]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
bpf: fix spelling mistake: "obusing" -> "abusing"
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 802 int size, bool zero_size_allowed)
17a52670 803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
9fd29c08
YS
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
61bd5218 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814}
815
f1174f77
EC
816/* check read/write into a map element with possible variable offset */
817static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 818 int off, int size, bool zero_size_allowed)
dbcfe5f7 819{
638f5b90 820 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
f1174f77
EC
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
dbcfe5f7 827 */
61bd5218
JK
828 if (env->log.level)
829 print_verifier_state(env, state);
dbcfe5f7
GB
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
b03c9f9f 836 if (reg->smin_value < 0) {
61bd5218 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
838 regno);
839 return -EACCES;
840 }
9fd29c08
YS
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
dbcfe5f7 843 if (err) {
61bd5218
JK
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
dbcfe5f7
GB
846 return err;
847 }
848
b03c9f9f
EC
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 852 */
b03c9f9f 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
855 regno);
856 return -EACCES;
857 }
9fd29c08
YS
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
f1174f77 860 if (err)
61bd5218
JK
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
f1174f77 863 return err;
dbcfe5f7
GB
864}
865
969bf05e
AS
866#define MAX_PACKET_OFF 0xffff
867
58e2af8b 868static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
4acf6c0b 871{
36bbef52 872 switch (env->prog->type) {
3a0af8fd
TG
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
7e57fbb2 878 /* fallthrough */
36bbef52
DB
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 881 case BPF_PROG_TYPE_XDP:
3a0af8fd 882 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 883 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
4acf6c0b
BB
888 return true;
889 default:
890 return false;
891 }
892}
893
f1174f77 894static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 895 int off, int size, bool zero_size_allowed)
969bf05e 896{
638f5b90 897 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 898 struct bpf_reg_state *reg = &regs[regno];
969bf05e 899
9fd29c08
YS
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
61bd5218 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 910 int size, bool zero_size_allowed)
f1174f77 911{
638f5b90 912 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
61bd5218 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
926 regno);
927 return -EACCES;
928 }
9fd29c08 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 930 if (err) {
61bd5218 931 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
4f9218aa
JK
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
31fd8581 953 */
23994631 954 *reg_type = info.reg_type;
31fd8581 955
4f9218aa 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
17a52670 960 return 0;
32bbe007 961 }
17a52670 962
61bd5218 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
964 return -EACCES;
965}
966
4cabc5b1
DB
967static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
1be7f75d 969{
4cabc5b1 970 if (allow_ptr_leaks)
1be7f75d
AS
971 return false;
972
f1174f77 973 return reg->type != SCALAR_VALUE;
1be7f75d
AS
974}
975
4cabc5b1
DB
976static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977{
638f5b90 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
979}
980
61bd5218
JK
981static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
d1174416 983 int off, int size, bool strict)
969bf05e 984{
f1174f77 985 struct tnum reg_off;
e07b98d9 986 int ip_align;
d1174416
DM
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
e4eda884
DM
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
e07b98d9 999 */
e4eda884 1000 ip_align = 2;
f1174f77
EC
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1009 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1010 return -EACCES;
1011 }
79adffcd 1012
969bf05e
AS
1013 return 0;
1014}
1015
61bd5218
JK
1016static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
f1174f77
EC
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
79adffcd 1020{
f1174f77
EC
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1033 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1034 return -EACCES;
1035 }
1036
969bf05e
AS
1037 return 0;
1038}
1039
e07b98d9
DM
1040static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
79adffcd
DB
1042 int off, int size)
1043{
e07b98d9 1044 bool strict = env->strict_alignment;
f1174f77 1045 const char *pointer_desc = "";
d1174416 1046
79adffcd
DB
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
de8f3a83
DB
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
61bd5218 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
a5ec6ae1
JH
1062 /* The stack spill tracking logic in check_stack_write()
1063 * and check_stack_read() relies on stack accesses being
1064 * aligned.
1065 */
1066 strict = true;
f1174f77 1067 break;
79adffcd 1068 default:
f1174f77 1069 break;
79adffcd 1070 }
61bd5218
JK
1071 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1072 strict);
79adffcd
DB
1073}
1074
0c17d1d2
JH
1075/* truncate register to smaller size (in bytes)
1076 * must be called with size < BPF_REG_SIZE
1077 */
1078static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1079{
1080 u64 mask;
1081
1082 /* clear high bits in bit representation */
1083 reg->var_off = tnum_cast(reg->var_off, size);
1084
1085 /* fix arithmetic bounds */
1086 mask = ((u64)1 << (size * 8)) - 1;
1087 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1088 reg->umin_value &= mask;
1089 reg->umax_value &= mask;
1090 } else {
1091 reg->umin_value = 0;
1092 reg->umax_value = mask;
1093 }
1094 reg->smin_value = reg->umin_value;
1095 reg->smax_value = reg->umax_value;
1096}
1097
17a52670
AS
1098/* check whether memory at (regno + off) is accessible for t = (read | write)
1099 * if t==write, value_regno is a register which value is stored into memory
1100 * if t==read, value_regno is a register which will receive the value from memory
1101 * if t==write && value_regno==-1, some unknown value is stored into memory
1102 * if t==read && value_regno==-1, don't care what we read from memory
1103 */
31fd8581 1104static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1105 int bpf_size, enum bpf_access_type t,
1106 int value_regno)
1107{
638f5b90
AS
1108 struct bpf_verifier_state *state = env->cur_state;
1109 struct bpf_reg_state *regs = cur_regs(env);
1110 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1111 int size, err = 0;
1112
1113 size = bpf_size_to_bytes(bpf_size);
1114 if (size < 0)
1115 return size;
1116
f1174f77 1117 /* alignment checks will add in reg->off themselves */
e07b98d9 1118 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1119 if (err)
1120 return err;
17a52670 1121
f1174f77
EC
1122 /* for access checks, reg->off is just part of off */
1123 off += reg->off;
1124
1125 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1126 if (t == BPF_WRITE && value_regno >= 0 &&
1127 is_pointer_value(env, value_regno)) {
61bd5218 1128 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1129 return -EACCES;
1130 }
48461135 1131
9fd29c08 1132 err = check_map_access(env, regno, off, size, false);
17a52670 1133 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1134 mark_reg_unknown(env, regs, value_regno);
17a52670 1135
1a0dc1ac 1136 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1137 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1138
1be7f75d
AS
1139 if (t == BPF_WRITE && value_regno >= 0 &&
1140 is_pointer_value(env, value_regno)) {
61bd5218 1141 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1142 return -EACCES;
1143 }
f1174f77
EC
1144 /* ctx accesses must be at a fixed offset, so that we can
1145 * determine what type of data were returned.
1146 */
28e33f9d 1147 if (reg->off) {
f8ddadc4
DM
1148 verbose(env,
1149 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1150 regno, reg->off, off - reg->off);
1151 return -EACCES;
1152 }
1153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1154 char tn_buf[48];
1155
1156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1157 verbose(env,
1158 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1159 tn_buf, off, size);
1160 return -EACCES;
1161 }
31fd8581 1162 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1163 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1164 /* ctx access returns either a scalar, or a
de8f3a83
DB
1165 * PTR_TO_PACKET[_META,_END]. In the latter
1166 * case, we know the offset is zero.
f1174f77
EC
1167 */
1168 if (reg_type == SCALAR_VALUE)
638f5b90 1169 mark_reg_unknown(env, regs, value_regno);
f1174f77 1170 else
638f5b90 1171 mark_reg_known_zero(env, regs,
61bd5218 1172 value_regno);
638f5b90
AS
1173 regs[value_regno].id = 0;
1174 regs[value_regno].off = 0;
1175 regs[value_regno].range = 0;
1176 regs[value_regno].type = reg_type;
969bf05e 1177 }
17a52670 1178
f1174f77
EC
1179 } else if (reg->type == PTR_TO_STACK) {
1180 /* stack accesses must be at a fixed offset, so that we can
1181 * determine what type of data were returned.
1182 * See check_stack_read().
1183 */
1184 if (!tnum_is_const(reg->var_off)) {
1185 char tn_buf[48];
1186
1187 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1188 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1189 tn_buf, off, size);
1190 return -EACCES;
1191 }
1192 off += reg->var_off.value;
17a52670 1193 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1194 verbose(env, "invalid stack off=%d size=%d\n", off,
1195 size);
17a52670
AS
1196 return -EACCES;
1197 }
8726679a
AS
1198
1199 if (env->prog->aux->stack_depth < -off)
1200 env->prog->aux->stack_depth = -off;
1201
638f5b90 1202 if (t == BPF_WRITE)
61bd5218
JK
1203 err = check_stack_write(env, state, off, size,
1204 value_regno);
638f5b90 1205 else
61bd5218
JK
1206 err = check_stack_read(env, state, off, size,
1207 value_regno);
de8f3a83 1208 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1209 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1210 verbose(env, "cannot write into packet\n");
969bf05e
AS
1211 return -EACCES;
1212 }
4acf6c0b
BB
1213 if (t == BPF_WRITE && value_regno >= 0 &&
1214 is_pointer_value(env, value_regno)) {
61bd5218
JK
1215 verbose(env, "R%d leaks addr into packet\n",
1216 value_regno);
4acf6c0b
BB
1217 return -EACCES;
1218 }
9fd29c08 1219 err = check_packet_access(env, regno, off, size, false);
969bf05e 1220 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1221 mark_reg_unknown(env, regs, value_regno);
17a52670 1222 } else {
61bd5218
JK
1223 verbose(env, "R%d invalid mem access '%s'\n", regno,
1224 reg_type_str[reg->type]);
17a52670
AS
1225 return -EACCES;
1226 }
969bf05e 1227
f1174f77 1228 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1229 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1230 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1231 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1232 }
17a52670
AS
1233 return err;
1234}
1235
31fd8581 1236static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1237{
17a52670
AS
1238 int err;
1239
1240 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1241 insn->imm != 0) {
61bd5218 1242 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1243 return -EINVAL;
1244 }
1245
1246 /* check src1 operand */
dc503a8a 1247 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1248 if (err)
1249 return err;
1250
1251 /* check src2 operand */
dc503a8a 1252 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1253 if (err)
1254 return err;
1255
6bdf6abc 1256 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1257 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1258 return -EACCES;
1259 }
1260
17a52670 1261 /* check whether atomic_add can read the memory */
31fd8581 1262 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1263 BPF_SIZE(insn->code), BPF_READ, -1);
1264 if (err)
1265 return err;
1266
1267 /* check whether atomic_add can write into the same memory */
31fd8581 1268 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1269 BPF_SIZE(insn->code), BPF_WRITE, -1);
1270}
1271
f1174f77
EC
1272/* Does this register contain a constant zero? */
1273static bool register_is_null(struct bpf_reg_state reg)
1274{
1275 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1276}
1277
17a52670
AS
1278/* when register 'regno' is passed into function that will read 'access_size'
1279 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1280 * and all elements of stack are initialized.
1281 * Unlike most pointer bounds-checking functions, this one doesn't take an
1282 * 'off' argument, so it has to add in reg->off itself.
17a52670 1283 */
58e2af8b 1284static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1285 int access_size, bool zero_size_allowed,
1286 struct bpf_call_arg_meta *meta)
17a52670 1287{
638f5b90 1288 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1289 struct bpf_reg_state *regs = state->regs;
638f5b90 1290 int off, i, slot, spi;
17a52670 1291
8e2fe1d9 1292 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1293 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1294 if (zero_size_allowed && access_size == 0 &&
f1174f77 1295 register_is_null(regs[regno]))
8e2fe1d9
DB
1296 return 0;
1297
61bd5218 1298 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1299 reg_type_str[regs[regno].type],
1300 reg_type_str[PTR_TO_STACK]);
17a52670 1301 return -EACCES;
8e2fe1d9 1302 }
17a52670 1303
f1174f77
EC
1304 /* Only allow fixed-offset stack reads */
1305 if (!tnum_is_const(regs[regno].var_off)) {
1306 char tn_buf[48];
1307
1308 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1309 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1310 regno, tn_buf);
ea25f914 1311 return -EACCES;
f1174f77
EC
1312 }
1313 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1314 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1315 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1316 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1317 regno, off, access_size);
1318 return -EACCES;
1319 }
1320
8726679a
AS
1321 if (env->prog->aux->stack_depth < -off)
1322 env->prog->aux->stack_depth = -off;
1323
435faee1
DB
1324 if (meta && meta->raw_mode) {
1325 meta->access_size = access_size;
1326 meta->regno = regno;
1327 return 0;
1328 }
1329
17a52670 1330 for (i = 0; i < access_size; i++) {
638f5b90
AS
1331 slot = -(off + i) - 1;
1332 spi = slot / BPF_REG_SIZE;
1333 if (state->allocated_stack <= slot ||
1334 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1335 STACK_MISC) {
61bd5218 1336 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1337 off, i, access_size);
1338 return -EACCES;
1339 }
1340 }
1341 return 0;
1342}
1343
06c1c049
GB
1344static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1345 int access_size, bool zero_size_allowed,
1346 struct bpf_call_arg_meta *meta)
1347{
638f5b90 1348 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1349
f1174f77 1350 switch (reg->type) {
06c1c049 1351 case PTR_TO_PACKET:
de8f3a83 1352 case PTR_TO_PACKET_META:
9fd29c08
YS
1353 return check_packet_access(env, regno, reg->off, access_size,
1354 zero_size_allowed);
06c1c049 1355 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1356 return check_map_access(env, regno, reg->off, access_size,
1357 zero_size_allowed);
f1174f77 1358 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1359 return check_stack_boundary(env, regno, access_size,
1360 zero_size_allowed, meta);
1361 }
1362}
1363
58e2af8b 1364static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1365 enum bpf_arg_type arg_type,
1366 struct bpf_call_arg_meta *meta)
17a52670 1367{
638f5b90 1368 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1369 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1370 int err = 0;
1371
80f1d68c 1372 if (arg_type == ARG_DONTCARE)
17a52670
AS
1373 return 0;
1374
dc503a8a
EC
1375 err = check_reg_arg(env, regno, SRC_OP);
1376 if (err)
1377 return err;
17a52670 1378
1be7f75d
AS
1379 if (arg_type == ARG_ANYTHING) {
1380 if (is_pointer_value(env, regno)) {
61bd5218
JK
1381 verbose(env, "R%d leaks addr into helper function\n",
1382 regno);
1be7f75d
AS
1383 return -EACCES;
1384 }
80f1d68c 1385 return 0;
1be7f75d 1386 }
80f1d68c 1387
de8f3a83 1388 if (type_is_pkt_pointer(type) &&
3a0af8fd 1389 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1390 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1391 return -EACCES;
1392 }
1393
8e2fe1d9 1394 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1395 arg_type == ARG_PTR_TO_MAP_VALUE) {
1396 expected_type = PTR_TO_STACK;
de8f3a83
DB
1397 if (!type_is_pkt_pointer(type) &&
1398 type != expected_type)
6841de8b 1399 goto err_type;
39f19ebb
AS
1400 } else if (arg_type == ARG_CONST_SIZE ||
1401 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1402 expected_type = SCALAR_VALUE;
1403 if (type != expected_type)
6841de8b 1404 goto err_type;
17a52670
AS
1405 } else if (arg_type == ARG_CONST_MAP_PTR) {
1406 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1407 if (type != expected_type)
1408 goto err_type;
608cd71a
AS
1409 } else if (arg_type == ARG_PTR_TO_CTX) {
1410 expected_type = PTR_TO_CTX;
6841de8b
AS
1411 if (type != expected_type)
1412 goto err_type;
39f19ebb 1413 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1414 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1415 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1416 expected_type = PTR_TO_STACK;
1417 /* One exception here. In case function allows for NULL to be
f1174f77 1418 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1419 * happens during stack boundary checking.
