]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf_xdp_redirect_map: Perform map lookup in eBPF helper
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34
JK
25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26#define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
c93552c4
DB
174#define BPF_MAP_PTR_UNPRIV 1UL
175#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178
179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180{
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182}
183
184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185{
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
187}
188
189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
191{
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196}
fad73a1a 197
33ff9823
DB
198struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
435faee1 200 bool raw_mode;
36bbef52 201 bool pkt_access;
435faee1
DB
202 int regno;
203 int access_size;
849fa506
YS
204 s64 msize_smax_value;
205 u64 msize_umax_value;
1b986589 206 int ref_obj_id;
d83525ca 207 int func_id;
33ff9823
DB
208};
209
cbd35700
AS
210static DEFINE_MUTEX(bpf_verifier_lock);
211
d9762e84
MKL
212static const struct bpf_line_info *
213find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214{
215 const struct bpf_line_info *linfo;
216 const struct bpf_prog *prog;
217 u32 i, nr_linfo;
218
219 prog = env->prog;
220 nr_linfo = prog->aux->nr_linfo;
221
222 if (!nr_linfo || insn_off >= prog->len)
223 return NULL;
224
225 linfo = prog->aux->linfo;
226 for (i = 1; i < nr_linfo; i++)
227 if (insn_off < linfo[i].insn_off)
228 break;
229
230 return &linfo[i - 1];
231}
232
77d2e05a
MKL
233void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 va_list args)
cbd35700 235{
a2a7d570 236 unsigned int n;
cbd35700 237
a2a7d570 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
239
240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 "verifier log line truncated - local buffer too short\n");
242
243 n = min(log->len_total - log->len_used - 1, n);
244 log->kbuf[n] = '\0';
245
246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 log->len_used += n;
248 else
249 log->ubuf = NULL;
cbd35700 250}
abe08840
JO
251
252/* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
430e68d1 255 */
abe08840
JO
256__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 const char *fmt, ...)
258{
259 va_list args;
260
77d2e05a
MKL
261 if (!bpf_verifier_log_needed(&env->log))
262 return;
263
abe08840 264 va_start(args, fmt);
77d2e05a 265 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
266 va_end(args);
267}
268EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269
270__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271{
77d2e05a 272 struct bpf_verifier_env *env = private_data;
abe08840
JO
273 va_list args;
274
77d2e05a
MKL
275 if (!bpf_verifier_log_needed(&env->log))
276 return;
277
abe08840 278 va_start(args, fmt);
77d2e05a 279 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
280 va_end(args);
281}
cbd35700 282
d9762e84
MKL
283static const char *ltrim(const char *s)
284{
285 while (isspace(*s))
286 s++;
287
288 return s;
289}
290
291__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 u32 insn_off,
293 const char *prefix_fmt, ...)
294{
295 const struct bpf_line_info *linfo;
296
297 if (!bpf_verifier_log_needed(&env->log))
298 return;
299
300 linfo = find_linfo(env, insn_off);
301 if (!linfo || linfo == env->prev_linfo)
302 return;
303
304 if (prefix_fmt) {
305 va_list args;
306
307 va_start(args, prefix_fmt);
308 bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 va_end(args);
310 }
311
312 verbose(env, "%s\n",
313 ltrim(btf_name_by_offset(env->prog->aux->btf,
314 linfo->line_off)));
315
316 env->prev_linfo = linfo;
317}
318
de8f3a83
DB
319static bool type_is_pkt_pointer(enum bpf_reg_type type)
320{
321 return type == PTR_TO_PACKET ||
322 type == PTR_TO_PACKET_META;
323}
324
46f8bc92
MKL
325static bool type_is_sk_pointer(enum bpf_reg_type type)
326{
327 return type == PTR_TO_SOCKET ||
655a51e5 328 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
329 type == PTR_TO_TCP_SOCK ||
330 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7 335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 336 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
337 type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
339}
340
d83525ca
AS
341static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342{
343 return reg->type == PTR_TO_MAP_VALUE &&
344 map_value_has_spin_lock(reg->map_ptr);
345}
346
cba368c1
MKL
347static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348{
349 return type == PTR_TO_SOCKET ||
350 type == PTR_TO_SOCKET_OR_NULL ||
351 type == PTR_TO_TCP_SOCK ||
352 type == PTR_TO_TCP_SOCK_OR_NULL;
353}
354
1b986589 355static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 356{
1b986589 357 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
358}
359
360/* Determine whether the function releases some resources allocated by another
361 * function call. The first reference type argument will be assumed to be
362 * released by release_reference().
363 */
364static bool is_release_function(enum bpf_func_id func_id)
365{
6acc9b43 366 return func_id == BPF_FUNC_sk_release;
840b9615
JS
367}
368
46f8bc92
MKL
369static bool is_acquire_function(enum bpf_func_id func_id)
370{
371 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
372 func_id == BPF_FUNC_sk_lookup_udp ||
373 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
374}
375
1b986589
MKL
376static bool is_ptr_cast_function(enum bpf_func_id func_id)
377{
378 return func_id == BPF_FUNC_tcp_sock ||
379 func_id == BPF_FUNC_sk_fullsock;
380}
381
17a52670
AS
382/* string representation of 'enum bpf_reg_type' */
383static const char * const reg_type_str[] = {
384 [NOT_INIT] = "?",
f1174f77 385 [SCALAR_VALUE] = "inv",
17a52670
AS
386 [PTR_TO_CTX] = "ctx",
387 [CONST_PTR_TO_MAP] = "map_ptr",
388 [PTR_TO_MAP_VALUE] = "map_value",
389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 390 [PTR_TO_STACK] = "fp",
969bf05e 391 [PTR_TO_PACKET] = "pkt",
de8f3a83 392 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 393 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 394 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
395 [PTR_TO_SOCKET] = "sock",
396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
397 [PTR_TO_SOCK_COMMON] = "sock_common",
398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
399 [PTR_TO_TCP_SOCK] = "tcp_sock",
400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 401 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 402 [PTR_TO_XDP_SOCK] = "xdp_sock",
17a52670
AS
403};
404
8efea21d
EC
405static char slot_type_char[] = {
406 [STACK_INVALID] = '?',
407 [STACK_SPILL] = 'r',
408 [STACK_MISC] = 'm',
409 [STACK_ZERO] = '0',
410};
411
4e92024a
AS
412static void print_liveness(struct bpf_verifier_env *env,
413 enum bpf_reg_liveness live)
414{
9242b5f5 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
416 verbose(env, "_");
417 if (live & REG_LIVE_READ)
418 verbose(env, "r");
419 if (live & REG_LIVE_WRITTEN)
420 verbose(env, "w");
9242b5f5
AS
421 if (live & REG_LIVE_DONE)
422 verbose(env, "D");
4e92024a
AS
423}
424
f4d7e40a
AS
425static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 const struct bpf_reg_state *reg)
427{
428 struct bpf_verifier_state *cur = env->cur_state;
429
430 return cur->frame[reg->frameno];
431}
432
61bd5218 433static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 434 const struct bpf_func_state *state)
17a52670 435{
f4d7e40a 436 const struct bpf_reg_state *reg;
17a52670
AS
437 enum bpf_reg_type t;
438 int i;
439
f4d7e40a
AS
440 if (state->frameno)
441 verbose(env, " frame%d:", state->frameno);
17a52670 442 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
443 reg = &state->regs[i];
444 t = reg->type;
17a52670
AS
445 if (t == NOT_INIT)
446 continue;
4e92024a
AS
447 verbose(env, " R%d", i);
448 print_liveness(env, reg->live);
449 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
450 if (t == SCALAR_VALUE && reg->precise)
451 verbose(env, "P");
f1174f77
EC
452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 tnum_is_const(reg->var_off)) {
454 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 455 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 456 } else {
cba368c1
MKL
457 verbose(env, "(id=%d", reg->id);
458 if (reg_type_may_be_refcounted_or_null(t))
459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 460 if (t != SCALAR_VALUE)
61bd5218 461 verbose(env, ",off=%d", reg->off);
de8f3a83 462 if (type_is_pkt_pointer(t))
61bd5218 463 verbose(env, ",r=%d", reg->range);
f1174f77
EC
464 else if (t == CONST_PTR_TO_MAP ||
465 t == PTR_TO_MAP_VALUE ||
466 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 467 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
468 reg->map_ptr->key_size,
469 reg->map_ptr->value_size);
7d1238f2
EC
470 if (tnum_is_const(reg->var_off)) {
471 /* Typically an immediate SCALAR_VALUE, but
472 * could be a pointer whose offset is too big
473 * for reg->off
474 */
61bd5218 475 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
476 } else {
477 if (reg->smin_value != reg->umin_value &&
478 reg->smin_value != S64_MIN)
61bd5218 479 verbose(env, ",smin_value=%lld",
7d1238f2
EC
480 (long long)reg->smin_value);
481 if (reg->smax_value != reg->umax_value &&
482 reg->smax_value != S64_MAX)
61bd5218 483 verbose(env, ",smax_value=%lld",
7d1238f2
EC
484 (long long)reg->smax_value);
485 if (reg->umin_value != 0)
61bd5218 486 verbose(env, ",umin_value=%llu",
7d1238f2
EC
487 (unsigned long long)reg->umin_value);
488 if (reg->umax_value != U64_MAX)
61bd5218 489 verbose(env, ",umax_value=%llu",
7d1238f2
EC
490 (unsigned long long)reg->umax_value);
491 if (!tnum_is_unknown(reg->var_off)) {
492 char tn_buf[48];
f1174f77 493
7d1238f2 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 495 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 496 }
f1174f77 497 }
61bd5218 498 verbose(env, ")");
f1174f77 499 }
17a52670 500 }
638f5b90 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
502 char types_buf[BPF_REG_SIZE + 1];
503 bool valid = false;
504 int j;
505
506 for (j = 0; j < BPF_REG_SIZE; j++) {
507 if (state->stack[i].slot_type[j] != STACK_INVALID)
508 valid = true;
509 types_buf[j] = slot_type_char[
510 state->stack[i].slot_type[j]];
511 }
512 types_buf[BPF_REG_SIZE] = 0;
513 if (!valid)
514 continue;
515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
517 if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 reg = &state->stack[i].spilled_ptr;
519 t = reg->type;
520 verbose(env, "=%s", reg_type_str[t]);
521 if (t == SCALAR_VALUE && reg->precise)
522 verbose(env, "P");
523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 verbose(env, "%lld", reg->var_off.value + reg->off);
525 } else {
8efea21d 526 verbose(env, "=%s", types_buf);
b5dc0163 527 }
17a52670 528 }
fd978bf7
JS
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
61bd5218 535 verbose(env, "\n");
17a52670
AS
536}
537
84dbf350
JS
538#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541{ \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
638f5b90 552}
fd978bf7
JS
553/* copy_reference_state() */
554COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
555/* copy_stack_state() */
556COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557#undef COPY_STATE_FN
558
559#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562{ \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592}
fd978bf7
JS
593/* realloc_reference_state() */
594REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
595/* realloc_stack_state() */
596REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597#undef REALLOC_STATE_FN
638f5b90
AS
598
599/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 601 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
638f5b90 605 */
fd978bf7
JS
606static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
638f5b90 608{
fd978bf7
JS
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613}
614
615/* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
638f5b90 619 */
fd978bf7 620static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 621{
fd978bf7
JS
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 632
fd978bf7
JS
633 return id;
634}
635
636/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 637static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
638{
639 int i, last_idx;
640
fd978bf7
JS
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
638f5b90 649 return 0;
638f5b90 650 }
638f5b90 651 }
46f8bc92 652 return -EINVAL;
fd978bf7
JS
653}
654
655static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657{
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
638f5b90
AS
664 return 0;
665}
666
f4d7e40a
AS
667static void free_func_state(struct bpf_func_state *state)
668{
5896351e
AS
669 if (!state)
670 return;
fd978bf7 671 kfree(state->refs);
f4d7e40a
AS
672 kfree(state->stack);
673 kfree(state);
674}
675
b5dc0163
AS
676static void clear_jmp_history(struct bpf_verifier_state *state)
677{
678 kfree(state->jmp_history);
679 state->jmp_history = NULL;
680 state->jmp_history_cnt = 0;
681}
682
1969db47
AS
683static void free_verifier_state(struct bpf_verifier_state *state,
684 bool free_self)
638f5b90 685{
f4d7e40a
AS
686 int i;
687
688 for (i = 0; i <= state->curframe; i++) {
689 free_func_state(state->frame[i]);
690 state->frame[i] = NULL;
691 }
b5dc0163 692 clear_jmp_history(state);
1969db47
AS
693 if (free_self)
694 kfree(state);
638f5b90
AS
695}
696
697/* copy verifier state from src to dst growing dst stack space
698 * when necessary to accommodate larger src stack
699 */
f4d7e40a
AS
700static int copy_func_state(struct bpf_func_state *dst,
701 const struct bpf_func_state *src)
638f5b90
AS
702{
703 int err;
704
fd978bf7
JS
705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 false);
707 if (err)
708 return err;
709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 err = copy_reference_state(dst, src);
638f5b90
AS
711 if (err)
712 return err;
638f5b90
AS
713 return copy_stack_state(dst, src);
714}
715
f4d7e40a
AS
716static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 const struct bpf_verifier_state *src)
718{
719 struct bpf_func_state *dst;
b5dc0163 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
721 int i, err;
722
b5dc0163
AS
723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 kfree(dst_state->jmp_history);
725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 if (!dst_state->jmp_history)
727 return -ENOMEM;
728 }
729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 dst_state->jmp_history_cnt = src->jmp_history_cnt;
731
f4d7e40a
AS
732 /* if dst has more stack frames then src frame, free them */
733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 free_func_state(dst_state->frame[i]);
735 dst_state->frame[i] = NULL;
736 }
979d63d5 737 dst_state->speculative = src->speculative;
f4d7e40a 738 dst_state->curframe = src->curframe;
d83525ca 739 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
740 dst_state->branches = src->branches;
741 dst_state->parent = src->parent;
b5dc0163
AS
742 dst_state->first_insn_idx = src->first_insn_idx;
743 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
744 for (i = 0; i <= src->curframe; i++) {
745 dst = dst_state->frame[i];
746 if (!dst) {
747 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 if (!dst)
749 return -ENOMEM;
750 dst_state->frame[i] = dst;
751 }
752 err = copy_func_state(dst, src->frame[i]);
753 if (err)
754 return err;
755 }
756 return 0;
757}
758
2589726d
AS
759static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760{
761 while (st) {
762 u32 br = --st->branches;
763
764 /* WARN_ON(br > 1) technically makes sense here,
765 * but see comment in push_stack(), hence:
766 */
767 WARN_ONCE((int)br < 0,
768 "BUG update_branch_counts:branches_to_explore=%d\n",
769 br);
770 if (br)
771 break;
772 st = st->parent;
773 }
774}
775
638f5b90
AS
776static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 int *insn_idx)
778{
779 struct bpf_verifier_state *cur = env->cur_state;
780 struct bpf_verifier_stack_elem *elem, *head = env->head;
781 int err;
17a52670
AS
782
783 if (env->head == NULL)
638f5b90 784 return -ENOENT;
17a52670 785
638f5b90
AS
786 if (cur) {
787 err = copy_verifier_state(cur, &head->st);
788 if (err)
789 return err;
790 }
791 if (insn_idx)
792 *insn_idx = head->insn_idx;
17a52670 793 if (prev_insn_idx)
638f5b90
AS
794 *prev_insn_idx = head->prev_insn_idx;
795 elem = head->next;
1969db47 796 free_verifier_state(&head->st, false);
638f5b90 797 kfree(head);
17a52670
AS
798 env->head = elem;
799 env->stack_size--;
638f5b90 800 return 0;
17a52670
AS
801}
802
58e2af8b 803static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
804 int insn_idx, int prev_insn_idx,
805 bool speculative)
17a52670 806{
638f5b90 807 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 808 struct bpf_verifier_stack_elem *elem;
638f5b90 809 int err;
17a52670 810
638f5b90 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
812 if (!elem)
813 goto err;
814
17a52670
AS
815 elem->insn_idx = insn_idx;
816 elem->prev_insn_idx = prev_insn_idx;
817 elem->next = env->head;
818 env->head = elem;
819 env->stack_size++;
1969db47
AS
820 err = copy_verifier_state(&elem->st, cur);
821 if (err)
822 goto err;
979d63d5 823 elem->st.speculative |= speculative;
b285fcb7
AS
824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 verbose(env, "The sequence of %d jumps is too complex.\n",
826 env->stack_size);
17a52670
AS
827 goto err;
828 }
2589726d
AS
829 if (elem->st.parent) {
830 ++elem->st.parent->branches;
831 /* WARN_ON(branches > 2) technically makes sense here,
832 * but
833 * 1. speculative states will bump 'branches' for non-branch
834 * instructions
835 * 2. is_state_visited() heuristics may decide not to create
836 * a new state for a sequence of branches and all such current
837 * and cloned states will be pointing to a single parent state
838 * which might have large 'branches' count.
839 */
840 }
17a52670
AS
841 return &elem->st;
842err:
5896351e
AS
843 free_verifier_state(env->cur_state, true);
844 env->cur_state = NULL;
17a52670 845 /* pop all elements and return */
638f5b90 846 while (!pop_stack(env, NULL, NULL));
17a52670
AS
847 return NULL;
848}
849
850#define CALLER_SAVED_REGS 6
851static const int caller_saved[CALLER_SAVED_REGS] = {
852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853};
854
f1174f77
EC
855static void __mark_reg_not_init(struct bpf_reg_state *reg);
856
b03c9f9f
EC
857/* Mark the unknown part of a register (variable offset or scalar value) as
858 * known to have the value @imm.
859 */
860static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861{
a9c676bc
AS
862 /* Clear id, off, and union(map_ptr, range) */
863 memset(((u8 *)reg) + sizeof(reg->type), 0,
864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
865 reg->var_off = tnum_const(imm);
866 reg->smin_value = (s64)imm;
867 reg->smax_value = (s64)imm;
868 reg->umin_value = imm;
869 reg->umax_value = imm;
870}
871
f1174f77
EC
872/* Mark the 'variable offset' part of a register as zero. This should be
873 * used only on registers holding a pointer type.
874 */
875static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 876{
b03c9f9f 877 __mark_reg_known(reg, 0);
f1174f77 878}
a9789ef9 879
cc2b14d5
AS
880static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881{
882 __mark_reg_known(reg, 0);
cc2b14d5
AS
883 reg->type = SCALAR_VALUE;
884}
885
61bd5218
JK
886static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
888{
889 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
891 /* Something bad happened, let's kill all regs */
892 for (regno = 0; regno < MAX_BPF_REG; regno++)
893 __mark_reg_not_init(regs + regno);
894 return;
895 }
896 __mark_reg_known_zero(regs + regno);
897}
898
de8f3a83
DB
899static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900{
901 return type_is_pkt_pointer(reg->type);
902}
903
904static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905{
906 return reg_is_pkt_pointer(reg) ||
907 reg->type == PTR_TO_PACKET_END;
908}
909
910/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 enum bpf_reg_type which)
913{
914 /* The register can already have a range from prior markings.
915 * This is fine as long as it hasn't been advanced from its
916 * origin.
917 */
918 return reg->type == which &&
919 reg->id == 0 &&
920 reg->off == 0 &&
921 tnum_equals_const(reg->var_off, 0);
922}
923
b03c9f9f
EC
924/* Attempts to improve min/max values based on var_off information */
925static void __update_reg_bounds(struct bpf_reg_state *reg)
926{
927 /* min signed is max(sign bit) | min(other bits) */
928 reg->smin_value = max_t(s64, reg->smin_value,
929 reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 /* max signed is min(sign bit) | max(other bits) */
931 reg->smax_value = min_t(s64, reg->smax_value,
932 reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 reg->umax_value = min(reg->umax_value,
935 reg->var_off.value | reg->var_off.mask);
936}
937
938/* Uses signed min/max values to inform unsigned, and vice-versa */
939static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940{
941 /* Learn sign from signed bounds.
942 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 * are the same, so combine. This works even in the negative case, e.g.
944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 */
946 if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 reg->umin_value);
949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 reg->umax_value);
951 return;
952 }
953 /* Learn sign from unsigned bounds. Signed bounds cross the sign
954 * boundary, so we must be careful.
955 */
956 if ((s64)reg->umax_value >= 0) {
957 /* Positive. We can't learn anything from the smin, but smax
958 * is positive, hence safe.
959 */
960 reg->smin_value = reg->umin_value;
961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 reg->umax_value);
963 } else if ((s64)reg->umin_value < 0) {
964 /* Negative. We can't learn anything from the smax, but smin
965 * is negative, hence safe.
966 */
967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 reg->umin_value);
969 reg->smax_value = reg->umax_value;
970 }
971}
972
973/* Attempts to improve var_off based on unsigned min/max information */
974static void __reg_bound_offset(struct bpf_reg_state *reg)
975{
976 reg->var_off = tnum_intersect(reg->var_off,
977 tnum_range(reg->umin_value,
978 reg->umax_value));
979}
980
981/* Reset the min/max bounds of a register */
982static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983{
984 reg->smin_value = S64_MIN;
985 reg->smax_value = S64_MAX;
986 reg->umin_value = 0;
987 reg->umax_value = U64_MAX;
b5dc0163
AS
988
989 /* constant backtracking is enabled for root only for now */
990 reg->precise = capable(CAP_SYS_ADMIN) ? false : true;
b03c9f9f
EC
991}
992
f1174f77
EC
993/* Mark a register as having a completely unknown (scalar) value. */
994static void __mark_reg_unknown(struct bpf_reg_state *reg)
995{
a9c676bc
AS
996 /*
997 * Clear type, id, off, and union(map_ptr, range) and
998 * padding between 'type' and union
999 */
1000 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1001 reg->type = SCALAR_VALUE;
f1174f77 1002 reg->var_off = tnum_unknown;
f4d7e40a 1003 reg->frameno = 0;
b03c9f9f 1004 __mark_reg_unbounded(reg);
f1174f77
EC
1005}
1006
61bd5218
JK
1007static void mark_reg_unknown(struct bpf_verifier_env *env,
1008 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1009{
1010 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1011 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1012 /* Something bad happened, let's kill all regs except FP */
1013 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1014 __mark_reg_not_init(regs + regno);
1015 return;
1016 }
1017 __mark_reg_unknown(regs + regno);
1018}
1019
1020static void __mark_reg_not_init(struct bpf_reg_state *reg)
1021{
1022 __mark_reg_unknown(reg);
1023 reg->type = NOT_INIT;
1024}
1025
61bd5218
JK
1026static void mark_reg_not_init(struct bpf_verifier_env *env,
1027 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1028{
1029 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1030 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1031 /* Something bad happened, let's kill all regs except FP */
1032 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1033 __mark_reg_not_init(regs + regno);
1034 return;
1035 }
1036 __mark_reg_not_init(regs + regno);
a9789ef9
DB
1037}
1038
5327ed3d 1039#define DEF_NOT_SUBREG (0)
61bd5218 1040static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1041 struct bpf_func_state *state)
17a52670 1042{
f4d7e40a 1043 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1044 int i;
1045
dc503a8a 1046 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1047 mark_reg_not_init(env, regs, i);
dc503a8a 1048 regs[i].live = REG_LIVE_NONE;
679c782d 1049 regs[i].parent = NULL;
5327ed3d 1050 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1051 }
17a52670
AS
1052
1053 /* frame pointer */
f1174f77 1054 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1055 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1056 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1057
1058 /* 1st arg to a function */
1059 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1060 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1061}
1062
f4d7e40a
AS
1063#define BPF_MAIN_FUNC (-1)
1064static void init_func_state(struct bpf_verifier_env *env,
1065 struct bpf_func_state *state,
1066 int callsite, int frameno, int subprogno)
1067{
1068 state->callsite = callsite;
1069 state->frameno = frameno;
1070 state->subprogno = subprogno;
1071 init_reg_state(env, state);
1072}
1073
17a52670
AS
1074enum reg_arg_type {
1075 SRC_OP, /* register is used as source operand */
1076 DST_OP, /* register is used as destination operand */
1077 DST_OP_NO_MARK /* same as above, check only, don't mark */
1078};
1079
cc8b0b92
AS
1080static int cmp_subprogs(const void *a, const void *b)
1081{
9c8105bd
JW
1082 return ((struct bpf_subprog_info *)a)->start -
1083 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1084}
1085
1086static int find_subprog(struct bpf_verifier_env *env, int off)
1087{
9c8105bd 1088 struct bpf_subprog_info *p;
cc8b0b92 1089
9c8105bd
JW
1090 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1091 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1092 if (!p)
1093 return -ENOENT;
9c8105bd 1094 return p - env->subprog_info;
cc8b0b92
AS
1095
1096}
1097
1098static int add_subprog(struct bpf_verifier_env *env, int off)
1099{
1100 int insn_cnt = env->prog->len;
1101 int ret;
1102
1103 if (off >= insn_cnt || off < 0) {
1104 verbose(env, "call to invalid destination\n");
1105 return -EINVAL;
1106 }
1107 ret = find_subprog(env, off);
1108 if (ret >= 0)
1109 return 0;
4cb3d99c 1110 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1111 verbose(env, "too many subprograms\n");
1112 return -E2BIG;
1113 }
9c8105bd
JW
1114 env->subprog_info[env->subprog_cnt++].start = off;
1115 sort(env->subprog_info, env->subprog_cnt,
1116 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1117 return 0;
1118}
1119
1120static int check_subprogs(struct bpf_verifier_env *env)
1121{
1122 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1123 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1124 struct bpf_insn *insn = env->prog->insnsi;
1125 int insn_cnt = env->prog->len;
1126
f910cefa
JW
1127 /* Add entry function. */
1128 ret = add_subprog(env, 0);
1129 if (ret < 0)
1130 return ret;
1131
cc8b0b92
AS
1132 /* determine subprog starts. The end is one before the next starts */
1133 for (i = 0; i < insn_cnt; i++) {
1134 if (insn[i].code != (BPF_JMP | BPF_CALL))
1135 continue;
1136 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1137 continue;
1138 if (!env->allow_ptr_leaks) {
1139 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1140 return -EPERM;
1141 }
cc8b0b92
AS
1142 ret = add_subprog(env, i + insn[i].imm + 1);
1143 if (ret < 0)
1144 return ret;
1145 }
1146
4cb3d99c
JW
1147 /* Add a fake 'exit' subprog which could simplify subprog iteration
1148 * logic. 'subprog_cnt' should not be increased.
1149 */
1150 subprog[env->subprog_cnt].start = insn_cnt;
1151
06ee7115 1152 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1153 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1154 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1155
1156 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1157 subprog_start = subprog[cur_subprog].start;
1158 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1159 for (i = 0; i < insn_cnt; i++) {
1160 u8 code = insn[i].code;
1161
092ed096 1162 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1163 goto next;
1164 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1165 goto next;
1166 off = i + insn[i].off + 1;
1167 if (off < subprog_start || off >= subprog_end) {
1168 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1169 return -EINVAL;
1170 }
1171next:
1172 if (i == subprog_end - 1) {
1173 /* to avoid fall-through from one subprog into another
1174 * the last insn of the subprog should be either exit
1175 * or unconditional jump back
1176 */
1177 if (code != (BPF_JMP | BPF_EXIT) &&
1178 code != (BPF_JMP | BPF_JA)) {
1179 verbose(env, "last insn is not an exit or jmp\n");
1180 return -EINVAL;
1181 }
1182 subprog_start = subprog_end;
4cb3d99c
JW
1183 cur_subprog++;
1184 if (cur_subprog < env->subprog_cnt)
9c8105bd 1185 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1186 }
1187 }
1188 return 0;
1189}
1190
679c782d
EC
1191/* Parentage chain of this register (or stack slot) should take care of all
1192 * issues like callee-saved registers, stack slot allocation time, etc.
1193 */
f4d7e40a 1194static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1195 const struct bpf_reg_state *state,
5327ed3d 1196 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1197{
1198 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1199 int cnt = 0;
dc503a8a
EC
1200
1201 while (parent) {
1202 /* if read wasn't screened by an earlier write ... */
679c782d 1203 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1204 break;
9242b5f5
AS
1205 if (parent->live & REG_LIVE_DONE) {
1206 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1207 reg_type_str[parent->type],
1208 parent->var_off.value, parent->off);
1209 return -EFAULT;
1210 }
5327ed3d
JW
1211 /* The first condition is more likely to be true than the
1212 * second, checked it first.
1213 */
1214 if ((parent->live & REG_LIVE_READ) == flag ||
1215 parent->live & REG_LIVE_READ64)
25af32da
AS
1216 /* The parentage chain never changes and
1217 * this parent was already marked as LIVE_READ.
1218 * There is no need to keep walking the chain again and
1219 * keep re-marking all parents as LIVE_READ.
1220 * This case happens when the same register is read
1221 * multiple times without writes into it in-between.
5327ed3d
JW
1222 * Also, if parent has the stronger REG_LIVE_READ64 set,
1223 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1224 */
1225 break;
dc503a8a 1226 /* ... then we depend on parent's value */
5327ed3d
JW
1227 parent->live |= flag;
1228 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1229 if (flag == REG_LIVE_READ64)
1230 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1231 state = parent;
1232 parent = state->parent;
f4d7e40a 1233 writes = true;
06ee7115 1234 cnt++;
dc503a8a 1235 }
06ee7115
AS
1236
1237 if (env->longest_mark_read_walk < cnt)
1238 env->longest_mark_read_walk = cnt;
f4d7e40a 1239 return 0;
dc503a8a
EC
1240}
1241
5327ed3d
JW
1242/* This function is supposed to be used by the following 32-bit optimization
1243 * code only. It returns TRUE if the source or destination register operates
1244 * on 64-bit, otherwise return FALSE.
1245 */
1246static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1247 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1248{
1249 u8 code, class, op;
1250
1251 code = insn->code;
1252 class = BPF_CLASS(code);
1253 op = BPF_OP(code);
1254 if (class == BPF_JMP) {
1255 /* BPF_EXIT for "main" will reach here. Return TRUE
1256 * conservatively.
1257 */
1258 if (op == BPF_EXIT)
1259 return true;
1260 if (op == BPF_CALL) {
1261 /* BPF to BPF call will reach here because of marking
1262 * caller saved clobber with DST_OP_NO_MARK for which we
1263 * don't care the register def because they are anyway
1264 * marked as NOT_INIT already.
1265 */
1266 if (insn->src_reg == BPF_PSEUDO_CALL)
1267 return false;
1268 /* Helper call will reach here because of arg type
1269 * check, conservatively return TRUE.
1270 */
1271 if (t == SRC_OP)
1272 return true;
1273
1274 return false;
1275 }
1276 }
1277
1278 if (class == BPF_ALU64 || class == BPF_JMP ||
1279 /* BPF_END always use BPF_ALU class. */
1280 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1281 return true;
1282
1283 if (class == BPF_ALU || class == BPF_JMP32)
1284 return false;
1285
1286 if (class == BPF_LDX) {
1287 if (t != SRC_OP)
1288 return BPF_SIZE(code) == BPF_DW;
1289 /* LDX source must be ptr. */
1290 return true;
1291 }
1292
1293 if (class == BPF_STX) {
1294 if (reg->type != SCALAR_VALUE)
1295 return true;
1296 return BPF_SIZE(code) == BPF_DW;
1297 }
1298
1299 if (class == BPF_LD) {
1300 u8 mode = BPF_MODE(code);
1301
1302 /* LD_IMM64 */
1303 if (mode == BPF_IMM)
1304 return true;
1305
1306 /* Both LD_IND and LD_ABS return 32-bit data. */
1307 if (t != SRC_OP)
1308 return false;
1309
1310 /* Implicit ctx ptr. */
1311 if (regno == BPF_REG_6)
1312 return true;
1313
1314 /* Explicit source could be any width. */
1315 return true;
1316 }
1317
1318 if (class == BPF_ST)
1319 /* The only source register for BPF_ST is a ptr. */
1320 return true;
1321
1322 /* Conservatively return true at default. */
1323 return true;
1324}
1325
b325fbca
JW
1326/* Return TRUE if INSN doesn't have explicit value define. */
1327static bool insn_no_def(struct bpf_insn *insn)
1328{
1329 u8 class = BPF_CLASS(insn->code);
1330
1331 return (class == BPF_JMP || class == BPF_JMP32 ||
1332 class == BPF_STX || class == BPF_ST);
1333}
1334
1335/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1336static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1337{
1338 if (insn_no_def(insn))
1339 return false;
1340
1341 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1342}
1343
5327ed3d
JW
1344static void mark_insn_zext(struct bpf_verifier_env *env,
1345 struct bpf_reg_state *reg)
1346{
1347 s32 def_idx = reg->subreg_def;
1348
1349 if (def_idx == DEF_NOT_SUBREG)
1350 return;
1351
1352 env->insn_aux_data[def_idx - 1].zext_dst = true;
1353 /* The dst will be zero extended, so won't be sub-register anymore. */
1354 reg->subreg_def = DEF_NOT_SUBREG;
1355}
1356
dc503a8a 1357static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1358 enum reg_arg_type t)
1359{
f4d7e40a
AS
1360 struct bpf_verifier_state *vstate = env->cur_state;
1361 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1362 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1363 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1364 bool rw64;
dc503a8a 1365
17a52670 1366 if (regno >= MAX_BPF_REG) {
61bd5218 1367 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1368 return -EINVAL;
1369 }
1370
c342dc10 1371 reg = &regs[regno];
5327ed3d 1372 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1373 if (t == SRC_OP) {
1374 /* check whether register used as source operand can be read */
c342dc10 1375 if (reg->type == NOT_INIT) {
61bd5218 1376 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1377 return -EACCES;
1378 }
679c782d 1379 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1380 if (regno == BPF_REG_FP)
1381 return 0;
1382
5327ed3d
JW
1383 if (rw64)
1384 mark_insn_zext(env, reg);
1385
1386 return mark_reg_read(env, reg, reg->parent,
1387 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1388 } else {
1389 /* check whether register used as dest operand can be written to */
1390 if (regno == BPF_REG_FP) {
61bd5218 1391 verbose(env, "frame pointer is read only\n");
17a52670
AS
1392 return -EACCES;
1393 }
c342dc10 1394 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1395 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1396 if (t == DST_OP)
61bd5218 1397 mark_reg_unknown(env, regs, regno);
17a52670
AS
1398 }
1399 return 0;
1400}
1401
b5dc0163
AS
1402/* for any branch, call, exit record the history of jmps in the given state */
1403static int push_jmp_history(struct bpf_verifier_env *env,
1404 struct bpf_verifier_state *cur)
1405{
1406 u32 cnt = cur->jmp_history_cnt;
1407 struct bpf_idx_pair *p;
1408
1409 cnt++;
1410 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1411 if (!p)
1412 return -ENOMEM;
1413 p[cnt - 1].idx = env->insn_idx;
1414 p[cnt - 1].prev_idx = env->prev_insn_idx;
1415 cur->jmp_history = p;
1416 cur->jmp_history_cnt = cnt;
1417 return 0;
1418}
1419
1420/* Backtrack one insn at a time. If idx is not at the top of recorded
1421 * history then previous instruction came from straight line execution.
1422 */
1423static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1424 u32 *history)
1425{
1426 u32 cnt = *history;
1427
1428 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1429 i = st->jmp_history[cnt - 1].prev_idx;
1430 (*history)--;
1431 } else {
1432 i--;
1433 }
1434 return i;
1435}
1436
1437/* For given verifier state backtrack_insn() is called from the last insn to
1438 * the first insn. Its purpose is to compute a bitmask of registers and
1439 * stack slots that needs precision in the parent verifier state.
1440 */
1441static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1442 u32 *reg_mask, u64 *stack_mask)
1443{
1444 const struct bpf_insn_cbs cbs = {
1445 .cb_print = verbose,
1446 .private_data = env,
1447 };
1448 struct bpf_insn *insn = env->prog->insnsi + idx;
1449 u8 class = BPF_CLASS(insn->code);
1450 u8 opcode = BPF_OP(insn->code);
1451 u8 mode = BPF_MODE(insn->code);
1452 u32 dreg = 1u << insn->dst_reg;
1453 u32 sreg = 1u << insn->src_reg;
1454 u32 spi;
1455
1456 if (insn->code == 0)
1457 return 0;
1458 if (env->log.level & BPF_LOG_LEVEL) {
1459 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1460 verbose(env, "%d: ", idx);
1461 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1462 }
1463
1464 if (class == BPF_ALU || class == BPF_ALU64) {
1465 if (!(*reg_mask & dreg))
1466 return 0;
1467 if (opcode == BPF_MOV) {
1468 if (BPF_SRC(insn->code) == BPF_X) {
1469 /* dreg = sreg
1470 * dreg needs precision after this insn
1471 * sreg needs precision before this insn
1472 */
1473 *reg_mask &= ~dreg;
1474 *reg_mask |= sreg;
1475 } else {
1476 /* dreg = K
1477 * dreg needs precision after this insn.
