]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
treewide: Use array_size() in vmalloc()
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
cc8b0b92
AS
23#include <linux/bsearch.h>
24#include <linux/sort.h>
c195651e 25#include <linux/perf_event.h>
51580e79 26
f4ac7e0b
JK
27#include "disasm.h"
28
00176a34
JK
29static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30#define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32#define BPF_MAP_TYPE(_id, _ops)
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
f1174f77 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
84 * types recognized by check_mem_access() function.
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
143 */
144
17a52670 145/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 146struct bpf_verifier_stack_elem {
17a52670
AS
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
150 */
58e2af8b 151 struct bpf_verifier_state st;
17a52670
AS
152 int insn_idx;
153 int prev_insn_idx;
58e2af8b 154 struct bpf_verifier_stack_elem *next;
cbd35700
AS
155};
156
8e17c1b1 157#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
158#define BPF_COMPLEXITY_LIMIT_STACK 1024
159
c93552c4
DB
160#define BPF_MAP_PTR_UNPRIV 1UL
161#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
162 POISON_POINTER_DELTA))
163#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
164
165static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
166{
167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
168}
169
170static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
171{
172 return aux->map_state & BPF_MAP_PTR_UNPRIV;
173}
174
175static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
176 const struct bpf_map *map, bool unpriv)
177{
178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
179 unpriv |= bpf_map_ptr_unpriv(aux);
180 aux->map_state = (unsigned long)map |
181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
182}
fad73a1a 183
33ff9823
DB
184struct bpf_call_arg_meta {
185 struct bpf_map *map_ptr;
435faee1 186 bool raw_mode;
36bbef52 187 bool pkt_access;
435faee1
DB
188 int regno;
189 int access_size;
849fa506
YS
190 s64 msize_smax_value;
191 u64 msize_umax_value;
33ff9823
DB
192};
193
cbd35700
AS
194static DEFINE_MUTEX(bpf_verifier_lock);
195
77d2e05a
MKL
196void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
197 va_list args)
cbd35700 198{
a2a7d570 199 unsigned int n;
cbd35700 200
a2a7d570 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
202
203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
204 "verifier log line truncated - local buffer too short\n");
205
206 n = min(log->len_total - log->len_used - 1, n);
207 log->kbuf[n] = '\0';
208
209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
210 log->len_used += n;
211 else
212 log->ubuf = NULL;
cbd35700 213}
abe08840
JO
214
215/* log_level controls verbosity level of eBPF verifier.
216 * bpf_verifier_log_write() is used to dump the verification trace to the log,
217 * so the user can figure out what's wrong with the program
430e68d1 218 */
abe08840
JO
219__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
220 const char *fmt, ...)
221{
222 va_list args;
223
77d2e05a
MKL
224 if (!bpf_verifier_log_needed(&env->log))
225 return;
226
abe08840 227 va_start(args, fmt);
77d2e05a 228 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
229 va_end(args);
230}
231EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
232
233__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
234{
77d2e05a 235 struct bpf_verifier_env *env = private_data;
abe08840
JO
236 va_list args;
237
77d2e05a
MKL
238 if (!bpf_verifier_log_needed(&env->log))
239 return;
240
abe08840 241 va_start(args, fmt);
77d2e05a 242 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
243 va_end(args);
244}
cbd35700 245
de8f3a83
DB
246static bool type_is_pkt_pointer(enum bpf_reg_type type)
247{
248 return type == PTR_TO_PACKET ||
249 type == PTR_TO_PACKET_META;
250}
251
17a52670
AS
252/* string representation of 'enum bpf_reg_type' */
253static const char * const reg_type_str[] = {
254 [NOT_INIT] = "?",
f1174f77 255 [SCALAR_VALUE] = "inv",
17a52670
AS
256 [PTR_TO_CTX] = "ctx",
257 [CONST_PTR_TO_MAP] = "map_ptr",
258 [PTR_TO_MAP_VALUE] = "map_value",
259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 260 [PTR_TO_STACK] = "fp",
969bf05e 261 [PTR_TO_PACKET] = "pkt",
de8f3a83 262 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 263 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
264};
265
4e92024a
AS
266static void print_liveness(struct bpf_verifier_env *env,
267 enum bpf_reg_liveness live)
268{
269 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
270 verbose(env, "_");
271 if (live & REG_LIVE_READ)
272 verbose(env, "r");
273 if (live & REG_LIVE_WRITTEN)
274 verbose(env, "w");
275}
276
f4d7e40a
AS
277static struct bpf_func_state *func(struct bpf_verifier_env *env,
278 const struct bpf_reg_state *reg)
279{
280 struct bpf_verifier_state *cur = env->cur_state;
281
282 return cur->frame[reg->frameno];
283}
284
61bd5218 285static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 286 const struct bpf_func_state *state)
17a52670 287{
f4d7e40a 288 const struct bpf_reg_state *reg;
17a52670
AS
289 enum bpf_reg_type t;
290 int i;
291
f4d7e40a
AS
292 if (state->frameno)
293 verbose(env, " frame%d:", state->frameno);
17a52670 294 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
295 reg = &state->regs[i];
296 t = reg->type;
17a52670
AS
297 if (t == NOT_INIT)
298 continue;
4e92024a
AS
299 verbose(env, " R%d", i);
300 print_liveness(env, reg->live);
301 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
302 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
303 tnum_is_const(reg->var_off)) {
304 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 305 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
306 if (t == PTR_TO_STACK)
307 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 308 } else {
61bd5218 309 verbose(env, "(id=%d", reg->id);
f1174f77 310 if (t != SCALAR_VALUE)
61bd5218 311 verbose(env, ",off=%d", reg->off);
de8f3a83 312 if (type_is_pkt_pointer(t))
61bd5218 313 verbose(env, ",r=%d", reg->range);
f1174f77
EC
314 else if (t == CONST_PTR_TO_MAP ||
315 t == PTR_TO_MAP_VALUE ||
316 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 317 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
318 reg->map_ptr->key_size,
319 reg->map_ptr->value_size);
7d1238f2
EC
320 if (tnum_is_const(reg->var_off)) {
321 /* Typically an immediate SCALAR_VALUE, but
322 * could be a pointer whose offset is too big
323 * for reg->off
324 */
61bd5218 325 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
326 } else {
327 if (reg->smin_value != reg->umin_value &&
328 reg->smin_value != S64_MIN)
61bd5218 329 verbose(env, ",smin_value=%lld",
7d1238f2
EC
330 (long long)reg->smin_value);
331 if (reg->smax_value != reg->umax_value &&
332 reg->smax_value != S64_MAX)
61bd5218 333 verbose(env, ",smax_value=%lld",
7d1238f2
EC
334 (long long)reg->smax_value);
335 if (reg->umin_value != 0)
61bd5218 336 verbose(env, ",umin_value=%llu",
7d1238f2
EC
337 (unsigned long long)reg->umin_value);
338 if (reg->umax_value != U64_MAX)
61bd5218 339 verbose(env, ",umax_value=%llu",
7d1238f2
EC
340 (unsigned long long)reg->umax_value);
341 if (!tnum_is_unknown(reg->var_off)) {
342 char tn_buf[48];
f1174f77 343
7d1238f2 344 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 345 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 346 }
f1174f77 347 }
61bd5218 348 verbose(env, ")");
f1174f77 349 }
17a52670 350 }
638f5b90 351 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
4e92024a
AS
352 if (state->stack[i].slot_type[0] == STACK_SPILL) {
353 verbose(env, " fp%d",
354 (-i - 1) * BPF_REG_SIZE);
355 print_liveness(env, state->stack[i].spilled_ptr.live);
356 verbose(env, "=%s",
638f5b90 357 reg_type_str[state->stack[i].spilled_ptr.type]);
4e92024a 358 }
cc2b14d5
AS
359 if (state->stack[i].slot_type[0] == STACK_ZERO)
360 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
17a52670 361 }
61bd5218 362 verbose(env, "\n");
17a52670
AS
363}
364
f4d7e40a
AS
365static int copy_stack_state(struct bpf_func_state *dst,
366 const struct bpf_func_state *src)
17a52670 367{
638f5b90
AS
368 if (!src->stack)
369 return 0;
370 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
371 /* internal bug, make state invalid to reject the program */
372 memset(dst, 0, sizeof(*dst));
373 return -EFAULT;
374 }
375 memcpy(dst->stack, src->stack,
376 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
377 return 0;
378}
379
380/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
381 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 382 * the program calls into realloc_func_state() to grow the stack size.
638f5b90
AS
383 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
384 * which this function copies over. It points to previous bpf_verifier_state
385 * which is never reallocated
386 */
f4d7e40a
AS
387static int realloc_func_state(struct bpf_func_state *state, int size,
388 bool copy_old)
638f5b90
AS
389{
390 u32 old_size = state->allocated_stack;
391 struct bpf_stack_state *new_stack;
392 int slot = size / BPF_REG_SIZE;
393
394 if (size <= old_size || !size) {
395 if (copy_old)
396 return 0;
397 state->allocated_stack = slot * BPF_REG_SIZE;
398 if (!size && old_size) {
399 kfree(state->stack);
400 state->stack = NULL;
401 }
402 return 0;
403 }
404 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
405 GFP_KERNEL);
406 if (!new_stack)
407 return -ENOMEM;
408 if (copy_old) {
409 if (state->stack)
410 memcpy(new_stack, state->stack,
411 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
412 memset(new_stack + old_size / BPF_REG_SIZE, 0,
413 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
414 }
415 state->allocated_stack = slot * BPF_REG_SIZE;
416 kfree(state->stack);
417 state->stack = new_stack;
418 return 0;
419}
420
f4d7e40a
AS
421static void free_func_state(struct bpf_func_state *state)
422{
5896351e
AS
423 if (!state)
424 return;
f4d7e40a
AS
425 kfree(state->stack);
426 kfree(state);
427}
428
1969db47
AS
429static void free_verifier_state(struct bpf_verifier_state *state,
430 bool free_self)
638f5b90 431{
f4d7e40a
AS
432 int i;
433
434 for (i = 0; i <= state->curframe; i++) {
435 free_func_state(state->frame[i]);
436 state->frame[i] = NULL;
437 }
1969db47
AS
438 if (free_self)
439 kfree(state);
638f5b90
AS
440}
441
442/* copy verifier state from src to dst growing dst stack space
443 * when necessary to accommodate larger src stack
444 */
f4d7e40a
AS
445static int copy_func_state(struct bpf_func_state *dst,
446 const struct bpf_func_state *src)
638f5b90
AS
447{
448 int err;
449
f4d7e40a 450 err = realloc_func_state(dst, src->allocated_stack, false);
638f5b90
AS
451 if (err)
452 return err;
f4d7e40a 453 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
638f5b90
AS
454 return copy_stack_state(dst, src);
455}
456
f4d7e40a
AS
457static int copy_verifier_state(struct bpf_verifier_state *dst_state,
458 const struct bpf_verifier_state *src)
459{
460 struct bpf_func_state *dst;
461 int i, err;
462
463 /* if dst has more stack frames then src frame, free them */
464 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
465 free_func_state(dst_state->frame[i]);
466 dst_state->frame[i] = NULL;
467 }
468 dst_state->curframe = src->curframe;
469 dst_state->parent = src->parent;
470 for (i = 0; i <= src->curframe; i++) {
471 dst = dst_state->frame[i];
472 if (!dst) {
473 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
474 if (!dst)
475 return -ENOMEM;
476 dst_state->frame[i] = dst;
477 }
478 err = copy_func_state(dst, src->frame[i]);
479 if (err)
480 return err;
481 }
482 return 0;
483}
484
638f5b90
AS
485static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
486 int *insn_idx)
487{
488 struct bpf_verifier_state *cur = env->cur_state;
489 struct bpf_verifier_stack_elem *elem, *head = env->head;
490 int err;
17a52670
AS
491
492 if (env->head == NULL)
638f5b90 493 return -ENOENT;
17a52670 494
638f5b90
AS
495 if (cur) {
496 err = copy_verifier_state(cur, &head->st);
497 if (err)
498 return err;
499 }
500 if (insn_idx)
501 *insn_idx = head->insn_idx;
17a52670 502 if (prev_insn_idx)
638f5b90
AS
503 *prev_insn_idx = head->prev_insn_idx;
504 elem = head->next;
1969db47 505 free_verifier_state(&head->st, false);
638f5b90 506 kfree(head);
17a52670
AS
507 env->head = elem;
508 env->stack_size--;
638f5b90 509 return 0;
17a52670
AS
510}
511
58e2af8b
JK
512static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
513 int insn_idx, int prev_insn_idx)
17a52670 514{
638f5b90 515 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 516 struct bpf_verifier_stack_elem *elem;
638f5b90 517 int err;
17a52670 518
638f5b90 519 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
520 if (!elem)
521 goto err;
522
17a52670
AS
523 elem->insn_idx = insn_idx;
524 elem->prev_insn_idx = prev_insn_idx;
525 elem->next = env->head;
526 env->head = elem;
527 env->stack_size++;
1969db47
AS
528 err = copy_verifier_state(&elem->st, cur);
529 if (err)
530 goto err;
07016151 531 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 532 verbose(env, "BPF program is too complex\n");
17a52670
AS
533 goto err;
534 }
535 return &elem->st;
536err:
5896351e
AS
537 free_verifier_state(env->cur_state, true);
538 env->cur_state = NULL;
17a52670 539 /* pop all elements and return */
638f5b90 540 while (!pop_stack(env, NULL, NULL));
17a52670
AS
541 return NULL;
542}
543
544#define CALLER_SAVED_REGS 6
545static const int caller_saved[CALLER_SAVED_REGS] = {
546 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
547};
548
f1174f77
EC
549static void __mark_reg_not_init(struct bpf_reg_state *reg);
550
b03c9f9f
EC
551/* Mark the unknown part of a register (variable offset or scalar value) as
552 * known to have the value @imm.
553 */
554static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
555{
556 reg->id = 0;
557 reg->var_off = tnum_const(imm);
558 reg->smin_value = (s64)imm;
559 reg->smax_value = (s64)imm;
560 reg->umin_value = imm;
561 reg->umax_value = imm;
562}
563
f1174f77
EC
564/* Mark the 'variable offset' part of a register as zero. This should be
565 * used only on registers holding a pointer type.
566 */
567static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 568{
b03c9f9f 569 __mark_reg_known(reg, 0);
f1174f77 570}
a9789ef9 571
cc2b14d5
AS
572static void __mark_reg_const_zero(struct bpf_reg_state *reg)
573{
574 __mark_reg_known(reg, 0);
575 reg->off = 0;
576 reg->type = SCALAR_VALUE;
577}
578
61bd5218
JK
579static void mark_reg_known_zero(struct bpf_verifier_env *env,
580 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
581{
582 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 583 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
584 /* Something bad happened, let's kill all regs */
585 for (regno = 0; regno < MAX_BPF_REG; regno++)
586 __mark_reg_not_init(regs + regno);
587 return;
588 }
589 __mark_reg_known_zero(regs + regno);
590}
591
de8f3a83
DB
592static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
593{
594 return type_is_pkt_pointer(reg->type);
595}
596
597static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
598{
599 return reg_is_pkt_pointer(reg) ||
600 reg->type == PTR_TO_PACKET_END;
601}
602
603/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
604static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
605 enum bpf_reg_type which)
606{
607 /* The register can already have a range from prior markings.
608 * This is fine as long as it hasn't been advanced from its
609 * origin.
610 */
611 return reg->type == which &&
612 reg->id == 0 &&
613 reg->off == 0 &&
614 tnum_equals_const(reg->var_off, 0);
615}
616
b03c9f9f
EC
617/* Attempts to improve min/max values based on var_off information */
618static void __update_reg_bounds(struct bpf_reg_state *reg)
619{
620 /* min signed is max(sign bit) | min(other bits) */
621 reg->smin_value = max_t(s64, reg->smin_value,
622 reg->var_off.value | (reg->var_off.mask & S64_MIN));
623 /* max signed is min(sign bit) | max(other bits) */
624 reg->smax_value = min_t(s64, reg->smax_value,
625 reg->var_off.value | (reg->var_off.mask & S64_MAX));
626 reg->umin_value = max(reg->umin_value, reg->var_off.value);
627 reg->umax_value = min(reg->umax_value,
628 reg->var_off.value | reg->var_off.mask);
629}
630
631/* Uses signed min/max values to inform unsigned, and vice-versa */
632static void __reg_deduce_bounds(struct bpf_reg_state *reg)
633{
634 /* Learn sign from signed bounds.
635 * If we cannot cross the sign boundary, then signed and unsigned bounds
636 * are the same, so combine. This works even in the negative case, e.g.
637 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
638 */
639 if (reg->smin_value >= 0 || reg->smax_value < 0) {
640 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
641 reg->umin_value);
642 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
643 reg->umax_value);
644 return;
645 }
646 /* Learn sign from unsigned bounds. Signed bounds cross the sign
647 * boundary, so we must be careful.
648 */
649 if ((s64)reg->umax_value >= 0) {
650 /* Positive. We can't learn anything from the smin, but smax
651 * is positive, hence safe.
652 */
653 reg->smin_value = reg->umin_value;
654 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
655 reg->umax_value);
656 } else if ((s64)reg->umin_value < 0) {
657 /* Negative. We can't learn anything from the smax, but smin
658 * is negative, hence safe.
659 */
660 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
661 reg->umin_value);
662 reg->smax_value = reg->umax_value;
663 }
664}
665
666/* Attempts to improve var_off based on unsigned min/max information */
667static void __reg_bound_offset(struct bpf_reg_state *reg)
668{
669 reg->var_off = tnum_intersect(reg->var_off,
670 tnum_range(reg->umin_value,
671 reg->umax_value));
672}
673
674/* Reset the min/max bounds of a register */
675static void __mark_reg_unbounded(struct bpf_reg_state *reg)
676{
677 reg->smin_value = S64_MIN;
678 reg->smax_value = S64_MAX;
679 reg->umin_value = 0;
680 reg->umax_value = U64_MAX;
681}
682
f1174f77
EC
683/* Mark a register as having a completely unknown (scalar) value. */
684static void __mark_reg_unknown(struct bpf_reg_state *reg)
685{
686 reg->type = SCALAR_VALUE;
687 reg->id = 0;
688 reg->off = 0;
689 reg->var_off = tnum_unknown;
f4d7e40a 690 reg->frameno = 0;
b03c9f9f 691 __mark_reg_unbounded(reg);
f1174f77
EC
692}
693
61bd5218
JK
694static void mark_reg_unknown(struct bpf_verifier_env *env,
695 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
696{
697 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 698 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
699 /* Something bad happened, let's kill all regs except FP */
700 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
701 __mark_reg_not_init(regs + regno);
702 return;
703 }
704 __mark_reg_unknown(regs + regno);
705}
706
707static void __mark_reg_not_init(struct bpf_reg_state *reg)
708{
709 __mark_reg_unknown(reg);
710 reg->type = NOT_INIT;
711}
712
61bd5218
JK
713static void mark_reg_not_init(struct bpf_verifier_env *env,
714 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
715{
716 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
718 /* Something bad happened, let's kill all regs except FP */
719 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
720 __mark_reg_not_init(regs + regno);
721 return;
722 }
723 __mark_reg_not_init(regs + regno);
a9789ef9
DB
724}
725
61bd5218 726static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 727 struct bpf_func_state *state)
17a52670 728{
f4d7e40a 729 struct bpf_reg_state *regs = state->regs;
17a52670
AS
730 int i;
731
dc503a8a 732 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 733 mark_reg_not_init(env, regs, i);
dc503a8a
EC
734 regs[i].live = REG_LIVE_NONE;
735 }
17a52670
AS
736
737 /* frame pointer */
f1174f77 738 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 739 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 740 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
741
742 /* 1st arg to a function */
743 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 744 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
745}
746
f4d7e40a
AS
747#define BPF_MAIN_FUNC (-1)
748static void init_func_state(struct bpf_verifier_env *env,
749 struct bpf_func_state *state,
750 int callsite, int frameno, int subprogno)
751{
752 state->callsite = callsite;
753 state->frameno = frameno;
754 state->subprogno = subprogno;
755 init_reg_state(env, state);
756}
757
17a52670
AS
758enum reg_arg_type {
759 SRC_OP, /* register is used as source operand */
760 DST_OP, /* register is used as destination operand */
761 DST_OP_NO_MARK /* same as above, check only, don't mark */
762};
763
cc8b0b92
AS
764static int cmp_subprogs(const void *a, const void *b)
765{
9c8105bd
JW
766 return ((struct bpf_subprog_info *)a)->start -
767 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
768}
769
770static int find_subprog(struct bpf_verifier_env *env, int off)
771{
9c8105bd 772 struct bpf_subprog_info *p;
cc8b0b92 773
9c8105bd
JW
774 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
775 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
776 if (!p)
777 return -ENOENT;
9c8105bd 778 return p - env->subprog_info;
cc8b0b92
AS
779
780}
781
782static int add_subprog(struct bpf_verifier_env *env, int off)
783{
784 int insn_cnt = env->prog->len;
785 int ret;
786
787 if (off >= insn_cnt || off < 0) {
788 verbose(env, "call to invalid destination\n");
789 return -EINVAL;
790 }
791 ret = find_subprog(env, off);
792 if (ret >= 0)
793 return 0;
4cb3d99c 794 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
795 verbose(env, "too many subprograms\n");
796 return -E2BIG;
797 }
9c8105bd
JW
798 env->subprog_info[env->subprog_cnt++].start = off;
799 sort(env->subprog_info, env->subprog_cnt,
800 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
801 return 0;
802}
803
804static int check_subprogs(struct bpf_verifier_env *env)
805{
806 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 807 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
808 struct bpf_insn *insn = env->prog->insnsi;
809 int insn_cnt = env->prog->len;
810
f910cefa
JW
811 /* Add entry function. */
812 ret = add_subprog(env, 0);
813 if (ret < 0)
814 return ret;
815
cc8b0b92
AS
816 /* determine subprog starts. The end is one before the next starts */
817 for (i = 0; i < insn_cnt; i++) {
818 if (insn[i].code != (BPF_JMP | BPF_CALL))
819 continue;
820 if (insn[i].src_reg != BPF_PSEUDO_CALL)
821 continue;
822 if (!env->allow_ptr_leaks) {
823 verbose(env, "function calls to other bpf functions are allowed for root only\n");
824 return -EPERM;
825 }
826 if (bpf_prog_is_dev_bound(env->prog->aux)) {
e90004d5 827 verbose(env, "function calls in offloaded programs are not supported yet\n");
cc8b0b92
AS
828 return -EINVAL;
829 }
830 ret = add_subprog(env, i + insn[i].imm + 1);
831 if (ret < 0)
832 return ret;
833 }
834
4cb3d99c
JW
835 /* Add a fake 'exit' subprog which could simplify subprog iteration
836 * logic. 'subprog_cnt' should not be increased.