1420 */
db1ac496
GB
1421 if (register_is_null(*reg) &&
1422 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1423 /* final test in check_stack_boundary() */;
de8f3a83
DB
1424 else if (!type_is_pkt_pointer(type) &&
1425 type != PTR_TO_MAP_VALUE &&
f1174f77 1426 type != expected_type)
6841de8b 1427 goto err_type;
39f19ebb 1428 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1429 } else {
61bd5218 1430 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1431 return -EFAULT;
1432 }
1433
17a52670
AS
1434 if (arg_type == ARG_CONST_MAP_PTR) {
1435 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1436 meta->map_ptr = reg->map_ptr;
17a52670
AS
1437 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1438 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1439 * check that [key, key + map->key_size) are within
1440 * stack limits and initialized
1441 */
33ff9823 1442 if (!meta->map_ptr) {
17a52670
AS
1443 /* in function declaration map_ptr must come before
1444 * map_key, so that it's verified and known before
1445 * we have to check map_key here. Otherwise it means
1446 * that kernel subsystem misconfigured verifier
1447 */
61bd5218 1448 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1449 return -EACCES;
1450 }
de8f3a83 1451 if (type_is_pkt_pointer(type))
f1174f77 1452 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1453 meta->map_ptr->key_size,
1454 false);
6841de8b
AS
1455 else
1456 err = check_stack_boundary(env, regno,
1457 meta->map_ptr->key_size,
1458 false, NULL);
17a52670
AS
1459 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1460 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1461 * check [value, value + map->value_size) validity
1462 */
33ff9823 1463 if (!meta->map_ptr) {
17a52670 1464 /* kernel subsystem misconfigured verifier */
61bd5218 1465 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1466 return -EACCES;
1467 }
de8f3a83 1468 if (type_is_pkt_pointer(type))
f1174f77 1469 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1470 meta->map_ptr->value_size,
1471 false);
6841de8b
AS
1472 else
1473 err = check_stack_boundary(env, regno,
1474 meta->map_ptr->value_size,
1475 false, NULL);
39f19ebb
AS
1476 } else if (arg_type == ARG_CONST_SIZE ||
1477 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1478 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1479
17a52670
AS
1480 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1481 * from stack pointer 'buf'. Check it
1482 * note: regno == len, regno - 1 == buf
1483 */
1484 if (regno == 0) {
1485 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1486 verbose(env,
1487 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1488 return -EACCES;
1489 }
06c1c049 1490
f1174f77
EC
1491 /* The register is SCALAR_VALUE; the access check
1492 * happens using its boundaries.
06c1c049 1493 */
f1174f77
EC
1494
1495 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1496 /* For unprivileged variable accesses, disable raw
1497 * mode so that the program is required to
1498 * initialize all the memory that the helper could
1499 * just partially fill up.
1500 */
1501 meta = NULL;
1502
b03c9f9f 1503 if (reg->smin_value < 0) {
61bd5218 1504 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1505 regno);
1506 return -EACCES;
1507 }
06c1c049 1508
b03c9f9f 1509 if (reg->umin_value == 0) {
f1174f77
EC
1510 err = check_helper_mem_access(env, regno - 1, 0,
1511 zero_size_allowed,
1512 meta);
06c1c049
GB
1513 if (err)
1514 return err;
06c1c049 1515 }
f1174f77 1516
b03c9f9f 1517 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1518 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1519 regno);
1520 return -EACCES;
1521 }
1522 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1523 reg->umax_value,
f1174f77 1524 zero_size_allowed, meta);
17a52670
AS
1525 }
1526
1527 return err;
6841de8b 1528err_type:
61bd5218 1529 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1530 reg_type_str[type], reg_type_str[expected_type]);
1531 return -EACCES;
17a52670
AS
1532}
1533
61bd5218
JK
1534static int check_map_func_compatibility(struct bpf_verifier_env *env,
1535 struct bpf_map *map, int func_id)
35578d79 1536{
35578d79
KX
1537 if (!map)
1538 return 0;
1539
6aff67c8
AS
1540 /* We need a two way check, first is from map perspective ... */
1541 switch (map->map_type) {
1542 case BPF_MAP_TYPE_PROG_ARRAY:
1543 if (func_id != BPF_FUNC_tail_call)
1544 goto error;
1545 break;
1546 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1547 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1548 func_id != BPF_FUNC_perf_event_output &&
1549 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1550 goto error;
1551 break;
1552 case BPF_MAP_TYPE_STACK_TRACE:
1553 if (func_id != BPF_FUNC_get_stackid)
1554 goto error;
1555 break;
4ed8ec52 1556 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1557 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1558 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1559 goto error;
1560 break;
546ac1ff
JF
1561 /* devmap returns a pointer to a live net_device ifindex that we cannot
1562 * allow to be modified from bpf side. So do not allow lookup elements
1563 * for now.
1564 */
1565 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1566 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1567 goto error;
1568 break;
6710e112
JDB
1569 /* Restrict bpf side of cpumap, open when use-cases appear */
1570 case BPF_MAP_TYPE_CPUMAP:
1571 if (func_id != BPF_FUNC_redirect_map)
1572 goto error;
1573 break;
56f668df 1574 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1575 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1576 if (func_id != BPF_FUNC_map_lookup_elem)
1577 goto error;
16a43625 1578 break;
174a79ff
JF
1579 case BPF_MAP_TYPE_SOCKMAP:
1580 if (func_id != BPF_FUNC_sk_redirect_map &&
1581 func_id != BPF_FUNC_sock_map_update &&
1582 func_id != BPF_FUNC_map_delete_elem)
1583 goto error;
1584 break;
6aff67c8
AS
1585 default:
1586 break;
1587 }
1588
1589 /* ... and second from the function itself. */
1590 switch (func_id) {
1591 case BPF_FUNC_tail_call:
1592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1593 goto error;
1594 break;
1595 case BPF_FUNC_perf_event_read:
1596 case BPF_FUNC_perf_event_output:
908432ca 1597 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1598 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1599 goto error;
1600 break;
1601 case BPF_FUNC_get_stackid:
1602 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1603 goto error;
1604 break;
60d20f91 1605 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1606 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1607 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1608 goto error;
1609 break;
97f91a7c 1610 case BPF_FUNC_redirect_map:
9c270af3
JDB
1611 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1612 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1613 goto error;
1614 break;
174a79ff
JF
1615 case BPF_FUNC_sk_redirect_map:
1616 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1617 goto error;
1618 break;
1619 case BPF_FUNC_sock_map_update:
1620 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1621 goto error;
1622 break;
6aff67c8
AS
1623 default:
1624 break;
35578d79
KX
1625 }
1626
1627 return 0;
6aff67c8 1628error:
61bd5218 1629 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1630 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1631 return -EINVAL;
35578d79
KX
1632}
1633
435faee1
DB
1634static int check_raw_mode(const struct bpf_func_proto *fn)
1635{
1636 int count = 0;
1637
39f19ebb 1638 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1639 count++;
39f19ebb 1640 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1641 count++;
39f19ebb 1642 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1643 count++;
39f19ebb 1644 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1645 count++;
39f19ebb 1646 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1647 count++;
1648
1649 return count > 1 ? -EINVAL : 0;
1650}
1651
de8f3a83
DB
1652/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1653 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1654 */
58e2af8b 1655static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1656{
638f5b90 1657 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1658 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1659 int i;
1660
1661 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1662 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1663 mark_reg_unknown(env, regs, i);
969bf05e 1664
638f5b90
AS
1665 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1666 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1667 continue;
638f5b90 1668 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1669 if (reg_is_pkt_pointer_any(reg))
1670 __mark_reg_unknown(reg);
969bf05e
AS
1671 }
1672}
1673
81ed18ab 1674static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1675{
17a52670 1676 const struct bpf_func_proto *fn = NULL;
638f5b90 1677 struct bpf_reg_state *regs;
33ff9823 1678 struct bpf_call_arg_meta meta;
969bf05e 1679 bool changes_data;
17a52670
AS
1680 int i, err;
1681
1682 /* find function prototype */
1683 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1684 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1685 func_id);
17a52670
AS
1686 return -EINVAL;
1687 }
1688
00176a34
JK
1689 if (env->ops->get_func_proto)
1690 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1691
1692 if (!fn) {
61bd5218
JK
1693 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1694 func_id);
17a52670
AS
1695 return -EINVAL;
1696 }
1697
1698 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1699 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1700 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1701 return -EINVAL;
1702 }
1703
04514d13 1704 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1705 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1706 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1707 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1708 func_id_name(func_id), func_id);
1709 return -EINVAL;
1710 }
969bf05e 1711
33ff9823 1712 memset(&meta, 0, sizeof(meta));
36bbef52 1713 meta.pkt_access = fn->pkt_access;
33ff9823 1714
435faee1
DB
1715 /* We only support one arg being in raw mode at the moment, which
1716 * is sufficient for the helper functions we have right now.
1717 */
1718 err = check_raw_mode(fn);
1719 if (err) {
61bd5218 1720 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1721 func_id_name(func_id), func_id);
435faee1
DB
1722 return err;
1723 }
1724
17a52670 1725 /* check args */
33ff9823 1726 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1727 if (err)
1728 return err;
33ff9823 1729 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1730 if (err)
1731 return err;
b2157399
AS
1732 if (func_id == BPF_FUNC_tail_call) {
1733 if (meta.map_ptr == NULL) {
1734 verbose(env, "verifier bug\n");
1735 return -EINVAL;
1736 }
1737 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1738 }
33ff9823 1739 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1740 if (err)
1741 return err;
33ff9823 1742 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1743 if (err)
1744 return err;
33ff9823 1745 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1746 if (err)
1747 return err;
1748
435faee1
DB
1749 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1750 * is inferred from register state.
1751 */
1752 for (i = 0; i < meta.access_size; i++) {
31fd8581 1753 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1754 if (err)
1755 return err;
1756 }
1757
638f5b90 1758 regs = cur_regs(env);
17a52670 1759 /* reset caller saved regs */
dc503a8a 1760 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1761 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1762 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1763 }
17a52670 1764
dc503a8a 1765 /* update return register (already marked as written above) */
17a52670 1766 if (fn->ret_type == RET_INTEGER) {
f1174f77 1767 /* sets type to SCALAR_VALUE */
61bd5218 1768 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1769 } else if (fn->ret_type == RET_VOID) {
1770 regs[BPF_REG_0].type = NOT_INIT;
1771 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1772 struct bpf_insn_aux_data *insn_aux;
1773
17a52670 1774 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1775 /* There is no offset yet applied, variable or fixed */
61bd5218 1776 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1777 regs[BPF_REG_0].off = 0;
17a52670
AS
1778 /* remember map_ptr, so that check_map_access()
1779 * can check 'value_size' boundary of memory access
1780 * to map element returned from bpf_map_lookup_elem()
1781 */
33ff9823 1782 if (meta.map_ptr == NULL) {
61bd5218
JK
1783 verbose(env,
1784 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1785 return -EINVAL;
1786 }
33ff9823 1787 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1788 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1789 insn_aux = &env->insn_aux_data[insn_idx];
1790 if (!insn_aux->map_ptr)
1791 insn_aux->map_ptr = meta.map_ptr;
1792 else if (insn_aux->map_ptr != meta.map_ptr)
1793 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1794 } else {
61bd5218 1795 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1796 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1797 return -EINVAL;
1798 }
04fd61ab 1799
61bd5218 1800 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1801 if (err)
1802 return err;
04fd61ab 1803
969bf05e
AS
1804 if (changes_data)
1805 clear_all_pkt_pointers(env);
1806 return 0;
1807}
1808
b03c9f9f
EC
1809static bool signed_add_overflows(s64 a, s64 b)
1810{
1811 /* Do the add in u64, where overflow is well-defined */
1812 s64 res = (s64)((u64)a + (u64)b);
1813
1814 if (b < 0)
1815 return res > a;
1816 return res < a;
1817}
1818
1819static bool signed_sub_overflows(s64 a, s64 b)
1820{
1821 /* Do the sub in u64, where overflow is well-defined */
1822 s64 res = (s64)((u64)a - (u64)b);
1823
1824 if (b < 0)
1825 return res < a;
1826 return res > a;
969bf05e
AS
1827}
1828
bb7f0f98
AS
1829static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1830 const struct bpf_reg_state *reg,
1831 enum bpf_reg_type type)
1832{
1833 bool known = tnum_is_const(reg->var_off);
1834 s64 val = reg->var_off.value;
1835 s64 smin = reg->smin_value;
1836
1837 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1838 verbose(env, "math between %s pointer and %lld is not allowed\n",
1839 reg_type_str[type], val);
1840 return false;
1841 }
1842
1843 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1844 verbose(env, "%s pointer offset %d is not allowed\n",
1845 reg_type_str[type], reg->off);
1846 return false;
1847 }
1848
1849 if (smin == S64_MIN) {
1850 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1851 reg_type_str[type]);
1852 return false;
1853 }
1854
1855 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1856 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1857 smin, reg_type_str[type]);
1858 return false;
1859 }
1860
1861 return true;
1862}
1863
f1174f77 1864/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1865 * Caller should also handle BPF_MOV case separately.
1866 * If we return -EACCES, caller may want to try again treating pointer as a
1867 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1868 */
1869static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1870 struct bpf_insn *insn,
1871 const struct bpf_reg_state *ptr_reg,
1872 const struct bpf_reg_state *off_reg)
969bf05e 1873{
638f5b90 1874 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1875 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1876 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1877 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1878 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1879 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1880 u8 opcode = BPF_OP(insn->code);
f1174f77 1881 u32 dst = insn->dst_reg;
969bf05e 1882
f1174f77 1883 dst_reg = &regs[dst];
969bf05e 1884
b03c9f9f 1885 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1886 print_verifier_state(env, env->cur_state);
61bd5218
JK
1887 verbose(env,
1888 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1889 return -EINVAL;
1890 }
1891 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1892 print_verifier_state(env, env->cur_state);
61bd5218
JK
1893 verbose(env,
1894 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1895 return -EINVAL;
1896 }
1897
1898 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1899 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
1900 verbose(env,
1901 "R%d 32-bit pointer arithmetic prohibited\n",
1902 dst);
f1174f77 1903 return -EACCES;
969bf05e
AS
1904 }
1905
f1174f77 1906 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
1907 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1908 dst);
f1174f77
EC
1909 return -EACCES;
1910 }
1911 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
1912 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1913 dst);
f1174f77
EC
1914 return -EACCES;
1915 }
1916 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
1917 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1918 dst);
f1174f77
EC
1919 return -EACCES;
1920 }
1921
1922 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1923 * The id may be overwritten later if we create a new variable offset.
