]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'Do not limit cb_flags when creating child sk'
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
33ff9823
DB
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
435faee1 233 bool raw_mode;
36bbef52 234 bool pkt_access;
435faee1
DB
235 int regno;
236 int access_size;
457f4436 237 int mem_size;
10060503 238 u64 msize_max_value;
1b986589 239 int ref_obj_id;
d83525ca 240 int func_id;
33ff9823
DB
241};
242
8580ac94
AS
243struct btf *btf_vmlinux;
244
cbd35700
AS
245static DEFINE_MUTEX(bpf_verifier_lock);
246
d9762e84
MKL
247static const struct bpf_line_info *
248find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249{
250 const struct bpf_line_info *linfo;
251 const struct bpf_prog *prog;
252 u32 i, nr_linfo;
253
254 prog = env->prog;
255 nr_linfo = prog->aux->nr_linfo;
256
257 if (!nr_linfo || insn_off >= prog->len)
258 return NULL;
259
260 linfo = prog->aux->linfo;
261 for (i = 1; i < nr_linfo; i++)
262 if (insn_off < linfo[i].insn_off)
263 break;
264
265 return &linfo[i - 1];
266}
267
77d2e05a
MKL
268void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 va_list args)
cbd35700 270{
a2a7d570 271 unsigned int n;
cbd35700 272
a2a7d570 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
274
275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 "verifier log line truncated - local buffer too short\n");
277
278 n = min(log->len_total - log->len_used - 1, n);
279 log->kbuf[n] = '\0';
280
8580ac94
AS
281 if (log->level == BPF_LOG_KERNEL) {
282 pr_err("BPF:%s\n", log->kbuf);
283 return;
284 }
a2a7d570
JK
285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 log->len_used += n;
287 else
288 log->ubuf = NULL;
cbd35700 289}
abe08840 290
6f8a57cc
AN
291static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292{
293 char zero = 0;
294
295 if (!bpf_verifier_log_needed(log))
296 return;
297
298 log->len_used = new_pos;
299 if (put_user(zero, log->ubuf + new_pos))
300 log->ubuf = NULL;
301}
302
abe08840
JO
303/* log_level controls verbosity level of eBPF verifier.
304 * bpf_verifier_log_write() is used to dump the verification trace to the log,
305 * so the user can figure out what's wrong with the program
430e68d1 306 */
abe08840
JO
307__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 const char *fmt, ...)
309{
310 va_list args;
311
77d2e05a
MKL
312 if (!bpf_verifier_log_needed(&env->log))
313 return;
314
abe08840 315 va_start(args, fmt);
77d2e05a 316 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
317 va_end(args);
318}
319EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320
321__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322{
77d2e05a 323 struct bpf_verifier_env *env = private_data;
abe08840
JO
324 va_list args;
325
77d2e05a
MKL
326 if (!bpf_verifier_log_needed(&env->log))
327 return;
328
abe08840 329 va_start(args, fmt);
77d2e05a 330 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
331 va_end(args);
332}
cbd35700 333
9e15db66
AS
334__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 const char *fmt, ...)
336{
337 va_list args;
338
339 if (!bpf_verifier_log_needed(log))
340 return;
341
342 va_start(args, fmt);
343 bpf_verifier_vlog(log, fmt, args);
344 va_end(args);
345}
346
d9762e84
MKL
347static const char *ltrim(const char *s)
348{
349 while (isspace(*s))
350 s++;
351
352 return s;
353}
354
355__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 u32 insn_off,
357 const char *prefix_fmt, ...)
358{
359 const struct bpf_line_info *linfo;
360
361 if (!bpf_verifier_log_needed(&env->log))
362 return;
363
364 linfo = find_linfo(env, insn_off);
365 if (!linfo || linfo == env->prev_linfo)
366 return;
367
368 if (prefix_fmt) {
369 va_list args;
370
371 va_start(args, prefix_fmt);
372 bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 va_end(args);
374 }
375
376 verbose(env, "%s\n",
377 ltrim(btf_name_by_offset(env->prog->aux->btf,
378 linfo->line_off)));
379
380 env->prev_linfo = linfo;
381}
382
de8f3a83
DB
383static bool type_is_pkt_pointer(enum bpf_reg_type type)
384{
385 return type == PTR_TO_PACKET ||
386 type == PTR_TO_PACKET_META;
387}
388
46f8bc92
MKL
389static bool type_is_sk_pointer(enum bpf_reg_type type)
390{
391 return type == PTR_TO_SOCKET ||
655a51e5 392 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
393 type == PTR_TO_TCP_SOCK ||
394 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
395}
396
cac616db
JF
397static bool reg_type_not_null(enum bpf_reg_type type)
398{
399 return type == PTR_TO_SOCKET ||
400 type == PTR_TO_TCP_SOCK ||
401 type == PTR_TO_MAP_VALUE ||
01c66c48 402 type == PTR_TO_SOCK_COMMON;
cac616db
JF
403}
404
840b9615
JS
405static bool reg_type_may_be_null(enum bpf_reg_type type)
406{
fd978bf7 407 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 408 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 409 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 410 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 411 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
412 type == PTR_TO_MEM_OR_NULL ||
413 type == PTR_TO_RDONLY_BUF_OR_NULL ||
414 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
415}
416
d83525ca
AS
417static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
418{
419 return reg->type == PTR_TO_MAP_VALUE &&
420 map_value_has_spin_lock(reg->map_ptr);
421}
422
cba368c1
MKL
423static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
424{
425 return type == PTR_TO_SOCKET ||
426 type == PTR_TO_SOCKET_OR_NULL ||
427 type == PTR_TO_TCP_SOCK ||
457f4436
AN
428 type == PTR_TO_TCP_SOCK_OR_NULL ||
429 type == PTR_TO_MEM ||
430 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
431}
432
1b986589 433static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 434{
1b986589 435 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
436}
437
fd1b0d60
LB
438static bool arg_type_may_be_null(enum bpf_arg_type type)
439{
440 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
441 type == ARG_PTR_TO_MEM_OR_NULL ||
442 type == ARG_PTR_TO_CTX_OR_NULL ||
443 type == ARG_PTR_TO_SOCKET_OR_NULL ||
444 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
445}
446
fd978bf7
JS
447/* Determine whether the function releases some resources allocated by another
448 * function call. The first reference type argument will be assumed to be
449 * released by release_reference().
450 */
451static bool is_release_function(enum bpf_func_id func_id)
452{
457f4436
AN
453 return func_id == BPF_FUNC_sk_release ||
454 func_id == BPF_FUNC_ringbuf_submit ||
455 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
456}
457
64d85290 458static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
459{
460 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 461 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 462 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
463 func_id == BPF_FUNC_map_lookup_elem ||
464 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
465}
466
467static bool is_acquire_function(enum bpf_func_id func_id,
468 const struct bpf_map *map)
469{
470 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
471
472 if (func_id == BPF_FUNC_sk_lookup_tcp ||
473 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
474 func_id == BPF_FUNC_skc_lookup_tcp ||
475 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
476 return true;
477
478 if (func_id == BPF_FUNC_map_lookup_elem &&
479 (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 map_type == BPF_MAP_TYPE_SOCKHASH))
481 return true;
482
483 return false;
46f8bc92
MKL
484}
485
1b986589
MKL
486static bool is_ptr_cast_function(enum bpf_func_id func_id)
487{
488 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
489 func_id == BPF_FUNC_sk_fullsock ||
490 func_id == BPF_FUNC_skc_to_tcp_sock ||
491 func_id == BPF_FUNC_skc_to_tcp6_sock ||
492 func_id == BPF_FUNC_skc_to_udp6_sock ||
493 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
494 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
495}
496
17a52670
AS
497/* string representation of 'enum bpf_reg_type' */
498static const char * const reg_type_str[] = {
499 [NOT_INIT] = "?",
f1174f77 500 [SCALAR_VALUE] = "inv",
17a52670
AS
501 [PTR_TO_CTX] = "ctx",
502 [CONST_PTR_TO_MAP] = "map_ptr",
503 [PTR_TO_MAP_VALUE] = "map_value",
504 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 505 [PTR_TO_STACK] = "fp",
969bf05e 506 [PTR_TO_PACKET] = "pkt",
de8f3a83 507 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 508 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 509 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
510 [PTR_TO_SOCKET] = "sock",
511 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
512 [PTR_TO_SOCK_COMMON] = "sock_common",
513 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
514 [PTR_TO_TCP_SOCK] = "tcp_sock",
515 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 516 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 517 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 518 [PTR_TO_BTF_ID] = "ptr_",
b121b341 519 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
457f4436
AN
520 [PTR_TO_MEM] = "mem",
521 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
522 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
523 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
524 [PTR_TO_RDWR_BUF] = "rdwr_buf",
525 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
526};
527
8efea21d
EC
528static char slot_type_char[] = {
529 [STACK_INVALID] = '?',
530 [STACK_SPILL] = 'r',
531 [STACK_MISC] = 'm',
532 [STACK_ZERO] = '0',
533};
534
4e92024a
AS
535static void print_liveness(struct bpf_verifier_env *env,
536 enum bpf_reg_liveness live)
537{
9242b5f5 538 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
539 verbose(env, "_");
540 if (live & REG_LIVE_READ)
541 verbose(env, "r");
542 if (live & REG_LIVE_WRITTEN)
543 verbose(env, "w");
9242b5f5
AS
544 if (live & REG_LIVE_DONE)
545 verbose(env, "D");
4e92024a
AS
546}
547
f4d7e40a
AS
548static struct bpf_func_state *func(struct bpf_verifier_env *env,
549 const struct bpf_reg_state *reg)
550{
551 struct bpf_verifier_state *cur = env->cur_state;
552
553 return cur->frame[reg->frameno];
554}
555
9e15db66
AS
556const char *kernel_type_name(u32 id)
557{
558 return btf_name_by_offset(btf_vmlinux,
559 btf_type_by_id(btf_vmlinux, id)->name_off);
560}
561
61bd5218 562static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 563 const struct bpf_func_state *state)
17a52670 564{
f4d7e40a 565 const struct bpf_reg_state *reg;
17a52670
AS
566 enum bpf_reg_type t;
567 int i;
568
f4d7e40a
AS
569 if (state->frameno)
570 verbose(env, " frame%d:", state->frameno);
17a52670 571 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
572 reg = &state->regs[i];
573 t = reg->type;
17a52670
AS
574 if (t == NOT_INIT)
575 continue;
4e92024a
AS
576 verbose(env, " R%d", i);
577 print_liveness(env, reg->live);
578 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
579 if (t == SCALAR_VALUE && reg->precise)
580 verbose(env, "P");
f1174f77
EC
581 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
582 tnum_is_const(reg->var_off)) {
583 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 584 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 585 } else {
b121b341 586 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
9e15db66 587 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
588 verbose(env, "(id=%d", reg->id);
589 if (reg_type_may_be_refcounted_or_null(t))
590 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 591 if (t != SCALAR_VALUE)
61bd5218 592 verbose(env, ",off=%d", reg->off);
de8f3a83 593 if (type_is_pkt_pointer(t))
61bd5218 594 verbose(env, ",r=%d", reg->range);
f1174f77
EC
595 else if (t == CONST_PTR_TO_MAP ||
596 t == PTR_TO_MAP_VALUE ||
597 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 598 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
599 reg->map_ptr->key_size,
600 reg->map_ptr->value_size);
7d1238f2
EC
601 if (tnum_is_const(reg->var_off)) {
602 /* Typically an immediate SCALAR_VALUE, but
603 * could be a pointer whose offset is too big
604 * for reg->off
605 */
61bd5218 606 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
607 } else {
608 if (reg->smin_value != reg->umin_value &&
609 reg->smin_value != S64_MIN)
61bd5218 610 verbose(env, ",smin_value=%lld",
7d1238f2
EC
611 (long long)reg->smin_value);
612 if (reg->smax_value != reg->umax_value &&
613 reg->smax_value != S64_MAX)
61bd5218 614 verbose(env, ",smax_value=%lld",
7d1238f2
EC
615 (long long)reg->smax_value);
616 if (reg->umin_value != 0)
61bd5218 617 verbose(env, ",umin_value=%llu",
7d1238f2
EC
618 (unsigned long long)reg->umin_value);
619 if (reg->umax_value != U64_MAX)
61bd5218 620 verbose(env, ",umax_value=%llu",
7d1238f2
EC
621 (unsigned long long)reg->umax_value);
622 if (!tnum_is_unknown(reg->var_off)) {
623 char tn_buf[48];
f1174f77 624
7d1238f2 625 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 626 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 627 }
3f50f132
JF
628 if (reg->s32_min_value != reg->smin_value &&
629 reg->s32_min_value != S32_MIN)
630 verbose(env, ",s32_min_value=%d",
631 (int)(reg->s32_min_value));
632 if (reg->s32_max_value != reg->smax_value &&
633 reg->s32_max_value != S32_MAX)
634 verbose(env, ",s32_max_value=%d",
635 (int)(reg->s32_max_value));
636 if (reg->u32_min_value != reg->umin_value &&
637 reg->u32_min_value != U32_MIN)
638 verbose(env, ",u32_min_value=%d",
639 (int)(reg->u32_min_value));
640 if (reg->u32_max_value != reg->umax_value &&
641 reg->u32_max_value != U32_MAX)
642 verbose(env, ",u32_max_value=%d",
643 (int)(reg->u32_max_value));
f1174f77 644 }
61bd5218 645 verbose(env, ")");
f1174f77 646 }
17a52670 647 }
638f5b90 648 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
649 char types_buf[BPF_REG_SIZE + 1];
650 bool valid = false;
651 int j;
652
653 for (j = 0; j < BPF_REG_SIZE; j++) {
654 if (state->stack[i].slot_type[j] != STACK_INVALID)
655 valid = true;
656 types_buf[j] = slot_type_char[
657 state->stack[i].slot_type[j]];
658 }
659 types_buf[BPF_REG_SIZE] = 0;
660 if (!valid)
661 continue;
662 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
663 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
664 if (state->stack[i].slot_type[0] == STACK_SPILL) {
665 reg = &state->stack[i].spilled_ptr;
666 t = reg->type;
667 verbose(env, "=%s", reg_type_str[t]);
668 if (t == SCALAR_VALUE && reg->precise)
669 verbose(env, "P");
670 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
671 verbose(env, "%lld", reg->var_off.value + reg->off);
672 } else {
8efea21d 673 verbose(env, "=%s", types_buf);
b5dc0163 674 }
17a52670 675 }
fd978bf7
JS
676 if (state->acquired_refs && state->refs[0].id) {
677 verbose(env, " refs=%d", state->refs[0].id);
678 for (i = 1; i < state->acquired_refs; i++)
679 if (state->refs[i].id)
680 verbose(env, ",%d", state->refs[i].id);
681 }
61bd5218 682 verbose(env, "\n");
17a52670
AS
683}
684
84dbf350
JS
685#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
686static int copy_##NAME##_state(struct bpf_func_state *dst, \
687 const struct bpf_func_state *src) \
688{ \
689 if (!src->FIELD) \
690 return 0; \
691 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
692 /* internal bug, make state invalid to reject the program */ \
693 memset(dst, 0, sizeof(*dst)); \
694 return -EFAULT; \
695 } \
696 memcpy(dst->FIELD, src->FIELD, \
697 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
698 return 0; \
638f5b90 699}
fd978bf7
JS
700/* copy_reference_state() */
701COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
702/* copy_stack_state() */
703COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
704#undef COPY_STATE_FN
705
706#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
707static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
708 bool copy_old) \
709{ \
710 u32 old_size = state->COUNT; \
711 struct bpf_##NAME##_state *new_##FIELD; \
712 int slot = size / SIZE; \
713 \
714 if (size <= old_size || !size) { \
715 if (copy_old) \
716 return 0; \
717 state->COUNT = slot * SIZE; \
718 if (!size && old_size) { \
719 kfree(state->FIELD); \
720 state->FIELD = NULL; \
721 } \
722 return 0; \
723 } \
724 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
725 GFP_KERNEL); \
726 if (!new_##FIELD) \
727 return -ENOMEM; \
728 if (copy_old) { \
729 if (state->FIELD) \
730 memcpy(new_##FIELD, state->FIELD, \
731 sizeof(*new_##FIELD) * (old_size / SIZE)); \
732 memset(new_##FIELD + old_size / SIZE, 0, \
733 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
734 } \
735 state->COUNT = slot * SIZE; \
736 kfree(state->FIELD); \
737 state->FIELD = new_##FIELD; \
738 return 0; \
739}
fd978bf7
JS
740/* realloc_reference_state() */
741REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
742/* realloc_stack_state() */
743REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
744#undef REALLOC_STATE_FN
638f5b90
AS
745
746/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
747 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 748 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
749 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
750 * which realloc_stack_state() copies over. It points to previous
751 * bpf_verifier_state which is never reallocated.
638f5b90 752 */
fd978bf7
JS
753static int realloc_func_state(struct bpf_func_state *state, int stack_size,
754 int refs_size, bool copy_old)
638f5b90 755{
fd978bf7
JS
756 int err = realloc_reference_state(state, refs_size, copy_old);
757 if (err)
758 return err;
759 return realloc_stack_state(state, stack_size, copy_old);
760}
761
762/* Acquire a pointer id from the env and update the state->refs to include
763 * this new pointer reference.
764 * On success, returns a valid pointer id to associate with the register
765 * On failure, returns a negative errno.
638f5b90 766 */
fd978bf7 767static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 768{
fd978bf7
JS
769 struct bpf_func_state *state = cur_func(env);
770 int new_ofs = state->acquired_refs;
771 int id, err;
772
773 err = realloc_reference_state(state, state->acquired_refs + 1, true);
774 if (err)
775 return err;
776 id = ++env->id_gen;
777 state->refs[new_ofs].id = id;
778 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 779
fd978bf7
JS
780 return id;
781}
782
783/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 784static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
785{
786 int i, last_idx;
787
fd978bf7
JS
788 last_idx = state->acquired_refs - 1;
789 for (i = 0; i < state->acquired_refs; i++) {
790 if (state->refs[i].id == ptr_id) {
791 if (last_idx && i != last_idx)
792 memcpy(&state->refs[i], &state->refs[last_idx],
793 sizeof(*state->refs));
794 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
795 state->acquired_refs--;
638f5b90 796 return 0;
638f5b90 797 }
638f5b90 798 }
46f8bc92 799 return -EINVAL;
fd978bf7
JS
800}
801
802static int transfer_reference_state(struct bpf_func_state *dst,
803 struct bpf_func_state *src)
804{
805 int err = realloc_reference_state(dst, src->acquired_refs, false);
806 if (err)
807 return err;
808 err = copy_reference_state(dst, src);
809 if (err)
810 return err;
638f5b90
AS
811 return 0;
812}
813
f4d7e40a
AS
814static void free_func_state(struct bpf_func_state *state)
815{
5896351e
AS
816 if (!state)
817 return;
fd978bf7 818 kfree(state->refs);
f4d7e40a
AS
819 kfree(state->stack);
820 kfree(state);
821}
822
b5dc0163
AS
823static void clear_jmp_history(struct bpf_verifier_state *state)
824{
825 kfree(state->jmp_history);
826 state->jmp_history = NULL;
827 state->jmp_history_cnt = 0;
828}
829
1969db47
AS
830static void free_verifier_state(struct bpf_verifier_state *state,
831 bool free_self)
638f5b90 832{
f4d7e40a
AS
833 int i;
834
835 for (i = 0; i <= state->curframe; i++) {
836 free_func_state(state->frame[i]);
837 state->frame[i] = NULL;
838 }
b5dc0163 839 clear_jmp_history(state);
1969db47
AS
840 if (free_self)
841 kfree(state);
638f5b90
AS
842}
843
844/* copy verifier state from src to dst growing dst stack space
845 * when necessary to accommodate larger src stack
846 */
f4d7e40a
AS
847static int copy_func_state(struct bpf_func_state *dst,
848 const struct bpf_func_state *src)
638f5b90
AS
849{
850 int err;
851
fd978bf7
JS
852 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
853 false);
854 if (err)
855 return err;
856 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
857 err = copy_reference_state(dst, src);
638f5b90
AS
858 if (err)
859 return err;
638f5b90
AS
860 return copy_stack_state(dst, src);
861}
862
f4d7e40a
AS
863static int copy_verifier_state(struct bpf_verifier_state *dst_state,
864 const struct bpf_verifier_state *src)
865{
866 struct bpf_func_state *dst;
b5dc0163 867 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
868 int i, err;
869
b5dc0163
AS
870 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
871 kfree(dst_state->jmp_history);
872 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
873 if (!dst_state->jmp_history)
874 return -ENOMEM;
875 }
876 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
877 dst_state->jmp_history_cnt = src->jmp_history_cnt;
878
f4d7e40a
AS
879 /* if dst has more stack frames then src frame, free them */
880 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
881 free_func_state(dst_state->frame[i]);
882 dst_state->frame[i] = NULL;
883 }
979d63d5 884 dst_state->speculative = src->speculative;
f4d7e40a 885 dst_state->curframe = src->curframe;
d83525ca 886 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
887 dst_state->branches = src->branches;
888 dst_state->parent = src->parent;
b5dc0163
AS
889 dst_state->first_insn_idx = src->first_insn_idx;
890 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
891 for (i = 0; i <= src->curframe; i++) {
892 dst = dst_state->frame[i];
893 if (!dst) {
894 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
895 if (!dst)
896 return -ENOMEM;
897 dst_state->frame[i] = dst;
898 }
899 err = copy_func_state(dst, src->frame[i]);
900 if (err)
901 return err;
902 }
903 return 0;
904}
905
2589726d
AS
906static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
907{
908 while (st) {
909 u32 br = --st->branches;
910
911 /* WARN_ON(br > 1) technically makes sense here,
912 * but see comment in push_stack(), hence:
913 */
914 WARN_ONCE((int)br < 0,
915 "BUG update_branch_counts:branches_to_explore=%d\n",
916 br);
917 if (br)
918 break;
919 st = st->parent;
920 }
921}
922
638f5b90 923static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 924 int *insn_idx, bool pop_log)
638f5b90
AS
925{
926 struct bpf_verifier_state *cur = env->cur_state;
927 struct bpf_verifier_stack_elem *elem, *head = env->head;
928 int err;
17a52670
AS
929
930 if (env->head == NULL)
638f5b90 931 return -ENOENT;
17a52670 932
638f5b90
AS
933 if (cur) {
934 err = copy_verifier_state(cur, &head->st);
935 if (err)
936 return err;
937 }
6f8a57cc
AN
938 if (pop_log)
939 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
940 if (insn_idx)
941 *insn_idx = head->insn_idx;
17a52670 942 if (prev_insn_idx)
638f5b90
AS
943 *prev_insn_idx = head->prev_insn_idx;
944 elem = head->next;
1969db47 945 free_verifier_state(&head->st, false);
638f5b90 946 kfree(head);
17a52670
AS
947 env->head = elem;
948 env->stack_size--;
638f5b90 949 return 0;
17a52670
AS
950}
951
58e2af8b 952static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
953 int insn_idx, int prev_insn_idx,
954 bool speculative)
17a52670 955{
638f5b90 956 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 957 struct bpf_verifier_stack_elem *elem;
638f5b90 958 int err;
17a52670 959
638f5b90 960 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
961 if (!elem)
962 goto err;
963
17a52670
AS
964 elem->insn_idx = insn_idx;
965 elem->prev_insn_idx = prev_insn_idx;
966 elem->next = env->head;
6f8a57cc 967 elem->log_pos = env->log.len_used;
17a52670
AS
968 env->head = elem;
969 env->stack_size++;
1969db47
AS
970 err = copy_verifier_state(&elem->st, cur);
971 if (err)
972 goto err;
979d63d5 973 elem->st.speculative |= speculative;
b285fcb7
AS
974 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
975 verbose(env, "The sequence of %d jumps is too complex.\n",
976 env->stack_size);
17a52670
AS
977 goto err;
978 }
2589726d
AS
979 if (elem->st.parent) {
980 ++elem->st.parent->branches;
981 /* WARN_ON(branches > 2) technically makes sense here,
982 * but
983 * 1. speculative states will bump 'branches' for non-branch
984 * instructions
985 * 2. is_state_visited() heuristics may decide not to create
986 * a new state for a sequence of branches and all such current
987 * and cloned states will be pointing to a single parent state
988 * which might have large 'branches' count.
989 */
990 }
17a52670
AS
991 return &elem->st;
992err:
5896351e
AS
993 free_verifier_state(env->cur_state, true);
994 env->cur_state = NULL;
17a52670 995 /* pop all elements and return */
6f8a57cc 996 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
997 return NULL;
998}
999
1000#define CALLER_SAVED_REGS 6
1001static const int caller_saved[CALLER_SAVED_REGS] = {
1002 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1003};
1004
f54c7898
DB
1005static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1006 struct bpf_reg_state *reg);
f1174f77 1007
b03c9f9f
EC
1008/* Mark the unknown part of a register (variable offset or scalar value) as
1009 * known to have the value @imm.
1010 */
1011static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1012{
a9c676bc
AS
1013 /* Clear id, off, and union(map_ptr, range) */
1014 memset(((u8 *)reg) + sizeof(reg->type), 0,
1015 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
1016 reg->var_off = tnum_const(imm);
1017 reg->smin_value = (s64)imm;
1018 reg->smax_value = (s64)imm;
1019 reg->umin_value = imm;
1020 reg->umax_value = imm;
3f50f132
JF
1021
1022 reg->s32_min_value = (s32)imm;
1023 reg->s32_max_value = (s32)imm;
1024 reg->u32_min_value = (u32)imm;
1025 reg->u32_max_value = (u32)imm;
1026}
1027
1028static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1029{
1030 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1031 reg->s32_min_value = (s32)imm;
1032 reg->s32_max_value = (s32)imm;
1033 reg->u32_min_value = (u32)imm;
1034 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1035}
1036
f1174f77
EC
1037/* Mark the 'variable offset' part of a register as zero. This should be
1038 * used only on registers holding a pointer type.
1039 */
1040static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1041{
b03c9f9f 1042 __mark_reg_known(reg, 0);
f1174f77 1043}
a9789ef9 1044
cc2b14d5
AS
1045static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1046{
1047 __mark_reg_known(reg, 0);
cc2b14d5
AS
1048 reg->type = SCALAR_VALUE;
1049}
1050
61bd5218
JK
1051static void mark_reg_known_zero(struct bpf_verifier_env *env,
1052 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1053{
1054 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1055 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1056 /* Something bad happened, let's kill all regs */
1057 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1058 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1059 return;
1060 }
1061 __mark_reg_known_zero(regs + regno);
1062}
1063
de8f3a83
DB
1064static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1065{
1066 return type_is_pkt_pointer(reg->type);
1067}
1068
1069static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1070{
1071 return reg_is_pkt_pointer(reg) ||
1072 reg->type == PTR_TO_PACKET_END;
1073}
1074
1075/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1076static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1077 enum bpf_reg_type which)
1078{
1079 /* The register can already have a range from prior markings.
1080 * This is fine as long as it hasn't been advanced from its
1081 * origin.
1082 */
1083 return reg->type == which &&
1084 reg->id == 0 &&
1085 reg->off == 0 &&
1086 tnum_equals_const(reg->var_off, 0);
1087}
1088
3f50f132
JF
1089/* Reset the min/max bounds of a register */
1090static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1091{
1092 reg->smin_value = S64_MIN;
1093 reg->smax_value = S64_MAX;
1094 reg->umin_value = 0;
1095 reg->umax_value = U64_MAX;
1096
1097 reg->s32_min_value = S32_MIN;
1098 reg->s32_max_value = S32_MAX;
1099 reg->u32_min_value = 0;
1100 reg->u32_max_value = U32_MAX;
1101}
1102
1103static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1104{
1105 reg->smin_value = S64_MIN;
1106 reg->smax_value = S64_MAX;
1107 reg->umin_value = 0;
1108 reg->umax_value = U64_MAX;
1109}
1110
1111static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1112{
1113 reg->s32_min_value = S32_MIN;
1114 reg->s32_max_value = S32_MAX;
1115 reg->u32_min_value = 0;
1116 reg->u32_max_value = U32_MAX;
1117}
1118
1119static void __update_reg32_bounds(struct bpf_reg_state *reg)
1120{
1121 struct tnum var32_off = tnum_subreg(reg->var_off);
1122
1123 /* min signed is max(sign bit) | min(other bits) */
1124 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1125 var32_off.value | (var32_off.mask & S32_MIN));
1126 /* max signed is min(sign bit) | max(other bits) */
1127 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1128 var32_off.value | (var32_off.mask & S32_MAX));
1129 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1130 reg->u32_max_value = min(reg->u32_max_value,
1131 (u32)(var32_off.value | var32_off.mask));
1132}
1133
1134static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1135{
1136 /* min signed is max(sign bit) | min(other bits) */
1137 reg->smin_value = max_t(s64, reg->smin_value,
1138 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1139 /* max signed is min(sign bit) | max(other bits) */
1140 reg->smax_value = min_t(s64, reg->smax_value,
1141 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1142 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1143 reg->umax_value = min(reg->umax_value,
1144 reg->var_off.value | reg->var_off.mask);
1145}
1146
3f50f132
JF
1147static void __update_reg_bounds(struct bpf_reg_state *reg)
1148{
1149 __update_reg32_bounds(reg);
1150 __update_reg64_bounds(reg);
1151}
1152
b03c9f9f 1153/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1154static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1155{
1156 /* Learn sign from signed bounds.
1157 * If we cannot cross the sign boundary, then signed and unsigned bounds
1158 * are the same, so combine. This works even in the negative case, e.g.
1159 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1160 */
1161 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1162 reg->s32_min_value = reg->u32_min_value =
1163 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1164 reg->s32_max_value = reg->u32_max_value =
1165 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1166 return;
1167 }
1168 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1169 * boundary, so we must be careful.
1170 */
1171 if ((s32)reg->u32_max_value >= 0) {
1172 /* Positive. We can't learn anything from the smin, but smax
1173 * is positive, hence safe.
1174 */
1175 reg->s32_min_value = reg->u32_min_value;
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 } else if ((s32)reg->u32_min_value < 0) {
1179 /* Negative. We can't learn anything from the smax, but smin
1180 * is negative, hence safe.
1181 */
1182 reg->s32_min_value = reg->u32_min_value =
1183 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1184 reg->s32_max_value = reg->u32_max_value;
1185 }
1186}
1187
1188static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1189{
1190 /* Learn sign from signed bounds.
1191 * If we cannot cross the sign boundary, then signed and unsigned bounds
1192 * are the same, so combine. This works even in the negative case, e.g.
1193 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1194 */
1195 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1196 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1197 reg->umin_value);
1198 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1199 reg->umax_value);
1200 return;
1201 }
1202 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1203 * boundary, so we must be careful.
1204 */
1205 if ((s64)reg->umax_value >= 0) {
1206 /* Positive. We can't learn anything from the smin, but smax
1207 * is positive, hence safe.
1208 */
1209 reg->smin_value = reg->umin_value;
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 } else if ((s64)reg->umin_value < 0) {
1213 /* Negative. We can't learn anything from the smax, but smin
1214 * is negative, hence safe.
1215 */
1216 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1217 reg->umin_value);
1218 reg->smax_value = reg->umax_value;
1219 }
1220}
1221
3f50f132
JF
1222static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1223{
1224 __reg32_deduce_bounds(reg);
1225 __reg64_deduce_bounds(reg);
1226}
1227
b03c9f9f
EC
1228/* Attempts to improve var_off based on unsigned min/max information */
1229static void __reg_bound_offset(struct bpf_reg_state *reg)
1230{
3f50f132
JF
1231 struct tnum var64_off = tnum_intersect(reg->var_off,
1232 tnum_range(reg->umin_value,
1233 reg->umax_value));
1234 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1235 tnum_range(reg->u32_min_value,
1236 reg->u32_max_value));
1237
1238 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1239}
1240
3f50f132 1241static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1242{
3f50f132
JF
1243 reg->umin_value = reg->u32_min_value;
1244 reg->umax_value = reg->u32_max_value;
1245 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1246 * but must be positive otherwise set to worse case bounds
1247 * and refine later from tnum.
1248 */
3a71dc36 1249 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1250 reg->smax_value = reg->s32_max_value;
1251 else
1252 reg->smax_value = U32_MAX;
3a71dc36
JF
1253 if (reg->s32_min_value >= 0)
1254 reg->smin_value = reg->s32_min_value;
1255 else
1256 reg->smin_value = 0;
3f50f132
JF
1257}
1258
1259static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1260{
1261 /* special case when 64-bit register has upper 32-bit register
1262 * zeroed. Typically happens after zext or <<32, >>32 sequence
1263 * allowing us to use 32-bit bounds directly,
1264 */
1265 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1266 __reg_assign_32_into_64(reg);
1267 } else {
1268 /* Otherwise the best we can do is push lower 32bit known and
1269 * unknown bits into register (var_off set from jmp logic)
1270 * then learn as much as possible from the 64-bit tnum
1271 * known and unknown bits. The previous smin/smax bounds are
1272 * invalid here because of jmp32 compare so mark them unknown
1273 * so they do not impact tnum bounds calculation.
1274 */
1275 __mark_reg64_unbounded(reg);
1276 __update_reg_bounds(reg);
1277 }
1278
1279 /* Intersecting with the old var_off might have improved our bounds
1280 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1281 * then new var_off is (0; 0x7f...fc) which improves our umax.
1282 */
1283 __reg_deduce_bounds(reg);
1284 __reg_bound_offset(reg);
1285 __update_reg_bounds(reg);
1286}
1287
1288static bool __reg64_bound_s32(s64 a)
1289{
1290 if (a > S32_MIN && a < S32_MAX)
1291 return true;
1292 return false;
1293}
1294
1295static bool __reg64_bound_u32(u64 a)
1296{
1297 if (a > U32_MIN && a < U32_MAX)
1298 return true;
1299 return false;
1300}
1301
1302static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1303{
1304 __mark_reg32_unbounded(reg);
1305
1306 if (__reg64_bound_s32(reg->smin_value))
1307 reg->s32_min_value = (s32)reg->smin_value;
1308 if (__reg64_bound_s32(reg->smax_value))
1309 reg->s32_max_value = (s32)reg->smax_value;
1310 if (__reg64_bound_u32(reg->umin_value))
1311 reg->u32_min_value = (u32)reg->umin_value;
1312 if (__reg64_bound_u32(reg->umax_value))
1313 reg->u32_max_value = (u32)reg->umax_value;
1314
1315 /* Intersecting with the old var_off might have improved our bounds
1316 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1317 * then new var_off is (0; 0x7f...fc) which improves our umax.
1318 */
1319 __reg_deduce_bounds(reg);
1320 __reg_bound_offset(reg);
1321 __update_reg_bounds(reg);
b03c9f9f
EC
1322}
1323
f1174f77 1324/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1325static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1326 struct bpf_reg_state *reg)
f1174f77 1327{
a9c676bc
AS
1328 /*
1329 * Clear type, id, off, and union(map_ptr, range) and
1330 * padding between 'type' and union
1331 */
1332 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1333 reg->type = SCALAR_VALUE;
f1174f77 1334 reg->var_off = tnum_unknown;
f4d7e40a 1335 reg->frameno = 0;
2c78ee89 1336 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1337 __mark_reg_unbounded(reg);
f1174f77
EC
1338}
1339
61bd5218
JK
1340static void mark_reg_unknown(struct bpf_verifier_env *env,
1341 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1342{
1343 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1344 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1345 /* Something bad happened, let's kill all regs except FP */
1346 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1347 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1348 return;
1349 }
f54c7898 1350 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1351}
1352
f54c7898
DB
1353static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1354 struct bpf_reg_state *reg)
f1174f77 1355{
f54c7898 1356 __mark_reg_unknown(env, reg);
f1174f77
EC
1357 reg->type = NOT_INIT;
1358}
1359
61bd5218
JK
1360static void mark_reg_not_init(struct bpf_verifier_env *env,
1361 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1362{
1363 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1364 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1365 /* Something bad happened, let's kill all regs except FP */
1366 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1367 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1368 return;
1369 }
f54c7898 1370 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1371}
1372
41c48f3a
AI
1373static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1374 struct bpf_reg_state *regs, u32 regno,
1375 enum bpf_reg_type reg_type, u32 btf_id)
1376{
1377 if (reg_type == SCALAR_VALUE) {
1378 mark_reg_unknown(env, regs, regno);
1379 return;
1380 }
1381 mark_reg_known_zero(env, regs, regno);
1382 regs[regno].type = PTR_TO_BTF_ID;
1383 regs[regno].btf_id = btf_id;
1384}
1385
5327ed3d 1386#define DEF_NOT_SUBREG (0)
61bd5218 1387static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1388 struct bpf_func_state *state)
17a52670 1389{
f4d7e40a 1390 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1391 int i;
1392
dc503a8a 1393 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1394 mark_reg_not_init(env, regs, i);
dc503a8a 1395 regs[i].live = REG_LIVE_NONE;
679c782d 1396 regs[i].parent = NULL;
5327ed3d 1397 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1398 }
17a52670
AS
1399
1400 /* frame pointer */
f1174f77 1401 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1402 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1403 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1404}
1405
f4d7e40a
AS
1406#define BPF_MAIN_FUNC (-1)
1407static void init_func_state(struct bpf_verifier_env *env,
1408 struct bpf_func_state *state,
1409 int callsite, int frameno, int subprogno)
1410{
1411 state->callsite = callsite;
1412 state->frameno = frameno;
1413 state->subprogno = subprogno;
1414 init_reg_state(env, state);
1415}
1416
17a52670
AS
1417enum reg_arg_type {
1418 SRC_OP, /* register is used as source operand */
1419 DST_OP, /* register is used as destination operand */
1420 DST_OP_NO_MARK /* same as above, check only, don't mark */
1421};
1422
cc8b0b92
AS
1423static int cmp_subprogs(const void *a, const void *b)
1424{
9c8105bd
JW
1425 return ((struct bpf_subprog_info *)a)->start -
1426 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1427}
1428
1429static int find_subprog(struct bpf_verifier_env *env, int off)
1430{
9c8105bd 1431 struct bpf_subprog_info *p;
cc8b0b92 1432
9c8105bd
JW
1433 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1434 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1435 if (!p)
1436 return -ENOENT;
9c8105bd 1437 return p - env->subprog_info;
cc8b0b92
AS
1438
1439}
1440
1441static int add_subprog(struct bpf_verifier_env *env, int off)
1442{
1443 int insn_cnt = env->prog->len;
1444 int ret;
1445
1446 if (off >= insn_cnt || off < 0) {
1447 verbose(env, "call to invalid destination\n");
1448 return -EINVAL;
1449 }
1450 ret = find_subprog(env, off);
1451 if (ret >= 0)
1452 return 0;
4cb3d99c 1453 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1454 verbose(env, "too many subprograms\n");
1455 return -E2BIG;
1456 }
9c8105bd
JW
1457 env->subprog_info[env->subprog_cnt++].start = off;
1458 sort(env->subprog_info, env->subprog_cnt,
1459 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1460 return 0;
1461}
1462
1463static int check_subprogs(struct bpf_verifier_env *env)
1464{
1465 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1466 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1467 struct bpf_insn *insn = env->prog->insnsi;
1468 int insn_cnt = env->prog->len;
1469
f910cefa
JW
1470 /* Add entry function. */
1471 ret = add_subprog(env, 0);
1472 if (ret < 0)
1473 return ret;
1474
cc8b0b92
AS
1475 /* determine subprog starts. The end is one before the next starts */
1476 for (i = 0; i < insn_cnt; i++) {
1477 if (insn[i].code != (BPF_JMP | BPF_CALL))
1478 continue;
1479 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1480 continue;
2c78ee89
AS
1481 if (!env->bpf_capable) {
1482 verbose(env,
1483 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1484 return -EPERM;
1485 }
cc8b0b92
AS
1486 ret = add_subprog(env, i + insn[i].imm + 1);
1487 if (ret < 0)
1488 return ret;
1489 }
1490
4cb3d99c
JW
1491 /* Add a fake 'exit' subprog which could simplify subprog iteration
1492 * logic. 'subprog_cnt' should not be increased.
1493 */
1494 subprog[env->subprog_cnt].start = insn_cnt;
1495
06ee7115 1496 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1497 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1498 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1499
1500 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1501 subprog_start = subprog[cur_subprog].start;
1502 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1503 for (i = 0; i < insn_cnt; i++) {
1504 u8 code = insn[i].code;
1505
7f6e4312
MF
1506 if (code == (BPF_JMP | BPF_CALL) &&
1507 insn[i].imm == BPF_FUNC_tail_call &&
1508 insn[i].src_reg != BPF_PSEUDO_CALL)
1509 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1510 if (BPF_CLASS(code) == BPF_LD &&
1511 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1512 subprog[cur_subprog].has_ld_abs = true;
092ed096 1513 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1514 goto next;
1515 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1516 goto next;
1517 off = i + insn[i].off + 1;
1518 if (off < subprog_start || off >= subprog_end) {
1519 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1520 return -EINVAL;
1521 }
1522next:
1523 if (i == subprog_end - 1) {
1524 /* to avoid fall-through from one subprog into another
1525 * the last insn of the subprog should be either exit
1526 * or unconditional jump back
1527 */
1528 if (code != (BPF_JMP | BPF_EXIT) &&
1529 code != (BPF_JMP | BPF_JA)) {
1530 verbose(env, "last insn is not an exit or jmp\n");
1531 return -EINVAL;
1532 }
1533 subprog_start = subprog_end;
4cb3d99c
JW
1534 cur_subprog++;
1535 if (cur_subprog < env->subprog_cnt)
9c8105bd 1536 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1537 }
1538 }
1539 return 0;
1540}
1541
679c782d
EC
1542/* Parentage chain of this register (or stack slot) should take care of all
1543 * issues like callee-saved registers, stack slot allocation time, etc.
1544 */
f4d7e40a 1545static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1546 const struct bpf_reg_state *state,
5327ed3d 1547 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1548{
1549 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1550 int cnt = 0;
dc503a8a
EC
1551
1552 while (parent) {
1553 /* if read wasn't screened by an earlier write ... */
679c782d 1554 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1555 break;
9242b5f5
AS
1556 if (parent->live & REG_LIVE_DONE) {
1557 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1558 reg_type_str[parent->type],
1559 parent->var_off.value, parent->off);
1560 return -EFAULT;
1561 }
5327ed3d
JW
1562 /* The first condition is more likely to be true than the
1563 * second, checked it first.
1564 */
1565 if ((parent->live & REG_LIVE_READ) == flag ||
1566 parent->live & REG_LIVE_READ64)
25af32da
AS
1567 /* The parentage chain never changes and
1568 * this parent was already marked as LIVE_READ.
1569 * There is no need to keep walking the chain again and
1570 * keep re-marking all parents as LIVE_READ.
1571 * This case happens when the same register is read
1572 * multiple times without writes into it in-between.
5327ed3d
JW
1573 * Also, if parent has the stronger REG_LIVE_READ64 set,
1574 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1575 */
1576 break;
dc503a8a 1577 /* ... then we depend on parent's value */
5327ed3d
JW
1578 parent->live |= flag;
1579 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1580 if (flag == REG_LIVE_READ64)
1581 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1582 state = parent;
1583 parent = state->parent;
f4d7e40a 1584 writes = true;
06ee7115 1585 cnt++;
dc503a8a 1586 }
06ee7115
AS
1587
1588 if (env->longest_mark_read_walk < cnt)
1589 env->longest_mark_read_walk = cnt;
f4d7e40a 1590 return 0;
dc503a8a
EC
1591}
1592
5327ed3d
JW
1593/* This function is supposed to be used by the following 32-bit optimization
1594 * code only. It returns TRUE if the source or destination register operates
1595 * on 64-bit, otherwise return FALSE.
1596 */
1597static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1598 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1599{
1600 u8 code, class, op;
1601
1602 code = insn->code;
1603 class = BPF_CLASS(code);
1604 op = BPF_OP(code);
1605 if (class == BPF_JMP) {
1606 /* BPF_EXIT for "main" will reach here. Return TRUE
1607 * conservatively.
1608 */
1609 if (op == BPF_EXIT)
1610 return true;
1611 if (op == BPF_CALL) {
1612 /* BPF to BPF call will reach here because of marking
1613 * caller saved clobber with DST_OP_NO_MARK for which we
1614 * don't care the register def because they are anyway
1615 * marked as NOT_INIT already.
1616 */
1617 if (insn->src_reg == BPF_PSEUDO_CALL)
1618 return false;
1619 /* Helper call will reach here because of arg type
1620 * check, conservatively return TRUE.
