]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'liquidio-switchdev-support'
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
9c399760 279 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 280 if (state->stack_slot_type[i] == STACK_SPILL)
61bd5218 281 verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 282 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670 283 }
61bd5218 284 verbose(env, "\n");
17a52670
AS
285}
286
58e2af8b 287static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 288{
58e2af8b 289 struct bpf_verifier_stack_elem *elem;
17a52670
AS
290 int insn_idx;
291
292 if (env->head == NULL)
293 return -1;
294
295 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
296 insn_idx = env->head->insn_idx;
297 if (prev_insn_idx)
298 *prev_insn_idx = env->head->prev_insn_idx;
299 elem = env->head->next;
300 kfree(env->head);
301 env->head = elem;
302 env->stack_size--;
303 return insn_idx;
304}
305
58e2af8b
JK
306static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
307 int insn_idx, int prev_insn_idx)
17a52670 308{
58e2af8b 309 struct bpf_verifier_stack_elem *elem;
17a52670 310
58e2af8b 311 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
312 if (!elem)
313 goto err;
314
315 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
316 elem->insn_idx = insn_idx;
317 elem->prev_insn_idx = prev_insn_idx;
318 elem->next = env->head;
319 env->head = elem;
320 env->stack_size++;
07016151 321 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 322 verbose(env, "BPF program is too complex\n");
17a52670
AS
323 goto err;
324 }
325 return &elem->st;
326err:
327 /* pop all elements and return */
328 while (pop_stack(env, NULL) >= 0);
329 return NULL;
330}
331
332#define CALLER_SAVED_REGS 6
333static const int caller_saved[CALLER_SAVED_REGS] = {
334 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
335};
336
f1174f77
EC
337static void __mark_reg_not_init(struct bpf_reg_state *reg);
338
b03c9f9f
EC
339/* Mark the unknown part of a register (variable offset or scalar value) as
340 * known to have the value @imm.
341 */
342static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
343{
344 reg->id = 0;
345 reg->var_off = tnum_const(imm);
346 reg->smin_value = (s64)imm;
347 reg->smax_value = (s64)imm;
348 reg->umin_value = imm;
349 reg->umax_value = imm;
350}
351
f1174f77
EC
352/* Mark the 'variable offset' part of a register as zero. This should be
353 * used only on registers holding a pointer type.
354 */
355static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 356{
b03c9f9f 357 __mark_reg_known(reg, 0);
f1174f77 358}
a9789ef9 359
61bd5218
JK
360static void mark_reg_known_zero(struct bpf_verifier_env *env,
361 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
362{
363 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 364 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
365 /* Something bad happened, let's kill all regs */
366 for (regno = 0; regno < MAX_BPF_REG; regno++)
367 __mark_reg_not_init(regs + regno);
368 return;
369 }
370 __mark_reg_known_zero(regs + regno);
371}
372
de8f3a83
DB
373static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
374{
375 return type_is_pkt_pointer(reg->type);
376}
377
378static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
379{
380 return reg_is_pkt_pointer(reg) ||
381 reg->type == PTR_TO_PACKET_END;
382}
383
384/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
385static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
386 enum bpf_reg_type which)
387{
388 /* The register can already have a range from prior markings.
389 * This is fine as long as it hasn't been advanced from its
390 * origin.
391 */
392 return reg->type == which &&
393 reg->id == 0 &&
394 reg->off == 0 &&
395 tnum_equals_const(reg->var_off, 0);
396}
397
b03c9f9f
EC
398/* Attempts to improve min/max values based on var_off information */
399static void __update_reg_bounds(struct bpf_reg_state *reg)
400{
401 /* min signed is max(sign bit) | min(other bits) */
402 reg->smin_value = max_t(s64, reg->smin_value,
403 reg->var_off.value | (reg->var_off.mask & S64_MIN));
404 /* max signed is min(sign bit) | max(other bits) */
405 reg->smax_value = min_t(s64, reg->smax_value,
406 reg->var_off.value | (reg->var_off.mask & S64_MAX));
407 reg->umin_value = max(reg->umin_value, reg->var_off.value);
408 reg->umax_value = min(reg->umax_value,
409 reg->var_off.value | reg->var_off.mask);
410}
411
412/* Uses signed min/max values to inform unsigned, and vice-versa */
413static void __reg_deduce_bounds(struct bpf_reg_state *reg)
414{
415 /* Learn sign from signed bounds.
416 * If we cannot cross the sign boundary, then signed and unsigned bounds
417 * are the same, so combine. This works even in the negative case, e.g.
418 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
419 */
420 if (reg->smin_value >= 0 || reg->smax_value < 0) {
421 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
422 reg->umin_value);
423 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
424 reg->umax_value);
425 return;
426 }
427 /* Learn sign from unsigned bounds. Signed bounds cross the sign
428 * boundary, so we must be careful.
429 */
430 if ((s64)reg->umax_value >= 0) {
431 /* Positive. We can't learn anything from the smin, but smax
432 * is positive, hence safe.
433 */
434 reg->smin_value = reg->umin_value;
435 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
436 reg->umax_value);
437 } else if ((s64)reg->umin_value < 0) {
438 /* Negative. We can't learn anything from the smax, but smin
439 * is negative, hence safe.
440 */
441 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
442 reg->umin_value);
443 reg->smax_value = reg->umax_value;
444 }
445}
446
447/* Attempts to improve var_off based on unsigned min/max information */
448static void __reg_bound_offset(struct bpf_reg_state *reg)
449{
450 reg->var_off = tnum_intersect(reg->var_off,
451 tnum_range(reg->umin_value,
452 reg->umax_value));
453}
454
455/* Reset the min/max bounds of a register */
456static void __mark_reg_unbounded(struct bpf_reg_state *reg)
457{
458 reg->smin_value = S64_MIN;
459 reg->smax_value = S64_MAX;
460 reg->umin_value = 0;
461 reg->umax_value = U64_MAX;
462}
463
f1174f77
EC
464/* Mark a register as having a completely unknown (scalar) value. */
465static void __mark_reg_unknown(struct bpf_reg_state *reg)
466{
467 reg->type = SCALAR_VALUE;
468 reg->id = 0;
469 reg->off = 0;
470 reg->var_off = tnum_unknown;
b03c9f9f 471 __mark_reg_unbounded(reg);
f1174f77
EC
472}
473
61bd5218
JK
474static void mark_reg_unknown(struct bpf_verifier_env *env,
475 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
476{
477 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 478 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
479 /* Something bad happened, let's kill all regs */
480 for (regno = 0; regno < MAX_BPF_REG; regno++)
481 __mark_reg_not_init(regs + regno);
482 return;
483 }
484 __mark_reg_unknown(regs + regno);
485}
486
487static void __mark_reg_not_init(struct bpf_reg_state *reg)
488{
489 __mark_reg_unknown(reg);
490 reg->type = NOT_INIT;
491}
492
61bd5218
JK
493static void mark_reg_not_init(struct bpf_verifier_env *env,
494 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
495{
496 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 497 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
498 /* Something bad happened, let's kill all regs */
499 for (regno = 0; regno < MAX_BPF_REG; regno++)
500 __mark_reg_not_init(regs + regno);
501 return;
502 }
503 __mark_reg_not_init(regs + regno);
a9789ef9
DB
504}
505
61bd5218
JK
506static void init_reg_state(struct bpf_verifier_env *env,
507 struct bpf_reg_state *regs)
17a52670
AS
508{
509 int i;
510
dc503a8a 511 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 512 mark_reg_not_init(env, regs, i);
dc503a8a
EC
513 regs[i].live = REG_LIVE_NONE;
514 }
17a52670
AS
515
516 /* frame pointer */
f1174f77 517 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 518 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
519
520 /* 1st arg to a function */
521 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 522 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
523}
524
17a52670
AS
525enum reg_arg_type {
526 SRC_OP, /* register is used as source operand */
527 DST_OP, /* register is used as destination operand */
528 DST_OP_NO_MARK /* same as above, check only, don't mark */
529};
530
dc503a8a
EC
531static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
532{
533 struct bpf_verifier_state *parent = state->parent;
534
8fe2d6cc
AS
535 if (regno == BPF_REG_FP)
536 /* We don't need to worry about FP liveness because it's read-only */
537 return;
538
dc503a8a
EC
539 while (parent) {
540 /* if read wasn't screened by an earlier write ... */
541 if (state->regs[regno].live & REG_LIVE_WRITTEN)
542 break;
543 /* ... then we depend on parent's value */
544 parent->regs[regno].live |= REG_LIVE_READ;
545 state = parent;
546 parent = state->parent;
547 }
548}
549
550static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
551 enum reg_arg_type t)
552{
dc503a8a
EC
553 struct bpf_reg_state *regs = env->cur_state.regs;
554
17a52670 555 if (regno >= MAX_BPF_REG) {
61bd5218 556 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
557 return -EINVAL;
558 }
559
560 if (t == SRC_OP) {
561 /* check whether register used as source operand can be read */
562 if (regs[regno].type == NOT_INIT) {
61bd5218 563 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
564 return -EACCES;
565 }
dc503a8a 566 mark_reg_read(&env->cur_state, regno);
17a52670
AS
567 } else {
568 /* check whether register used as dest operand can be written to */
569 if (regno == BPF_REG_FP) {
61bd5218 570 verbose(env, "frame pointer is read only\n");
17a52670
AS
571 return -EACCES;
572 }
dc503a8a 573 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 574 if (t == DST_OP)
61bd5218 575 mark_reg_unknown(env, regs, regno);
17a52670
AS
576 }
577 return 0;
578}
579
1be7f75d
AS
580static bool is_spillable_regtype(enum bpf_reg_type type)
581{
582 switch (type) {
583 case PTR_TO_MAP_VALUE:
584 case PTR_TO_MAP_VALUE_OR_NULL:
585 case PTR_TO_STACK:
586 case PTR_TO_CTX:
969bf05e 587 case PTR_TO_PACKET:
de8f3a83 588 case PTR_TO_PACKET_META:
969bf05e 589 case PTR_TO_PACKET_END:
1be7f75d
AS
590 case CONST_PTR_TO_MAP:
591 return true;
592 default:
593 return false;
594 }
595}
596
17a52670
AS
597/* check_stack_read/write functions track spill/fill of registers,
598 * stack boundary and alignment are checked in check_mem_access()
599 */
61bd5218
JK
600static int check_stack_write(struct bpf_verifier_env *env,
601 struct bpf_verifier_state *state, int off,
58e2af8b 602 int size, int value_regno)
17a52670 603{
dc503a8a 604 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
605 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
606 * so it's aligned access and [off, off + size) are within stack limits
607 */
17a52670
AS
608
609 if (value_regno >= 0 &&
1be7f75d 610 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
611
612 /* register containing pointer is being spilled into stack */
9c399760 613 if (size != BPF_REG_SIZE) {
61bd5218 614 verbose(env, "invalid size of register spill\n");
17a52670
AS
615 return -EACCES;
616 }
617
17a52670 618 /* save register state */
dc503a8a
EC
619 state->spilled_regs[spi] = state->regs[value_regno];
620 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 621
9c399760
AS
622 for (i = 0; i < BPF_REG_SIZE; i++)
623 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
624 } else {
17a52670 625 /* regular write of data into stack */
dc503a8a 626 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
627
628 for (i = 0; i < size; i++)
629 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
630 }
631 return 0;
632}
633
dc503a8a
EC
634static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
635{
636 struct bpf_verifier_state *parent = state->parent;
637
638 while (parent) {
639 /* if read wasn't screened by an earlier write ... */
640 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
641 break;
642 /* ... then we depend on parent's value */
643 parent->spilled_regs[slot].live |= REG_LIVE_READ;
644 state = parent;
645 parent = state->parent;
646 }
647}
648
61bd5218
JK
649static int check_stack_read(struct bpf_verifier_env *env,
650 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
651 int value_regno)
652{
9c399760 653 u8 *slot_type;
dc503a8a 654 int i, spi;
17a52670 655
9c399760 656 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 657
9c399760
AS
658 if (slot_type[0] == STACK_SPILL) {
659 if (size != BPF_REG_SIZE) {
61bd5218 660 verbose(env, "invalid size of register spill\n");
17a52670
AS
661 return -EACCES;
662 }
9c399760
AS
663 for (i = 1; i < BPF_REG_SIZE; i++) {
664 if (slot_type[i] != STACK_SPILL) {
61bd5218 665 verbose(env, "corrupted spill memory\n");
17a52670
AS
666 return -EACCES;
667 }
668 }
669
dc503a8a
EC
670 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
671
672 if (value_regno >= 0) {
17a52670 673 /* restore register state from stack */
dc503a8a
EC
674 state->regs[value_regno] = state->spilled_regs[spi];
675 mark_stack_slot_read(state, spi);
676 }
17a52670
AS
677 return 0;
678 } else {
679 for (i = 0; i < size; i++) {
9c399760 680 if (slot_type[i] != STACK_MISC) {
61bd5218 681 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
682 off, i, size);
683 return -EACCES;
684 }
685 }
686 if (value_regno >= 0)
687 /* have read misc data from the stack */
61bd5218 688 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
689 return 0;
690 }
691}
692
693/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 694static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
695 int size)
696{
697 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
698
5722569b 699 if (off < 0 || size <= 0 || off + size > map->value_size) {
61bd5218 700 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
701 map->value_size, off, size);
702 return -EACCES;
703 }
704 return 0;
705}
706
f1174f77
EC
707/* check read/write into a map element with possible variable offset */
708static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
709 int off, int size)
710{
711 struct bpf_verifier_state *state = &env->cur_state;
712 struct bpf_reg_state *reg = &state->regs[regno];
713 int err;
714
f1174f77
EC
715 /* We may have adjusted the register to this map value, so we
716 * need to try adding each of min_value and max_value to off
717 * to make sure our theoretical access will be safe.
dbcfe5f7 718 */
61bd5218
JK
719 if (env->log.level)
720 print_verifier_state(env, state);
dbcfe5f7
GB
721 /* The minimum value is only important with signed
722 * comparisons where we can't assume the floor of a
723 * value is 0. If we are using signed variables for our
724 * index'es we need to make sure that whatever we use
725 * will have a set floor within our range.
726 */
b03c9f9f 727 if (reg->smin_value < 0) {
61bd5218 728 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
729 regno);
730 return -EACCES;
731 }
b03c9f9f 732 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 733 if (err) {
61bd5218
JK
734 verbose(env, "R%d min value is outside of the array range\n",
735 regno);
dbcfe5f7
GB
736 return err;
737 }
738
b03c9f9f
EC
739 /* If we haven't set a max value then we need to bail since we can't be
740 * sure we won't do bad things.
741 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 742 */
b03c9f9f 743 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 744 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
745 regno);
746 return -EACCES;
747 }
b03c9f9f 748 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77 749 if (err)
61bd5218
JK
750 verbose(env, "R%d max value is outside of the array range\n",
751 regno);
f1174f77 752 return err;
dbcfe5f7
GB
753}
754
969bf05e
AS
755#define MAX_PACKET_OFF 0xffff
756
58e2af8b 757static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
758 const struct bpf_call_arg_meta *meta,
759 enum bpf_access_type t)
4acf6c0b 760{
36bbef52 761 switch (env->prog->type) {
3a0af8fd
TG
762 case BPF_PROG_TYPE_LWT_IN:
763 case BPF_PROG_TYPE_LWT_OUT:
764 /* dst_input() and dst_output() can't write for now */
765 if (t == BPF_WRITE)
766 return false;
7e57fbb2 767 /* fallthrough */
36bbef52
DB
768 case BPF_PROG_TYPE_SCHED_CLS:
769 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 770 case BPF_PROG_TYPE_XDP:
3a0af8fd 771 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 772 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
773 if (meta)
774 return meta->pkt_access;
775
776 env->seen_direct_write = true;
4acf6c0b
BB
777 return true;
778 default:
779 return false;
780 }
781}
782
f1174f77
EC
783static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
784 int off, int size)
969bf05e 785{
58e2af8b
JK
786 struct bpf_reg_state *regs = env->cur_state.regs;
787 struct bpf_reg_state *reg = &regs[regno];
969bf05e 788
f1174f77 789 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
61bd5218 790 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 791 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
792 return -EACCES;
793 }
794 return 0;
795}
796
f1174f77
EC
797static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
798 int size)
799{
800 struct bpf_reg_state *regs = env->cur_state.regs;
801 struct bpf_reg_state *reg = &regs[regno];
802 int err;
803
804 /* We may have added a variable offset to the packet pointer; but any
805 * reg->range we have comes after that. We are only checking the fixed
806 * offset.
807 */
808
809 /* We don't allow negative numbers, because we aren't tracking enough
810 * detail to prove they're safe.