969bf05e 1924 */
f1174f77
EC
1925 dst_reg->type = ptr_reg->type;
1926 dst_reg->id = ptr_reg->id;
969bf05e 1927
bb7f0f98
AS
1928 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1929 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1930 return -EINVAL;
1931
f1174f77
EC
1932 switch (opcode) {
1933 case BPF_ADD:
1934 /* We can take a fixed offset as long as it doesn't overflow
1935 * the s32 'off' field
969bf05e 1936 */
b03c9f9f
EC
1937 if (known && (ptr_reg->off + smin_val ==
1938 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1939 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1940 dst_reg->smin_value = smin_ptr;
1941 dst_reg->smax_value = smax_ptr;
1942 dst_reg->umin_value = umin_ptr;
1943 dst_reg->umax_value = umax_ptr;
f1174f77 1944 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1945 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1946 dst_reg->range = ptr_reg->range;
1947 break;
1948 }
f1174f77
EC
1949 /* A new variable offset is created. Note that off_reg->off
1950 * == 0, since it's a scalar.
1951 * dst_reg gets the pointer type and since some positive
1952 * integer value was added to the pointer, give it a new 'id'
1953 * if it's a PTR_TO_PACKET.
1954 * this creates a new 'base' pointer, off_reg (variable) gets
1955 * added into the variable offset, and we copy the fixed offset
1956 * from ptr_reg.
969bf05e 1957 */
b03c9f9f
EC
1958 if (signed_add_overflows(smin_ptr, smin_val) ||
1959 signed_add_overflows(smax_ptr, smax_val)) {
1960 dst_reg->smin_value = S64_MIN;
1961 dst_reg->smax_value = S64_MAX;
1962 } else {
1963 dst_reg->smin_value = smin_ptr + smin_val;
1964 dst_reg->smax_value = smax_ptr + smax_val;
1965 }
1966 if (umin_ptr + umin_val < umin_ptr ||
1967 umax_ptr + umax_val < umax_ptr) {
1968 dst_reg->umin_value = 0;
1969 dst_reg->umax_value = U64_MAX;
1970 } else {
1971 dst_reg->umin_value = umin_ptr + umin_val;
1972 dst_reg->umax_value = umax_ptr + umax_val;
1973 }
f1174f77
EC
1974 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1975 dst_reg->off = ptr_reg->off;
de8f3a83 1976 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1977 dst_reg->id = ++env->id_gen;
1978 /* something was added to pkt_ptr, set range to zero */
1979 dst_reg->range = 0;
1980 }
1981 break;
1982 case BPF_SUB:
1983 if (dst_reg == off_reg) {
1984 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
1985 verbose(env, "R%d tried to subtract pointer from scalar\n",
1986 dst);
f1174f77
EC
1987 return -EACCES;
1988 }
1989 /* We don't allow subtraction from FP, because (according to
1990 * test_verifier.c test "invalid fp arithmetic", JITs might not
1991 * be able to deal with it.
969bf05e 1992 */
f1174f77 1993 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
1994 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1995 dst);
f1174f77
EC
1996 return -EACCES;
1997 }
b03c9f9f
EC
1998 if (known && (ptr_reg->off - smin_val ==
1999 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2000 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2001 dst_reg->smin_value = smin_ptr;
2002 dst_reg->smax_value = smax_ptr;
2003 dst_reg->umin_value = umin_ptr;
2004 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2005 dst_reg->var_off = ptr_reg->var_off;
2006 dst_reg->id = ptr_reg->id;
b03c9f9f 2007 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2008 dst_reg->range = ptr_reg->range;
2009 break;
2010 }
f1174f77
EC
2011 /* A new variable offset is created. If the subtrahend is known
2012 * nonnegative, then any reg->range we had before is still good.
969bf05e 2013 */
b03c9f9f
EC
2014 if (signed_sub_overflows(smin_ptr, smax_val) ||
2015 signed_sub_overflows(smax_ptr, smin_val)) {
2016 /* Overflow possible, we know nothing */
2017 dst_reg->smin_value = S64_MIN;
2018 dst_reg->smax_value = S64_MAX;
2019 } else {
2020 dst_reg->smin_value = smin_ptr - smax_val;
2021 dst_reg->smax_value = smax_ptr - smin_val;
2022 }
2023 if (umin_ptr < umax_val) {
2024 /* Overflow possible, we know nothing */
2025 dst_reg->umin_value = 0;
2026 dst_reg->umax_value = U64_MAX;
2027 } else {
2028 /* Cannot overflow (as long as bounds are consistent) */
2029 dst_reg->umin_value = umin_ptr - umax_val;
2030 dst_reg->umax_value = umax_ptr - umin_val;
2031 }
f1174f77
EC
2032 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2033 dst_reg->off = ptr_reg->off;
de8f3a83 2034 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2035 dst_reg->id = ++env->id_gen;
2036 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2037 if (smin_val < 0)
f1174f77 2038 dst_reg->range = 0;
43188702 2039 }
f1174f77
EC
2040 break;
2041 case BPF_AND:
2042 case BPF_OR:
2043 case BPF_XOR:
82abbf8d
AS
2044 /* bitwise ops on pointers are troublesome, prohibit. */
2045 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2046 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2047 return -EACCES;
2048 default:
2049 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2050 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2051 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2052 return -EACCES;
43188702
JF
2053 }
2054
bb7f0f98
AS
2055 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2056 return -EINVAL;
2057
b03c9f9f
EC
2058 __update_reg_bounds(dst_reg);
2059 __reg_deduce_bounds(dst_reg);
2060 __reg_bound_offset(dst_reg);
43188702
JF
2061 return 0;
2062}
2063
468f6eaf
JH
2064/* WARNING: This function does calculations on 64-bit values, but the actual
2065 * execution may occur on 32-bit values. Therefore, things like bitshifts
2066 * need extra checks in the 32-bit case.
2067 */
f1174f77
EC
2068static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2069 struct bpf_insn *insn,
2070 struct bpf_reg_state *dst_reg,
2071 struct bpf_reg_state src_reg)
969bf05e 2072{
638f5b90 2073 struct bpf_reg_state *regs = cur_regs(env);
48461135 2074 u8 opcode = BPF_OP(insn->code);
f1174f77 2075 bool src_known, dst_known;
b03c9f9f
EC
2076 s64 smin_val, smax_val;
2077 u64 umin_val, umax_val;
468f6eaf 2078 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2079
b03c9f9f
EC
2080 smin_val = src_reg.smin_value;
2081 smax_val = src_reg.smax_value;
2082 umin_val = src_reg.umin_value;
2083 umax_val = src_reg.umax_value;
f1174f77
EC
2084 src_known = tnum_is_const(src_reg.var_off);
2085 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2086
bb7f0f98
AS
2087 if (!src_known &&
2088 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2089 __mark_reg_unknown(dst_reg);
2090 return 0;
2091 }
2092
48461135
JB
2093 switch (opcode) {
2094 case BPF_ADD:
b03c9f9f
EC
2095 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2096 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2097 dst_reg->smin_value = S64_MIN;
2098 dst_reg->smax_value = S64_MAX;
2099 } else {
2100 dst_reg->smin_value += smin_val;
2101 dst_reg->smax_value += smax_val;
2102 }
2103 if (dst_reg->umin_value + umin_val < umin_val ||
2104 dst_reg->umax_value + umax_val < umax_val) {
2105 dst_reg->umin_value = 0;
2106 dst_reg->umax_value = U64_MAX;
2107 } else {
2108 dst_reg->umin_value += umin_val;
2109 dst_reg->umax_value += umax_val;
2110 }
f1174f77 2111 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2112 break;
2113 case BPF_SUB:
b03c9f9f
EC
2114 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2115 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2116 /* Overflow possible, we know nothing */
2117 dst_reg->smin_value = S64_MIN;
2118 dst_reg->smax_value = S64_MAX;
2119 } else {
2120 dst_reg->smin_value -= smax_val;
2121 dst_reg->smax_value -= smin_val;
2122 }
2123 if (dst_reg->umin_value < umax_val) {
2124 /* Overflow possible, we know nothing */
2125 dst_reg->umin_value = 0;
2126 dst_reg->umax_value = U64_MAX;
2127 } else {
2128 /* Cannot overflow (as long as bounds are consistent) */
2129 dst_reg->umin_value -= umax_val;
2130 dst_reg->umax_value -= umin_val;
2131 }
f1174f77 2132 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2133 break;
2134 case BPF_MUL:
b03c9f9f
EC
2135 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2136 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2137 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2138 __mark_reg_unbounded(dst_reg);
2139 __update_reg_bounds(dst_reg);
f1174f77
EC
2140 break;
2141 }
b03c9f9f
EC
2142 /* Both values are positive, so we can work with unsigned and
2143 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2144 */
b03c9f9f
EC
2145 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2146 /* Potential overflow, we know nothing */
2147 __mark_reg_unbounded(dst_reg);
2148 /* (except what we can learn from the var_off) */
2149 __update_reg_bounds(dst_reg);
2150 break;
2151 }
2152 dst_reg->umin_value *= umin_val;
2153 dst_reg->umax_value *= umax_val;
2154 if (dst_reg->umax_value > S64_MAX) {
2155 /* Overflow possible, we know nothing */
2156 dst_reg->smin_value = S64_MIN;
2157 dst_reg->smax_value = S64_MAX;
2158 } else {
2159 dst_reg->smin_value = dst_reg->umin_value;
2160 dst_reg->smax_value = dst_reg->umax_value;
2161 }
48461135
JB
2162 break;
2163 case BPF_AND:
f1174f77 2164 if (src_known && dst_known) {
b03c9f9f
EC
2165 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2166 src_reg.var_off.value);
f1174f77
EC
2167 break;
2168 }
b03c9f9f
EC
2169 /* We get our minimum from the var_off, since that's inherently
2170 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2171 */
f1174f77 2172 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2173 dst_reg->umin_value = dst_reg->var_off.value;
2174 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2175 if (dst_reg->smin_value < 0 || smin_val < 0) {
2176 /* Lose signed bounds when ANDing negative numbers,
2177 * ain't nobody got time for that.
2178 */
2179 dst_reg->smin_value = S64_MIN;
2180 dst_reg->smax_value = S64_MAX;
2181 } else {
2182 /* ANDing two positives gives a positive, so safe to
2183 * cast result into s64.
2184 */
2185 dst_reg->smin_value = dst_reg->umin_value;
2186 dst_reg->smax_value = dst_reg->umax_value;
2187 }
2188 /* We may learn something more from the var_off */
2189 __update_reg_bounds(dst_reg);
f1174f77
EC
2190 break;
2191 case BPF_OR:
2192 if (src_known && dst_known) {
b03c9f9f
EC
2193 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2194 src_reg.var_off.value);
f1174f77
EC
2195 break;
2196 }
b03c9f9f
EC
2197 /* We get our maximum from the var_off, and our minimum is the
2198 * maximum of the operands' minima
f1174f77
EC
2199 */
2200 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2201 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2202 dst_reg->umax_value = dst_reg->var_off.value |
2203 dst_reg->var_off.mask;
2204 if (dst_reg->smin_value < 0 || smin_val < 0) {
2205 /* Lose signed bounds when ORing negative numbers,
2206 * ain't nobody got time for that.
2207 */
2208 dst_reg->smin_value = S64_MIN;
2209 dst_reg->smax_value = S64_MAX;
f1174f77 2210 } else {
b03c9f9f
EC
2211 /* ORing two positives gives a positive, so safe to
2212 * cast result into s64.
2213 */
2214 dst_reg->smin_value = dst_reg->umin_value;
2215 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2216 }
b03c9f9f
EC
2217 /* We may learn something more from the var_off */
2218 __update_reg_bounds(dst_reg);
48461135
JB
2219 break;
2220 case BPF_LSH:
468f6eaf
JH
2221 if (umax_val >= insn_bitness) {
2222 /* Shifts greater than 31 or 63 are undefined.
2223 * This includes shifts by a negative number.
b03c9f9f 2224 */
61bd5218 2225 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2226 break;
2227 }
b03c9f9f
EC
2228 /* We lose all sign bit information (except what we can pick
2229 * up from var_off)
48461135 2230 */
b03c9f9f
EC
2231 dst_reg->smin_value = S64_MIN;
2232 dst_reg->smax_value = S64_MAX;
2233 /* If we might shift our top bit out, then we know nothing */
2234 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2235 dst_reg->umin_value = 0;
2236 dst_reg->umax_value = U64_MAX;
d1174416 2237 } else {
b03c9f9f
EC
2238 dst_reg->umin_value <<= umin_val;
2239 dst_reg->umax_value <<= umax_val;
d1174416 2240 }
b03c9f9f
EC
2241 if (src_known)
2242 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2243 else
2244 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2245 /* We may learn something more from the var_off */
2246 __update_reg_bounds(dst_reg);
48461135
JB
2247 break;
2248 case BPF_RSH:
468f6eaf
JH
2249 if (umax_val >= insn_bitness) {
2250 /* Shifts greater than 31 or 63 are undefined.
2251 * This includes shifts by a negative number.
b03c9f9f 2252 */
61bd5218 2253 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2254 break;
2255 }
4374f256
EC
2256 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2257 * be negative, then either:
2258 * 1) src_reg might be zero, so the sign bit of the result is
2259 * unknown, so we lose our signed bounds
2260 * 2) it's known negative, thus the unsigned bounds capture the
2261 * signed bounds
2262 * 3) the signed bounds cross zero, so they tell us nothing
2263 * about the result
2264 * If the value in dst_reg is known nonnegative, then again the
2265 * unsigned bounts capture the signed bounds.
2266 * Thus, in all cases it suffices to blow away our signed bounds
2267 * and rely on inferring new ones from the unsigned bounds and
2268 * var_off of the result.
2269 */
2270 dst_reg->smin_value = S64_MIN;
2271 dst_reg->smax_value = S64_MAX;
f1174f77 2272 if (src_known)
b03c9f9f
EC
2273 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2274 umin_val);
f1174f77 2275 else
b03c9f9f
EC
2276 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2277 dst_reg->umin_value >>= umax_val;
2278 dst_reg->umax_value >>= umin_val;
2279 /* We may learn something more from the var_off */
2280 __update_reg_bounds(dst_reg);
48461135
JB
2281 break;
2282 default:
61bd5218 2283 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2284 break;
2285 }
2286
468f6eaf
JH
2287 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2288 /* 32-bit ALU ops are (32,32)->32 */
2289 coerce_reg_to_size(dst_reg, 4);
2290 coerce_reg_to_size(&src_reg, 4);
2291 }
2292
b03c9f9f
EC
2293 __reg_deduce_bounds(dst_reg);
2294 __reg_bound_offset(dst_reg);
f1174f77
EC
2295 return 0;
2296}
2297
2298/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2299 * and var_off.