1621 */
1622 if (t == SRC_OP)
1623 return true;
1624
1625 return false;
1626 }
1627 }
1628
1629 if (class == BPF_ALU64 || class == BPF_JMP ||
1630 /* BPF_END always use BPF_ALU class. */
1631 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1632 return true;
1633
1634 if (class == BPF_ALU || class == BPF_JMP32)
1635 return false;
1636
1637 if (class == BPF_LDX) {
1638 if (t != SRC_OP)
1639 return BPF_SIZE(code) == BPF_DW;
1640 /* LDX source must be ptr. */
1641 return true;
1642 }
1643
1644 if (class == BPF_STX) {
1645 if (reg->type != SCALAR_VALUE)
1646 return true;
1647 return BPF_SIZE(code) == BPF_DW;
1648 }
1649
1650 if (class == BPF_LD) {
1651 u8 mode = BPF_MODE(code);
1652
1653 /* LD_IMM64 */
1654 if (mode == BPF_IMM)
1655 return true;
1656
1657 /* Both LD_IND and LD_ABS return 32-bit data. */
1658 if (t != SRC_OP)
1659 return false;
1660
1661 /* Implicit ctx ptr. */
1662 if (regno == BPF_REG_6)
1663 return true;
1664
1665 /* Explicit source could be any width. */
1666 return true;
1667 }
1668
1669 if (class == BPF_ST)
1670 /* The only source register for BPF_ST is a ptr. */
1671 return true;
1672
1673 /* Conservatively return true at default. */
1674 return true;
1675}
1676
b325fbca
JW
1677/* Return TRUE if INSN doesn't have explicit value define. */
1678static bool insn_no_def(struct bpf_insn *insn)
1679{
1680 u8 class = BPF_CLASS(insn->code);
1681
1682 return (class == BPF_JMP || class == BPF_JMP32 ||
1683 class == BPF_STX || class == BPF_ST);
1684}
1685
1686/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1687static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1688{
1689 if (insn_no_def(insn))
1690 return false;
1691
1692 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1693}
1694
5327ed3d
JW
1695static void mark_insn_zext(struct bpf_verifier_env *env,
1696 struct bpf_reg_state *reg)
1697{
1698 s32 def_idx = reg->subreg_def;
1699
1700 if (def_idx == DEF_NOT_SUBREG)
1701 return;
1702
1703 env->insn_aux_data[def_idx - 1].zext_dst = true;
1704 /* The dst will be zero extended, so won't be sub-register anymore. */
1705 reg->subreg_def = DEF_NOT_SUBREG;
1706}
1707
dc503a8a 1708static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1709 enum reg_arg_type t)
1710{
f4d7e40a
AS
1711 struct bpf_verifier_state *vstate = env->cur_state;
1712 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1713 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1714 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1715 bool rw64;
dc503a8a 1716
17a52670 1717 if (regno >= MAX_BPF_REG) {
61bd5218 1718 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1719 return -EINVAL;
1720 }
1721
c342dc10 1722 reg = &regs[regno];
5327ed3d 1723 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1724 if (t == SRC_OP) {
1725 /* check whether register used as source operand can be read */
c342dc10 1726 if (reg->type == NOT_INIT) {
61bd5218 1727 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1728 return -EACCES;
1729 }
679c782d 1730 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1731 if (regno == BPF_REG_FP)
1732 return 0;
1733
5327ed3d
JW
1734 if (rw64)
1735 mark_insn_zext(env, reg);
1736
1737 return mark_reg_read(env, reg, reg->parent,
1738 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1739 } else {
1740 /* check whether register used as dest operand can be written to */
1741 if (regno == BPF_REG_FP) {
61bd5218 1742 verbose(env, "frame pointer is read only\n");
17a52670
AS
1743 return -EACCES;
1744 }
c342dc10 1745 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1746 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1747 if (t == DST_OP)
61bd5218 1748 mark_reg_unknown(env, regs, regno);
17a52670
AS
1749 }
1750 return 0;
1751}
1752
b5dc0163
AS
1753/* for any branch, call, exit record the history of jmps in the given state */
1754static int push_jmp_history(struct bpf_verifier_env *env,
1755 struct bpf_verifier_state *cur)
1756{
1757 u32 cnt = cur->jmp_history_cnt;
1758 struct bpf_idx_pair *p;
1759
1760 cnt++;
1761 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1762 if (!p)
1763 return -ENOMEM;
1764 p[cnt - 1].idx = env->insn_idx;
1765 p[cnt - 1].prev_idx = env->prev_insn_idx;
1766 cur->jmp_history = p;
1767 cur->jmp_history_cnt = cnt;
1768 return 0;
1769}
1770
1771/* Backtrack one insn at a time. If idx is not at the top of recorded
1772 * history then previous instruction came from straight line execution.
1773 */
1774static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1775 u32 *history)
1776{
1777 u32 cnt = *history;
1778
1779 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1780 i = st->jmp_history[cnt - 1].prev_idx;
1781 (*history)--;
1782 } else {
1783 i--;
1784 }
1785 return i;
1786}
1787
1788/* For given verifier state backtrack_insn() is called from the last insn to
1789 * the first insn. Its purpose is to compute a bitmask of registers and
1790 * stack slots that needs precision in the parent verifier state.
1791 */
1792static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1793 u32 *reg_mask, u64 *stack_mask)
1794{
1795 const struct bpf_insn_cbs cbs = {
1796 .cb_print = verbose,
1797 .private_data = env,
1798 };
1799 struct bpf_insn *insn = env->prog->insnsi + idx;
1800 u8 class = BPF_CLASS(insn->code);
1801 u8 opcode = BPF_OP(insn->code);
1802 u8 mode = BPF_MODE(insn->code);
1803 u32 dreg = 1u << insn->dst_reg;
1804 u32 sreg = 1u << insn->src_reg;
1805 u32 spi;
1806
1807 if (insn->code == 0)
1808 return 0;
1809 if (env->log.level & BPF_LOG_LEVEL) {
1810 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1811 verbose(env, "%d: ", idx);
1812 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1813 }
1814
1815 if (class == BPF_ALU || class == BPF_ALU64) {
1816 if (!(*reg_mask & dreg))
1817 return 0;
1818 if (opcode == BPF_MOV) {
1819 if (BPF_SRC(insn->code) == BPF_X) {
1820 /* dreg = sreg
1821 * dreg needs precision after this insn
1822 * sreg needs precision before this insn
1823 */
1824 *reg_mask &= ~dreg;
1825 *reg_mask |= sreg;
1826 } else {
1827 /* dreg = K
1828 * dreg needs precision after this insn.
1829 * Corresponding register is already marked
1830 * as precise=true in this verifier state.
1831 * No further markings in parent are necessary
1832 */
1833 *reg_mask &= ~dreg;
1834 }
1835 } else {
1836 if (BPF_SRC(insn->code) == BPF_X) {
1837 /* dreg += sreg
1838 * both dreg and sreg need precision
1839 * before this insn
1840 */
1841 *reg_mask |= sreg;
1842 } /* else dreg += K
1843 * dreg still needs precision before this insn
1844 */
1845 }
1846 } else if (class == BPF_LDX) {
1847 if (!(*reg_mask & dreg))
1848 return 0;
1849 *reg_mask &= ~dreg;
1850
1851 /* scalars can only be spilled into stack w/o losing precision.
1852 * Load from any other memory can be zero extended.
1853 * The desire to keep that precision is already indicated
1854 * by 'precise' mark in corresponding register of this state.
1855 * No further tracking necessary.
1856 */
1857 if (insn->src_reg != BPF_REG_FP)
1858 return 0;
1859 if (BPF_SIZE(insn->code) != BPF_DW)
1860 return 0;
1861
1862 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1863 * that [fp - off] slot contains scalar that needs to be
1864 * tracked with precision
1865 */
1866 spi = (-insn->off - 1) / BPF_REG_SIZE;
1867 if (spi >= 64) {
1868 verbose(env, "BUG spi %d\n", spi);
1869 WARN_ONCE(1, "verifier backtracking bug");
1870 return -EFAULT;
1871 }
1872 *stack_mask |= 1ull << spi;
b3b50f05 1873 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1874 if (*reg_mask & dreg)
b3b50f05 1875 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1876 * to access memory. It means backtracking
1877 * encountered a case of pointer subtraction.
1878 */
1879 return -ENOTSUPP;
1880 /* scalars can only be spilled into stack */
1881 if (insn->dst_reg != BPF_REG_FP)
1882 return 0;
1883 if (BPF_SIZE(insn->code) != BPF_DW)
1884 return 0;
1885 spi = (-insn->off - 1) / BPF_REG_SIZE;
1886 if (spi >= 64) {
1887 verbose(env, "BUG spi %d\n", spi);
1888 WARN_ONCE(1, "verifier backtracking bug");
1889 return -EFAULT;
1890 }
1891 if (!(*stack_mask & (1ull << spi)))
1892 return 0;
1893 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1894 if (class == BPF_STX)
1895 *reg_mask |= sreg;
b5dc0163
AS
1896 } else if (class == BPF_JMP || class == BPF_JMP32) {
1897 if (opcode == BPF_CALL) {
1898 if (insn->src_reg == BPF_PSEUDO_CALL)
1899 return -ENOTSUPP;
1900 /* regular helper call sets R0 */
1901 *reg_mask &= ~1;
1902 if (*reg_mask & 0x3f) {
1903 /* if backtracing was looking for registers R1-R5
1904 * they should have been found already.
1905 */
1906 verbose(env, "BUG regs %x\n", *reg_mask);
1907 WARN_ONCE(1, "verifier backtracking bug");
1908 return -EFAULT;
1909 }
1910 } else if (opcode == BPF_EXIT) {
1911 return -ENOTSUPP;
1912 }
1913 } else if (class == BPF_LD) {
1914 if (!(*reg_mask & dreg))
1915 return 0;
1916 *reg_mask &= ~dreg;
1917 /* It's ld_imm64 or ld_abs or ld_ind.
1918 * For ld_imm64 no further tracking of precision
1919 * into parent is necessary
1920 */
1921 if (mode == BPF_IND || mode == BPF_ABS)
1922 /* to be analyzed */
1923 return -ENOTSUPP;
b5dc0163
AS
1924 }
1925 return 0;
1926}
1927
1928/* the scalar precision tracking algorithm:
1929 * . at the start all registers have precise=false.
1930 * . scalar ranges are tracked as normal through alu and jmp insns.
1931 * . once precise value of the scalar register is used in:
1932 * . ptr + scalar alu
1933 * . if (scalar cond K|scalar)
1934 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1935 * backtrack through the verifier states and mark all registers and
1936 * stack slots with spilled constants that these scalar regisers
1937 * should be precise.
1938 * . during state pruning two registers (or spilled stack slots)
1939 * are equivalent if both are not precise.
1940 *
1941 * Note the verifier cannot simply walk register parentage chain,
1942 * since many different registers and stack slots could have been
1943 * used to compute single precise scalar.
1944 *
1945 * The approach of starting with precise=true for all registers and then
1946 * backtrack to mark a register as not precise when the verifier detects
1947 * that program doesn't care about specific value (e.g., when helper
1948 * takes register as ARG_ANYTHING parameter) is not safe.
1949 *
1950 * It's ok to walk single parentage chain of the verifier states.
1951 * It's possible that this backtracking will go all the way till 1st insn.
1952 * All other branches will be explored for needing precision later.
1953 *
1954 * The backtracking needs to deal with cases like:
1955 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1956 * r9 -= r8
1957 * r5 = r9
1958 * if r5 > 0x79f goto pc+7
1959 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1960 * r5 += 1
1961 * ...
1962 * call bpf_perf_event_output#25
1963 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1964 *
1965 * and this case:
1966 * r6 = 1
1967 * call foo // uses callee's r6 inside to compute r0
1968 * r0 += r6
1969 * if r0 == 0 goto
1970 *
1971 * to track above reg_mask/stack_mask needs to be independent for each frame.
1972 *
1973 * Also if parent's curframe > frame where backtracking started,
1974 * the verifier need to mark registers in both frames, otherwise callees
1975 * may incorrectly prune callers. This is similar to
1976 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1977 *
1978 * For now backtracking falls back into conservative marking.
1979 */
1980static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1981 struct bpf_verifier_state *st)
1982{
1983 struct bpf_func_state *func;
1984 struct bpf_reg_state *reg;
1985 int i, j;
1986
1987 /* big hammer: mark all scalars precise in this path.
1988 * pop_stack may still get !precise scalars.
1989 */
1990 for (; st; st = st->parent)
1991 for (i = 0; i <= st->curframe; i++) {
1992 func = st->frame[i];
1993 for (j = 0; j < BPF_REG_FP; j++) {
1994 reg = &func->regs[j];
1995 if (reg->type != SCALAR_VALUE)
1996 continue;
1997 reg->precise = true;
1998 }
1999 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2000 if (func->stack[j].slot_type[0] != STACK_SPILL)
2001 continue;
2002 reg = &func->stack[j].spilled_ptr;
2003 if (reg->type != SCALAR_VALUE)
2004 continue;
2005 reg->precise = true;
2006 }
2007 }
2008}
2009
a3ce685d
AS
2010static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2011 int spi)
b5dc0163
AS
2012{
2013 struct bpf_verifier_state *st = env->cur_state;
2014 int first_idx = st->first_insn_idx;
2015 int last_idx = env->insn_idx;
2016 struct bpf_func_state *func;
2017 struct bpf_reg_state *reg;
a3ce685d
AS
2018 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2019 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2020 bool skip_first = true;
a3ce685d 2021 bool new_marks = false;
b5dc0163
AS
2022 int i, err;
2023
2c78ee89 2024 if (!env->bpf_capable)
b5dc0163
AS
2025 return 0;
2026
2027 func = st->frame[st->curframe];
a3ce685d
AS
2028 if (regno >= 0) {
2029 reg = &func->regs[regno];
2030 if (reg->type != SCALAR_VALUE) {
2031 WARN_ONCE(1, "backtracing misuse");
2032 return -EFAULT;
2033 }
2034 if (!reg->precise)
2035 new_marks = true;
2036 else
2037 reg_mask = 0;
2038 reg->precise = true;
b5dc0163 2039 }
b5dc0163 2040
a3ce685d
AS
2041 while (spi >= 0) {
2042 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2043 stack_mask = 0;
2044 break;
2045 }
2046 reg = &func->stack[spi].spilled_ptr;
2047 if (reg->type != SCALAR_VALUE) {
2048 stack_mask = 0;
2049 break;
2050 }
2051 if (!reg->precise)
2052 new_marks = true;
2053 else
2054 stack_mask = 0;
2055 reg->precise = true;
2056 break;
2057 }
2058
2059 if (!new_marks)
2060 return 0;
2061 if (!reg_mask && !stack_mask)
2062 return 0;
b5dc0163
AS
2063 for (;;) {
2064 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2065 u32 history = st->jmp_history_cnt;
2066
2067 if (env->log.level & BPF_LOG_LEVEL)
2068 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2069 for (i = last_idx;;) {
2070 if (skip_first) {
2071 err = 0;
2072 skip_first = false;
2073 } else {
2074 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2075 }
2076 if (err == -ENOTSUPP) {
2077 mark_all_scalars_precise(env, st);
2078 return 0;
2079 } else if (err) {
2080 return err;
2081 }
2082 if (!reg_mask && !stack_mask)
2083 /* Found assignment(s) into tracked register in this state.
2084 * Since this state is already marked, just return.
2085 * Nothing to be tracked further in the parent state.
2086 */
2087 return 0;
2088 if (i == first_idx)
2089 break;
2090 i = get_prev_insn_idx(st, i, &history);
2091 if (i >= env->prog->len) {
2092 /* This can happen if backtracking reached insn 0
2093 * and there are still reg_mask or stack_mask
2094 * to backtrack.
2095 * It means the backtracking missed the spot where
2096 * particular register was initialized with a constant.
2097 */
2098 verbose(env, "BUG backtracking idx %d\n", i);
2099 WARN_ONCE(1, "verifier backtracking bug");
2100 return -EFAULT;
2101 }
2102 }
2103 st = st->parent;
2104 if (!st)
2105 break;
2106
a3ce685d 2107 new_marks = false;
b5dc0163
AS
2108 func = st->frame[st->curframe];
2109 bitmap_from_u64(mask, reg_mask);
2110 for_each_set_bit(i, mask, 32) {
2111 reg = &func->regs[i];
a3ce685d
AS
2112 if (reg->type != SCALAR_VALUE) {
2113 reg_mask &= ~(1u << i);
b5dc0163 2114 continue;
a3ce685d 2115 }
b5dc0163
AS
2116 if (!reg->precise)
2117 new_marks = true;
2118 reg->precise = true;
2119 }
2120
2121 bitmap_from_u64(mask, stack_mask);
2122 for_each_set_bit(i, mask, 64) {
2123 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2124 /* the sequence of instructions:
2125 * 2: (bf) r3 = r10
2126 * 3: (7b) *(u64 *)(r3 -8) = r0
2127 * 4: (79) r4 = *(u64 *)(r10 -8)
2128 * doesn't contain jmps. It's backtracked
2129 * as a single block.
2130 * During backtracking insn 3 is not recognized as
2131 * stack access, so at the end of backtracking
2132 * stack slot fp-8 is still marked in stack_mask.
2133 * However the parent state may not have accessed
2134 * fp-8 and it's "unallocated" stack space.
2135 * In such case fallback to conservative.
b5dc0163 2136 */
2339cd6c
AS
2137 mark_all_scalars_precise(env, st);
2138 return 0;
b5dc0163
AS
2139 }
2140
a3ce685d
AS
2141 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2142 stack_mask &= ~(1ull << i);
b5dc0163 2143 continue;
a3ce685d 2144 }
b5dc0163 2145 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2146 if (reg->type != SCALAR_VALUE) {
2147 stack_mask &= ~(1ull << i);
b5dc0163 2148 continue;
a3ce685d 2149 }
b5dc0163
AS
2150 if (!reg->precise)
2151 new_marks = true;
2152 reg->precise = true;
2153 }
2154 if (env->log.level & BPF_LOG_LEVEL) {
2155 print_verifier_state(env, func);
2156 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2157 new_marks ? "didn't have" : "already had",
2158 reg_mask, stack_mask);
2159 }
2160
a3ce685d
AS
2161 if (!reg_mask && !stack_mask)
2162 break;
b5dc0163
AS
2163 if (!new_marks)
2164 break;
2165
2166 last_idx = st->last_insn_idx;
2167 first_idx = st->first_insn_idx;
2168 }
2169 return 0;
2170}
2171
a3ce685d
AS
2172static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2173{
2174 return __mark_chain_precision(env, regno, -1);
2175}
2176
2177static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2178{
2179 return __mark_chain_precision(env, -1, spi);
2180}
b5dc0163 2181
1be7f75d
AS
2182static bool is_spillable_regtype(enum bpf_reg_type type)
2183{
2184 switch (type) {
2185 case PTR_TO_MAP_VALUE:
2186 case PTR_TO_MAP_VALUE_OR_NULL:
2187 case PTR_TO_STACK:
2188 case PTR_TO_CTX:
969bf05e 2189 case PTR_TO_PACKET:
de8f3a83 2190 case PTR_TO_PACKET_META:
969bf05e 2191 case PTR_TO_PACKET_END:
d58e468b 2192 case PTR_TO_FLOW_KEYS:
1be7f75d 2193 case CONST_PTR_TO_MAP:
c64b7983
JS
2194 case PTR_TO_SOCKET:
2195 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2196 case PTR_TO_SOCK_COMMON:
2197 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2198 case PTR_TO_TCP_SOCK:
2199 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2200 case PTR_TO_XDP_SOCK:
65726b5b 2201 case PTR_TO_BTF_ID:
b121b341 2202 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2203 case PTR_TO_RDONLY_BUF:
2204 case PTR_TO_RDONLY_BUF_OR_NULL:
2205 case PTR_TO_RDWR_BUF:
2206 case PTR_TO_RDWR_BUF_OR_NULL:
1be7f75d
AS
2207 return true;
2208 default:
2209 return false;
2210 }
2211}
2212
cc2b14d5
AS
2213/* Does this register contain a constant zero? */
2214static bool register_is_null(struct bpf_reg_state *reg)
2215{
2216 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2217}
2218
f7cf25b2
AS
2219static bool register_is_const(struct bpf_reg_state *reg)
2220{
2221 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2222}
2223
6e7e63cb
JH
2224static bool __is_pointer_value(bool allow_ptr_leaks,
2225 const struct bpf_reg_state *reg)
2226{
2227 if (allow_ptr_leaks)
2228 return false;
2229
2230 return reg->type != SCALAR_VALUE;
2231}
2232
f7cf25b2
AS
2233static void save_register_state(struct bpf_func_state *state,
2234 int spi, struct bpf_reg_state *reg)
2235{
2236 int i;
2237
2238 state->stack[spi].spilled_ptr = *reg;
2239 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2240
2241 for (i = 0; i < BPF_REG_SIZE; i++)
2242 state->stack[spi].slot_type[i] = STACK_SPILL;
2243}
2244
17a52670
AS
2245/* check_stack_read/write functions track spill/fill of registers,
2246 * stack boundary and alignment are checked in check_mem_access()
2247 */
61bd5218 2248static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2249 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2250 int off, int size, int value_regno, int insn_idx)
17a52670 2251{
f4d7e40a 2252 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2253 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2254 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2255 struct bpf_reg_state *reg = NULL;
638f5b90 2256
f4d7e40a 2257 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2258 state->acquired_refs, true);
638f5b90
AS
2259 if (err)
2260 return err;
9c399760
AS
2261 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2262 * so it's aligned access and [off, off + size) are within stack limits
2263 */
638f5b90
AS
2264 if (!env->allow_ptr_leaks &&
2265 state->stack[spi].slot_type[0] == STACK_SPILL &&
2266 size != BPF_REG_SIZE) {
2267 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2268 return -EACCES;
2269 }
17a52670 2270
f4d7e40a 2271 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2272 if (value_regno >= 0)
2273 reg = &cur->regs[value_regno];
17a52670 2274
f7cf25b2 2275 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2c78ee89 2276 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2277 if (dst_reg != BPF_REG_FP) {
2278 /* The backtracking logic can only recognize explicit
2279 * stack slot address like [fp - 8]. Other spill of
2280 * scalar via different register has to be conervative.
2281 * Backtrack from here and mark all registers as precise
2282 * that contributed into 'reg' being a constant.
2283 */
2284 err = mark_chain_precision(env, value_regno);
2285 if (err)
2286 return err;
2287 }
f7cf25b2
AS
2288 save_register_state(state, spi, reg);
2289 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2290 /* register containing pointer is being spilled into stack */
9c399760 2291 if (size != BPF_REG_SIZE) {
f7cf25b2 2292 verbose_linfo(env, insn_idx, "; ");
61bd5218 2293 verbose(env, "invalid size of register spill\n");
17a52670
AS
2294 return -EACCES;
2295 }
2296
f7cf25b2 2297 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2298 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2299 return -EINVAL;
2300 }
2301
2c78ee89 2302 if (!env->bypass_spec_v4) {
f7cf25b2 2303 bool sanitize = false;
17a52670 2304
f7cf25b2
AS
2305 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2306 register_is_const(&state->stack[spi].spilled_ptr))
2307 sanitize = true;
2308 for (i = 0; i < BPF_REG_SIZE; i++)
2309 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2310 sanitize = true;
2311 break;
2312 }
2313 if (sanitize) {
af86ca4e
AS
2314 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2315 int soff = (-spi - 1) * BPF_REG_SIZE;
2316
2317 /* detected reuse of integer stack slot with a pointer
2318 * which means either llvm is reusing stack slot or
2319 * an attacker is trying to exploit CVE-2018-3639
2320 * (speculative store bypass)
2321 * Have to sanitize that slot with preemptive
2322 * store of zero.
2323 */
2324 if (*poff && *poff != soff) {
2325 /* disallow programs where single insn stores
2326 * into two different stack slots, since verifier
2327 * cannot sanitize them
2328 */
2329 verbose(env,
2330 "insn %d cannot access two stack slots fp%d and fp%d",
2331 insn_idx, *poff, soff);
2332 return -EINVAL;
2333 }
2334 *poff = soff;
2335 }
af86ca4e 2336 }
f7cf25b2 2337 save_register_state(state, spi, reg);
9c399760 2338 } else {
cc2b14d5
AS
2339 u8 type = STACK_MISC;
2340
679c782d
EC
2341 /* regular write of data into stack destroys any spilled ptr */
2342 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2343 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2344 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2345 for (i = 0; i < BPF_REG_SIZE; i++)
2346 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2347
cc2b14d5
AS
2348 /* only mark the slot as written if all 8 bytes were written
2349 * otherwise read propagation may incorrectly stop too soon
2350 * when stack slots are partially written.
2351 * This heuristic means that read propagation will be
2352 * conservative, since it will add reg_live_read marks
2353 * to stack slots all the way to first state when programs
2354 * writes+reads less than 8 bytes
2355 */
2356 if (size == BPF_REG_SIZE)
2357 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2358
2359 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2360 if (reg && register_is_null(reg)) {
2361 /* backtracking doesn't work for STACK_ZERO yet. */
2362 err = mark_chain_precision(env, value_regno);
2363 if (err)
2364 return err;
cc2b14d5 2365 type = STACK_ZERO;
b5dc0163 2366 }
cc2b14d5 2367
0bae2d4d 2368 /* Mark slots affected by this stack write. */
9c399760 2369 for (i = 0; i < size; i++)
638f5b90 2370 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2371 type;
17a52670
AS
2372 }
2373 return 0;
2374}
2375
61bd5218 2376static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2377 struct bpf_func_state *reg_state /* func where register points to */,
2378 int off, int size, int value_regno)
17a52670 2379{
f4d7e40a
AS
2380 struct bpf_verifier_state *vstate = env->cur_state;
2381 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2382 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2383 struct bpf_reg_state *reg;
638f5b90 2384 u8 *stype;
17a52670 2385
f4d7e40a 2386 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2387 verbose(env, "invalid read from stack off %d+0 size %d\n",
2388 off, size);
2389 return -EACCES;
2390 }
f4d7e40a 2391 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2392 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2393
638f5b90 2394 if (stype[0] == STACK_SPILL) {
9c399760 2395 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2396 if (reg->type != SCALAR_VALUE) {
2397 verbose_linfo(env, env->insn_idx, "; ");
2398 verbose(env, "invalid size of register fill\n");
2399 return -EACCES;
2400 }
2401 if (value_regno >= 0) {
2402 mark_reg_unknown(env, state->regs, value_regno);
2403 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2404 }
2405 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2406 return 0;
17a52670 2407 }
9c399760 2408 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2409 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2410 verbose(env, "corrupted spill memory\n");
17a52670
AS
2411 return -EACCES;
2412 }
2413 }
2414
dc503a8a 2415 if (value_regno >= 0) {
17a52670 2416 /* restore register state from stack */
f7cf25b2 2417 state->regs[value_regno] = *reg;
2f18f62e
AS
2418 /* mark reg as written since spilled pointer state likely
2419 * has its liveness marks cleared by is_state_visited()
2420 * which resets stack/reg liveness for state transitions
2421 */
2422 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2423 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2424 /* If value_regno==-1, the caller is asking us whether
2425 * it is acceptable to use this value as a SCALAR_VALUE
2426 * (e.g. for XADD).
2427 * We must not allow unprivileged callers to do that
2428 * with spilled pointers.
2429 */
2430 verbose(env, "leaking pointer from stack off %d\n",
2431 off);
2432 return -EACCES;
dc503a8a 2433 }
f7cf25b2 2434 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2435 } else {
cc2b14d5
AS
2436 int zeros = 0;
2437
17a52670 2438 for (i = 0; i < size; i++) {
cc2b14d5
AS
2439 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2440 continue;
2441 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2442 zeros++;
2443 continue;
17a52670 2444 }
cc2b14d5
AS
2445 verbose(env, "invalid read from stack off %d+%d size %d\n",
2446 off, i, size);
2447 return -EACCES;
2448 }
f7cf25b2 2449 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2450 if (value_regno >= 0) {
2451 if (zeros == size) {
2452 /* any size read into register is zero extended,
2453 * so the whole register == const_zero
2454 */
2455 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2456 /* backtracking doesn't support STACK_ZERO yet,
2457 * so mark it precise here, so that later
2458 * backtracking can stop here.
2459 * Backtracking may not need this if this register
2460 * doesn't participate in pointer adjustment.
2461 * Forward propagation of precise flag is not
2462 * necessary either. This mark is only to stop
2463 * backtracking. Any register that contributed
2464 * to const 0 was marked precise before spill.
2465 */
2466 state->regs[value_regno].precise = true;
cc2b14d5
AS
2467 } else {
2468 /* have read misc data from the stack */
2469 mark_reg_unknown(env, state->regs, value_regno);
2470 }
2471 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2472 }
17a52670 2473 }
f7cf25b2 2474 return 0;
17a52670
AS
2475}
2476
e4298d25
DB
2477static int check_stack_access(struct bpf_verifier_env *env,
2478 const struct bpf_reg_state *reg,
2479 int off, int size)
2480{
2481 /* Stack accesses must be at a fixed offset, so that we
2482 * can determine what type of data were returned. See
2483 * check_stack_read().
2484 */
2485 if (!tnum_is_const(reg->var_off)) {
2486 char tn_buf[48];
2487
2488 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2489 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2490 tn_buf, off, size);
2491 return -EACCES;
2492 }
2493
2494 if (off >= 0 || off < -MAX_BPF_STACK) {
2495 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2496 return -EACCES;
2497 }
2498
2499 return 0;
2500}
2501
591fe988
DB
2502static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2503 int off, int size, enum bpf_access_type type)
2504{
2505 struct bpf_reg_state *regs = cur_regs(env);
2506 struct bpf_map *map = regs[regno].map_ptr;
2507 u32 cap = bpf_map_flags_to_cap(map);
2508
2509 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2510 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2511 map->value_size, off, size);
2512 return -EACCES;
2513 }
2514
2515 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2516 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2517 map->value_size, off, size);
2518 return -EACCES;
2519 }
2520
2521 return 0;
2522}
2523
457f4436
AN
2524/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2525static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2526 int off, int size, u32 mem_size,
2527 bool zero_size_allowed)
17a52670 2528{
457f4436
AN
2529 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2530 struct bpf_reg_state *reg;
2531
2532 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2533 return 0;
17a52670 2534
457f4436
AN
2535 reg = &cur_regs(env)[regno];
2536 switch (reg->type) {
2537 case PTR_TO_MAP_VALUE:
61bd5218 2538 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2539 mem_size, off, size);
2540 break;
2541 case PTR_TO_PACKET:
2542 case PTR_TO_PACKET_META:
2543 case PTR_TO_PACKET_END:
2544 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2545 off, size, regno, reg->id, off, mem_size);
2546 break;
2547 case PTR_TO_MEM:
2548 default:
2549 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2550 mem_size, off, size);
17a52670 2551 }
457f4436
AN
2552
2553 return -EACCES;
17a52670
AS
2554}
2555
457f4436
AN
2556/* check read/write into a memory region with possible variable offset */
2557static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2558 int off, int size, u32 mem_size,
2559 bool zero_size_allowed)
dbcfe5f7 2560{
f4d7e40a
AS
2561 struct bpf_verifier_state *vstate = env->cur_state;
2562 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2563 struct bpf_reg_state *reg = &state->regs[regno];
2564 int err;
2565
457f4436 2566 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2567 * need to try adding each of min_value and max_value to off
2568 * to make sure our theoretical access will be safe.
dbcfe5f7 2569 */
06ee7115 2570 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2571 print_verifier_state(env, state);
b7137c4e 2572
dbcfe5f7
GB
2573 /* The minimum value is only important with signed
2574 * comparisons where we can't assume the floor of a
2575 * value is 0. If we are using signed variables for our
2576 * index'es we need to make sure that whatever we use
2577 * will have a set floor within our range.
2578 */
b7137c4e
DB
2579 if (reg->smin_value < 0 &&
2580 (reg->smin_value == S64_MIN ||
2581 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2582 reg->smin_value + off < 0)) {
61bd5218 2583 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2584 regno);
2585 return -EACCES;
2586 }
457f4436
AN
2587 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2588 mem_size, zero_size_allowed);
dbcfe5f7 2589 if (err) {
457f4436 2590 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2591 regno);
dbcfe5f7
GB
2592 return err;
2593 }
2594
b03c9f9f
EC
2595 /* If we haven't set a max value then we need to bail since we can't be
2596 * sure we won't do bad things.
2597 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2598 */
b03c9f9f 2599 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2600 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2601 regno);
2602 return -EACCES;
2603 }
457f4436
AN
2604 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2605 mem_size, zero_size_allowed);
2606 if (err) {
2607 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2608 regno);
457f4436
AN
2609 return err;
2610 }
2611
2612 return 0;
2613}
d83525ca 2614
457f4436
AN
2615/* check read/write into a map element with possible variable offset */
2616static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2617 int off, int size, bool zero_size_allowed)
2618{
2619 struct bpf_verifier_state *vstate = env->cur_state;
2620 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2621 struct bpf_reg_state *reg = &state->regs[regno];
2622 struct bpf_map *map = reg->map_ptr;
2623 int err;
2624
2625 err = check_mem_region_access(env, regno, off, size, map->value_size,
2626 zero_size_allowed);
2627 if (err)
2628 return err;
2629
2630 if (map_value_has_spin_lock(map)) {
2631 u32 lock = map->spin_lock_off;
d83525ca
AS
2632
2633 /* if any part of struct bpf_spin_lock can be touched by
2634 * load/store reject this program.
2635 * To check that [x1, x2) overlaps with [y1, y2)
2636 * it is sufficient to check x1 < y2 && y1 < x2.
2637 */
2638 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2639 lock < reg->umax_value + off + size) {
2640 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2641 return -EACCES;
2642 }
2643 }
f1174f77 2644 return err;
dbcfe5f7
GB
2645}
2646
969bf05e
AS
2647#define MAX_PACKET_OFF 0xffff
2648
7e40781c
UP
2649static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2650{
3aac1ead 2651 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
2652}
2653
58e2af8b 2654static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2655 const struct bpf_call_arg_meta *meta,
2656 enum bpf_access_type t)
4acf6c0b 2657{
7e40781c
UP
2658 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2659
2660 switch (prog_type) {
5d66fa7d 2661 /* Program types only with direct read access go here! */
3a0af8fd
TG
2662 case BPF_PROG_TYPE_LWT_IN:
2663 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2664 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2665 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2666 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2667 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2668 if (t == BPF_WRITE)
2669 return false;
7e57fbb2 2670 /* fallthrough */
5d66fa7d
DB
2671
2672 /* Program types with direct read + write access go here! */
36bbef52
DB
2673 case BPF_PROG_TYPE_SCHED_CLS:
2674 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2675 case BPF_PROG_TYPE_XDP:
3a0af8fd 2676 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2677 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2678 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2679 if (meta)
2680 return meta->pkt_access;
2681
2682 env->seen_direct_write = true;
4acf6c0b 2683 return true;
0d01da6a
SF
2684
2685 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2686 if (t == BPF_WRITE)
2687 env->seen_direct_write = true;
2688
2689 return true;
2690
4acf6c0b
BB
2691 default:
2692 return false;
2693 }
2694}
2695
f1174f77 2696static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2697 int size, bool zero_size_allowed)
f1174f77 2698{
638f5b90 2699 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2700 struct bpf_reg_state *reg = &regs[regno];
2701 int err;
2702
2703 /* We may have added a variable offset to the packet pointer; but any
2704 * reg->range we have comes after that. We are only checking the fixed
2705 * offset.
2706 */
2707
2708 /* We don't allow negative numbers, because we aren't tracking enough
2709 * detail to prove they're safe.
2710 */
b03c9f9f 2711 if (reg->smin_value < 0) {
61bd5218 2712 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2713 regno);
2714 return -EACCES;
2715 }
457f4436
AN
2716 err = __check_mem_access(env, regno, off, size, reg->range,
2717 zero_size_allowed);
f1174f77 2718 if (err) {
61bd5218 2719 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2720 return err;
2721 }
e647815a 2722
457f4436 2723 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2724 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2725 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2726 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2727 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2728 */
2729 env->prog->aux->max_pkt_offset =
2730 max_t(u32, env->prog->aux->max_pkt_offset,
2731 off + reg->umax_value + size - 1);
2732
f1174f77
EC
2733 return err;
2734}
2735
2736/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2737static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2738 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2739 u32 *btf_id)
17a52670 2740{
f96da094
DB
2741 struct bpf_insn_access_aux info = {
2742 .reg_type = *reg_type,
9e15db66 2743 .log = &env->log,
f96da094 2744 };
31fd8581 2745
4f9218aa 2746 if (env->ops->is_valid_access &&
5e43f899 2747 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2748 /* A non zero info.ctx_field_size indicates that this field is a
2749 * candidate for later verifier transformation to load the whole
2750 * field and then apply a mask when accessed with a narrower
2751 * access than actual ctx access size. A zero info.ctx_field_size
2752 * will only allow for whole field access and rejects any other
2753 * type of narrower access.
31fd8581 2754 */
23994631 2755 *reg_type = info.reg_type;
31fd8581 2756
b121b341 2757 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2758 *btf_id = info.btf_id;
2759 else
2760 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2761 /* remember the offset of last byte accessed in ctx */
2762 if (env->prog->aux->max_ctx_offset < off + size)
2763 env->prog->aux->max_ctx_offset = off + size;
17a52670 2764 return 0;
32bbe007 2765 }
17a52670 2766
61bd5218 2767 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2768 return -EACCES;
2769}
2770
d58e468b
PP
2771static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2772 int size)
2773{
2774 if (size < 0 || off < 0 ||
2775 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2776 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2777 off, size);
2778 return -EACCES;
2779 }
2780 return 0;
2781}
2782
5f456649
MKL
2783static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2784 u32 regno, int off, int size,
2785 enum bpf_access_type t)
c64b7983
JS
2786{
2787 struct bpf_reg_state *regs = cur_regs(env);
2788 struct bpf_reg_state *reg = &regs[regno];
5f456649 2789 struct bpf_insn_access_aux info = {};
46f8bc92 2790 bool valid;
c64b7983
JS
2791
2792 if (reg->smin_value < 0) {
2793 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2794 regno);
2795 return -EACCES;
2796 }
2797
46f8bc92
MKL
2798 switch (reg->type) {
2799 case PTR_TO_SOCK_COMMON:
2800 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2801 break;
2802 case PTR_TO_SOCKET:
2803 valid = bpf_sock_is_valid_access(off, size, t, &info);
2804 break;
655a51e5
MKL
2805 case PTR_TO_TCP_SOCK:
2806 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2807 break;
fada7fdc
JL
2808 case PTR_TO_XDP_SOCK:
2809 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2810 break;
46f8bc92
MKL
2811 default:
2812 valid = false;
c64b7983
JS
2813 }
2814
5f456649 2815
46f8bc92
MKL
2816 if (valid) {
2817 env->insn_aux_data[insn_idx].ctx_field_size =
2818 info.ctx_field_size;
2819 return 0;
2820 }
2821
2822 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2823 regno, reg_type_str[reg->type], off, size);
2824
2825 return -EACCES;
c64b7983
JS
2826}
2827
2a159c6f
DB
2828static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2829{
2830 return cur_regs(env) + regno;
2831}
2832
4cabc5b1
DB
2833static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2834{
2a159c6f 2835 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2836}
2837
f37a8cb8
DB
2838static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2839{
2a159c6f 2840 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2841
46f8bc92
MKL
2842 return reg->type == PTR_TO_CTX;
2843}
2844
2845static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2846{
2847 const struct bpf_reg_state *reg = reg_state(env, regno);
2848
2849 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2850}
2851
ca369602
DB
2852static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2853{
2a159c6f 2854 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2855
2856 return type_is_pkt_pointer(reg->type);
2857}
2858
4b5defde
DB
2859static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2860{
2861 const struct bpf_reg_state *reg = reg_state(env, regno);
2862
2863 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2864 return reg->type == PTR_TO_FLOW_KEYS;
2865}
2866
61bd5218
JK
2867static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2868 const struct bpf_reg_state *reg,
d1174416 2869 int off, int size, bool strict)
969bf05e 2870{
f1174f77 2871 struct tnum reg_off;
e07b98d9 2872 int ip_align;
d1174416
DM
2873
2874 /* Byte size accesses are always allowed. */
2875 if (!strict || size == 1)
2876 return 0;
2877
e4eda884
DM
2878 /* For platforms that do not have a Kconfig enabling
2879 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2880 * NET_IP_ALIGN is universally set to '2'. And on platforms
2881 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2882 * to this code only in strict mode where we want to emulate
2883 * the NET_IP_ALIGN==2 checking. Therefore use an
2884 * unconditional IP align value of '2'.
e07b98d9 2885 */
e4eda884 2886 ip_align = 2;
f1174f77
EC
2887
2888 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2889 if (!tnum_is_aligned(reg_off, size)) {
2890 char tn_buf[48];
2891
2892 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2893 verbose(env,
2894 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2895 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2896 return -EACCES;
2897 }
79adffcd 2898
969bf05e
AS
2899 return 0;
2900}
2901
61bd5218
JK
2902static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2903 const struct bpf_reg_state *reg,
f1174f77
EC
2904 const char *pointer_desc,
2905 int off, int size, bool strict)
79adffcd 2906{
f1174f77
EC
2907 struct tnum reg_off;
2908
2909 /* Byte size accesses are always allowed. */
2910 if (!strict || size == 1)
2911 return 0;
2912
2913 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2914 if (!tnum_is_aligned(reg_off, size)) {
2915 char tn_buf[48];
2916
2917 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2918 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2919 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2920 return -EACCES;
2921 }
2922
969bf05e
AS
2923 return 0;
2924}
2925
e07b98d9 2926static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2927 const struct bpf_reg_state *reg, int off,
2928 int size, bool strict_alignment_once)
79adffcd 2929{
ca369602 2930 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2931 const char *pointer_desc = "";
d1174416 2932
79adffcd
DB
2933 switch (reg->type) {
2934 case PTR_TO_PACKET:
de8f3a83
DB
2935 case PTR_TO_PACKET_META:
2936 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2937 * right in front, treat it the very same way.
2938 */
61bd5218 2939 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2940 case PTR_TO_FLOW_KEYS:
2941 pointer_desc = "flow keys ";
2942 break;
f1174f77
EC
2943 case PTR_TO_MAP_VALUE:
2944 pointer_desc = "value ";
2945 break;
2946 case PTR_TO_CTX:
2947 pointer_desc = "context ";
2948 break;
2949 case PTR_TO_STACK:
2950 pointer_desc = "stack ";
a5ec6ae1
JH
2951 /* The stack spill tracking logic in check_stack_write()
2952 * and check_stack_read() relies on stack accesses being
2953 * aligned.
2954 */
2955 strict = true;
f1174f77 2956 break;
c64b7983
JS
2957 case PTR_TO_SOCKET:
2958 pointer_desc = "sock ";
2959 break;
46f8bc92
MKL
2960 case PTR_TO_SOCK_COMMON:
2961 pointer_desc = "sock_common ";
2962 break;
655a51e5
MKL
2963 case PTR_TO_TCP_SOCK:
2964 pointer_desc = "tcp_sock ";
2965 break;
fada7fdc
JL
2966 case PTR_TO_XDP_SOCK:
2967 pointer_desc = "xdp_sock ";
2968 break;
79adffcd 2969 default:
f1174f77 2970 break;
79adffcd 2971 }
61bd5218
JK
2972 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2973 strict);
79adffcd
DB
2974}
2975
f4d7e40a
AS
2976static int update_stack_depth(struct bpf_verifier_env *env,
2977 const struct bpf_func_state *func,
2978 int off)
2979{
9c8105bd 2980 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2981
2982 if (stack >= -off)
2983 return 0;
2984
2985 /* update known max for given subprogram */
9c8105bd 2986 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2987 return 0;
2988}
f4d7e40a 2989
70a87ffe
AS
2990/* starting from main bpf function walk all instructions of the function
2991 * and recursively walk all callees that given function can call.
2992 * Ignore jump and exit insns.
2993 * Since recursion is prevented by check_cfg() this algorithm
2994 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2995 */
2996static int check_max_stack_depth(struct bpf_verifier_env *env)
2997{
9c8105bd
JW
2998 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2999 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3000 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3001 bool tail_call_reachable = false;
70a87ffe
AS
3002 int ret_insn[MAX_CALL_FRAMES];
3003 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3004 int j;
f4d7e40a 3005
70a87ffe 3006process_func:
7f6e4312
MF
3007 /* protect against potential stack overflow that might happen when
3008 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3009 * depth for such case down to 256 so that the worst case scenario
3010 * would result in 8k stack size (32 which is tailcall limit * 256 =
3011 * 8k).
3012 *
3013 * To get the idea what might happen, see an example:
3014 * func1 -> sub rsp, 128
3015 * subfunc1 -> sub rsp, 256
3016 * tailcall1 -> add rsp, 256
3017 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3018 * subfunc2 -> sub rsp, 64
3019 * subfunc22 -> sub rsp, 128
3020 * tailcall2 -> add rsp, 128
3021 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3022 *
3023 * tailcall will unwind the current stack frame but it will not get rid
3024 * of caller's stack as shown on the example above.
3025 */
3026 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3027 verbose(env,
3028 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3029 depth);
3030 return -EACCES;
3031 }
70a87ffe
AS
3032 /* round up to 32-bytes, since this is granularity
3033 * of interpreter stack size
3034 */
9c8105bd 3035 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3036 if (depth > MAX_BPF_STACK) {
f4d7e40a 3037 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3038 frame + 1, depth);
f4d7e40a
AS
3039 return -EACCES;
3040 }
70a87ffe 3041continue_func:
4cb3d99c 3042 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
3043 for (; i < subprog_end; i++) {
3044 if (insn[i].code != (BPF_JMP | BPF_CALL))
3045 continue;
3046 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3047 continue;
3048 /* remember insn and function to return to */
3049 ret_insn[frame] = i + 1;
9c8105bd 3050 ret_prog[frame] = idx;
70a87ffe
AS
3051
3052 /* find the callee */
3053 i = i + insn[i].imm + 1;
9c8105bd
JW
3054 idx = find_subprog(env, i);
3055 if (idx < 0) {
70a87ffe
AS
3056 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3057 i);
3058 return -EFAULT;
3059 }
ebf7d1f5
MF
3060
3061 if (subprog[idx].has_tail_call)
3062 tail_call_reachable = true;
3063
70a87ffe
AS
3064 frame++;
3065 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3066 verbose(env, "the call stack of %d frames is too deep !\n",
3067 frame);
3068 return -E2BIG;
70a87ffe
AS
3069 }
3070 goto process_func;
3071 }
ebf7d1f5
MF
3072 /* if tail call got detected across bpf2bpf calls then mark each of the
3073 * currently present subprog frames as tail call reachable subprogs;
3074 * this info will be utilized by JIT so that we will be preserving the
3075 * tail call counter throughout bpf2bpf calls combined with tailcalls
3076 */
3077 if (tail_call_reachable)
3078 for (j = 0; j < frame; j++)
3079 subprog[ret_prog[j]].tail_call_reachable = true;
3080
70a87ffe
AS
3081 /* end of for() loop means the last insn of the 'subprog'
3082 * was reached. Doesn't matter whether it was JA or EXIT
3083 */
3084 if (frame == 0)
3085 return 0;
9c8105bd 3086 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3087 frame--;
3088 i = ret_insn[frame];
9c8105bd 3089 idx = ret_prog[frame];
70a87ffe 3090 goto continue_func;
f4d7e40a
AS
3091}
3092
19d28fbd 3093#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3094static int get_callee_stack_depth(struct bpf_verifier_env *env,
3095 const struct bpf_insn *insn, int idx)
3096{
3097 int start = idx + insn->imm + 1, subprog;
3098
3099 subprog = find_subprog(env, start);
3100 if (subprog < 0) {
3101 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3102 start);
3103 return -EFAULT;
3104 }
9c8105bd 3105 return env->subprog_info[subprog].stack_depth;
1ea47e01 3106}
19d28fbd 3107#endif
1ea47e01 3108
51c39bb1
AS
3109int check_ctx_reg(struct bpf_verifier_env *env,
3110 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3111{
3112 /* Access to ctx or passing it to a helper is only allowed in
3113 * its original, unmodified form.
