm != 0) {
975 verbose("BPF_XADD uses reserved fields\n");
976 return -EINVAL;
977 }
978
979 /* check src1 operand */
980 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
981 if (err)
982 return err;
983
984 /* check src2 operand */
985 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
986 if (err)
987 return err;
988
989 /* check whether atomic_add can read the memory */
990 err = check_mem_access(env, insn->dst_reg, insn->off,
991 BPF_SIZE(insn->code), BPF_READ, -1);
992 if (err)
993 return err;
994
995 /* check whether atomic_add can write into the same memory */
996 return check_mem_access(env, insn->dst_reg, insn->off,
997 BPF_SIZE(insn->code), BPF_WRITE, -1);
998}
999
1000/* when register 'regno' is passed into function that will read 'access_size'
1001 * bytes from that pointer, make sure that it's within stack boundary
1002 * and all elements of stack are initialized
1003 */
58e2af8b 1004static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1005 int access_size, bool zero_size_allowed,
1006 struct bpf_call_arg_meta *meta)
17a52670 1007{
58e2af8b
JK
1008 struct bpf_verifier_state *state = &env->cur_state;
1009 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1010 int off, i;
1011
8e2fe1d9
DB
1012 if (regs[regno].type != PTR_TO_STACK) {
1013 if (zero_size_allowed && access_size == 0 &&
1014 regs[regno].type == CONST_IMM &&
1015 regs[regno].imm == 0)
1016 return 0;
1017
1018 verbose("R%d type=%s expected=%s\n", regno,
1019 reg_type_str[regs[regno].type],
1020 reg_type_str[PTR_TO_STACK]);
17a52670 1021 return -EACCES;
8e2fe1d9 1022 }
17a52670
AS
1023
1024 off = regs[regno].imm;
1025 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1026 access_size <= 0) {
1027 verbose("invalid stack type R%d off=%d access_size=%d\n",
1028 regno, off, access_size);
1029 return -EACCES;
1030 }
1031
435faee1
DB
1032 if (meta && meta->raw_mode) {
1033 meta->access_size = access_size;
1034 meta->regno = regno;
1035 return 0;
1036 }
1037
17a52670 1038 for (i = 0; i < access_size; i++) {
9c399760 1039 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1040 verbose("invalid indirect read from stack off %d+%d size %d\n",
1041 off, i, access_size);
1042 return -EACCES;
1043 }
1044 }
1045 return 0;
1046}
1047
06c1c049
GB
1048static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1049 int access_size, bool zero_size_allowed,
1050 struct bpf_call_arg_meta *meta)
1051{
1052 struct bpf_reg_state *regs = env->cur_state.regs;
1053
1054 switch (regs[regno].type) {
1055 case PTR_TO_PACKET:
1056 return check_packet_access(env, regno, 0, access_size);
1057 case PTR_TO_MAP_VALUE:
1058 return check_map_access(env, regno, 0, access_size);
1059 case PTR_TO_MAP_VALUE_ADJ:
1060 return check_map_access_adj(env, regno, 0, access_size);
1061 default: /* const_imm|ptr_to_stack or invalid ptr */
1062 return check_stack_boundary(env, regno, access_size,
1063 zero_size_allowed, meta);
1064 }
1065}
1066
58e2af8b 1067static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1068 enum bpf_arg_type arg_type,
1069 struct bpf_call_arg_meta *meta)
17a52670 1070{
58e2af8b 1071 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1072 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1073 int err = 0;
1074
80f1d68c 1075 if (arg_type == ARG_DONTCARE)
17a52670
AS
1076 return 0;
1077
6841de8b 1078 if (type == NOT_INIT) {
17a52670
AS
1079 verbose("R%d !read_ok\n", regno);
1080 return -EACCES;
1081 }
1082
1be7f75d
AS
1083 if (arg_type == ARG_ANYTHING) {
1084 if (is_pointer_value(env, regno)) {
1085 verbose("R%d leaks addr into helper function\n", regno);
1086 return -EACCES;
1087 }
80f1d68c 1088 return 0;
1be7f75d 1089 }
80f1d68c 1090
3a0af8fd
TG
1091 if (type == PTR_TO_PACKET &&
1092 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1093 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1094 return -EACCES;
1095 }
1096
8e2fe1d9 1097 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1098 arg_type == ARG_PTR_TO_MAP_VALUE) {
1099 expected_type = PTR_TO_STACK;
6841de8b
AS
1100 if (type != PTR_TO_PACKET && type != expected_type)
1101 goto err_type;
39f19ebb
AS
1102 } else if (arg_type == ARG_CONST_SIZE ||
1103 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1104 expected_type = CONST_IMM;
06c1c049
GB
1105 /* One exception. Allow UNKNOWN_VALUE registers when the
1106 * boundaries are known and don't cause unsafe memory accesses
1107 */
1108 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1109 goto err_type;
17a52670
AS
1110 } else if (arg_type == ARG_CONST_MAP_PTR) {
1111 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1112 if (type != expected_type)
1113 goto err_type;
608cd71a
AS
1114 } else if (arg_type == ARG_PTR_TO_CTX) {
1115 expected_type = PTR_TO_CTX;
6841de8b
AS
1116 if (type != expected_type)
1117 goto err_type;
39f19ebb
AS
1118 } else if (arg_type == ARG_PTR_TO_MEM ||
1119 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1120 expected_type = PTR_TO_STACK;
1121 /* One exception here. In case function allows for NULL to be
1122 * passed in as argument, it's a CONST_IMM type. Final test
1123 * happens during stack boundary checking.
1124 */
6841de8b
AS
1125 if (type == CONST_IMM && reg->imm == 0)
1126 /* final test in check_stack_boundary() */;
5722569b
GB
1127 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1128 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1129 goto err_type;
39f19ebb 1130 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1131 } else {
1132 verbose("unsupported arg_type %d\n", arg_type);
1133 return -EFAULT;
1134 }
1135
17a52670
AS
1136 if (arg_type == ARG_CONST_MAP_PTR) {
1137 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1138 meta->map_ptr = reg->map_ptr;
17a52670
AS
1139 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1140 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1141 * check that [key, key + map->key_size) are within
1142 * stack limits and initialized
1143 */
33ff9823 1144 if (!meta->map_ptr) {
17a52670
AS
1145 /* in function declaration map_ptr must come before
1146 * map_key, so that it's verified and known before
1147 * we have to check map_key here. Otherwise it means
1148 * that kernel subsystem misconfigured verifier
1149 */
1150 verbose("invalid map_ptr to access map->key\n");
1151 return -EACCES;
1152 }
6841de8b
AS
1153 if (type == PTR_TO_PACKET)
1154 err = check_packet_access(env, regno, 0,
1155 meta->map_ptr->key_size);
1156 else
1157 err = check_stack_boundary(env, regno,
1158 meta->map_ptr->key_size,
1159 false, NULL);
17a52670
AS
1160 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1161 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1162 * check [value, value + map->value_size) validity
1163 */
33ff9823 1164 if (!meta->map_ptr) {
17a52670
AS
1165 /* kernel subsystem misconfigured verifier */
1166 verbose("invalid map_ptr to access map->value\n");
1167 return -EACCES;
1168 }
6841de8b
AS
1169 if (type == PTR_TO_PACKET)
1170 err = check_packet_access(env, regno, 0,
1171 meta->map_ptr->value_size);
1172 else
1173 err = check_stack_boundary(env, regno,
1174 meta->map_ptr->value_size,
1175 false, NULL);
39f19ebb
AS
1176 } else if (arg_type == ARG_CONST_SIZE ||
1177 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1178 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1179
17a52670
AS
1180 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1181 * from stack pointer 'buf'. Check it
1182 * note: regno == len, regno - 1 == buf
1183 */
1184 if (regno == 0) {
1185 /* kernel subsystem misconfigured verifier */
39f19ebb 1186 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1187 return -EACCES;
1188 }
06c1c049
GB
1189
1190 /* If the register is UNKNOWN_VALUE, the access check happens
1191 * using its boundaries. Otherwise, just use its imm
1192 */
1193 if (type == UNKNOWN_VALUE) {
1194 /* For unprivileged variable accesses, disable raw
1195 * mode so that the program is required to
1196 * initialize all the memory that the helper could
1197 * just partially fill up.
1198 */
1199 meta = NULL;
1200
1201 if (reg->min_value < 0) {
1202 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1203 regno);
1204 return -EACCES;
1205 }
1206
1207 if (reg->min_value == 0) {
1208 err = check_helper_mem_access(env, regno - 1, 0,
1209 zero_size_allowed,
1210 meta);
1211 if (err)
1212 return err;
1213 }
1214
1215 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1216 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1217 regno);
1218 return -EACCES;
1219 }
1220 err = check_helper_mem_access(env, regno - 1,
1221 reg->max_value,
1222 zero_size_allowed, meta);
1223 if (err)
1224 return err;
1225 } else {
1226 /* register is CONST_IMM */
1227 err = check_helper_mem_access(env, regno - 1, reg->imm,
1228 zero_size_allowed, meta);
1229 }
17a52670
AS
1230 }
1231
1232 return err;
6841de8b
AS
1233err_type:
1234 verbose("R%d type=%s expected=%s\n", regno,
1235 reg_type_str[type], reg_type_str[expected_type]);
1236 return -EACCES;
17a52670
AS
1237}
1238
35578d79
KX
1239static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1240{
35578d79
KX
1241 if (!map)
1242 return 0;
1243
6aff67c8
AS
1244 /* We need a two way check, first is from map perspective ... */
1245 switch (map->map_type) {
1246 case BPF_MAP_TYPE_PROG_ARRAY:
1247 if (func_id != BPF_FUNC_tail_call)
1248 goto error;
1249 break;
1250 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1251 if (func_id != BPF_FUNC_perf_event_read &&
1252 func_id != BPF_FUNC_perf_event_output)
1253 goto error;
1254 break;
1255 case BPF_MAP_TYPE_STACK_TRACE:
1256 if (func_id != BPF_FUNC_get_stackid)
1257 goto error;
1258 break;
4ed8ec52 1259 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1260 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1261 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1262 goto error;
1263 break;
56f668df 1264 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1265 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1266 if (func_id != BPF_FUNC_map_lookup_elem)
1267 goto error;
6aff67c8
AS
1268 default:
1269 break;
1270 }
1271
1272 /* ... and second from the function itself. */
1273 switch (func_id) {
1274 case BPF_FUNC_tail_call:
1275 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1276 goto error;
1277 break;
1278 case BPF_FUNC_perf_event_read:
1279 case BPF_FUNC_perf_event_output:
1280 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1281 goto error;
1282 break;
1283 case BPF_FUNC_get_stackid:
1284 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1285 goto error;
1286 break;
60d20f91 1287 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1288 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1289 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1290 goto error;
1291 break;
6aff67c8
AS
1292 default:
1293 break;
35578d79
KX
1294 }
1295
1296 return 0;
6aff67c8 1297error:
ebb676da
TG
1298 verbose("cannot pass map_type %d into func %s#%d\n",
1299 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1300 return -EINVAL;
35578d79
KX
1301}
1302
435faee1
DB
1303static int check_raw_mode(const struct bpf_func_proto *fn)
1304{
1305 int count = 0;
1306
39f19ebb 1307 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1308 count++;
39f19ebb 1309 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1310 count++;
39f19ebb 1311 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1312 count++;
39f19ebb 1313 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1314 count++;
39f19ebb 1315 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1316 count++;
1317
1318 return count > 1 ? -EINVAL : 0;
1319}
1320
58e2af8b 1321static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1322{
58e2af8b
JK
1323 struct bpf_verifier_state *state = &env->cur_state;
1324 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1325 int i;
1326
1327 for (i = 0; i < MAX_BPF_REG; i++)
1328 if (regs[i].type == PTR_TO_PACKET ||
1329 regs[i].type == PTR_TO_PACKET_END)
1330 mark_reg_unknown_value(regs, i);
1331
1332 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1333 if (state->stack_slot_type[i] != STACK_SPILL)
1334 continue;
1335 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1336 if (reg->type != PTR_TO_PACKET &&
1337 reg->type != PTR_TO_PACKET_END)
1338 continue;
1339 reg->type = UNKNOWN_VALUE;
1340 reg->imm = 0;
1341 }
1342}
1343
81ed18ab 1344static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1345{
58e2af8b 1346 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1347 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1348 struct bpf_reg_state *regs = state->regs;
1349 struct bpf_reg_state *reg;
33ff9823 1350 struct bpf_call_arg_meta meta;
969bf05e 1351 bool changes_data;
17a52670
AS
1352 int i, err;
1353
1354 /* find function prototype */
1355 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1356 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1357 return -EINVAL;
1358 }
1359
1360 if (env->prog->aux->ops->get_func_proto)
1361 fn = env->prog->aux->ops->get_func_proto(func_id);
1362
1363 if (!fn) {
ebb676da 1364 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1365 return -EINVAL;
1366 }
1367
1368 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1369 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1370 verbose("cannot call GPL only function from proprietary program\n");
1371 return -EINVAL;
1372 }
1373
17bedab2 1374 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1375
33ff9823 1376 memset(&meta, 0, sizeof(meta));
36bbef52 1377 meta.pkt_access = fn->pkt_access;
33ff9823 1378
435faee1
DB
1379 /* We only support one arg being in raw mode at the moment, which
1380 * is sufficient for the helper functions we have right now.