2300 */
2301static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2302 struct bpf_insn *insn)
2303{
638f5b90 2304 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2305 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2306 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
2307
2308 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2309 src_reg = NULL;
2310 if (dst_reg->type != SCALAR_VALUE)
2311 ptr_reg = dst_reg;
2312 if (BPF_SRC(insn->code) == BPF_X) {
2313 src_reg = &regs[insn->src_reg];
f1174f77
EC
2314 if (src_reg->type != SCALAR_VALUE) {
2315 if (dst_reg->type != SCALAR_VALUE) {
2316 /* Combining two pointers by any ALU op yields
82abbf8d
AS
2317 * an arbitrary scalar. Disallow all math except
2318 * pointer subtraction
f1174f77 2319 */
82abbf8d
AS
2320 if (opcode == BPF_SUB){
2321 mark_reg_unknown(env, regs, insn->dst_reg);
2322 return 0;
f1174f77 2323 }
82abbf8d
AS
2324 verbose(env, "R%d pointer %s pointer prohibited\n",
2325 insn->dst_reg,
2326 bpf_alu_string[opcode >> 4]);
2327 return -EACCES;
f1174f77
EC
2328 } else {
2329 /* scalar += pointer
2330 * This is legal, but we have to reverse our
2331 * src/dest handling in computing the range
2332 */
82abbf8d
AS
2333 return adjust_ptr_min_max_vals(env, insn,
2334 src_reg, dst_reg);
f1174f77
EC
2335 }
2336 } else if (ptr_reg) {
2337 /* pointer += scalar */
82abbf8d
AS
2338 return adjust_ptr_min_max_vals(env, insn,
2339 dst_reg, src_reg);
f1174f77
EC
2340 }
2341 } else {
2342 /* Pretend the src is a reg with a known value, since we only
2343 * need to be able to read from this state.
2344 */
2345 off_reg.type = SCALAR_VALUE;
b03c9f9f 2346 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2347 src_reg = &off_reg;
82abbf8d
AS
2348 if (ptr_reg) /* pointer += K */
2349 return adjust_ptr_min_max_vals(env, insn,
2350 ptr_reg, src_reg);
f1174f77
EC
2351 }
2352
2353 /* Got here implies adding two SCALAR_VALUEs */
2354 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2355 print_verifier_state(env, env->cur_state);
61bd5218 2356 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2357 return -EINVAL;
2358 }
2359 if (WARN_ON(!src_reg)) {
638f5b90 2360 print_verifier_state(env, env->cur_state);
61bd5218 2361 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2362 return -EINVAL;
2363 }
2364 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2365}
2366
17a52670 2367/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2368static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2369{
638f5b90 2370 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2371 u8 opcode = BPF_OP(insn->code);
2372 int err;
2373
2374 if (opcode == BPF_END || opcode == BPF_NEG) {
2375 if (opcode == BPF_NEG) {
2376 if (BPF_SRC(insn->code) != 0 ||
2377 insn->src_reg != BPF_REG_0 ||
2378 insn->off != 0 || insn->imm != 0) {
61bd5218 2379 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2380 return -EINVAL;
2381 }
2382 } else {
2383 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2384 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2385 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2386 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2387 return -EINVAL;
2388 }
2389 }
2390
2391 /* check src operand */
dc503a8a 2392 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2393 if (err)
2394 return err;
2395
1be7f75d 2396 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2397 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2398 insn->dst_reg);
2399 return -EACCES;
2400 }
2401
17a52670 2402 /* check dest operand */
dc503a8a 2403 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2404 if (err)
2405 return err;
2406
2407 } else if (opcode == BPF_MOV) {
2408
2409 if (BPF_SRC(insn->code) == BPF_X) {
2410 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2411 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2412 return -EINVAL;
2413 }
2414
2415 /* check src operand */
dc503a8a 2416 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2417 if (err)
2418 return err;
2419 } else {
2420 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2421 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2422 return -EINVAL;
2423 }
2424 }
2425
2426 /* check dest operand */
dc503a8a 2427 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2428 if (err)
2429 return err;
2430
2431 if (BPF_SRC(insn->code) == BPF_X) {
2432 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2433 /* case: R1 = R2
2434 * copy register state to dest reg
2435 */
2436 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2437 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2438 } else {
f1174f77 2439 /* R1 = (u32) R2 */
1be7f75d 2440 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2441 verbose(env,
2442 "R%d partial copy of pointer\n",
1be7f75d
AS
2443 insn->src_reg);
2444 return -EACCES;
2445 }
61bd5218 2446 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2447 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2448 }
2449 } else {
2450 /* case: R = imm
2451 * remember the value we stored into this reg
2452 */
f1174f77 2453 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2454 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2455 __mark_reg_known(regs + insn->dst_reg,
2456 insn->imm);
2457 } else {
2458 __mark_reg_known(regs + insn->dst_reg,
2459 (u32)insn->imm);
2460 }
17a52670
AS
2461 }
2462
2463 } else if (opcode > BPF_END) {
61bd5218 2464 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2465 return -EINVAL;
2466
2467 } else { /* all other ALU ops: and, sub, xor, add, ... */
2468
17a52670
AS
2469 if (BPF_SRC(insn->code) == BPF_X) {
2470 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2471 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2472 return -EINVAL;
2473 }
2474 /* check src1 operand */
dc503a8a 2475 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2476 if (err)
2477 return err;
2478 } else {
2479 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2480 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2481 return -EINVAL;
2482 }
2483 }
2484
2485 /* check src2 operand */
dc503a8a 2486 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2487 if (err)
2488 return err;
2489
2490 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2491 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2492 verbose(env, "div by zero\n");
17a52670
AS
2493 return -EINVAL;
2494 }
2495
229394e8
RV
2496 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2497 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2498 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2499
2500 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2501 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2502 return -EINVAL;
2503 }
2504 }
2505
1a0dc1ac 2506 /* check dest operand */
dc503a8a 2507 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2508 if (err)
2509 return err;
2510
f1174f77 2511 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2512 }
2513
2514 return 0;
2515}
2516
58e2af8b 2517static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2518 struct bpf_reg_state *dst_reg,
f8ddadc4 2519 enum bpf_reg_type type,
fb2a311a 2520 bool range_right_open)
969bf05e 2521{
58e2af8b 2522 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2523 u16 new_range;
969bf05e 2524 int i;
2d2be8ca 2525
fb2a311a
DB
2526 if (dst_reg->off < 0 ||
2527 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2528 /* This doesn't give us any range */
2529 return;
2530
b03c9f9f
EC
2531 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2532 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2533 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2534 * than pkt_end, but that's because it's also less than pkt.
2535 */
2536 return;
2537
fb2a311a
DB
2538 new_range = dst_reg->off;
2539 if (range_right_open)
2540 new_range--;
2541
2542 /* Examples for register markings:
2d2be8ca 2543 *
fb2a311a 2544 * pkt_data in dst register:
2d2be8ca
DB
2545 *
2546 * r2 = r3;
2547 * r2 += 8;
2548 * if (r2 > pkt_end) goto <handle exception>
2549 * <access okay>
2550 *
b4e432f1
DB
2551 * r2 = r3;
2552 * r2 += 8;
2553 * if (r2 < pkt_end) goto <access okay>
2554 * <handle exception>
2555 *
2d2be8ca
DB
2556 * Where:
2557 * r2 == dst_reg, pkt_end == src_reg
2558 * r2=pkt(id=n,off=8,r=0)
2559 * r3=pkt(id=n,off=0,r=0)
2560 *
fb2a311a 2561 * pkt_data in src register:
2d2be8ca
DB
2562 *
2563 * r2 = r3;
2564 * r2 += 8;
2565 * if (pkt_end >= r2) goto <access okay>
2566 * <handle exception>
2567 *
b4e432f1
DB
2568 * r2 = r3;
2569 * r2 += 8;
2570 * if (pkt_end <= r2) goto <handle exception>
2571 * <access okay>
2572 *
2d2be8ca
DB
2573 * Where:
2574 * pkt_end == dst_reg, r2 == src_reg
2575 * r2=pkt(id=n,off=8,r=0)
2576 * r3=pkt(id=n,off=0,r=0)
2577 *
2578 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2579 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2580 * and [r3, r3 + 8-1) respectively is safe to access depending on
2581 * the check.
969bf05e 2582 */
2d2be8ca 2583
f1174f77
EC
2584 /* If our ids match, then we must have the same max_value. And we
2585 * don't care about the other reg's fixed offset, since if it's too big
2586 * the range won't allow anything.
2587 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2588 */
969bf05e 2589 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2590 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2591 /* keep the maximum range already checked */
fb2a311a 2592 regs[i].range = max(regs[i].range, new_range);
969bf05e 2593
638f5b90
AS
2594 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2595 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2596 continue;
638f5b90 2597 reg = &state->stack[i].spilled_ptr;
de8f3a83 2598 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2599 reg->range = max(reg->range, new_range);
969bf05e
AS
2600 }
2601}
2602
48461135
JB
2603/* Adjusts the register min/max values in the case that the dst_reg is the
2604 * variable register that we are working on, and src_reg is a constant or we're
2605 * simply doing a BPF_K check.
f1174f77 2606 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2607 */
2608static void reg_set_min_max(struct bpf_reg_state *true_reg,
2609 struct bpf_reg_state *false_reg, u64 val,
2610 u8 opcode)
2611{
f1174f77
EC
2612 /* If the dst_reg is a pointer, we can't learn anything about its
2613 * variable offset from the compare (unless src_reg were a pointer into
2614 * the same object, but we don't bother with that.
2615 * Since false_reg and true_reg have the same type by construction, we
2616 * only need to check one of them for pointerness.
2617 */
2618 if (__is_pointer_value(false, false_reg))
2619 return;
4cabc5b1 2620
48461135
JB
2621 switch (opcode) {
2622 case BPF_JEQ:
2623 /* If this is false then we know nothing Jon Snow, but if it is
2624 * true then we know for sure.
2625 */
b03c9f9f 2626 __mark_reg_known(true_reg, val);
48461135
JB
2627 break;
2628 case BPF_JNE:
2629 /* If this is true we know nothing Jon Snow, but if it is false
2630 * we know the value for sure;
2631 */
b03c9f9f 2632 __mark_reg_known(false_reg, val);
48461135
JB
2633 break;
2634 case BPF_JGT:
b03c9f9f
EC
2635 false_reg->umax_value = min(false_reg->umax_value, val);
2636 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2637 break;
48461135 2638 case BPF_JSGT:
b03c9f9f
EC
2639 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2640 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2641 break;
b4e432f1
DB
2642 case BPF_JLT:
2643 false_reg->umin_value = max(false_reg->umin_value, val);
2644 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2645 break;
2646 case BPF_JSLT:
2647 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2648 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2649 break;
48461135 2650 case BPF_JGE:
b03c9f9f
EC
2651 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2652 true_reg->umin_value = max(true_reg->umin_value, val);
2653 break;
48461135 2654 case BPF_JSGE:
b03c9f9f
EC
2655 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2656 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2657 break;
b4e432f1
DB
2658 case BPF_JLE:
2659 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2660 true_reg->umax_value = min(true_reg->umax_value, val);
2661 break;
2662 case BPF_JSLE:
2663 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2664 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2665 break;
48461135
JB
2666 default:
2667 break;
2668 }
2669
b03c9f9f
EC
2670 __reg_deduce_bounds(false_reg);
2671 __reg_deduce_bounds(true_reg);
2672 /* We might have learned some bits from the bounds. */
2673 __reg_bound_offset(false_reg);
2674 __reg_bound_offset(true_reg);
2675 /* Intersecting with the old var_off might have improved our bounds
2676 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2677 * then new var_off is (0; 0x7f...fc) which improves our umax.
2678 */
2679 __update_reg_bounds(false_reg);
2680 __update_reg_bounds(true_reg);
48461135
JB
2681}
2682
f1174f77
EC
2683/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2684 * the variable reg.
48461135
JB
2685 */
2686static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2687 struct bpf_reg_state *false_reg, u64 val,
2688 u8 opcode)
2689{
f1174f77
EC
2690 if (__is_pointer_value(false, false_reg))
2691 return;
4cabc5b1 2692
48461135
JB
2693 switch (opcode) {
2694 case BPF_JEQ:
2695 /* If this is false then we know nothing Jon Snow, but if it is
2696 * true then we know for sure.
2697 */
b03c9f9f 2698 __mark_reg_known(true_reg, val);
48461135
JB
2699 break;
2700 case BPF_JNE:
2701 /* If this is true we know nothing Jon Snow, but if it is false
2702 * we know the value for sure;
2703 */
b03c9f9f 2704 __mark_reg_known(false_reg, val);
48461135
JB
2705 break;
2706 case BPF_JGT:
b03c9f9f
EC
2707 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2708 false_reg->umin_value = max(false_reg->umin_value, val);
2709 break;
48461135 2710 case BPF_JSGT:
b03c9f9f
EC
2711 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2712 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2713 break;
b4e432f1
DB
2714 case BPF_JLT:
2715 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2716 false_reg->umax_value = min(false_reg->umax_value, val);
2717 break;
2718 case BPF_JSLT:
2719 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2720 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2721 break;
48461135 2722 case BPF_JGE:
b03c9f9f
EC
2723 true_reg->umax_value = min(true_reg->umax_value, val);
2724 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2725 break;
48461135 2726 case BPF_JSGE:
b03c9f9f
EC
2727 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2728 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2729 break;
b4e432f1
DB
2730 case BPF_JLE:
2731 true_reg->umin_value = max(true_reg->umin_value, val);
2732 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2733 break;
2734 case BPF_JSLE:
2735 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2736 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2737 break;
48461135
JB
2738 default:
2739 break;
2740 }
2741
b03c9f9f
EC
2742 __reg_deduce_bounds(false_reg);
2743 __reg_deduce_bounds(true_reg);
2744 /* We might have learned some bits from the bounds. */
2745 __reg_bound_offset(false_reg);
2746 __reg_bound_offset(true_reg);
2747 /* Intersecting with the old var_off might have improved our bounds
2748 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2749 * then new var_off is (0; 0x7f...fc) which improves our umax.
2750 */
2751 __update_reg_bounds(false_reg);
2752 __update_reg_bounds(true_reg);
f1174f77
EC
2753}
2754
2755/* Regs are known to be equal, so intersect their min/max/var_off */
2756static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2757 struct bpf_reg_state *dst_reg)
2758{
b03c9f9f
EC
2759 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2760 dst_reg->umin_value);
2761 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2762 dst_reg->umax_value);
2763 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2764 dst_reg->smin_value);
2765 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2766 dst_reg->smax_value);
f1174f77
EC
2767 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2768 dst_reg->var_off);
b03c9f9f
EC
2769 /* We might have learned new bounds from the var_off. */
2770 __update_reg_bounds(src_reg);
2771 __update_reg_bounds(dst_reg);
2772 /* We might have learned something about the sign bit. */
2773 __reg_deduce_bounds(src_reg);
2774 __reg_deduce_bounds(dst_reg);
2775 /* We might have learned some bits from the bounds. */
2776 __reg_bound_offset(src_reg);
2777 __reg_bound_offset(dst_reg);
2778 /* Intersecting with the old var_off might have improved our bounds
2779 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2780 * then new var_off is (0; 0x7f...fc) which improves our umax.