837 */
838 subprog[env->subprog_cnt].start = insn_cnt;
839
cc8b0b92
AS
840 if (env->log.level > 1)
841 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 842 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
843
844 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
845 subprog_start = subprog[cur_subprog].start;
846 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
847 for (i = 0; i < insn_cnt; i++) {
848 u8 code = insn[i].code;
849
850 if (BPF_CLASS(code) != BPF_JMP)
851 goto next;
852 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
853 goto next;
854 off = i + insn[i].off + 1;
855 if (off < subprog_start || off >= subprog_end) {
856 verbose(env, "jump out of range from insn %d to %d\n", i, off);
857 return -EINVAL;
858 }
859next:
860 if (i == subprog_end - 1) {
861 /* to avoid fall-through from one subprog into another
862 * the last insn of the subprog should be either exit
863 * or unconditional jump back
864 */
865 if (code != (BPF_JMP | BPF_EXIT) &&
866 code != (BPF_JMP | BPF_JA)) {
867 verbose(env, "last insn is not an exit or jmp\n");
868 return -EINVAL;
869 }
870 subprog_start = subprog_end;
4cb3d99c
JW
871 cur_subprog++;
872 if (cur_subprog < env->subprog_cnt)
9c8105bd 873 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
874 }
875 }
876 return 0;
877}
878
fa2d41ad 879static
f4d7e40a
AS
880struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
881 const struct bpf_verifier_state *state,
882 struct bpf_verifier_state *parent,
883 u32 regno)
dc503a8a 884{
f4d7e40a
AS
885 struct bpf_verifier_state *tmp = NULL;
886
887 /* 'parent' could be a state of caller and
888 * 'state' could be a state of callee. In such case
889 * parent->curframe < state->curframe
890 * and it's ok for r1 - r5 registers
891 *
892 * 'parent' could be a callee's state after it bpf_exit-ed.
893 * In such case parent->curframe > state->curframe
894 * and it's ok for r0 only
895 */
896 if (parent->curframe == state->curframe ||
897 (parent->curframe < state->curframe &&
898 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
899 (parent->curframe > state->curframe &&
900 regno == BPF_REG_0))
901 return parent;
902
903 if (parent->curframe > state->curframe &&
904 regno >= BPF_REG_6) {
905 /* for callee saved regs we have to skip the whole chain
906 * of states that belong to callee and mark as LIVE_READ
907 * the registers before the call
908 */
909 tmp = parent;
910 while (tmp && tmp->curframe != state->curframe) {
911 tmp = tmp->parent;
912 }
913 if (!tmp)
914 goto bug;
915 parent = tmp;
916 } else {
917 goto bug;
918 }
919 return parent;
920bug:
921 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
922 verbose(env, "regno %d parent frame %d current frame %d\n",
923 regno, parent->curframe, state->curframe);
fa2d41ad 924 return NULL;
f4d7e40a
AS
925}
926
927static int mark_reg_read(struct bpf_verifier_env *env,
928 const struct bpf_verifier_state *state,
929 struct bpf_verifier_state *parent,
930 u32 regno)
931{
932 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a 933
8fe2d6cc
AS
934 if (regno == BPF_REG_FP)
935 /* We don't need to worry about FP liveness because it's read-only */
f4d7e40a 936 return 0;
8fe2d6cc 937
dc503a8a
EC
938 while (parent) {
939 /* if read wasn't screened by an earlier write ... */
f4d7e40a 940 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
dc503a8a 941 break;
f4d7e40a
AS
942 parent = skip_callee(env, state, parent, regno);
943 if (!parent)
944 return -EFAULT;
dc503a8a 945 /* ... then we depend on parent's value */
f4d7e40a 946 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
dc503a8a
EC
947 state = parent;
948 parent = state->parent;
f4d7e40a 949 writes = true;
dc503a8a 950 }
f4d7e40a 951 return 0;
dc503a8a
EC
952}
953
954static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
955 enum reg_arg_type t)
956{
f4d7e40a
AS
957 struct bpf_verifier_state *vstate = env->cur_state;
958 struct bpf_func_state *state = vstate->frame[vstate->curframe];
959 struct bpf_reg_state *regs = state->regs;
dc503a8a 960
17a52670 961 if (regno >= MAX_BPF_REG) {
61bd5218 962 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
963 return -EINVAL;
964 }
965
966 if (t == SRC_OP) {
967 /* check whether register used as source operand can be read */
968 if (regs[regno].type == NOT_INIT) {
61bd5218 969 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
970 return -EACCES;
971 }
f4d7e40a 972 return mark_reg_read(env, vstate, vstate->parent, regno);
17a52670
AS
973 } else {
974 /* check whether register used as dest operand can be written to */
975 if (regno == BPF_REG_FP) {
61bd5218 976 verbose(env, "frame pointer is read only\n");
17a52670
AS
977 return -EACCES;
978 }
dc503a8a 979 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 980 if (t == DST_OP)
61bd5218 981 mark_reg_unknown(env, regs, regno);
17a52670
AS
982 }
983 return 0;
984}
985
1be7f75d
AS
986static bool is_spillable_regtype(enum bpf_reg_type type)
987{
988 switch (type) {
989 case PTR_TO_MAP_VALUE:
990 case PTR_TO_MAP_VALUE_OR_NULL:
991 case PTR_TO_STACK:
992 case PTR_TO_CTX:
969bf05e 993 case PTR_TO_PACKET:
de8f3a83 994 case PTR_TO_PACKET_META:
969bf05e 995 case PTR_TO_PACKET_END:
1be7f75d
AS
996 case CONST_PTR_TO_MAP:
997 return true;
998 default:
999 return false;
1000 }
1001}
1002
cc2b14d5
AS
1003/* Does this register contain a constant zero? */
1004static bool register_is_null(struct bpf_reg_state *reg)
1005{
1006 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1007}
1008
17a52670
AS
1009/* check_stack_read/write functions track spill/fill of registers,
1010 * stack boundary and alignment are checked in check_mem_access()
1011 */
61bd5218 1012static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1013 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1014 int off, int size, int value_regno, int insn_idx)
17a52670 1015{
f4d7e40a 1016 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1017 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1018 enum bpf_reg_type type;
638f5b90 1019
f4d7e40a
AS
1020 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1021 true);
638f5b90
AS
1022 if (err)
1023 return err;
9c399760
AS
1024 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1025 * so it's aligned access and [off, off + size) are within stack limits
1026 */
638f5b90
AS
1027 if (!env->allow_ptr_leaks &&
1028 state->stack[spi].slot_type[0] == STACK_SPILL &&
1029 size != BPF_REG_SIZE) {
1030 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1031 return -EACCES;
1032 }
17a52670 1033
f4d7e40a 1034 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1035 if (value_regno >= 0 &&
f4d7e40a 1036 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1037
1038 /* register containing pointer is being spilled into stack */
9c399760 1039 if (size != BPF_REG_SIZE) {
61bd5218 1040 verbose(env, "invalid size of register spill\n");
17a52670
AS
1041 return -EACCES;
1042 }
1043
f4d7e40a
AS
1044 if (state != cur && type == PTR_TO_STACK) {
1045 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1046 return -EINVAL;
1047 }
1048
17a52670 1049 /* save register state */
f4d7e40a 1050 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1051 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1052
af86ca4e
AS
1053 for (i = 0; i < BPF_REG_SIZE; i++) {
1054 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1055 !env->allow_ptr_leaks) {
1056 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1057 int soff = (-spi - 1) * BPF_REG_SIZE;
1058
1059 /* detected reuse of integer stack slot with a pointer
1060 * which means either llvm is reusing stack slot or
1061 * an attacker is trying to exploit CVE-2018-3639
1062 * (speculative store bypass)
1063 * Have to sanitize that slot with preemptive
1064 * store of zero.
1065 */
1066 if (*poff && *poff != soff) {
1067 /* disallow programs where single insn stores
1068 * into two different stack slots, since verifier
1069 * cannot sanitize them
1070 */
1071 verbose(env,
1072 "insn %d cannot access two stack slots fp%d and fp%d",
1073 insn_idx, *poff, soff);
1074 return -EINVAL;
1075 }
1076 *poff = soff;
1077 }
638f5b90 1078 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1079 }
9c399760 1080 } else {
cc2b14d5
AS
1081 u8 type = STACK_MISC;
1082
17a52670 1083 /* regular write of data into stack */
638f5b90 1084 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760 1085
cc2b14d5
AS
1086 /* only mark the slot as written if all 8 bytes were written
1087 * otherwise read propagation may incorrectly stop too soon
1088 * when stack slots are partially written.
1089 * This heuristic means that read propagation will be
1090 * conservative, since it will add reg_live_read marks
1091 * to stack slots all the way to first state when programs
1092 * writes+reads less than 8 bytes
1093 */
1094 if (size == BPF_REG_SIZE)
1095 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1096
1097 /* when we zero initialize stack slots mark them as such */
1098 if (value_regno >= 0 &&
1099 register_is_null(&cur->regs[value_regno]))
1100 type = STACK_ZERO;
1101
9c399760 1102 for (i = 0; i < size; i++)
638f5b90 1103 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1104 type;
17a52670
AS
1105 }
1106 return 0;
1107}
1108
f4d7e40a
AS
1109/* registers of every function are unique and mark_reg_read() propagates
1110 * the liveness in the following cases:
1111 * - from callee into caller for R1 - R5 that were used as arguments
1112 * - from caller into callee for R0 that used as result of the call
1113 * - from caller to the same caller skipping states of the callee for R6 - R9,
1114 * since R6 - R9 are callee saved by implicit function prologue and
1115 * caller's R6 != callee's R6, so when we propagate liveness up to
1116 * parent states we need to skip callee states for R6 - R9.
1117 *
1118 * stack slot marking is different, since stacks of caller and callee are
1119 * accessible in both (since caller can pass a pointer to caller's stack to
1120 * callee which can pass it to another function), hence mark_stack_slot_read()
1121 * has to propagate the stack liveness to all parent states at given frame number.
1122 * Consider code:
1123 * f1() {
1124 * ptr = fp - 8;
1125 * *ptr = ctx;
1126 * call f2 {
1127 * .. = *ptr;
1128 * }
1129 * .. = *ptr;
1130 * }
1131 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1132 * to mark liveness at the f1's frame and not f2's frame.
1133 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1134 * to propagate liveness to f2 states at f1's frame level and further into
1135 * f1 states at f1's frame level until write into that stack slot
1136 */
1137static void mark_stack_slot_read(struct bpf_verifier_env *env,
1138 const struct bpf_verifier_state *state,
1139 struct bpf_verifier_state *parent,
1140 int slot, int frameno)
dc503a8a 1141{
f4d7e40a 1142 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1143
1144 while (parent) {
cc2b14d5
AS
1145 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1146 /* since LIVE_WRITTEN mark is only done for full 8-byte
1147 * write the read marks are conservative and parent
1148 * state may not even have the stack allocated. In such case
1149 * end the propagation, since the loop reached beginning
1150 * of the function
1151 */
1152 break;
dc503a8a 1153 /* if read wasn't screened by an earlier write ... */
f4d7e40a 1154 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
1155 break;
1156 /* ... then we depend on parent's value */
f4d7e40a 1157 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
1158 state = parent;
1159 parent = state->parent;
f4d7e40a 1160 writes = true;
dc503a8a
EC
1161 }
1162}
1163
61bd5218 1164static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1165 struct bpf_func_state *reg_state /* func where register points to */,
1166 int off, int size, int value_regno)
17a52670 1167{
f4d7e40a
AS
1168 struct bpf_verifier_state *vstate = env->cur_state;
1169 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1170 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1171 u8 *stype;
17a52670 1172
f4d7e40a 1173 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1174 verbose(env, "invalid read from stack off %d+0 size %d\n",
1175 off, size);
1176 return -EACCES;
1177 }
f4d7e40a 1178 stype = reg_state->stack[spi].slot_type;
17a52670 1179
638f5b90 1180 if (stype[0] == STACK_SPILL) {
9c399760 1181 if (size != BPF_REG_SIZE) {
61bd5218 1182 verbose(env, "invalid size of register spill\n");
17a52670
AS
1183 return -EACCES;
1184 }
9c399760 1185 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1186 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1187 verbose(env, "corrupted spill memory\n");
17a52670
AS
1188 return -EACCES;
1189 }
1190 }
1191
dc503a8a 1192 if (value_regno >= 0) {
17a52670 1193 /* restore register state from stack */
f4d7e40a 1194 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1195 /* mark reg as written since spilled pointer state likely
1196 * has its liveness marks cleared by is_state_visited()
1197 * which resets stack/reg liveness for state transitions
1198 */
1199 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1200 }
cc2b14d5
AS
1201 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1202 reg_state->frameno);
17a52670
AS
1203 return 0;
1204 } else {
cc2b14d5
AS
1205 int zeros = 0;
1206
17a52670 1207 for (i = 0; i < size; i++) {
cc2b14d5
AS
1208 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1209 continue;
1210 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1211 zeros++;
1212 continue;
17a52670 1213 }
cc2b14d5
AS
1214 verbose(env, "invalid read from stack off %d+%d size %d\n",
1215 off, i, size);
1216 return -EACCES;
1217 }
1218 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1219 reg_state->frameno);
1220 if (value_regno >= 0) {
1221 if (zeros == size) {
1222 /* any size read into register is zero extended,
1223 * so the whole register == const_zero
1224 */
1225 __mark_reg_const_zero(&state->regs[value_regno]);
1226 } else {
1227 /* have read misc data from the stack */
1228 mark_reg_unknown(env, state->regs, value_regno);
1229 }
1230 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1231 }
17a52670
AS
1232 return 0;
1233 }
1234}
1235
1236/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1237static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1238 int size, bool zero_size_allowed)
17a52670 1239{
638f5b90
AS
1240 struct bpf_reg_state *regs = cur_regs(env);
1241 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1242
9fd29c08
YS
1243 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1244 off + size > map->value_size) {
61bd5218 1245 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1246 map->value_size, off, size);
1247 return -EACCES;
1248 }
1249 return 0;
1250}
1251
f1174f77
EC
1252/* check read/write into a map element with possible variable offset */
1253static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1254 int off, int size, bool zero_size_allowed)
dbcfe5f7 1255{
f4d7e40a
AS
1256 struct bpf_verifier_state *vstate = env->cur_state;
1257 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1258 struct bpf_reg_state *reg = &state->regs[regno];
1259 int err;
1260
f1174f77
EC
1261 /* We may have adjusted the register to this map value, so we
1262 * need to try adding each of min_value and max_value to off
1263 * to make sure our theoretical access will be safe.
dbcfe5f7 1264 */
61bd5218
JK
1265 if (env->log.level)
1266 print_verifier_state(env, state);
dbcfe5f7
GB
1267 /* The minimum value is only important with signed
1268 * comparisons where we can't assume the floor of a
1269 * value is 0. If we are using signed variables for our
1270 * index'es we need to make sure that whatever we use
1271 * will have a set floor within our range.
1272 */
b03c9f9f 1273 if (reg->smin_value < 0) {
61bd5218 1274 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1275 regno);
1276 return -EACCES;
1277 }
9fd29c08
YS
1278 err = __check_map_access(env, regno, reg->smin_value + off, size,
1279 zero_size_allowed);
dbcfe5f7 1280 if (err) {
61bd5218
JK
1281 verbose(env, "R%d min value is outside of the array range\n",
1282 regno);
dbcfe5f7
GB
1283 return err;
1284 }
1285
b03c9f9f
EC
1286 /* If we haven't set a max value then we need to bail since we can't be
1287 * sure we won't do bad things.
1288 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1289 */
b03c9f9f 1290 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1291 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1292 regno);
1293 return -EACCES;
1294 }
9fd29c08
YS
1295 err = __check_map_access(env, regno, reg->umax_value + off, size,
1296 zero_size_allowed);
f1174f77 1297 if (err)
61bd5218
JK
1298 verbose(env, "R%d max value is outside of the array range\n",
1299 regno);
f1174f77 1300 return err;
dbcfe5f7
GB
1301}
1302
969bf05e
AS
1303#define MAX_PACKET_OFF 0xffff
1304
58e2af8b 1305static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1306 const struct bpf_call_arg_meta *meta,
1307 enum bpf_access_type t)
4acf6c0b 1308{
36bbef52 1309 switch (env->prog->type) {
3a0af8fd
TG
1310 case BPF_PROG_TYPE_LWT_IN:
1311 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1312 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3a0af8fd
TG
1313 /* dst_input() and dst_output() can't write for now */
1314 if (t == BPF_WRITE)
1315 return false;
7e57fbb2 1316 /* fallthrough */
36bbef52
DB
1317 case BPF_PROG_TYPE_SCHED_CLS:
1318 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1319 case BPF_PROG_TYPE_XDP:
3a0af8fd 1320 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1321 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1322 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1323 if (meta)
1324 return meta->pkt_access;
1325
1326 env->seen_direct_write = true;
4acf6c0b
BB
1327 return true;
1328 default:
1329 return false;
1330 }
1331}
1332
f1174f77 1333static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1334 int off, int size, bool zero_size_allowed)
969bf05e 1335{
638f5b90 1336 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1337 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1338
9fd29c08
YS
1339 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1340 (u64)off + size > reg->range) {
61bd5218 1341 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1342 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1343 return -EACCES;
1344 }
1345 return 0;
1346}
1347
f1174f77 1348static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1349 int size, bool zero_size_allowed)
f1174f77 1350{
638f5b90 1351 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1352 struct bpf_reg_state *reg = &regs[regno];
1353 int err;
1354
1355 /* We may have added a variable offset to the packet pointer; but any
1356 * reg->range we have comes after that. We are only checking the fixed
1357 * offset.
1358 */
1359
1360 /* We don't allow negative numbers, because we aren't tracking enough
1361 * detail to prove they're safe.
1362 */
b03c9f9f 1363 if (reg->smin_value < 0) {
61bd5218 1364 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1365 regno);
1366 return -EACCES;
1367 }
9fd29c08 1368 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1369 if (err) {
61bd5218 1370 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1371 return err;
1372 }
1373 return err;
1374}
1375
1376/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1377static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1378 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1379{
f96da094
DB
1380 struct bpf_insn_access_aux info = {
1381 .reg_type = *reg_type,
1382 };
31fd8581 1383
4f9218aa 1384 if (env->ops->is_valid_access &&
5e43f899 1385 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1386 /* A non zero info.ctx_field_size indicates that this field is a
1387 * candidate for later verifier transformation to load the whole
1388 * field and then apply a mask when accessed with a narrower
1389 * access than actual ctx access size. A zero info.ctx_field_size
1390 * will only allow for whole field access and rejects any other
1391 * type of narrower access.
31fd8581 1392 */
23994631 1393 *reg_type = info.reg_type;
31fd8581 1394
4f9218aa 1395 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1396 /* remember the offset of last byte accessed in ctx */
1397 if (env->prog->aux->max_ctx_offset < off + size)
1398 env->prog->aux->max_ctx_offset = off + size;
17a52670 1399 return 0;
32bbe007 1400 }
17a52670 1401
61bd5218 1402 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1403 return -EACCES;
1404}
1405
4cabc5b1
DB
1406static bool __is_pointer_value(bool allow_ptr_leaks,
1407 const struct bpf_reg_state *reg)
1be7f75d 1408{
4cabc5b1 1409 if (allow_ptr_leaks)
1be7f75d
AS
1410 return false;
1411
f1174f77 1412 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1413}
1414
4cabc5b1
DB
1415static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1416{
638f5b90 1417 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1418}
1419
f37a8cb8
DB
1420static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1421{
1422 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1423
1424 return reg->type == PTR_TO_CTX;
1425}
1426
ca369602
DB
1427static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1428{
1429 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1430
1431 return type_is_pkt_pointer(reg->type);
1432}
1433
61bd5218
JK
1434static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1435 const struct bpf_reg_state *reg,
d1174416 1436 int off, int size, bool strict)
969bf05e 1437{
f1174f77 1438 struct tnum reg_off;
e07b98d9 1439 int ip_align;
d1174416
DM
1440
1441 /* Byte size accesses are always allowed. */
1442 if (!strict || size == 1)
1443 return 0;
1444
e4eda884
DM
1445 /* For platforms that do not have a Kconfig enabling
1446 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1447 * NET_IP_ALIGN is universally set to '2'. And on platforms
1448 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1449 * to this code only in strict mode where we want to emulate
1450 * the NET_IP_ALIGN==2 checking. Therefore use an
1451 * unconditional IP align value of '2'.
e07b98d9 1452 */
e4eda884 1453 ip_align = 2;
f1174f77
EC
1454
1455 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1456 if (!tnum_is_aligned(reg_off, size)) {
1457 char tn_buf[48];
1458
1459 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1460 verbose(env,
1461 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1462 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1463 return -EACCES;
1464 }
79adffcd 1465
969bf05e
AS
1466 return 0;
1467}
1468
61bd5218
JK
1469static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1470 const struct bpf_reg_state *reg,
f1174f77
EC
1471 const char *pointer_desc,
1472 int off, int size, bool strict)
79adffcd 1473{
f1174f77
EC
1474 struct tnum reg_off;
1475
1476 /* Byte size accesses are always allowed. */
1477 if (!strict || size == 1)
1478 return 0;
1479
1480 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1481 if (!tnum_is_aligned(reg_off, size)) {
1482 char tn_buf[48];
1483
1484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1485 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1486 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1487 return -EACCES;
1488 }
1489
969bf05e
AS
1490 return 0;
1491}
1492
e07b98d9 1493static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1494 const struct bpf_reg_state *reg, int off,
1495 int size, bool strict_alignment_once)
79adffcd 1496{
ca369602 1497 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1498 const char *pointer_desc = "";
d1174416 1499
79adffcd
DB
1500 switch (reg->type) {
1501 case PTR_TO_PACKET:
de8f3a83
DB
1502 case PTR_TO_PACKET_META:
1503 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1504 * right in front, treat it the very same way.
1505 */
61bd5218 1506 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1507 case PTR_TO_MAP_VALUE:
1508 pointer_desc = "value ";
1509 break;
1510 case PTR_TO_CTX:
1511 pointer_desc = "context ";
1512 break;
1513 case PTR_TO_STACK:
1514 pointer_desc = "stack ";
a5ec6ae1
JH
1515 /* The stack spill tracking logic in check_stack_write()
1516 * and check_stack_read() relies on stack accesses being
1517 * aligned.
1518 */
1519 strict = true;
f1174f77 1520 break;
79adffcd 1521 default:
f1174f77 1522 break;
79adffcd 1523 }
61bd5218
JK
1524 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1525 strict);
79adffcd
DB
1526}
1527
f4d7e40a
AS
1528static int update_stack_depth(struct bpf_verifier_env *env,
1529 const struct bpf_func_state *func,
1530 int off)
1531{
9c8105bd 1532 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1533
1534 if (stack >= -off)
1535 return 0;
1536
1537 /* update known max for given subprogram */
9c8105bd 1538 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1539 return 0;
1540}
f4d7e40a 1541
70a87ffe
AS
1542/* starting from main bpf function walk all instructions of the function
1543 * and recursively walk all callees that given function can call.
1544 * Ignore jump and exit insns.
1545 * Since recursion is prevented by check_cfg() this algorithm
1546 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1547 */
1548static int check_max_stack_depth(struct bpf_verifier_env *env)
1549{
9c8105bd
JW
1550 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1551 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1552 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1553 int ret_insn[MAX_CALL_FRAMES];
1554 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1555
70a87ffe
AS
1556process_func:
1557 /* round up to 32-bytes, since this is granularity
1558 * of interpreter stack size
1559 */
9c8105bd 1560 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1561 if (depth > MAX_BPF_STACK) {
f4d7e40a 1562 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1563 frame + 1, depth);
f4d7e40a
AS
1564 return -EACCES;
1565 }
70a87ffe 1566continue_func:
4cb3d99c 1567 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1568 for (; i < subprog_end; i++) {
1569 if (insn[i].code != (BPF_JMP | BPF_CALL))
1570 continue;
1571 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1572 continue;
1573 /* remember insn and function to return to */
1574 ret_insn[frame] = i + 1;
9c8105bd 1575 ret_prog[frame] = idx;
70a87ffe
AS
1576
1577 /* find the callee */
1578 i = i + insn[i].imm + 1;
9c8105bd
JW
1579 idx = find_subprog(env, i);
1580 if (idx < 0) {
70a87ffe
AS
1581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1582 i);
1583 return -EFAULT;
1584 }
70a87ffe
AS
1585 frame++;
1586 if (frame >= MAX_CALL_FRAMES) {
1587 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1588 return -EFAULT;
1589 }
1590 goto process_func;
1591 }
1592 /* end of for() loop means the last insn of the 'subprog'
1593 * was reached. Doesn't matter whether it was JA or EXIT
1594 */
1595 if (frame == 0)
1596 return 0;
9c8105bd 1597 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1598 frame--;
1599 i = ret_insn[frame];
9c8105bd 1600 idx = ret_prog[frame];
70a87ffe 1601 goto continue_func;
f4d7e40a
AS
1602}
1603
19d28fbd 1604#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1605static int get_callee_stack_depth(struct bpf_verifier_env *env,
1606 const struct bpf_insn *insn, int idx)
1607{
1608 int start = idx + insn->imm + 1, subprog;
1609
1610 subprog = find_subprog(env, start);
1611 if (subprog < 0) {
1612 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1613 start);
1614 return -EFAULT;
1615 }
9c8105bd 1616 return env->subprog_info[subprog].stack_depth;
1ea47e01 1617}
19d28fbd 1618#endif
1ea47e01 1619
58990d1f
DB
1620static int check_ctx_reg(struct bpf_verifier_env *env,
1621 const struct bpf_reg_state *reg, int regno)
1622{
1623 /* Access to ctx or passing it to a helper is only allowed in
1624 * its original, unmodified form.
