]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'strparser'
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
17#include <linux/filter.h>
18#include <net/netlink.h>
19#include <linux/file.h>
20#include <linux/vmalloc.h>
21
22/* bpf_check() is a static code analyzer that walks eBPF program
23 * instruction by instruction and updates register/stack state.
24 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
25 *
26 * The first pass is depth-first-search to check that the program is a DAG.
27 * It rejects the following programs:
28 * - larger than BPF_MAXINSNS insns
29 * - if loop is present (detected via back-edge)
30 * - unreachable insns exist (shouldn't be a forest. program = one function)
31 * - out of bounds or malformed jumps
32 * The second pass is all possible path descent from the 1st insn.
33 * Since it's analyzing all pathes through the program, the length of the
34 * analysis is limited to 32k insn, which may be hit even if total number of
35 * insn is less then 4K, but there are too many branches that change stack/regs.
36 * Number of 'branches to be analyzed' is limited to 1k
37 *
38 * On entry to each instruction, each register has a type, and the instruction
39 * changes the types of the registers depending on instruction semantics.
40 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
41 * copied to R1.
42 *
43 * All registers are 64-bit.
44 * R0 - return register
45 * R1-R5 argument passing registers
46 * R6-R9 callee saved registers
47 * R10 - frame pointer read-only
48 *
49 * At the start of BPF program the register R1 contains a pointer to bpf_context
50 * and has type PTR_TO_CTX.
51 *
52 * Verifier tracks arithmetic operations on pointers in case:
53 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
54 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
55 * 1st insn copies R10 (which has FRAME_PTR) type into R1
56 * and 2nd arithmetic instruction is pattern matched to recognize
57 * that it wants to construct a pointer to some element within stack.
58 * So after 2nd insn, the register R1 has type PTR_TO_STACK
59 * (and -20 constant is saved for further stack bounds checking).
60 * Meaning that this reg is a pointer to stack plus known immediate constant.
61 *
62 * Most of the time the registers have UNKNOWN_VALUE type, which
63 * means the register has some value, but it's not a valid pointer.
64 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
65 *
66 * When verifier sees load or store instructions the type of base register
67 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
68 * types recognized by check_mem_access() function.
69 *
70 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
71 * and the range of [ptr, ptr + map's value_size) is accessible.
72 *
73 * registers used to pass values to function calls are checked against
74 * function argument constraints.
75 *
76 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
77 * It means that the register type passed to this function must be
78 * PTR_TO_STACK and it will be used inside the function as
79 * 'pointer to map element key'
80 *
81 * For example the argument constraints for bpf_map_lookup_elem():
82 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
83 * .arg1_type = ARG_CONST_MAP_PTR,
84 * .arg2_type = ARG_PTR_TO_MAP_KEY,
85 *
86 * ret_type says that this function returns 'pointer to map elem value or null'
87 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
88 * 2nd argument should be a pointer to stack, which will be used inside
89 * the helper function as a pointer to map element key.
90 *
91 * On the kernel side the helper function looks like:
92 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
93 * {
94 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
95 * void *key = (void *) (unsigned long) r2;
96 * void *value;
97 *
98 * here kernel can access 'key' and 'map' pointers safely, knowing that
99 * [key, key + map->key_size) bytes are valid and were initialized on
100 * the stack of eBPF program.
101 * }
102 *
103 * Corresponding eBPF program may look like:
104 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
105 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
106 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
107 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
108 * here verifier looks at prototype of map_lookup_elem() and sees:
109 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
110 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
111 *
112 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
113 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
114 * and were initialized prior to this call.
115 * If it's ok, then verifier allows this BPF_CALL insn and looks at
116 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
117 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
118 * returns ether pointer to map value or NULL.
119 *
120 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
121 * insn, the register holding that pointer in the true branch changes state to
122 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
123 * branch. See check_cond_jmp_op().
124 *
125 * After the call R0 is set to return type of the function and registers R1-R5
126 * are set to NOT_INIT to indicate that they are no longer readable.