2781 */
2782 __update_reg_bounds(src_reg);
2783 __update_reg_bounds(dst_reg);
f1174f77
EC
2784}
2785
2786static void reg_combine_min_max(struct bpf_reg_state *true_src,
2787 struct bpf_reg_state *true_dst,
2788 struct bpf_reg_state *false_src,
2789 struct bpf_reg_state *false_dst,
2790 u8 opcode)
2791{
2792 switch (opcode) {
2793 case BPF_JEQ:
2794 __reg_combine_min_max(true_src, true_dst);
2795 break;
2796 case BPF_JNE:
2797 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2798 break;
4cabc5b1 2799 }
48461135
JB
2800}
2801
57a09bf0 2802static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2803 bool is_null)
57a09bf0
TG
2804{
2805 struct bpf_reg_state *reg = &regs[regno];
2806
2807 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2808 /* Old offset (both fixed and variable parts) should
2809 * have been known-zero, because we don't allow pointer
2810 * arithmetic on pointers that might be NULL.
2811 */
b03c9f9f
EC
2812 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2813 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2814 reg->off)) {
b03c9f9f
EC
2815 __mark_reg_known_zero(reg);
2816 reg->off = 0;
f1174f77
EC
2817 }
2818 if (is_null) {
2819 reg->type = SCALAR_VALUE;
56f668df
MKL
2820 } else if (reg->map_ptr->inner_map_meta) {
2821 reg->type = CONST_PTR_TO_MAP;
2822 reg->map_ptr = reg->map_ptr->inner_map_meta;
2823 } else {
f1174f77 2824 reg->type = PTR_TO_MAP_VALUE;
56f668df 2825 }
a08dd0da
DB
2826 /* We don't need id from this point onwards anymore, thus we
2827 * should better reset it, so that state pruning has chances
2828 * to take effect.
2829 */
2830 reg->id = 0;
57a09bf0
TG
2831 }
2832}
2833
2834/* The logic is similar to find_good_pkt_pointers(), both could eventually
2835 * be folded together at some point.
2836 */
2837static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2838 bool is_null)
57a09bf0
TG
2839{
2840 struct bpf_reg_state *regs = state->regs;
a08dd0da 2841 u32 id = regs[regno].id;
57a09bf0
TG
2842 int i;
2843
2844 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2845 mark_map_reg(regs, i, id, is_null);
57a09bf0 2846
638f5b90
AS
2847 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2848 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2849 continue;
638f5b90 2850 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2851 }
2852}
2853
5beca081
DB
2854static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2855 struct bpf_reg_state *dst_reg,
2856 struct bpf_reg_state *src_reg,
2857 struct bpf_verifier_state *this_branch,
2858 struct bpf_verifier_state *other_branch)
2859{
2860 if (BPF_SRC(insn->code) != BPF_X)
2861 return false;
2862
2863 switch (BPF_OP(insn->code)) {
2864 case BPF_JGT:
2865 if ((dst_reg->type == PTR_TO_PACKET &&
2866 src_reg->type == PTR_TO_PACKET_END) ||
2867 (dst_reg->type == PTR_TO_PACKET_META &&
2868 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2869 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2870 find_good_pkt_pointers(this_branch, dst_reg,
2871 dst_reg->type, false);
2872 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2873 src_reg->type == PTR_TO_PACKET) ||
2874 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2875 src_reg->type == PTR_TO_PACKET_META)) {
2876 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2877 find_good_pkt_pointers(other_branch, src_reg,
2878 src_reg->type, true);
2879 } else {
2880 return false;
2881 }
2882 break;
2883 case BPF_JLT:
2884 if ((dst_reg->type == PTR_TO_PACKET &&
2885 src_reg->type == PTR_TO_PACKET_END) ||
2886 (dst_reg->type == PTR_TO_PACKET_META &&
2887 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2888 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2889 find_good_pkt_pointers(other_branch, dst_reg,
2890 dst_reg->type, true);
2891 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2892 src_reg->type == PTR_TO_PACKET) ||
2893 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2894 src_reg->type == PTR_TO_PACKET_META)) {
2895 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2896 find_good_pkt_pointers(this_branch, src_reg,
2897 src_reg->type, false);
2898 } else {
2899 return false;
2900 }
2901 break;
2902 case BPF_JGE:
2903 if ((dst_reg->type == PTR_TO_PACKET &&
2904 src_reg->type == PTR_TO_PACKET_END) ||
2905 (dst_reg->type == PTR_TO_PACKET_META &&
2906 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2907 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2908 find_good_pkt_pointers(this_branch, dst_reg,
2909 dst_reg->type, true);
2910 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2911 src_reg->type == PTR_TO_PACKET) ||
2912 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2913 src_reg->type == PTR_TO_PACKET_META)) {
2914 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2915 find_good_pkt_pointers(other_branch, src_reg,
2916 src_reg->type, false);
2917 } else {
2918 return false;
2919 }
2920 break;
2921 case BPF_JLE:
2922 if ((dst_reg->type == PTR_TO_PACKET &&
2923 src_reg->type == PTR_TO_PACKET_END) ||
2924 (dst_reg->type == PTR_TO_PACKET_META &&
2925 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2926 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2927 find_good_pkt_pointers(other_branch, dst_reg,
2928 dst_reg->type, false);
2929 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2930 src_reg->type == PTR_TO_PACKET) ||
2931 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2932 src_reg->type == PTR_TO_PACKET_META)) {
2933 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2934 find_good_pkt_pointers(this_branch, src_reg,
2935 src_reg->type, true);
2936 } else {
2937 return false;
2938 }
2939 break;
2940 default:
2941 return false;
2942 }
2943
2944 return true;
2945}
2946
58e2af8b 2947static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2948 struct bpf_insn *insn, int *insn_idx)
2949{
638f5b90 2950 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2951 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2952 u8 opcode = BPF_OP(insn->code);
2953 int err;
2954
b4e432f1 2955 if (opcode > BPF_JSLE) {
61bd5218 2956 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2957 return -EINVAL;
2958 }
2959
2960 if (BPF_SRC(insn->code) == BPF_X) {
2961 if (insn->imm != 0) {
61bd5218 2962 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2963 return -EINVAL;
2964 }
2965
2966 /* check src1 operand */
dc503a8a 2967 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2968 if (err)
2969 return err;
1be7f75d
AS
2970
2971 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2972 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2973 insn->src_reg);
2974 return -EACCES;
2975 }
17a52670
AS
2976 } else {
2977 if (insn->src_reg != BPF_REG_0) {
61bd5218 2978 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2979 return -EINVAL;
2980 }
2981 }
2982
2983 /* check src2 operand */
dc503a8a 2984 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2985 if (err)
2986 return err;
2987
1a0dc1ac
AS
2988 dst_reg = &regs[insn->dst_reg];
2989
17a52670
AS
2990 /* detect if R == 0 where R was initialized to zero earlier */
2991 if (BPF_SRC(insn->code) == BPF_K &&
2992 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2993 dst_reg->type == SCALAR_VALUE &&
2994 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2995 if (opcode == BPF_JEQ) {
2996 /* if (imm == imm) goto pc+off;
2997 * only follow the goto, ignore fall-through
2998 */
2999 *insn_idx += insn->off;
3000 return 0;
3001 } else {
3002 /* if (imm != imm) goto pc+off;
3003 * only follow fall-through branch, since
3004 * that's where the program will go
3005 */
3006 return 0;
3007 }
3008 }
3009
3010 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3011 if (!other_branch)
3012 return -EFAULT;
3013
48461135
JB
3014 /* detect if we are comparing against a constant value so we can adjust
3015 * our min/max values for our dst register.
f1174f77
EC
3016 * this is only legit if both are scalars (or pointers to the same
3017 * object, I suppose, but we don't support that right now), because
3018 * otherwise the different base pointers mean the offsets aren't
3019 * comparable.
48461135
JB
3020 */
3021 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3022 if (dst_reg->type == SCALAR_VALUE &&
3023 regs[insn->src_reg].type == SCALAR_VALUE) {
3024 if (tnum_is_const(regs[insn->src_reg].var_off))
3025 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3026 dst_reg, regs[insn->src_reg].var_off.value,
3027 opcode);
3028 else if (tnum_is_const(dst_reg->var_off))
3029 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3030 &regs[insn->src_reg],
3031 dst_reg->var_off.value, opcode);
3032 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3033 /* Comparing for equality, we can combine knowledge */
3034 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3035 &other_branch->regs[insn->dst_reg],
3036 &regs[insn->src_reg],
3037 &regs[insn->dst_reg], opcode);
3038 }
3039 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3040 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3041 dst_reg, insn->imm, opcode);
3042 }
3043
58e2af8b 3044 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3045 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3046 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3047 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3048 /* Mark all identical map registers in each branch as either
3049 * safe or unknown depending R == 0 or R != 0 conditional.
3050 */
f1174f77
EC
3051 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3052 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3053 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3054 this_branch, other_branch) &&
3055 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3056 verbose(env, "R%d pointer comparison prohibited\n",
3057 insn->dst_reg);
1be7f75d 3058 return -EACCES;
17a52670 3059 }
61bd5218
JK
3060 if (env->log.level)
3061 print_verifier_state(env, this_branch);
17a52670
AS
3062 return 0;
3063}
3064
0246e64d
AS
3065/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3066static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3067{
3068 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3069
3070 return (struct bpf_map *) (unsigned long) imm64;
3071}
3072
17a52670 3073/* verify BPF_LD_IMM64 instruction */
58e2af8b 3074static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3075{
638f5b90 3076 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3077 int err;
3078
3079 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3080 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3081 return -EINVAL;
3082 }
3083 if (insn->off != 0) {
61bd5218 3084 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3085 return -EINVAL;
3086 }
3087
dc503a8a 3088 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3089 if (err)
3090 return err;
3091
6b173873 3092 if (insn->src_reg == 0) {
6b173873
JK
3093 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3094
f1174f77 3095 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3096 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3097 return 0;
6b173873 3098 }
17a52670
AS
3099
3100 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3101 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3102
3103 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3104 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3105 return 0;
3106}
3107
96be4325
DB
3108static bool may_access_skb(enum bpf_prog_type type)
3109{
3110 switch (type) {
3111 case BPF_PROG_TYPE_SOCKET_FILTER:
3112 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3113 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3114 return true;
3115 default:
3116 return false;
3117 }
3118}
3119
ddd872bc
AS
3120/* verify safety of LD_ABS|LD_IND instructions:
3121 * - they can only appear in the programs where ctx == skb
3122 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3123 * preserve R6-R9, and store return value into R0
3124 *
3125 * Implicit input:
3126 * ctx == skb == R6 == CTX
3127 *
3128 * Explicit input:
3129 * SRC == any register
3130 * IMM == 32-bit immediate
3131 *
3132 * Output:
3133 * R0 - 8/16/32-bit skb data converted to cpu endianness
3134 */
58e2af8b 3135static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3136{
638f5b90 3137 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3138 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3139 int i, err;
3140
24701ece 3141 if (!may_access_skb(env->prog->type)) {
61bd5218 3142 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3143 return -EINVAL;
3144 }
3145
3146 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3147 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3148 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3149 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3150 return -EINVAL;
3151 }
3152
3153 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3154 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3155 if (err)
3156 return err;
3157
3158 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3159 verbose(env,
3160 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3161 return -EINVAL;
3162 }
3163
3164 if (mode == BPF_IND) {
3165 /* check explicit source operand */
dc503a8a 3166 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3167 if (err)
3168 return err;
3169 }
3170
3171 /* reset caller saved regs to unreadable */
dc503a8a 3172 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3173 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3174 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3175 }
ddd872bc
AS
3176
3177 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3178 * the value fetched from the packet.
3179 * Already marked as written above.
