]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
bpf: add bpf_skb_adjust_room helper
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
3c2ce60b 143#define BPF_COMPLEXITY_LIMIT_INSNS 98304
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
d1174416
DM
244 if (reg->min_align)
245 verbose(",min_align=%u", reg->min_align);
246 if (reg->aux_off)
247 verbose(",aux_off=%u", reg->aux_off);
248 if (reg->aux_off_align)
249 verbose(",aux_off_align=%u", reg->aux_off_align);
17a52670 250 }
9c399760 251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 252 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 253 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
255 }
256 verbose("\n");
257}
258
cbd35700
AS
259static const char *const bpf_class_string[] = {
260 [BPF_LD] = "ld",
261 [BPF_LDX] = "ldx",
262 [BPF_ST] = "st",
263 [BPF_STX] = "stx",
264 [BPF_ALU] = "alu",
265 [BPF_JMP] = "jmp",
266 [BPF_RET] = "BUG",
267 [BPF_ALU64] = "alu64",
268};
269
687f0715 270static const char *const bpf_alu_string[16] = {
cbd35700
AS
271 [BPF_ADD >> 4] = "+=",
272 [BPF_SUB >> 4] = "-=",
273 [BPF_MUL >> 4] = "*=",
274 [BPF_DIV >> 4] = "/=",
275 [BPF_OR >> 4] = "|=",
276 [BPF_AND >> 4] = "&=",
277 [BPF_LSH >> 4] = "<<=",
278 [BPF_RSH >> 4] = ">>=",
279 [BPF_NEG >> 4] = "neg",
280 [BPF_MOD >> 4] = "%=",
281 [BPF_XOR >> 4] = "^=",
282 [BPF_MOV >> 4] = "=",
283 [BPF_ARSH >> 4] = "s>>=",
284 [BPF_END >> 4] = "endian",
285};
286
287static const char *const bpf_ldst_string[] = {
288 [BPF_W >> 3] = "u32",
289 [BPF_H >> 3] = "u16",
290 [BPF_B >> 3] = "u8",
291 [BPF_DW >> 3] = "u64",
292};
293
687f0715 294static const char *const bpf_jmp_string[16] = {
cbd35700
AS
295 [BPF_JA >> 4] = "jmp",
296 [BPF_JEQ >> 4] = "==",
297 [BPF_JGT >> 4] = ">",
298 [BPF_JGE >> 4] = ">=",
299 [BPF_JSET >> 4] = "&",
300 [BPF_JNE >> 4] = "!=",
301 [BPF_JSGT >> 4] = "s>",
302 [BPF_JSGE >> 4] = "s>=",
303 [BPF_CALL >> 4] = "call",
304 [BPF_EXIT >> 4] = "exit",
305};
306
0d0e5769
DB
307static void print_bpf_insn(const struct bpf_verifier_env *env,
308 const struct bpf_insn *insn)
cbd35700
AS
309{
310 u8 class = BPF_CLASS(insn->code);
311
312 if (class == BPF_ALU || class == BPF_ALU64) {
313 if (BPF_SRC(insn->code) == BPF_X)
314 verbose("(%02x) %sr%d %s %sr%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->src_reg);
320 else
321 verbose("(%02x) %sr%d %s %s%d\n",
322 insn->code, class == BPF_ALU ? "(u32) " : "",
323 insn->dst_reg,
324 bpf_alu_string[BPF_OP(insn->code) >> 4],
325 class == BPF_ALU ? "(u32) " : "",
326 insn->imm);
327 } else if (class == BPF_STX) {
328 if (BPF_MODE(insn->code) == BPF_MEM)
329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg,
333 insn->off, insn->src_reg);
334 else if (BPF_MODE(insn->code) == BPF_XADD)
335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 insn->code,
337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 insn->dst_reg, insn->off,
339 insn->src_reg);
340 else
341 verbose("BUG_%02x\n", insn->code);
342 } else if (class == BPF_ST) {
343 if (BPF_MODE(insn->code) != BPF_MEM) {
344 verbose("BUG_st_%02x\n", insn->code);
345 return;
346 }
347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 insn->code,
349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 insn->dst_reg,
351 insn->off, insn->imm);
352 } else if (class == BPF_LDX) {
353 if (BPF_MODE(insn->code) != BPF_MEM) {
354 verbose("BUG_ldx_%02x\n", insn->code);
355 return;
356 }
357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 insn->code, insn->dst_reg,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->src_reg, insn->off);
361 } else if (class == BPF_LD) {
362 if (BPF_MODE(insn->code) == BPF_ABS) {
363 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 insn->code,
365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 insn->imm);
367 } else if (BPF_MODE(insn->code) == BPF_IND) {
368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->src_reg, insn->imm);
0d0e5769
DB
372 } else if (BPF_MODE(insn->code) == BPF_IMM &&
373 BPF_SIZE(insn->code) == BPF_DW) {
374 /* At this point, we already made sure that the second
375 * part of the ldimm64 insn is accessible.
376 */
377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379
380 if (map_ptr && !env->allow_ptr_leaks)
381 imm = 0;
382
383 verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
385 } else {
386 verbose("BUG_ld_%02x\n", insn->code);
387 return;
388 }
389 } else if (class == BPF_JMP) {
390 u8 opcode = BPF_OP(insn->code);
391
392 if (opcode == BPF_CALL) {
ebb676da
TG
393 verbose("(%02x) call %s#%d\n", insn->code,
394 func_id_name(insn->imm), insn->imm);
cbd35700
AS
395 } else if (insn->code == (BPF_JMP | BPF_JA)) {
396 verbose("(%02x) goto pc%+d\n",
397 insn->code, insn->off);
398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 verbose("(%02x) exit\n", insn->code);
400 } else if (BPF_SRC(insn->code) == BPF_X) {
401 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 insn->code, insn->dst_reg,
403 bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 insn->src_reg, insn->off);
405 } else {
406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 insn->code, insn->dst_reg,
408 bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 insn->imm, insn->off);
410 }
411 } else {
412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 }
414}
415
58e2af8b 416static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 417{
58e2af8b 418 struct bpf_verifier_stack_elem *elem;
17a52670
AS
419 int insn_idx;
420
421 if (env->head == NULL)
422 return -1;
423
424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 insn_idx = env->head->insn_idx;
426 if (prev_insn_idx)
427 *prev_insn_idx = env->head->prev_insn_idx;
428 elem = env->head->next;
429 kfree(env->head);
430 env->head = elem;
431 env->stack_size--;
432 return insn_idx;
433}
434
58e2af8b
JK
435static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 int insn_idx, int prev_insn_idx)
17a52670 437{
58e2af8b 438 struct bpf_verifier_stack_elem *elem;
17a52670 439
58e2af8b 440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
441 if (!elem)
442 goto err;
443
444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 elem->insn_idx = insn_idx;
446 elem->prev_insn_idx = prev_insn_idx;
447 elem->next = env->head;
448 env->head = elem;
449 env->stack_size++;
07016151 450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
451 verbose("BPF program is too complex\n");
452 goto err;
453 }
454 return &elem->st;
455err:
456 /* pop all elements and return */
457 while (pop_stack(env, NULL) >= 0);
458 return NULL;
459}
460
461#define CALLER_SAVED_REGS 6
462static const int caller_saved[CALLER_SAVED_REGS] = {
463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464};
465
a9789ef9
DB
466static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
467{
468 BUG_ON(regno >= MAX_BPF_REG);
469
470 memset(&regs[regno], 0, sizeof(regs[regno]));
471 regs[regno].type = NOT_INIT;
472 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
473 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
474}
475
58e2af8b 476static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
477{
478 int i;
479
a9789ef9
DB
480 for (i = 0; i < MAX_BPF_REG; i++)
481 mark_reg_not_init(regs, i);
17a52670
AS
482
483 /* frame pointer */
484 regs[BPF_REG_FP].type = FRAME_PTR;
485
486 /* 1st arg to a function */
487 regs[BPF_REG_1].type = PTR_TO_CTX;
488}
489
6760bf2d 490static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 491{
17a52670 492 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 493 regs[regno].id = 0;
17a52670 494 regs[regno].imm = 0;
17a52670
AS
495}
496
6760bf2d
DB
497static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
498{
499 BUG_ON(regno >= MAX_BPF_REG);
500 __mark_reg_unknown_value(regs, regno);
501}
502
48461135
JB
503static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
504{
505 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
506 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
d1174416 507 regs[regno].min_align = 0;
48461135
JB
508}
509
f0318d01
GB
510static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
511 u32 regno)
512{
513 mark_reg_unknown_value(regs, regno);
514 reset_reg_range_values(regs, regno);
515}
516
17a52670
AS
517enum reg_arg_type {
518 SRC_OP, /* register is used as source operand */
519 DST_OP, /* register is used as destination operand */
520 DST_OP_NO_MARK /* same as above, check only, don't mark */
521};
522
58e2af8b 523static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
524 enum reg_arg_type t)
525{
526 if (regno >= MAX_BPF_REG) {
527 verbose("R%d is invalid\n", regno);
528 return -EINVAL;
529 }
530
531 if (t == SRC_OP) {
532 /* check whether register used as source operand can be read */
533 if (regs[regno].type == NOT_INIT) {
534 verbose("R%d !read_ok\n", regno);
535 return -EACCES;
536 }
537 } else {
538 /* check whether register used as dest operand can be written to */
539 if (regno == BPF_REG_FP) {
540 verbose("frame pointer is read only\n");
541 return -EACCES;
542 }
543 if (t == DST_OP)
544 mark_reg_unknown_value(regs, regno);
545 }
546 return 0;
547}
548
549static int bpf_size_to_bytes(int bpf_size)
550{
551 if (bpf_size == BPF_W)
552 return 4;
553 else if (bpf_size == BPF_H)
554 return 2;
555 else if (bpf_size == BPF_B)
556 return 1;
557 else if (bpf_size == BPF_DW)
558 return 8;
559 else
560 return -EINVAL;
561}
562
1be7f75d
AS
563static bool is_spillable_regtype(enum bpf_reg_type type)
564{
565 switch (type) {
566 case PTR_TO_MAP_VALUE:
567 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 568 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
569 case PTR_TO_STACK:
570 case PTR_TO_CTX:
969bf05e
AS
571 case PTR_TO_PACKET:
572 case PTR_TO_PACKET_END:
1be7f75d
AS
573 case FRAME_PTR:
574 case CONST_PTR_TO_MAP:
575 return true;
576 default:
577 return false;
578 }
579}
580
17a52670
AS
581/* check_stack_read/write functions track spill/fill of registers,
582 * stack boundary and alignment are checked in check_mem_access()
583 */
58e2af8b
JK
584static int check_stack_write(struct bpf_verifier_state *state, int off,
585 int size, int value_regno)
17a52670 586{
17a52670 587 int i;
9c399760
AS
588 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
589 * so it's aligned access and [off, off + size) are within stack limits
590 */
17a52670
AS
591
592 if (value_regno >= 0 &&
1be7f75d 593 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
594
595 /* register containing pointer is being spilled into stack */
9c399760 596 if (size != BPF_REG_SIZE) {
17a52670
AS
597 verbose("invalid size of register spill\n");
598 return -EACCES;
599 }
600
17a52670 601 /* save register state */
9c399760
AS
602 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
603 state->regs[value_regno];
17a52670 604
9c399760
AS
605 for (i = 0; i < BPF_REG_SIZE; i++)
606 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
607 } else {
17a52670 608 /* regular write of data into stack */
9c399760 609 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 610 (struct bpf_reg_state) {};
9c399760
AS
611
612 for (i = 0; i < size; i++)
613 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
614 }
615 return 0;
616}
617
58e2af8b 618static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
619 int value_regno)
620{
9c399760 621 u8 *slot_type;
17a52670 622 int i;
17a52670 623
9c399760 624 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 625
9c399760
AS
626 if (slot_type[0] == STACK_SPILL) {
627 if (size != BPF_REG_SIZE) {
17a52670
AS
628 verbose("invalid size of register spill\n");
629 return -EACCES;
630 }
9c399760
AS
631 for (i = 1; i < BPF_REG_SIZE; i++) {
632 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
633 verbose("corrupted spill memory\n");
634 return -EACCES;
635 }
636 }
637
638 if (value_regno >= 0)
639 /* restore register state from stack */
9c399760
AS
640 state->regs[value_regno] =
641 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
642 return 0;
643 } else {
644 for (i = 0; i < size; i++) {
9c399760 645 if (slot_type[i] != STACK_MISC) {
17a52670
AS
646 verbose("invalid read from stack off %d+%d size %d\n",
647 off, i, size);
648 return -EACCES;
649 }
650 }
651 if (value_regno >= 0)
652 /* have read misc data from the stack */
f0318d01
GB
653 mark_reg_unknown_value_and_range(state->regs,
654 value_regno);
17a52670
AS
655 return 0;
656 }
657}
658
659/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 660static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
661 int size)
662{
663 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
664
5722569b 665 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
666 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
667 map->value_size, off, size);
668 return -EACCES;
669 }
670 return 0;
671}
672
dbcfe5f7
GB
673/* check read/write into an adjusted map element */
674static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
675 int off, int size)
676{
677 struct bpf_verifier_state *state = &env->cur_state;
678 struct bpf_reg_state *reg = &state->regs[regno];
679 int err;
680
681 /* We adjusted the register to this map value, so we
682 * need to change off and size to min_value and max_value
683 * respectively to make sure our theoretical access will be
684 * safe.
685 */
686 if (log_level)
687 print_verifier_state(state);
688 env->varlen_map_value_access = true;
689 /* The minimum value is only important with signed
690 * comparisons where we can't assume the floor of a
691 * value is 0. If we are using signed variables for our
692 * index'es we need to make sure that whatever we use
693 * will have a set floor within our range.
694 */
695 if (reg->min_value < 0) {
696 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
697 regno);
698 return -EACCES;
699 }
700 err = check_map_access(env, regno, reg->min_value + off, size);
701 if (err) {
702 verbose("R%d min value is outside of the array range\n",
703 regno);
704 return err;
705 }
706
707 /* If we haven't set a max value then we need to bail
708 * since we can't be sure we won't do bad things.