811 */
b03c9f9f 812 if (reg->smin_value < 0) {
61bd5218 813 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
814 regno);
815 return -EACCES;
816 }
817 err = __check_packet_access(env, regno, off, size);
818 if (err) {
61bd5218 819 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
820 return err;
821 }
822 return err;
823}
824
825/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 826static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 827 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 828{
f96da094
DB
829 struct bpf_insn_access_aux info = {
830 .reg_type = *reg_type,
831 };
31fd8581 832
4f9218aa
JK
833 if (env->ops->is_valid_access &&
834 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
835 /* A non zero info.ctx_field_size indicates that this field is a
836 * candidate for later verifier transformation to load the whole
837 * field and then apply a mask when accessed with a narrower
838 * access than actual ctx access size. A zero info.ctx_field_size
839 * will only allow for whole field access and rejects any other
840 * type of narrower access.
31fd8581 841 */
23994631 842 *reg_type = info.reg_type;
31fd8581 843
4f9218aa
JK
844 if (env->analyzer_ops)
845 return 0;
846
847 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
848 /* remember the offset of last byte accessed in ctx */
849 if (env->prog->aux->max_ctx_offset < off + size)
850 env->prog->aux->max_ctx_offset = off + size;
17a52670 851 return 0;
32bbe007 852 }
17a52670 853
61bd5218 854 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
855 return -EACCES;
856}
857
4cabc5b1
DB
858static bool __is_pointer_value(bool allow_ptr_leaks,
859 const struct bpf_reg_state *reg)
1be7f75d 860{
4cabc5b1 861 if (allow_ptr_leaks)
1be7f75d
AS
862 return false;
863
f1174f77 864 return reg->type != SCALAR_VALUE;
1be7f75d
AS
865}
866
4cabc5b1
DB
867static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
868{
869 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
870}
871
61bd5218
JK
872static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
873 const struct bpf_reg_state *reg,
d1174416 874 int off, int size, bool strict)
969bf05e 875{
f1174f77 876 struct tnum reg_off;
e07b98d9 877 int ip_align;
d1174416
DM
878
879 /* Byte size accesses are always allowed. */
880 if (!strict || size == 1)
881 return 0;
882
e4eda884
DM
883 /* For platforms that do not have a Kconfig enabling
884 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
885 * NET_IP_ALIGN is universally set to '2'. And on platforms
886 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
887 * to this code only in strict mode where we want to emulate
888 * the NET_IP_ALIGN==2 checking. Therefore use an
889 * unconditional IP align value of '2'.
e07b98d9 890 */
e4eda884 891 ip_align = 2;
f1174f77
EC
892
893 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
894 if (!tnum_is_aligned(reg_off, size)) {
895 char tn_buf[48];
896
897 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
898 verbose(env,
899 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 900 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
901 return -EACCES;
902 }
79adffcd 903
969bf05e
AS
904 return 0;
905}
906
61bd5218
JK
907static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
908 const struct bpf_reg_state *reg,
f1174f77
EC
909 const char *pointer_desc,
910 int off, int size, bool strict)
79adffcd 911{
f1174f77
EC
912 struct tnum reg_off;
913
914 /* Byte size accesses are always allowed. */
915 if (!strict || size == 1)
916 return 0;
917
918 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
919 if (!tnum_is_aligned(reg_off, size)) {
920 char tn_buf[48];
921
922 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 923 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 924 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
925 return -EACCES;
926 }
927
969bf05e
AS
928 return 0;
929}
930
e07b98d9
DM
931static int check_ptr_alignment(struct bpf_verifier_env *env,
932 const struct bpf_reg_state *reg,
79adffcd
DB
933 int off, int size)
934{
e07b98d9 935 bool strict = env->strict_alignment;
f1174f77 936 const char *pointer_desc = "";
d1174416 937
79adffcd
DB
938 switch (reg->type) {
939 case PTR_TO_PACKET:
de8f3a83
DB
940 case PTR_TO_PACKET_META:
941 /* Special case, because of NET_IP_ALIGN. Given metadata sits
942 * right in front, treat it the very same way.
943 */
61bd5218 944 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
945 case PTR_TO_MAP_VALUE:
946 pointer_desc = "value ";
947 break;
948 case PTR_TO_CTX:
949 pointer_desc = "context ";
950 break;
951 case PTR_TO_STACK:
952 pointer_desc = "stack ";
953 break;
79adffcd 954 default:
f1174f77 955 break;
79adffcd 956 }
61bd5218
JK
957 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
958 strict);
79adffcd
DB
959}
960
17a52670
AS
961/* check whether memory at (regno + off) is accessible for t = (read | write)
962 * if t==write, value_regno is a register which value is stored into memory
963 * if t==read, value_regno is a register which will receive the value from memory
964 * if t==write && value_regno==-1, some unknown value is stored into memory
965 * if t==read && value_regno==-1, don't care what we read from memory
966 */
31fd8581 967static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
968 int bpf_size, enum bpf_access_type t,
969 int value_regno)
970{
58e2af8b
JK
971 struct bpf_verifier_state *state = &env->cur_state;
972 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
973 int size, err = 0;
974
975 size = bpf_size_to_bytes(bpf_size);
976 if (size < 0)
977 return size;
978
f1174f77 979 /* alignment checks will add in reg->off themselves */
e07b98d9 980 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
981 if (err)
982 return err;
17a52670 983
f1174f77
EC
984 /* for access checks, reg->off is just part of off */
985 off += reg->off;
986
987 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
988 if (t == BPF_WRITE && value_regno >= 0 &&
989 is_pointer_value(env, value_regno)) {
61bd5218 990 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
991 return -EACCES;
992 }
48461135 993
f1174f77 994 err = check_map_access(env, regno, off, size);
17a52670 995 if (!err && t == BPF_READ && value_regno >= 0)
61bd5218 996 mark_reg_unknown(env, state->regs, value_regno);
17a52670 997
1a0dc1ac 998 } else if (reg->type == PTR_TO_CTX) {
f1174f77 999 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1000
1be7f75d
AS
1001 if (t == BPF_WRITE && value_regno >= 0 &&
1002 is_pointer_value(env, value_regno)) {
61bd5218 1003 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1004 return -EACCES;
1005 }
f1174f77
EC
1006 /* ctx accesses must be at a fixed offset, so that we can
1007 * determine what type of data were returned.
1008 */
28e33f9d 1009 if (reg->off) {
f8ddadc4
DM
1010 verbose(env,
1011 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1012 regno, reg->off, off - reg->off);
1013 return -EACCES;
1014 }
1015 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1016 char tn_buf[48];
1017
1018 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1019 verbose(env,
1020 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1021 tn_buf, off, size);
1022 return -EACCES;
1023 }
31fd8581 1024 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1025 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1026 /* ctx access returns either a scalar, or a
de8f3a83
DB
1027 * PTR_TO_PACKET[_META,_END]. In the latter
1028 * case, we know the offset is zero.
f1174f77
EC
1029 */
1030 if (reg_type == SCALAR_VALUE)
61bd5218 1031 mark_reg_unknown(env, state->regs, value_regno);
f1174f77 1032 else
61bd5218
JK
1033 mark_reg_known_zero(env, state->regs,
1034 value_regno);
f1174f77
EC
1035 state->regs[value_regno].id = 0;
1036 state->regs[value_regno].off = 0;
1037 state->regs[value_regno].range = 0;
1955351d 1038 state->regs[value_regno].type = reg_type;
969bf05e 1039 }
17a52670 1040
f1174f77
EC
1041 } else if (reg->type == PTR_TO_STACK) {
1042 /* stack accesses must be at a fixed offset, so that we can
1043 * determine what type of data were returned.
1044 * See check_stack_read().
1045 */
1046 if (!tnum_is_const(reg->var_off)) {
1047 char tn_buf[48];
1048
1049 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1050 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1051 tn_buf, off, size);
1052 return -EACCES;
1053 }
1054 off += reg->var_off.value;
17a52670 1055 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1056 verbose(env, "invalid stack off=%d size=%d\n", off,
1057 size);
17a52670
AS
1058 return -EACCES;
1059 }
8726679a
AS
1060
1061 if (env->prog->aux->stack_depth < -off)
1062 env->prog->aux->stack_depth = -off;
1063
1be7f75d
AS
1064 if (t == BPF_WRITE) {
1065 if (!env->allow_ptr_leaks &&
1066 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1067 size != BPF_REG_SIZE) {
61bd5218 1068 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1be7f75d
AS
1069 return -EACCES;
1070 }
61bd5218
JK
1071 err = check_stack_write(env, state, off, size,
1072 value_regno);
1be7f75d 1073 } else {
61bd5218
JK
1074 err = check_stack_read(env, state, off, size,
1075 value_regno);
1be7f75d 1076 }
de8f3a83 1077 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1078 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1079 verbose(env, "cannot write into packet\n");
969bf05e
AS
1080 return -EACCES;
1081 }
4acf6c0b
BB
1082 if (t == BPF_WRITE && value_regno >= 0 &&
1083 is_pointer_value(env, value_regno)) {
61bd5218
JK
1084 verbose(env, "R%d leaks addr into packet\n",
1085 value_regno);
4acf6c0b
BB
1086 return -EACCES;
1087 }
969bf05e
AS
1088 err = check_packet_access(env, regno, off, size);
1089 if (!err && t == BPF_READ && value_regno >= 0)
61bd5218 1090 mark_reg_unknown(env, state->regs, value_regno);
17a52670 1091 } else {
61bd5218
JK
1092 verbose(env, "R%d invalid mem access '%s'\n", regno,
1093 reg_type_str[reg->type]);
17a52670
AS
1094 return -EACCES;
1095 }
969bf05e 1096
f1174f77
EC
1097 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1098 state->regs[value_regno].type == SCALAR_VALUE) {
1099 /* b/h/w load zero-extends, mark upper bits as known 0 */
1100 state->regs[value_regno].var_off = tnum_cast(
1101 state->regs[value_regno].var_off, size);
b03c9f9f 1102 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1103 }
17a52670
AS
1104 return err;
1105}
1106
31fd8581 1107static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1108{
17a52670
AS
1109 int err;
1110
1111 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1112 insn->imm != 0) {
61bd5218 1113 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1114 return -EINVAL;
1115 }
1116
1117 /* check src1 operand */
dc503a8a 1118 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1119 if (err)
1120 return err;
1121
1122 /* check src2 operand */
dc503a8a 1123 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1124 if (err)
1125 return err;
1126
6bdf6abc 1127 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1128 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1129 return -EACCES;
1130 }
1131
17a52670 1132 /* check whether atomic_add can read the memory */
31fd8581 1133 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1134 BPF_SIZE(insn->code), BPF_READ, -1);
1135 if (err)
1136 return err;
1137
1138 /* check whether atomic_add can write into the same memory */
31fd8581 1139 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1140 BPF_SIZE(insn->code), BPF_WRITE, -1);
1141}
1142
f1174f77
EC
1143/* Does this register contain a constant zero? */
1144static bool register_is_null(struct bpf_reg_state reg)
1145{
1146 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1147}
1148
17a52670
AS
1149/* when register 'regno' is passed into function that will read 'access_size'
1150 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1151 * and all elements of stack are initialized.
1152 * Unlike most pointer bounds-checking functions, this one doesn't take an
1153 * 'off' argument, so it has to add in reg->off itself.
17a52670 1154 */
58e2af8b 1155static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1156 int access_size, bool zero_size_allowed,
1157 struct bpf_call_arg_meta *meta)
17a52670 1158{
58e2af8b
JK
1159 struct bpf_verifier_state *state = &env->cur_state;
1160 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1161 int off, i;
1162
8e2fe1d9 1163 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1164 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1165 if (zero_size_allowed && access_size == 0 &&
f1174f77 1166 register_is_null(regs[regno]))
8e2fe1d9
DB
1167 return 0;
1168
61bd5218 1169 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1170 reg_type_str[regs[regno].type],
1171 reg_type_str[PTR_TO_STACK]);
17a52670 1172 return -EACCES;
8e2fe1d9 1173 }
17a52670 1174
f1174f77
EC
1175 /* Only allow fixed-offset stack reads */
1176 if (!tnum_is_const(regs[regno].var_off)) {
1177 char tn_buf[48];
1178
1179 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1180 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77
EC
1181 regno, tn_buf);
1182 }
1183 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1184 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1185 access_size <= 0) {
61bd5218 1186 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1187 regno, off, access_size);
1188 return -EACCES;
1189 }
1190
8726679a
AS
1191 if (env->prog->aux->stack_depth < -off)
1192 env->prog->aux->stack_depth = -off;
1193
435faee1
DB
1194 if (meta && meta->raw_mode) {
1195 meta->access_size = access_size;
1196 meta->regno = regno;
1197 return 0;
1198 }
1199
17a52670 1200 for (i = 0; i < access_size; i++) {
9c399760 1201 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
61bd5218 1202 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1203 off, i, access_size);
1204 return -EACCES;
1205 }
1206 }
1207 return 0;
1208}
1209
06c1c049
GB
1210static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1211 int access_size, bool zero_size_allowed,
1212 struct bpf_call_arg_meta *meta)
1213{
f1174f77 1214 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1215
f1174f77 1216 switch (reg->type) {
06c1c049 1217 case PTR_TO_PACKET:
de8f3a83 1218 case PTR_TO_PACKET_META:
f1174f77 1219 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1220 case PTR_TO_MAP_VALUE:
f1174f77
EC
1221 return check_map_access(env, regno, reg->off, access_size);
1222 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1223 return check_stack_boundary(env, regno, access_size,
1224 zero_size_allowed, meta);
1225 }
1226}
1227
58e2af8b 1228static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1229 enum bpf_arg_type arg_type,
1230 struct bpf_call_arg_meta *meta)
17a52670 1231{
58e2af8b 1232 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1233 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1234 int err = 0;
1235
80f1d68c 1236 if (arg_type == ARG_DONTCARE)
17a52670
AS
1237 return 0;
1238
dc503a8a
EC
1239 err = check_reg_arg(env, regno, SRC_OP);
1240 if (err)
1241 return err;
17a52670 1242
1be7f75d
AS
1243 if (arg_type == ARG_ANYTHING) {
1244 if (is_pointer_value(env, regno)) {
61bd5218
JK
1245 verbose(env, "R%d leaks addr into helper function\n",
1246 regno);
1be7f75d
AS
1247 return -EACCES;
1248 }
80f1d68c 1249 return 0;
1be7f75d 1250 }
80f1d68c 1251
de8f3a83 1252 if (type_is_pkt_pointer(type) &&
3a0af8fd 1253 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1254 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1255 return -EACCES;
1256 }
1257
8e2fe1d9 1258 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1259 arg_type == ARG_PTR_TO_MAP_VALUE) {
1260 expected_type = PTR_TO_STACK;
de8f3a83
DB
1261 if (!type_is_pkt_pointer(type) &&
1262 type != expected_type)
6841de8b 1263 goto err_type;
39f19ebb
AS
1264 } else if (arg_type == ARG_CONST_SIZE ||
1265 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1266 expected_type = SCALAR_VALUE;
1267 if (type != expected_type)
6841de8b 1268 goto err_type;
17a52670
AS
1269 } else if (arg_type == ARG_CONST_MAP_PTR) {
1270 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1271 if (type != expected_type)
1272 goto err_type;
608cd71a
AS
1273 } else if (arg_type == ARG_PTR_TO_CTX) {
1274 expected_type = PTR_TO_CTX;
6841de8b
AS
1275 if (type != expected_type)
1276 goto err_type;
39f19ebb
AS
1277 } else if (arg_type == ARG_PTR_TO_MEM ||
1278 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1279 expected_type = PTR_TO_STACK;
1280 /* One exception here. In case function allows for NULL to be
f1174f77 1281 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1282 * happens during stack boundary checking.
1283 */
f1174f77 1284 if (register_is_null(*reg))
6841de8b 1285 /* final test in check_stack_boundary() */;
de8f3a83
DB
1286 else if (!type_is_pkt_pointer(type) &&
1287 type != PTR_TO_MAP_VALUE &&
f1174f77 1288 type != expected_type)
6841de8b 1289 goto err_type;
39f19ebb 1290 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1291 } else {
61bd5218 1292 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1293 return -EFAULT;
1294 }
1295
17a52670
AS
1296 if (arg_type == ARG_CONST_MAP_PTR) {
1297 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1298 meta->map_ptr = reg->map_ptr;
17a52670
AS
1299 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1300 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1301 * check that [key, key + map->key_size) are within
1302 * stack limits and initialized
1303 */
33ff9823 1304 if (!meta->map_ptr) {
17a52670
AS
1305 /* in function declaration map_ptr must come before
1306 * map_key, so that it's verified and known before
1307 * we have to check map_key here. Otherwise it means
1308 * that kernel subsystem misconfigured verifier
1309 */
61bd5218 1310 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1311 return -EACCES;
1312 }
de8f3a83 1313 if (type_is_pkt_pointer(type))
f1174f77 1314 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1315 meta->map_ptr->key_size);
1316 else
1317 err = check_stack_boundary(env, regno,
1318 meta->map_ptr->key_size,
1319 false, NULL);
17a52670
AS
1320 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1321 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1322 * check [value, value + map->value_size) validity
1323 */
33ff9823 1324 if (!meta->map_ptr) {
17a52670 1325 /* kernel subsystem misconfigured verifier */
61bd5218 1326 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1327 return -EACCES;
1328 }
de8f3a83 1329 if (type_is_pkt_pointer(type))
f1174f77 1330 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1331 meta->map_ptr->value_size);
1332 else
1333 err = check_stack_boundary(env, regno,
1334 meta->map_ptr->value_size,
1335 false, NULL);
39f19ebb
AS
1336 } else if (arg_type == ARG_CONST_SIZE ||
1337 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1338 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1339
17a52670
AS
1340 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1341 * from stack pointer 'buf'. Check it
1342 * note: regno == len, regno - 1 == buf
1343 */
1344 if (regno == 0) {
1345 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1346 verbose(env,
1347 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1348 return -EACCES;
1349 }
06c1c049 1350
f1174f77
EC
1351 /* The register is SCALAR_VALUE; the access check
1352 * happens using its boundaries.