1625 */
1626
1627 if (reg->off) {
1628 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1629 regno, reg->off);
1630 return -EACCES;
1631 }
1632
1633 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1634 char tn_buf[48];
1635
1636 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1637 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1638 return -EACCES;
1639 }
1640
1641 return 0;
1642}
1643
0c17d1d2
JH
1644/* truncate register to smaller size (in bytes)
1645 * must be called with size < BPF_REG_SIZE
1646 */
1647static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1648{
1649 u64 mask;
1650
1651 /* clear high bits in bit representation */
1652 reg->var_off = tnum_cast(reg->var_off, size);
1653
1654 /* fix arithmetic bounds */
1655 mask = ((u64)1 << (size * 8)) - 1;
1656 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1657 reg->umin_value &= mask;
1658 reg->umax_value &= mask;
1659 } else {
1660 reg->umin_value = 0;
1661 reg->umax_value = mask;
1662 }
1663 reg->smin_value = reg->umin_value;
1664 reg->smax_value = reg->umax_value;
1665}
1666
17a52670
AS
1667/* check whether memory at (regno + off) is accessible for t = (read | write)
1668 * if t==write, value_regno is a register which value is stored into memory
1669 * if t==read, value_regno is a register which will receive the value from memory
1670 * if t==write && value_regno==-1, some unknown value is stored into memory
1671 * if t==read && value_regno==-1, don't care what we read from memory
1672 */
ca369602
DB
1673static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1674 int off, int bpf_size, enum bpf_access_type t,
1675 int value_regno, bool strict_alignment_once)
17a52670 1676{
638f5b90
AS
1677 struct bpf_reg_state *regs = cur_regs(env);
1678 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1679 struct bpf_func_state *state;
17a52670
AS
1680 int size, err = 0;
1681
1682 size = bpf_size_to_bytes(bpf_size);
1683 if (size < 0)
1684 return size;
1685
f1174f77 1686 /* alignment checks will add in reg->off themselves */
ca369602 1687 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1688 if (err)
1689 return err;
17a52670 1690
f1174f77
EC
1691 /* for access checks, reg->off is just part of off */
1692 off += reg->off;
1693
1694 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1695 if (t == BPF_WRITE && value_regno >= 0 &&
1696 is_pointer_value(env, value_regno)) {
61bd5218 1697 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1698 return -EACCES;
1699 }
48461135 1700
9fd29c08 1701 err = check_map_access(env, regno, off, size, false);
17a52670 1702 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1703 mark_reg_unknown(env, regs, value_regno);
17a52670 1704
1a0dc1ac 1705 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1706 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1707
1be7f75d
AS
1708 if (t == BPF_WRITE && value_regno >= 0 &&
1709 is_pointer_value(env, value_regno)) {
61bd5218 1710 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1711 return -EACCES;
1712 }
f1174f77 1713
58990d1f
DB
1714 err = check_ctx_reg(env, reg, regno);
1715 if (err < 0)
1716 return err;
1717
31fd8581 1718 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1719 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1720 /* ctx access returns either a scalar, or a
de8f3a83
DB
1721 * PTR_TO_PACKET[_META,_END]. In the latter
1722 * case, we know the offset is zero.
f1174f77
EC
1723 */
1724 if (reg_type == SCALAR_VALUE)
638f5b90 1725 mark_reg_unknown(env, regs, value_regno);
f1174f77 1726 else
638f5b90 1727 mark_reg_known_zero(env, regs,
61bd5218 1728 value_regno);
638f5b90
AS
1729 regs[value_regno].id = 0;
1730 regs[value_regno].off = 0;
1731 regs[value_regno].range = 0;
1732 regs[value_regno].type = reg_type;
969bf05e 1733 }
17a52670 1734
f1174f77
EC
1735 } else if (reg->type == PTR_TO_STACK) {
1736 /* stack accesses must be at a fixed offset, so that we can
1737 * determine what type of data were returned.
1738 * See check_stack_read().
1739 */
1740 if (!tnum_is_const(reg->var_off)) {
1741 char tn_buf[48];
1742
1743 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1744 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1745 tn_buf, off, size);
1746 return -EACCES;
1747 }
1748 off += reg->var_off.value;
17a52670 1749 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1750 verbose(env, "invalid stack off=%d size=%d\n", off,
1751 size);
17a52670
AS
1752 return -EACCES;
1753 }
8726679a 1754
f4d7e40a
AS
1755 state = func(env, reg);
1756 err = update_stack_depth(env, state, off);
1757 if (err)
1758 return err;
8726679a 1759
638f5b90 1760 if (t == BPF_WRITE)
61bd5218 1761 err = check_stack_write(env, state, off, size,
af86ca4e 1762 value_regno, insn_idx);
638f5b90 1763 else
61bd5218
JK
1764 err = check_stack_read(env, state, off, size,
1765 value_regno);
de8f3a83 1766 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1767 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1768 verbose(env, "cannot write into packet\n");
969bf05e
AS
1769 return -EACCES;
1770 }
4acf6c0b
BB
1771 if (t == BPF_WRITE && value_regno >= 0 &&
1772 is_pointer_value(env, value_regno)) {
61bd5218
JK
1773 verbose(env, "R%d leaks addr into packet\n",
1774 value_regno);
4acf6c0b
BB
1775 return -EACCES;
1776 }
9fd29c08 1777 err = check_packet_access(env, regno, off, size, false);
969bf05e 1778 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1779 mark_reg_unknown(env, regs, value_regno);
17a52670 1780 } else {
61bd5218
JK
1781 verbose(env, "R%d invalid mem access '%s'\n", regno,
1782 reg_type_str[reg->type]);
17a52670
AS
1783 return -EACCES;
1784 }
969bf05e 1785
f1174f77 1786 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1787 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1788 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1789 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1790 }
17a52670
AS
1791 return err;
1792}
1793
31fd8581 1794static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1795{
17a52670
AS
1796 int err;
1797
1798 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1799 insn->imm != 0) {
61bd5218 1800 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1801 return -EINVAL;
1802 }
1803
1804 /* check src1 operand */
dc503a8a 1805 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1806 if (err)
1807 return err;
1808
1809 /* check src2 operand */
dc503a8a 1810 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1811 if (err)
1812 return err;
1813
6bdf6abc 1814 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1815 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1816 return -EACCES;
1817 }
1818
ca369602
DB
1819 if (is_ctx_reg(env, insn->dst_reg) ||
1820 is_pkt_reg(env, insn->dst_reg)) {
1821 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1822 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1823 "context" : "packet");
f37a8cb8
DB
1824 return -EACCES;
1825 }
1826
17a52670 1827 /* check whether atomic_add can read the memory */
31fd8581 1828 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1829 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1830 if (err)
1831 return err;
1832
1833 /* check whether atomic_add can write into the same memory */
31fd8581 1834 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1835 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1836}
1837
1838/* when register 'regno' is passed into function that will read 'access_size'
1839 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1840 * and all elements of stack are initialized.
1841 * Unlike most pointer bounds-checking functions, this one doesn't take an
1842 * 'off' argument, so it has to add in reg->off itself.
17a52670 1843 */
58e2af8b 1844static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1845 int access_size, bool zero_size_allowed,
1846 struct bpf_call_arg_meta *meta)
17a52670 1847{
914cb781 1848 struct bpf_reg_state *reg = cur_regs(env) + regno;
f4d7e40a 1849 struct bpf_func_state *state = func(env, reg);
638f5b90 1850 int off, i, slot, spi;
17a52670 1851
914cb781 1852 if (reg->type != PTR_TO_STACK) {
f1174f77 1853 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1854 if (zero_size_allowed && access_size == 0 &&
914cb781 1855 register_is_null(reg))
8e2fe1d9
DB
1856 return 0;
1857
61bd5218 1858 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 1859 reg_type_str[reg->type],
8e2fe1d9 1860 reg_type_str[PTR_TO_STACK]);
17a52670 1861 return -EACCES;
8e2fe1d9 1862 }
17a52670 1863
f1174f77 1864 /* Only allow fixed-offset stack reads */
914cb781 1865 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
1866 char tn_buf[48];
1867
914cb781 1868 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1869 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1870 regno, tn_buf);
ea25f914 1871 return -EACCES;
f1174f77 1872 }
914cb781 1873 off = reg->off + reg->var_off.value;
17a52670 1874 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1875 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1876 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1877 regno, off, access_size);
1878 return -EACCES;
1879 }
1880
435faee1
DB
1881 if (meta && meta->raw_mode) {
1882 meta->access_size = access_size;
1883 meta->regno = regno;
1884 return 0;
1885 }
1886
17a52670 1887 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
1888 u8 *stype;
1889
638f5b90
AS
1890 slot = -(off + i) - 1;
1891 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
1892 if (state->allocated_stack <= slot)
1893 goto err;
1894 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1895 if (*stype == STACK_MISC)
1896 goto mark;
1897 if (*stype == STACK_ZERO) {
1898 /* helper can write anything into the stack */
1899 *stype = STACK_MISC;
1900 goto mark;
17a52670 1901 }
cc2b14d5
AS
1902err:
1903 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1904 off, i, access_size);
1905 return -EACCES;
1906mark:
1907 /* reading any byte out of 8-byte 'spill_slot' will cause
1908 * the whole slot to be marked as 'read'
1909 */
1910 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1911 spi, state->frameno);
17a52670 1912 }
f4d7e40a 1913 return update_stack_depth(env, state, off);
17a52670
AS
1914}
1915
06c1c049
GB
1916static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1917 int access_size, bool zero_size_allowed,
1918 struct bpf_call_arg_meta *meta)
1919{
638f5b90 1920 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1921
f1174f77 1922 switch (reg->type) {
06c1c049 1923 case PTR_TO_PACKET:
de8f3a83 1924 case PTR_TO_PACKET_META:
9fd29c08
YS
1925 return check_packet_access(env, regno, reg->off, access_size,
1926 zero_size_allowed);
06c1c049 1927 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1928 return check_map_access(env, regno, reg->off, access_size,
1929 zero_size_allowed);
f1174f77 1930 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1931 return check_stack_boundary(env, regno, access_size,
1932 zero_size_allowed, meta);
1933 }
1934}
1935
90133415
DB
1936static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1937{
1938 return type == ARG_PTR_TO_MEM ||
1939 type == ARG_PTR_TO_MEM_OR_NULL ||
1940 type == ARG_PTR_TO_UNINIT_MEM;
1941}
1942
1943static bool arg_type_is_mem_size(enum bpf_arg_type type)
1944{
1945 return type == ARG_CONST_SIZE ||
1946 type == ARG_CONST_SIZE_OR_ZERO;
1947}
1948
58e2af8b 1949static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1950 enum bpf_arg_type arg_type,
1951 struct bpf_call_arg_meta *meta)
17a52670 1952{
638f5b90 1953 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1954 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1955 int err = 0;
1956
80f1d68c 1957 if (arg_type == ARG_DONTCARE)
17a52670
AS
1958 return 0;
1959
dc503a8a
EC
1960 err = check_reg_arg(env, regno, SRC_OP);
1961 if (err)
1962 return err;
17a52670 1963
1be7f75d
AS
1964 if (arg_type == ARG_ANYTHING) {
1965 if (is_pointer_value(env, regno)) {
61bd5218
JK
1966 verbose(env, "R%d leaks addr into helper function\n",
1967 regno);
1be7f75d
AS
1968 return -EACCES;
1969 }
80f1d68c 1970 return 0;
1be7f75d 1971 }
80f1d68c 1972
de8f3a83 1973 if (type_is_pkt_pointer(type) &&
3a0af8fd 1974 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1975 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1976 return -EACCES;
1977 }
1978
8e2fe1d9 1979 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1980 arg_type == ARG_PTR_TO_MAP_VALUE) {
1981 expected_type = PTR_TO_STACK;
d71962f3 1982 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 1983 type != expected_type)
6841de8b 1984 goto err_type;
39f19ebb
AS
1985 } else if (arg_type == ARG_CONST_SIZE ||
1986 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1987 expected_type = SCALAR_VALUE;
1988 if (type != expected_type)
6841de8b 1989 goto err_type;
17a52670
AS
1990 } else if (arg_type == ARG_CONST_MAP_PTR) {
1991 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1992 if (type != expected_type)
1993 goto err_type;
608cd71a
AS
1994 } else if (arg_type == ARG_PTR_TO_CTX) {
1995 expected_type = PTR_TO_CTX;
6841de8b
AS
1996 if (type != expected_type)
1997 goto err_type;
58990d1f
DB
1998 err = check_ctx_reg(env, reg, regno);
1999 if (err < 0)
2000 return err;
90133415 2001 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2002 expected_type = PTR_TO_STACK;
2003 /* One exception here. In case function allows for NULL to be
f1174f77 2004 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2005 * happens during stack boundary checking.
2006 */
914cb781 2007 if (register_is_null(reg) &&
db1ac496 2008 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2009 /* final test in check_stack_boundary() */;
de8f3a83
DB
2010 else if (!type_is_pkt_pointer(type) &&
2011 type != PTR_TO_MAP_VALUE &&
f1174f77 2012 type != expected_type)
6841de8b 2013 goto err_type;
39f19ebb 2014 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2015 } else {
61bd5218 2016 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2017 return -EFAULT;
2018 }
2019
17a52670
AS
2020 if (arg_type == ARG_CONST_MAP_PTR) {
2021 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2022 meta->map_ptr = reg->map_ptr;
17a52670
AS
2023 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2024 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2025 * check that [key, key + map->key_size) are within
2026 * stack limits and initialized
2027 */
33ff9823 2028 if (!meta->map_ptr) {
17a52670
AS
2029 /* in function declaration map_ptr must come before
2030 * map_key, so that it's verified and known before
2031 * we have to check map_key here. Otherwise it means
2032 * that kernel subsystem misconfigured verifier
2033 */
61bd5218 2034 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2035 return -EACCES;
2036 }
d71962f3
PC
2037 err = check_helper_mem_access(env, regno,
2038 meta->map_ptr->key_size, false,
2039 NULL);
17a52670
AS
2040 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2041 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2042 * check [value, value + map->value_size) validity
2043 */
33ff9823 2044 if (!meta->map_ptr) {
17a52670 2045 /* kernel subsystem misconfigured verifier */
61bd5218 2046 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2047 return -EACCES;
2048 }
d71962f3
PC
2049 err = check_helper_mem_access(env, regno,
2050 meta->map_ptr->value_size, false,
2051 NULL);
90133415 2052 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2053 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2054
849fa506
YS
2055 /* remember the mem_size which may be used later
2056 * to refine return values.
2057 */
2058 meta->msize_smax_value = reg->smax_value;
2059 meta->msize_umax_value = reg->umax_value;
2060
f1174f77
EC
2061 /* The register is SCALAR_VALUE; the access check
2062 * happens using its boundaries.
06c1c049 2063 */
f1174f77 2064 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2065 /* For unprivileged variable accesses, disable raw
2066 * mode so that the program is required to
2067 * initialize all the memory that the helper could
2068 * just partially fill up.
2069 */
2070 meta = NULL;
2071
b03c9f9f 2072 if (reg->smin_value < 0) {
61bd5218 2073 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2074 regno);
2075 return -EACCES;
2076 }
06c1c049 2077
b03c9f9f 2078 if (reg->umin_value == 0) {
f1174f77
EC
2079 err = check_helper_mem_access(env, regno - 1, 0,
2080 zero_size_allowed,
2081 meta);
06c1c049
GB
2082 if (err)
2083 return err;
06c1c049 2084 }
f1174f77 2085
b03c9f9f 2086 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2087 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2088 regno);
2089 return -EACCES;
2090 }
2091 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2092 reg->umax_value,
f1174f77 2093 zero_size_allowed, meta);
17a52670
AS
2094 }
2095
2096 return err;
6841de8b 2097err_type:
61bd5218 2098 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2099 reg_type_str[type], reg_type_str[expected_type]);
2100 return -EACCES;
17a52670
AS
2101}
2102
61bd5218
JK
2103static int check_map_func_compatibility(struct bpf_verifier_env *env,
2104 struct bpf_map *map, int func_id)
35578d79 2105{
35578d79
KX
2106 if (!map)
2107 return 0;
2108
6aff67c8
AS
2109 /* We need a two way check, first is from map perspective ... */
2110 switch (map->map_type) {
2111 case BPF_MAP_TYPE_PROG_ARRAY:
2112 if (func_id != BPF_FUNC_tail_call)
2113 goto error;
2114 break;
2115 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2116 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2117 func_id != BPF_FUNC_perf_event_output &&
2118 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2119 goto error;
2120 break;
2121 case BPF_MAP_TYPE_STACK_TRACE:
2122 if (func_id != BPF_FUNC_get_stackid)
2123 goto error;
2124 break;
4ed8ec52 2125 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2126 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2127 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2128 goto error;
2129 break;
546ac1ff
JF
2130 /* devmap returns a pointer to a live net_device ifindex that we cannot
2131 * allow to be modified from bpf side. So do not allow lookup elements
2132 * for now.
2133 */
2134 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2135 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2136 goto error;
2137 break;
fbfc504a
BT
2138 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2139 * appear.
2140 */
6710e112 2141 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2142 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2143 if (func_id != BPF_FUNC_redirect_map)
2144 goto error;
2145 break;
56f668df 2146 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2147 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2148 if (func_id != BPF_FUNC_map_lookup_elem)
2149 goto error;
16a43625 2150 break;
174a79ff
JF
2151 case BPF_MAP_TYPE_SOCKMAP:
2152 if (func_id != BPF_FUNC_sk_redirect_map &&
2153 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2154 func_id != BPF_FUNC_map_delete_elem &&
2155 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2156 goto error;
2157 break;
81110384
JF
2158 case BPF_MAP_TYPE_SOCKHASH:
2159 if (func_id != BPF_FUNC_sk_redirect_hash &&
2160 func_id != BPF_FUNC_sock_hash_update &&
2161 func_id != BPF_FUNC_map_delete_elem &&
2162 func_id != BPF_FUNC_msg_redirect_hash)
2163 goto error;
2164 break;
6aff67c8
AS
2165 default:
2166 break;
2167 }
2168
2169 /* ... and second from the function itself. */
2170 switch (func_id) {
2171 case BPF_FUNC_tail_call:
2172 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2173 goto error;
f910cefa 2174 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2175 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2176 return -EINVAL;
2177 }
6aff67c8
AS
2178 break;
2179 case BPF_FUNC_perf_event_read:
2180 case BPF_FUNC_perf_event_output:
908432ca 2181 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2182 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2183 goto error;
2184 break;
2185 case BPF_FUNC_get_stackid:
2186 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2187 goto error;
2188 break;
60d20f91 2189 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2190 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2191 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2192 goto error;
2193 break;
97f91a7c 2194 case BPF_FUNC_redirect_map:
9c270af3 2195 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2196 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2197 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2198 goto error;
2199 break;
174a79ff 2200 case BPF_FUNC_sk_redirect_map:
4f738adb 2201 case BPF_FUNC_msg_redirect_map:
81110384 2202 case BPF_FUNC_sock_map_update:
174a79ff
JF
2203 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2204 goto error;
2205 break;
81110384
JF
2206 case BPF_FUNC_sk_redirect_hash:
2207 case BPF_FUNC_msg_redirect_hash:
2208 case BPF_FUNC_sock_hash_update:
2209 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2210 goto error;
2211 break;
6aff67c8
AS
2212 default:
2213 break;
35578d79
KX
2214 }
2215
2216 return 0;
6aff67c8 2217error:
61bd5218 2218 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2219 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2220 return -EINVAL;
35578d79
KX
2221}
2222
90133415 2223static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2224{
2225 int count = 0;
2226
39f19ebb 2227 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2228 count++;
39f19ebb 2229 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2230 count++;
39f19ebb 2231 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2232 count++;
39f19ebb 2233 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2234 count++;
39f19ebb 2235 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2236 count++;
2237
90133415
DB
2238 /* We only support one arg being in raw mode at the moment,
2239 * which is sufficient for the helper functions we have
2240 * right now.
2241 */
2242 return count <= 1;
2243}
2244
2245static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2246 enum bpf_arg_type arg_next)
2247{
2248 return (arg_type_is_mem_ptr(arg_curr) &&
2249 !arg_type_is_mem_size(arg_next)) ||
2250 (!arg_type_is_mem_ptr(arg_curr) &&
2251 arg_type_is_mem_size(arg_next));
2252}
2253
2254static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2255{
2256 /* bpf_xxx(..., buf, len) call will access 'len'
2257 * bytes from memory 'buf'. Both arg types need
2258 * to be paired, so make sure there's no buggy
2259 * helper function specification.
2260 */
2261 if (arg_type_is_mem_size(fn->arg1_type) ||
2262 arg_type_is_mem_ptr(fn->arg5_type) ||
2263 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2264 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2265 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2266 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2267 return false;
2268
2269 return true;
2270}
2271
2272static int check_func_proto(const struct bpf_func_proto *fn)
2273{
2274 return check_raw_mode_ok(fn) &&
2275 check_arg_pair_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2276}
2277
de8f3a83
DB
2278/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2279 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2280 */
f4d7e40a
AS
2281static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2282 struct bpf_func_state *state)
969bf05e 2283{
58e2af8b 2284 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2285 int i;
2286
2287 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2288 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2289 mark_reg_unknown(env, regs, i);
969bf05e 2290
638f5b90
AS
2291 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2292 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2293 continue;
638f5b90 2294 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
2295 if (reg_is_pkt_pointer_any(reg))
2296 __mark_reg_unknown(reg);
969bf05e
AS
2297 }
2298}
2299
f4d7e40a
AS
2300static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2301{
2302 struct bpf_verifier_state *vstate = env->cur_state;
2303 int i;
2304
2305 for (i = 0; i <= vstate->curframe; i++)
2306 __clear_all_pkt_pointers(env, vstate->frame[i]);
2307}
2308
2309static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2310 int *insn_idx)
2311{
2312 struct bpf_verifier_state *state = env->cur_state;
2313 struct bpf_func_state *caller, *callee;
2314 int i, subprog, target_insn;
2315
aada9ce6 2316 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2317 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2318 state->curframe + 2);
f4d7e40a
AS
2319 return -E2BIG;
2320 }
2321
2322 target_insn = *insn_idx + insn->imm;
2323 subprog = find_subprog(env, target_insn + 1);
2324 if (subprog < 0) {
2325 verbose(env, "verifier bug. No program starts at insn %d\n",
2326 target_insn + 1);
2327 return -EFAULT;
2328 }
2329
2330 caller = state->frame[state->curframe];
2331 if (state->frame[state->curframe + 1]) {
2332 verbose(env, "verifier bug. Frame %d already allocated\n",
2333 state->curframe + 1);
2334 return -EFAULT;
2335 }
2336
2337 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2338 if (!callee)
2339 return -ENOMEM;
2340 state->frame[state->curframe + 1] = callee;
2341
2342 /* callee cannot access r0, r6 - r9 for reading and has to write
2343 * into its own stack before reading from it.