127 */
128
17a52670
AS
129struct reg_state {
130 enum bpf_reg_type type;
131 union {
969bf05e
AS
132 /* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
133 s64 imm;
134
135 /* valid when type == PTR_TO_PACKET* */
136 struct {
137 u32 id;
138 u16 off;
139 u16 range;
140 };
17a52670
AS
141
142 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
143 * PTR_TO_MAP_VALUE_OR_NULL
144 */
145 struct bpf_map *map_ptr;
146 };
147};
148
149enum bpf_stack_slot_type {
150 STACK_INVALID, /* nothing was stored in this stack slot */
9c399760 151 STACK_SPILL, /* register spilled into stack */
17a52670
AS
152 STACK_MISC /* BPF program wrote some data into this slot */
153};
154
9c399760 155#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
17a52670
AS
156
157/* state of the program:
158 * type of all registers and stack info
159 */
160struct verifier_state {
161 struct reg_state regs[MAX_BPF_REG];
9c399760
AS
162 u8 stack_slot_type[MAX_BPF_STACK];
163 struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
17a52670
AS
164};
165
166/* linked list of verifier states used to prune search */
167struct verifier_state_list {
168 struct verifier_state state;
169 struct verifier_state_list *next;
170};
171
172/* verifier_state + insn_idx are pushed to stack when branch is encountered */
173struct verifier_stack_elem {
174 /* verifer state is 'st'
175 * before processing instruction 'insn_idx'
176 * and after processing instruction 'prev_insn_idx'
177 */
178 struct verifier_state st;
179 int insn_idx;
180 int prev_insn_idx;
181 struct verifier_stack_elem *next;
182};
183
0246e64d
AS
184#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
185
cbd35700
AS
186/* single container for all structs
187 * one verifier_env per bpf_check() call
188 */
189struct verifier_env {
0246e64d 190 struct bpf_prog *prog; /* eBPF program being verified */
17a52670
AS
191 struct verifier_stack_elem *head; /* stack of verifier states to be processed */
192 int stack_size; /* number of states to be processed */
193 struct verifier_state cur_state; /* current verifier state */
f1bca824 194 struct verifier_state_list **explored_states; /* search pruning optimization */
0246e64d
AS
195 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
196 u32 used_map_cnt; /* number of used maps */
1f415a74 197 u32 id_gen; /* used to generate unique reg IDs */
1be7f75d 198 bool allow_ptr_leaks;
cbd35700
AS
199};
200
07016151
DB
201#define BPF_COMPLEXITY_LIMIT_INSNS 65536
202#define BPF_COMPLEXITY_LIMIT_STACK 1024
203
33ff9823
DB
204struct bpf_call_arg_meta {
205 struct bpf_map *map_ptr;
435faee1
DB
206 bool raw_mode;
207 int regno;
208 int access_size;
33ff9823
DB
209};
210
cbd35700
AS
211/* verbose verifier prints what it's seeing
212 * bpf_check() is called under lock, so no race to access these global vars
213 */
214static u32 log_level, log_size, log_len;
215static char *log_buf;
216
217static DEFINE_MUTEX(bpf_verifier_lock);
218
219/* log_level controls verbosity level of eBPF verifier.
220 * verbose() is used to dump the verification trace to the log, so the user
221 * can figure out what's wrong with the program
222 */
1d056d9c 223static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
224{
225 va_list args;
226
227 if (log_level == 0 || log_len >= log_size - 1)
228 return;
229
230 va_start(args, fmt);
231 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
232 va_end(args);
233}
234
17a52670
AS
235/* string representation of 'enum bpf_reg_type' */
236static const char * const reg_type_str[] = {
237 [NOT_INIT] = "?",
238 [UNKNOWN_VALUE] = "inv",
239 [PTR_TO_CTX] = "ctx",
240 [CONST_PTR_TO_MAP] = "map_ptr",
241 [PTR_TO_MAP_VALUE] = "map_value",
242 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
243 [FRAME_PTR] = "fp",
244 [PTR_TO_STACK] = "fp",
245 [CONST_IMM] = "imm",
969bf05e
AS
246 [PTR_TO_PACKET] = "pkt",
247 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
248};
249
1a0dc1ac 250static void print_verifier_state(struct verifier_state *state)
17a52670 251{
1a0dc1ac 252 struct reg_state *reg;
17a52670
AS
253 enum bpf_reg_type t;
254 int i;
255
256 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