06c1c049 1353 */
f1174f77
EC
1354
1355 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1356 /* For unprivileged variable accesses, disable raw
1357 * mode so that the program is required to
1358 * initialize all the memory that the helper could
1359 * just partially fill up.
1360 */
1361 meta = NULL;
1362
b03c9f9f 1363 if (reg->smin_value < 0) {
61bd5218 1364 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1365 regno);
1366 return -EACCES;
1367 }
06c1c049 1368
b03c9f9f 1369 if (reg->umin_value == 0) {
f1174f77
EC
1370 err = check_helper_mem_access(env, regno - 1, 0,
1371 zero_size_allowed,
1372 meta);
06c1c049
GB
1373 if (err)
1374 return err;
06c1c049 1375 }
f1174f77 1376
b03c9f9f 1377 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1378 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1379 regno);
1380 return -EACCES;
1381 }
1382 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1383 reg->umax_value,
f1174f77 1384 zero_size_allowed, meta);
17a52670
AS
1385 }
1386
1387 return err;
6841de8b 1388err_type:
61bd5218 1389 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1390 reg_type_str[type], reg_type_str[expected_type]);
1391 return -EACCES;
17a52670
AS
1392}
1393
61bd5218
JK
1394static int check_map_func_compatibility(struct bpf_verifier_env *env,
1395 struct bpf_map *map, int func_id)
35578d79 1396{
35578d79
KX
1397 if (!map)
1398 return 0;
1399
6aff67c8
AS
1400 /* We need a two way check, first is from map perspective ... */
1401 switch (map->map_type) {
1402 case BPF_MAP_TYPE_PROG_ARRAY:
1403 if (func_id != BPF_FUNC_tail_call)
1404 goto error;
1405 break;
1406 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1407 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1408 func_id != BPF_FUNC_perf_event_output &&
1409 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1410 goto error;
1411 break;
1412 case BPF_MAP_TYPE_STACK_TRACE:
1413 if (func_id != BPF_FUNC_get_stackid)
1414 goto error;
1415 break;
4ed8ec52 1416 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1417 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1418 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1419 goto error;
1420 break;
546ac1ff
JF
1421 /* devmap returns a pointer to a live net_device ifindex that we cannot
1422 * allow to be modified from bpf side. So do not allow lookup elements
1423 * for now.
1424 */
1425 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1426 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1427 goto error;
1428 break;
6710e112
JDB
1429 /* Restrict bpf side of cpumap, open when use-cases appear */
1430 case BPF_MAP_TYPE_CPUMAP:
1431 if (func_id != BPF_FUNC_redirect_map)
1432 goto error;
1433 break;
56f668df 1434 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1435 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1436 if (func_id != BPF_FUNC_map_lookup_elem)
1437 goto error;
16a43625 1438 break;
174a79ff
JF
1439 case BPF_MAP_TYPE_SOCKMAP:
1440 if (func_id != BPF_FUNC_sk_redirect_map &&
1441 func_id != BPF_FUNC_sock_map_update &&
1442 func_id != BPF_FUNC_map_delete_elem)
1443 goto error;
1444 break;
6aff67c8
AS
1445 default:
1446 break;
1447 }
1448
1449 /* ... and second from the function itself. */
1450 switch (func_id) {
1451 case BPF_FUNC_tail_call:
1452 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1453 goto error;
1454 break;
1455 case BPF_FUNC_perf_event_read:
1456 case BPF_FUNC_perf_event_output:
908432ca 1457 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1458 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1459 goto error;
1460 break;
1461 case BPF_FUNC_get_stackid:
1462 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1463 goto error;
1464 break;
60d20f91 1465 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1466 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1467 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1468 goto error;
1469 break;
97f91a7c 1470 case BPF_FUNC_redirect_map:
9c270af3
JDB
1471 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1472 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1473 goto error;
1474 break;
174a79ff
JF
1475 case BPF_FUNC_sk_redirect_map:
1476 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1477 goto error;
1478 break;
1479 case BPF_FUNC_sock_map_update:
1480 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1481 goto error;
1482 break;
6aff67c8
AS
1483 default:
1484 break;
35578d79
KX
1485 }
1486
1487 return 0;
6aff67c8 1488error:
61bd5218 1489 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1490 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1491 return -EINVAL;
35578d79
KX
1492}
1493
435faee1
DB
1494static int check_raw_mode(const struct bpf_func_proto *fn)
1495{
1496 int count = 0;
1497
39f19ebb 1498 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1499 count++;
39f19ebb 1500 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1501 count++;
39f19ebb 1502 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1503 count++;
39f19ebb 1504 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1505 count++;
39f19ebb 1506 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1507 count++;
1508
1509 return count > 1 ? -EINVAL : 0;
1510}
1511
de8f3a83
DB
1512/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1513 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1514 */
58e2af8b 1515static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1516{
58e2af8b
JK
1517 struct bpf_verifier_state *state = &env->cur_state;
1518 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1519 int i;
1520
1521 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1522 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1523 mark_reg_unknown(env, regs, i);
969bf05e
AS
1524
1525 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1526 if (state->stack_slot_type[i] != STACK_SPILL)
1527 continue;
1528 reg = &state->spilled_regs[i / BPF_REG_SIZE];
de8f3a83
DB
1529 if (reg_is_pkt_pointer_any(reg))
1530 __mark_reg_unknown(reg);
969bf05e
AS
1531 }
1532}
1533
81ed18ab 1534static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1535{
58e2af8b 1536 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1537 const struct bpf_func_proto *fn = NULL;
58e2af8b 1538 struct bpf_reg_state *regs = state->regs;
33ff9823 1539 struct bpf_call_arg_meta meta;
969bf05e 1540 bool changes_data;
17a52670
AS
1541 int i, err;
1542
1543 /* find function prototype */
1544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1545 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1546 func_id);
17a52670
AS
1547 return -EINVAL;
1548 }
1549
00176a34
JK
1550 if (env->ops->get_func_proto)
1551 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1552
1553 if (!fn) {
61bd5218
JK
1554 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1555 func_id);
17a52670
AS
1556 return -EINVAL;
1557 }
1558
1559 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1560 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1561 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1562 return -EINVAL;
1563 }
1564
17bedab2 1565 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1566
33ff9823 1567 memset(&meta, 0, sizeof(meta));
36bbef52 1568 meta.pkt_access = fn->pkt_access;
33ff9823 1569
435faee1
DB
1570 /* We only support one arg being in raw mode at the moment, which
1571 * is sufficient for the helper functions we have right now.
1572 */
1573 err = check_raw_mode(fn);
1574 if (err) {
61bd5218 1575 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1576 func_id_name(func_id), func_id);
435faee1
DB
1577 return err;
1578 }
1579
17a52670 1580 /* check args */
33ff9823 1581 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1582 if (err)
1583 return err;
33ff9823 1584 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1585 if (err)
1586 return err;
33ff9823 1587 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1588 if (err)
1589 return err;
33ff9823 1590 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1591 if (err)
1592 return err;
33ff9823 1593 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1594 if (err)
1595 return err;
1596
435faee1
DB
1597 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1598 * is inferred from register state.
1599 */
1600 for (i = 0; i < meta.access_size; i++) {
31fd8581 1601 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1602 if (err)
1603 return err;
1604 }
1605
17a52670 1606 /* reset caller saved regs */
dc503a8a 1607 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1608 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1609 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1610 }
17a52670 1611
dc503a8a 1612 /* update return register (already marked as written above) */
17a52670 1613 if (fn->ret_type == RET_INTEGER) {
f1174f77 1614 /* sets type to SCALAR_VALUE */
61bd5218 1615 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1616 } else if (fn->ret_type == RET_VOID) {
1617 regs[BPF_REG_0].type = NOT_INIT;
1618 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1619 struct bpf_insn_aux_data *insn_aux;
1620
17a52670 1621 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1622 /* There is no offset yet applied, variable or fixed */
61bd5218 1623 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1624 regs[BPF_REG_0].off = 0;
17a52670
AS
1625 /* remember map_ptr, so that check_map_access()
1626 * can check 'value_size' boundary of memory access
1627 * to map element returned from bpf_map_lookup_elem()
1628 */
33ff9823 1629 if (meta.map_ptr == NULL) {
61bd5218
JK
1630 verbose(env,
1631 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1632 return -EINVAL;
1633 }
33ff9823 1634 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1635 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1636 insn_aux = &env->insn_aux_data[insn_idx];
1637 if (!insn_aux->map_ptr)
1638 insn_aux->map_ptr = meta.map_ptr;
1639 else if (insn_aux->map_ptr != meta.map_ptr)
1640 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1641 } else {
61bd5218 1642 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1643 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1644 return -EINVAL;
1645 }
04fd61ab 1646
61bd5218 1647 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1648 if (err)
1649 return err;
04fd61ab 1650
969bf05e
AS
1651 if (changes_data)
1652 clear_all_pkt_pointers(env);
1653 return 0;
1654}
1655
f1174f77
EC
1656static void coerce_reg_to_32(struct bpf_reg_state *reg)
1657{
f1174f77
EC
1658 /* clear high 32 bits */
1659 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1660 /* Update bounds */
1661 __update_reg_bounds(reg);
1662}
1663
1664static bool signed_add_overflows(s64 a, s64 b)
1665{
1666 /* Do the add in u64, where overflow is well-defined */
1667 s64 res = (s64)((u64)a + (u64)b);
1668
1669 if (b < 0)
1670 return res > a;
1671 return res < a;
1672}
1673
1674static bool signed_sub_overflows(s64 a, s64 b)
1675{
1676 /* Do the sub in u64, where overflow is well-defined */
1677 s64 res = (s64)((u64)a - (u64)b);
1678
1679 if (b < 0)
1680 return res < a;
1681 return res > a;
969bf05e
AS
1682}
1683
f1174f77 1684/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1685 * Caller should also handle BPF_MOV case separately.
1686 * If we return -EACCES, caller may want to try again treating pointer as a
1687 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1688 */
1689static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1690 struct bpf_insn *insn,
1691 const struct bpf_reg_state *ptr_reg,
1692 const struct bpf_reg_state *off_reg)
969bf05e 1693{
f1174f77
EC
1694 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1695 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1696 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1697 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1698 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1699 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1700 u8 opcode = BPF_OP(insn->code);
f1174f77 1701 u32 dst = insn->dst_reg;
969bf05e 1702
f1174f77 1703 dst_reg = &regs[dst];
969bf05e 1704
b03c9f9f 1705 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
61bd5218
JK
1706 print_verifier_state(env, &env->cur_state);
1707 verbose(env,
1708 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1709 return -EINVAL;
1710 }
1711 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
61bd5218
JK
1712 print_verifier_state(env, &env->cur_state);
1713 verbose(env,
1714 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1715 return -EINVAL;
1716 }
1717
1718 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1719 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1720 if (!env->allow_ptr_leaks)
61bd5218
JK
1721 verbose(env,
1722 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1723 dst);
1724 return -EACCES;
969bf05e
AS
1725 }
1726
f1174f77
EC
1727 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1728 if (!env->allow_ptr_leaks)
61bd5218 1729 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1730 dst);
1731 return -EACCES;
1732 }
1733 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1734 if (!env->allow_ptr_leaks)
61bd5218 1735 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1736 dst);
1737 return -EACCES;
1738 }
1739 if (ptr_reg->type == PTR_TO_PACKET_END) {
1740 if (!env->allow_ptr_leaks)
61bd5218 1741 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1742 dst);
1743 return -EACCES;
1744 }
1745
1746 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1747 * The id may be overwritten later if we create a new variable offset.
969bf05e 1748 */
f1174f77
EC
1749 dst_reg->type = ptr_reg->type;
1750 dst_reg->id = ptr_reg->id;
969bf05e 1751
f1174f77
EC
1752 switch (opcode) {
1753 case BPF_ADD:
1754 /* We can take a fixed offset as long as it doesn't overflow
1755 * the s32 'off' field
969bf05e 1756 */
b03c9f9f
EC
1757 if (known && (ptr_reg->off + smin_val ==
1758 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1759 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1760 dst_reg->smin_value = smin_ptr;
1761 dst_reg->smax_value = smax_ptr;
1762 dst_reg->umin_value = umin_ptr;
1763 dst_reg->umax_value = umax_ptr;
f1174f77 1764 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1765 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1766 dst_reg->range = ptr_reg->range;
1767 break;
1768 }
f1174f77
EC
1769 /* A new variable offset is created. Note that off_reg->off
1770 * == 0, since it's a scalar.
1771 * dst_reg gets the pointer type and since some positive
1772 * integer value was added to the pointer, give it a new 'id'
1773 * if it's a PTR_TO_PACKET.
1774 * this creates a new 'base' pointer, off_reg (variable) gets
1775 * added into the variable offset, and we copy the fixed offset
1776 * from ptr_reg.
969bf05e 1777 */
b03c9f9f
EC
1778 if (signed_add_overflows(smin_ptr, smin_val) ||
1779 signed_add_overflows(smax_ptr, smax_val)) {
1780 dst_reg->smin_value = S64_MIN;
1781 dst_reg->smax_value = S64_MAX;
1782 } else {
1783 dst_reg->smin_value = smin_ptr + smin_val;
1784 dst_reg->smax_value = smax_ptr + smax_val;
1785 }
1786 if (umin_ptr + umin_val < umin_ptr ||
1787 umax_ptr + umax_val < umax_ptr) {
1788 dst_reg->umin_value = 0;
1789 dst_reg->umax_value = U64_MAX;
1790 } else {
1791 dst_reg->umin_value = umin_ptr + umin_val;
1792 dst_reg->umax_value = umax_ptr + umax_val;
1793 }
f1174f77
EC
1794 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1795 dst_reg->off = ptr_reg->off;
de8f3a83 1796 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1797 dst_reg->id = ++env->id_gen;
1798 /* something was added to pkt_ptr, set range to zero */
1799 dst_reg->range = 0;
1800 }
1801 break;
1802 case BPF_SUB:
1803 if (dst_reg == off_reg) {
1804 /* scalar -= pointer. Creates an unknown scalar */
1805 if (!env->allow_ptr_leaks)
61bd5218 1806 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1807 dst);
1808 return -EACCES;
1809 }
1810 /* We don't allow subtraction from FP, because (according to
1811 * test_verifier.c test "invalid fp arithmetic", JITs might not
1812 * be able to deal with it.
969bf05e 1813 */
f1174f77
EC
1814 if (ptr_reg->type == PTR_TO_STACK) {
1815 if (!env->allow_ptr_leaks)
61bd5218 1816 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1817 dst);
1818 return -EACCES;
1819 }
b03c9f9f
EC
1820 if (known && (ptr_reg->off - smin_val ==
1821 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1822 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1823 dst_reg->smin_value = smin_ptr;
1824 dst_reg->smax_value = smax_ptr;
1825 dst_reg->umin_value = umin_ptr;
1826 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1827 dst_reg->var_off = ptr_reg->var_off;
1828 dst_reg->id = ptr_reg->id;
b03c9f9f 1829 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1830 dst_reg->range = ptr_reg->range;
1831 break;
1832 }
f1174f77
EC
1833 /* A new variable offset is created. If the subtrahend is known
1834 * nonnegative, then any reg->range we had before is still good.
969bf05e 1835 */
b03c9f9f
EC
1836 if (signed_sub_overflows(smin_ptr, smax_val) ||
1837 signed_sub_overflows(smax_ptr, smin_val)) {
1838 /* Overflow possible, we know nothing */
1839 dst_reg->smin_value = S64_MIN;
1840 dst_reg->smax_value = S64_MAX;
1841 } else {
1842 dst_reg->smin_value = smin_ptr - smax_val;
1843 dst_reg->smax_value = smax_ptr - smin_val;
1844 }
1845 if (umin_ptr < umax_val) {
1846 /* Overflow possible, we know nothing */
1847 dst_reg->umin_value = 0;
1848 dst_reg->umax_value = U64_MAX;
1849 } else {
1850 /* Cannot overflow (as long as bounds are consistent) */
1851 dst_reg->umin_value = umin_ptr - umax_val;
1852 dst_reg->umax_value = umax_ptr - umin_val;
1853 }
f1174f77
EC
1854 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1855 dst_reg->off = ptr_reg->off;
de8f3a83 1856 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1857 dst_reg->id = ++env->id_gen;
1858 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1859 if (smin_val < 0)
f1174f77 1860 dst_reg->range = 0;
43188702 1861 }
f1174f77
EC
1862 break;
1863 case BPF_AND:
1864 case BPF_OR:
1865 case BPF_XOR:
1866 /* bitwise ops on pointers are troublesome, prohibit for now.