1381 */
1382 err = check_raw_mode(fn);
1383 if (err) {
ebb676da
TG
1384 verbose("kernel subsystem misconfigured func %s#%d\n",
1385 func_id_name(func_id), func_id);
435faee1
DB
1386 return err;
1387 }
1388
17a52670 1389 /* check args */
33ff9823 1390 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1391 if (err)
1392 return err;
33ff9823 1393 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1394 if (err)
1395 return err;
33ff9823 1396 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1397 if (err)
1398 return err;
33ff9823 1399 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1400 if (err)
1401 return err;
33ff9823 1402 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1403 if (err)
1404 return err;
1405
435faee1
DB
1406 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1407 * is inferred from register state.
1408 */
1409 for (i = 0; i < meta.access_size; i++) {
1410 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1411 if (err)
1412 return err;
1413 }
1414
17a52670
AS
1415 /* reset caller saved regs */
1416 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1417 reg = regs + caller_saved[i];
1418 reg->type = NOT_INIT;
1419 reg->imm = 0;
1420 }
1421
1422 /* update return register */
1423 if (fn->ret_type == RET_INTEGER) {
1424 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1425 } else if (fn->ret_type == RET_VOID) {
1426 regs[BPF_REG_0].type = NOT_INIT;
1427 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1428 struct bpf_insn_aux_data *insn_aux;
1429
17a52670 1430 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1431 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1432 /* remember map_ptr, so that check_map_access()
1433 * can check 'value_size' boundary of memory access
1434 * to map element returned from bpf_map_lookup_elem()
1435 */
33ff9823 1436 if (meta.map_ptr == NULL) {
17a52670
AS
1437 verbose("kernel subsystem misconfigured verifier\n");
1438 return -EINVAL;
1439 }
33ff9823 1440 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1441 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1442 insn_aux = &env->insn_aux_data[insn_idx];
1443 if (!insn_aux->map_ptr)
1444 insn_aux->map_ptr = meta.map_ptr;
1445 else if (insn_aux->map_ptr != meta.map_ptr)
1446 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1447 } else {
ebb676da
TG
1448 verbose("unknown return type %d of func %s#%d\n",
1449 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1450 return -EINVAL;
1451 }
04fd61ab 1452
33ff9823 1453 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1454 if (err)
1455 return err;
04fd61ab 1456
969bf05e
AS
1457 if (changes_data)
1458 clear_all_pkt_pointers(env);
1459 return 0;
1460}
1461
58e2af8b
JK
1462static int check_packet_ptr_add(struct bpf_verifier_env *env,
1463 struct bpf_insn *insn)
969bf05e 1464{
58e2af8b
JK
1465 struct bpf_reg_state *regs = env->cur_state.regs;
1466 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1467 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1468 struct bpf_reg_state tmp_reg;
969bf05e
AS
1469 s32 imm;
1470
1471 if (BPF_SRC(insn->code) == BPF_K) {
1472 /* pkt_ptr += imm */
1473 imm = insn->imm;
1474
1475add_imm:
63dfef75 1476 if (imm < 0) {
969bf05e
AS
1477 verbose("addition of negative constant to packet pointer is not allowed\n");
1478 return -EACCES;
1479 }
1480 if (imm >= MAX_PACKET_OFF ||
1481 imm + dst_reg->off >= MAX_PACKET_OFF) {
1482 verbose("constant %d is too large to add to packet pointer\n",
1483 imm);
1484 return -EACCES;
1485 }
1486 /* a constant was added to pkt_ptr.
1487 * Remember it while keeping the same 'id'
1488 */
1489 dst_reg->off += imm;
1490 } else {
d1174416
DM
1491 bool had_id;
1492
1b9b69ec
AS
1493 if (src_reg->type == PTR_TO_PACKET) {
1494 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1495 tmp_reg = *dst_reg; /* save r7 state */
1496 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1497 src_reg = &tmp_reg; /* pretend it's src_reg state */
1498 /* if the checks below reject it, the copy won't matter,
1499 * since we're rejecting the whole program. If all ok,
1500 * then imm22 state will be added to r7
1501 * and r7 will be pkt(id=0,off=22,r=62) while
1502 * r6 will stay as pkt(id=0,off=0,r=62)
1503 */
1504 }
1505
969bf05e
AS
1506 if (src_reg->type == CONST_IMM) {
1507 /* pkt_ptr += reg where reg is known constant */
1508 imm = src_reg->imm;
1509 goto add_imm;
1510 }
1511 /* disallow pkt_ptr += reg
1512 * if reg is not uknown_value with guaranteed zero upper bits
1513 * otherwise pkt_ptr may overflow and addition will become
1514 * subtraction which is not allowed
1515 */
1516 if (src_reg->type != UNKNOWN_VALUE) {
1517 verbose("cannot add '%s' to ptr_to_packet\n",
1518 reg_type_str[src_reg->type]);
1519 return -EACCES;
1520 }
1521 if (src_reg->imm < 48) {
1522 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1523 src_reg->imm);
1524 return -EACCES;
1525 }
d1174416
DM
1526
1527 had_id = (dst_reg->id != 0);
1528
969bf05e
AS
1529 /* dst_reg stays as pkt_ptr type and since some positive
1530 * integer value was added to the pointer, increment its 'id'
1531 */
1f415a74 1532 dst_reg->id = ++env->id_gen;
969bf05e 1533
d1174416 1534 /* something was added to pkt_ptr, set range to zero */
6832a333 1535 dst_reg->aux_off += dst_reg->off;
969bf05e
AS
1536 dst_reg->off = 0;
1537 dst_reg->range = 0;
d1174416
DM
1538 if (had_id)
1539 dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1540 src_reg->min_align);
1541 else
1542 dst_reg->aux_off_align = src_reg->min_align;
969bf05e
AS
1543 }
1544 return 0;
1545}
1546
58e2af8b 1547static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1548{
58e2af8b
JK
1549 struct bpf_reg_state *regs = env->cur_state.regs;
1550 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1551 u8 opcode = BPF_OP(insn->code);
1552 s64 imm_log2;
1553
1554 /* for type == UNKNOWN_VALUE:
1555 * imm > 0 -> number of zero upper bits
1556 * imm == 0 -> don't track which is the same as all bits can be non-zero
1557 */
1558
1559 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1560 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1561
1562 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1563 dst_reg->imm && opcode == BPF_ADD) {
1564 /* dreg += sreg
1565 * where both have zero upper bits. Adding them
1566 * can only result making one more bit non-zero
1567 * in the larger value.
1568 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1569 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1570 */
1571 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1572 dst_reg->imm--;
1573 return 0;
1574 }
1575 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1576 dst_reg->imm && opcode == BPF_ADD) {
1577 /* dreg += sreg
1578 * where dreg has zero upper bits and sreg is const.
1579 * Adding them can only result making one more bit
1580 * non-zero in the larger value.
1581 */
1582 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1583 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1584 dst_reg->imm--;
1585 return 0;
1586 }
1587 /* all other cases non supported yet, just mark dst_reg */
1588 dst_reg->imm = 0;
1589 return 0;
1590 }
1591
1592 /* sign extend 32-bit imm into 64-bit to make sure that
1593 * negative values occupy bit 63. Note ilog2() would have
1594 * been incorrect, since sizeof(insn->imm) == 4
1595 */
1596 imm_log2 = __ilog2_u64((long long)insn->imm);
1597
1598 if (dst_reg->imm && opcode == BPF_LSH) {
1599 /* reg <<= imm
1600 * if reg was a result of 2 byte load, then its imm == 48
1601 * which means that upper 48 bits are zero and shifting this reg
1602 * left by 4 would mean that upper 44 bits are still zero
1603 */
1604 dst_reg->imm -= insn->imm;
1605 } else if (dst_reg->imm && opcode == BPF_MUL) {
1606 /* reg *= imm
1607 * if multiplying by 14 subtract 4
1608 * This is conservative calculation of upper zero bits.