2344 * callee can read/write into caller's stack
2345 */
2346 init_func_state(env, callee,
2347 /* remember the callsite, it will be used by bpf_exit */
2348 *insn_idx /* callsite */,
2349 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2350 subprog /* subprog number within this prog */);
f4d7e40a
AS
2351
2352 /* copy r1 - r5 args that callee can access */
2353 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2354 callee->regs[i] = caller->regs[i];
2355
2356 /* after the call regsiters r0 - r5 were scratched */
2357 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2358 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2359 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2360 }
2361
2362 /* only increment it after check_reg_arg() finished */
2363 state->curframe++;
2364
2365 /* and go analyze first insn of the callee */
2366 *insn_idx = target_insn;
2367
2368 if (env->log.level) {
2369 verbose(env, "caller:\n");
2370 print_verifier_state(env, caller);
2371 verbose(env, "callee:\n");
2372 print_verifier_state(env, callee);
2373 }
2374 return 0;
2375}
2376
2377static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2378{
2379 struct bpf_verifier_state *state = env->cur_state;
2380 struct bpf_func_state *caller, *callee;
2381 struct bpf_reg_state *r0;
2382
2383 callee = state->frame[state->curframe];
2384 r0 = &callee->regs[BPF_REG_0];
2385 if (r0->type == PTR_TO_STACK) {
2386 /* technically it's ok to return caller's stack pointer
2387 * (or caller's caller's pointer) back to the caller,
2388 * since these pointers are valid. Only current stack
2389 * pointer will be invalid as soon as function exits,
2390 * but let's be conservative
2391 */
2392 verbose(env, "cannot return stack pointer to the caller\n");
2393 return -EINVAL;
2394 }
2395
2396 state->curframe--;
2397 caller = state->frame[state->curframe];
2398 /* return to the caller whatever r0 had in the callee */
2399 caller->regs[BPF_REG_0] = *r0;
2400
2401 *insn_idx = callee->callsite + 1;
2402 if (env->log.level) {
2403 verbose(env, "returning from callee:\n");
2404 print_verifier_state(env, callee);
2405 verbose(env, "to caller at %d:\n", *insn_idx);
2406 print_verifier_state(env, caller);
2407 }
2408 /* clear everything in the callee */
2409 free_func_state(callee);
2410 state->frame[state->curframe + 1] = NULL;
2411 return 0;
2412}
2413
849fa506
YS
2414static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2415 int func_id,
2416 struct bpf_call_arg_meta *meta)
2417{
2418 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2419
2420 if (ret_type != RET_INTEGER ||
2421 (func_id != BPF_FUNC_get_stack &&
2422 func_id != BPF_FUNC_probe_read_str))
2423 return;
2424
2425 ret_reg->smax_value = meta->msize_smax_value;
2426 ret_reg->umax_value = meta->msize_umax_value;
2427 __reg_deduce_bounds(ret_reg);
2428 __reg_bound_offset(ret_reg);
2429}
2430
c93552c4
DB
2431static int
2432record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2433 int func_id, int insn_idx)
2434{
2435 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2436
2437 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2438 func_id != BPF_FUNC_map_lookup_elem &&
2439 func_id != BPF_FUNC_map_update_elem &&
2440 func_id != BPF_FUNC_map_delete_elem)
c93552c4 2441 return 0;
09772d92 2442
c93552c4
DB
2443 if (meta->map_ptr == NULL) {
2444 verbose(env, "kernel subsystem misconfigured verifier\n");
2445 return -EINVAL;
2446 }
2447
2448 if (!BPF_MAP_PTR(aux->map_state))
2449 bpf_map_ptr_store(aux, meta->map_ptr,
2450 meta->map_ptr->unpriv_array);
2451 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2452 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2453 meta->map_ptr->unpriv_array);
2454 return 0;
2455}
2456
f4d7e40a 2457static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2458{
17a52670 2459 const struct bpf_func_proto *fn = NULL;
638f5b90 2460 struct bpf_reg_state *regs;
33ff9823 2461 struct bpf_call_arg_meta meta;
969bf05e 2462 bool changes_data;
17a52670
AS
2463 int i, err;
2464
2465 /* find function prototype */
2466 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2467 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2468 func_id);
17a52670
AS
2469 return -EINVAL;
2470 }
2471
00176a34 2472 if (env->ops->get_func_proto)
5e43f899 2473 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2474 if (!fn) {
61bd5218
JK
2475 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2476 func_id);
17a52670
AS
2477 return -EINVAL;
2478 }
2479
2480 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2481 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2482 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2483 return -EINVAL;
2484 }
2485
04514d13 2486 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2487 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2488 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2489 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2490 func_id_name(func_id), func_id);
2491 return -EINVAL;
2492 }
969bf05e 2493
33ff9823 2494 memset(&meta, 0, sizeof(meta));
36bbef52 2495 meta.pkt_access = fn->pkt_access;
33ff9823 2496
90133415 2497 err = check_func_proto(fn);
435faee1 2498 if (err) {
61bd5218 2499 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2500 func_id_name(func_id), func_id);
435faee1
DB
2501 return err;
2502 }
2503
17a52670 2504 /* check args */
33ff9823 2505 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2506 if (err)
2507 return err;
33ff9823 2508 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2509 if (err)
2510 return err;
33ff9823 2511 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2512 if (err)
2513 return err;
33ff9823 2514 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2515 if (err)
2516 return err;
33ff9823 2517 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2518 if (err)
2519 return err;
2520
c93552c4
DB
2521 err = record_func_map(env, &meta, func_id, insn_idx);
2522 if (err)
2523 return err;
2524
435faee1
DB
2525 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2526 * is inferred from register state.
2527 */
2528 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2529 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2530 BPF_WRITE, -1, false);
435faee1
DB
2531 if (err)
2532 return err;
2533 }
2534
638f5b90 2535 regs = cur_regs(env);
17a52670 2536 /* reset caller saved regs */
dc503a8a 2537 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2538 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2539 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2540 }
17a52670 2541
dc503a8a 2542 /* update return register (already marked as written above) */
17a52670 2543 if (fn->ret_type == RET_INTEGER) {
f1174f77 2544 /* sets type to SCALAR_VALUE */
61bd5218 2545 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2546 } else if (fn->ret_type == RET_VOID) {
2547 regs[BPF_REG_0].type = NOT_INIT;
2548 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2549 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 2550 /* There is no offset yet applied, variable or fixed */
61bd5218 2551 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 2552 regs[BPF_REG_0].off = 0;
17a52670
AS
2553 /* remember map_ptr, so that check_map_access()
2554 * can check 'value_size' boundary of memory access
2555 * to map element returned from bpf_map_lookup_elem()
2556 */
33ff9823 2557 if (meta.map_ptr == NULL) {
61bd5218
JK
2558 verbose(env,
2559 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2560 return -EINVAL;
2561 }
33ff9823 2562 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 2563 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 2564 } else {
61bd5218 2565 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2566 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2567 return -EINVAL;
2568 }
04fd61ab 2569
849fa506
YS
2570 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2571
61bd5218 2572 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2573 if (err)
2574 return err;
04fd61ab 2575
c195651e
YS
2576 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2577 const char *err_str;
2578
2579#ifdef CONFIG_PERF_EVENTS
2580 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2581 err_str = "cannot get callchain buffer for func %s#%d\n";
2582#else
2583 err = -ENOTSUPP;
2584 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2585#endif
2586 if (err) {
2587 verbose(env, err_str, func_id_name(func_id), func_id);
2588 return err;
2589 }
2590
2591 env->prog->has_callchain_buf = true;
2592 }
2593
969bf05e
AS
2594 if (changes_data)
2595 clear_all_pkt_pointers(env);
2596 return 0;
2597}
2598
b03c9f9f
EC
2599static bool signed_add_overflows(s64 a, s64 b)
2600{
2601 /* Do the add in u64, where overflow is well-defined */
2602 s64 res = (s64)((u64)a + (u64)b);
2603
2604 if (b < 0)
2605 return res > a;
2606 return res < a;
2607}
2608
2609static bool signed_sub_overflows(s64 a, s64 b)
2610{
2611 /* Do the sub in u64, where overflow is well-defined */
2612 s64 res = (s64)((u64)a - (u64)b);
2613
2614 if (b < 0)
2615 return res < a;
2616 return res > a;
969bf05e
AS
2617}
2618
bb7f0f98
AS
2619static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2620 const struct bpf_reg_state *reg,
2621 enum bpf_reg_type type)
2622{
2623 bool known = tnum_is_const(reg->var_off);
2624 s64 val = reg->var_off.value;
2625 s64 smin = reg->smin_value;
2626
2627 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2628 verbose(env, "math between %s pointer and %lld is not allowed\n",
2629 reg_type_str[type], val);
2630 return false;
2631 }
2632
2633 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2634 verbose(env, "%s pointer offset %d is not allowed\n",
2635 reg_type_str[type], reg->off);
2636 return false;
2637 }
2638
2639 if (smin == S64_MIN) {
2640 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2641 reg_type_str[type]);
2642 return false;
2643 }
2644
2645 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2646 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2647 smin, reg_type_str[type]);
2648 return false;
2649 }
2650
2651 return true;
2652}
2653
f1174f77 2654/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2655 * Caller should also handle BPF_MOV case separately.
2656 * If we return -EACCES, caller may want to try again treating pointer as a
2657 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2658 */
2659static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2660 struct bpf_insn *insn,
2661 const struct bpf_reg_state *ptr_reg,
2662 const struct bpf_reg_state *off_reg)
969bf05e 2663{
f4d7e40a
AS
2664 struct bpf_verifier_state *vstate = env->cur_state;
2665 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2666 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2667 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2668 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2669 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2670 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2671 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2672 u8 opcode = BPF_OP(insn->code);
f1174f77 2673 u32 dst = insn->dst_reg;
969bf05e 2674
f1174f77 2675 dst_reg = &regs[dst];
969bf05e 2676
6f16101e
DB
2677 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2678 smin_val > smax_val || umin_val > umax_val) {
2679 /* Taint dst register if offset had invalid bounds derived from
2680 * e.g. dead branches.
2681 */
2682 __mark_reg_unknown(dst_reg);
2683 return 0;
f1174f77
EC
2684 }
2685
2686 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2687 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
2688 verbose(env,
2689 "R%d 32-bit pointer arithmetic prohibited\n",
2690 dst);
f1174f77 2691 return -EACCES;
969bf05e
AS
2692 }
2693
f1174f77 2694 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
2695 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2696 dst);
f1174f77
EC
2697 return -EACCES;
2698 }
2699 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
2700 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2701 dst);
f1174f77
EC
2702 return -EACCES;
2703 }
2704 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
2705 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2706 dst);
f1174f77
EC
2707 return -EACCES;
2708 }
2709
2710 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2711 * The id may be overwritten later if we create a new variable offset.
969bf05e 2712 */
f1174f77
EC
2713 dst_reg->type = ptr_reg->type;
2714 dst_reg->id = ptr_reg->id;
969bf05e 2715
bb7f0f98
AS
2716 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2717 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2718 return -EINVAL;
2719
f1174f77
EC
2720 switch (opcode) {
2721 case BPF_ADD:
2722 /* We can take a fixed offset as long as it doesn't overflow
2723 * the s32 'off' field
969bf05e 2724 */
b03c9f9f
EC
2725 if (known && (ptr_reg->off + smin_val ==
2726 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 2727 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
2728 dst_reg->smin_value = smin_ptr;
2729 dst_reg->smax_value = smax_ptr;
2730 dst_reg->umin_value = umin_ptr;
2731 dst_reg->umax_value = umax_ptr;
f1174f77 2732 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 2733 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
2734 dst_reg->range = ptr_reg->range;
2735 break;
2736 }
f1174f77
EC
2737 /* A new variable offset is created. Note that off_reg->off
2738 * == 0, since it's a scalar.
2739 * dst_reg gets the pointer type and since some positive
2740 * integer value was added to the pointer, give it a new 'id'
2741 * if it's a PTR_TO_PACKET.
2742 * this creates a new 'base' pointer, off_reg (variable) gets
2743 * added into the variable offset, and we copy the fixed offset
2744 * from ptr_reg.
969bf05e 2745 */
b03c9f9f
EC
2746 if (signed_add_overflows(smin_ptr, smin_val) ||
2747 signed_add_overflows(smax_ptr, smax_val)) {
2748 dst_reg->smin_value = S64_MIN;
2749 dst_reg->smax_value = S64_MAX;
2750 } else {
2751 dst_reg->smin_value = smin_ptr + smin_val;
2752 dst_reg->smax_value = smax_ptr + smax_val;
2753 }
2754 if (umin_ptr + umin_val < umin_ptr ||
2755 umax_ptr + umax_val < umax_ptr) {
2756 dst_reg->umin_value = 0;
2757 dst_reg->umax_value = U64_MAX;
2758 } else {
2759 dst_reg->umin_value = umin_ptr + umin_val;
2760 dst_reg->umax_value = umax_ptr + umax_val;
2761 }
f1174f77
EC
2762 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2763 dst_reg->off = ptr_reg->off;
de8f3a83 2764 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2765 dst_reg->id = ++env->id_gen;
2766 /* something was added to pkt_ptr, set range to zero */
2767 dst_reg->range = 0;
2768 }
2769 break;
2770 case BPF_SUB:
2771 if (dst_reg == off_reg) {
2772 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2773 verbose(env, "R%d tried to subtract pointer from scalar\n",
2774 dst);
f1174f77
EC
2775 return -EACCES;
2776 }
2777 /* We don't allow subtraction from FP, because (according to
2778 * test_verifier.c test "invalid fp arithmetic", JITs might not
2779 * be able to deal with it.
969bf05e 2780 */
f1174f77 2781 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2782 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2783 dst);
f1174f77
EC
2784 return -EACCES;
2785 }
b03c9f9f
EC
2786 if (known && (ptr_reg->off - smin_val ==
2787 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2788 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2789 dst_reg->smin_value = smin_ptr;
2790 dst_reg->smax_value = smax_ptr;
2791 dst_reg->umin_value = umin_ptr;
2792 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2793 dst_reg->var_off = ptr_reg->var_off;
2794 dst_reg->id = ptr_reg->id;
b03c9f9f 2795 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2796 dst_reg->range = ptr_reg->range;
2797 break;
2798 }
f1174f77
EC
2799 /* A new variable offset is created. If the subtrahend is known
2800 * nonnegative, then any reg->range we had before is still good.
969bf05e 2801 */
b03c9f9f
EC
2802 if (signed_sub_overflows(smin_ptr, smax_val) ||
2803 signed_sub_overflows(smax_ptr, smin_val)) {
2804 /* Overflow possible, we know nothing */
2805 dst_reg->smin_value = S64_MIN;
2806 dst_reg->smax_value = S64_MAX;
2807 } else {
2808 dst_reg->smin_value = smin_ptr - smax_val;
2809 dst_reg->smax_value = smax_ptr - smin_val;
2810 }
2811 if (umin_ptr < umax_val) {
2812 /* Overflow possible, we know nothing */
2813 dst_reg->umin_value = 0;
2814 dst_reg->umax_value = U64_MAX;
2815 } else {
2816 /* Cannot overflow (as long as bounds are consistent) */
2817 dst_reg->umin_value = umin_ptr - umax_val;
2818 dst_reg->umax_value = umax_ptr - umin_val;
2819 }
f1174f77
EC
2820 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2821 dst_reg->off = ptr_reg->off;
de8f3a83 2822 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2823 dst_reg->id = ++env->id_gen;
2824 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2825 if (smin_val < 0)
f1174f77 2826 dst_reg->range = 0;
43188702 2827 }
f1174f77
EC
2828 break;
2829 case BPF_AND:
2830 case BPF_OR:
2831 case BPF_XOR:
82abbf8d
AS
2832 /* bitwise ops on pointers are troublesome, prohibit. */
2833 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2834 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2835 return -EACCES;
2836 default:
2837 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2838 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2839 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2840 return -EACCES;
43188702
JF
2841 }
2842
bb7f0f98
AS
2843 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2844 return -EINVAL;
2845
b03c9f9f
EC
2846 __update_reg_bounds(dst_reg);
2847 __reg_deduce_bounds(dst_reg);
2848 __reg_bound_offset(dst_reg);
43188702
JF
2849 return 0;
2850}
2851
468f6eaf
JH
2852/* WARNING: This function does calculations on 64-bit values, but the actual
2853 * execution may occur on 32-bit values. Therefore, things like bitshifts
2854 * need extra checks in the 32-bit case.
2855 */
f1174f77
EC
2856static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2857 struct bpf_insn *insn,
2858 struct bpf_reg_state *dst_reg,
2859 struct bpf_reg_state src_reg)
969bf05e 2860{
638f5b90 2861 struct bpf_reg_state *regs = cur_regs(env);
48461135 2862 u8 opcode = BPF_OP(insn->code);
f1174f77 2863 bool src_known, dst_known;
b03c9f9f
EC
2864 s64 smin_val, smax_val;
2865 u64 umin_val, umax_val;
468f6eaf 2866 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2867
b03c9f9f
EC
2868 smin_val = src_reg.smin_value;
2869 smax_val = src_reg.smax_value;
2870 umin_val = src_reg.umin_value;
2871 umax_val = src_reg.umax_value;
f1174f77
EC
2872 src_known = tnum_is_const(src_reg.var_off);
2873 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2874
6f16101e
DB
2875 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2876 smin_val > smax_val || umin_val > umax_val) {
2877 /* Taint dst register if offset had invalid bounds derived from
2878 * e.g. dead branches.
2879 */
2880 __mark_reg_unknown(dst_reg);
2881 return 0;
2882 }
2883
bb7f0f98
AS
2884 if (!src_known &&
2885 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2886 __mark_reg_unknown(dst_reg);
2887 return 0;
2888 }
2889
48461135
JB
2890 switch (opcode) {
2891 case BPF_ADD:
b03c9f9f
EC
2892 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2893 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2894 dst_reg->smin_value = S64_MIN;
2895 dst_reg->smax_value = S64_MAX;
2896 } else {
2897 dst_reg->smin_value += smin_val;
2898 dst_reg->smax_value += smax_val;
2899 }
2900 if (dst_reg->umin_value + umin_val < umin_val ||
2901 dst_reg->umax_value + umax_val < umax_val) {
2902 dst_reg->umin_value = 0;
2903 dst_reg->umax_value = U64_MAX;
2904 } else {
2905 dst_reg->umin_value += umin_val;
2906 dst_reg->umax_value += umax_val;
2907 }
f1174f77 2908 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2909 break;
2910 case BPF_SUB:
b03c9f9f
EC
2911 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2912 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2913 /* Overflow possible, we know nothing */
2914 dst_reg->smin_value = S64_MIN;
2915 dst_reg->smax_value = S64_MAX;
2916 } else {
2917 dst_reg->smin_value -= smax_val;
2918 dst_reg->smax_value -= smin_val;
2919 }
2920 if (dst_reg->umin_value < umax_val) {
2921 /* Overflow possible, we know nothing */
2922 dst_reg->umin_value = 0;
2923 dst_reg->umax_value = U64_MAX;
2924 } else {
2925 /* Cannot overflow (as long as bounds are consistent) */
2926 dst_reg->umin_value -= umax_val;
2927 dst_reg->umax_value -= umin_val;
2928 }
f1174f77 2929 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2930 break;
2931 case BPF_MUL:
b03c9f9f
EC
2932 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2933 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2934 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2935 __mark_reg_unbounded(dst_reg);
2936 __update_reg_bounds(dst_reg);
f1174f77
EC
2937 break;
2938 }
b03c9f9f
EC
2939 /* Both values are positive, so we can work with unsigned and
2940 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2941 */
b03c9f9f
EC
2942 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2943 /* Potential overflow, we know nothing */
2944 __mark_reg_unbounded(dst_reg);
2945 /* (except what we can learn from the var_off) */
2946 __update_reg_bounds(dst_reg);
2947 break;
2948 }
2949 dst_reg->umin_value *= umin_val;
2950 dst_reg->umax_value *= umax_val;
2951 if (dst_reg->umax_value > S64_MAX) {
2952 /* Overflow possible, we know nothing */
2953 dst_reg->smin_value = S64_MIN;
2954 dst_reg->smax_value = S64_MAX;
2955 } else {
2956 dst_reg->smin_value = dst_reg->umin_value;
2957 dst_reg->smax_value = dst_reg->umax_value;
2958 }
48461135
JB
2959 break;
2960 case BPF_AND:
f1174f77 2961 if (src_known && dst_known) {
b03c9f9f
EC
2962 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2963 src_reg.var_off.value);
f1174f77
EC
2964 break;
2965 }
b03c9f9f
EC
2966 /* We get our minimum from the var_off, since that's inherently
2967 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2968 */
f1174f77 2969 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2970 dst_reg->umin_value = dst_reg->var_off.value;
2971 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2972 if (dst_reg->smin_value < 0 || smin_val < 0) {
2973 /* Lose signed bounds when ANDing negative numbers,
2974 * ain't nobody got time for that.
2975 */
2976 dst_reg->smin_value = S64_MIN;
2977 dst_reg->smax_value = S64_MAX;
2978 } else {
2979 /* ANDing two positives gives a positive, so safe to
2980 * cast result into s64.
2981 */
2982 dst_reg->smin_value = dst_reg->umin_value;
2983 dst_reg->smax_value = dst_reg->umax_value;
2984 }
2985 /* We may learn something more from the var_off */
2986 __update_reg_bounds(dst_reg);
f1174f77
EC
2987 break;
2988 case BPF_OR:
2989 if (src_known && dst_known) {
b03c9f9f
EC
2990 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2991 src_reg.var_off.value);
f1174f77
EC
2992 break;
2993 }
b03c9f9f
EC
2994 /* We get our maximum from the var_off, and our minimum is the
2995 * maximum of the operands' minima
f1174f77
EC
2996 */
2997 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2998 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2999 dst_reg->umax_value = dst_reg->var_off.value |
3000 dst_reg->var_off.mask;
3001 if (dst_reg->smin_value < 0 || smin_val < 0) {
3002 /* Lose signed bounds when ORing negative numbers,
3003 * ain't nobody got time for that.
3004 */
3005 dst_reg->smin_value = S64_MIN;
3006 dst_reg->smax_value = S64_MAX;
f1174f77 3007 } else {
b03c9f9f
EC
3008 /* ORing two positives gives a positive, so safe to
3009 * cast result into s64.
3010 */
3011 dst_reg->smin_value = dst_reg->umin_value;
3012 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3013 }
b03c9f9f
EC
3014 /* We may learn something more from the var_off */
3015 __update_reg_bounds(dst_reg);
48461135
JB
3016 break;
3017 case BPF_LSH:
468f6eaf
JH
3018 if (umax_val >= insn_bitness) {
3019 /* Shifts greater than 31 or 63 are undefined.