3114 */
3115
3116 if (reg->off) {
3117 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3118 regno, reg->off);
3119 return -EACCES;
3120 }
3121
3122 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3123 char tn_buf[48];
3124
3125 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3126 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3127 return -EACCES;
3128 }
3129
3130 return 0;
3131}
3132
afbf21dc
YS
3133static int __check_buffer_access(struct bpf_verifier_env *env,
3134 const char *buf_info,
3135 const struct bpf_reg_state *reg,
3136 int regno, int off, int size)
9df1c28b
MM
3137{
3138 if (off < 0) {
3139 verbose(env,
4fc00b79 3140 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3141 regno, buf_info, off, size);
9df1c28b
MM
3142 return -EACCES;
3143 }
3144 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3145 char tn_buf[48];
3146
3147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3148 verbose(env,
4fc00b79 3149 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3150 regno, off, tn_buf);
3151 return -EACCES;
3152 }
afbf21dc
YS
3153
3154 return 0;
3155}
3156
3157static int check_tp_buffer_access(struct bpf_verifier_env *env,
3158 const struct bpf_reg_state *reg,
3159 int regno, int off, int size)
3160{
3161 int err;
3162
3163 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3164 if (err)
3165 return err;
3166
9df1c28b
MM
3167 if (off + size > env->prog->aux->max_tp_access)
3168 env->prog->aux->max_tp_access = off + size;
3169
3170 return 0;
3171}
3172
afbf21dc
YS
3173static int check_buffer_access(struct bpf_verifier_env *env,
3174 const struct bpf_reg_state *reg,
3175 int regno, int off, int size,
3176 bool zero_size_allowed,
3177 const char *buf_info,
3178 u32 *max_access)
3179{
3180 int err;
3181
3182 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3183 if (err)
3184 return err;
3185
3186 if (off + size > *max_access)
3187 *max_access = off + size;
3188
3189 return 0;
3190}
3191
3f50f132
JF
3192/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3193static void zext_32_to_64(struct bpf_reg_state *reg)
3194{
3195 reg->var_off = tnum_subreg(reg->var_off);
3196 __reg_assign_32_into_64(reg);
3197}
9df1c28b 3198
0c17d1d2
JH
3199/* truncate register to smaller size (in bytes)
3200 * must be called with size < BPF_REG_SIZE
3201 */
3202static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3203{
3204 u64 mask;
3205
3206 /* clear high bits in bit representation */
3207 reg->var_off = tnum_cast(reg->var_off, size);
3208
3209 /* fix arithmetic bounds */
3210 mask = ((u64)1 << (size * 8)) - 1;
3211 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3212 reg->umin_value &= mask;
3213 reg->umax_value &= mask;
3214 } else {
3215 reg->umin_value = 0;
3216 reg->umax_value = mask;
3217 }
3218 reg->smin_value = reg->umin_value;
3219 reg->smax_value = reg->umax_value;
3f50f132
JF
3220
3221 /* If size is smaller than 32bit register the 32bit register
3222 * values are also truncated so we push 64-bit bounds into
3223 * 32-bit bounds. Above were truncated < 32-bits already.
3224 */
3225 if (size >= 4)
3226 return;
3227 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3228}
3229
a23740ec
AN
3230static bool bpf_map_is_rdonly(const struct bpf_map *map)
3231{
3232 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3233}
3234
3235static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3236{
3237 void *ptr;
3238 u64 addr;
3239 int err;
3240
3241 err = map->ops->map_direct_value_addr(map, &addr, off);
3242 if (err)
3243 return err;
2dedd7d2 3244 ptr = (void *)(long)addr + off;
a23740ec
AN
3245
3246 switch (size) {
3247 case sizeof(u8):
3248 *val = (u64)*(u8 *)ptr;
3249 break;
3250 case sizeof(u16):
3251 *val = (u64)*(u16 *)ptr;
3252 break;
3253 case sizeof(u32):
3254 *val = (u64)*(u32 *)ptr;
3255 break;
3256 case sizeof(u64):
3257 *val = *(u64 *)ptr;
3258 break;
3259 default:
3260 return -EINVAL;
3261 }
3262 return 0;
3263}
3264
9e15db66
AS
3265static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3266 struct bpf_reg_state *regs,
3267 int regno, int off, int size,
3268 enum bpf_access_type atype,
3269 int value_regno)
3270{
3271 struct bpf_reg_state *reg = regs + regno;
3272 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3273 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3274 u32 btf_id;
3275 int ret;
3276
9e15db66
AS
3277 if (off < 0) {
3278 verbose(env,
3279 "R%d is ptr_%s invalid negative access: off=%d\n",
3280 regno, tname, off);
3281 return -EACCES;
3282 }
3283 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3284 char tn_buf[48];
3285
3286 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3287 verbose(env,
3288 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3289 regno, tname, off, tn_buf);
3290 return -EACCES;
3291 }
3292
27ae7997
MKL
3293 if (env->ops->btf_struct_access) {
3294 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3295 atype, &btf_id);
3296 } else {
3297 if (atype != BPF_READ) {
3298 verbose(env, "only read is supported\n");
3299 return -EACCES;
3300 }
3301
3302 ret = btf_struct_access(&env->log, t, off, size, atype,
3303 &btf_id);
3304 }
3305
9e15db66
AS
3306 if (ret < 0)
3307 return ret;
3308
41c48f3a
AI
3309 if (atype == BPF_READ && value_regno >= 0)
3310 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3311
3312 return 0;
3313}
3314
3315static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3316 struct bpf_reg_state *regs,
3317 int regno, int off, int size,
3318 enum bpf_access_type atype,
3319 int value_regno)
3320{
3321 struct bpf_reg_state *reg = regs + regno;
3322 struct bpf_map *map = reg->map_ptr;
3323 const struct btf_type *t;
3324 const char *tname;
3325 u32 btf_id;
3326 int ret;
3327
3328 if (!btf_vmlinux) {
3329 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3330 return -ENOTSUPP;
3331 }
3332
3333 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3334 verbose(env, "map_ptr access not supported for map type %d\n",
3335 map->map_type);
3336 return -ENOTSUPP;
3337 }
3338
3339 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3340 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3341
3342 if (!env->allow_ptr_to_map_access) {
3343 verbose(env,
3344 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3345 tname);
3346 return -EPERM;
9e15db66 3347 }
27ae7997 3348
41c48f3a
AI
3349 if (off < 0) {
3350 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3351 regno, tname, off);
3352 return -EACCES;
3353 }
3354
3355 if (atype != BPF_READ) {
3356 verbose(env, "only read from %s is supported\n", tname);
3357 return -EACCES;
3358 }
3359
3360 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3361 if (ret < 0)
3362 return ret;
3363
3364 if (value_regno >= 0)
3365 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3366
9e15db66
AS
3367 return 0;
3368}
3369
41c48f3a 3370
17a52670
AS
3371/* check whether memory at (regno + off) is accessible for t = (read | write)
3372 * if t==write, value_regno is a register which value is stored into memory
3373 * if t==read, value_regno is a register which will receive the value from memory
3374 * if t==write && value_regno==-1, some unknown value is stored into memory
3375 * if t==read && value_regno==-1, don't care what we read from memory
3376 */
ca369602
DB
3377static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3378 int off, int bpf_size, enum bpf_access_type t,
3379 int value_regno, bool strict_alignment_once)
17a52670 3380{
638f5b90
AS
3381 struct bpf_reg_state *regs = cur_regs(env);
3382 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3383 struct bpf_func_state *state;
17a52670
AS
3384 int size, err = 0;
3385
3386 size = bpf_size_to_bytes(bpf_size);
3387 if (size < 0)
3388 return size;
3389
f1174f77 3390 /* alignment checks will add in reg->off themselves */
ca369602 3391 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3392 if (err)
3393 return err;
17a52670 3394
f1174f77
EC
3395 /* for access checks, reg->off is just part of off */
3396 off += reg->off;
3397
3398 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3399 if (t == BPF_WRITE && value_regno >= 0 &&
3400 is_pointer_value(env, value_regno)) {
61bd5218 3401 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3402 return -EACCES;
3403 }
591fe988
DB
3404 err = check_map_access_type(env, regno, off, size, t);
3405 if (err)
3406 return err;
9fd29c08 3407 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3408 if (!err && t == BPF_READ && value_regno >= 0) {
3409 struct bpf_map *map = reg->map_ptr;
3410
3411 /* if map is read-only, track its contents as scalars */
3412 if (tnum_is_const(reg->var_off) &&
3413 bpf_map_is_rdonly(map) &&
3414 map->ops->map_direct_value_addr) {
3415 int map_off = off + reg->var_off.value;
3416 u64 val = 0;
3417
3418 err = bpf_map_direct_read(map, map_off, size,
3419 &val);
3420 if (err)
3421 return err;
3422
3423 regs[value_regno].type = SCALAR_VALUE;
3424 __mark_reg_known(&regs[value_regno], val);
3425 } else {
3426 mark_reg_unknown(env, regs, value_regno);
3427 }
3428 }
457f4436
AN
3429 } else if (reg->type == PTR_TO_MEM) {
3430 if (t == BPF_WRITE && value_regno >= 0 &&
3431 is_pointer_value(env, value_regno)) {
3432 verbose(env, "R%d leaks addr into mem\n", value_regno);
3433 return -EACCES;
3434 }
3435 err = check_mem_region_access(env, regno, off, size,
3436 reg->mem_size, false);
3437 if (!err && t == BPF_READ && value_regno >= 0)
3438 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3439 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3440 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3441 u32 btf_id = 0;
19de99f7 3442
1be7f75d
AS
3443 if (t == BPF_WRITE && value_regno >= 0 &&
3444 is_pointer_value(env, value_regno)) {
61bd5218 3445 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3446 return -EACCES;
3447 }
f1174f77 3448
58990d1f
DB
3449 err = check_ctx_reg(env, reg, regno);
3450 if (err < 0)
3451 return err;
3452
9e15db66
AS
3453 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3454 if (err)
3455 verbose_linfo(env, insn_idx, "; ");
969bf05e 3456 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3457 /* ctx access returns either a scalar, or a
de8f3a83
DB
3458 * PTR_TO_PACKET[_META,_END]. In the latter
3459 * case, we know the offset is zero.
f1174f77 3460 */
46f8bc92 3461 if (reg_type == SCALAR_VALUE) {
638f5b90 3462 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3463 } else {
638f5b90 3464 mark_reg_known_zero(env, regs,
61bd5218 3465 value_regno);
46f8bc92
MKL
3466 if (reg_type_may_be_null(reg_type))
3467 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3468 /* A load of ctx field could have different
3469 * actual load size with the one encoded in the
3470 * insn. When the dst is PTR, it is for sure not
3471 * a sub-register.
3472 */
3473 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3474 if (reg_type == PTR_TO_BTF_ID ||
3475 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3476 regs[value_regno].btf_id = btf_id;
46f8bc92 3477 }
638f5b90 3478 regs[value_regno].type = reg_type;
969bf05e 3479 }
17a52670 3480
f1174f77 3481 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3482 off += reg->var_off.value;
e4298d25
DB
3483 err = check_stack_access(env, reg, off, size);
3484 if (err)
3485 return err;
8726679a 3486
f4d7e40a
AS
3487 state = func(env, reg);
3488 err = update_stack_depth(env, state, off);
3489 if (err)
3490 return err;
8726679a 3491
638f5b90 3492 if (t == BPF_WRITE)
61bd5218 3493 err = check_stack_write(env, state, off, size,
af86ca4e 3494 value_regno, insn_idx);
638f5b90 3495 else
61bd5218
JK
3496 err = check_stack_read(env, state, off, size,
3497 value_regno);
de8f3a83 3498 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3499 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3500 verbose(env, "cannot write into packet\n");
969bf05e
AS
3501 return -EACCES;
3502 }
4acf6c0b
BB
3503 if (t == BPF_WRITE && value_regno >= 0 &&
3504 is_pointer_value(env, value_regno)) {
61bd5218
JK
3505 verbose(env, "R%d leaks addr into packet\n",
3506 value_regno);
4acf6c0b
BB
3507 return -EACCES;
3508 }
9fd29c08 3509 err = check_packet_access(env, regno, off, size, false);
969bf05e 3510 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3511 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3512 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3513 if (t == BPF_WRITE && value_regno >= 0 &&
3514 is_pointer_value(env, value_regno)) {
3515 verbose(env, "R%d leaks addr into flow keys\n",
3516 value_regno);
3517 return -EACCES;
3518 }
3519
3520 err = check_flow_keys_access(env, off, size);
3521 if (!err && t == BPF_READ && value_regno >= 0)
3522 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3523 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3524 if (t == BPF_WRITE) {
46f8bc92
MKL
3525 verbose(env, "R%d cannot write into %s\n",
3526 regno, reg_type_str[reg->type]);
c64b7983
JS
3527 return -EACCES;
3528 }
5f456649 3529 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3530 if (!err && value_regno >= 0)
3531 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3532 } else if (reg->type == PTR_TO_TP_BUFFER) {
3533 err = check_tp_buffer_access(env, reg, regno, off, size);
3534 if (!err && t == BPF_READ && value_regno >= 0)
3535 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3536 } else if (reg->type == PTR_TO_BTF_ID) {
3537 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3538 value_regno);
41c48f3a
AI
3539 } else if (reg->type == CONST_PTR_TO_MAP) {
3540 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3541 value_regno);
afbf21dc
YS
3542 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3543 if (t == BPF_WRITE) {
3544 verbose(env, "R%d cannot write into %s\n",
3545 regno, reg_type_str[reg->type]);
3546 return -EACCES;
3547 }
f6dfbe31
CIK
3548 err = check_buffer_access(env, reg, regno, off, size, false,
3549 "rdonly",
afbf21dc
YS
3550 &env->prog->aux->max_rdonly_access);
3551 if (!err && value_regno >= 0)
3552 mark_reg_unknown(env, regs, value_regno);
3553 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3554 err = check_buffer_access(env, reg, regno, off, size, false,
3555 "rdwr",
afbf21dc
YS
3556 &env->prog->aux->max_rdwr_access);
3557 if (!err && t == BPF_READ && value_regno >= 0)
3558 mark_reg_unknown(env, regs, value_regno);
17a52670 3559 } else {
61bd5218
JK
3560 verbose(env, "R%d invalid mem access '%s'\n", regno,
3561 reg_type_str[reg->type]);
17a52670
AS
3562 return -EACCES;
3563 }
969bf05e 3564
f1174f77 3565 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3566 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3567 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3568 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3569 }
17a52670
AS
3570 return err;
3571}
3572
31fd8581 3573static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3574{
17a52670
AS
3575 int err;
3576
3577 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3578 insn->imm != 0) {
61bd5218 3579 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3580 return -EINVAL;
3581 }
3582
3583 /* check src1 operand */
dc503a8a 3584 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3585 if (err)
3586 return err;
3587
3588 /* check src2 operand */
dc503a8a 3589 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3590 if (err)
3591 return err;
3592
6bdf6abc 3593 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3594 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3595 return -EACCES;
3596 }
3597
ca369602 3598 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3599 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3600 is_flow_key_reg(env, insn->dst_reg) ||
3601 is_sk_reg(env, insn->dst_reg)) {
ca369602 3602 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3603 insn->dst_reg,
3604 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3605 return -EACCES;
3606 }
3607
17a52670 3608 /* check whether atomic_add can read the memory */
31fd8581 3609 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3610 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3611 if (err)
3612 return err;
3613
3614 /* check whether atomic_add can write into the same memory */
31fd8581 3615 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3616 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3617}
3618
2011fccf
AI
3619static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3620 int off, int access_size,
3621 bool zero_size_allowed)
3622{
3623 struct bpf_reg_state *reg = reg_state(env, regno);
3624
3625 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3626 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3627 if (tnum_is_const(reg->var_off)) {
3628 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3629 regno, off, access_size);
3630 } else {
3631 char tn_buf[48];
3632
3633 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3634 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3635 regno, tn_buf, access_size);
3636 }
3637 return -EACCES;
3638 }
3639 return 0;
3640}
3641
17a52670
AS
3642/* when register 'regno' is passed into function that will read 'access_size'
3643 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3644 * and all elements of stack are initialized.
3645 * Unlike most pointer bounds-checking functions, this one doesn't take an
3646 * 'off' argument, so it has to add in reg->off itself.
17a52670 3647 */
58e2af8b 3648static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3649 int access_size, bool zero_size_allowed,
3650 struct bpf_call_arg_meta *meta)
17a52670 3651{
2a159c6f 3652 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3653 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3654 int err, min_off, max_off, i, j, slot, spi;
17a52670 3655
2011fccf
AI
3656 if (tnum_is_const(reg->var_off)) {
3657 min_off = max_off = reg->var_off.value + reg->off;
3658 err = __check_stack_boundary(env, regno, min_off, access_size,
3659 zero_size_allowed);
3660 if (err)
3661 return err;
3662 } else {
088ec26d
AI
3663 /* Variable offset is prohibited for unprivileged mode for
3664 * simplicity since it requires corresponding support in
3665 * Spectre masking for stack ALU.
3666 * See also retrieve_ptr_limit().
3667 */
2c78ee89 3668 if (!env->bypass_spec_v1) {
088ec26d 3669 char tn_buf[48];
f1174f77 3670
088ec26d
AI
3671 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3672 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3673 regno, tn_buf);
3674 return -EACCES;
3675 }
f2bcd05e
AI
3676 /* Only initialized buffer on stack is allowed to be accessed
3677 * with variable offset. With uninitialized buffer it's hard to
3678 * guarantee that whole memory is marked as initialized on
3679 * helper return since specific bounds are unknown what may
3680 * cause uninitialized stack leaking.
3681 */
3682 if (meta && meta->raw_mode)
3683 meta = NULL;
3684
107c26a7
AI
3685 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3686 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3687 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3688 regno);
3689 return -EACCES;
3690 }
2011fccf 3691 min_off = reg->smin_value + reg->off;
107c26a7 3692 max_off = reg->smax_value + reg->off;
2011fccf
AI
3693 err = __check_stack_boundary(env, regno, min_off, access_size,
3694 zero_size_allowed);
107c26a7
AI
3695 if (err) {
3696 verbose(env, "R%d min value is outside of stack bound\n",
3697 regno);
2011fccf 3698 return err;
107c26a7 3699 }
2011fccf
AI
3700 err = __check_stack_boundary(env, regno, max_off, access_size,
3701 zero_size_allowed);
107c26a7
AI
3702 if (err) {
3703 verbose(env, "R%d max value is outside of stack bound\n",
3704 regno);
2011fccf 3705 return err;
107c26a7 3706 }
17a52670
AS
3707 }
3708
435faee1
DB
3709 if (meta && meta->raw_mode) {
3710 meta->access_size = access_size;
3711 meta->regno = regno;
3712 return 0;
3713 }
3714
2011fccf 3715 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3716 u8 *stype;
3717
2011fccf 3718 slot = -i - 1;
638f5b90 3719 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3720 if (state->allocated_stack <= slot)
3721 goto err;
3722 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3723 if (*stype == STACK_MISC)
3724 goto mark;
3725 if (*stype == STACK_ZERO) {
3726 /* helper can write anything into the stack */
3727 *stype = STACK_MISC;
3728 goto mark;
17a52670 3729 }
1d68f22b
YS
3730
3731 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3732 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3733 goto mark;
3734
f7cf25b2
AS
3735 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3736 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3737 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3738 for (j = 0; j < BPF_REG_SIZE; j++)
3739 state->stack[spi].slot_type[j] = STACK_MISC;
3740 goto mark;
3741 }
3742
cc2b14d5 3743err:
2011fccf
AI
3744 if (tnum_is_const(reg->var_off)) {
3745 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3746 min_off, i - min_off, access_size);
3747 } else {
3748 char tn_buf[48];
3749
3750 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3751 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3752 tn_buf, i - min_off, access_size);
3753 }
cc2b14d5
AS
3754 return -EACCES;
3755mark:
3756 /* reading any byte out of 8-byte 'spill_slot' will cause
3757 * the whole slot to be marked as 'read'
3758 */
679c782d 3759 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3760 state->stack[spi].spilled_ptr.parent,
3761 REG_LIVE_READ64);
17a52670 3762 }
2011fccf 3763 return update_stack_depth(env, state, min_off);
17a52670
AS
3764}
3765
06c1c049
GB
3766static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3767 int access_size, bool zero_size_allowed,
3768 struct bpf_call_arg_meta *meta)
3769{
638f5b90 3770 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3771
f1174f77 3772 switch (reg->type) {
06c1c049 3773 case PTR_TO_PACKET:
de8f3a83 3774 case PTR_TO_PACKET_META:
9fd29c08
YS
3775 return check_packet_access(env, regno, reg->off, access_size,
3776 zero_size_allowed);
06c1c049 3777 case PTR_TO_MAP_VALUE:
591fe988
DB
3778 if (check_map_access_type(env, regno, reg->off, access_size,
3779 meta && meta->raw_mode ? BPF_WRITE :
3780 BPF_READ))
3781 return -EACCES;
9fd29c08
YS
3782 return check_map_access(env, regno, reg->off, access_size,
3783 zero_size_allowed);
457f4436
AN
3784 case PTR_TO_MEM:
3785 return check_mem_region_access(env, regno, reg->off,
3786 access_size, reg->mem_size,
3787 zero_size_allowed);
afbf21dc
YS
3788 case PTR_TO_RDONLY_BUF:
3789 if (meta && meta->raw_mode)
3790 return -EACCES;
3791 return check_buffer_access(env, reg, regno, reg->off,
3792 access_size, zero_size_allowed,
3793 "rdonly",
3794 &env->prog->aux->max_rdonly_access);
3795 case PTR_TO_RDWR_BUF:
3796 return check_buffer_access(env, reg, regno, reg->off,
3797 access_size, zero_size_allowed,
3798 "rdwr",
3799 &env->prog->aux->max_rdwr_access);
0d004c02 3800 case PTR_TO_STACK:
06c1c049
GB
3801 return check_stack_boundary(env, regno, access_size,
3802 zero_size_allowed, meta);
0d004c02
LB
3803 default: /* scalar_value or invalid ptr */
3804 /* Allow zero-byte read from NULL, regardless of pointer type */
3805 if (zero_size_allowed && access_size == 0 &&
3806 register_is_null(reg))
3807 return 0;
3808
3809 verbose(env, "R%d type=%s expected=%s\n", regno,
3810 reg_type_str[reg->type],
3811 reg_type_str[PTR_TO_STACK]);
3812 return -EACCES;
06c1c049
GB
3813 }
3814}
3815
d83525ca
AS
3816/* Implementation details:
3817 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3818 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3819 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3820 * value_or_null->value transition, since the verifier only cares about
3821 * the range of access to valid map value pointer and doesn't care about actual
3822 * address of the map element.
3823 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3824 * reg->id > 0 after value_or_null->value transition. By doing so
3825 * two bpf_map_lookups will be considered two different pointers that
3826 * point to different bpf_spin_locks.
3827 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3828 * dead-locks.
3829 * Since only one bpf_spin_lock is allowed the checks are simpler than
3830 * reg_is_refcounted() logic. The verifier needs to remember only
3831 * one spin_lock instead of array of acquired_refs.
3832 * cur_state->active_spin_lock remembers which map value element got locked
3833 * and clears it after bpf_spin_unlock.
3834 */
3835static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3836 bool is_lock)
3837{
3838 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3839 struct bpf_verifier_state *cur = env->cur_state;
3840 bool is_const = tnum_is_const(reg->var_off);
3841 struct bpf_map *map = reg->map_ptr;
3842 u64 val = reg->var_off.value;
3843
d83525ca
AS
3844 if (!is_const) {
3845 verbose(env,
3846 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3847 regno);
3848 return -EINVAL;
3849 }
3850 if (!map->btf) {
3851 verbose(env,
3852 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3853 map->name);
3854 return -EINVAL;
3855 }
3856 if (!map_value_has_spin_lock(map)) {
3857 if (map->spin_lock_off == -E2BIG)
3858 verbose(env,
3859 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3860 map->name);
3861 else if (map->spin_lock_off == -ENOENT)
3862 verbose(env,
3863 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3864 map->name);
3865 else
3866 verbose(env,
3867 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3868 map->name);
3869 return -EINVAL;
3870 }
3871 if (map->spin_lock_off != val + reg->off) {
3872 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3873 val + reg->off);
3874 return -EINVAL;
3875 }
3876 if (is_lock) {
3877 if (cur->active_spin_lock) {
3878 verbose(env,
3879 "Locking two bpf_spin_locks are not allowed\n");
3880 return -EINVAL;
3881 }
3882 cur->active_spin_lock = reg->id;
3883 } else {
3884 if (!cur->active_spin_lock) {
3885 verbose(env, "bpf_spin_unlock without taking a lock\n");
3886 return -EINVAL;
3887 }
3888 if (cur->active_spin_lock != reg->id) {
3889 verbose(env, "bpf_spin_unlock of different lock\n");
3890 return -EINVAL;
3891 }
3892 cur->active_spin_lock = 0;
3893 }
3894 return 0;
3895}
3896
90133415
DB
3897static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3898{
3899 return type == ARG_PTR_TO_MEM ||
3900 type == ARG_PTR_TO_MEM_OR_NULL ||
3901 type == ARG_PTR_TO_UNINIT_MEM;
3902}
3903
3904static bool arg_type_is_mem_size(enum bpf_arg_type type)
3905{
3906 return type == ARG_CONST_SIZE ||
3907 type == ARG_CONST_SIZE_OR_ZERO;
3908}
3909
457f4436
AN
3910static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3911{
3912 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3913}
3914
57c3bb72
AI
3915static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3916{
3917 return type == ARG_PTR_TO_INT ||
3918 type == ARG_PTR_TO_LONG;
3919}
3920
3921static int int_ptr_type_to_size(enum bpf_arg_type type)
3922{
3923 if (type == ARG_PTR_TO_INT)
3924 return sizeof(u32);
3925 else if (type == ARG_PTR_TO_LONG)
3926 return sizeof(u64);
3927
3928 return -EINVAL;
3929}
3930
912f442c
LB
3931static int resolve_map_arg_type(struct bpf_verifier_env *env,
3932 const struct bpf_call_arg_meta *meta,
3933 enum bpf_arg_type *arg_type)
3934{
3935 if (!meta->map_ptr) {
3936 /* kernel subsystem misconfigured verifier */
3937 verbose(env, "invalid map_ptr to access map->type\n");
3938 return -EACCES;
3939 }
3940
3941 switch (meta->map_ptr->map_type) {
3942 case BPF_MAP_TYPE_SOCKMAP:
3943 case BPF_MAP_TYPE_SOCKHASH:
3944 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 3945 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
3946 } else {
3947 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3948 return -EINVAL;
3949 }
3950 break;
3951
3952 default:
3953 break;
3954 }
3955 return 0;
3956}
3957
f79e7ea5
LB
3958struct bpf_reg_types {
3959 const enum bpf_reg_type types[10];
1df8f55a 3960 u32 *btf_id;
f79e7ea5
LB
3961};
3962
3963static const struct bpf_reg_types map_key_value_types = {
3964 .types = {
3965 PTR_TO_STACK,
3966 PTR_TO_PACKET,
3967 PTR_TO_PACKET_META,
3968 PTR_TO_MAP_VALUE,
3969 },
3970};
3971
3972static const struct bpf_reg_types sock_types = {
3973 .types = {
3974 PTR_TO_SOCK_COMMON,
3975 PTR_TO_SOCKET,
3976 PTR_TO_TCP_SOCK,
3977 PTR_TO_XDP_SOCK,
3978 },
3979};
3980
1df8f55a
MKL
3981static const struct bpf_reg_types btf_id_sock_common_types = {
3982 .types = {
3983 PTR_TO_SOCK_COMMON,
3984 PTR_TO_SOCKET,
3985 PTR_TO_TCP_SOCK,
3986 PTR_TO_XDP_SOCK,
3987 PTR_TO_BTF_ID,
3988 },
3989 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
3990};
3991
f79e7ea5
LB
3992static const struct bpf_reg_types mem_types = {
3993 .types = {
3994 PTR_TO_STACK,
3995 PTR_TO_PACKET,
3996 PTR_TO_PACKET_META,
3997 PTR_TO_MAP_VALUE,
3998 PTR_TO_MEM,
3999 PTR_TO_RDONLY_BUF,
4000 PTR_TO_RDWR_BUF,
4001 },
4002};
4003
4004static const struct bpf_reg_types int_ptr_types = {
4005 .types = {
4006 PTR_TO_STACK,
4007 PTR_TO_PACKET,
4008 PTR_TO_PACKET_META,
4009 PTR_TO_MAP_VALUE,
4010 },
4011};
4012
4013static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4014static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4015static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4016static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4017static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4018static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4019static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4020
0789e13b 4021static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4022 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4023 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4024 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4025 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4026 [ARG_CONST_SIZE] = &scalar_types,
4027 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4028 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4029 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4030 [ARG_PTR_TO_CTX] = &context_types,
4031 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4032 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
1df8f55a 4033 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
f79e7ea5
LB
4034 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4035 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4036 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4037 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4038 [ARG_PTR_TO_MEM] = &mem_types,
4039 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4040 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4041 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4042 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4043 [ARG_PTR_TO_INT] = &int_ptr_types,
4044 [ARG_PTR_TO_LONG] = &int_ptr_types,
f79e7ea5
LB
4045};
4046
4047static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4048 enum bpf_arg_type arg_type,
4049 const u32 *arg_btf_id)
f79e7ea5
LB
4050{
4051 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4052 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4053 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4054 int i, j;
4055
a968d5e2
MKL
4056 compatible = compatible_reg_types[arg_type];
4057 if (!compatible) {
4058 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4059 return -EFAULT;
4060 }
4061
f79e7ea5
LB
4062 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4063 expected = compatible->types[i];
4064 if (expected == NOT_INIT)
4065 break;
4066
4067 if (type == expected)
a968d5e2 4068 goto found;
f79e7ea5
LB
4069 }
4070
4071 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4072 for (j = 0; j + 1 < i; j++)
4073 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4074 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4075 return -EACCES;
a968d5e2
MKL
4076
4077found:
4078 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4079 if (!arg_btf_id) {
4080 if (!compatible->btf_id) {
4081 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4082 return -EFAULT;
4083 }
4084 arg_btf_id = compatible->btf_id;
4085 }
4086
a968d5e2
MKL
4087 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4088 *arg_btf_id)) {
4089 verbose(env, "R%d is of type %s but %s is expected\n",
4090 regno, kernel_type_name(reg->btf_id),
4091 kernel_type_name(*arg_btf_id));
4092 return -EACCES;
4093 }
4094
4095 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4096 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4097 regno);
4098 return -EACCES;
4099 }
4100 }
4101
4102 return 0;
f79e7ea5
LB
4103}
4104
af7ec138
YS
4105static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4106 struct bpf_call_arg_meta *meta,
4107 const struct bpf_func_proto *fn)
17a52670 4108{
af7ec138 4109 u32 regno = BPF_REG_1 + arg;
638f5b90 4110 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4111 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4112 enum bpf_reg_type type = reg->type;
17a52670
AS
4113 int err = 0;
4114
80f1d68c 4115 if (arg_type == ARG_DONTCARE)
17a52670
AS
4116 return 0;
4117
dc503a8a
EC
4118 err = check_reg_arg(env, regno, SRC_OP);
4119 if (err)
4120 return err;
17a52670 4121
1be7f75d
AS
4122 if (arg_type == ARG_ANYTHING) {
4123 if (is_pointer_value(env, regno)) {
61bd5218
JK
4124 verbose(env, "R%d leaks addr into helper function\n",
4125 regno);
1be7f75d
AS
4126 return -EACCES;
4127 }
80f1d68c 4128 return 0;
1be7f75d 4129 }
80f1d68c 4130
de8f3a83 4131 if (type_is_pkt_pointer(type) &&
3a0af8fd 4132 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4133 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4134 return -EACCES;
4135 }
4136
912f442c
LB
4137 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4138 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4139 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4140 err = resolve_map_arg_type(env, meta, &arg_type);
4141 if (err)
4142 return err;
4143 }
4144
fd1b0d60
LB
4145 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4146 /* A NULL register has a SCALAR_VALUE type, so skip
4147 * type checking.
4148 */
4149 goto skip_type_check;
4150
a968d5e2 4151 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4152 if (err)
4153 return err;
4154
a968d5e2 4155 if (type == PTR_TO_CTX) {
feec7040
LB
4156 err = check_ctx_reg(env, reg, regno);
4157 if (err < 0)
4158 return err;
d7b9454a
LB
4159 }
4160
fd1b0d60 4161skip_type_check:
02f7c958 4162 if (reg->ref_obj_id) {
457f4436
AN
4163 if (meta->ref_obj_id) {
4164 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4165 regno, reg->ref_obj_id,
4166 meta->ref_obj_id);
4167 return -EFAULT;
4168 }
4169 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4170 }
4171
17a52670
AS
4172 if (arg_type == ARG_CONST_MAP_PTR) {
4173 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4174 meta->map_ptr = reg->map_ptr;
17a52670
AS
4175 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4176 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4177 * check that [key, key + map->key_size) are within
4178 * stack limits and initialized
4179 */
33ff9823 4180 if (!meta->map_ptr) {
17a52670
AS
4181 /* in function declaration map_ptr must come before
4182 * map_key, so that it's verified and known before
4183 * we have to check map_key here. Otherwise it means
4184 * that kernel subsystem misconfigured verifier
4185 */
61bd5218 4186 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4187 return -EACCES;
4188 }
d71962f3
PC
4189 err = check_helper_mem_access(env, regno,
4190 meta->map_ptr->key_size, false,
4191 NULL);
2ea864c5 4192 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4193 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4194 !register_is_null(reg)) ||
2ea864c5 4195 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4196 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4197 * check [value, value + map->value_size) validity
4198 */
33ff9823 4199 if (!meta->map_ptr) {
17a52670 4200 /* kernel subsystem misconfigured verifier */
61bd5218 4201 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4202 return -EACCES;
4203 }
2ea864c5 4204 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4205 err = check_helper_mem_access(env, regno,
4206 meta->map_ptr->value_size, false,
2ea864c5 4207 meta);
c18f0b6a
LB
4208 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4209 if (meta->func_id == BPF_FUNC_spin_lock) {
4210 if (process_spin_lock(env, regno, true))
4211 return -EACCES;
4212 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4213 if (process_spin_lock(env, regno, false))
4214 return -EACCES;
4215 } else {
4216 verbose(env, "verifier internal error\n");
4217 return -EFAULT;
4218 }
a2bbe7cc
LB
4219 } else if (arg_type_is_mem_ptr(arg_type)) {
4220 /* The access to this pointer is only checked when we hit the
4221 * next is_mem_size argument below.
4222 */
4223 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 4224 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4225 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4226
10060503
JF
4227 /* This is used to refine r0 return value bounds for helpers
4228 * that enforce this value as an upper bound on return values.
4229 * See do_refine_retval_range() for helpers that can refine
4230 * the return value. C type of helper is u32 so we pull register
4231 * bound from umax_value however, if negative verifier errors
4232 * out. Only upper bounds can be learned because retval is an
4233 * int type and negative retvals are allowed.
849fa506 4234 */
10060503 4235 meta->msize_max_value = reg->umax_value;
849fa506 4236
f1174f77
EC
4237 /* The register is SCALAR_VALUE; the access check
4238 * happens using its boundaries.
06c1c049 4239 */
f1174f77 4240 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4241 /* For unprivileged variable accesses, disable raw
4242 * mode so that the program is required to
4243 * initialize all the memory that the helper could
4244 * just partially fill up.
4245 */
4246 meta = NULL;
4247
b03c9f9f 4248 if (reg->smin_value < 0) {
61bd5218 4249 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4250 regno);
4251 return -EACCES;
4252 }
06c1c049 4253
b03c9f9f 4254 if (reg->umin_value == 0) {
f1174f77
EC
4255 err = check_helper_mem_access(env, regno - 1, 0,
4256 zero_size_allowed,
4257 meta);
06c1c049
GB
4258 if (err)
4259 return err;
06c1c049 4260 }
f1174f77 4261
b03c9f9f 4262 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4263 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4264 regno);
4265 return -EACCES;
4266 }
4267 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4268 reg->umax_value,
f1174f77 4269 zero_size_allowed, meta);
b5dc0163
AS
4270 if (!err)
4271 err = mark_chain_precision(env, regno);
457f4436
AN
4272 } else if (arg_type_is_alloc_size(arg_type)) {
4273 if (!tnum_is_const(reg->var_off)) {
4274 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4275 regno);
4276 return -EACCES;
4277 }
4278 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4279 } else if (arg_type_is_int_ptr(arg_type)) {
4280 int size = int_ptr_type_to_size(arg_type);
4281
4282 err = check_helper_mem_access(env, regno, size, false, meta);
4283 if (err)
4284 return err;
4285 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4286 }
4287
4288 return err;
4289}
4290
0126240f
LB
4291static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4292{
4293 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4294 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4295
4296 if (func_id != BPF_FUNC_map_update_elem)
4297 return false;
4298
4299 /* It's not possible to get access to a locked struct sock in these
4300 * contexts, so updating is safe.
4301 */
4302 switch (type) {
4303 case BPF_PROG_TYPE_TRACING:
4304 if (eatype == BPF_TRACE_ITER)
4305 return true;
4306 break;
4307 case BPF_PROG_TYPE_SOCKET_FILTER:
4308 case BPF_PROG_TYPE_SCHED_CLS:
4309 case BPF_PROG_TYPE_SCHED_ACT:
4310 case BPF_PROG_TYPE_XDP:
4311 case BPF_PROG_TYPE_SK_REUSEPORT:
4312 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4313 case BPF_PROG_TYPE_SK_LOOKUP:
4314 return true;
4315 default:
4316 break;
4317 }
4318
4319 verbose(env, "cannot update sockmap in this context\n");
4320 return false;
4321}
4322
e411901c
MF
4323static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4324{
4325 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4326}
4327
61bd5218
JK
4328static int check_map_func_compatibility(struct bpf_verifier_env *env,
4329 struct bpf_map *map, int func_id)
35578d79 4330{
35578d79
KX
4331 if (!map)
4332 return 0;
4333
6aff67c8
AS
4334 /* We need a two way check, first is from map perspective ... */
4335 switch (map->map_type) {
4336 case BPF_MAP_TYPE_PROG_ARRAY:
4337 if (func_id != BPF_FUNC_tail_call)
4338 goto error;
4339 break;
4340 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4341 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4342 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4343 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4344 func_id != BPF_FUNC_perf_event_read_value &&
4345 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4346 goto error;
4347 break;
457f4436
AN
4348 case BPF_MAP_TYPE_RINGBUF:
4349 if (func_id != BPF_FUNC_ringbuf_output &&
4350 func_id != BPF_FUNC_ringbuf_reserve &&
4351 func_id != BPF_FUNC_ringbuf_submit &&
4352 func_id != BPF_FUNC_ringbuf_discard &&
4353 func_id != BPF_FUNC_ringbuf_query)
4354 goto error;
4355 break;
6aff67c8
AS
4356 case BPF_MAP_TYPE_STACK_TRACE:
4357 if (func_id != BPF_FUNC_get_stackid)
4358 goto error;
4359 break;
4ed8ec52 4360 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4361 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4362 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4363 goto error;
4364 break;
cd339431 4365 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4366 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4367 if (func_id != BPF_FUNC_get_local_storage)
4368 goto error;
4369 break;
546ac1ff 4370 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4371 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4372 if (func_id != BPF_FUNC_redirect_map &&
4373 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4374 goto error;
4375 break;
fbfc504a
BT
4376 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4377 * appear.
4378 */
6710e112
JDB
4379 case BPF_MAP_TYPE_CPUMAP:
4380 if (func_id != BPF_FUNC_redirect_map)
4381 goto error;
4382 break;
fada7fdc
JL
4383 case BPF_MAP_TYPE_XSKMAP:
4384 if (func_id != BPF_FUNC_redirect_map &&
4385 func_id != BPF_FUNC_map_lookup_elem)
4386 goto error;
4387 break;
56f668df 4388 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4389 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4390 if (func_id != BPF_FUNC_map_lookup_elem)
4391 goto error;
16a43625 4392 break;
174a79ff
JF
4393 case BPF_MAP_TYPE_SOCKMAP:
4394 if (func_id != BPF_FUNC_sk_redirect_map &&
4395 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4396 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4397 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4398 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4399 func_id != BPF_FUNC_map_lookup_elem &&
4400 !may_update_sockmap(env, func_id))
174a79ff
JF
4401 goto error;
4402 break;
81110384
JF
4403 case BPF_MAP_TYPE_SOCKHASH:
4404 if (func_id != BPF_FUNC_sk_redirect_hash &&
4405 func_id != BPF_FUNC_sock_hash_update &&
4406 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4407 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4408 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4409 func_id != BPF_FUNC_map_lookup_elem &&
4410 !may_update_sockmap(env, func_id))
81110384
JF
4411 goto error;
4412 break;
2dbb9b9e
MKL
4413 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4414 if (func_id != BPF_FUNC_sk_select_reuseport)
4415 goto error;
4416 break;
f1a2e44a
MV
4417 case BPF_MAP_TYPE_QUEUE:
4418 case BPF_MAP_TYPE_STACK:
4419 if (func_id != BPF_FUNC_map_peek_elem &&
4420 func_id != BPF_FUNC_map_pop_elem &&
4421 func_id != BPF_FUNC_map_push_elem)
4422 goto error;
4423 break;
6ac99e8f
MKL
4424 case BPF_MAP_TYPE_SK_STORAGE:
4425 if (func_id != BPF_FUNC_sk_storage_get &&
4426 func_id != BPF_FUNC_sk_storage_delete)
4427 goto error;
4428 break;
8ea63684
KS
4429 case BPF_MAP_TYPE_INODE_STORAGE:
4430 if (func_id != BPF_FUNC_inode_storage_get &&
4431 func_id != BPF_FUNC_inode_storage_delete)
4432 goto error;
4433 break;
6aff67c8
AS
4434 default:
4435 break;
4436 }
4437
4438 /* ... and second from the function itself. */
4439 switch (func_id) {
4440 case BPF_FUNC_tail_call:
4441 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4442 goto error;
e411901c
MF
4443 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4444 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
4445 return -EINVAL;
4446 }
6aff67c8
AS
4447 break;
4448 case BPF_FUNC_perf_event_read:
4449 case BPF_FUNC_perf_event_output:
908432ca 4450 case BPF_FUNC_perf_event_read_value:
a7658e1a 4451 case BPF_FUNC_skb_output:
d831ee84 4452 case BPF_FUNC_xdp_output:
6aff67c8
AS
4453 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4454 goto error;
4455 break;
4456 case BPF_FUNC_get_stackid:
4457 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4458 goto error;
4459 break;
60d20f91 4460 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4461 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4462 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4463 goto error;
4464 break;
97f91a7c 4465 case BPF_FUNC_redirect_map:
9c270af3 4466 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4467 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4468 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4469 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4470 goto error;
4471 break;
174a79ff 4472 case BPF_FUNC_sk_redirect_map:
4f738adb 4473 case BPF_FUNC_msg_redirect_map:
81110384 4474 case BPF_FUNC_sock_map_update:
174a79ff
JF
4475 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4476 goto error;
4477 break;
81110384
JF
4478 case BPF_FUNC_sk_redirect_hash:
4479 case BPF_FUNC_msg_redirect_hash:
4480 case BPF_FUNC_sock_hash_update:
4481 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4482 goto error;
4483 break;
cd339431 4484 case BPF_FUNC_get_local_storage:
b741f163
RG
4485 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4486 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4487 goto error;
4488 break;
2dbb9b9e 4489 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4490 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4491 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4492 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4493 goto error;
4494 break;
f1a2e44a
MV
4495 case BPF_FUNC_map_peek_elem:
4496 case BPF_FUNC_map_pop_elem:
4497 case BPF_FUNC_map_push_elem:
4498 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4499 map->map_type != BPF_MAP_TYPE_STACK)
4500 goto error;
4501 break;
6ac99e8f
MKL
4502 case BPF_FUNC_sk_storage_get:
4503 case BPF_FUNC_sk_storage_delete:
4504 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4505 goto error;
4506 break;
8ea63684
KS
4507 case BPF_FUNC_inode_storage_get:
4508 case BPF_FUNC_inode_storage_delete:
4509 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4510 goto error;
4511 break;
6aff67c8
AS
4512 default:
4513 break;
35578d79
KX
4514 }
4515
4516 return 0;
6aff67c8 4517error:
61bd5218 4518 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4519 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4520 return -EINVAL;
35578d79
KX
4521}
4522
90133415 4523static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4524{
4525 int count = 0;
4526
39f19ebb 4527 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4528 count++;
39f19ebb 4529 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4530 count++;
39f19ebb 4531 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4532 count++;
39f19ebb 4533 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4534 count++;
39f19ebb 4535 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4536 count++;
4537
90133415
DB
4538 /* We only support one arg being in raw mode at the moment,
4539 * which is sufficient for the helper functions we have
4540 * right now.
4541 */
4542 return count <= 1;
4543}
4544
4545static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4546 enum bpf_arg_type arg_next)
4547{
4548 return (arg_type_is_mem_ptr(arg_curr) &&
4549 !arg_type_is_mem_size(arg_next)) ||
4550 (!arg_type_is_mem_ptr(arg_curr) &&
4551 arg_type_is_mem_size(arg_next));
4552}
4553
4554static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4555{
4556 /* bpf_xxx(..., buf, len) call will access 'len'
4557 * bytes from memory 'buf'. Both arg types need
4558 * to be paired, so make sure there's no buggy
4559 * helper function specification.
4560 */
4561 if (arg_type_is_mem_size(fn->arg1_type) ||
4562 arg_type_is_mem_ptr(fn->arg5_type) ||
4563 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4564 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4565 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4566 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4567 return false;
4568
4569 return true;
4570}
4571
1b986589 4572static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4573{
4574 int count = 0;
4575
1b986589 4576 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4577 count++;
1b986589 4578 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4579 count++;
1b986589 4580 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4581 count++;
1b986589 4582 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4583 count++;
1b986589 4584 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4585 count++;
4586
1b986589
MKL
4587 /* A reference acquiring function cannot acquire
4588 * another refcounted ptr.
4589 */
64d85290 4590 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4591 return false;
4592
fd978bf7
JS
4593 /* We only support one arg being unreferenced at the moment,
4594 * which is sufficient for the helper functions we have right now.