257 reg = &state->regs[i];
258 t = reg->type;
17a52670
AS
259 if (t == NOT_INIT)
260 continue;
261 verbose(" R%d=%s", i, reg_type_str[t]);
262 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
263 verbose("%lld", reg->imm);
264 else if (t == PTR_TO_PACKET)
265 verbose("(id=%d,off=%d,r=%d)",
266 reg->id, reg->off, reg->range);
267 else if (t == UNKNOWN_VALUE && reg->imm)
268 verbose("%lld", reg->imm);
17a52670
AS
269 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
270 t == PTR_TO_MAP_VALUE_OR_NULL)
271 verbose("(ks=%d,vs=%d)",
1a0dc1ac
AS
272 reg->map_ptr->key_size,
273 reg->map_ptr->value_size);
17a52670 274 }
9c399760 275 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 276 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 277 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 278 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
279 }
280 verbose("\n");
281}
282
cbd35700
AS
283static const char *const bpf_class_string[] = {
284 [BPF_LD] = "ld",
285 [BPF_LDX] = "ldx",
286 [BPF_ST] = "st",
287 [BPF_STX] = "stx",
288 [BPF_ALU] = "alu",
289 [BPF_JMP] = "jmp",
290 [BPF_RET] = "BUG",
291 [BPF_ALU64] = "alu64",
292};
293
687f0715 294static const char *const bpf_alu_string[16] = {
cbd35700
AS
295 [BPF_ADD >> 4] = "+=",
296 [BPF_SUB >> 4] = "-=",
297 [BPF_MUL >> 4] = "*=",
298 [BPF_DIV >> 4] = "/=",
299 [BPF_OR >> 4] = "|=",
300 [BPF_AND >> 4] = "&=",
301 [BPF_LSH >> 4] = "<<=",
302 [BPF_RSH >> 4] = ">>=",
303 [BPF_NEG >> 4] = "neg",
304 [BPF_MOD >> 4] = "%=",
305 [BPF_XOR >> 4] = "^=",
306 [BPF_MOV >> 4] = "=",
307 [BPF_ARSH >> 4] = "s>>=",
308 [BPF_END >> 4] = "endian",
309};
310
311static const char *const bpf_ldst_string[] = {
312 [BPF_W >> 3] = "u32",
313 [BPF_H >> 3] = "u16",
314 [BPF_B >> 3] = "u8",
315 [BPF_DW >> 3] = "u64",
316};
317
687f0715 318static const char *const bpf_jmp_string[16] = {
cbd35700
AS
319 [BPF_JA >> 4] = "jmp",
320 [BPF_JEQ >> 4] = "==",
321 [BPF_JGT >> 4] = ">",
322 [BPF_JGE >> 4] = ">=",
323 [BPF_JSET >> 4] = "&",
324 [BPF_JNE >> 4] = "!=",
325 [BPF_JSGT >> 4] = "s>",
326 [BPF_JSGE >> 4] = "s>=",
327 [BPF_CALL >> 4] = "call",
328 [BPF_EXIT >> 4] = "exit",
329};
330
331static void print_bpf_insn(struct bpf_insn *insn)
332{
333 u8 class = BPF_CLASS(insn->code);
334
335 if (class == BPF_ALU || class == BPF_ALU64) {
336 if (BPF_SRC(insn->code) == BPF_X)
337 verbose("(%02x) %sr%d %s %sr%d\n",
338 insn->code, class == BPF_ALU ? "(u32) " : "",
339 insn->dst_reg,
340 bpf_alu_string[BPF_OP(insn->code) >> 4],
341 class == BPF_ALU ? "(u32) " : "",
342 insn->src_reg);
343 else
344 verbose("(%02x) %sr%d %s %s%d\n",
345 insn->code, class == BPF_ALU ? "(u32) " : "",
346 insn->dst_reg,
347 bpf_alu_string[BPF_OP(insn->code) >> 4],
348 class == BPF_ALU ? "(u32) " : "",
349 insn->imm);
350 } else if (class == BPF_STX) {
351 if (BPF_MODE(insn->code) == BPF_MEM)
352 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
353 insn->code,
354 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
355 insn->dst_reg,
356 insn->off, insn->src_reg);
357 else if (BPF_MODE(insn->code) == BPF_XADD)
358 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
359 insn->code,
360 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
361 insn->dst_reg, insn->off,
362 insn->src_reg);
363 else
364 verbose("BUG_%02x\n", insn->code);
365 } else if (class == BPF_ST) {
366 if (BPF_MODE(insn->code) != BPF_MEM) {
367 verbose("BUG_st_%02x\n", insn->code);
368 return;
369 }
370 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
371 insn->code,
372 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
373 insn->dst_reg,
374 insn->off, insn->imm);
375 } else if (class == BPF_LDX) {
376 if (BPF_MODE(insn->code) != BPF_MEM) {
377 verbose("BUG_ldx_%02x\n", insn->code);
378 return;
379 }
380 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
381 insn->code, insn->dst_reg,
382 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
383 insn->src_reg, insn->off);
384 } else if (class == BPF_LD) {
385 if (BPF_MODE(insn->code) == BPF_ABS) {
386 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
387 insn->code,
388 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
389 insn->imm);