1609 * It's not trying to special case insn->imm == 1 or 0 cases
1610 */
1611 dst_reg->imm -= imm_log2 + 1;
1612 } else if (opcode == BPF_AND) {
1613 /* reg &= imm */
1614 dst_reg->imm = 63 - imm_log2;
1615 } else if (dst_reg->imm && opcode == BPF_ADD) {
1616 /* reg += imm */
1617 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1618 dst_reg->imm--;
1619 } else if (opcode == BPF_RSH) {
1620 /* reg >>= imm
1621 * which means that after right shift, upper bits will be zero
1622 * note that verifier already checked that
1623 * 0 <= imm < 64 for shift insn
1624 */
1625 dst_reg->imm += insn->imm;
1626 if (unlikely(dst_reg->imm > 64))
1627 /* some dumb code did:
1628 * r2 = *(u32 *)mem;
1629 * r2 >>= 32;
1630 * and all bits are zero now */
1631 dst_reg->imm = 64;
1632 } else {
1633 /* all other alu ops, means that we don't know what will
1634 * happen to the value, mark it with unknown number of zero bits
1635 */
1636 dst_reg->imm = 0;
1637 }
1638
1639 if (dst_reg->imm < 0) {
1640 /* all 64 bits of the register can contain non-zero bits
1641 * and such value cannot be added to ptr_to_packet, since it
1642 * may overflow, mark it as unknown to avoid further eval
1643 */
1644 dst_reg->imm = 0;
1645 }
1646 return 0;
1647}
1648
58e2af8b
JK
1649static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1650 struct bpf_insn *insn)
969bf05e 1651{
58e2af8b
JK
1652 struct bpf_reg_state *regs = env->cur_state.regs;
1653 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1654 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1655 u8 opcode = BPF_OP(insn->code);
3fadc801 1656 u64 dst_imm = dst_reg->imm;
969bf05e 1657
3fadc801
DB
1658 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1659 * containing ALU ops. Don't care about overflow or negative
1660 * values, just add/sub/... them; registers are in u64.
969bf05e 1661 */
3fadc801
DB
1662 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1663 dst_imm += insn->imm;
1664 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1665 src_reg->type == CONST_IMM) {
1666 dst_imm += src_reg->imm;
1667 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1668 dst_imm -= insn->imm;
1669 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1670 src_reg->type == CONST_IMM) {
1671 dst_imm -= src_reg->imm;
1672 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1673 dst_imm *= insn->imm;
1674 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1675 src_reg->type == CONST_IMM) {
1676 dst_imm *= src_reg->imm;
1677 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1678 dst_imm |= insn->imm;
1679 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1680 src_reg->type == CONST_IMM) {
1681 dst_imm |= src_reg->imm;
1682 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1683 dst_imm &= insn->imm;
1684 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1685 src_reg->type == CONST_IMM) {
1686 dst_imm &= src_reg->imm;
1687 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1688 dst_imm >>= insn->imm;
1689 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1690 src_reg->type == CONST_IMM) {
1691 dst_imm >>= src_reg->imm;
1692 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1693 dst_imm <<= insn->imm;
1694 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1695 src_reg->type == CONST_IMM) {
1696 dst_imm <<= src_reg->imm;
1697 } else {
969bf05e 1698 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1699 goto out;
1700 }
1701
1702 dst_reg->imm = dst_imm;
1703out:
17a52670
AS
1704 return 0;
1705}
1706
48461135
JB
1707static void check_reg_overflow(struct bpf_reg_state *reg)
1708{
1709 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1710 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1711 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1712 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1713 reg->min_value = BPF_REGISTER_MIN_RANGE;
1714}
1715
d1174416
DM
1716static u32 calc_align(u32 imm)
1717{
1718 if (!imm)
1719 return 1U << 31;
1720 return imm - ((imm - 1) & imm);
1721}
1722
48461135
JB
1723static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1724 struct bpf_insn *insn)
1725{
1726 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1727 s64 min_val = BPF_REGISTER_MIN_RANGE;
1728 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135 1729 u8 opcode = BPF_OP(insn->code);
d1174416 1730 u32 dst_align, src_align;
48461135
JB
1731
1732 dst_reg = &regs[insn->dst_reg];
d1174416 1733 src_align = 0;
48461135
JB
1734 if (BPF_SRC(insn->code) == BPF_X) {
1735 check_reg_overflow(&regs[insn->src_reg]);
1736 min_val = regs[insn->src_reg].min_value;
1737 max_val = regs[insn->src_reg].max_value;
1738
1739 /* If the source register is a random pointer then the
1740 * min_value/max_value values represent the range of the known
1741 * accesses into that value, not the actual min/max value of the
1742 * register itself. In this case we have to reset the reg range
1743 * values so we know it is not safe to look at.
1744 */
1745 if (regs[insn->src_reg].type != CONST_IMM &&
1746 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1747 min_val = BPF_REGISTER_MIN_RANGE;
1748 max_val = BPF_REGISTER_MAX_RANGE;
d1174416
DM
1749 src_align = 0;
1750 } else {
1751 src_align = regs[insn->src_reg].min_align;
48461135
JB
1752 }
1753 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1754 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1755 min_val = max_val = insn->imm;
d1174416 1756 src_align = calc_align(insn->imm);
48461135
JB
1757 }
1758
d1174416
DM
1759 dst_align = dst_reg->min_align;
1760
48461135
JB
1761 /* We don't know anything about what was done to this register, mark it
1762 * as unknown.
1763 */
1764 if (min_val == BPF_REGISTER_MIN_RANGE &&
1765 max_val == BPF_REGISTER_MAX_RANGE) {
1766 reset_reg_range_values(regs, insn->dst_reg);
1767 return;
1768 }
1769
f23cc643
JB
1770 /* If one of our values was at the end of our ranges then we can't just
1771 * do our normal operations to the register, we need to set the values
1772 * to the min/max since they are undefined.
1773 */
1774 if (min_val == BPF_REGISTER_MIN_RANGE)
1775 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1776 if (max_val == BPF_REGISTER_MAX_RANGE)
1777 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1778
48461135
JB
1779 switch (opcode) {
1780 case BPF_ADD:
f23cc643
JB
1781 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1782 dst_reg->min_value += min_val;
1783 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1784 dst_reg->max_value += max_val;
d1174416 1785 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1786 break;
1787 case BPF_SUB:
f23cc643
JB
1788 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1789 dst_reg->min_value -= min_val;
1790 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1791 dst_reg->max_value -= max_val;
d1174416 1792 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1793 break;
1794 case BPF_MUL:
f23cc643
JB
1795 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1796 dst_reg->min_value *= min_val;
1797 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1798 dst_reg->max_value *= max_val;
d1174416 1799 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1800 break;
1801 case BPF_AND:
f23cc643
JB
1802 /* Disallow AND'ing of negative numbers, ain't nobody got time
1803 * for that. Otherwise the minimum is 0 and the max is the max
1804 * value we could AND against.
1805 */
1806 if (min_val < 0)
1807 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1808 else
1809 dst_reg->min_value = 0;
48461135 1810 dst_reg->max_value = max_val;
d1174416 1811 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1812 break;
1813 case BPF_LSH:
1814 /* Gotta have special overflow logic here, if we're shifting
1815 * more than MAX_RANGE then just assume we have an invalid
1816 * range.
1817 */
d1174416 1818 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
48461135 1819 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416
DM
1820 dst_reg->min_align = 1;
1821 } else {
1822 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1823 dst_reg->min_value <<= min_val;
1824 if (!dst_reg->min_align)
1825 dst_reg->min_align = 1;
1826 dst_reg->min_align <<= min_val;
1827 }
48461135
JB
1828 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1829 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1830 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1831 dst_reg->max_value <<= max_val;
1832 break;
1833 case BPF_RSH:
f23cc643
JB
1834 /* RSH by a negative number is undefined, and the BPF_RSH is an
1835 * unsigned shift, so make the appropriate casts.
48461135 1836 */
d1174416 1837 if (min_val < 0 || dst_reg->min_value < 0) {
f23cc643 1838 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416 1839 } else {
f23cc643
JB
1840 dst_reg->min_value =
1841 (u64)(dst_reg->min_value) >> min_val;
d1174416
DM
1842 }
1843 if (min_val < 0) {
1844 dst_reg->min_align = 1;
1845 } else {
1846 dst_reg->min_align >>= (u64) min_val;
1847 if (!dst_reg->min_align)
1848 dst_reg->min_align = 1;
1849 }
f23cc643
JB
1850 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1851 dst_reg->max_value >>= max_val;
48461135
JB
1852 break;
1853 default:
1854 reset_reg_range_values(regs, insn->dst_reg);
1855 break;
1856 }
1857
1858 check_reg_overflow(dst_reg);
1859}
1860
17a52670 1861/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1862static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1863{
58e2af8b 1864 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1865 u8 opcode = BPF_OP(insn->code);
1866 int err;
1867
1868 if (opcode == BPF_END || opcode == BPF_NEG) {
1869 if (opcode == BPF_NEG) {
1870 if (BPF_SRC(insn->code) != 0 ||
1871 insn->src_reg != BPF_REG_0 ||
1872 insn->off != 0 || insn->imm != 0) {
1873 verbose("BPF_NEG uses reserved fields\n");
1874 return -EINVAL;
1875 }
1876 } else {
1877 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1878 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1879 verbose("BPF_END uses reserved fields\n");
1880 return -EINVAL;
1881 }
1882 }
1883
1884 /* check src operand */
1885 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1886 if (err)
1887 return err;
1888
1be7f75d
AS
1889 if (is_pointer_value(env, insn->dst_reg)) {
1890 verbose("R%d pointer arithmetic prohibited\n",
1891 insn->dst_reg);
1892 return -EACCES;
1893 }
1894
17a52670
AS
1895 /* check dest operand */
1896 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1897 if (err)
1898 return err;
1899
1900 } else if (opcode == BPF_MOV) {
1901
1902 if (BPF_SRC(insn->code) == BPF_X) {
1903 if (insn->imm != 0 || insn->off != 0) {
1904 verbose("BPF_MOV uses reserved fields\n");
1905 return -EINVAL;
1906 }
1907
1908 /* check src operand */
1909 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1910 if (err)
1911 return err;
1912 } else {
1913 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1914 verbose("BPF_MOV uses reserved fields\n");
1915 return -EINVAL;
1916 }
1917 }
1918
1919 /* check dest operand */
1920 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1921 if (err)
1922 return err;
1923
48461135
JB
1924 /* we are setting our register to something new, we need to
1925 * reset its range values.