1867 * (However, in principle we could allow some cases, e.g.
1868 * ptr &= ~3 which would reduce min_value by 3.)
1869 */
1870 if (!env->allow_ptr_leaks)
61bd5218 1871 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
1872 dst, bpf_alu_string[opcode >> 4]);
1873 return -EACCES;
1874 default:
1875 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1876 if (!env->allow_ptr_leaks)
61bd5218 1877 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
1878 dst, bpf_alu_string[opcode >> 4]);
1879 return -EACCES;
43188702
JF
1880 }
1881
b03c9f9f
EC
1882 __update_reg_bounds(dst_reg);
1883 __reg_deduce_bounds(dst_reg);
1884 __reg_bound_offset(dst_reg);
43188702
JF
1885 return 0;
1886}
1887
f1174f77
EC
1888static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1889 struct bpf_insn *insn,
1890 struct bpf_reg_state *dst_reg,
1891 struct bpf_reg_state src_reg)
969bf05e 1892{
58e2af8b 1893 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1894 u8 opcode = BPF_OP(insn->code);
f1174f77 1895 bool src_known, dst_known;
b03c9f9f
EC
1896 s64 smin_val, smax_val;
1897 u64 umin_val, umax_val;
48461135 1898
f1174f77
EC
1899 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1900 /* 32-bit ALU ops are (32,32)->64 */
1901 coerce_reg_to_32(dst_reg);
1902 coerce_reg_to_32(&src_reg);
9305706c 1903 }
b03c9f9f
EC
1904 smin_val = src_reg.smin_value;
1905 smax_val = src_reg.smax_value;
1906 umin_val = src_reg.umin_value;
1907 umax_val = src_reg.umax_value;
f1174f77
EC
1908 src_known = tnum_is_const(src_reg.var_off);
1909 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1910
48461135
JB
1911 switch (opcode) {
1912 case BPF_ADD:
b03c9f9f
EC
1913 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1914 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1915 dst_reg->smin_value = S64_MIN;
1916 dst_reg->smax_value = S64_MAX;
1917 } else {
1918 dst_reg->smin_value += smin_val;
1919 dst_reg->smax_value += smax_val;
1920 }
1921 if (dst_reg->umin_value + umin_val < umin_val ||
1922 dst_reg->umax_value + umax_val < umax_val) {
1923 dst_reg->umin_value = 0;
1924 dst_reg->umax_value = U64_MAX;
1925 } else {
1926 dst_reg->umin_value += umin_val;
1927 dst_reg->umax_value += umax_val;
1928 }
f1174f77 1929 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
1930 break;
1931 case BPF_SUB:
b03c9f9f
EC
1932 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1933 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1934 /* Overflow possible, we know nothing */
1935 dst_reg->smin_value = S64_MIN;
1936 dst_reg->smax_value = S64_MAX;
1937 } else {
1938 dst_reg->smin_value -= smax_val;
1939 dst_reg->smax_value -= smin_val;
1940 }
1941 if (dst_reg->umin_value < umax_val) {
1942 /* Overflow possible, we know nothing */
1943 dst_reg->umin_value = 0;
1944 dst_reg->umax_value = U64_MAX;
1945 } else {
1946 /* Cannot overflow (as long as bounds are consistent) */
1947 dst_reg->umin_value -= umax_val;
1948 dst_reg->umax_value -= umin_val;
1949 }
f1174f77 1950 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
1951 break;
1952 case BPF_MUL:
b03c9f9f
EC
1953 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1954 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 1955 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
1956 __mark_reg_unbounded(dst_reg);
1957 __update_reg_bounds(dst_reg);
f1174f77
EC
1958 break;
1959 }
b03c9f9f
EC
1960 /* Both values are positive, so we can work with unsigned and
1961 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 1962 */
b03c9f9f
EC
1963 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1964 /* Potential overflow, we know nothing */
1965 __mark_reg_unbounded(dst_reg);
1966 /* (except what we can learn from the var_off) */
1967 __update_reg_bounds(dst_reg);
1968 break;
1969 }
1970 dst_reg->umin_value *= umin_val;
1971 dst_reg->umax_value *= umax_val;
1972 if (dst_reg->umax_value > S64_MAX) {
1973 /* Overflow possible, we know nothing */
1974 dst_reg->smin_value = S64_MIN;
1975 dst_reg->smax_value = S64_MAX;
1976 } else {
1977 dst_reg->smin_value = dst_reg->umin_value;
1978 dst_reg->smax_value = dst_reg->umax_value;
1979 }
48461135
JB
1980 break;
1981 case BPF_AND:
f1174f77 1982 if (src_known && dst_known) {
b03c9f9f
EC
1983 __mark_reg_known(dst_reg, dst_reg->var_off.value &
1984 src_reg.var_off.value);
f1174f77
EC
1985 break;
1986 }
b03c9f9f
EC
1987 /* We get our minimum from the var_off, since that's inherently
1988 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 1989 */
f1174f77 1990 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
1991 dst_reg->umin_value = dst_reg->var_off.value;
1992 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
1993 if (dst_reg->smin_value < 0 || smin_val < 0) {
1994 /* Lose signed bounds when ANDing negative numbers,
1995 * ain't nobody got time for that.
1996 */
1997 dst_reg->smin_value = S64_MIN;
1998 dst_reg->smax_value = S64_MAX;
1999 } else {
2000 /* ANDing two positives gives a positive, so safe to
2001 * cast result into s64.
2002 */
2003 dst_reg->smin_value = dst_reg->umin_value;
2004 dst_reg->smax_value = dst_reg->umax_value;
2005 }
2006 /* We may learn something more from the var_off */
2007 __update_reg_bounds(dst_reg);
f1174f77
EC
2008 break;
2009 case BPF_OR:
2010 if (src_known && dst_known) {
b03c9f9f
EC
2011 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2012 src_reg.var_off.value);
f1174f77
EC
2013 break;
2014 }
b03c9f9f
EC
2015 /* We get our maximum from the var_off, and our minimum is the
2016 * maximum of the operands' minima
f1174f77
EC
2017 */
2018 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2019 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2020 dst_reg->umax_value = dst_reg->var_off.value |
2021 dst_reg->var_off.mask;
2022 if (dst_reg->smin_value < 0 || smin_val < 0) {
2023 /* Lose signed bounds when ORing negative numbers,
2024 * ain't nobody got time for that.
2025 */
2026 dst_reg->smin_value = S64_MIN;
2027 dst_reg->smax_value = S64_MAX;
f1174f77 2028 } else {
b03c9f9f
EC
2029 /* ORing two positives gives a positive, so safe to
2030 * cast result into s64.
2031 */
2032 dst_reg->smin_value = dst_reg->umin_value;
2033 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2034 }
b03c9f9f
EC
2035 /* We may learn something more from the var_off */
2036 __update_reg_bounds(dst_reg);
48461135
JB
2037 break;
2038 case BPF_LSH:
b03c9f9f
EC
2039 if (umax_val > 63) {
2040 /* Shifts greater than 63 are undefined. This includes
2041 * shifts by a negative number.
2042 */
61bd5218 2043 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2044 break;
2045 }
b03c9f9f
EC
2046 /* We lose all sign bit information (except what we can pick
2047 * up from var_off)
48461135 2048 */
b03c9f9f
EC
2049 dst_reg->smin_value = S64_MIN;
2050 dst_reg->smax_value = S64_MAX;
2051 /* If we might shift our top bit out, then we know nothing */
2052 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2053 dst_reg->umin_value = 0;
2054 dst_reg->umax_value = U64_MAX;
d1174416 2055 } else {
b03c9f9f
EC
2056 dst_reg->umin_value <<= umin_val;
2057 dst_reg->umax_value <<= umax_val;
d1174416 2058 }
b03c9f9f
EC
2059 if (src_known)
2060 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2061 else
2062 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2063 /* We may learn something more from the var_off */
2064 __update_reg_bounds(dst_reg);
48461135
JB
2065 break;
2066 case BPF_RSH:
b03c9f9f
EC
2067 if (umax_val > 63) {
2068 /* Shifts greater than 63 are undefined. This includes
2069 * shifts by a negative number.
2070 */
61bd5218 2071 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2072 break;
2073 }
2074 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2075 if (dst_reg->smin_value < 0) {
2076 if (umin_val) {
f1174f77 2077 /* Sign bit will be cleared */
b03c9f9f
EC
2078 dst_reg->smin_value = 0;
2079 } else {
2080 /* Lost sign bit information */
2081 dst_reg->smin_value = S64_MIN;
2082 dst_reg->smax_value = S64_MAX;
2083 }
d1174416 2084 } else {
b03c9f9f
EC
2085 dst_reg->smin_value =
2086 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2087 }
f1174f77 2088 if (src_known)
b03c9f9f
EC
2089 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2090 umin_val);
f1174f77 2091 else
b03c9f9f
EC
2092 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2093 dst_reg->umin_value >>= umax_val;
2094 dst_reg->umax_value >>= umin_val;
2095 /* We may learn something more from the var_off */
2096 __update_reg_bounds(dst_reg);
48461135
JB
2097 break;
2098 default:
61bd5218 2099 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2100 break;
2101 }
2102
b03c9f9f
EC
2103 __reg_deduce_bounds(dst_reg);
2104 __reg_bound_offset(dst_reg);
f1174f77
EC
2105 return 0;
2106}
2107
2108/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2109 * and var_off.
2110 */
2111static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2112 struct bpf_insn *insn)
2113{
2114 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2115 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2116 u8 opcode = BPF_OP(insn->code);
2117 int rc;
2118
2119 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2120 src_reg = NULL;
2121 if (dst_reg->type != SCALAR_VALUE)
2122 ptr_reg = dst_reg;
2123 if (BPF_SRC(insn->code) == BPF_X) {
2124 src_reg = &regs[insn->src_reg];
f1174f77
EC
2125 if (src_reg->type != SCALAR_VALUE) {
2126 if (dst_reg->type != SCALAR_VALUE) {
2127 /* Combining two pointers by any ALU op yields
2128 * an arbitrary scalar.
2129 */
2130 if (!env->allow_ptr_leaks) {
61bd5218 2131 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2132 insn->dst_reg,
2133 bpf_alu_string[opcode >> 4]);
2134 return -EACCES;
2135 }
61bd5218 2136 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2137 return 0;
2138 } else {
2139 /* scalar += pointer
2140 * This is legal, but we have to reverse our
2141 * src/dest handling in computing the range
2142 */
2143 rc = adjust_ptr_min_max_vals(env, insn,
2144 src_reg, dst_reg);
2145 if (rc == -EACCES && env->allow_ptr_leaks) {
2146 /* scalar += unknown scalar */
2147 __mark_reg_unknown(&off_reg);
2148 return adjust_scalar_min_max_vals(
2149 env, insn,
2150 dst_reg, off_reg);
2151 }
2152 return rc;
2153 }
2154 } else if (ptr_reg) {
2155 /* pointer += scalar */
2156 rc = adjust_ptr_min_max_vals(env, insn,
2157 dst_reg, src_reg);
2158 if (rc == -EACCES && env->allow_ptr_leaks) {
2159 /* unknown scalar += scalar */
2160 __mark_reg_unknown(dst_reg);
2161 return adjust_scalar_min_max_vals(
2162 env, insn, dst_reg, *src_reg);
2163 }
2164 return rc;
2165 }
2166 } else {
2167 /* Pretend the src is a reg with a known value, since we only
2168 * need to be able to read from this state.
2169 */
2170 off_reg.type = SCALAR_VALUE;
b03c9f9f 2171 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2172 src_reg = &off_reg;
f1174f77
EC
2173 if (ptr_reg) { /* pointer += K */
2174 rc = adjust_ptr_min_max_vals(env, insn,
2175 ptr_reg, src_reg);
2176 if (rc == -EACCES && env->allow_ptr_leaks) {
2177 /* unknown scalar += K */
2178 __mark_reg_unknown(dst_reg);
2179 return adjust_scalar_min_max_vals(
2180 env, insn, dst_reg, off_reg);
2181 }
2182 return rc;
2183 }
2184 }
2185
2186 /* Got here implies adding two SCALAR_VALUEs */
2187 if (WARN_ON_ONCE(ptr_reg)) {
61bd5218
JK
2188 print_verifier_state(env, &env->cur_state);
2189 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2190 return -EINVAL;
2191 }
2192 if (WARN_ON(!src_reg)) {
61bd5218
JK
2193 print_verifier_state(env, &env->cur_state);
2194 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2195 return -EINVAL;
2196 }
2197 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2198}
2199
17a52670 2200/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2201static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2202{
f1174f77 2203 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2204 u8 opcode = BPF_OP(insn->code);
2205 int err;
2206
2207 if (opcode == BPF_END || opcode == BPF_NEG) {
2208 if (opcode == BPF_NEG) {
2209 if (BPF_SRC(insn->code) != 0 ||
2210 insn->src_reg != BPF_REG_0 ||
2211 insn->off != 0 || insn->imm != 0) {
61bd5218 2212 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2213 return -EINVAL;
2214 }
2215 } else {
2216 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2217 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2218 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2219 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2220 return -EINVAL;
2221 }
2222 }
2223
2224 /* check src operand */
dc503a8a 2225 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2226 if (err)
2227 return err;
2228
1be7f75d 2229 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2230 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2231 insn->dst_reg);
2232 return -EACCES;
2233 }
2234
17a52670 2235 /* check dest operand */
dc503a8a 2236 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2237 if (err)
2238 return err;
2239
2240 } else if (opcode == BPF_MOV) {
2241
2242 if (BPF_SRC(insn->code) == BPF_X) {
2243 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2244 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2245 return -EINVAL;
2246 }
2247
2248 /* check src operand */
dc503a8a 2249 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2250 if (err)
2251 return err;
2252 } else {
2253 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2254 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2255 return -EINVAL;
2256 }
2257 }
2258
2259 /* check dest operand */
dc503a8a 2260 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2261 if (err)
2262 return err;
2263
2264 if (BPF_SRC(insn->code) == BPF_X) {
2265 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2266 /* case: R1 = R2
2267 * copy register state to dest reg
2268 */
2269 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2270 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2271 } else {
f1174f77 2272 /* R1 = (u32) R2 */
1be7f75d 2273 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2274 verbose(env,
2275 "R%d partial copy of pointer\n",
1be7f75d
AS
2276 insn->src_reg);
2277 return -EACCES;
2278 }
61bd5218 2279 mark_reg_unknown(env, regs, insn->dst_reg);
b03c9f9f 2280 /* high 32 bits are known zero. */
f1174f77
EC
2281 regs[insn->dst_reg].var_off = tnum_cast(
2282 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2283 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2284 }
2285 } else {
2286 /* case: R = imm
2287 * remember the value we stored into this reg
2288 */
f1174f77 2289 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2290 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2291 }
2292
2293 } else if (opcode > BPF_END) {
61bd5218 2294 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2295 return -EINVAL;
2296
2297 } else { /* all other ALU ops: and, sub, xor, add, ... */
2298
17a52670
AS
2299 if (BPF_SRC(insn->code) == BPF_X) {
2300 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2301 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2302 return -EINVAL;
2303 }
2304 /* check src1 operand */
dc503a8a 2305 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2306 if (err)
2307 return err;
2308 } else {
2309 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2310 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2311 return -EINVAL;
2312 }
2313 }
2314
2315 /* check src2 operand */
dc503a8a 2316 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2317 if (err)
2318 return err;
2319
2320 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2321 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2322 verbose(env, "div by zero\n");
17a52670
AS
2323 return -EINVAL;
2324 }
2325
229394e8
RV
2326 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2327 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2328 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2329
2330 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2331 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2332 return -EINVAL;
2333 }
2334 }
2335
1a0dc1ac 2336 /* check dest operand */
dc503a8a 2337 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2338 if (err)
2339 return err;
2340
f1174f77 2341 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2342 }
2343
2344 return 0;
2345}
2346
58e2af8b 2347static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2348 struct bpf_reg_state *dst_reg,
f8ddadc4 2349 enum bpf_reg_type type,
fb2a311a 2350 bool range_right_open)
969bf05e 2351{
58e2af8b 2352 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2353 u16 new_range;
969bf05e 2354 int i;
2d2be8ca 2355
fb2a311a
DB
2356 if (dst_reg->off < 0 ||
2357 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2358 /* This doesn't give us any range */
2359 return;
2360
b03c9f9f
EC
2361 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2362 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2363 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2364 * than pkt_end, but that's because it's also less than pkt.