1478 * Corresponding register is already marked
1479 * as precise=true in this verifier state.
1480 * No further markings in parent are necessary
1481 */
1482 *reg_mask &= ~dreg;
1483 }
1484 } else {
1485 if (BPF_SRC(insn->code) == BPF_X) {
1486 /* dreg += sreg
1487 * both dreg and sreg need precision
1488 * before this insn
1489 */
1490 *reg_mask |= sreg;
1491 } /* else dreg += K
1492 * dreg still needs precision before this insn
1493 */
1494 }
1495 } else if (class == BPF_LDX) {
1496 if (!(*reg_mask & dreg))
1497 return 0;
1498 *reg_mask &= ~dreg;
1499
1500 /* scalars can only be spilled into stack w/o losing precision.
1501 * Load from any other memory can be zero extended.
1502 * The desire to keep that precision is already indicated
1503 * by 'precise' mark in corresponding register of this state.
1504 * No further tracking necessary.
1505 */
1506 if (insn->src_reg != BPF_REG_FP)
1507 return 0;
1508 if (BPF_SIZE(insn->code) != BPF_DW)
1509 return 0;
1510
1511 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1512 * that [fp - off] slot contains scalar that needs to be
1513 * tracked with precision
1514 */
1515 spi = (-insn->off - 1) / BPF_REG_SIZE;
1516 if (spi >= 64) {
1517 verbose(env, "BUG spi %d\n", spi);
1518 WARN_ONCE(1, "verifier backtracking bug");
1519 return -EFAULT;
1520 }
1521 *stack_mask |= 1ull << spi;
1522 } else if (class == BPF_STX) {
1523 if (*reg_mask & dreg)
1524 /* stx shouldn't be using _scalar_ dst_reg
1525 * to access memory. It means backtracking
1526 * encountered a case of pointer subtraction.
1527 */
1528 return -ENOTSUPP;
1529 /* scalars can only be spilled into stack */
1530 if (insn->dst_reg != BPF_REG_FP)
1531 return 0;
1532 if (BPF_SIZE(insn->code) != BPF_DW)
1533 return 0;
1534 spi = (-insn->off - 1) / BPF_REG_SIZE;
1535 if (spi >= 64) {
1536 verbose(env, "BUG spi %d\n", spi);
1537 WARN_ONCE(1, "verifier backtracking bug");
1538 return -EFAULT;
1539 }
1540 if (!(*stack_mask & (1ull << spi)))
1541 return 0;
1542 *stack_mask &= ~(1ull << spi);
1543 *reg_mask |= sreg;
1544 } else if (class == BPF_JMP || class == BPF_JMP32) {
1545 if (opcode == BPF_CALL) {
1546 if (insn->src_reg == BPF_PSEUDO_CALL)
1547 return -ENOTSUPP;
1548 /* regular helper call sets R0 */
1549 *reg_mask &= ~1;
1550 if (*reg_mask & 0x3f) {
1551 /* if backtracing was looking for registers R1-R5
1552 * they should have been found already.
1553 */
1554 verbose(env, "BUG regs %x\n", *reg_mask);
1555 WARN_ONCE(1, "verifier backtracking bug");
1556 return -EFAULT;
1557 }
1558 } else if (opcode == BPF_EXIT) {
1559 return -ENOTSUPP;
1560 }
1561 } else if (class == BPF_LD) {
1562 if (!(*reg_mask & dreg))
1563 return 0;
1564 *reg_mask &= ~dreg;
1565 /* It's ld_imm64 or ld_abs or ld_ind.
1566 * For ld_imm64 no further tracking of precision
1567 * into parent is necessary
1568 */
1569 if (mode == BPF_IND || mode == BPF_ABS)
1570 /* to be analyzed */
1571 return -ENOTSUPP;
1572 } else if (class == BPF_ST) {
1573 if (*reg_mask & dreg)
1574 /* likely pointer subtraction */
1575 return -ENOTSUPP;
1576 }
1577 return 0;
1578}
1579
1580/* the scalar precision tracking algorithm:
1581 * . at the start all registers have precise=false.
1582 * . scalar ranges are tracked as normal through alu and jmp insns.
1583 * . once precise value of the scalar register is used in:
1584 * . ptr + scalar alu
1585 * . if (scalar cond K|scalar)
1586 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1587 * backtrack through the verifier states and mark all registers and
1588 * stack slots with spilled constants that these scalar regisers
1589 * should be precise.
1590 * . during state pruning two registers (or spilled stack slots)
1591 * are equivalent if both are not precise.
1592 *
1593 * Note the verifier cannot simply walk register parentage chain,
1594 * since many different registers and stack slots could have been
1595 * used to compute single precise scalar.
1596 *
1597 * The approach of starting with precise=true for all registers and then
1598 * backtrack to mark a register as not precise when the verifier detects
1599 * that program doesn't care about specific value (e.g., when helper
1600 * takes register as ARG_ANYTHING parameter) is not safe.
1601 *
1602 * It's ok to walk single parentage chain of the verifier states.
1603 * It's possible that this backtracking will go all the way till 1st insn.
1604 * All other branches will be explored for needing precision later.
1605 *
1606 * The backtracking needs to deal with cases like:
1607 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1608 * r9 -= r8
1609 * r5 = r9
1610 * if r5 > 0x79f goto pc+7
1611 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1612 * r5 += 1
1613 * ...
1614 * call bpf_perf_event_output#25
1615 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1616 *
1617 * and this case:
1618 * r6 = 1
1619 * call foo // uses callee's r6 inside to compute r0
1620 * r0 += r6
1621 * if r0 == 0 goto
1622 *
1623 * to track above reg_mask/stack_mask needs to be independent for each frame.
1624 *
1625 * Also if parent's curframe > frame where backtracking started,
1626 * the verifier need to mark registers in both frames, otherwise callees
1627 * may incorrectly prune callers. This is similar to
1628 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1629 *
1630 * For now backtracking falls back into conservative marking.
1631 */
1632static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1633 struct bpf_verifier_state *st)
1634{
1635 struct bpf_func_state *func;
1636 struct bpf_reg_state *reg;
1637 int i, j;
1638
1639 /* big hammer: mark all scalars precise in this path.
1640 * pop_stack may still get !precise scalars.
1641 */
1642 for (; st; st = st->parent)
1643 for (i = 0; i <= st->curframe; i++) {
1644 func = st->frame[i];
1645 for (j = 0; j < BPF_REG_FP; j++) {
1646 reg = &func->regs[j];
1647 if (reg->type != SCALAR_VALUE)
1648 continue;
1649 reg->precise = true;
1650 }
1651 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1652 if (func->stack[j].slot_type[0] != STACK_SPILL)
1653 continue;
1654 reg = &func->stack[j].spilled_ptr;
1655 if (reg->type != SCALAR_VALUE)
1656 continue;
1657 reg->precise = true;
1658 }
1659 }
1660}
1661
1662static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1663{
1664 struct bpf_verifier_state *st = env->cur_state;
1665 int first_idx = st->first_insn_idx;
1666 int last_idx = env->insn_idx;
1667 struct bpf_func_state *func;
1668 struct bpf_reg_state *reg;
1669 u32 reg_mask = 1u << regno;
1670 u64 stack_mask = 0;
1671 bool skip_first = true;
1672 int i, err;
1673
1674 if (!env->allow_ptr_leaks)
1675 /* backtracking is root only for now */
1676 return 0;
1677
1678 func = st->frame[st->curframe];
1679 reg = &func->regs[regno];
1680 if (reg->type != SCALAR_VALUE) {
1681 WARN_ONCE(1, "backtracing misuse");
1682 return -EFAULT;
1683 }
1684 if (reg->precise)
1685 return 0;
1686 func->regs[regno].precise = true;
1687
1688 for (;;) {
1689 DECLARE_BITMAP(mask, 64);
1690 bool new_marks = false;
1691 u32 history = st->jmp_history_cnt;
1692
1693 if (env->log.level & BPF_LOG_LEVEL)
1694 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1695 for (i = last_idx;;) {
1696 if (skip_first) {
1697 err = 0;
1698 skip_first = false;
1699 } else {
1700 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1701 }
1702 if (err == -ENOTSUPP) {
1703 mark_all_scalars_precise(env, st);
1704 return 0;
1705 } else if (err) {
1706 return err;
1707 }
1708 if (!reg_mask && !stack_mask)
1709 /* Found assignment(s) into tracked register in this state.
1710 * Since this state is already marked, just return.
1711 * Nothing to be tracked further in the parent state.
1712 */
1713 return 0;
1714 if (i == first_idx)
1715 break;
1716 i = get_prev_insn_idx(st, i, &history);
1717 if (i >= env->prog->len) {
1718 /* This can happen if backtracking reached insn 0
1719 * and there are still reg_mask or stack_mask
1720 * to backtrack.
1721 * It means the backtracking missed the spot where
1722 * particular register was initialized with a constant.
1723 */
1724 verbose(env, "BUG backtracking idx %d\n", i);
1725 WARN_ONCE(1, "verifier backtracking bug");
1726 return -EFAULT;
1727 }
1728 }
1729 st = st->parent;
1730 if (!st)
1731 break;
1732
1733 func = st->frame[st->curframe];
1734 bitmap_from_u64(mask, reg_mask);
1735 for_each_set_bit(i, mask, 32) {
1736 reg = &func->regs[i];
1737 if (reg->type != SCALAR_VALUE)
1738 continue;
1739 if (!reg->precise)
1740 new_marks = true;
1741 reg->precise = true;
1742 }
1743
1744 bitmap_from_u64(mask, stack_mask);
1745 for_each_set_bit(i, mask, 64) {
1746 if (i >= func->allocated_stack / BPF_REG_SIZE) {
1747 /* This can happen if backtracking
1748 * is propagating stack precision where
1749 * caller has larger stack frame
1750 * than callee, but backtrack_insn() should
1751 * have returned -ENOTSUPP.
1752 */
1753 verbose(env, "BUG spi %d stack_size %d\n",
1754 i, func->allocated_stack);
1755 WARN_ONCE(1, "verifier backtracking bug");
1756 return -EFAULT;
1757 }
1758
1759 if (func->stack[i].slot_type[0] != STACK_SPILL)
1760 continue;
1761 reg = &func->stack[i].spilled_ptr;
1762 if (reg->type != SCALAR_VALUE)
1763 continue;
1764 if (!reg->precise)
1765 new_marks = true;
1766 reg->precise = true;
1767 }
1768 if (env->log.level & BPF_LOG_LEVEL) {
1769 print_verifier_state(env, func);
1770 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1771 new_marks ? "didn't have" : "already had",
1772 reg_mask, stack_mask);
1773 }
1774
1775 if (!new_marks)
1776 break;
1777
1778 last_idx = st->last_insn_idx;
1779 first_idx = st->first_insn_idx;
1780 }
1781 return 0;
1782}
1783
1784
1be7f75d
AS
1785static bool is_spillable_regtype(enum bpf_reg_type type)
1786{
1787 switch (type) {
1788 case PTR_TO_MAP_VALUE:
1789 case PTR_TO_MAP_VALUE_OR_NULL:
1790 case PTR_TO_STACK:
1791 case PTR_TO_CTX:
969bf05e 1792 case PTR_TO_PACKET:
de8f3a83 1793 case PTR_TO_PACKET_META:
969bf05e 1794 case PTR_TO_PACKET_END:
d58e468b 1795 case PTR_TO_FLOW_KEYS:
1be7f75d 1796 case CONST_PTR_TO_MAP:
c64b7983
JS
1797 case PTR_TO_SOCKET:
1798 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1799 case PTR_TO_SOCK_COMMON:
1800 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1801 case PTR_TO_TCP_SOCK:
1802 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1803 case PTR_TO_XDP_SOCK:
1be7f75d
AS
1804 return true;
1805 default:
1806 return false;
1807 }
1808}
1809
cc2b14d5
AS
1810/* Does this register contain a constant zero? */
1811static bool register_is_null(struct bpf_reg_state *reg)
1812{
1813 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1814}
1815
f7cf25b2
AS
1816static bool register_is_const(struct bpf_reg_state *reg)
1817{
1818 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1819}
1820
1821static void save_register_state(struct bpf_func_state *state,
1822 int spi, struct bpf_reg_state *reg)
1823{
1824 int i;
1825
1826 state->stack[spi].spilled_ptr = *reg;
1827 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1828
1829 for (i = 0; i < BPF_REG_SIZE; i++)
1830 state->stack[spi].slot_type[i] = STACK_SPILL;
1831}
1832
17a52670
AS
1833/* check_stack_read/write functions track spill/fill of registers,
1834 * stack boundary and alignment are checked in check_mem_access()
1835 */
61bd5218 1836static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1837 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1838 int off, int size, int value_regno, int insn_idx)
17a52670 1839{
f4d7e40a 1840 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1841 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1842 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1843 struct bpf_reg_state *reg = NULL;
638f5b90 1844
f4d7e40a 1845 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1846 state->acquired_refs, true);
638f5b90
AS
1847 if (err)
1848 return err;
9c399760
AS
1849 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1850 * so it's aligned access and [off, off + size) are within stack limits
1851 */
638f5b90
AS
1852 if (!env->allow_ptr_leaks &&
1853 state->stack[spi].slot_type[0] == STACK_SPILL &&
1854 size != BPF_REG_SIZE) {
1855 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1856 return -EACCES;
1857 }
17a52670 1858
f4d7e40a 1859 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1860 if (value_regno >= 0)
1861 reg = &cur->regs[value_regno];
17a52670 1862
f7cf25b2
AS
1863 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1864 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1865 if (dst_reg != BPF_REG_FP) {
1866 /* The backtracking logic can only recognize explicit
1867 * stack slot address like [fp - 8]. Other spill of
1868 * scalar via different register has to be conervative.
1869 * Backtrack from here and mark all registers as precise
1870 * that contributed into 'reg' being a constant.
1871 */
1872 err = mark_chain_precision(env, value_regno);
1873 if (err)
1874 return err;
1875 }
f7cf25b2
AS
1876 save_register_state(state, spi, reg);
1877 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1878 /* register containing pointer is being spilled into stack */
9c399760 1879 if (size != BPF_REG_SIZE) {
f7cf25b2 1880 verbose_linfo(env, insn_idx, "; ");
61bd5218 1881 verbose(env, "invalid size of register spill\n");
17a52670
AS
1882 return -EACCES;
1883 }
1884
f7cf25b2 1885 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
1886 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1887 return -EINVAL;
1888 }
1889
f7cf25b2
AS
1890 if (!env->allow_ptr_leaks) {
1891 bool sanitize = false;
17a52670 1892
f7cf25b2
AS
1893 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1894 register_is_const(&state->stack[spi].spilled_ptr))
1895 sanitize = true;
1896 for (i = 0; i < BPF_REG_SIZE; i++)
1897 if (state->stack[spi].slot_type[i] == STACK_MISC) {
1898 sanitize = true;
1899 break;
1900 }
1901 if (sanitize) {
af86ca4e
AS
1902 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1903 int soff = (-spi - 1) * BPF_REG_SIZE;
1904
1905 /* detected reuse of integer stack slot with a pointer
1906 * which means either llvm is reusing stack slot or
1907 * an attacker is trying to exploit CVE-2018-3639
1908 * (speculative store bypass)
1909 * Have to sanitize that slot with preemptive
1910 * store of zero.
1911 */
1912 if (*poff && *poff != soff) {
1913 /* disallow programs where single insn stores
1914 * into two different stack slots, since verifier
1915 * cannot sanitize them
1916 */
1917 verbose(env,
1918 "insn %d cannot access two stack slots fp%d and fp%d",
1919 insn_idx, *poff, soff);
1920 return -EINVAL;
1921 }
1922 *poff = soff;
1923 }
af86ca4e 1924 }
f7cf25b2 1925 save_register_state(state, spi, reg);
9c399760 1926 } else {
cc2b14d5
AS
1927 u8 type = STACK_MISC;
1928
679c782d
EC
1929 /* regular write of data into stack destroys any spilled ptr */
1930 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1931 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1932 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1933 for (i = 0; i < BPF_REG_SIZE; i++)
1934 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1935
cc2b14d5
AS
1936 /* only mark the slot as written if all 8 bytes were written
1937 * otherwise read propagation may incorrectly stop too soon
1938 * when stack slots are partially written.
1939 * This heuristic means that read propagation will be
1940 * conservative, since it will add reg_live_read marks
1941 * to stack slots all the way to first state when programs
1942 * writes+reads less than 8 bytes
1943 */
1944 if (size == BPF_REG_SIZE)
1945 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1946
1947 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
1948 if (reg && register_is_null(reg)) {
1949 /* backtracking doesn't work for STACK_ZERO yet. */
1950 err = mark_chain_precision(env, value_regno);
1951 if (err)
1952 return err;
cc2b14d5 1953 type = STACK_ZERO;
b5dc0163 1954 }
cc2b14d5 1955
0bae2d4d 1956 /* Mark slots affected by this stack write. */
9c399760 1957 for (i = 0; i < size; i++)
638f5b90 1958 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1959 type;
17a52670
AS
1960 }
1961 return 0;
1962}
1963
61bd5218 1964static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1965 struct bpf_func_state *reg_state /* func where register points to */,
1966 int off, int size, int value_regno)
17a52670 1967{
f4d7e40a
AS
1968 struct bpf_verifier_state *vstate = env->cur_state;
1969 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 1970 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 1971 struct bpf_reg_state *reg;
638f5b90 1972 u8 *stype;
17a52670 1973
f4d7e40a 1974 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1975 verbose(env, "invalid read from stack off %d+0 size %d\n",
1976 off, size);
1977 return -EACCES;
1978 }
f4d7e40a 1979 stype = reg_state->stack[spi].slot_type;
f7cf25b2 1980 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 1981
638f5b90 1982 if (stype[0] == STACK_SPILL) {
9c399760 1983 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
1984 if (reg->type != SCALAR_VALUE) {
1985 verbose_linfo(env, env->insn_idx, "; ");
1986 verbose(env, "invalid size of register fill\n");
1987 return -EACCES;
1988 }
1989 if (value_regno >= 0) {
1990 mark_reg_unknown(env, state->regs, value_regno);
1991 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1992 }
1993 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
1994 return 0;
17a52670 1995 }
9c399760 1996 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1997 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1998 verbose(env, "corrupted spill memory\n");
17a52670
AS
1999 return -EACCES;
2000 }
2001 }
2002
dc503a8a 2003 if (value_regno >= 0) {
17a52670 2004 /* restore register state from stack */
f7cf25b2 2005 state->regs[value_regno] = *reg;
2f18f62e
AS
2006 /* mark reg as written since spilled pointer state likely
2007 * has its liveness marks cleared by is_state_visited()
2008 * which resets stack/reg liveness for state transitions
2009 */
2010 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2011 }
f7cf25b2 2012 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2013 } else {
cc2b14d5
AS
2014 int zeros = 0;
2015
17a52670 2016 for (i = 0; i < size; i++) {
cc2b14d5
AS
2017 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2018 continue;
2019 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2020 zeros++;
2021 continue;
17a52670 2022 }
cc2b14d5
AS
2023 verbose(env, "invalid read from stack off %d+%d size %d\n",
2024 off, i, size);
2025 return -EACCES;
2026 }
f7cf25b2 2027 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2028 if (value_regno >= 0) {
2029 if (zeros == size) {
2030 /* any size read into register is zero extended,
2031 * so the whole register == const_zero
2032 */
2033 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2034 /* backtracking doesn't support STACK_ZERO yet,
2035 * so mark it precise here, so that later
2036 * backtracking can stop here.
2037 * Backtracking may not need this if this register
2038 * doesn't participate in pointer adjustment.
2039 * Forward propagation of precise flag is not
2040 * necessary either. This mark is only to stop
2041 * backtracking. Any register that contributed
2042 * to const 0 was marked precise before spill.
2043 */
2044 state->regs[value_regno].precise = true;
cc2b14d5
AS
2045 } else {
2046 /* have read misc data from the stack */
2047 mark_reg_unknown(env, state->regs, value_regno);
2048 }
2049 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2050 }
17a52670 2051 }
f7cf25b2 2052 return 0;
17a52670
AS
2053}
2054
e4298d25
DB
2055static int check_stack_access(struct bpf_verifier_env *env,
2056 const struct bpf_reg_state *reg,
2057 int off, int size)
2058{
2059 /* Stack accesses must be at a fixed offset, so that we
2060 * can determine what type of data were returned. See
2061 * check_stack_read().
2062 */
2063 if (!tnum_is_const(reg->var_off)) {
2064 char tn_buf[48];
2065
2066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2067 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2068 tn_buf, off, size);
2069 return -EACCES;
2070 }
2071
2072 if (off >= 0 || off < -MAX_BPF_STACK) {
2073 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2074 return -EACCES;
2075 }
2076
2077 return 0;
2078}
2079
591fe988
DB
2080static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2081 int off, int size, enum bpf_access_type type)
2082{
2083 struct bpf_reg_state *regs = cur_regs(env);
2084 struct bpf_map *map = regs[regno].map_ptr;
2085 u32 cap = bpf_map_flags_to_cap(map);
2086
2087 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2088 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2089 map->value_size, off, size);
2090 return -EACCES;
2091 }
2092
2093 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2094 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2095 map->value_size, off, size);
2096 return -EACCES;
2097 }
2098
2099 return 0;
2100}
2101
17a52670 2102/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2103static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2104 int size, bool zero_size_allowed)
17a52670 2105{
638f5b90
AS
2106 struct bpf_reg_state *regs = cur_regs(env);
2107 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2108
9fd29c08
YS
2109 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2110 off + size > map->value_size) {
61bd5218 2111 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2112 map->value_size, off, size);
2113 return -EACCES;
2114 }
2115 return 0;
2116}
2117
f1174f77
EC
2118/* check read/write into a map element with possible variable offset */
2119static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2120 int off, int size, bool zero_size_allowed)
dbcfe5f7 2121{
f4d7e40a
AS
2122 struct bpf_verifier_state *vstate = env->cur_state;
2123 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2124 struct bpf_reg_state *reg = &state->regs[regno];
2125 int err;
2126
f1174f77
EC
2127 /* We may have adjusted the register to this map value, so we
2128 * need to try adding each of min_value and max_value to off
2129 * to make sure our theoretical access will be safe.
dbcfe5f7 2130 */
06ee7115 2131 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2132 print_verifier_state(env, state);
b7137c4e 2133
dbcfe5f7
GB
2134 /* The minimum value is only important with signed
2135 * comparisons where we can't assume the floor of a
2136 * value is 0. If we are using signed variables for our
2137 * index'es we need to make sure that whatever we use
2138 * will have a set floor within our range.
2139 */
b7137c4e
DB
2140 if (reg->smin_value < 0 &&
2141 (reg->smin_value == S64_MIN ||
2142 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2143 reg->smin_value + off < 0)) {
61bd5218 2144 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2145 regno);
2146 return -EACCES;
2147 }
9fd29c08
YS
2148 err = __check_map_access(env, regno, reg->smin_value + off, size,
2149 zero_size_allowed);
dbcfe5f7 2150 if (err) {
61bd5218
JK
2151 verbose(env, "R%d min value is outside of the array range\n",
2152 regno);
dbcfe5f7
GB
2153 return err;
2154 }
2155
b03c9f9f
EC
2156 /* If we haven't set a max value then we need to bail since we can't be
2157 * sure we won't do bad things.
2158 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2159 */
b03c9f9f 2160 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2161 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2162 regno);
2163 return -EACCES;
2164 }
9fd29c08
YS
2165 err = __check_map_access(env, regno, reg->umax_value + off, size,
2166 zero_size_allowed);
f1174f77 2167 if (err)
61bd5218
JK
2168 verbose(env, "R%d max value is outside of the array range\n",
2169 regno);
d83525ca
AS
2170
2171 if (map_value_has_spin_lock(reg->map_ptr)) {
2172 u32 lock = reg->map_ptr->spin_lock_off;
2173
2174 /* if any part of struct bpf_spin_lock can be touched by
2175 * load/store reject this program.
2176 * To check that [x1, x2) overlaps with [y1, y2)
2177 * it is sufficient to check x1 < y2 && y1 < x2.
2178 */
2179 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2180 lock < reg->umax_value + off + size) {
2181 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2182 return -EACCES;
2183 }
2184 }
f1174f77 2185 return err;
dbcfe5f7
GB
2186}
2187
969bf05e
AS
2188#define MAX_PACKET_OFF 0xffff
2189
58e2af8b 2190static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2191 const struct bpf_call_arg_meta *meta,
2192 enum bpf_access_type t)
4acf6c0b 2193{
36bbef52 2194 switch (env->prog->type) {
5d66fa7d 2195 /* Program types only with direct read access go here! */
3a0af8fd
TG
2196 case BPF_PROG_TYPE_LWT_IN:
2197 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2198 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2199 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2200 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2201 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2202 if (t == BPF_WRITE)
2203 return false;
7e57fbb2 2204 /* fallthrough */
5d66fa7d
DB
2205
2206 /* Program types with direct read + write access go here! */
36bbef52
DB
2207 case BPF_PROG_TYPE_SCHED_CLS:
2208 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2209 case BPF_PROG_TYPE_XDP:
3a0af8fd 2210 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2211 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2212 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2213 if (meta)
2214 return meta->pkt_access;
2215
2216 env->seen_direct_write = true;
4acf6c0b 2217 return true;
0d01da6a
SF
2218
2219 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2220 if (t == BPF_WRITE)
2221 env->seen_direct_write = true;
2222
2223 return true;
2224
4acf6c0b
BB
2225 default:
2226 return false;
2227 }
2228}
2229
f1174f77 2230static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2231 int off, int size, bool zero_size_allowed)
969bf05e 2232{
638f5b90 2233 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2234 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2235
9fd29c08
YS
2236 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2237 (u64)off + size > reg->range) {
61bd5218 2238 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2239 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2240 return -EACCES;
2241 }
2242 return 0;
2243}
2244
f1174f77 2245static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2246 int size, bool zero_size_allowed)
f1174f77 2247{
638f5b90 2248 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2249 struct bpf_reg_state *reg = &regs[regno];
2250 int err;
2251
2252 /* We may have added a variable offset to the packet pointer; but any
2253 * reg->range we have comes after that. We are only checking the fixed
2254 * offset.
2255 */
2256
2257 /* We don't allow negative numbers, because we aren't tracking enough
2258 * detail to prove they're safe.
2259 */
b03c9f9f 2260 if (reg->smin_value < 0) {
61bd5218 2261 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2262 regno);
2263 return -EACCES;
2264 }
9fd29c08 2265 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2266 if (err) {
61bd5218 2267 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2268 return err;
2269 }
e647815a
JW
2270
2271 /* __check_packet_access has made sure "off + size - 1" is within u16.
2272 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2273 * otherwise find_good_pkt_pointers would have refused to set range info
2274 * that __check_packet_access would have rejected this pkt access.
2275 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2276 */
2277 env->prog->aux->max_pkt_offset =
2278 max_t(u32, env->prog->aux->max_pkt_offset,
2279 off + reg->umax_value + size - 1);
2280
f1174f77
EC
2281 return err;
2282}
2283
2284/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2285static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 2286 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 2287{
f96da094
DB
2288 struct bpf_insn_access_aux info = {
2289 .reg_type = *reg_type,
2290 };
31fd8581 2291
4f9218aa 2292 if (env->ops->is_valid_access &&
5e43f899 2293 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2294 /* A non zero info.ctx_field_size indicates that this field is a
2295 * candidate for later verifier transformation to load the whole
2296 * field and then apply a mask when accessed with a narrower
2297 * access than actual ctx access size. A zero info.ctx_field_size
2298 * will only allow for whole field access and rejects any other
2299 * type of narrower access.
31fd8581 2300 */
23994631 2301 *reg_type = info.reg_type;
31fd8581 2302
4f9218aa 2303 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2304 /* remember the offset of last byte accessed in ctx */
2305 if (env->prog->aux->max_ctx_offset < off + size)
2306 env->prog->aux->max_ctx_offset = off + size;
17a52670 2307 return 0;
32bbe007 2308 }
17a52670 2309
61bd5218 2310 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2311 return -EACCES;
2312}
2313
d58e468b
PP
2314static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2315 int size)
2316{
2317 if (size < 0 || off < 0 ||
2318 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2319 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2320 off, size);
2321 return -EACCES;
2322 }
2323 return 0;
2324}
2325
5f456649
MKL
2326static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2327 u32 regno, int off, int size,
2328 enum bpf_access_type t)
c64b7983
JS
2329{
2330 struct bpf_reg_state *regs = cur_regs(env);
2331 struct bpf_reg_state *reg = &regs[regno];
5f456649 2332 struct bpf_insn_access_aux info = {};
46f8bc92 2333 bool valid;
c64b7983
JS
2334
2335 if (reg->smin_value < 0) {
2336 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2337 regno);
2338 return -EACCES;
2339 }
2340
46f8bc92
MKL
2341 switch (reg->type) {
2342 case PTR_TO_SOCK_COMMON:
2343 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2344 break;
2345 case PTR_TO_SOCKET:
2346 valid = bpf_sock_is_valid_access(off, size, t, &info);
2347 break;
655a51e5
MKL
2348 case PTR_TO_TCP_SOCK:
2349 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2350 break;
fada7fdc
JL
2351 case PTR_TO_XDP_SOCK:
2352 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2353 break;
46f8bc92
MKL
2354 default:
2355 valid = false;
c64b7983
JS
2356 }
2357
5f456649 2358
46f8bc92
MKL
2359 if (valid) {
2360 env->insn_aux_data[insn_idx].ctx_field_size =
2361 info.ctx_field_size;
2362 return 0;
2363 }
2364
2365 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2366 regno, reg_type_str[reg->type], off, size);
2367
2368 return -EACCES;
c64b7983
JS
2369}
2370
4cabc5b1
DB
2371static bool __is_pointer_value(bool allow_ptr_leaks,
2372 const struct bpf_reg_state *reg)
1be7f75d 2373{
4cabc5b1 2374 if (allow_ptr_leaks)
1be7f75d
AS
2375 return false;
2376
f1174f77 2377 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2378}
2379
2a159c6f
DB
2380static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2381{
2382 return cur_regs(env) + regno;
2383}
2384
4cabc5b1
DB
2385static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2386{
2a159c6f 2387 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2388}
2389
f37a8cb8
DB
2390static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2391{
2a159c6f 2392 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2393
46f8bc92
MKL
2394 return reg->type == PTR_TO_CTX;
2395}
2396
2397static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2398{
2399 const struct bpf_reg_state *reg = reg_state(env, regno);
2400
2401 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2402}
2403
ca369602
DB
2404static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2405{
2a159c6f 2406 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2407
2408 return type_is_pkt_pointer(reg->type);
2409}
2410
4b5defde
DB
2411static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2412{
2413 const struct bpf_reg_state *reg = reg_state(env, regno);
2414
2415 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2416 return reg->type == PTR_TO_FLOW_KEYS;
2417}
2418
61bd5218
JK
2419static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2420 const struct bpf_reg_state *reg,
d1174416 2421 int off, int size, bool strict)
969bf05e 2422{
f1174f77 2423 struct tnum reg_off;
e07b98d9 2424 int ip_align;
d1174416
DM
2425
2426 /* Byte size accesses are always allowed. */
2427 if (!strict || size == 1)
2428 return 0;
2429
e4eda884
DM
2430 /* For platforms that do not have a Kconfig enabling
2431 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2432 * NET_IP_ALIGN is universally set to '2'. And on platforms
2433 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2434 * to this code only in strict mode where we want to emulate
2435 * the NET_IP_ALIGN==2 checking. Therefore use an
2436 * unconditional IP align value of '2'.
e07b98d9 2437 */
e4eda884 2438 ip_align = 2;
f1174f77
EC
2439
2440 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2441 if (!tnum_is_aligned(reg_off, size)) {
2442 char tn_buf[48];
2443
2444 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2445 verbose(env,
2446 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2447 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2448 return -EACCES;
2449 }
79adffcd 2450
969bf05e
AS
2451 return 0;
2452}
2453
61bd5218
JK
2454static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2455 const struct bpf_reg_state *reg,
f1174f77
EC
2456 const char *pointer_desc,
2457 int off, int size, bool strict)
79adffcd 2458{
f1174f77
EC
2459 struct tnum reg_off;
2460
2461 /* Byte size accesses are always allowed. */
2462 if (!strict || size == 1)
2463 return 0;
2464
2465 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2466 if (!tnum_is_aligned(reg_off, size)) {
2467 char tn_buf[48];
2468
2469 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2470 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2471 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2472 return -EACCES;
2473 }
2474
969bf05e
AS
2475 return 0;
2476}
2477
e07b98d9 2478static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2479 const struct bpf_reg_state *reg, int off,
2480 int size, bool strict_alignment_once)
79adffcd 2481{
ca369602 2482 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2483 const char *pointer_desc = "";
d1174416 2484
79adffcd
DB
2485 switch (reg->type) {
2486 case PTR_TO_PACKET:
de8f3a83
DB
2487 case PTR_TO_PACKET_META:
2488 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2489 * right in front, treat it the very same way.
2490 */
61bd5218 2491 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2492 case PTR_TO_FLOW_KEYS:
2493 pointer_desc = "flow keys ";
2494 break;
f1174f77
EC
2495 case PTR_TO_MAP_VALUE:
2496 pointer_desc = "value ";
2497 break;
2498 case PTR_TO_CTX:
2499 pointer_desc = "context ";
2500 break;
2501 case PTR_TO_STACK:
2502 pointer_desc = "stack ";
a5ec6ae1
JH
2503 /* The stack spill tracking logic in check_stack_write()
2504 * and check_stack_read() relies on stack accesses being
2505 * aligned.
2506 */
2507 strict = true;
f1174f77 2508 break;
c64b7983
JS
2509 case PTR_TO_SOCKET:
2510 pointer_desc = "sock ";
2511 break;
46f8bc92
MKL
2512 case PTR_TO_SOCK_COMMON:
2513 pointer_desc = "sock_common ";
2514 break;
655a51e5
MKL
2515 case PTR_TO_TCP_SOCK:
2516 pointer_desc = "tcp_sock ";
2517 break;
fada7fdc
JL
2518 case PTR_TO_XDP_SOCK:
2519 pointer_desc = "xdp_sock ";
2520 break;
79adffcd 2521 default:
f1174f77 2522 break;
79adffcd 2523 }
61bd5218
JK
2524 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2525 strict);
79adffcd
DB
2526}
2527
f4d7e40a
AS
2528static int update_stack_depth(struct bpf_verifier_env *env,
2529 const struct bpf_func_state *func,
2530 int off)
2531{
9c8105bd 2532 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2533
2534 if (stack >= -off)
2535 return 0;
2536
2537 /* update known max for given subprogram */
9c8105bd 2538 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2539 return 0;
2540}
f4d7e40a 2541
70a87ffe
AS
2542/* starting from main bpf function walk all instructions of the function
2543 * and recursively walk all callees that given function can call.
2544 * Ignore jump and exit insns.