3020 * This includes shifts by a negative number.
b03c9f9f 3021 */
61bd5218 3022 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3023 break;
3024 }
b03c9f9f
EC
3025 /* We lose all sign bit information (except what we can pick
3026 * up from var_off)
48461135 3027 */
b03c9f9f
EC
3028 dst_reg->smin_value = S64_MIN;
3029 dst_reg->smax_value = S64_MAX;
3030 /* If we might shift our top bit out, then we know nothing */
3031 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3032 dst_reg->umin_value = 0;
3033 dst_reg->umax_value = U64_MAX;
d1174416 3034 } else {
b03c9f9f
EC
3035 dst_reg->umin_value <<= umin_val;
3036 dst_reg->umax_value <<= umax_val;
d1174416 3037 }
afbe1a5b 3038 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3039 /* We may learn something more from the var_off */
3040 __update_reg_bounds(dst_reg);
48461135
JB
3041 break;
3042 case BPF_RSH:
468f6eaf
JH
3043 if (umax_val >= insn_bitness) {
3044 /* Shifts greater than 31 or 63 are undefined.
3045 * This includes shifts by a negative number.
b03c9f9f 3046 */
61bd5218 3047 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3048 break;
3049 }
4374f256
EC
3050 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3051 * be negative, then either:
3052 * 1) src_reg might be zero, so the sign bit of the result is
3053 * unknown, so we lose our signed bounds
3054 * 2) it's known negative, thus the unsigned bounds capture the
3055 * signed bounds
3056 * 3) the signed bounds cross zero, so they tell us nothing
3057 * about the result
3058 * If the value in dst_reg is known nonnegative, then again the
3059 * unsigned bounts capture the signed bounds.
3060 * Thus, in all cases it suffices to blow away our signed bounds
3061 * and rely on inferring new ones from the unsigned bounds and
3062 * var_off of the result.
3063 */
3064 dst_reg->smin_value = S64_MIN;
3065 dst_reg->smax_value = S64_MAX;
afbe1a5b 3066 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3067 dst_reg->umin_value >>= umax_val;
3068 dst_reg->umax_value >>= umin_val;
3069 /* We may learn something more from the var_off */
3070 __update_reg_bounds(dst_reg);
48461135 3071 break;
9cbe1f5a
YS
3072 case BPF_ARSH:
3073 if (umax_val >= insn_bitness) {
3074 /* Shifts greater than 31 or 63 are undefined.
3075 * This includes shifts by a negative number.
3076 */
3077 mark_reg_unknown(env, regs, insn->dst_reg);
3078 break;
3079 }
3080
3081 /* Upon reaching here, src_known is true and
3082 * umax_val is equal to umin_val.
3083 */
3084 dst_reg->smin_value >>= umin_val;
3085 dst_reg->smax_value >>= umin_val;
3086 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3087
3088 /* blow away the dst_reg umin_value/umax_value and rely on
3089 * dst_reg var_off to refine the result.
3090 */
3091 dst_reg->umin_value = 0;
3092 dst_reg->umax_value = U64_MAX;
3093 __update_reg_bounds(dst_reg);
3094 break;
48461135 3095 default:
61bd5218 3096 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3097 break;
3098 }
3099
468f6eaf
JH
3100 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3101 /* 32-bit ALU ops are (32,32)->32 */
3102 coerce_reg_to_size(dst_reg, 4);
3103 coerce_reg_to_size(&src_reg, 4);
3104 }
3105
b03c9f9f
EC
3106 __reg_deduce_bounds(dst_reg);
3107 __reg_bound_offset(dst_reg);
f1174f77
EC
3108 return 0;
3109}
3110
3111/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3112 * and var_off.
3113 */
3114static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3115 struct bpf_insn *insn)
3116{
f4d7e40a
AS
3117 struct bpf_verifier_state *vstate = env->cur_state;
3118 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3119 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3120 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3121 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3122
3123 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3124 src_reg = NULL;
3125 if (dst_reg->type != SCALAR_VALUE)
3126 ptr_reg = dst_reg;
3127 if (BPF_SRC(insn->code) == BPF_X) {
3128 src_reg = &regs[insn->src_reg];
f1174f77
EC
3129 if (src_reg->type != SCALAR_VALUE) {
3130 if (dst_reg->type != SCALAR_VALUE) {
3131 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3132 * an arbitrary scalar. Disallow all math except
3133 * pointer subtraction
f1174f77 3134 */
82abbf8d
AS
3135 if (opcode == BPF_SUB){
3136 mark_reg_unknown(env, regs, insn->dst_reg);
3137 return 0;
f1174f77 3138 }
82abbf8d
AS
3139 verbose(env, "R%d pointer %s pointer prohibited\n",
3140 insn->dst_reg,
3141 bpf_alu_string[opcode >> 4]);
3142 return -EACCES;
f1174f77
EC
3143 } else {
3144 /* scalar += pointer
3145 * This is legal, but we have to reverse our
3146 * src/dest handling in computing the range
3147 */
82abbf8d
AS
3148 return adjust_ptr_min_max_vals(env, insn,
3149 src_reg, dst_reg);
f1174f77
EC
3150 }
3151 } else if (ptr_reg) {
3152 /* pointer += scalar */
82abbf8d
AS
3153 return adjust_ptr_min_max_vals(env, insn,
3154 dst_reg, src_reg);
f1174f77
EC
3155 }
3156 } else {
3157 /* Pretend the src is a reg with a known value, since we only
3158 * need to be able to read from this state.
3159 */
3160 off_reg.type = SCALAR_VALUE;
b03c9f9f 3161 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3162 src_reg = &off_reg;
82abbf8d
AS
3163 if (ptr_reg) /* pointer += K */
3164 return adjust_ptr_min_max_vals(env, insn,
3165 ptr_reg, src_reg);
f1174f77
EC
3166 }
3167
3168 /* Got here implies adding two SCALAR_VALUEs */
3169 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3170 print_verifier_state(env, state);
61bd5218 3171 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3172 return -EINVAL;
3173 }
3174 if (WARN_ON(!src_reg)) {
f4d7e40a 3175 print_verifier_state(env, state);
61bd5218 3176 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3177 return -EINVAL;
3178 }
3179 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3180}
3181
17a52670 3182/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3183static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3184{
638f5b90 3185 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3186 u8 opcode = BPF_OP(insn->code);
3187 int err;
3188
3189 if (opcode == BPF_END || opcode == BPF_NEG) {
3190 if (opcode == BPF_NEG) {
3191 if (BPF_SRC(insn->code) != 0 ||
3192 insn->src_reg != BPF_REG_0 ||
3193 insn->off != 0 || insn->imm != 0) {
61bd5218 3194 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3195 return -EINVAL;
3196 }
3197 } else {
3198 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3199 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3200 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3201 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3202 return -EINVAL;
3203 }
3204 }
3205
3206 /* check src operand */
dc503a8a 3207 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3208 if (err)
3209 return err;
3210
1be7f75d 3211 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3212 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3213 insn->dst_reg);
3214 return -EACCES;
3215 }
3216
17a52670 3217 /* check dest operand */
dc503a8a 3218 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3219 if (err)
3220 return err;
3221
3222 } else if (opcode == BPF_MOV) {
3223
3224 if (BPF_SRC(insn->code) == BPF_X) {
3225 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3226 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3227 return -EINVAL;
3228 }
3229
3230 /* check src operand */
dc503a8a 3231 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3232 if (err)
3233 return err;
3234 } else {
3235 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3236 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3237 return -EINVAL;
3238 }
3239 }
3240
3241 /* check dest operand */
dc503a8a 3242 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3243 if (err)
3244 return err;
3245
3246 if (BPF_SRC(insn->code) == BPF_X) {
3247 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3248 /* case: R1 = R2
3249 * copy register state to dest reg
3250 */
3251 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3252 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3253 } else {
f1174f77 3254 /* R1 = (u32) R2 */
1be7f75d 3255 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3256 verbose(env,
3257 "R%d partial copy of pointer\n",
1be7f75d
AS
3258 insn->src_reg);
3259 return -EACCES;
3260 }
61bd5218 3261 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3262 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3263 }
3264 } else {
3265 /* case: R = imm
3266 * remember the value we stored into this reg
3267 */
f1174f77 3268 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3269 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3270 __mark_reg_known(regs + insn->dst_reg,
3271 insn->imm);
3272 } else {
3273 __mark_reg_known(regs + insn->dst_reg,
3274 (u32)insn->imm);
3275 }
17a52670
AS
3276 }
3277
3278 } else if (opcode > BPF_END) {
61bd5218 3279 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3280 return -EINVAL;
3281
3282 } else { /* all other ALU ops: and, sub, xor, add, ... */
3283
17a52670
AS
3284 if (BPF_SRC(insn->code) == BPF_X) {
3285 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3286 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3287 return -EINVAL;
3288 }
3289 /* check src1 operand */
dc503a8a 3290 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3291 if (err)
3292 return err;
3293 } else {
3294 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3295 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3296 return -EINVAL;
3297 }
3298 }
3299
3300 /* check src2 operand */
dc503a8a 3301 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3302 if (err)
3303 return err;
3304
3305 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3306 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3307 verbose(env, "div by zero\n");
17a52670
AS
3308 return -EINVAL;
3309 }
3310
7891a87e
DB
3311 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3312 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3313 return -EINVAL;
3314 }
3315
229394e8
RV
3316 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3317 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3318 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3319
3320 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3321 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3322 return -EINVAL;
3323 }
3324 }
3325
1a0dc1ac 3326 /* check dest operand */
dc503a8a 3327 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3328 if (err)
3329 return err;
3330
f1174f77 3331 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3332 }
3333
3334 return 0;
3335}
3336
f4d7e40a 3337static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3338 struct bpf_reg_state *dst_reg,
f8ddadc4 3339 enum bpf_reg_type type,
fb2a311a 3340 bool range_right_open)
969bf05e 3341{
f4d7e40a 3342 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3343 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3344 u16 new_range;
f4d7e40a 3345 int i, j;
2d2be8ca 3346
fb2a311a
DB
3347 if (dst_reg->off < 0 ||
3348 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3349 /* This doesn't give us any range */
3350 return;
3351
b03c9f9f
EC
3352 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3353 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3354 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3355 * than pkt_end, but that's because it's also less than pkt.
3356 */
3357 return;
3358
fb2a311a
DB
3359 new_range = dst_reg->off;
3360 if (range_right_open)
3361 new_range--;
3362
3363 /* Examples for register markings:
2d2be8ca 3364 *
fb2a311a 3365 * pkt_data in dst register:
2d2be8ca
DB
3366 *
3367 * r2 = r3;
3368 * r2 += 8;
3369 * if (r2 > pkt_end) goto <handle exception>
3370 * <access okay>
3371 *
b4e432f1
DB
3372 * r2 = r3;
3373 * r2 += 8;
3374 * if (r2 < pkt_end) goto <access okay>
3375 * <handle exception>
3376 *
2d2be8ca
DB
3377 * Where:
3378 * r2 == dst_reg, pkt_end == src_reg
3379 * r2=pkt(id=n,off=8,r=0)
3380 * r3=pkt(id=n,off=0,r=0)
3381 *
fb2a311a 3382 * pkt_data in src register:
2d2be8ca
DB
3383 *
3384 * r2 = r3;
3385 * r2 += 8;
3386 * if (pkt_end >= r2) goto <access okay>
3387 * <handle exception>
3388 *
b4e432f1
DB
3389 * r2 = r3;
3390 * r2 += 8;
3391 * if (pkt_end <= r2) goto <handle exception>
3392 * <access okay>
3393 *
2d2be8ca
DB
3394 * Where:
3395 * pkt_end == dst_reg, r2 == src_reg
3396 * r2=pkt(id=n,off=8,r=0)
3397 * r3=pkt(id=n,off=0,r=0)
3398 *
3399 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3400 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3401 * and [r3, r3 + 8-1) respectively is safe to access depending on
3402 * the check.
969bf05e 3403 */
2d2be8ca 3404
f1174f77
EC
3405 /* If our ids match, then we must have the same max_value. And we
3406 * don't care about the other reg's fixed offset, since if it's too big
3407 * the range won't allow anything.
3408 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3409 */
969bf05e 3410 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3411 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3412 /* keep the maximum range already checked */
fb2a311a 3413 regs[i].range = max(regs[i].range, new_range);
969bf05e 3414
f4d7e40a
AS
3415 for (j = 0; j <= vstate->curframe; j++) {
3416 state = vstate->frame[j];
3417 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3418 if (state->stack[i].slot_type[0] != STACK_SPILL)
3419 continue;
3420 reg = &state->stack[i].spilled_ptr;
3421 if (reg->type == type && reg->id == dst_reg->id)
3422 reg->range = max(reg->range, new_range);
3423 }
969bf05e
AS
3424 }
3425}
3426
48461135
JB
3427/* Adjusts the register min/max values in the case that the dst_reg is the
3428 * variable register that we are working on, and src_reg is a constant or we're
3429 * simply doing a BPF_K check.
f1174f77 3430 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3431 */
3432static void reg_set_min_max(struct bpf_reg_state *true_reg,
3433 struct bpf_reg_state *false_reg, u64 val,
3434 u8 opcode)
3435{
f1174f77
EC
3436 /* If the dst_reg is a pointer, we can't learn anything about its
3437 * variable offset from the compare (unless src_reg were a pointer into
3438 * the same object, but we don't bother with that.
3439 * Since false_reg and true_reg have the same type by construction, we
3440 * only need to check one of them for pointerness.
3441 */
3442 if (__is_pointer_value(false, false_reg))
3443 return;
4cabc5b1 3444
48461135
JB
3445 switch (opcode) {
3446 case BPF_JEQ:
3447 /* If this is false then we know nothing Jon Snow, but if it is
3448 * true then we know for sure.
3449 */
b03c9f9f 3450 __mark_reg_known(true_reg, val);
48461135
JB
3451 break;
3452 case BPF_JNE:
3453 /* If this is true we know nothing Jon Snow, but if it is false
3454 * we know the value for sure;
3455 */
b03c9f9f 3456 __mark_reg_known(false_reg, val);
48461135
JB
3457 break;
3458 case BPF_JGT:
b03c9f9f
EC
3459 false_reg->umax_value = min(false_reg->umax_value, val);
3460 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3461 break;
48461135 3462 case BPF_JSGT:
b03c9f9f
EC
3463 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3464 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3465 break;
b4e432f1
DB
3466 case BPF_JLT:
3467 false_reg->umin_value = max(false_reg->umin_value, val);
3468 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3469 break;
3470 case BPF_JSLT:
3471 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3472 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3473 break;
48461135 3474 case BPF_JGE:
b03c9f9f
EC
3475 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3476 true_reg->umin_value = max(true_reg->umin_value, val);
3477 break;
48461135 3478 case BPF_JSGE:
b03c9f9f
EC
3479 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3480 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3481 break;
b4e432f1
DB
3482 case BPF_JLE:
3483 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3484 true_reg->umax_value = min(true_reg->umax_value, val);
3485 break;
3486 case BPF_JSLE:
3487 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3488 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3489 break;
48461135
JB
3490 default:
3491 break;
3492 }
3493
b03c9f9f
EC
3494 __reg_deduce_bounds(false_reg);
3495 __reg_deduce_bounds(true_reg);
3496 /* We might have learned some bits from the bounds. */
3497 __reg_bound_offset(false_reg);
3498 __reg_bound_offset(true_reg);
3499 /* Intersecting with the old var_off might have improved our bounds
3500 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3501 * then new var_off is (0; 0x7f...fc) which improves our umax.
3502 */
3503 __update_reg_bounds(false_reg);
3504 __update_reg_bounds(true_reg);
48461135
JB
3505}
3506
f1174f77
EC
3507/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3508 * the variable reg.
48461135
JB
3509 */
3510static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3511 struct bpf_reg_state *false_reg, u64 val,
3512 u8 opcode)
3513{
f1174f77
EC
3514 if (__is_pointer_value(false, false_reg))
3515 return;
4cabc5b1 3516
48461135
JB
3517 switch (opcode) {
3518 case BPF_JEQ:
3519 /* If this is false then we know nothing Jon Snow, but if it is
3520 * true then we know for sure.
3521 */
b03c9f9f 3522 __mark_reg_known(true_reg, val);
48461135
JB
3523 break;
3524 case BPF_JNE:
3525 /* If this is true we know nothing Jon Snow, but if it is false
3526 * we know the value for sure;
3527 */
b03c9f9f 3528 __mark_reg_known(false_reg, val);
48461135
JB
3529 break;
3530 case BPF_JGT:
b03c9f9f
EC
3531 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3532 false_reg->umin_value = max(false_reg->umin_value, val);
3533 break;
48461135 3534 case BPF_JSGT:
b03c9f9f
EC
3535 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3536 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3537 break;
b4e432f1
DB
3538 case BPF_JLT:
3539 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3540 false_reg->umax_value = min(false_reg->umax_value, val);
3541 break;
3542 case BPF_JSLT:
3543 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3544 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3545 break;
48461135 3546 case BPF_JGE:
b03c9f9f
EC
3547 true_reg->umax_value = min(true_reg->umax_value, val);
3548 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3549 break;
48461135 3550 case BPF_JSGE:
b03c9f9f
EC
3551 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3552 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3553 break;
b4e432f1
DB
3554 case BPF_JLE:
3555 true_reg->umin_value = max(true_reg->umin_value, val);
3556 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3557 break;
3558 case BPF_JSLE:
3559 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3560 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3561 break;
48461135
JB
3562 default:
3563 break;
3564 }
3565
b03c9f9f
EC
3566 __reg_deduce_bounds(false_reg);
3567 __reg_deduce_bounds(true_reg);
3568 /* We might have learned some bits from the bounds. */
3569 __reg_bound_offset(false_reg);
3570 __reg_bound_offset(true_reg);
3571 /* Intersecting with the old var_off might have improved our bounds
3572 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3573 * then new var_off is (0; 0x7f...fc) which improves our umax.
3574 */
3575 __update_reg_bounds(false_reg);
3576 __update_reg_bounds(true_reg);
f1174f77
EC
3577}
3578
3579/* Regs are known to be equal, so intersect their min/max/var_off */
3580static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3581 struct bpf_reg_state *dst_reg)
3582{
b03c9f9f
EC
3583 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3584 dst_reg->umin_value);
3585 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3586 dst_reg->umax_value);
3587 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3588 dst_reg->smin_value);
3589 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3590 dst_reg->smax_value);
f1174f77
EC
3591 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3592 dst_reg->var_off);
b03c9f9f
EC
3593 /* We might have learned new bounds from the var_off. */
3594 __update_reg_bounds(src_reg);
3595 __update_reg_bounds(dst_reg);
3596 /* We might have learned something about the sign bit. */
3597 __reg_deduce_bounds(src_reg);
3598 __reg_deduce_bounds(dst_reg);
3599 /* We might have learned some bits from the bounds. */
3600 __reg_bound_offset(src_reg);
3601 __reg_bound_offset(dst_reg);
3602 /* Intersecting with the old var_off might have improved our bounds
3603 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3604 * then new var_off is (0; 0x7f...fc) which improves our umax.
3605 */
3606 __update_reg_bounds(src_reg);
3607 __update_reg_bounds(dst_reg);
f1174f77
EC
3608}
3609
3610static void reg_combine_min_max(struct bpf_reg_state *true_src,
3611 struct bpf_reg_state *true_dst,
3612 struct bpf_reg_state *false_src,
3613 struct bpf_reg_state *false_dst,
3614 u8 opcode)
3615{
3616 switch (opcode) {
3617 case BPF_JEQ:
3618 __reg_combine_min_max(true_src, true_dst);
3619 break;
3620 case BPF_JNE:
3621 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3622 break;
4cabc5b1 3623 }
48461135
JB
3624}
3625
57a09bf0 3626static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 3627 bool is_null)
57a09bf0
TG
3628{
3629 struct bpf_reg_state *reg = &regs[regno];
3630
3631 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
3632 /* Old offset (both fixed and variable parts) should
3633 * have been known-zero, because we don't allow pointer
3634 * arithmetic on pointers that might be NULL.
3635 */
b03c9f9f
EC
3636 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3637 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3638 reg->off)) {
b03c9f9f
EC
3639 __mark_reg_known_zero(reg);
3640 reg->off = 0;
f1174f77
EC
3641 }
3642 if (is_null) {
3643 reg->type = SCALAR_VALUE;
56f668df
MKL
3644 } else if (reg->map_ptr->inner_map_meta) {
3645 reg->type = CONST_PTR_TO_MAP;
3646 reg->map_ptr = reg->map_ptr->inner_map_meta;
3647 } else {
f1174f77 3648 reg->type = PTR_TO_MAP_VALUE;
56f668df 3649 }
a08dd0da
DB
3650 /* We don't need id from this point onwards anymore, thus we
3651 * should better reset it, so that state pruning has chances
3652 * to take effect.
3653 */
3654 reg->id = 0;
57a09bf0
TG
3655 }
3656}
3657
3658/* The logic is similar to find_good_pkt_pointers(), both could eventually
3659 * be folded together at some point.
3660 */
f4d7e40a 3661static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
f1174f77 3662 bool is_null)
57a09bf0 3663{
f4d7e40a 3664 struct bpf_func_state *state = vstate->frame[vstate->curframe];
57a09bf0 3665 struct bpf_reg_state *regs = state->regs;
a08dd0da 3666 u32 id = regs[regno].id;
f4d7e40a 3667 int i, j;
57a09bf0
TG
3668
3669 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 3670 mark_map_reg(regs, i, id, is_null);
57a09bf0 3671
f4d7e40a
AS
3672 for (j = 0; j <= vstate->curframe; j++) {
3673 state = vstate->frame[j];
3674 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3675 if (state->stack[i].slot_type[0] != STACK_SPILL)
3676 continue;
3677 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3678 }
57a09bf0
TG
3679 }
3680}
3681
5beca081
DB
3682static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3683 struct bpf_reg_state *dst_reg,
3684 struct bpf_reg_state *src_reg,
3685 struct bpf_verifier_state *this_branch,
3686 struct bpf_verifier_state *other_branch)
3687{
3688 if (BPF_SRC(insn->code) != BPF_X)
3689 return false;
3690
3691 switch (BPF_OP(insn->code)) {
3692 case BPF_JGT:
3693 if ((dst_reg->type == PTR_TO_PACKET &&
3694 src_reg->type == PTR_TO_PACKET_END) ||
3695 (dst_reg->type == PTR_TO_PACKET_META &&
3696 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3697 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3698 find_good_pkt_pointers(this_branch, dst_reg,
3699 dst_reg->type, false);
3700 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3701 src_reg->type == PTR_TO_PACKET) ||
3702 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3703 src_reg->type == PTR_TO_PACKET_META)) {
3704 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3705 find_good_pkt_pointers(other_branch, src_reg,
3706 src_reg->type, true);
3707 } else {
3708 return false;
3709 }
3710 break;
3711 case BPF_JLT:
3712 if ((dst_reg->type == PTR_TO_PACKET &&
3713 src_reg->type == PTR_TO_PACKET_END) ||
3714 (dst_reg->type == PTR_TO_PACKET_META &&
3715 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3716 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3717 find_good_pkt_pointers(other_branch, dst_reg,
3718 dst_reg->type, true);
3719 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3720 src_reg->type == PTR_TO_PACKET) ||
3721 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3722 src_reg->type == PTR_TO_PACKET_META)) {
3723 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3724 find_good_pkt_pointers(this_branch, src_reg,
3725 src_reg->type, false);
3726 } else {
3727 return false;
3728 }
3729 break;
3730 case BPF_JGE:
3731 if ((dst_reg->type == PTR_TO_PACKET &&
3732 src_reg->type == PTR_TO_PACKET_END) ||
3733 (dst_reg->type == PTR_TO_PACKET_META &&
3734 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3735 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3736 find_good_pkt_pointers(this_branch, dst_reg,
3737 dst_reg->type, true);
3738 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3739 src_reg->type == PTR_TO_PACKET) ||
3740 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3741 src_reg->type == PTR_TO_PACKET_META)) {
3742 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3743 find_good_pkt_pointers(other_branch, src_reg,
3744 src_reg->type, false);
3745 } else {
3746 return false;
3747 }
3748 break;
3749 case BPF_JLE:
3750 if ((dst_reg->type == PTR_TO_PACKET &&
3751 src_reg->type == PTR_TO_PACKET_END) ||
3752 (dst_reg->type == PTR_TO_PACKET_META &&
3753 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3754 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3755 find_good_pkt_pointers(other_branch, dst_reg,
3756 dst_reg->type, false);
3757 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3758 src_reg->type == PTR_TO_PACKET) ||
3759 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3760 src_reg->type == PTR_TO_PACKET_META)) {
3761 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3762 find_good_pkt_pointers(this_branch, src_reg,
3763 src_reg->type, true);
3764 } else {
3765 return false;
3766 }
3767 break;
3768 default:
3769 return false;
3770 }
3771
3772 return true;
3773}
3774
58e2af8b 3775static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3776 struct bpf_insn *insn, int *insn_idx)
3777{
f4d7e40a
AS
3778 struct bpf_verifier_state *this_branch = env->cur_state;
3779 struct bpf_verifier_state *other_branch;
3780 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3781 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
3782 u8 opcode = BPF_OP(insn->code);
3783 int err;
3784
b4e432f1 3785 if (opcode > BPF_JSLE) {
61bd5218 3786 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3787 return -EINVAL;
3788 }
3789
3790 if (BPF_SRC(insn->code) == BPF_X) {
3791 if (insn->imm != 0) {
61bd5218 3792 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3793 return -EINVAL;
3794 }
3795
3796 /* check src1 operand */
dc503a8a 3797 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3798 if (err)
3799 return err;
1be7f75d
AS
3800
3801 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3802 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3803 insn->src_reg);
3804 return -EACCES;
3805 }
17a52670
AS
3806 } else {
3807 if (insn->src_reg != BPF_REG_0) {
61bd5218 3808 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3809 return -EINVAL;
3810 }
3811 }
3812
3813 /* check src2 operand */
dc503a8a 3814 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3815 if (err)
3816 return err;
3817
1a0dc1ac
AS
3818 dst_reg = &regs[insn->dst_reg];
3819
17a52670
AS
3820 /* detect if R == 0 where R was initialized to zero earlier */
3821 if (BPF_SRC(insn->code) == BPF_K &&
3822 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 3823 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
3824 tnum_is_const(dst_reg->var_off)) {
3825 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3826 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
3827 /* if (imm == imm) goto pc+off;
3828 * only follow the goto, ignore fall-through
3829 */
3830 *insn_idx += insn->off;
3831 return 0;
3832 } else {
3833 /* if (imm != imm) goto pc+off;
3834 * only follow fall-through branch, since
3835 * that's where the program will go
3836 */
3837 return 0;
3838 }
3839 }
3840
3841 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3842 if (!other_branch)
3843 return -EFAULT;
f4d7e40a 3844 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 3845
48461135
JB
3846 /* detect if we are comparing against a constant value so we can adjust
3847 * our min/max values for our dst register.
f1174f77
EC
3848 * this is only legit if both are scalars (or pointers to the same
3849 * object, I suppose, but we don't support that right now), because
3850 * otherwise the different base pointers mean the offsets aren't
3851 * comparable.