709 */
710 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
711 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
712 regno);
713 return -EACCES;
714 }
715 return check_map_access(env, regno, reg->max_value + off, size);
716}
717
969bf05e
AS
718#define MAX_PACKET_OFF 0xffff
719
58e2af8b 720static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
721 const struct bpf_call_arg_meta *meta,
722 enum bpf_access_type t)
4acf6c0b 723{
36bbef52 724 switch (env->prog->type) {
3a0af8fd
TG
725 case BPF_PROG_TYPE_LWT_IN:
726 case BPF_PROG_TYPE_LWT_OUT:
727 /* dst_input() and dst_output() can't write for now */
728 if (t == BPF_WRITE)
729 return false;
7e57fbb2 730 /* fallthrough */
36bbef52
DB
731 case BPF_PROG_TYPE_SCHED_CLS:
732 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 733 case BPF_PROG_TYPE_XDP:
3a0af8fd 734 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
735 if (meta)
736 return meta->pkt_access;
737
738 env->seen_direct_write = true;
4acf6c0b
BB
739 return true;
740 default:
741 return false;
742 }
743}
744
58e2af8b 745static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
746 int size)
747{
58e2af8b
JK
748 struct bpf_reg_state *regs = env->cur_state.regs;
749 struct bpf_reg_state *reg = &regs[regno];
969bf05e 750
d91b28ed 751 off += reg->off;
b399cf64 752 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
753 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
754 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
755 return -EACCES;
756 }
757 return 0;
758}
759
17a52670 760/* check access to 'struct bpf_context' fields */
31fd8581 761static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 762 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 763{
23994631 764 struct bpf_insn_access_aux info = { .reg_type = *reg_type };
31fd8581 765
13a27dfc
JK
766 /* for analyzer ctx accesses are already validated and converted */
767 if (env->analyzer_ops)
768 return 0;
769
17a52670 770 if (env->prog->aux->ops->is_valid_access &&
23994631
YS
771 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
772 /* a non zero info.ctx_field_size indicates:
31fd8581
YS
773 * . For this field, the prog type specific ctx conversion algorithm
774 * only supports whole field access.
775 * . This ctx access is a candiate for later verifier transformation
776 * to load the whole field and then apply a mask to get correct result.
23994631
YS
777 * a non zero info.converted_op_size indicates perceived actual converted
778 * value width in convert_ctx_access.
31fd8581 779 */
23994631
YS
780 if ((info.ctx_field_size && !info.converted_op_size) ||
781 (!info.ctx_field_size && info.converted_op_size)) {
782 verbose("verifier bug in is_valid_access prog type=%u off=%d size=%d\n",
783 env->prog->type, off, size);
784 return -EACCES;
785 }
786
787 if (info.ctx_field_size) {
788 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
789 env->insn_aux_data[insn_idx].converted_op_size = info.converted_op_size;
790 }
791 *reg_type = info.reg_type;
31fd8581 792
32bbe007
AS
793 /* remember the offset of last byte accessed in ctx */
794 if (env->prog->aux->max_ctx_offset < off + size)
795 env->prog->aux->max_ctx_offset = off + size;
17a52670 796 return 0;
32bbe007 797 }
17a52670
AS
798
799 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
800 return -EACCES;
801}
802
58e2af8b 803static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
804{
805 if (env->allow_ptr_leaks)
806 return false;
807
808 switch (env->cur_state.regs[regno].type) {
809 case UNKNOWN_VALUE:
810 case CONST_IMM:
811 return false;
812 default:
813 return true;
814 }
815}
816
79adffcd 817static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 818 int off, int size, bool strict)
969bf05e 819{
e07b98d9 820 int ip_align;
d1174416
DM
821 int reg_off;
822
823 /* Byte size accesses are always allowed. */
824 if (!strict || size == 1)
825 return 0;
826
827 reg_off = reg->off;
828 if (reg->id) {
829 if (reg->aux_off_align % size) {
830 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
831 reg->aux_off_align, size);
832 return -EACCES;
833 }
834 reg_off += reg->aux_off;
969bf05e
AS
835 }
836
e4eda884
DM
837 /* For platforms that do not have a Kconfig enabling
838 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
839 * NET_IP_ALIGN is universally set to '2'. And on platforms
840 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
841 * to this code only in strict mode where we want to emulate
842 * the NET_IP_ALIGN==2 checking. Therefore use an
843 * unconditional IP align value of '2'.
e07b98d9 844 */
e4eda884 845 ip_align = 2;
e07b98d9 846 if ((ip_align + reg_off + off) % size != 0) {
969bf05e 847 verbose("misaligned packet access off %d+%d+%d size %d\n",
e07b98d9 848 ip_align, reg_off, off, size);
969bf05e
AS
849 return -EACCES;
850 }
79adffcd 851
969bf05e
AS
852 return 0;
853}
854
79adffcd 855static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 856 int size, bool strict)
79adffcd 857{
d1174416 858 if (strict && size != 1) {
79adffcd
DB
859 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
860 return -EACCES;
861 }
862
969bf05e
AS
863 return 0;
864}
865
e07b98d9
DM
866static int check_ptr_alignment(struct bpf_verifier_env *env,
867 const struct bpf_reg_state *reg,
79adffcd
DB
868 int off, int size)
869{
e07b98d9 870 bool strict = env->strict_alignment;
d1174416 871
79adffcd
DB
872 switch (reg->type) {
873 case PTR_TO_PACKET:
d1174416 874 return check_pkt_ptr_alignment(reg, off, size, strict);
79adffcd 875 case PTR_TO_MAP_VALUE_ADJ:
d1174416 876 return check_val_ptr_alignment(reg, size, strict);
79adffcd
DB
877 default:
878 if (off % size != 0) {
879 verbose("misaligned access off %d size %d\n",
880 off, size);
881 return -EACCES;
882 }
883
884 return 0;
885 }
886}
887
17a52670
AS
888/* check whether memory at (regno + off) is accessible for t = (read | write)
889 * if t==write, value_regno is a register which value is stored into memory
890 * if t==read, value_regno is a register which will receive the value from memory
891 * if t==write && value_regno==-1, some unknown value is stored into memory
892 * if t==read && value_regno==-1, don't care what we read from memory
893 */
31fd8581 894static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
895 int bpf_size, enum bpf_access_type t,
896 int value_regno)
897{
58e2af8b
JK
898 struct bpf_verifier_state *state = &env->cur_state;
899 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
900 int size, err = 0;
901
1a0dc1ac
AS
902 if (reg->type == PTR_TO_STACK)
903 off += reg->imm;
24b4d2ab 904
17a52670
AS
905 size = bpf_size_to_bytes(bpf_size);
906 if (size < 0)
907 return size;
908
e07b98d9 909 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
910 if (err)
911 return err;
17a52670 912
48461135
JB
913 if (reg->type == PTR_TO_MAP_VALUE ||
914 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
915 if (t == BPF_WRITE && value_regno >= 0 &&
916 is_pointer_value(env, value_regno)) {
917 verbose("R%d leaks addr into map\n", value_regno);
918 return -EACCES;
919 }
48461135 920
dbcfe5f7
GB
921 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
922 err = check_map_access_adj(env, regno, off, size);
923 else
924 err = check_map_access(env, regno, off, size);
17a52670 925 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
926 mark_reg_unknown_value_and_range(state->regs,
927 value_regno);
17a52670 928
1a0dc1ac 929 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
930 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
931
1be7f75d
AS
932 if (t == BPF_WRITE && value_regno >= 0 &&
933 is_pointer_value(env, value_regno)) {
934 verbose("R%d leaks addr into ctx\n", value_regno);
935 return -EACCES;
936 }
31fd8581 937 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 938 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
939 mark_reg_unknown_value_and_range(state->regs,
940 value_regno);
1955351d
MS
941 /* note that reg.[id|off|range] == 0 */
942 state->regs[value_regno].type = reg_type;
d1174416
DM
943 state->regs[value_regno].aux_off = 0;
944 state->regs[value_regno].aux_off_align = 0;
969bf05e 945 }
17a52670 946
1a0dc1ac 947 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
948 if (off >= 0 || off < -MAX_BPF_STACK) {
949 verbose("invalid stack off=%d size=%d\n", off, size);
950 return -EACCES;
951 }
8726679a
AS
952
953 if (env->prog->aux->stack_depth < -off)
954 env->prog->aux->stack_depth = -off;
955
1be7f75d
AS
956 if (t == BPF_WRITE) {
957 if (!env->allow_ptr_leaks &&
958 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
959 size != BPF_REG_SIZE) {
960 verbose("attempt to corrupt spilled pointer on stack\n");
961 return -EACCES;
962 }
17a52670 963 err = check_stack_write(state, off, size, value_regno);
1be7f75d 964 } else {
17a52670 965 err = check_stack_read(state, off, size, value_regno);
1be7f75d 966 }
969bf05e 967 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 968 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
969 verbose("cannot write into packet\n");
970 return -EACCES;
971 }
4acf6c0b
BB
972 if (t == BPF_WRITE && value_regno >= 0 &&
973 is_pointer_value(env, value_regno)) {
974 verbose("R%d leaks addr into packet\n", value_regno);
975 return -EACCES;
976 }
969bf05e
AS
977 err = check_packet_access(env, regno, off, size);
978 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
979 mark_reg_unknown_value_and_range(state->regs,
980 value_regno);
17a52670
AS
981 } else {
982 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 983 regno, reg_type_str[reg->type]);
17a52670
AS
984 return -EACCES;
985 }
969bf05e
AS
986
987 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
988 state->regs[value_regno].type == UNKNOWN_VALUE) {
989 /* 1 or 2 byte load zero-extends, determine the number of
990 * zero upper bits. Not doing it fo 4 byte load, since
991 * such values cannot be added to ptr_to_packet anyway.
992 */
993 state->regs[value_regno].imm = 64 - size * 8;
994 }
17a52670
AS
995 return err;
996}
997
31fd8581 998static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 999{
58e2af8b 1000 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
1001 int err;
1002
1003 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1004 insn->imm != 0) {
1005 verbose("BPF_XADD uses reserved fields\n");
1006 return -EINVAL;
1007 }
1008
1009 /* check src1 operand */
1010 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1011 if (err)
1012 return err;
1013
1014 /* check src2 operand */
1015 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1016 if (err)
1017 return err;
1018
6bdf6abc
DB
1019 if (is_pointer_value(env, insn->src_reg)) {
1020 verbose("R%d leaks addr into mem\n", insn->src_reg);
1021 return -EACCES;
1022 }
1023
17a52670 1024 /* check whether atomic_add can read the memory */
31fd8581 1025 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1026 BPF_SIZE(insn->code), BPF_READ, -1);
1027 if (err)
1028 return err;
1029
1030 /* check whether atomic_add can write into the same memory */
31fd8581 1031 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1032 BPF_SIZE(insn->code), BPF_WRITE, -1);
1033}
1034
1035/* when register 'regno' is passed into function that will read 'access_size'
1036 * bytes from that pointer, make sure that it's within stack boundary
1037 * and all elements of stack are initialized
1038 */
58e2af8b 1039static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1040 int access_size, bool zero_size_allowed,
1041 struct bpf_call_arg_meta *meta)
17a52670 1042{
58e2af8b
JK
1043 struct bpf_verifier_state *state = &env->cur_state;
1044 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1045 int off, i;
1046
8e2fe1d9
DB
1047 if (regs[regno].type != PTR_TO_STACK) {
1048 if (zero_size_allowed && access_size == 0 &&
1049 regs[regno].type == CONST_IMM &&
1050 regs[regno].imm == 0)
1051 return 0;
1052
1053 verbose("R%d type=%s expected=%s\n", regno,
1054 reg_type_str[regs[regno].type],
1055 reg_type_str[PTR_TO_STACK]);
17a52670 1056 return -EACCES;
8e2fe1d9 1057 }
17a52670
AS
1058
1059 off = regs[regno].imm;
1060 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1061 access_size <= 0) {
1062 verbose("invalid stack type R%d off=%d access_size=%d\n",
1063 regno, off, access_size);
1064 return -EACCES;
1065 }
1066
8726679a
AS
1067 if (env->prog->aux->stack_depth < -off)
1068 env->prog->aux->stack_depth = -off;
1069
435faee1
DB
1070 if (meta && meta->raw_mode) {
1071 meta->access_size = access_size;
1072 meta->regno = regno;
1073 return 0;
1074 }
1075
17a52670 1076 for (i = 0; i < access_size; i++) {
9c399760 1077 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1078 verbose("invalid indirect read from stack off %d+%d size %d\n",
1079 off, i, access_size);
1080 return -EACCES;
1081 }
1082 }
1083 return 0;
1084}
1085
06c1c049
GB
1086static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1087 int access_size, bool zero_size_allowed,
1088 struct bpf_call_arg_meta *meta)
1089{
1090 struct bpf_reg_state *regs = env->cur_state.regs;
1091
1092 switch (regs[regno].type) {
1093 case PTR_TO_PACKET:
1094 return check_packet_access(env, regno, 0, access_size);
1095 case PTR_TO_MAP_VALUE:
1096 return check_map_access(env, regno, 0, access_size);
1097 case PTR_TO_MAP_VALUE_ADJ:
1098 return check_map_access_adj(env, regno, 0, access_size);
1099 default: /* const_imm|ptr_to_stack or invalid ptr */
1100 return check_stack_boundary(env, regno, access_size,
1101 zero_size_allowed, meta);
1102 }
1103}
1104
58e2af8b 1105static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1106 enum bpf_arg_type arg_type,
1107 struct bpf_call_arg_meta *meta)
17a52670 1108{
58e2af8b 1109 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1110 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1111 int err = 0;
1112
80f1d68c 1113 if (arg_type == ARG_DONTCARE)
17a52670
AS
1114 return 0;
1115
6841de8b 1116 if (type == NOT_INIT) {
17a52670
AS
1117 verbose("R%d !read_ok\n", regno);
1118 return -EACCES;
1119 }
1120
1be7f75d
AS
1121 if (arg_type == ARG_ANYTHING) {
1122 if (is_pointer_value(env, regno)) {
1123 verbose("R%d leaks addr into helper function\n", regno);
1124 return -EACCES;
1125 }
80f1d68c 1126 return 0;
1be7f75d 1127 }
80f1d68c 1128
3a0af8fd
TG
1129 if (type == PTR_TO_PACKET &&
1130 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1131 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1132 return -EACCES;
1133 }
1134
8e2fe1d9 1135 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1136 arg_type == ARG_PTR_TO_MAP_VALUE) {
1137 expected_type = PTR_TO_STACK;
6841de8b
AS
1138 if (type != PTR_TO_PACKET && type != expected_type)
1139 goto err_type;
39f19ebb
AS
1140 } else if (arg_type == ARG_CONST_SIZE ||
1141 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1142 expected_type = CONST_IMM;
06c1c049
GB
1143 /* One exception. Allow UNKNOWN_VALUE registers when the
1144 * boundaries are known and don't cause unsafe memory accesses
1145 */
1146 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1147 goto err_type;
17a52670
AS
1148 } else if (arg_type == ARG_CONST_MAP_PTR) {
1149 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1150 if (type != expected_type)
1151 goto err_type;
608cd71a
AS
1152 } else if (arg_type == ARG_PTR_TO_CTX) {
1153 expected_type = PTR_TO_CTX;
6841de8b
AS
1154 if (type != expected_type)
1155 goto err_type;
39f19ebb
AS
1156 } else if (arg_type == ARG_PTR_TO_MEM ||
1157 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1158 expected_type = PTR_TO_STACK;
1159 /* One exception here. In case function allows for NULL to be
1160 * passed in as argument, it's a CONST_IMM type. Final test
1161 * happens during stack boundary checking.