ddd872bc 3180 */
61bd5218 3181 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3182 return 0;
3183}
3184
390ee7e2
AS
3185static int check_return_code(struct bpf_verifier_env *env)
3186{
3187 struct bpf_reg_state *reg;
3188 struct tnum range = tnum_range(0, 1);
3189
3190 switch (env->prog->type) {
3191 case BPF_PROG_TYPE_CGROUP_SKB:
3192 case BPF_PROG_TYPE_CGROUP_SOCK:
3193 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3194 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3195 break;
3196 default:
3197 return 0;
3198 }
3199
638f5b90 3200 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3201 if (reg->type != SCALAR_VALUE) {
61bd5218 3202 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3203 reg_type_str[reg->type]);
3204 return -EINVAL;
3205 }
3206
3207 if (!tnum_in(range, reg->var_off)) {
61bd5218 3208 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3209 if (!tnum_is_unknown(reg->var_off)) {
3210 char tn_buf[48];
3211
3212 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3213 verbose(env, "has value %s", tn_buf);
390ee7e2 3214 } else {
61bd5218 3215 verbose(env, "has unknown scalar value");
390ee7e2 3216 }
61bd5218 3217 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3218 return -EINVAL;
3219 }
3220 return 0;
3221}
3222
475fb78f
AS
3223/* non-recursive DFS pseudo code
3224 * 1 procedure DFS-iterative(G,v):
3225 * 2 label v as discovered
3226 * 3 let S be a stack
3227 * 4 S.push(v)
3228 * 5 while S is not empty
3229 * 6 t <- S.pop()
3230 * 7 if t is what we're looking for:
3231 * 8 return t
3232 * 9 for all edges e in G.adjacentEdges(t) do
3233 * 10 if edge e is already labelled
3234 * 11 continue with the next edge
3235 * 12 w <- G.adjacentVertex(t,e)
3236 * 13 if vertex w is not discovered and not explored
3237 * 14 label e as tree-edge
3238 * 15 label w as discovered
3239 * 16 S.push(w)
3240 * 17 continue at 5
3241 * 18 else if vertex w is discovered
3242 * 19 label e as back-edge
3243 * 20 else
3244 * 21 // vertex w is explored
3245 * 22 label e as forward- or cross-edge
3246 * 23 label t as explored
3247 * 24 S.pop()
3248 *
3249 * convention:
3250 * 0x10 - discovered
3251 * 0x11 - discovered and fall-through edge labelled
3252 * 0x12 - discovered and fall-through and branch edges labelled
3253 * 0x20 - explored
3254 */
3255
3256enum {
3257 DISCOVERED = 0x10,
3258 EXPLORED = 0x20,
3259 FALLTHROUGH = 1,
3260 BRANCH = 2,
3261};
3262
58e2af8b 3263#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3264
475fb78f
AS
3265static int *insn_stack; /* stack of insns to process */
3266static int cur_stack; /* current stack index */
3267static int *insn_state;
3268
3269/* t, w, e - match pseudo-code above:
3270 * t - index of current instruction
3271 * w - next instruction
3272 * e - edge
3273 */
58e2af8b 3274static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3275{
3276 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3277 return 0;
3278
3279 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3280 return 0;
3281
3282 if (w < 0 || w >= env->prog->len) {
61bd5218 3283 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3284 return -EINVAL;
3285 }
3286
f1bca824
AS
3287 if (e == BRANCH)
3288 /* mark branch target for state pruning */
3289 env->explored_states[w] = STATE_LIST_MARK;
3290
475fb78f
AS
3291 if (insn_state[w] == 0) {
3292 /* tree-edge */
3293 insn_state[t] = DISCOVERED | e;
3294 insn_state[w] = DISCOVERED;
3295 if (cur_stack >= env->prog->len)
3296 return -E2BIG;
3297 insn_stack[cur_stack++] = w;
3298 return 1;
3299 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3300 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3301 return -EINVAL;
3302 } else if (insn_state[w] == EXPLORED) {
3303 /* forward- or cross-edge */
3304 insn_state[t] = DISCOVERED | e;
3305 } else {
61bd5218 3306 verbose(env, "insn state internal bug\n");
475fb78f
AS
3307 return -EFAULT;
3308 }
3309 return 0;
3310}
3311
3312/* non-recursive depth-first-search to detect loops in BPF program
3313 * loop == back-edge in directed graph
3314 */
58e2af8b 3315static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3316{
3317 struct bpf_insn *insns = env->prog->insnsi;
3318 int insn_cnt = env->prog->len;
3319 int ret = 0;
3320 int i, t;
3321
3322 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3323 if (!insn_state)
3324 return -ENOMEM;
3325
3326 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3327 if (!insn_stack) {
3328 kfree(insn_state);
3329 return -ENOMEM;
3330 }
3331
3332 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3333 insn_stack[0] = 0; /* 0 is the first instruction */
3334 cur_stack = 1;
3335
3336peek_stack:
3337 if (cur_stack == 0)
3338 goto check_state;
3339 t = insn_stack[cur_stack - 1];
3340
3341 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3342 u8 opcode = BPF_OP(insns[t].code);
3343
3344 if (opcode == BPF_EXIT) {
3345 goto mark_explored;
3346 } else if (opcode == BPF_CALL) {
3347 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3348 if (ret == 1)
3349 goto peek_stack;
3350 else if (ret < 0)
3351 goto err_free;
07016151
DB
3352 if (t + 1 < insn_cnt)
3353 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3354 } else if (opcode == BPF_JA) {
3355 if (BPF_SRC(insns[t].code) != BPF_K) {
3356 ret = -EINVAL;
3357 goto err_free;
3358 }
3359 /* unconditional jump with single edge */
3360 ret = push_insn(t, t + insns[t].off + 1,
3361 FALLTHROUGH, env);
3362 if (ret == 1)
3363 goto peek_stack;
3364 else if (ret < 0)
3365 goto err_free;
f1bca824
AS
3366 /* tell verifier to check for equivalent states
3367 * after every call and jump
3368 */
c3de6317
AS
3369 if (t + 1 < insn_cnt)
3370 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3371 } else {
3372 /* conditional jump with two edges */
3c2ce60b 3373 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3374 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3375 if (ret == 1)
3376 goto peek_stack;
3377 else if (ret < 0)
3378 goto err_free;
3379
3380 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3381 if (ret == 1)
3382 goto peek_stack;
3383 else if (ret < 0)
3384 goto err_free;
3385 }
3386 } else {
3387 /* all other non-branch instructions with single
3388 * fall-through edge
3389 */
3390 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3391 if (ret == 1)
3392 goto peek_stack;
3393 else if (ret < 0)
3394 goto err_free;
3395 }
3396
3397mark_explored:
3398 insn_state[t] = EXPLORED;
3399 if (cur_stack-- <= 0) {
61bd5218 3400 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3401 ret = -EFAULT;
3402 goto err_free;
3403 }
3404 goto peek_stack;
3405
3406check_state:
3407 for (i = 0; i < insn_cnt; i++) {
3408 if (insn_state[i] != EXPLORED) {
61bd5218 3409 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3410 ret = -EINVAL;
3411 goto err_free;
3412 }
3413 }
3414 ret = 0; /* cfg looks good */
3415
3416err_free:
3417 kfree(insn_state);
3418 kfree(insn_stack);
3419 return ret;
3420}
3421
f1174f77
EC
3422/* check %cur's range satisfies %old's */
3423static bool range_within(struct bpf_reg_state *old,
3424 struct bpf_reg_state *cur)
3425{
b03c9f9f
EC
3426 return old->umin_value <= cur->umin_value &&
3427 old->umax_value >= cur->umax_value &&
3428 old->smin_value <= cur->smin_value &&
3429 old->smax_value >= cur->smax_value;
f1174f77
EC
3430}
3431
3432/* Maximum number of register states that can exist at once */
3433#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3434struct idpair {
3435 u32 old;
3436 u32 cur;
3437};
3438
3439/* If in the old state two registers had the same id, then they need to have
3440 * the same id in the new state as well. But that id could be different from
3441 * the old state, so we need to track the mapping from old to new ids.
3442 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3443 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3444 * regs with a different old id could still have new id 9, we don't care about
3445 * that.
3446 * So we look through our idmap to see if this old id has been seen before. If
3447 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3448 */
f1174f77 3449static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3450{
f1174f77 3451 unsigned int i;
969bf05e 3452
f1174f77
EC
3453 for (i = 0; i < ID_MAP_SIZE; i++) {
3454 if (!idmap[i].old) {
3455 /* Reached an empty slot; haven't seen this id before */
3456 idmap[i].old = old_id;
3457 idmap[i].cur = cur_id;
3458 return true;
3459 }
3460 if (idmap[i].old == old_id)
3461 return idmap[i].cur == cur_id;
3462 }
3463 /* We ran out of idmap slots, which should be impossible */
3464 WARN_ON_ONCE(1);
3465 return false;
3466}
3467
3468/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3469static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3470 struct idpair *idmap)
f1174f77 3471{
dc503a8a
EC
3472 if (!(rold->live & REG_LIVE_READ))
3473 /* explored state didn't use this */
3474 return true;
3475
3476 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3477 return true;
3478
f1174f77
EC
3479 if (rold->type == NOT_INIT)
3480 /* explored state can't have used this */
969bf05e 3481 return true;
f1174f77
EC
3482 if (rcur->type == NOT_INIT)
3483 return false;
3484 switch (rold->type) {
3485 case SCALAR_VALUE:
3486 if (rcur->type == SCALAR_VALUE) {
3487 /* new val must satisfy old val knowledge */
3488 return range_within(rold, rcur) &&
3489 tnum_in(rold->var_off, rcur->var_off);
3490 } else {
179d1c56
JH
3491 /* We're trying to use a pointer in place of a scalar.
3492 * Even if the scalar was unbounded, this could lead to
3493 * pointer leaks because scalars are allowed to leak
3494 * while pointers are not. We could make this safe in
3495 * special cases if root is calling us, but it's
3496 * probably not worth the hassle.
f1174f77 3497 */
179d1c56 3498 return false;
f1174f77
EC
3499 }
3500 case PTR_TO_MAP_VALUE:
1b688a19
EC
3501 /* If the new min/max/var_off satisfy the old ones and
3502 * everything else matches, we are OK.
3503 * We don't care about the 'id' value, because nothing
3504 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3505 */
3506 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3507 range_within(rold, rcur) &&
3508 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3509 case PTR_TO_MAP_VALUE_OR_NULL:
3510 /* a PTR_TO_MAP_VALUE could be safe to use as a
3511 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3512 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3513 * checked, doing so could have affected others with the same
3514 * id, and we can't check for that because we lost the id when
3515 * we converted to a PTR_TO_MAP_VALUE.
3516 */
3517 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3518 return false;
3519 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3520 return false;
3521 /* Check our ids match any regs they're supposed to */
3522 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3523 case PTR_TO_PACKET_META:
f1174f77 3524 case PTR_TO_PACKET:
de8f3a83 3525 if (rcur->type != rold->type)
f1174f77
EC
3526 return false;
3527 /* We must have at least as much range as the old ptr
3528 * did, so that any accesses which were safe before are
3529 * still safe. This is true even if old range < old off,
3530 * since someone could have accessed through (ptr - k), or
3531 * even done ptr -= k in a register, to get a safe access.
3532 */
3533 if (rold->range > rcur->range)
3534 return false;
3535 /* If the offsets don't match, we can't trust our alignment;
3536 * nor can we be sure that we won't fall out of range.
3537 */
3538 if (rold->off != rcur->off)
3539 return false;
3540 /* id relations must be preserved */
3541 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3542 return false;
3543 /* new val must satisfy old val knowledge */
3544 return range_within(rold, rcur) &&
3545 tnum_in(rold->var_off, rcur->var_off);
3546 case PTR_TO_CTX:
3547 case CONST_PTR_TO_MAP:
3548 case PTR_TO_STACK:
3549 case PTR_TO_PACKET_END:
3550 /* Only valid matches are exact, which memcmp() above
3551 * would have accepted
3552 */
3553 default:
3554 /* Don't know what's going on, just say it's not safe */
3555 return false;
3556 }
969bf05e 3557
f1174f77
EC
3558 /* Shouldn't get here; if we do, say it's not safe */
3559 WARN_ON_ONCE(1);
969bf05e
AS
3560 return false;
3561}
3562
638f5b90
AS
3563static bool stacksafe(struct bpf_verifier_state *old,
3564 struct bpf_verifier_state *cur,
3565 struct idpair *idmap)
3566{
3567 int i, spi;
3568
3569 /* if explored stack has more populated slots than current stack
3570 * such stacks are not equivalent
3571 */
3572 if (old->allocated_stack > cur->allocated_stack)
3573 return false;
3574
3575 /* walk slots of the explored stack and ignore any additional
3576 * slots in the current stack, since explored(safe) state
3577 * didn't use them
3578 */
3579 for (i = 0; i < old->allocated_stack; i++) {
3580 spi = i / BPF_REG_SIZE;
3581
3582 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3583 continue;
3584 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3585 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3586 /* Ex: old explored (safe) state has STACK_SPILL in
3587 * this stack slot, but current has has STACK_MISC ->
3588 * this verifier states are not equivalent,
3589 * return false to continue verification of this path
3590 */
3591 return false;
3592 if (i % BPF_REG_SIZE)
3593 continue;
3594 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3595 continue;
3596 if (!regsafe(&old->stack[spi].spilled_ptr,
3597 &cur->stack[spi].spilled_ptr,
3598 idmap))
3599 /* when explored and current stack slot are both storing
3600 * spilled registers, check that stored pointers types
3601 * are the same as well.
3602 * Ex: explored safe path could have stored
3603 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3604 * but current path has stored:
3605 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3606 * such verifier states are not equivalent.
3607 * return false to continue verification of this path
3608 */
3609 return false;
3610 }
3611 return true;
3612}
3613
f1bca824
AS
3614/* compare two verifier states
3615 *
3616 * all states stored in state_list are known to be valid, since
3617 * verifier reached 'bpf_exit' instruction through them
3618 *
3619 * this function is called when verifier exploring different branches of
3620 * execution popped from the state stack. If it sees an old state that has
3621 * more strict register state and more strict stack state then this execution
3622 * branch doesn't need to be explored further, since verifier already
3623 * concluded that more strict state leads to valid finish.
3624 *
3625 * Therefore two states are equivalent if register state is more conservative
3626 * and explored stack state is more conservative than the current one.
3627 * Example:
3628 * explored current
3629 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3630 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3631 *
3632 * In other words if current stack state (one being explored) has more
3633 * valid slots than old one that already passed validation, it means
3634 * the verifier can stop exploring and conclude that current state is valid too
3635 *
3636 * Similarly with registers. If explored state has register type as invalid
3637 * whereas register type in current state is meaningful, it means that
3638 * the current state will reach 'bpf_exit' instruction safely
3639 */
48461135
JB
3640static bool states_equal(struct bpf_verifier_env *env,
3641 struct bpf_verifier_state *old,
58e2af8b 3642 struct bpf_verifier_state *cur)
f1bca824 3643{
f1174f77
EC
3644 struct idpair *idmap;
3645 bool ret = false;
f1bca824
AS
3646 int i;
3647
f1174f77
EC
3648 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3649 /* If we failed to allocate the idmap, just say it's not safe */
3650 if (!idmap)
1a0dc1ac 3651 return false;
f1174f77
EC
3652
3653 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3654 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3655 goto out_free;
f1bca824
AS
3656 }
3657
638f5b90
AS
3658 if (!stacksafe(old, cur, idmap))
3659 goto out_free;
f1174f77
EC
3660 ret = true;
3661out_free:
3662 kfree(idmap);
3663 return ret;
f1bca824
AS
3664}
3665
8e9cd9ce
EC
3666/* A write screens off any subsequent reads; but write marks come from the
3667 * straight-line code between a state and its parent. When we arrive at a
3668 * jump target (in the first iteration of the propagate_liveness() loop),
3669 * we didn't arrive by the straight-line code, so read marks in state must
3670 * propagate to parent regardless of state's write marks.
3671 */
dc503a8a
EC
3672static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3673 struct bpf_verifier_state *parent)
3674{
63f45f84 3675 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3676 bool touched = false; /* any changes made? */
3677 int i;
3678
3679 if (!parent)
3680 return touched;
3681 /* Propagate read liveness of registers... */
3682 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3683 /* We don't need to worry about FP liveness because it's read-only */
3684 for (i = 0; i < BPF_REG_FP; i++) {
3685 if (parent->regs[i].live & REG_LIVE_READ)
3686 continue;
63f45f84
EC
3687 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3688 continue;
3689 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3690 parent->regs[i].live |= REG_LIVE_READ;
3691 touched = true;
3692 }
3693 }
3694 /* ... and stack slots */
638f5b90
AS
3695 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3696 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3697 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3698 continue;
638f5b90 3699 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3700 continue;
638f5b90 3701 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3702 continue;
638f5b90
AS
3703 if (writes &&
3704 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3705 continue;
638f5b90
AS
3706 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3707 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3708 touched = true;
3709 }
3710 }
3711 return touched;
3712}
3713
8e9cd9ce
EC
3714/* "parent" is "a state from which we reach the current state", but initially
3715 * it is not the state->parent (i.e. "the state whose straight-line code leads
3716 * to the current state"), instead it is the state that happened to arrive at
3717 * a (prunable) equivalent of the current state. See comment above
3718 * do_propagate_liveness() for consequences of this.
3719 * This function is just a more efficient way of calling mark_reg_read() or
3720 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3721 * though it requires that parent != state->parent in the call arguments.
3722 */
dc503a8a
EC
3723static void propagate_liveness(const struct bpf_verifier_state *state,
3724 struct bpf_verifier_state *parent)
3725{
3726 while (do_propagate_liveness(state, parent)) {
3727 /* Something changed, so we need to feed those changes onward */
3728 state = parent;
3729 parent = state->parent;
3730 }
3731}
3732
58e2af8b 3733static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3734{
58e2af8b
JK
3735 struct bpf_verifier_state_list *new_sl;
3736 struct bpf_verifier_state_list *sl;
638f5b90 3737 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3738 int i, err;
f1bca824
AS
3739
3740 sl = env->explored_states[insn_idx];
3741 if (!sl)
3742 /* this 'insn_idx' instruction wasn't marked, so we will not
3743 * be doing state search here
3744 */
3745 return 0;
3746
3747 while (sl != STATE_LIST_MARK) {
638f5b90 3748 if (states_equal(env, &sl->state, cur)) {
f1bca824 3749 /* reached equivalent register/stack state,
dc503a8a
EC
3750 * prune the search.