2545 * Since recursion is prevented by check_cfg() this algorithm
2546 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2547 */
2548static int check_max_stack_depth(struct bpf_verifier_env *env)
2549{
9c8105bd
JW
2550 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2551 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2552 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2553 int ret_insn[MAX_CALL_FRAMES];
2554 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2555
70a87ffe
AS
2556process_func:
2557 /* round up to 32-bytes, since this is granularity
2558 * of interpreter stack size
2559 */
9c8105bd 2560 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2561 if (depth > MAX_BPF_STACK) {
f4d7e40a 2562 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2563 frame + 1, depth);
f4d7e40a
AS
2564 return -EACCES;
2565 }
70a87ffe 2566continue_func:
4cb3d99c 2567 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2568 for (; i < subprog_end; i++) {
2569 if (insn[i].code != (BPF_JMP | BPF_CALL))
2570 continue;
2571 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2572 continue;
2573 /* remember insn and function to return to */
2574 ret_insn[frame] = i + 1;
9c8105bd 2575 ret_prog[frame] = idx;
70a87ffe
AS
2576
2577 /* find the callee */
2578 i = i + insn[i].imm + 1;
9c8105bd
JW
2579 idx = find_subprog(env, i);
2580 if (idx < 0) {
70a87ffe
AS
2581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2582 i);
2583 return -EFAULT;
2584 }
70a87ffe
AS
2585 frame++;
2586 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2587 verbose(env, "the call stack of %d frames is too deep !\n",
2588 frame);
2589 return -E2BIG;
70a87ffe
AS
2590 }
2591 goto process_func;
2592 }
2593 /* end of for() loop means the last insn of the 'subprog'
2594 * was reached. Doesn't matter whether it was JA or EXIT
2595 */
2596 if (frame == 0)
2597 return 0;
9c8105bd 2598 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2599 frame--;
2600 i = ret_insn[frame];
9c8105bd 2601 idx = ret_prog[frame];
70a87ffe 2602 goto continue_func;
f4d7e40a
AS
2603}
2604
19d28fbd 2605#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2606static int get_callee_stack_depth(struct bpf_verifier_env *env,
2607 const struct bpf_insn *insn, int idx)
2608{
2609 int start = idx + insn->imm + 1, subprog;
2610
2611 subprog = find_subprog(env, start);
2612 if (subprog < 0) {
2613 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2614 start);
2615 return -EFAULT;
2616 }
9c8105bd 2617 return env->subprog_info[subprog].stack_depth;
1ea47e01 2618}
19d28fbd 2619#endif
1ea47e01 2620
58990d1f
DB
2621static int check_ctx_reg(struct bpf_verifier_env *env,
2622 const struct bpf_reg_state *reg, int regno)
2623{
2624 /* Access to ctx or passing it to a helper is only allowed in
2625 * its original, unmodified form.
2626 */
2627
2628 if (reg->off) {
2629 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2630 regno, reg->off);
2631 return -EACCES;
2632 }
2633
2634 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2635 char tn_buf[48];
2636
2637 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2638 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2639 return -EACCES;
2640 }
2641
2642 return 0;
2643}
2644
9df1c28b
MM
2645static int check_tp_buffer_access(struct bpf_verifier_env *env,
2646 const struct bpf_reg_state *reg,
2647 int regno, int off, int size)
2648{
2649 if (off < 0) {
2650 verbose(env,
2651 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2652 regno, off, size);
2653 return -EACCES;
2654 }
2655 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2656 char tn_buf[48];
2657
2658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2659 verbose(env,
2660 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2661 regno, off, tn_buf);
2662 return -EACCES;
2663 }
2664 if (off + size > env->prog->aux->max_tp_access)
2665 env->prog->aux->max_tp_access = off + size;
2666
2667 return 0;
2668}
2669
2670
0c17d1d2
JH
2671/* truncate register to smaller size (in bytes)
2672 * must be called with size < BPF_REG_SIZE
2673 */
2674static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2675{
2676 u64 mask;
2677
2678 /* clear high bits in bit representation */
2679 reg->var_off = tnum_cast(reg->var_off, size);
2680
2681 /* fix arithmetic bounds */
2682 mask = ((u64)1 << (size * 8)) - 1;
2683 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2684 reg->umin_value &= mask;
2685 reg->umax_value &= mask;
2686 } else {
2687 reg->umin_value = 0;
2688 reg->umax_value = mask;
2689 }
2690 reg->smin_value = reg->umin_value;
2691 reg->smax_value = reg->umax_value;
2692}
2693
17a52670
AS
2694/* check whether memory at (regno + off) is accessible for t = (read | write)
2695 * if t==write, value_regno is a register which value is stored into memory
2696 * if t==read, value_regno is a register which will receive the value from memory
2697 * if t==write && value_regno==-1, some unknown value is stored into memory
2698 * if t==read && value_regno==-1, don't care what we read from memory
2699 */
ca369602
DB
2700static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2701 int off, int bpf_size, enum bpf_access_type t,
2702 int value_regno, bool strict_alignment_once)
17a52670 2703{
638f5b90
AS
2704 struct bpf_reg_state *regs = cur_regs(env);
2705 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2706 struct bpf_func_state *state;
17a52670
AS
2707 int size, err = 0;
2708
2709 size = bpf_size_to_bytes(bpf_size);
2710 if (size < 0)
2711 return size;
2712
f1174f77 2713 /* alignment checks will add in reg->off themselves */
ca369602 2714 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2715 if (err)
2716 return err;
17a52670 2717
f1174f77
EC
2718 /* for access checks, reg->off is just part of off */
2719 off += reg->off;
2720
2721 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2722 if (t == BPF_WRITE && value_regno >= 0 &&
2723 is_pointer_value(env, value_regno)) {
61bd5218 2724 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2725 return -EACCES;
2726 }
591fe988
DB
2727 err = check_map_access_type(env, regno, off, size, t);
2728 if (err)
2729 return err;
9fd29c08 2730 err = check_map_access(env, regno, off, size, false);
17a52670 2731 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2732 mark_reg_unknown(env, regs, value_regno);
17a52670 2733
1a0dc1ac 2734 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2735 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2736
1be7f75d
AS
2737 if (t == BPF_WRITE && value_regno >= 0 &&
2738 is_pointer_value(env, value_regno)) {
61bd5218 2739 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2740 return -EACCES;
2741 }
f1174f77 2742
58990d1f
DB
2743 err = check_ctx_reg(env, reg, regno);
2744 if (err < 0)
2745 return err;
2746
31fd8581 2747 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2748 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2749 /* ctx access returns either a scalar, or a
de8f3a83
DB
2750 * PTR_TO_PACKET[_META,_END]. In the latter
2751 * case, we know the offset is zero.
f1174f77 2752 */
46f8bc92 2753 if (reg_type == SCALAR_VALUE) {
638f5b90 2754 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2755 } else {
638f5b90 2756 mark_reg_known_zero(env, regs,
61bd5218 2757 value_regno);
46f8bc92
MKL
2758 if (reg_type_may_be_null(reg_type))
2759 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2760 /* A load of ctx field could have different
2761 * actual load size with the one encoded in the
2762 * insn. When the dst is PTR, it is for sure not
2763 * a sub-register.
2764 */
2765 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
46f8bc92 2766 }
638f5b90 2767 regs[value_regno].type = reg_type;
969bf05e 2768 }
17a52670 2769
f1174f77 2770 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2771 off += reg->var_off.value;
e4298d25
DB
2772 err = check_stack_access(env, reg, off, size);
2773 if (err)
2774 return err;
8726679a 2775
f4d7e40a
AS
2776 state = func(env, reg);
2777 err = update_stack_depth(env, state, off);
2778 if (err)
2779 return err;
8726679a 2780
638f5b90 2781 if (t == BPF_WRITE)
61bd5218 2782 err = check_stack_write(env, state, off, size,
af86ca4e 2783 value_regno, insn_idx);
638f5b90 2784 else
61bd5218
JK
2785 err = check_stack_read(env, state, off, size,
2786 value_regno);
de8f3a83 2787 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2788 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2789 verbose(env, "cannot write into packet\n");
969bf05e
AS
2790 return -EACCES;
2791 }
4acf6c0b
BB
2792 if (t == BPF_WRITE && value_regno >= 0 &&
2793 is_pointer_value(env, value_regno)) {
61bd5218
JK
2794 verbose(env, "R%d leaks addr into packet\n",
2795 value_regno);
4acf6c0b
BB
2796 return -EACCES;
2797 }
9fd29c08 2798 err = check_packet_access(env, regno, off, size, false);
969bf05e 2799 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2800 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2801 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2802 if (t == BPF_WRITE && value_regno >= 0 &&
2803 is_pointer_value(env, value_regno)) {
2804 verbose(env, "R%d leaks addr into flow keys\n",
2805 value_regno);
2806 return -EACCES;
2807 }
2808
2809 err = check_flow_keys_access(env, off, size);
2810 if (!err && t == BPF_READ && value_regno >= 0)
2811 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2812 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2813 if (t == BPF_WRITE) {
46f8bc92
MKL
2814 verbose(env, "R%d cannot write into %s\n",
2815 regno, reg_type_str[reg->type]);
c64b7983
JS
2816 return -EACCES;
2817 }
5f456649 2818 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2819 if (!err && value_regno >= 0)
2820 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
2821 } else if (reg->type == PTR_TO_TP_BUFFER) {
2822 err = check_tp_buffer_access(env, reg, regno, off, size);
2823 if (!err && t == BPF_READ && value_regno >= 0)
2824 mark_reg_unknown(env, regs, value_regno);
17a52670 2825 } else {
61bd5218
JK
2826 verbose(env, "R%d invalid mem access '%s'\n", regno,
2827 reg_type_str[reg->type]);
17a52670
AS
2828 return -EACCES;
2829 }
969bf05e 2830
f1174f77 2831 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2832 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2833 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2834 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2835 }
17a52670
AS
2836 return err;
2837}
2838
31fd8581 2839static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2840{
17a52670
AS
2841 int err;
2842
2843 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2844 insn->imm != 0) {
61bd5218 2845 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2846 return -EINVAL;
2847 }
2848
2849 /* check src1 operand */
dc503a8a 2850 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2851 if (err)
2852 return err;
2853
2854 /* check src2 operand */
dc503a8a 2855 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2856 if (err)
2857 return err;
2858
6bdf6abc 2859 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2860 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2861 return -EACCES;
2862 }
2863
ca369602 2864 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2865 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2866 is_flow_key_reg(env, insn->dst_reg) ||
2867 is_sk_reg(env, insn->dst_reg)) {
ca369602 2868 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2869 insn->dst_reg,
2870 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2871 return -EACCES;
2872 }
2873
17a52670 2874 /* check whether atomic_add can read the memory */
31fd8581 2875 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2876 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2877 if (err)
2878 return err;
2879
2880 /* check whether atomic_add can write into the same memory */
31fd8581 2881 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2882 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2883}
2884
2011fccf
AI
2885static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2886 int off, int access_size,
2887 bool zero_size_allowed)
2888{
2889 struct bpf_reg_state *reg = reg_state(env, regno);
2890
2891 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2892 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2893 if (tnum_is_const(reg->var_off)) {
2894 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2895 regno, off, access_size);
2896 } else {
2897 char tn_buf[48];
2898
2899 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2900 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2901 regno, tn_buf, access_size);
2902 }
2903 return -EACCES;
2904 }
2905 return 0;
2906}
2907
17a52670
AS
2908/* when register 'regno' is passed into function that will read 'access_size'
2909 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2910 * and all elements of stack are initialized.
2911 * Unlike most pointer bounds-checking functions, this one doesn't take an
2912 * 'off' argument, so it has to add in reg->off itself.
17a52670 2913 */
58e2af8b 2914static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2915 int access_size, bool zero_size_allowed,
2916 struct bpf_call_arg_meta *meta)
17a52670 2917{
2a159c6f 2918 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2919 struct bpf_func_state *state = func(env, reg);
f7cf25b2 2920 int err, min_off, max_off, i, j, slot, spi;
17a52670 2921
914cb781 2922 if (reg->type != PTR_TO_STACK) {
f1174f77 2923 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2924 if (zero_size_allowed && access_size == 0 &&
914cb781 2925 register_is_null(reg))
8e2fe1d9
DB
2926 return 0;
2927
61bd5218 2928 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2929 reg_type_str[reg->type],
8e2fe1d9 2930 reg_type_str[PTR_TO_STACK]);
17a52670 2931 return -EACCES;
8e2fe1d9 2932 }
17a52670 2933
2011fccf
AI
2934 if (tnum_is_const(reg->var_off)) {
2935 min_off = max_off = reg->var_off.value + reg->off;
2936 err = __check_stack_boundary(env, regno, min_off, access_size,
2937 zero_size_allowed);
2938 if (err)
2939 return err;
2940 } else {
088ec26d
AI
2941 /* Variable offset is prohibited for unprivileged mode for
2942 * simplicity since it requires corresponding support in
2943 * Spectre masking for stack ALU.
2944 * See also retrieve_ptr_limit().
2945 */
2946 if (!env->allow_ptr_leaks) {
2947 char tn_buf[48];
f1174f77 2948
088ec26d
AI
2949 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2950 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2951 regno, tn_buf);
2952 return -EACCES;
2953 }
f2bcd05e
AI
2954 /* Only initialized buffer on stack is allowed to be accessed
2955 * with variable offset. With uninitialized buffer it's hard to
2956 * guarantee that whole memory is marked as initialized on
2957 * helper return since specific bounds are unknown what may
2958 * cause uninitialized stack leaking.
2959 */
2960 if (meta && meta->raw_mode)
2961 meta = NULL;
2962
107c26a7
AI
2963 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2964 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2965 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2966 regno);
2967 return -EACCES;
2968 }
2011fccf 2969 min_off = reg->smin_value + reg->off;
107c26a7 2970 max_off = reg->smax_value + reg->off;
2011fccf
AI
2971 err = __check_stack_boundary(env, regno, min_off, access_size,
2972 zero_size_allowed);
107c26a7
AI
2973 if (err) {
2974 verbose(env, "R%d min value is outside of stack bound\n",
2975 regno);
2011fccf 2976 return err;
107c26a7 2977 }
2011fccf
AI
2978 err = __check_stack_boundary(env, regno, max_off, access_size,
2979 zero_size_allowed);
107c26a7
AI
2980 if (err) {
2981 verbose(env, "R%d max value is outside of stack bound\n",
2982 regno);
2011fccf 2983 return err;
107c26a7 2984 }
17a52670
AS
2985 }
2986
435faee1
DB
2987 if (meta && meta->raw_mode) {
2988 meta->access_size = access_size;
2989 meta->regno = regno;
2990 return 0;
2991 }
2992
2011fccf 2993 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
2994 u8 *stype;
2995
2011fccf 2996 slot = -i - 1;
638f5b90 2997 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2998 if (state->allocated_stack <= slot)
2999 goto err;
3000 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3001 if (*stype == STACK_MISC)
3002 goto mark;
3003 if (*stype == STACK_ZERO) {
3004 /* helper can write anything into the stack */
3005 *stype = STACK_MISC;
3006 goto mark;
17a52670 3007 }
f7cf25b2
AS
3008 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3009 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3010 __mark_reg_unknown(&state->stack[spi].spilled_ptr);
3011 for (j = 0; j < BPF_REG_SIZE; j++)
3012 state->stack[spi].slot_type[j] = STACK_MISC;
3013 goto mark;
3014 }
3015
cc2b14d5 3016err:
2011fccf
AI
3017 if (tnum_is_const(reg->var_off)) {
3018 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3019 min_off, i - min_off, access_size);
3020 } else {
3021 char tn_buf[48];
3022
3023 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3024 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3025 tn_buf, i - min_off, access_size);
3026 }
cc2b14d5
AS
3027 return -EACCES;
3028mark:
3029 /* reading any byte out of 8-byte 'spill_slot' will cause
3030 * the whole slot to be marked as 'read'
3031 */
679c782d 3032 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3033 state->stack[spi].spilled_ptr.parent,
3034 REG_LIVE_READ64);
17a52670 3035 }
2011fccf 3036 return update_stack_depth(env, state, min_off);
17a52670
AS
3037}
3038
06c1c049
GB
3039static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3040 int access_size, bool zero_size_allowed,
3041 struct bpf_call_arg_meta *meta)
3042{
638f5b90 3043 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3044
f1174f77 3045 switch (reg->type) {
06c1c049 3046 case PTR_TO_PACKET:
de8f3a83 3047 case PTR_TO_PACKET_META:
9fd29c08
YS
3048 return check_packet_access(env, regno, reg->off, access_size,
3049 zero_size_allowed);
06c1c049 3050 case PTR_TO_MAP_VALUE:
591fe988
DB
3051 if (check_map_access_type(env, regno, reg->off, access_size,
3052 meta && meta->raw_mode ? BPF_WRITE :
3053 BPF_READ))
3054 return -EACCES;
9fd29c08
YS
3055 return check_map_access(env, regno, reg->off, access_size,
3056 zero_size_allowed);
f1174f77 3057 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3058 return check_stack_boundary(env, regno, access_size,
3059 zero_size_allowed, meta);
3060 }
3061}
3062
d83525ca
AS
3063/* Implementation details:
3064 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3065 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3066 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3067 * value_or_null->value transition, since the verifier only cares about
3068 * the range of access to valid map value pointer and doesn't care about actual
3069 * address of the map element.
3070 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3071 * reg->id > 0 after value_or_null->value transition. By doing so
3072 * two bpf_map_lookups will be considered two different pointers that
3073 * point to different bpf_spin_locks.
3074 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3075 * dead-locks.
3076 * Since only one bpf_spin_lock is allowed the checks are simpler than
3077 * reg_is_refcounted() logic. The verifier needs to remember only
3078 * one spin_lock instead of array of acquired_refs.
3079 * cur_state->active_spin_lock remembers which map value element got locked
3080 * and clears it after bpf_spin_unlock.
3081 */
3082static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3083 bool is_lock)
3084{
3085 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3086 struct bpf_verifier_state *cur = env->cur_state;
3087 bool is_const = tnum_is_const(reg->var_off);
3088 struct bpf_map *map = reg->map_ptr;
3089 u64 val = reg->var_off.value;
3090
3091 if (reg->type != PTR_TO_MAP_VALUE) {
3092 verbose(env, "R%d is not a pointer to map_value\n", regno);
3093 return -EINVAL;
3094 }
3095 if (!is_const) {
3096 verbose(env,
3097 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3098 regno);
3099 return -EINVAL;
3100 }
3101 if (!map->btf) {
3102 verbose(env,
3103 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3104 map->name);
3105 return -EINVAL;
3106 }
3107 if (!map_value_has_spin_lock(map)) {
3108 if (map->spin_lock_off == -E2BIG)
3109 verbose(env,
3110 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3111 map->name);
3112 else if (map->spin_lock_off == -ENOENT)
3113 verbose(env,
3114 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3115 map->name);
3116 else
3117 verbose(env,
3118 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3119 map->name);
3120 return -EINVAL;
3121 }
3122 if (map->spin_lock_off != val + reg->off) {
3123 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3124 val + reg->off);
3125 return -EINVAL;
3126 }
3127 if (is_lock) {
3128 if (cur->active_spin_lock) {
3129 verbose(env,
3130 "Locking two bpf_spin_locks are not allowed\n");
3131 return -EINVAL;
3132 }
3133 cur->active_spin_lock = reg->id;
3134 } else {
3135 if (!cur->active_spin_lock) {
3136 verbose(env, "bpf_spin_unlock without taking a lock\n");
3137 return -EINVAL;
3138 }
3139 if (cur->active_spin_lock != reg->id) {
3140 verbose(env, "bpf_spin_unlock of different lock\n");
3141 return -EINVAL;
3142 }
3143 cur->active_spin_lock = 0;
3144 }
3145 return 0;
3146}
3147
90133415
DB
3148static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3149{
3150 return type == ARG_PTR_TO_MEM ||
3151 type == ARG_PTR_TO_MEM_OR_NULL ||
3152 type == ARG_PTR_TO_UNINIT_MEM;
3153}
3154
3155static bool arg_type_is_mem_size(enum bpf_arg_type type)
3156{
3157 return type == ARG_CONST_SIZE ||
3158 type == ARG_CONST_SIZE_OR_ZERO;
3159}
3160
57c3bb72
AI
3161static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3162{
3163 return type == ARG_PTR_TO_INT ||
3164 type == ARG_PTR_TO_LONG;
3165}
3166
3167static int int_ptr_type_to_size(enum bpf_arg_type type)
3168{
3169 if (type == ARG_PTR_TO_INT)
3170 return sizeof(u32);
3171 else if (type == ARG_PTR_TO_LONG)
3172 return sizeof(u64);
3173
3174 return -EINVAL;
3175}
3176
58e2af8b 3177static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3178 enum bpf_arg_type arg_type,
3179 struct bpf_call_arg_meta *meta)
17a52670 3180{
638f5b90 3181 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3182 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3183 int err = 0;
3184
80f1d68c 3185 if (arg_type == ARG_DONTCARE)
17a52670
AS
3186 return 0;
3187
dc503a8a
EC
3188 err = check_reg_arg(env, regno, SRC_OP);
3189 if (err)
3190 return err;
17a52670 3191
1be7f75d
AS
3192 if (arg_type == ARG_ANYTHING) {
3193 if (is_pointer_value(env, regno)) {
61bd5218
JK
3194 verbose(env, "R%d leaks addr into helper function\n",
3195 regno);
1be7f75d
AS
3196 return -EACCES;
3197 }
80f1d68c 3198 return 0;
1be7f75d 3199 }
80f1d68c 3200
de8f3a83 3201 if (type_is_pkt_pointer(type) &&
3a0af8fd 3202 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3203 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3204 return -EACCES;
3205 }
3206
8e2fe1d9 3207 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3208 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3209 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3210 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3211 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3212 if (register_is_null(reg) &&
3213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3214 /* final test in check_stack_boundary() */;
3215 else if (!type_is_pkt_pointer(type) &&
3216 type != PTR_TO_MAP_VALUE &&
3217 type != expected_type)
6841de8b 3218 goto err_type;
39f19ebb
AS
3219 } else if (arg_type == ARG_CONST_SIZE ||
3220 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3221 expected_type = SCALAR_VALUE;
3222 if (type != expected_type)
6841de8b 3223 goto err_type;
17a52670
AS
3224 } else if (arg_type == ARG_CONST_MAP_PTR) {
3225 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3226 if (type != expected_type)
3227 goto err_type;
608cd71a
AS
3228 } else if (arg_type == ARG_PTR_TO_CTX) {
3229 expected_type = PTR_TO_CTX;
6841de8b
AS
3230 if (type != expected_type)
3231 goto err_type;
58990d1f
DB
3232 err = check_ctx_reg(env, reg, regno);
3233 if (err < 0)
3234 return err;
46f8bc92
MKL
3235 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3236 expected_type = PTR_TO_SOCK_COMMON;
3237 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3238 if (!type_is_sk_pointer(type))
3239 goto err_type;
1b986589
MKL
3240 if (reg->ref_obj_id) {
3241 if (meta->ref_obj_id) {
3242 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3243 regno, reg->ref_obj_id,
3244 meta->ref_obj_id);
3245 return -EFAULT;
3246 }
3247 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3248 }
6ac99e8f
MKL
3249 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3250 expected_type = PTR_TO_SOCKET;
3251 if (type != expected_type)
3252 goto err_type;
d83525ca
AS
3253 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3254 if (meta->func_id == BPF_FUNC_spin_lock) {
3255 if (process_spin_lock(env, regno, true))
3256 return -EACCES;
3257 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3258 if (process_spin_lock(env, regno, false))
3259 return -EACCES;
3260 } else {
3261 verbose(env, "verifier internal error\n");
3262 return -EFAULT;
3263 }
90133415 3264 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3265 expected_type = PTR_TO_STACK;
3266 /* One exception here. In case function allows for NULL to be
f1174f77 3267 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3268 * happens during stack boundary checking.
3269 */
914cb781 3270 if (register_is_null(reg) &&
db1ac496 3271 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3272 /* final test in check_stack_boundary() */;
de8f3a83
DB
3273 else if (!type_is_pkt_pointer(type) &&
3274 type != PTR_TO_MAP_VALUE &&
f1174f77 3275 type != expected_type)
6841de8b 3276 goto err_type;
39f19ebb 3277 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3278 } else if (arg_type_is_int_ptr(arg_type)) {
3279 expected_type = PTR_TO_STACK;
3280 if (!type_is_pkt_pointer(type) &&
3281 type != PTR_TO_MAP_VALUE &&
3282 type != expected_type)
3283 goto err_type;
17a52670 3284 } else {
61bd5218 3285 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3286 return -EFAULT;
3287 }
3288
17a52670
AS
3289 if (arg_type == ARG_CONST_MAP_PTR) {
3290 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3291 meta->map_ptr = reg->map_ptr;
17a52670
AS
3292 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3293 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3294 * check that [key, key + map->key_size) are within
3295 * stack limits and initialized
3296 */
33ff9823 3297 if (!meta->map_ptr) {
17a52670
AS
3298 /* in function declaration map_ptr must come before
3299 * map_key, so that it's verified and known before
3300 * we have to check map_key here. Otherwise it means
3301 * that kernel subsystem misconfigured verifier
3302 */
61bd5218 3303 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3304 return -EACCES;
3305 }
d71962f3
PC
3306 err = check_helper_mem_access(env, regno,
3307 meta->map_ptr->key_size, false,
3308 NULL);
2ea864c5 3309 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3310 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3311 !register_is_null(reg)) ||
2ea864c5 3312 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3313 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3314 * check [value, value + map->value_size) validity
3315 */
33ff9823 3316 if (!meta->map_ptr) {
17a52670 3317 /* kernel subsystem misconfigured verifier */
61bd5218 3318 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3319 return -EACCES;
3320 }
2ea864c5 3321 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3322 err = check_helper_mem_access(env, regno,
3323 meta->map_ptr->value_size, false,
2ea864c5 3324 meta);
90133415 3325 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3326 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3327
849fa506
YS
3328 /* remember the mem_size which may be used later
3329 * to refine return values.
3330 */
3331 meta->msize_smax_value = reg->smax_value;
3332 meta->msize_umax_value = reg->umax_value;
3333
f1174f77
EC
3334 /* The register is SCALAR_VALUE; the access check
3335 * happens using its boundaries.
06c1c049 3336 */
f1174f77 3337 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3338 /* For unprivileged variable accesses, disable raw
3339 * mode so that the program is required to
3340 * initialize all the memory that the helper could
3341 * just partially fill up.
3342 */
3343 meta = NULL;
3344
b03c9f9f 3345 if (reg->smin_value < 0) {
61bd5218 3346 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3347 regno);
3348 return -EACCES;
3349 }
06c1c049 3350
b03c9f9f 3351 if (reg->umin_value == 0) {
f1174f77
EC
3352 err = check_helper_mem_access(env, regno - 1, 0,
3353 zero_size_allowed,
3354 meta);
06c1c049
GB
3355 if (err)
3356 return err;
06c1c049 3357 }
f1174f77 3358
b03c9f9f 3359 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3360 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3361 regno);
3362 return -EACCES;
3363 }
3364 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3365 reg->umax_value,
f1174f77 3366 zero_size_allowed, meta);
b5dc0163
AS
3367 if (!err)
3368 err = mark_chain_precision(env, regno);
57c3bb72
AI
3369 } else if (arg_type_is_int_ptr(arg_type)) {
3370 int size = int_ptr_type_to_size(arg_type);
3371
3372 err = check_helper_mem_access(env, regno, size, false, meta);
3373 if (err)
3374 return err;
3375 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3376 }
3377
3378 return err;
6841de8b 3379err_type:
61bd5218 3380 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3381 reg_type_str[type], reg_type_str[expected_type]);
3382 return -EACCES;
17a52670
AS
3383}
3384
61bd5218
JK
3385static int check_map_func_compatibility(struct bpf_verifier_env *env,
3386 struct bpf_map *map, int func_id)
35578d79 3387{
35578d79
KX
3388 if (!map)
3389 return 0;
3390
6aff67c8
AS
3391 /* We need a two way check, first is from map perspective ... */
3392 switch (map->map_type) {
3393 case BPF_MAP_TYPE_PROG_ARRAY:
3394 if (func_id != BPF_FUNC_tail_call)
3395 goto error;
3396 break;
3397 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3398 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
3399 func_id != BPF_FUNC_perf_event_output &&
3400 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3401 goto error;
3402 break;
3403 case BPF_MAP_TYPE_STACK_TRACE:
3404 if (func_id != BPF_FUNC_get_stackid)
3405 goto error;
3406 break;
4ed8ec52 3407 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3408 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3409 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3410 goto error;
3411 break;
cd339431 3412 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3413 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3414 if (func_id != BPF_FUNC_get_local_storage)
3415 goto error;
3416 break;
546ac1ff
JF
3417 /* devmap returns a pointer to a live net_device ifindex that we cannot
3418 * allow to be modified from bpf side. So do not allow lookup elements
3419 * for now.
3420 */
3421 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 3422 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
3423 goto error;
3424 break;
fbfc504a
BT
3425 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3426 * appear.
3427 */
6710e112
JDB
3428 case BPF_MAP_TYPE_CPUMAP:
3429 if (func_id != BPF_FUNC_redirect_map)
3430 goto error;
3431 break;
fada7fdc
JL
3432 case BPF_MAP_TYPE_XSKMAP:
3433 if (func_id != BPF_FUNC_redirect_map &&
3434 func_id != BPF_FUNC_map_lookup_elem)
3435 goto error;
3436 break;
56f668df 3437 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3438 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3439 if (func_id != BPF_FUNC_map_lookup_elem)
3440 goto error;
16a43625 3441 break;
174a79ff
JF
3442 case BPF_MAP_TYPE_SOCKMAP:
3443 if (func_id != BPF_FUNC_sk_redirect_map &&
3444 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3445 func_id != BPF_FUNC_map_delete_elem &&
3446 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3447 goto error;
3448 break;
81110384
JF
3449 case BPF_MAP_TYPE_SOCKHASH:
3450 if (func_id != BPF_FUNC_sk_redirect_hash &&
3451 func_id != BPF_FUNC_sock_hash_update &&
3452 func_id != BPF_FUNC_map_delete_elem &&
3453 func_id != BPF_FUNC_msg_redirect_hash)
3454 goto error;
3455 break;
2dbb9b9e
MKL
3456 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3457 if (func_id != BPF_FUNC_sk_select_reuseport)
3458 goto error;
3459 break;
f1a2e44a
MV
3460 case BPF_MAP_TYPE_QUEUE:
3461 case BPF_MAP_TYPE_STACK:
3462 if (func_id != BPF_FUNC_map_peek_elem &&
3463 func_id != BPF_FUNC_map_pop_elem &&
3464 func_id != BPF_FUNC_map_push_elem)
3465 goto error;
3466 break;
6ac99e8f
MKL
3467 case BPF_MAP_TYPE_SK_STORAGE:
3468 if (func_id != BPF_FUNC_sk_storage_get &&
3469 func_id != BPF_FUNC_sk_storage_delete)
3470 goto error;
3471 break;
6aff67c8
AS
3472 default:
3473 break;
3474 }
3475
3476 /* ... and second from the function itself. */
3477 switch (func_id) {
3478 case BPF_FUNC_tail_call:
3479 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3480 goto error;
f910cefa 3481 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3482 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3483 return -EINVAL;
3484 }
6aff67c8
AS
3485 break;
3486 case BPF_FUNC_perf_event_read:
3487 case BPF_FUNC_perf_event_output:
908432ca 3488 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
3489 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3490 goto error;
3491 break;
3492 case BPF_FUNC_get_stackid:
3493 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3494 goto error;
3495 break;
60d20f91 3496 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3497 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3498 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3499 goto error;
3500 break;
97f91a7c 3501 case BPF_FUNC_redirect_map:
9c270af3 3502 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
3503 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3504 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3505 goto error;
3506 break;
174a79ff 3507 case BPF_FUNC_sk_redirect_map:
4f738adb 3508 case BPF_FUNC_msg_redirect_map:
81110384 3509 case BPF_FUNC_sock_map_update:
174a79ff
JF
3510 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3511 goto error;
3512 break;
81110384
JF
3513 case BPF_FUNC_sk_redirect_hash:
3514 case BPF_FUNC_msg_redirect_hash:
3515 case BPF_FUNC_sock_hash_update:
3516 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3517 goto error;
3518 break;
cd339431 3519 case BPF_FUNC_get_local_storage:
b741f163
RG
3520 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3521 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3522 goto error;
3523 break;
2dbb9b9e
MKL
3524 case BPF_FUNC_sk_select_reuseport:
3525 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3526 goto error;
3527 break;
f1a2e44a
MV
3528 case BPF_FUNC_map_peek_elem:
3529 case BPF_FUNC_map_pop_elem:
3530 case BPF_FUNC_map_push_elem:
3531 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3532 map->map_type != BPF_MAP_TYPE_STACK)
3533 goto error;
3534 break;
6ac99e8f
MKL
3535 case BPF_FUNC_sk_storage_get:
3536 case BPF_FUNC_sk_storage_delete:
3537 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3538 goto error;
3539 break;
6aff67c8
AS
3540 default:
3541 break;
35578d79
KX
3542 }
3543
3544 return 0;
6aff67c8 3545error:
61bd5218 3546 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3547 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3548 return -EINVAL;
35578d79
KX
3549}
3550
90133415 3551static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3552{
3553 int count = 0;
3554
39f19ebb 3555 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3556 count++;
39f19ebb 3557 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3558 count++;
39f19ebb 3559 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3560 count++;
39f19ebb 3561 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3562 count++;
39f19ebb 3563 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3564 count++;
3565
90133415
DB
3566 /* We only support one arg being in raw mode at the moment,
3567 * which is sufficient for the helper functions we have
3568 * right now.
3569 */
3570 return count <= 1;
3571}
3572
3573static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3574 enum bpf_arg_type arg_next)
3575{
3576 return (arg_type_is_mem_ptr(arg_curr) &&
3577 !arg_type_is_mem_size(arg_next)) ||
3578 (!arg_type_is_mem_ptr(arg_curr) &&
3579 arg_type_is_mem_size(arg_next));
3580}
3581
3582static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3583{
3584 /* bpf_xxx(..., buf, len) call will access 'len'
3585 * bytes from memory 'buf'. Both arg types need
3586 * to be paired, so make sure there's no buggy
3587 * helper function specification.
3588 */
3589 if (arg_type_is_mem_size(fn->arg1_type) ||
3590 arg_type_is_mem_ptr(fn->arg5_type) ||
3591 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3592 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3593 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3594 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3595 return false;
3596
3597 return true;
3598}
3599
1b986589 3600static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3601{
3602 int count = 0;
3603
1b986589 3604 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3605 count++;
1b986589 3606 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3607 count++;
1b986589 3608 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3609 count++;
1b986589 3610 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3611 count++;
1b986589 3612 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3613 count++;
3614
1b986589
MKL
3615 /* A reference acquiring function cannot acquire
3616 * another refcounted ptr.
3617 */
3618 if (is_acquire_function(func_id) && count)
3619 return false;
3620
fd978bf7
JS
3621 /* We only support one arg being unreferenced at the moment,
3622 * which is sufficient for the helper functions we have right now.
3623 */
3624 return count <= 1;
3625}
3626
1b986589 3627static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3628{
3629 return check_raw_mode_ok(fn) &&
fd978bf7 3630 check_arg_pair_ok(fn) &&
1b986589 3631 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3632}
3633
de8f3a83
DB
3634/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3635 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3636 */
f4d7e40a
AS
3637static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3638 struct bpf_func_state *state)
969bf05e 3639{
58e2af8b 3640 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3641 int i;
3642
3643 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3644 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3645 mark_reg_unknown(env, regs, i);
969bf05e 3646
f3709f69
JS
3647 bpf_for_each_spilled_reg(i, state, reg) {
3648 if (!reg)
969bf05e 3649 continue;
de8f3a83
DB
3650 if (reg_is_pkt_pointer_any(reg))
3651 __mark_reg_unknown(reg);
969bf05e
AS
3652 }
3653}
3654
f4d7e40a
AS
3655static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3656{
3657 struct bpf_verifier_state *vstate = env->cur_state;
3658 int i;
3659
3660 for (i = 0; i <= vstate->curframe; i++)
3661 __clear_all_pkt_pointers(env, vstate->frame[i]);
3662}
3663
fd978bf7 3664static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3665 struct bpf_func_state *state,
3666 int ref_obj_id)
fd978bf7
JS
3667{
3668 struct bpf_reg_state *regs = state->regs, *reg;
3669 int i;
3670
3671 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3672 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3673 mark_reg_unknown(env, regs, i);
3674
3675 bpf_for_each_spilled_reg(i, state, reg) {
3676 if (!reg)
3677 continue;
1b986589 3678 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
3679 __mark_reg_unknown(reg);
3680 }
3681}
3682
3683/* The pointer with the specified id has released its reference to kernel
3684 * resources. Identify all copies of the same pointer and clear the reference.