48461135
JB
3852 */
3853 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3854 if (dst_reg->type == SCALAR_VALUE &&
3855 regs[insn->src_reg].type == SCALAR_VALUE) {
3856 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 3857 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
3858 dst_reg, regs[insn->src_reg].var_off.value,
3859 opcode);
3860 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 3861 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
3862 &regs[insn->src_reg],
3863 dst_reg->var_off.value, opcode);
3864 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3865 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
3866 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3867 &other_branch_regs[insn->dst_reg],
f1174f77
EC
3868 &regs[insn->src_reg],
3869 &regs[insn->dst_reg], opcode);
3870 }
3871 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 3872 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
3873 dst_reg, insn->imm, opcode);
3874 }
3875
58e2af8b 3876 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3877 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3878 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3879 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3880 /* Mark all identical map registers in each branch as either
3881 * safe or unknown depending R == 0 or R != 0 conditional.
3882 */
f1174f77
EC
3883 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3884 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3885 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3886 this_branch, other_branch) &&
3887 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3888 verbose(env, "R%d pointer comparison prohibited\n",
3889 insn->dst_reg);
1be7f75d 3890 return -EACCES;
17a52670 3891 }
61bd5218 3892 if (env->log.level)
f4d7e40a 3893 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
3894 return 0;
3895}
3896
0246e64d
AS
3897/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3898static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3899{
3900 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3901
3902 return (struct bpf_map *) (unsigned long) imm64;
3903}
3904
17a52670 3905/* verify BPF_LD_IMM64 instruction */
58e2af8b 3906static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3907{
638f5b90 3908 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3909 int err;
3910
3911 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3912 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3913 return -EINVAL;
3914 }
3915 if (insn->off != 0) {
61bd5218 3916 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3917 return -EINVAL;
3918 }
3919
dc503a8a 3920 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3921 if (err)
3922 return err;
3923
6b173873 3924 if (insn->src_reg == 0) {
6b173873
JK
3925 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3926
f1174f77 3927 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3928 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3929 return 0;
6b173873 3930 }
17a52670
AS
3931
3932 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3933 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3934
3935 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3936 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3937 return 0;
3938}
3939
96be4325
DB
3940static bool may_access_skb(enum bpf_prog_type type)
3941{
3942 switch (type) {
3943 case BPF_PROG_TYPE_SOCKET_FILTER:
3944 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3945 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3946 return true;
3947 default:
3948 return false;
3949 }
3950}
3951
ddd872bc
AS
3952/* verify safety of LD_ABS|LD_IND instructions:
3953 * - they can only appear in the programs where ctx == skb
3954 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3955 * preserve R6-R9, and store return value into R0
3956 *
3957 * Implicit input:
3958 * ctx == skb == R6 == CTX
3959 *
3960 * Explicit input:
3961 * SRC == any register
3962 * IMM == 32-bit immediate
3963 *
3964 * Output:
3965 * R0 - 8/16/32-bit skb data converted to cpu endianness
3966 */
58e2af8b 3967static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3968{
638f5b90 3969 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3970 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3971 int i, err;
3972
24701ece 3973 if (!may_access_skb(env->prog->type)) {
61bd5218 3974 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3975 return -EINVAL;
3976 }
3977
e0cea7ce
DB
3978 if (!env->ops->gen_ld_abs) {
3979 verbose(env, "bpf verifier is misconfigured\n");
3980 return -EINVAL;
3981 }
3982
f910cefa 3983 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3984 /* when program has LD_ABS insn JITs and interpreter assume
3985 * that r1 == ctx == skb which is not the case for callees
3986 * that can have arbitrary arguments. It's problematic
3987 * for main prog as well since JITs would need to analyze
3988 * all functions in order to make proper register save/restore
3989 * decisions in the main prog. Hence disallow LD_ABS with calls
3990 */
3991 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3992 return -EINVAL;
3993 }
3994
ddd872bc 3995 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3996 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3997 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3998 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3999 return -EINVAL;
4000 }
4001
4002 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4003 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4004 if (err)
4005 return err;
4006
4007 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4008 verbose(env,
4009 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4010 return -EINVAL;
4011 }
4012
4013 if (mode == BPF_IND) {
4014 /* check explicit source operand */
dc503a8a 4015 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4016 if (err)
4017 return err;
4018 }
4019
4020 /* reset caller saved regs to unreadable */
dc503a8a 4021 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4022 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4023 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4024 }
ddd872bc
AS
4025
4026 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4027 * the value fetched from the packet.
4028 * Already marked as written above.
ddd872bc 4029 */
61bd5218 4030 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4031 return 0;
4032}
4033
390ee7e2
AS
4034static int check_return_code(struct bpf_verifier_env *env)
4035{
4036 struct bpf_reg_state *reg;
4037 struct tnum range = tnum_range(0, 1);
4038
4039 switch (env->prog->type) {
4040 case BPF_PROG_TYPE_CGROUP_SKB:
4041 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4042 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4043 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4044 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4045 break;
4046 default:
4047 return 0;
4048 }
4049
638f5b90 4050 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4051 if (reg->type != SCALAR_VALUE) {
61bd5218 4052 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4053 reg_type_str[reg->type]);
4054 return -EINVAL;
4055 }
4056
4057 if (!tnum_in(range, reg->var_off)) {
61bd5218 4058 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4059 if (!tnum_is_unknown(reg->var_off)) {
4060 char tn_buf[48];
4061
4062 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4063 verbose(env, "has value %s", tn_buf);
390ee7e2 4064 } else {
61bd5218 4065 verbose(env, "has unknown scalar value");
390ee7e2 4066 }
61bd5218 4067 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4068 return -EINVAL;
4069 }
4070 return 0;
4071}
4072
475fb78f
AS
4073/* non-recursive DFS pseudo code
4074 * 1 procedure DFS-iterative(G,v):
4075 * 2 label v as discovered
4076 * 3 let S be a stack
4077 * 4 S.push(v)
4078 * 5 while S is not empty
4079 * 6 t <- S.pop()
4080 * 7 if t is what we're looking for:
4081 * 8 return t
4082 * 9 for all edges e in G.adjacentEdges(t) do
4083 * 10 if edge e is already labelled
4084 * 11 continue with the next edge
4085 * 12 w <- G.adjacentVertex(t,e)
4086 * 13 if vertex w is not discovered and not explored
4087 * 14 label e as tree-edge
4088 * 15 label w as discovered
4089 * 16 S.push(w)
4090 * 17 continue at 5
4091 * 18 else if vertex w is discovered
4092 * 19 label e as back-edge
4093 * 20 else
4094 * 21 // vertex w is explored
4095 * 22 label e as forward- or cross-edge
4096 * 23 label t as explored
4097 * 24 S.pop()
4098 *
4099 * convention:
4100 * 0x10 - discovered
4101 * 0x11 - discovered and fall-through edge labelled
4102 * 0x12 - discovered and fall-through and branch edges labelled
4103 * 0x20 - explored
4104 */
4105
4106enum {
4107 DISCOVERED = 0x10,
4108 EXPLORED = 0x20,
4109 FALLTHROUGH = 1,
4110 BRANCH = 2,
4111};
4112
58e2af8b 4113#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4114
475fb78f
AS
4115static int *insn_stack; /* stack of insns to process */
4116static int cur_stack; /* current stack index */
4117static int *insn_state;
4118
4119/* t, w, e - match pseudo-code above:
4120 * t - index of current instruction
4121 * w - next instruction
4122 * e - edge
4123 */
58e2af8b 4124static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4125{
4126 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4127 return 0;
4128
4129 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4130 return 0;
4131
4132 if (w < 0 || w >= env->prog->len) {
61bd5218 4133 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4134 return -EINVAL;
4135 }
4136
f1bca824
AS
4137 if (e == BRANCH)
4138 /* mark branch target for state pruning */
4139 env->explored_states[w] = STATE_LIST_MARK;
4140
475fb78f
AS
4141 if (insn_state[w] == 0) {
4142 /* tree-edge */
4143 insn_state[t] = DISCOVERED | e;
4144 insn_state[w] = DISCOVERED;
4145 if (cur_stack >= env->prog->len)
4146 return -E2BIG;
4147 insn_stack[cur_stack++] = w;
4148 return 1;
4149 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4150 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4151 return -EINVAL;
4152 } else if (insn_state[w] == EXPLORED) {
4153 /* forward- or cross-edge */
4154 insn_state[t] = DISCOVERED | e;
4155 } else {
61bd5218 4156 verbose(env, "insn state internal bug\n");
475fb78f
AS
4157 return -EFAULT;
4158 }
4159 return 0;
4160}
4161
4162/* non-recursive depth-first-search to detect loops in BPF program
4163 * loop == back-edge in directed graph
4164 */
58e2af8b 4165static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4166{
4167 struct bpf_insn *insns = env->prog->insnsi;
4168 int insn_cnt = env->prog->len;
4169 int ret = 0;
4170 int i, t;
4171
cc8b0b92
AS
4172 ret = check_subprogs(env);
4173 if (ret < 0)
4174 return ret;
4175
475fb78f
AS
4176 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4177 if (!insn_state)
4178 return -ENOMEM;
4179
4180 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4181 if (!insn_stack) {
4182 kfree(insn_state);
4183 return -ENOMEM;
4184 }
4185
4186 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4187 insn_stack[0] = 0; /* 0 is the first instruction */
4188 cur_stack = 1;
4189
4190peek_stack:
4191 if (cur_stack == 0)
4192 goto check_state;
4193 t = insn_stack[cur_stack - 1];
4194
4195 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4196 u8 opcode = BPF_OP(insns[t].code);
4197
4198 if (opcode == BPF_EXIT) {
4199 goto mark_explored;
4200 } else if (opcode == BPF_CALL) {
4201 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4202 if (ret == 1)
4203 goto peek_stack;
4204 else if (ret < 0)
4205 goto err_free;
07016151
DB
4206 if (t + 1 < insn_cnt)
4207 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4208 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4209 env->explored_states[t] = STATE_LIST_MARK;
4210 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4211 if (ret == 1)
4212 goto peek_stack;
4213 else if (ret < 0)
4214 goto err_free;
4215 }
475fb78f
AS
4216 } else if (opcode == BPF_JA) {
4217 if (BPF_SRC(insns[t].code) != BPF_K) {
4218 ret = -EINVAL;
4219 goto err_free;
4220 }
4221 /* unconditional jump with single edge */
4222 ret = push_insn(t, t + insns[t].off + 1,
4223 FALLTHROUGH, env);
4224 if (ret == 1)
4225 goto peek_stack;
4226 else if (ret < 0)
4227 goto err_free;
f1bca824
AS
4228 /* tell verifier to check for equivalent states
4229 * after every call and jump
4230 */
c3de6317
AS
4231 if (t + 1 < insn_cnt)
4232 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4233 } else {
4234 /* conditional jump with two edges */
3c2ce60b 4235 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4236 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4237 if (ret == 1)
4238 goto peek_stack;
4239 else if (ret < 0)
4240 goto err_free;
4241
4242 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4243 if (ret == 1)
4244 goto peek_stack;
4245 else if (ret < 0)
4246 goto err_free;
4247 }
4248 } else {
4249 /* all other non-branch instructions with single
4250 * fall-through edge
4251 */
4252 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4253 if (ret == 1)
4254 goto peek_stack;
4255 else if (ret < 0)
4256 goto err_free;
4257 }
4258
4259mark_explored:
4260 insn_state[t] = EXPLORED;
4261 if (cur_stack-- <= 0) {
61bd5218 4262 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4263 ret = -EFAULT;
4264 goto err_free;
4265 }
4266 goto peek_stack;
4267
4268check_state:
4269 for (i = 0; i < insn_cnt; i++) {
4270 if (insn_state[i] != EXPLORED) {
61bd5218 4271 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4272 ret = -EINVAL;
4273 goto err_free;
4274 }
4275 }
4276 ret = 0; /* cfg looks good */
4277
4278err_free:
4279 kfree(insn_state);
4280 kfree(insn_stack);
4281 return ret;
4282}
4283
f1174f77
EC
4284/* check %cur's range satisfies %old's */
4285static bool range_within(struct bpf_reg_state *old,
4286 struct bpf_reg_state *cur)
4287{
b03c9f9f
EC
4288 return old->umin_value <= cur->umin_value &&
4289 old->umax_value >= cur->umax_value &&
4290 old->smin_value <= cur->smin_value &&
4291 old->smax_value >= cur->smax_value;
f1174f77
EC
4292}
4293
4294/* Maximum number of register states that can exist at once */
4295#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4296struct idpair {
4297 u32 old;
4298 u32 cur;
4299};
4300
4301/* If in the old state two registers had the same id, then they need to have
4302 * the same id in the new state as well. But that id could be different from
4303 * the old state, so we need to track the mapping from old to new ids.
4304 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4305 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4306 * regs with a different old id could still have new id 9, we don't care about
4307 * that.
4308 * So we look through our idmap to see if this old id has been seen before. If
4309 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4310 */
f1174f77 4311static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4312{
f1174f77 4313 unsigned int i;
969bf05e 4314
f1174f77
EC
4315 for (i = 0; i < ID_MAP_SIZE; i++) {
4316 if (!idmap[i].old) {
4317 /* Reached an empty slot; haven't seen this id before */
4318 idmap[i].old = old_id;
4319 idmap[i].cur = cur_id;
4320 return true;
4321 }
4322 if (idmap[i].old == old_id)
4323 return idmap[i].cur == cur_id;
4324 }
4325 /* We ran out of idmap slots, which should be impossible */
4326 WARN_ON_ONCE(1);
4327 return false;
4328}
4329
4330/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4331static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4332 struct idpair *idmap)
f1174f77 4333{
f4d7e40a
AS
4334 bool equal;
4335
dc503a8a
EC
4336 if (!(rold->live & REG_LIVE_READ))
4337 /* explored state didn't use this */
4338 return true;
4339
f4d7e40a
AS
4340 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4341
4342 if (rold->type == PTR_TO_STACK)
4343 /* two stack pointers are equal only if they're pointing to
4344 * the same stack frame, since fp-8 in foo != fp-8 in bar
4345 */
4346 return equal && rold->frameno == rcur->frameno;
4347
4348 if (equal)
969bf05e
AS
4349 return true;
4350
f1174f77
EC
4351 if (rold->type == NOT_INIT)
4352 /* explored state can't have used this */
969bf05e 4353 return true;
f1174f77
EC
4354 if (rcur->type == NOT_INIT)
4355 return false;
4356 switch (rold->type) {
4357 case SCALAR_VALUE:
4358 if (rcur->type == SCALAR_VALUE) {
4359 /* new val must satisfy old val knowledge */
4360 return range_within(rold, rcur) &&
4361 tnum_in(rold->var_off, rcur->var_off);
4362 } else {
179d1c56
JH
4363 /* We're trying to use a pointer in place of a scalar.
4364 * Even if the scalar was unbounded, this could lead to
4365 * pointer leaks because scalars are allowed to leak
4366 * while pointers are not. We could make this safe in
4367 * special cases if root is calling us, but it's
4368 * probably not worth the hassle.
f1174f77 4369 */
179d1c56 4370 return false;
f1174f77
EC
4371 }
4372 case PTR_TO_MAP_VALUE:
1b688a19
EC
4373 /* If the new min/max/var_off satisfy the old ones and
4374 * everything else matches, we are OK.
4375 * We don't care about the 'id' value, because nothing
4376 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4377 */
4378 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4379 range_within(rold, rcur) &&
4380 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4381 case PTR_TO_MAP_VALUE_OR_NULL:
4382 /* a PTR_TO_MAP_VALUE could be safe to use as a
4383 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4384 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4385 * checked, doing so could have affected others with the same
4386 * id, and we can't check for that because we lost the id when
4387 * we converted to a PTR_TO_MAP_VALUE.
4388 */
4389 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4390 return false;
4391 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4392 return false;
4393 /* Check our ids match any regs they're supposed to */
4394 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4395 case PTR_TO_PACKET_META:
f1174f77 4396 case PTR_TO_PACKET:
de8f3a83 4397 if (rcur->type != rold->type)
f1174f77
EC
4398 return false;
4399 /* We must have at least as much range as the old ptr
4400 * did, so that any accesses which were safe before are
4401 * still safe. This is true even if old range < old off,
4402 * since someone could have accessed through (ptr - k), or
4403 * even done ptr -= k in a register, to get a safe access.
4404 */
4405 if (rold->range > rcur->range)
4406 return false;
4407 /* If the offsets don't match, we can't trust our alignment;
4408 * nor can we be sure that we won't fall out of range.
4409 */
4410 if (rold->off != rcur->off)
4411 return false;
4412 /* id relations must be preserved */
4413 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4414 return false;
4415 /* new val must satisfy old val knowledge */
4416 return range_within(rold, rcur) &&
4417 tnum_in(rold->var_off, rcur->var_off);
4418 case PTR_TO_CTX:
4419 case CONST_PTR_TO_MAP:
f1174f77
EC
4420 case PTR_TO_PACKET_END:
4421 /* Only valid matches are exact, which memcmp() above
4422 * would have accepted
4423 */
4424 default:
4425 /* Don't know what's going on, just say it's not safe */
4426 return false;
4427 }
969bf05e 4428
f1174f77
EC
4429 /* Shouldn't get here; if we do, say it's not safe */
4430 WARN_ON_ONCE(1);
969bf05e
AS
4431 return false;
4432}
4433
f4d7e40a
AS
4434static bool stacksafe(struct bpf_func_state *old,
4435 struct bpf_func_state *cur,
638f5b90
AS
4436 struct idpair *idmap)
4437{
4438 int i, spi;
4439
4440 /* if explored stack has more populated slots than current stack
4441 * such stacks are not equivalent
4442 */
4443 if (old->allocated_stack > cur->allocated_stack)
4444 return false;
4445
4446 /* walk slots of the explored stack and ignore any additional
4447 * slots in the current stack, since explored(safe) state
4448 * didn't use them
4449 */
4450 for (i = 0; i < old->allocated_stack; i++) {
4451 spi = i / BPF_REG_SIZE;
4452
cc2b14d5
AS
4453 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4454 /* explored state didn't use this */
fd05e57b 4455 continue;
cc2b14d5 4456
638f5b90
AS
4457 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4458 continue;
cc2b14d5
AS
4459 /* if old state was safe with misc data in the stack
4460 * it will be safe with zero-initialized stack.
4461 * The opposite is not true
4462 */
4463 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4464 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4465 continue;
638f5b90
AS
4466 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4467 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4468 /* Ex: old explored (safe) state has STACK_SPILL in
4469 * this stack slot, but current has has STACK_MISC ->
4470 * this verifier states are not equivalent,
4471 * return false to continue verification of this path
4472 */
4473 return false;
4474 if (i % BPF_REG_SIZE)
4475 continue;
4476 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4477 continue;
4478 if (!regsafe(&old->stack[spi].spilled_ptr,
4479 &cur->stack[spi].spilled_ptr,
4480 idmap))
4481 /* when explored and current stack slot are both storing
4482 * spilled registers, check that stored pointers types
4483 * are the same as well.
4484 * Ex: explored safe path could have stored
4485 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4486 * but current path has stored:
4487 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4488 * such verifier states are not equivalent.
4489 * return false to continue verification of this path
4490 */
4491 return false;
4492 }
4493 return true;
4494}
4495
f1bca824
AS
4496/* compare two verifier states
4497 *
4498 * all states stored in state_list are known to be valid, since
4499 * verifier reached 'bpf_exit' instruction through them
4500 *
4501 * this function is called when verifier exploring different branches of
4502 * execution popped from the state stack. If it sees an old state that has
4503 * more strict register state and more strict stack state then this execution
4504 * branch doesn't need to be explored further, since verifier already
4505 * concluded that more strict state leads to valid finish.
4506 *
4507 * Therefore two states are equivalent if register state is more conservative
4508 * and explored stack state is more conservative than the current one.