4595 */
4596 return count <= 1;
4597}
4598
9436ef6e
LB
4599static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4600{
4601 int i;
4602
1df8f55a 4603 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
4604 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4605 return false;
4606
1df8f55a
MKL
4607 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4608 return false;
4609 }
4610
9436ef6e
LB
4611 return true;
4612}
4613
1b986589 4614static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4615{
4616 return check_raw_mode_ok(fn) &&
fd978bf7 4617 check_arg_pair_ok(fn) &&
9436ef6e 4618 check_btf_id_ok(fn) &&
1b986589 4619 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4620}
4621
de8f3a83
DB
4622/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4623 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4624 */
f4d7e40a
AS
4625static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4626 struct bpf_func_state *state)
969bf05e 4627{
58e2af8b 4628 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4629 int i;
4630
4631 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4632 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4633 mark_reg_unknown(env, regs, i);
969bf05e 4634
f3709f69
JS
4635 bpf_for_each_spilled_reg(i, state, reg) {
4636 if (!reg)
969bf05e 4637 continue;
de8f3a83 4638 if (reg_is_pkt_pointer_any(reg))
f54c7898 4639 __mark_reg_unknown(env, reg);
969bf05e
AS
4640 }
4641}
4642
f4d7e40a
AS
4643static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4644{
4645 struct bpf_verifier_state *vstate = env->cur_state;
4646 int i;
4647
4648 for (i = 0; i <= vstate->curframe; i++)
4649 __clear_all_pkt_pointers(env, vstate->frame[i]);
4650}
4651
fd978bf7 4652static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4653 struct bpf_func_state *state,
4654 int ref_obj_id)
fd978bf7
JS
4655{
4656 struct bpf_reg_state *regs = state->regs, *reg;
4657 int i;
4658
4659 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4660 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4661 mark_reg_unknown(env, regs, i);
4662
4663 bpf_for_each_spilled_reg(i, state, reg) {
4664 if (!reg)
4665 continue;
1b986589 4666 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4667 __mark_reg_unknown(env, reg);
fd978bf7
JS
4668 }
4669}
4670
4671/* The pointer with the specified id has released its reference to kernel
4672 * resources. Identify all copies of the same pointer and clear the reference.
4673 */
4674static int release_reference(struct bpf_verifier_env *env,
1b986589 4675 int ref_obj_id)
fd978bf7
JS
4676{
4677 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4678 int err;
fd978bf7
JS
4679 int i;
4680
1b986589
MKL
4681 err = release_reference_state(cur_func(env), ref_obj_id);
4682 if (err)
4683 return err;
4684
fd978bf7 4685 for (i = 0; i <= vstate->curframe; i++)
1b986589 4686 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4687
1b986589 4688 return 0;
fd978bf7
JS
4689}
4690
51c39bb1
AS
4691static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4692 struct bpf_reg_state *regs)
4693{
4694 int i;
4695
4696 /* after the call registers r0 - r5 were scratched */
4697 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4698 mark_reg_not_init(env, regs, caller_saved[i]);
4699 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4700 }
4701}
4702
f4d7e40a
AS
4703static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4704 int *insn_idx)
4705{
4706 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4707 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4708 struct bpf_func_state *caller, *callee;
fd978bf7 4709 int i, err, subprog, target_insn;
51c39bb1 4710 bool is_global = false;
f4d7e40a 4711
aada9ce6 4712 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4713 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4714 state->curframe + 2);
f4d7e40a
AS
4715 return -E2BIG;
4716 }
4717
4718 target_insn = *insn_idx + insn->imm;
4719 subprog = find_subprog(env, target_insn + 1);
4720 if (subprog < 0) {
4721 verbose(env, "verifier bug. No program starts at insn %d\n",
4722 target_insn + 1);
4723 return -EFAULT;
4724 }
4725
4726 caller = state->frame[state->curframe];
4727 if (state->frame[state->curframe + 1]) {
4728 verbose(env, "verifier bug. Frame %d already allocated\n",
4729 state->curframe + 1);
4730 return -EFAULT;
4731 }
4732
51c39bb1
AS
4733 func_info_aux = env->prog->aux->func_info_aux;
4734 if (func_info_aux)
4735 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4736 err = btf_check_func_arg_match(env, subprog, caller->regs);
4737 if (err == -EFAULT)
4738 return err;
4739 if (is_global) {
4740 if (err) {
4741 verbose(env, "Caller passes invalid args into func#%d\n",
4742 subprog);
4743 return err;
4744 } else {
4745 if (env->log.level & BPF_LOG_LEVEL)
4746 verbose(env,
4747 "Func#%d is global and valid. Skipping.\n",
4748 subprog);
4749 clear_caller_saved_regs(env, caller->regs);
4750
4751 /* All global functions return SCALAR_VALUE */
4752 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4753
4754 /* continue with next insn after call */
4755 return 0;
4756 }
4757 }
4758
f4d7e40a
AS
4759 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4760 if (!callee)
4761 return -ENOMEM;
4762 state->frame[state->curframe + 1] = callee;
4763
4764 /* callee cannot access r0, r6 - r9 for reading and has to write
4765 * into its own stack before reading from it.
4766 * callee can read/write into caller's stack
4767 */
4768 init_func_state(env, callee,
4769 /* remember the callsite, it will be used by bpf_exit */
4770 *insn_idx /* callsite */,
4771 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4772 subprog /* subprog number within this prog */);
f4d7e40a 4773
fd978bf7
JS
4774 /* Transfer references to the callee */
4775 err = transfer_reference_state(callee, caller);
4776 if (err)
4777 return err;
4778
679c782d
EC
4779 /* copy r1 - r5 args that callee can access. The copy includes parent
4780 * pointers, which connects us up to the liveness chain
4781 */
f4d7e40a
AS
4782 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4783 callee->regs[i] = caller->regs[i];
4784
51c39bb1 4785 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4786
4787 /* only increment it after check_reg_arg() finished */
4788 state->curframe++;
4789
4790 /* and go analyze first insn of the callee */
4791 *insn_idx = target_insn;
4792
06ee7115 4793 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4794 verbose(env, "caller:\n");
4795 print_verifier_state(env, caller);
4796 verbose(env, "callee:\n");
4797 print_verifier_state(env, callee);
4798 }
4799 return 0;
4800}
4801
4802static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4803{
4804 struct bpf_verifier_state *state = env->cur_state;
4805 struct bpf_func_state *caller, *callee;
4806 struct bpf_reg_state *r0;
fd978bf7 4807 int err;
f4d7e40a
AS
4808
4809 callee = state->frame[state->curframe];
4810 r0 = &callee->regs[BPF_REG_0];
4811 if (r0->type == PTR_TO_STACK) {
4812 /* technically it's ok to return caller's stack pointer
4813 * (or caller's caller's pointer) back to the caller,
4814 * since these pointers are valid. Only current stack
4815 * pointer will be invalid as soon as function exits,
4816 * but let's be conservative
4817 */
4818 verbose(env, "cannot return stack pointer to the caller\n");
4819 return -EINVAL;
4820 }
4821
4822 state->curframe--;
4823 caller = state->frame[state->curframe];
4824 /* return to the caller whatever r0 had in the callee */
4825 caller->regs[BPF_REG_0] = *r0;
4826
fd978bf7
JS
4827 /* Transfer references to the caller */
4828 err = transfer_reference_state(caller, callee);
4829 if (err)
4830 return err;
4831
f4d7e40a 4832 *insn_idx = callee->callsite + 1;
06ee7115 4833 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4834 verbose(env, "returning from callee:\n");
4835 print_verifier_state(env, callee);
4836 verbose(env, "to caller at %d:\n", *insn_idx);
4837 print_verifier_state(env, caller);
4838 }
4839 /* clear everything in the callee */
4840 free_func_state(callee);
4841 state->frame[state->curframe + 1] = NULL;
4842 return 0;
4843}
4844
849fa506
YS
4845static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4846 int func_id,
4847 struct bpf_call_arg_meta *meta)
4848{
4849 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4850
4851 if (ret_type != RET_INTEGER ||
4852 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4853 func_id != BPF_FUNC_probe_read_str &&
4854 func_id != BPF_FUNC_probe_read_kernel_str &&
4855 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4856 return;
4857
10060503 4858 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4859 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4860 __reg_deduce_bounds(ret_reg);
4861 __reg_bound_offset(ret_reg);
10060503 4862 __update_reg_bounds(ret_reg);
849fa506
YS
4863}
4864
c93552c4
DB
4865static int
4866record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4867 int func_id, int insn_idx)
4868{
4869 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4870 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4871
4872 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4873 func_id != BPF_FUNC_map_lookup_elem &&
4874 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4875 func_id != BPF_FUNC_map_delete_elem &&
4876 func_id != BPF_FUNC_map_push_elem &&
4877 func_id != BPF_FUNC_map_pop_elem &&
4878 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4879 return 0;
09772d92 4880
591fe988 4881 if (map == NULL) {
c93552c4
DB
4882 verbose(env, "kernel subsystem misconfigured verifier\n");
4883 return -EINVAL;
4884 }
4885
591fe988
DB
4886 /* In case of read-only, some additional restrictions
4887 * need to be applied in order to prevent altering the
4888 * state of the map from program side.
4889 */
4890 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4891 (func_id == BPF_FUNC_map_delete_elem ||
4892 func_id == BPF_FUNC_map_update_elem ||
4893 func_id == BPF_FUNC_map_push_elem ||
4894 func_id == BPF_FUNC_map_pop_elem)) {
4895 verbose(env, "write into map forbidden\n");
4896 return -EACCES;
4897 }
4898
d2e4c1e6 4899 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4900 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4901 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4902 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4903 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4904 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4905 return 0;
4906}
4907
d2e4c1e6
DB
4908static int
4909record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4910 int func_id, int insn_idx)
4911{
4912 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4913 struct bpf_reg_state *regs = cur_regs(env), *reg;
4914 struct bpf_map *map = meta->map_ptr;
4915 struct tnum range;
4916 u64 val;
cc52d914 4917 int err;
d2e4c1e6
DB
4918
4919 if (func_id != BPF_FUNC_tail_call)
4920 return 0;
4921 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4922 verbose(env, "kernel subsystem misconfigured verifier\n");
4923 return -EINVAL;
4924 }
4925
4926 range = tnum_range(0, map->max_entries - 1);
4927 reg = &regs[BPF_REG_3];
4928
4929 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4930 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4931 return 0;
4932 }
4933
cc52d914
DB
4934 err = mark_chain_precision(env, BPF_REG_3);
4935 if (err)
4936 return err;
4937
d2e4c1e6
DB
4938 val = reg->var_off.value;
4939 if (bpf_map_key_unseen(aux))
4940 bpf_map_key_store(aux, val);
4941 else if (!bpf_map_key_poisoned(aux) &&
4942 bpf_map_key_immediate(aux) != val)
4943 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4944 return 0;
4945}
4946
fd978bf7
JS
4947static int check_reference_leak(struct bpf_verifier_env *env)
4948{
4949 struct bpf_func_state *state = cur_func(env);
4950 int i;
4951
4952 for (i = 0; i < state->acquired_refs; i++) {
4953 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4954 state->refs[i].id, state->refs[i].insn_idx);
4955 }
4956 return state->acquired_refs ? -EINVAL : 0;
4957}
4958
f4d7e40a 4959static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4960{
17a52670 4961 const struct bpf_func_proto *fn = NULL;
638f5b90 4962 struct bpf_reg_state *regs;
33ff9823 4963 struct bpf_call_arg_meta meta;
969bf05e 4964 bool changes_data;
17a52670
AS
4965 int i, err;
4966
4967 /* find function prototype */
4968 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4969 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4970 func_id);
17a52670
AS
4971 return -EINVAL;
4972 }
4973
00176a34 4974 if (env->ops->get_func_proto)
5e43f899 4975 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4976 if (!fn) {
61bd5218
JK
4977 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4978 func_id);
17a52670
AS
4979 return -EINVAL;
4980 }
4981
4982 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4983 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4984 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4985 return -EINVAL;
4986 }
4987
eae2e83e
JO
4988 if (fn->allowed && !fn->allowed(env->prog)) {
4989 verbose(env, "helper call is not allowed in probe\n");
4990 return -EINVAL;
4991 }
4992
04514d13 4993 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4994 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4995 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4996 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4997 func_id_name(func_id), func_id);
4998 return -EINVAL;
4999 }
969bf05e 5000
33ff9823 5001 memset(&meta, 0, sizeof(meta));
36bbef52 5002 meta.pkt_access = fn->pkt_access;
33ff9823 5003
1b986589 5004 err = check_func_proto(fn, func_id);
435faee1 5005 if (err) {
61bd5218 5006 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 5007 func_id_name(func_id), func_id);
435faee1
DB
5008 return err;
5009 }
5010
d83525ca 5011 meta.func_id = func_id;
17a52670 5012 /* check args */
a7658e1a 5013 for (i = 0; i < 5; i++) {
af7ec138 5014 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
5015 if (err)
5016 return err;
5017 }
17a52670 5018
c93552c4
DB
5019 err = record_func_map(env, &meta, func_id, insn_idx);
5020 if (err)
5021 return err;
5022
d2e4c1e6
DB
5023 err = record_func_key(env, &meta, func_id, insn_idx);
5024 if (err)
5025 return err;
5026
435faee1
DB
5027 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5028 * is inferred from register state.
5029 */
5030 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
5031 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5032 BPF_WRITE, -1, false);
435faee1
DB
5033 if (err)
5034 return err;
5035 }
5036
fd978bf7
JS
5037 if (func_id == BPF_FUNC_tail_call) {
5038 err = check_reference_leak(env);
5039 if (err) {
5040 verbose(env, "tail_call would lead to reference leak\n");
5041 return err;
5042 }
5043 } else if (is_release_function(func_id)) {
1b986589 5044 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
5045 if (err) {
5046 verbose(env, "func %s#%d reference has not been acquired before\n",
5047 func_id_name(func_id), func_id);
fd978bf7 5048 return err;
46f8bc92 5049 }
fd978bf7
JS
5050 }
5051
638f5b90 5052 regs = cur_regs(env);
cd339431
RG
5053
5054 /* check that flags argument in get_local_storage(map, flags) is 0,
5055 * this is required because get_local_storage() can't return an error.
5056 */
5057 if (func_id == BPF_FUNC_get_local_storage &&
5058 !register_is_null(&regs[BPF_REG_2])) {
5059 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5060 return -EINVAL;
5061 }
5062
17a52670 5063 /* reset caller saved regs */
dc503a8a 5064 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5065 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5066 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5067 }
17a52670 5068
5327ed3d
JW
5069 /* helper call returns 64-bit value. */
5070 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5071
dc503a8a 5072 /* update return register (already marked as written above) */
17a52670 5073 if (fn->ret_type == RET_INTEGER) {
f1174f77 5074 /* sets type to SCALAR_VALUE */
61bd5218 5075 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
5076 } else if (fn->ret_type == RET_VOID) {
5077 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
5078 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5079 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 5080 /* There is no offset yet applied, variable or fixed */
61bd5218 5081 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
5082 /* remember map_ptr, so that check_map_access()
5083 * can check 'value_size' boundary of memory access
5084 * to map element returned from bpf_map_lookup_elem()
5085 */
33ff9823 5086 if (meta.map_ptr == NULL) {
61bd5218
JK
5087 verbose(env,
5088 "kernel subsystem misconfigured verifier\n");
17a52670
AS
5089 return -EINVAL;
5090 }
33ff9823 5091 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
5092 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5093 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
5094 if (map_value_has_spin_lock(meta.map_ptr))
5095 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
5096 } else {
5097 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5098 regs[BPF_REG_0].id = ++env->id_gen;
5099 }
c64b7983
JS
5100 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5101 mark_reg_known_zero(env, regs, BPF_REG_0);
5102 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 5103 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
5104 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5105 mark_reg_known_zero(env, regs, BPF_REG_0);
5106 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5107 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
5108 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5109 mark_reg_known_zero(env, regs, BPF_REG_0);
5110 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5111 regs[BPF_REG_0].id = ++env->id_gen;
457f4436
AN
5112 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5113 mark_reg_known_zero(env, regs, BPF_REG_0);
5114 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5115 regs[BPF_REG_0].id = ++env->id_gen;
5116 regs[BPF_REG_0].mem_size = meta.mem_size;
af7ec138
YS
5117 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5118 int ret_btf_id;
5119
5120 mark_reg_known_zero(env, regs, BPF_REG_0);
5121 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5122 ret_btf_id = *fn->ret_btf_id;
5123 if (ret_btf_id == 0) {
5124 verbose(env, "invalid return type %d of func %s#%d\n",
5125 fn->ret_type, func_id_name(func_id), func_id);
5126 return -EINVAL;
5127 }
5128 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5129 } else {
61bd5218 5130 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5131 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5132 return -EINVAL;
5133 }
04fd61ab 5134
0f3adc28 5135 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5136 /* For release_reference() */
5137 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5138 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5139 int id = acquire_reference_state(env, insn_idx);
5140
5141 if (id < 0)
5142 return id;
5143 /* For mark_ptr_or_null_reg() */
5144 regs[BPF_REG_0].id = id;
5145 /* For release_reference() */
5146 regs[BPF_REG_0].ref_obj_id = id;
5147 }
1b986589 5148
849fa506
YS
5149 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5150
61bd5218 5151 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5152 if (err)
5153 return err;
04fd61ab 5154
fa28dcb8
SL
5155 if ((func_id == BPF_FUNC_get_stack ||
5156 func_id == BPF_FUNC_get_task_stack) &&
5157 !env->prog->has_callchain_buf) {
c195651e
YS
5158 const char *err_str;
5159
5160#ifdef CONFIG_PERF_EVENTS
5161 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5162 err_str = "cannot get callchain buffer for func %s#%d\n";
5163#else
5164 err = -ENOTSUPP;
5165 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5166#endif
5167 if (err) {
5168 verbose(env, err_str, func_id_name(func_id), func_id);
5169 return err;
5170 }
5171
5172 env->prog->has_callchain_buf = true;
5173 }
5174
5d99cb2c
SL
5175 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5176 env->prog->call_get_stack = true;
5177
969bf05e
AS
5178 if (changes_data)
5179 clear_all_pkt_pointers(env);
5180 return 0;
5181}
5182
b03c9f9f
EC
5183static bool signed_add_overflows(s64 a, s64 b)
5184{
5185 /* Do the add in u64, where overflow is well-defined */
5186 s64 res = (s64)((u64)a + (u64)b);
5187
5188 if (b < 0)
5189 return res > a;
5190 return res < a;
5191}
5192
3f50f132
JF
5193static bool signed_add32_overflows(s64 a, s64 b)
5194{
5195 /* Do the add in u32, where overflow is well-defined */
5196 s32 res = (s32)((u32)a + (u32)b);
5197
5198 if (b < 0)
5199 return res > a;
5200 return res < a;
5201}
5202
5203static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
5204{
5205 /* Do the sub in u64, where overflow is well-defined */
5206 s64 res = (s64)((u64)a - (u64)b);
5207
5208 if (b < 0)
5209 return res < a;
5210 return res > a;
969bf05e
AS
5211}
5212
3f50f132
JF
5213static bool signed_sub32_overflows(s32 a, s32 b)
5214{
5215 /* Do the sub in u64, where overflow is well-defined */
5216 s32 res = (s32)((u32)a - (u32)b);
5217
5218 if (b < 0)
5219 return res < a;
5220 return res > a;
5221}
5222
bb7f0f98
AS
5223static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5224 const struct bpf_reg_state *reg,
5225 enum bpf_reg_type type)
5226{
5227 bool known = tnum_is_const(reg->var_off);
5228 s64 val = reg->var_off.value;
5229 s64 smin = reg->smin_value;
5230
5231 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5232 verbose(env, "math between %s pointer and %lld is not allowed\n",
5233 reg_type_str[type], val);
5234 return false;
5235 }
5236
5237 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5238 verbose(env, "%s pointer offset %d is not allowed\n",
5239 reg_type_str[type], reg->off);
5240 return false;
5241 }
5242
5243 if (smin == S64_MIN) {
5244 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5245 reg_type_str[type]);
5246 return false;
5247 }
5248
5249 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5250 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5251 smin, reg_type_str[type]);
5252 return false;
5253 }
5254
5255 return true;
5256}
5257
979d63d5
DB
5258static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5259{
5260 return &env->insn_aux_data[env->insn_idx];
5261}
5262
5263static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5264 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5265{
5266 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5267 (opcode == BPF_SUB && !off_is_neg);
5268 u32 off;
5269
5270 switch (ptr_reg->type) {
5271 case PTR_TO_STACK:
088ec26d
AI
5272 /* Indirect variable offset stack access is prohibited in
5273 * unprivileged mode so it's not handled here.
5274 */
979d63d5
DB
5275 off = ptr_reg->off + ptr_reg->var_off.value;
5276 if (mask_to_left)
5277 *ptr_limit = MAX_BPF_STACK + off;
5278 else
5279 *ptr_limit = -off;
5280 return 0;
5281 case PTR_TO_MAP_VALUE:
5282 if (mask_to_left) {
5283 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5284 } else {
5285 off = ptr_reg->smin_value + ptr_reg->off;
5286 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5287 }
5288 return 0;
5289 default:
5290 return -EINVAL;
5291 }
5292}
5293
d3bd7413
DB
5294static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5295 const struct bpf_insn *insn)
5296{
2c78ee89 5297 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5298}
5299
5300static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5301 u32 alu_state, u32 alu_limit)
5302{
5303 /* If we arrived here from different branches with different
5304 * state or limits to sanitize, then this won't work.
5305 */
5306 if (aux->alu_state &&
5307 (aux->alu_state != alu_state ||
5308 aux->alu_limit != alu_limit))
5309 return -EACCES;
5310
5311 /* Corresponding fixup done in fixup_bpf_calls(). */
5312 aux->alu_state = alu_state;
5313 aux->alu_limit = alu_limit;
5314 return 0;
5315}
5316
5317static int sanitize_val_alu(struct bpf_verifier_env *env,
5318 struct bpf_insn *insn)
5319{
5320 struct bpf_insn_aux_data *aux = cur_aux(env);
5321
5322 if (can_skip_alu_sanitation(env, insn))
5323 return 0;
5324
5325 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5326}
5327
979d63d5
DB
5328static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5329 struct bpf_insn *insn,
5330 const struct bpf_reg_state *ptr_reg,
5331 struct bpf_reg_state *dst_reg,
5332 bool off_is_neg)
5333{
5334 struct bpf_verifier_state *vstate = env->cur_state;
5335 struct bpf_insn_aux_data *aux = cur_aux(env);
5336 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5337 u8 opcode = BPF_OP(insn->code);
5338 u32 alu_state, alu_limit;
5339 struct bpf_reg_state tmp;
5340 bool ret;
5341
d3bd7413 5342 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5343 return 0;
5344
5345 /* We already marked aux for masking from non-speculative
5346 * paths, thus we got here in the first place. We only care
5347 * to explore bad access from here.
5348 */
5349 if (vstate->speculative)
5350 goto do_sim;
5351
5352 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5353 alu_state |= ptr_is_dst_reg ?
5354 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5355
5356 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5357 return 0;
d3bd7413 5358 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5359 return -EACCES;
979d63d5
DB
5360do_sim:
5361 /* Simulate and find potential out-of-bounds access under
5362 * speculative execution from truncation as a result of
5363 * masking when off was not within expected range. If off
5364 * sits in dst, then we temporarily need to move ptr there
5365 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5366 * for cases where we use K-based arithmetic in one direction
5367 * and truncated reg-based in the other in order to explore
5368 * bad access.
5369 */
5370 if (!ptr_is_dst_reg) {
5371 tmp = *dst_reg;
5372 *dst_reg = *ptr_reg;
5373 }
5374 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5375 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5376 *dst_reg = tmp;
5377 return !ret ? -EFAULT : 0;
5378}
5379
f1174f77 5380/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5381 * Caller should also handle BPF_MOV case separately.
5382 * If we return -EACCES, caller may want to try again treating pointer as a
5383 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5384 */
5385static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5386 struct bpf_insn *insn,
5387 const struct bpf_reg_state *ptr_reg,
5388 const struct bpf_reg_state *off_reg)
969bf05e 5389{
f4d7e40a
AS
5390 struct bpf_verifier_state *vstate = env->cur_state;
5391 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5392 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5393 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5394 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5395 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5396 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5397 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5398 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5399 u8 opcode = BPF_OP(insn->code);
979d63d5 5400 int ret;
969bf05e 5401
f1174f77 5402 dst_reg = &regs[dst];
969bf05e 5403
6f16101e
DB
5404 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5405 smin_val > smax_val || umin_val > umax_val) {
5406 /* Taint dst register if offset had invalid bounds derived from
5407 * e.g. dead branches.
5408 */
f54c7898 5409 __mark_reg_unknown(env, dst_reg);
6f16101e 5410 return 0;
f1174f77
EC
5411 }
5412
5413 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5414 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5415 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5416 __mark_reg_unknown(env, dst_reg);
5417 return 0;
5418 }
5419
82abbf8d
AS
5420 verbose(env,
5421 "R%d 32-bit pointer arithmetic prohibited\n",
5422 dst);
f1174f77 5423 return -EACCES;
969bf05e
AS
5424 }
5425
aad2eeaf
JS
5426 switch (ptr_reg->type) {
5427 case PTR_TO_MAP_VALUE_OR_NULL:
5428 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5429 dst, reg_type_str[ptr_reg->type]);
f1174f77 5430 return -EACCES;
aad2eeaf 5431 case CONST_PTR_TO_MAP:
7c696732
YS
5432 /* smin_val represents the known value */
5433 if (known && smin_val == 0 && opcode == BPF_ADD)
5434 break;
5435 /* fall-through */
aad2eeaf 5436 case PTR_TO_PACKET_END:
c64b7983
JS
5437 case PTR_TO_SOCKET:
5438 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5439 case PTR_TO_SOCK_COMMON:
5440 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5441 case PTR_TO_TCP_SOCK:
5442 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5443 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5444 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5445 dst, reg_type_str[ptr_reg->type]);
f1174f77 5446 return -EACCES;
9d7eceed
DB
5447 case PTR_TO_MAP_VALUE:
5448 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5449 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5450 off_reg == dst_reg ? dst : src);
5451 return -EACCES;
5452 }
df561f66 5453 fallthrough;
aad2eeaf
JS
5454 default:
5455 break;
f1174f77
EC
5456 }
5457
5458 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5459 * The id may be overwritten later if we create a new variable offset.
969bf05e 5460 */
f1174f77
EC
5461 dst_reg->type = ptr_reg->type;
5462 dst_reg->id = ptr_reg->id;
969bf05e 5463
bb7f0f98
AS
5464 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5465 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5466 return -EINVAL;
5467
3f50f132
JF
5468 /* pointer types do not carry 32-bit bounds at the moment. */
5469 __mark_reg32_unbounded(dst_reg);
5470
f1174f77
EC
5471 switch (opcode) {
5472 case BPF_ADD:
979d63d5
DB
5473 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5474 if (ret < 0) {
5475 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5476 return ret;
5477 }
f1174f77
EC
5478 /* We can take a fixed offset as long as it doesn't overflow
5479 * the s32 'off' field
969bf05e 5480 */
b03c9f9f
EC
5481 if (known && (ptr_reg->off + smin_val ==
5482 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5483 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5484 dst_reg->smin_value = smin_ptr;
5485 dst_reg->smax_value = smax_ptr;
5486 dst_reg->umin_value = umin_ptr;
5487 dst_reg->umax_value = umax_ptr;
f1174f77 5488 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5489 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5490 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5491 break;
5492 }
f1174f77
EC
5493 /* A new variable offset is created. Note that off_reg->off
5494 * == 0, since it's a scalar.
5495 * dst_reg gets the pointer type and since some positive
5496 * integer value was added to the pointer, give it a new 'id'
5497 * if it's a PTR_TO_PACKET.
5498 * this creates a new 'base' pointer, off_reg (variable) gets
5499 * added into the variable offset, and we copy the fixed offset
5500 * from ptr_reg.
969bf05e 5501 */
b03c9f9f
EC
5502 if (signed_add_overflows(smin_ptr, smin_val) ||
5503 signed_add_overflows(smax_ptr, smax_val)) {
5504 dst_reg->smin_value = S64_MIN;
5505 dst_reg->smax_value = S64_MAX;
5506 } else {
5507 dst_reg->smin_value = smin_ptr + smin_val;
5508 dst_reg->smax_value = smax_ptr + smax_val;
5509 }
5510 if (umin_ptr + umin_val < umin_ptr ||
5511 umax_ptr + umax_val < umax_ptr) {
5512 dst_reg->umin_value = 0;
5513 dst_reg->umax_value = U64_MAX;
5514 } else {
5515 dst_reg->umin_value = umin_ptr + umin_val;
5516 dst_reg->umax_value = umax_ptr + umax_val;
5517 }
f1174f77
EC
5518 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5519 dst_reg->off = ptr_reg->off;
0962590e 5520 dst_reg->raw = ptr_reg->raw;
de8f3a83 5521 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5522 dst_reg->id = ++env->id_gen;
5523 /* something was added to pkt_ptr, set range to zero */
0962590e 5524 dst_reg->raw = 0;
f1174f77
EC
5525 }
5526 break;
5527 case BPF_SUB:
979d63d5
DB
5528 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5529 if (ret < 0) {
5530 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5531 return ret;
5532 }
f1174f77
EC
5533 if (dst_reg == off_reg) {
5534 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5535 verbose(env, "R%d tried to subtract pointer from scalar\n",
5536 dst);
f1174f77
EC
5537 return -EACCES;
5538 }
5539 /* We don't allow subtraction from FP, because (according to
5540 * test_verifier.c test "invalid fp arithmetic", JITs might not
5541 * be able to deal with it.
969bf05e 5542 */
f1174f77 5543 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5544 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5545 dst);
f1174f77
EC
5546 return -EACCES;
5547 }
b03c9f9f
EC
5548 if (known && (ptr_reg->off - smin_val ==
5549 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5550 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5551 dst_reg->smin_value = smin_ptr;
5552 dst_reg->smax_value = smax_ptr;
5553 dst_reg->umin_value = umin_ptr;
5554 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5555 dst_reg->var_off = ptr_reg->var_off;
5556 dst_reg->id = ptr_reg->id;
b03c9f9f 5557 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5558 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5559 break;
5560 }
f1174f77
EC
5561 /* A new variable offset is created. If the subtrahend is known
5562 * nonnegative, then any reg->range we had before is still good.
969bf05e 5563 */
b03c9f9f
EC
5564 if (signed_sub_overflows(smin_ptr, smax_val) ||
5565 signed_sub_overflows(smax_ptr, smin_val)) {
5566 /* Overflow possible, we know nothing */
5567 dst_reg->smin_value = S64_MIN;
5568 dst_reg->smax_value = S64_MAX;
5569 } else {
5570 dst_reg->smin_value = smin_ptr - smax_val;
5571 dst_reg->smax_value = smax_ptr - smin_val;
5572 }
5573 if (umin_ptr < umax_val) {
5574 /* Overflow possible, we know nothing */
5575 dst_reg->umin_value = 0;
5576 dst_reg->umax_value = U64_MAX;
5577 } else {
5578 /* Cannot overflow (as long as bounds are consistent) */
5579 dst_reg->umin_value = umin_ptr - umax_val;
5580 dst_reg->umax_value = umax_ptr - umin_val;
5581 }
f1174f77
EC
5582 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5583 dst_reg->off = ptr_reg->off;
0962590e 5584 dst_reg->raw = ptr_reg->raw;
de8f3a83 5585 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5586 dst_reg->id = ++env->id_gen;
5587 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5588 if (smin_val < 0)
0962590e 5589 dst_reg->raw = 0;
43188702 5590 }
f1174f77
EC
5591 break;
5592 case BPF_AND:
5593 case BPF_OR:
5594 case BPF_XOR:
82abbf8d
AS
5595 /* bitwise ops on pointers are troublesome, prohibit. */
5596 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5597 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5598 return -EACCES;
5599 default:
5600 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5601 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5602 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5603 return -EACCES;
43188702
JF
5604 }
5605
bb7f0f98
AS
5606 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5607 return -EINVAL;
5608
b03c9f9f
EC
5609 __update_reg_bounds(dst_reg);
5610 __reg_deduce_bounds(dst_reg);
5611 __reg_bound_offset(dst_reg);
0d6303db
DB
5612
5613 /* For unprivileged we require that resulting offset must be in bounds
5614 * in order to be able to sanitize access later on.
5615 */
2c78ee89 5616 if (!env->bypass_spec_v1) {
e4298d25
DB
5617 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5618 check_map_access(env, dst, dst_reg->off, 1, false)) {
5619 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5620 "prohibited for !root\n", dst);
5621 return -EACCES;
5622 } else if (dst_reg->type == PTR_TO_STACK &&
5623 check_stack_access(env, dst_reg, dst_reg->off +
5624 dst_reg->var_off.value, 1)) {
5625 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5626 "prohibited for !root\n", dst);
5627 return -EACCES;
5628 }
0d6303db
DB
5629 }
5630
43188702
JF
5631 return 0;
5632}
5633
3f50f132
JF
5634static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5635 struct bpf_reg_state *src_reg)
5636{
5637 s32 smin_val = src_reg->s32_min_value;
5638 s32 smax_val = src_reg->s32_max_value;
5639 u32 umin_val = src_reg->u32_min_value;
5640 u32 umax_val = src_reg->u32_max_value;
5641
5642 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5643 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5644 dst_reg->s32_min_value = S32_MIN;
5645 dst_reg->s32_max_value = S32_MAX;
5646 } else {
5647 dst_reg->s32_min_value += smin_val;
5648 dst_reg->s32_max_value += smax_val;
5649 }
5650 if (dst_reg->u32_min_value + umin_val < umin_val ||
5651 dst_reg->u32_max_value + umax_val < umax_val) {
5652 dst_reg->u32_min_value = 0;
5653 dst_reg->u32_max_value = U32_MAX;
5654 } else {
5655 dst_reg->u32_min_value += umin_val;
5656 dst_reg->u32_max_value += umax_val;
5657 }
5658}
5659
07cd2631
JF
5660static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5661 struct bpf_reg_state *src_reg)
5662{
5663 s64 smin_val = src_reg->smin_value;
5664 s64 smax_val = src_reg->smax_value;
5665 u64 umin_val = src_reg->umin_value;
5666 u64 umax_val = src_reg->umax_value;
5667
5668 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5669 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5670 dst_reg->smin_value = S64_MIN;
5671 dst_reg->smax_value = S64_MAX;
5672 } else {
5673 dst_reg->smin_value += smin_val;
5674 dst_reg->smax_value += smax_val;
5675 }
5676 if (dst_reg->umin_value + umin_val < umin_val ||
5677 dst_reg->umax_value + umax_val < umax_val) {
5678 dst_reg->umin_value = 0;
5679 dst_reg->umax_value = U64_MAX;
5680 } else {
5681 dst_reg->umin_value += umin_val;
5682 dst_reg->umax_value += umax_val;
5683 }
3f50f132
JF
5684}
5685
5686static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5687 struct bpf_reg_state *src_reg)
5688{
5689 s32 smin_val = src_reg->s32_min_value;
5690 s32 smax_val = src_reg->s32_max_value;
5691 u32 umin_val = src_reg->u32_min_value;
5692 u32 umax_val = src_reg->u32_max_value;
5693
5694 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5695 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5696 /* Overflow possible, we know nothing */
5697 dst_reg->s32_min_value = S32_MIN;
5698 dst_reg->s32_max_value = S32_MAX;
5699 } else {
5700 dst_reg->s32_min_value -= smax_val;
5701 dst_reg->s32_max_value -= smin_val;
5702 }
5703 if (dst_reg->u32_min_value < umax_val) {
5704 /* Overflow possible, we know nothing */
5705 dst_reg->u32_min_value = 0;
5706 dst_reg->u32_max_value = U32_MAX;
5707 } else {
5708 /* Cannot overflow (as long as bounds are consistent) */
5709 dst_reg->u32_min_value -= umax_val;
5710 dst_reg->u32_max_value -= umin_val;
5711 }
07cd2631
JF
5712}
5713
5714static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5715 struct bpf_reg_state *src_reg)
5716{
5717 s64 smin_val = src_reg->smin_value;
5718 s64 smax_val = src_reg->smax_value;
5719 u64 umin_val = src_reg->umin_value;
5720 u64 umax_val = src_reg->umax_value;
5721
5722 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5723 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5724 /* Overflow possible, we know nothing */
5725 dst_reg->smin_value = S64_MIN;
5726 dst_reg->smax_value = S64_MAX;
5727 } else {
5728 dst_reg->smin_value -= smax_val;
5729 dst_reg->smax_value -= smin_val;
5730 }
5731 if (dst_reg->umin_value < umax_val) {
5732 /* Overflow possible, we know nothing */
5733 dst_reg->umin_value = 0;
5734 dst_reg->umax_value = U64_MAX;
5735 } else {
5736 /* Cannot overflow (as long as bounds are consistent) */
5737 dst_reg->umin_value -= umax_val;
5738 dst_reg->umax_value -= umin_val;
5739 }
3f50f132
JF
5740}
5741
5742static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5743 struct bpf_reg_state *src_reg)
5744{
5745 s32 smin_val = src_reg->s32_min_value;
5746 u32 umin_val = src_reg->u32_min_value;
5747 u32 umax_val = src_reg->u32_max_value;
5748
5749 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5750 /* Ain't nobody got time to multiply that sign */
5751 __mark_reg32_unbounded(dst_reg);
5752 return;
5753 }
5754 /* Both values are positive, so we can work with unsigned and
5755 * copy the result to signed (unless it exceeds S32_MAX).
5756 */
5757 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5758 /* Potential overflow, we know nothing */
5759 __mark_reg32_unbounded(dst_reg);
5760 return;
5761 }
5762 dst_reg->u32_min_value *= umin_val;
5763 dst_reg->u32_max_value *= umax_val;
5764 if (dst_reg->u32_max_value > S32_MAX) {
5765 /* Overflow possible, we know nothing */
5766 dst_reg->s32_min_value = S32_MIN;
5767 dst_reg->s32_max_value = S32_MAX;
5768 } else {
5769 dst_reg->s32_min_value = dst_reg->u32_min_value;
5770 dst_reg->s32_max_value = dst_reg->u32_max_value;
5771 }
07cd2631
JF
5772}
5773
5774static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5775 struct bpf_reg_state *src_reg)
5776{
5777 s64 smin_val = src_reg->smin_value;
5778 u64 umin_val = src_reg->umin_value;
5779 u64 umax_val = src_reg->umax_value;
5780
07cd2631
JF
5781 if (smin_val < 0 || dst_reg->smin_value < 0) {
5782 /* Ain't nobody got time to multiply that sign */
3f50f132 5783 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5784 return;
5785 }
5786 /* Both values are positive, so we can work with unsigned and
5787 * copy the result to signed (unless it exceeds S64_MAX).
5788 */
5789 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5790 /* Potential overflow, we know nothing */
3f50f132 5791 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5792 return;
5793 }
5794 dst_reg->umin_value *= umin_val;
5795 dst_reg->umax_value *= umax_val;
5796 if (dst_reg->umax_value > S64_MAX) {
5797 /* Overflow possible, we know nothing */
5798 dst_reg->smin_value = S64_MIN;
5799 dst_reg->smax_value = S64_MAX;
5800 } else {
5801 dst_reg->smin_value = dst_reg->umin_value;
5802 dst_reg->smax_value = dst_reg->umax_value;
5803 }
5804}
5805
3f50f132
JF
5806static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5807 struct bpf_reg_state *src_reg)
5808{
5809 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5810 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5811 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5812 s32 smin_val = src_reg->s32_min_value;
5813 u32 umax_val = src_reg->u32_max_value;
5814
5815 /* Assuming scalar64_min_max_and will be called so its safe
5816 * to skip updating register for known 32-bit case.
5817 */
5818 if (src_known && dst_known)
5819 return;
5820
5821 /* We get our minimum from the var_off, since that's inherently
5822 * bitwise. Our maximum is the minimum of the operands' maxima.
5823 */
5824 dst_reg->u32_min_value = var32_off.value;
5825 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5826 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5827 /* Lose signed bounds when ANDing negative numbers,
5828 * ain't nobody got time for that.
5829 */
5830 dst_reg->s32_min_value = S32_MIN;
5831 dst_reg->s32_max_value = S32_MAX;
5832 } else {
5833 /* ANDing two positives gives a positive, so safe to
5834 * cast result into s64.
5835 */
5836 dst_reg->s32_min_value = dst_reg->u32_min_value;
5837 dst_reg->s32_max_value = dst_reg->u32_max_value;
5838 }
5839
5840}
5841
07cd2631
JF
5842static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5843 struct bpf_reg_state *src_reg)
5844{
3f50f132
JF
5845 bool src_known = tnum_is_const(src_reg->var_off);
5846 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5847 s64 smin_val = src_reg->smin_value;
5848 u64 umax_val = src_reg->umax_value;
5849
3f50f132 5850 if (src_known && dst_known) {
4fbb38a3 5851 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5852 return;
5853 }
5854
07cd2631
JF
5855 /* We get our minimum from the var_off, since that's inherently
5856 * bitwise. Our maximum is the minimum of the operands' maxima.
5857 */
07cd2631
JF
5858 dst_reg->umin_value = dst_reg->var_off.value;
5859 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5860 if (dst_reg->smin_value < 0 || smin_val < 0) {
5861 /* Lose signed bounds when ANDing negative numbers,
5862 * ain't nobody got time for that.
5863 */
5864 dst_reg->smin_value = S64_MIN;
5865 dst_reg->smax_value = S64_MAX;
5866 } else {
5867 /* ANDing two positives gives a positive, so safe to
5868 * cast result into s64.
5869 */
5870 dst_reg->smin_value = dst_reg->umin_value;
5871 dst_reg->smax_value = dst_reg->umax_value;
5872 }
5873 /* We may learn something more from the var_off */
5874 __update_reg_bounds(dst_reg);
5875}
5876
3f50f132
JF
5877static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5878 struct bpf_reg_state *src_reg)
5879{
5880 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5881 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5882 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5883 s32 smin_val = src_reg->smin_value;
5884 u32 umin_val = src_reg->umin_value;
5885
5886 /* Assuming scalar64_min_max_or will be called so it is safe
5887 * to skip updating register for known case.
5888 */
5889 if (src_known && dst_known)
5890 return;
5891
5892 /* We get our maximum from the var_off, and our minimum is the
5893 * maximum of the operands' minima
5894 */
5895 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5896 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5897 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5898 /* Lose signed bounds when ORing negative numbers,
5899 * ain't nobody got time for that.
5900 */
5901 dst_reg->s32_min_value = S32_MIN;
5902 dst_reg->s32_max_value = S32_MAX;
5903 } else {
5904 /* ORing two positives gives a positive, so safe to
5905 * cast result into s64.
5906 */
5907 dst_reg->s32_min_value = dst_reg->umin_value;
5908 dst_reg->s32_max_value = dst_reg->umax_value;
5909 }
5910}
5911
07cd2631
JF
5912static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5913 struct bpf_reg_state *src_reg)
5914{
3f50f132
JF
5915 bool src_known = tnum_is_const(src_reg->var_off);
5916 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5917 s64 smin_val = src_reg->smin_value;
5918 u64 umin_val = src_reg->umin_value;
5919
3f50f132 5920 if (src_known && dst_known) {
4fbb38a3 5921 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5922 return;
5923 }
5924
07cd2631
JF
5925 /* We get our maximum from the var_off, and our minimum is the
5926 * maximum of the operands' minima
5927 */
07cd2631
JF
5928 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5929 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5930 if (dst_reg->smin_value < 0 || smin_val < 0) {
5931 /* Lose signed bounds when ORing negative numbers,
5932 * ain't nobody got time for that.
5933 */
5934 dst_reg->smin_value = S64_MIN;
5935 dst_reg->smax_value = S64_MAX;
5936 } else {
5937 /* ORing two positives gives a positive, so safe to
5938 * cast result into s64.
5939 */
5940 dst_reg->smin_value = dst_reg->umin_value;
5941 dst_reg->smax_value = dst_reg->umax_value;
5942 }
5943 /* We may learn something more from the var_off */
5944 __update_reg_bounds(dst_reg);
5945}
5946
2921c90d
YS
5947static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
5948 struct bpf_reg_state *src_reg)
5949{
5950 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5951 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5952 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5953 s32 smin_val = src_reg->s32_min_value;
5954
5955 /* Assuming scalar64_min_max_xor will be called so it is safe
5956 * to skip updating register for known case.
5957 */
5958 if (src_known && dst_known)
5959 return;
5960
5961 /* We get both minimum and maximum from the var32_off. */
5962 dst_reg->u32_min_value = var32_off.value;
5963 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5964
5965 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
5966 /* XORing two positive sign numbers gives a positive,
5967 * so safe to cast u32 result into s32.
5968 */
5969 dst_reg->s32_min_value = dst_reg->u32_min_value;
5970 dst_reg->s32_max_value = dst_reg->u32_max_value;
5971 } else {
5972 dst_reg->s32_min_value = S32_MIN;
5973 dst_reg->s32_max_value = S32_MAX;
5974 }
5975}
5976
5977static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
5978 struct bpf_reg_state *src_reg)
5979{
5980 bool src_known = tnum_is_const(src_reg->var_off);
5981 bool dst_known = tnum_is_const(dst_reg->var_off);
5982 s64 smin_val = src_reg->smin_value;
5983
5984 if (src_known && dst_known) {
5985 /* dst_reg->var_off.value has been updated earlier */
5986 __mark_reg_known(dst_reg, dst_reg->var_off.value);
5987 return;
5988 }
5989
5990 /* We get both minimum and maximum from the var_off. */
5991 dst_reg->umin_value = dst_reg->var_off.value;
5992 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5993
5994 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
5995 /* XORing two positive sign numbers gives a positive,
5996 * so safe to cast u64 result into s64.
5997 */
5998 dst_reg->smin_value = dst_reg->umin_value;
5999 dst_reg->smax_value = dst_reg->umax_value;
6000 } else {
6001 dst_reg->smin_value = S64_MIN;
6002 dst_reg->smax_value = S64_MAX;
6003 }
6004
6005 __update_reg_bounds(dst_reg);
6006}
6007
3f50f132
JF
6008static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6009 u64 umin_val, u64 umax_val)
07cd2631 6010{
07cd2631
JF
6011 /* We lose all sign bit information (except what we can pick
6012 * up from var_off)
6013 */
3f50f132
JF
6014 dst_reg->s32_min_value = S32_MIN;
6015 dst_reg->s32_max_value = S32_MAX;
6016 /* If we might shift our top bit out, then we know nothing */
6017 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6018 dst_reg->u32_min_value = 0;
6019 dst_reg->u32_max_value = U32_MAX;
6020 } else {
6021 dst_reg->u32_min_value <<= umin_val;
6022 dst_reg->u32_max_value <<= umax_val;
6023 }
6024}
6025
6026static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6027 struct bpf_reg_state *src_reg)
6028{
6029 u32 umax_val = src_reg->u32_max_value;
6030 u32 umin_val = src_reg->u32_min_value;
6031 /* u32 alu operation will zext upper bits */
6032 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6033
6034 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6035 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6036 /* Not required but being careful mark reg64 bounds as unknown so
6037 * that we are forced to pick them up from tnum and zext later and
6038 * if some path skips this step we are still safe.