1162 */
6841de8b
AS
1163 if (type == CONST_IMM && reg->imm == 0)
1164 /* final test in check_stack_boundary() */;
5722569b
GB
1165 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1166 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1167 goto err_type;
39f19ebb 1168 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1169 } else {
1170 verbose("unsupported arg_type %d\n", arg_type);
1171 return -EFAULT;
1172 }
1173
17a52670
AS
1174 if (arg_type == ARG_CONST_MAP_PTR) {
1175 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1176 meta->map_ptr = reg->map_ptr;
17a52670
AS
1177 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1178 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1179 * check that [key, key + map->key_size) are within
1180 * stack limits and initialized
1181 */
33ff9823 1182 if (!meta->map_ptr) {
17a52670
AS
1183 /* in function declaration map_ptr must come before
1184 * map_key, so that it's verified and known before
1185 * we have to check map_key here. Otherwise it means
1186 * that kernel subsystem misconfigured verifier
1187 */
1188 verbose("invalid map_ptr to access map->key\n");
1189 return -EACCES;
1190 }
6841de8b
AS
1191 if (type == PTR_TO_PACKET)
1192 err = check_packet_access(env, regno, 0,
1193 meta->map_ptr->key_size);
1194 else
1195 err = check_stack_boundary(env, regno,
1196 meta->map_ptr->key_size,
1197 false, NULL);
17a52670
AS
1198 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1199 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1200 * check [value, value + map->value_size) validity
1201 */
33ff9823 1202 if (!meta->map_ptr) {
17a52670
AS
1203 /* kernel subsystem misconfigured verifier */
1204 verbose("invalid map_ptr to access map->value\n");
1205 return -EACCES;
1206 }
6841de8b
AS
1207 if (type == PTR_TO_PACKET)
1208 err = check_packet_access(env, regno, 0,
1209 meta->map_ptr->value_size);
1210 else
1211 err = check_stack_boundary(env, regno,
1212 meta->map_ptr->value_size,
1213 false, NULL);
39f19ebb
AS
1214 } else if (arg_type == ARG_CONST_SIZE ||
1215 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1216 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1217
17a52670
AS
1218 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1219 * from stack pointer 'buf'. Check it
1220 * note: regno == len, regno - 1 == buf
1221 */
1222 if (regno == 0) {
1223 /* kernel subsystem misconfigured verifier */
39f19ebb 1224 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1225 return -EACCES;
1226 }
06c1c049
GB
1227
1228 /* If the register is UNKNOWN_VALUE, the access check happens
1229 * using its boundaries. Otherwise, just use its imm
1230 */
1231 if (type == UNKNOWN_VALUE) {
1232 /* For unprivileged variable accesses, disable raw
1233 * mode so that the program is required to
1234 * initialize all the memory that the helper could
1235 * just partially fill up.
1236 */
1237 meta = NULL;
1238
1239 if (reg->min_value < 0) {
1240 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1241 regno);
1242 return -EACCES;
1243 }
1244
1245 if (reg->min_value == 0) {
1246 err = check_helper_mem_access(env, regno - 1, 0,
1247 zero_size_allowed,
1248 meta);
1249 if (err)
1250 return err;
1251 }
1252
1253 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1254 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1255 regno);
1256 return -EACCES;
1257 }
1258 err = check_helper_mem_access(env, regno - 1,
1259 reg->max_value,
1260 zero_size_allowed, meta);
1261 if (err)
1262 return err;
1263 } else {
1264 /* register is CONST_IMM */
1265 err = check_helper_mem_access(env, regno - 1, reg->imm,
1266 zero_size_allowed, meta);
1267 }
17a52670
AS
1268 }
1269
1270 return err;
6841de8b
AS
1271err_type:
1272 verbose("R%d type=%s expected=%s\n", regno,
1273 reg_type_str[type], reg_type_str[expected_type]);
1274 return -EACCES;
17a52670
AS
1275}
1276
35578d79
KX
1277static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1278{
35578d79
KX
1279 if (!map)
1280 return 0;
1281
6aff67c8
AS
1282 /* We need a two way check, first is from map perspective ... */
1283 switch (map->map_type) {
1284 case BPF_MAP_TYPE_PROG_ARRAY:
1285 if (func_id != BPF_FUNC_tail_call)
1286 goto error;
1287 break;
1288 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1289 if (func_id != BPF_FUNC_perf_event_read &&
1290 func_id != BPF_FUNC_perf_event_output)
1291 goto error;
1292 break;
1293 case BPF_MAP_TYPE_STACK_TRACE:
1294 if (func_id != BPF_FUNC_get_stackid)
1295 goto error;
1296 break;
4ed8ec52 1297 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1298 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1299 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1300 goto error;
1301 break;
56f668df 1302 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1303 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1304 if (func_id != BPF_FUNC_map_lookup_elem)
1305 goto error;
6aff67c8
AS
1306 default:
1307 break;
1308 }
1309
1310 /* ... and second from the function itself. */
1311 switch (func_id) {
1312 case BPF_FUNC_tail_call:
1313 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1314 goto error;
1315 break;
1316 case BPF_FUNC_perf_event_read:
1317 case BPF_FUNC_perf_event_output:
1318 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1319 goto error;
1320 break;
1321 case BPF_FUNC_get_stackid:
1322 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1323 goto error;
1324 break;
60d20f91 1325 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1326 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1327 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1328 goto error;
1329 break;
6aff67c8
AS
1330 default:
1331 break;
35578d79
KX
1332 }
1333
1334 return 0;
6aff67c8 1335error:
ebb676da
TG
1336 verbose("cannot pass map_type %d into func %s#%d\n",
1337 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1338 return -EINVAL;
35578d79
KX
1339}
1340
435faee1
DB
1341static int check_raw_mode(const struct bpf_func_proto *fn)
1342{
1343 int count = 0;
1344
39f19ebb 1345 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1346 count++;
39f19ebb 1347 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1348 count++;
39f19ebb 1349 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1350 count++;
39f19ebb 1351 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1352 count++;
39f19ebb 1353 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1354 count++;
1355
1356 return count > 1 ? -EINVAL : 0;
1357}
1358
58e2af8b 1359static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1360{
58e2af8b
JK
1361 struct bpf_verifier_state *state = &env->cur_state;
1362 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1363 int i;
1364
1365 for (i = 0; i < MAX_BPF_REG; i++)
1366 if (regs[i].type == PTR_TO_PACKET ||
1367 regs[i].type == PTR_TO_PACKET_END)
1368 mark_reg_unknown_value(regs, i);
1369
1370 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1371 if (state->stack_slot_type[i] != STACK_SPILL)
1372 continue;
1373 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1374 if (reg->type != PTR_TO_PACKET &&
1375 reg->type != PTR_TO_PACKET_END)
1376 continue;
36e24c00
DB
1377 __mark_reg_unknown_value(state->spilled_regs,
1378 i / BPF_REG_SIZE);
969bf05e
AS
1379 }
1380}
1381
81ed18ab 1382static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1383{
58e2af8b 1384 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1385 const struct bpf_func_proto *fn = NULL;
58e2af8b 1386 struct bpf_reg_state *regs = state->regs;
33ff9823 1387 struct bpf_call_arg_meta meta;
969bf05e 1388 bool changes_data;
17a52670
AS
1389 int i, err;
1390
1391 /* find function prototype */
1392 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1393 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1394 return -EINVAL;
1395 }
1396
1397 if (env->prog->aux->ops->get_func_proto)
1398 fn = env->prog->aux->ops->get_func_proto(func_id);
1399
1400 if (!fn) {
ebb676da 1401 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1402 return -EINVAL;
1403 }
1404
1405 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1406 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1407 verbose("cannot call GPL only function from proprietary program\n");
1408 return -EINVAL;
1409 }
1410
17bedab2 1411 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1412
33ff9823 1413 memset(&meta, 0, sizeof(meta));
36bbef52 1414 meta.pkt_access = fn->pkt_access;
33ff9823 1415
435faee1
DB
1416 /* We only support one arg being in raw mode at the moment, which
1417 * is sufficient for the helper functions we have right now.
1418 */
1419 err = check_raw_mode(fn);
1420 if (err) {
ebb676da
TG
1421 verbose("kernel subsystem misconfigured func %s#%d\n",
1422 func_id_name(func_id), func_id);
435faee1
DB
1423 return err;
1424 }
1425
17a52670 1426 /* check args */
33ff9823 1427 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1428 if (err)
1429 return err;
33ff9823 1430 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1431 if (err)
1432 return err;
33ff9823 1433 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1434 if (err)
1435 return err;
33ff9823 1436 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1437 if (err)
1438 return err;
33ff9823 1439 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1440 if (err)
1441 return err;
1442
435faee1
DB
1443 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1444 * is inferred from register state.
1445 */
1446 for (i = 0; i < meta.access_size; i++) {
31fd8581 1447 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1448 if (err)
1449 return err;
1450 }
1451
17a52670 1452 /* reset caller saved regs */
a9789ef9
DB
1453 for (i = 0; i < CALLER_SAVED_REGS; i++)
1454 mark_reg_not_init(regs, caller_saved[i]);
17a52670
AS
1455
1456 /* update return register */
1457 if (fn->ret_type == RET_INTEGER) {
1458 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1459 } else if (fn->ret_type == RET_VOID) {
1460 regs[BPF_REG_0].type = NOT_INIT;
1461 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1462 struct bpf_insn_aux_data *insn_aux;
1463
17a52670 1464 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1465 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1466 /* remember map_ptr, so that check_map_access()
1467 * can check 'value_size' boundary of memory access
1468 * to map element returned from bpf_map_lookup_elem()
1469 */
33ff9823 1470 if (meta.map_ptr == NULL) {
17a52670
AS
1471 verbose("kernel subsystem misconfigured verifier\n");
1472 return -EINVAL;
1473 }
33ff9823 1474 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1475 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1476 insn_aux = &env->insn_aux_data[insn_idx];
1477 if (!insn_aux->map_ptr)
1478 insn_aux->map_ptr = meta.map_ptr;
1479 else if (insn_aux->map_ptr != meta.map_ptr)
1480 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1481 } else {
ebb676da
TG
1482 verbose("unknown return type %d of func %s#%d\n",
1483 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1484 return -EINVAL;
1485 }
04fd61ab 1486
33ff9823 1487 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1488 if (err)
1489 return err;
04fd61ab 1490
969bf05e
AS
1491 if (changes_data)
1492 clear_all_pkt_pointers(env);
1493 return 0;
1494}
1495
58e2af8b
JK
1496static int check_packet_ptr_add(struct bpf_verifier_env *env,
1497 struct bpf_insn *insn)
969bf05e 1498{
58e2af8b
JK
1499 struct bpf_reg_state *regs = env->cur_state.regs;
1500 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1501 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1502 struct bpf_reg_state tmp_reg;
969bf05e
AS
1503 s32 imm;
1504
1505 if (BPF_SRC(insn->code) == BPF_K) {
1506 /* pkt_ptr += imm */
1507 imm = insn->imm;
1508
1509add_imm:
63dfef75 1510 if (imm < 0) {
969bf05e
AS
1511 verbose("addition of negative constant to packet pointer is not allowed\n");
1512 return -EACCES;
1513 }
1514 if (imm >= MAX_PACKET_OFF ||
1515 imm + dst_reg->off >= MAX_PACKET_OFF) {
1516 verbose("constant %d is too large to add to packet pointer\n",
1517 imm);
1518 return -EACCES;
1519 }
1520 /* a constant was added to pkt_ptr.