4509 * Example:
4510 * explored current
4511 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4512 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4513 *
4514 * In other words if current stack state (one being explored) has more
4515 * valid slots than old one that already passed validation, it means
4516 * the verifier can stop exploring and conclude that current state is valid too
4517 *
4518 * Similarly with registers. If explored state has register type as invalid
4519 * whereas register type in current state is meaningful, it means that
4520 * the current state will reach 'bpf_exit' instruction safely
4521 */
f4d7e40a
AS
4522static bool func_states_equal(struct bpf_func_state *old,
4523 struct bpf_func_state *cur)
f1bca824 4524{
f1174f77
EC
4525 struct idpair *idmap;
4526 bool ret = false;
f1bca824
AS
4527 int i;
4528
f1174f77
EC
4529 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4530 /* If we failed to allocate the idmap, just say it's not safe */
4531 if (!idmap)
1a0dc1ac 4532 return false;
f1174f77
EC
4533
4534 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4535 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4536 goto out_free;
f1bca824
AS
4537 }
4538
638f5b90
AS
4539 if (!stacksafe(old, cur, idmap))
4540 goto out_free;
f1174f77
EC
4541 ret = true;
4542out_free:
4543 kfree(idmap);
4544 return ret;
f1bca824
AS
4545}
4546
f4d7e40a
AS
4547static bool states_equal(struct bpf_verifier_env *env,
4548 struct bpf_verifier_state *old,
4549 struct bpf_verifier_state *cur)
4550{
4551 int i;
4552
4553 if (old->curframe != cur->curframe)
4554 return false;
4555
4556 /* for states to be equal callsites have to be the same
4557 * and all frame states need to be equivalent
4558 */
4559 for (i = 0; i <= old->curframe; i++) {
4560 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4561 return false;
4562 if (!func_states_equal(old->frame[i], cur->frame[i]))
4563 return false;
4564 }
4565 return true;
4566}
4567
8e9cd9ce 4568/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4569 * straight-line code between a state and its parent. When we arrive at an
4570 * equivalent state (jump target or such) we didn't arrive by the straight-line
4571 * code, so read marks in the state must propagate to the parent regardless
4572 * of the state's write marks. That's what 'parent == state->parent' comparison
4573 * in mark_reg_read() and mark_stack_slot_read() is for.
8e9cd9ce 4574 */
f4d7e40a
AS
4575static int propagate_liveness(struct bpf_verifier_env *env,
4576 const struct bpf_verifier_state *vstate,
4577 struct bpf_verifier_state *vparent)
dc503a8a 4578{
f4d7e40a
AS
4579 int i, frame, err = 0;
4580 struct bpf_func_state *state, *parent;
dc503a8a 4581
f4d7e40a
AS
4582 if (vparent->curframe != vstate->curframe) {
4583 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4584 vparent->curframe, vstate->curframe);
4585 return -EFAULT;
4586 }
dc503a8a
EC
4587 /* Propagate read liveness of registers... */
4588 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4589 /* We don't need to worry about FP liveness because it's read-only */
4590 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4591 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4592 continue;
f4d7e40a
AS
4593 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4594 err = mark_reg_read(env, vstate, vparent, i);
4595 if (err)
4596 return err;
dc503a8a
EC
4597 }
4598 }
f4d7e40a 4599
dc503a8a 4600 /* ... and stack slots */
f4d7e40a
AS
4601 for (frame = 0; frame <= vstate->curframe; frame++) {
4602 state = vstate->frame[frame];
4603 parent = vparent->frame[frame];
4604 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4605 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4606 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4607 continue;
4608 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4609 mark_stack_slot_read(env, vstate, vparent, i, frame);
dc503a8a
EC
4610 }
4611 }
f4d7e40a 4612 return err;
dc503a8a
EC
4613}
4614
58e2af8b 4615static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4616{
58e2af8b
JK
4617 struct bpf_verifier_state_list *new_sl;
4618 struct bpf_verifier_state_list *sl;
638f5b90 4619 struct bpf_verifier_state *cur = env->cur_state;
f4d7e40a 4620 int i, j, err;
f1bca824
AS
4621
4622 sl = env->explored_states[insn_idx];
4623 if (!sl)
4624 /* this 'insn_idx' instruction wasn't marked, so we will not
4625 * be doing state search here
4626 */
4627 return 0;
4628
4629 while (sl != STATE_LIST_MARK) {
638f5b90 4630 if (states_equal(env, &sl->state, cur)) {
f1bca824 4631 /* reached equivalent register/stack state,
dc503a8a
EC
4632 * prune the search.
4633 * Registers read by the continuation are read by us.
8e9cd9ce
EC
4634 * If we have any write marks in env->cur_state, they
4635 * will prevent corresponding reads in the continuation
4636 * from reaching our parent (an explored_state). Our
4637 * own state will get the read marks recorded, but
4638 * they'll be immediately forgotten as we're pruning
4639 * this state and will pop a new one.
f1bca824 4640 */
f4d7e40a
AS
4641 err = propagate_liveness(env, &sl->state, cur);
4642 if (err)
4643 return err;
f1bca824 4644 return 1;
dc503a8a 4645 }
f1bca824
AS
4646 sl = sl->next;
4647 }
4648
4649 /* there were no equivalent states, remember current one.
4650 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
4651 * but it will either reach outer most bpf_exit (which means it's safe)
4652 * or it will be rejected. Since there are no loops, we won't be
4653 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4654 * again on the way to bpf_exit
f1bca824 4655 */
638f5b90 4656 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
4657 if (!new_sl)
4658 return -ENOMEM;
4659
4660 /* add new state to the head of linked list */
1969db47
AS
4661 err = copy_verifier_state(&new_sl->state, cur);
4662 if (err) {
4663 free_verifier_state(&new_sl->state, false);
4664 kfree(new_sl);
4665 return err;
4666 }
f1bca824
AS
4667 new_sl->next = env->explored_states[insn_idx];
4668 env->explored_states[insn_idx] = new_sl;
dc503a8a 4669 /* connect new state to parentage chain */
638f5b90 4670 cur->parent = &new_sl->state;
8e9cd9ce
EC
4671 /* clear write marks in current state: the writes we did are not writes
4672 * our child did, so they don't screen off its reads from us.
4673 * (There are no read marks in current state, because reads always mark
4674 * their parent and current state never has children yet. Only
4675 * explored_states can get read marks.)
4676 */
dc503a8a 4677 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
4678 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4679
4680 /* all stack frames are accessible from callee, clear them all */
4681 for (j = 0; j <= cur->curframe; j++) {
4682 struct bpf_func_state *frame = cur->frame[j];
4683
4684 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
cc2b14d5 4685 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f4d7e40a 4686 }
f1bca824
AS
4687 return 0;
4688}
4689
58e2af8b 4690static int do_check(struct bpf_verifier_env *env)
17a52670 4691{
638f5b90 4692 struct bpf_verifier_state *state;
17a52670 4693 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 4694 struct bpf_reg_state *regs;
f4d7e40a 4695 int insn_cnt = env->prog->len, i;
17a52670
AS
4696 int insn_idx, prev_insn_idx = 0;
4697 int insn_processed = 0;
4698 bool do_print_state = false;
4699
638f5b90
AS
4700 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4701 if (!state)
4702 return -ENOMEM;
f4d7e40a 4703 state->curframe = 0;
dc503a8a 4704 state->parent = NULL;
f4d7e40a
AS
4705 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4706 if (!state->frame[0]) {
4707 kfree(state);
4708 return -ENOMEM;
4709 }
4710 env->cur_state = state;
4711 init_func_state(env, state->frame[0],
4712 BPF_MAIN_FUNC /* callsite */,
4713 0 /* frameno */,
4714 0 /* subprogno, zero == main subprog */);
17a52670
AS
4715 insn_idx = 0;
4716 for (;;) {
4717 struct bpf_insn *insn;
4718 u8 class;
4719 int err;
4720
4721 if (insn_idx >= insn_cnt) {
61bd5218 4722 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
4723 insn_idx, insn_cnt);
4724 return -EFAULT;
4725 }
4726
4727 insn = &insns[insn_idx];
4728 class = BPF_CLASS(insn->code);
4729
07016151 4730 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
4731 verbose(env,
4732 "BPF program is too large. Processed %d insn\n",
17a52670
AS
4733 insn_processed);
4734 return -E2BIG;
4735 }
4736
f1bca824
AS
4737 err = is_state_visited(env, insn_idx);
4738 if (err < 0)
4739 return err;
4740 if (err == 1) {
4741 /* found equivalent state, can prune the search */
61bd5218 4742 if (env->log.level) {
f1bca824 4743 if (do_print_state)
61bd5218 4744 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
4745 prev_insn_idx, insn_idx);
4746 else
61bd5218 4747 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
4748 }
4749 goto process_bpf_exit;
4750 }
4751
3c2ce60b
DB
4752 if (need_resched())
4753 cond_resched();
4754
61bd5218
JK
4755 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4756 if (env->log.level > 1)
4757 verbose(env, "%d:", insn_idx);
c5fc9692 4758 else
61bd5218 4759 verbose(env, "\nfrom %d to %d:",
c5fc9692 4760 prev_insn_idx, insn_idx);
f4d7e40a 4761 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
4762 do_print_state = false;
4763 }
4764
61bd5218 4765 if (env->log.level) {
7105e828
DB
4766 const struct bpf_insn_cbs cbs = {
4767 .cb_print = verbose,
abe08840 4768 .private_data = env,
7105e828
DB
4769 };
4770
61bd5218 4771 verbose(env, "%d: ", insn_idx);
abe08840 4772 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
4773 }
4774
cae1927c
JK
4775 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4776 err = bpf_prog_offload_verify_insn(env, insn_idx,
4777 prev_insn_idx);
4778 if (err)
4779 return err;
4780 }
13a27dfc 4781
638f5b90 4782 regs = cur_regs(env);
c131187d 4783 env->insn_aux_data[insn_idx].seen = true;
17a52670 4784 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 4785 err = check_alu_op(env, insn);
17a52670
AS
4786 if (err)
4787 return err;
4788
4789 } else if (class == BPF_LDX) {
3df126f3 4790 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
4791
4792 /* check for reserved fields is already done */
4793
17a52670 4794 /* check src operand */
dc503a8a 4795 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4796 if (err)
4797 return err;
4798
dc503a8a 4799 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4800 if (err)
4801 return err;
4802
725f9dcd
AS
4803 src_reg_type = regs[insn->src_reg].type;
4804
17a52670
AS
4805 /* check that memory (src_reg + off) is readable,
4806 * the state of dst_reg will be updated by this func
4807 */
31fd8581 4808 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 4809 BPF_SIZE(insn->code), BPF_READ,
ca369602 4810 insn->dst_reg, false);
17a52670
AS
4811 if (err)
4812 return err;
4813
3df126f3
JK
4814 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4815
4816 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
4817 /* saw a valid insn
4818 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 4819 * save type to validate intersecting paths
9bac3d6d 4820 */
3df126f3 4821 *prev_src_type = src_reg_type;
9bac3d6d 4822
3df126f3 4823 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 4824 (src_reg_type == PTR_TO_CTX ||
3df126f3 4825 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
4826 /* ABuser program is trying to use the same insn
4827 * dst_reg = *(u32*) (src_reg + off)
4828 * with different pointer types:
4829 * src_reg == ctx in one branch and
4830 * src_reg == stack|map in some other branch.
4831 * Reject it.
4832 */
61bd5218 4833 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
4834 return -EINVAL;
4835 }
4836
17a52670 4837 } else if (class == BPF_STX) {
3df126f3 4838 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4839
17a52670 4840 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4841 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4842 if (err)
4843 return err;
4844 insn_idx++;
4845 continue;
4846 }
4847
17a52670 4848 /* check src1 operand */
dc503a8a 4849 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4850 if (err)
4851 return err;
4852 /* check src2 operand */
dc503a8a 4853 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4854 if (err)
4855 return err;
4856
d691f9e8
AS
4857 dst_reg_type = regs[insn->dst_reg].type;
4858
17a52670 4859 /* check that memory (dst_reg + off) is writeable */
31fd8581 4860 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4861 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4862 insn->src_reg, false);
17a52670
AS
4863 if (err)
4864 return err;
4865
3df126f3
JK
4866 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4867
4868 if (*prev_dst_type == NOT_INIT) {
4869 *prev_dst_type = dst_reg_type;
4870 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4871 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4872 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4873 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4874 return -EINVAL;
4875 }
4876
17a52670
AS
4877 } else if (class == BPF_ST) {
4878 if (BPF_MODE(insn->code) != BPF_MEM ||
4879 insn->src_reg != BPF_REG_0) {
61bd5218 4880 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4881 return -EINVAL;
4882 }
4883 /* check src operand */
dc503a8a 4884 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4885 if (err)
4886 return err;
4887
f37a8cb8
DB
4888 if (is_ctx_reg(env, insn->dst_reg)) {
4889 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4890 insn->dst_reg);
4891 return -EACCES;
4892 }
4893
17a52670 4894 /* check that memory (dst_reg + off) is writeable */
31fd8581 4895 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4896 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4897 -1, false);
17a52670
AS
4898 if (err)
4899 return err;
4900
4901 } else if (class == BPF_JMP) {
4902 u8 opcode = BPF_OP(insn->code);
4903
4904 if (opcode == BPF_CALL) {
4905 if (BPF_SRC(insn->code) != BPF_K ||
4906 insn->off != 0 ||
f4d7e40a
AS
4907 (insn->src_reg != BPF_REG_0 &&
4908 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 4909 insn->dst_reg != BPF_REG_0) {
61bd5218 4910 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4911 return -EINVAL;
4912 }
4913
f4d7e40a
AS
4914 if (insn->src_reg == BPF_PSEUDO_CALL)
4915 err = check_func_call(env, insn, &insn_idx);
4916 else
4917 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
4918 if (err)
4919 return err;
4920
4921 } else if (opcode == BPF_JA) {
4922 if (BPF_SRC(insn->code) != BPF_K ||
4923 insn->imm != 0 ||
4924 insn->src_reg != BPF_REG_0 ||
4925 insn->dst_reg != BPF_REG_0) {
61bd5218 4926 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4927 return -EINVAL;
4928 }
4929
4930 insn_idx += insn->off + 1;
4931 continue;
4932
4933 } else if (opcode == BPF_EXIT) {
4934 if (BPF_SRC(insn->code) != BPF_K ||
4935 insn->imm != 0 ||
4936 insn->src_reg != BPF_REG_0 ||
4937 insn->dst_reg != BPF_REG_0) {
61bd5218 4938 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4939 return -EINVAL;
4940 }
4941
f4d7e40a
AS
4942 if (state->curframe) {
4943 /* exit from nested function */
4944 prev_insn_idx = insn_idx;
4945 err = prepare_func_exit(env, &insn_idx);
4946 if (err)
4947 return err;
4948 do_print_state = true;
4949 continue;
4950 }
4951
17a52670
AS
4952 /* eBPF calling convetion is such that R0 is used
4953 * to return the value from eBPF program.
4954 * Make sure that it's readable at this time
4955 * of bpf_exit, which means that program wrote
4956 * something into it earlier
4957 */
dc503a8a 4958 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4959 if (err)
4960 return err;
4961
1be7f75d 4962 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4963 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4964 return -EACCES;
4965 }
4966
390ee7e2
AS
4967 err = check_return_code(env);
4968 if (err)
4969 return err;
f1bca824 4970process_bpf_exit:
638f5b90
AS
4971 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4972 if (err < 0) {
4973 if (err != -ENOENT)
4974 return err;
17a52670
AS
4975 break;
4976 } else {
4977 do_print_state = true;
4978 continue;
4979 }
4980 } else {
4981 err = check_cond_jmp_op(env, insn, &insn_idx);
4982 if (err)
4983 return err;
4984 }
4985 } else if (class == BPF_LD) {
4986 u8 mode = BPF_MODE(insn->code);
4987
4988 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4989 err = check_ld_abs(env, insn);
4990 if (err)
4991 return err;
4992
17a52670
AS
4993 } else if (mode == BPF_IMM) {
4994 err = check_ld_imm(env, insn);
4995 if (err)
4996 return err;
4997
4998 insn_idx++;
c131187d 4999 env->insn_aux_data[insn_idx].seen = true;
17a52670 5000 } else {
61bd5218 5001 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5002 return -EINVAL;
5003 }
5004 } else {
61bd5218 5005 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5006 return -EINVAL;
5007 }
5008
5009 insn_idx++;
5010 }
5011
4bd95f4b
DB
5012 verbose(env, "processed %d insns (limit %d), stack depth ",
5013 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5014 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5015 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5016
5017 verbose(env, "%d", depth);
f910cefa 5018 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5019 verbose(env, "+");
5020 }
5021 verbose(env, "\n");
9c8105bd 5022 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5023 return 0;
5024}
5025
56f668df
MKL
5026static int check_map_prealloc(struct bpf_map *map)
5027{
5028 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5029 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5030 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5031 !(map->map_flags & BPF_F_NO_PREALLOC);
5032}
5033
61bd5218
JK
5034static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5035 struct bpf_map *map,
fdc15d38
AS
5036 struct bpf_prog *prog)
5037
5038{
56f668df
MKL
5039 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5040 * preallocated hash maps, since doing memory allocation
5041 * in overflow_handler can crash depending on where nmi got
5042 * triggered.
5043 */
5044 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5045 if (!check_map_prealloc(map)) {
61bd5218 5046 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
5047 return -EINVAL;
5048 }
5049 if (map->inner_map_meta &&
5050 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 5051 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
5052 return -EINVAL;
5053 }
fdc15d38 5054 }
a3884572
JK
5055
5056 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5057 !bpf_offload_dev_match(prog, map)) {
5058 verbose(env, "offload device mismatch between prog and map\n");
5059 return -EINVAL;
5060 }
5061
fdc15d38
AS
5062 return 0;
5063}
5064
0246e64d
AS
5065/* look for pseudo eBPF instructions that access map FDs and
5066 * replace them with actual map pointers
5067 */
58e2af8b 5068static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
5069{
5070 struct bpf_insn *insn = env->prog->insnsi;
5071 int insn_cnt = env->prog->len;
fdc15d38 5072 int i, j, err;
0246e64d 5073
f1f7714e 5074 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
5075 if (err)
5076 return err;
5077
0246e64d 5078 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5079 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5080 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5081 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5082 return -EINVAL;
5083 }
5084
d691f9e8
AS
5085 if (BPF_CLASS(insn->code) == BPF_STX &&
5086 ((BPF_MODE(insn->code) != BPF_MEM &&
5087 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5088 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5089 return -EINVAL;
5090 }
5091
0246e64d
AS
5092 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5093 struct bpf_map *map;
5094 struct fd f;
5095
5096 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5097 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5098 insn[1].off != 0) {
61bd5218 5099 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5100 return -EINVAL;
5101 }
5102
5103 if (insn->src_reg == 0)
5104 /* valid generic load 64-bit imm */
5105 goto next_insn;
5106
5107 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5108 verbose(env,
5109 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5110 return -EINVAL;
5111 }
5112
5113 f = fdget(insn->imm);
c2101297 5114 map = __bpf_map_get(f);
0246e64d 5115 if (IS_ERR(map)) {
61bd5218 5116 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5117 insn->imm);
0246e64d
AS
5118 return PTR_ERR(map);
5119 }
5120
61bd5218 5121 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5122 if (err) {
5123 fdput(f);
5124 return err;
5125 }
5126
0246e64d
AS
5127 /* store map pointer inside BPF_LD_IMM64 instruction */
5128 insn[0].imm = (u32) (unsigned long) map;
5129 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5130
5131 /* check whether we recorded this map already */
5132 for (j = 0; j < env->used_map_cnt; j++)
5133 if (env->used_maps[j] == map) {
5134 fdput(f);
5135 goto next_insn;
5136 }
5137
5138 if (env->used_map_cnt >= MAX_USED_MAPS) {
5139 fdput(f);
5140 return -E2BIG;
5141 }
5142
0246e64d
AS
5143 /* hold the map. If the program is rejected by verifier,
5144 * the map will be released by release_maps() or it
5145 * will be used by the valid program until it's unloaded
ab7f5bf0 5146 * and all maps are released in free_used_maps()
0246e64d 5147 */
92117d84
AS
5148 map = bpf_map_inc(map, false);
5149 if (IS_ERR(map)) {
5150 fdput(f);
5151 return PTR_ERR(map);
5152 }
5153 env->used_maps[env->used_map_cnt++] = map;
5154
0246e64d
AS
5155 fdput(f);
5156next_insn:
5157 insn++;
5158 i++;
5e581dad
DB
5159 continue;
5160 }
5161
5162 /* Basic sanity check before we invest more work here. */
5163 if (!bpf_opcode_in_insntable(insn->code)) {
5164 verbose(env, "unknown opcode %02x\n", insn->code);
5165 return -EINVAL;
0246e64d
AS
5166 }
5167 }
5168
5169 /* now all pseudo BPF_LD_IMM64 instructions load valid
5170 * 'struct bpf_map *' into a register instead of user map_fd.
5171 * These pointers will be used later by verifier to validate map access.
5172 */
5173 return 0;
5174}
5175
5176/* drop refcnt of maps used by the rejected program */
58e2af8b 5177static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
5178{
5179 int i;
5180
5181 for (i = 0; i < env->used_map_cnt; i++)
5182 bpf_map_put(env->used_maps[i]);
5183}
5184
5185/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5186static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5187{
5188 struct bpf_insn *insn = env->prog->insnsi;
5189 int insn_cnt = env->prog->len;
5190 int i;
5191
5192 for (i = 0; i < insn_cnt; i++, insn++)
5193 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5194 insn->src_reg = 0;
5195}
5196
8041902d
AS
5197/* single env->prog->insni[off] instruction was replaced with the range
5198 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5199 * [0, off) and [off, end) to new locations, so the patched range stays zero
5200 */
5201static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5202 u32 off, u32 cnt)
5203{
5204 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5205 int i;
8041902d
AS
5206
5207 if (cnt == 1)
5208 return 0;
5209 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5210 if (!new_data)
5211 return -ENOMEM;
5212 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5213 memcpy(new_data + off + cnt - 1, old_data + off,
5214 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5215 for (i = off; i < off + cnt - 1; i++)
5216 new_data[i].seen = true;
8041902d
AS
5217 env->insn_aux_data = new_data;
5218 vfree(old_data);
5219 return 0;
5220}
5221
cc8b0b92
AS
5222static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5223{
5224 int i;
5225
5226 if (len == 1)
5227 return;
4cb3d99c
JW
5228 /* NOTE: fake 'exit' subprog should be updated as well. */
5229 for (i = 0; i <= env->subprog_cnt; i++) {
9c8105bd 5230 if (env->subprog_info[i].start < off)
cc8b0b92 5231 continue;
9c8105bd 5232 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5233 }
5234}
5235
8041902d
AS
5236static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5237 const struct bpf_insn *patch, u32 len)
5238{
5239 struct bpf_prog *new_prog;
5240
5241 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5242 if (!new_prog)
5243 return NULL;
5244 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5245 return NULL;
cc8b0b92 5246 adjust_subprog_starts(env, off, len);
8041902d
AS
5247 return new_prog;
5248}
5249
2a5418a1
DB
5250/* The verifier does more data flow analysis than llvm and will not
5251 * explore branches that are dead at run time. Malicious programs can
5252 * have dead code too. Therefore replace all dead at-run-time code
5253 * with 'ja -1'.