3685 */
3686static int release_reference(struct bpf_verifier_env *env,
1b986589 3687 int ref_obj_id)
fd978bf7
JS
3688{
3689 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3690 int err;
fd978bf7
JS
3691 int i;
3692
1b986589
MKL
3693 err = release_reference_state(cur_func(env), ref_obj_id);
3694 if (err)
3695 return err;
3696
fd978bf7 3697 for (i = 0; i <= vstate->curframe; i++)
1b986589 3698 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3699
1b986589 3700 return 0;
fd978bf7
JS
3701}
3702
f4d7e40a
AS
3703static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3704 int *insn_idx)
3705{
3706 struct bpf_verifier_state *state = env->cur_state;
3707 struct bpf_func_state *caller, *callee;
fd978bf7 3708 int i, err, subprog, target_insn;
f4d7e40a 3709
aada9ce6 3710 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3711 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3712 state->curframe + 2);
f4d7e40a
AS
3713 return -E2BIG;
3714 }
3715
3716 target_insn = *insn_idx + insn->imm;
3717 subprog = find_subprog(env, target_insn + 1);
3718 if (subprog < 0) {
3719 verbose(env, "verifier bug. No program starts at insn %d\n",
3720 target_insn + 1);
3721 return -EFAULT;
3722 }
3723
3724 caller = state->frame[state->curframe];
3725 if (state->frame[state->curframe + 1]) {
3726 verbose(env, "verifier bug. Frame %d already allocated\n",
3727 state->curframe + 1);
3728 return -EFAULT;
3729 }
3730
3731 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3732 if (!callee)
3733 return -ENOMEM;
3734 state->frame[state->curframe + 1] = callee;
3735
3736 /* callee cannot access r0, r6 - r9 for reading and has to write
3737 * into its own stack before reading from it.
3738 * callee can read/write into caller's stack
3739 */
3740 init_func_state(env, callee,
3741 /* remember the callsite, it will be used by bpf_exit */
3742 *insn_idx /* callsite */,
3743 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3744 subprog /* subprog number within this prog */);
f4d7e40a 3745
fd978bf7
JS
3746 /* Transfer references to the callee */
3747 err = transfer_reference_state(callee, caller);
3748 if (err)
3749 return err;
3750
679c782d
EC
3751 /* copy r1 - r5 args that callee can access. The copy includes parent
3752 * pointers, which connects us up to the liveness chain
3753 */
f4d7e40a
AS
3754 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3755 callee->regs[i] = caller->regs[i];
3756
679c782d 3757 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
3758 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3759 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3760 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3761 }
3762
3763 /* only increment it after check_reg_arg() finished */
3764 state->curframe++;
3765
3766 /* and go analyze first insn of the callee */
3767 *insn_idx = target_insn;
3768
06ee7115 3769 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3770 verbose(env, "caller:\n");
3771 print_verifier_state(env, caller);
3772 verbose(env, "callee:\n");
3773 print_verifier_state(env, callee);
3774 }
3775 return 0;
3776}
3777
3778static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3779{
3780 struct bpf_verifier_state *state = env->cur_state;
3781 struct bpf_func_state *caller, *callee;
3782 struct bpf_reg_state *r0;
fd978bf7 3783 int err;
f4d7e40a
AS
3784
3785 callee = state->frame[state->curframe];
3786 r0 = &callee->regs[BPF_REG_0];
3787 if (r0->type == PTR_TO_STACK) {
3788 /* technically it's ok to return caller's stack pointer
3789 * (or caller's caller's pointer) back to the caller,
3790 * since these pointers are valid. Only current stack
3791 * pointer will be invalid as soon as function exits,
3792 * but let's be conservative
3793 */
3794 verbose(env, "cannot return stack pointer to the caller\n");
3795 return -EINVAL;
3796 }
3797
3798 state->curframe--;
3799 caller = state->frame[state->curframe];
3800 /* return to the caller whatever r0 had in the callee */
3801 caller->regs[BPF_REG_0] = *r0;
3802
fd978bf7
JS
3803 /* Transfer references to the caller */
3804 err = transfer_reference_state(caller, callee);
3805 if (err)
3806 return err;
3807
f4d7e40a 3808 *insn_idx = callee->callsite + 1;
06ee7115 3809 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3810 verbose(env, "returning from callee:\n");
3811 print_verifier_state(env, callee);
3812 verbose(env, "to caller at %d:\n", *insn_idx);
3813 print_verifier_state(env, caller);
3814 }
3815 /* clear everything in the callee */
3816 free_func_state(callee);
3817 state->frame[state->curframe + 1] = NULL;
3818 return 0;
3819}
3820
849fa506
YS
3821static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3822 int func_id,
3823 struct bpf_call_arg_meta *meta)
3824{
3825 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3826
3827 if (ret_type != RET_INTEGER ||
3828 (func_id != BPF_FUNC_get_stack &&
3829 func_id != BPF_FUNC_probe_read_str))
3830 return;
3831
3832 ret_reg->smax_value = meta->msize_smax_value;
3833 ret_reg->umax_value = meta->msize_umax_value;
3834 __reg_deduce_bounds(ret_reg);
3835 __reg_bound_offset(ret_reg);
3836}
3837
c93552c4
DB
3838static int
3839record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3840 int func_id, int insn_idx)
3841{
3842 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 3843 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
3844
3845 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3846 func_id != BPF_FUNC_map_lookup_elem &&
3847 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3848 func_id != BPF_FUNC_map_delete_elem &&
3849 func_id != BPF_FUNC_map_push_elem &&
3850 func_id != BPF_FUNC_map_pop_elem &&
3851 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3852 return 0;
09772d92 3853
591fe988 3854 if (map == NULL) {
c93552c4
DB
3855 verbose(env, "kernel subsystem misconfigured verifier\n");
3856 return -EINVAL;
3857 }
3858
591fe988
DB
3859 /* In case of read-only, some additional restrictions
3860 * need to be applied in order to prevent altering the
3861 * state of the map from program side.
3862 */
3863 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3864 (func_id == BPF_FUNC_map_delete_elem ||
3865 func_id == BPF_FUNC_map_update_elem ||
3866 func_id == BPF_FUNC_map_push_elem ||
3867 func_id == BPF_FUNC_map_pop_elem)) {
3868 verbose(env, "write into map forbidden\n");
3869 return -EACCES;
3870 }
3871
c93552c4
DB
3872 if (!BPF_MAP_PTR(aux->map_state))
3873 bpf_map_ptr_store(aux, meta->map_ptr,
3874 meta->map_ptr->unpriv_array);
3875 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3876 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3877 meta->map_ptr->unpriv_array);
3878 return 0;
3879}
3880
fd978bf7
JS
3881static int check_reference_leak(struct bpf_verifier_env *env)
3882{
3883 struct bpf_func_state *state = cur_func(env);
3884 int i;
3885
3886 for (i = 0; i < state->acquired_refs; i++) {
3887 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3888 state->refs[i].id, state->refs[i].insn_idx);
3889 }
3890 return state->acquired_refs ? -EINVAL : 0;
3891}
3892
f4d7e40a 3893static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3894{
17a52670 3895 const struct bpf_func_proto *fn = NULL;
638f5b90 3896 struct bpf_reg_state *regs;
33ff9823 3897 struct bpf_call_arg_meta meta;
969bf05e 3898 bool changes_data;
17a52670
AS
3899 int i, err;
3900
3901 /* find function prototype */
3902 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3903 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3904 func_id);
17a52670
AS
3905 return -EINVAL;
3906 }
3907
00176a34 3908 if (env->ops->get_func_proto)
5e43f899 3909 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3910 if (!fn) {
61bd5218
JK
3911 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3912 func_id);
17a52670
AS
3913 return -EINVAL;
3914 }
3915
3916 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3917 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3918 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3919 return -EINVAL;
3920 }
3921
04514d13 3922 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3923 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3924 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3925 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3926 func_id_name(func_id), func_id);
3927 return -EINVAL;
3928 }
969bf05e 3929
33ff9823 3930 memset(&meta, 0, sizeof(meta));
36bbef52 3931 meta.pkt_access = fn->pkt_access;
33ff9823 3932
1b986589 3933 err = check_func_proto(fn, func_id);
435faee1 3934 if (err) {
61bd5218 3935 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3936 func_id_name(func_id), func_id);
435faee1
DB
3937 return err;
3938 }
3939
d83525ca 3940 meta.func_id = func_id;
17a52670 3941 /* check args */
33ff9823 3942 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3943 if (err)
3944 return err;
33ff9823 3945 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3946 if (err)
3947 return err;
33ff9823 3948 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3949 if (err)
3950 return err;
33ff9823 3951 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3952 if (err)
3953 return err;
33ff9823 3954 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3955 if (err)
3956 return err;
3957
c93552c4
DB
3958 err = record_func_map(env, &meta, func_id, insn_idx);
3959 if (err)
3960 return err;
3961
435faee1
DB
3962 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3963 * is inferred from register state.
3964 */
3965 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
3966 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3967 BPF_WRITE, -1, false);
435faee1
DB
3968 if (err)
3969 return err;
3970 }
3971
fd978bf7
JS
3972 if (func_id == BPF_FUNC_tail_call) {
3973 err = check_reference_leak(env);
3974 if (err) {
3975 verbose(env, "tail_call would lead to reference leak\n");
3976 return err;
3977 }
3978 } else if (is_release_function(func_id)) {
1b986589 3979 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
3980 if (err) {
3981 verbose(env, "func %s#%d reference has not been acquired before\n",
3982 func_id_name(func_id), func_id);
fd978bf7 3983 return err;
46f8bc92 3984 }
fd978bf7
JS
3985 }
3986
638f5b90 3987 regs = cur_regs(env);
cd339431
RG
3988
3989 /* check that flags argument in get_local_storage(map, flags) is 0,
3990 * this is required because get_local_storage() can't return an error.
3991 */
3992 if (func_id == BPF_FUNC_get_local_storage &&
3993 !register_is_null(&regs[BPF_REG_2])) {
3994 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3995 return -EINVAL;
3996 }
3997
17a52670 3998 /* reset caller saved regs */
dc503a8a 3999 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4000 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4001 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4002 }
17a52670 4003
5327ed3d
JW
4004 /* helper call returns 64-bit value. */
4005 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4006
dc503a8a 4007 /* update return register (already marked as written above) */
17a52670 4008 if (fn->ret_type == RET_INTEGER) {
f1174f77 4009 /* sets type to SCALAR_VALUE */
61bd5218 4010 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4011 } else if (fn->ret_type == RET_VOID) {
4012 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4013 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4014 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4015 /* There is no offset yet applied, variable or fixed */
61bd5218 4016 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4017 /* remember map_ptr, so that check_map_access()
4018 * can check 'value_size' boundary of memory access
4019 * to map element returned from bpf_map_lookup_elem()
4020 */
33ff9823 4021 if (meta.map_ptr == NULL) {
61bd5218
JK
4022 verbose(env,
4023 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4024 return -EINVAL;
4025 }
33ff9823 4026 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4027 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4028 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4029 if (map_value_has_spin_lock(meta.map_ptr))
4030 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4031 } else {
4032 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4033 regs[BPF_REG_0].id = ++env->id_gen;
4034 }
c64b7983
JS
4035 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4036 mark_reg_known_zero(env, regs, BPF_REG_0);
4037 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4038 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4039 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4040 mark_reg_known_zero(env, regs, BPF_REG_0);
4041 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4042 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4043 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4044 mark_reg_known_zero(env, regs, BPF_REG_0);
4045 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4046 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4047 } else {
61bd5218 4048 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4049 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4050 return -EINVAL;
4051 }
04fd61ab 4052
0f3adc28 4053 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4054 /* For release_reference() */
4055 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4056 } else if (is_acquire_function(func_id)) {
4057 int id = acquire_reference_state(env, insn_idx);
4058
4059 if (id < 0)
4060 return id;
4061 /* For mark_ptr_or_null_reg() */
4062 regs[BPF_REG_0].id = id;
4063 /* For release_reference() */
4064 regs[BPF_REG_0].ref_obj_id = id;
4065 }
1b986589 4066
849fa506
YS
4067 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4068
61bd5218 4069 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4070 if (err)
4071 return err;
04fd61ab 4072
c195651e
YS
4073 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4074 const char *err_str;
4075
4076#ifdef CONFIG_PERF_EVENTS
4077 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4078 err_str = "cannot get callchain buffer for func %s#%d\n";
4079#else
4080 err = -ENOTSUPP;
4081 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4082#endif
4083 if (err) {
4084 verbose(env, err_str, func_id_name(func_id), func_id);
4085 return err;
4086 }
4087
4088 env->prog->has_callchain_buf = true;
4089 }
4090
969bf05e
AS
4091 if (changes_data)
4092 clear_all_pkt_pointers(env);
4093 return 0;
4094}
4095
b03c9f9f
EC
4096static bool signed_add_overflows(s64 a, s64 b)
4097{
4098 /* Do the add in u64, where overflow is well-defined */
4099 s64 res = (s64)((u64)a + (u64)b);
4100
4101 if (b < 0)
4102 return res > a;
4103 return res < a;
4104}
4105
4106static bool signed_sub_overflows(s64 a, s64 b)
4107{
4108 /* Do the sub in u64, where overflow is well-defined */
4109 s64 res = (s64)((u64)a - (u64)b);
4110
4111 if (b < 0)
4112 return res < a;
4113 return res > a;
969bf05e
AS
4114}
4115
bb7f0f98
AS
4116static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4117 const struct bpf_reg_state *reg,
4118 enum bpf_reg_type type)
4119{
4120 bool known = tnum_is_const(reg->var_off);
4121 s64 val = reg->var_off.value;
4122 s64 smin = reg->smin_value;
4123
4124 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4125 verbose(env, "math between %s pointer and %lld is not allowed\n",
4126 reg_type_str[type], val);
4127 return false;
4128 }
4129
4130 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4131 verbose(env, "%s pointer offset %d is not allowed\n",
4132 reg_type_str[type], reg->off);
4133 return false;
4134 }
4135
4136 if (smin == S64_MIN) {
4137 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4138 reg_type_str[type]);
4139 return false;
4140 }
4141
4142 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4143 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4144 smin, reg_type_str[type]);
4145 return false;
4146 }
4147
4148 return true;
4149}
4150
979d63d5
DB
4151static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4152{
4153 return &env->insn_aux_data[env->insn_idx];
4154}
4155
4156static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4157 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4158{
4159 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4160 (opcode == BPF_SUB && !off_is_neg);
4161 u32 off;
4162
4163 switch (ptr_reg->type) {
4164 case PTR_TO_STACK:
088ec26d
AI
4165 /* Indirect variable offset stack access is prohibited in
4166 * unprivileged mode so it's not handled here.
4167 */
979d63d5
DB
4168 off = ptr_reg->off + ptr_reg->var_off.value;
4169 if (mask_to_left)
4170 *ptr_limit = MAX_BPF_STACK + off;
4171 else
4172 *ptr_limit = -off;
4173 return 0;
4174 case PTR_TO_MAP_VALUE:
4175 if (mask_to_left) {
4176 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4177 } else {
4178 off = ptr_reg->smin_value + ptr_reg->off;
4179 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4180 }
4181 return 0;
4182 default:
4183 return -EINVAL;
4184 }
4185}
4186
d3bd7413
DB
4187static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4188 const struct bpf_insn *insn)
4189{
4190 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4191}
4192
4193static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4194 u32 alu_state, u32 alu_limit)
4195{
4196 /* If we arrived here from different branches with different
4197 * state or limits to sanitize, then this won't work.
4198 */
4199 if (aux->alu_state &&
4200 (aux->alu_state != alu_state ||
4201 aux->alu_limit != alu_limit))
4202 return -EACCES;
4203
4204 /* Corresponding fixup done in fixup_bpf_calls(). */
4205 aux->alu_state = alu_state;
4206 aux->alu_limit = alu_limit;
4207 return 0;
4208}
4209
4210static int sanitize_val_alu(struct bpf_verifier_env *env,
4211 struct bpf_insn *insn)
4212{
4213 struct bpf_insn_aux_data *aux = cur_aux(env);
4214
4215 if (can_skip_alu_sanitation(env, insn))
4216 return 0;
4217
4218 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4219}
4220
979d63d5
DB
4221static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4222 struct bpf_insn *insn,
4223 const struct bpf_reg_state *ptr_reg,
4224 struct bpf_reg_state *dst_reg,
4225 bool off_is_neg)
4226{
4227 struct bpf_verifier_state *vstate = env->cur_state;
4228 struct bpf_insn_aux_data *aux = cur_aux(env);
4229 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4230 u8 opcode = BPF_OP(insn->code);
4231 u32 alu_state, alu_limit;
4232 struct bpf_reg_state tmp;
4233 bool ret;
4234
d3bd7413 4235 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4236 return 0;
4237
4238 /* We already marked aux for masking from non-speculative
4239 * paths, thus we got here in the first place. We only care
4240 * to explore bad access from here.
4241 */
4242 if (vstate->speculative)
4243 goto do_sim;
4244
4245 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4246 alu_state |= ptr_is_dst_reg ?
4247 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4248
4249 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4250 return 0;
d3bd7413 4251 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4252 return -EACCES;
979d63d5
DB
4253do_sim:
4254 /* Simulate and find potential out-of-bounds access under
4255 * speculative execution from truncation as a result of
4256 * masking when off was not within expected range. If off
4257 * sits in dst, then we temporarily need to move ptr there
4258 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4259 * for cases where we use K-based arithmetic in one direction
4260 * and truncated reg-based in the other in order to explore
4261 * bad access.
4262 */
4263 if (!ptr_is_dst_reg) {
4264 tmp = *dst_reg;
4265 *dst_reg = *ptr_reg;
4266 }
4267 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4268 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4269 *dst_reg = tmp;
4270 return !ret ? -EFAULT : 0;
4271}
4272
f1174f77 4273/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4274 * Caller should also handle BPF_MOV case separately.
4275 * If we return -EACCES, caller may want to try again treating pointer as a
4276 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4277 */
4278static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4279 struct bpf_insn *insn,
4280 const struct bpf_reg_state *ptr_reg,
4281 const struct bpf_reg_state *off_reg)
969bf05e 4282{
f4d7e40a
AS
4283 struct bpf_verifier_state *vstate = env->cur_state;
4284 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4285 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4286 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4287 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4288 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4289 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4290 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4291 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4292 u8 opcode = BPF_OP(insn->code);
979d63d5 4293 int ret;
969bf05e 4294
f1174f77 4295 dst_reg = &regs[dst];
969bf05e 4296
6f16101e
DB
4297 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4298 smin_val > smax_val || umin_val > umax_val) {
4299 /* Taint dst register if offset had invalid bounds derived from
4300 * e.g. dead branches.
4301 */
4302 __mark_reg_unknown(dst_reg);
4303 return 0;
f1174f77
EC
4304 }
4305
4306 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4307 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4308 verbose(env,
4309 "R%d 32-bit pointer arithmetic prohibited\n",
4310 dst);
f1174f77 4311 return -EACCES;
969bf05e
AS
4312 }
4313
aad2eeaf
JS
4314 switch (ptr_reg->type) {
4315 case PTR_TO_MAP_VALUE_OR_NULL:
4316 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4317 dst, reg_type_str[ptr_reg->type]);
f1174f77 4318 return -EACCES;
aad2eeaf
JS
4319 case CONST_PTR_TO_MAP:
4320 case PTR_TO_PACKET_END:
c64b7983
JS
4321 case PTR_TO_SOCKET:
4322 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4323 case PTR_TO_SOCK_COMMON:
4324 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4325 case PTR_TO_TCP_SOCK:
4326 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4327 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4328 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4329 dst, reg_type_str[ptr_reg->type]);
f1174f77 4330 return -EACCES;
9d7eceed
DB
4331 case PTR_TO_MAP_VALUE:
4332 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4333 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4334 off_reg == dst_reg ? dst : src);
4335 return -EACCES;
4336 }
4337 /* fall-through */
aad2eeaf
JS
4338 default:
4339 break;
f1174f77
EC
4340 }
4341
4342 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4343 * The id may be overwritten later if we create a new variable offset.
969bf05e 4344 */
f1174f77
EC
4345 dst_reg->type = ptr_reg->type;
4346 dst_reg->id = ptr_reg->id;
969bf05e 4347
bb7f0f98
AS
4348 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4349 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4350 return -EINVAL;
4351
f1174f77
EC
4352 switch (opcode) {
4353 case BPF_ADD:
979d63d5
DB
4354 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4355 if (ret < 0) {
4356 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4357 return ret;
4358 }
f1174f77
EC
4359 /* We can take a fixed offset as long as it doesn't overflow
4360 * the s32 'off' field
969bf05e 4361 */
b03c9f9f
EC
4362 if (known && (ptr_reg->off + smin_val ==
4363 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4364 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4365 dst_reg->smin_value = smin_ptr;
4366 dst_reg->smax_value = smax_ptr;
4367 dst_reg->umin_value = umin_ptr;
4368 dst_reg->umax_value = umax_ptr;
f1174f77 4369 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4370 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4371 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4372 break;
4373 }
f1174f77
EC
4374 /* A new variable offset is created. Note that off_reg->off
4375 * == 0, since it's a scalar.
4376 * dst_reg gets the pointer type and since some positive
4377 * integer value was added to the pointer, give it a new 'id'
4378 * if it's a PTR_TO_PACKET.
4379 * this creates a new 'base' pointer, off_reg (variable) gets
4380 * added into the variable offset, and we copy the fixed offset
4381 * from ptr_reg.
969bf05e 4382 */
b03c9f9f
EC
4383 if (signed_add_overflows(smin_ptr, smin_val) ||
4384 signed_add_overflows(smax_ptr, smax_val)) {
4385 dst_reg->smin_value = S64_MIN;
4386 dst_reg->smax_value = S64_MAX;
4387 } else {
4388 dst_reg->smin_value = smin_ptr + smin_val;
4389 dst_reg->smax_value = smax_ptr + smax_val;
4390 }
4391 if (umin_ptr + umin_val < umin_ptr ||
4392 umax_ptr + umax_val < umax_ptr) {
4393 dst_reg->umin_value = 0;
4394 dst_reg->umax_value = U64_MAX;
4395 } else {
4396 dst_reg->umin_value = umin_ptr + umin_val;
4397 dst_reg->umax_value = umax_ptr + umax_val;
4398 }
f1174f77
EC
4399 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4400 dst_reg->off = ptr_reg->off;
0962590e 4401 dst_reg->raw = ptr_reg->raw;
de8f3a83 4402 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4403 dst_reg->id = ++env->id_gen;
4404 /* something was added to pkt_ptr, set range to zero */
0962590e 4405 dst_reg->raw = 0;
f1174f77
EC
4406 }
4407 break;
4408 case BPF_SUB:
979d63d5
DB
4409 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4410 if (ret < 0) {
4411 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4412 return ret;
4413 }
f1174f77
EC
4414 if (dst_reg == off_reg) {
4415 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4416 verbose(env, "R%d tried to subtract pointer from scalar\n",
4417 dst);
f1174f77
EC
4418 return -EACCES;
4419 }
4420 /* We don't allow subtraction from FP, because (according to
4421 * test_verifier.c test "invalid fp arithmetic", JITs might not
4422 * be able to deal with it.
969bf05e 4423 */
f1174f77 4424 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4425 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4426 dst);
f1174f77
EC
4427 return -EACCES;
4428 }
b03c9f9f
EC
4429 if (known && (ptr_reg->off - smin_val ==
4430 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4431 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4432 dst_reg->smin_value = smin_ptr;
4433 dst_reg->smax_value = smax_ptr;
4434 dst_reg->umin_value = umin_ptr;
4435 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4436 dst_reg->var_off = ptr_reg->var_off;
4437 dst_reg->id = ptr_reg->id;
b03c9f9f 4438 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4439 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4440 break;
4441 }
f1174f77
EC
4442 /* A new variable offset is created. If the subtrahend is known
4443 * nonnegative, then any reg->range we had before is still good.
969bf05e 4444 */
b03c9f9f
EC
4445 if (signed_sub_overflows(smin_ptr, smax_val) ||
4446 signed_sub_overflows(smax_ptr, smin_val)) {
4447 /* Overflow possible, we know nothing */
4448 dst_reg->smin_value = S64_MIN;
4449 dst_reg->smax_value = S64_MAX;
4450 } else {
4451 dst_reg->smin_value = smin_ptr - smax_val;
4452 dst_reg->smax_value = smax_ptr - smin_val;
4453 }
4454 if (umin_ptr < umax_val) {
4455 /* Overflow possible, we know nothing */
4456 dst_reg->umin_value = 0;
4457 dst_reg->umax_value = U64_MAX;
4458 } else {
4459 /* Cannot overflow (as long as bounds are consistent) */
4460 dst_reg->umin_value = umin_ptr - umax_val;
4461 dst_reg->umax_value = umax_ptr - umin_val;
4462 }
f1174f77
EC
4463 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4464 dst_reg->off = ptr_reg->off;
0962590e 4465 dst_reg->raw = ptr_reg->raw;
de8f3a83 4466 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4467 dst_reg->id = ++env->id_gen;
4468 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4469 if (smin_val < 0)
0962590e 4470 dst_reg->raw = 0;
43188702 4471 }
f1174f77
EC
4472 break;
4473 case BPF_AND:
4474 case BPF_OR:
4475 case BPF_XOR:
82abbf8d
AS
4476 /* bitwise ops on pointers are troublesome, prohibit. */
4477 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4478 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4479 return -EACCES;
4480 default:
4481 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4482 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4483 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4484 return -EACCES;
43188702
JF
4485 }
4486
bb7f0f98
AS
4487 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4488 return -EINVAL;
4489
b03c9f9f
EC
4490 __update_reg_bounds(dst_reg);
4491 __reg_deduce_bounds(dst_reg);
4492 __reg_bound_offset(dst_reg);
0d6303db
DB
4493
4494 /* For unprivileged we require that resulting offset must be in bounds
4495 * in order to be able to sanitize access later on.
4496 */
e4298d25
DB
4497 if (!env->allow_ptr_leaks) {
4498 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4499 check_map_access(env, dst, dst_reg->off, 1, false)) {
4500 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4501 "prohibited for !root\n", dst);
4502 return -EACCES;
4503 } else if (dst_reg->type == PTR_TO_STACK &&
4504 check_stack_access(env, dst_reg, dst_reg->off +
4505 dst_reg->var_off.value, 1)) {
4506 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4507 "prohibited for !root\n", dst);
4508 return -EACCES;
4509 }
0d6303db
DB
4510 }
4511
43188702
JF
4512 return 0;
4513}
4514
468f6eaf
JH
4515/* WARNING: This function does calculations on 64-bit values, but the actual
4516 * execution may occur on 32-bit values. Therefore, things like bitshifts
4517 * need extra checks in the 32-bit case.
4518 */
f1174f77
EC
4519static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4520 struct bpf_insn *insn,
4521 struct bpf_reg_state *dst_reg,
4522 struct bpf_reg_state src_reg)
969bf05e 4523{
638f5b90 4524 struct bpf_reg_state *regs = cur_regs(env);
48461135 4525 u8 opcode = BPF_OP(insn->code);
f1174f77 4526 bool src_known, dst_known;
b03c9f9f
EC
4527 s64 smin_val, smax_val;
4528 u64 umin_val, umax_val;
468f6eaf 4529 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4530 u32 dst = insn->dst_reg;
4531 int ret;
48461135 4532
b799207e
JH
4533 if (insn_bitness == 32) {
4534 /* Relevant for 32-bit RSH: Information can propagate towards
4535 * LSB, so it isn't sufficient to only truncate the output to
4536 * 32 bits.
4537 */
4538 coerce_reg_to_size(dst_reg, 4);
4539 coerce_reg_to_size(&src_reg, 4);
4540 }
4541
b03c9f9f
EC
4542 smin_val = src_reg.smin_value;
4543 smax_val = src_reg.smax_value;
4544 umin_val = src_reg.umin_value;
4545 umax_val = src_reg.umax_value;
f1174f77
EC
4546 src_known = tnum_is_const(src_reg.var_off);
4547 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4548
6f16101e
DB
4549 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4550 smin_val > smax_val || umin_val > umax_val) {
4551 /* Taint dst register if offset had invalid bounds derived from
4552 * e.g. dead branches.
4553 */
4554 __mark_reg_unknown(dst_reg);
4555 return 0;
4556 }
4557
bb7f0f98
AS
4558 if (!src_known &&
4559 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4560 __mark_reg_unknown(dst_reg);
4561 return 0;
4562 }
4563
48461135
JB
4564 switch (opcode) {
4565 case BPF_ADD:
d3bd7413
DB
4566 ret = sanitize_val_alu(env, insn);
4567 if (ret < 0) {
4568 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4569 return ret;
4570 }
b03c9f9f
EC
4571 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4572 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4573 dst_reg->smin_value = S64_MIN;
4574 dst_reg->smax_value = S64_MAX;
4575 } else {
4576 dst_reg->smin_value += smin_val;
4577 dst_reg->smax_value += smax_val;
4578 }
4579 if (dst_reg->umin_value + umin_val < umin_val ||
4580 dst_reg->umax_value + umax_val < umax_val) {
4581 dst_reg->umin_value = 0;
4582 dst_reg->umax_value = U64_MAX;
4583 } else {
4584 dst_reg->umin_value += umin_val;
4585 dst_reg->umax_value += umax_val;
4586 }
f1174f77 4587 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4588 break;
4589 case BPF_SUB:
d3bd7413
DB
4590 ret = sanitize_val_alu(env, insn);
4591 if (ret < 0) {
4592 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4593 return ret;
4594 }
b03c9f9f
EC
4595 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4596 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4597 /* Overflow possible, we know nothing */
4598 dst_reg->smin_value = S64_MIN;
4599 dst_reg->smax_value = S64_MAX;
4600 } else {
4601 dst_reg->smin_value -= smax_val;
4602 dst_reg->smax_value -= smin_val;
4603 }
4604 if (dst_reg->umin_value < umax_val) {
4605 /* Overflow possible, we know nothing */
4606 dst_reg->umin_value = 0;
4607 dst_reg->umax_value = U64_MAX;
4608 } else {
4609 /* Cannot overflow (as long as bounds are consistent) */
4610 dst_reg->umin_value -= umax_val;
4611 dst_reg->umax_value -= umin_val;
4612 }
f1174f77 4613 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4614 break;
4615 case BPF_MUL:
b03c9f9f
EC
4616 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4617 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4618 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4619 __mark_reg_unbounded(dst_reg);
4620 __update_reg_bounds(dst_reg);
f1174f77
EC
4621 break;
4622 }
b03c9f9f
EC
4623 /* Both values are positive, so we can work with unsigned and
4624 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4625 */
b03c9f9f
EC
4626 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4627 /* Potential overflow, we know nothing */
4628 __mark_reg_unbounded(dst_reg);
4629 /* (except what we can learn from the var_off) */
4630 __update_reg_bounds(dst_reg);
4631 break;
4632 }
4633 dst_reg->umin_value *= umin_val;
4634 dst_reg->umax_value *= umax_val;
4635 if (dst_reg->umax_value > S64_MAX) {
4636 /* Overflow possible, we know nothing */
4637 dst_reg->smin_value = S64_MIN;
4638 dst_reg->smax_value = S64_MAX;
4639 } else {
4640 dst_reg->smin_value = dst_reg->umin_value;
4641 dst_reg->smax_value = dst_reg->umax_value;
4642 }
48461135
JB
4643 break;
4644 case BPF_AND:
f1174f77 4645 if (src_known && dst_known) {
b03c9f9f
EC
4646 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4647 src_reg.var_off.value);
f1174f77
EC
4648 break;
4649 }
b03c9f9f
EC
4650 /* We get our minimum from the var_off, since that's inherently
4651 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4652 */
f1174f77 4653 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4654 dst_reg->umin_value = dst_reg->var_off.value;
4655 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4656 if (dst_reg->smin_value < 0 || smin_val < 0) {
4657 /* Lose signed bounds when ANDing negative numbers,
4658 * ain't nobody got time for that.
4659 */
4660 dst_reg->smin_value = S64_MIN;
4661 dst_reg->smax_value = S64_MAX;
4662 } else {
4663 /* ANDing two positives gives a positive, so safe to
4664 * cast result into s64.
4665 */
4666 dst_reg->smin_value = dst_reg->umin_value;
4667 dst_reg->smax_value = dst_reg->umax_value;
4668 }
4669 /* We may learn something more from the var_off */
4670 __update_reg_bounds(dst_reg);
f1174f77
EC
4671 break;
4672 case BPF_OR:
4673 if (src_known && dst_known) {
b03c9f9f
EC
4674 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4675 src_reg.var_off.value);
f1174f77
EC
4676 break;
4677 }
b03c9f9f
EC
4678 /* We get our maximum from the var_off, and our minimum is the
4679 * maximum of the operands' minima
f1174f77
EC
4680 */
4681 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4682 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4683 dst_reg->umax_value = dst_reg->var_off.value |
4684 dst_reg->var_off.mask;
4685 if (dst_reg->smin_value < 0 || smin_val < 0) {
4686 /* Lose signed bounds when ORing negative numbers,
4687 * ain't nobody got time for that.
4688 */
4689 dst_reg->smin_value = S64_MIN;
4690 dst_reg->smax_value = S64_MAX;
f1174f77 4691 } else {
b03c9f9f
EC
4692 /* ORing two positives gives a positive, so safe to
4693 * cast result into s64.
4694 */
4695 dst_reg->smin_value = dst_reg->umin_value;
4696 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4697 }
b03c9f9f
EC
4698 /* We may learn something more from the var_off */
4699 __update_reg_bounds(dst_reg);
48461135
JB
4700 break;
4701 case BPF_LSH:
468f6eaf
JH
4702 if (umax_val >= insn_bitness) {
4703 /* Shifts greater than 31 or 63 are undefined.
4704 * This includes shifts by a negative number.
b03c9f9f 4705 */
61bd5218 4706 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4707 break;
4708 }
b03c9f9f
EC
4709 /* We lose all sign bit information (except what we can pick
4710 * up from var_off)
48461135 4711 */
b03c9f9f
EC
4712 dst_reg->smin_value = S64_MIN;
4713 dst_reg->smax_value = S64_MAX;
4714 /* If we might shift our top bit out, then we know nothing */
4715 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4716 dst_reg->umin_value = 0;
4717 dst_reg->umax_value = U64_MAX;
d1174416 4718 } else {
b03c9f9f
EC
4719 dst_reg->umin_value <<= umin_val;
4720 dst_reg->umax_value <<= umax_val;
d1174416 4721 }
afbe1a5b 4722 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4723 /* We may learn something more from the var_off */
4724 __update_reg_bounds(dst_reg);
48461135
JB
4725 break;
4726 case BPF_RSH:
468f6eaf
JH
4727 if (umax_val >= insn_bitness) {
4728 /* Shifts greater than 31 or 63 are undefined.
4729 * This includes shifts by a negative number.
b03c9f9f 4730 */
61bd5218 4731 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4732 break;
4733 }
4374f256
EC
4734 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4735 * be negative, then either:
4736 * 1) src_reg might be zero, so the sign bit of the result is
4737 * unknown, so we lose our signed bounds
4738 * 2) it's known negative, thus the unsigned bounds capture the
4739 * signed bounds
4740 * 3) the signed bounds cross zero, so they tell us nothing
4741 * about the result
4742 * If the value in dst_reg is known nonnegative, then again the
4743 * unsigned bounts capture the signed bounds.
4744 * Thus, in all cases it suffices to blow away our signed bounds
4745 * and rely on inferring new ones from the unsigned bounds and
4746 * var_off of the result.
4747 */
4748 dst_reg->smin_value = S64_MIN;
4749 dst_reg->smax_value = S64_MAX;
afbe1a5b 4750 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4751 dst_reg->umin_value >>= umax_val;
4752 dst_reg->umax_value >>= umin_val;
4753 /* We may learn something more from the var_off */
4754 __update_reg_bounds(dst_reg);
48461135 4755 break;
9cbe1f5a
YS
4756 case BPF_ARSH:
4757 if (umax_val >= insn_bitness) {
4758 /* Shifts greater than 31 or 63 are undefined.
4759 * This includes shifts by a negative number.
4760 */
4761 mark_reg_unknown(env, regs, insn->dst_reg);
4762 break;
4763 }
4764
4765 /* Upon reaching here, src_known is true and
4766 * umax_val is equal to umin_val.
4767 */
4768 dst_reg->smin_value >>= umin_val;
4769 dst_reg->smax_value >>= umin_val;
4770 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4771
4772 /* blow away the dst_reg umin_value/umax_value and rely on
4773 * dst_reg var_off to refine the result.
4774 */
4775 dst_reg->umin_value = 0;
4776 dst_reg->umax_value = U64_MAX;
4777 __update_reg_bounds(dst_reg);
4778 break;
48461135 4779 default:
61bd5218 4780 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
4781 break;
4782 }
4783
468f6eaf
JH
4784 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4785 /* 32-bit ALU ops are (32,32)->32 */
4786 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
4787 }
4788
b03c9f9f
EC
4789 __reg_deduce_bounds(dst_reg);
4790 __reg_bound_offset(dst_reg);
f1174f77
EC
4791 return 0;
4792}
4793
4794/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4795 * and var_off.