1521 * Remember it while keeping the same 'id'
1522 */
1523 dst_reg->off += imm;
1524 } else {
d1174416
DM
1525 bool had_id;
1526
1b9b69ec
AS
1527 if (src_reg->type == PTR_TO_PACKET) {
1528 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1529 tmp_reg = *dst_reg; /* save r7 state */
1530 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1531 src_reg = &tmp_reg; /* pretend it's src_reg state */
1532 /* if the checks below reject it, the copy won't matter,
1533 * since we're rejecting the whole program. If all ok,
1534 * then imm22 state will be added to r7
1535 * and r7 will be pkt(id=0,off=22,r=62) while
1536 * r6 will stay as pkt(id=0,off=0,r=62)
1537 */
1538 }
1539
969bf05e
AS
1540 if (src_reg->type == CONST_IMM) {
1541 /* pkt_ptr += reg where reg is known constant */
1542 imm = src_reg->imm;
1543 goto add_imm;
1544 }
1545 /* disallow pkt_ptr += reg
1546 * if reg is not uknown_value with guaranteed zero upper bits
1547 * otherwise pkt_ptr may overflow and addition will become
1548 * subtraction which is not allowed
1549 */
1550 if (src_reg->type != UNKNOWN_VALUE) {
1551 verbose("cannot add '%s' to ptr_to_packet\n",
1552 reg_type_str[src_reg->type]);
1553 return -EACCES;
1554 }
1555 if (src_reg->imm < 48) {
1556 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1557 src_reg->imm);
1558 return -EACCES;
1559 }
d1174416
DM
1560
1561 had_id = (dst_reg->id != 0);
1562
969bf05e
AS
1563 /* dst_reg stays as pkt_ptr type and since some positive
1564 * integer value was added to the pointer, increment its 'id'
1565 */
1f415a74 1566 dst_reg->id = ++env->id_gen;
969bf05e 1567
d1174416 1568 /* something was added to pkt_ptr, set range to zero */
6832a333 1569 dst_reg->aux_off += dst_reg->off;
969bf05e
AS
1570 dst_reg->off = 0;
1571 dst_reg->range = 0;
d1174416
DM
1572 if (had_id)
1573 dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1574 src_reg->min_align);
1575 else
1576 dst_reg->aux_off_align = src_reg->min_align;
969bf05e
AS
1577 }
1578 return 0;
1579}
1580
58e2af8b 1581static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1582{
58e2af8b
JK
1583 struct bpf_reg_state *regs = env->cur_state.regs;
1584 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1585 u8 opcode = BPF_OP(insn->code);
1586 s64 imm_log2;
1587
1588 /* for type == UNKNOWN_VALUE:
1589 * imm > 0 -> number of zero upper bits
1590 * imm == 0 -> don't track which is the same as all bits can be non-zero
1591 */
1592
1593 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1594 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1595
1596 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1597 dst_reg->imm && opcode == BPF_ADD) {
1598 /* dreg += sreg
1599 * where both have zero upper bits. Adding them
1600 * can only result making one more bit non-zero
1601 * in the larger value.
1602 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1603 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1604 */
1605 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1606 dst_reg->imm--;
1607 return 0;
1608 }
1609 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1610 dst_reg->imm && opcode == BPF_ADD) {
1611 /* dreg += sreg
1612 * where dreg has zero upper bits and sreg is const.
1613 * Adding them can only result making one more bit
1614 * non-zero in the larger value.
1615 */
1616 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1617 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1618 dst_reg->imm--;
1619 return 0;
1620 }
1621 /* all other cases non supported yet, just mark dst_reg */
1622 dst_reg->imm = 0;
1623 return 0;
1624 }
1625
1626 /* sign extend 32-bit imm into 64-bit to make sure that
1627 * negative values occupy bit 63. Note ilog2() would have
1628 * been incorrect, since sizeof(insn->imm) == 4
1629 */
1630 imm_log2 = __ilog2_u64((long long)insn->imm);
1631
1632 if (dst_reg->imm && opcode == BPF_LSH) {
1633 /* reg <<= imm
1634 * if reg was a result of 2 byte load, then its imm == 48
1635 * which means that upper 48 bits are zero and shifting this reg
1636 * left by 4 would mean that upper 44 bits are still zero
1637 */
1638 dst_reg->imm -= insn->imm;
1639 } else if (dst_reg->imm && opcode == BPF_MUL) {
1640 /* reg *= imm
1641 * if multiplying by 14 subtract 4
1642 * This is conservative calculation of upper zero bits.
1643 * It's not trying to special case insn->imm == 1 or 0 cases
1644 */
1645 dst_reg->imm -= imm_log2 + 1;
1646 } else if (opcode == BPF_AND) {
1647 /* reg &= imm */
1648 dst_reg->imm = 63 - imm_log2;
1649 } else if (dst_reg->imm && opcode == BPF_ADD) {
1650 /* reg += imm */
1651 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1652 dst_reg->imm--;
1653 } else if (opcode == BPF_RSH) {
1654 /* reg >>= imm
1655 * which means that after right shift, upper bits will be zero
1656 * note that verifier already checked that
1657 * 0 <= imm < 64 for shift insn
1658 */
1659 dst_reg->imm += insn->imm;
1660 if (unlikely(dst_reg->imm > 64))
1661 /* some dumb code did:
1662 * r2 = *(u32 *)mem;
1663 * r2 >>= 32;
1664 * and all bits are zero now */
1665 dst_reg->imm = 64;
1666 } else {
1667 /* all other alu ops, means that we don't know what will
1668 * happen to the value, mark it with unknown number of zero bits
1669 */
1670 dst_reg->imm = 0;
1671 }
1672
1673 if (dst_reg->imm < 0) {
1674 /* all 64 bits of the register can contain non-zero bits
1675 * and such value cannot be added to ptr_to_packet, since it
1676 * may overflow, mark it as unknown to avoid further eval
1677 */
1678 dst_reg->imm = 0;
1679 }
1680 return 0;
1681}
1682
58e2af8b
JK
1683static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1684 struct bpf_insn *insn)
969bf05e 1685{
58e2af8b
JK
1686 struct bpf_reg_state *regs = env->cur_state.regs;
1687 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1688 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1689 u8 opcode = BPF_OP(insn->code);
3fadc801 1690 u64 dst_imm = dst_reg->imm;
969bf05e 1691
3fadc801
DB
1692 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1693 * containing ALU ops. Don't care about overflow or negative
1694 * values, just add/sub/... them; registers are in u64.
969bf05e 1695 */
3fadc801
DB
1696 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1697 dst_imm += insn->imm;
1698 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1699 src_reg->type == CONST_IMM) {
1700 dst_imm += src_reg->imm;
1701 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1702 dst_imm -= insn->imm;
1703 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1704 src_reg->type == CONST_IMM) {
1705 dst_imm -= src_reg->imm;
1706 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1707 dst_imm *= insn->imm;
1708 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1709 src_reg->type == CONST_IMM) {
1710 dst_imm *= src_reg->imm;
1711 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1712 dst_imm |= insn->imm;
1713 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1714 src_reg->type == CONST_IMM) {
1715 dst_imm |= src_reg->imm;
1716 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1717 dst_imm &= insn->imm;
1718 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1719 src_reg->type == CONST_IMM) {
1720 dst_imm &= src_reg->imm;
1721 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1722 dst_imm >>= insn->imm;
1723 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1724 src_reg->type == CONST_IMM) {
1725 dst_imm >>= src_reg->imm;
1726 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1727 dst_imm <<= insn->imm;
1728 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1729 src_reg->type == CONST_IMM) {
1730 dst_imm <<= src_reg->imm;
1731 } else {
969bf05e 1732 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1733 goto out;
1734 }
1735
1736 dst_reg->imm = dst_imm;
1737out:
17a52670
AS
1738 return 0;
1739}
1740
48461135
JB
1741static void check_reg_overflow(struct bpf_reg_state *reg)
1742{
1743 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1744 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1745 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1746 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1747 reg->min_value = BPF_REGISTER_MIN_RANGE;
1748}
1749
d1174416
DM
1750static u32 calc_align(u32 imm)
1751{
1752 if (!imm)
1753 return 1U << 31;
1754 return imm - ((imm - 1) & imm);
1755}
1756
48461135
JB
1757static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1758 struct bpf_insn *insn)
1759{
1760 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1761 s64 min_val = BPF_REGISTER_MIN_RANGE;
1762 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135 1763 u8 opcode = BPF_OP(insn->code);
d1174416 1764 u32 dst_align, src_align;
48461135
JB
1765
1766 dst_reg = &regs[insn->dst_reg];
d1174416 1767 src_align = 0;
48461135
JB
1768 if (BPF_SRC(insn->code) == BPF_X) {
1769 check_reg_overflow(&regs[insn->src_reg]);
1770 min_val = regs[insn->src_reg].min_value;
1771 max_val = regs[insn->src_reg].max_value;
1772
1773 /* If the source register is a random pointer then the
1774 * min_value/max_value values represent the range of the known
1775 * accesses into that value, not the actual min/max value of the
1776 * register itself. In this case we have to reset the reg range
1777 * values so we know it is not safe to look at.
1778 */
1779 if (regs[insn->src_reg].type != CONST_IMM &&
1780 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1781 min_val = BPF_REGISTER_MIN_RANGE;
1782 max_val = BPF_REGISTER_MAX_RANGE;
d1174416
DM
1783 src_align = 0;
1784 } else {
1785 src_align = regs[insn->src_reg].min_align;
48461135
JB
1786 }
1787 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1788 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1789 min_val = max_val = insn->imm;
d1174416 1790 src_align = calc_align(insn->imm);
48461135
JB
1791 }
1792
d1174416
DM
1793 dst_align = dst_reg->min_align;
1794
48461135
JB
1795 /* We don't know anything about what was done to this register, mark it
1796 * as unknown.
1797 */
1798 if (min_val == BPF_REGISTER_MIN_RANGE &&
1799 max_val == BPF_REGISTER_MAX_RANGE) {
1800 reset_reg_range_values(regs, insn->dst_reg);
1801 return;
1802 }
1803
f23cc643
JB
1804 /* If one of our values was at the end of our ranges then we can't just
1805 * do our normal operations to the register, we need to set the values
1806 * to the min/max since they are undefined.
1807 */
1808 if (min_val == BPF_REGISTER_MIN_RANGE)
1809 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1810 if (max_val == BPF_REGISTER_MAX_RANGE)
1811 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1812
48461135
JB
1813 switch (opcode) {
1814 case BPF_ADD:
f23cc643
JB
1815 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1816 dst_reg->min_value += min_val;
1817 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1818 dst_reg->max_value += max_val;
d1174416 1819 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1820 break;
1821 case BPF_SUB:
f23cc643
JB
1822 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1823 dst_reg->min_value -= min_val;
1824 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1825 dst_reg->max_value -= max_val;
d1174416 1826 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1827 break;
1828 case BPF_MUL:
f23cc643
JB
1829 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1830 dst_reg->min_value *= min_val;
1831 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1832 dst_reg->max_value *= max_val;
d1174416 1833 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1834 break;
1835 case BPF_AND:
f23cc643
JB
1836 /* Disallow AND'ing of negative numbers, ain't nobody got time
1837 * for that. Otherwise the minimum is 0 and the max is the max
1838 * value we could AND against.
1839 */
1840 if (min_val < 0)
1841 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1842 else
1843 dst_reg->min_value = 0;
48461135 1844 dst_reg->max_value = max_val;
d1174416 1845 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1846 break;
1847 case BPF_LSH:
1848 /* Gotta have special overflow logic here, if we're shifting
1849 * more than MAX_RANGE then just assume we have an invalid
1850 * range.
1851 */
d1174416 1852 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
48461135 1853 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416
DM
1854 dst_reg->min_align = 1;
1855 } else {
1856 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1857 dst_reg->min_value <<= min_val;
1858 if (!dst_reg->min_align)
1859 dst_reg->min_align = 1;
1860 dst_reg->min_align <<= min_val;
1861 }
48461135
JB
1862 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1863 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1864 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1865 dst_reg->max_value <<= max_val;
1866 break;
1867 case BPF_RSH:
f23cc643
JB
1868 /* RSH by a negative number is undefined, and the BPF_RSH is an
1869 * unsigned shift, so make the appropriate casts.
48461135 1870 */
d1174416 1871 if (min_val < 0 || dst_reg->min_value < 0) {
f23cc643 1872 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416 1873 } else {
f23cc643
JB
1874 dst_reg->min_value =
1875 (u64)(dst_reg->min_value) >> min_val;
d1174416
DM
1876 }
1877 if (min_val < 0) {
1878 dst_reg->min_align = 1;
1879 } else {
1880 dst_reg->min_align >>= (u64) min_val;
1881 if (!dst_reg->min_align)
1882 dst_reg->min_align = 1;
1883 }
f23cc643
JB
1884 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1885 dst_reg->max_value >>= max_val;
48461135
JB
1886 break;
1887 default:
1888 reset_reg_range_values(regs, insn->dst_reg);
1889 break;
1890 }
1891
1892 check_reg_overflow(dst_reg);
1893}
1894
17a52670 1895/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1896static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1897{
58e2af8b 1898 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1899 u8 opcode = BPF_OP(insn->code);
1900 int err;
1901
1902 if (opcode == BPF_END || opcode == BPF_NEG) {
1903 if (opcode == BPF_NEG) {
1904 if (BPF_SRC(insn->code) != 0 ||
1905 insn->src_reg != BPF_REG_0 ||
1906 insn->off != 0 || insn->imm != 0) {
1907 verbose("BPF_NEG uses reserved fields\n");
1908 return -EINVAL;
1909 }
1910 } else {
1911 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1912 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1913 verbose("BPF_END uses reserved fields\n");
1914 return -EINVAL;
1915 }
1916 }
1917
1918 /* check src operand */
1919 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1920 if (err)
1921 return err;
1922
1be7f75d
AS
1923 if (is_pointer_value(env, insn->dst_reg)) {
1924 verbose("R%d pointer arithmetic prohibited\n",
1925 insn->dst_reg);
1926 return -EACCES;
1927 }
1928
17a52670
AS
1929 /* check dest operand */
1930 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1931 if (err)
1932 return err;
1933
1934 } else if (opcode == BPF_MOV) {
1935
1936 if (BPF_SRC(insn->code) == BPF_X) {
1937 if (insn->imm != 0 || insn->off != 0) {
1938 verbose("BPF_MOV uses reserved fields\n");
1939 return -EINVAL;
1940 }
1941
1942 /* check src operand */
1943 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1944 if (err)
1945 return err;
1946 } else {
1947 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1948 verbose("BPF_MOV uses reserved fields\n");
1949 return -EINVAL;
1950 }
1951 }
1952
1953 /* check dest operand */
1954 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1955 if (err)
1956 return err;
1957
48461135
JB
1958 /* we are setting our register to something new, we need to
1959 * reset its range values.