1926 */
1927 reset_reg_range_values(regs, insn->dst_reg);
1928
17a52670
AS
1929 if (BPF_SRC(insn->code) == BPF_X) {
1930 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1931 /* case: R1 = R2
1932 * copy register state to dest reg
1933 */
1934 regs[insn->dst_reg] = regs[insn->src_reg];
1935 } else {
1be7f75d
AS
1936 if (is_pointer_value(env, insn->src_reg)) {
1937 verbose("R%d partial copy of pointer\n",
1938 insn->src_reg);
1939 return -EACCES;
1940 }
57a09bf0 1941 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1942 }
1943 } else {
1944 /* case: R = imm
1945 * remember the value we stored into this reg
1946 */
1947 regs[insn->dst_reg].type = CONST_IMM;
1948 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1949 regs[insn->dst_reg].max_value = insn->imm;
1950 regs[insn->dst_reg].min_value = insn->imm;
d1174416 1951 regs[insn->dst_reg].min_align = calc_align(insn->imm);
17a52670
AS
1952 }
1953
1954 } else if (opcode > BPF_END) {
1955 verbose("invalid BPF_ALU opcode %x\n", opcode);
1956 return -EINVAL;
1957
1958 } else { /* all other ALU ops: and, sub, xor, add, ... */
1959
17a52670
AS
1960 if (BPF_SRC(insn->code) == BPF_X) {
1961 if (insn->imm != 0 || insn->off != 0) {
1962 verbose("BPF_ALU uses reserved fields\n");
1963 return -EINVAL;
1964 }
1965 /* check src1 operand */
1966 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1967 if (err)
1968 return err;
1969 } else {
1970 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1971 verbose("BPF_ALU uses reserved fields\n");
1972 return -EINVAL;
1973 }
1974 }
1975
1976 /* check src2 operand */
1977 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1978 if (err)
1979 return err;
1980
1981 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1982 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1983 verbose("div by zero\n");
1984 return -EINVAL;
1985 }
1986
229394e8
RV
1987 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1988 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1989 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1990
1991 if (insn->imm < 0 || insn->imm >= size) {
1992 verbose("invalid shift %d\n", insn->imm);
1993 return -EINVAL;
1994 }
1995 }
1996
1a0dc1ac
AS
1997 /* check dest operand */
1998 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1999 if (err)
2000 return err;
2001
2002 dst_reg = &regs[insn->dst_reg];
2003
48461135
JB
2004 /* first we want to adjust our ranges. */
2005 adjust_reg_min_max_vals(env, insn);
2006
17a52670
AS
2007 /* pattern match 'bpf_add Rx, imm' instruction */
2008 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
2009 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2010 dst_reg->type = PTR_TO_STACK;
2011 dst_reg->imm = insn->imm;
2012 return 0;
332270fd
YS
2013 } else if (opcode == BPF_ADD &&
2014 BPF_CLASS(insn->code) == BPF_ALU64 &&
2015 dst_reg->type == PTR_TO_STACK &&
2016 ((BPF_SRC(insn->code) == BPF_X &&
2017 regs[insn->src_reg].type == CONST_IMM) ||
2018 BPF_SRC(insn->code) == BPF_K)) {
2019 if (BPF_SRC(insn->code) == BPF_X)
2020 dst_reg->imm += regs[insn->src_reg].imm;
2021 else
2022 dst_reg->imm += insn->imm;
2023 return 0;
969bf05e
AS
2024 } else if (opcode == BPF_ADD &&
2025 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
2026 (dst_reg->type == PTR_TO_PACKET ||
2027 (BPF_SRC(insn->code) == BPF_X &&
2028 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
2029 /* ptr_to_packet += K|X */
2030 return check_packet_ptr_add(env, insn);
2031 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2032 dst_reg->type == UNKNOWN_VALUE &&
2033 env->allow_ptr_leaks) {
2034 /* unknown += K|X */
2035 return evaluate_reg_alu(env, insn);
2036 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2037 dst_reg->type == CONST_IMM &&
2038 env->allow_ptr_leaks) {
2039 /* reg_imm += K|X */
2040 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
2041 } else if (is_pointer_value(env, insn->dst_reg)) {
2042 verbose("R%d pointer arithmetic prohibited\n",
2043 insn->dst_reg);
2044 return -EACCES;
2045 } else if (BPF_SRC(insn->code) == BPF_X &&
2046 is_pointer_value(env, insn->src_reg)) {
2047 verbose("R%d pointer arithmetic prohibited\n",
2048 insn->src_reg);
2049 return -EACCES;
2050 }
17a52670 2051
48461135
JB
2052 /* If we did pointer math on a map value then just set it to our
2053 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2054 * loads to this register appropriately, otherwise just mark the
2055 * register as unknown.
2056 */
2057 if (env->allow_ptr_leaks &&
fce366a9 2058 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
48461135
JB
2059 (dst_reg->type == PTR_TO_MAP_VALUE ||
2060 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2061 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2062 else
2063 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2064 }
2065
2066 return 0;
2067}
2068
58e2af8b
JK
2069static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2070 struct bpf_reg_state *dst_reg)
969bf05e 2071{
58e2af8b 2072 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2073 int i;
2d2be8ca
DB
2074
2075 /* LLVM can generate two kind of checks:
2076 *
2077 * Type 1:
2078 *
2079 * r2 = r3;
2080 * r2 += 8;
2081 * if (r2 > pkt_end) goto <handle exception>
2082 * <access okay>
2083 *
2084 * Where:
2085 * r2 == dst_reg, pkt_end == src_reg
2086 * r2=pkt(id=n,off=8,r=0)
2087 * r3=pkt(id=n,off=0,r=0)
2088 *
2089 * Type 2:
2090 *
2091 * r2 = r3;
2092 * r2 += 8;
2093 * if (pkt_end >= r2) goto <access okay>
2094 * <handle exception>
2095 *
2096 * Where:
2097 * pkt_end == dst_reg, r2 == src_reg
2098 * r2=pkt(id=n,off=8,r=0)
2099 * r3=pkt(id=n,off=0,r=0)
2100 *
2101 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2102 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2103 */
2d2be8ca 2104
969bf05e
AS
2105 for (i = 0; i < MAX_BPF_REG; i++)
2106 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682
AS
2107 /* keep the maximum range already checked */
2108 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
2109
2110 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2111 if (state->stack_slot_type[i] != STACK_SPILL)
2112 continue;
2113 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2114 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
b1977682 2115 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
2116 }
2117}
2118
48461135
JB
2119/* Adjusts the register min/max values in the case that the dst_reg is the
2120 * variable register that we are working on, and src_reg is a constant or we're
2121 * simply doing a BPF_K check.
2122 */
2123static void reg_set_min_max(struct bpf_reg_state *true_reg,
2124 struct bpf_reg_state *false_reg, u64 val,
2125 u8 opcode)
2126{
2127 switch (opcode) {
2128 case BPF_JEQ:
2129 /* If this is false then we know nothing Jon Snow, but if it is
2130 * true then we know for sure.
2131 */
2132 true_reg->max_value = true_reg->min_value = val;
2133 break;
2134 case BPF_JNE:
2135 /* If this is true we know nothing Jon Snow, but if it is false
2136 * we know the value for sure;
2137 */
2138 false_reg->max_value = false_reg->min_value = val;
2139 break;
2140 case BPF_JGT:
2141 /* Unsigned comparison, the minimum value is 0. */
2142 false_reg->min_value = 0;
7e57fbb2 2143 /* fallthrough */
48461135
JB
2144 case BPF_JSGT:
2145 /* If this is false then we know the maximum val is val,
2146 * otherwise we know the min val is val+1.
2147 */
2148 false_reg->max_value = val;
2149 true_reg->min_value = val + 1;
2150 break;
2151 case BPF_JGE:
2152 /* Unsigned comparison, the minimum value is 0. */
2153 false_reg->min_value = 0;
7e57fbb2 2154 /* fallthrough */
48461135
JB
2155 case BPF_JSGE:
2156 /* If this is false then we know the maximum value is val - 1,
2157 * otherwise we know the mimimum value is val.
2158 */
2159 false_reg->max_value = val - 1;
2160 true_reg->min_value = val;
2161 break;
2162 default:
2163 break;
2164 }
2165
2166 check_reg_overflow(false_reg);
2167 check_reg_overflow(true_reg);
2168}
2169
2170/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2171 * is the variable reg.
2172 */
2173static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2174 struct bpf_reg_state *false_reg, u64 val,
2175 u8 opcode)
2176{
2177 switch (opcode) {
2178 case BPF_JEQ:
2179 /* If this is false then we know nothing Jon Snow, but if it is
2180 * true then we know for sure.
2181 */
2182 true_reg->max_value = true_reg->min_value = val;
2183 break;
2184 case BPF_JNE:
2185 /* If this is true we know nothing Jon Snow, but if it is false
2186 * we know the value for sure;
2187 */
2188 false_reg->max_value = false_reg->min_value = val;
2189 break;
2190 case BPF_JGT:
2191 /* Unsigned comparison, the minimum value is 0. */
2192 true_reg->min_value = 0;
7e57fbb2 2193 /* fallthrough */
48461135
JB
2194 case BPF_JSGT:
2195 /*
2196 * If this is false, then the val is <= the register, if it is
2197 * true the register <= to the val.
2198 */
2199 false_reg->min_value = val;
2200 true_reg->max_value = val - 1;
2201 break;
2202 case BPF_JGE:
2203 /* Unsigned comparison, the minimum value is 0. */
2204 true_reg->min_value = 0;
7e57fbb2 2205 /* fallthrough */
48461135
JB
2206 case BPF_JSGE:
2207 /* If this is false then constant < register, if it is true then
2208 * the register < constant.
2209 */
2210 false_reg->min_value = val + 1;
2211 true_reg->max_value = val;
2212 break;
2213 default:
2214 break;
2215 }
2216
2217 check_reg_overflow(false_reg);
2218 check_reg_overflow(true_reg);
2219}
2220
57a09bf0
TG
2221static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2222 enum bpf_reg_type type)
2223{
2224 struct bpf_reg_state *reg = &regs[regno];
2225
2226 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
56f668df
MKL
2227 if (type == UNKNOWN_VALUE) {
2228 __mark_reg_unknown_value(regs, regno);
2229 } else if (reg->map_ptr->inner_map_meta) {
2230 reg->type = CONST_PTR_TO_MAP;
2231 reg->map_ptr = reg->map_ptr->inner_map_meta;
2232 } else {
2233 reg->type = type;
2234 }
a08dd0da
DB
2235 /* We don't need id from this point onwards anymore, thus we
2236 * should better reset it, so that state pruning has chances
2237 * to take effect.
2238 */
2239 reg->id = 0;
57a09bf0
TG
2240 }
2241}
2242
2243/* The logic is similar to find_good_pkt_pointers(), both could eventually
2244 * be folded together at some point.
2245 */
2246static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2247 enum bpf_reg_type type)
2248{
2249 struct bpf_reg_state *regs = state->regs;
a08dd0da 2250 u32 id = regs[regno].id;
57a09bf0
TG
2251 int i;
2252
2253 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2254 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2255
2256 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2257 if (state->stack_slot_type[i] != STACK_SPILL)
2258 continue;
a08dd0da 2259 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2260 }
2261}
2262
58e2af8b 2263static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2264 struct bpf_insn *insn, int *insn_idx)
2265{
58e2af8b
JK
2266 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2267 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2268 u8 opcode = BPF_OP(insn->code);
2269 int err;
2270
2271 if (opcode > BPF_EXIT) {
2272 verbose("invalid BPF_JMP opcode %x\n", opcode);
2273 return -EINVAL;
2274 }
2275
2276 if (BPF_SRC(insn->code) == BPF_X) {
2277 if (insn->imm != 0) {
2278 verbose("BPF_JMP uses reserved fields\n");
2279 return -EINVAL;
2280 }
2281
2282 /* check src1 operand */
2283 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2284 if (err)
2285 return err;
1be7f75d
AS
2286
2287 if (is_pointer_value(env, insn->src_reg)) {
2288 verbose("R%d pointer comparison prohibited\n",
2289 insn->src_reg);
2290 return -EACCES;
2291 }
17a52670
AS
2292 } else {
2293 if (insn->src_reg != BPF_REG_0) {
2294 verbose("BPF_JMP uses reserved fields\n");
2295 return -EINVAL;
2296 }
2297 }
2298
2299 /* check src2 operand */
2300 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2301 if (err)
2302 return err;
2303
1a0dc1ac
AS
2304 dst_reg = &regs[insn->dst_reg];
2305
17a52670
AS
2306 /* detect if R == 0 where R was initialized to zero earlier */
2307 if (BPF_SRC(insn->code) == BPF_K &&
2308 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2309 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2310 if (opcode == BPF_JEQ) {
2311 /* if (imm == imm) goto pc+off;
2312 * only follow the goto, ignore fall-through
2313 */
2314 *insn_idx += insn->off;
2315 return 0;
2316 } else {
2317 /* if (imm != imm) goto pc+off;
2318 * only follow fall-through branch, since
2319 * that's where the program will go
2320 */
2321 return 0;
2322 }
2323 }
2324
2325 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2326 if (!other_branch)
2327 return -EFAULT;
2328
48461135
JB
2329 /* detect if we are comparing against a constant value so we can adjust
2330 * our min/max values for our dst register.