2365 */
2366 return;
2367
fb2a311a
DB
2368 new_range = dst_reg->off;
2369 if (range_right_open)
2370 new_range--;
2371
2372 /* Examples for register markings:
2d2be8ca 2373 *
fb2a311a 2374 * pkt_data in dst register:
2d2be8ca
DB
2375 *
2376 * r2 = r3;
2377 * r2 += 8;
2378 * if (r2 > pkt_end) goto <handle exception>
2379 * <access okay>
2380 *
b4e432f1
DB
2381 * r2 = r3;
2382 * r2 += 8;
2383 * if (r2 < pkt_end) goto <access okay>
2384 * <handle exception>
2385 *
2d2be8ca
DB
2386 * Where:
2387 * r2 == dst_reg, pkt_end == src_reg
2388 * r2=pkt(id=n,off=8,r=0)
2389 * r3=pkt(id=n,off=0,r=0)
2390 *
fb2a311a 2391 * pkt_data in src register:
2d2be8ca
DB
2392 *
2393 * r2 = r3;
2394 * r2 += 8;
2395 * if (pkt_end >= r2) goto <access okay>
2396 * <handle exception>
2397 *
b4e432f1
DB
2398 * r2 = r3;
2399 * r2 += 8;
2400 * if (pkt_end <= r2) goto <handle exception>
2401 * <access okay>
2402 *
2d2be8ca
DB
2403 * Where:
2404 * pkt_end == dst_reg, r2 == src_reg
2405 * r2=pkt(id=n,off=8,r=0)
2406 * r3=pkt(id=n,off=0,r=0)
2407 *
2408 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2409 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2410 * and [r3, r3 + 8-1) respectively is safe to access depending on
2411 * the check.
969bf05e 2412 */
2d2be8ca 2413
f1174f77
EC
2414 /* If our ids match, then we must have the same max_value. And we
2415 * don't care about the other reg's fixed offset, since if it's too big
2416 * the range won't allow anything.
2417 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2418 */
969bf05e 2419 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2420 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2421 /* keep the maximum range already checked */
fb2a311a 2422 regs[i].range = max(regs[i].range, new_range);
969bf05e
AS
2423
2424 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2425 if (state->stack_slot_type[i] != STACK_SPILL)
2426 continue;
2427 reg = &state->spilled_regs[i / BPF_REG_SIZE];
de8f3a83 2428 if (reg->type == type && reg->id == dst_reg->id)
f8ddadc4 2429 reg->range = max_t(u16, reg->range, new_range);
969bf05e
AS
2430 }
2431}
2432
48461135
JB
2433/* Adjusts the register min/max values in the case that the dst_reg is the
2434 * variable register that we are working on, and src_reg is a constant or we're
2435 * simply doing a BPF_K check.
f1174f77 2436 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2437 */
2438static void reg_set_min_max(struct bpf_reg_state *true_reg,
2439 struct bpf_reg_state *false_reg, u64 val,
2440 u8 opcode)
2441{
f1174f77
EC
2442 /* If the dst_reg is a pointer, we can't learn anything about its
2443 * variable offset from the compare (unless src_reg were a pointer into
2444 * the same object, but we don't bother with that.
2445 * Since false_reg and true_reg have the same type by construction, we
2446 * only need to check one of them for pointerness.
2447 */
2448 if (__is_pointer_value(false, false_reg))
2449 return;
4cabc5b1 2450
48461135
JB
2451 switch (opcode) {
2452 case BPF_JEQ:
2453 /* If this is false then we know nothing Jon Snow, but if it is
2454 * true then we know for sure.
2455 */
b03c9f9f 2456 __mark_reg_known(true_reg, val);
48461135
JB
2457 break;
2458 case BPF_JNE:
2459 /* If this is true we know nothing Jon Snow, but if it is false
2460 * we know the value for sure;
2461 */
b03c9f9f 2462 __mark_reg_known(false_reg, val);
48461135
JB
2463 break;
2464 case BPF_JGT:
b03c9f9f
EC
2465 false_reg->umax_value = min(false_reg->umax_value, val);
2466 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2467 break;
48461135 2468 case BPF_JSGT:
b03c9f9f
EC
2469 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2470 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2471 break;
b4e432f1
DB
2472 case BPF_JLT:
2473 false_reg->umin_value = max(false_reg->umin_value, val);
2474 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2475 break;
2476 case BPF_JSLT:
2477 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2478 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2479 break;
48461135 2480 case BPF_JGE:
b03c9f9f
EC
2481 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2482 true_reg->umin_value = max(true_reg->umin_value, val);
2483 break;
48461135 2484 case BPF_JSGE:
b03c9f9f
EC
2485 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2486 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2487 break;
b4e432f1
DB
2488 case BPF_JLE:
2489 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2490 true_reg->umax_value = min(true_reg->umax_value, val);
2491 break;
2492 case BPF_JSLE:
2493 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2494 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2495 break;
48461135
JB
2496 default:
2497 break;
2498 }
2499
b03c9f9f
EC
2500 __reg_deduce_bounds(false_reg);
2501 __reg_deduce_bounds(true_reg);
2502 /* We might have learned some bits from the bounds. */
2503 __reg_bound_offset(false_reg);
2504 __reg_bound_offset(true_reg);
2505 /* Intersecting with the old var_off might have improved our bounds
2506 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2507 * then new var_off is (0; 0x7f...fc) which improves our umax.
2508 */
2509 __update_reg_bounds(false_reg);
2510 __update_reg_bounds(true_reg);
48461135
JB
2511}
2512
f1174f77
EC
2513/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2514 * the variable reg.
48461135
JB
2515 */
2516static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2517 struct bpf_reg_state *false_reg, u64 val,
2518 u8 opcode)
2519{
f1174f77
EC
2520 if (__is_pointer_value(false, false_reg))
2521 return;
4cabc5b1 2522
48461135
JB
2523 switch (opcode) {
2524 case BPF_JEQ:
2525 /* If this is false then we know nothing Jon Snow, but if it is
2526 * true then we know for sure.
2527 */
b03c9f9f 2528 __mark_reg_known(true_reg, val);
48461135
JB
2529 break;
2530 case BPF_JNE:
2531 /* If this is true we know nothing Jon Snow, but if it is false
2532 * we know the value for sure;
2533 */
b03c9f9f 2534 __mark_reg_known(false_reg, val);
48461135
JB
2535 break;
2536 case BPF_JGT:
b03c9f9f
EC
2537 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2538 false_reg->umin_value = max(false_reg->umin_value, val);
2539 break;
48461135 2540 case BPF_JSGT:
b03c9f9f
EC
2541 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2542 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2543 break;
b4e432f1
DB
2544 case BPF_JLT:
2545 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2546 false_reg->umax_value = min(false_reg->umax_value, val);
2547 break;
2548 case BPF_JSLT:
2549 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2550 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2551 break;
48461135 2552 case BPF_JGE:
b03c9f9f
EC
2553 true_reg->umax_value = min(true_reg->umax_value, val);
2554 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2555 break;
48461135 2556 case BPF_JSGE:
b03c9f9f
EC
2557 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2558 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2559 break;
b4e432f1
DB
2560 case BPF_JLE:
2561 true_reg->umin_value = max(true_reg->umin_value, val);
2562 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2563 break;
2564 case BPF_JSLE:
2565 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2566 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2567 break;
48461135
JB
2568 default:
2569 break;
2570 }
2571
b03c9f9f
EC
2572 __reg_deduce_bounds(false_reg);
2573 __reg_deduce_bounds(true_reg);
2574 /* We might have learned some bits from the bounds. */
2575 __reg_bound_offset(false_reg);
2576 __reg_bound_offset(true_reg);
2577 /* Intersecting with the old var_off might have improved our bounds
2578 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2579 * then new var_off is (0; 0x7f...fc) which improves our umax.
2580 */
2581 __update_reg_bounds(false_reg);
2582 __update_reg_bounds(true_reg);
f1174f77
EC
2583}
2584
2585/* Regs are known to be equal, so intersect their min/max/var_off */
2586static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2587 struct bpf_reg_state *dst_reg)
2588{
b03c9f9f
EC
2589 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2590 dst_reg->umin_value);
2591 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2592 dst_reg->umax_value);
2593 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2594 dst_reg->smin_value);
2595 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2596 dst_reg->smax_value);
f1174f77
EC
2597 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2598 dst_reg->var_off);
b03c9f9f
EC
2599 /* We might have learned new bounds from the var_off. */
2600 __update_reg_bounds(src_reg);
2601 __update_reg_bounds(dst_reg);
2602 /* We might have learned something about the sign bit. */
2603 __reg_deduce_bounds(src_reg);
2604 __reg_deduce_bounds(dst_reg);
2605 /* We might have learned some bits from the bounds. */
2606 __reg_bound_offset(src_reg);
2607 __reg_bound_offset(dst_reg);
2608 /* Intersecting with the old var_off might have improved our bounds
2609 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2610 * then new var_off is (0; 0x7f...fc) which improves our umax.
2611 */
2612 __update_reg_bounds(src_reg);
2613 __update_reg_bounds(dst_reg);
f1174f77
EC
2614}
2615
2616static void reg_combine_min_max(struct bpf_reg_state *true_src,
2617 struct bpf_reg_state *true_dst,
2618 struct bpf_reg_state *false_src,
2619 struct bpf_reg_state *false_dst,
2620 u8 opcode)
2621{
2622 switch (opcode) {
2623 case BPF_JEQ:
2624 __reg_combine_min_max(true_src, true_dst);
2625 break;
2626 case BPF_JNE:
2627 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2628 break;
4cabc5b1 2629 }
48461135
JB
2630}
2631
57a09bf0 2632static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2633 bool is_null)
57a09bf0
TG
2634{
2635 struct bpf_reg_state *reg = &regs[regno];
2636
2637 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2638 /* Old offset (both fixed and variable parts) should
2639 * have been known-zero, because we don't allow pointer
2640 * arithmetic on pointers that might be NULL.
2641 */
b03c9f9f
EC
2642 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2643 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2644 reg->off)) {
b03c9f9f
EC
2645 __mark_reg_known_zero(reg);
2646 reg->off = 0;
f1174f77
EC
2647 }
2648 if (is_null) {
2649 reg->type = SCALAR_VALUE;
56f668df
MKL
2650 } else if (reg->map_ptr->inner_map_meta) {
2651 reg->type = CONST_PTR_TO_MAP;
2652 reg->map_ptr = reg->map_ptr->inner_map_meta;
2653 } else {
f1174f77 2654 reg->type = PTR_TO_MAP_VALUE;
56f668df 2655 }
a08dd0da
DB
2656 /* We don't need id from this point onwards anymore, thus we
2657 * should better reset it, so that state pruning has chances
2658 * to take effect.
2659 */
2660 reg->id = 0;
57a09bf0
TG
2661 }
2662}
2663
2664/* The logic is similar to find_good_pkt_pointers(), both could eventually
2665 * be folded together at some point.
2666 */
2667static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2668 bool is_null)
57a09bf0
TG
2669{
2670 struct bpf_reg_state *regs = state->regs;
a08dd0da 2671 u32 id = regs[regno].id;
57a09bf0
TG
2672 int i;
2673
2674 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2675 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2676
2677 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2678 if (state->stack_slot_type[i] != STACK_SPILL)
2679 continue;
f1174f77 2680 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2681 }
2682}
2683
58e2af8b 2684static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2685 struct bpf_insn *insn, int *insn_idx)
2686{
58e2af8b
JK
2687 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2688 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2689 u8 opcode = BPF_OP(insn->code);
2690 int err;
2691
b4e432f1 2692 if (opcode > BPF_JSLE) {
61bd5218 2693 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2694 return -EINVAL;
2695 }
2696
2697 if (BPF_SRC(insn->code) == BPF_X) {
2698 if (insn->imm != 0) {
61bd5218 2699 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2700 return -EINVAL;
2701 }
2702
2703 /* check src1 operand */
dc503a8a 2704 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2705 if (err)
2706 return err;
1be7f75d
AS
2707
2708 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2709 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2710 insn->src_reg);
2711 return -EACCES;
2712 }
17a52670
AS
2713 } else {
2714 if (insn->src_reg != BPF_REG_0) {
61bd5218 2715 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2716 return -EINVAL;
2717 }
2718 }
2719
2720 /* check src2 operand */
dc503a8a 2721 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2722 if (err)
2723 return err;
2724
1a0dc1ac
AS
2725 dst_reg = &regs[insn->dst_reg];
2726
17a52670
AS
2727 /* detect if R == 0 where R was initialized to zero earlier */
2728 if (BPF_SRC(insn->code) == BPF_K &&
2729 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2730 dst_reg->type == SCALAR_VALUE &&
2731 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2732 if (opcode == BPF_JEQ) {
2733 /* if (imm == imm) goto pc+off;
2734 * only follow the goto, ignore fall-through
2735 */
2736 *insn_idx += insn->off;
2737 return 0;
2738 } else {
2739 /* if (imm != imm) goto pc+off;
2740 * only follow fall-through branch, since
2741 * that's where the program will go
2742 */
2743 return 0;
2744 }
2745 }
2746
2747 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2748 if (!other_branch)
2749 return -EFAULT;
2750
48461135
JB
2751 /* detect if we are comparing against a constant value so we can adjust
2752 * our min/max values for our dst register.
f1174f77
EC
2753 * this is only legit if both are scalars (or pointers to the same
2754 * object, I suppose, but we don't support that right now), because
2755 * otherwise the different base pointers mean the offsets aren't
2756 * comparable.
48461135
JB
2757 */
2758 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2759 if (dst_reg->type == SCALAR_VALUE &&
2760 regs[insn->src_reg].type == SCALAR_VALUE) {
2761 if (tnum_is_const(regs[insn->src_reg].var_off))
2762 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2763 dst_reg, regs[insn->src_reg].var_off.value,
2764 opcode);
2765 else if (tnum_is_const(dst_reg->var_off))
2766 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2767 &regs[insn->src_reg],
2768 dst_reg->var_off.value, opcode);
2769 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2770 /* Comparing for equality, we can combine knowledge */
2771 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2772 &other_branch->regs[insn->dst_reg],
2773 &regs[insn->src_reg],
2774 &regs[insn->dst_reg], opcode);
2775 }
2776 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2777 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2778 dst_reg, insn->imm, opcode);
2779 }
2780
58e2af8b 2781 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2782 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2783 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2784 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2785 /* Mark all identical map registers in each branch as either
2786 * safe or unknown depending R == 0 or R != 0 conditional.