4796 */
4797static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4798 struct bpf_insn *insn)
4799{
f4d7e40a
AS
4800 struct bpf_verifier_state *vstate = env->cur_state;
4801 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4802 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4803 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4804 u8 opcode = BPF_OP(insn->code);
b5dc0163 4805 int err;
f1174f77
EC
4806
4807 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4808 src_reg = NULL;
4809 if (dst_reg->type != SCALAR_VALUE)
4810 ptr_reg = dst_reg;
4811 if (BPF_SRC(insn->code) == BPF_X) {
4812 src_reg = &regs[insn->src_reg];
f1174f77
EC
4813 if (src_reg->type != SCALAR_VALUE) {
4814 if (dst_reg->type != SCALAR_VALUE) {
4815 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4816 * an arbitrary scalar. Disallow all math except
4817 * pointer subtraction
f1174f77 4818 */
dd066823 4819 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4820 mark_reg_unknown(env, regs, insn->dst_reg);
4821 return 0;
f1174f77 4822 }
82abbf8d
AS
4823 verbose(env, "R%d pointer %s pointer prohibited\n",
4824 insn->dst_reg,
4825 bpf_alu_string[opcode >> 4]);
4826 return -EACCES;
f1174f77
EC
4827 } else {
4828 /* scalar += pointer
4829 * This is legal, but we have to reverse our
4830 * src/dest handling in computing the range
4831 */
b5dc0163
AS
4832 err = mark_chain_precision(env, insn->dst_reg);
4833 if (err)
4834 return err;
82abbf8d
AS
4835 return adjust_ptr_min_max_vals(env, insn,
4836 src_reg, dst_reg);
f1174f77
EC
4837 }
4838 } else if (ptr_reg) {
4839 /* pointer += scalar */
b5dc0163
AS
4840 err = mark_chain_precision(env, insn->src_reg);
4841 if (err)
4842 return err;
82abbf8d
AS
4843 return adjust_ptr_min_max_vals(env, insn,
4844 dst_reg, src_reg);
f1174f77
EC
4845 }
4846 } else {
4847 /* Pretend the src is a reg with a known value, since we only
4848 * need to be able to read from this state.
4849 */
4850 off_reg.type = SCALAR_VALUE;
b03c9f9f 4851 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4852 src_reg = &off_reg;
82abbf8d
AS
4853 if (ptr_reg) /* pointer += K */
4854 return adjust_ptr_min_max_vals(env, insn,
4855 ptr_reg, src_reg);
f1174f77
EC
4856 }
4857
4858 /* Got here implies adding two SCALAR_VALUEs */
4859 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4860 print_verifier_state(env, state);
61bd5218 4861 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4862 return -EINVAL;
4863 }
4864 if (WARN_ON(!src_reg)) {
f4d7e40a 4865 print_verifier_state(env, state);
61bd5218 4866 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4867 return -EINVAL;
4868 }
4869 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4870}
4871
17a52670 4872/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4873static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4874{
638f5b90 4875 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4876 u8 opcode = BPF_OP(insn->code);
4877 int err;
4878
4879 if (opcode == BPF_END || opcode == BPF_NEG) {
4880 if (opcode == BPF_NEG) {
4881 if (BPF_SRC(insn->code) != 0 ||
4882 insn->src_reg != BPF_REG_0 ||
4883 insn->off != 0 || insn->imm != 0) {
61bd5218 4884 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4885 return -EINVAL;
4886 }
4887 } else {
4888 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4889 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4890 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4891 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4892 return -EINVAL;
4893 }
4894 }
4895
4896 /* check src operand */
dc503a8a 4897 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4898 if (err)
4899 return err;
4900
1be7f75d 4901 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 4902 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4903 insn->dst_reg);
4904 return -EACCES;
4905 }
4906
17a52670 4907 /* check dest operand */
dc503a8a 4908 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4909 if (err)
4910 return err;
4911
4912 } else if (opcode == BPF_MOV) {
4913
4914 if (BPF_SRC(insn->code) == BPF_X) {
4915 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4916 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4917 return -EINVAL;
4918 }
4919
4920 /* check src operand */
dc503a8a 4921 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4922 if (err)
4923 return err;
4924 } else {
4925 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4926 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4927 return -EINVAL;
4928 }
4929 }
4930
fbeb1603
AF
4931 /* check dest operand, mark as required later */
4932 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4933 if (err)
4934 return err;
4935
4936 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4937 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4938 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4939
17a52670
AS
4940 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4941 /* case: R1 = R2
4942 * copy register state to dest reg
4943 */
e434b8cd
JW
4944 *dst_reg = *src_reg;
4945 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4946 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 4947 } else {
f1174f77 4948 /* R1 = (u32) R2 */
1be7f75d 4949 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4950 verbose(env,
4951 "R%d partial copy of pointer\n",
1be7f75d
AS
4952 insn->src_reg);
4953 return -EACCES;
e434b8cd
JW
4954 } else if (src_reg->type == SCALAR_VALUE) {
4955 *dst_reg = *src_reg;
4956 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4957 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
4958 } else {
4959 mark_reg_unknown(env, regs,
4960 insn->dst_reg);
1be7f75d 4961 }
e434b8cd 4962 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
4963 }
4964 } else {
4965 /* case: R = imm
4966 * remember the value we stored into this reg
4967 */
fbeb1603
AF
4968 /* clear any state __mark_reg_known doesn't set */
4969 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 4970 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
4971 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4972 __mark_reg_known(regs + insn->dst_reg,
4973 insn->imm);
4974 } else {
4975 __mark_reg_known(regs + insn->dst_reg,
4976 (u32)insn->imm);
4977 }
17a52670
AS
4978 }
4979
4980 } else if (opcode > BPF_END) {
61bd5218 4981 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
4982 return -EINVAL;
4983
4984 } else { /* all other ALU ops: and, sub, xor, add, ... */
4985
17a52670
AS
4986 if (BPF_SRC(insn->code) == BPF_X) {
4987 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4988 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4989 return -EINVAL;
4990 }
4991 /* check src1 operand */
dc503a8a 4992 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4993 if (err)
4994 return err;
4995 } else {
4996 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4997 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4998 return -EINVAL;
4999 }
5000 }
5001
5002 /* check src2 operand */
dc503a8a 5003 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5004 if (err)
5005 return err;
5006
5007 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5008 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5009 verbose(env, "div by zero\n");
17a52670
AS
5010 return -EINVAL;
5011 }
5012
229394e8
RV
5013 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5014 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5015 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5016
5017 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5018 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5019 return -EINVAL;
5020 }
5021 }
5022
1a0dc1ac 5023 /* check dest operand */
dc503a8a 5024 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5025 if (err)
5026 return err;
5027
f1174f77 5028 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5029 }
5030
5031 return 0;
5032}
5033
c6a9efa1
PC
5034static void __find_good_pkt_pointers(struct bpf_func_state *state,
5035 struct bpf_reg_state *dst_reg,
5036 enum bpf_reg_type type, u16 new_range)
5037{
5038 struct bpf_reg_state *reg;
5039 int i;
5040
5041 for (i = 0; i < MAX_BPF_REG; i++) {
5042 reg = &state->regs[i];
5043 if (reg->type == type && reg->id == dst_reg->id)
5044 /* keep the maximum range already checked */
5045 reg->range = max(reg->range, new_range);
5046 }
5047
5048 bpf_for_each_spilled_reg(i, state, reg) {
5049 if (!reg)
5050 continue;
5051 if (reg->type == type && reg->id == dst_reg->id)
5052 reg->range = max(reg->range, new_range);
5053 }
5054}
5055
f4d7e40a 5056static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5057 struct bpf_reg_state *dst_reg,
f8ddadc4 5058 enum bpf_reg_type type,
fb2a311a 5059 bool range_right_open)
969bf05e 5060{
fb2a311a 5061 u16 new_range;
c6a9efa1 5062 int i;
2d2be8ca 5063
fb2a311a
DB
5064 if (dst_reg->off < 0 ||
5065 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5066 /* This doesn't give us any range */
5067 return;
5068
b03c9f9f
EC
5069 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5070 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5071 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5072 * than pkt_end, but that's because it's also less than pkt.
5073 */
5074 return;
5075
fb2a311a
DB
5076 new_range = dst_reg->off;
5077 if (range_right_open)
5078 new_range--;
5079
5080 /* Examples for register markings:
2d2be8ca 5081 *
fb2a311a 5082 * pkt_data in dst register:
2d2be8ca
DB
5083 *
5084 * r2 = r3;
5085 * r2 += 8;
5086 * if (r2 > pkt_end) goto <handle exception>
5087 * <access okay>
5088 *
b4e432f1
DB
5089 * r2 = r3;
5090 * r2 += 8;
5091 * if (r2 < pkt_end) goto <access okay>
5092 * <handle exception>
5093 *
2d2be8ca
DB
5094 * Where:
5095 * r2 == dst_reg, pkt_end == src_reg
5096 * r2=pkt(id=n,off=8,r=0)
5097 * r3=pkt(id=n,off=0,r=0)
5098 *
fb2a311a 5099 * pkt_data in src register:
2d2be8ca
DB
5100 *
5101 * r2 = r3;
5102 * r2 += 8;
5103 * if (pkt_end >= r2) goto <access okay>
5104 * <handle exception>
5105 *
b4e432f1
DB
5106 * r2 = r3;
5107 * r2 += 8;
5108 * if (pkt_end <= r2) goto <handle exception>
5109 * <access okay>
5110 *
2d2be8ca
DB
5111 * Where:
5112 * pkt_end == dst_reg, r2 == src_reg
5113 * r2=pkt(id=n,off=8,r=0)
5114 * r3=pkt(id=n,off=0,r=0)
5115 *
5116 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5117 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5118 * and [r3, r3 + 8-1) respectively is safe to access depending on
5119 * the check.
969bf05e 5120 */
2d2be8ca 5121
f1174f77
EC
5122 /* If our ids match, then we must have the same max_value. And we
5123 * don't care about the other reg's fixed offset, since if it's too big
5124 * the range won't allow anything.
5125 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5126 */
c6a9efa1
PC
5127 for (i = 0; i <= vstate->curframe; i++)
5128 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5129 new_range);
969bf05e
AS
5130}
5131
4f7b3e82
AS
5132/* compute branch direction of the expression "if (reg opcode val) goto target;"
5133 * and return:
5134 * 1 - branch will be taken and "goto target" will be executed
5135 * 0 - branch will not be taken and fall-through to next insn
5136 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5137 */
092ed096
JW
5138static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5139 bool is_jmp32)
4f7b3e82 5140{
092ed096 5141 struct bpf_reg_state reg_lo;
a72dafaf
JW
5142 s64 sval;
5143
4f7b3e82
AS
5144 if (__is_pointer_value(false, reg))
5145 return -1;
5146
092ed096
JW
5147 if (is_jmp32) {
5148 reg_lo = *reg;
5149 reg = &reg_lo;
5150 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5151 * could truncate high bits and update umin/umax according to
5152 * information of low bits.
5153 */
5154 coerce_reg_to_size(reg, 4);
5155 /* smin/smax need special handling. For example, after coerce,
5156 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5157 * used as operand to JMP32. It is a negative number from s32's
5158 * point of view, while it is a positive number when seen as
5159 * s64. The smin/smax are kept as s64, therefore, when used with
5160 * JMP32, they need to be transformed into s32, then sign
5161 * extended back to s64.
5162 *
5163 * Also, smin/smax were copied from umin/umax. If umin/umax has
5164 * different sign bit, then min/max relationship doesn't
5165 * maintain after casting into s32, for this case, set smin/smax
5166 * to safest range.
5167 */
5168 if ((reg->umax_value ^ reg->umin_value) &
5169 (1ULL << 31)) {
5170 reg->smin_value = S32_MIN;
5171 reg->smax_value = S32_MAX;
5172 }
5173 reg->smin_value = (s64)(s32)reg->smin_value;
5174 reg->smax_value = (s64)(s32)reg->smax_value;
5175
5176 val = (u32)val;
5177 sval = (s64)(s32)val;
5178 } else {
5179 sval = (s64)val;
5180 }
a72dafaf 5181
4f7b3e82
AS
5182 switch (opcode) {
5183 case BPF_JEQ:
5184 if (tnum_is_const(reg->var_off))
5185 return !!tnum_equals_const(reg->var_off, val);
5186 break;
5187 case BPF_JNE:
5188 if (tnum_is_const(reg->var_off))
5189 return !tnum_equals_const(reg->var_off, val);
5190 break;
960ea056
JK
5191 case BPF_JSET:
5192 if ((~reg->var_off.mask & reg->var_off.value) & val)
5193 return 1;
5194 if (!((reg->var_off.mask | reg->var_off.value) & val))
5195 return 0;
5196 break;
4f7b3e82
AS
5197 case BPF_JGT:
5198 if (reg->umin_value > val)
5199 return 1;
5200 else if (reg->umax_value <= val)
5201 return 0;
5202 break;
5203 case BPF_JSGT:
a72dafaf 5204 if (reg->smin_value > sval)
4f7b3e82 5205 return 1;
a72dafaf 5206 else if (reg->smax_value < sval)
4f7b3e82
AS
5207 return 0;
5208 break;
5209 case BPF_JLT:
5210 if (reg->umax_value < val)
5211 return 1;
5212 else if (reg->umin_value >= val)
5213 return 0;
5214 break;
5215 case BPF_JSLT:
a72dafaf 5216 if (reg->smax_value < sval)
4f7b3e82 5217 return 1;
a72dafaf 5218 else if (reg->smin_value >= sval)
4f7b3e82
AS
5219 return 0;
5220 break;
5221 case BPF_JGE:
5222 if (reg->umin_value >= val)
5223 return 1;
5224 else if (reg->umax_value < val)
5225 return 0;
5226 break;
5227 case BPF_JSGE:
a72dafaf 5228 if (reg->smin_value >= sval)
4f7b3e82 5229 return 1;
a72dafaf 5230 else if (reg->smax_value < sval)
4f7b3e82
AS
5231 return 0;
5232 break;
5233 case BPF_JLE:
5234 if (reg->umax_value <= val)
5235 return 1;
5236 else if (reg->umin_value > val)
5237 return 0;
5238 break;
5239 case BPF_JSLE:
a72dafaf 5240 if (reg->smax_value <= sval)
4f7b3e82 5241 return 1;
a72dafaf 5242 else if (reg->smin_value > sval)
4f7b3e82
AS
5243 return 0;
5244 break;
5245 }
5246
5247 return -1;
5248}
5249
092ed096
JW
5250/* Generate min value of the high 32-bit from TNUM info. */
5251static u64 gen_hi_min(struct tnum var)
5252{
5253 return var.value & ~0xffffffffULL;
5254}
5255
5256/* Generate max value of the high 32-bit from TNUM info. */
5257static u64 gen_hi_max(struct tnum var)
5258{
5259 return (var.value | var.mask) & ~0xffffffffULL;
5260}
5261
5262/* Return true if VAL is compared with a s64 sign extended from s32, and they
5263 * are with the same signedness.
5264 */
5265static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5266{
5267 return ((s32)sval >= 0 &&
5268 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5269 ((s32)sval < 0 &&
5270 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5271}
5272
48461135
JB
5273/* Adjusts the register min/max values in the case that the dst_reg is the
5274 * variable register that we are working on, and src_reg is a constant or we're
5275 * simply doing a BPF_K check.
f1174f77 5276 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5277 */
5278static void reg_set_min_max(struct bpf_reg_state *true_reg,
5279 struct bpf_reg_state *false_reg, u64 val,
092ed096 5280 u8 opcode, bool is_jmp32)
48461135 5281{
a72dafaf
JW
5282 s64 sval;
5283
f1174f77
EC
5284 /* If the dst_reg is a pointer, we can't learn anything about its
5285 * variable offset from the compare (unless src_reg were a pointer into
5286 * the same object, but we don't bother with that.
5287 * Since false_reg and true_reg have the same type by construction, we
5288 * only need to check one of them for pointerness.
5289 */
5290 if (__is_pointer_value(false, false_reg))
5291 return;
4cabc5b1 5292
092ed096
JW
5293 val = is_jmp32 ? (u32)val : val;
5294 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5295
48461135
JB
5296 switch (opcode) {
5297 case BPF_JEQ:
48461135 5298 case BPF_JNE:
a72dafaf
JW
5299 {
5300 struct bpf_reg_state *reg =
5301 opcode == BPF_JEQ ? true_reg : false_reg;
5302
5303 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5304 * if it is true we know the value for sure. Likewise for
5305 * BPF_JNE.
48461135 5306 */
092ed096
JW
5307 if (is_jmp32) {
5308 u64 old_v = reg->var_off.value;
5309 u64 hi_mask = ~0xffffffffULL;
5310
5311 reg->var_off.value = (old_v & hi_mask) | val;
5312 reg->var_off.mask &= hi_mask;
5313 } else {
5314 __mark_reg_known(reg, val);
5315 }
48461135 5316 break;
a72dafaf 5317 }
960ea056
JK
5318 case BPF_JSET:
5319 false_reg->var_off = tnum_and(false_reg->var_off,
5320 tnum_const(~val));
5321 if (is_power_of_2(val))
5322 true_reg->var_off = tnum_or(true_reg->var_off,
5323 tnum_const(val));
5324 break;
48461135 5325 case BPF_JGE:
a72dafaf
JW
5326 case BPF_JGT:
5327 {
5328 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5329 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5330
092ed096
JW
5331 if (is_jmp32) {
5332 false_umax += gen_hi_max(false_reg->var_off);
5333 true_umin += gen_hi_min(true_reg->var_off);
5334 }
a72dafaf
JW
5335 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5336 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5337 break;
a72dafaf 5338 }
48461135 5339 case BPF_JSGE:
a72dafaf
JW
5340 case BPF_JSGT:
5341 {
5342 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5343 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5344
092ed096
JW
5345 /* If the full s64 was not sign-extended from s32 then don't
5346 * deduct further info.
5347 */
5348 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5349 break;
a72dafaf
JW
5350 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5351 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5352 break;
a72dafaf 5353 }
b4e432f1 5354 case BPF_JLE:
a72dafaf
JW
5355 case BPF_JLT:
5356 {
5357 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5358 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5359
092ed096
JW
5360 if (is_jmp32) {
5361 false_umin += gen_hi_min(false_reg->var_off);
5362 true_umax += gen_hi_max(true_reg->var_off);
5363 }
a72dafaf
JW
5364 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5365 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5366 break;
a72dafaf 5367 }
b4e432f1 5368 case BPF_JSLE:
a72dafaf
JW
5369 case BPF_JSLT:
5370 {
5371 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5372 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5373
092ed096
JW
5374 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5375 break;
a72dafaf
JW
5376 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5377 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5378 break;
a72dafaf 5379 }
48461135
JB
5380 default:
5381 break;
5382 }
5383
b03c9f9f
EC
5384 __reg_deduce_bounds(false_reg);
5385 __reg_deduce_bounds(true_reg);
5386 /* We might have learned some bits from the bounds. */
5387 __reg_bound_offset(false_reg);
5388 __reg_bound_offset(true_reg);
5389 /* Intersecting with the old var_off might have improved our bounds
5390 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5391 * then new var_off is (0; 0x7f...fc) which improves our umax.
5392 */
5393 __update_reg_bounds(false_reg);
5394 __update_reg_bounds(true_reg);
48461135
JB
5395}
5396
f1174f77
EC
5397/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5398 * the variable reg.
48461135
JB
5399 */
5400static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5401 struct bpf_reg_state *false_reg, u64 val,
092ed096 5402 u8 opcode, bool is_jmp32)
48461135 5403{
a72dafaf
JW
5404 s64 sval;
5405
f1174f77
EC
5406 if (__is_pointer_value(false, false_reg))
5407 return;
4cabc5b1 5408
092ed096
JW
5409 val = is_jmp32 ? (u32)val : val;
5410 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5411
48461135
JB
5412 switch (opcode) {
5413 case BPF_JEQ:
48461135 5414 case BPF_JNE:
a72dafaf
JW
5415 {
5416 struct bpf_reg_state *reg =
5417 opcode == BPF_JEQ ? true_reg : false_reg;
5418
092ed096
JW
5419 if (is_jmp32) {
5420 u64 old_v = reg->var_off.value;
5421 u64 hi_mask = ~0xffffffffULL;
5422
5423 reg->var_off.value = (old_v & hi_mask) | val;
5424 reg->var_off.mask &= hi_mask;
5425 } else {
5426 __mark_reg_known(reg, val);
5427 }
48461135 5428 break;
a72dafaf 5429 }
960ea056
JK
5430 case BPF_JSET:
5431 false_reg->var_off = tnum_and(false_reg->var_off,
5432 tnum_const(~val));
5433 if (is_power_of_2(val))
5434 true_reg->var_off = tnum_or(true_reg->var_off,
5435 tnum_const(val));
5436 break;
48461135 5437 case BPF_JGE:
a72dafaf
JW
5438 case BPF_JGT:
5439 {
5440 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5441 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5442
092ed096
JW
5443 if (is_jmp32) {
5444 false_umin += gen_hi_min(false_reg->var_off);
5445 true_umax += gen_hi_max(true_reg->var_off);
5446 }
a72dafaf
JW
5447 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5448 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5449 break;
a72dafaf 5450 }
48461135 5451 case BPF_JSGE:
a72dafaf
JW
5452 case BPF_JSGT:
5453 {
5454 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5455 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5456
092ed096
JW
5457 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5458 break;
a72dafaf
JW
5459 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5460 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5461 break;
a72dafaf 5462 }
b4e432f1 5463 case BPF_JLE:
a72dafaf
JW
5464 case BPF_JLT:
5465 {
5466 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5467 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5468
092ed096
JW
5469 if (is_jmp32) {
5470 false_umax += gen_hi_max(false_reg->var_off);
5471 true_umin += gen_hi_min(true_reg->var_off);
5472 }
a72dafaf
JW
5473 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5474 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5475 break;
a72dafaf 5476 }
b4e432f1 5477 case BPF_JSLE:
a72dafaf
JW
5478 case BPF_JSLT:
5479 {
5480 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5481 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5482
092ed096
JW
5483 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5484 break;
a72dafaf
JW
5485 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5486 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5487 break;
a72dafaf 5488 }
48461135
JB
5489 default:
5490 break;
5491 }
5492
b03c9f9f
EC
5493 __reg_deduce_bounds(false_reg);
5494 __reg_deduce_bounds(true_reg);
5495 /* We might have learned some bits from the bounds. */
5496 __reg_bound_offset(false_reg);
5497 __reg_bound_offset(true_reg);
5498 /* Intersecting with the old var_off might have improved our bounds
5499 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5500 * then new var_off is (0; 0x7f...fc) which improves our umax.
5501 */
5502 __update_reg_bounds(false_reg);
5503 __update_reg_bounds(true_reg);
f1174f77
EC
5504}
5505
5506/* Regs are known to be equal, so intersect their min/max/var_off */
5507static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5508 struct bpf_reg_state *dst_reg)
5509{
b03c9f9f
EC
5510 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5511 dst_reg->umin_value);
5512 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5513 dst_reg->umax_value);
5514 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5515 dst_reg->smin_value);
5516 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5517 dst_reg->smax_value);
f1174f77
EC
5518 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5519 dst_reg->var_off);
b03c9f9f
EC
5520 /* We might have learned new bounds from the var_off. */
5521 __update_reg_bounds(src_reg);
5522 __update_reg_bounds(dst_reg);
5523 /* We might have learned something about the sign bit. */
5524 __reg_deduce_bounds(src_reg);
5525 __reg_deduce_bounds(dst_reg);
5526 /* We might have learned some bits from the bounds. */
5527 __reg_bound_offset(src_reg);
5528 __reg_bound_offset(dst_reg);
5529 /* Intersecting with the old var_off might have improved our bounds
5530 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5531 * then new var_off is (0; 0x7f...fc) which improves our umax.
5532 */
5533 __update_reg_bounds(src_reg);
5534 __update_reg_bounds(dst_reg);
f1174f77
EC
5535}
5536
5537static void reg_combine_min_max(struct bpf_reg_state *true_src,
5538 struct bpf_reg_state *true_dst,
5539 struct bpf_reg_state *false_src,
5540 struct bpf_reg_state *false_dst,
5541 u8 opcode)
5542{
5543 switch (opcode) {
5544 case BPF_JEQ:
5545 __reg_combine_min_max(true_src, true_dst);
5546 break;
5547 case BPF_JNE:
5548 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5549 break;
4cabc5b1 5550 }
48461135
JB
5551}
5552
fd978bf7
JS
5553static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5554 struct bpf_reg_state *reg, u32 id,
840b9615 5555 bool is_null)
57a09bf0 5556{
840b9615 5557 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5558 /* Old offset (both fixed and variable parts) should
5559 * have been known-zero, because we don't allow pointer
5560 * arithmetic on pointers that might be NULL.
5561 */
b03c9f9f
EC
5562 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5563 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5564 reg->off)) {
b03c9f9f
EC
5565 __mark_reg_known_zero(reg);
5566 reg->off = 0;
f1174f77
EC
5567 }
5568 if (is_null) {
5569 reg->type = SCALAR_VALUE;
840b9615
JS
5570 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5571 if (reg->map_ptr->inner_map_meta) {
5572 reg->type = CONST_PTR_TO_MAP;
5573 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5574 } else if (reg->map_ptr->map_type ==
5575 BPF_MAP_TYPE_XSKMAP) {
5576 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5577 } else {
5578 reg->type = PTR_TO_MAP_VALUE;
5579 }
c64b7983
JS
5580 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5581 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5582 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5583 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5584 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5585 reg->type = PTR_TO_TCP_SOCK;
56f668df 5586 }
1b986589
MKL
5587 if (is_null) {
5588 /* We don't need id and ref_obj_id from this point
5589 * onwards anymore, thus we should better reset it,
5590 * so that state pruning has chances to take effect.
5591 */
5592 reg->id = 0;
5593 reg->ref_obj_id = 0;
5594 } else if (!reg_may_point_to_spin_lock(reg)) {
5595 /* For not-NULL ptr, reg->ref_obj_id will be reset
5596 * in release_reg_references().
5597 *
5598 * reg->id is still used by spin_lock ptr. Other
5599 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5600 */
5601 reg->id = 0;
56f668df 5602 }
57a09bf0
TG
5603 }
5604}
5605
c6a9efa1
PC
5606static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5607 bool is_null)
5608{
5609 struct bpf_reg_state *reg;
5610 int i;
5611
5612 for (i = 0; i < MAX_BPF_REG; i++)
5613 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5614
5615 bpf_for_each_spilled_reg(i, state, reg) {
5616 if (!reg)
5617 continue;
5618 mark_ptr_or_null_reg(state, reg, id, is_null);
5619 }
5620}
5621
57a09bf0
TG
5622/* The logic is similar to find_good_pkt_pointers(), both could eventually
5623 * be folded together at some point.
5624 */
840b9615
JS
5625static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5626 bool is_null)
57a09bf0 5627{
f4d7e40a 5628 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5629 struct bpf_reg_state *regs = state->regs;
1b986589 5630 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5631 u32 id = regs[regno].id;
c6a9efa1 5632 int i;
57a09bf0 5633
1b986589
MKL
5634 if (ref_obj_id && ref_obj_id == id && is_null)
5635 /* regs[regno] is in the " == NULL" branch.
5636 * No one could have freed the reference state before
5637 * doing the NULL check.
5638 */
5639 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5640
c6a9efa1
PC
5641 for (i = 0; i <= vstate->curframe; i++)
5642 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5643}
5644
5beca081
DB
5645static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5646 struct bpf_reg_state *dst_reg,
5647 struct bpf_reg_state *src_reg,
5648 struct bpf_verifier_state *this_branch,
5649 struct bpf_verifier_state *other_branch)
5650{
5651 if (BPF_SRC(insn->code) != BPF_X)
5652 return false;
5653
092ed096
JW
5654 /* Pointers are always 64-bit. */
5655 if (BPF_CLASS(insn->code) == BPF_JMP32)
5656 return false;
5657
5beca081
DB
5658 switch (BPF_OP(insn->code)) {
5659 case BPF_JGT:
5660 if ((dst_reg->type == PTR_TO_PACKET &&
5661 src_reg->type == PTR_TO_PACKET_END) ||
5662 (dst_reg->type == PTR_TO_PACKET_META &&
5663 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5664 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5665 find_good_pkt_pointers(this_branch, dst_reg,
5666 dst_reg->type, false);
5667 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5668 src_reg->type == PTR_TO_PACKET) ||
5669 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5670 src_reg->type == PTR_TO_PACKET_META)) {
5671 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5672 find_good_pkt_pointers(other_branch, src_reg,
5673 src_reg->type, true);
5674 } else {
5675 return false;
5676 }
5677 break;
5678 case BPF_JLT:
5679 if ((dst_reg->type == PTR_TO_PACKET &&
5680 src_reg->type == PTR_TO_PACKET_END) ||
5681 (dst_reg->type == PTR_TO_PACKET_META &&
5682 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5683 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5684 find_good_pkt_pointers(other_branch, dst_reg,
5685 dst_reg->type, true);
5686 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5687 src_reg->type == PTR_TO_PACKET) ||
5688 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5689 src_reg->type == PTR_TO_PACKET_META)) {
5690 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5691 find_good_pkt_pointers(this_branch, src_reg,
5692 src_reg->type, false);
5693 } else {
5694 return false;
5695 }
5696 break;
5697 case BPF_JGE:
5698 if ((dst_reg->type == PTR_TO_PACKET &&
5699 src_reg->type == PTR_TO_PACKET_END) ||
5700 (dst_reg->type == PTR_TO_PACKET_META &&
5701 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5702 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5703 find_good_pkt_pointers(this_branch, dst_reg,
5704 dst_reg->type, true);
5705 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5706 src_reg->type == PTR_TO_PACKET) ||
5707 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5708 src_reg->type == PTR_TO_PACKET_META)) {
5709 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5710 find_good_pkt_pointers(other_branch, src_reg,
5711 src_reg->type, false);
5712 } else {
5713 return false;
5714 }
5715 break;
5716 case BPF_JLE:
5717 if ((dst_reg->type == PTR_TO_PACKET &&
5718 src_reg->type == PTR_TO_PACKET_END) ||
5719 (dst_reg->type == PTR_TO_PACKET_META &&
5720 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5721 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5722 find_good_pkt_pointers(other_branch, dst_reg,
5723 dst_reg->type, false);
5724 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5725 src_reg->type == PTR_TO_PACKET) ||
5726 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5727 src_reg->type == PTR_TO_PACKET_META)) {
5728 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5729 find_good_pkt_pointers(this_branch, src_reg,
5730 src_reg->type, true);
5731 } else {
5732 return false;
5733 }
5734 break;
5735 default:
5736 return false;
5737 }
5738
5739 return true;
5740}
5741
58e2af8b 5742static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
5743 struct bpf_insn *insn, int *insn_idx)
5744{
f4d7e40a
AS
5745 struct bpf_verifier_state *this_branch = env->cur_state;
5746 struct bpf_verifier_state *other_branch;
5747 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 5748 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 5749 u8 opcode = BPF_OP(insn->code);
092ed096 5750 bool is_jmp32;
fb8d251e 5751 int pred = -1;
17a52670
AS
5752 int err;
5753
092ed096
JW
5754 /* Only conditional jumps are expected to reach here. */
5755 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5756 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
5757 return -EINVAL;
5758 }
5759
5760 if (BPF_SRC(insn->code) == BPF_X) {
5761 if (insn->imm != 0) {
092ed096 5762 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5763 return -EINVAL;
5764 }
5765
5766 /* check src1 operand */
dc503a8a 5767 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5768 if (err)
5769 return err;
1be7f75d
AS
5770
5771 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5772 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
5773 insn->src_reg);
5774 return -EACCES;
5775 }
fb8d251e 5776 src_reg = &regs[insn->src_reg];
17a52670
AS
5777 } else {
5778 if (insn->src_reg != BPF_REG_0) {
092ed096 5779 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5780 return -EINVAL;
5781 }
5782 }
5783
5784 /* check src2 operand */
dc503a8a 5785 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5786 if (err)
5787 return err;
5788
1a0dc1ac 5789 dst_reg = &regs[insn->dst_reg];
092ed096 5790 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 5791
fb8d251e
AS
5792 if (BPF_SRC(insn->code) == BPF_K)
5793 pred = is_branch_taken(dst_reg, insn->imm,
5794 opcode, is_jmp32);
5795 else if (src_reg->type == SCALAR_VALUE &&
5796 tnum_is_const(src_reg->var_off))
5797 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5798 opcode, is_jmp32);
b5dc0163
AS
5799 if (pred >= 0) {
5800 err = mark_chain_precision(env, insn->dst_reg);
5801 if (BPF_SRC(insn->code) == BPF_X && !err)
5802 err = mark_chain_precision(env, insn->src_reg);
5803 if (err)
5804 return err;
5805 }
fb8d251e
AS
5806 if (pred == 1) {
5807 /* only follow the goto, ignore fall-through */
5808 *insn_idx += insn->off;
5809 return 0;
5810 } else if (pred == 0) {
5811 /* only follow fall-through branch, since
5812 * that's where the program will go
5813 */
5814 return 0;
17a52670
AS
5815 }
5816
979d63d5
DB
5817 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5818 false);
17a52670
AS
5819 if (!other_branch)
5820 return -EFAULT;
f4d7e40a 5821 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 5822
48461135
JB
5823 /* detect if we are comparing against a constant value so we can adjust
5824 * our min/max values for our dst register.
f1174f77
EC
5825 * this is only legit if both are scalars (or pointers to the same
5826 * object, I suppose, but we don't support that right now), because
5827 * otherwise the different base pointers mean the offsets aren't
5828 * comparable.
48461135
JB
5829 */
5830 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
5831 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5832 struct bpf_reg_state lo_reg0 = *dst_reg;
5833 struct bpf_reg_state lo_reg1 = *src_reg;
5834 struct bpf_reg_state *src_lo, *dst_lo;
5835
5836 dst_lo = &lo_reg0;
5837 src_lo = &lo_reg1;
5838 coerce_reg_to_size(dst_lo, 4);
5839 coerce_reg_to_size(src_lo, 4);
5840
f1174f77 5841 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5842 src_reg->type == SCALAR_VALUE) {
5843 if (tnum_is_const(src_reg->var_off) ||
5844 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5845 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5846 dst_reg,
5847 is_jmp32
5848 ? src_lo->var_off.value
5849 : src_reg->var_off.value,
5850 opcode, is_jmp32);
5851 else if (tnum_is_const(dst_reg->var_off) ||
5852 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5853 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5854 src_reg,
5855 is_jmp32
5856 ? dst_lo->var_off.value
5857 : dst_reg->var_off.value,
5858 opcode, is_jmp32);
5859 else if (!is_jmp32 &&
5860 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5861 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5862 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5863 &other_branch_regs[insn->dst_reg],
092ed096 5864 src_reg, dst_reg, opcode);
f1174f77
EC
5865 }
5866 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5867 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5868 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5869 }
5870
092ed096
JW
5871 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5872 * NOTE: these optimizations below are related with pointer comparison
5873 * which will never be JMP32.
5874 */
5875 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5876 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5877 reg_type_may_be_null(dst_reg->type)) {
5878 /* Mark all identical registers in each branch as either
57a09bf0
TG
5879 * safe or unknown depending R == 0 or R != 0 conditional.