2331 */
2332 if (BPF_SRC(insn->code) == BPF_X) {
2333 if (regs[insn->src_reg].type == CONST_IMM)
2334 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2335 dst_reg, regs[insn->src_reg].imm,
2336 opcode);
2337 else if (dst_reg->type == CONST_IMM)
2338 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2339 &regs[insn->src_reg], dst_reg->imm,
2340 opcode);
2341 } else {
2342 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2343 dst_reg, insn->imm, opcode);
2344 }
2345
58e2af8b 2346 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2347 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2348 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2349 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2350 /* Mark all identical map registers in each branch as either
2351 * safe or unknown depending R == 0 or R != 0 conditional.
2352 */
2353 mark_map_regs(this_branch, insn->dst_reg,
2354 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2355 mark_map_regs(other_branch, insn->dst_reg,
2356 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2357 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2358 dst_reg->type == PTR_TO_PACKET &&
2359 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2360 find_good_pkt_pointers(this_branch, dst_reg);
2361 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2362 dst_reg->type == PTR_TO_PACKET_END &&
2363 regs[insn->src_reg].type == PTR_TO_PACKET) {
2364 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2365 } else if (is_pointer_value(env, insn->dst_reg)) {
2366 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2367 return -EACCES;
17a52670
AS
2368 }
2369 if (log_level)
2d2be8ca 2370 print_verifier_state(this_branch);
17a52670
AS
2371 return 0;
2372}
2373
0246e64d
AS
2374/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2375static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2376{
2377 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2378
2379 return (struct bpf_map *) (unsigned long) imm64;
2380}
2381
17a52670 2382/* verify BPF_LD_IMM64 instruction */
58e2af8b 2383static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2384{
58e2af8b 2385 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2386 int err;
2387
2388 if (BPF_SIZE(insn->code) != BPF_DW) {
2389 verbose("invalid BPF_LD_IMM insn\n");
2390 return -EINVAL;
2391 }
2392 if (insn->off != 0) {
2393 verbose("BPF_LD_IMM64 uses reserved fields\n");
2394 return -EINVAL;
2395 }
2396
2397 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2398 if (err)
2399 return err;
2400
6b173873 2401 if (insn->src_reg == 0) {
6b173873
JK
2402 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2403
6b173873
JK
2404 regs[insn->dst_reg].type = CONST_IMM;
2405 regs[insn->dst_reg].imm = imm;
17a52670 2406 return 0;
6b173873 2407 }
17a52670
AS
2408
2409 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2410 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2411
2412 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2413 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2414 return 0;
2415}
2416
96be4325
DB
2417static bool may_access_skb(enum bpf_prog_type type)
2418{
2419 switch (type) {
2420 case BPF_PROG_TYPE_SOCKET_FILTER:
2421 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2422 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2423 return true;
2424 default:
2425 return false;
2426 }
2427}
2428
ddd872bc
AS
2429/* verify safety of LD_ABS|LD_IND instructions:
2430 * - they can only appear in the programs where ctx == skb
2431 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2432 * preserve R6-R9, and store return value into R0
2433 *
2434 * Implicit input:
2435 * ctx == skb == R6 == CTX
2436 *
2437 * Explicit input:
2438 * SRC == any register
2439 * IMM == 32-bit immediate
2440 *
2441 * Output:
2442 * R0 - 8/16/32-bit skb data converted to cpu endianness
2443 */
58e2af8b 2444static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2445{
58e2af8b 2446 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2447 u8 mode = BPF_MODE(insn->code);
58e2af8b 2448 struct bpf_reg_state *reg;
ddd872bc
AS
2449 int i, err;
2450
24701ece 2451 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2452 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2453 return -EINVAL;
2454 }
2455
2456 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2457 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2458 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2459 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2460 return -EINVAL;
2461 }
2462
2463 /* check whether implicit source operand (register R6) is readable */
2464 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2465 if (err)
2466 return err;
2467
2468 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2469 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2470 return -EINVAL;
2471 }
2472
2473 if (mode == BPF_IND) {
2474 /* check explicit source operand */
2475 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2476 if (err)
2477 return err;
2478 }
2479
2480 /* reset caller saved regs to unreadable */
2481 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2482 reg = regs + caller_saved[i];
2483 reg->type = NOT_INIT;
2484 reg->imm = 0;
2485 }
2486
2487 /* mark destination R0 register as readable, since it contains
2488 * the value fetched from the packet
2489 */
2490 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2491 return 0;
2492}
2493
475fb78f
AS
2494/* non-recursive DFS pseudo code
2495 * 1 procedure DFS-iterative(G,v):
2496 * 2 label v as discovered
2497 * 3 let S be a stack
2498 * 4 S.push(v)
2499 * 5 while S is not empty
2500 * 6 t <- S.pop()
2501 * 7 if t is what we're looking for:
2502 * 8 return t
2503 * 9 for all edges e in G.adjacentEdges(t) do
2504 * 10 if edge e is already labelled
2505 * 11 continue with the next edge
2506 * 12 w <- G.adjacentVertex(t,e)
2507 * 13 if vertex w is not discovered and not explored
2508 * 14 label e as tree-edge
2509 * 15 label w as discovered
2510 * 16 S.push(w)
2511 * 17 continue at 5
2512 * 18 else if vertex w is discovered
2513 * 19 label e as back-edge
2514 * 20 else
2515 * 21 // vertex w is explored
2516 * 22 label e as forward- or cross-edge
2517 * 23 label t as explored
2518 * 24 S.pop()
2519 *
2520 * convention:
2521 * 0x10 - discovered
2522 * 0x11 - discovered and fall-through edge labelled
2523 * 0x12 - discovered and fall-through and branch edges labelled
2524 * 0x20 - explored
2525 */
2526
2527enum {
2528 DISCOVERED = 0x10,
2529 EXPLORED = 0x20,
2530 FALLTHROUGH = 1,
2531 BRANCH = 2,
2532};
2533
58e2af8b 2534#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2535
475fb78f
AS
2536static int *insn_stack; /* stack of insns to process */
2537static int cur_stack; /* current stack index */
2538static int *insn_state;
2539
2540/* t, w, e - match pseudo-code above:
2541 * t - index of current instruction
2542 * w - next instruction
2543 * e - edge
2544 */
58e2af8b 2545static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2546{
2547 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2548 return 0;
2549
2550 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2551 return 0;
2552
2553 if (w < 0 || w >= env->prog->len) {
2554 verbose("jump out of range from insn %d to %d\n", t, w);
2555 return -EINVAL;
2556 }
2557
f1bca824
AS
2558 if (e == BRANCH)
2559 /* mark branch target for state pruning */
2560 env->explored_states[w] = STATE_LIST_MARK;
2561
475fb78f
AS
2562 if (insn_state[w] == 0) {
2563 /* tree-edge */
2564 insn_state[t] = DISCOVERED | e;
2565 insn_state[w] = DISCOVERED;
2566 if (cur_stack >= env->prog->len)
2567 return -E2BIG;
2568 insn_stack[cur_stack++] = w;
2569 return 1;
2570 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2571 verbose("back-edge from insn %d to %d\n", t, w);
2572 return -EINVAL;
2573 } else if (insn_state[w] == EXPLORED) {
2574 /* forward- or cross-edge */
2575 insn_state[t] = DISCOVERED | e;
2576 } else {
2577 verbose("insn state internal bug\n");
2578 return -EFAULT;
2579 }
2580 return 0;
2581}
2582
2583/* non-recursive depth-first-search to detect loops in BPF program
2584 * loop == back-edge in directed graph
2585 */
58e2af8b 2586static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2587{
2588 struct bpf_insn *insns = env->prog->insnsi;
2589 int insn_cnt = env->prog->len;
2590 int ret = 0;
2591 int i, t;
2592
2593 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2594 if (!insn_state)
2595 return -ENOMEM;
2596
2597 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2598 if (!insn_stack) {
2599 kfree(insn_state);
2600 return -ENOMEM;
2601 }
2602
2603 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2604 insn_stack[0] = 0; /* 0 is the first instruction */
2605 cur_stack = 1;
2606
2607peek_stack:
2608 if (cur_stack == 0)
2609 goto check_state;
2610 t = insn_stack[cur_stack - 1];
2611
2612 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2613 u8 opcode = BPF_OP(insns[t].code);
2614
2615 if (opcode == BPF_EXIT) {
2616 goto mark_explored;
2617 } else if (opcode == BPF_CALL) {
2618 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2619 if (ret == 1)
2620 goto peek_stack;
2621 else if (ret < 0)
2622 goto err_free;
07016151
DB
2623 if (t + 1 < insn_cnt)
2624 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2625 } else if (opcode == BPF_JA) {
2626 if (BPF_SRC(insns[t].code) != BPF_K) {
2627 ret = -EINVAL;
2628 goto err_free;
2629 }
2630 /* unconditional jump with single edge */
2631 ret = push_insn(t, t + insns[t].off + 1,
2632 FALLTHROUGH, env);
2633 if (ret == 1)
2634 goto peek_stack;
2635 else if (ret < 0)
2636 goto err_free;
f1bca824
AS
2637 /* tell verifier to check for equivalent states
2638 * after every call and jump
2639 */
c3de6317
AS
2640 if (t + 1 < insn_cnt)
2641 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2642 } else {
2643 /* conditional jump with two edges */
3c2ce60b 2644 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
2645 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2646 if (ret == 1)
2647 goto peek_stack;
2648 else if (ret < 0)
2649 goto err_free;
2650
2651 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2652 if (ret == 1)
2653 goto peek_stack;
2654 else if (ret < 0)
2655 goto err_free;
2656 }
2657 } else {
2658 /* all other non-branch instructions with single
2659 * fall-through edge
2660 */
2661 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2662 if (ret == 1)
2663 goto peek_stack;
2664 else if (ret < 0)
2665 goto err_free;
2666 }
2667
2668mark_explored:
2669 insn_state[t] = EXPLORED;
2670 if (cur_stack-- <= 0) {
2671 verbose("pop stack internal bug\n");
2672 ret = -EFAULT;
2673 goto err_free;
2674 }
2675 goto peek_stack;
2676
2677check_state:
2678 for (i = 0; i < insn_cnt; i++) {
2679 if (insn_state[i] != EXPLORED) {
2680 verbose("unreachable insn %d\n", i);
2681 ret = -EINVAL;
2682 goto err_free;
2683 }
2684 }
2685 ret = 0; /* cfg looks good */
2686
2687err_free:
2688 kfree(insn_state);
2689 kfree(insn_stack);
2690 return ret;
2691}
2692
969bf05e
AS
2693/* the following conditions reduce the number of explored insns
2694 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2695 */
1ad2f583
DB
2696static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2697 struct bpf_reg_state *old,
58e2af8b 2698 struct bpf_reg_state *cur)
969bf05e
AS
2699{
2700 if (old->id != cur->id)
2701 return false;
2702
2703 /* old ptr_to_packet is more conservative, since it allows smaller
2704 * range. Ex:
2705 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2706 * old(off=0,r=10) means that with range=10 the verifier proceeded
2707 * further and found no issues with the program. Now we're in the same
2708 * spot with cur(off=0,r=20), so we're safe too, since anything further
2709 * will only be looking at most 10 bytes after this pointer.