6039 */
6040 __mark_reg64_unbounded(dst_reg);
6041 __update_reg32_bounds(dst_reg);
6042}
6043
6044static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6045 u64 umin_val, u64 umax_val)
6046{
6047 /* Special case <<32 because it is a common compiler pattern to sign
6048 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6049 * positive we know this shift will also be positive so we can track
6050 * bounds correctly. Otherwise we lose all sign bit information except
6051 * what we can pick up from var_off. Perhaps we can generalize this
6052 * later to shifts of any length.
6053 */
6054 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6055 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6056 else
6057 dst_reg->smax_value = S64_MAX;
6058
6059 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6060 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6061 else
6062 dst_reg->smin_value = S64_MIN;
6063
07cd2631
JF
6064 /* If we might shift our top bit out, then we know nothing */
6065 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6066 dst_reg->umin_value = 0;
6067 dst_reg->umax_value = U64_MAX;
6068 } else {
6069 dst_reg->umin_value <<= umin_val;
6070 dst_reg->umax_value <<= umax_val;
6071 }
3f50f132
JF
6072}
6073
6074static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6075 struct bpf_reg_state *src_reg)
6076{
6077 u64 umax_val = src_reg->umax_value;
6078 u64 umin_val = src_reg->umin_value;
6079
6080 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6081 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6082 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6083
07cd2631
JF
6084 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6085 /* We may learn something more from the var_off */
6086 __update_reg_bounds(dst_reg);
6087}
6088
3f50f132
JF
6089static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6090 struct bpf_reg_state *src_reg)
6091{
6092 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6093 u32 umax_val = src_reg->u32_max_value;
6094 u32 umin_val = src_reg->u32_min_value;
6095
6096 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6097 * be negative, then either:
6098 * 1) src_reg might be zero, so the sign bit of the result is
6099 * unknown, so we lose our signed bounds
6100 * 2) it's known negative, thus the unsigned bounds capture the
6101 * signed bounds
6102 * 3) the signed bounds cross zero, so they tell us nothing
6103 * about the result
6104 * If the value in dst_reg is known nonnegative, then again the
6105 * unsigned bounts capture the signed bounds.
6106 * Thus, in all cases it suffices to blow away our signed bounds
6107 * and rely on inferring new ones from the unsigned bounds and
6108 * var_off of the result.
6109 */
6110 dst_reg->s32_min_value = S32_MIN;
6111 dst_reg->s32_max_value = S32_MAX;
6112
6113 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6114 dst_reg->u32_min_value >>= umax_val;
6115 dst_reg->u32_max_value >>= umin_val;
6116
6117 __mark_reg64_unbounded(dst_reg);
6118 __update_reg32_bounds(dst_reg);
6119}
6120
07cd2631
JF
6121static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6122 struct bpf_reg_state *src_reg)
6123{
6124 u64 umax_val = src_reg->umax_value;
6125 u64 umin_val = src_reg->umin_value;
6126
6127 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6128 * be negative, then either:
6129 * 1) src_reg might be zero, so the sign bit of the result is
6130 * unknown, so we lose our signed bounds
6131 * 2) it's known negative, thus the unsigned bounds capture the
6132 * signed bounds
6133 * 3) the signed bounds cross zero, so they tell us nothing
6134 * about the result
6135 * If the value in dst_reg is known nonnegative, then again the
6136 * unsigned bounts capture the signed bounds.
6137 * Thus, in all cases it suffices to blow away our signed bounds
6138 * and rely on inferring new ones from the unsigned bounds and
6139 * var_off of the result.
6140 */
6141 dst_reg->smin_value = S64_MIN;
6142 dst_reg->smax_value = S64_MAX;
6143 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6144 dst_reg->umin_value >>= umax_val;
6145 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6146
6147 /* Its not easy to operate on alu32 bounds here because it depends
6148 * on bits being shifted in. Take easy way out and mark unbounded
6149 * so we can recalculate later from tnum.
6150 */
6151 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6152 __update_reg_bounds(dst_reg);
6153}
6154
3f50f132
JF
6155static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6156 struct bpf_reg_state *src_reg)
07cd2631 6157{
3f50f132 6158 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6159
6160 /* Upon reaching here, src_known is true and
6161 * umax_val is equal to umin_val.
6162 */
3f50f132
JF
6163 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6164 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6165
3f50f132
JF
6166 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6167
6168 /* blow away the dst_reg umin_value/umax_value and rely on
6169 * dst_reg var_off to refine the result.
6170 */
6171 dst_reg->u32_min_value = 0;
6172 dst_reg->u32_max_value = U32_MAX;
6173
6174 __mark_reg64_unbounded(dst_reg);
6175 __update_reg32_bounds(dst_reg);
6176}
6177
6178static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6179 struct bpf_reg_state *src_reg)
6180{
6181 u64 umin_val = src_reg->umin_value;
6182
6183 /* Upon reaching here, src_known is true and umax_val is equal
6184 * to umin_val.
6185 */
6186 dst_reg->smin_value >>= umin_val;
6187 dst_reg->smax_value >>= umin_val;
6188
6189 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6190
6191 /* blow away the dst_reg umin_value/umax_value and rely on
6192 * dst_reg var_off to refine the result.
6193 */
6194 dst_reg->umin_value = 0;
6195 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6196
6197 /* Its not easy to operate on alu32 bounds here because it depends
6198 * on bits being shifted in from upper 32-bits. Take easy way out
6199 * and mark unbounded so we can recalculate later from tnum.
6200 */
6201 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6202 __update_reg_bounds(dst_reg);
6203}
6204
468f6eaf
JH
6205/* WARNING: This function does calculations on 64-bit values, but the actual
6206 * execution may occur on 32-bit values. Therefore, things like bitshifts
6207 * need extra checks in the 32-bit case.
6208 */
f1174f77
EC
6209static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6210 struct bpf_insn *insn,
6211 struct bpf_reg_state *dst_reg,
6212 struct bpf_reg_state src_reg)
969bf05e 6213{
638f5b90 6214 struct bpf_reg_state *regs = cur_regs(env);
48461135 6215 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6216 bool src_known;
b03c9f9f
EC
6217 s64 smin_val, smax_val;
6218 u64 umin_val, umax_val;
3f50f132
JF
6219 s32 s32_min_val, s32_max_val;
6220 u32 u32_min_val, u32_max_val;
468f6eaf 6221 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6222 u32 dst = insn->dst_reg;
6223 int ret;
3f50f132 6224 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6225
b03c9f9f
EC
6226 smin_val = src_reg.smin_value;
6227 smax_val = src_reg.smax_value;
6228 umin_val = src_reg.umin_value;
6229 umax_val = src_reg.umax_value;
f23cc643 6230
3f50f132
JF
6231 s32_min_val = src_reg.s32_min_value;
6232 s32_max_val = src_reg.s32_max_value;
6233 u32_min_val = src_reg.u32_min_value;
6234 u32_max_val = src_reg.u32_max_value;
6235
6236 if (alu32) {
6237 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6238 if ((src_known &&
6239 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6240 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6241 /* Taint dst register if offset had invalid bounds
6242 * derived from e.g. dead branches.
6243 */
6244 __mark_reg_unknown(env, dst_reg);
6245 return 0;
6246 }
6247 } else {
6248 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6249 if ((src_known &&
6250 (smin_val != smax_val || umin_val != umax_val)) ||
6251 smin_val > smax_val || umin_val > umax_val) {
6252 /* Taint dst register if offset had invalid bounds
6253 * derived from e.g. dead branches.
6254 */
6255 __mark_reg_unknown(env, dst_reg);
6256 return 0;
6257 }
6f16101e
DB
6258 }
6259
bb7f0f98
AS
6260 if (!src_known &&
6261 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6262 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6263 return 0;
6264 }
6265
3f50f132
JF
6266 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6267 * There are two classes of instructions: The first class we track both
6268 * alu32 and alu64 sign/unsigned bounds independently this provides the
6269 * greatest amount of precision when alu operations are mixed with jmp32
6270 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6271 * and BPF_OR. This is possible because these ops have fairly easy to
6272 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6273 * See alu32 verifier tests for examples. The second class of
6274 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6275 * with regards to tracking sign/unsigned bounds because the bits may
6276 * cross subreg boundaries in the alu64 case. When this happens we mark
6277 * the reg unbounded in the subreg bound space and use the resulting
6278 * tnum to calculate an approximation of the sign/unsigned bounds.
6279 */
48461135
JB
6280 switch (opcode) {
6281 case BPF_ADD:
d3bd7413
DB
6282 ret = sanitize_val_alu(env, insn);
6283 if (ret < 0) {
6284 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6285 return ret;
6286 }
3f50f132 6287 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6288 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6289 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6290 break;
6291 case BPF_SUB:
d3bd7413
DB
6292 ret = sanitize_val_alu(env, insn);
6293 if (ret < 0) {
6294 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6295 return ret;
6296 }
3f50f132 6297 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6298 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6299 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6300 break;
6301 case BPF_MUL:
3f50f132
JF
6302 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6303 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6304 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6305 break;
6306 case BPF_AND:
3f50f132
JF
6307 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6308 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6309 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6310 break;
6311 case BPF_OR:
3f50f132
JF
6312 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6313 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6314 scalar_min_max_or(dst_reg, &src_reg);
48461135 6315 break;
2921c90d
YS
6316 case BPF_XOR:
6317 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6318 scalar32_min_max_xor(dst_reg, &src_reg);
6319 scalar_min_max_xor(dst_reg, &src_reg);
6320 break;
48461135 6321 case BPF_LSH:
468f6eaf
JH
6322 if (umax_val >= insn_bitness) {
6323 /* Shifts greater than 31 or 63 are undefined.
6324 * This includes shifts by a negative number.
b03c9f9f 6325 */
61bd5218 6326 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6327 break;
6328 }
3f50f132
JF
6329 if (alu32)
6330 scalar32_min_max_lsh(dst_reg, &src_reg);
6331 else
6332 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6333 break;
6334 case BPF_RSH:
468f6eaf
JH
6335 if (umax_val >= insn_bitness) {
6336 /* Shifts greater than 31 or 63 are undefined.
6337 * This includes shifts by a negative number.
b03c9f9f 6338 */
61bd5218 6339 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6340 break;
6341 }
3f50f132
JF
6342 if (alu32)
6343 scalar32_min_max_rsh(dst_reg, &src_reg);
6344 else
6345 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6346 break;
9cbe1f5a
YS
6347 case BPF_ARSH:
6348 if (umax_val >= insn_bitness) {
6349 /* Shifts greater than 31 or 63 are undefined.
6350 * This includes shifts by a negative number.
6351 */
6352 mark_reg_unknown(env, regs, insn->dst_reg);
6353 break;
6354 }
3f50f132
JF
6355 if (alu32)
6356 scalar32_min_max_arsh(dst_reg, &src_reg);
6357 else
6358 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6359 break;
48461135 6360 default:
61bd5218 6361 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6362 break;
6363 }
6364
3f50f132
JF
6365 /* ALU32 ops are zero extended into 64bit register */
6366 if (alu32)
6367 zext_32_to_64(dst_reg);
468f6eaf 6368
294f2fc6 6369 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6370 __reg_deduce_bounds(dst_reg);
6371 __reg_bound_offset(dst_reg);
f1174f77
EC
6372 return 0;
6373}
6374
6375/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6376 * and var_off.
6377 */
6378static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6379 struct bpf_insn *insn)
6380{
f4d7e40a
AS
6381 struct bpf_verifier_state *vstate = env->cur_state;
6382 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6383 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6384 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6385 u8 opcode = BPF_OP(insn->code);
b5dc0163 6386 int err;
f1174f77
EC
6387
6388 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6389 src_reg = NULL;
6390 if (dst_reg->type != SCALAR_VALUE)
6391 ptr_reg = dst_reg;
6392 if (BPF_SRC(insn->code) == BPF_X) {
6393 src_reg = &regs[insn->src_reg];
f1174f77
EC
6394 if (src_reg->type != SCALAR_VALUE) {
6395 if (dst_reg->type != SCALAR_VALUE) {
6396 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6397 * an arbitrary scalar. Disallow all math except
6398 * pointer subtraction
f1174f77 6399 */
dd066823 6400 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6401 mark_reg_unknown(env, regs, insn->dst_reg);
6402 return 0;
f1174f77 6403 }
82abbf8d
AS
6404 verbose(env, "R%d pointer %s pointer prohibited\n",
6405 insn->dst_reg,
6406 bpf_alu_string[opcode >> 4]);
6407 return -EACCES;
f1174f77
EC
6408 } else {
6409 /* scalar += pointer
6410 * This is legal, but we have to reverse our
6411 * src/dest handling in computing the range
6412 */
b5dc0163
AS
6413 err = mark_chain_precision(env, insn->dst_reg);
6414 if (err)
6415 return err;
82abbf8d
AS
6416 return adjust_ptr_min_max_vals(env, insn,
6417 src_reg, dst_reg);
f1174f77
EC
6418 }
6419 } else if (ptr_reg) {
6420 /* pointer += scalar */
b5dc0163
AS
6421 err = mark_chain_precision(env, insn->src_reg);
6422 if (err)
6423 return err;
82abbf8d
AS
6424 return adjust_ptr_min_max_vals(env, insn,
6425 dst_reg, src_reg);
f1174f77
EC
6426 }
6427 } else {
6428 /* Pretend the src is a reg with a known value, since we only
6429 * need to be able to read from this state.
6430 */
6431 off_reg.type = SCALAR_VALUE;
b03c9f9f 6432 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6433 src_reg = &off_reg;
82abbf8d
AS
6434 if (ptr_reg) /* pointer += K */
6435 return adjust_ptr_min_max_vals(env, insn,
6436 ptr_reg, src_reg);
f1174f77
EC
6437 }
6438
6439 /* Got here implies adding two SCALAR_VALUEs */
6440 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6441 print_verifier_state(env, state);
61bd5218 6442 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6443 return -EINVAL;
6444 }
6445 if (WARN_ON(!src_reg)) {
f4d7e40a 6446 print_verifier_state(env, state);
61bd5218 6447 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6448 return -EINVAL;
6449 }
6450 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6451}
6452
17a52670 6453/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6454static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6455{
638f5b90 6456 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6457 u8 opcode = BPF_OP(insn->code);
6458 int err;
6459
6460 if (opcode == BPF_END || opcode == BPF_NEG) {
6461 if (opcode == BPF_NEG) {
6462 if (BPF_SRC(insn->code) != 0 ||
6463 insn->src_reg != BPF_REG_0 ||
6464 insn->off != 0 || insn->imm != 0) {
61bd5218 6465 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6466 return -EINVAL;
6467 }
6468 } else {
6469 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6470 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6471 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6472 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6473 return -EINVAL;
6474 }
6475 }
6476
6477 /* check src operand */
dc503a8a 6478 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6479 if (err)
6480 return err;
6481
1be7f75d 6482 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6483 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6484 insn->dst_reg);
6485 return -EACCES;
6486 }
6487
17a52670 6488 /* check dest operand */
dc503a8a 6489 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6490 if (err)
6491 return err;
6492
6493 } else if (opcode == BPF_MOV) {
6494
6495 if (BPF_SRC(insn->code) == BPF_X) {
6496 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6497 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6498 return -EINVAL;
6499 }
6500
6501 /* check src operand */
dc503a8a 6502 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6503 if (err)
6504 return err;
6505 } else {
6506 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6507 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6508 return -EINVAL;
6509 }
6510 }
6511
fbeb1603
AF
6512 /* check dest operand, mark as required later */
6513 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6514 if (err)
6515 return err;
6516
6517 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6518 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6519 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6520
17a52670
AS
6521 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6522 /* case: R1 = R2
6523 * copy register state to dest reg
6524 */
e434b8cd
JW
6525 *dst_reg = *src_reg;
6526 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6527 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6528 } else {
f1174f77 6529 /* R1 = (u32) R2 */
1be7f75d 6530 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6531 verbose(env,
6532 "R%d partial copy of pointer\n",
1be7f75d
AS
6533 insn->src_reg);
6534 return -EACCES;
e434b8cd
JW
6535 } else if (src_reg->type == SCALAR_VALUE) {
6536 *dst_reg = *src_reg;
6537 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6538 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6539 } else {
6540 mark_reg_unknown(env, regs,
6541 insn->dst_reg);
1be7f75d 6542 }
3f50f132 6543 zext_32_to_64(dst_reg);
17a52670
AS
6544 }
6545 } else {
6546 /* case: R = imm
6547 * remember the value we stored into this reg
6548 */
fbeb1603
AF
6549 /* clear any state __mark_reg_known doesn't set */
6550 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6551 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6552 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6553 __mark_reg_known(regs + insn->dst_reg,
6554 insn->imm);
6555 } else {
6556 __mark_reg_known(regs + insn->dst_reg,
6557 (u32)insn->imm);
6558 }
17a52670
AS
6559 }
6560
6561 } else if (opcode > BPF_END) {
61bd5218 6562 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6563 return -EINVAL;
6564
6565 } else { /* all other ALU ops: and, sub, xor, add, ... */
6566
17a52670
AS
6567 if (BPF_SRC(insn->code) == BPF_X) {
6568 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6569 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6570 return -EINVAL;
6571 }
6572 /* check src1 operand */
dc503a8a 6573 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6574 if (err)
6575 return err;
6576 } else {
6577 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6578 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6579 return -EINVAL;
6580 }
6581 }
6582
6583 /* check src2 operand */
dc503a8a 6584 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6585 if (err)
6586 return err;
6587
6588 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6589 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6590 verbose(env, "div by zero\n");
17a52670
AS
6591 return -EINVAL;
6592 }
6593
229394e8
RV
6594 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6595 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6596 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6597
6598 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6599 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6600 return -EINVAL;
6601 }
6602 }
6603
1a0dc1ac 6604 /* check dest operand */
dc503a8a 6605 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6606 if (err)
6607 return err;
6608
f1174f77 6609 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6610 }
6611
6612 return 0;
6613}
6614
c6a9efa1
PC
6615static void __find_good_pkt_pointers(struct bpf_func_state *state,
6616 struct bpf_reg_state *dst_reg,
6617 enum bpf_reg_type type, u16 new_range)
6618{
6619 struct bpf_reg_state *reg;
6620 int i;
6621
6622 for (i = 0; i < MAX_BPF_REG; i++) {
6623 reg = &state->regs[i];
6624 if (reg->type == type && reg->id == dst_reg->id)
6625 /* keep the maximum range already checked */
6626 reg->range = max(reg->range, new_range);
6627 }
6628
6629 bpf_for_each_spilled_reg(i, state, reg) {
6630 if (!reg)
6631 continue;
6632 if (reg->type == type && reg->id == dst_reg->id)
6633 reg->range = max(reg->range, new_range);
6634 }
6635}
6636
f4d7e40a 6637static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6638 struct bpf_reg_state *dst_reg,
f8ddadc4 6639 enum bpf_reg_type type,
fb2a311a 6640 bool range_right_open)
969bf05e 6641{
fb2a311a 6642 u16 new_range;
c6a9efa1 6643 int i;
2d2be8ca 6644
fb2a311a
DB
6645 if (dst_reg->off < 0 ||
6646 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6647 /* This doesn't give us any range */
6648 return;
6649
b03c9f9f
EC
6650 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6651 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6652 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6653 * than pkt_end, but that's because it's also less than pkt.
6654 */
6655 return;
6656
fb2a311a
DB
6657 new_range = dst_reg->off;
6658 if (range_right_open)
6659 new_range--;
6660
6661 /* Examples for register markings:
2d2be8ca 6662 *
fb2a311a 6663 * pkt_data in dst register:
2d2be8ca
DB
6664 *
6665 * r2 = r3;
6666 * r2 += 8;
6667 * if (r2 > pkt_end) goto <handle exception>
6668 * <access okay>
6669 *
b4e432f1
DB
6670 * r2 = r3;
6671 * r2 += 8;
6672 * if (r2 < pkt_end) goto <access okay>
6673 * <handle exception>
6674 *
2d2be8ca
DB
6675 * Where:
6676 * r2 == dst_reg, pkt_end == src_reg
6677 * r2=pkt(id=n,off=8,r=0)
6678 * r3=pkt(id=n,off=0,r=0)
6679 *
fb2a311a 6680 * pkt_data in src register:
2d2be8ca
DB
6681 *
6682 * r2 = r3;
6683 * r2 += 8;
6684 * if (pkt_end >= r2) goto <access okay>
6685 * <handle exception>
6686 *
b4e432f1
DB
6687 * r2 = r3;
6688 * r2 += 8;
6689 * if (pkt_end <= r2) goto <handle exception>
6690 * <access okay>
6691 *
2d2be8ca
DB
6692 * Where:
6693 * pkt_end == dst_reg, r2 == src_reg
6694 * r2=pkt(id=n,off=8,r=0)
6695 * r3=pkt(id=n,off=0,r=0)
6696 *
6697 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6698 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6699 * and [r3, r3 + 8-1) respectively is safe to access depending on
6700 * the check.
969bf05e 6701 */
2d2be8ca 6702
f1174f77
EC
6703 /* If our ids match, then we must have the same max_value. And we
6704 * don't care about the other reg's fixed offset, since if it's too big
6705 * the range won't allow anything.
6706 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6707 */
c6a9efa1
PC
6708 for (i = 0; i <= vstate->curframe; i++)
6709 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6710 new_range);
969bf05e
AS
6711}
6712
3f50f132 6713static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6714{
3f50f132
JF
6715 struct tnum subreg = tnum_subreg(reg->var_off);
6716 s32 sval = (s32)val;
a72dafaf 6717
3f50f132
JF
6718 switch (opcode) {
6719 case BPF_JEQ:
6720 if (tnum_is_const(subreg))
6721 return !!tnum_equals_const(subreg, val);
6722 break;
6723 case BPF_JNE:
6724 if (tnum_is_const(subreg))
6725 return !tnum_equals_const(subreg, val);
6726 break;
6727 case BPF_JSET:
6728 if ((~subreg.mask & subreg.value) & val)
6729 return 1;
6730 if (!((subreg.mask | subreg.value) & val))
6731 return 0;
6732 break;
6733 case BPF_JGT:
6734 if (reg->u32_min_value > val)
6735 return 1;
6736 else if (reg->u32_max_value <= val)
6737 return 0;
6738 break;
6739 case BPF_JSGT:
6740 if (reg->s32_min_value > sval)
6741 return 1;
6742 else if (reg->s32_max_value < sval)
6743 return 0;
6744 break;
6745 case BPF_JLT:
6746 if (reg->u32_max_value < val)
6747 return 1;
6748 else if (reg->u32_min_value >= val)
6749 return 0;
6750 break;
6751 case BPF_JSLT:
6752 if (reg->s32_max_value < sval)
6753 return 1;
6754 else if (reg->s32_min_value >= sval)
6755 return 0;
6756 break;
6757 case BPF_JGE:
6758 if (reg->u32_min_value >= val)
6759 return 1;
6760 else if (reg->u32_max_value < val)
6761 return 0;
6762 break;
6763 case BPF_JSGE:
6764 if (reg->s32_min_value >= sval)
6765 return 1;
6766 else if (reg->s32_max_value < sval)
6767 return 0;
6768 break;
6769 case BPF_JLE:
6770 if (reg->u32_max_value <= val)
6771 return 1;
6772 else if (reg->u32_min_value > val)
6773 return 0;
6774 break;
6775 case BPF_JSLE:
6776 if (reg->s32_max_value <= sval)
6777 return 1;
6778 else if (reg->s32_min_value > sval)
6779 return 0;
6780 break;
6781 }
4f7b3e82 6782
3f50f132
JF
6783 return -1;
6784}
092ed096 6785
3f50f132
JF
6786
6787static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6788{
6789 s64 sval = (s64)val;
a72dafaf 6790
4f7b3e82
AS
6791 switch (opcode) {
6792 case BPF_JEQ:
6793 if (tnum_is_const(reg->var_off))
6794 return !!tnum_equals_const(reg->var_off, val);
6795 break;
6796 case BPF_JNE:
6797 if (tnum_is_const(reg->var_off))
6798 return !tnum_equals_const(reg->var_off, val);
6799 break;
960ea056
JK
6800 case BPF_JSET:
6801 if ((~reg->var_off.mask & reg->var_off.value) & val)
6802 return 1;
6803 if (!((reg->var_off.mask | reg->var_off.value) & val))
6804 return 0;
6805 break;
4f7b3e82
AS
6806 case BPF_JGT:
6807 if (reg->umin_value > val)
6808 return 1;
6809 else if (reg->umax_value <= val)
6810 return 0;
6811 break;
6812 case BPF_JSGT:
a72dafaf 6813 if (reg->smin_value > sval)
4f7b3e82 6814 return 1;
a72dafaf 6815 else if (reg->smax_value < sval)
4f7b3e82
AS
6816 return 0;
6817 break;
6818 case BPF_JLT:
6819 if (reg->umax_value < val)
6820 return 1;
6821 else if (reg->umin_value >= val)
6822 return 0;
6823 break;
6824 case BPF_JSLT:
a72dafaf 6825 if (reg->smax_value < sval)
4f7b3e82 6826 return 1;
a72dafaf 6827 else if (reg->smin_value >= sval)
4f7b3e82
AS
6828 return 0;
6829 break;
6830 case BPF_JGE:
6831 if (reg->umin_value >= val)
6832 return 1;
6833 else if (reg->umax_value < val)
6834 return 0;
6835 break;
6836 case BPF_JSGE:
a72dafaf 6837 if (reg->smin_value >= sval)
4f7b3e82 6838 return 1;
a72dafaf 6839 else if (reg->smax_value < sval)
4f7b3e82
AS
6840 return 0;
6841 break;
6842 case BPF_JLE:
6843 if (reg->umax_value <= val)
6844 return 1;
6845 else if (reg->umin_value > val)
6846 return 0;
6847 break;
6848 case BPF_JSLE:
a72dafaf 6849 if (reg->smax_value <= sval)
4f7b3e82 6850 return 1;
a72dafaf 6851 else if (reg->smin_value > sval)
4f7b3e82
AS
6852 return 0;
6853 break;
6854 }
6855
6856 return -1;
6857}
6858
3f50f132
JF
6859/* compute branch direction of the expression "if (reg opcode val) goto target;"
6860 * and return:
6861 * 1 - branch will be taken and "goto target" will be executed
6862 * 0 - branch will not be taken and fall-through to next insn
6863 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6864 * range [0,10]
604dca5e 6865 */
3f50f132
JF
6866static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6867 bool is_jmp32)
604dca5e 6868{
cac616db
JF
6869 if (__is_pointer_value(false, reg)) {
6870 if (!reg_type_not_null(reg->type))
6871 return -1;
6872
6873 /* If pointer is valid tests against zero will fail so we can
6874 * use this to direct branch taken.
6875 */
6876 if (val != 0)
6877 return -1;
6878
6879 switch (opcode) {
6880 case BPF_JEQ:
6881 return 0;
6882 case BPF_JNE:
6883 return 1;
6884 default:
6885 return -1;
6886 }
6887 }
604dca5e 6888
3f50f132
JF
6889 if (is_jmp32)
6890 return is_branch32_taken(reg, val, opcode);
6891 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6892}
6893
48461135
JB
6894/* Adjusts the register min/max values in the case that the dst_reg is the
6895 * variable register that we are working on, and src_reg is a constant or we're
6896 * simply doing a BPF_K check.
f1174f77 6897 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6898 */
6899static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6900 struct bpf_reg_state *false_reg,
6901 u64 val, u32 val32,
092ed096 6902 u8 opcode, bool is_jmp32)
48461135 6903{
3f50f132
JF
6904 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6905 struct tnum false_64off = false_reg->var_off;
6906 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6907 struct tnum true_64off = true_reg->var_off;
6908 s64 sval = (s64)val;
6909 s32 sval32 = (s32)val32;
a72dafaf 6910
f1174f77
EC
6911 /* If the dst_reg is a pointer, we can't learn anything about its
6912 * variable offset from the compare (unless src_reg were a pointer into
6913 * the same object, but we don't bother with that.
6914 * Since false_reg and true_reg have the same type by construction, we
6915 * only need to check one of them for pointerness.
6916 */
6917 if (__is_pointer_value(false, false_reg))
6918 return;
4cabc5b1 6919
48461135
JB
6920 switch (opcode) {
6921 case BPF_JEQ:
48461135 6922 case BPF_JNE:
a72dafaf
JW
6923 {
6924 struct bpf_reg_state *reg =
6925 opcode == BPF_JEQ ? true_reg : false_reg;
6926
6927 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6928 * if it is true we know the value for sure. Likewise for
6929 * BPF_JNE.
48461135 6930 */
3f50f132
JF
6931 if (is_jmp32)
6932 __mark_reg32_known(reg, val32);
6933 else
092ed096 6934 __mark_reg_known(reg, val);
48461135 6935 break;
a72dafaf 6936 }
960ea056 6937 case BPF_JSET:
3f50f132
JF
6938 if (is_jmp32) {
6939 false_32off = tnum_and(false_32off, tnum_const(~val32));
6940 if (is_power_of_2(val32))
6941 true_32off = tnum_or(true_32off,
6942 tnum_const(val32));
6943 } else {
6944 false_64off = tnum_and(false_64off, tnum_const(~val));
6945 if (is_power_of_2(val))
6946 true_64off = tnum_or(true_64off,
6947 tnum_const(val));
6948 }
960ea056 6949 break;
48461135 6950 case BPF_JGE:
a72dafaf
JW
6951 case BPF_JGT:
6952 {
3f50f132
JF
6953 if (is_jmp32) {
6954 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
6955 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6956
6957 false_reg->u32_max_value = min(false_reg->u32_max_value,
6958 false_umax);
6959 true_reg->u32_min_value = max(true_reg->u32_min_value,
6960 true_umin);
6961 } else {
6962 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
6963 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6964
6965 false_reg->umax_value = min(false_reg->umax_value, false_umax);
6966 true_reg->umin_value = max(true_reg->umin_value, true_umin);
6967 }
b03c9f9f 6968 break;
a72dafaf 6969 }
48461135 6970 case BPF_JSGE:
a72dafaf
JW
6971 case BPF_JSGT:
6972 {
3f50f132
JF
6973 if (is_jmp32) {
6974 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
6975 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 6976
3f50f132
JF
6977 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6978 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6979 } else {
6980 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
6981 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6982
6983 false_reg->smax_value = min(false_reg->smax_value, false_smax);
6984 true_reg->smin_value = max(true_reg->smin_value, true_smin);
6985 }
48461135 6986 break;
a72dafaf 6987 }
b4e432f1 6988 case BPF_JLE:
a72dafaf
JW
6989 case BPF_JLT:
6990 {
3f50f132
JF
6991 if (is_jmp32) {
6992 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
6993 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6994
6995 false_reg->u32_min_value = max(false_reg->u32_min_value,
6996 false_umin);
6997 true_reg->u32_max_value = min(true_reg->u32_max_value,
6998 true_umax);
6999 } else {
7000 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7001 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7002
7003 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7004 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7005 }
b4e432f1 7006 break;
a72dafaf 7007 }
b4e432f1 7008 case BPF_JSLE:
a72dafaf
JW
7009 case BPF_JSLT:
7010 {
3f50f132
JF
7011 if (is_jmp32) {
7012 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7013 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 7014
3f50f132
JF
7015 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7016 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7017 } else {
7018 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7019 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7020
7021 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7022 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7023 }
b4e432f1 7024 break;
a72dafaf 7025 }
48461135 7026 default:
0fc31b10 7027 return;
48461135
JB
7028 }
7029
3f50f132
JF
7030 if (is_jmp32) {
7031 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7032 tnum_subreg(false_32off));
7033 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7034 tnum_subreg(true_32off));
7035 __reg_combine_32_into_64(false_reg);
7036 __reg_combine_32_into_64(true_reg);
7037 } else {
7038 false_reg->var_off = false_64off;
7039 true_reg->var_off = true_64off;
7040 __reg_combine_64_into_32(false_reg);
7041 __reg_combine_64_into_32(true_reg);
7042 }
48461135
JB
7043}
7044
f1174f77
EC
7045/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7046 * the variable reg.
48461135
JB
7047 */
7048static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
7049 struct bpf_reg_state *false_reg,
7050 u64 val, u32 val32,
092ed096 7051 u8 opcode, bool is_jmp32)
48461135 7052{
0fc31b10
JH
7053 /* How can we transform "a <op> b" into "b <op> a"? */
7054 static const u8 opcode_flip[16] = {
7055 /* these stay the same */
7056 [BPF_JEQ >> 4] = BPF_JEQ,
7057 [BPF_JNE >> 4] = BPF_JNE,
7058 [BPF_JSET >> 4] = BPF_JSET,
7059 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7060 [BPF_JGE >> 4] = BPF_JLE,
7061 [BPF_JGT >> 4] = BPF_JLT,
7062 [BPF_JLE >> 4] = BPF_JGE,
7063 [BPF_JLT >> 4] = BPF_JGT,
7064 [BPF_JSGE >> 4] = BPF_JSLE,
7065 [BPF_JSGT >> 4] = BPF_JSLT,
7066 [BPF_JSLE >> 4] = BPF_JSGE,
7067 [BPF_JSLT >> 4] = BPF_JSGT
7068 };
7069 opcode = opcode_flip[opcode >> 4];
7070 /* This uses zero as "not present in table"; luckily the zero opcode,
7071 * BPF_JA, can't get here.
b03c9f9f 7072 */
0fc31b10 7073 if (opcode)
3f50f132 7074 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
7075}
7076
7077/* Regs are known to be equal, so intersect their min/max/var_off */
7078static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7079 struct bpf_reg_state *dst_reg)
7080{
b03c9f9f
EC
7081 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7082 dst_reg->umin_value);
7083 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7084 dst_reg->umax_value);
7085 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7086 dst_reg->smin_value);
7087 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7088 dst_reg->smax_value);
f1174f77
EC
7089 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7090 dst_reg->var_off);
b03c9f9f
EC
7091 /* We might have learned new bounds from the var_off. */
7092 __update_reg_bounds(src_reg);
7093 __update_reg_bounds(dst_reg);
7094 /* We might have learned something about the sign bit. */
7095 __reg_deduce_bounds(src_reg);
7096 __reg_deduce_bounds(dst_reg);
7097 /* We might have learned some bits from the bounds. */
7098 __reg_bound_offset(src_reg);
7099 __reg_bound_offset(dst_reg);
7100 /* Intersecting with the old var_off might have improved our bounds
7101 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7102 * then new var_off is (0; 0x7f...fc) which improves our umax.
7103 */
7104 __update_reg_bounds(src_reg);
7105 __update_reg_bounds(dst_reg);
f1174f77
EC
7106}
7107
7108static void reg_combine_min_max(struct bpf_reg_state *true_src,
7109 struct bpf_reg_state *true_dst,
7110 struct bpf_reg_state *false_src,
7111 struct bpf_reg_state *false_dst,
7112 u8 opcode)
7113{
7114 switch (opcode) {
7115 case BPF_JEQ:
7116 __reg_combine_min_max(true_src, true_dst);
7117 break;
7118 case BPF_JNE:
7119 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7120 break;
4cabc5b1 7121 }
48461135
JB
7122}
7123
fd978bf7
JS
7124static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7125 struct bpf_reg_state *reg, u32 id,
840b9615 7126 bool is_null)
57a09bf0 7127{
840b9615 7128 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
7129 /* Old offset (both fixed and variable parts) should
7130 * have been known-zero, because we don't allow pointer
7131 * arithmetic on pointers that might be NULL.
7132 */
b03c9f9f
EC
7133 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7134 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7135 reg->off)) {
b03c9f9f
EC
7136 __mark_reg_known_zero(reg);
7137 reg->off = 0;
f1174f77
EC
7138 }
7139 if (is_null) {
7140 reg->type = SCALAR_VALUE;
840b9615 7141 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7142 const struct bpf_map *map = reg->map_ptr;
7143
7144 if (map->inner_map_meta) {
840b9615 7145 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7146 reg->map_ptr = map->inner_map_meta;
7147 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7148 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7149 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7150 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7151 reg->type = PTR_TO_SOCKET;
840b9615
JS
7152 } else {
7153 reg->type = PTR_TO_MAP_VALUE;
7154 }
c64b7983
JS
7155 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7156 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7157 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7158 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7159 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7160 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7161 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7162 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7163 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7164 reg->type = PTR_TO_MEM;
afbf21dc
YS
7165 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7166 reg->type = PTR_TO_RDONLY_BUF;
7167 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7168 reg->type = PTR_TO_RDWR_BUF;
56f668df 7169 }
1b986589
MKL
7170 if (is_null) {
7171 /* We don't need id and ref_obj_id from this point
7172 * onwards anymore, thus we should better reset it,
7173 * so that state pruning has chances to take effect.
7174 */
7175 reg->id = 0;
7176 reg->ref_obj_id = 0;
7177 } else if (!reg_may_point_to_spin_lock(reg)) {
7178 /* For not-NULL ptr, reg->ref_obj_id will be reset
7179 * in release_reg_references().
7180 *
7181 * reg->id is still used by spin_lock ptr. Other
7182 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7183 */
7184 reg->id = 0;
56f668df 7185 }
57a09bf0
TG
7186 }
7187}
7188
c6a9efa1
PC
7189static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7190 bool is_null)
7191{
7192 struct bpf_reg_state *reg;
7193 int i;
7194
7195 for (i = 0; i < MAX_BPF_REG; i++)
7196 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7197
7198 bpf_for_each_spilled_reg(i, state, reg) {
7199 if (!reg)
7200 continue;
7201 mark_ptr_or_null_reg(state, reg, id, is_null);
7202 }
7203}
7204
57a09bf0
TG
7205/* The logic is similar to find_good_pkt_pointers(), both could eventually
7206 * be folded together at some point.
7207 */
840b9615
JS
7208static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7209 bool is_null)
57a09bf0 7210{
f4d7e40a 7211 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7212 struct bpf_reg_state *regs = state->regs;
1b986589 7213 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7214 u32 id = regs[regno].id;
c6a9efa1 7215 int i;
57a09bf0 7216
1b986589
MKL
7217 if (ref_obj_id && ref_obj_id == id && is_null)
7218 /* regs[regno] is in the " == NULL" branch.
7219 * No one could have freed the reference state before
7220 * doing the NULL check.
7221 */
7222 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7223
c6a9efa1
PC
7224 for (i = 0; i <= vstate->curframe; i++)
7225 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7226}
7227
5beca081
DB
7228static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7229 struct bpf_reg_state *dst_reg,
7230 struct bpf_reg_state *src_reg,
7231 struct bpf_verifier_state *this_branch,
7232 struct bpf_verifier_state *other_branch)
7233{
7234 if (BPF_SRC(insn->code) != BPF_X)
7235 return false;
7236
092ed096
JW
7237 /* Pointers are always 64-bit. */
7238 if (BPF_CLASS(insn->code) == BPF_JMP32)
7239 return false;
7240
5beca081
DB
7241 switch (BPF_OP(insn->code)) {
7242 case BPF_JGT:
7243 if ((dst_reg->type == PTR_TO_PACKET &&
7244 src_reg->type == PTR_TO_PACKET_END) ||
7245 (dst_reg->type == PTR_TO_PACKET_META &&
7246 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7247 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7248 find_good_pkt_pointers(this_branch, dst_reg,
7249 dst_reg->type, false);
7250 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7251 src_reg->type == PTR_TO_PACKET) ||
7252 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7253 src_reg->type == PTR_TO_PACKET_META)) {
7254 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7255 find_good_pkt_pointers(other_branch, src_reg,
7256 src_reg->type, true);
7257 } else {
7258 return false;
7259 }
7260 break;
7261 case BPF_JLT:
7262 if ((dst_reg->type == PTR_TO_PACKET &&
7263 src_reg->type == PTR_TO_PACKET_END) ||
7264 (dst_reg->type == PTR_TO_PACKET_META &&
7265 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7266 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7267 find_good_pkt_pointers(other_branch, dst_reg,
7268 dst_reg->type, true);
7269 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7270 src_reg->type == PTR_TO_PACKET) ||
7271 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7272 src_reg->type == PTR_TO_PACKET_META)) {
7273 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7274 find_good_pkt_pointers(this_branch, src_reg,
7275 src_reg->type, false);
7276 } else {
7277 return false;
7278 }
7279 break;
7280 case BPF_JGE:
7281 if ((dst_reg->type == PTR_TO_PACKET &&
7282 src_reg->type == PTR_TO_PACKET_END) ||
7283 (dst_reg->type == PTR_TO_PACKET_META &&
7284 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7285 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7286 find_good_pkt_pointers(this_branch, dst_reg,
7287 dst_reg->type, true);
7288 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7289 src_reg->type == PTR_TO_PACKET) ||
7290 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7291 src_reg->type == PTR_TO_PACKET_META)) {
7292 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7293 find_good_pkt_pointers(other_branch, src_reg,
7294 src_reg->type, false);
7295 } else {
7296 return false;
7297 }
7298 break;
7299 case BPF_JLE:
7300 if ((dst_reg->type == PTR_TO_PACKET &&
7301 src_reg->type == PTR_TO_PACKET_END) ||
7302 (dst_reg->type == PTR_TO_PACKET_META &&
7303 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7304 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7305 find_good_pkt_pointers(other_branch, dst_reg,
7306 dst_reg->type, false);
7307 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7308 src_reg->type == PTR_TO_PACKET) ||
7309 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7310 src_reg->type == PTR_TO_PACKET_META)) {
7311 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7312 find_good_pkt_pointers(this_branch, src_reg,
7313 src_reg->type, true);
7314 } else {
7315 return false;
7316 }
7317 break;
7318 default:
7319 return false;
7320 }
7321
7322 return true;
7323}
7324
58e2af8b 7325static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7326 struct bpf_insn *insn, int *insn_idx)
7327{
f4d7e40a
AS
7328 struct bpf_verifier_state *this_branch = env->cur_state;
7329 struct bpf_verifier_state *other_branch;
7330 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7331 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7332 u8 opcode = BPF_OP(insn->code);
092ed096 7333 bool is_jmp32;
fb8d251e 7334 int pred = -1;
17a52670
AS
7335 int err;
7336
092ed096
JW
7337 /* Only conditional jumps are expected to reach here. */
7338 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7339 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7340 return -EINVAL;
7341 }
7342
7343 if (BPF_SRC(insn->code) == BPF_X) {
7344 if (insn->imm != 0) {
092ed096 7345 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7346 return -EINVAL;
7347 }
7348
7349 /* check src1 operand */
dc503a8a 7350 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7351 if (err)
7352 return err;
1be7f75d
AS
7353
7354 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7355 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7356 insn->src_reg);
7357 return -EACCES;
7358 }
fb8d251e 7359 src_reg = &regs[insn->src_reg];
17a52670
AS
7360 } else {
7361 if (insn->src_reg != BPF_REG_0) {
092ed096 7362 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7363 return -EINVAL;
7364 }
7365 }
7366
7367 /* check src2 operand */
dc503a8a 7368 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7369 if (err)
7370 return err;
7371
1a0dc1ac 7372 dst_reg = &regs[insn->dst_reg];
092ed096 7373 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7374
3f50f132
JF
7375 if (BPF_SRC(insn->code) == BPF_K) {
7376 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7377 } else if (src_reg->type == SCALAR_VALUE &&
7378 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7379 pred = is_branch_taken(dst_reg,
7380 tnum_subreg(src_reg->var_off).value,
7381 opcode,
7382 is_jmp32);
7383 } else if (src_reg->type == SCALAR_VALUE &&
7384 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7385 pred = is_branch_taken(dst_reg,
7386 src_reg->var_off.value,
7387 opcode,
7388 is_jmp32);
7389 }
7390
b5dc0163 7391 if (pred >= 0) {
cac616db
JF
7392 /* If we get here with a dst_reg pointer type it is because
7393 * above is_branch_taken() special cased the 0 comparison.
7394 */
7395 if (!__is_pointer_value(false, dst_reg))
7396 err = mark_chain_precision(env, insn->dst_reg);
b5dc0163
AS
7397 if (BPF_SRC(insn->code) == BPF_X && !err)
7398 err = mark_chain_precision(env, insn->src_reg);
7399 if (err)
7400 return err;
7401 }
fb8d251e
AS
7402 if (pred == 1) {
7403 /* only follow the goto, ignore fall-through */
7404 *insn_idx += insn->off;
7405 return 0;
7406 } else if (pred == 0) {
7407 /* only follow fall-through branch, since
7408 * that's where the program will go
7409 */
7410 return 0;
17a52670
AS
7411 }
7412
979d63d5
DB
7413 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7414 false);
17a52670
AS
7415 if (!other_branch)
7416 return -EFAULT;
f4d7e40a 7417 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7418
48461135
JB
7419 /* detect if we are comparing against a constant value so we can adjust
7420 * our min/max values for our dst register.
f1174f77
EC
7421 * this is only legit if both are scalars (or pointers to the same
7422 * object, I suppose, but we don't support that right now), because
7423 * otherwise the different base pointers mean the offsets aren't
7424 * comparable.
48461135
JB
7425 */
7426 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7427 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7428
f1174f77 7429 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7430 src_reg->type == SCALAR_VALUE) {
7431 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7432 (is_jmp32 &&
7433 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7434 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7435 dst_reg,
3f50f132
JF
7436 src_reg->var_off.value,
7437 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7438 opcode, is_jmp32);
7439 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7440 (is_jmp32 &&
7441 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7442 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7443 src_reg,
3f50f132
JF
7444 dst_reg->var_off.value,
7445 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7446 opcode, is_jmp32);
7447 else if (!is_jmp32 &&
7448 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7449 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7450 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7451 &other_branch_regs[insn->dst_reg],
092ed096 7452 src_reg, dst_reg, opcode);
f1174f77
EC
7453 }
7454 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7455 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7456 dst_reg, insn->imm, (u32)insn->imm,
7457 opcode, is_jmp32);
48461135
JB
7458 }
7459
092ed096
JW
7460 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7461 * NOTE: these optimizations below are related with pointer comparison
7462 * which will never be JMP32.
7463 */
7464 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7465 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7466 reg_type_may_be_null(dst_reg->type)) {
7467 /* Mark all identical registers in each branch as either
57a09bf0
TG
7468 * safe or unknown depending R == 0 or R != 0 conditional.