390 } else if (BPF_MODE(insn->code) == BPF_IND) {
391 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
392 insn->code,
393 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
394 insn->src_reg, insn->imm);
395 } else if (BPF_MODE(insn->code) == BPF_IMM) {
396 verbose("(%02x) r%d = 0x%x\n",
397 insn->code, insn->dst_reg, insn->imm);
398 } else {
399 verbose("BUG_ld_%02x\n", insn->code);
400 return;
401 }
402 } else if (class == BPF_JMP) {
403 u8 opcode = BPF_OP(insn->code);
404
405 if (opcode == BPF_CALL) {
406 verbose("(%02x) call %d\n", insn->code, insn->imm);
407 } else if (insn->code == (BPF_JMP | BPF_JA)) {
408 verbose("(%02x) goto pc%+d\n",
409 insn->code, insn->off);
410 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
411 verbose("(%02x) exit\n", insn->code);
412 } else if (BPF_SRC(insn->code) == BPF_X) {
413 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
414 insn->code, insn->dst_reg,
415 bpf_jmp_string[BPF_OP(insn->code) >> 4],
416 insn->src_reg, insn->off);
417 } else {
418 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
419 insn->code, insn->dst_reg,
420 bpf_jmp_string[BPF_OP(insn->code) >> 4],
421 insn->imm, insn->off);
422 }
423 } else {
424 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
425 }
426}
427
17a52670
AS
428static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
429{
430 struct verifier_stack_elem *elem;
431 int insn_idx;
432
433 if (env->head == NULL)
434 return -1;
435
436 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
437 insn_idx = env->head->insn_idx;
438 if (prev_insn_idx)
439 *prev_insn_idx = env->head->prev_insn_idx;
440 elem = env->head->next;
441 kfree(env->head);
442 env->head = elem;
443 env->stack_size--;
444 return insn_idx;
445}
446
447static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
448 int prev_insn_idx)
449{
450 struct verifier_stack_elem *elem;
451
452 elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
453 if (!elem)
454 goto err;
455
456 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
457 elem->insn_idx = insn_idx;
458 elem->prev_insn_idx = prev_insn_idx;
459 elem->next = env->head;
460 env->head = elem;
461 env->stack_size++;
07016151 462 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
463 verbose("BPF program is too complex\n");
464 goto err;
465 }
466 return &elem->st;
467err:
468 /* pop all elements and return */
469 while (pop_stack(env, NULL) >= 0);
470 return NULL;
471}
472
473#define CALLER_SAVED_REGS 6
474static const int caller_saved[CALLER_SAVED_REGS] = {
475 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
476};
477
478static void init_reg_state(struct reg_state *regs)
479{
480 int i;
481
482 for (i = 0; i < MAX_BPF_REG; i++) {
483 regs[i].type = NOT_INIT;
484 regs[i].imm = 0;
17a52670
AS
485 }
486
487 /* frame pointer */
488 regs[BPF_REG_FP].type = FRAME_PTR;
489
490 /* 1st arg to a function */
491 regs[BPF_REG_1].type = PTR_TO_CTX;
492}
493
494static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
495{
496 BUG_ON(regno >= MAX_BPF_REG);
497 regs[regno].type = UNKNOWN_VALUE;
498 regs[regno].imm = 0;
17a52670
AS
499}
500
501enum reg_arg_type {
502 SRC_OP, /* register is used as source operand */
503 DST_OP, /* register is used as destination operand */
504 DST_OP_NO_MARK /* same as above, check only, don't mark */
505};
506
507static int check_reg_arg(struct reg_state *regs, u32 regno,
508 enum reg_arg_type t)
509{
510 if (regno >= MAX_BPF_REG) {
511 verbose("R%d is invalid\n", regno);
512 return -EINVAL;
513 }
514
515 if (t == SRC_OP) {
516 /* check whether register used as source operand can be read */
517 if (regs[regno].type == NOT_INIT) {
518 verbose("R%d !read_ok\n", regno);
519 return -EACCES;
520 }
521 } else {
522 /* check whether register used as dest operand can be written to */
523 if (regno == BPF_REG_FP) {
524 verbose("frame pointer is read only\n");
525 return -EACCES;
526 }
527 if (t == DST_OP)
528 mark_reg_unknown_value(regs, regno);
529 }
530 return 0;
531}
532
533static int bpf_size_to_bytes(int bpf_size)
534{
535 if (bpf_size == BPF_W)
536 return 4;
537 else if (bpf_size == BPF_H)
538 return 2;
539 else if (bpf_size == BPF_B)