1960 */
1961 reset_reg_range_values(regs, insn->dst_reg);
1962
17a52670
AS
1963 if (BPF_SRC(insn->code) == BPF_X) {
1964 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1965 /* case: R1 = R2
1966 * copy register state to dest reg
1967 */
1968 regs[insn->dst_reg] = regs[insn->src_reg];
1969 } else {
1be7f75d
AS
1970 if (is_pointer_value(env, insn->src_reg)) {
1971 verbose("R%d partial copy of pointer\n",
1972 insn->src_reg);
1973 return -EACCES;
1974 }
57a09bf0 1975 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1976 }
1977 } else {
1978 /* case: R = imm
1979 * remember the value we stored into this reg
1980 */
1981 regs[insn->dst_reg].type = CONST_IMM;
1982 regs[insn->dst_reg].imm = insn->imm;
4a2ff55a 1983 regs[insn->dst_reg].id = 0;
48461135
JB
1984 regs[insn->dst_reg].max_value = insn->imm;
1985 regs[insn->dst_reg].min_value = insn->imm;
d1174416 1986 regs[insn->dst_reg].min_align = calc_align(insn->imm);
17a52670
AS
1987 }
1988
1989 } else if (opcode > BPF_END) {
1990 verbose("invalid BPF_ALU opcode %x\n", opcode);
1991 return -EINVAL;
1992
1993 } else { /* all other ALU ops: and, sub, xor, add, ... */
1994
17a52670
AS
1995 if (BPF_SRC(insn->code) == BPF_X) {
1996 if (insn->imm != 0 || insn->off != 0) {
1997 verbose("BPF_ALU uses reserved fields\n");
1998 return -EINVAL;
1999 }
2000 /* check src1 operand */
2001 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2002 if (err)
2003 return err;
2004 } else {
2005 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2006 verbose("BPF_ALU uses reserved fields\n");
2007 return -EINVAL;
2008 }
2009 }
2010
2011 /* check src2 operand */
2012 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2013 if (err)
2014 return err;
2015
2016 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2017 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2018 verbose("div by zero\n");
2019 return -EINVAL;
2020 }
2021
229394e8
RV
2022 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2023 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2024 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2025
2026 if (insn->imm < 0 || insn->imm >= size) {
2027 verbose("invalid shift %d\n", insn->imm);
2028 return -EINVAL;
2029 }
2030 }
2031
1a0dc1ac
AS
2032 /* check dest operand */
2033 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2034 if (err)
2035 return err;
2036
2037 dst_reg = &regs[insn->dst_reg];
2038
48461135
JB
2039 /* first we want to adjust our ranges. */
2040 adjust_reg_min_max_vals(env, insn);
2041
17a52670
AS
2042 /* pattern match 'bpf_add Rx, imm' instruction */
2043 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
2044 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2045 dst_reg->type = PTR_TO_STACK;
2046 dst_reg->imm = insn->imm;
2047 return 0;
332270fd
YS
2048 } else if (opcode == BPF_ADD &&
2049 BPF_CLASS(insn->code) == BPF_ALU64 &&
2050 dst_reg->type == PTR_TO_STACK &&
2051 ((BPF_SRC(insn->code) == BPF_X &&
2052 regs[insn->src_reg].type == CONST_IMM) ||
2053 BPF_SRC(insn->code) == BPF_K)) {
2054 if (BPF_SRC(insn->code) == BPF_X)
2055 dst_reg->imm += regs[insn->src_reg].imm;
2056 else
2057 dst_reg->imm += insn->imm;
2058 return 0;
969bf05e
AS
2059 } else if (opcode == BPF_ADD &&
2060 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
2061 (dst_reg->type == PTR_TO_PACKET ||
2062 (BPF_SRC(insn->code) == BPF_X &&
2063 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
2064 /* ptr_to_packet += K|X */
2065 return check_packet_ptr_add(env, insn);
2066 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2067 dst_reg->type == UNKNOWN_VALUE &&
2068 env->allow_ptr_leaks) {
2069 /* unknown += K|X */
2070 return evaluate_reg_alu(env, insn);
2071 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2072 dst_reg->type == CONST_IMM &&
2073 env->allow_ptr_leaks) {
2074 /* reg_imm += K|X */
2075 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
2076 } else if (is_pointer_value(env, insn->dst_reg)) {
2077 verbose("R%d pointer arithmetic prohibited\n",
2078 insn->dst_reg);
2079 return -EACCES;
2080 } else if (BPF_SRC(insn->code) == BPF_X &&
2081 is_pointer_value(env, insn->src_reg)) {
2082 verbose("R%d pointer arithmetic prohibited\n",
2083 insn->src_reg);
2084 return -EACCES;
2085 }
17a52670 2086
48461135
JB
2087 /* If we did pointer math on a map value then just set it to our
2088 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2089 * loads to this register appropriately, otherwise just mark the
2090 * register as unknown.
2091 */
2092 if (env->allow_ptr_leaks &&
fce366a9 2093 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
48461135
JB
2094 (dst_reg->type == PTR_TO_MAP_VALUE ||
2095 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2096 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2097 else
2098 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2099 }
2100
2101 return 0;
2102}
2103
58e2af8b
JK
2104static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2105 struct bpf_reg_state *dst_reg)
969bf05e 2106{
58e2af8b 2107 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2108 int i;
2d2be8ca
DB
2109
2110 /* LLVM can generate two kind of checks:
2111 *
2112 * Type 1:
2113 *
2114 * r2 = r3;
2115 * r2 += 8;
2116 * if (r2 > pkt_end) goto <handle exception>
2117 * <access okay>
2118 *
2119 * Where:
2120 * r2 == dst_reg, pkt_end == src_reg
2121 * r2=pkt(id=n,off=8,r=0)
2122 * r3=pkt(id=n,off=0,r=0)
2123 *
2124 * Type 2:
2125 *
2126 * r2 = r3;
2127 * r2 += 8;
2128 * if (pkt_end >= r2) goto <access okay>
2129 * <handle exception>
2130 *
2131 * Where:
2132 * pkt_end == dst_reg, r2 == src_reg
2133 * r2=pkt(id=n,off=8,r=0)
2134 * r3=pkt(id=n,off=0,r=0)
2135 *
2136 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2137 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2138 */
2d2be8ca 2139
969bf05e
AS
2140 for (i = 0; i < MAX_BPF_REG; i++)
2141 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682
AS
2142 /* keep the maximum range already checked */
2143 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
2144
2145 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2146 if (state->stack_slot_type[i] != STACK_SPILL)
2147 continue;
2148 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2149 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
b1977682 2150 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
2151 }
2152}
2153
48461135
JB
2154/* Adjusts the register min/max values in the case that the dst_reg is the
2155 * variable register that we are working on, and src_reg is a constant or we're
2156 * simply doing a BPF_K check.
2157 */
2158static void reg_set_min_max(struct bpf_reg_state *true_reg,
2159 struct bpf_reg_state *false_reg, u64 val,
2160 u8 opcode)
2161{
2162 switch (opcode) {
2163 case BPF_JEQ:
2164 /* If this is false then we know nothing Jon Snow, but if it is
2165 * true then we know for sure.
2166 */
2167 true_reg->max_value = true_reg->min_value = val;
2168 break;
2169 case BPF_JNE:
2170 /* If this is true we know nothing Jon Snow, but if it is false
2171 * we know the value for sure;
2172 */
2173 false_reg->max_value = false_reg->min_value = val;
2174 break;
2175 case BPF_JGT:
2176 /* Unsigned comparison, the minimum value is 0. */
2177 false_reg->min_value = 0;
7e57fbb2 2178 /* fallthrough */
48461135
JB
2179 case BPF_JSGT:
2180 /* If this is false then we know the maximum val is val,
2181 * otherwise we know the min val is val+1.
2182 */
2183 false_reg->max_value = val;
2184 true_reg->min_value = val + 1;
2185 break;
2186 case BPF_JGE:
2187 /* Unsigned comparison, the minimum value is 0. */
2188 false_reg->min_value = 0;
7e57fbb2 2189 /* fallthrough */
48461135
JB
2190 case BPF_JSGE:
2191 /* If this is false then we know the maximum value is val - 1,
2192 * otherwise we know the mimimum value is val.
2193 */
2194 false_reg->max_value = val - 1;
2195 true_reg->min_value = val;
2196 break;
2197 default:
2198 break;
2199 }
2200
2201 check_reg_overflow(false_reg);
2202 check_reg_overflow(true_reg);
2203}
2204
2205/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2206 * is the variable reg.
2207 */
2208static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2209 struct bpf_reg_state *false_reg, u64 val,
2210 u8 opcode)
2211{
2212 switch (opcode) {
2213 case BPF_JEQ:
2214 /* If this is false then we know nothing Jon Snow, but if it is
2215 * true then we know for sure.
2216 */
2217 true_reg->max_value = true_reg->min_value = val;
2218 break;
2219 case BPF_JNE:
2220 /* If this is true we know nothing Jon Snow, but if it is false
2221 * we know the value for sure;
2222 */
2223 false_reg->max_value = false_reg->min_value = val;
2224 break;
2225 case BPF_JGT:
2226 /* Unsigned comparison, the minimum value is 0. */
2227 true_reg->min_value = 0;
7e57fbb2 2228 /* fallthrough */
48461135
JB
2229 case BPF_JSGT:
2230 /*
2231 * If this is false, then the val is <= the register, if it is
2232 * true the register <= to the val.
2233 */
2234 false_reg->min_value = val;
2235 true_reg->max_value = val - 1;
2236 break;
2237 case BPF_JGE:
2238 /* Unsigned comparison, the minimum value is 0. */
2239 true_reg->min_value = 0;
7e57fbb2 2240 /* fallthrough */
48461135
JB
2241 case BPF_JSGE:
2242 /* If this is false then constant < register, if it is true then
2243 * the register < constant.
2244 */
2245 false_reg->min_value = val + 1;
2246 true_reg->max_value = val;
2247 break;
2248 default:
2249 break;
2250 }
2251
2252 check_reg_overflow(false_reg);
2253 check_reg_overflow(true_reg);
2254}
2255
57a09bf0
TG
2256static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2257 enum bpf_reg_type type)
2258{
2259 struct bpf_reg_state *reg = &regs[regno];
2260
2261 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
56f668df
MKL
2262 if (type == UNKNOWN_VALUE) {
2263 __mark_reg_unknown_value(regs, regno);
2264 } else if (reg->map_ptr->inner_map_meta) {
2265 reg->type = CONST_PTR_TO_MAP;
2266 reg->map_ptr = reg->map_ptr->inner_map_meta;
2267 } else {
2268 reg->type = type;
2269 }
a08dd0da
DB
2270 /* We don't need id from this point onwards anymore, thus we
2271 * should better reset it, so that state pruning has chances
2272 * to take effect.
2273 */
2274 reg->id = 0;
57a09bf0
TG
2275 }
2276}
2277
2278/* The logic is similar to find_good_pkt_pointers(), both could eventually
2279 * be folded together at some point.
2280 */
2281static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2282 enum bpf_reg_type type)
2283{
2284 struct bpf_reg_state *regs = state->regs;
a08dd0da 2285 u32 id = regs[regno].id;
57a09bf0
TG
2286 int i;
2287
2288 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2289 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2290
2291 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2292 if (state->stack_slot_type[i] != STACK_SPILL)
2293 continue;
a08dd0da 2294 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2295 }
2296}
2297
58e2af8b 2298static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2299 struct bpf_insn *insn, int *insn_idx)
2300{
58e2af8b
JK
2301 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2302 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2303 u8 opcode = BPF_OP(insn->code);
2304 int err;
2305
2306 if (opcode > BPF_EXIT) {
2307 verbose("invalid BPF_JMP opcode %x\n", opcode);
2308 return -EINVAL;
2309 }
2310
2311 if (BPF_SRC(insn->code) == BPF_X) {
2312 if (insn->imm != 0) {
2313 verbose("BPF_JMP uses reserved fields\n");
2314 return -EINVAL;
2315 }
2316
2317 /* check src1 operand */
2318 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2319 if (err)
2320 return err;
1be7f75d
AS
2321
2322 if (is_pointer_value(env, insn->src_reg)) {
2323 verbose("R%d pointer comparison prohibited\n",
2324 insn->src_reg);
2325 return -EACCES;
2326 }
17a52670
AS
2327 } else {
2328 if (insn->src_reg != BPF_REG_0) {
2329 verbose("BPF_JMP uses reserved fields\n");
2330 return -EINVAL;
2331 }
2332 }
2333
2334 /* check src2 operand */
2335 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2336 if (err)
2337 return err;
2338
1a0dc1ac
AS
2339 dst_reg = &regs[insn->dst_reg];
2340
17a52670
AS
2341 /* detect if R == 0 where R was initialized to zero earlier */
2342 if (BPF_SRC(insn->code) == BPF_K &&
2343 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2344 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2345 if (opcode == BPF_JEQ) {
2346 /* if (imm == imm) goto pc+off;
2347 * only follow the goto, ignore fall-through
2348 */
2349 *insn_idx += insn->off;
2350 return 0;
2351 } else {
2352 /* if (imm != imm) goto pc+off;
2353 * only follow fall-through branch, since
2354 * that's where the program will go
2355 */
2356 return 0;
2357 }
2358 }
2359
2360 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2361 if (!other_branch)
2362 return -EFAULT;
2363
48461135
JB
2364 /* detect if we are comparing against a constant value so we can adjust
2365 * our min/max values for our dst register.
2366 */
2367 if (BPF_SRC(insn->code) == BPF_X) {
2368 if (regs[insn->src_reg].type == CONST_IMM)
2369 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2370 dst_reg, regs[insn->src_reg].imm,
2371 opcode);
2372 else if (dst_reg->type == CONST_IMM)
2373 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2374 &regs[insn->src_reg], dst_reg->imm,
2375 opcode);
2376 } else {
2377 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2378 dst_reg, insn->imm, opcode);
2379 }
2380
58e2af8b 2381 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2382 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2383 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2384 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2385 /* Mark all identical map registers in each branch as either
2386 * safe or unknown depending R == 0 or R != 0 conditional.