7469 */
840b9615
JS
7470 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7471 opcode == BPF_JNE);
7472 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7473 opcode == BPF_JEQ);
5beca081
DB
7474 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7475 this_branch, other_branch) &&
7476 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7477 verbose(env, "R%d pointer comparison prohibited\n",
7478 insn->dst_reg);
1be7f75d 7479 return -EACCES;
17a52670 7480 }
06ee7115 7481 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7482 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7483 return 0;
7484}
7485
17a52670 7486/* verify BPF_LD_IMM64 instruction */
58e2af8b 7487static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7488{
d8eca5bb 7489 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7490 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 7491 struct bpf_map *map;
17a52670
AS
7492 int err;
7493
7494 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7495 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7496 return -EINVAL;
7497 }
7498 if (insn->off != 0) {
61bd5218 7499 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7500 return -EINVAL;
7501 }
7502
dc503a8a 7503 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7504 if (err)
7505 return err;
7506
6b173873 7507 if (insn->src_reg == 0) {
6b173873
JK
7508 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7509
f1174f77 7510 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 7511 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7512 return 0;
6b173873 7513 }
17a52670 7514
d8eca5bb
DB
7515 map = env->used_maps[aux->map_index];
7516 mark_reg_known_zero(env, regs, insn->dst_reg);
7517 regs[insn->dst_reg].map_ptr = map;
7518
7519 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7520 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7521 regs[insn->dst_reg].off = aux->map_off;
7522 if (map_value_has_spin_lock(map))
7523 regs[insn->dst_reg].id = ++env->id_gen;
7524 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7525 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7526 } else {
7527 verbose(env, "bpf verifier is misconfigured\n");
7528 return -EINVAL;
7529 }
17a52670 7530
17a52670
AS
7531 return 0;
7532}
7533
96be4325
DB
7534static bool may_access_skb(enum bpf_prog_type type)
7535{
7536 switch (type) {
7537 case BPF_PROG_TYPE_SOCKET_FILTER:
7538 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7539 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7540 return true;
7541 default:
7542 return false;
7543 }
7544}
7545
ddd872bc
AS
7546/* verify safety of LD_ABS|LD_IND instructions:
7547 * - they can only appear in the programs where ctx == skb
7548 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7549 * preserve R6-R9, and store return value into R0
7550 *
7551 * Implicit input:
7552 * ctx == skb == R6 == CTX
7553 *
7554 * Explicit input:
7555 * SRC == any register
7556 * IMM == 32-bit immediate
7557 *
7558 * Output:
7559 * R0 - 8/16/32-bit skb data converted to cpu endianness
7560 */
58e2af8b 7561static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7562{
638f5b90 7563 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7564 static const int ctx_reg = BPF_REG_6;
ddd872bc 7565 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7566 int i, err;
7567
7e40781c 7568 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7569 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7570 return -EINVAL;
7571 }
7572
e0cea7ce
DB
7573 if (!env->ops->gen_ld_abs) {
7574 verbose(env, "bpf verifier is misconfigured\n");
7575 return -EINVAL;
7576 }
7577
ddd872bc 7578 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7579 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7580 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7581 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7582 return -EINVAL;
7583 }
7584
7585 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7586 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7587 if (err)
7588 return err;
7589
fd978bf7
JS
7590 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7591 * gen_ld_abs() may terminate the program at runtime, leading to
7592 * reference leak.
7593 */
7594 err = check_reference_leak(env);
7595 if (err) {
7596 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7597 return err;
7598 }
7599
d83525ca
AS
7600 if (env->cur_state->active_spin_lock) {
7601 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7602 return -EINVAL;
7603 }
7604
6d4f151a 7605 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7606 verbose(env,
7607 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7608 return -EINVAL;
7609 }
7610
7611 if (mode == BPF_IND) {
7612 /* check explicit source operand */
dc503a8a 7613 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7614 if (err)
7615 return err;
7616 }
7617
6d4f151a
DB
7618 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7619 if (err < 0)
7620 return err;
7621
ddd872bc 7622 /* reset caller saved regs to unreadable */
dc503a8a 7623 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7624 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7625 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7626 }
ddd872bc
AS
7627
7628 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7629 * the value fetched from the packet.
7630 * Already marked as written above.
ddd872bc 7631 */
61bd5218 7632 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7633 /* ld_abs load up to 32-bit skb data. */
7634 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7635 return 0;
7636}
7637
390ee7e2
AS
7638static int check_return_code(struct bpf_verifier_env *env)
7639{
5cf1e914 7640 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7641 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7642 struct bpf_reg_state *reg;
7643 struct tnum range = tnum_range(0, 1);
7e40781c 7644 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997
MKL
7645 int err;
7646
9e4e01df 7647 /* LSM and struct_ops func-ptr's return type could be "void" */
7e40781c
UP
7648 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7649 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7650 !prog->aux->attach_func_proto->type)
7651 return 0;
7652
7653 /* eBPF calling convetion is such that R0 is used
7654 * to return the value from eBPF program.
7655 * Make sure that it's readable at this time
7656 * of bpf_exit, which means that program wrote
7657 * something into it earlier
7658 */
7659 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7660 if (err)
7661 return err;
7662
7663 if (is_pointer_value(env, BPF_REG_0)) {
7664 verbose(env, "R0 leaks addr as return value\n");
7665 return -EACCES;
7666 }
390ee7e2 7667
7e40781c 7668 switch (prog_type) {
983695fa
DB
7669 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7670 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7671 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7672 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7673 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7674 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7675 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7676 range = tnum_range(1, 1);
ed4ed404 7677 break;
390ee7e2 7678 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7679 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7680 range = tnum_range(0, 3);
7681 enforce_attach_type_range = tnum_range(2, 3);
7682 }
ed4ed404 7683 break;
390ee7e2
AS
7684 case BPF_PROG_TYPE_CGROUP_SOCK:
7685 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7686 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7687 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7688 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7689 break;
15ab09bd
AS
7690 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7691 if (!env->prog->aux->attach_btf_id)
7692 return 0;
7693 range = tnum_const(0);
7694 break;
15d83c4d 7695 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7696 switch (env->prog->expected_attach_type) {
7697 case BPF_TRACE_FENTRY:
7698 case BPF_TRACE_FEXIT:
7699 range = tnum_const(0);
7700 break;
7701 case BPF_TRACE_RAW_TP:
7702 case BPF_MODIFY_RETURN:
15d83c4d 7703 return 0;
2ec0616e
DB
7704 case BPF_TRACE_ITER:
7705 break;
e92888c7
YS
7706 default:
7707 return -ENOTSUPP;
7708 }
15d83c4d 7709 break;
e9ddbb77
JS
7710 case BPF_PROG_TYPE_SK_LOOKUP:
7711 range = tnum_range(SK_DROP, SK_PASS);
7712 break;
e92888c7
YS
7713 case BPF_PROG_TYPE_EXT:
7714 /* freplace program can return anything as its return value
7715 * depends on the to-be-replaced kernel func or bpf program.
7716 */
390ee7e2
AS
7717 default:
7718 return 0;
7719 }
7720
638f5b90 7721 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7722 if (reg->type != SCALAR_VALUE) {
61bd5218 7723 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7724 reg_type_str[reg->type]);
7725 return -EINVAL;
7726 }
7727
7728 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7729 char tn_buf[48];
7730
61bd5218 7731 verbose(env, "At program exit the register R0 ");
390ee7e2 7732 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7733 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7734 verbose(env, "has value %s", tn_buf);
390ee7e2 7735 } else {
61bd5218 7736 verbose(env, "has unknown scalar value");
390ee7e2 7737 }
5cf1e914 7738 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7739 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7740 return -EINVAL;
7741 }
5cf1e914 7742
7743 if (!tnum_is_unknown(enforce_attach_type_range) &&
7744 tnum_in(enforce_attach_type_range, reg->var_off))
7745 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7746 return 0;
7747}
7748
475fb78f
AS
7749/* non-recursive DFS pseudo code
7750 * 1 procedure DFS-iterative(G,v):
7751 * 2 label v as discovered
7752 * 3 let S be a stack
7753 * 4 S.push(v)
7754 * 5 while S is not empty
7755 * 6 t <- S.pop()
7756 * 7 if t is what we're looking for:
7757 * 8 return t
7758 * 9 for all edges e in G.adjacentEdges(t) do
7759 * 10 if edge e is already labelled
7760 * 11 continue with the next edge
7761 * 12 w <- G.adjacentVertex(t,e)
7762 * 13 if vertex w is not discovered and not explored
7763 * 14 label e as tree-edge
7764 * 15 label w as discovered
7765 * 16 S.push(w)
7766 * 17 continue at 5
7767 * 18 else if vertex w is discovered
7768 * 19 label e as back-edge
7769 * 20 else
7770 * 21 // vertex w is explored
7771 * 22 label e as forward- or cross-edge
7772 * 23 label t as explored
7773 * 24 S.pop()
7774 *
7775 * convention:
7776 * 0x10 - discovered
7777 * 0x11 - discovered and fall-through edge labelled
7778 * 0x12 - discovered and fall-through and branch edges labelled
7779 * 0x20 - explored
7780 */
7781
7782enum {
7783 DISCOVERED = 0x10,
7784 EXPLORED = 0x20,
7785 FALLTHROUGH = 1,
7786 BRANCH = 2,
7787};
7788
dc2a4ebc
AS
7789static u32 state_htab_size(struct bpf_verifier_env *env)
7790{
7791 return env->prog->len;
7792}
7793
5d839021
AS
7794static struct bpf_verifier_state_list **explored_state(
7795 struct bpf_verifier_env *env,
7796 int idx)
7797{
dc2a4ebc
AS
7798 struct bpf_verifier_state *cur = env->cur_state;
7799 struct bpf_func_state *state = cur->frame[cur->curframe];
7800
7801 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7802}
7803
7804static void init_explored_state(struct bpf_verifier_env *env, int idx)
7805{
a8f500af 7806 env->insn_aux_data[idx].prune_point = true;
5d839021 7807}
f1bca824 7808
475fb78f
AS
7809/* t, w, e - match pseudo-code above:
7810 * t - index of current instruction
7811 * w - next instruction
7812 * e - edge
7813 */
2589726d
AS
7814static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7815 bool loop_ok)
475fb78f 7816{
7df737e9
AS
7817 int *insn_stack = env->cfg.insn_stack;
7818 int *insn_state = env->cfg.insn_state;
7819
475fb78f
AS
7820 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7821 return 0;
7822
7823 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7824 return 0;
7825
7826 if (w < 0 || w >= env->prog->len) {
d9762e84 7827 verbose_linfo(env, t, "%d: ", t);
61bd5218 7828 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7829 return -EINVAL;
7830 }
7831
f1bca824
AS
7832 if (e == BRANCH)
7833 /* mark branch target for state pruning */
5d839021 7834 init_explored_state(env, w);
f1bca824 7835
475fb78f
AS
7836 if (insn_state[w] == 0) {
7837 /* tree-edge */
7838 insn_state[t] = DISCOVERED | e;
7839 insn_state[w] = DISCOVERED;
7df737e9 7840 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7841 return -E2BIG;
7df737e9 7842 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7843 return 1;
7844 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7845 if (loop_ok && env->bpf_capable)
2589726d 7846 return 0;
d9762e84
MKL
7847 verbose_linfo(env, t, "%d: ", t);
7848 verbose_linfo(env, w, "%d: ", w);
61bd5218 7849 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7850 return -EINVAL;
7851 } else if (insn_state[w] == EXPLORED) {
7852 /* forward- or cross-edge */
7853 insn_state[t] = DISCOVERED | e;
7854 } else {
61bd5218 7855 verbose(env, "insn state internal bug\n");
475fb78f
AS
7856 return -EFAULT;
7857 }
7858 return 0;
7859}
7860
7861/* non-recursive depth-first-search to detect loops in BPF program
7862 * loop == back-edge in directed graph
7863 */
58e2af8b 7864static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
7865{
7866 struct bpf_insn *insns = env->prog->insnsi;
7867 int insn_cnt = env->prog->len;
7df737e9 7868 int *insn_stack, *insn_state;
475fb78f
AS
7869 int ret = 0;
7870 int i, t;
7871
7df737e9 7872 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
7873 if (!insn_state)
7874 return -ENOMEM;
7875
7df737e9 7876 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 7877 if (!insn_stack) {
71dde681 7878 kvfree(insn_state);
475fb78f
AS
7879 return -ENOMEM;
7880 }
7881
7882 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7883 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 7884 env->cfg.cur_stack = 1;
475fb78f
AS
7885
7886peek_stack:
7df737e9 7887 if (env->cfg.cur_stack == 0)
475fb78f 7888 goto check_state;
7df737e9 7889 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 7890
092ed096
JW
7891 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7892 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
7893 u8 opcode = BPF_OP(insns[t].code);
7894
7895 if (opcode == BPF_EXIT) {
7896 goto mark_explored;
7897 } else if (opcode == BPF_CALL) {
2589726d 7898 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7899 if (ret == 1)
7900 goto peek_stack;
7901 else if (ret < 0)
7902 goto err_free;
07016151 7903 if (t + 1 < insn_cnt)
5d839021 7904 init_explored_state(env, t + 1);
cc8b0b92 7905 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 7906 init_explored_state(env, t);
2589726d
AS
7907 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7908 env, false);
cc8b0b92
AS
7909 if (ret == 1)
7910 goto peek_stack;
7911 else if (ret < 0)
7912 goto err_free;
7913 }
475fb78f
AS
7914 } else if (opcode == BPF_JA) {
7915 if (BPF_SRC(insns[t].code) != BPF_K) {
7916 ret = -EINVAL;
7917 goto err_free;
7918 }
7919 /* unconditional jump with single edge */
7920 ret = push_insn(t, t + insns[t].off + 1,
2589726d 7921 FALLTHROUGH, env, true);
475fb78f
AS
7922 if (ret == 1)
7923 goto peek_stack;
7924 else if (ret < 0)
7925 goto err_free;
b5dc0163
AS
7926 /* unconditional jmp is not a good pruning point,
7927 * but it's marked, since backtracking needs
7928 * to record jmp history in is_state_visited().
7929 */
7930 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
7931 /* tell verifier to check for equivalent states
7932 * after every call and jump
7933 */
c3de6317 7934 if (t + 1 < insn_cnt)
5d839021 7935 init_explored_state(env, t + 1);
475fb78f
AS
7936 } else {
7937 /* conditional jump with two edges */
5d839021 7938 init_explored_state(env, t);
2589726d 7939 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
7940 if (ret == 1)
7941 goto peek_stack;
7942 else if (ret < 0)
7943 goto err_free;
7944
2589726d 7945 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
7946 if (ret == 1)
7947 goto peek_stack;
7948 else if (ret < 0)
7949 goto err_free;
7950 }
7951 } else {
7952 /* all other non-branch instructions with single
7953 * fall-through edge
7954 */
2589726d 7955 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7956 if (ret == 1)
7957 goto peek_stack;
7958 else if (ret < 0)
7959 goto err_free;
7960 }
7961
7962mark_explored:
7963 insn_state[t] = EXPLORED;
7df737e9 7964 if (env->cfg.cur_stack-- <= 0) {
61bd5218 7965 verbose(env, "pop stack internal bug\n");
475fb78f
AS
7966 ret = -EFAULT;
7967 goto err_free;
7968 }
7969 goto peek_stack;
7970
7971check_state:
7972 for (i = 0; i < insn_cnt; i++) {
7973 if (insn_state[i] != EXPLORED) {
61bd5218 7974 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
7975 ret = -EINVAL;
7976 goto err_free;
7977 }
7978 }
7979 ret = 0; /* cfg looks good */
7980
7981err_free:
71dde681
AS
7982 kvfree(insn_state);
7983 kvfree(insn_stack);
7df737e9 7984 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
7985 return ret;
7986}
7987
09b28d76
AS
7988static int check_abnormal_return(struct bpf_verifier_env *env)
7989{
7990 int i;
7991
7992 for (i = 1; i < env->subprog_cnt; i++) {
7993 if (env->subprog_info[i].has_ld_abs) {
7994 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
7995 return -EINVAL;
7996 }
7997 if (env->subprog_info[i].has_tail_call) {
7998 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
7999 return -EINVAL;
8000 }
8001 }
8002 return 0;
8003}
8004
838e9690
YS
8005/* The minimum supported BTF func info size */
8006#define MIN_BPF_FUNCINFO_SIZE 8
8007#define MAX_FUNCINFO_REC_SIZE 252
8008
c454a46b
MKL
8009static int check_btf_func(struct bpf_verifier_env *env,
8010 const union bpf_attr *attr,
8011 union bpf_attr __user *uattr)
838e9690 8012{
09b28d76 8013 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 8014 u32 i, nfuncs, urec_size, min_size;
838e9690 8015 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 8016 struct bpf_func_info *krecord;
8c1b6e69 8017 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
8018 struct bpf_prog *prog;
8019 const struct btf *btf;
838e9690 8020 void __user *urecord;
d0b2818e 8021 u32 prev_offset = 0;
09b28d76 8022 bool scalar_return;
e7ed83d6 8023 int ret = -ENOMEM;
838e9690
YS
8024
8025 nfuncs = attr->func_info_cnt;
09b28d76
AS
8026 if (!nfuncs) {
8027 if (check_abnormal_return(env))
8028 return -EINVAL;
838e9690 8029 return 0;
09b28d76 8030 }
838e9690
YS
8031
8032 if (nfuncs != env->subprog_cnt) {
8033 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8034 return -EINVAL;
8035 }
8036
8037 urec_size = attr->func_info_rec_size;
8038 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8039 urec_size > MAX_FUNCINFO_REC_SIZE ||
8040 urec_size % sizeof(u32)) {
8041 verbose(env, "invalid func info rec size %u\n", urec_size);
8042 return -EINVAL;
8043 }
8044
c454a46b
MKL
8045 prog = env->prog;
8046 btf = prog->aux->btf;
838e9690
YS
8047
8048 urecord = u64_to_user_ptr(attr->func_info);
8049 min_size = min_t(u32, krec_size, urec_size);
8050
ba64e7d8 8051 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
8052 if (!krecord)
8053 return -ENOMEM;
8c1b6e69
AS
8054 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8055 if (!info_aux)
8056 goto err_free;
ba64e7d8 8057
838e9690
YS
8058 for (i = 0; i < nfuncs; i++) {
8059 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8060 if (ret) {
8061 if (ret == -E2BIG) {
8062 verbose(env, "nonzero tailing record in func info");
8063 /* set the size kernel expects so loader can zero
8064 * out the rest of the record.
8065 */
8066 if (put_user(min_size, &uattr->func_info_rec_size))
8067 ret = -EFAULT;
8068 }
c454a46b 8069 goto err_free;
838e9690
YS
8070 }
8071
ba64e7d8 8072 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 8073 ret = -EFAULT;
c454a46b 8074 goto err_free;
838e9690
YS
8075 }
8076
d30d42e0 8077 /* check insn_off */
09b28d76 8078 ret = -EINVAL;
838e9690 8079 if (i == 0) {
d30d42e0 8080 if (krecord[i].insn_off) {
838e9690 8081 verbose(env,
d30d42e0
MKL
8082 "nonzero insn_off %u for the first func info record",
8083 krecord[i].insn_off);
c454a46b 8084 goto err_free;
838e9690 8085 }
d30d42e0 8086 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
8087 verbose(env,
8088 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 8089 krecord[i].insn_off, prev_offset);
c454a46b 8090 goto err_free;
838e9690
YS
8091 }
8092
d30d42e0 8093 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 8094 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 8095 goto err_free;
838e9690
YS
8096 }
8097
8098 /* check type_id */
ba64e7d8 8099 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 8100 if (!type || !btf_type_is_func(type)) {
838e9690 8101 verbose(env, "invalid type id %d in func info",
ba64e7d8 8102 krecord[i].type_id);
c454a46b 8103 goto err_free;
838e9690 8104 }
51c39bb1 8105 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
8106
8107 func_proto = btf_type_by_id(btf, type->type);
8108 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8109 /* btf_func_check() already verified it during BTF load */
8110 goto err_free;
8111 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8112 scalar_return =
8113 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8114 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8115 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8116 goto err_free;
8117 }
8118 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8119 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8120 goto err_free;
8121 }
8122
d30d42e0 8123 prev_offset = krecord[i].insn_off;
838e9690
YS
8124 urecord += urec_size;
8125 }
8126
ba64e7d8
YS
8127 prog->aux->func_info = krecord;
8128 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 8129 prog->aux->func_info_aux = info_aux;
838e9690
YS
8130 return 0;
8131
c454a46b 8132err_free:
ba64e7d8 8133 kvfree(krecord);
8c1b6e69 8134 kfree(info_aux);
838e9690
YS
8135 return ret;
8136}
8137
ba64e7d8
YS
8138static void adjust_btf_func(struct bpf_verifier_env *env)
8139{
8c1b6e69 8140 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8141 int i;
8142
8c1b6e69 8143 if (!aux->func_info)
ba64e7d8
YS
8144 return;
8145
8146 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8147 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8148}
8149
c454a46b
MKL
8150#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8151 sizeof(((struct bpf_line_info *)(0))->line_col))
8152#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8153
8154static int check_btf_line(struct bpf_verifier_env *env,
8155 const union bpf_attr *attr,
8156 union bpf_attr __user *uattr)
8157{
8158 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8159 struct bpf_subprog_info *sub;
8160 struct bpf_line_info *linfo;
8161 struct bpf_prog *prog;
8162 const struct btf *btf;
8163 void __user *ulinfo;
8164 int err;
8165
8166 nr_linfo = attr->line_info_cnt;
8167 if (!nr_linfo)
8168 return 0;
8169
8170 rec_size = attr->line_info_rec_size;
8171 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8172 rec_size > MAX_LINEINFO_REC_SIZE ||
8173 rec_size & (sizeof(u32) - 1))
8174 return -EINVAL;
8175
8176 /* Need to zero it in case the userspace may
8177 * pass in a smaller bpf_line_info object.
8178 */
8179 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8180 GFP_KERNEL | __GFP_NOWARN);
8181 if (!linfo)
8182 return -ENOMEM;
8183
8184 prog = env->prog;
8185 btf = prog->aux->btf;
8186
8187 s = 0;
8188 sub = env->subprog_info;
8189 ulinfo = u64_to_user_ptr(attr->line_info);
8190 expected_size = sizeof(struct bpf_line_info);
8191 ncopy = min_t(u32, expected_size, rec_size);
8192 for (i = 0; i < nr_linfo; i++) {
8193 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8194 if (err) {
8195 if (err == -E2BIG) {
8196 verbose(env, "nonzero tailing record in line_info");
8197 if (put_user(expected_size,
8198 &uattr->line_info_rec_size))
8199 err = -EFAULT;
8200 }
8201 goto err_free;
8202 }
8203
8204 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8205 err = -EFAULT;
8206 goto err_free;
8207 }
8208
8209 /*
8210 * Check insn_off to ensure
8211 * 1) strictly increasing AND
8212 * 2) bounded by prog->len
8213 *
8214 * The linfo[0].insn_off == 0 check logically falls into
8215 * the later "missing bpf_line_info for func..." case
8216 * because the first linfo[0].insn_off must be the
8217 * first sub also and the first sub must have
8218 * subprog_info[0].start == 0.
8219 */
8220 if ((i && linfo[i].insn_off <= prev_offset) ||
8221 linfo[i].insn_off >= prog->len) {
8222 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8223 i, linfo[i].insn_off, prev_offset,
8224 prog->len);
8225 err = -EINVAL;
8226 goto err_free;
8227 }
8228
fdbaa0be
MKL
8229 if (!prog->insnsi[linfo[i].insn_off].code) {
8230 verbose(env,
8231 "Invalid insn code at line_info[%u].insn_off\n",
8232 i);
8233 err = -EINVAL;
8234 goto err_free;
8235 }
8236
23127b33
MKL
8237 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8238 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8239 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8240 err = -EINVAL;
8241 goto err_free;
8242 }
8243
8244 if (s != env->subprog_cnt) {
8245 if (linfo[i].insn_off == sub[s].start) {
8246 sub[s].linfo_idx = i;
8247 s++;
8248 } else if (sub[s].start < linfo[i].insn_off) {
8249 verbose(env, "missing bpf_line_info for func#%u\n", s);
8250 err = -EINVAL;
8251 goto err_free;
8252 }
8253 }
8254
8255 prev_offset = linfo[i].insn_off;
8256 ulinfo += rec_size;
8257 }
8258
8259 if (s != env->subprog_cnt) {
8260 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8261 env->subprog_cnt - s, s);
8262 err = -EINVAL;
8263 goto err_free;
8264 }
8265
8266 prog->aux->linfo = linfo;
8267 prog->aux->nr_linfo = nr_linfo;
8268
8269 return 0;
8270
8271err_free:
8272 kvfree(linfo);
8273 return err;
8274}
8275
8276static int check_btf_info(struct bpf_verifier_env *env,
8277 const union bpf_attr *attr,
8278 union bpf_attr __user *uattr)
8279{
8280 struct btf *btf;
8281 int err;
8282
09b28d76
AS
8283 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8284 if (check_abnormal_return(env))
8285 return -EINVAL;
c454a46b 8286 return 0;
09b28d76 8287 }
c454a46b
MKL
8288
8289 btf = btf_get_by_fd(attr->prog_btf_fd);
8290 if (IS_ERR(btf))
8291 return PTR_ERR(btf);
8292 env->prog->aux->btf = btf;
8293
8294 err = check_btf_func(env, attr, uattr);
8295 if (err)
8296 return err;
8297
8298 err = check_btf_line(env, attr, uattr);
8299 if (err)
8300 return err;
8301
8302 return 0;
ba64e7d8
YS
8303}
8304
f1174f77
EC
8305/* check %cur's range satisfies %old's */
8306static bool range_within(struct bpf_reg_state *old,
8307 struct bpf_reg_state *cur)
8308{
b03c9f9f
EC
8309 return old->umin_value <= cur->umin_value &&
8310 old->umax_value >= cur->umax_value &&
8311 old->smin_value <= cur->smin_value &&
8312 old->smax_value >= cur->smax_value;
f1174f77
EC
8313}
8314
8315/* Maximum number of register states that can exist at once */
8316#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8317struct idpair {
8318 u32 old;
8319 u32 cur;
8320};
8321
8322/* If in the old state two registers had the same id, then they need to have
8323 * the same id in the new state as well. But that id could be different from
8324 * the old state, so we need to track the mapping from old to new ids.
8325 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8326 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8327 * regs with a different old id could still have new id 9, we don't care about
8328 * that.
8329 * So we look through our idmap to see if this old id has been seen before. If
8330 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8331 */
f1174f77 8332static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8333{
f1174f77 8334 unsigned int i;
969bf05e 8335
f1174f77
EC
8336 for (i = 0; i < ID_MAP_SIZE; i++) {
8337 if (!idmap[i].old) {
8338 /* Reached an empty slot; haven't seen this id before */
8339 idmap[i].old = old_id;
8340 idmap[i].cur = cur_id;
8341 return true;
8342 }
8343 if (idmap[i].old == old_id)
8344 return idmap[i].cur == cur_id;
8345 }
8346 /* We ran out of idmap slots, which should be impossible */
8347 WARN_ON_ONCE(1);
8348 return false;
8349}
8350
9242b5f5
AS
8351static void clean_func_state(struct bpf_verifier_env *env,
8352 struct bpf_func_state *st)
8353{
8354 enum bpf_reg_liveness live;
8355 int i, j;
8356
8357 for (i = 0; i < BPF_REG_FP; i++) {
8358 live = st->regs[i].live;
8359 /* liveness must not touch this register anymore */
8360 st->regs[i].live |= REG_LIVE_DONE;
8361 if (!(live & REG_LIVE_READ))
8362 /* since the register is unused, clear its state
8363 * to make further comparison simpler
8364 */
f54c7898 8365 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8366 }
8367
8368 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8369 live = st->stack[i].spilled_ptr.live;
8370 /* liveness must not touch this stack slot anymore */
8371 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8372 if (!(live & REG_LIVE_READ)) {
f54c7898 8373 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8374 for (j = 0; j < BPF_REG_SIZE; j++)
8375 st->stack[i].slot_type[j] = STACK_INVALID;
8376 }
8377 }
8378}
8379
8380static void clean_verifier_state(struct bpf_verifier_env *env,
8381 struct bpf_verifier_state *st)
8382{
8383 int i;
8384
8385 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8386 /* all regs in this state in all frames were already marked */
8387 return;
8388
8389 for (i = 0; i <= st->curframe; i++)
8390 clean_func_state(env, st->frame[i]);
8391}
8392
8393/* the parentage chains form a tree.
8394 * the verifier states are added to state lists at given insn and
8395 * pushed into state stack for future exploration.
8396 * when the verifier reaches bpf_exit insn some of the verifer states
8397 * stored in the state lists have their final liveness state already,
8398 * but a lot of states will get revised from liveness point of view when
8399 * the verifier explores other branches.
8400 * Example:
8401 * 1: r0 = 1
8402 * 2: if r1 == 100 goto pc+1
8403 * 3: r0 = 2
8404 * 4: exit
8405 * when the verifier reaches exit insn the register r0 in the state list of
8406 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8407 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8408 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8409 *
8410 * Since the verifier pushes the branch states as it sees them while exploring
8411 * the program the condition of walking the branch instruction for the second
8412 * time means that all states below this branch were already explored and
8413 * their final liveness markes are already propagated.
8414 * Hence when the verifier completes the search of state list in is_state_visited()
8415 * we can call this clean_live_states() function to mark all liveness states
8416 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8417 * will not be used.
8418 * This function also clears the registers and stack for states that !READ
8419 * to simplify state merging.
8420 *
8421 * Important note here that walking the same branch instruction in the callee
8422 * doesn't meant that the states are DONE. The verifier has to compare
8423 * the callsites
8424 */
8425static void clean_live_states(struct bpf_verifier_env *env, int insn,
8426 struct bpf_verifier_state *cur)
8427{
8428 struct bpf_verifier_state_list *sl;
8429 int i;
8430
5d839021 8431 sl = *explored_state(env, insn);
a8f500af 8432 while (sl) {
2589726d
AS
8433 if (sl->state.branches)
8434 goto next;
dc2a4ebc
AS
8435 if (sl->state.insn_idx != insn ||
8436 sl->state.curframe != cur->curframe)
9242b5f5
AS
8437 goto next;
8438 for (i = 0; i <= cur->curframe; i++)
8439 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8440 goto next;
8441 clean_verifier_state(env, &sl->state);
8442next:
8443 sl = sl->next;
8444 }
8445}
8446
f1174f77 8447/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8448static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8449 struct idpair *idmap)
f1174f77 8450{
f4d7e40a
AS
8451 bool equal;
8452
dc503a8a
EC
8453 if (!(rold->live & REG_LIVE_READ))
8454 /* explored state didn't use this */
8455 return true;
8456
679c782d 8457 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8458
8459 if (rold->type == PTR_TO_STACK)
8460 /* two stack pointers are equal only if they're pointing to
8461 * the same stack frame, since fp-8 in foo != fp-8 in bar
8462 */
8463 return equal && rold->frameno == rcur->frameno;
8464
8465 if (equal)
969bf05e
AS
8466 return true;
8467
f1174f77
EC
8468 if (rold->type == NOT_INIT)
8469 /* explored state can't have used this */
969bf05e 8470 return true;
f1174f77
EC
8471 if (rcur->type == NOT_INIT)
8472 return false;
8473 switch (rold->type) {
8474 case SCALAR_VALUE:
8475 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8476 if (!rold->precise && !rcur->precise)
8477 return true;
f1174f77
EC
8478 /* new val must satisfy old val knowledge */
8479 return range_within(rold, rcur) &&
8480 tnum_in(rold->var_off, rcur->var_off);
8481 } else {
179d1c56
JH
8482 /* We're trying to use a pointer in place of a scalar.
8483 * Even if the scalar was unbounded, this could lead to
8484 * pointer leaks because scalars are allowed to leak
8485 * while pointers are not. We could make this safe in
8486 * special cases if root is calling us, but it's
8487 * probably not worth the hassle.
f1174f77 8488 */
179d1c56 8489 return false;
f1174f77
EC
8490 }
8491 case PTR_TO_MAP_VALUE:
1b688a19
EC
8492 /* If the new min/max/var_off satisfy the old ones and
8493 * everything else matches, we are OK.
d83525ca
AS
8494 * 'id' is not compared, since it's only used for maps with
8495 * bpf_spin_lock inside map element and in such cases if
8496 * the rest of the prog is valid for one map element then
8497 * it's valid for all map elements regardless of the key
8498 * used in bpf_map_lookup()
1b688a19
EC
8499 */
8500 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8501 range_within(rold, rcur) &&
8502 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8503 case PTR_TO_MAP_VALUE_OR_NULL:
8504 /* a PTR_TO_MAP_VALUE could be safe to use as a
8505 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8506 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8507 * checked, doing so could have affected others with the same
8508 * id, and we can't check for that because we lost the id when
8509 * we converted to a PTR_TO_MAP_VALUE.
8510 */
8511 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8512 return false;
8513 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8514 return false;
8515 /* Check our ids match any regs they're supposed to */
8516 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8517 case PTR_TO_PACKET_META:
f1174f77 8518 case PTR_TO_PACKET:
de8f3a83 8519 if (rcur->type != rold->type)
f1174f77
EC
8520 return false;
8521 /* We must have at least as much range as the old ptr
8522 * did, so that any accesses which were safe before are
8523 * still safe. This is true even if old range < old off,
8524 * since someone could have accessed through (ptr - k), or
8525 * even done ptr -= k in a register, to get a safe access.
8526 */
8527 if (rold->range > rcur->range)
8528 return false;
8529 /* If the offsets don't match, we can't trust our alignment;
8530 * nor can we be sure that we won't fall out of range.
8531 */
8532 if (rold->off != rcur->off)
8533 return false;
8534 /* id relations must be preserved */
8535 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8536 return false;
8537 /* new val must satisfy old val knowledge */
8538 return range_within(rold, rcur) &&
8539 tnum_in(rold->var_off, rcur->var_off);
8540 case PTR_TO_CTX:
8541 case CONST_PTR_TO_MAP:
f1174f77 8542 case PTR_TO_PACKET_END:
d58e468b 8543 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8544 case PTR_TO_SOCKET:
8545 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8546 case PTR_TO_SOCK_COMMON:
8547 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8548 case PTR_TO_TCP_SOCK:
8549 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8550 case PTR_TO_XDP_SOCK:
f1174f77
EC
8551 /* Only valid matches are exact, which memcmp() above
8552 * would have accepted
8553 */
8554 default:
8555 /* Don't know what's going on, just say it's not safe */
8556 return false;
8557 }
969bf05e 8558
f1174f77
EC
8559 /* Shouldn't get here; if we do, say it's not safe */
8560 WARN_ON_ONCE(1);
969bf05e
AS
8561 return false;
8562}
8563
f4d7e40a
AS
8564static bool stacksafe(struct bpf_func_state *old,
8565 struct bpf_func_state *cur,
638f5b90
AS
8566 struct idpair *idmap)
8567{
8568 int i, spi;
8569
638f5b90
AS
8570 /* walk slots of the explored stack and ignore any additional
8571 * slots in the current stack, since explored(safe) state
8572 * didn't use them
8573 */
8574 for (i = 0; i < old->allocated_stack; i++) {
8575 spi = i / BPF_REG_SIZE;
8576
b233920c
AS
8577 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8578 i += BPF_REG_SIZE - 1;
cc2b14d5 8579 /* explored state didn't use this */
fd05e57b 8580 continue;
b233920c 8581 }
cc2b14d5 8582
638f5b90
AS
8583 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8584 continue;
19e2dbb7
AS
8585
8586 /* explored stack has more populated slots than current stack
8587 * and these slots were used
8588 */
8589 if (i >= cur->allocated_stack)
8590 return false;
8591
cc2b14d5
AS
8592 /* if old state was safe with misc data in the stack
8593 * it will be safe with zero-initialized stack.
8594 * The opposite is not true
8595 */
8596 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8597 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8598 continue;
638f5b90
AS
8599 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8600 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8601 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8602 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8603 * this verifier states are not equivalent,
8604 * return false to continue verification of this path
8605 */
8606 return false;
8607 if (i % BPF_REG_SIZE)
8608 continue;
8609 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8610 continue;
8611 if (!regsafe(&old->stack[spi].spilled_ptr,
8612 &cur->stack[spi].spilled_ptr,
8613 idmap))
8614 /* when explored and current stack slot are both storing
8615 * spilled registers, check that stored pointers types
8616 * are the same as well.
8617 * Ex: explored safe path could have stored
8618 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8619 * but current path has stored:
8620 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8621 * such verifier states are not equivalent.
8622 * return false to continue verification of this path
8623 */
8624 return false;
8625 }
8626 return true;
8627}
8628
fd978bf7
JS
8629static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8630{
8631 if (old->acquired_refs != cur->acquired_refs)
8632 return false;
8633 return !memcmp(old->refs, cur->refs,
8634 sizeof(*old->refs) * old->acquired_refs);
8635}
8636
f1bca824
AS
8637/* compare two verifier states
8638 *
8639 * all states stored in state_list are known to be valid, since
8640 * verifier reached 'bpf_exit' instruction through them
8641 *
8642 * this function is called when verifier exploring different branches of
8643 * execution popped from the state stack. If it sees an old state that has
8644 * more strict register state and more strict stack state then this execution
8645 * branch doesn't need to be explored further, since verifier already
8646 * concluded that more strict state leads to valid finish.
8647 *
8648 * Therefore two states are equivalent if register state is more conservative
8649 * and explored stack state is more conservative than the current one.
8650 * Example:
8651 * explored current
8652 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8653 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8654 *
8655 * In other words if current stack state (one being explored) has more
8656 * valid slots than old one that already passed validation, it means
8657 * the verifier can stop exploring and conclude that current state is valid too
8658 *
8659 * Similarly with registers. If explored state has register type as invalid
8660 * whereas register type in current state is meaningful, it means that
8661 * the current state will reach 'bpf_exit' instruction safely
8662 */
f4d7e40a
AS
8663static bool func_states_equal(struct bpf_func_state *old,
8664 struct bpf_func_state *cur)
f1bca824 8665{
f1174f77
EC
8666 struct idpair *idmap;
8667 bool ret = false;
f1bca824
AS
8668 int i;
8669
f1174f77
EC
8670 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8671 /* If we failed to allocate the idmap, just say it's not safe */
8672 if (!idmap)
1a0dc1ac 8673 return false;
f1174f77
EC
8674
8675 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8676 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8677 goto out_free;
f1bca824
AS
8678 }
8679
638f5b90
AS
8680 if (!stacksafe(old, cur, idmap))
8681 goto out_free;
fd978bf7
JS
8682
8683 if (!refsafe(old, cur))
8684 goto out_free;
f1174f77
EC
8685 ret = true;
8686out_free:
8687 kfree(idmap);
8688 return ret;
f1bca824
AS
8689}
8690
f4d7e40a
AS
8691static bool states_equal(struct bpf_verifier_env *env,
8692 struct bpf_verifier_state *old,
8693 struct bpf_verifier_state *cur)
8694{
8695 int i;
8696
8697 if (old->curframe != cur->curframe)
8698 return false;
8699
979d63d5
DB
8700 /* Verification state from speculative execution simulation
8701 * must never prune a non-speculative execution one.
8702 */
8703 if (old->speculative && !cur->speculative)
8704 return false;
8705
d83525ca
AS
8706 if (old->active_spin_lock != cur->active_spin_lock)
8707 return false;
8708
f4d7e40a
AS
8709 /* for states to be equal callsites have to be the same
8710 * and all frame states need to be equivalent
8711 */
8712 for (i = 0; i <= old->curframe; i++) {
8713 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8714 return false;
8715 if (!func_states_equal(old->frame[i], cur->frame[i]))
8716 return false;
8717 }
8718 return true;
8719}
8720
5327ed3d
JW
8721/* Return 0 if no propagation happened. Return negative error code if error
8722 * happened. Otherwise, return the propagated bit.
8723 */
55e7f3b5
JW
8724static int propagate_liveness_reg(struct bpf_verifier_env *env,
8725 struct bpf_reg_state *reg,
8726 struct bpf_reg_state *parent_reg)
8727{
5327ed3d
JW
8728 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8729 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8730 int err;
8731
5327ed3d
JW
8732 /* When comes here, read flags of PARENT_REG or REG could be any of
8733 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8734 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8735 */
8736 if (parent_flag == REG_LIVE_READ64 ||
8737 /* Or if there is no read flag from REG. */
8738 !flag ||
8739 /* Or if the read flag from REG is the same as PARENT_REG. */
8740 parent_flag == flag)
55e7f3b5
JW
8741 return 0;
8742
5327ed3d 8743 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8744 if (err)
8745 return err;
8746
5327ed3d 8747 return flag;
55e7f3b5
JW
8748}
8749
8e9cd9ce 8750/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8751 * straight-line code between a state and its parent. When we arrive at an
8752 * equivalent state (jump target or such) we didn't arrive by the straight-line
8753 * code, so read marks in the state must propagate to the parent regardless
8754 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8755 * in mark_reg_read() is for.
8e9cd9ce 8756 */
f4d7e40a
AS
8757static int propagate_liveness(struct bpf_verifier_env *env,
8758 const struct bpf_verifier_state *vstate,
8759 struct bpf_verifier_state *vparent)
dc503a8a 8760{
3f8cafa4 8761 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8762 struct bpf_func_state *state, *parent;
3f8cafa4 8763 int i, frame, err = 0;
dc503a8a 8764
f4d7e40a
AS
8765 if (vparent->curframe != vstate->curframe) {
8766 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8767 vparent->curframe, vstate->curframe);
8768 return -EFAULT;
8769 }
dc503a8a
EC
8770 /* Propagate read liveness of registers... */
8771 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8772 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8773 parent = vparent->frame[frame];
8774 state = vstate->frame[frame];
8775 parent_reg = parent->regs;
8776 state_reg = state->regs;
83d16312
JK
8777 /* We don't need to worry about FP liveness, it's read-only */
8778 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8779 err = propagate_liveness_reg(env, &state_reg[i],
8780 &parent_reg[i]);
5327ed3d 8781 if (err < 0)
3f8cafa4 8782 return err;
5327ed3d
JW
8783 if (err == REG_LIVE_READ64)
8784 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8785 }
f4d7e40a 8786
1b04aee7 8787 /* Propagate stack slots. */
f4d7e40a
AS
8788 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8789 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8790 parent_reg = &parent->stack[i].spilled_ptr;
8791 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8792 err = propagate_liveness_reg(env, state_reg,
8793 parent_reg);
5327ed3d 8794 if (err < 0)
3f8cafa4 8795 return err;
dc503a8a
EC
8796 }
8797 }
5327ed3d 8798 return 0;
dc503a8a
EC
8799}
8800
a3ce685d
AS
8801/* find precise scalars in the previous equivalent state and
8802 * propagate them into the current state
8803 */
8804static int propagate_precision(struct bpf_verifier_env *env,
8805 const struct bpf_verifier_state *old)
8806{
8807 struct bpf_reg_state *state_reg;
8808 struct bpf_func_state *state;
8809 int i, err = 0;
8810
8811 state = old->frame[old->curframe];
8812 state_reg = state->regs;
8813 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8814 if (state_reg->type != SCALAR_VALUE ||
8815 !state_reg->precise)
8816 continue;
8817 if (env->log.level & BPF_LOG_LEVEL2)
8818 verbose(env, "propagating r%d\n", i);
8819 err = mark_chain_precision(env, i);
8820 if (err < 0)
8821 return err;
8822 }
8823
8824 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8825 if (state->stack[i].slot_type[0] != STACK_SPILL)
8826 continue;
8827 state_reg = &state->stack[i].spilled_ptr;
8828 if (state_reg->type != SCALAR_VALUE ||
8829 !state_reg->precise)
8830 continue;
8831 if (env->log.level & BPF_LOG_LEVEL2)
8832 verbose(env, "propagating fp%d\n",
8833 (-i - 1) * BPF_REG_SIZE);
8834 err = mark_chain_precision_stack(env, i);
8835 if (err < 0)
8836 return err;
8837 }
8838 return 0;
8839}
8840
2589726d
AS
8841static bool states_maybe_looping(struct bpf_verifier_state *old,
8842 struct bpf_verifier_state *cur)
8843{
8844 struct bpf_func_state *fold, *fcur;
8845 int i, fr = cur->curframe;
8846
8847 if (old->curframe != fr)
8848 return false;
8849
8850 fold = old->frame[fr];
8851 fcur = cur->frame[fr];
8852 for (i = 0; i < MAX_BPF_REG; i++)
8853 if (memcmp(&fold->regs[i], &fcur->regs[i],
8854 offsetof(struct bpf_reg_state, parent)))
8855 return false;
8856 return true;
8857}
8858
8859
58e2af8b 8860static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 8861{
58e2af8b 8862 struct bpf_verifier_state_list *new_sl;
9f4686c4 8863 struct bpf_verifier_state_list *sl, **pprev;
679c782d 8864 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 8865 int i, j, err, states_cnt = 0;
10d274e8 8866 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 8867
b5dc0163 8868 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 8869 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
8870 /* this 'insn_idx' instruction wasn't marked, so we will not
8871 * be doing state search here
8872 */
8873 return 0;
8874
2589726d
AS
8875 /* bpf progs typically have pruning point every 4 instructions
8876 * http://vger.kernel.org/bpfconf2019.html#session-1
8877 * Do not add new state for future pruning if the verifier hasn't seen
8878 * at least 2 jumps and at least 8 instructions.
8879 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8880 * In tests that amounts to up to 50% reduction into total verifier
8881 * memory consumption and 20% verifier time speedup.
8882 */
8883 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8884 env->insn_processed - env->prev_insn_processed >= 8)
8885 add_new_state = true;
8886
a8f500af
AS
8887 pprev = explored_state(env, insn_idx);
8888 sl = *pprev;
8889
9242b5f5
AS
8890 clean_live_states(env, insn_idx, cur);
8891
a8f500af 8892 while (sl) {
dc2a4ebc
AS
8893 states_cnt++;
8894 if (sl->state.insn_idx != insn_idx)
8895 goto next;
2589726d
AS
8896 if (sl->state.branches) {
8897 if (states_maybe_looping(&sl->state, cur) &&
8898 states_equal(env, &sl->state, cur)) {
8899 verbose_linfo(env, insn_idx, "; ");
8900 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8901 return -EINVAL;
8902 }
8903 /* if the verifier is processing a loop, avoid adding new state
8904 * too often, since different loop iterations have distinct
8905 * states and may not help future pruning.
8906 * This threshold shouldn't be too low to make sure that
8907 * a loop with large bound will be rejected quickly.
8908 * The most abusive loop will be:
8909 * r1 += 1
8910 * if r1 < 1000000 goto pc-2
8911 * 1M insn_procssed limit / 100 == 10k peak states.
8912 * This threshold shouldn't be too high either, since states
8913 * at the end of the loop are likely to be useful in pruning.