540 return 1;
541 else if (bpf_size == BPF_DW)
542 return 8;
543 else
544 return -EINVAL;
545}
546
1be7f75d
AS
547static bool is_spillable_regtype(enum bpf_reg_type type)
548{
549 switch (type) {
550 case PTR_TO_MAP_VALUE:
551 case PTR_TO_MAP_VALUE_OR_NULL:
552 case PTR_TO_STACK:
553 case PTR_TO_CTX:
969bf05e
AS
554 case PTR_TO_PACKET:
555 case PTR_TO_PACKET_END:
1be7f75d
AS
556 case FRAME_PTR:
557 case CONST_PTR_TO_MAP:
558 return true;
559 default:
560 return false;
561 }
562}
563
17a52670
AS
564/* check_stack_read/write functions track spill/fill of registers,
565 * stack boundary and alignment are checked in check_mem_access()
566 */
567static int check_stack_write(struct verifier_state *state, int off, int size,
568 int value_regno)
569{
17a52670 570 int i;
9c399760
AS
571 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
572 * so it's aligned access and [off, off + size) are within stack limits
573 */
17a52670
AS
574
575 if (value_regno >= 0 &&
1be7f75d 576 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
577
578 /* register containing pointer is being spilled into stack */
9c399760 579 if (size != BPF_REG_SIZE) {
17a52670
AS
580 verbose("invalid size of register spill\n");
581 return -EACCES;
582 }
583
17a52670 584 /* save register state */
9c399760
AS
585 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
586 state->regs[value_regno];
17a52670 587
9c399760
AS
588 for (i = 0; i < BPF_REG_SIZE; i++)
589 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
590 } else {
17a52670 591 /* regular write of data into stack */
9c399760
AS
592 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
593 (struct reg_state) {};
594
595 for (i = 0; i < size; i++)
596 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
597 }
598 return 0;
599}
600
601static int check_stack_read(struct verifier_state *state, int off, int size,
602 int value_regno)
603{
9c399760 604 u8 *slot_type;
17a52670 605 int i;
17a52670 606
9c399760 607 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 608
9c399760
AS
609 if (slot_type[0] == STACK_SPILL) {
610 if (size != BPF_REG_SIZE) {
17a52670
AS
611 verbose("invalid size of register spill\n");
612 return -EACCES;
613 }
9c399760
AS
614 for (i = 1; i < BPF_REG_SIZE; i++) {
615 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
616 verbose("corrupted spill memory\n");
617 return -EACCES;
618 }
619 }
620
621 if (value_regno >= 0)
622 /* restore register state from stack */
9c399760
AS
623 state->regs[value_regno] =
624 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
625 return 0;
626 } else {
627 for (i = 0; i < size; i++) {
9c399760 628 if (slot_type[i] != STACK_MISC) {
17a52670
AS
629 verbose("invalid read from stack off %d+%d size %d\n",
630 off, i, size);
631 return -EACCES;
632 }
633 }
634 if (value_regno >= 0)
635 /* have read misc data from the stack */
636 mark_reg_unknown_value(state->regs, value_regno);
637 return 0;
638 }
639}
640
641/* check read/write into map element returned by bpf_map_lookup_elem() */
642static int check_map_access(struct verifier_env *env, u32 regno, int off,
643 int size)
644{
645 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
646
647 if (off < 0 || off + size > map->value_size) {
648 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
649 map->value_size, off, size);
650 return -EACCES;
651 }
652 return 0;
653}
654
969bf05e
AS
655#define MAX_PACKET_OFF 0xffff
656
4acf6c0b
BB
657static bool may_write_pkt_data(enum bpf_prog_type type)
658{
659 switch (type) {
660 case BPF_PROG_TYPE_XDP:
661 return true;
662 default:
663 return false;
664 }
665}
666
969bf05e
AS
667static int check_packet_access(struct verifier_env *env, u32 regno, int off,
668 int size)
669{
670 struct reg_state *regs = env->cur_state.regs;
671 struct reg_state *reg = &regs[regno];
969bf05e 672
d91b28ed
AS
673 off += reg->off;
674 if (off < 0 || off + size > reg->range) {
675 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
676 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
677 return -EACCES;
678 }
679 return 0;
680}
681
17a52670
AS
682/* check access to 'struct bpf_context' fields */