2710 */
2711 if (old->off == cur->off && old->range < cur->range)
2712 return true;
2713
2714 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2715 * since both cannot be used for packet access and safe(old)
2716 * pointer has smaller off that could be used for further
2717 * 'if (ptr > data_end)' check
2718 * Ex:
2719 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2720 * that we cannot access the packet.
2721 * The safe range is:
2722 * [ptr, ptr + range - off)
2723 * so whenever off >=range, it means no safe bytes from this pointer.
2724 * When comparing old->off <= cur->off, it means that older code
2725 * went with smaller offset and that offset was later
2726 * used to figure out the safe range after 'if (ptr > data_end)' check
2727 * Say, 'old' state was explored like:
2728 * ... R3(off=0, r=0)
2729 * R4 = R3 + 20
2730 * ... now R4(off=20,r=0) <-- here
2731 * if (R4 > data_end)
2732 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2733 * ... the code further went all the way to bpf_exit.
2734 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2735 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2736 * goes further, such cur_R4 will give larger safe packet range after
2737 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2738 * so they will be good with r=30 and we can prune the search.
2739 */
1ad2f583 2740 if (!env->strict_alignment && old->off <= cur->off &&
969bf05e
AS
2741 old->off >= old->range && cur->off >= cur->range)
2742 return true;
2743
2744 return false;
2745}
2746
f1bca824
AS
2747/* compare two verifier states
2748 *
2749 * all states stored in state_list are known to be valid, since
2750 * verifier reached 'bpf_exit' instruction through them
2751 *
2752 * this function is called when verifier exploring different branches of
2753 * execution popped from the state stack. If it sees an old state that has
2754 * more strict register state and more strict stack state then this execution
2755 * branch doesn't need to be explored further, since verifier already
2756 * concluded that more strict state leads to valid finish.
2757 *
2758 * Therefore two states are equivalent if register state is more conservative
2759 * and explored stack state is more conservative than the current one.
2760 * Example:
2761 * explored current
2762 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2763 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2764 *
2765 * In other words if current stack state (one being explored) has more
2766 * valid slots than old one that already passed validation, it means
2767 * the verifier can stop exploring and conclude that current state is valid too
2768 *
2769 * Similarly with registers. If explored state has register type as invalid
2770 * whereas register type in current state is meaningful, it means that
2771 * the current state will reach 'bpf_exit' instruction safely
2772 */
48461135
JB
2773static bool states_equal(struct bpf_verifier_env *env,
2774 struct bpf_verifier_state *old,
58e2af8b 2775 struct bpf_verifier_state *cur)
f1bca824 2776{
e2d2afe1 2777 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2778 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2779 int i;
2780
2781 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2782 rold = &old->regs[i];
2783 rcur = &cur->regs[i];
2784
2785 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2786 continue;
2787
48461135
JB
2788 /* If the ranges were not the same, but everything else was and
2789 * we didn't do a variable access into a map then we are a-ok.
2790 */
e2d2afe1 2791 if (!varlen_map_access &&
d2a4dd37 2792 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2793 continue;
2794
e2d2afe1
JB
2795 /* If we didn't map access then again we don't care about the
2796 * mismatched range values and it's ok if our old type was
2797 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2798 */
1a0dc1ac 2799 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2800 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2801 rcur->type != NOT_INIT))
1a0dc1ac
AS
2802 continue;
2803
3c2ce60b
DB
2804 /* Don't care about the reg->id in this case. */
2805 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2806 rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2807 rold->map_ptr == rcur->map_ptr)
2808 continue;
2809
969bf05e 2810 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
1ad2f583 2811 compare_ptrs_to_packet(env, rold, rcur))
969bf05e
AS
2812 continue;
2813
1a0dc1ac 2814 return false;
f1bca824
AS
2815 }
2816
2817 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2818 if (old->stack_slot_type[i] == STACK_INVALID)
2819 continue;
2820 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2821 /* Ex: old explored (safe) state has STACK_SPILL in
2822 * this stack slot, but current has has STACK_MISC ->
2823 * this verifier states are not equivalent,
2824 * return false to continue verification of this path
2825 */
f1bca824 2826 return false;
9c399760
AS
2827 if (i % BPF_REG_SIZE)
2828 continue;
2829 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2830 &cur->spilled_regs[i / BPF_REG_SIZE],
2831 sizeof(old->spilled_regs[0])))
2832 /* when explored and current stack slot types are
2833 * the same, check that stored pointers types
2834 * are the same as well.
2835 * Ex: explored safe path could have stored
58e2af8b 2836 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2837 * but current path has stored:
58e2af8b 2838 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2839 * such verifier states are not equivalent.
2840 * return false to continue verification of this path
2841 */
2842 return false;
2843 else
2844 continue;
f1bca824
AS
2845 }
2846 return true;
2847}
2848
58e2af8b 2849static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2850{
58e2af8b
JK
2851 struct bpf_verifier_state_list *new_sl;
2852 struct bpf_verifier_state_list *sl;
f1bca824
AS
2853
2854 sl = env->explored_states[insn_idx];
2855 if (!sl)
2856 /* this 'insn_idx' instruction wasn't marked, so we will not
2857 * be doing state search here
2858 */
2859 return 0;
2860
2861 while (sl != STATE_LIST_MARK) {
48461135 2862 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2863 /* reached equivalent register/stack state,
2864 * prune the search
2865 */
2866 return 1;
2867 sl = sl->next;
2868 }
2869
2870 /* there were no equivalent states, remember current one.
2871 * technically the current state is not proven to be safe yet,
2872 * but it will either reach bpf_exit (which means it's safe) or
2873 * it will be rejected. Since there are no loops, we won't be
2874 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2875 */
58e2af8b 2876 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2877 if (!new_sl)
2878 return -ENOMEM;
2879
2880 /* add new state to the head of linked list */
2881 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2882 new_sl->next = env->explored_states[insn_idx];
2883 env->explored_states[insn_idx] = new_sl;
2884 return 0;
2885}
2886
13a27dfc
JK
2887static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2888 int insn_idx, int prev_insn_idx)
2889{
2890 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2891 return 0;
2892
2893 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2894}
2895
58e2af8b 2896static int do_check(struct bpf_verifier_env *env)
17a52670 2897{
58e2af8b 2898 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2899 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2900 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2901 int insn_cnt = env->prog->len;
2902 int insn_idx, prev_insn_idx = 0;
2903 int insn_processed = 0;
2904 bool do_print_state = false;
2905
2906 init_reg_state(regs);
2907 insn_idx = 0;
48461135 2908 env->varlen_map_value_access = false;
17a52670
AS
2909 for (;;) {
2910 struct bpf_insn *insn;
2911 u8 class;
2912 int err;
2913
2914 if (insn_idx >= insn_cnt) {
2915 verbose("invalid insn idx %d insn_cnt %d\n",
2916 insn_idx, insn_cnt);
2917 return -EFAULT;
2918 }
2919
2920 insn = &insns[insn_idx];
2921 class = BPF_CLASS(insn->code);
2922
07016151 2923 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 2924 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
2925 insn_processed);
2926 return -E2BIG;
2927 }
2928
f1bca824
AS
2929 err = is_state_visited(env, insn_idx);
2930 if (err < 0)
2931 return err;
2932 if (err == 1) {
2933 /* found equivalent state, can prune the search */
2934 if (log_level) {
2935 if (do_print_state)
2936 verbose("\nfrom %d to %d: safe\n",
2937 prev_insn_idx, insn_idx);
2938 else
2939 verbose("%d: safe\n", insn_idx);
2940 }
2941 goto process_bpf_exit;
2942 }
2943
3c2ce60b
DB
2944 if (need_resched())
2945 cond_resched();
2946
c5fc9692
DM
2947 if (log_level > 1 || (log_level && do_print_state)) {
2948 if (log_level > 1)
2949 verbose("%d:", insn_idx);
2950 else
2951 verbose("\nfrom %d to %d:",
2952 prev_insn_idx, insn_idx);
1a0dc1ac 2953 print_verifier_state(&env->cur_state);
17a52670
AS
2954 do_print_state = false;
2955 }
2956
2957 if (log_level) {
2958 verbose("%d: ", insn_idx);
0d0e5769 2959 print_bpf_insn(env, insn);
17a52670
AS
2960 }
2961
13a27dfc
JK
2962 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2963 if (err)
2964 return err;
2965
17a52670 2966 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2967 err = check_alu_op(env, insn);
17a52670
AS
2968 if (err)
2969 return err;
2970
2971 } else if (class == BPF_LDX) {
3df126f3 2972 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2973
2974 /* check for reserved fields is already done */
2975
17a52670
AS
2976 /* check src operand */
2977 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2978 if (err)
2979 return err;
2980
2981 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2982 if (err)
2983 return err;
2984
725f9dcd
AS
2985 src_reg_type = regs[insn->src_reg].type;
2986
17a52670
AS
2987 /* check that memory (src_reg + off) is readable,
2988 * the state of dst_reg will be updated by this func
2989 */
2990 err = check_mem_access(env, insn->src_reg, insn->off,
2991 BPF_SIZE(insn->code), BPF_READ,
2992 insn->dst_reg);
2993 if (err)
2994 return err;
2995
ea2e7ce5
AS
2996 if (BPF_SIZE(insn->code) != BPF_W &&
2997 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2998 insn_idx++;
2999 continue;
3000 }
9bac3d6d 3001
3df126f3
JK
3002 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3003
3004 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3005 /* saw a valid insn
3006 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3007 * save type to validate intersecting paths
9bac3d6d 3008 */
3df126f3 3009 *prev_src_type = src_reg_type;
9bac3d6d 3010
3df126f3 3011 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3012 (src_reg_type == PTR_TO_CTX ||
3df126f3 3013 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3014 /* ABuser program is trying to use the same insn
3015 * dst_reg = *(u32*) (src_reg + off)
3016 * with different pointer types:
3017 * src_reg == ctx in one branch and
3018 * src_reg == stack|map in some other branch.
3019 * Reject it.