5880 */
840b9615
JS
5881 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5882 opcode == BPF_JNE);
5883 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5884 opcode == BPF_JEQ);
5beca081
DB
5885 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5886 this_branch, other_branch) &&
5887 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5888 verbose(env, "R%d pointer comparison prohibited\n",
5889 insn->dst_reg);
1be7f75d 5890 return -EACCES;
17a52670 5891 }
06ee7115 5892 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5893 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
5894 return 0;
5895}
5896
17a52670 5897/* verify BPF_LD_IMM64 instruction */
58e2af8b 5898static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5899{
d8eca5bb 5900 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 5901 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 5902 struct bpf_map *map;
17a52670
AS
5903 int err;
5904
5905 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 5906 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
5907 return -EINVAL;
5908 }
5909 if (insn->off != 0) {
61bd5218 5910 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
5911 return -EINVAL;
5912 }
5913
dc503a8a 5914 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5915 if (err)
5916 return err;
5917
6b173873 5918 if (insn->src_reg == 0) {
6b173873
JK
5919 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5920
f1174f77 5921 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 5922 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 5923 return 0;
6b173873 5924 }
17a52670 5925
d8eca5bb
DB
5926 map = env->used_maps[aux->map_index];
5927 mark_reg_known_zero(env, regs, insn->dst_reg);
5928 regs[insn->dst_reg].map_ptr = map;
5929
5930 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5931 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5932 regs[insn->dst_reg].off = aux->map_off;
5933 if (map_value_has_spin_lock(map))
5934 regs[insn->dst_reg].id = ++env->id_gen;
5935 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5936 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5937 } else {
5938 verbose(env, "bpf verifier is misconfigured\n");
5939 return -EINVAL;
5940 }
17a52670 5941
17a52670
AS
5942 return 0;
5943}
5944
96be4325
DB
5945static bool may_access_skb(enum bpf_prog_type type)
5946{
5947 switch (type) {
5948 case BPF_PROG_TYPE_SOCKET_FILTER:
5949 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5950 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5951 return true;
5952 default:
5953 return false;
5954 }
5955}
5956
ddd872bc
AS
5957/* verify safety of LD_ABS|LD_IND instructions:
5958 * - they can only appear in the programs where ctx == skb
5959 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5960 * preserve R6-R9, and store return value into R0
5961 *
5962 * Implicit input:
5963 * ctx == skb == R6 == CTX
5964 *
5965 * Explicit input:
5966 * SRC == any register
5967 * IMM == 32-bit immediate
5968 *
5969 * Output:
5970 * R0 - 8/16/32-bit skb data converted to cpu endianness
5971 */
58e2af8b 5972static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 5973{
638f5b90 5974 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 5975 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
5976 int i, err;
5977
24701ece 5978 if (!may_access_skb(env->prog->type)) {
61bd5218 5979 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
5980 return -EINVAL;
5981 }
5982
e0cea7ce
DB
5983 if (!env->ops->gen_ld_abs) {
5984 verbose(env, "bpf verifier is misconfigured\n");
5985 return -EINVAL;
5986 }
5987
f910cefa 5988 if (env->subprog_cnt > 1) {
f4d7e40a
AS
5989 /* when program has LD_ABS insn JITs and interpreter assume
5990 * that r1 == ctx == skb which is not the case for callees
5991 * that can have arbitrary arguments. It's problematic
5992 * for main prog as well since JITs would need to analyze
5993 * all functions in order to make proper register save/restore
5994 * decisions in the main prog. Hence disallow LD_ABS with calls
5995 */
5996 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5997 return -EINVAL;
5998 }
5999
ddd872bc 6000 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6001 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6002 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6003 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6004 return -EINVAL;
6005 }
6006
6007 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6008 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6009 if (err)
6010 return err;
6011
fd978bf7
JS
6012 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6013 * gen_ld_abs() may terminate the program at runtime, leading to
6014 * reference leak.
6015 */
6016 err = check_reference_leak(env);
6017 if (err) {
6018 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6019 return err;
6020 }
6021
d83525ca
AS
6022 if (env->cur_state->active_spin_lock) {
6023 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6024 return -EINVAL;
6025 }
6026
ddd872bc 6027 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6028 verbose(env,
6029 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6030 return -EINVAL;
6031 }
6032
6033 if (mode == BPF_IND) {
6034 /* check explicit source operand */
dc503a8a 6035 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6036 if (err)
6037 return err;
6038 }
6039
6040 /* reset caller saved regs to unreadable */
dc503a8a 6041 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6042 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6043 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6044 }
ddd872bc
AS
6045
6046 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6047 * the value fetched from the packet.
6048 * Already marked as written above.
ddd872bc 6049 */
61bd5218 6050 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6051 /* ld_abs load up to 32-bit skb data. */
6052 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6053 return 0;
6054}
6055
390ee7e2
AS
6056static int check_return_code(struct bpf_verifier_env *env)
6057{
5cf1e914 6058 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
6059 struct bpf_reg_state *reg;
6060 struct tnum range = tnum_range(0, 1);
6061
6062 switch (env->prog->type) {
983695fa
DB
6063 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6064 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6065 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6066 range = tnum_range(1, 1);
390ee7e2 6067 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6068 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6069 range = tnum_range(0, 3);
6070 enforce_attach_type_range = tnum_range(2, 3);
6071 }
390ee7e2
AS
6072 case BPF_PROG_TYPE_CGROUP_SOCK:
6073 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6074 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6075 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6076 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2
AS
6077 break;
6078 default:
6079 return 0;
6080 }
6081
638f5b90 6082 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6083 if (reg->type != SCALAR_VALUE) {
61bd5218 6084 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6085 reg_type_str[reg->type]);
6086 return -EINVAL;
6087 }
6088
6089 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6090 char tn_buf[48];
6091
61bd5218 6092 verbose(env, "At program exit the register R0 ");
390ee7e2 6093 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6094 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6095 verbose(env, "has value %s", tn_buf);
390ee7e2 6096 } else {
61bd5218 6097 verbose(env, "has unknown scalar value");
390ee7e2 6098 }
5cf1e914 6099 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6100 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6101 return -EINVAL;
6102 }
5cf1e914 6103
6104 if (!tnum_is_unknown(enforce_attach_type_range) &&
6105 tnum_in(enforce_attach_type_range, reg->var_off))
6106 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6107 return 0;
6108}
6109
475fb78f
AS
6110/* non-recursive DFS pseudo code
6111 * 1 procedure DFS-iterative(G,v):
6112 * 2 label v as discovered
6113 * 3 let S be a stack
6114 * 4 S.push(v)
6115 * 5 while S is not empty
6116 * 6 t <- S.pop()
6117 * 7 if t is what we're looking for:
6118 * 8 return t
6119 * 9 for all edges e in G.adjacentEdges(t) do
6120 * 10 if edge e is already labelled
6121 * 11 continue with the next edge
6122 * 12 w <- G.adjacentVertex(t,e)
6123 * 13 if vertex w is not discovered and not explored
6124 * 14 label e as tree-edge
6125 * 15 label w as discovered
6126 * 16 S.push(w)
6127 * 17 continue at 5
6128 * 18 else if vertex w is discovered
6129 * 19 label e as back-edge
6130 * 20 else
6131 * 21 // vertex w is explored
6132 * 22 label e as forward- or cross-edge
6133 * 23 label t as explored
6134 * 24 S.pop()
6135 *
6136 * convention:
6137 * 0x10 - discovered
6138 * 0x11 - discovered and fall-through edge labelled
6139 * 0x12 - discovered and fall-through and branch edges labelled
6140 * 0x20 - explored
6141 */
6142
6143enum {
6144 DISCOVERED = 0x10,
6145 EXPLORED = 0x20,
6146 FALLTHROUGH = 1,
6147 BRANCH = 2,
6148};
6149
dc2a4ebc
AS
6150static u32 state_htab_size(struct bpf_verifier_env *env)
6151{
6152 return env->prog->len;
6153}
6154
5d839021
AS
6155static struct bpf_verifier_state_list **explored_state(
6156 struct bpf_verifier_env *env,
6157 int idx)
6158{
dc2a4ebc
AS
6159 struct bpf_verifier_state *cur = env->cur_state;
6160 struct bpf_func_state *state = cur->frame[cur->curframe];
6161
6162 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6163}
6164
6165static void init_explored_state(struct bpf_verifier_env *env, int idx)
6166{
a8f500af 6167 env->insn_aux_data[idx].prune_point = true;
5d839021 6168}
f1bca824 6169
475fb78f
AS
6170/* t, w, e - match pseudo-code above:
6171 * t - index of current instruction
6172 * w - next instruction
6173 * e - edge
6174 */
2589726d
AS
6175static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6176 bool loop_ok)
475fb78f 6177{
7df737e9
AS
6178 int *insn_stack = env->cfg.insn_stack;
6179 int *insn_state = env->cfg.insn_state;
6180
475fb78f
AS
6181 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6182 return 0;
6183
6184 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6185 return 0;
6186
6187 if (w < 0 || w >= env->prog->len) {
d9762e84 6188 verbose_linfo(env, t, "%d: ", t);
61bd5218 6189 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6190 return -EINVAL;
6191 }
6192
f1bca824
AS
6193 if (e == BRANCH)
6194 /* mark branch target for state pruning */
5d839021 6195 init_explored_state(env, w);
f1bca824 6196
475fb78f
AS
6197 if (insn_state[w] == 0) {
6198 /* tree-edge */
6199 insn_state[t] = DISCOVERED | e;
6200 insn_state[w] = DISCOVERED;
7df737e9 6201 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6202 return -E2BIG;
7df737e9 6203 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6204 return 1;
6205 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6206 if (loop_ok && env->allow_ptr_leaks)
6207 return 0;
d9762e84
MKL
6208 verbose_linfo(env, t, "%d: ", t);
6209 verbose_linfo(env, w, "%d: ", w);
61bd5218 6210 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6211 return -EINVAL;
6212 } else if (insn_state[w] == EXPLORED) {
6213 /* forward- or cross-edge */
6214 insn_state[t] = DISCOVERED | e;
6215 } else {
61bd5218 6216 verbose(env, "insn state internal bug\n");
475fb78f
AS
6217 return -EFAULT;
6218 }
6219 return 0;
6220}
6221
6222/* non-recursive depth-first-search to detect loops in BPF program
6223 * loop == back-edge in directed graph
6224 */
58e2af8b 6225static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6226{
6227 struct bpf_insn *insns = env->prog->insnsi;
6228 int insn_cnt = env->prog->len;
7df737e9 6229 int *insn_stack, *insn_state;
475fb78f
AS
6230 int ret = 0;
6231 int i, t;
6232
7df737e9 6233 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6234 if (!insn_state)
6235 return -ENOMEM;
6236
7df737e9 6237 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6238 if (!insn_stack) {
71dde681 6239 kvfree(insn_state);
475fb78f
AS
6240 return -ENOMEM;
6241 }
6242
6243 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6244 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6245 env->cfg.cur_stack = 1;
475fb78f
AS
6246
6247peek_stack:
7df737e9 6248 if (env->cfg.cur_stack == 0)
475fb78f 6249 goto check_state;
7df737e9 6250 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6251
092ed096
JW
6252 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6253 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6254 u8 opcode = BPF_OP(insns[t].code);
6255
6256 if (opcode == BPF_EXIT) {
6257 goto mark_explored;
6258 } else if (opcode == BPF_CALL) {
2589726d 6259 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6260 if (ret == 1)
6261 goto peek_stack;
6262 else if (ret < 0)
6263 goto err_free;
07016151 6264 if (t + 1 < insn_cnt)
5d839021 6265 init_explored_state(env, t + 1);
cc8b0b92 6266 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6267 init_explored_state(env, t);
2589726d
AS
6268 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6269 env, false);
cc8b0b92
AS
6270 if (ret == 1)
6271 goto peek_stack;
6272 else if (ret < 0)
6273 goto err_free;
6274 }
475fb78f
AS
6275 } else if (opcode == BPF_JA) {
6276 if (BPF_SRC(insns[t].code) != BPF_K) {
6277 ret = -EINVAL;
6278 goto err_free;
6279 }
6280 /* unconditional jump with single edge */
6281 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6282 FALLTHROUGH, env, true);
475fb78f
AS
6283 if (ret == 1)
6284 goto peek_stack;
6285 else if (ret < 0)
6286 goto err_free;
b5dc0163
AS
6287 /* unconditional jmp is not a good pruning point,
6288 * but it's marked, since backtracking needs
6289 * to record jmp history in is_state_visited().
6290 */
6291 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6292 /* tell verifier to check for equivalent states
6293 * after every call and jump
6294 */
c3de6317 6295 if (t + 1 < insn_cnt)
5d839021 6296 init_explored_state(env, t + 1);
475fb78f
AS
6297 } else {
6298 /* conditional jump with two edges */
5d839021 6299 init_explored_state(env, t);
2589726d 6300 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6301 if (ret == 1)
6302 goto peek_stack;
6303 else if (ret < 0)
6304 goto err_free;
6305
2589726d 6306 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6307 if (ret == 1)
6308 goto peek_stack;
6309 else if (ret < 0)
6310 goto err_free;
6311 }
6312 } else {
6313 /* all other non-branch instructions with single
6314 * fall-through edge
6315 */
2589726d 6316 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6317 if (ret == 1)
6318 goto peek_stack;
6319 else if (ret < 0)
6320 goto err_free;
6321 }
6322
6323mark_explored:
6324 insn_state[t] = EXPLORED;
7df737e9 6325 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6326 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6327 ret = -EFAULT;
6328 goto err_free;
6329 }
6330 goto peek_stack;
6331
6332check_state:
6333 for (i = 0; i < insn_cnt; i++) {
6334 if (insn_state[i] != EXPLORED) {
61bd5218 6335 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6336 ret = -EINVAL;
6337 goto err_free;
6338 }
6339 }
6340 ret = 0; /* cfg looks good */
6341
6342err_free:
71dde681
AS
6343 kvfree(insn_state);
6344 kvfree(insn_stack);
7df737e9 6345 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6346 return ret;
6347}
6348
838e9690
YS
6349/* The minimum supported BTF func info size */
6350#define MIN_BPF_FUNCINFO_SIZE 8
6351#define MAX_FUNCINFO_REC_SIZE 252
6352
c454a46b
MKL
6353static int check_btf_func(struct bpf_verifier_env *env,
6354 const union bpf_attr *attr,
6355 union bpf_attr __user *uattr)
838e9690 6356{
d0b2818e 6357 u32 i, nfuncs, urec_size, min_size;
838e9690 6358 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6359 struct bpf_func_info *krecord;
838e9690 6360 const struct btf_type *type;
c454a46b
MKL
6361 struct bpf_prog *prog;
6362 const struct btf *btf;
838e9690 6363 void __user *urecord;
d0b2818e 6364 u32 prev_offset = 0;
838e9690
YS
6365 int ret = 0;
6366
6367 nfuncs = attr->func_info_cnt;
6368 if (!nfuncs)
6369 return 0;
6370
6371 if (nfuncs != env->subprog_cnt) {
6372 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6373 return -EINVAL;
6374 }
6375
6376 urec_size = attr->func_info_rec_size;
6377 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6378 urec_size > MAX_FUNCINFO_REC_SIZE ||
6379 urec_size % sizeof(u32)) {
6380 verbose(env, "invalid func info rec size %u\n", urec_size);
6381 return -EINVAL;
6382 }
6383
c454a46b
MKL
6384 prog = env->prog;
6385 btf = prog->aux->btf;
838e9690
YS
6386
6387 urecord = u64_to_user_ptr(attr->func_info);
6388 min_size = min_t(u32, krec_size, urec_size);
6389
ba64e7d8 6390 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6391 if (!krecord)
6392 return -ENOMEM;
ba64e7d8 6393
838e9690
YS
6394 for (i = 0; i < nfuncs; i++) {
6395 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6396 if (ret) {
6397 if (ret == -E2BIG) {
6398 verbose(env, "nonzero tailing record in func info");
6399 /* set the size kernel expects so loader can zero
6400 * out the rest of the record.
6401 */
6402 if (put_user(min_size, &uattr->func_info_rec_size))
6403 ret = -EFAULT;
6404 }
c454a46b 6405 goto err_free;
838e9690
YS
6406 }
6407
ba64e7d8 6408 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6409 ret = -EFAULT;
c454a46b 6410 goto err_free;
838e9690
YS
6411 }
6412
d30d42e0 6413 /* check insn_off */
838e9690 6414 if (i == 0) {
d30d42e0 6415 if (krecord[i].insn_off) {
838e9690 6416 verbose(env,
d30d42e0
MKL
6417 "nonzero insn_off %u for the first func info record",
6418 krecord[i].insn_off);
838e9690 6419 ret = -EINVAL;
c454a46b 6420 goto err_free;
838e9690 6421 }
d30d42e0 6422 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6423 verbose(env,
6424 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6425 krecord[i].insn_off, prev_offset);
838e9690 6426 ret = -EINVAL;
c454a46b 6427 goto err_free;
838e9690
YS
6428 }
6429
d30d42e0 6430 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6431 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6432 ret = -EINVAL;
c454a46b 6433 goto err_free;
838e9690
YS
6434 }
6435
6436 /* check type_id */
ba64e7d8 6437 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6438 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6439 verbose(env, "invalid type id %d in func info",
ba64e7d8 6440 krecord[i].type_id);
838e9690 6441 ret = -EINVAL;
c454a46b 6442 goto err_free;
838e9690
YS
6443 }
6444
d30d42e0 6445 prev_offset = krecord[i].insn_off;
838e9690
YS
6446 urecord += urec_size;
6447 }
6448
ba64e7d8
YS
6449 prog->aux->func_info = krecord;
6450 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
6451 return 0;
6452
c454a46b 6453err_free:
ba64e7d8 6454 kvfree(krecord);
838e9690
YS
6455 return ret;
6456}
6457
ba64e7d8
YS
6458static void adjust_btf_func(struct bpf_verifier_env *env)
6459{
6460 int i;
6461
6462 if (!env->prog->aux->func_info)
6463 return;
6464
6465 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 6466 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6467}
6468
c454a46b
MKL
6469#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6470 sizeof(((struct bpf_line_info *)(0))->line_col))
6471#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6472
6473static int check_btf_line(struct bpf_verifier_env *env,
6474 const union bpf_attr *attr,
6475 union bpf_attr __user *uattr)
6476{
6477 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6478 struct bpf_subprog_info *sub;
6479 struct bpf_line_info *linfo;
6480 struct bpf_prog *prog;
6481 const struct btf *btf;
6482 void __user *ulinfo;
6483 int err;
6484
6485 nr_linfo = attr->line_info_cnt;
6486 if (!nr_linfo)
6487 return 0;
6488
6489 rec_size = attr->line_info_rec_size;
6490 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6491 rec_size > MAX_LINEINFO_REC_SIZE ||
6492 rec_size & (sizeof(u32) - 1))
6493 return -EINVAL;
6494
6495 /* Need to zero it in case the userspace may
6496 * pass in a smaller bpf_line_info object.
6497 */
6498 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6499 GFP_KERNEL | __GFP_NOWARN);
6500 if (!linfo)
6501 return -ENOMEM;
6502
6503 prog = env->prog;
6504 btf = prog->aux->btf;
6505
6506 s = 0;
6507 sub = env->subprog_info;
6508 ulinfo = u64_to_user_ptr(attr->line_info);
6509 expected_size = sizeof(struct bpf_line_info);
6510 ncopy = min_t(u32, expected_size, rec_size);
6511 for (i = 0; i < nr_linfo; i++) {
6512 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6513 if (err) {
6514 if (err == -E2BIG) {
6515 verbose(env, "nonzero tailing record in line_info");
6516 if (put_user(expected_size,
6517 &uattr->line_info_rec_size))
6518 err = -EFAULT;
6519 }
6520 goto err_free;
6521 }
6522
6523 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6524 err = -EFAULT;
6525 goto err_free;
6526 }
6527
6528 /*
6529 * Check insn_off to ensure
6530 * 1) strictly increasing AND
6531 * 2) bounded by prog->len
6532 *
6533 * The linfo[0].insn_off == 0 check logically falls into
6534 * the later "missing bpf_line_info for func..." case
6535 * because the first linfo[0].insn_off must be the
6536 * first sub also and the first sub must have
6537 * subprog_info[0].start == 0.
6538 */
6539 if ((i && linfo[i].insn_off <= prev_offset) ||
6540 linfo[i].insn_off >= prog->len) {
6541 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6542 i, linfo[i].insn_off, prev_offset,
6543 prog->len);
6544 err = -EINVAL;
6545 goto err_free;
6546 }
6547
fdbaa0be
MKL
6548 if (!prog->insnsi[linfo[i].insn_off].code) {
6549 verbose(env,
6550 "Invalid insn code at line_info[%u].insn_off\n",
6551 i);
6552 err = -EINVAL;
6553 goto err_free;
6554 }
6555
23127b33
MKL
6556 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6557 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6558 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6559 err = -EINVAL;
6560 goto err_free;
6561 }
6562
6563 if (s != env->subprog_cnt) {
6564 if (linfo[i].insn_off == sub[s].start) {
6565 sub[s].linfo_idx = i;
6566 s++;
6567 } else if (sub[s].start < linfo[i].insn_off) {
6568 verbose(env, "missing bpf_line_info for func#%u\n", s);
6569 err = -EINVAL;
6570 goto err_free;
6571 }
6572 }
6573
6574 prev_offset = linfo[i].insn_off;
6575 ulinfo += rec_size;
6576 }
6577
6578 if (s != env->subprog_cnt) {
6579 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6580 env->subprog_cnt - s, s);
6581 err = -EINVAL;
6582 goto err_free;
6583 }
6584
6585 prog->aux->linfo = linfo;
6586 prog->aux->nr_linfo = nr_linfo;
6587
6588 return 0;
6589
6590err_free:
6591 kvfree(linfo);
6592 return err;
6593}
6594
6595static int check_btf_info(struct bpf_verifier_env *env,
6596 const union bpf_attr *attr,
6597 union bpf_attr __user *uattr)
6598{
6599 struct btf *btf;
6600 int err;
6601
6602 if (!attr->func_info_cnt && !attr->line_info_cnt)
6603 return 0;
6604
6605 btf = btf_get_by_fd(attr->prog_btf_fd);
6606 if (IS_ERR(btf))
6607 return PTR_ERR(btf);
6608 env->prog->aux->btf = btf;
6609
6610 err = check_btf_func(env, attr, uattr);
6611 if (err)
6612 return err;
6613
6614 err = check_btf_line(env, attr, uattr);
6615 if (err)
6616 return err;
6617
6618 return 0;
ba64e7d8
YS
6619}
6620
f1174f77
EC
6621/* check %cur's range satisfies %old's */
6622static bool range_within(struct bpf_reg_state *old,
6623 struct bpf_reg_state *cur)
6624{
b03c9f9f
EC
6625 return old->umin_value <= cur->umin_value &&
6626 old->umax_value >= cur->umax_value &&
6627 old->smin_value <= cur->smin_value &&
6628 old->smax_value >= cur->smax_value;
f1174f77
EC
6629}
6630
6631/* Maximum number of register states that can exist at once */
6632#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6633struct idpair {
6634 u32 old;
6635 u32 cur;
6636};
6637
6638/* If in the old state two registers had the same id, then they need to have
6639 * the same id in the new state as well. But that id could be different from
6640 * the old state, so we need to track the mapping from old to new ids.
6641 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6642 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6643 * regs with a different old id could still have new id 9, we don't care about
6644 * that.
6645 * So we look through our idmap to see if this old id has been seen before. If
6646 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6647 */
f1174f77 6648static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6649{
f1174f77 6650 unsigned int i;
969bf05e 6651
f1174f77
EC
6652 for (i = 0; i < ID_MAP_SIZE; i++) {
6653 if (!idmap[i].old) {
6654 /* Reached an empty slot; haven't seen this id before */
6655 idmap[i].old = old_id;
6656 idmap[i].cur = cur_id;
6657 return true;
6658 }
6659 if (idmap[i].old == old_id)
6660 return idmap[i].cur == cur_id;
6661 }
6662 /* We ran out of idmap slots, which should be impossible */
6663 WARN_ON_ONCE(1);
6664 return false;
6665}
6666
9242b5f5
AS
6667static void clean_func_state(struct bpf_verifier_env *env,
6668 struct bpf_func_state *st)
6669{
6670 enum bpf_reg_liveness live;
6671 int i, j;
6672
6673 for (i = 0; i < BPF_REG_FP; i++) {
6674 live = st->regs[i].live;
6675 /* liveness must not touch this register anymore */
6676 st->regs[i].live |= REG_LIVE_DONE;
6677 if (!(live & REG_LIVE_READ))
6678 /* since the register is unused, clear its state
6679 * to make further comparison simpler
6680 */
6681 __mark_reg_not_init(&st->regs[i]);
6682 }
6683
6684 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6685 live = st->stack[i].spilled_ptr.live;
6686 /* liveness must not touch this stack slot anymore */
6687 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6688 if (!(live & REG_LIVE_READ)) {
6689 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6690 for (j = 0; j < BPF_REG_SIZE; j++)
6691 st->stack[i].slot_type[j] = STACK_INVALID;
6692 }
6693 }
6694}
6695
6696static void clean_verifier_state(struct bpf_verifier_env *env,
6697 struct bpf_verifier_state *st)
6698{
6699 int i;
6700
6701 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6702 /* all regs in this state in all frames were already marked */
6703 return;
6704
6705 for (i = 0; i <= st->curframe; i++)
6706 clean_func_state(env, st->frame[i]);
6707}
6708
6709/* the parentage chains form a tree.
6710 * the verifier states are added to state lists at given insn and
6711 * pushed into state stack for future exploration.
6712 * when the verifier reaches bpf_exit insn some of the verifer states
6713 * stored in the state lists have their final liveness state already,
6714 * but a lot of states will get revised from liveness point of view when
6715 * the verifier explores other branches.
6716 * Example:
6717 * 1: r0 = 1
6718 * 2: if r1 == 100 goto pc+1
6719 * 3: r0 = 2
6720 * 4: exit
6721 * when the verifier reaches exit insn the register r0 in the state list of
6722 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6723 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6724 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6725 *
6726 * Since the verifier pushes the branch states as it sees them while exploring
6727 * the program the condition of walking the branch instruction for the second
6728 * time means that all states below this branch were already explored and
6729 * their final liveness markes are already propagated.
6730 * Hence when the verifier completes the search of state list in is_state_visited()
6731 * we can call this clean_live_states() function to mark all liveness states
6732 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6733 * will not be used.
6734 * This function also clears the registers and stack for states that !READ
6735 * to simplify state merging.
6736 *
6737 * Important note here that walking the same branch instruction in the callee
6738 * doesn't meant that the states are DONE. The verifier has to compare
6739 * the callsites
6740 */
6741static void clean_live_states(struct bpf_verifier_env *env, int insn,
6742 struct bpf_verifier_state *cur)
6743{
6744 struct bpf_verifier_state_list *sl;
6745 int i;
6746
5d839021 6747 sl = *explored_state(env, insn);
a8f500af 6748 while (sl) {
2589726d
AS
6749 if (sl->state.branches)
6750 goto next;
dc2a4ebc
AS
6751 if (sl->state.insn_idx != insn ||
6752 sl->state.curframe != cur->curframe)
9242b5f5
AS
6753 goto next;
6754 for (i = 0; i <= cur->curframe; i++)
6755 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6756 goto next;
6757 clean_verifier_state(env, &sl->state);
6758next:
6759 sl = sl->next;
6760 }
6761}
6762
f1174f77 6763/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
6764static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6765 struct idpair *idmap)
f1174f77 6766{
f4d7e40a
AS
6767 bool equal;
6768
dc503a8a
EC
6769 if (!(rold->live & REG_LIVE_READ))
6770 /* explored state didn't use this */
6771 return true;
6772
679c782d 6773 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
6774
6775 if (rold->type == PTR_TO_STACK)
6776 /* two stack pointers are equal only if they're pointing to
6777 * the same stack frame, since fp-8 in foo != fp-8 in bar
6778 */
6779 return equal && rold->frameno == rcur->frameno;
6780
6781 if (equal)
969bf05e
AS
6782 return true;
6783
f1174f77
EC
6784 if (rold->type == NOT_INIT)
6785 /* explored state can't have used this */
969bf05e 6786 return true;
f1174f77
EC
6787 if (rcur->type == NOT_INIT)
6788 return false;
6789 switch (rold->type) {
6790 case SCALAR_VALUE:
6791 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
6792 if (!rold->precise && !rcur->precise)
6793 return true;
f1174f77
EC
6794 /* new val must satisfy old val knowledge */
6795 return range_within(rold, rcur) &&
6796 tnum_in(rold->var_off, rcur->var_off);
6797 } else {
179d1c56
JH
6798 /* We're trying to use a pointer in place of a scalar.
6799 * Even if the scalar was unbounded, this could lead to
6800 * pointer leaks because scalars are allowed to leak
6801 * while pointers are not. We could make this safe in
6802 * special cases if root is calling us, but it's
6803 * probably not worth the hassle.
f1174f77 6804 */
179d1c56 6805 return false;
f1174f77
EC
6806 }
6807 case PTR_TO_MAP_VALUE:
1b688a19
EC
6808 /* If the new min/max/var_off satisfy the old ones and
6809 * everything else matches, we are OK.
d83525ca
AS
6810 * 'id' is not compared, since it's only used for maps with
6811 * bpf_spin_lock inside map element and in such cases if
6812 * the rest of the prog is valid for one map element then
6813 * it's valid for all map elements regardless of the key
6814 * used in bpf_map_lookup()
1b688a19
EC
6815 */
6816 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6817 range_within(rold, rcur) &&
6818 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
6819 case PTR_TO_MAP_VALUE_OR_NULL:
6820 /* a PTR_TO_MAP_VALUE could be safe to use as a
6821 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6822 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6823 * checked, doing so could have affected others with the same
6824 * id, and we can't check for that because we lost the id when
6825 * we converted to a PTR_TO_MAP_VALUE.
6826 */
6827 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6828 return false;
6829 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6830 return false;
6831 /* Check our ids match any regs they're supposed to */
6832 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 6833 case PTR_TO_PACKET_META:
f1174f77 6834 case PTR_TO_PACKET:
de8f3a83 6835 if (rcur->type != rold->type)
f1174f77
EC
6836 return false;
6837 /* We must have at least as much range as the old ptr
6838 * did, so that any accesses which were safe before are
6839 * still safe. This is true even if old range < old off,
6840 * since someone could have accessed through (ptr - k), or
6841 * even done ptr -= k in a register, to get a safe access.
6842 */
6843 if (rold->range > rcur->range)
6844 return false;
6845 /* If the offsets don't match, we can't trust our alignment;
6846 * nor can we be sure that we won't fall out of range.
6847 */
6848 if (rold->off != rcur->off)
6849 return false;
6850 /* id relations must be preserved */
6851 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6852 return false;
6853 /* new val must satisfy old val knowledge */
6854 return range_within(rold, rcur) &&
6855 tnum_in(rold->var_off, rcur->var_off);
6856 case PTR_TO_CTX:
6857 case CONST_PTR_TO_MAP:
f1174f77 6858 case PTR_TO_PACKET_END:
d58e468b 6859 case PTR_TO_FLOW_KEYS:
c64b7983
JS
6860 case PTR_TO_SOCKET:
6861 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6862 case PTR_TO_SOCK_COMMON:
6863 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6864 case PTR_TO_TCP_SOCK:
6865 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6866 case PTR_TO_XDP_SOCK:
f1174f77
EC
6867 /* Only valid matches are exact, which memcmp() above
6868 * would have accepted
6869 */
6870 default:
6871 /* Don't know what's going on, just say it's not safe */
6872 return false;
6873 }
969bf05e 6874
f1174f77
EC
6875 /* Shouldn't get here; if we do, say it's not safe */
6876 WARN_ON_ONCE(1);
969bf05e
AS
6877 return false;
6878}
6879
f4d7e40a
AS
6880static bool stacksafe(struct bpf_func_state *old,
6881 struct bpf_func_state *cur,
638f5b90
AS
6882 struct idpair *idmap)
6883{
6884 int i, spi;
6885
638f5b90
AS
6886 /* walk slots of the explored stack and ignore any additional
6887 * slots in the current stack, since explored(safe) state
6888 * didn't use them
6889 */
6890 for (i = 0; i < old->allocated_stack; i++) {
6891 spi = i / BPF_REG_SIZE;
6892
b233920c
AS
6893 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6894 i += BPF_REG_SIZE - 1;
cc2b14d5 6895 /* explored state didn't use this */
fd05e57b 6896 continue;
b233920c 6897 }
cc2b14d5 6898
638f5b90
AS
6899 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6900 continue;
19e2dbb7
AS
6901
6902 /* explored stack has more populated slots than current stack
6903 * and these slots were used
6904 */
6905 if (i >= cur->allocated_stack)
6906 return false;
6907
cc2b14d5
AS
6908 /* if old state was safe with misc data in the stack
6909 * it will be safe with zero-initialized stack.
6910 * The opposite is not true
6911 */
6912 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6913 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6914 continue;
638f5b90
AS
6915 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6916 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6917 /* Ex: old explored (safe) state has STACK_SPILL in
6918 * this stack slot, but current has has STACK_MISC ->
6919 * this verifier states are not equivalent,
6920 * return false to continue verification of this path
6921 */
6922 return false;
6923 if (i % BPF_REG_SIZE)
6924 continue;
6925 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6926 continue;
6927 if (!regsafe(&old->stack[spi].spilled_ptr,
6928 &cur->stack[spi].spilled_ptr,
6929 idmap))
6930 /* when explored and current stack slot are both storing
6931 * spilled registers, check that stored pointers types
6932 * are the same as well.
6933 * Ex: explored safe path could have stored
6934 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6935 * but current path has stored:
6936 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6937 * such verifier states are not equivalent.
6938 * return false to continue verification of this path
6939 */
6940 return false;
6941 }
6942 return true;
6943}
6944
fd978bf7
JS
6945static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6946{
6947 if (old->acquired_refs != cur->acquired_refs)
6948 return false;
6949 return !memcmp(old->refs, cur->refs,
6950 sizeof(*old->refs) * old->acquired_refs);
6951}
6952
f1bca824
AS
6953/* compare two verifier states
6954 *
6955 * all states stored in state_list are known to be valid, since
6956 * verifier reached 'bpf_exit' instruction through them
6957 *
6958 * this function is called when verifier exploring different branches of
6959 * execution popped from the state stack. If it sees an old state that has
6960 * more strict register state and more strict stack state then this execution
6961 * branch doesn't need to be explored further, since verifier already
6962 * concluded that more strict state leads to valid finish.
6963 *
6964 * Therefore two states are equivalent if register state is more conservative
6965 * and explored stack state is more conservative than the current one.
6966 * Example:
6967 * explored current
6968 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6969 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6970 *
6971 * In other words if current stack state (one being explored) has more
6972 * valid slots than old one that already passed validation, it means
6973 * the verifier can stop exploring and conclude that current state is valid too
6974 *
6975 * Similarly with registers. If explored state has register type as invalid
6976 * whereas register type in current state is meaningful, it means that
6977 * the current state will reach 'bpf_exit' instruction safely
6978 */
f4d7e40a
AS
6979static bool func_states_equal(struct bpf_func_state *old,
6980 struct bpf_func_state *cur)
f1bca824 6981{
f1174f77
EC
6982 struct idpair *idmap;
6983 bool ret = false;
f1bca824
AS
6984 int i;
6985
f1174f77
EC
6986 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6987 /* If we failed to allocate the idmap, just say it's not safe */
6988 if (!idmap)
1a0dc1ac 6989 return false;
f1174f77
EC
6990
6991 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 6992 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 6993 goto out_free;
f1bca824
AS
6994 }
6995
638f5b90
AS
6996 if (!stacksafe(old, cur, idmap))
6997 goto out_free;
fd978bf7
JS
6998
6999 if (!refsafe(old, cur))
7000 goto out_free;
f1174f77
EC
7001 ret = true;
7002out_free:
7003 kfree(idmap);
7004 return ret;
f1bca824
AS
7005}
7006
f4d7e40a
AS
7007static bool states_equal(struct bpf_verifier_env *env,
7008 struct bpf_verifier_state *old,
7009 struct bpf_verifier_state *cur)
7010{
7011 int i;
7012
7013 if (old->curframe != cur->curframe)
7014 return false;
7015
979d63d5
DB
7016 /* Verification state from speculative execution simulation
7017 * must never prune a non-speculative execution one.
7018 */
7019 if (old->speculative && !cur->speculative)
7020 return false;
7021
d83525ca
AS
7022 if (old->active_spin_lock != cur->active_spin_lock)
7023 return false;
7024
f4d7e40a
AS
7025 /* for states to be equal callsites have to be the same
7026 * and all frame states need to be equivalent
7027 */
7028 for (i = 0; i <= old->curframe; i++) {
7029 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7030 return false;
7031 if (!func_states_equal(old->frame[i], cur->frame[i]))
7032 return false;
7033 }
7034 return true;
7035}
7036
5327ed3d
JW
7037/* Return 0 if no propagation happened. Return negative error code if error
7038 * happened. Otherwise, return the propagated bit.