8914 */
8915 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8916 env->insn_processed - env->prev_insn_processed < 100)
8917 add_new_state = false;
8918 goto miss;
8919 }
638f5b90 8920 if (states_equal(env, &sl->state, cur)) {
9f4686c4 8921 sl->hit_cnt++;
f1bca824 8922 /* reached equivalent register/stack state,
dc503a8a
EC
8923 * prune the search.
8924 * Registers read by the continuation are read by us.
8e9cd9ce
EC
8925 * If we have any write marks in env->cur_state, they
8926 * will prevent corresponding reads in the continuation
8927 * from reaching our parent (an explored_state). Our
8928 * own state will get the read marks recorded, but
8929 * they'll be immediately forgotten as we're pruning
8930 * this state and will pop a new one.
f1bca824 8931 */
f4d7e40a 8932 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
8933
8934 /* if previous state reached the exit with precision and
8935 * current state is equivalent to it (except precsion marks)
8936 * the precision needs to be propagated back in
8937 * the current state.
8938 */
8939 err = err ? : push_jmp_history(env, cur);
8940 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
8941 if (err)
8942 return err;
f1bca824 8943 return 1;
dc503a8a 8944 }
2589726d
AS
8945miss:
8946 /* when new state is not going to be added do not increase miss count.
8947 * Otherwise several loop iterations will remove the state
8948 * recorded earlier. The goal of these heuristics is to have
8949 * states from some iterations of the loop (some in the beginning
8950 * and some at the end) to help pruning.
8951 */
8952 if (add_new_state)
8953 sl->miss_cnt++;
9f4686c4
AS
8954 /* heuristic to determine whether this state is beneficial
8955 * to keep checking from state equivalence point of view.
8956 * Higher numbers increase max_states_per_insn and verification time,
8957 * but do not meaningfully decrease insn_processed.
8958 */
8959 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8960 /* the state is unlikely to be useful. Remove it to
8961 * speed up verification
8962 */
8963 *pprev = sl->next;
8964 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
8965 u32 br = sl->state.branches;
8966
8967 WARN_ONCE(br,
8968 "BUG live_done but branches_to_explore %d\n",
8969 br);
9f4686c4
AS
8970 free_verifier_state(&sl->state, false);
8971 kfree(sl);
8972 env->peak_states--;
8973 } else {
8974 /* cannot free this state, since parentage chain may
8975 * walk it later. Add it for free_list instead to
8976 * be freed at the end of verification
8977 */
8978 sl->next = env->free_list;
8979 env->free_list = sl;
8980 }
8981 sl = *pprev;
8982 continue;
8983 }
dc2a4ebc 8984next:
9f4686c4
AS
8985 pprev = &sl->next;
8986 sl = *pprev;
f1bca824
AS
8987 }
8988
06ee7115
AS
8989 if (env->max_states_per_insn < states_cnt)
8990 env->max_states_per_insn = states_cnt;
8991
2c78ee89 8992 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 8993 return push_jmp_history(env, cur);
ceefbc96 8994
2589726d 8995 if (!add_new_state)
b5dc0163 8996 return push_jmp_history(env, cur);
ceefbc96 8997
2589726d
AS
8998 /* There were no equivalent states, remember the current one.
8999 * Technically the current state is not proven to be safe yet,
f4d7e40a 9000 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 9001 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 9002 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
9003 * again on the way to bpf_exit.
9004 * When looping the sl->state.branches will be > 0 and this state
9005 * will not be considered for equivalence until branches == 0.
f1bca824 9006 */
638f5b90 9007 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
9008 if (!new_sl)
9009 return -ENOMEM;
06ee7115
AS
9010 env->total_states++;
9011 env->peak_states++;
2589726d
AS
9012 env->prev_jmps_processed = env->jmps_processed;
9013 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
9014
9015 /* add new state to the head of linked list */
679c782d
EC
9016 new = &new_sl->state;
9017 err = copy_verifier_state(new, cur);
1969db47 9018 if (err) {
679c782d 9019 free_verifier_state(new, false);
1969db47
AS
9020 kfree(new_sl);
9021 return err;
9022 }
dc2a4ebc 9023 new->insn_idx = insn_idx;
2589726d
AS
9024 WARN_ONCE(new->branches != 1,
9025 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 9026
2589726d 9027 cur->parent = new;
b5dc0163
AS
9028 cur->first_insn_idx = insn_idx;
9029 clear_jmp_history(cur);
5d839021
AS
9030 new_sl->next = *explored_state(env, insn_idx);
9031 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
9032 /* connect new state to parentage chain. Current frame needs all
9033 * registers connected. Only r6 - r9 of the callers are alive (pushed
9034 * to the stack implicitly by JITs) so in callers' frames connect just
9035 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9036 * the state of the call instruction (with WRITTEN set), and r0 comes
9037 * from callee with its full parentage chain, anyway.
9038 */
8e9cd9ce
EC
9039 /* clear write marks in current state: the writes we did are not writes
9040 * our child did, so they don't screen off its reads from us.
9041 * (There are no read marks in current state, because reads always mark
9042 * their parent and current state never has children yet. Only
9043 * explored_states can get read marks.)
9044 */
eea1c227
AS
9045 for (j = 0; j <= cur->curframe; j++) {
9046 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9047 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9048 for (i = 0; i < BPF_REG_FP; i++)
9049 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9050 }
f4d7e40a
AS
9051
9052 /* all stack frames are accessible from callee, clear them all */
9053 for (j = 0; j <= cur->curframe; j++) {
9054 struct bpf_func_state *frame = cur->frame[j];
679c782d 9055 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 9056
679c782d 9057 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 9058 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
9059 frame->stack[i].spilled_ptr.parent =
9060 &newframe->stack[i].spilled_ptr;
9061 }
f4d7e40a 9062 }
f1bca824
AS
9063 return 0;
9064}
9065
c64b7983
JS
9066/* Return true if it's OK to have the same insn return a different type. */
9067static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9068{
9069 switch (type) {
9070 case PTR_TO_CTX:
9071 case PTR_TO_SOCKET:
9072 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9073 case PTR_TO_SOCK_COMMON:
9074 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9075 case PTR_TO_TCP_SOCK:
9076 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9077 case PTR_TO_XDP_SOCK:
2a02759e 9078 case PTR_TO_BTF_ID:
b121b341 9079 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
9080 return false;
9081 default:
9082 return true;
9083 }
9084}
9085
9086/* If an instruction was previously used with particular pointer types, then we
9087 * need to be careful to avoid cases such as the below, where it may be ok
9088 * for one branch accessing the pointer, but not ok for the other branch:
9089 *
9090 * R1 = sock_ptr
9091 * goto X;
9092 * ...
9093 * R1 = some_other_valid_ptr;
9094 * goto X;
9095 * ...
9096 * R2 = *(u32 *)(R1 + 0);
9097 */
9098static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9099{
9100 return src != prev && (!reg_type_mismatch_ok(src) ||
9101 !reg_type_mismatch_ok(prev));
9102}
9103
58e2af8b 9104static int do_check(struct bpf_verifier_env *env)
17a52670 9105{
6f8a57cc 9106 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 9107 struct bpf_verifier_state *state = env->cur_state;
17a52670 9108 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 9109 struct bpf_reg_state *regs;
06ee7115 9110 int insn_cnt = env->prog->len;
17a52670 9111 bool do_print_state = false;
b5dc0163 9112 int prev_insn_idx = -1;
17a52670 9113
17a52670
AS
9114 for (;;) {
9115 struct bpf_insn *insn;
9116 u8 class;
9117 int err;
9118
b5dc0163 9119 env->prev_insn_idx = prev_insn_idx;
c08435ec 9120 if (env->insn_idx >= insn_cnt) {
61bd5218 9121 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 9122 env->insn_idx, insn_cnt);
17a52670
AS
9123 return -EFAULT;
9124 }
9125
c08435ec 9126 insn = &insns[env->insn_idx];
17a52670
AS
9127 class = BPF_CLASS(insn->code);
9128
06ee7115 9129 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
9130 verbose(env,
9131 "BPF program is too large. Processed %d insn\n",
06ee7115 9132 env->insn_processed);
17a52670
AS
9133 return -E2BIG;
9134 }
9135
c08435ec 9136 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
9137 if (err < 0)
9138 return err;
9139 if (err == 1) {
9140 /* found equivalent state, can prune the search */
06ee7115 9141 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9142 if (do_print_state)
979d63d5
DB
9143 verbose(env, "\nfrom %d to %d%s: safe\n",
9144 env->prev_insn_idx, env->insn_idx,
9145 env->cur_state->speculative ?
9146 " (speculative execution)" : "");
f1bca824 9147 else
c08435ec 9148 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9149 }
9150 goto process_bpf_exit;
9151 }
9152
c3494801
AS
9153 if (signal_pending(current))
9154 return -EAGAIN;
9155
3c2ce60b
DB
9156 if (need_resched())
9157 cond_resched();
9158
06ee7115
AS
9159 if (env->log.level & BPF_LOG_LEVEL2 ||
9160 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9161 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9162 verbose(env, "%d:", env->insn_idx);
c5fc9692 9163 else
979d63d5
DB
9164 verbose(env, "\nfrom %d to %d%s:",
9165 env->prev_insn_idx, env->insn_idx,
9166 env->cur_state->speculative ?
9167 " (speculative execution)" : "");
f4d7e40a 9168 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9169 do_print_state = false;
9170 }
9171
06ee7115 9172 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9173 const struct bpf_insn_cbs cbs = {
9174 .cb_print = verbose,
abe08840 9175 .private_data = env,
7105e828
DB
9176 };
9177
c08435ec
DB
9178 verbose_linfo(env, env->insn_idx, "; ");
9179 verbose(env, "%d: ", env->insn_idx);
abe08840 9180 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9181 }
9182
cae1927c 9183 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9184 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9185 env->prev_insn_idx);
cae1927c
JK
9186 if (err)
9187 return err;
9188 }
13a27dfc 9189
638f5b90 9190 regs = cur_regs(env);
51c39bb1 9191 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9192 prev_insn_idx = env->insn_idx;
fd978bf7 9193
17a52670 9194 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9195 err = check_alu_op(env, insn);
17a52670
AS
9196 if (err)
9197 return err;
9198
9199 } else if (class == BPF_LDX) {
3df126f3 9200 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9201
9202 /* check for reserved fields is already done */
9203
17a52670 9204 /* check src operand */
dc503a8a 9205 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9206 if (err)
9207 return err;
9208
dc503a8a 9209 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9210 if (err)
9211 return err;
9212
725f9dcd
AS
9213 src_reg_type = regs[insn->src_reg].type;
9214
17a52670
AS
9215 /* check that memory (src_reg + off) is readable,
9216 * the state of dst_reg will be updated by this func
9217 */
c08435ec
DB
9218 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9219 insn->off, BPF_SIZE(insn->code),
9220 BPF_READ, insn->dst_reg, false);
17a52670
AS
9221 if (err)
9222 return err;
9223
c08435ec 9224 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9225
9226 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9227 /* saw a valid insn
9228 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9229 * save type to validate intersecting paths
9bac3d6d 9230 */
3df126f3 9231 *prev_src_type = src_reg_type;
9bac3d6d 9232
c64b7983 9233 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9234 /* ABuser program is trying to use the same insn
9235 * dst_reg = *(u32*) (src_reg + off)
9236 * with different pointer types:
9237 * src_reg == ctx in one branch and
9238 * src_reg == stack|map in some other branch.
9239 * Reject it.
9240 */
61bd5218 9241 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9242 return -EINVAL;
9243 }
9244
17a52670 9245 } else if (class == BPF_STX) {
3df126f3 9246 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9247
17a52670 9248 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 9249 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
9250 if (err)
9251 return err;
c08435ec 9252 env->insn_idx++;
17a52670
AS
9253 continue;
9254 }
9255
17a52670 9256 /* check src1 operand */
dc503a8a 9257 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9258 if (err)
9259 return err;
9260 /* check src2 operand */
dc503a8a 9261 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9262 if (err)
9263 return err;
9264
d691f9e8
AS
9265 dst_reg_type = regs[insn->dst_reg].type;
9266
17a52670 9267 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9268 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9269 insn->off, BPF_SIZE(insn->code),
9270 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9271 if (err)
9272 return err;
9273
c08435ec 9274 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9275
9276 if (*prev_dst_type == NOT_INIT) {
9277 *prev_dst_type = dst_reg_type;
c64b7983 9278 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9279 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9280 return -EINVAL;
9281 }
9282
17a52670
AS
9283 } else if (class == BPF_ST) {
9284 if (BPF_MODE(insn->code) != BPF_MEM ||
9285 insn->src_reg != BPF_REG_0) {
61bd5218 9286 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9287 return -EINVAL;
9288 }
9289 /* check src operand */
dc503a8a 9290 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9291 if (err)
9292 return err;
9293
f37a8cb8 9294 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9295 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9296 insn->dst_reg,
9297 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9298 return -EACCES;
9299 }
9300
17a52670 9301 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9302 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9303 insn->off, BPF_SIZE(insn->code),
9304 BPF_WRITE, -1, false);
17a52670
AS
9305 if (err)
9306 return err;
9307
092ed096 9308 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9309 u8 opcode = BPF_OP(insn->code);
9310
2589726d 9311 env->jmps_processed++;
17a52670
AS
9312 if (opcode == BPF_CALL) {
9313 if (BPF_SRC(insn->code) != BPF_K ||
9314 insn->off != 0 ||
f4d7e40a
AS
9315 (insn->src_reg != BPF_REG_0 &&
9316 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9317 insn->dst_reg != BPF_REG_0 ||
9318 class == BPF_JMP32) {
61bd5218 9319 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9320 return -EINVAL;
9321 }
9322
d83525ca
AS
9323 if (env->cur_state->active_spin_lock &&
9324 (insn->src_reg == BPF_PSEUDO_CALL ||
9325 insn->imm != BPF_FUNC_spin_unlock)) {
9326 verbose(env, "function calls are not allowed while holding a lock\n");
9327 return -EINVAL;
9328 }
f4d7e40a 9329 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9330 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9331 else
c08435ec 9332 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9333 if (err)
9334 return err;
9335
9336 } else if (opcode == BPF_JA) {
9337 if (BPF_SRC(insn->code) != BPF_K ||
9338 insn->imm != 0 ||
9339 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9340 insn->dst_reg != BPF_REG_0 ||
9341 class == BPF_JMP32) {
61bd5218 9342 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9343 return -EINVAL;
9344 }
9345
c08435ec 9346 env->insn_idx += insn->off + 1;
17a52670
AS
9347 continue;
9348
9349 } else if (opcode == BPF_EXIT) {
9350 if (BPF_SRC(insn->code) != BPF_K ||
9351 insn->imm != 0 ||
9352 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9353 insn->dst_reg != BPF_REG_0 ||
9354 class == BPF_JMP32) {
61bd5218 9355 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9356 return -EINVAL;
9357 }
9358
d83525ca
AS
9359 if (env->cur_state->active_spin_lock) {
9360 verbose(env, "bpf_spin_unlock is missing\n");
9361 return -EINVAL;
9362 }
9363
f4d7e40a
AS
9364 if (state->curframe) {
9365 /* exit from nested function */
c08435ec 9366 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9367 if (err)
9368 return err;
9369 do_print_state = true;
9370 continue;
9371 }
9372
fd978bf7
JS
9373 err = check_reference_leak(env);
9374 if (err)
9375 return err;
9376
390ee7e2
AS
9377 err = check_return_code(env);
9378 if (err)
9379 return err;
f1bca824 9380process_bpf_exit:
2589726d 9381 update_branch_counts(env, env->cur_state);
b5dc0163 9382 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9383 &env->insn_idx, pop_log);
638f5b90
AS
9384 if (err < 0) {
9385 if (err != -ENOENT)
9386 return err;
17a52670
AS
9387 break;
9388 } else {
9389 do_print_state = true;
9390 continue;
9391 }
9392 } else {
c08435ec 9393 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9394 if (err)
9395 return err;
9396 }
9397 } else if (class == BPF_LD) {
9398 u8 mode = BPF_MODE(insn->code);
9399
9400 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9401 err = check_ld_abs(env, insn);
9402 if (err)
9403 return err;
9404
17a52670
AS
9405 } else if (mode == BPF_IMM) {
9406 err = check_ld_imm(env, insn);
9407 if (err)
9408 return err;
9409
c08435ec 9410 env->insn_idx++;
51c39bb1 9411 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9412 } else {
61bd5218 9413 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9414 return -EINVAL;
9415 }
9416 } else {
61bd5218 9417 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9418 return -EINVAL;
9419 }
9420
c08435ec 9421 env->insn_idx++;
17a52670
AS
9422 }
9423
9424 return 0;
9425}
9426
56f668df
MKL
9427static int check_map_prealloc(struct bpf_map *map)
9428{
9429 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9430 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9431 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9432 !(map->map_flags & BPF_F_NO_PREALLOC);
9433}
9434
d83525ca
AS
9435static bool is_tracing_prog_type(enum bpf_prog_type type)
9436{
9437 switch (type) {
9438 case BPF_PROG_TYPE_KPROBE:
9439 case BPF_PROG_TYPE_TRACEPOINT:
9440 case BPF_PROG_TYPE_PERF_EVENT:
9441 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9442 return true;
9443 default:
9444 return false;
9445 }
9446}
9447
94dacdbd
TG
9448static bool is_preallocated_map(struct bpf_map *map)
9449{
9450 if (!check_map_prealloc(map))
9451 return false;
9452 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9453 return false;
9454 return true;
9455}
9456
61bd5218
JK
9457static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9458 struct bpf_map *map,
fdc15d38
AS
9459 struct bpf_prog *prog)
9460
9461{
7e40781c 9462 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9463 /*
9464 * Validate that trace type programs use preallocated hash maps.
9465 *
9466 * For programs attached to PERF events this is mandatory as the
9467 * perf NMI can hit any arbitrary code sequence.
9468 *
9469 * All other trace types using preallocated hash maps are unsafe as
9470 * well because tracepoint or kprobes can be inside locked regions
9471 * of the memory allocator or at a place where a recursion into the
9472 * memory allocator would see inconsistent state.
9473 *
2ed905c5
TG
9474 * On RT enabled kernels run-time allocation of all trace type
9475 * programs is strictly prohibited due to lock type constraints. On
9476 * !RT kernels it is allowed for backwards compatibility reasons for
9477 * now, but warnings are emitted so developers are made aware of
9478 * the unsafety and can fix their programs before this is enforced.
56f668df 9479 */
7e40781c
UP
9480 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9481 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9482 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9483 return -EINVAL;
9484 }
2ed905c5
TG
9485 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9486 verbose(env, "trace type programs can only use preallocated hash map\n");
9487 return -EINVAL;
9488 }
94dacdbd
TG
9489 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9490 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9491 }
a3884572 9492
7e40781c
UP
9493 if ((is_tracing_prog_type(prog_type) ||
9494 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
d83525ca
AS
9495 map_value_has_spin_lock(map)) {
9496 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9497 return -EINVAL;
9498 }
9499
a3884572 9500 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9501 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9502 verbose(env, "offload device mismatch between prog and map\n");
9503 return -EINVAL;
9504 }
9505
85d33df3
MKL
9506 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9507 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9508 return -EINVAL;
9509 }
9510
1e6c62a8
AS
9511 if (prog->aux->sleepable)
9512 switch (map->map_type) {
9513 case BPF_MAP_TYPE_HASH:
9514 case BPF_MAP_TYPE_LRU_HASH:
9515 case BPF_MAP_TYPE_ARRAY:
9516 if (!is_preallocated_map(map)) {
9517 verbose(env,
9518 "Sleepable programs can only use preallocated hash maps\n");
9519 return -EINVAL;
9520 }
9521 break;
9522 default:
9523 verbose(env,
9524 "Sleepable programs can only use array and hash maps\n");
9525 return -EINVAL;
9526 }
9527
fdc15d38
AS
9528 return 0;
9529}
9530
b741f163
RG
9531static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9532{
9533 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9534 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9535}
9536
0246e64d
AS
9537/* look for pseudo eBPF instructions that access map FDs and
9538 * replace them with actual map pointers
9539 */
58e2af8b 9540static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
9541{
9542 struct bpf_insn *insn = env->prog->insnsi;
9543 int insn_cnt = env->prog->len;
fdc15d38 9544 int i, j, err;
0246e64d 9545
f1f7714e 9546 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9547 if (err)
9548 return err;
9549
0246e64d 9550 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9551 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9552 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9553 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9554 return -EINVAL;
9555 }
9556
d691f9e8
AS
9557 if (BPF_CLASS(insn->code) == BPF_STX &&
9558 ((BPF_MODE(insn->code) != BPF_MEM &&
9559 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9560 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9561 return -EINVAL;
9562 }
9563
0246e64d 9564 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9565 struct bpf_insn_aux_data *aux;
0246e64d
AS
9566 struct bpf_map *map;
9567 struct fd f;
d8eca5bb 9568 u64 addr;
0246e64d
AS
9569
9570 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9571 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9572 insn[1].off != 0) {
61bd5218 9573 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9574 return -EINVAL;
9575 }
9576
d8eca5bb 9577 if (insn[0].src_reg == 0)
0246e64d
AS
9578 /* valid generic load 64-bit imm */
9579 goto next_insn;
9580
d8eca5bb
DB
9581 /* In final convert_pseudo_ld_imm64() step, this is
9582 * converted into regular 64-bit imm load insn.
9583 */
9584 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9585 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9586 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9587 insn[1].imm != 0)) {
9588 verbose(env,
9589 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9590 return -EINVAL;
9591 }
9592
20182390 9593 f = fdget(insn[0].imm);
c2101297 9594 map = __bpf_map_get(f);
0246e64d 9595 if (IS_ERR(map)) {
61bd5218 9596 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9597 insn[0].imm);
0246e64d
AS
9598 return PTR_ERR(map);
9599 }
9600
61bd5218 9601 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9602 if (err) {
9603 fdput(f);
9604 return err;
9605 }
9606
d8eca5bb
DB
9607 aux = &env->insn_aux_data[i];
9608 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9609 addr = (unsigned long)map;
9610 } else {
9611 u32 off = insn[1].imm;
9612
9613 if (off >= BPF_MAX_VAR_OFF) {
9614 verbose(env, "direct value offset of %u is not allowed\n", off);
9615 fdput(f);
9616 return -EINVAL;
9617 }
9618
9619 if (!map->ops->map_direct_value_addr) {
9620 verbose(env, "no direct value access support for this map type\n");
9621 fdput(f);
9622 return -EINVAL;
9623 }
9624
9625 err = map->ops->map_direct_value_addr(map, &addr, off);
9626 if (err) {
9627 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9628 map->value_size, off);
9629 fdput(f);
9630 return err;
9631 }
9632
9633 aux->map_off = off;
9634 addr += off;
9635 }
9636
9637 insn[0].imm = (u32)addr;
9638 insn[1].imm = addr >> 32;
0246e64d
AS
9639
9640 /* check whether we recorded this map already */
d8eca5bb 9641 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9642 if (env->used_maps[j] == map) {
d8eca5bb 9643 aux->map_index = j;
0246e64d
AS
9644 fdput(f);
9645 goto next_insn;
9646 }
d8eca5bb 9647 }
0246e64d
AS
9648
9649 if (env->used_map_cnt >= MAX_USED_MAPS) {
9650 fdput(f);
9651 return -E2BIG;
9652 }
9653
0246e64d
AS
9654 /* hold the map. If the program is rejected by verifier,
9655 * the map will be released by release_maps() or it
9656 * will be used by the valid program until it's unloaded
ab7f5bf0 9657 * and all maps are released in free_used_maps()
0246e64d 9658 */
1e0bd5a0 9659 bpf_map_inc(map);
d8eca5bb
DB
9660
9661 aux->map_index = env->used_map_cnt;
92117d84
AS
9662 env->used_maps[env->used_map_cnt++] = map;
9663
b741f163 9664 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9665 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9666 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9667 fdput(f);
9668 return -EBUSY;
9669 }
9670
0246e64d
AS
9671 fdput(f);
9672next_insn:
9673 insn++;
9674 i++;
5e581dad
DB
9675 continue;
9676 }
9677
9678 /* Basic sanity check before we invest more work here. */
9679 if (!bpf_opcode_in_insntable(insn->code)) {
9680 verbose(env, "unknown opcode %02x\n", insn->code);
9681 return -EINVAL;
0246e64d
AS
9682 }
9683 }
9684
9685 /* now all pseudo BPF_LD_IMM64 instructions load valid
9686 * 'struct bpf_map *' into a register instead of user map_fd.
9687 * These pointers will be used later by verifier to validate map access.
9688 */
9689 return 0;
9690}
9691
9692/* drop refcnt of maps used by the rejected program */
58e2af8b 9693static void release_maps(struct bpf_verifier_env *env)
0246e64d 9694{
a2ea0746
DB
9695 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9696 env->used_map_cnt);
0246e64d
AS
9697}
9698
9699/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9700static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9701{
9702 struct bpf_insn *insn = env->prog->insnsi;
9703 int insn_cnt = env->prog->len;
9704 int i;
9705
9706 for (i = 0; i < insn_cnt; i++, insn++)
9707 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9708 insn->src_reg = 0;
9709}
9710
8041902d
AS
9711/* single env->prog->insni[off] instruction was replaced with the range
9712 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9713 * [0, off) and [off, end) to new locations, so the patched range stays zero
9714 */
b325fbca
JW
9715static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9716 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9717{
9718 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9719 struct bpf_insn *insn = new_prog->insnsi;
9720 u32 prog_len;
c131187d 9721 int i;
8041902d 9722
b325fbca
JW
9723 /* aux info at OFF always needs adjustment, no matter fast path
9724 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9725 * original insn at old prog.
9726 */
9727 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9728
8041902d
AS
9729 if (cnt == 1)
9730 return 0;
b325fbca 9731 prog_len = new_prog->len;
fad953ce
KC
9732 new_data = vzalloc(array_size(prog_len,
9733 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9734 if (!new_data)
9735 return -ENOMEM;
9736 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9737 memcpy(new_data + off + cnt - 1, old_data + off,
9738 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9739 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9740 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9741 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9742 }
8041902d
AS
9743 env->insn_aux_data = new_data;
9744 vfree(old_data);
9745 return 0;
9746}
9747
cc8b0b92
AS
9748static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9749{
9750 int i;
9751
9752 if (len == 1)
9753 return;
4cb3d99c
JW
9754 /* NOTE: fake 'exit' subprog should be updated as well. */
9755 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 9756 if (env->subprog_info[i].start <= off)
cc8b0b92 9757 continue;
9c8105bd 9758 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
9759 }
9760}
9761
a748c697
MF
9762static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
9763{
9764 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
9765 int i, sz = prog->aux->size_poke_tab;
9766 struct bpf_jit_poke_descriptor *desc;
9767
9768 for (i = 0; i < sz; i++) {
9769 desc = &tab[i];
9770 desc->insn_idx += len - 1;
9771 }
9772}
9773
8041902d
AS
9774static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9775 const struct bpf_insn *patch, u32 len)
9776{
9777 struct bpf_prog *new_prog;
9778
9779 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
9780 if (IS_ERR(new_prog)) {
9781 if (PTR_ERR(new_prog) == -ERANGE)
9782 verbose(env,
9783 "insn %d cannot be patched due to 16-bit range\n",
9784 env->insn_aux_data[off].orig_idx);
8041902d 9785 return NULL;
4f73379e 9786 }
b325fbca 9787 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 9788 return NULL;
cc8b0b92 9789 adjust_subprog_starts(env, off, len);
a748c697 9790 adjust_poke_descs(new_prog, len);
8041902d
AS
9791 return new_prog;
9792}
9793
52875a04
JK
9794static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9795 u32 off, u32 cnt)
9796{
9797 int i, j;
9798
9799 /* find first prog starting at or after off (first to remove) */
9800 for (i = 0; i < env->subprog_cnt; i++)
9801 if (env->subprog_info[i].start >= off)
9802 break;
9803 /* find first prog starting at or after off + cnt (first to stay) */
9804 for (j = i; j < env->subprog_cnt; j++)
9805 if (env->subprog_info[j].start >= off + cnt)
9806 break;
9807 /* if j doesn't start exactly at off + cnt, we are just removing
9808 * the front of previous prog
9809 */
9810 if (env->subprog_info[j].start != off + cnt)
9811 j--;
9812
9813 if (j > i) {
9814 struct bpf_prog_aux *aux = env->prog->aux;
9815 int move;
9816
9817 /* move fake 'exit' subprog as well */
9818 move = env->subprog_cnt + 1 - j;
9819
9820 memmove(env->subprog_info + i,
9821 env->subprog_info + j,
9822 sizeof(*env->subprog_info) * move);
9823 env->subprog_cnt -= j - i;
9824
9825 /* remove func_info */
9826 if (aux->func_info) {
9827 move = aux->func_info_cnt - j;
9828
9829 memmove(aux->func_info + i,
9830 aux->func_info + j,
9831 sizeof(*aux->func_info) * move);
9832 aux->func_info_cnt -= j - i;
9833 /* func_info->insn_off is set after all code rewrites,
9834 * in adjust_btf_func() - no need to adjust
9835 */
9836 }
9837 } else {
9838 /* convert i from "first prog to remove" to "first to adjust" */
9839 if (env->subprog_info[i].start == off)
9840 i++;
9841 }
9842
9843 /* update fake 'exit' subprog as well */
9844 for (; i <= env->subprog_cnt; i++)
9845 env->subprog_info[i].start -= cnt;
9846
9847 return 0;
9848}
9849
9850static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9851 u32 cnt)
9852{
9853 struct bpf_prog *prog = env->prog;
9854 u32 i, l_off, l_cnt, nr_linfo;
9855 struct bpf_line_info *linfo;
9856
9857 nr_linfo = prog->aux->nr_linfo;
9858 if (!nr_linfo)
9859 return 0;
9860
9861 linfo = prog->aux->linfo;
9862
9863 /* find first line info to remove, count lines to be removed */
9864 for (i = 0; i < nr_linfo; i++)
9865 if (linfo[i].insn_off >= off)
9866 break;
9867
9868 l_off = i;
9869 l_cnt = 0;
9870 for (; i < nr_linfo; i++)
9871 if (linfo[i].insn_off < off + cnt)
9872 l_cnt++;
9873 else
9874 break;
9875
9876 /* First live insn doesn't match first live linfo, it needs to "inherit"
9877 * last removed linfo. prog is already modified, so prog->len == off
9878 * means no live instructions after (tail of the program was removed).
9879 */
9880 if (prog->len != off && l_cnt &&
9881 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9882 l_cnt--;
9883 linfo[--i].insn_off = off + cnt;
9884 }
9885
9886 /* remove the line info which refer to the removed instructions */
9887 if (l_cnt) {
9888 memmove(linfo + l_off, linfo + i,
9889 sizeof(*linfo) * (nr_linfo - i));
9890
9891 prog->aux->nr_linfo -= l_cnt;
9892 nr_linfo = prog->aux->nr_linfo;
9893 }
9894
9895 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
9896 for (i = l_off; i < nr_linfo; i++)
9897 linfo[i].insn_off -= cnt;
9898
9899 /* fix up all subprogs (incl. 'exit') which start >= off */
9900 for (i = 0; i <= env->subprog_cnt; i++)
9901 if (env->subprog_info[i].linfo_idx > l_off) {
9902 /* program may have started in the removed region but
9903 * may not be fully removed
9904 */
9905 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9906 env->subprog_info[i].linfo_idx -= l_cnt;
9907 else
9908 env->subprog_info[i].linfo_idx = l_off;
9909 }
9910
9911 return 0;
9912}
9913
9914static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9915{
9916 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9917 unsigned int orig_prog_len = env->prog->len;
9918 int err;
9919
08ca90af
JK
9920 if (bpf_prog_is_dev_bound(env->prog->aux))
9921 bpf_prog_offload_remove_insns(env, off, cnt);
9922
52875a04
JK
9923 err = bpf_remove_insns(env->prog, off, cnt);
9924 if (err)
9925 return err;
9926
9927 err = adjust_subprog_starts_after_remove(env, off, cnt);
9928 if (err)
9929 return err;
9930
9931 err = bpf_adj_linfo_after_remove(env, off, cnt);
9932 if (err)
9933 return err;
9934
9935 memmove(aux_data + off, aux_data + off + cnt,
9936 sizeof(*aux_data) * (orig_prog_len - off - cnt));
9937
9938 return 0;
9939}
9940
2a5418a1
DB
9941/* The verifier does more data flow analysis than llvm and will not
9942 * explore branches that are dead at run time. Malicious programs can
9943 * have dead code too. Therefore replace all dead at-run-time code
9944 * with 'ja -1'.
9945 *
9946 * Just nops are not optimal, e.g. if they would sit at the end of the
9947 * program and through another bug we would manage to jump there, then
9948 * we'd execute beyond program memory otherwise. Returning exception
9949 * code also wouldn't work since we can have subprogs where the dead
9950 * code could be located.
c131187d
AS
9951 */
9952static void sanitize_dead_code(struct bpf_verifier_env *env)
9953{
9954 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 9955 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
9956 struct bpf_insn *insn = env->prog->insnsi;
9957 const int insn_cnt = env->prog->len;
9958 int i;
9959
9960 for (i = 0; i < insn_cnt; i++) {
9961 if (aux_data[i].seen)
9962 continue;
2a5418a1 9963 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
9964 }
9965}
9966
e2ae4ca2
JK
9967static bool insn_is_cond_jump(u8 code)
9968{
9969 u8 op;
9970
092ed096
JW
9971 if (BPF_CLASS(code) == BPF_JMP32)
9972 return true;
9973
e2ae4ca2
JK
9974 if (BPF_CLASS(code) != BPF_JMP)
9975 return false;
9976
9977 op = BPF_OP(code);
9978 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9979}
9980
9981static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9982{
9983 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9984 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9985 struct bpf_insn *insn = env->prog->insnsi;
9986 const int insn_cnt = env->prog->len;
9987 int i;
9988
9989 for (i = 0; i < insn_cnt; i++, insn++) {
9990 if (!insn_is_cond_jump(insn->code))
9991 continue;
9992
9993 if (!aux_data[i + 1].seen)
9994 ja.off = insn->off;
9995 else if (!aux_data[i + 1 + insn->off].seen)
9996 ja.off = 0;
9997 else
9998 continue;
9999
08ca90af
JK
10000 if (bpf_prog_is_dev_bound(env->prog->aux))
10001 bpf_prog_offload_replace_insn(env, i, &ja);
10002
e2ae4ca2
JK
10003 memcpy(insn, &ja, sizeof(ja));
10004 }
10005}
10006
52875a04
JK
10007static int opt_remove_dead_code(struct bpf_verifier_env *env)
10008{
10009 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10010 int insn_cnt = env->prog->len;
10011 int i, err;
10012
10013 for (i = 0; i < insn_cnt; i++) {
10014 int j;
10015
10016 j = 0;
10017 while (i + j < insn_cnt && !aux_data[i + j].seen)
10018 j++;
10019 if (!j)
10020 continue;
10021
10022 err = verifier_remove_insns(env, i, j);
10023 if (err)
10024 return err;
10025 insn_cnt = env->prog->len;
10026 }
10027
10028 return 0;
10029}
10030
a1b14abc
JK
10031static int opt_remove_nops(struct bpf_verifier_env *env)
10032{
10033 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10034 struct bpf_insn *insn = env->prog->insnsi;
10035 int insn_cnt = env->prog->len;
10036 int i, err;
10037
10038 for (i = 0; i < insn_cnt; i++) {
10039 if (memcmp(&insn[i], &ja, sizeof(ja)))
10040 continue;
10041
10042 err = verifier_remove_insns(env, i, 1);
10043 if (err)
10044 return err;
10045 insn_cnt--;
10046 i--;
10047 }
10048
10049 return 0;
10050}
10051
d6c2308c
JW
10052static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10053 const union bpf_attr *attr)
a4b1d3c1 10054{
d6c2308c 10055 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 10056 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 10057 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 10058 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 10059 struct bpf_prog *new_prog;
d6c2308c 10060 bool rnd_hi32;
a4b1d3c1 10061
d6c2308c 10062 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 10063 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
10064 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10065 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10066 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
10067 for (i = 0; i < len; i++) {
10068 int adj_idx = i + delta;
10069 struct bpf_insn insn;
10070
d6c2308c
JW
10071 insn = insns[adj_idx];
10072 if (!aux[adj_idx].zext_dst) {
10073 u8 code, class;
10074 u32 imm_rnd;
10075
10076 if (!rnd_hi32)
10077 continue;
10078
10079 code = insn.code;
10080 class = BPF_CLASS(code);
10081 if (insn_no_def(&insn))
10082 continue;
10083
10084 /* NOTE: arg "reg" (the fourth one) is only used for
10085 * BPF_STX which has been ruled out in above
10086 * check, it is safe to pass NULL here.
10087 */
10088 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10089 if (class == BPF_LD &&
10090 BPF_MODE(code) == BPF_IMM)
10091 i++;
10092 continue;
10093 }
10094
10095 /* ctx load could be transformed into wider load. */
10096 if (class == BPF_LDX &&
10097 aux[adj_idx].ptr_type == PTR_TO_CTX)
10098 continue;
10099
10100 imm_rnd = get_random_int();
10101 rnd_hi32_patch[0] = insn;
10102 rnd_hi32_patch[1].imm = imm_rnd;
10103 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10104 patch = rnd_hi32_patch;
10105 patch_len = 4;
10106 goto apply_patch_buffer;
10107 }
10108
10109 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
10110 continue;
10111
a4b1d3c1
JW
10112 zext_patch[0] = insn;
10113 zext_patch[1].dst_reg = insn.dst_reg;
10114 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
10115 patch = zext_patch;
10116 patch_len = 2;
10117apply_patch_buffer:
10118 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
10119 if (!new_prog)
10120 return -ENOMEM;
10121 env->prog = new_prog;
10122 insns = new_prog->insnsi;
10123 aux = env->insn_aux_data;
d6c2308c 10124 delta += patch_len - 1;
a4b1d3c1
JW
10125 }
10126
10127 return 0;
10128}
10129
c64b7983
JS
10130/* convert load instructions that access fields of a context type into a
10131 * sequence of instructions that access fields of the underlying structure:
10132 * struct __sk_buff -> struct sk_buff
10133 * struct bpf_sock_ops -> struct sock
9bac3d6d 10134 */
58e2af8b 10135static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 10136{
00176a34 10137 const struct bpf_verifier_ops *ops = env->ops;
f96da094 10138 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 10139 const int insn_cnt = env->prog->len;
36bbef52 10140 struct bpf_insn insn_buf[16], *insn;
46f53a65 10141 u32 target_size, size_default, off;
9bac3d6d 10142 struct bpf_prog *new_prog;
d691f9e8 10143 enum bpf_access_type type;
f96da094 10144 bool is_narrower_load;
9bac3d6d 10145
b09928b9
DB
10146 if (ops->gen_prologue || env->seen_direct_write) {
10147 if (!ops->gen_prologue) {
10148 verbose(env, "bpf verifier is misconfigured\n");
10149 return -EINVAL;
10150 }
36bbef52
DB
10151 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10152 env->prog);
10153 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 10154 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
10155 return -EINVAL;
10156 } else if (cnt) {
8041902d 10157 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
10158 if (!new_prog)
10159 return -ENOMEM;
8041902d 10160
36bbef52 10161 env->prog = new_prog;
3df126f3 10162 delta += cnt - 1;
36bbef52
DB
10163 }
10164 }
10165
c64b7983 10166 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
10167 return 0;
10168
3df126f3 10169 insn = env->prog->insnsi + delta;
36bbef52 10170
9bac3d6d 10171 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10172 bpf_convert_ctx_access_t convert_ctx_access;
10173
62c7989b
DB
10174 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10175 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10176 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10177 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10178 type = BPF_READ;
62c7989b
DB
10179 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10180 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10181 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10182 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10183 type = BPF_WRITE;
10184 else
9bac3d6d
AS
10185 continue;
10186
af86ca4e
AS
10187 if (type == BPF_WRITE &&
10188 env->insn_aux_data[i + delta].sanitize_stack_off) {
10189 struct bpf_insn patch[] = {
10190 /* Sanitize suspicious stack slot with zero.
10191 * There are no memory dependencies for this store,
10192 * since it's only using frame pointer and immediate
10193 * constant of zero
10194 */
10195 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10196 env->insn_aux_data[i + delta].sanitize_stack_off,
10197 0),
10198 /* the original STX instruction will immediately
10199 * overwrite the same stack slot with appropriate value
10200 */
10201 *insn,
10202 };
10203
10204 cnt = ARRAY_SIZE(patch);
10205 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10206 if (!new_prog)
10207 return -ENOMEM;
10208
10209 delta += cnt - 1;
10210 env->prog = new_prog;
10211 insn = new_prog->insnsi + i + delta;
10212 continue;
10213 }
10214
c64b7983
JS
10215 switch (env->insn_aux_data[i + delta].ptr_type) {
10216 case PTR_TO_CTX:
10217 if (!ops->convert_ctx_access)
10218 continue;
10219 convert_ctx_access = ops->convert_ctx_access;
10220 break;
10221 case PTR_TO_SOCKET:
46f8bc92 10222 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10223 convert_ctx_access = bpf_sock_convert_ctx_access;
10224 break;
655a51e5
MKL
10225 case PTR_TO_TCP_SOCK:
10226 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10227 break;
fada7fdc
JL
10228 case PTR_TO_XDP_SOCK:
10229 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10230 break;
2a02759e 10231 case PTR_TO_BTF_ID:
27ae7997
MKL
10232 if (type == BPF_READ) {
10233 insn->code = BPF_LDX | BPF_PROBE_MEM |
10234 BPF_SIZE((insn)->code);
10235 env->prog->aux->num_exentries++;
7e40781c 10236 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10237 verbose(env, "Writes through BTF pointers are not allowed\n");
10238 return -EINVAL;
10239 }
2a02759e 10240 continue;
c64b7983 10241 default:
9bac3d6d 10242 continue;
c64b7983 10243 }
9bac3d6d 10244
31fd8581 10245 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10246 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10247
10248 /* If the read access is a narrower load of the field,
10249 * convert to a 4/8-byte load, to minimum program type specific
10250 * convert_ctx_access changes. If conversion is successful,
10251 * we will apply proper mask to the result.
10252 */
f96da094 10253 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10254 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10255 off = insn->off;
31fd8581 10256 if (is_narrower_load) {
f96da094
DB
10257 u8 size_code;
10258
10259 if (type == BPF_WRITE) {
61bd5218 10260 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10261 return -EINVAL;
10262 }
31fd8581 10263
f96da094 10264 size_code = BPF_H;
31fd8581
YS
10265 if (ctx_field_size == 4)
10266 size_code = BPF_W;
10267 else if (ctx_field_size == 8)
10268 size_code = BPF_DW;
f96da094 10269
bc23105c 10270 insn->off = off & ~(size_default - 1);
31fd8581
YS
10271 insn->code = BPF_LDX | BPF_MEM | size_code;
10272 }
f96da094
DB
10273
10274 target_size = 0;
c64b7983
JS
10275 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10276 &target_size);
f96da094
DB
10277 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10278 (ctx_field_size && !target_size)) {
61bd5218 10279 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10280 return -EINVAL;
10281 }
f96da094
DB
10282
10283 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10284 u8 shift = bpf_ctx_narrow_access_offset(
10285 off, size, size_default) * 8;
46f53a65
AI
10286 if (ctx_field_size <= 4) {
10287 if (shift)
10288 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10289 insn->dst_reg,
10290 shift);
31fd8581 10291 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10292 (1 << size * 8) - 1);
46f53a65
AI
10293 } else {
10294 if (shift)
10295 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10296 insn->dst_reg,
10297 shift);
31fd8581 10298 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10299 (1ULL << size * 8) - 1);
46f53a65 10300 }
31fd8581 10301 }
9bac3d6d 10302
8041902d 10303 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10304 if (!new_prog)
10305 return -ENOMEM;
10306
3df126f3 10307 delta += cnt - 1;
9bac3d6d
AS
10308
10309 /* keep walking new program and skip insns we just inserted */
10310 env->prog = new_prog;
3df126f3 10311 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10312 }
10313
10314 return 0;
10315}
10316
1c2a088a
AS
10317static int jit_subprogs(struct bpf_verifier_env *env)
10318{
10319 struct bpf_prog *prog = env->prog, **func, *tmp;
10320 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 10321 struct bpf_map *map_ptr;
7105e828 10322 struct bpf_insn *insn;
1c2a088a 10323 void *old_bpf_func;
c4c0bdc0 10324 int err, num_exentries;
1c2a088a 10325
f910cefa 10326 if (env->subprog_cnt <= 1)
1c2a088a
AS
10327 return 0;
10328
7105e828 10329 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10330 if (insn->code != (BPF_JMP | BPF_CALL) ||
10331 insn->src_reg != BPF_PSEUDO_CALL)
10332 continue;
c7a89784
DB
10333 /* Upon error here we cannot fall back to interpreter but
10334 * need a hard reject of the program. Thus -EFAULT is
10335 * propagated in any case.
10336 */
1c2a088a
AS
10337 subprog = find_subprog(env, i + insn->imm + 1);
10338 if (subprog < 0) {
10339 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10340 i + insn->imm + 1);
10341 return -EFAULT;
10342 }
10343 /* temporarily remember subprog id inside insn instead of
10344 * aux_data, since next loop will split up all insns into funcs
10345 */
f910cefa 10346 insn->off = subprog;
1c2a088a
AS
10347 /* remember original imm in case JIT fails and fallback
10348 * to interpreter will be needed
10349 */
10350 env->insn_aux_data[i].call_imm = insn->imm;
10351 /* point imm to __bpf_call_base+1 from JITs point of view */
10352 insn->imm = 1;
10353 }
10354
c454a46b
MKL
10355 err = bpf_prog_alloc_jited_linfo(prog);
10356 if (err)
10357 goto out_undo_insn;
10358
10359 err = -ENOMEM;
6396bb22 10360 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10361 if (!func)
c7a89784 10362 goto out_undo_insn;
1c2a088a 10363
f910cefa 10364 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10365 subprog_start = subprog_end;
4cb3d99c 10366 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10367
10368 len = subprog_end - subprog_start;
492ecee8
AS
10369 /* BPF_PROG_RUN doesn't call subprogs directly,
10370 * hence main prog stats include the runtime of subprogs.