2787 */
f1174f77
EC
2788 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2789 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2790 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2791 dst_reg->type == PTR_TO_PACKET &&
2792 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
0fd4759c 2793 /* pkt_data' > pkt_end */
f8ddadc4
DM
2794 find_good_pkt_pointers(this_branch, dst_reg,
2795 PTR_TO_PACKET, false);
0fd4759c
DB
2796 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2797 dst_reg->type == PTR_TO_PACKET_END &&
2798 regs[insn->src_reg].type == PTR_TO_PACKET) {
2799 /* pkt_end > pkt_data' */
f8ddadc4
DM
2800 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2801 PTR_TO_PACKET, true);
b4e432f1
DB
2802 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2803 dst_reg->type == PTR_TO_PACKET &&
2804 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
0fd4759c 2805 /* pkt_data' < pkt_end */
f8ddadc4
DM
2806 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET,
2807 true);
b4e432f1 2808 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
0fd4759c
DB
2809 dst_reg->type == PTR_TO_PACKET_END &&
2810 regs[insn->src_reg].type == PTR_TO_PACKET) {
2811 /* pkt_end < pkt_data' */
f8ddadc4
DM
2812 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2813 PTR_TO_PACKET, false);
0fd4759c 2814 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
b4e432f1
DB
2815 dst_reg->type == PTR_TO_PACKET &&
2816 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
0fd4759c 2817 /* pkt_data' >= pkt_end */
f8ddadc4
DM
2818 find_good_pkt_pointers(this_branch, dst_reg,
2819 PTR_TO_PACKET, true);
2d2be8ca
DB
2820 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2821 dst_reg->type == PTR_TO_PACKET_END &&
2822 regs[insn->src_reg].type == PTR_TO_PACKET) {
0fd4759c 2823 /* pkt_end >= pkt_data' */
de8f3a83 2824 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
f8ddadc4 2825 PTR_TO_PACKET, false);
0fd4759c
DB
2826 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2827 dst_reg->type == PTR_TO_PACKET &&
2828 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2829 /* pkt_data' <= pkt_end */
f8ddadc4
DM
2830 find_good_pkt_pointers(other_branch, dst_reg,
2831 PTR_TO_PACKET, false);
b4e432f1
DB
2832 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2833 dst_reg->type == PTR_TO_PACKET_END &&
2834 regs[insn->src_reg].type == PTR_TO_PACKET) {
0fd4759c 2835 /* pkt_end <= pkt_data' */
de8f3a83 2836 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
f8ddadc4 2837 PTR_TO_PACKET, true);
de8f3a83
DB
2838 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2839 dst_reg->type == PTR_TO_PACKET_META &&
2840 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
f8ddadc4
DM
2841 find_good_pkt_pointers(this_branch, dst_reg,
2842 PTR_TO_PACKET_META, false);
de8f3a83
DB
2843 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2844 dst_reg->type == PTR_TO_PACKET_META &&
2845 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
f8ddadc4
DM
2846 find_good_pkt_pointers(other_branch, dst_reg,
2847 PTR_TO_PACKET_META, false);
de8f3a83
DB
2848 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2849 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2850 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2851 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
f8ddadc4 2852 PTR_TO_PACKET_META, false);
de8f3a83
DB
2853 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2854 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2855 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2856 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
f8ddadc4 2857 PTR_TO_PACKET_META, false);
1be7f75d 2858 } else if (is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
2859 verbose(env, "R%d pointer comparison prohibited\n",
2860 insn->dst_reg);
1be7f75d 2861 return -EACCES;
17a52670 2862 }
61bd5218
JK
2863 if (env->log.level)
2864 print_verifier_state(env, this_branch);
17a52670
AS
2865 return 0;
2866}
2867
0246e64d
AS
2868/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2869static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2870{
2871 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2872
2873 return (struct bpf_map *) (unsigned long) imm64;
2874}
2875
17a52670 2876/* verify BPF_LD_IMM64 instruction */
58e2af8b 2877static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2878{
58e2af8b 2879 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2880 int err;
2881
2882 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 2883 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
2884 return -EINVAL;
2885 }
2886 if (insn->off != 0) {
61bd5218 2887 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
2888 return -EINVAL;
2889 }
2890
dc503a8a 2891 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2892 if (err)
2893 return err;
2894
6b173873 2895 if (insn->src_reg == 0) {
6b173873
JK
2896 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2897
f1174f77 2898 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2899 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2900 return 0;
6b173873 2901 }
17a52670
AS
2902
2903 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2904 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2905
2906 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2907 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2908 return 0;
2909}
2910
96be4325
DB
2911static bool may_access_skb(enum bpf_prog_type type)
2912{
2913 switch (type) {
2914 case BPF_PROG_TYPE_SOCKET_FILTER:
2915 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2916 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2917 return true;
2918 default:
2919 return false;
2920 }
2921}
2922
ddd872bc
AS
2923/* verify safety of LD_ABS|LD_IND instructions:
2924 * - they can only appear in the programs where ctx == skb
2925 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2926 * preserve R6-R9, and store return value into R0
2927 *
2928 * Implicit input:
2929 * ctx == skb == R6 == CTX
2930 *
2931 * Explicit input:
2932 * SRC == any register
2933 * IMM == 32-bit immediate
2934 *
2935 * Output:
2936 * R0 - 8/16/32-bit skb data converted to cpu endianness
2937 */
58e2af8b 2938static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2939{
58e2af8b 2940 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2941 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2942 int i, err;
2943
24701ece 2944 if (!may_access_skb(env->prog->type)) {
61bd5218 2945 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2946 return -EINVAL;
2947 }
2948
2949 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2950 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2951 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 2952 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2953 return -EINVAL;
2954 }
2955
2956 /* check whether implicit source operand (register R6) is readable */
dc503a8a 2957 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
2958 if (err)
2959 return err;
2960
2961 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
2962 verbose(env,
2963 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
2964 return -EINVAL;
2965 }
2966
2967 if (mode == BPF_IND) {
2968 /* check explicit source operand */
dc503a8a 2969 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
2970 if (err)
2971 return err;
2972 }
2973
2974 /* reset caller saved regs to unreadable */
dc503a8a 2975 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2976 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2977 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2978 }
ddd872bc
AS
2979
2980 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
2981 * the value fetched from the packet.
2982 * Already marked as written above.
ddd872bc 2983 */
61bd5218 2984 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
2985 return 0;
2986}
2987
390ee7e2
AS
2988static int check_return_code(struct bpf_verifier_env *env)
2989{
2990 struct bpf_reg_state *reg;
2991 struct tnum range = tnum_range(0, 1);
2992
2993 switch (env->prog->type) {
2994 case BPF_PROG_TYPE_CGROUP_SKB:
2995 case BPF_PROG_TYPE_CGROUP_SOCK:
2996 case BPF_PROG_TYPE_SOCK_OPS:
2997 break;
2998 default:
2999 return 0;
3000 }
3001
3002 reg = &env->cur_state.regs[BPF_REG_0];
3003 if (reg->type != SCALAR_VALUE) {
61bd5218 3004 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3005 reg_type_str[reg->type]);
3006 return -EINVAL;
3007 }
3008
3009 if (!tnum_in(range, reg->var_off)) {
61bd5218 3010 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3011 if (!tnum_is_unknown(reg->var_off)) {
3012 char tn_buf[48];
3013
3014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3015 verbose(env, "has value %s", tn_buf);
390ee7e2 3016 } else {
61bd5218 3017 verbose(env, "has unknown scalar value");
390ee7e2 3018 }
61bd5218 3019 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3020 return -EINVAL;
3021 }
3022 return 0;
3023}
3024
475fb78f
AS
3025/* non-recursive DFS pseudo code
3026 * 1 procedure DFS-iterative(G,v):
3027 * 2 label v as discovered
3028 * 3 let S be a stack
3029 * 4 S.push(v)
3030 * 5 while S is not empty
3031 * 6 t <- S.pop()
3032 * 7 if t is what we're looking for:
3033 * 8 return t
3034 * 9 for all edges e in G.adjacentEdges(t) do
3035 * 10 if edge e is already labelled
3036 * 11 continue with the next edge
3037 * 12 w <- G.adjacentVertex(t,e)
3038 * 13 if vertex w is not discovered and not explored
3039 * 14 label e as tree-edge
3040 * 15 label w as discovered
3041 * 16 S.push(w)
3042 * 17 continue at 5
3043 * 18 else if vertex w is discovered
3044 * 19 label e as back-edge
3045 * 20 else
3046 * 21 // vertex w is explored
3047 * 22 label e as forward- or cross-edge
3048 * 23 label t as explored
3049 * 24 S.pop()
3050 *
3051 * convention:
3052 * 0x10 - discovered
3053 * 0x11 - discovered and fall-through edge labelled
3054 * 0x12 - discovered and fall-through and branch edges labelled
3055 * 0x20 - explored
3056 */
3057
3058enum {
3059 DISCOVERED = 0x10,
3060 EXPLORED = 0x20,
3061 FALLTHROUGH = 1,
3062 BRANCH = 2,
3063};
3064
58e2af8b 3065#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3066
475fb78f
AS
3067static int *insn_stack; /* stack of insns to process */
3068static int cur_stack; /* current stack index */
3069static int *insn_state;
3070
3071/* t, w, e - match pseudo-code above:
3072 * t - index of current instruction
3073 * w - next instruction
3074 * e - edge
3075 */
58e2af8b 3076static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3077{
3078 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3079 return 0;
3080
3081 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3082 return 0;
3083
3084 if (w < 0 || w >= env->prog->len) {
61bd5218 3085 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3086 return -EINVAL;
3087 }
3088
f1bca824
AS
3089 if (e == BRANCH)
3090 /* mark branch target for state pruning */
3091 env->explored_states[w] = STATE_LIST_MARK;
3092
475fb78f
AS
3093 if (insn_state[w] == 0) {
3094 /* tree-edge */
3095 insn_state[t] = DISCOVERED | e;
3096 insn_state[w] = DISCOVERED;
3097 if (cur_stack >= env->prog->len)
3098 return -E2BIG;
3099 insn_stack[cur_stack++] = w;
3100 return 1;
3101 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3102 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3103 return -EINVAL;
3104 } else if (insn_state[w] == EXPLORED) {
3105 /* forward- or cross-edge */
3106 insn_state[t] = DISCOVERED | e;
3107 } else {
61bd5218 3108 verbose(env, "insn state internal bug\n");
475fb78f
AS
3109 return -EFAULT;
3110 }
3111 return 0;
3112}
3113
3114/* non-recursive depth-first-search to detect loops in BPF program
3115 * loop == back-edge in directed graph
3116 */
58e2af8b 3117static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3118{
3119 struct bpf_insn *insns = env->prog->insnsi;
3120 int insn_cnt = env->prog->len;
3121 int ret = 0;
3122 int i, t;
3123
3124 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3125 if (!insn_state)
3126 return -ENOMEM;
3127
3128 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3129 if (!insn_stack) {
3130 kfree(insn_state);
3131 return -ENOMEM;
3132 }
3133
3134 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3135 insn_stack[0] = 0; /* 0 is the first instruction */
3136 cur_stack = 1;
3137
3138peek_stack:
3139 if (cur_stack == 0)
3140 goto check_state;
3141 t = insn_stack[cur_stack - 1];
3142
3143 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3144 u8 opcode = BPF_OP(insns[t].code);
3145
3146 if (opcode == BPF_EXIT) {
3147 goto mark_explored;
3148 } else if (opcode == BPF_CALL) {
3149 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3150 if (ret == 1)
3151 goto peek_stack;
3152 else if (ret < 0)
3153 goto err_free;
07016151
DB
3154 if (t + 1 < insn_cnt)
3155 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3156 } else if (opcode == BPF_JA) {
3157 if (BPF_SRC(insns[t].code) != BPF_K) {
3158 ret = -EINVAL;
3159 goto err_free;
3160 }
3161 /* unconditional jump with single edge */
3162 ret = push_insn(t, t + insns[t].off + 1,
3163 FALLTHROUGH, env);
3164 if (ret == 1)
3165 goto peek_stack;
3166 else if (ret < 0)
3167 goto err_free;
f1bca824
AS
3168 /* tell verifier to check for equivalent states
3169 * after every call and jump
3170 */
c3de6317
AS
3171 if (t + 1 < insn_cnt)
3172 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3173 } else {
3174 /* conditional jump with two edges */
3c2ce60b 3175 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3176 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3177 if (ret == 1)
3178 goto peek_stack;
3179 else if (ret < 0)
3180 goto err_free;
3181
3182 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3183 if (ret == 1)
3184 goto peek_stack;
3185 else if (ret < 0)
3186 goto err_free;
3187 }
3188 } else {
3189 /* all other non-branch instructions with single
3190 * fall-through edge
3191 */
3192 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3193 if (ret == 1)
3194 goto peek_stack;
3195 else if (ret < 0)
3196 goto err_free;
3197 }
3198
3199mark_explored:
3200 insn_state[t] = EXPLORED;
3201 if (cur_stack-- <= 0) {
61bd5218 3202 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3203 ret = -EFAULT;
3204 goto err_free;
3205 }
3206 goto peek_stack;
3207
3208check_state:
3209 for (i = 0; i < insn_cnt; i++) {
3210 if (insn_state[i] != EXPLORED) {
61bd5218 3211 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3212 ret = -EINVAL;
3213 goto err_free;
3214 }
3215 }
3216 ret = 0; /* cfg looks good */
3217
3218err_free:
3219 kfree(insn_state);
3220 kfree(insn_stack);
3221 return ret;
3222}
3223
f1174f77
EC
3224/* check %cur's range satisfies %old's */
3225static bool range_within(struct bpf_reg_state *old,
3226 struct bpf_reg_state *cur)
3227{
b03c9f9f
EC
3228 return old->umin_value <= cur->umin_value &&
3229 old->umax_value >= cur->umax_value &&
3230 old->smin_value <= cur->smin_value &&
3231 old->smax_value >= cur->smax_value;
f1174f77
EC
3232}
3233
3234/* Maximum number of register states that can exist at once */
3235#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3236struct idpair {
3237 u32 old;
3238 u32 cur;
3239};
3240
3241/* If in the old state two registers had the same id, then they need to have
3242 * the same id in the new state as well. But that id could be different from
3243 * the old state, so we need to track the mapping from old to new ids.
3244 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3245 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3246 * regs with a different old id could still have new id 9, we don't care about
3247 * that.
3248 * So we look through our idmap to see if this old id has been seen before. If
3249 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3250 */
f1174f77 3251static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3252{
f1174f77 3253 unsigned int i;
969bf05e 3254
f1174f77
EC
3255 for (i = 0; i < ID_MAP_SIZE; i++) {
3256 if (!idmap[i].old) {
3257 /* Reached an empty slot; haven't seen this id before */
3258 idmap[i].old = old_id;
3259 idmap[i].cur = cur_id;
3260 return true;
3261 }
3262 if (idmap[i].old == old_id)
3263 return idmap[i].cur == cur_id;
3264 }
3265 /* We ran out of idmap slots, which should be impossible */
3266 WARN_ON_ONCE(1);
3267 return false;
3268}
3269
3270/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3271static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3272 struct idpair *idmap)
f1174f77 3273{
dc503a8a
EC
3274 if (!(rold->live & REG_LIVE_READ))
3275 /* explored state didn't use this */
3276 return true;
3277
3278 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3279 return true;
3280
f1174f77
EC
3281 if (rold->type == NOT_INIT)
3282 /* explored state can't have used this */
969bf05e 3283 return true;
f1174f77
EC
3284 if (rcur->type == NOT_INIT)
3285 return false;
3286 switch (rold->type) {
3287 case SCALAR_VALUE:
3288 if (rcur->type == SCALAR_VALUE) {
3289 /* new val must satisfy old val knowledge */
3290 return range_within(rold, rcur) &&
3291 tnum_in(rold->var_off, rcur->var_off);
3292 } else {
3293 /* if we knew anything about the old value, we're not
3294 * equal, because we can't know anything about the
3295 * scalar value of the pointer in the new value.
3296 */
b03c9f9f
EC
3297 return rold->umin_value == 0 &&
3298 rold->umax_value == U64_MAX &&
3299 rold->smin_value == S64_MIN &&
3300 rold->smax_value == S64_MAX &&
f1174f77
EC
3301 tnum_is_unknown(rold->var_off);
3302 }
3303 case PTR_TO_MAP_VALUE:
1b688a19
EC
3304 /* If the new min/max/var_off satisfy the old ones and
3305 * everything else matches, we are OK.
3306 * We don't care about the 'id' value, because nothing
3307 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3308 */
3309 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3310 range_within(rold, rcur) &&
3311 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3312 case PTR_TO_MAP_VALUE_OR_NULL:
3313 /* a PTR_TO_MAP_VALUE could be safe to use as a
3314 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3315 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3316 * checked, doing so could have affected others with the same
3317 * id, and we can't check for that because we lost the id when
3318 * we converted to a PTR_TO_MAP_VALUE.
3319 */
3320 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3321 return false;
3322 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3323 return false;
3324 /* Check our ids match any regs they're supposed to */
3325 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3326 case PTR_TO_PACKET_META:
f1174f77 3327 case PTR_TO_PACKET:
de8f3a83 3328 if (rcur->type != rold->type)
f1174f77
EC
3329 return false;
3330 /* We must have at least as much range as the old ptr
3331 * did, so that any accesses which were safe before are
3332 * still safe. This is true even if old range < old off,
3333 * since someone could have accessed through (ptr - k), or
3334 * even done ptr -= k in a register, to get a safe access.
3335 */
3336 if (rold->range > rcur->range)
3337 return false;
3338 /* If the offsets don't match, we can't trust our alignment;
3339 * nor can we be sure that we won't fall out of range.
3340 */
3341 if (rold->off != rcur->off)
3342 return false;
3343 /* id relations must be preserved */
3344 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3345 return false;
3346 /* new val must satisfy old val knowledge */
3347 return range_within(rold, rcur) &&
3348 tnum_in(rold->var_off, rcur->var_off);
3349 case PTR_TO_CTX:
3350 case CONST_PTR_TO_MAP:
3351 case PTR_TO_STACK:
3352 case PTR_TO_PACKET_END:
3353 /* Only valid matches are exact, which memcmp() above
3354 * would have accepted
3355 */
3356 default:
3357 /* Don't know what's going on, just say it's not safe */
3358 return false;
3359 }
969bf05e 3360
f1174f77
EC
3361 /* Shouldn't get here; if we do, say it's not safe */
3362 WARN_ON_ONCE(1);
969bf05e
AS
3363 return false;
3364}
3365
f1bca824
AS
3366/* compare two verifier states
3367 *
3368 * all states stored in state_list are known to be valid, since
3369 * verifier reached 'bpf_exit' instruction through them
3370 *
3371 * this function is called when verifier exploring different branches of
3372 * execution popped from the state stack. If it sees an old state that has
3373 * more strict register state and more strict stack state then this execution
3374 * branch doesn't need to be explored further, since verifier already
3375 * concluded that more strict state leads to valid finish.
3376 *
3377 * Therefore two states are equivalent if register state is more conservative
3378 * and explored stack state is more conservative than the current one.