7039 */
55e7f3b5
JW
7040static int propagate_liveness_reg(struct bpf_verifier_env *env,
7041 struct bpf_reg_state *reg,
7042 struct bpf_reg_state *parent_reg)
7043{
5327ed3d
JW
7044 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7045 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7046 int err;
7047
5327ed3d
JW
7048 /* When comes here, read flags of PARENT_REG or REG could be any of
7049 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7050 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7051 */
7052 if (parent_flag == REG_LIVE_READ64 ||
7053 /* Or if there is no read flag from REG. */
7054 !flag ||
7055 /* Or if the read flag from REG is the same as PARENT_REG. */
7056 parent_flag == flag)
55e7f3b5
JW
7057 return 0;
7058
5327ed3d 7059 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7060 if (err)
7061 return err;
7062
5327ed3d 7063 return flag;
55e7f3b5
JW
7064}
7065
8e9cd9ce 7066/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7067 * straight-line code between a state and its parent. When we arrive at an
7068 * equivalent state (jump target or such) we didn't arrive by the straight-line
7069 * code, so read marks in the state must propagate to the parent regardless
7070 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7071 * in mark_reg_read() is for.
8e9cd9ce 7072 */
f4d7e40a
AS
7073static int propagate_liveness(struct bpf_verifier_env *env,
7074 const struct bpf_verifier_state *vstate,
7075 struct bpf_verifier_state *vparent)
dc503a8a 7076{
3f8cafa4 7077 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7078 struct bpf_func_state *state, *parent;
3f8cafa4 7079 int i, frame, err = 0;
dc503a8a 7080
f4d7e40a
AS
7081 if (vparent->curframe != vstate->curframe) {
7082 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7083 vparent->curframe, vstate->curframe);
7084 return -EFAULT;
7085 }
dc503a8a
EC
7086 /* Propagate read liveness of registers... */
7087 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7088 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7089 parent = vparent->frame[frame];
7090 state = vstate->frame[frame];
7091 parent_reg = parent->regs;
7092 state_reg = state->regs;
83d16312
JK
7093 /* We don't need to worry about FP liveness, it's read-only */
7094 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7095 err = propagate_liveness_reg(env, &state_reg[i],
7096 &parent_reg[i]);
5327ed3d 7097 if (err < 0)
3f8cafa4 7098 return err;
5327ed3d
JW
7099 if (err == REG_LIVE_READ64)
7100 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7101 }
f4d7e40a 7102
1b04aee7 7103 /* Propagate stack slots. */
f4d7e40a
AS
7104 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7105 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7106 parent_reg = &parent->stack[i].spilled_ptr;
7107 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7108 err = propagate_liveness_reg(env, state_reg,
7109 parent_reg);
5327ed3d 7110 if (err < 0)
3f8cafa4 7111 return err;
dc503a8a
EC
7112 }
7113 }
5327ed3d 7114 return 0;
dc503a8a
EC
7115}
7116
2589726d
AS
7117static bool states_maybe_looping(struct bpf_verifier_state *old,
7118 struct bpf_verifier_state *cur)
7119{
7120 struct bpf_func_state *fold, *fcur;
7121 int i, fr = cur->curframe;
7122
7123 if (old->curframe != fr)
7124 return false;
7125
7126 fold = old->frame[fr];
7127 fcur = cur->frame[fr];
7128 for (i = 0; i < MAX_BPF_REG; i++)
7129 if (memcmp(&fold->regs[i], &fcur->regs[i],
7130 offsetof(struct bpf_reg_state, parent)))
7131 return false;
7132 return true;
7133}
7134
7135
58e2af8b 7136static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7137{
58e2af8b 7138 struct bpf_verifier_state_list *new_sl;
9f4686c4 7139 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7140 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7141 int i, j, err, states_cnt = 0;
2589726d 7142 bool add_new_state = false;
f1bca824 7143
b5dc0163 7144 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7145 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7146 /* this 'insn_idx' instruction wasn't marked, so we will not
7147 * be doing state search here
7148 */
7149 return 0;
7150
2589726d
AS
7151 /* bpf progs typically have pruning point every 4 instructions
7152 * http://vger.kernel.org/bpfconf2019.html#session-1
7153 * Do not add new state for future pruning if the verifier hasn't seen
7154 * at least 2 jumps and at least 8 instructions.
7155 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7156 * In tests that amounts to up to 50% reduction into total verifier
7157 * memory consumption and 20% verifier time speedup.
7158 */
7159 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7160 env->insn_processed - env->prev_insn_processed >= 8)
7161 add_new_state = true;
7162
a8f500af
AS
7163 pprev = explored_state(env, insn_idx);
7164 sl = *pprev;
7165
9242b5f5
AS
7166 clean_live_states(env, insn_idx, cur);
7167
a8f500af 7168 while (sl) {
dc2a4ebc
AS
7169 states_cnt++;
7170 if (sl->state.insn_idx != insn_idx)
7171 goto next;
2589726d
AS
7172 if (sl->state.branches) {
7173 if (states_maybe_looping(&sl->state, cur) &&
7174 states_equal(env, &sl->state, cur)) {
7175 verbose_linfo(env, insn_idx, "; ");
7176 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7177 return -EINVAL;
7178 }
7179 /* if the verifier is processing a loop, avoid adding new state
7180 * too often, since different loop iterations have distinct
7181 * states and may not help future pruning.
7182 * This threshold shouldn't be too low to make sure that
7183 * a loop with large bound will be rejected quickly.
7184 * The most abusive loop will be:
7185 * r1 += 1
7186 * if r1 < 1000000 goto pc-2
7187 * 1M insn_procssed limit / 100 == 10k peak states.
7188 * This threshold shouldn't be too high either, since states
7189 * at the end of the loop are likely to be useful in pruning.
7190 */
7191 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7192 env->insn_processed - env->prev_insn_processed < 100)
7193 add_new_state = false;
7194 goto miss;
7195 }
638f5b90 7196 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7197 sl->hit_cnt++;
f1bca824 7198 /* reached equivalent register/stack state,
dc503a8a
EC
7199 * prune the search.
7200 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7201 * If we have any write marks in env->cur_state, they
7202 * will prevent corresponding reads in the continuation
7203 * from reaching our parent (an explored_state). Our
7204 * own state will get the read marks recorded, but
7205 * they'll be immediately forgotten as we're pruning
7206 * this state and will pop a new one.
f1bca824 7207 */
f4d7e40a
AS
7208 err = propagate_liveness(env, &sl->state, cur);
7209 if (err)
7210 return err;
f1bca824 7211 return 1;
dc503a8a 7212 }
2589726d
AS
7213miss:
7214 /* when new state is not going to be added do not increase miss count.
7215 * Otherwise several loop iterations will remove the state
7216 * recorded earlier. The goal of these heuristics is to have
7217 * states from some iterations of the loop (some in the beginning
7218 * and some at the end) to help pruning.
7219 */
7220 if (add_new_state)
7221 sl->miss_cnt++;
9f4686c4
AS
7222 /* heuristic to determine whether this state is beneficial
7223 * to keep checking from state equivalence point of view.
7224 * Higher numbers increase max_states_per_insn and verification time,
7225 * but do not meaningfully decrease insn_processed.
7226 */
7227 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7228 /* the state is unlikely to be useful. Remove it to
7229 * speed up verification
7230 */
7231 *pprev = sl->next;
7232 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7233 u32 br = sl->state.branches;
7234
7235 WARN_ONCE(br,
7236 "BUG live_done but branches_to_explore %d\n",
7237 br);
9f4686c4
AS
7238 free_verifier_state(&sl->state, false);
7239 kfree(sl);
7240 env->peak_states--;
7241 } else {
7242 /* cannot free this state, since parentage chain may
7243 * walk it later. Add it for free_list instead to
7244 * be freed at the end of verification
7245 */
7246 sl->next = env->free_list;
7247 env->free_list = sl;
7248 }
7249 sl = *pprev;
7250 continue;
7251 }
dc2a4ebc 7252next:
9f4686c4
AS
7253 pprev = &sl->next;
7254 sl = *pprev;
f1bca824
AS
7255 }
7256
06ee7115
AS
7257 if (env->max_states_per_insn < states_cnt)
7258 env->max_states_per_insn = states_cnt;
7259
ceefbc96 7260 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7261 return push_jmp_history(env, cur);
ceefbc96 7262
2589726d 7263 if (!add_new_state)
b5dc0163 7264 return push_jmp_history(env, cur);
ceefbc96 7265
2589726d
AS
7266 /* There were no equivalent states, remember the current one.
7267 * Technically the current state is not proven to be safe yet,
f4d7e40a 7268 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7269 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7270 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7271 * again on the way to bpf_exit.
7272 * When looping the sl->state.branches will be > 0 and this state
7273 * will not be considered for equivalence until branches == 0.
f1bca824 7274 */
638f5b90 7275 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7276 if (!new_sl)
7277 return -ENOMEM;
06ee7115
AS
7278 env->total_states++;
7279 env->peak_states++;
2589726d
AS
7280 env->prev_jmps_processed = env->jmps_processed;
7281 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7282
7283 /* add new state to the head of linked list */
679c782d
EC
7284 new = &new_sl->state;
7285 err = copy_verifier_state(new, cur);
1969db47 7286 if (err) {
679c782d 7287 free_verifier_state(new, false);
1969db47
AS
7288 kfree(new_sl);
7289 return err;
7290 }
dc2a4ebc 7291 new->insn_idx = insn_idx;
2589726d
AS
7292 WARN_ONCE(new->branches != 1,
7293 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7294
2589726d 7295 cur->parent = new;
b5dc0163
AS
7296 cur->first_insn_idx = insn_idx;
7297 clear_jmp_history(cur);
5d839021
AS
7298 new_sl->next = *explored_state(env, insn_idx);
7299 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7300 /* connect new state to parentage chain. Current frame needs all
7301 * registers connected. Only r6 - r9 of the callers are alive (pushed
7302 * to the stack implicitly by JITs) so in callers' frames connect just
7303 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7304 * the state of the call instruction (with WRITTEN set), and r0 comes
7305 * from callee with its full parentage chain, anyway.
7306 */
8e9cd9ce
EC
7307 /* clear write marks in current state: the writes we did are not writes
7308 * our child did, so they don't screen off its reads from us.
7309 * (There are no read marks in current state, because reads always mark
7310 * their parent and current state never has children yet. Only
7311 * explored_states can get read marks.)
7312 */
eea1c227
AS
7313 for (j = 0; j <= cur->curframe; j++) {
7314 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7315 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7316 for (i = 0; i < BPF_REG_FP; i++)
7317 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7318 }
f4d7e40a
AS
7319
7320 /* all stack frames are accessible from callee, clear them all */
7321 for (j = 0; j <= cur->curframe; j++) {
7322 struct bpf_func_state *frame = cur->frame[j];
679c782d 7323 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7324
679c782d 7325 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7326 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7327 frame->stack[i].spilled_ptr.parent =
7328 &newframe->stack[i].spilled_ptr;
7329 }
f4d7e40a 7330 }
f1bca824
AS
7331 return 0;
7332}
7333
c64b7983
JS
7334/* Return true if it's OK to have the same insn return a different type. */
7335static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7336{
7337 switch (type) {
7338 case PTR_TO_CTX:
7339 case PTR_TO_SOCKET:
7340 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7341 case PTR_TO_SOCK_COMMON:
7342 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7343 case PTR_TO_TCP_SOCK:
7344 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7345 case PTR_TO_XDP_SOCK:
c64b7983
JS
7346 return false;
7347 default:
7348 return true;
7349 }
7350}
7351
7352/* If an instruction was previously used with particular pointer types, then we
7353 * need to be careful to avoid cases such as the below, where it may be ok
7354 * for one branch accessing the pointer, but not ok for the other branch:
7355 *
7356 * R1 = sock_ptr
7357 * goto X;
7358 * ...
7359 * R1 = some_other_valid_ptr;
7360 * goto X;
7361 * ...
7362 * R2 = *(u32 *)(R1 + 0);
7363 */
7364static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7365{
7366 return src != prev && (!reg_type_mismatch_ok(src) ||
7367 !reg_type_mismatch_ok(prev));
7368}
7369
58e2af8b 7370static int do_check(struct bpf_verifier_env *env)
17a52670 7371{
638f5b90 7372 struct bpf_verifier_state *state;
17a52670 7373 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7374 struct bpf_reg_state *regs;
06ee7115 7375 int insn_cnt = env->prog->len;
17a52670 7376 bool do_print_state = false;
b5dc0163 7377 int prev_insn_idx = -1;
17a52670 7378
d9762e84
MKL
7379 env->prev_linfo = NULL;
7380
638f5b90
AS
7381 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7382 if (!state)
7383 return -ENOMEM;
f4d7e40a 7384 state->curframe = 0;
979d63d5 7385 state->speculative = false;
2589726d 7386 state->branches = 1;
f4d7e40a
AS
7387 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7388 if (!state->frame[0]) {
7389 kfree(state);
7390 return -ENOMEM;
7391 }
7392 env->cur_state = state;
7393 init_func_state(env, state->frame[0],
7394 BPF_MAIN_FUNC /* callsite */,
7395 0 /* frameno */,
7396 0 /* subprogno, zero == main subprog */);
c08435ec 7397
17a52670
AS
7398 for (;;) {
7399 struct bpf_insn *insn;
7400 u8 class;
7401 int err;
7402
b5dc0163 7403 env->prev_insn_idx = prev_insn_idx;
c08435ec 7404 if (env->insn_idx >= insn_cnt) {
61bd5218 7405 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7406 env->insn_idx, insn_cnt);
17a52670
AS
7407 return -EFAULT;
7408 }
7409
c08435ec 7410 insn = &insns[env->insn_idx];
17a52670
AS
7411 class = BPF_CLASS(insn->code);
7412
06ee7115 7413 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7414 verbose(env,
7415 "BPF program is too large. Processed %d insn\n",
06ee7115 7416 env->insn_processed);
17a52670
AS
7417 return -E2BIG;
7418 }
7419
c08435ec 7420 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7421 if (err < 0)
7422 return err;
7423 if (err == 1) {
7424 /* found equivalent state, can prune the search */
06ee7115 7425 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7426 if (do_print_state)
979d63d5
DB
7427 verbose(env, "\nfrom %d to %d%s: safe\n",
7428 env->prev_insn_idx, env->insn_idx,
7429 env->cur_state->speculative ?
7430 " (speculative execution)" : "");
f1bca824 7431 else
c08435ec 7432 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7433 }
7434 goto process_bpf_exit;
7435 }
7436
c3494801
AS
7437 if (signal_pending(current))
7438 return -EAGAIN;
7439
3c2ce60b
DB
7440 if (need_resched())
7441 cond_resched();
7442
06ee7115
AS
7443 if (env->log.level & BPF_LOG_LEVEL2 ||
7444 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7445 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7446 verbose(env, "%d:", env->insn_idx);
c5fc9692 7447 else
979d63d5
DB
7448 verbose(env, "\nfrom %d to %d%s:",
7449 env->prev_insn_idx, env->insn_idx,
7450 env->cur_state->speculative ?
7451 " (speculative execution)" : "");
f4d7e40a 7452 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7453 do_print_state = false;
7454 }
7455
06ee7115 7456 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7457 const struct bpf_insn_cbs cbs = {
7458 .cb_print = verbose,
abe08840 7459 .private_data = env,
7105e828
DB
7460 };
7461
c08435ec
DB
7462 verbose_linfo(env, env->insn_idx, "; ");
7463 verbose(env, "%d: ", env->insn_idx);
abe08840 7464 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7465 }
7466
cae1927c 7467 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7468 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7469 env->prev_insn_idx);
cae1927c
JK
7470 if (err)
7471 return err;
7472 }
13a27dfc 7473
638f5b90 7474 regs = cur_regs(env);
c08435ec 7475 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7476 prev_insn_idx = env->insn_idx;
fd978bf7 7477
17a52670 7478 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7479 err = check_alu_op(env, insn);
17a52670
AS
7480 if (err)
7481 return err;
7482
7483 } else if (class == BPF_LDX) {
3df126f3 7484 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7485
7486 /* check for reserved fields is already done */
7487
17a52670 7488 /* check src operand */
dc503a8a 7489 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7490 if (err)
7491 return err;
7492
dc503a8a 7493 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7494 if (err)
7495 return err;
7496
725f9dcd
AS
7497 src_reg_type = regs[insn->src_reg].type;
7498
17a52670
AS
7499 /* check that memory (src_reg + off) is readable,
7500 * the state of dst_reg will be updated by this func
7501 */
c08435ec
DB
7502 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7503 insn->off, BPF_SIZE(insn->code),
7504 BPF_READ, insn->dst_reg, false);
17a52670
AS
7505 if (err)
7506 return err;
7507
c08435ec 7508 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7509
7510 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7511 /* saw a valid insn
7512 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7513 * save type to validate intersecting paths
9bac3d6d 7514 */
3df126f3 7515 *prev_src_type = src_reg_type;
9bac3d6d 7516
c64b7983 7517 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7518 /* ABuser program is trying to use the same insn
7519 * dst_reg = *(u32*) (src_reg + off)
7520 * with different pointer types:
7521 * src_reg == ctx in one branch and
7522 * src_reg == stack|map in some other branch.
7523 * Reject it.
7524 */
61bd5218 7525 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7526 return -EINVAL;
7527 }
7528
17a52670 7529 } else if (class == BPF_STX) {
3df126f3 7530 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7531
17a52670 7532 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7533 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7534 if (err)
7535 return err;
c08435ec 7536 env->insn_idx++;
17a52670
AS
7537 continue;
7538 }
7539
17a52670 7540 /* check src1 operand */
dc503a8a 7541 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7542 if (err)
7543 return err;
7544 /* check src2 operand */
dc503a8a 7545 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7546 if (err)
7547 return err;
7548
d691f9e8
AS
7549 dst_reg_type = regs[insn->dst_reg].type;
7550
17a52670 7551 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7552 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7553 insn->off, BPF_SIZE(insn->code),
7554 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7555 if (err)
7556 return err;
7557
c08435ec 7558 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7559
7560 if (*prev_dst_type == NOT_INIT) {
7561 *prev_dst_type = dst_reg_type;
c64b7983 7562 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7563 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7564 return -EINVAL;
7565 }
7566
17a52670
AS
7567 } else if (class == BPF_ST) {
7568 if (BPF_MODE(insn->code) != BPF_MEM ||
7569 insn->src_reg != BPF_REG_0) {
61bd5218 7570 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7571 return -EINVAL;
7572 }
7573 /* check src operand */
dc503a8a 7574 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7575 if (err)
7576 return err;
7577
f37a8cb8 7578 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7579 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7580 insn->dst_reg,
7581 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7582 return -EACCES;
7583 }
7584
17a52670 7585 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7586 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7587 insn->off, BPF_SIZE(insn->code),
7588 BPF_WRITE, -1, false);
17a52670
AS
7589 if (err)
7590 return err;
7591
092ed096 7592 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7593 u8 opcode = BPF_OP(insn->code);
7594
2589726d 7595 env->jmps_processed++;
17a52670
AS
7596 if (opcode == BPF_CALL) {
7597 if (BPF_SRC(insn->code) != BPF_K ||
7598 insn->off != 0 ||
f4d7e40a
AS
7599 (insn->src_reg != BPF_REG_0 &&
7600 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7601 insn->dst_reg != BPF_REG_0 ||
7602 class == BPF_JMP32) {
61bd5218 7603 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7604 return -EINVAL;
7605 }
7606
d83525ca
AS
7607 if (env->cur_state->active_spin_lock &&
7608 (insn->src_reg == BPF_PSEUDO_CALL ||
7609 insn->imm != BPF_FUNC_spin_unlock)) {
7610 verbose(env, "function calls are not allowed while holding a lock\n");
7611 return -EINVAL;
7612 }
f4d7e40a 7613 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 7614 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 7615 else
c08435ec 7616 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
7617 if (err)
7618 return err;
7619
7620 } else if (opcode == BPF_JA) {
7621 if (BPF_SRC(insn->code) != BPF_K ||
7622 insn->imm != 0 ||
7623 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7624 insn->dst_reg != BPF_REG_0 ||
7625 class == BPF_JMP32) {
61bd5218 7626 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
7627 return -EINVAL;
7628 }
7629
c08435ec 7630 env->insn_idx += insn->off + 1;
17a52670
AS
7631 continue;
7632
7633 } else if (opcode == BPF_EXIT) {
7634 if (BPF_SRC(insn->code) != BPF_K ||
7635 insn->imm != 0 ||
7636 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7637 insn->dst_reg != BPF_REG_0 ||
7638 class == BPF_JMP32) {
61bd5218 7639 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
7640 return -EINVAL;
7641 }
7642
d83525ca
AS
7643 if (env->cur_state->active_spin_lock) {
7644 verbose(env, "bpf_spin_unlock is missing\n");
7645 return -EINVAL;
7646 }
7647
f4d7e40a
AS
7648 if (state->curframe) {
7649 /* exit from nested function */
c08435ec 7650 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
7651 if (err)
7652 return err;
7653 do_print_state = true;
7654 continue;
7655 }
7656
fd978bf7
JS
7657 err = check_reference_leak(env);
7658 if (err)
7659 return err;
7660
17a52670
AS
7661 /* eBPF calling convetion is such that R0 is used
7662 * to return the value from eBPF program.
7663 * Make sure that it's readable at this time
7664 * of bpf_exit, which means that program wrote
7665 * something into it earlier
7666 */
dc503a8a 7667 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
7668 if (err)
7669 return err;
7670
1be7f75d 7671 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 7672 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
7673 return -EACCES;
7674 }
7675
390ee7e2
AS
7676 err = check_return_code(env);
7677 if (err)
7678 return err;
f1bca824 7679process_bpf_exit:
2589726d 7680 update_branch_counts(env, env->cur_state);
b5dc0163 7681 err = pop_stack(env, &prev_insn_idx,
c08435ec 7682 &env->insn_idx);
638f5b90
AS
7683 if (err < 0) {
7684 if (err != -ENOENT)
7685 return err;
17a52670
AS
7686 break;
7687 } else {
7688 do_print_state = true;
7689 continue;
7690 }
7691 } else {
c08435ec 7692 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
7693 if (err)
7694 return err;
7695 }
7696 } else if (class == BPF_LD) {
7697 u8 mode = BPF_MODE(insn->code);
7698
7699 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
7700 err = check_ld_abs(env, insn);
7701 if (err)
7702 return err;
7703
17a52670
AS
7704 } else if (mode == BPF_IMM) {
7705 err = check_ld_imm(env, insn);
7706 if (err)
7707 return err;
7708
c08435ec
DB
7709 env->insn_idx++;
7710 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 7711 } else {
61bd5218 7712 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
7713 return -EINVAL;
7714 }
7715 } else {
61bd5218 7716 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
7717 return -EINVAL;
7718 }
7719
c08435ec 7720 env->insn_idx++;
17a52670
AS
7721 }
7722
9c8105bd 7723 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
7724 return 0;
7725}
7726
56f668df
MKL
7727static int check_map_prealloc(struct bpf_map *map)
7728{
7729 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
7730 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7731 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
7732 !(map->map_flags & BPF_F_NO_PREALLOC);
7733}
7734
d83525ca
AS
7735static bool is_tracing_prog_type(enum bpf_prog_type type)
7736{
7737 switch (type) {
7738 case BPF_PROG_TYPE_KPROBE:
7739 case BPF_PROG_TYPE_TRACEPOINT:
7740 case BPF_PROG_TYPE_PERF_EVENT:
7741 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7742 return true;
7743 default:
7744 return false;
7745 }
7746}
7747
61bd5218
JK
7748static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7749 struct bpf_map *map,
fdc15d38
AS
7750 struct bpf_prog *prog)
7751
7752{
56f668df
MKL
7753 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7754 * preallocated hash maps, since doing memory allocation
7755 * in overflow_handler can crash depending on where nmi got
7756 * triggered.
7757 */
7758 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7759 if (!check_map_prealloc(map)) {
61bd5218 7760 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
7761 return -EINVAL;
7762 }
7763 if (map->inner_map_meta &&
7764 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 7765 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
7766 return -EINVAL;
7767 }
fdc15d38 7768 }
a3884572 7769
d83525ca
AS
7770 if ((is_tracing_prog_type(prog->type) ||
7771 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7772 map_value_has_spin_lock(map)) {
7773 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7774 return -EINVAL;
7775 }
7776
a3884572 7777 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 7778 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
7779 verbose(env, "offload device mismatch between prog and map\n");
7780 return -EINVAL;
7781 }
7782
fdc15d38
AS
7783 return 0;
7784}
7785
b741f163
RG
7786static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7787{
7788 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7789 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7790}
7791
0246e64d
AS
7792/* look for pseudo eBPF instructions that access map FDs and
7793 * replace them with actual map pointers
7794 */
58e2af8b 7795static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
7796{
7797 struct bpf_insn *insn = env->prog->insnsi;
7798 int insn_cnt = env->prog->len;
fdc15d38 7799 int i, j, err;
0246e64d 7800
f1f7714e 7801 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
7802 if (err)
7803 return err;
7804
0246e64d 7805 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 7806 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 7807 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 7808 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
7809 return -EINVAL;
7810 }
7811
d691f9e8
AS
7812 if (BPF_CLASS(insn->code) == BPF_STX &&
7813 ((BPF_MODE(insn->code) != BPF_MEM &&
7814 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 7815 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
7816 return -EINVAL;
7817 }
7818
0246e64d 7819 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 7820 struct bpf_insn_aux_data *aux;
0246e64d
AS
7821 struct bpf_map *map;
7822 struct fd f;
d8eca5bb 7823 u64 addr;
0246e64d
AS
7824
7825 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7826 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7827 insn[1].off != 0) {
61bd5218 7828 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
7829 return -EINVAL;
7830 }
7831
d8eca5bb 7832 if (insn[0].src_reg == 0)
0246e64d
AS
7833 /* valid generic load 64-bit imm */
7834 goto next_insn;
7835
d8eca5bb
DB
7836 /* In final convert_pseudo_ld_imm64() step, this is
7837 * converted into regular 64-bit imm load insn.
7838 */
7839 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7840 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7841 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7842 insn[1].imm != 0)) {
7843 verbose(env,
7844 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
7845 return -EINVAL;
7846 }
7847
20182390 7848 f = fdget(insn[0].imm);
c2101297 7849 map = __bpf_map_get(f);
0246e64d 7850 if (IS_ERR(map)) {
61bd5218 7851 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 7852 insn[0].imm);
0246e64d
AS
7853 return PTR_ERR(map);
7854 }
7855
61bd5218 7856 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
7857 if (err) {
7858 fdput(f);
7859 return err;
7860 }
7861
d8eca5bb
DB
7862 aux = &env->insn_aux_data[i];
7863 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7864 addr = (unsigned long)map;
7865 } else {
7866 u32 off = insn[1].imm;
7867
7868 if (off >= BPF_MAX_VAR_OFF) {
7869 verbose(env, "direct value offset of %u is not allowed\n", off);
7870 fdput(f);
7871 return -EINVAL;
7872 }
7873
7874 if (!map->ops->map_direct_value_addr) {
7875 verbose(env, "no direct value access support for this map type\n");
7876 fdput(f);
7877 return -EINVAL;
7878 }
7879
7880 err = map->ops->map_direct_value_addr(map, &addr, off);
7881 if (err) {
7882 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7883 map->value_size, off);
7884 fdput(f);
7885 return err;
7886 }
7887
7888 aux->map_off = off;
7889 addr += off;
7890 }
7891
7892 insn[0].imm = (u32)addr;
7893 insn[1].imm = addr >> 32;
0246e64d
AS
7894
7895 /* check whether we recorded this map already */
d8eca5bb 7896 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 7897 if (env->used_maps[j] == map) {
d8eca5bb 7898 aux->map_index = j;
0246e64d
AS
7899 fdput(f);
7900 goto next_insn;
7901 }
d8eca5bb 7902 }
0246e64d
AS
7903
7904 if (env->used_map_cnt >= MAX_USED_MAPS) {
7905 fdput(f);
7906 return -E2BIG;
7907 }
7908
0246e64d
AS
7909 /* hold the map. If the program is rejected by verifier,
7910 * the map will be released by release_maps() or it
7911 * will be used by the valid program until it's unloaded
ab7f5bf0 7912 * and all maps are released in free_used_maps()
0246e64d 7913 */
92117d84
AS
7914 map = bpf_map_inc(map, false);
7915 if (IS_ERR(map)) {
7916 fdput(f);
7917 return PTR_ERR(map);
7918 }
d8eca5bb
DB
7919
7920 aux->map_index = env->used_map_cnt;
92117d84
AS
7921 env->used_maps[env->used_map_cnt++] = map;
7922
b741f163 7923 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 7924 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 7925 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
7926 fdput(f);
7927 return -EBUSY;
7928 }
7929
0246e64d
AS
7930 fdput(f);
7931next_insn:
7932 insn++;
7933 i++;
5e581dad
DB
7934 continue;
7935 }
7936
7937 /* Basic sanity check before we invest more work here. */
7938 if (!bpf_opcode_in_insntable(insn->code)) {
7939 verbose(env, "unknown opcode %02x\n", insn->code);
7940 return -EINVAL;
0246e64d
AS
7941 }
7942 }
7943
7944 /* now all pseudo BPF_LD_IMM64 instructions load valid
7945 * 'struct bpf_map *' into a register instead of user map_fd.
7946 * These pointers will be used later by verifier to validate map access.
7947 */
7948 return 0;
7949}
7950
7951/* drop refcnt of maps used by the rejected program */
58e2af8b 7952static void release_maps(struct bpf_verifier_env *env)
0246e64d 7953{
8bad74f9 7954 enum bpf_cgroup_storage_type stype;
0246e64d
AS
7955 int i;
7956
8bad74f9
RG
7957 for_each_cgroup_storage_type(stype) {
7958 if (!env->prog->aux->cgroup_storage[stype])
7959 continue;
de9cbbaa 7960 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
7961 env->prog->aux->cgroup_storage[stype]);
7962 }
de9cbbaa 7963
0246e64d
AS
7964 for (i = 0; i < env->used_map_cnt; i++)
7965 bpf_map_put(env->used_maps[i]);
7966}
7967
7968/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 7969static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
7970{
7971 struct bpf_insn *insn = env->prog->insnsi;
7972 int insn_cnt = env->prog->len;
7973 int i;
7974
7975 for (i = 0; i < insn_cnt; i++, insn++)
7976 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7977 insn->src_reg = 0;
7978}
7979
8041902d
AS
7980/* single env->prog->insni[off] instruction was replaced with the range
7981 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7982 * [0, off) and [off, end) to new locations, so the patched range stays zero
7983 */
b325fbca
JW
7984static int adjust_insn_aux_data(struct bpf_verifier_env *env,
7985 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
7986{
7987 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
7988 struct bpf_insn *insn = new_prog->insnsi;
7989 u32 prog_len;
c131187d 7990 int i;
8041902d 7991
b325fbca
JW
7992 /* aux info at OFF always needs adjustment, no matter fast path
7993 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
7994 * original insn at old prog.
7995 */
7996 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
7997
8041902d
AS
7998 if (cnt == 1)
7999 return 0;
b325fbca 8000 prog_len = new_prog->len;
fad953ce
KC
8001 new_data = vzalloc(array_size(prog_len,
8002 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8003 if (!new_data)
8004 return -ENOMEM;
8005 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8006 memcpy(new_data + off + cnt - 1, old_data + off,
8007 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8008 for (i = off; i < off + cnt - 1; i++) {
c131187d 8009 new_data[i].seen = true;
b325fbca
JW
8010 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8011 }
8041902d
AS
8012 env->insn_aux_data = new_data;
8013 vfree(old_data);
8014 return 0;
8015}
8016
cc8b0b92
AS
8017static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8018{
8019 int i;
8020
8021 if (len == 1)
8022 return;
4cb3d99c
JW
8023 /* NOTE: fake 'exit' subprog should be updated as well. */
8024 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8025 if (env->subprog_info[i].start <= off)
cc8b0b92 8026 continue;
9c8105bd 8027 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8028 }
8029}
8030
8041902d
AS
8031static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8032 const struct bpf_insn *patch, u32 len)
8033{
8034 struct bpf_prog *new_prog;
8035
8036 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8037 if (IS_ERR(new_prog)) {
8038 if (PTR_ERR(new_prog) == -ERANGE)
8039 verbose(env,
8040 "insn %d cannot be patched due to 16-bit range\n",
8041 env->insn_aux_data[off].orig_idx);
8041902d 8042 return NULL;
4f73379e 8043 }
b325fbca 8044 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8045 return NULL;
cc8b0b92 8046 adjust_subprog_starts(env, off, len);
8041902d
AS
8047 return new_prog;
8048}
8049
52875a04
JK
8050static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8051 u32 off, u32 cnt)
8052{
8053 int i, j;
8054
8055 /* find first prog starting at or after off (first to remove) */
8056 for (i = 0; i < env->subprog_cnt; i++)
8057 if (env->subprog_info[i].start >= off)
8058 break;
8059 /* find first prog starting at or after off + cnt (first to stay) */
8060 for (j = i; j < env->subprog_cnt; j++)
8061 if (env->subprog_info[j].start >= off + cnt)
8062 break;
8063 /* if j doesn't start exactly at off + cnt, we are just removing
8064 * the front of previous prog
8065 */
8066 if (env->subprog_info[j].start != off + cnt)
8067 j--;
8068
8069 if (j > i) {
8070 struct bpf_prog_aux *aux = env->prog->aux;
8071 int move;
8072
8073 /* move fake 'exit' subprog as well */
8074 move = env->subprog_cnt + 1 - j;
8075
8076 memmove(env->subprog_info + i,
8077 env->subprog_info + j,
8078 sizeof(*env->subprog_info) * move);
8079 env->subprog_cnt -= j - i;
8080
8081 /* remove func_info */
8082 if (aux->func_info) {
8083 move = aux->func_info_cnt - j;
8084
8085 memmove(aux->func_info + i,
8086 aux->func_info + j,
8087 sizeof(*aux->func_info) * move);
8088 aux->func_info_cnt -= j - i;
8089 /* func_info->insn_off is set after all code rewrites,
8090 * in adjust_btf_func() - no need to adjust
8091 */
8092 }
8093 } else {
8094 /* convert i from "first prog to remove" to "first to adjust" */
8095 if (env->subprog_info[i].start == off)
8096 i++;
8097 }
8098
8099 /* update fake 'exit' subprog as well */
8100 for (; i <= env->subprog_cnt; i++)
8101 env->subprog_info[i].start -= cnt;
8102
8103 return 0;
8104}
8105
8106static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8107 u32 cnt)
8108{
8109 struct bpf_prog *prog = env->prog;
8110 u32 i, l_off, l_cnt, nr_linfo;
8111 struct bpf_line_info *linfo;
8112
8113 nr_linfo = prog->aux->nr_linfo;
8114 if (!nr_linfo)
8115 return 0;
8116
8117 linfo = prog->aux->linfo;
8118
8119 /* find first line info to remove, count lines to be removed */
8120 for (i = 0; i < nr_linfo; i++)
8121 if (linfo[i].insn_off >= off)
8122 break;
8123
8124 l_off = i;
8125 l_cnt = 0;
8126 for (; i < nr_linfo; i++)
8127 if (linfo[i].insn_off < off + cnt)
8128 l_cnt++;
8129 else
8130 break;
8131
8132 /* First live insn doesn't match first live linfo, it needs to "inherit"
8133 * last removed linfo. prog is already modified, so prog->len == off
8134 * means no live instructions after (tail of the program was removed).
8135 */
8136 if (prog->len != off && l_cnt &&
8137 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8138 l_cnt--;
8139 linfo[--i].insn_off = off + cnt;
8140 }
8141
8142 /* remove the line info which refer to the removed instructions */
8143 if (l_cnt) {
8144 memmove(linfo + l_off, linfo + i,
8145 sizeof(*linfo) * (nr_linfo - i));
8146
8147 prog->aux->nr_linfo -= l_cnt;
8148 nr_linfo = prog->aux->nr_linfo;
8149 }
8150
8151 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8152 for (i = l_off; i < nr_linfo; i++)
8153 linfo[i].insn_off -= cnt;
8154
8155 /* fix up all subprogs (incl. 'exit') which start >= off */
8156 for (i = 0; i <= env->subprog_cnt; i++)
8157 if (env->subprog_info[i].linfo_idx > l_off) {
8158 /* program may have started in the removed region but
8159 * may not be fully removed
8160 */
8161 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8162 env->subprog_info[i].linfo_idx -= l_cnt;
8163 else
8164 env->subprog_info[i].linfo_idx = l_off;
8165 }
8166
8167 return 0;
8168}
8169
8170static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8171{
8172 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8173 unsigned int orig_prog_len = env->prog->len;
8174 int err;
8175
08ca90af
JK
8176 if (bpf_prog_is_dev_bound(env->prog->aux))
8177 bpf_prog_offload_remove_insns(env, off, cnt);
8178
52875a04
JK
8179 err = bpf_remove_insns(env->prog, off, cnt);
8180 if (err)
8181 return err;
8182
8183 err = adjust_subprog_starts_after_remove(env, off, cnt);
8184 if (err)
8185 return err;
8186
8187 err = bpf_adj_linfo_after_remove(env, off, cnt);
8188 if (err)
8189 return err;
8190
8191 memmove(aux_data + off, aux_data + off + cnt,
8192 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8193
8194 return 0;
8195}
8196
2a5418a1
DB
8197/* The verifier does more data flow analysis than llvm and will not
8198 * explore branches that are dead at run time. Malicious programs can
8199 * have dead code too. Therefore replace all dead at-run-time code
8200 * with 'ja -1'.