10371 * subprogs don't have IDs and not reachable via prog_get_next_id
10372 * func[i]->aux->stats will never be accessed and stays NULL
10373 */
10374 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10375 if (!func[i])
10376 goto out_free;
10377 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10378 len * sizeof(struct bpf_insn));
4f74d809 10379 func[i]->type = prog->type;
1c2a088a 10380 func[i]->len = len;
4f74d809
DB
10381 if (bpf_prog_calc_tag(func[i]))
10382 goto out_free;
1c2a088a 10383 func[i]->is_func = 1;
ba64e7d8
YS
10384 func[i]->aux->func_idx = i;
10385 /* the btf and func_info will be freed only at prog->aux */
10386 func[i]->aux->btf = prog->aux->btf;
10387 func[i]->aux->func_info = prog->aux->func_info;
10388
a748c697
MF
10389 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10390 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10391 int ret;
10392
10393 if (!(insn_idx >= subprog_start &&
10394 insn_idx <= subprog_end))
10395 continue;
10396
10397 ret = bpf_jit_add_poke_descriptor(func[i],
10398 &prog->aux->poke_tab[j]);
10399 if (ret < 0) {
10400 verbose(env, "adding tail call poke descriptor failed\n");
10401 goto out_free;
10402 }
10403
10404 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10405
10406 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10407 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10408 if (ret < 0) {
10409 verbose(env, "tracking tail call prog failed\n");
10410 goto out_free;
10411 }
10412 }
10413
1c2a088a
AS
10414 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10415 * Long term would need debug info to populate names
10416 */
10417 func[i]->aux->name[0] = 'F';
9c8105bd 10418 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10419 func[i]->jit_requested = 1;
c454a46b
MKL
10420 func[i]->aux->linfo = prog->aux->linfo;
10421 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10422 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10423 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10424 num_exentries = 0;
10425 insn = func[i]->insnsi;
10426 for (j = 0; j < func[i]->len; j++, insn++) {
10427 if (BPF_CLASS(insn->code) == BPF_LDX &&
10428 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10429 num_exentries++;
10430 }
10431 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 10432 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
10433 func[i] = bpf_int_jit_compile(func[i]);
10434 if (!func[i]->jited) {
10435 err = -ENOTSUPP;
10436 goto out_free;
10437 }
10438 cond_resched();
10439 }
a748c697
MF
10440
10441 /* Untrack main program's aux structs so that during map_poke_run()
10442 * we will not stumble upon the unfilled poke descriptors; each
10443 * of the main program's poke descs got distributed across subprogs
10444 * and got tracked onto map, so we are sure that none of them will
10445 * be missed after the operation below
10446 */
10447 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10448 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10449
10450 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10451 }
10452
1c2a088a
AS
10453 /* at this point all bpf functions were successfully JITed
10454 * now populate all bpf_calls with correct addresses and
10455 * run last pass of JIT
10456 */
f910cefa 10457 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10458 insn = func[i]->insnsi;
10459 for (j = 0; j < func[i]->len; j++, insn++) {
10460 if (insn->code != (BPF_JMP | BPF_CALL) ||
10461 insn->src_reg != BPF_PSEUDO_CALL)
10462 continue;
10463 subprog = insn->off;
0d306c31
PB
10464 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10465 __bpf_call_base;
1c2a088a 10466 }
2162fed4
SD
10467
10468 /* we use the aux data to keep a list of the start addresses
10469 * of the JITed images for each function in the program
10470 *
10471 * for some architectures, such as powerpc64, the imm field
10472 * might not be large enough to hold the offset of the start
10473 * address of the callee's JITed image from __bpf_call_base
10474 *
10475 * in such cases, we can lookup the start address of a callee
10476 * by using its subprog id, available from the off field of
10477 * the call instruction, as an index for this list
10478 */
10479 func[i]->aux->func = func;
10480 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10481 }
f910cefa 10482 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10483 old_bpf_func = func[i]->bpf_func;
10484 tmp = bpf_int_jit_compile(func[i]);
10485 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10486 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10487 err = -ENOTSUPP;
1c2a088a
AS
10488 goto out_free;
10489 }
10490 cond_resched();
10491 }
10492
10493 /* finally lock prog and jit images for all functions and
10494 * populate kallsysm
10495 */
f910cefa 10496 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10497 bpf_prog_lock_ro(func[i]);
10498 bpf_prog_kallsyms_add(func[i]);
10499 }
7105e828
DB
10500
10501 /* Last step: make now unused interpreter insns from main
10502 * prog consistent for later dump requests, so they can
10503 * later look the same as if they were interpreted only.
10504 */
10505 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10506 if (insn->code != (BPF_JMP | BPF_CALL) ||
10507 insn->src_reg != BPF_PSEUDO_CALL)
10508 continue;
10509 insn->off = env->insn_aux_data[i].call_imm;
10510 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10511 insn->imm = subprog;
7105e828
DB
10512 }
10513
1c2a088a
AS
10514 prog->jited = 1;
10515 prog->bpf_func = func[0]->bpf_func;
10516 prog->aux->func = func;
f910cefa 10517 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10518 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10519 return 0;
10520out_free:
a748c697
MF
10521 for (i = 0; i < env->subprog_cnt; i++) {
10522 if (!func[i])
10523 continue;
10524
10525 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10526 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10527 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10528 }
10529 bpf_jit_free(func[i]);
10530 }
1c2a088a 10531 kfree(func);
c7a89784 10532out_undo_insn:
1c2a088a
AS
10533 /* cleanup main prog to be interpreted */
10534 prog->jit_requested = 0;
10535 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10536 if (insn->code != (BPF_JMP | BPF_CALL) ||
10537 insn->src_reg != BPF_PSEUDO_CALL)
10538 continue;
10539 insn->off = 0;
10540 insn->imm = env->insn_aux_data[i].call_imm;
10541 }
c454a46b 10542 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10543 return err;
10544}
10545
1ea47e01
AS
10546static int fixup_call_args(struct bpf_verifier_env *env)
10547{
19d28fbd 10548#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10549 struct bpf_prog *prog = env->prog;
10550 struct bpf_insn *insn = prog->insnsi;
10551 int i, depth;
19d28fbd 10552#endif
e4052d06 10553 int err = 0;
1ea47e01 10554
e4052d06
QM
10555 if (env->prog->jit_requested &&
10556 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10557 err = jit_subprogs(env);
10558 if (err == 0)
1c2a088a 10559 return 0;
c7a89784
DB
10560 if (err == -EFAULT)
10561 return err;
19d28fbd
DM
10562 }
10563#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e411901c
MF
10564 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10565 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10566 * have to be rejected, since interpreter doesn't support them yet.
10567 */
10568 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10569 return -EINVAL;
10570 }
1ea47e01
AS
10571 for (i = 0; i < prog->len; i++, insn++) {
10572 if (insn->code != (BPF_JMP | BPF_CALL) ||
10573 insn->src_reg != BPF_PSEUDO_CALL)
10574 continue;
10575 depth = get_callee_stack_depth(env, insn, i);
10576 if (depth < 0)
10577 return depth;
10578 bpf_patch_call_args(insn, depth);
10579 }
19d28fbd
DM
10580 err = 0;
10581#endif
10582 return err;
1ea47e01
AS
10583}
10584
79741b3b 10585/* fixup insn->imm field of bpf_call instructions
81ed18ab 10586 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10587 *
10588 * this function is called after eBPF program passed verification
10589 */
79741b3b 10590static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10591{
79741b3b 10592 struct bpf_prog *prog = env->prog;
d2e4c1e6 10593 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10594 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10595 const struct bpf_func_proto *fn;
79741b3b 10596 const int insn_cnt = prog->len;
09772d92 10597 const struct bpf_map_ops *ops;
c93552c4 10598 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10599 struct bpf_insn insn_buf[16];
10600 struct bpf_prog *new_prog;
10601 struct bpf_map *map_ptr;
d2e4c1e6 10602 int i, ret, cnt, delta = 0;
e245c5c6 10603
79741b3b 10604 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
10605 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10606 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10607 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 10608 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
10609 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10610 struct bpf_insn mask_and_div[] = {
10611 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10612 /* Rx div 0 -> 0 */
10613 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10614 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10615 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10616 *insn,
10617 };
10618 struct bpf_insn mask_and_mod[] = {
10619 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10620 /* Rx mod 0 -> Rx */
10621 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10622 *insn,
10623 };
10624 struct bpf_insn *patchlet;
10625
10626 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10627 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10628 patchlet = mask_and_div + (is64 ? 1 : 0);
10629 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10630 } else {
10631 patchlet = mask_and_mod + (is64 ? 1 : 0);
10632 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10633 }
10634
10635 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
10636 if (!new_prog)
10637 return -ENOMEM;
10638
10639 delta += cnt - 1;
10640 env->prog = prog = new_prog;
10641 insn = new_prog->insnsi + i + delta;
10642 continue;
10643 }
10644
e0cea7ce
DB
10645 if (BPF_CLASS(insn->code) == BPF_LD &&
10646 (BPF_MODE(insn->code) == BPF_ABS ||
10647 BPF_MODE(insn->code) == BPF_IND)) {
10648 cnt = env->ops->gen_ld_abs(insn, insn_buf);
10649 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10650 verbose(env, "bpf verifier is misconfigured\n");
10651 return -EINVAL;
10652 }
10653
10654 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10655 if (!new_prog)
10656 return -ENOMEM;
10657
10658 delta += cnt - 1;
10659 env->prog = prog = new_prog;
10660 insn = new_prog->insnsi + i + delta;
10661 continue;
10662 }
10663
979d63d5
DB
10664 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10665 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10666 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10667 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10668 struct bpf_insn insn_buf[16];
10669 struct bpf_insn *patch = &insn_buf[0];
10670 bool issrc, isneg;
10671 u32 off_reg;
10672
10673 aux = &env->insn_aux_data[i + delta];
3612af78
DB
10674 if (!aux->alu_state ||
10675 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
10676 continue;
10677
10678 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10679 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10680 BPF_ALU_SANITIZE_SRC;
10681
10682 off_reg = issrc ? insn->src_reg : insn->dst_reg;
10683 if (isneg)
10684 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10685 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10686 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10687 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10688 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10689 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10690 if (issrc) {
10691 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10692 off_reg);
10693 insn->src_reg = BPF_REG_AX;
10694 } else {
10695 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10696 BPF_REG_AX);
10697 }
10698 if (isneg)
10699 insn->code = insn->code == code_add ?
10700 code_sub : code_add;
10701 *patch++ = *insn;
10702 if (issrc && isneg)
10703 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10704 cnt = patch - insn_buf;
10705
10706 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10707 if (!new_prog)
10708 return -ENOMEM;
10709
10710 delta += cnt - 1;
10711 env->prog = prog = new_prog;
10712 insn = new_prog->insnsi + i + delta;
10713 continue;
10714 }
10715
79741b3b
AS
10716 if (insn->code != (BPF_JMP | BPF_CALL))
10717 continue;
cc8b0b92
AS
10718 if (insn->src_reg == BPF_PSEUDO_CALL)
10719 continue;
e245c5c6 10720
79741b3b
AS
10721 if (insn->imm == BPF_FUNC_get_route_realm)
10722 prog->dst_needed = 1;
10723 if (insn->imm == BPF_FUNC_get_prandom_u32)
10724 bpf_user_rnd_init_once();
9802d865
JB
10725 if (insn->imm == BPF_FUNC_override_return)
10726 prog->kprobe_override = 1;
79741b3b 10727 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10728 /* If we tail call into other programs, we
10729 * cannot make any assumptions since they can
10730 * be replaced dynamically during runtime in
10731 * the program array.
10732 */
10733 prog->cb_access = 1;
e411901c
MF
10734 if (!allow_tail_call_in_subprogs(env))
10735 prog->aux->stack_depth = MAX_BPF_STACK;
10736 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10737
79741b3b
AS
10738 /* mark bpf_tail_call as different opcode to avoid
10739 * conditional branch in the interpeter for every normal
10740 * call and to prevent accidental JITing by JIT compiler
10741 * that doesn't support bpf_tail_call yet
e245c5c6 10742 */
79741b3b 10743 insn->imm = 0;
71189fa9 10744 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10745
c93552c4 10746 aux = &env->insn_aux_data[i + delta];
2c78ee89 10747 if (env->bpf_capable && !expect_blinding &&
cc52d914 10748 prog->jit_requested &&
d2e4c1e6
DB
10749 !bpf_map_key_poisoned(aux) &&
10750 !bpf_map_ptr_poisoned(aux) &&
10751 !bpf_map_ptr_unpriv(aux)) {
10752 struct bpf_jit_poke_descriptor desc = {
10753 .reason = BPF_POKE_REASON_TAIL_CALL,
10754 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10755 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 10756 .insn_idx = i + delta,
d2e4c1e6
DB
10757 };
10758
10759 ret = bpf_jit_add_poke_descriptor(prog, &desc);
10760 if (ret < 0) {
10761 verbose(env, "adding tail call poke descriptor failed\n");
10762 return ret;
10763 }
10764
10765 insn->imm = ret + 1;
10766 continue;
10767 }
10768
c93552c4
DB
10769 if (!bpf_map_ptr_unpriv(aux))
10770 continue;
10771
b2157399
AS
10772 /* instead of changing every JIT dealing with tail_call
10773 * emit two extra insns:
10774 * if (index >= max_entries) goto out;
10775 * index &= array->index_mask;
10776 * to avoid out-of-bounds cpu speculation
10777 */
c93552c4 10778 if (bpf_map_ptr_poisoned(aux)) {
40950343 10779 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
10780 return -EINVAL;
10781 }
c93552c4 10782
d2e4c1e6 10783 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
10784 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10785 map_ptr->max_entries, 2);
10786 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10787 container_of(map_ptr,
10788 struct bpf_array,
10789 map)->index_mask);
10790 insn_buf[2] = *insn;
10791 cnt = 3;
10792 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10793 if (!new_prog)
10794 return -ENOMEM;
10795
10796 delta += cnt - 1;
10797 env->prog = prog = new_prog;
10798 insn = new_prog->insnsi + i + delta;
79741b3b
AS
10799 continue;
10800 }
e245c5c6 10801
89c63074 10802 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
10803 * and other inlining handlers are currently limited to 64 bit
10804 * only.
89c63074 10805 */
60b58afc 10806 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
10807 (insn->imm == BPF_FUNC_map_lookup_elem ||
10808 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
10809 insn->imm == BPF_FUNC_map_delete_elem ||
10810 insn->imm == BPF_FUNC_map_push_elem ||
10811 insn->imm == BPF_FUNC_map_pop_elem ||
10812 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
10813 aux = &env->insn_aux_data[i + delta];
10814 if (bpf_map_ptr_poisoned(aux))
10815 goto patch_call_imm;
10816
d2e4c1e6 10817 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
10818 ops = map_ptr->ops;
10819 if (insn->imm == BPF_FUNC_map_lookup_elem &&
10820 ops->map_gen_lookup) {
10821 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10822 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10823 verbose(env, "bpf verifier is misconfigured\n");
10824 return -EINVAL;
10825 }
81ed18ab 10826
09772d92
DB
10827 new_prog = bpf_patch_insn_data(env, i + delta,
10828 insn_buf, cnt);
10829 if (!new_prog)
10830 return -ENOMEM;
81ed18ab 10831
09772d92
DB
10832 delta += cnt - 1;
10833 env->prog = prog = new_prog;
10834 insn = new_prog->insnsi + i + delta;
10835 continue;
10836 }
81ed18ab 10837
09772d92
DB
10838 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10839 (void *(*)(struct bpf_map *map, void *key))NULL));
10840 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10841 (int (*)(struct bpf_map *map, void *key))NULL));
10842 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10843 (int (*)(struct bpf_map *map, void *key, void *value,
10844 u64 flags))NULL));
84430d42
DB
10845 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10846 (int (*)(struct bpf_map *map, void *value,
10847 u64 flags))NULL));
10848 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10849 (int (*)(struct bpf_map *map, void *value))NULL));
10850 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10851 (int (*)(struct bpf_map *map, void *value))NULL));
10852
09772d92
DB
10853 switch (insn->imm) {
10854 case BPF_FUNC_map_lookup_elem:
10855 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10856 __bpf_call_base;
10857 continue;
10858 case BPF_FUNC_map_update_elem:
10859 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10860 __bpf_call_base;
10861 continue;
10862 case BPF_FUNC_map_delete_elem:
10863 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10864 __bpf_call_base;
10865 continue;
84430d42
DB
10866 case BPF_FUNC_map_push_elem:
10867 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10868 __bpf_call_base;
10869 continue;
10870 case BPF_FUNC_map_pop_elem:
10871 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10872 __bpf_call_base;
10873 continue;
10874 case BPF_FUNC_map_peek_elem:
10875 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10876 __bpf_call_base;
10877 continue;
09772d92 10878 }
81ed18ab 10879
09772d92 10880 goto patch_call_imm;
81ed18ab
AS
10881 }
10882
5576b991
MKL
10883 if (prog->jit_requested && BITS_PER_LONG == 64 &&
10884 insn->imm == BPF_FUNC_jiffies64) {
10885 struct bpf_insn ld_jiffies_addr[2] = {
10886 BPF_LD_IMM64(BPF_REG_0,
10887 (unsigned long)&jiffies),
10888 };
10889
10890 insn_buf[0] = ld_jiffies_addr[0];
10891 insn_buf[1] = ld_jiffies_addr[1];
10892 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10893 BPF_REG_0, 0);
10894 cnt = 3;
10895
10896 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10897 cnt);
10898 if (!new_prog)
10899 return -ENOMEM;
10900
10901 delta += cnt - 1;
10902 env->prog = prog = new_prog;
10903 insn = new_prog->insnsi + i + delta;
10904 continue;
10905 }
10906
81ed18ab 10907patch_call_imm:
5e43f899 10908 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
10909 /* all functions that have prototype and verifier allowed
10910 * programs to call them, must be real in-kernel functions
10911 */
10912 if (!fn->func) {
61bd5218
JK
10913 verbose(env,
10914 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
10915 func_id_name(insn->imm), insn->imm);
10916 return -EFAULT;
e245c5c6 10917 }
79741b3b 10918 insn->imm = fn->func - __bpf_call_base;
e245c5c6 10919 }
e245c5c6 10920
d2e4c1e6
DB
10921 /* Since poke tab is now finalized, publish aux to tracker. */
10922 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10923 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10924 if (!map_ptr->ops->map_poke_track ||
10925 !map_ptr->ops->map_poke_untrack ||
10926 !map_ptr->ops->map_poke_run) {
10927 verbose(env, "bpf verifier is misconfigured\n");
10928 return -EINVAL;
10929 }
10930
10931 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10932 if (ret < 0) {
10933 verbose(env, "tracking tail call prog failed\n");
10934 return ret;
10935 }
10936 }
10937
79741b3b
AS
10938 return 0;
10939}
e245c5c6 10940
58e2af8b 10941static void free_states(struct bpf_verifier_env *env)
f1bca824 10942{
58e2af8b 10943 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
10944 int i;
10945
9f4686c4
AS
10946 sl = env->free_list;
10947 while (sl) {
10948 sln = sl->next;
10949 free_verifier_state(&sl->state, false);
10950 kfree(sl);
10951 sl = sln;
10952 }
51c39bb1 10953 env->free_list = NULL;
9f4686c4 10954
f1bca824
AS
10955 if (!env->explored_states)
10956 return;
10957
dc2a4ebc 10958 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
10959 sl = env->explored_states[i];
10960
a8f500af
AS
10961 while (sl) {
10962 sln = sl->next;
10963 free_verifier_state(&sl->state, false);
10964 kfree(sl);
10965 sl = sln;
10966 }
51c39bb1 10967 env->explored_states[i] = NULL;
f1bca824 10968 }
51c39bb1 10969}
f1bca824 10970
51c39bb1
AS
10971/* The verifier is using insn_aux_data[] to store temporary data during
10972 * verification and to store information for passes that run after the
10973 * verification like dead code sanitization. do_check_common() for subprogram N
10974 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10975 * temporary data after do_check_common() finds that subprogram N cannot be
10976 * verified independently. pass_cnt counts the number of times
10977 * do_check_common() was run and insn->aux->seen tells the pass number
10978 * insn_aux_data was touched. These variables are compared to clear temporary
10979 * data from failed pass. For testing and experiments do_check_common() can be
10980 * run multiple times even when prior attempt to verify is unsuccessful.
10981 */
10982static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10983{
10984 struct bpf_insn *insn = env->prog->insnsi;
10985 struct bpf_insn_aux_data *aux;
10986 int i, class;
10987
10988 for (i = 0; i < env->prog->len; i++) {
10989 class = BPF_CLASS(insn[i].code);
10990 if (class != BPF_LDX && class != BPF_STX)
10991 continue;
10992 aux = &env->insn_aux_data[i];
10993 if (aux->seen != env->pass_cnt)
10994 continue;
10995 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10996 }
f1bca824
AS
10997}
10998
51c39bb1
AS
10999static int do_check_common(struct bpf_verifier_env *env, int subprog)
11000{
6f8a57cc 11001 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
11002 struct bpf_verifier_state *state;
11003 struct bpf_reg_state *regs;
11004 int ret, i;
11005
11006 env->prev_linfo = NULL;
11007 env->pass_cnt++;
11008
11009 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11010 if (!state)
11011 return -ENOMEM;
11012 state->curframe = 0;
11013 state->speculative = false;
11014 state->branches = 1;
11015 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11016 if (!state->frame[0]) {
11017 kfree(state);
11018 return -ENOMEM;
11019 }
11020 env->cur_state = state;
11021 init_func_state(env, state->frame[0],
11022 BPF_MAIN_FUNC /* callsite */,
11023 0 /* frameno */,
11024 subprog);
11025
11026 regs = state->frame[state->curframe]->regs;
be8704ff 11027 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
11028 ret = btf_prepare_func_args(env, subprog, regs);
11029 if (ret)
11030 goto out;
11031 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11032 if (regs[i].type == PTR_TO_CTX)
11033 mark_reg_known_zero(env, regs, i);
11034 else if (regs[i].type == SCALAR_VALUE)
11035 mark_reg_unknown(env, regs, i);
11036 }
11037 } else {
11038 /* 1st arg to a function */
11039 regs[BPF_REG_1].type = PTR_TO_CTX;
11040 mark_reg_known_zero(env, regs, BPF_REG_1);
11041 ret = btf_check_func_arg_match(env, subprog, regs);
11042 if (ret == -EFAULT)
11043 /* unlikely verifier bug. abort.
11044 * ret == 0 and ret < 0 are sadly acceptable for
11045 * main() function due to backward compatibility.
11046 * Like socket filter program may be written as:
11047 * int bpf_prog(struct pt_regs *ctx)
11048 * and never dereference that ctx in the program.
11049 * 'struct pt_regs' is a type mismatch for socket
11050 * filter that should be using 'struct __sk_buff'.
11051 */
11052 goto out;
11053 }
11054
11055 ret = do_check(env);
11056out:
f59bbfc2
AS
11057 /* check for NULL is necessary, since cur_state can be freed inside
11058 * do_check() under memory pressure.
11059 */
11060 if (env->cur_state) {
11061 free_verifier_state(env->cur_state, true);
11062 env->cur_state = NULL;
11063 }
6f8a57cc
AN
11064 while (!pop_stack(env, NULL, NULL, false));
11065 if (!ret && pop_log)
11066 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
11067 free_states(env);
11068 if (ret)
11069 /* clean aux data in case subprog was rejected */
11070 sanitize_insn_aux_data(env);
11071 return ret;
11072}
11073
11074/* Verify all global functions in a BPF program one by one based on their BTF.
11075 * All global functions must pass verification. Otherwise the whole program is rejected.
11076 * Consider:
11077 * int bar(int);
11078 * int foo(int f)
11079 * {
11080 * return bar(f);
11081 * }
11082 * int bar(int b)
11083 * {
11084 * ...
11085 * }
11086 * foo() will be verified first for R1=any_scalar_value. During verification it
11087 * will be assumed that bar() already verified successfully and call to bar()
11088 * from foo() will be checked for type match only. Later bar() will be verified
11089 * independently to check that it's safe for R1=any_scalar_value.
11090 */
11091static int do_check_subprogs(struct bpf_verifier_env *env)
11092{
11093 struct bpf_prog_aux *aux = env->prog->aux;
11094 int i, ret;
11095
11096 if (!aux->func_info)
11097 return 0;
11098
11099 for (i = 1; i < env->subprog_cnt; i++) {
11100 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11101 continue;
11102 env->insn_idx = env->subprog_info[i].start;
11103 WARN_ON_ONCE(env->insn_idx == 0);
11104 ret = do_check_common(env, i);
11105 if (ret) {
11106 return ret;
11107 } else if (env->log.level & BPF_LOG_LEVEL) {
11108 verbose(env,
11109 "Func#%d is safe for any args that match its prototype\n",
11110 i);
11111 }
11112 }
11113 return 0;
11114}
11115
11116static int do_check_main(struct bpf_verifier_env *env)
11117{
11118 int ret;
11119
11120 env->insn_idx = 0;
11121 ret = do_check_common(env, 0);
11122 if (!ret)
11123 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11124 return ret;
11125}
11126
11127
06ee7115
AS
11128static void print_verification_stats(struct bpf_verifier_env *env)
11129{
11130 int i;
11131
11132 if (env->log.level & BPF_LOG_STATS) {
11133 verbose(env, "verification time %lld usec\n",
11134 div_u64(env->verification_time, 1000));
11135 verbose(env, "stack depth ");
11136 for (i = 0; i < env->subprog_cnt; i++) {
11137 u32 depth = env->subprog_info[i].stack_depth;
11138
11139 verbose(env, "%d", depth);
11140 if (i + 1 < env->subprog_cnt)
11141 verbose(env, "+");
11142 }
11143 verbose(env, "\n");
11144 }
11145 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11146 "total_states %d peak_states %d mark_read %d\n",
11147 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11148 env->max_states_per_insn, env->total_states,
11149 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
11150}
11151
27ae7997
MKL
11152static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11153{
11154 const struct btf_type *t, *func_proto;
11155 const struct bpf_struct_ops *st_ops;
11156 const struct btf_member *member;
11157 struct bpf_prog *prog = env->prog;
11158 u32 btf_id, member_idx;
11159 const char *mname;
11160
11161 btf_id = prog->aux->attach_btf_id;
11162 st_ops = bpf_struct_ops_find(btf_id);
11163 if (!st_ops) {
11164 verbose(env, "attach_btf_id %u is not a supported struct\n",
11165 btf_id);
11166 return -ENOTSUPP;
11167 }
11168
11169 t = st_ops->type;
11170 member_idx = prog->expected_attach_type;
11171 if (member_idx >= btf_type_vlen(t)) {
11172 verbose(env, "attach to invalid member idx %u of struct %s\n",
11173 member_idx, st_ops->name);
11174 return -EINVAL;
11175 }
11176
11177 member = &btf_type_member(t)[member_idx];
11178 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11179 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11180 NULL);
11181 if (!func_proto) {
11182 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11183 mname, member_idx, st_ops->name);
11184 return -EINVAL;
11185 }
11186
11187 if (st_ops->check_member) {
11188 int err = st_ops->check_member(t, member);
11189
11190 if (err) {
11191 verbose(env, "attach to unsupported member %s of struct %s\n",
11192 mname, st_ops->name);
11193 return err;
11194 }
11195 }
11196
11197 prog->aux->attach_func_proto = func_proto;
11198 prog->aux->attach_func_name = mname;
11199 env->ops = st_ops->verifier_ops;
11200
11201 return 0;
11202}
6ba43b76
KS
11203#define SECURITY_PREFIX "security_"
11204
f7b12b6f 11205static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 11206{
69191754 11207 if (within_error_injection_list(addr) ||
f7b12b6f 11208 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 11209 return 0;
6ba43b76 11210
6ba43b76
KS
11211 return -EINVAL;
11212}
27ae7997 11213
1e6c62a8
AS
11214/* non exhaustive list of sleepable bpf_lsm_*() functions */
11215BTF_SET_START(btf_sleepable_lsm_hooks)
11216#ifdef CONFIG_BPF_LSM
1e6c62a8 11217BTF_ID(func, bpf_lsm_bprm_committed_creds)
29523c5e
AS
11218#else
11219BTF_ID_UNUSED
1e6c62a8
AS
11220#endif
11221BTF_SET_END(btf_sleepable_lsm_hooks)
11222
11223static int check_sleepable_lsm_hook(u32 btf_id)
11224{
11225 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11226}
11227
11228/* list of non-sleepable functions that are otherwise on
11229 * ALLOW_ERROR_INJECTION list
11230 */
11231BTF_SET_START(btf_non_sleepable_error_inject)
11232/* Three functions below can be called from sleepable and non-sleepable context.
11233 * Assume non-sleepable from bpf safety point of view.
11234 */
11235BTF_ID(func, __add_to_page_cache_locked)
11236BTF_ID(func, should_fail_alloc_page)
11237BTF_ID(func, should_failslab)
11238BTF_SET_END(btf_non_sleepable_error_inject)
11239
11240static int check_non_sleepable_error_inject(u32 btf_id)
11241{
11242 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11243}
11244
f7b12b6f
THJ
11245int bpf_check_attach_target(struct bpf_verifier_log *log,
11246 const struct bpf_prog *prog,
11247 const struct bpf_prog *tgt_prog,
11248 u32 btf_id,
11249 struct bpf_attach_target_info *tgt_info)
38207291 11250{
be8704ff 11251 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 11252 const char prefix[] = "btf_trace_";
5b92a28a 11253 int ret = 0, subprog = -1, i;
38207291 11254 const struct btf_type *t;
5b92a28a 11255 bool conservative = true;
38207291 11256 const char *tname;
5b92a28a 11257 struct btf *btf;
f7b12b6f 11258 long addr = 0;
38207291 11259
f1b9509c 11260 if (!btf_id) {
efc68158 11261 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
11262 return -EINVAL;
11263 }
f7b12b6f 11264 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
5b92a28a 11265 if (!btf) {
efc68158 11266 bpf_log(log,
5b92a28a
AS
11267 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11268 return -EINVAL;
11269 }
11270 t = btf_type_by_id(btf, btf_id);
f1b9509c 11271 if (!t) {
efc68158 11272 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
11273 return -EINVAL;
11274 }
5b92a28a 11275 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 11276 if (!tname) {
efc68158 11277 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
11278 return -EINVAL;
11279 }
5b92a28a
AS
11280 if (tgt_prog) {
11281 struct bpf_prog_aux *aux = tgt_prog->aux;
11282
11283 for (i = 0; i < aux->func_info_cnt; i++)
11284 if (aux->func_info[i].type_id == btf_id) {
11285 subprog = i;
11286 break;
11287 }
11288 if (subprog == -1) {
efc68158 11289 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
11290 return -EINVAL;
11291 }
11292 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11293 if (prog_extension) {
11294 if (conservative) {
efc68158 11295 bpf_log(log,
be8704ff
AS
11296 "Cannot replace static functions\n");
11297 return -EINVAL;
11298 }
11299 if (!prog->jit_requested) {
efc68158 11300 bpf_log(log,
be8704ff
AS
11301 "Extension programs should be JITed\n");
11302 return -EINVAL;
11303 }
be8704ff
AS
11304 }
11305 if (!tgt_prog->jited) {
efc68158 11306 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
11307 return -EINVAL;
11308 }
11309 if (tgt_prog->type == prog->type) {
11310 /* Cannot fentry/fexit another fentry/fexit program.
11311 * Cannot attach program extension to another extension.
11312 * It's ok to attach fentry/fexit to extension program.
11313 */
efc68158 11314 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
11315 return -EINVAL;
11316 }
11317 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11318 prog_extension &&
11319 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11320 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11321 /* Program extensions can extend all program types
11322 * except fentry/fexit. The reason is the following.
11323 * The fentry/fexit programs are used for performance
11324 * analysis, stats and can be attached to any program
11325 * type except themselves. When extension program is
11326 * replacing XDP function it is necessary to allow
11327 * performance analysis of all functions. Both original
11328 * XDP program and its program extension. Hence
11329 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11330 * allowed. If extending of fentry/fexit was allowed it
11331 * would be possible to create long call chain
11332 * fentry->extension->fentry->extension beyond
11333 * reasonable stack size. Hence extending fentry is not
11334 * allowed.
11335 */
efc68158 11336 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
11337 return -EINVAL;
11338 }
5b92a28a 11339 } else {
be8704ff 11340 if (prog_extension) {
efc68158 11341 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
11342 return -EINVAL;
11343 }
5b92a28a 11344 }
f1b9509c
AS
11345
11346 switch (prog->expected_attach_type) {
11347 case BPF_TRACE_RAW_TP:
5b92a28a 11348 if (tgt_prog) {
efc68158 11349 bpf_log(log,
5b92a28a
AS
11350 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11351 return -EINVAL;
11352 }
38207291 11353 if (!btf_type_is_typedef(t)) {
efc68158 11354 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
11355 btf_id);
11356 return -EINVAL;
11357 }
f1b9509c 11358 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 11359 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
11360 btf_id, tname);
11361 return -EINVAL;
11362 }
11363 tname += sizeof(prefix) - 1;
5b92a28a 11364 t = btf_type_by_id(btf, t->type);
38207291
MKL
11365 if (!btf_type_is_ptr(t))
11366 /* should never happen in valid vmlinux build */
11367 return -EINVAL;
5b92a28a 11368 t = btf_type_by_id(btf, t->type);
38207291
MKL
11369 if (!btf_type_is_func_proto(t))
11370 /* should never happen in valid vmlinux build */
11371 return -EINVAL;
11372
f7b12b6f 11373 break;
15d83c4d
YS
11374 case BPF_TRACE_ITER:
11375 if (!btf_type_is_func(t)) {
efc68158 11376 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
11377 btf_id);
11378 return -EINVAL;
11379 }
11380 t = btf_type_by_id(btf, t->type);
11381 if (!btf_type_is_func_proto(t))
11382 return -EINVAL;
f7b12b6f
THJ
11383 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11384 if (ret)
11385 return ret;
11386 break;
be8704ff
AS
11387 default:
11388 if (!prog_extension)
11389 return -EINVAL;
df561f66 11390 fallthrough;
ae240823 11391 case BPF_MODIFY_RETURN:
9e4e01df 11392 case BPF_LSM_MAC:
fec56f58
AS
11393 case BPF_TRACE_FENTRY:
11394 case BPF_TRACE_FEXIT:
11395 if (!btf_type_is_func(t)) {
efc68158 11396 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
11397 btf_id);
11398 return -EINVAL;
11399 }
be8704ff 11400 if (prog_extension &&
efc68158 11401 btf_check_type_match(log, prog, btf, t))
be8704ff 11402 return -EINVAL;
5b92a28a 11403 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11404 if (!btf_type_is_func_proto(t))
11405 return -EINVAL;
f7b12b6f 11406
4a1e7c0c
THJ
11407 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11408 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11409 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11410 return -EINVAL;
11411
f7b12b6f 11412 if (tgt_prog && conservative)
5b92a28a 11413 t = NULL;
f7b12b6f
THJ
11414
11415 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 11416 if (ret < 0)
f7b12b6f
THJ
11417 return ret;
11418
5b92a28a 11419 if (tgt_prog) {
e9eeec58
YS
11420 if (subprog == 0)
11421 addr = (long) tgt_prog->bpf_func;
11422 else
11423 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11424 } else {
11425 addr = kallsyms_lookup_name(tname);
11426 if (!addr) {
efc68158 11427 bpf_log(log,
5b92a28a
AS
11428 "The address of function %s cannot be found\n",
11429 tname);
f7b12b6f 11430 return -ENOENT;
5b92a28a 11431 }
fec56f58 11432 }
18644cec 11433
1e6c62a8
AS
11434 if (prog->aux->sleepable) {
11435 ret = -EINVAL;
11436 switch (prog->type) {
11437 case BPF_PROG_TYPE_TRACING:
11438 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11439 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11440 */
11441 if (!check_non_sleepable_error_inject(btf_id) &&
11442 within_error_injection_list(addr))
11443 ret = 0;
11444 break;
11445 case BPF_PROG_TYPE_LSM:
11446 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11447 * Only some of them are sleepable.
11448 */
11449 if (check_sleepable_lsm_hook(btf_id))
11450 ret = 0;
11451 break;
11452 default:
11453 break;
11454 }
f7b12b6f
THJ
11455 if (ret) {
11456 bpf_log(log, "%s is not sleepable\n", tname);
11457 return ret;
11458 }
1e6c62a8 11459 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 11460 if (tgt_prog) {
efc68158 11461 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
11462 return -EINVAL;
11463 }
11464 ret = check_attach_modify_return(addr, tname);
11465 if (ret) {
11466 bpf_log(log, "%s() is not modifiable\n", tname);
11467 return ret;
1af9270e 11468 }
18644cec 11469 }
f7b12b6f
THJ
11470
11471 break;
11472 }
11473 tgt_info->tgt_addr = addr;
11474 tgt_info->tgt_name = tname;
11475 tgt_info->tgt_type = t;
11476 return 0;
11477}
11478
11479static int check_attach_btf_id(struct bpf_verifier_env *env)
11480{
11481 struct bpf_prog *prog = env->prog;
3aac1ead 11482 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
11483 struct bpf_attach_target_info tgt_info = {};
11484 u32 btf_id = prog->aux->attach_btf_id;
11485 struct bpf_trampoline *tr;
11486 int ret;
11487 u64 key;
11488
11489 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11490 prog->type != BPF_PROG_TYPE_LSM) {
11491 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11492 return -EINVAL;
11493 }
11494
11495 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11496 return check_struct_ops_btf_id(env);
11497
11498 if (prog->type != BPF_PROG_TYPE_TRACING &&
11499 prog->type != BPF_PROG_TYPE_LSM &&
11500 prog->type != BPF_PROG_TYPE_EXT)
11501 return 0;
11502
11503 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11504 if (ret)
fec56f58 11505 return ret;
f7b12b6f
THJ
11506
11507 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
11508 /* to make freplace equivalent to their targets, they need to
11509 * inherit env->ops and expected_attach_type for the rest of the
11510 * verification
11511 */
f7b12b6f
THJ
11512 env->ops = bpf_verifier_ops[tgt_prog->type];
11513 prog->expected_attach_type = tgt_prog->expected_attach_type;
11514 }
11515
11516 /* store info about the attachment target that will be used later */
11517 prog->aux->attach_func_proto = tgt_info.tgt_type;
11518 prog->aux->attach_func_name = tgt_info.tgt_name;
11519
4a1e7c0c
THJ
11520 if (tgt_prog) {
11521 prog->aux->saved_dst_prog_type = tgt_prog->type;
11522 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11523 }
11524
f7b12b6f
THJ
11525 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11526 prog->aux->attach_btf_trace = true;
11527 return 0;
11528 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11529 if (!bpf_iter_prog_supported(prog))
11530 return -EINVAL;
11531 return 0;
11532 }
11533
11534 if (prog->type == BPF_PROG_TYPE_LSM) {
11535 ret = bpf_lsm_verify_prog(&env->log, prog);
11536 if (ret < 0)
11537 return ret;
38207291 11538 }
f7b12b6f
THJ
11539
11540 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
11541 tr = bpf_trampoline_get(key, &tgt_info);
11542 if (!tr)
11543 return -ENOMEM;
11544
3aac1ead 11545 prog->aux->dst_trampoline = tr;
f7b12b6f 11546 return 0;
38207291
MKL
11547}
11548
76654e67
AM
11549struct btf *bpf_get_btf_vmlinux(void)
11550{
11551 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11552 mutex_lock(&bpf_verifier_lock);
11553 if (!btf_vmlinux)
11554 btf_vmlinux = btf_parse_vmlinux();
11555 mutex_unlock(&bpf_verifier_lock);
11556 }
11557 return btf_vmlinux;
11558}
11559
838e9690
YS
11560int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11561 union bpf_attr __user *uattr)
51580e79 11562{
06ee7115 11563 u64 start_time = ktime_get_ns();
58e2af8b 11564 struct bpf_verifier_env *env;
b9193c1b 11565 struct bpf_verifier_log *log;
9e4c24e7 11566 int i, len, ret = -EINVAL;
e2ae4ca2 11567 bool is_priv;
51580e79 11568
eba0c929
AB
11569 /* no program is valid */
11570 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11571 return -EINVAL;
11572
58e2af8b 11573 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11574 * allocate/free it every time bpf_check() is called
11575 */
58e2af8b 11576 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11577 if (!env)
11578 return -ENOMEM;
61bd5218 11579 log = &env->log;
cbd35700 11580
9e4c24e7 11581 len = (*prog)->len;
fad953ce 11582 env->insn_aux_data =
9e4c24e7 11583 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11584 ret = -ENOMEM;
11585 if (!env->insn_aux_data)
11586 goto err_free_env;
9e4c24e7
JK
11587 for (i = 0; i < len; i++)
11588 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11589 env->prog = *prog;
00176a34 11590 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11591 is_priv = bpf_capable();
0246e64d 11592
76654e67 11593 bpf_get_btf_vmlinux();
8580ac94 11594
cbd35700 11595 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11596 if (!is_priv)
11597 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11598
11599 if (attr->log_level || attr->log_buf || attr->log_size) {
11600 /* user requested verbose verifier output
11601 * and supplied buffer to store the verification trace
11602 */
e7bf8249
JK
11603 log->level = attr->log_level;
11604 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11605 log->len_total = attr->log_size;
cbd35700
AS
11606
11607 ret = -EINVAL;
e7bf8249 11608 /* log attributes have to be sane */
7a9f5c65 11609 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11610 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11611 goto err_unlock;
cbd35700 11612 }
1ad2f583 11613
8580ac94
AS
11614 if (IS_ERR(btf_vmlinux)) {
11615 /* Either gcc or pahole or kernel are broken. */
11616 verbose(env, "in-kernel BTF is malformed\n");
11617 ret = PTR_ERR(btf_vmlinux);
38207291 11618 goto skip_full_check;
8580ac94
AS
11619 }
11620
1ad2f583
DB
11621 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11622 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 11623 env->strict_alignment = true;
e9ee9efc
DM
11624 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11625 env->strict_alignment = false;
cbd35700 11626
2c78ee89 11627 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 11628 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
11629 env->bypass_spec_v1 = bpf_bypass_spec_v1();
11630 env->bypass_spec_v4 = bpf_bypass_spec_v4();
11631 env->bpf_capable = bpf_capable();
e2ae4ca2 11632
10d274e8
AS
11633 if (is_priv)
11634 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11635
f4e3ec0d
JK
11636 ret = replace_map_fd_with_map_ptr(env);
11637 if (ret < 0)
11638 goto skip_full_check;
11639
cae1927c 11640 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 11641 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 11642 if (ret)
f4e3ec0d 11643 goto skip_full_check;
ab3f0063
JK
11644 }
11645
dc2a4ebc 11646 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 11647 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
11648 GFP_USER);
11649 ret = -ENOMEM;
11650 if (!env->explored_states)
11651 goto skip_full_check;
11652
d9762e84 11653 ret = check_subprogs(env);
475fb78f
AS
11654 if (ret < 0)
11655 goto skip_full_check;
11656
c454a46b 11657 ret = check_btf_info(env, attr, uattr);
838e9690
YS
11658 if (ret < 0)
11659 goto skip_full_check;
11660
be8704ff
AS
11661 ret = check_attach_btf_id(env);
11662 if (ret)
11663 goto skip_full_check;
11664
d9762e84
MKL
11665 ret = check_cfg(env);
11666 if (ret < 0)
11667 goto skip_full_check;
11668
51c39bb1
AS
11669 ret = do_check_subprogs(env);
11670 ret = ret ?: do_check_main(env);
cbd35700 11671
c941ce9c
QM
11672 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11673 ret = bpf_prog_offload_finalize(env);
11674
0246e64d 11675skip_full_check:
51c39bb1 11676 kvfree(env->explored_states);
0246e64d 11677
c131187d 11678 if (ret == 0)
9b38c405 11679 ret = check_max_stack_depth(env);
c131187d 11680
9b38c405 11681 /* instruction rewrites happen after this point */
e2ae4ca2
JK
11682 if (is_priv) {
11683 if (ret == 0)
11684 opt_hard_wire_dead_code_branches(env);
52875a04
JK
11685 if (ret == 0)
11686 ret = opt_remove_dead_code(env);
a1b14abc
JK
11687 if (ret == 0)
11688 ret = opt_remove_nops(env);
52875a04
JK
11689 } else {
11690 if (ret == 0)
11691 sanitize_dead_code(env);
e2ae4ca2
JK
11692 }
11693
9bac3d6d
AS
11694 if (ret == 0)
11695 /* program is valid, convert *(u32*)(ctx + off) accesses */
11696 ret = convert_ctx_accesses(env);
11697
e245c5c6 11698 if (ret == 0)
79741b3b 11699 ret = fixup_bpf_calls(env);
e245c5c6 11700
a4b1d3c1
JW
11701 /* do 32-bit optimization after insn patching has done so those patched
11702 * insns could be handled correctly.
11703 */
d6c2308c
JW
11704 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11705 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11706 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11707 : false;
a4b1d3c1
JW
11708 }
11709
1ea47e01
AS
11710 if (ret == 0)
11711 ret = fixup_call_args(env);
11712
06ee7115
AS
11713 env->verification_time = ktime_get_ns() - start_time;
11714 print_verification_stats(env);
11715
a2a7d570 11716 if (log->level && bpf_verifier_log_full(log))
cbd35700 11717 ret = -ENOSPC;
a2a7d570 11718 if (log->level && !log->ubuf) {
cbd35700 11719 ret = -EFAULT;
a2a7d570 11720 goto err_release_maps;
cbd35700
AS
11721 }
11722
0246e64d
AS
11723 if (ret == 0 && env->used_map_cnt) {
11724 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
11725 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11726 sizeof(env->used_maps[0]),
11727 GFP_KERNEL);
0246e64d 11728
9bac3d6d 11729 if (!env->prog->aux->used_maps) {
0246e64d 11730 ret = -ENOMEM;
a2a7d570 11731 goto err_release_maps;
0246e64d
AS
11732 }
11733
9bac3d6d 11734 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 11735 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 11736 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
11737
11738 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11739 * bpf_ld_imm64 instructions
11740 */
11741 convert_pseudo_ld_imm64(env);
11742 }
cbd35700 11743
ba64e7d8
YS
11744 if (ret == 0)
11745 adjust_btf_func(env);
11746
a2a7d570 11747err_release_maps:
9bac3d6d 11748 if (!env->prog->aux->used_maps)
0246e64d 11749 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 11750 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
11751 */
11752 release_maps(env);
03f87c0b
THJ
11753
11754 /* extension progs temporarily inherit the attach_type of their targets
11755 for verification purposes, so set it back to zero before returning
11756 */
11757 if (env->prog->type == BPF_PROG_TYPE_EXT)
11758 env->prog->expected_attach_type = 0;
11759
9bac3d6d 11760 *prog = env->prog;
3df126f3 11761err_unlock:
45a73c17
AS
11762 if (!is_priv)
11763 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
11764 vfree(env->insn_aux_data);
11765err_free_env:
11766 kfree(env);
51580e79
AS
11767 return ret;
11768}