3379 * Example:
3380 * explored current
3381 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3382 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3383 *
3384 * In other words if current stack state (one being explored) has more
3385 * valid slots than old one that already passed validation, it means
3386 * the verifier can stop exploring and conclude that current state is valid too
3387 *
3388 * Similarly with registers. If explored state has register type as invalid
3389 * whereas register type in current state is meaningful, it means that
3390 * the current state will reach 'bpf_exit' instruction safely
3391 */
48461135
JB
3392static bool states_equal(struct bpf_verifier_env *env,
3393 struct bpf_verifier_state *old,
58e2af8b 3394 struct bpf_verifier_state *cur)
f1bca824 3395{
f1174f77
EC
3396 struct idpair *idmap;
3397 bool ret = false;
f1bca824
AS
3398 int i;
3399
f1174f77
EC
3400 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3401 /* If we failed to allocate the idmap, just say it's not safe */
3402 if (!idmap)
1a0dc1ac 3403 return false;
f1174f77
EC
3404
3405 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3406 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3407 goto out_free;
f1bca824
AS
3408 }
3409
3410 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3411 if (old->stack_slot_type[i] == STACK_INVALID)
3412 continue;
3413 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3414 /* Ex: old explored (safe) state has STACK_SPILL in
3415 * this stack slot, but current has has STACK_MISC ->
3416 * this verifier states are not equivalent,
3417 * return false to continue verification of this path
3418 */
f1174f77 3419 goto out_free;
9c399760
AS
3420 if (i % BPF_REG_SIZE)
3421 continue;
d25da6ca
DB
3422 if (old->stack_slot_type[i] != STACK_SPILL)
3423 continue;
f1174f77
EC
3424 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3425 &cur->spilled_regs[i / BPF_REG_SIZE],
1b688a19 3426 idmap))
f1174f77
EC
3427 /* when explored and current stack slot are both storing
3428 * spilled registers, check that stored pointers types
9c399760
AS
3429 * are the same as well.
3430 * Ex: explored safe path could have stored
f1174f77 3431 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3432 * but current path has stored:
f1174f77 3433 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3434 * such verifier states are not equivalent.
3435 * return false to continue verification of this path
3436 */
f1174f77 3437 goto out_free;
9c399760
AS
3438 else
3439 continue;
f1bca824 3440 }
f1174f77
EC
3441 ret = true;
3442out_free:
3443 kfree(idmap);
3444 return ret;
f1bca824
AS
3445}
3446
8e9cd9ce
EC
3447/* A write screens off any subsequent reads; but write marks come from the
3448 * straight-line code between a state and its parent. When we arrive at a
3449 * jump target (in the first iteration of the propagate_liveness() loop),
3450 * we didn't arrive by the straight-line code, so read marks in state must
3451 * propagate to parent regardless of state's write marks.
3452 */
dc503a8a
EC
3453static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3454 struct bpf_verifier_state *parent)
3455{
63f45f84 3456 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3457 bool touched = false; /* any changes made? */
3458 int i;
3459
3460 if (!parent)
3461 return touched;
3462 /* Propagate read liveness of registers... */
3463 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3464 /* We don't need to worry about FP liveness because it's read-only */
3465 for (i = 0; i < BPF_REG_FP; i++) {
3466 if (parent->regs[i].live & REG_LIVE_READ)
3467 continue;
63f45f84
EC
3468 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3469 continue;
3470 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3471 parent->regs[i].live |= REG_LIVE_READ;
3472 touched = true;
3473 }
3474 }
3475 /* ... and stack slots */
3476 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3477 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3478 continue;
3479 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3480 continue;
3481 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3482 continue;
63f45f84
EC
3483 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3484 continue;
3485 if (state->spilled_regs[i].live & REG_LIVE_READ) {
1ab2de2b 3486 parent->spilled_regs[i].live |= REG_LIVE_READ;
dc503a8a
EC
3487 touched = true;
3488 }
3489 }
3490 return touched;
3491}
3492
8e9cd9ce
EC
3493/* "parent" is "a state from which we reach the current state", but initially
3494 * it is not the state->parent (i.e. "the state whose straight-line code leads
3495 * to the current state"), instead it is the state that happened to arrive at
3496 * a (prunable) equivalent of the current state. See comment above
3497 * do_propagate_liveness() for consequences of this.
3498 * This function is just a more efficient way of calling mark_reg_read() or
3499 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3500 * though it requires that parent != state->parent in the call arguments.
3501 */
dc503a8a
EC
3502static void propagate_liveness(const struct bpf_verifier_state *state,
3503 struct bpf_verifier_state *parent)
3504{
3505 while (do_propagate_liveness(state, parent)) {
3506 /* Something changed, so we need to feed those changes onward */
3507 state = parent;
3508 parent = state->parent;
3509 }
3510}
3511
58e2af8b 3512static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3513{
58e2af8b
JK
3514 struct bpf_verifier_state_list *new_sl;
3515 struct bpf_verifier_state_list *sl;
dc503a8a 3516 int i;
f1bca824
AS
3517
3518 sl = env->explored_states[insn_idx];
3519 if (!sl)
3520 /* this 'insn_idx' instruction wasn't marked, so we will not
3521 * be doing state search here
3522 */
3523 return 0;
3524
3525 while (sl != STATE_LIST_MARK) {
dc503a8a 3526 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3527 /* reached equivalent register/stack state,
dc503a8a
EC
3528 * prune the search.
3529 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3530 * If we have any write marks in env->cur_state, they
3531 * will prevent corresponding reads in the continuation
3532 * from reaching our parent (an explored_state). Our
3533 * own state will get the read marks recorded, but
3534 * they'll be immediately forgotten as we're pruning
3535 * this state and will pop a new one.
f1bca824 3536 */
dc503a8a 3537 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3538 return 1;
dc503a8a 3539 }
f1bca824
AS
3540 sl = sl->next;
3541 }
3542
3543 /* there were no equivalent states, remember current one.
3544 * technically the current state is not proven to be safe yet,
3545 * but it will either reach bpf_exit (which means it's safe) or
3546 * it will be rejected. Since there are no loops, we won't be
3547 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3548 */
58e2af8b 3549 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3550 if (!new_sl)
3551 return -ENOMEM;
3552
3553 /* add new state to the head of linked list */
3554 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3555 new_sl->next = env->explored_states[insn_idx];
3556 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3557 /* connect new state to parentage chain */
3558 env->cur_state.parent = &new_sl->state;
8e9cd9ce
EC
3559 /* clear write marks in current state: the writes we did are not writes
3560 * our child did, so they don't screen off its reads from us.
3561 * (There are no read marks in current state, because reads always mark
3562 * their parent and current state never has children yet. Only
3563 * explored_states can get read marks.)
3564 */
dc503a8a
EC
3565 for (i = 0; i < BPF_REG_FP; i++)
3566 env->cur_state.regs[i].live = REG_LIVE_NONE;
3567 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3568 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3569 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3570 return 0;
3571}
3572
13a27dfc
JK
3573static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3574 int insn_idx, int prev_insn_idx)
3575{
3576 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3577 return 0;
3578
3579 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3580}
3581
58e2af8b 3582static int do_check(struct bpf_verifier_env *env)
17a52670 3583{
58e2af8b 3584 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3585 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3586 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3587 int insn_cnt = env->prog->len;
3588 int insn_idx, prev_insn_idx = 0;
3589 int insn_processed = 0;
3590 bool do_print_state = false;
3591
61bd5218 3592 init_reg_state(env, regs);
dc503a8a 3593 state->parent = NULL;
17a52670
AS
3594 insn_idx = 0;
3595 for (;;) {
3596 struct bpf_insn *insn;
3597 u8 class;
3598 int err;
3599
3600 if (insn_idx >= insn_cnt) {
61bd5218 3601 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3602 insn_idx, insn_cnt);
3603 return -EFAULT;
3604 }
3605
3606 insn = &insns[insn_idx];
3607 class = BPF_CLASS(insn->code);
3608
07016151 3609 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3610 verbose(env,
3611 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3612 insn_processed);
3613 return -E2BIG;
3614 }
3615
f1bca824
AS
3616 err = is_state_visited(env, insn_idx);
3617 if (err < 0)
3618 return err;
3619 if (err == 1) {
3620 /* found equivalent state, can prune the search */
61bd5218 3621 if (env->log.level) {
f1bca824 3622 if (do_print_state)
61bd5218 3623 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3624 prev_insn_idx, insn_idx);
3625 else
61bd5218 3626 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3627 }
3628 goto process_bpf_exit;
3629 }
3630
3c2ce60b
DB
3631 if (need_resched())
3632 cond_resched();
3633
61bd5218
JK
3634 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3635 if (env->log.level > 1)
3636 verbose(env, "%d:", insn_idx);
c5fc9692 3637 else
61bd5218 3638 verbose(env, "\nfrom %d to %d:",
c5fc9692 3639 prev_insn_idx, insn_idx);
61bd5218 3640 print_verifier_state(env, &env->cur_state);
17a52670
AS
3641 do_print_state = false;
3642 }
3643
61bd5218
JK
3644 if (env->log.level) {
3645 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3646 print_bpf_insn(verbose, env, insn,
3647 env->allow_ptr_leaks);
17a52670
AS
3648 }
3649
13a27dfc
JK
3650 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3651 if (err)
3652 return err;
3653
17a52670 3654 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3655 err = check_alu_op(env, insn);
17a52670
AS
3656 if (err)
3657 return err;
3658
3659 } else if (class == BPF_LDX) {
3df126f3 3660 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3661
3662 /* check for reserved fields is already done */
3663
17a52670 3664 /* check src operand */
dc503a8a 3665 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3666 if (err)
3667 return err;
3668
dc503a8a 3669 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3670 if (err)
3671 return err;
3672
725f9dcd
AS
3673 src_reg_type = regs[insn->src_reg].type;
3674
17a52670
AS
3675 /* check that memory (src_reg + off) is readable,
3676 * the state of dst_reg will be updated by this func
3677 */
31fd8581 3678 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3679 BPF_SIZE(insn->code), BPF_READ,
3680 insn->dst_reg);
3681 if (err)
3682 return err;
3683
3df126f3
JK
3684 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3685
3686 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3687 /* saw a valid insn
3688 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3689 * save type to validate intersecting paths
9bac3d6d 3690 */
3df126f3 3691 *prev_src_type = src_reg_type;
9bac3d6d 3692
3df126f3 3693 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3694 (src_reg_type == PTR_TO_CTX ||
3df126f3 3695 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3696 /* ABuser program is trying to use the same insn
3697 * dst_reg = *(u32*) (src_reg + off)
3698 * with different pointer types:
3699 * src_reg == ctx in one branch and
3700 * src_reg == stack|map in some other branch.
3701 * Reject it.
3702 */
61bd5218 3703 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3704 return -EINVAL;
3705 }
3706
17a52670 3707 } else if (class == BPF_STX) {
3df126f3 3708 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3709
17a52670 3710 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3711 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3712 if (err)
3713 return err;
3714 insn_idx++;
3715 continue;
3716 }
3717
17a52670 3718 /* check src1 operand */
dc503a8a 3719 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3720 if (err)
3721 return err;
3722 /* check src2 operand */
dc503a8a 3723 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3724 if (err)
3725 return err;
3726
d691f9e8
AS
3727 dst_reg_type = regs[insn->dst_reg].type;
3728
17a52670 3729 /* check that memory (dst_reg + off) is writeable */
31fd8581 3730 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3731 BPF_SIZE(insn->code), BPF_WRITE,
3732 insn->src_reg);
3733 if (err)
3734 return err;
3735
3df126f3
JK
3736 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3737
3738 if (*prev_dst_type == NOT_INIT) {
3739 *prev_dst_type = dst_reg_type;
3740 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3741 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3742 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3743 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3744 return -EINVAL;
3745 }
3746
17a52670
AS
3747 } else if (class == BPF_ST) {
3748 if (BPF_MODE(insn->code) != BPF_MEM ||
3749 insn->src_reg != BPF_REG_0) {
61bd5218 3750 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3751 return -EINVAL;
3752 }
3753 /* check src operand */
dc503a8a 3754 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3755 if (err)
3756 return err;
3757
3758 /* check that memory (dst_reg + off) is writeable */
31fd8581 3759 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3760 BPF_SIZE(insn->code), BPF_WRITE,
3761 -1);
3762 if (err)
3763 return err;
3764
3765 } else if (class == BPF_JMP) {
3766 u8 opcode = BPF_OP(insn->code);
3767
3768 if (opcode == BPF_CALL) {
3769 if (BPF_SRC(insn->code) != BPF_K ||
3770 insn->off != 0 ||
3771 insn->src_reg != BPF_REG_0 ||
3772 insn->dst_reg != BPF_REG_0) {
61bd5218 3773 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3774 return -EINVAL;
3775 }
3776
81ed18ab 3777 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3778 if (err)
3779 return err;
3780
3781 } else if (opcode == BPF_JA) {
3782 if (BPF_SRC(insn->code) != BPF_K ||
3783 insn->imm != 0 ||
3784 insn->src_reg != BPF_REG_0 ||
3785 insn->dst_reg != BPF_REG_0) {
61bd5218 3786 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
3787 return -EINVAL;
3788 }
3789
3790 insn_idx += insn->off + 1;
3791 continue;
3792
3793 } else if (opcode == BPF_EXIT) {
3794 if (BPF_SRC(insn->code) != BPF_K ||
3795 insn->imm != 0 ||
3796 insn->src_reg != BPF_REG_0 ||
3797 insn->dst_reg != BPF_REG_0) {
61bd5218 3798 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
3799 return -EINVAL;
3800 }
3801
3802 /* eBPF calling convetion is such that R0 is used
3803 * to return the value from eBPF program.
3804 * Make sure that it's readable at this time
3805 * of bpf_exit, which means that program wrote
3806 * something into it earlier
3807 */
dc503a8a 3808 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3809 if (err)
3810 return err;
3811
1be7f75d 3812 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 3813 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
3814 return -EACCES;
3815 }
3816
390ee7e2
AS
3817 err = check_return_code(env);
3818 if (err)
3819 return err;
f1bca824 3820process_bpf_exit:
17a52670
AS
3821 insn_idx = pop_stack(env, &prev_insn_idx);
3822 if (insn_idx < 0) {
3823 break;
3824 } else {
3825 do_print_state = true;
3826 continue;
3827 }
3828 } else {
3829 err = check_cond_jmp_op(env, insn, &insn_idx);
3830 if (err)
3831 return err;
3832 }
3833 } else if (class == BPF_LD) {
3834 u8 mode = BPF_MODE(insn->code);
3835
3836 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3837 err = check_ld_abs(env, insn);
3838 if (err)
3839 return err;
3840
17a52670
AS
3841 } else if (mode == BPF_IMM) {
3842 err = check_ld_imm(env, insn);
3843 if (err)
3844 return err;
3845
3846 insn_idx++;
3847 } else {
61bd5218 3848 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
3849 return -EINVAL;
3850 }
3851 } else {
61bd5218 3852 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
3853 return -EINVAL;
3854 }
3855
3856 insn_idx++;
3857 }
3858
61bd5218
JK
3859 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3860 env->prog->aux->stack_depth);
17a52670
AS
3861 return 0;
3862}
3863
56f668df
MKL
3864static int check_map_prealloc(struct bpf_map *map)
3865{
3866 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3867 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3868 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3869 !(map->map_flags & BPF_F_NO_PREALLOC);
3870}
3871
61bd5218
JK
3872static int check_map_prog_compatibility(struct bpf_verifier_env *env,
3873 struct bpf_map *map,
fdc15d38
AS
3874 struct bpf_prog *prog)
3875
3876{
56f668df
MKL
3877 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3878 * preallocated hash maps, since doing memory allocation
3879 * in overflow_handler can crash depending on where nmi got
3880 * triggered.