683static int check_ctx_access(struct verifier_env *env, int off, int size,
19de99f7 684 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670
AS
685{
686 if (env->prog->aux->ops->is_valid_access &&
19de99f7 687 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
688 /* remember the offset of last byte accessed in ctx */
689 if (env->prog->aux->max_ctx_offset < off + size)
690 env->prog->aux->max_ctx_offset = off + size;
17a52670 691 return 0;
32bbe007 692 }
17a52670
AS
693
694 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
695 return -EACCES;
696}
697
1be7f75d
AS
698static bool is_pointer_value(struct verifier_env *env, int regno)
699{
700 if (env->allow_ptr_leaks)
701 return false;
702
703 switch (env->cur_state.regs[regno].type) {
704 case UNKNOWN_VALUE:
705 case CONST_IMM:
706 return false;
707 default:
708 return true;
709 }
710}
711
969bf05e
AS
712static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
713 int off, int size)
714{
715 if (reg->type != PTR_TO_PACKET) {
716 if (off % size != 0) {
717 verbose("misaligned access off %d size %d\n", off, size);
718 return -EACCES;
719 } else {
720 return 0;
721 }
722 }
723
724 switch (env->prog->type) {
725 case BPF_PROG_TYPE_SCHED_CLS:
726 case BPF_PROG_TYPE_SCHED_ACT:
6a773a15 727 case BPF_PROG_TYPE_XDP:
969bf05e
AS
728 break;
729 default:
730 verbose("verifier is misconfigured\n");
731 return -EACCES;
732 }
733
734 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
735 /* misaligned access to packet is ok on x86,arm,arm64 */
736 return 0;
737
738 if (reg->id && size != 1) {
739 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
740 return -EACCES;
741 }
742
743 /* skb->data is NET_IP_ALIGN-ed */
744 if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
745 verbose("misaligned packet access off %d+%d+%d size %d\n",
746 NET_IP_ALIGN, reg->off, off, size);
747 return -EACCES;
748 }
749 return 0;
750}
751
17a52670
AS
752/* check whether memory at (regno + off) is accessible for t = (read | write)
753 * if t==write, value_regno is a register which value is stored into memory
754 * if t==read, value_regno is a register which will receive the value from memory
755 * if t==write && value_regno==-1, some unknown value is stored into memory
756 * if t==read && value_regno==-1, don't care what we read from memory
757 */
758static int check_mem_access(struct verifier_env *env, u32 regno, int off,
759 int bpf_size, enum bpf_access_type t,
760 int value_regno)
761{
762 struct verifier_state *state = &env->cur_state;
1a0dc1ac 763 struct reg_state *reg = &state->regs[regno];
17a52670
AS
764 int size, err = 0;
765
1a0dc1ac
AS
766 if (reg->type == PTR_TO_STACK)
767 off += reg->imm;
24b4d2ab 768
17a52670
AS
769 size = bpf_size_to_bytes(bpf_size);
770 if (size < 0)
771 return size;
772
969bf05e
AS
773 err = check_ptr_alignment(env, reg, off, size);
774 if (err)
775 return err;
17a52670 776
1a0dc1ac 777 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
778 if (t == BPF_WRITE && value_regno >= 0 &&
779 is_pointer_value(env, value_regno)) {
780 verbose("R%d leaks addr into map\n", value_regno);
781 return -EACCES;
782 }
17a52670
AS
783 err = check_map_access(env, regno, off, size);
784 if (!err && t == BPF_READ && value_regno >= 0)
785 mark_reg_unknown_value(state->regs, value_regno);
786
1a0dc1ac 787 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
788 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
789
1be7f75d
AS
790 if (t == BPF_WRITE && value_regno >= 0 &&
791 is_pointer_value(env, value_regno)) {
792 verbose("R%d leaks addr into ctx\n", value_regno);
793 return -EACCES;
794 }
19de99f7 795 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 796 if (!err && t == BPF_READ && value_regno >= 0) {
17a52670 797 mark_reg_unknown_value(state->regs, value_regno);
19de99f7 798 if (env->allow_ptr_leaks)
969bf05e 799 /* note that reg.[id|off|range] == 0 */
19de99f7 800 state->regs[value_regno].type = reg_type;
969bf05e 801 }
17a52670 802
1a0dc1ac 803 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
804 if (off >= 0 || off < -MAX_BPF_STACK) {
805 verbose("invalid stack off=%d size=%d\n", off, size);
806 return -EACCES;
807 }