8201 *
8202 * Just nops are not optimal, e.g. if they would sit at the end of the
8203 * program and through another bug we would manage to jump there, then
8204 * we'd execute beyond program memory otherwise. Returning exception
8205 * code also wouldn't work since we can have subprogs where the dead
8206 * code could be located.
c131187d
AS
8207 */
8208static void sanitize_dead_code(struct bpf_verifier_env *env)
8209{
8210 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8211 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8212 struct bpf_insn *insn = env->prog->insnsi;
8213 const int insn_cnt = env->prog->len;
8214 int i;
8215
8216 for (i = 0; i < insn_cnt; i++) {
8217 if (aux_data[i].seen)
8218 continue;
2a5418a1 8219 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8220 }
8221}
8222
e2ae4ca2
JK
8223static bool insn_is_cond_jump(u8 code)
8224{
8225 u8 op;
8226
092ed096
JW
8227 if (BPF_CLASS(code) == BPF_JMP32)
8228 return true;
8229
e2ae4ca2
JK
8230 if (BPF_CLASS(code) != BPF_JMP)
8231 return false;
8232
8233 op = BPF_OP(code);
8234 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8235}
8236
8237static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8238{
8239 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8240 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8241 struct bpf_insn *insn = env->prog->insnsi;
8242 const int insn_cnt = env->prog->len;
8243 int i;
8244
8245 for (i = 0; i < insn_cnt; i++, insn++) {
8246 if (!insn_is_cond_jump(insn->code))
8247 continue;
8248
8249 if (!aux_data[i + 1].seen)
8250 ja.off = insn->off;
8251 else if (!aux_data[i + 1 + insn->off].seen)
8252 ja.off = 0;
8253 else
8254 continue;
8255
08ca90af
JK
8256 if (bpf_prog_is_dev_bound(env->prog->aux))
8257 bpf_prog_offload_replace_insn(env, i, &ja);
8258
e2ae4ca2
JK
8259 memcpy(insn, &ja, sizeof(ja));
8260 }
8261}
8262
52875a04
JK
8263static int opt_remove_dead_code(struct bpf_verifier_env *env)
8264{
8265 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8266 int insn_cnt = env->prog->len;
8267 int i, err;
8268
8269 for (i = 0; i < insn_cnt; i++) {
8270 int j;
8271
8272 j = 0;
8273 while (i + j < insn_cnt && !aux_data[i + j].seen)
8274 j++;
8275 if (!j)
8276 continue;
8277
8278 err = verifier_remove_insns(env, i, j);
8279 if (err)
8280 return err;
8281 insn_cnt = env->prog->len;
8282 }
8283
8284 return 0;
8285}
8286
a1b14abc
JK
8287static int opt_remove_nops(struct bpf_verifier_env *env)
8288{
8289 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8290 struct bpf_insn *insn = env->prog->insnsi;
8291 int insn_cnt = env->prog->len;
8292 int i, err;
8293
8294 for (i = 0; i < insn_cnt; i++) {
8295 if (memcmp(&insn[i], &ja, sizeof(ja)))
8296 continue;
8297
8298 err = verifier_remove_insns(env, i, 1);
8299 if (err)
8300 return err;
8301 insn_cnt--;
8302 i--;
8303 }
8304
8305 return 0;
8306}
8307
d6c2308c
JW
8308static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8309 const union bpf_attr *attr)
a4b1d3c1 8310{
d6c2308c 8311 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8312 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8313 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8314 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8315 struct bpf_prog *new_prog;
d6c2308c 8316 bool rnd_hi32;
a4b1d3c1 8317
d6c2308c 8318 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8319 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8320 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8321 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8322 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8323 for (i = 0; i < len; i++) {
8324 int adj_idx = i + delta;
8325 struct bpf_insn insn;
8326
d6c2308c
JW
8327 insn = insns[adj_idx];
8328 if (!aux[adj_idx].zext_dst) {
8329 u8 code, class;
8330 u32 imm_rnd;
8331
8332 if (!rnd_hi32)
8333 continue;
8334
8335 code = insn.code;
8336 class = BPF_CLASS(code);
8337 if (insn_no_def(&insn))
8338 continue;
8339
8340 /* NOTE: arg "reg" (the fourth one) is only used for
8341 * BPF_STX which has been ruled out in above
8342 * check, it is safe to pass NULL here.
8343 */
8344 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8345 if (class == BPF_LD &&
8346 BPF_MODE(code) == BPF_IMM)
8347 i++;
8348 continue;
8349 }
8350
8351 /* ctx load could be transformed into wider load. */
8352 if (class == BPF_LDX &&
8353 aux[adj_idx].ptr_type == PTR_TO_CTX)
8354 continue;
8355
8356 imm_rnd = get_random_int();
8357 rnd_hi32_patch[0] = insn;
8358 rnd_hi32_patch[1].imm = imm_rnd;
8359 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8360 patch = rnd_hi32_patch;
8361 patch_len = 4;
8362 goto apply_patch_buffer;
8363 }
8364
8365 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8366 continue;
8367
a4b1d3c1
JW
8368 zext_patch[0] = insn;
8369 zext_patch[1].dst_reg = insn.dst_reg;
8370 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8371 patch = zext_patch;
8372 patch_len = 2;
8373apply_patch_buffer:
8374 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8375 if (!new_prog)
8376 return -ENOMEM;
8377 env->prog = new_prog;
8378 insns = new_prog->insnsi;
8379 aux = env->insn_aux_data;
d6c2308c 8380 delta += patch_len - 1;
a4b1d3c1
JW
8381 }
8382
8383 return 0;
8384}
8385
c64b7983
JS
8386/* convert load instructions that access fields of a context type into a
8387 * sequence of instructions that access fields of the underlying structure:
8388 * struct __sk_buff -> struct sk_buff
8389 * struct bpf_sock_ops -> struct sock
9bac3d6d 8390 */
58e2af8b 8391static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8392{
00176a34 8393 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8394 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8395 const int insn_cnt = env->prog->len;
36bbef52 8396 struct bpf_insn insn_buf[16], *insn;
46f53a65 8397 u32 target_size, size_default, off;
9bac3d6d 8398 struct bpf_prog *new_prog;
d691f9e8 8399 enum bpf_access_type type;
f96da094 8400 bool is_narrower_load;
9bac3d6d 8401
b09928b9
DB
8402 if (ops->gen_prologue || env->seen_direct_write) {
8403 if (!ops->gen_prologue) {
8404 verbose(env, "bpf verifier is misconfigured\n");
8405 return -EINVAL;
8406 }
36bbef52
DB
8407 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8408 env->prog);
8409 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8410 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8411 return -EINVAL;
8412 } else if (cnt) {
8041902d 8413 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8414 if (!new_prog)
8415 return -ENOMEM;
8041902d 8416
36bbef52 8417 env->prog = new_prog;
3df126f3 8418 delta += cnt - 1;
36bbef52
DB
8419 }
8420 }
8421
c64b7983 8422 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8423 return 0;
8424
3df126f3 8425 insn = env->prog->insnsi + delta;
36bbef52 8426
9bac3d6d 8427 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8428 bpf_convert_ctx_access_t convert_ctx_access;
8429
62c7989b
DB
8430 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8431 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8432 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8433 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8434 type = BPF_READ;
62c7989b
DB
8435 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8436 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8437 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8438 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8439 type = BPF_WRITE;
8440 else
9bac3d6d
AS
8441 continue;
8442
af86ca4e
AS
8443 if (type == BPF_WRITE &&
8444 env->insn_aux_data[i + delta].sanitize_stack_off) {
8445 struct bpf_insn patch[] = {
8446 /* Sanitize suspicious stack slot with zero.
8447 * There are no memory dependencies for this store,
8448 * since it's only using frame pointer and immediate
8449 * constant of zero
8450 */
8451 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8452 env->insn_aux_data[i + delta].sanitize_stack_off,
8453 0),
8454 /* the original STX instruction will immediately
8455 * overwrite the same stack slot with appropriate value
8456 */
8457 *insn,
8458 };
8459
8460 cnt = ARRAY_SIZE(patch);
8461 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8462 if (!new_prog)
8463 return -ENOMEM;
8464
8465 delta += cnt - 1;
8466 env->prog = new_prog;
8467 insn = new_prog->insnsi + i + delta;
8468 continue;
8469 }
8470
c64b7983
JS
8471 switch (env->insn_aux_data[i + delta].ptr_type) {
8472 case PTR_TO_CTX:
8473 if (!ops->convert_ctx_access)
8474 continue;
8475 convert_ctx_access = ops->convert_ctx_access;
8476 break;
8477 case PTR_TO_SOCKET:
46f8bc92 8478 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8479 convert_ctx_access = bpf_sock_convert_ctx_access;
8480 break;
655a51e5
MKL
8481 case PTR_TO_TCP_SOCK:
8482 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8483 break;
fada7fdc
JL
8484 case PTR_TO_XDP_SOCK:
8485 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8486 break;
c64b7983 8487 default:
9bac3d6d 8488 continue;
c64b7983 8489 }
9bac3d6d 8490
31fd8581 8491 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8492 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8493
8494 /* If the read access is a narrower load of the field,
8495 * convert to a 4/8-byte load, to minimum program type specific
8496 * convert_ctx_access changes. If conversion is successful,
8497 * we will apply proper mask to the result.
8498 */
f96da094 8499 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8500 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8501 off = insn->off;
31fd8581 8502 if (is_narrower_load) {
f96da094
DB
8503 u8 size_code;
8504
8505 if (type == BPF_WRITE) {
61bd5218 8506 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8507 return -EINVAL;
8508 }
31fd8581 8509
f96da094 8510 size_code = BPF_H;
31fd8581
YS
8511 if (ctx_field_size == 4)
8512 size_code = BPF_W;
8513 else if (ctx_field_size == 8)
8514 size_code = BPF_DW;
f96da094 8515
bc23105c 8516 insn->off = off & ~(size_default - 1);
31fd8581
YS
8517 insn->code = BPF_LDX | BPF_MEM | size_code;
8518 }
f96da094
DB
8519
8520 target_size = 0;
c64b7983
JS
8521 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8522 &target_size);
f96da094
DB
8523 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8524 (ctx_field_size && !target_size)) {
61bd5218 8525 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8526 return -EINVAL;
8527 }
f96da094
DB
8528
8529 if (is_narrower_load && size < target_size) {
46f53a65
AI
8530 u8 shift = (off & (size_default - 1)) * 8;
8531
8532 if (ctx_field_size <= 4) {
8533 if (shift)
8534 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8535 insn->dst_reg,
8536 shift);
31fd8581 8537 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8538 (1 << size * 8) - 1);
46f53a65
AI
8539 } else {
8540 if (shift)
8541 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8542 insn->dst_reg,
8543 shift);
31fd8581 8544 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8545 (1ULL << size * 8) - 1);
46f53a65 8546 }
31fd8581 8547 }
9bac3d6d 8548
8041902d 8549 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8550 if (!new_prog)
8551 return -ENOMEM;
8552
3df126f3 8553 delta += cnt - 1;
9bac3d6d
AS
8554
8555 /* keep walking new program and skip insns we just inserted */
8556 env->prog = new_prog;
3df126f3 8557 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8558 }
8559
8560 return 0;
8561}
8562
1c2a088a
AS
8563static int jit_subprogs(struct bpf_verifier_env *env)
8564{
8565 struct bpf_prog *prog = env->prog, **func, *tmp;
8566 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8567 struct bpf_insn *insn;
1c2a088a 8568 void *old_bpf_func;
c454a46b 8569 int err;
1c2a088a 8570
f910cefa 8571 if (env->subprog_cnt <= 1)
1c2a088a
AS
8572 return 0;
8573
7105e828 8574 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8575 if (insn->code != (BPF_JMP | BPF_CALL) ||
8576 insn->src_reg != BPF_PSEUDO_CALL)
8577 continue;
c7a89784
DB
8578 /* Upon error here we cannot fall back to interpreter but
8579 * need a hard reject of the program. Thus -EFAULT is
8580 * propagated in any case.
8581 */
1c2a088a
AS
8582 subprog = find_subprog(env, i + insn->imm + 1);
8583 if (subprog < 0) {
8584 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8585 i + insn->imm + 1);
8586 return -EFAULT;
8587 }
8588 /* temporarily remember subprog id inside insn instead of
8589 * aux_data, since next loop will split up all insns into funcs
8590 */
f910cefa 8591 insn->off = subprog;
1c2a088a
AS
8592 /* remember original imm in case JIT fails and fallback
8593 * to interpreter will be needed
8594 */
8595 env->insn_aux_data[i].call_imm = insn->imm;
8596 /* point imm to __bpf_call_base+1 from JITs point of view */
8597 insn->imm = 1;
8598 }
8599
c454a46b
MKL
8600 err = bpf_prog_alloc_jited_linfo(prog);
8601 if (err)
8602 goto out_undo_insn;
8603
8604 err = -ENOMEM;
6396bb22 8605 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8606 if (!func)
c7a89784 8607 goto out_undo_insn;
1c2a088a 8608
f910cefa 8609 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8610 subprog_start = subprog_end;
4cb3d99c 8611 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8612
8613 len = subprog_end - subprog_start;
492ecee8
AS
8614 /* BPF_PROG_RUN doesn't call subprogs directly,
8615 * hence main prog stats include the runtime of subprogs.
8616 * subprogs don't have IDs and not reachable via prog_get_next_id
8617 * func[i]->aux->stats will never be accessed and stays NULL
8618 */
8619 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8620 if (!func[i])
8621 goto out_free;
8622 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8623 len * sizeof(struct bpf_insn));
4f74d809 8624 func[i]->type = prog->type;
1c2a088a 8625 func[i]->len = len;
4f74d809
DB
8626 if (bpf_prog_calc_tag(func[i]))
8627 goto out_free;
1c2a088a 8628 func[i]->is_func = 1;
ba64e7d8
YS
8629 func[i]->aux->func_idx = i;
8630 /* the btf and func_info will be freed only at prog->aux */
8631 func[i]->aux->btf = prog->aux->btf;
8632 func[i]->aux->func_info = prog->aux->func_info;
8633
1c2a088a
AS
8634 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8635 * Long term would need debug info to populate names
8636 */
8637 func[i]->aux->name[0] = 'F';
9c8105bd 8638 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 8639 func[i]->jit_requested = 1;
c454a46b
MKL
8640 func[i]->aux->linfo = prog->aux->linfo;
8641 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8642 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8643 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
8644 func[i] = bpf_int_jit_compile(func[i]);
8645 if (!func[i]->jited) {
8646 err = -ENOTSUPP;
8647 goto out_free;
8648 }
8649 cond_resched();
8650 }
8651 /* at this point all bpf functions were successfully JITed
8652 * now populate all bpf_calls with correct addresses and
8653 * run last pass of JIT
8654 */
f910cefa 8655 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8656 insn = func[i]->insnsi;
8657 for (j = 0; j < func[i]->len; j++, insn++) {
8658 if (insn->code != (BPF_JMP | BPF_CALL) ||
8659 insn->src_reg != BPF_PSEUDO_CALL)
8660 continue;
8661 subprog = insn->off;
0d306c31
PB
8662 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8663 __bpf_call_base;
1c2a088a 8664 }
2162fed4
SD
8665
8666 /* we use the aux data to keep a list of the start addresses
8667 * of the JITed images for each function in the program
8668 *
8669 * for some architectures, such as powerpc64, the imm field
8670 * might not be large enough to hold the offset of the start
8671 * address of the callee's JITed image from __bpf_call_base
8672 *
8673 * in such cases, we can lookup the start address of a callee
8674 * by using its subprog id, available from the off field of
8675 * the call instruction, as an index for this list
8676 */
8677 func[i]->aux->func = func;
8678 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 8679 }
f910cefa 8680 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8681 old_bpf_func = func[i]->bpf_func;
8682 tmp = bpf_int_jit_compile(func[i]);
8683 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8684 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 8685 err = -ENOTSUPP;
1c2a088a
AS
8686 goto out_free;
8687 }
8688 cond_resched();
8689 }
8690
8691 /* finally lock prog and jit images for all functions and
8692 * populate kallsysm
8693 */
f910cefa 8694 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8695 bpf_prog_lock_ro(func[i]);
8696 bpf_prog_kallsyms_add(func[i]);
8697 }
7105e828
DB
8698
8699 /* Last step: make now unused interpreter insns from main
8700 * prog consistent for later dump requests, so they can
8701 * later look the same as if they were interpreted only.
8702 */
8703 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
8704 if (insn->code != (BPF_JMP | BPF_CALL) ||
8705 insn->src_reg != BPF_PSEUDO_CALL)
8706 continue;
8707 insn->off = env->insn_aux_data[i].call_imm;
8708 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 8709 insn->imm = subprog;
7105e828
DB
8710 }
8711
1c2a088a
AS
8712 prog->jited = 1;
8713 prog->bpf_func = func[0]->bpf_func;
8714 prog->aux->func = func;
f910cefa 8715 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 8716 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
8717 return 0;
8718out_free:
f910cefa 8719 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
8720 if (func[i])
8721 bpf_jit_free(func[i]);
8722 kfree(func);
c7a89784 8723out_undo_insn:
1c2a088a
AS
8724 /* cleanup main prog to be interpreted */
8725 prog->jit_requested = 0;
8726 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8727 if (insn->code != (BPF_JMP | BPF_CALL) ||
8728 insn->src_reg != BPF_PSEUDO_CALL)
8729 continue;
8730 insn->off = 0;
8731 insn->imm = env->insn_aux_data[i].call_imm;
8732 }
c454a46b 8733 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
8734 return err;
8735}
8736
1ea47e01
AS
8737static int fixup_call_args(struct bpf_verifier_env *env)
8738{
19d28fbd 8739#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8740 struct bpf_prog *prog = env->prog;
8741 struct bpf_insn *insn = prog->insnsi;
8742 int i, depth;
19d28fbd 8743#endif
e4052d06 8744 int err = 0;
1ea47e01 8745
e4052d06
QM
8746 if (env->prog->jit_requested &&
8747 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
8748 err = jit_subprogs(env);
8749 if (err == 0)
1c2a088a 8750 return 0;
c7a89784
DB
8751 if (err == -EFAULT)
8752 return err;
19d28fbd
DM
8753 }
8754#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8755 for (i = 0; i < prog->len; i++, insn++) {
8756 if (insn->code != (BPF_JMP | BPF_CALL) ||
8757 insn->src_reg != BPF_PSEUDO_CALL)
8758 continue;
8759 depth = get_callee_stack_depth(env, insn, i);
8760 if (depth < 0)
8761 return depth;
8762 bpf_patch_call_args(insn, depth);
8763 }
19d28fbd
DM
8764 err = 0;
8765#endif
8766 return err;
1ea47e01
AS
8767}
8768
79741b3b 8769/* fixup insn->imm field of bpf_call instructions
81ed18ab 8770 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
8771 *
8772 * this function is called after eBPF program passed verification
8773 */
79741b3b 8774static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 8775{
79741b3b
AS
8776 struct bpf_prog *prog = env->prog;
8777 struct bpf_insn *insn = prog->insnsi;
e245c5c6 8778 const struct bpf_func_proto *fn;
79741b3b 8779 const int insn_cnt = prog->len;
09772d92 8780 const struct bpf_map_ops *ops;
c93552c4 8781 struct bpf_insn_aux_data *aux;
81ed18ab
AS
8782 struct bpf_insn insn_buf[16];
8783 struct bpf_prog *new_prog;
8784 struct bpf_map *map_ptr;
8785 int i, cnt, delta = 0;
e245c5c6 8786
79741b3b 8787 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
8788 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8789 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8790 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 8791 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
8792 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8793 struct bpf_insn mask_and_div[] = {
8794 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8795 /* Rx div 0 -> 0 */
8796 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8797 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8798 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8799 *insn,
8800 };
8801 struct bpf_insn mask_and_mod[] = {
8802 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8803 /* Rx mod 0 -> Rx */
8804 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8805 *insn,
8806 };
8807 struct bpf_insn *patchlet;
8808
8809 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8810 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8811 patchlet = mask_and_div + (is64 ? 1 : 0);
8812 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8813 } else {
8814 patchlet = mask_and_mod + (is64 ? 1 : 0);
8815 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8816 }
8817
8818 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
8819 if (!new_prog)
8820 return -ENOMEM;
8821
8822 delta += cnt - 1;
8823 env->prog = prog = new_prog;
8824 insn = new_prog->insnsi + i + delta;
8825 continue;
8826 }
8827
e0cea7ce
DB
8828 if (BPF_CLASS(insn->code) == BPF_LD &&
8829 (BPF_MODE(insn->code) == BPF_ABS ||
8830 BPF_MODE(insn->code) == BPF_IND)) {
8831 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8832 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8833 verbose(env, "bpf verifier is misconfigured\n");
8834 return -EINVAL;
8835 }
8836
8837 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8838 if (!new_prog)
8839 return -ENOMEM;
8840
8841 delta += cnt - 1;
8842 env->prog = prog = new_prog;
8843 insn = new_prog->insnsi + i + delta;
8844 continue;
8845 }
8846
979d63d5
DB
8847 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8848 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8849 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8850 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8851 struct bpf_insn insn_buf[16];
8852 struct bpf_insn *patch = &insn_buf[0];
8853 bool issrc, isneg;
8854 u32 off_reg;
8855
8856 aux = &env->insn_aux_data[i + delta];
3612af78
DB
8857 if (!aux->alu_state ||
8858 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
8859 continue;
8860
8861 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8862 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8863 BPF_ALU_SANITIZE_SRC;
8864
8865 off_reg = issrc ? insn->src_reg : insn->dst_reg;
8866 if (isneg)
8867 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8868 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8869 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8870 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8871 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8872 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8873 if (issrc) {
8874 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8875 off_reg);
8876 insn->src_reg = BPF_REG_AX;
8877 } else {
8878 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8879 BPF_REG_AX);
8880 }
8881 if (isneg)
8882 insn->code = insn->code == code_add ?
8883 code_sub : code_add;
8884 *patch++ = *insn;
8885 if (issrc && isneg)
8886 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8887 cnt = patch - insn_buf;
8888
8889 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8890 if (!new_prog)
8891 return -ENOMEM;
8892
8893 delta += cnt - 1;
8894 env->prog = prog = new_prog;
8895 insn = new_prog->insnsi + i + delta;
8896 continue;
8897 }
8898
79741b3b
AS
8899 if (insn->code != (BPF_JMP | BPF_CALL))
8900 continue;
cc8b0b92
AS
8901 if (insn->src_reg == BPF_PSEUDO_CALL)
8902 continue;
e245c5c6 8903
79741b3b
AS
8904 if (insn->imm == BPF_FUNC_get_route_realm)
8905 prog->dst_needed = 1;
8906 if (insn->imm == BPF_FUNC_get_prandom_u32)
8907 bpf_user_rnd_init_once();
9802d865
JB
8908 if (insn->imm == BPF_FUNC_override_return)
8909 prog->kprobe_override = 1;
79741b3b 8910 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
8911 /* If we tail call into other programs, we
8912 * cannot make any assumptions since they can
8913 * be replaced dynamically during runtime in
8914 * the program array.
8915 */
8916 prog->cb_access = 1;
80a58d02 8917 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 8918 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 8919
79741b3b
AS
8920 /* mark bpf_tail_call as different opcode to avoid
8921 * conditional branch in the interpeter for every normal
8922 * call and to prevent accidental JITing by JIT compiler
8923 * that doesn't support bpf_tail_call yet
e245c5c6 8924 */
79741b3b 8925 insn->imm = 0;
71189fa9 8926 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 8927
c93552c4
DB
8928 aux = &env->insn_aux_data[i + delta];
8929 if (!bpf_map_ptr_unpriv(aux))
8930 continue;
8931
b2157399
AS
8932 /* instead of changing every JIT dealing with tail_call
8933 * emit two extra insns:
8934 * if (index >= max_entries) goto out;
8935 * index &= array->index_mask;
8936 * to avoid out-of-bounds cpu speculation
8937 */
c93552c4 8938 if (bpf_map_ptr_poisoned(aux)) {
40950343 8939 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
8940 return -EINVAL;
8941 }
c93552c4
DB
8942
8943 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
8944 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8945 map_ptr->max_entries, 2);
8946 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8947 container_of(map_ptr,
8948 struct bpf_array,
8949 map)->index_mask);
8950 insn_buf[2] = *insn;
8951 cnt = 3;
8952 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8953 if (!new_prog)
8954 return -ENOMEM;
8955
8956 delta += cnt - 1;
8957 env->prog = prog = new_prog;
8958 insn = new_prog->insnsi + i + delta;
79741b3b
AS
8959 continue;
8960 }
e245c5c6 8961
89c63074 8962 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
8963 * and other inlining handlers are currently limited to 64 bit
8964 * only.
89c63074 8965 */
60b58afc 8966 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
8967 (insn->imm == BPF_FUNC_map_lookup_elem ||
8968 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
8969 insn->imm == BPF_FUNC_map_delete_elem ||
8970 insn->imm == BPF_FUNC_map_push_elem ||
8971 insn->imm == BPF_FUNC_map_pop_elem ||
8972 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
8973 aux = &env->insn_aux_data[i + delta];
8974 if (bpf_map_ptr_poisoned(aux))
8975 goto patch_call_imm;
8976
8977 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
8978 ops = map_ptr->ops;
8979 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8980 ops->map_gen_lookup) {
8981 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8982 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8983 verbose(env, "bpf verifier is misconfigured\n");
8984 return -EINVAL;
8985 }
81ed18ab 8986
09772d92
DB
8987 new_prog = bpf_patch_insn_data(env, i + delta,
8988 insn_buf, cnt);
8989 if (!new_prog)
8990 return -ENOMEM;
81ed18ab 8991
09772d92
DB
8992 delta += cnt - 1;
8993 env->prog = prog = new_prog;
8994 insn = new_prog->insnsi + i + delta;
8995 continue;
8996 }
81ed18ab 8997
09772d92
DB
8998 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8999 (void *(*)(struct bpf_map *map, void *key))NULL));
9000 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9001 (int (*)(struct bpf_map *map, void *key))NULL));
9002 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9003 (int (*)(struct bpf_map *map, void *key, void *value,
9004 u64 flags))NULL));
84430d42
DB
9005 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9006 (int (*)(struct bpf_map *map, void *value,
9007 u64 flags))NULL));
9008 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9009 (int (*)(struct bpf_map *map, void *value))NULL));
9010 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9011 (int (*)(struct bpf_map *map, void *value))NULL));
9012
09772d92
DB
9013 switch (insn->imm) {
9014 case BPF_FUNC_map_lookup_elem:
9015 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9016 __bpf_call_base;
9017 continue;
9018 case BPF_FUNC_map_update_elem:
9019 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9020 __bpf_call_base;
9021 continue;
9022 case BPF_FUNC_map_delete_elem:
9023 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9024 __bpf_call_base;
9025 continue;
84430d42
DB
9026 case BPF_FUNC_map_push_elem:
9027 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9028 __bpf_call_base;
9029 continue;
9030 case BPF_FUNC_map_pop_elem:
9031 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9032 __bpf_call_base;
9033 continue;
9034 case BPF_FUNC_map_peek_elem:
9035 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9036 __bpf_call_base;
9037 continue;
09772d92 9038 }
81ed18ab 9039
09772d92 9040 goto patch_call_imm;
81ed18ab
AS
9041 }
9042
9043patch_call_imm:
5e43f899 9044 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9045 /* all functions that have prototype and verifier allowed
9046 * programs to call them, must be real in-kernel functions
9047 */
9048 if (!fn->func) {
61bd5218
JK
9049 verbose(env,
9050 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9051 func_id_name(insn->imm), insn->imm);
9052 return -EFAULT;
e245c5c6 9053 }
79741b3b 9054 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9055 }
e245c5c6 9056
79741b3b
AS
9057 return 0;
9058}
e245c5c6 9059
58e2af8b 9060static void free_states(struct bpf_verifier_env *env)
f1bca824 9061{
58e2af8b 9062 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9063 int i;
9064
9f4686c4
AS
9065 sl = env->free_list;
9066 while (sl) {
9067 sln = sl->next;
9068 free_verifier_state(&sl->state, false);
9069 kfree(sl);
9070 sl = sln;
9071 }
9072
f1bca824
AS
9073 if (!env->explored_states)
9074 return;
9075
dc2a4ebc 9076 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9077 sl = env->explored_states[i];
9078
a8f500af
AS
9079 while (sl) {
9080 sln = sl->next;
9081 free_verifier_state(&sl->state, false);
9082 kfree(sl);
9083 sl = sln;
9084 }
f1bca824
AS
9085 }
9086
71dde681 9087 kvfree(env->explored_states);
f1bca824
AS
9088}
9089
06ee7115
AS
9090static void print_verification_stats(struct bpf_verifier_env *env)
9091{
9092 int i;
9093
9094 if (env->log.level & BPF_LOG_STATS) {
9095 verbose(env, "verification time %lld usec\n",
9096 div_u64(env->verification_time, 1000));
9097 verbose(env, "stack depth ");
9098 for (i = 0; i < env->subprog_cnt; i++) {
9099 u32 depth = env->subprog_info[i].stack_depth;
9100
9101 verbose(env, "%d", depth);
9102 if (i + 1 < env->subprog_cnt)
9103 verbose(env, "+");
9104 }
9105 verbose(env, "\n");
9106 }
9107 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9108 "total_states %d peak_states %d mark_read %d\n",
9109 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9110 env->max_states_per_insn, env->total_states,
9111 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9112}
9113
838e9690
YS
9114int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9115 union bpf_attr __user *uattr)
51580e79 9116{
06ee7115 9117 u64 start_time = ktime_get_ns();
58e2af8b 9118 struct bpf_verifier_env *env;
b9193c1b 9119 struct bpf_verifier_log *log;
9e4c24e7 9120 int i, len, ret = -EINVAL;
e2ae4ca2 9121 bool is_priv;
51580e79 9122
eba0c929
AB
9123 /* no program is valid */
9124 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9125 return -EINVAL;
9126
58e2af8b 9127 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9128 * allocate/free it every time bpf_check() is called
9129 */
58e2af8b 9130 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9131 if (!env)
9132 return -ENOMEM;
61bd5218 9133 log = &env->log;
cbd35700 9134
9e4c24e7 9135 len = (*prog)->len;
fad953ce 9136 env->insn_aux_data =
9e4c24e7 9137 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9138 ret = -ENOMEM;
9139 if (!env->insn_aux_data)
9140 goto err_free_env;
9e4c24e7
JK
9141 for (i = 0; i < len; i++)
9142 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9143 env->prog = *prog;
00176a34 9144 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9145 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9146
cbd35700 9147 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9148 if (!is_priv)
9149 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9150
9151 if (attr->log_level || attr->log_buf || attr->log_size) {
9152 /* user requested verbose verifier output
9153 * and supplied buffer to store the verification trace
9154 */
e7bf8249
JK
9155 log->level = attr->log_level;
9156 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9157 log->len_total = attr->log_size;
cbd35700
AS
9158
9159 ret = -EINVAL;
e7bf8249 9160 /* log attributes have to be sane */
7a9f5c65 9161 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9162 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9163 goto err_unlock;
cbd35700 9164 }
1ad2f583
DB
9165
9166 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9167 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9168 env->strict_alignment = true;
e9ee9efc
DM
9169 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9170 env->strict_alignment = false;
cbd35700 9171
e2ae4ca2
JK
9172 env->allow_ptr_leaks = is_priv;
9173
f4e3ec0d
JK
9174 ret = replace_map_fd_with_map_ptr(env);
9175 if (ret < 0)
9176 goto skip_full_check;
9177
cae1927c 9178 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9179 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9180 if (ret)
f4e3ec0d 9181 goto skip_full_check;
ab3f0063
JK
9182 }
9183
dc2a4ebc 9184 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9185 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9186 GFP_USER);
9187 ret = -ENOMEM;
9188 if (!env->explored_states)
9189 goto skip_full_check;
9190
d9762e84 9191 ret = check_subprogs(env);
475fb78f
AS
9192 if (ret < 0)
9193 goto skip_full_check;
9194
c454a46b 9195 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9196 if (ret < 0)
9197 goto skip_full_check;
9198
d9762e84
MKL
9199 ret = check_cfg(env);
9200 if (ret < 0)
9201 goto skip_full_check;
9202
17a52670 9203 ret = do_check(env);
8c01c4f8
CG
9204 if (env->cur_state) {
9205 free_verifier_state(env->cur_state, true);
9206 env->cur_state = NULL;
9207 }
cbd35700 9208
c941ce9c
QM
9209 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9210 ret = bpf_prog_offload_finalize(env);
9211
0246e64d 9212skip_full_check:
638f5b90 9213 while (!pop_stack(env, NULL, NULL));
f1bca824 9214 free_states(env);
0246e64d 9215
c131187d 9216 if (ret == 0)
9b38c405 9217 ret = check_max_stack_depth(env);
c131187d 9218
9b38c405 9219 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9220 if (is_priv) {
9221 if (ret == 0)
9222 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9223 if (ret == 0)
9224 ret = opt_remove_dead_code(env);
a1b14abc
JK
9225 if (ret == 0)
9226 ret = opt_remove_nops(env);
52875a04
JK
9227 } else {
9228 if (ret == 0)
9229 sanitize_dead_code(env);
e2ae4ca2
JK
9230 }
9231
9bac3d6d
AS
9232 if (ret == 0)
9233 /* program is valid, convert *(u32*)(ctx + off) accesses */
9234 ret = convert_ctx_accesses(env);
9235
e245c5c6 9236 if (ret == 0)
79741b3b 9237 ret = fixup_bpf_calls(env);
e245c5c6 9238
a4b1d3c1
JW
9239 /* do 32-bit optimization after insn patching has done so those patched
9240 * insns could be handled correctly.
9241 */
d6c2308c
JW
9242 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9243 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9244 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9245 : false;
a4b1d3c1
JW
9246 }
9247
1ea47e01
AS
9248 if (ret == 0)
9249 ret = fixup_call_args(env);
9250
06ee7115
AS
9251 env->verification_time = ktime_get_ns() - start_time;
9252 print_verification_stats(env);
9253
a2a7d570 9254 if (log->level && bpf_verifier_log_full(log))
cbd35700 9255 ret = -ENOSPC;
a2a7d570 9256 if (log->level && !log->ubuf) {
cbd35700 9257 ret = -EFAULT;
a2a7d570 9258 goto err_release_maps;
cbd35700
AS
9259 }
9260
0246e64d
AS
9261 if (ret == 0 && env->used_map_cnt) {
9262 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9263 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9264 sizeof(env->used_maps[0]),
9265 GFP_KERNEL);
0246e64d 9266
9bac3d6d 9267 if (!env->prog->aux->used_maps) {
0246e64d 9268 ret = -ENOMEM;
a2a7d570 9269 goto err_release_maps;
0246e64d
AS
9270 }
9271
9bac3d6d 9272 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9273 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9274 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9275
9276 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9277 * bpf_ld_imm64 instructions
9278 */
9279 convert_pseudo_ld_imm64(env);
9280 }
cbd35700 9281
ba64e7d8
YS
9282 if (ret == 0)
9283 adjust_btf_func(env);
9284
a2a7d570 9285err_release_maps:
9bac3d6d 9286 if (!env->prog->aux->used_maps)
0246e64d 9287 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9288 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9289 */
9290 release_maps(env);
9bac3d6d 9291 *prog = env->prog;
3df126f3 9292err_unlock:
45a73c17
AS
9293 if (!is_priv)
9294 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9295 vfree(env->insn_aux_data);
9296err_free_env:
9297 kfree(env);
51580e79
AS
9298 return ret;
9299}