3020 */
3021 verbose("same insn cannot be used with different pointers\n");
3022 return -EINVAL;
3023 }
3024
17a52670 3025 } else if (class == BPF_STX) {
3df126f3 3026 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3027
17a52670
AS
3028 if (BPF_MODE(insn->code) == BPF_XADD) {
3029 err = check_xadd(env, insn);
3030 if (err)
3031 return err;
3032 insn_idx++;
3033 continue;
3034 }
3035
17a52670
AS
3036 /* check src1 operand */
3037 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3038 if (err)
3039 return err;
3040 /* check src2 operand */
3041 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3042 if (err)
3043 return err;
3044
d691f9e8
AS
3045 dst_reg_type = regs[insn->dst_reg].type;
3046
17a52670
AS
3047 /* check that memory (dst_reg + off) is writeable */
3048 err = check_mem_access(env, insn->dst_reg, insn->off,
3049 BPF_SIZE(insn->code), BPF_WRITE,
3050 insn->src_reg);
3051 if (err)
3052 return err;
3053
3df126f3
JK
3054 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3055
3056 if (*prev_dst_type == NOT_INIT) {
3057 *prev_dst_type = dst_reg_type;
3058 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3059 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3060 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3061 verbose("same insn cannot be used with different pointers\n");
3062 return -EINVAL;
3063 }
3064
17a52670
AS
3065 } else if (class == BPF_ST) {
3066 if (BPF_MODE(insn->code) != BPF_MEM ||
3067 insn->src_reg != BPF_REG_0) {
3068 verbose("BPF_ST uses reserved fields\n");
3069 return -EINVAL;
3070 }
3071 /* check src operand */
3072 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3073 if (err)
3074 return err;
3075
3076 /* check that memory (dst_reg + off) is writeable */
3077 err = check_mem_access(env, insn->dst_reg, insn->off,
3078 BPF_SIZE(insn->code), BPF_WRITE,
3079 -1);
3080 if (err)
3081 return err;
3082
3083 } else if (class == BPF_JMP) {
3084 u8 opcode = BPF_OP(insn->code);
3085
3086 if (opcode == BPF_CALL) {
3087 if (BPF_SRC(insn->code) != BPF_K ||
3088 insn->off != 0 ||
3089 insn->src_reg != BPF_REG_0 ||
3090 insn->dst_reg != BPF_REG_0) {
3091 verbose("BPF_CALL uses reserved fields\n");
3092 return -EINVAL;
3093 }
3094
81ed18ab 3095 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3096 if (err)
3097 return err;
3098
3099 } else if (opcode == BPF_JA) {
3100 if (BPF_SRC(insn->code) != BPF_K ||
3101 insn->imm != 0 ||
3102 insn->src_reg != BPF_REG_0 ||
3103 insn->dst_reg != BPF_REG_0) {
3104 verbose("BPF_JA uses reserved fields\n");
3105 return -EINVAL;
3106 }
3107
3108 insn_idx += insn->off + 1;
3109 continue;
3110
3111 } else if (opcode == BPF_EXIT) {
3112 if (BPF_SRC(insn->code) != BPF_K ||
3113 insn->imm != 0 ||
3114 insn->src_reg != BPF_REG_0 ||
3115 insn->dst_reg != BPF_REG_0) {
3116 verbose("BPF_EXIT uses reserved fields\n");
3117 return -EINVAL;
3118 }
3119
3120 /* eBPF calling convetion is such that R0 is used
3121 * to return the value from eBPF program.
3122 * Make sure that it's readable at this time
3123 * of bpf_exit, which means that program wrote
3124 * something into it earlier
3125 */
3126 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3127 if (err)
3128 return err;
3129
1be7f75d
AS
3130 if (is_pointer_value(env, BPF_REG_0)) {
3131 verbose("R0 leaks addr as return value\n");
3132 return -EACCES;
3133 }
3134
f1bca824 3135process_bpf_exit:
17a52670
AS
3136 insn_idx = pop_stack(env, &prev_insn_idx);
3137 if (insn_idx < 0) {
3138 break;
3139 } else {
3140 do_print_state = true;
3141 continue;
3142 }
3143 } else {
3144 err = check_cond_jmp_op(env, insn, &insn_idx);
3145 if (err)
3146 return err;
3147 }
3148 } else if (class == BPF_LD) {
3149 u8 mode = BPF_MODE(insn->code);
3150
3151 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3152 err = check_ld_abs(env, insn);
3153 if (err)
3154 return err;
3155
17a52670
AS
3156 } else if (mode == BPF_IMM) {
3157 err = check_ld_imm(env, insn);
3158 if (err)
3159 return err;
3160
3161 insn_idx++;
3162 } else {
3163 verbose("invalid BPF_LD mode\n");
3164 return -EINVAL;
3165 }
48461135 3166 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3167 } else {
3168 verbose("unknown insn class %d\n", class);
3169 return -EINVAL;
3170 }
3171
3172 insn_idx++;
3173 }
3174
1a0dc1ac 3175 verbose("processed %d insns\n", insn_processed);
17a52670
AS
3176 return 0;
3177}
3178
56f668df
MKL
3179static int check_map_prealloc(struct bpf_map *map)
3180{
3181 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3182 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3183 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3184 !(map->map_flags & BPF_F_NO_PREALLOC);
3185}
3186
fdc15d38
AS
3187static int check_map_prog_compatibility(struct bpf_map *map,
3188 struct bpf_prog *prog)
3189
3190{
56f668df
MKL
3191 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3192 * preallocated hash maps, since doing memory allocation
3193 * in overflow_handler can crash depending on where nmi got
3194 * triggered.
3195 */
3196 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3197 if (!check_map_prealloc(map)) {
3198 verbose("perf_event programs can only use preallocated hash map\n");
3199 return -EINVAL;
3200 }
3201 if (map->inner_map_meta &&
3202 !check_map_prealloc(map->inner_map_meta)) {
3203 verbose("perf_event programs can only use preallocated inner hash map\n");
3204 return -EINVAL;
3205 }
fdc15d38
AS
3206 }
3207 return 0;
3208}
3209
0246e64d
AS
3210/* look for pseudo eBPF instructions that access map FDs and
3211 * replace them with actual map pointers
3212 */
58e2af8b 3213static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3214{
3215 struct bpf_insn *insn = env->prog->insnsi;
3216 int insn_cnt = env->prog->len;
fdc15d38 3217 int i, j, err;
0246e64d 3218
f1f7714e 3219 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3220 if (err)
3221 return err;
3222
0246e64d 3223 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3224 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3225 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3226 verbose("BPF_LDX uses reserved fields\n");
3227 return -EINVAL;
3228 }
3229
d691f9e8
AS
3230 if (BPF_CLASS(insn->code) == BPF_STX &&
3231 ((BPF_MODE(insn->code) != BPF_MEM &&
3232 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3233 verbose("BPF_STX uses reserved fields\n");
3234 return -EINVAL;
3235 }
3236
0246e64d
AS
3237 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3238 struct bpf_map *map;
3239 struct fd f;
3240
3241 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3242 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3243 insn[1].off != 0) {
3244 verbose("invalid bpf_ld_imm64 insn\n");
3245 return -EINVAL;
3246 }
3247
3248 if (insn->src_reg == 0)
3249 /* valid generic load 64-bit imm */
3250 goto next_insn;
3251
3252 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3253 verbose("unrecognized bpf_ld_imm64 insn\n");
3254 return -EINVAL;
3255 }
3256
3257 f = fdget(insn->imm);
c2101297 3258 map = __bpf_map_get(f);
0246e64d
AS
3259 if (IS_ERR(map)) {
3260 verbose("fd %d is not pointing to valid bpf_map\n",
3261 insn->imm);
0246e64d
AS
3262 return PTR_ERR(map);
3263 }
3264
fdc15d38
AS
3265 err = check_map_prog_compatibility(map, env->prog);
3266 if (err) {
3267 fdput(f);
3268 return err;
3269 }
3270
0246e64d
AS
3271 /* store map pointer inside BPF_LD_IMM64 instruction */
3272 insn[0].imm = (u32) (unsigned long) map;
3273 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3274
3275 /* check whether we recorded this map already */
3276 for (j = 0; j < env->used_map_cnt; j++)
3277 if (env->used_maps[j] == map) {
3278 fdput(f);
3279 goto next_insn;
3280 }
3281
3282 if (env->used_map_cnt >= MAX_USED_MAPS) {
3283 fdput(f);
3284 return -E2BIG;
3285 }
3286
0246e64d
AS
3287 /* hold the map. If the program is rejected by verifier,
3288 * the map will be released by release_maps() or it
3289 * will be used by the valid program until it's unloaded
3290 * and all maps are released in free_bpf_prog_info()
3291 */
92117d84
AS
3292 map = bpf_map_inc(map, false);
3293 if (IS_ERR(map)) {
3294 fdput(f);
3295 return PTR_ERR(map);
3296 }
3297 env->used_maps[env->used_map_cnt++] = map;
3298
0246e64d
AS
3299 fdput(f);
3300next_insn:
3301 insn++;
3302 i++;
3303 }
3304 }
3305
3306 /* now all pseudo BPF_LD_IMM64 instructions load valid
3307 * 'struct bpf_map *' into a register instead of user map_fd.
3308 * These pointers will be used later by verifier to validate map access.