2387 */
2388 mark_map_regs(this_branch, insn->dst_reg,
2389 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2390 mark_map_regs(other_branch, insn->dst_reg,
2391 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2392 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2393 dst_reg->type == PTR_TO_PACKET &&
2394 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2395 find_good_pkt_pointers(this_branch, dst_reg);
2396 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2397 dst_reg->type == PTR_TO_PACKET_END &&
2398 regs[insn->src_reg].type == PTR_TO_PACKET) {
2399 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2400 } else if (is_pointer_value(env, insn->dst_reg)) {
2401 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2402 return -EACCES;
17a52670
AS
2403 }
2404 if (log_level)
2d2be8ca 2405 print_verifier_state(this_branch);
17a52670
AS
2406 return 0;
2407}
2408
0246e64d
AS
2409/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2410static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2411{
2412 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2413
2414 return (struct bpf_map *) (unsigned long) imm64;
2415}
2416
17a52670 2417/* verify BPF_LD_IMM64 instruction */
58e2af8b 2418static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2419{
58e2af8b 2420 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2421 int err;
2422
2423 if (BPF_SIZE(insn->code) != BPF_DW) {
2424 verbose("invalid BPF_LD_IMM insn\n");
2425 return -EINVAL;
2426 }
2427 if (insn->off != 0) {
2428 verbose("BPF_LD_IMM64 uses reserved fields\n");
2429 return -EINVAL;
2430 }
2431
2432 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2433 if (err)
2434 return err;
2435
6b173873 2436 if (insn->src_reg == 0) {
6b173873
JK
2437 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2438
6b173873
JK
2439 regs[insn->dst_reg].type = CONST_IMM;
2440 regs[insn->dst_reg].imm = imm;
4a2ff55a 2441 regs[insn->dst_reg].id = 0;
17a52670 2442 return 0;
6b173873 2443 }
17a52670
AS
2444
2445 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2446 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2447
2448 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2449 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2450 return 0;
2451}
2452
96be4325
DB
2453static bool may_access_skb(enum bpf_prog_type type)
2454{
2455 switch (type) {
2456 case BPF_PROG_TYPE_SOCKET_FILTER:
2457 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2458 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2459 return true;
2460 default:
2461 return false;
2462 }
2463}
2464
ddd872bc
AS
2465/* verify safety of LD_ABS|LD_IND instructions:
2466 * - they can only appear in the programs where ctx == skb
2467 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2468 * preserve R6-R9, and store return value into R0
2469 *
2470 * Implicit input:
2471 * ctx == skb == R6 == CTX
2472 *
2473 * Explicit input:
2474 * SRC == any register
2475 * IMM == 32-bit immediate
2476 *
2477 * Output:
2478 * R0 - 8/16/32-bit skb data converted to cpu endianness
2479 */
58e2af8b 2480static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2481{
58e2af8b 2482 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2483 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2484 int i, err;
2485
24701ece 2486 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2487 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2488 return -EINVAL;
2489 }
2490
2491 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2492 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2493 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2494 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2495 return -EINVAL;
2496 }
2497
2498 /* check whether implicit source operand (register R6) is readable */
2499 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2500 if (err)
2501 return err;
2502
2503 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2504 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2505 return -EINVAL;
2506 }
2507
2508 if (mode == BPF_IND) {
2509 /* check explicit source operand */
2510 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2511 if (err)
2512 return err;
2513 }
2514
2515 /* reset caller saved regs to unreadable */
a9789ef9
DB
2516 for (i = 0; i < CALLER_SAVED_REGS; i++)
2517 mark_reg_not_init(regs, caller_saved[i]);
ddd872bc
AS
2518
2519 /* mark destination R0 register as readable, since it contains
2520 * the value fetched from the packet
2521 */
2522 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2523 return 0;
2524}
2525
475fb78f
AS
2526/* non-recursive DFS pseudo code
2527 * 1 procedure DFS-iterative(G,v):
2528 * 2 label v as discovered
2529 * 3 let S be a stack
2530 * 4 S.push(v)
2531 * 5 while S is not empty
2532 * 6 t <- S.pop()
2533 * 7 if t is what we're looking for:
2534 * 8 return t
2535 * 9 for all edges e in G.adjacentEdges(t) do
2536 * 10 if edge e is already labelled
2537 * 11 continue with the next edge
2538 * 12 w <- G.adjacentVertex(t,e)
2539 * 13 if vertex w is not discovered and not explored
2540 * 14 label e as tree-edge
2541 * 15 label w as discovered
2542 * 16 S.push(w)
2543 * 17 continue at 5
2544 * 18 else if vertex w is discovered
2545 * 19 label e as back-edge
2546 * 20 else
2547 * 21 // vertex w is explored
2548 * 22 label e as forward- or cross-edge
2549 * 23 label t as explored
2550 * 24 S.pop()
2551 *
2552 * convention:
2553 * 0x10 - discovered
2554 * 0x11 - discovered and fall-through edge labelled
2555 * 0x12 - discovered and fall-through and branch edges labelled
2556 * 0x20 - explored
2557 */
2558
2559enum {
2560 DISCOVERED = 0x10,
2561 EXPLORED = 0x20,
2562 FALLTHROUGH = 1,
2563 BRANCH = 2,
2564};
2565
58e2af8b 2566#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2567
475fb78f
AS
2568static int *insn_stack; /* stack of insns to process */
2569static int cur_stack; /* current stack index */
2570static int *insn_state;
2571
2572/* t, w, e - match pseudo-code above:
2573 * t - index of current instruction
2574 * w - next instruction
2575 * e - edge
2576 */
58e2af8b 2577static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2578{
2579 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2580 return 0;
2581
2582 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2583 return 0;
2584
2585 if (w < 0 || w >= env->prog->len) {
2586 verbose("jump out of range from insn %d to %d\n", t, w);
2587 return -EINVAL;
2588 }
2589
f1bca824
AS
2590 if (e == BRANCH)
2591 /* mark branch target for state pruning */
2592 env->explored_states[w] = STATE_LIST_MARK;
2593
475fb78f
AS
2594 if (insn_state[w] == 0) {
2595 /* tree-edge */
2596 insn_state[t] = DISCOVERED | e;
2597 insn_state[w] = DISCOVERED;
2598 if (cur_stack >= env->prog->len)
2599 return -E2BIG;
2600 insn_stack[cur_stack++] = w;
2601 return 1;
2602 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2603 verbose("back-edge from insn %d to %d\n", t, w);
2604 return -EINVAL;
2605 } else if (insn_state[w] == EXPLORED) {
2606 /* forward- or cross-edge */
2607 insn_state[t] = DISCOVERED | e;
2608 } else {
2609 verbose("insn state internal bug\n");
2610 return -EFAULT;
2611 }
2612 return 0;
2613}
2614
2615/* non-recursive depth-first-search to detect loops in BPF program
2616 * loop == back-edge in directed graph
2617 */
58e2af8b 2618static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2619{
2620 struct bpf_insn *insns = env->prog->insnsi;
2621 int insn_cnt = env->prog->len;
2622 int ret = 0;
2623 int i, t;
2624
2625 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2626 if (!insn_state)
2627 return -ENOMEM;
2628
2629 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2630 if (!insn_stack) {
2631 kfree(insn_state);
2632 return -ENOMEM;
2633 }
2634
2635 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2636 insn_stack[0] = 0; /* 0 is the first instruction */
2637 cur_stack = 1;
2638
2639peek_stack:
2640 if (cur_stack == 0)
2641 goto check_state;
2642 t = insn_stack[cur_stack - 1];
2643
2644 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2645 u8 opcode = BPF_OP(insns[t].code);
2646
2647 if (opcode == BPF_EXIT) {
2648 goto mark_explored;
2649 } else if (opcode == BPF_CALL) {
2650 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2651 if (ret == 1)
2652 goto peek_stack;
2653 else if (ret < 0)
2654 goto err_free;
07016151
DB
2655 if (t + 1 < insn_cnt)
2656 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2657 } else if (opcode == BPF_JA) {
2658 if (BPF_SRC(insns[t].code) != BPF_K) {
2659 ret = -EINVAL;
2660 goto err_free;
2661 }
2662 /* unconditional jump with single edge */
2663 ret = push_insn(t, t + insns[t].off + 1,
2664 FALLTHROUGH, env);
2665 if (ret == 1)
2666 goto peek_stack;
2667 else if (ret < 0)
2668 goto err_free;
f1bca824
AS
2669 /* tell verifier to check for equivalent states
2670 * after every call and jump
2671 */
c3de6317
AS
2672 if (t + 1 < insn_cnt)
2673 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2674 } else {
2675 /* conditional jump with two edges */
3c2ce60b 2676 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
2677 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2678 if (ret == 1)
2679 goto peek_stack;
2680 else if (ret < 0)
2681 goto err_free;
2682
2683 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2684 if (ret == 1)
2685 goto peek_stack;
2686 else if (ret < 0)
2687 goto err_free;
2688 }
2689 } else {
2690 /* all other non-branch instructions with single
2691 * fall-through edge
2692 */
2693 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2694 if (ret == 1)
2695 goto peek_stack;
2696 else if (ret < 0)
2697 goto err_free;
2698 }
2699
2700mark_explored:
2701 insn_state[t] = EXPLORED;
2702 if (cur_stack-- <= 0) {
2703 verbose("pop stack internal bug\n");
2704 ret = -EFAULT;
2705 goto err_free;
2706 }
2707 goto peek_stack;
2708
2709check_state:
2710 for (i = 0; i < insn_cnt; i++) {
2711 if (insn_state[i] != EXPLORED) {
2712 verbose("unreachable insn %d\n", i);
2713 ret = -EINVAL;
2714 goto err_free;
2715 }
2716 }
2717 ret = 0; /* cfg looks good */
2718
2719err_free:
2720 kfree(insn_state);
2721 kfree(insn_stack);
2722 return ret;
2723}
2724
969bf05e
AS
2725/* the following conditions reduce the number of explored insns
2726 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2727 */
1ad2f583
DB
2728static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2729 struct bpf_reg_state *old,
58e2af8b 2730 struct bpf_reg_state *cur)
969bf05e
AS
2731{
2732 if (old->id != cur->id)
2733 return false;
2734
2735 /* old ptr_to_packet is more conservative, since it allows smaller
2736 * range. Ex:
2737 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2738 * old(off=0,r=10) means that with range=10 the verifier proceeded
2739 * further and found no issues with the program. Now we're in the same
2740 * spot with cur(off=0,r=20), so we're safe too, since anything further
2741 * will only be looking at most 10 bytes after this pointer.
2742 */
2743 if (old->off == cur->off && old->range < cur->range)
2744 return true;
2745
2746 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2747 * since both cannot be used for packet access and safe(old)
2748 * pointer has smaller off that could be used for further
2749 * 'if (ptr > data_end)' check
2750 * Ex:
2751 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2752 * that we cannot access the packet.
2753 * The safe range is:
2754 * [ptr, ptr + range - off)
2755 * so whenever off >=range, it means no safe bytes from this pointer.
2756 * When comparing old->off <= cur->off, it means that older code
2757 * went with smaller offset and that offset was later
2758 * used to figure out the safe range after 'if (ptr > data_end)' check
2759 * Say, 'old' state was explored like:
2760 * ... R3(off=0, r=0)
2761 * R4 = R3 + 20
2762 * ... now R4(off=20,r=0) <-- here
2763 * if (R4 > data_end)
2764 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2765 * ... the code further went all the way to bpf_exit.
2766 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2767 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2768 * goes further, such cur_R4 will give larger safe packet range after
2769 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2770 * so they will be good with r=30 and we can prune the search.
2771 */
1ad2f583 2772 if (!env->strict_alignment && old->off <= cur->off &&
969bf05e
AS
2773 old->off >= old->range && cur->off >= cur->range)
2774 return true;
2775
2776 return false;
2777}
2778
f1bca824
AS
2779/* compare two verifier states
2780 *
2781 * all states stored in state_list are known to be valid, since
2782 * verifier reached 'bpf_exit' instruction through them
2783 *
2784 * this function is called when verifier exploring different branches of
2785 * execution popped from the state stack. If it sees an old state that has
2786 * more strict register state and more strict stack state then this execution
2787 * branch doesn't need to be explored further, since verifier already
2788 * concluded that more strict state leads to valid finish.
2789 *
2790 * Therefore two states are equivalent if register state is more conservative
2791 * and explored stack state is more conservative than the current one.
2792 * Example:
2793 * explored current
2794 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2795 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2796 *
2797 * In other words if current stack state (one being explored) has more
2798 * valid slots than old one that already passed validation, it means
2799 * the verifier can stop exploring and conclude that current state is valid too
2800 *
2801 * Similarly with registers. If explored state has register type as invalid
2802 * whereas register type in current state is meaningful, it means that
2803 * the current state will reach 'bpf_exit' instruction safely
2804 */
48461135
JB
2805static bool states_equal(struct bpf_verifier_env *env,
2806 struct bpf_verifier_state *old,
58e2af8b 2807 struct bpf_verifier_state *cur)
f1bca824 2808{
e2d2afe1 2809 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2810 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2811 int i;
2812
2813 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2814 rold = &old->regs[i];
2815 rcur = &cur->regs[i];
2816
2817 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2818 continue;
2819
48461135
JB
2820 /* If the ranges were not the same, but everything else was and
2821 * we didn't do a variable access into a map then we are a-ok.
2822 */
e2d2afe1 2823 if (!varlen_map_access &&
d2a4dd37 2824 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2825 continue;
2826
e2d2afe1
JB
2827 /* If we didn't map access then again we don't care about the
2828 * mismatched range values and it's ok if our old type was
2829 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2830 */
1a0dc1ac 2831 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2832 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2833 rcur->type != NOT_INIT))
1a0dc1ac
AS
2834 continue;
2835
3c2ce60b
DB
2836 /* Don't care about the reg->id in this case. */
2837 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2838 rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2839 rold->map_ptr == rcur->map_ptr)
2840 continue;
2841
969bf05e 2842 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
1ad2f583 2843 compare_ptrs_to_packet(env, rold, rcur))
969bf05e
AS
2844 continue;
2845
1a0dc1ac 2846 return false;
f1bca824
AS
2847 }
2848
2849 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2850 if (old->stack_slot_type[i] == STACK_INVALID)
2851 continue;
2852 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2853 /* Ex: old explored (safe) state has STACK_SPILL in
2854 * this stack slot, but current has has STACK_MISC ->
2855 * this verifier states are not equivalent,
2856 * return false to continue verification of this path
2857 */
f1bca824 2858 return false;
9c399760
AS
2859 if (i % BPF_REG_SIZE)
2860 continue;
d25da6ca
DB
2861 if (old->stack_slot_type[i] != STACK_SPILL)
2862 continue;
9c399760
AS
2863 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2864 &cur->spilled_regs[i / BPF_REG_SIZE],
2865 sizeof(old->spilled_regs[0])))
2866 /* when explored and current stack slot types are
2867 * the same, check that stored pointers types
2868 * are the same as well.