3881 */
3882 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3883 if (!check_map_prealloc(map)) {
61bd5218 3884 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
3885 return -EINVAL;
3886 }
3887 if (map->inner_map_meta &&
3888 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 3889 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
3890 return -EINVAL;
3891 }
fdc15d38
AS
3892 }
3893 return 0;
3894}
3895
0246e64d
AS
3896/* look for pseudo eBPF instructions that access map FDs and
3897 * replace them with actual map pointers
3898 */
58e2af8b 3899static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3900{
3901 struct bpf_insn *insn = env->prog->insnsi;
3902 int insn_cnt = env->prog->len;
fdc15d38 3903 int i, j, err;
0246e64d 3904
f1f7714e 3905 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3906 if (err)
3907 return err;
3908
0246e64d 3909 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3910 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3911 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 3912 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
3913 return -EINVAL;
3914 }
3915
d691f9e8
AS
3916 if (BPF_CLASS(insn->code) == BPF_STX &&
3917 ((BPF_MODE(insn->code) != BPF_MEM &&
3918 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 3919 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
3920 return -EINVAL;
3921 }
3922
0246e64d
AS
3923 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3924 struct bpf_map *map;
3925 struct fd f;
3926
3927 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3928 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3929 insn[1].off != 0) {
61bd5218 3930 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
3931 return -EINVAL;
3932 }
3933
3934 if (insn->src_reg == 0)
3935 /* valid generic load 64-bit imm */
3936 goto next_insn;
3937
3938 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
3939 verbose(env,
3940 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
3941 return -EINVAL;
3942 }
3943
3944 f = fdget(insn->imm);
c2101297 3945 map = __bpf_map_get(f);
0246e64d 3946 if (IS_ERR(map)) {
61bd5218 3947 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 3948 insn->imm);
0246e64d
AS
3949 return PTR_ERR(map);
3950 }
3951
61bd5218 3952 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
3953 if (err) {
3954 fdput(f);
3955 return err;
3956 }
3957
0246e64d
AS
3958 /* store map pointer inside BPF_LD_IMM64 instruction */
3959 insn[0].imm = (u32) (unsigned long) map;
3960 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3961
3962 /* check whether we recorded this map already */
3963 for (j = 0; j < env->used_map_cnt; j++)
3964 if (env->used_maps[j] == map) {
3965 fdput(f);
3966 goto next_insn;
3967 }
3968
3969 if (env->used_map_cnt >= MAX_USED_MAPS) {
3970 fdput(f);
3971 return -E2BIG;
3972 }
3973
0246e64d
AS
3974 /* hold the map. If the program is rejected by verifier,
3975 * the map will be released by release_maps() or it
3976 * will be used by the valid program until it's unloaded
3977 * and all maps are released in free_bpf_prog_info()
3978 */
92117d84
AS
3979 map = bpf_map_inc(map, false);
3980 if (IS_ERR(map)) {
3981 fdput(f);
3982 return PTR_ERR(map);
3983 }
3984 env->used_maps[env->used_map_cnt++] = map;
3985
0246e64d
AS
3986 fdput(f);
3987next_insn:
3988 insn++;
3989 i++;
3990 }
3991 }
3992
3993 /* now all pseudo BPF_LD_IMM64 instructions load valid
3994 * 'struct bpf_map *' into a register instead of user map_fd.
3995 * These pointers will be used later by verifier to validate map access.
3996 */
3997 return 0;
3998}
3999
4000/* drop refcnt of maps used by the rejected program */
58e2af8b 4001static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4002{
4003 int i;
4004
4005 for (i = 0; i < env->used_map_cnt; i++)
4006 bpf_map_put(env->used_maps[i]);
4007}
4008
4009/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4010static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4011{
4012 struct bpf_insn *insn = env->prog->insnsi;
4013 int insn_cnt = env->prog->len;
4014 int i;
4015
4016 for (i = 0; i < insn_cnt; i++, insn++)
4017 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4018 insn->src_reg = 0;
4019}
4020
8041902d
AS
4021/* single env->prog->insni[off] instruction was replaced with the range
4022 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4023 * [0, off) and [off, end) to new locations, so the patched range stays zero
4024 */
4025static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4026 u32 off, u32 cnt)
4027{
4028 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4029
4030 if (cnt == 1)
4031 return 0;
4032 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4033 if (!new_data)
4034 return -ENOMEM;
4035 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4036 memcpy(new_data + off + cnt - 1, old_data + off,
4037 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4038 env->insn_aux_data = new_data;
4039 vfree(old_data);
4040 return 0;
4041}
4042
4043static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4044 const struct bpf_insn *patch, u32 len)
4045{
4046 struct bpf_prog *new_prog;
4047
4048 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4049 if (!new_prog)
4050 return NULL;
4051 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4052 return NULL;
4053 return new_prog;
4054}
4055
9bac3d6d
AS
4056/* convert load instructions that access fields of 'struct __sk_buff'
4057 * into sequence of instructions that access fields of 'struct sk_buff'
4058 */
58e2af8b 4059static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4060{
00176a34 4061 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4062 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4063 const int insn_cnt = env->prog->len;
36bbef52 4064 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4065 struct bpf_prog *new_prog;
d691f9e8 4066 enum bpf_access_type type;
f96da094
DB
4067 bool is_narrower_load;
4068 u32 target_size;
9bac3d6d 4069
36bbef52
DB
4070 if (ops->gen_prologue) {
4071 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4072 env->prog);
4073 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4074 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4075 return -EINVAL;
4076 } else if (cnt) {
8041902d 4077 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4078 if (!new_prog)
4079 return -ENOMEM;
8041902d 4080
36bbef52 4081 env->prog = new_prog;
3df126f3 4082 delta += cnt - 1;
36bbef52
DB
4083 }
4084 }
4085
4086 if (!ops->convert_ctx_access)
9bac3d6d
AS
4087 return 0;
4088
3df126f3 4089 insn = env->prog->insnsi + delta;
36bbef52 4090
9bac3d6d 4091 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4092 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4093 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4094 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4095 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4096 type = BPF_READ;
62c7989b
DB
4097 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4098 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4099 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4100 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4101 type = BPF_WRITE;
4102 else
9bac3d6d
AS
4103 continue;
4104
8041902d 4105 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4106 continue;
9bac3d6d 4107
31fd8581 4108 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4109 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4110
4111 /* If the read access is a narrower load of the field,
4112 * convert to a 4/8-byte load, to minimum program type specific
4113 * convert_ctx_access changes. If conversion is successful,
4114 * we will apply proper mask to the result.
4115 */
f96da094 4116 is_narrower_load = size < ctx_field_size;
31fd8581 4117 if (is_narrower_load) {
f96da094
DB
4118 u32 off = insn->off;
4119 u8 size_code;
4120
4121 if (type == BPF_WRITE) {
61bd5218 4122 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4123 return -EINVAL;
4124 }
31fd8581 4125
f96da094 4126 size_code = BPF_H;
31fd8581
YS
4127 if (ctx_field_size == 4)
4128 size_code = BPF_W;
4129 else if (ctx_field_size == 8)
4130 size_code = BPF_DW;
f96da094 4131
31fd8581
YS
4132 insn->off = off & ~(ctx_field_size - 1);
4133 insn->code = BPF_LDX | BPF_MEM | size_code;
4134 }
f96da094
DB
4135
4136 target_size = 0;
4137 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4138 &target_size);
4139 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4140 (ctx_field_size && !target_size)) {
61bd5218 4141 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4142 return -EINVAL;
4143 }
f96da094
DB
4144
4145 if (is_narrower_load && size < target_size) {
31fd8581
YS
4146 if (ctx_field_size <= 4)
4147 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4148 (1 << size * 8) - 1);
31fd8581
YS
4149 else
4150 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4151 (1 << size * 8) - 1);
31fd8581 4152 }
9bac3d6d 4153
8041902d 4154 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4155 if (!new_prog)
4156 return -ENOMEM;
4157
3df126f3 4158 delta += cnt - 1;
9bac3d6d
AS
4159
4160 /* keep walking new program and skip insns we just inserted */
4161 env->prog = new_prog;
3df126f3 4162 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4163 }
4164
4165 return 0;
4166}
4167
79741b3b 4168/* fixup insn->imm field of bpf_call instructions
81ed18ab 4169 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4170 *
4171 * this function is called after eBPF program passed verification
4172 */
79741b3b 4173static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4174{
79741b3b
AS
4175 struct bpf_prog *prog = env->prog;
4176 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4177 const struct bpf_func_proto *fn;
79741b3b 4178 const int insn_cnt = prog->len;
81ed18ab
AS
4179 struct bpf_insn insn_buf[16];
4180 struct bpf_prog *new_prog;
4181 struct bpf_map *map_ptr;
4182 int i, cnt, delta = 0;
e245c5c6 4183
79741b3b
AS
4184 for (i = 0; i < insn_cnt; i++, insn++) {
4185 if (insn->code != (BPF_JMP | BPF_CALL))
4186 continue;
e245c5c6 4187
79741b3b
AS
4188 if (insn->imm == BPF_FUNC_get_route_realm)
4189 prog->dst_needed = 1;
4190 if (insn->imm == BPF_FUNC_get_prandom_u32)
4191 bpf_user_rnd_init_once();
79741b3b 4192 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4193 /* If we tail call into other programs, we
4194 * cannot make any assumptions since they can
4195 * be replaced dynamically during runtime in
4196 * the program array.
4197 */
4198 prog->cb_access = 1;
80a58d02 4199 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4200
79741b3b
AS
4201 /* mark bpf_tail_call as different opcode to avoid
4202 * conditional branch in the interpeter for every normal
4203 * call and to prevent accidental JITing by JIT compiler
4204 * that doesn't support bpf_tail_call yet
e245c5c6 4205 */
79741b3b 4206 insn->imm = 0;
71189fa9 4207 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4208 continue;
4209 }
e245c5c6 4210
89c63074
DB
4211 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4212 * handlers are currently limited to 64 bit only.
4213 */
4214 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4215 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4216 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4217 if (map_ptr == BPF_MAP_PTR_POISON ||
4218 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4219 goto patch_call_imm;
4220
4221 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4222 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4223 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4224 return -EINVAL;
4225 }
4226
4227 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4228 cnt);
4229 if (!new_prog)
4230 return -ENOMEM;
4231
4232 delta += cnt - 1;
4233
4234 /* keep walking new program and skip insns we just inserted */
4235 env->prog = prog = new_prog;
4236 insn = new_prog->insnsi + i + delta;
4237 continue;
4238 }
4239
109980b8 4240 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4241 /* Note, we cannot use prog directly as imm as subsequent
4242 * rewrites would still change the prog pointer. The only
4243 * stable address we can use is aux, which also works with
4244 * prog clones during blinding.
4245 */
4246 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4247 struct bpf_insn r4_ld[] = {
4248 BPF_LD_IMM64(BPF_REG_4, addr),
4249 *insn,
4250 };
4251 cnt = ARRAY_SIZE(r4_ld);
4252
4253 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4254 if (!new_prog)
4255 return -ENOMEM;
4256
4257 delta += cnt - 1;
4258 env->prog = prog = new_prog;
4259 insn = new_prog->insnsi + i + delta;
4260 }
81ed18ab 4261patch_call_imm:
00176a34 4262 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4263 /* all functions that have prototype and verifier allowed
4264 * programs to call them, must be real in-kernel functions
4265 */
4266 if (!fn->func) {
61bd5218
JK
4267 verbose(env,
4268 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4269 func_id_name(insn->imm), insn->imm);
4270 return -EFAULT;
e245c5c6 4271 }
79741b3b 4272 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4273 }
e245c5c6 4274
79741b3b
AS
4275 return 0;
4276}
e245c5c6 4277
58e2af8b 4278static void free_states(struct bpf_verifier_env *env)
f1bca824 4279{
58e2af8b 4280 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4281 int i;
4282
4283 if (!env->explored_states)
4284 return;
4285
4286 for (i = 0; i < env->prog->len; i++) {
4287 sl = env->explored_states[i];
4288
4289 if (sl)
4290 while (sl != STATE_LIST_MARK) {
4291 sln = sl->next;
4292 kfree(sl);
4293 sl = sln;
4294 }
4295 }
4296
4297 kfree(env->explored_states);
4298}
4299
9bac3d6d 4300int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4301{
58e2af8b 4302 struct bpf_verifier_env *env;
61bd5218 4303 struct bpf_verifer_log *log;
51580e79
AS
4304 int ret = -EINVAL;
4305
58e2af8b 4306 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4307 * allocate/free it every time bpf_check() is called
4308 */
58e2af8b 4309 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4310 if (!env)
4311 return -ENOMEM;
61bd5218 4312 log = &env->log;
cbd35700 4313
3df126f3
JK
4314 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4315 (*prog)->len);
4316 ret = -ENOMEM;
4317 if (!env->insn_aux_data)
4318 goto err_free_env;
9bac3d6d 4319 env->prog = *prog;
00176a34 4320 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4321
cbd35700
AS
4322 /* grab the mutex to protect few globals used by verifier */
4323 mutex_lock(&bpf_verifier_lock);
4324
4325 if (attr->log_level || attr->log_buf || attr->log_size) {
4326 /* user requested verbose verifier output
4327 * and supplied buffer to store the verification trace
4328 */
e7bf8249
JK
4329 log->level = attr->log_level;
4330 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4331 log->len_total = attr->log_size;
cbd35700
AS
4332
4333 ret = -EINVAL;
e7bf8249
JK
4334 /* log attributes have to be sane */
4335 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4336 !log->level || !log->ubuf)
3df126f3 4337 goto err_unlock;
cbd35700 4338 }
1ad2f583
DB
4339
4340 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4341 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4342 env->strict_alignment = true;
cbd35700 4343
0246e64d
AS
4344 ret = replace_map_fd_with_map_ptr(env);
4345 if (ret < 0)
4346 goto skip_full_check;
4347
9bac3d6d 4348 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4349 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4350 GFP_USER);
4351 ret = -ENOMEM;
4352 if (!env->explored_states)
4353 goto skip_full_check;
4354
475fb78f
AS
4355 ret = check_cfg(env);
4356 if (ret < 0)
4357 goto skip_full_check;
4358
1be7f75d
AS
4359 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4360
17a52670 4361 ret = do_check(env);
cbd35700 4362
0246e64d 4363skip_full_check:
17a52670 4364 while (pop_stack(env, NULL) >= 0);
f1bca824 4365 free_states(env);
0246e64d 4366
9bac3d6d
AS
4367 if (ret == 0)
4368 /* program is valid, convert *(u32*)(ctx + off) accesses */
4369 ret = convert_ctx_accesses(env);
4370
e245c5c6 4371 if (ret == 0)
79741b3b 4372 ret = fixup_bpf_calls(env);
e245c5c6 4373
a2a7d570 4374 if (log->level && bpf_verifier_log_full(log))
cbd35700 4375 ret = -ENOSPC;
a2a7d570 4376 if (log->level && !log->ubuf) {
cbd35700 4377 ret = -EFAULT;
a2a7d570 4378 goto err_release_maps;
cbd35700
AS
4379 }
4380
0246e64d
AS
4381 if (ret == 0 && env->used_map_cnt) {
4382 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4383 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4384 sizeof(env->used_maps[0]),
4385 GFP_KERNEL);
0246e64d 4386
9bac3d6d 4387 if (!env->prog->aux->used_maps) {
0246e64d 4388 ret = -ENOMEM;
a2a7d570 4389 goto err_release_maps;
0246e64d
AS
4390 }
4391
9bac3d6d 4392 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4393 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4394 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4395
4396 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4397 * bpf_ld_imm64 instructions
4398 */
4399 convert_pseudo_ld_imm64(env);
4400 }
cbd35700 4401
a2a7d570 4402err_release_maps:
9bac3d6d 4403 if (!env->prog->aux->used_maps)
0246e64d
AS
4404 /* if we didn't copy map pointers into bpf_prog_info, release
4405 * them now. Otherwise free_bpf_prog_info() will release them.
4406 */
4407 release_maps(env);
9bac3d6d 4408 *prog = env->prog;
3df126f3 4409err_unlock:
cbd35700 4410 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4411 vfree(env->insn_aux_data);
4412err_free_env:
4413 kfree(env);
51580e79
AS
4414 return ret;
4415}
13a27dfc 4416
4f9218aa
JK
4417static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
4418 [BPF_PROG_TYPE_XDP] = &xdp_analyzer_ops,
4419 [BPF_PROG_TYPE_SCHED_CLS] = &tc_cls_act_analyzer_ops,
4420};
4421
13a27dfc
JK
4422int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4423 void *priv)
4424{
4425 struct bpf_verifier_env *env;
4426 int ret;
4427
4f9218aa
JK
4428 if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
4429 !bpf_analyzer_ops[prog->type])
4430 return -EOPNOTSUPP;
4431
13a27dfc
JK
4432 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4433 if (!env)
4434 return -ENOMEM;
4435
4436 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4437 prog->len);
4438 ret = -ENOMEM;
4439 if (!env->insn_aux_data)
4440 goto err_free_env;
4441 env->prog = prog;
4f9218aa 4442 env->ops = bpf_analyzer_ops[env->prog->type];
13a27dfc
JK
4443 env->analyzer_ops = ops;
4444 env->analyzer_priv = priv;
4445
4446 /* grab the mutex to protect few globals used by verifier */
4447 mutex_lock(&bpf_verifier_lock);
4448
e07b98d9 4449 env->strict_alignment = false;
1ad2f583
DB
4450 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4451 env->strict_alignment = true;
13a27dfc
JK
4452
4453 env->explored_states = kcalloc(env->prog->len,
4454 sizeof(struct bpf_verifier_state_list *),
4455 GFP_KERNEL);
4456 ret = -ENOMEM;
4457 if (!env->explored_states)
4458 goto skip_full_check;
4459
4460 ret = check_cfg(env);
4461 if (ret < 0)
4462 goto skip_full_check;
4463
4464 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4465
4466 ret = do_check(env);
4467
4468skip_full_check:
4469 while (pop_stack(env, NULL) >= 0);
4470 free_states(env);
4471
4472 mutex_unlock(&bpf_verifier_lock);
4473 vfree(env->insn_aux_data);
4474err_free_env:
4475 kfree(env);
4476 return ret;
4477}
4478EXPORT_SYMBOL_GPL(bpf_analyzer);