3309 */
3310 return 0;
3311}
3312
3313/* drop refcnt of maps used by the rejected program */
58e2af8b 3314static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3315{
3316 int i;
3317
3318 for (i = 0; i < env->used_map_cnt; i++)
3319 bpf_map_put(env->used_maps[i]);
3320}
3321
3322/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3323static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3324{
3325 struct bpf_insn *insn = env->prog->insnsi;
3326 int insn_cnt = env->prog->len;
3327 int i;
3328
3329 for (i = 0; i < insn_cnt; i++, insn++)
3330 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3331 insn->src_reg = 0;
3332}
3333
8041902d
AS
3334/* single env->prog->insni[off] instruction was replaced with the range
3335 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3336 * [0, off) and [off, end) to new locations, so the patched range stays zero
3337 */
3338static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3339 u32 off, u32 cnt)
3340{
3341 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3342
3343 if (cnt == 1)
3344 return 0;
3345 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3346 if (!new_data)
3347 return -ENOMEM;
3348 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3349 memcpy(new_data + off + cnt - 1, old_data + off,
3350 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3351 env->insn_aux_data = new_data;
3352 vfree(old_data);
3353 return 0;
3354}
3355
3356static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3357 const struct bpf_insn *patch, u32 len)
3358{
3359 struct bpf_prog *new_prog;
3360
3361 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3362 if (!new_prog)
3363 return NULL;
3364 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3365 return NULL;
3366 return new_prog;
3367}
3368
9bac3d6d
AS
3369/* convert load instructions that access fields of 'struct __sk_buff'
3370 * into sequence of instructions that access fields of 'struct sk_buff'
3371 */
58e2af8b 3372static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3373{
36bbef52 3374 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3375 const int insn_cnt = env->prog->len;
36bbef52 3376 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3377 struct bpf_prog *new_prog;
d691f9e8 3378 enum bpf_access_type type;
3df126f3 3379 int i, cnt, delta = 0;
9bac3d6d 3380
36bbef52
DB
3381 if (ops->gen_prologue) {
3382 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3383 env->prog);
3384 if (cnt >= ARRAY_SIZE(insn_buf)) {
3385 verbose("bpf verifier is misconfigured\n");
3386 return -EINVAL;
3387 } else if (cnt) {
8041902d 3388 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3389 if (!new_prog)
3390 return -ENOMEM;
8041902d 3391
36bbef52 3392 env->prog = new_prog;
3df126f3 3393 delta += cnt - 1;
36bbef52
DB
3394 }
3395 }
3396
3397 if (!ops->convert_ctx_access)
9bac3d6d
AS
3398 return 0;
3399
3df126f3 3400 insn = env->prog->insnsi + delta;
36bbef52 3401
9bac3d6d 3402 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3403 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3404 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3405 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3406 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3407 type = BPF_READ;
62c7989b
DB
3408 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3409 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3410 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3411 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3412 type = BPF_WRITE;
3413 else
9bac3d6d
AS
3414 continue;
3415
8041902d 3416 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3417 continue;
9bac3d6d 3418
6b8cc1d1 3419 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
9bac3d6d
AS
3420 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3421 verbose("bpf verifier is misconfigured\n");
3422 return -EINVAL;
3423 }
3424
8041902d 3425 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3426 if (!new_prog)
3427 return -ENOMEM;
3428
3df126f3 3429 delta += cnt - 1;
9bac3d6d
AS
3430
3431 /* keep walking new program and skip insns we just inserted */
3432 env->prog = new_prog;
3df126f3 3433 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3434 }
3435
3436 return 0;
3437}
3438
79741b3b 3439/* fixup insn->imm field of bpf_call instructions
81ed18ab 3440 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3441 *
3442 * this function is called after eBPF program passed verification
3443 */
79741b3b 3444static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3445{
79741b3b
AS
3446 struct bpf_prog *prog = env->prog;
3447 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3448 const struct bpf_func_proto *fn;
79741b3b 3449 const int insn_cnt = prog->len;
81ed18ab
AS
3450 struct bpf_insn insn_buf[16];
3451 struct bpf_prog *new_prog;
3452 struct bpf_map *map_ptr;
3453 int i, cnt, delta = 0;
e245c5c6 3454
79741b3b
AS
3455 for (i = 0; i < insn_cnt; i++, insn++) {
3456 if (insn->code != (BPF_JMP | BPF_CALL))
3457 continue;
e245c5c6 3458
79741b3b
AS
3459 if (insn->imm == BPF_FUNC_get_route_realm)
3460 prog->dst_needed = 1;
3461 if (insn->imm == BPF_FUNC_get_prandom_u32)
3462 bpf_user_rnd_init_once();
79741b3b 3463 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3464 /* If we tail call into other programs, we
3465 * cannot make any assumptions since they can
3466 * be replaced dynamically during runtime in
3467 * the program array.
3468 */
3469 prog->cb_access = 1;
7b9f6da1 3470
79741b3b
AS
3471 /* mark bpf_tail_call as different opcode to avoid
3472 * conditional branch in the interpeter for every normal
3473 * call and to prevent accidental JITing by JIT compiler
3474 * that doesn't support bpf_tail_call yet
e245c5c6 3475 */
79741b3b
AS
3476 insn->imm = 0;
3477 insn->code |= BPF_X;
3478 continue;
3479 }
e245c5c6 3480
81ed18ab
AS
3481 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3482 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3483 if (map_ptr == BPF_MAP_PTR_POISON ||
3484 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3485 goto patch_call_imm;
3486
3487 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3488 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3489 verbose("bpf verifier is misconfigured\n");
3490 return -EINVAL;
3491 }
3492
3493 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3494 cnt);
3495 if (!new_prog)
3496 return -ENOMEM;
3497
3498 delta += cnt - 1;
3499
3500 /* keep walking new program and skip insns we just inserted */
3501 env->prog = prog = new_prog;
3502 insn = new_prog->insnsi + i + delta;
3503 continue;
3504 }
3505
3506patch_call_imm:
79741b3b
AS
3507 fn = prog->aux->ops->get_func_proto(insn->imm);
3508 /* all functions that have prototype and verifier allowed
3509 * programs to call them, must be real in-kernel functions
3510 */
3511 if (!fn->func) {
3512 verbose("kernel subsystem misconfigured func %s#%d\n",
3513 func_id_name(insn->imm), insn->imm);
3514 return -EFAULT;
e245c5c6 3515 }
79741b3b 3516 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3517 }
e245c5c6 3518
79741b3b
AS
3519 return 0;
3520}
e245c5c6 3521
58e2af8b 3522static void free_states(struct bpf_verifier_env *env)
f1bca824 3523{
58e2af8b 3524 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3525 int i;
3526
3527 if (!env->explored_states)
3528 return;
3529
3530 for (i = 0; i < env->prog->len; i++) {
3531 sl = env->explored_states[i];
3532
3533 if (sl)
3534 while (sl != STATE_LIST_MARK) {
3535 sln = sl->next;
3536 kfree(sl);
3537 sl = sln;
3538 }
3539 }
3540
3541 kfree(env->explored_states);
3542}
3543
9bac3d6d 3544int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3545{
cbd35700 3546 char __user *log_ubuf = NULL;
58e2af8b 3547 struct bpf_verifier_env *env;
51580e79
AS
3548 int ret = -EINVAL;
3549
58e2af8b 3550 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3551 * allocate/free it every time bpf_check() is called
3552 */
58e2af8b 3553 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3554 if (!env)
3555 return -ENOMEM;
3556
3df126f3
JK
3557 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3558 (*prog)->len);
3559 ret = -ENOMEM;
3560 if (!env->insn_aux_data)
3561 goto err_free_env;
9bac3d6d 3562 env->prog = *prog;
0246e64d 3563
cbd35700
AS
3564 /* grab the mutex to protect few globals used by verifier */
3565 mutex_lock(&bpf_verifier_lock);
3566
3567 if (attr->log_level || attr->log_buf || attr->log_size) {
3568 /* user requested verbose verifier output
3569 * and supplied buffer to store the verification trace
3570 */
3571 log_level = attr->log_level;
3572 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3573 log_size = attr->log_size;
3574 log_len = 0;
3575
3576 ret = -EINVAL;
3577 /* log_* values have to be sane */
3578 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3579 log_level == 0 || log_ubuf == NULL)
3df126f3 3580 goto err_unlock;
cbd35700
AS
3581
3582 ret = -ENOMEM;
3583 log_buf = vmalloc(log_size);
3584 if (!log_buf)
3df126f3 3585 goto err_unlock;
cbd35700
AS
3586 } else {
3587 log_level = 0;
3588 }
1ad2f583
DB
3589
3590 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3591 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 3592 env->strict_alignment = true;
cbd35700 3593
0246e64d
AS
3594 ret = replace_map_fd_with_map_ptr(env);
3595 if (ret < 0)
3596 goto skip_full_check;
3597
9bac3d6d 3598 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3599 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3600 GFP_USER);
3601 ret = -ENOMEM;
3602 if (!env->explored_states)
3603 goto skip_full_check;
3604
475fb78f
AS
3605 ret = check_cfg(env);
3606 if (ret < 0)
3607 goto skip_full_check;
3608
1be7f75d
AS
3609 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3610
17a52670 3611 ret = do_check(env);
cbd35700 3612
0246e64d 3613skip_full_check:
17a52670 3614 while (pop_stack(env, NULL) >= 0);
f1bca824 3615 free_states(env);
0246e64d 3616
9bac3d6d
AS
3617 if (ret == 0)
3618 /* program is valid, convert *(u32*)(ctx + off) accesses */
3619 ret = convert_ctx_accesses(env);
3620
e245c5c6 3621 if (ret == 0)
79741b3b 3622 ret = fixup_bpf_calls(env);
e245c5c6 3623
cbd35700
AS
3624 if (log_level && log_len >= log_size - 1) {
3625 BUG_ON(log_len >= log_size);
3626 /* verifier log exceeded user supplied buffer */
3627 ret = -ENOSPC;
3628 /* fall through to return what was recorded */
3629 }
3630
3631 /* copy verifier log back to user space including trailing zero */
3632 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3633 ret = -EFAULT;
3634 goto free_log_buf;
3635 }
3636
0246e64d
AS
3637 if (ret == 0 && env->used_map_cnt) {
3638 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3639 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3640 sizeof(env->used_maps[0]),
3641 GFP_KERNEL);
0246e64d 3642
9bac3d6d 3643 if (!env->prog->aux->used_maps) {
0246e64d
AS
3644 ret = -ENOMEM;
3645 goto free_log_buf;
3646 }
3647
9bac3d6d 3648 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3649 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3650 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3651
3652 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3653 * bpf_ld_imm64 instructions
3654 */
3655 convert_pseudo_ld_imm64(env);
3656 }
cbd35700
AS
3657
3658free_log_buf:
3659 if (log_level)
3660 vfree(log_buf);
9bac3d6d 3661 if (!env->prog->aux->used_maps)
0246e64d
AS
3662 /* if we didn't copy map pointers into bpf_prog_info, release
3663 * them now. Otherwise free_bpf_prog_info() will release them.
3664 */
3665 release_maps(env);
9bac3d6d 3666 *prog = env->prog;
3df126f3 3667err_unlock:
cbd35700 3668 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3669 vfree(env->insn_aux_data);
3670err_free_env:
3671 kfree(env);
51580e79
AS
3672 return ret;
3673}
13a27dfc
JK
3674
3675int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3676 void *priv)
3677{
3678 struct bpf_verifier_env *env;
3679 int ret;
3680
3681 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3682 if (!env)
3683 return -ENOMEM;
3684
3685 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3686 prog->len);
3687 ret = -ENOMEM;
3688 if (!env->insn_aux_data)
3689 goto err_free_env;
3690 env->prog = prog;
3691 env->analyzer_ops = ops;
3692 env->analyzer_priv = priv;
3693
3694 /* grab the mutex to protect few globals used by verifier */
3695 mutex_lock(&bpf_verifier_lock);
3696
3697 log_level = 0;
1ad2f583 3698
e07b98d9 3699 env->strict_alignment = false;
1ad2f583
DB
3700 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3701 env->strict_alignment = true;
13a27dfc
JK
3702
3703 env->explored_states = kcalloc(env->prog->len,
3704 sizeof(struct bpf_verifier_state_list *),
3705 GFP_KERNEL);
3706 ret = -ENOMEM;
3707 if (!env->explored_states)
3708 goto skip_full_check;
3709
3710 ret = check_cfg(env);
3711 if (ret < 0)
3712 goto skip_full_check;
3713
3714 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3715
3716 ret = do_check(env);
3717
3718skip_full_check:
3719 while (pop_stack(env, NULL) >= 0);
3720 free_states(env);
3721
3722 mutex_unlock(&bpf_verifier_lock);
3723 vfree(env->insn_aux_data);
3724err_free_env:
3725 kfree(env);
3726 return ret;
3727}
3728EXPORT_SYMBOL_GPL(bpf_analyzer);