1be7f75d
AS
808 if (t == BPF_WRITE) {
809 if (!env->allow_ptr_leaks &&
810 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
811 size != BPF_REG_SIZE) {
812 verbose("attempt to corrupt spilled pointer on stack\n");
813 return -EACCES;
814 }
17a52670 815 err = check_stack_write(state, off, size, value_regno);
1be7f75d 816 } else {
17a52670 817 err = check_stack_read(state, off, size, value_regno);
1be7f75d 818 }
969bf05e 819 } else if (state->regs[regno].type == PTR_TO_PACKET) {
4acf6c0b 820 if (t == BPF_WRITE && !may_write_pkt_data(env->prog->type)) {
969bf05e
AS
821 verbose("cannot write into packet\n");
822 return -EACCES;
823 }
4acf6c0b
BB
824 if (t == BPF_WRITE && value_regno >= 0 &&
825 is_pointer_value(env, value_regno)) {
826 verbose("R%d leaks addr into packet\n", value_regno);
827 return -EACCES;
828 }
969bf05e
AS
829 err = check_packet_access(env, regno, off, size);
830 if (!err && t == BPF_READ && value_regno >= 0)
831 mark_reg_unknown_value(state->regs, value_regno);
17a52670
AS
832 } else {
833 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 834 regno, reg_type_str[reg->type]);
17a52670
AS
835 return -EACCES;
836 }
969bf05e
AS
837
838 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
839 state->regs[value_regno].type == UNKNOWN_VALUE) {
840 /* 1 or 2 byte load zero-extends, determine the number of
841 * zero upper bits. Not doing it fo 4 byte load, since
842 * such values cannot be added to ptr_to_packet anyway.
843 */
844 state->regs[value_regno].imm = 64 - size * 8;
845 }
17a52670
AS
846 return err;
847}
848
849static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
850{
851 struct reg_state *regs = env->cur_state.regs;
852 int err;
853
854 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
855 insn->imm != 0) {
856 verbose("BPF_XADD uses reserved fields\n");
857 return -EINVAL;
858 }
859
860 /* check src1 operand */
861 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
862 if (err)
863 return err;
864
865 /* check src2 operand */
866 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
867 if (err)
868 return err;
869
870 /* check whether atomic_add can read the memory */
871 err = check_mem_access(env, insn->dst_reg, insn->off,
872 BPF_SIZE(insn->code), BPF_READ, -1);
873 if (err)
874 return err;
875
876 /* check whether atomic_add can write into the same memory */
877 return check_mem_access(env, insn->dst_reg, insn->off,
878 BPF_SIZE(insn->code), BPF_WRITE, -1);
879}
880
881/* when register 'regno' is passed into function that will read 'access_size'
882 * bytes from that pointer, make sure that it's within stack boundary
883 * and all elements of stack are initialized
884 */
8e2fe1d9 885static int check_stack_boundary(struct verifier_env *env, int regno,
435faee1
DB
886 int access_size, bool zero_size_allowed,
887 struct bpf_call_arg_meta *meta)
17a52670
AS
888{
889 struct verifier_state *state = &env->cur_state;
890 struct reg_state *regs = state->regs;
891 int off, i;
892
8e2fe1d9
DB
893 if (regs[regno].type != PTR_TO_STACK) {
894 if (zero_size_allowed && access_size == 0 &&
895 regs[regno].type == CONST_IMM &&
896 regs[regno].imm == 0)
897 return 0;
898
899 verbose("R%d type=%s expected=%s\n", regno,
900 reg_type_str[regs[regno].type],
901 reg_type_str[PTR_TO_STACK]);
17a52670 902 return -EACCES;
8e2fe1d9 903 }
17a52670
AS
904
905 off = regs[regno].imm;
906 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
907 access_size <= 0) {
908 verbose("invalid stack type R%d off=%d access_size=%d\n",
909 regno, off, access_size);
910 return -EACCES;
911 }
912
435faee1
DB
913 if (meta && meta->raw_mode) {
914 meta->access_size = access_size;
915 meta->regno = regno;
916 return 0;
917 }
918
17a52670 919 for (i = 0; i < access_size; i++) {
9c399760 920 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
921 verbose("invalid indirect read from stack off %d+%d size %d\n",
922 off, i, access_size);
923 return -EACCES;
924 }
925 }
926 return 0;
927}
928
929static int check_func_arg(struct verifier_env *env, u32 regno,
33ff9823
DB
930 enum bpf_arg_type arg_type,
931 struct bpf_call_arg_meta *meta)
17a52670 932{
6841de8b
AS