5254 *
5255 * Just nops are not optimal, e.g. if they would sit at the end of the
5256 * program and through another bug we would manage to jump there, then
5257 * we'd execute beyond program memory otherwise. Returning exception
5258 * code also wouldn't work since we can have subprogs where the dead
5259 * code could be located.
c131187d
AS
5260 */
5261static void sanitize_dead_code(struct bpf_verifier_env *env)
5262{
5263 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5264 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5265 struct bpf_insn *insn = env->prog->insnsi;
5266 const int insn_cnt = env->prog->len;
5267 int i;
5268
5269 for (i = 0; i < insn_cnt; i++) {
5270 if (aux_data[i].seen)
5271 continue;
2a5418a1 5272 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5273 }
5274}
5275
9bac3d6d
AS
5276/* convert load instructions that access fields of 'struct __sk_buff'
5277 * into sequence of instructions that access fields of 'struct sk_buff'
5278 */
58e2af8b 5279static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5280{
00176a34 5281 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5282 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5283 const int insn_cnt = env->prog->len;
36bbef52 5284 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5285 struct bpf_prog *new_prog;
d691f9e8 5286 enum bpf_access_type type;
f96da094
DB
5287 bool is_narrower_load;
5288 u32 target_size;
9bac3d6d 5289
36bbef52
DB
5290 if (ops->gen_prologue) {
5291 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5292 env->prog);
5293 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5294 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5295 return -EINVAL;
5296 } else if (cnt) {
8041902d 5297 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5298 if (!new_prog)
5299 return -ENOMEM;
8041902d 5300
36bbef52 5301 env->prog = new_prog;
3df126f3 5302 delta += cnt - 1;
36bbef52
DB
5303 }
5304 }
5305
0d830032 5306 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5307 return 0;
5308
3df126f3 5309 insn = env->prog->insnsi + delta;
36bbef52 5310
9bac3d6d 5311 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
5312 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5313 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5314 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5315 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5316 type = BPF_READ;
62c7989b
DB
5317 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5318 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5319 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5320 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5321 type = BPF_WRITE;
5322 else
9bac3d6d
AS
5323 continue;
5324
af86ca4e
AS
5325 if (type == BPF_WRITE &&
5326 env->insn_aux_data[i + delta].sanitize_stack_off) {
5327 struct bpf_insn patch[] = {
5328 /* Sanitize suspicious stack slot with zero.
5329 * There are no memory dependencies for this store,
5330 * since it's only using frame pointer and immediate
5331 * constant of zero
5332 */
5333 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5334 env->insn_aux_data[i + delta].sanitize_stack_off,
5335 0),
5336 /* the original STX instruction will immediately
5337 * overwrite the same stack slot with appropriate value
5338 */
5339 *insn,
5340 };
5341
5342 cnt = ARRAY_SIZE(patch);
5343 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5344 if (!new_prog)
5345 return -ENOMEM;
5346
5347 delta += cnt - 1;
5348 env->prog = new_prog;
5349 insn = new_prog->insnsi + i + delta;
5350 continue;
5351 }
5352
8041902d 5353 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 5354 continue;
9bac3d6d 5355
31fd8581 5356 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5357 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5358
5359 /* If the read access is a narrower load of the field,
5360 * convert to a 4/8-byte load, to minimum program type specific
5361 * convert_ctx_access changes. If conversion is successful,
5362 * we will apply proper mask to the result.
5363 */
f96da094 5364 is_narrower_load = size < ctx_field_size;
31fd8581 5365 if (is_narrower_load) {
bc23105c 5366 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
f96da094
DB
5367 u32 off = insn->off;
5368 u8 size_code;
5369
5370 if (type == BPF_WRITE) {
61bd5218 5371 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5372 return -EINVAL;
5373 }
31fd8581 5374
f96da094 5375 size_code = BPF_H;
31fd8581
YS
5376 if (ctx_field_size == 4)
5377 size_code = BPF_W;
5378 else if (ctx_field_size == 8)
5379 size_code = BPF_DW;
f96da094 5380
bc23105c 5381 insn->off = off & ~(size_default - 1);
31fd8581
YS
5382 insn->code = BPF_LDX | BPF_MEM | size_code;
5383 }
f96da094
DB
5384
5385 target_size = 0;
5386 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5387 &target_size);
5388 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5389 (ctx_field_size && !target_size)) {
61bd5218 5390 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5391 return -EINVAL;
5392 }
f96da094
DB
5393
5394 if (is_narrower_load && size < target_size) {
31fd8581
YS
5395 if (ctx_field_size <= 4)
5396 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5397 (1 << size * 8) - 1);
31fd8581
YS
5398 else
5399 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5400 (1 << size * 8) - 1);
31fd8581 5401 }
9bac3d6d 5402
8041902d 5403 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5404 if (!new_prog)
5405 return -ENOMEM;
5406
3df126f3 5407 delta += cnt - 1;
9bac3d6d
AS
5408
5409 /* keep walking new program and skip insns we just inserted */
5410 env->prog = new_prog;
3df126f3 5411 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5412 }
5413
5414 return 0;
5415}
5416
1c2a088a
AS
5417static int jit_subprogs(struct bpf_verifier_env *env)
5418{
5419 struct bpf_prog *prog = env->prog, **func, *tmp;
5420 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5421 struct bpf_insn *insn;
1c2a088a
AS
5422 void *old_bpf_func;
5423 int err = -ENOMEM;
5424
f910cefa 5425 if (env->subprog_cnt <= 1)
1c2a088a
AS
5426 return 0;
5427
7105e828 5428 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5429 if (insn->code != (BPF_JMP | BPF_CALL) ||
5430 insn->src_reg != BPF_PSEUDO_CALL)
5431 continue;
5432 subprog = find_subprog(env, i + insn->imm + 1);
5433 if (subprog < 0) {
5434 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5435 i + insn->imm + 1);
5436 return -EFAULT;
5437 }
5438 /* temporarily remember subprog id inside insn instead of
5439 * aux_data, since next loop will split up all insns into funcs
5440 */
f910cefa 5441 insn->off = subprog;
1c2a088a
AS
5442 /* remember original imm in case JIT fails and fallback
5443 * to interpreter will be needed
5444 */
5445 env->insn_aux_data[i].call_imm = insn->imm;
5446 /* point imm to __bpf_call_base+1 from JITs point of view */
5447 insn->imm = 1;
5448 }
5449
6396bb22 5450 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a
AS
5451 if (!func)
5452 return -ENOMEM;
5453
f910cefa 5454 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5455 subprog_start = subprog_end;
4cb3d99c 5456 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5457
5458 len = subprog_end - subprog_start;
5459 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5460 if (!func[i])
5461 goto out_free;
5462 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5463 len * sizeof(struct bpf_insn));
4f74d809 5464 func[i]->type = prog->type;
1c2a088a 5465 func[i]->len = len;
4f74d809
DB
5466 if (bpf_prog_calc_tag(func[i]))
5467 goto out_free;
1c2a088a
AS
5468 func[i]->is_func = 1;
5469 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5470 * Long term would need debug info to populate names
5471 */
5472 func[i]->aux->name[0] = 'F';
9c8105bd 5473 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5474 func[i]->jit_requested = 1;
5475 func[i] = bpf_int_jit_compile(func[i]);
5476 if (!func[i]->jited) {
5477 err = -ENOTSUPP;
5478 goto out_free;
5479 }
5480 cond_resched();
5481 }
5482 /* at this point all bpf functions were successfully JITed
5483 * now populate all bpf_calls with correct addresses and
5484 * run last pass of JIT
5485 */
f910cefa 5486 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5487 insn = func[i]->insnsi;
5488 for (j = 0; j < func[i]->len; j++, insn++) {
5489 if (insn->code != (BPF_JMP | BPF_CALL) ||
5490 insn->src_reg != BPF_PSEUDO_CALL)
5491 continue;
5492 subprog = insn->off;
1c2a088a
AS
5493 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5494 func[subprog]->bpf_func -
5495 __bpf_call_base;
5496 }
2162fed4
SD
5497
5498 /* we use the aux data to keep a list of the start addresses
5499 * of the JITed images for each function in the program
5500 *
5501 * for some architectures, such as powerpc64, the imm field
5502 * might not be large enough to hold the offset of the start
5503 * address of the callee's JITed image from __bpf_call_base
5504 *
5505 * in such cases, we can lookup the start address of a callee
5506 * by using its subprog id, available from the off field of
5507 * the call instruction, as an index for this list
5508 */
5509 func[i]->aux->func = func;
5510 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 5511 }
f910cefa 5512 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5513 old_bpf_func = func[i]->bpf_func;
5514 tmp = bpf_int_jit_compile(func[i]);
5515 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5516 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5517 err = -EFAULT;
5518 goto out_free;
5519 }
5520 cond_resched();
5521 }
5522
5523 /* finally lock prog and jit images for all functions and
5524 * populate kallsysm
5525 */
f910cefa 5526 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5527 bpf_prog_lock_ro(func[i]);
5528 bpf_prog_kallsyms_add(func[i]);
5529 }
7105e828
DB
5530
5531 /* Last step: make now unused interpreter insns from main
5532 * prog consistent for later dump requests, so they can
5533 * later look the same as if they were interpreted only.
5534 */
5535 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
5536 if (insn->code != (BPF_JMP | BPF_CALL) ||
5537 insn->src_reg != BPF_PSEUDO_CALL)
5538 continue;
5539 insn->off = env->insn_aux_data[i].call_imm;
5540 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 5541 insn->imm = subprog;
7105e828
DB
5542 }
5543
1c2a088a
AS
5544 prog->jited = 1;
5545 prog->bpf_func = func[0]->bpf_func;
5546 prog->aux->func = func;
f910cefa 5547 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
5548 return 0;
5549out_free:
f910cefa 5550 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
5551 if (func[i])
5552 bpf_jit_free(func[i]);
5553 kfree(func);
5554 /* cleanup main prog to be interpreted */
5555 prog->jit_requested = 0;
5556 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5557 if (insn->code != (BPF_JMP | BPF_CALL) ||
5558 insn->src_reg != BPF_PSEUDO_CALL)
5559 continue;
5560 insn->off = 0;
5561 insn->imm = env->insn_aux_data[i].call_imm;
5562 }
5563 return err;
5564}
5565
1ea47e01
AS
5566static int fixup_call_args(struct bpf_verifier_env *env)
5567{
19d28fbd 5568#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5569 struct bpf_prog *prog = env->prog;
5570 struct bpf_insn *insn = prog->insnsi;
5571 int i, depth;
19d28fbd
DM
5572#endif
5573 int err;
1ea47e01 5574
19d28fbd
DM
5575 err = 0;
5576 if (env->prog->jit_requested) {
5577 err = jit_subprogs(env);
5578 if (err == 0)
1c2a088a 5579 return 0;
19d28fbd
DM
5580 }
5581#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5582 for (i = 0; i < prog->len; i++, insn++) {
5583 if (insn->code != (BPF_JMP | BPF_CALL) ||
5584 insn->src_reg != BPF_PSEUDO_CALL)
5585 continue;
5586 depth = get_callee_stack_depth(env, insn, i);
5587 if (depth < 0)
5588 return depth;
5589 bpf_patch_call_args(insn, depth);
5590 }
19d28fbd
DM
5591 err = 0;
5592#endif
5593 return err;
1ea47e01
AS
5594}
5595
79741b3b 5596/* fixup insn->imm field of bpf_call instructions
81ed18ab 5597 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
5598 *
5599 * this function is called after eBPF program passed verification
5600 */
79741b3b 5601static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 5602{
79741b3b
AS
5603 struct bpf_prog *prog = env->prog;
5604 struct bpf_insn *insn = prog->insnsi;
e245c5c6 5605 const struct bpf_func_proto *fn;
79741b3b 5606 const int insn_cnt = prog->len;
09772d92 5607 const struct bpf_map_ops *ops;
c93552c4 5608 struct bpf_insn_aux_data *aux;
81ed18ab
AS
5609 struct bpf_insn insn_buf[16];
5610 struct bpf_prog *new_prog;
5611 struct bpf_map *map_ptr;
5612 int i, cnt, delta = 0;
e245c5c6 5613
79741b3b 5614 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
5615 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5616 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5617 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 5618 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
5619 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5620 struct bpf_insn mask_and_div[] = {
5621 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5622 /* Rx div 0 -> 0 */
5623 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5624 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5625 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5626 *insn,
5627 };
5628 struct bpf_insn mask_and_mod[] = {
5629 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5630 /* Rx mod 0 -> Rx */
5631 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5632 *insn,
5633 };
5634 struct bpf_insn *patchlet;
5635
5636 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5637 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5638 patchlet = mask_and_div + (is64 ? 1 : 0);
5639 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5640 } else {
5641 patchlet = mask_and_mod + (is64 ? 1 : 0);
5642 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5643 }
5644
5645 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
5646 if (!new_prog)
5647 return -ENOMEM;
5648
5649 delta += cnt - 1;
5650 env->prog = prog = new_prog;
5651 insn = new_prog->insnsi + i + delta;
5652 continue;
5653 }
5654
e0cea7ce
DB
5655 if (BPF_CLASS(insn->code) == BPF_LD &&
5656 (BPF_MODE(insn->code) == BPF_ABS ||
5657 BPF_MODE(insn->code) == BPF_IND)) {
5658 cnt = env->ops->gen_ld_abs(insn, insn_buf);
5659 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5660 verbose(env, "bpf verifier is misconfigured\n");
5661 return -EINVAL;
5662 }
5663
5664 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5665 if (!new_prog)
5666 return -ENOMEM;
5667
5668 delta += cnt - 1;
5669 env->prog = prog = new_prog;
5670 insn = new_prog->insnsi + i + delta;
5671 continue;
5672 }
5673
79741b3b
AS
5674 if (insn->code != (BPF_JMP | BPF_CALL))
5675 continue;
cc8b0b92
AS
5676 if (insn->src_reg == BPF_PSEUDO_CALL)
5677 continue;
e245c5c6 5678
79741b3b
AS
5679 if (insn->imm == BPF_FUNC_get_route_realm)
5680 prog->dst_needed = 1;
5681 if (insn->imm == BPF_FUNC_get_prandom_u32)
5682 bpf_user_rnd_init_once();
9802d865
JB
5683 if (insn->imm == BPF_FUNC_override_return)
5684 prog->kprobe_override = 1;
79741b3b 5685 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
5686 /* If we tail call into other programs, we
5687 * cannot make any assumptions since they can
5688 * be replaced dynamically during runtime in
5689 * the program array.
5690 */
5691 prog->cb_access = 1;
80a58d02 5692 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 5693
79741b3b
AS
5694 /* mark bpf_tail_call as different opcode to avoid
5695 * conditional branch in the interpeter for every normal
5696 * call and to prevent accidental JITing by JIT compiler
5697 * that doesn't support bpf_tail_call yet
e245c5c6 5698 */
79741b3b 5699 insn->imm = 0;
71189fa9 5700 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 5701
c93552c4
DB
5702 aux = &env->insn_aux_data[i + delta];
5703 if (!bpf_map_ptr_unpriv(aux))
5704 continue;
5705
b2157399
AS
5706 /* instead of changing every JIT dealing with tail_call
5707 * emit two extra insns:
5708 * if (index >= max_entries) goto out;
5709 * index &= array->index_mask;
5710 * to avoid out-of-bounds cpu speculation
5711 */
c93552c4 5712 if (bpf_map_ptr_poisoned(aux)) {
40950343 5713 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
5714 return -EINVAL;
5715 }
c93552c4
DB
5716
5717 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
5718 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5719 map_ptr->max_entries, 2);
5720 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5721 container_of(map_ptr,
5722 struct bpf_array,
5723 map)->index_mask);
5724 insn_buf[2] = *insn;
5725 cnt = 3;
5726 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5727 if (!new_prog)
5728 return -ENOMEM;
5729
5730 delta += cnt - 1;
5731 env->prog = prog = new_prog;
5732 insn = new_prog->insnsi + i + delta;
79741b3b
AS
5733 continue;
5734 }
e245c5c6 5735
89c63074 5736 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
5737 * and other inlining handlers are currently limited to 64 bit
5738 * only.
89c63074 5739 */
60b58afc 5740 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
5741 (insn->imm == BPF_FUNC_map_lookup_elem ||
5742 insn->imm == BPF_FUNC_map_update_elem ||
5743 insn->imm == BPF_FUNC_map_delete_elem)) {
c93552c4
DB
5744 aux = &env->insn_aux_data[i + delta];
5745 if (bpf_map_ptr_poisoned(aux))
5746 goto patch_call_imm;
5747
5748 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
5749 ops = map_ptr->ops;
5750 if (insn->imm == BPF_FUNC_map_lookup_elem &&
5751 ops->map_gen_lookup) {
5752 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
5753 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5754 verbose(env, "bpf verifier is misconfigured\n");
5755 return -EINVAL;
5756 }
81ed18ab 5757
09772d92
DB
5758 new_prog = bpf_patch_insn_data(env, i + delta,
5759 insn_buf, cnt);
5760 if (!new_prog)
5761 return -ENOMEM;
81ed18ab 5762
09772d92
DB
5763 delta += cnt - 1;
5764 env->prog = prog = new_prog;
5765 insn = new_prog->insnsi + i + delta;
5766 continue;
5767 }
81ed18ab 5768
09772d92
DB
5769 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
5770 (void *(*)(struct bpf_map *map, void *key))NULL));
5771 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
5772 (int (*)(struct bpf_map *map, void *key))NULL));
5773 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
5774 (int (*)(struct bpf_map *map, void *key, void *value,
5775 u64 flags))NULL));
5776 switch (insn->imm) {
5777 case BPF_FUNC_map_lookup_elem:
5778 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
5779 __bpf_call_base;
5780 continue;
5781 case BPF_FUNC_map_update_elem:
5782 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
5783 __bpf_call_base;
5784 continue;
5785 case BPF_FUNC_map_delete_elem:
5786 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
5787 __bpf_call_base;
5788 continue;
5789 }
81ed18ab 5790
09772d92 5791 goto patch_call_imm;
81ed18ab
AS
5792 }
5793
109980b8 5794 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
5795 /* Note, we cannot use prog directly as imm as subsequent
5796 * rewrites would still change the prog pointer. The only
5797 * stable address we can use is aux, which also works with
5798 * prog clones during blinding.
5799 */
5800 u64 addr = (unsigned long)prog->aux;
109980b8
DB
5801 struct bpf_insn r4_ld[] = {
5802 BPF_LD_IMM64(BPF_REG_4, addr),
5803 *insn,
5804 };
5805 cnt = ARRAY_SIZE(r4_ld);
5806
5807 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5808 if (!new_prog)
5809 return -ENOMEM;
5810
5811 delta += cnt - 1;
5812 env->prog = prog = new_prog;
5813 insn = new_prog->insnsi + i + delta;
5814 }
81ed18ab 5815patch_call_imm:
5e43f899 5816 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
5817 /* all functions that have prototype and verifier allowed
5818 * programs to call them, must be real in-kernel functions
5819 */
5820 if (!fn->func) {
61bd5218
JK
5821 verbose(env,
5822 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
5823 func_id_name(insn->imm), insn->imm);
5824 return -EFAULT;
e245c5c6 5825 }
79741b3b 5826 insn->imm = fn->func - __bpf_call_base;
e245c5c6 5827 }
e245c5c6 5828
79741b3b
AS
5829 return 0;
5830}
e245c5c6 5831
58e2af8b 5832static void free_states(struct bpf_verifier_env *env)
f1bca824 5833{
58e2af8b 5834 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
5835 int i;
5836
5837 if (!env->explored_states)
5838 return;
5839
5840 for (i = 0; i < env->prog->len; i++) {
5841 sl = env->explored_states[i];
5842
5843 if (sl)
5844 while (sl != STATE_LIST_MARK) {
5845 sln = sl->next;
1969db47 5846 free_verifier_state(&sl->state, false);
f1bca824
AS
5847 kfree(sl);
5848 sl = sln;
5849 }
5850 }
5851
5852 kfree(env->explored_states);
5853}
5854
9bac3d6d 5855int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 5856{
58e2af8b 5857 struct bpf_verifier_env *env;
b9193c1b 5858 struct bpf_verifier_log *log;
51580e79
AS
5859 int ret = -EINVAL;
5860
eba0c929
AB
5861 /* no program is valid */
5862 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5863 return -EINVAL;
5864
58e2af8b 5865 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
5866 * allocate/free it every time bpf_check() is called
5867 */
58e2af8b 5868 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
5869 if (!env)
5870 return -ENOMEM;
61bd5218 5871 log = &env->log;
cbd35700 5872
3df126f3
JK
5873 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5874 (*prog)->len);
5875 ret = -ENOMEM;
5876 if (!env->insn_aux_data)
5877 goto err_free_env;
9bac3d6d 5878 env->prog = *prog;
00176a34 5879 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 5880
cbd35700
AS
5881 /* grab the mutex to protect few globals used by verifier */
5882 mutex_lock(&bpf_verifier_lock);
5883
5884 if (attr->log_level || attr->log_buf || attr->log_size) {
5885 /* user requested verbose verifier output
5886 * and supplied buffer to store the verification trace
5887 */
e7bf8249
JK
5888 log->level = attr->log_level;
5889 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5890 log->len_total = attr->log_size;
cbd35700
AS
5891
5892 ret = -EINVAL;
e7bf8249
JK
5893 /* log attributes have to be sane */
5894 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5895 !log->level || !log->ubuf)
3df126f3 5896 goto err_unlock;
cbd35700 5897 }
1ad2f583
DB
5898
5899 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5900 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 5901 env->strict_alignment = true;
cbd35700 5902
f4e3ec0d
JK
5903 ret = replace_map_fd_with_map_ptr(env);
5904 if (ret < 0)
5905 goto skip_full_check;
5906
cae1927c 5907 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
5908 ret = bpf_prog_offload_verifier_prep(env);
5909 if (ret)
f4e3ec0d 5910 goto skip_full_check;
ab3f0063
JK
5911 }
5912
9bac3d6d 5913 env->explored_states = kcalloc(env->prog->len,
58e2af8b 5914 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
5915 GFP_USER);
5916 ret = -ENOMEM;
5917 if (!env->explored_states)
5918 goto skip_full_check;
5919
cc8b0b92
AS
5920 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5921
475fb78f
AS
5922 ret = check_cfg(env);
5923 if (ret < 0)
5924 goto skip_full_check;
5925
17a52670 5926 ret = do_check(env);
8c01c4f8
CG
5927 if (env->cur_state) {
5928 free_verifier_state(env->cur_state, true);
5929 env->cur_state = NULL;
5930 }
cbd35700 5931
0246e64d 5932skip_full_check:
638f5b90 5933 while (!pop_stack(env, NULL, NULL));
f1bca824 5934 free_states(env);
0246e64d 5935
c131187d
AS
5936 if (ret == 0)
5937 sanitize_dead_code(env);
5938
70a87ffe
AS
5939 if (ret == 0)
5940 ret = check_max_stack_depth(env);
5941
9bac3d6d
AS
5942 if (ret == 0)
5943 /* program is valid, convert *(u32*)(ctx + off) accesses */
5944 ret = convert_ctx_accesses(env);
5945
e245c5c6 5946 if (ret == 0)
79741b3b 5947 ret = fixup_bpf_calls(env);
e245c5c6 5948
1ea47e01
AS
5949 if (ret == 0)
5950 ret = fixup_call_args(env);
5951
a2a7d570 5952 if (log->level && bpf_verifier_log_full(log))
cbd35700 5953 ret = -ENOSPC;
a2a7d570 5954 if (log->level && !log->ubuf) {
cbd35700 5955 ret = -EFAULT;
a2a7d570 5956 goto err_release_maps;
cbd35700
AS
5957 }
5958
0246e64d
AS
5959 if (ret == 0 && env->used_map_cnt) {
5960 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
5961 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5962 sizeof(env->used_maps[0]),
5963 GFP_KERNEL);
0246e64d 5964
9bac3d6d 5965 if (!env->prog->aux->used_maps) {
0246e64d 5966 ret = -ENOMEM;
a2a7d570 5967 goto err_release_maps;
0246e64d
AS
5968 }
5969
9bac3d6d 5970 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 5971 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 5972 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
5973
5974 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5975 * bpf_ld_imm64 instructions
5976 */
5977 convert_pseudo_ld_imm64(env);
5978 }
cbd35700 5979
a2a7d570 5980err_release_maps:
9bac3d6d 5981 if (!env->prog->aux->used_maps)
0246e64d 5982 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 5983 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
5984 */
5985 release_maps(env);
9bac3d6d 5986 *prog = env->prog;
3df126f3 5987err_unlock:
cbd35700 5988 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
5989 vfree(env->insn_aux_data);
5990err_free_env:
5991 kfree(env);
51580e79
AS
5992 return ret;
5993}