3751 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3752 * If we have any write marks in env->cur_state, they
3753 * will prevent corresponding reads in the continuation
3754 * from reaching our parent (an explored_state). Our
3755 * own state will get the read marks recorded, but
3756 * they'll be immediately forgotten as we're pruning
3757 * this state and will pop a new one.
f1bca824 3758 */
638f5b90 3759 propagate_liveness(&sl->state, cur);
f1bca824 3760 return 1;
dc503a8a 3761 }
f1bca824
AS
3762 sl = sl->next;
3763 }
3764
3765 /* there were no equivalent states, remember current one.
3766 * technically the current state is not proven to be safe yet,
3767 * but it will either reach bpf_exit (which means it's safe) or
3768 * it will be rejected. Since there are no loops, we won't be
3769 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3770 */
638f5b90 3771 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3772 if (!new_sl)
3773 return -ENOMEM;
3774
3775 /* add new state to the head of linked list */
1969db47
AS
3776 err = copy_verifier_state(&new_sl->state, cur);
3777 if (err) {
3778 free_verifier_state(&new_sl->state, false);
3779 kfree(new_sl);
3780 return err;
3781 }
f1bca824
AS
3782 new_sl->next = env->explored_states[insn_idx];
3783 env->explored_states[insn_idx] = new_sl;
dc503a8a 3784 /* connect new state to parentage chain */
638f5b90 3785 cur->parent = &new_sl->state;
8e9cd9ce
EC
3786 /* clear write marks in current state: the writes we did are not writes
3787 * our child did, so they don't screen off its reads from us.
3788 * (There are no read marks in current state, because reads always mark
3789 * their parent and current state never has children yet. Only
3790 * explored_states can get read marks.)
3791 */
dc503a8a 3792 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3793 cur->regs[i].live = REG_LIVE_NONE;
3794 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3795 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3796 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3797 return 0;
3798}
3799
13a27dfc
JK
3800static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3801 int insn_idx, int prev_insn_idx)
3802{
ab3f0063
JK
3803 if (env->dev_ops && env->dev_ops->insn_hook)
3804 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3805
ab3f0063 3806 return 0;
13a27dfc
JK
3807}
3808
58e2af8b 3809static int do_check(struct bpf_verifier_env *env)
17a52670 3810{
638f5b90 3811 struct bpf_verifier_state *state;
17a52670 3812 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3813 struct bpf_reg_state *regs;
17a52670
AS
3814 int insn_cnt = env->prog->len;
3815 int insn_idx, prev_insn_idx = 0;
3816 int insn_processed = 0;
3817 bool do_print_state = false;
3818
638f5b90
AS
3819 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3820 if (!state)
3821 return -ENOMEM;
3822 env->cur_state = state;
3823 init_reg_state(env, state->regs);
dc503a8a 3824 state->parent = NULL;
17a52670
AS
3825 insn_idx = 0;
3826 for (;;) {
3827 struct bpf_insn *insn;
3828 u8 class;
3829 int err;
3830
3831 if (insn_idx >= insn_cnt) {
61bd5218 3832 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3833 insn_idx, insn_cnt);
3834 return -EFAULT;
3835 }
3836
3837 insn = &insns[insn_idx];
3838 class = BPF_CLASS(insn->code);
3839
07016151 3840 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3841 verbose(env,
3842 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3843 insn_processed);
3844 return -E2BIG;
3845 }
3846
f1bca824
AS
3847 err = is_state_visited(env, insn_idx);
3848 if (err < 0)
3849 return err;
3850 if (err == 1) {
3851 /* found equivalent state, can prune the search */
61bd5218 3852 if (env->log.level) {
f1bca824 3853 if (do_print_state)
61bd5218 3854 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3855 prev_insn_idx, insn_idx);
3856 else
61bd5218 3857 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3858 }
3859 goto process_bpf_exit;
3860 }
3861
3c2ce60b
DB
3862 if (need_resched())
3863 cond_resched();
3864
61bd5218
JK
3865 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3866 if (env->log.level > 1)
3867 verbose(env, "%d:", insn_idx);
c5fc9692 3868 else
61bd5218 3869 verbose(env, "\nfrom %d to %d:",
c5fc9692 3870 prev_insn_idx, insn_idx);
638f5b90 3871 print_verifier_state(env, state);
17a52670
AS
3872 do_print_state = false;
3873 }
3874
61bd5218
JK
3875 if (env->log.level) {
3876 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3877 print_bpf_insn(verbose, env, insn,
3878 env->allow_ptr_leaks);
17a52670
AS
3879 }
3880
13a27dfc
JK
3881 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3882 if (err)
3883 return err;
3884
638f5b90 3885 regs = cur_regs(env);
c131187d 3886 env->insn_aux_data[insn_idx].seen = true;
17a52670 3887 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3888 err = check_alu_op(env, insn);
17a52670
AS
3889 if (err)
3890 return err;
3891
3892 } else if (class == BPF_LDX) {
3df126f3 3893 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3894
3895 /* check for reserved fields is already done */
3896
17a52670 3897 /* check src operand */
dc503a8a 3898 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3899 if (err)
3900 return err;
3901
dc503a8a 3902 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3903 if (err)
3904 return err;
3905
725f9dcd
AS
3906 src_reg_type = regs[insn->src_reg].type;
3907
17a52670
AS
3908 /* check that memory (src_reg + off) is readable,
3909 * the state of dst_reg will be updated by this func
3910 */
31fd8581 3911 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3912 BPF_SIZE(insn->code), BPF_READ,
3913 insn->dst_reg);
3914 if (err)
3915 return err;
3916
3df126f3
JK
3917 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3918
3919 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3920 /* saw a valid insn
3921 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3922 * save type to validate intersecting paths
9bac3d6d 3923 */
3df126f3 3924 *prev_src_type = src_reg_type;
9bac3d6d 3925
3df126f3 3926 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3927 (src_reg_type == PTR_TO_CTX ||
3df126f3 3928 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3929 /* ABuser program is trying to use the same insn
3930 * dst_reg = *(u32*) (src_reg + off)
3931 * with different pointer types:
3932 * src_reg == ctx in one branch and
3933 * src_reg == stack|map in some other branch.
3934 * Reject it.
3935 */
61bd5218 3936 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3937 return -EINVAL;
3938 }
3939
17a52670 3940 } else if (class == BPF_STX) {
3df126f3 3941 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3942
17a52670 3943 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3944 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3945 if (err)
3946 return err;
3947 insn_idx++;
3948 continue;
3949 }
3950
17a52670 3951 /* check src1 operand */
dc503a8a 3952 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3953 if (err)
3954 return err;
3955 /* check src2 operand */
dc503a8a 3956 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3957 if (err)
3958 return err;
3959
d691f9e8
AS
3960 dst_reg_type = regs[insn->dst_reg].type;
3961
17a52670 3962 /* check that memory (dst_reg + off) is writeable */
31fd8581 3963 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3964 BPF_SIZE(insn->code), BPF_WRITE,
3965 insn->src_reg);
3966 if (err)
3967 return err;
3968
3df126f3
JK
3969 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3970
3971 if (*prev_dst_type == NOT_INIT) {
3972 *prev_dst_type = dst_reg_type;
3973 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3974 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3975 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3976 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3977 return -EINVAL;
3978 }
3979
17a52670
AS
3980 } else if (class == BPF_ST) {
3981 if (BPF_MODE(insn->code) != BPF_MEM ||
3982 insn->src_reg != BPF_REG_0) {
61bd5218 3983 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3984 return -EINVAL;
3985 }
3986 /* check src operand */
dc503a8a 3987 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3988 if (err)
3989 return err;
3990
3991 /* check that memory (dst_reg + off) is writeable */
31fd8581 3992 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3993 BPF_SIZE(insn->code), BPF_WRITE,
3994 -1);
3995 if (err)
3996 return err;
3997
3998 } else if (class == BPF_JMP) {
3999 u8 opcode = BPF_OP(insn->code);
4000
4001 if (opcode == BPF_CALL) {
4002 if (BPF_SRC(insn->code) != BPF_K ||
4003 insn->off != 0 ||
4004 insn->src_reg != BPF_REG_0 ||
4005 insn->dst_reg != BPF_REG_0) {
61bd5218 4006 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4007 return -EINVAL;
4008 }
4009
81ed18ab 4010 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
4011 if (err)
4012 return err;
4013
4014 } else if (opcode == BPF_JA) {
4015 if (BPF_SRC(insn->code) != BPF_K ||
4016 insn->imm != 0 ||
4017 insn->src_reg != BPF_REG_0 ||
4018 insn->dst_reg != BPF_REG_0) {
61bd5218 4019 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4020 return -EINVAL;
4021 }
4022
4023 insn_idx += insn->off + 1;
4024 continue;
4025
4026 } else if (opcode == BPF_EXIT) {
4027 if (BPF_SRC(insn->code) != BPF_K ||
4028 insn->imm != 0 ||
4029 insn->src_reg != BPF_REG_0 ||
4030 insn->dst_reg != BPF_REG_0) {
61bd5218 4031 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4032 return -EINVAL;
4033 }
4034
4035 /* eBPF calling convetion is such that R0 is used
4036 * to return the value from eBPF program.
4037 * Make sure that it's readable at this time
4038 * of bpf_exit, which means that program wrote
4039 * something into it earlier
4040 */
dc503a8a 4041 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4042 if (err)
4043 return err;
4044
1be7f75d 4045 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4046 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4047 return -EACCES;
4048 }
4049
390ee7e2
AS
4050 err = check_return_code(env);
4051 if (err)
4052 return err;
f1bca824 4053process_bpf_exit:
638f5b90
AS
4054 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4055 if (err < 0) {
4056 if (err != -ENOENT)
4057 return err;
17a52670
AS
4058 break;
4059 } else {
4060 do_print_state = true;
4061 continue;
4062 }
4063 } else {
4064 err = check_cond_jmp_op(env, insn, &insn_idx);
4065 if (err)
4066 return err;
4067 }
4068 } else if (class == BPF_LD) {
4069 u8 mode = BPF_MODE(insn->code);
4070
4071 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4072 err = check_ld_abs(env, insn);
4073 if (err)
4074 return err;
4075
17a52670
AS
4076 } else if (mode == BPF_IMM) {
4077 err = check_ld_imm(env, insn);
4078 if (err)
4079 return err;
4080
4081 insn_idx++;
c131187d 4082 env->insn_aux_data[insn_idx].seen = true;
17a52670 4083 } else {
61bd5218 4084 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4085 return -EINVAL;
4086 }
4087 } else {
61bd5218 4088 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4089 return -EINVAL;
4090 }
4091
4092 insn_idx++;
4093 }
4094
61bd5218
JK
4095 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4096 env->prog->aux->stack_depth);
17a52670
AS
4097 return 0;
4098}
4099
56f668df
MKL
4100static int check_map_prealloc(struct bpf_map *map)
4101{
4102 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4103 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4104 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4105 !(map->map_flags & BPF_F_NO_PREALLOC);
4106}
4107
61bd5218
JK
4108static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4109 struct bpf_map *map,
fdc15d38
AS
4110 struct bpf_prog *prog)
4111
4112{
56f668df
MKL
4113 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4114 * preallocated hash maps, since doing memory allocation
4115 * in overflow_handler can crash depending on where nmi got
4116 * triggered.
4117 */
4118 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4119 if (!check_map_prealloc(map)) {
61bd5218 4120 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4121 return -EINVAL;
4122 }
4123 if (map->inner_map_meta &&
4124 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4125 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4126 return -EINVAL;
4127 }
fdc15d38
AS
4128 }
4129 return 0;
4130}
4131
0246e64d
AS
4132/* look for pseudo eBPF instructions that access map FDs and
4133 * replace them with actual map pointers
4134 */
58e2af8b 4135static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4136{
4137 struct bpf_insn *insn = env->prog->insnsi;
4138 int insn_cnt = env->prog->len;
fdc15d38 4139 int i, j, err;
0246e64d 4140
f1f7714e 4141 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4142 if (err)
4143 return err;
4144
0246e64d 4145 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4146 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4147 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4148 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4149 return -EINVAL;
4150 }
4151
d691f9e8
AS
4152 if (BPF_CLASS(insn->code) == BPF_STX &&
4153 ((BPF_MODE(insn->code) != BPF_MEM &&
4154 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4155 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4156 return -EINVAL;
4157 }
4158
0246e64d
AS
4159 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4160 struct bpf_map *map;
4161 struct fd f;
4162
4163 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4164 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4165 insn[1].off != 0) {
61bd5218 4166 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4167 return -EINVAL;
4168 }
4169
4170 if (insn->src_reg == 0)
4171 /* valid generic load 64-bit imm */
4172 goto next_insn;
4173
4174 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4175 verbose(env,
4176 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4177 return -EINVAL;
4178 }
4179
4180 f = fdget(insn->imm);
c2101297 4181 map = __bpf_map_get(f);
0246e64d 4182 if (IS_ERR(map)) {
61bd5218 4183 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4184 insn->imm);
0246e64d
AS
4185 return PTR_ERR(map);
4186 }
4187
61bd5218 4188 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4189 if (err) {
4190 fdput(f);
4191 return err;
4192 }
4193
0246e64d
AS
4194 /* store map pointer inside BPF_LD_IMM64 instruction */
4195 insn[0].imm = (u32) (unsigned long) map;
4196 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4197
4198 /* check whether we recorded this map already */
4199 for (j = 0; j < env->used_map_cnt; j++)
4200 if (env->used_maps[j] == map) {
4201 fdput(f);
4202 goto next_insn;
4203 }
4204
4205 if (env->used_map_cnt >= MAX_USED_MAPS) {
4206 fdput(f);
4207 return -E2BIG;
4208 }
4209
0246e64d
AS
4210 /* hold the map. If the program is rejected by verifier,
4211 * the map will be released by release_maps() or it
4212 * will be used by the valid program until it's unloaded
4213 * and all maps are released in free_bpf_prog_info()
4214 */
92117d84
AS
4215 map = bpf_map_inc(map, false);
4216 if (IS_ERR(map)) {
4217 fdput(f);
4218 return PTR_ERR(map);
4219 }
4220 env->used_maps[env->used_map_cnt++] = map;
4221
0246e64d
AS
4222 fdput(f);
4223next_insn:
4224 insn++;
4225 i++;
4226 }
4227 }
4228
4229 /* now all pseudo BPF_LD_IMM64 instructions load valid
4230 * 'struct bpf_map *' into a register instead of user map_fd.
4231 * These pointers will be used later by verifier to validate map access.