2869 * Ex: explored safe path could have stored
58e2af8b 2870 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2871 * but current path has stored:
58e2af8b 2872 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2873 * such verifier states are not equivalent.
2874 * return false to continue verification of this path
2875 */
2876 return false;
2877 else
2878 continue;
f1bca824
AS
2879 }
2880 return true;
2881}
2882
58e2af8b 2883static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2884{
58e2af8b
JK
2885 struct bpf_verifier_state_list *new_sl;
2886 struct bpf_verifier_state_list *sl;
f1bca824
AS
2887
2888 sl = env->explored_states[insn_idx];
2889 if (!sl)
2890 /* this 'insn_idx' instruction wasn't marked, so we will not
2891 * be doing state search here
2892 */
2893 return 0;
2894
2895 while (sl != STATE_LIST_MARK) {
48461135 2896 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2897 /* reached equivalent register/stack state,
2898 * prune the search
2899 */
2900 return 1;
2901 sl = sl->next;
2902 }
2903
2904 /* there were no equivalent states, remember current one.
2905 * technically the current state is not proven to be safe yet,
2906 * but it will either reach bpf_exit (which means it's safe) or
2907 * it will be rejected. Since there are no loops, we won't be
2908 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2909 */
58e2af8b 2910 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2911 if (!new_sl)
2912 return -ENOMEM;
2913
2914 /* add new state to the head of linked list */
2915 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2916 new_sl->next = env->explored_states[insn_idx];
2917 env->explored_states[insn_idx] = new_sl;
2918 return 0;
2919}
2920
13a27dfc
JK
2921static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2922 int insn_idx, int prev_insn_idx)
2923{
2924 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2925 return 0;
2926
2927 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2928}
2929
58e2af8b 2930static int do_check(struct bpf_verifier_env *env)
17a52670 2931{
58e2af8b 2932 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2933 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2934 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2935 int insn_cnt = env->prog->len;
2936 int insn_idx, prev_insn_idx = 0;
2937 int insn_processed = 0;
2938 bool do_print_state = false;
2939
2940 init_reg_state(regs);
2941 insn_idx = 0;
48461135 2942 env->varlen_map_value_access = false;
17a52670
AS
2943 for (;;) {
2944 struct bpf_insn *insn;
2945 u8 class;
2946 int err;
2947
2948 if (insn_idx >= insn_cnt) {
2949 verbose("invalid insn idx %d insn_cnt %d\n",
2950 insn_idx, insn_cnt);
2951 return -EFAULT;
2952 }
2953
2954 insn = &insns[insn_idx];
2955 class = BPF_CLASS(insn->code);
2956
07016151 2957 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 2958 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
2959 insn_processed);
2960 return -E2BIG;
2961 }
2962
f1bca824
AS
2963 err = is_state_visited(env, insn_idx);
2964 if (err < 0)
2965 return err;
2966 if (err == 1) {
2967 /* found equivalent state, can prune the search */
2968 if (log_level) {
2969 if (do_print_state)
2970 verbose("\nfrom %d to %d: safe\n",
2971 prev_insn_idx, insn_idx);
2972 else
2973 verbose("%d: safe\n", insn_idx);
2974 }
2975 goto process_bpf_exit;
2976 }
2977
3c2ce60b
DB
2978 if (need_resched())
2979 cond_resched();
2980
c5fc9692
DM
2981 if (log_level > 1 || (log_level && do_print_state)) {
2982 if (log_level > 1)
2983 verbose("%d:", insn_idx);
2984 else
2985 verbose("\nfrom %d to %d:",
2986 prev_insn_idx, insn_idx);
1a0dc1ac 2987 print_verifier_state(&env->cur_state);
17a52670
AS
2988 do_print_state = false;
2989 }
2990
2991 if (log_level) {
2992 verbose("%d: ", insn_idx);
0d0e5769 2993 print_bpf_insn(env, insn);
17a52670
AS
2994 }
2995
13a27dfc
JK
2996 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2997 if (err)
2998 return err;
2999
17a52670 3000 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3001 err = check_alu_op(env, insn);
17a52670
AS
3002 if (err)
3003 return err;
3004
3005 } else if (class == BPF_LDX) {
3df126f3 3006 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3007
3008 /* check for reserved fields is already done */
3009
17a52670
AS
3010 /* check src operand */
3011 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3012 if (err)
3013 return err;
3014
3015 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
3016 if (err)
3017 return err;
3018
725f9dcd
AS
3019 src_reg_type = regs[insn->src_reg].type;
3020
17a52670
AS
3021 /* check that memory (src_reg + off) is readable,
3022 * the state of dst_reg will be updated by this func
3023 */
31fd8581 3024 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3025 BPF_SIZE(insn->code), BPF_READ,
3026 insn->dst_reg);
3027 if (err)
3028 return err;
3029
3df126f3
JK
3030 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3031
3032 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3033 /* saw a valid insn
3034 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3035 * save type to validate intersecting paths
9bac3d6d 3036 */
3df126f3 3037 *prev_src_type = src_reg_type;
9bac3d6d 3038
3df126f3 3039 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3040 (src_reg_type == PTR_TO_CTX ||
3df126f3 3041 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3042 /* ABuser program is trying to use the same insn
3043 * dst_reg = *(u32*) (src_reg + off)
3044 * with different pointer types:
3045 * src_reg == ctx in one branch and
3046 * src_reg == stack|map in some other branch.
3047 * Reject it.
3048 */
3049 verbose("same insn cannot be used with different pointers\n");
3050 return -EINVAL;
3051 }
3052
17a52670 3053 } else if (class == BPF_STX) {
3df126f3 3054 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3055
17a52670 3056 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3057 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3058 if (err)
3059 return err;
3060 insn_idx++;
3061 continue;
3062 }
3063
17a52670
AS
3064 /* check src1 operand */
3065 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3066 if (err)
3067 return err;
3068 /* check src2 operand */
3069 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3070 if (err)
3071 return err;
3072
d691f9e8
AS
3073 dst_reg_type = regs[insn->dst_reg].type;
3074
17a52670 3075 /* check that memory (dst_reg + off) is writeable */
31fd8581 3076 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3077 BPF_SIZE(insn->code), BPF_WRITE,
3078 insn->src_reg);
3079 if (err)
3080 return err;
3081
3df126f3
JK
3082 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3083
3084 if (*prev_dst_type == NOT_INIT) {
3085 *prev_dst_type = dst_reg_type;
3086 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3087 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3088 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3089 verbose("same insn cannot be used with different pointers\n");
3090 return -EINVAL;
3091 }
3092
17a52670
AS
3093 } else if (class == BPF_ST) {
3094 if (BPF_MODE(insn->code) != BPF_MEM ||
3095 insn->src_reg != BPF_REG_0) {
3096 verbose("BPF_ST uses reserved fields\n");
3097 return -EINVAL;
3098 }
3099 /* check src operand */
3100 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3101 if (err)
3102 return err;
3103
3104 /* check that memory (dst_reg + off) is writeable */
31fd8581 3105 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3106 BPF_SIZE(insn->code), BPF_WRITE,
3107 -1);
3108 if (err)
3109 return err;
3110
3111 } else if (class == BPF_JMP) {
3112 u8 opcode = BPF_OP(insn->code);
3113
3114 if (opcode == BPF_CALL) {
3115 if (BPF_SRC(insn->code) != BPF_K ||
3116 insn->off != 0 ||
3117 insn->src_reg != BPF_REG_0 ||
3118 insn->dst_reg != BPF_REG_0) {
3119 verbose("BPF_CALL uses reserved fields\n");
3120 return -EINVAL;
3121 }
3122
81ed18ab 3123 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3124 if (err)
3125 return err;
3126
3127 } else if (opcode == BPF_JA) {
3128 if (BPF_SRC(insn->code) != BPF_K ||
3129 insn->imm != 0 ||
3130 insn->src_reg != BPF_REG_0 ||
3131 insn->dst_reg != BPF_REG_0) {
3132 verbose("BPF_JA uses reserved fields\n");
3133 return -EINVAL;
3134 }
3135
3136 insn_idx += insn->off + 1;
3137 continue;
3138
3139 } else if (opcode == BPF_EXIT) {
3140 if (BPF_SRC(insn->code) != BPF_K ||
3141 insn->imm != 0 ||
3142 insn->src_reg != BPF_REG_0 ||
3143 insn->dst_reg != BPF_REG_0) {
3144 verbose("BPF_EXIT uses reserved fields\n");
3145 return -EINVAL;
3146 }
3147
3148 /* eBPF calling convetion is such that R0 is used
3149 * to return the value from eBPF program.
3150 * Make sure that it's readable at this time
3151 * of bpf_exit, which means that program wrote
3152 * something into it earlier
3153 */
3154 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3155 if (err)
3156 return err;
3157
1be7f75d
AS
3158 if (is_pointer_value(env, BPF_REG_0)) {
3159 verbose("R0 leaks addr as return value\n");
3160 return -EACCES;
3161 }
3162
f1bca824 3163process_bpf_exit:
17a52670
AS
3164 insn_idx = pop_stack(env, &prev_insn_idx);
3165 if (insn_idx < 0) {
3166 break;
3167 } else {
3168 do_print_state = true;
3169 continue;
3170 }
3171 } else {
3172 err = check_cond_jmp_op(env, insn, &insn_idx);
3173 if (err)
3174 return err;
3175 }
3176 } else if (class == BPF_LD) {
3177 u8 mode = BPF_MODE(insn->code);
3178
3179 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3180 err = check_ld_abs(env, insn);
3181 if (err)
3182 return err;
3183
17a52670
AS
3184 } else if (mode == BPF_IMM) {
3185 err = check_ld_imm(env, insn);
3186 if (err)
3187 return err;
3188
3189 insn_idx++;
3190 } else {
3191 verbose("invalid BPF_LD mode\n");
3192 return -EINVAL;
3193 }
48461135 3194 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3195 } else {
3196 verbose("unknown insn class %d\n", class);
3197 return -EINVAL;
3198 }
3199
3200 insn_idx++;
3201 }
3202
8726679a
AS
3203 verbose("processed %d insns, stack depth %d\n",
3204 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3205 return 0;
3206}
3207
56f668df
MKL
3208static int check_map_prealloc(struct bpf_map *map)
3209{
3210 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3211 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3212 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3213 !(map->map_flags & BPF_F_NO_PREALLOC);
3214}
3215
fdc15d38
AS
3216static int check_map_prog_compatibility(struct bpf_map *map,
3217 struct bpf_prog *prog)
3218
3219{
56f668df
MKL
3220 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3221 * preallocated hash maps, since doing memory allocation
3222 * in overflow_handler can crash depending on where nmi got
3223 * triggered.
3224 */
3225 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3226 if (!check_map_prealloc(map)) {
3227 verbose("perf_event programs can only use preallocated hash map\n");
3228 return -EINVAL;
3229 }
3230 if (map->inner_map_meta &&
3231 !check_map_prealloc(map->inner_map_meta)) {
3232 verbose("perf_event programs can only use preallocated inner hash map\n");
3233 return -EINVAL;
3234 }
fdc15d38
AS
3235 }
3236 return 0;
3237}
3238
0246e64d
AS
3239/* look for pseudo eBPF instructions that access map FDs and
3240 * replace them with actual map pointers
3241 */
58e2af8b 3242static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3243{
3244 struct bpf_insn *insn = env->prog->insnsi;
3245 int insn_cnt = env->prog->len;
fdc15d38 3246 int i, j, err;
0246e64d 3247
f1f7714e 3248 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3249 if (err)
3250 return err;
3251
0246e64d 3252 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3253 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3254 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3255 verbose("BPF_LDX uses reserved fields\n");
3256 return -EINVAL;
3257 }
3258
d691f9e8
AS
3259 if (BPF_CLASS(insn->code) == BPF_STX &&
3260 ((BPF_MODE(insn->code) != BPF_MEM &&
3261 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3262 verbose("BPF_STX uses reserved fields\n");
3263 return -EINVAL;
3264 }
3265
0246e64d
AS
3266 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3267 struct bpf_map *map;
3268 struct fd f;
3269
3270 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3271 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3272 insn[1].off != 0) {
3273 verbose("invalid bpf_ld_imm64 insn\n");
3274 return -EINVAL;
3275 }
3276
3277 if (insn->src_reg == 0)
3278 /* valid generic load 64-bit imm */
3279 goto next_insn;
3280
3281 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3282 verbose("unrecognized bpf_ld_imm64 insn\n");
3283 return -EINVAL;
3284 }
3285
3286 f = fdget(insn->imm);
c2101297 3287 map = __bpf_map_get(f);
0246e64d
AS
3288 if (IS_ERR(map)) {
3289 verbose("fd %d is not pointing to valid bpf_map\n",
3290 insn->imm);
0246e64d
AS
3291 return PTR_ERR(map);
3292 }
3293
fdc15d38
AS
3294 err = check_map_prog_compatibility(map, env->prog);
3295 if (err) {
3296 fdput(f);
3297 return err;
3298 }
3299
0246e64d
AS
3300 /* store map pointer inside BPF_LD_IMM64 instruction */
3301 insn[0].imm = (u32) (unsigned long) map;
3302 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3303
3304 /* check whether we recorded this map already */
3305 for (j = 0; j < env->used_map_cnt; j++)
3306 if (env->used_maps[j] == map) {
3307 fdput(f);
3308 goto next_insn;
3309 }
3310
3311 if (env->used_map_cnt >= MAX_USED_MAPS) {
3312 fdput(f);
3313 return -E2BIG;
3314 }
3315
0246e64d
AS
3316 /* hold the map. If the program is rejected by verifier,
3317 * the map will be released by release_maps() or it
3318 * will be used by the valid program until it's unloaded
3319 * and all maps are released in free_bpf_prog_info()
3320 */
92117d84
AS
3321 map = bpf_map_inc(map, false);
3322 if (IS_ERR(map)) {
3323 fdput(f);
3324 return PTR_ERR(map);
3325 }
3326 env->used_maps[env->used_map_cnt++] = map;
3327
0246e64d
AS
3328 fdput(f);
3329next_insn:
3330 insn++;
3331 i++;
3332 }
3333 }
3334
3335 /* now all pseudo BPF_LD_IMM64 instructions load valid
3336 * 'struct bpf_map *' into a register instead of user map_fd.
3337 * These pointers will be used later by verifier to validate map access.