4232 */
4233 return 0;
4234}
4235
4236/* drop refcnt of maps used by the rejected program */
58e2af8b 4237static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4238{
4239 int i;
4240
4241 for (i = 0; i < env->used_map_cnt; i++)
4242 bpf_map_put(env->used_maps[i]);
4243}
4244
4245/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4246static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4247{
4248 struct bpf_insn *insn = env->prog->insnsi;
4249 int insn_cnt = env->prog->len;
4250 int i;
4251
4252 for (i = 0; i < insn_cnt; i++, insn++)
4253 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4254 insn->src_reg = 0;
4255}
4256
8041902d
AS
4257/* single env->prog->insni[off] instruction was replaced with the range
4258 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4259 * [0, off) and [off, end) to new locations, so the patched range stays zero
4260 */
4261static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4262 u32 off, u32 cnt)
4263{
4264 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4265 int i;
8041902d
AS
4266
4267 if (cnt == 1)
4268 return 0;
4269 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4270 if (!new_data)
4271 return -ENOMEM;
4272 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4273 memcpy(new_data + off + cnt - 1, old_data + off,
4274 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4275 for (i = off; i < off + cnt - 1; i++)
4276 new_data[i].seen = true;
8041902d
AS
4277 env->insn_aux_data = new_data;
4278 vfree(old_data);
4279 return 0;
4280}
4281
4282static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4283 const struct bpf_insn *patch, u32 len)
4284{
4285 struct bpf_prog *new_prog;
4286
4287 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4288 if (!new_prog)
4289 return NULL;
4290 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4291 return NULL;
4292 return new_prog;
4293}
4294
c131187d
AS
4295/* The verifier does more data flow analysis than llvm and will not explore
4296 * branches that are dead at run time. Malicious programs can have dead code
4297 * too. Therefore replace all dead at-run-time code with nops.
4298 */
4299static void sanitize_dead_code(struct bpf_verifier_env *env)
4300{
4301 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4302 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4303 struct bpf_insn *insn = env->prog->insnsi;
4304 const int insn_cnt = env->prog->len;
4305 int i;
4306
4307 for (i = 0; i < insn_cnt; i++) {
4308 if (aux_data[i].seen)
4309 continue;
4310 memcpy(insn + i, &nop, sizeof(nop));
4311 }
4312}
4313
9bac3d6d
AS
4314/* convert load instructions that access fields of 'struct __sk_buff'
4315 * into sequence of instructions that access fields of 'struct sk_buff'
4316 */
58e2af8b 4317static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4318{
00176a34 4319 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4320 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4321 const int insn_cnt = env->prog->len;
36bbef52 4322 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4323 struct bpf_prog *new_prog;
d691f9e8 4324 enum bpf_access_type type;
f96da094
DB
4325 bool is_narrower_load;
4326 u32 target_size;
9bac3d6d 4327
36bbef52
DB
4328 if (ops->gen_prologue) {
4329 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4330 env->prog);
4331 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4332 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4333 return -EINVAL;
4334 } else if (cnt) {
8041902d 4335 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4336 if (!new_prog)
4337 return -ENOMEM;
8041902d 4338
36bbef52 4339 env->prog = new_prog;
3df126f3 4340 delta += cnt - 1;
36bbef52
DB
4341 }
4342 }
4343
4344 if (!ops->convert_ctx_access)
9bac3d6d
AS
4345 return 0;
4346
3df126f3 4347 insn = env->prog->insnsi + delta;
36bbef52 4348
9bac3d6d 4349 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4350 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4351 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4352 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4353 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4354 type = BPF_READ;
62c7989b
DB
4355 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4356 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4357 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4358 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4359 type = BPF_WRITE;
4360 else
9bac3d6d
AS
4361 continue;
4362
8041902d 4363 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4364 continue;
9bac3d6d 4365
31fd8581 4366 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4367 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4368
4369 /* If the read access is a narrower load of the field,
4370 * convert to a 4/8-byte load, to minimum program type specific
4371 * convert_ctx_access changes. If conversion is successful,
4372 * we will apply proper mask to the result.
4373 */
f96da094 4374 is_narrower_load = size < ctx_field_size;
31fd8581 4375 if (is_narrower_load) {
f96da094
DB
4376 u32 off = insn->off;
4377 u8 size_code;
4378
4379 if (type == BPF_WRITE) {
61bd5218 4380 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4381 return -EINVAL;
4382 }
31fd8581 4383
f96da094 4384 size_code = BPF_H;
31fd8581
YS
4385 if (ctx_field_size == 4)
4386 size_code = BPF_W;
4387 else if (ctx_field_size == 8)
4388 size_code = BPF_DW;
f96da094 4389
31fd8581
YS
4390 insn->off = off & ~(ctx_field_size - 1);
4391 insn->code = BPF_LDX | BPF_MEM | size_code;
4392 }
f96da094
DB
4393
4394 target_size = 0;
4395 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4396 &target_size);
4397 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4398 (ctx_field_size && !target_size)) {
61bd5218 4399 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4400 return -EINVAL;
4401 }
f96da094
DB
4402
4403 if (is_narrower_load && size < target_size) {
31fd8581
YS
4404 if (ctx_field_size <= 4)
4405 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4406 (1 << size * 8) - 1);
31fd8581
YS
4407 else
4408 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4409 (1 << size * 8) - 1);
31fd8581 4410 }
9bac3d6d 4411
8041902d 4412 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4413 if (!new_prog)
4414 return -ENOMEM;
4415
3df126f3 4416 delta += cnt - 1;
9bac3d6d
AS
4417
4418 /* keep walking new program and skip insns we just inserted */
4419 env->prog = new_prog;
3df126f3 4420 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4421 }
4422
4423 return 0;
4424}
4425
79741b3b 4426/* fixup insn->imm field of bpf_call instructions
81ed18ab 4427 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4428 *
4429 * this function is called after eBPF program passed verification
4430 */
79741b3b 4431static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4432{
79741b3b
AS
4433 struct bpf_prog *prog = env->prog;
4434 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4435 const struct bpf_func_proto *fn;
79741b3b 4436 const int insn_cnt = prog->len;
81ed18ab
AS
4437 struct bpf_insn insn_buf[16];
4438 struct bpf_prog *new_prog;
4439 struct bpf_map *map_ptr;
4440 int i, cnt, delta = 0;
e245c5c6 4441
79741b3b
AS
4442 for (i = 0; i < insn_cnt; i++, insn++) {
4443 if (insn->code != (BPF_JMP | BPF_CALL))
4444 continue;
e245c5c6 4445
79741b3b
AS
4446 if (insn->imm == BPF_FUNC_get_route_realm)
4447 prog->dst_needed = 1;
4448 if (insn->imm == BPF_FUNC_get_prandom_u32)
4449 bpf_user_rnd_init_once();
79741b3b 4450 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4451 /* If we tail call into other programs, we
4452 * cannot make any assumptions since they can
4453 * be replaced dynamically during runtime in
4454 * the program array.
4455 */
4456 prog->cb_access = 1;
80a58d02 4457 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4458
79741b3b
AS
4459 /* mark bpf_tail_call as different opcode to avoid
4460 * conditional branch in the interpeter for every normal
4461 * call and to prevent accidental JITing by JIT compiler
4462 * that doesn't support bpf_tail_call yet
e245c5c6 4463 */
79741b3b 4464 insn->imm = 0;
71189fa9 4465 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
4466
4467 /* instead of changing every JIT dealing with tail_call
4468 * emit two extra insns:
4469 * if (index >= max_entries) goto out;
4470 * index &= array->index_mask;
4471 * to avoid out-of-bounds cpu speculation
4472 */
4473 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4474 if (map_ptr == BPF_MAP_PTR_POISON) {
40950343 4475 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
4476 return -EINVAL;
4477 }
4478 if (!map_ptr->unpriv_array)
4479 continue;
4480 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4481 map_ptr->max_entries, 2);
4482 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4483 container_of(map_ptr,
4484 struct bpf_array,
4485 map)->index_mask);
4486 insn_buf[2] = *insn;
4487 cnt = 3;
4488 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4489 if (!new_prog)
4490 return -ENOMEM;
4491
4492 delta += cnt - 1;
4493 env->prog = prog = new_prog;
4494 insn = new_prog->insnsi + i + delta;
79741b3b
AS
4495 continue;
4496 }
e245c5c6 4497
89c63074
DB
4498 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4499 * handlers are currently limited to 64 bit only.
4500 */
4501 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4502 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4503 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4504 if (map_ptr == BPF_MAP_PTR_POISON ||
4505 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4506 goto patch_call_imm;
4507
4508 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4509 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4510 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4511 return -EINVAL;
4512 }
4513
4514 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4515 cnt);
4516 if (!new_prog)
4517 return -ENOMEM;
4518
4519 delta += cnt - 1;
4520
4521 /* keep walking new program and skip insns we just inserted */
4522 env->prog = prog = new_prog;
4523 insn = new_prog->insnsi + i + delta;
4524 continue;
4525 }
4526
109980b8 4527 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4528 /* Note, we cannot use prog directly as imm as subsequent
4529 * rewrites would still change the prog pointer. The only
4530 * stable address we can use is aux, which also works with
4531 * prog clones during blinding.
4532 */
4533 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4534 struct bpf_insn r4_ld[] = {
4535 BPF_LD_IMM64(BPF_REG_4, addr),
4536 *insn,
4537 };
4538 cnt = ARRAY_SIZE(r4_ld);
4539
4540 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4541 if (!new_prog)
4542 return -ENOMEM;
4543
4544 delta += cnt - 1;
4545 env->prog = prog = new_prog;
4546 insn = new_prog->insnsi + i + delta;
4547 }
81ed18ab 4548patch_call_imm:
00176a34 4549 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4550 /* all functions that have prototype and verifier allowed
4551 * programs to call them, must be real in-kernel functions
4552 */
4553 if (!fn->func) {
61bd5218
JK
4554 verbose(env,
4555 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4556 func_id_name(insn->imm), insn->imm);
4557 return -EFAULT;
e245c5c6 4558 }
79741b3b 4559 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4560 }
e245c5c6 4561
79741b3b
AS
4562 return 0;
4563}
e245c5c6 4564
58e2af8b 4565static void free_states(struct bpf_verifier_env *env)
f1bca824 4566{
58e2af8b 4567 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4568 int i;
4569
4570 if (!env->explored_states)
4571 return;
4572
4573 for (i = 0; i < env->prog->len; i++) {
4574 sl = env->explored_states[i];
4575
4576 if (sl)
4577 while (sl != STATE_LIST_MARK) {
4578 sln = sl->next;
1969db47 4579 free_verifier_state(&sl->state, false);
f1bca824
AS
4580 kfree(sl);
4581 sl = sln;
4582 }
4583 }
4584
4585 kfree(env->explored_states);
4586}
4587
9bac3d6d 4588int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4589{
58e2af8b 4590 struct bpf_verifier_env *env;
61bd5218 4591 struct bpf_verifer_log *log;
51580e79
AS
4592 int ret = -EINVAL;
4593
eba0c929
AB
4594 /* no program is valid */
4595 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4596 return -EINVAL;
4597
58e2af8b 4598 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4599 * allocate/free it every time bpf_check() is called
4600 */
58e2af8b 4601 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4602 if (!env)
4603 return -ENOMEM;
61bd5218 4604 log = &env->log;
cbd35700 4605
3df126f3
JK
4606 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4607 (*prog)->len);
4608 ret = -ENOMEM;
4609 if (!env->insn_aux_data)
4610 goto err_free_env;
9bac3d6d 4611 env->prog = *prog;
00176a34 4612 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4613
cbd35700
AS
4614 /* grab the mutex to protect few globals used by verifier */
4615 mutex_lock(&bpf_verifier_lock);
4616
4617 if (attr->log_level || attr->log_buf || attr->log_size) {
4618 /* user requested verbose verifier output
4619 * and supplied buffer to store the verification trace
4620 */
e7bf8249
JK
4621 log->level = attr->log_level;
4622 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4623 log->len_total = attr->log_size;
cbd35700
AS
4624
4625 ret = -EINVAL;
e7bf8249
JK
4626 /* log attributes have to be sane */
4627 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4628 !log->level || !log->ubuf)
3df126f3 4629 goto err_unlock;
cbd35700 4630 }
1ad2f583
DB
4631
4632 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4633 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4634 env->strict_alignment = true;
cbd35700 4635
ab3f0063
JK
4636 if (env->prog->aux->offload) {
4637 ret = bpf_prog_offload_verifier_prep(env);
4638 if (ret)
4639 goto err_unlock;
4640 }
4641
0246e64d
AS
4642 ret = replace_map_fd_with_map_ptr(env);
4643 if (ret < 0)
4644 goto skip_full_check;
4645
9bac3d6d 4646 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4647 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4648 GFP_USER);
4649 ret = -ENOMEM;
4650 if (!env->explored_states)
4651 goto skip_full_check;
4652
475fb78f
AS
4653 ret = check_cfg(env);
4654 if (ret < 0)
4655 goto skip_full_check;
4656
1be7f75d
AS
4657 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4658
17a52670 4659 ret = do_check(env);
8c01c4f8
CG
4660 if (env->cur_state) {
4661 free_verifier_state(env->cur_state, true);
4662 env->cur_state = NULL;
4663 }
cbd35700 4664
0246e64d 4665skip_full_check:
638f5b90 4666 while (!pop_stack(env, NULL, NULL));
f1bca824 4667 free_states(env);
0246e64d 4668
c131187d
AS
4669 if (ret == 0)
4670 sanitize_dead_code(env);
4671
9bac3d6d
AS
4672 if (ret == 0)
4673 /* program is valid, convert *(u32*)(ctx + off) accesses */
4674 ret = convert_ctx_accesses(env);
4675
e245c5c6 4676 if (ret == 0)
79741b3b 4677 ret = fixup_bpf_calls(env);
e245c5c6 4678
a2a7d570 4679 if (log->level && bpf_verifier_log_full(log))
cbd35700 4680 ret = -ENOSPC;
a2a7d570 4681 if (log->level && !log->ubuf) {
cbd35700 4682 ret = -EFAULT;
a2a7d570 4683 goto err_release_maps;
cbd35700
AS
4684 }
4685
0246e64d
AS
4686 if (ret == 0 && env->used_map_cnt) {
4687 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4688 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4689 sizeof(env->used_maps[0]),
4690 GFP_KERNEL);
0246e64d 4691
9bac3d6d 4692 if (!env->prog->aux->used_maps) {
0246e64d 4693 ret = -ENOMEM;
a2a7d570 4694 goto err_release_maps;
0246e64d
AS
4695 }
4696
9bac3d6d 4697 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4698 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4699 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4700
4701 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4702 * bpf_ld_imm64 instructions
4703 */
4704 convert_pseudo_ld_imm64(env);
4705 }
cbd35700 4706
a2a7d570 4707err_release_maps:
9bac3d6d 4708 if (!env->prog->aux->used_maps)
0246e64d
AS
4709 /* if we didn't copy map pointers into bpf_prog_info, release
4710 * them now. Otherwise free_bpf_prog_info() will release them.
4711 */
4712 release_maps(env);
9bac3d6d 4713 *prog = env->prog;
3df126f3 4714err_unlock:
cbd35700 4715 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4716 vfree(env->insn_aux_data);
4717err_free_env:
4718 kfree(env);
51580e79
AS
4719 return ret;
4720}