3338 */
3339 return 0;
3340}
3341
3342/* drop refcnt of maps used by the rejected program */
58e2af8b 3343static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3344{
3345 int i;
3346
3347 for (i = 0; i < env->used_map_cnt; i++)
3348 bpf_map_put(env->used_maps[i]);
3349}
3350
3351/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3352static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3353{
3354 struct bpf_insn *insn = env->prog->insnsi;
3355 int insn_cnt = env->prog->len;
3356 int i;
3357
3358 for (i = 0; i < insn_cnt; i++, insn++)
3359 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3360 insn->src_reg = 0;
3361}
3362
8041902d
AS
3363/* single env->prog->insni[off] instruction was replaced with the range
3364 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3365 * [0, off) and [off, end) to new locations, so the patched range stays zero
3366 */
3367static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3368 u32 off, u32 cnt)
3369{
3370 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3371
3372 if (cnt == 1)
3373 return 0;
3374 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3375 if (!new_data)
3376 return -ENOMEM;
3377 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3378 memcpy(new_data + off + cnt - 1, old_data + off,
3379 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3380 env->insn_aux_data = new_data;
3381 vfree(old_data);
3382 return 0;
3383}
3384
3385static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3386 const struct bpf_insn *patch, u32 len)
3387{
3388 struct bpf_prog *new_prog;
3389
3390 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3391 if (!new_prog)
3392 return NULL;
3393 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3394 return NULL;
3395 return new_prog;
3396}
3397
9bac3d6d
AS
3398/* convert load instructions that access fields of 'struct __sk_buff'
3399 * into sequence of instructions that access fields of 'struct sk_buff'
3400 */
58e2af8b 3401static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3402{
36bbef52 3403 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3404 const int insn_cnt = env->prog->len;
36bbef52 3405 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3406 struct bpf_prog *new_prog;
d691f9e8 3407 enum bpf_access_type type;
23994631 3408 int i, cnt, off, size, ctx_field_size, converted_op_size, is_narrower_load, delta = 0;
9bac3d6d 3409
36bbef52
DB
3410 if (ops->gen_prologue) {
3411 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3412 env->prog);
3413 if (cnt >= ARRAY_SIZE(insn_buf)) {
3414 verbose("bpf verifier is misconfigured\n");
3415 return -EINVAL;
3416 } else if (cnt) {
8041902d 3417 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3418 if (!new_prog)
3419 return -ENOMEM;
8041902d 3420
36bbef52 3421 env->prog = new_prog;
3df126f3 3422 delta += cnt - 1;
36bbef52
DB
3423 }
3424 }
3425
3426 if (!ops->convert_ctx_access)
9bac3d6d
AS
3427 return 0;
3428
3df126f3 3429 insn = env->prog->insnsi + delta;
36bbef52 3430
9bac3d6d 3431 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3432 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3433 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3434 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3435 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3436 type = BPF_READ;
62c7989b
DB
3437 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3438 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3439 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3440 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3441 type = BPF_WRITE;
3442 else
9bac3d6d
AS
3443 continue;
3444
8041902d 3445 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3446 continue;
9bac3d6d 3447
31fd8581
YS
3448 off = insn->off;
3449 size = bpf_size_to_bytes(BPF_SIZE(insn->code));
3450 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
23994631
YS
3451 converted_op_size = env->insn_aux_data[i + delta].converted_op_size;
3452 is_narrower_load = type == BPF_READ && size < ctx_field_size;
31fd8581
YS
3453
3454 /* If the read access is a narrower load of the field,
3455 * convert to a 4/8-byte load, to minimum program type specific
3456 * convert_ctx_access changes. If conversion is successful,
3457 * we will apply proper mask to the result.
3458 */
3459 if (is_narrower_load) {
3460 int size_code = BPF_H;
3461
3462 if (ctx_field_size == 4)
3463 size_code = BPF_W;
3464 else if (ctx_field_size == 8)
3465 size_code = BPF_DW;
3466 insn->off = off & ~(ctx_field_size - 1);
3467 insn->code = BPF_LDX | BPF_MEM | size_code;
3468 }
6b8cc1d1 3469 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
9bac3d6d
AS
3470 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3471 verbose("bpf verifier is misconfigured\n");
3472 return -EINVAL;
3473 }
23994631 3474 if (is_narrower_load && size < converted_op_size) {
31fd8581
YS
3475 if (ctx_field_size <= 4)
3476 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
3477 (1 << size * 8) - 1);
3478 else
3479 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
3480 (1 << size * 8) - 1);
3481 }
9bac3d6d 3482
8041902d 3483 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3484 if (!new_prog)
3485 return -ENOMEM;
3486
3df126f3 3487 delta += cnt - 1;
9bac3d6d
AS
3488
3489 /* keep walking new program and skip insns we just inserted */
3490 env->prog = new_prog;
3df126f3 3491 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3492 }
3493
3494 return 0;
3495}
3496
79741b3b 3497/* fixup insn->imm field of bpf_call instructions
81ed18ab 3498 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3499 *
3500 * this function is called after eBPF program passed verification
3501 */
79741b3b 3502static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3503{
79741b3b
AS
3504 struct bpf_prog *prog = env->prog;
3505 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3506 const struct bpf_func_proto *fn;
79741b3b 3507 const int insn_cnt = prog->len;
81ed18ab
AS
3508 struct bpf_insn insn_buf[16];
3509 struct bpf_prog *new_prog;
3510 struct bpf_map *map_ptr;
3511 int i, cnt, delta = 0;
e245c5c6 3512
79741b3b
AS
3513 for (i = 0; i < insn_cnt; i++, insn++) {
3514 if (insn->code != (BPF_JMP | BPF_CALL))
3515 continue;
e245c5c6 3516
79741b3b
AS
3517 if (insn->imm == BPF_FUNC_get_route_realm)
3518 prog->dst_needed = 1;
3519 if (insn->imm == BPF_FUNC_get_prandom_u32)
3520 bpf_user_rnd_init_once();
79741b3b 3521 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3522 /* If we tail call into other programs, we
3523 * cannot make any assumptions since they can
3524 * be replaced dynamically during runtime in
3525 * the program array.
3526 */
3527 prog->cb_access = 1;
80a58d02 3528 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 3529
79741b3b
AS
3530 /* mark bpf_tail_call as different opcode to avoid
3531 * conditional branch in the interpeter for every normal
3532 * call and to prevent accidental JITing by JIT compiler
3533 * that doesn't support bpf_tail_call yet
e245c5c6 3534 */
79741b3b 3535 insn->imm = 0;
71189fa9 3536 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
3537 continue;
3538 }
e245c5c6 3539
81ed18ab
AS
3540 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3541 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3542 if (map_ptr == BPF_MAP_PTR_POISON ||
3543 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3544 goto patch_call_imm;
3545
3546 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3547 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3548 verbose("bpf verifier is misconfigured\n");
3549 return -EINVAL;
3550 }
3551
3552 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3553 cnt);
3554 if (!new_prog)
3555 return -ENOMEM;
3556
3557 delta += cnt - 1;
3558
3559 /* keep walking new program and skip insns we just inserted */
3560 env->prog = prog = new_prog;
3561 insn = new_prog->insnsi + i + delta;
3562 continue;
3563 }
3564
3565patch_call_imm:
79741b3b
AS
3566 fn = prog->aux->ops->get_func_proto(insn->imm);
3567 /* all functions that have prototype and verifier allowed
3568 * programs to call them, must be real in-kernel functions
3569 */
3570 if (!fn->func) {
3571 verbose("kernel subsystem misconfigured func %s#%d\n",
3572 func_id_name(insn->imm), insn->imm);
3573 return -EFAULT;
e245c5c6 3574 }
79741b3b 3575 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3576 }
e245c5c6 3577
79741b3b
AS
3578 return 0;
3579}
e245c5c6 3580
58e2af8b 3581static void free_states(struct bpf_verifier_env *env)
f1bca824 3582{
58e2af8b 3583 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3584 int i;
3585
3586 if (!env->explored_states)
3587 return;
3588
3589 for (i = 0; i < env->prog->len; i++) {
3590 sl = env->explored_states[i];
3591
3592 if (sl)
3593 while (sl != STATE_LIST_MARK) {
3594 sln = sl->next;
3595 kfree(sl);
3596 sl = sln;
3597 }
3598 }
3599
3600 kfree(env->explored_states);
3601}
3602
9bac3d6d 3603int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3604{
cbd35700 3605 char __user *log_ubuf = NULL;
58e2af8b 3606 struct bpf_verifier_env *env;
51580e79
AS
3607 int ret = -EINVAL;
3608
58e2af8b 3609 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3610 * allocate/free it every time bpf_check() is called
3611 */
58e2af8b 3612 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3613 if (!env)
3614 return -ENOMEM;
3615
3df126f3
JK
3616 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3617 (*prog)->len);
3618 ret = -ENOMEM;
3619 if (!env->insn_aux_data)
3620 goto err_free_env;
9bac3d6d 3621 env->prog = *prog;
0246e64d 3622
cbd35700
AS
3623 /* grab the mutex to protect few globals used by verifier */
3624 mutex_lock(&bpf_verifier_lock);
3625
3626 if (attr->log_level || attr->log_buf || attr->log_size) {
3627 /* user requested verbose verifier output
3628 * and supplied buffer to store the verification trace
3629 */
3630 log_level = attr->log_level;
3631 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3632 log_size = attr->log_size;
3633 log_len = 0;
3634
3635 ret = -EINVAL;
3636 /* log_* values have to be sane */
3637 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3638 log_level == 0 || log_ubuf == NULL)
3df126f3 3639 goto err_unlock;
cbd35700
AS
3640
3641 ret = -ENOMEM;
3642 log_buf = vmalloc(log_size);
3643 if (!log_buf)
3df126f3 3644 goto err_unlock;
cbd35700
AS
3645 } else {
3646 log_level = 0;
3647 }
1ad2f583
DB
3648
3649 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3650 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 3651 env->strict_alignment = true;
cbd35700 3652
0246e64d
AS
3653 ret = replace_map_fd_with_map_ptr(env);
3654 if (ret < 0)
3655 goto skip_full_check;
3656
9bac3d6d 3657 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3658 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3659 GFP_USER);
3660 ret = -ENOMEM;
3661 if (!env->explored_states)
3662 goto skip_full_check;
3663
475fb78f
AS
3664 ret = check_cfg(env);
3665 if (ret < 0)
3666 goto skip_full_check;
3667
1be7f75d
AS
3668 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3669
17a52670 3670 ret = do_check(env);
cbd35700 3671
0246e64d 3672skip_full_check:
17a52670 3673 while (pop_stack(env, NULL) >= 0);
f1bca824 3674 free_states(env);
0246e64d 3675
9bac3d6d
AS
3676 if (ret == 0)
3677 /* program is valid, convert *(u32*)(ctx + off) accesses */
3678 ret = convert_ctx_accesses(env);
3679
e245c5c6 3680 if (ret == 0)
79741b3b 3681 ret = fixup_bpf_calls(env);
e245c5c6 3682
cbd35700
AS
3683 if (log_level && log_len >= log_size - 1) {
3684 BUG_ON(log_len >= log_size);
3685 /* verifier log exceeded user supplied buffer */
3686 ret = -ENOSPC;
3687 /* fall through to return what was recorded */
3688 }
3689
3690 /* copy verifier log back to user space including trailing zero */
3691 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3692 ret = -EFAULT;
3693 goto free_log_buf;
3694 }
3695
0246e64d
AS
3696 if (ret == 0 && env->used_map_cnt) {
3697 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3698 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3699 sizeof(env->used_maps[0]),
3700 GFP_KERNEL);
0246e64d 3701
9bac3d6d 3702 if (!env->prog->aux->used_maps) {
0246e64d
AS
3703 ret = -ENOMEM;
3704 goto free_log_buf;
3705 }
3706
9bac3d6d 3707 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3708 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3709 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3710
3711 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3712 * bpf_ld_imm64 instructions
3713 */
3714 convert_pseudo_ld_imm64(env);
3715 }
cbd35700
AS
3716
3717free_log_buf:
3718 if (log_level)
3719 vfree(log_buf);
9bac3d6d 3720 if (!env->prog->aux->used_maps)
0246e64d
AS
3721 /* if we didn't copy map pointers into bpf_prog_info, release
3722 * them now. Otherwise free_bpf_prog_info() will release them.
3723 */
3724 release_maps(env);
9bac3d6d 3725 *prog = env->prog;
3df126f3 3726err_unlock:
cbd35700 3727 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3728 vfree(env->insn_aux_data);
3729err_free_env:
3730 kfree(env);
51580e79
AS
3731 return ret;
3732}
13a27dfc
JK
3733
3734int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3735 void *priv)
3736{
3737 struct bpf_verifier_env *env;
3738 int ret;
3739
3740 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3741 if (!env)
3742 return -ENOMEM;
3743
3744 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3745 prog->len);
3746 ret = -ENOMEM;
3747 if (!env->insn_aux_data)
3748 goto err_free_env;
3749 env->prog = prog;
3750 env->analyzer_ops = ops;
3751 env->analyzer_priv = priv;
3752
3753 /* grab the mutex to protect few globals used by verifier */
3754 mutex_lock(&bpf_verifier_lock);
3755
3756 log_level = 0;
1ad2f583 3757
e07b98d9 3758 env->strict_alignment = false;
1ad2f583
DB
3759 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3760 env->strict_alignment = true;
13a27dfc
JK
3761
3762 env->explored_states = kcalloc(env->prog->len,
3763 sizeof(struct bpf_verifier_state_list *),
3764 GFP_KERNEL);
3765 ret = -ENOMEM;
3766 if (!env->explored_states)
3767 goto skip_full_check;
3768
3769 ret = check_cfg(env);
3770 if (ret < 0)
3771 goto skip_full_check;
3772
3773 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3774
3775 ret = do_check(env);
3776
3777skip_full_check:
3778 while (pop_stack(env, NULL) >= 0);
3779 free_states(env);
3780
3781 mutex_unlock(&bpf_verifier_lock);
3782 vfree(env->insn_aux_data);
3783err_free_env:
3784 kfree(env);
3785 return ret;
3786}
3787EXPORT_SYMBOL_GPL(bpf_analyzer);