933 struct reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
934 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
935 int err = 0;
936
80f1d68c 937 if (arg_type == ARG_DONTCARE)
17a52670
AS
938 return 0;
939
6841de8b 940 if (type == NOT_INIT) {
17a52670
AS
941 verbose("R%d !read_ok\n", regno);
942 return -EACCES;
943 }
944
1be7f75d
AS
945 if (arg_type == ARG_ANYTHING) {
946 if (is_pointer_value(env, regno)) {
947 verbose("R%d leaks addr into helper function\n", regno);
948 return -EACCES;
949 }
80f1d68c 950 return 0;
1be7f75d 951 }
80f1d68c 952
6841de8b
AS
953 if (type == PTR_TO_PACKET && !may_write_pkt_data(env->prog->type)) {
954 verbose("helper access to the packet is not allowed for clsact\n");
955 return -EACCES;
956 }
957
8e2fe1d9 958 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
959 arg_type == ARG_PTR_TO_MAP_VALUE) {
960 expected_type = PTR_TO_STACK;
6841de8b
AS
961 if (type != PTR_TO_PACKET && type != expected_type)
962 goto err_type;
8e2fe1d9
DB
963 } else if (arg_type == ARG_CONST_STACK_SIZE ||
964 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 965 expected_type = CONST_IMM;
6841de8b
AS
966 if (type != expected_type)
967 goto err_type;
17a52670
AS
968 } else if (arg_type == ARG_CONST_MAP_PTR) {
969 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
970 if (type != expected_type)
971 goto err_type;
608cd71a
AS
972 } else if (arg_type == ARG_PTR_TO_CTX) {
973 expected_type = PTR_TO_CTX;
6841de8b
AS
974 if (type != expected_type)
975 goto err_type;
435faee1
DB
976 } else if (arg_type == ARG_PTR_TO_STACK ||
977 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
978 expected_type = PTR_TO_STACK;
979 /* One exception here. In case function allows for NULL to be
980 * passed in as argument, it's a CONST_IMM type. Final test
981 * happens during stack boundary checking.
982 */
6841de8b
AS
983 if (type == CONST_IMM && reg->imm == 0)
984 /* final test in check_stack_boundary() */;
985 else if (type != PTR_TO_PACKET && type != expected_type)
986 goto err_type;
435faee1 987 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
988 } else {
989 verbose("unsupported arg_type %d\n", arg_type);
990 return -EFAULT;
991 }
992
17a52670
AS
993 if (arg_type == ARG_CONST_MAP_PTR) {
994 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 995 meta->map_ptr = reg->map_ptr;
17a52670
AS
996 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
997 /* bpf_map_xxx(..., map_ptr, ..., key) call:
998 * check that [key, key + map->key_size) are within
999 * stack limits and initialized
1000 */
33ff9823 1001 if (!meta->map_ptr) {
17a52670
AS
1002 /* in function declaration map_ptr must come before
1003 * map_key, so that it's verified and known before
1004 * we have to check map_key here. Otherwise it means
1005 * that kernel subsystem misconfigured verifier
1006 */
1007 verbose("invalid map_ptr to access map->key\n");
1008 return -EACCES;
1009 }
6841de8b
AS
1010 if (type == PTR_TO_PACKET)
1011 err = check_packet_access(env, regno, 0,
1012 meta->map_ptr->key_size);
1013 else
1014 err = check_stack_boundary(env, regno,
1015 meta->map_ptr->key_size,
1016 false, NULL);
17a52670
AS
1017 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1018 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1019 * check [value, value + map->value_size) validity
1020 */
33ff9823 1021 if (!meta->map_ptr) {
17a52670
AS
1022 /* kernel subsystem misconfigured verifier */
1023 verbose("invalid map_ptr to access map->value\n");
1024 return -EACCES;
1025 }
6841de8b
AS
1026 if (type == PTR_TO_PACKET)
1027 err = check_packet_access(env, regno, 0,
1028 meta->map_ptr->value_size);
1029 else
1030 err = check_stack_boundary(env, regno,
1031 meta->map_ptr->value_size,
1032 false, NULL);
8e2fe1d9
DB
1033 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1034 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1035 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1036
17a52670
AS
1037 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1038 * from stack pointer 'buf'. Check it
1039 * note: regno == len, regno - 1 == buf
1040 */
1041 if (regno == 0) {
1042 /* kernel subsystem misconfigured verifier */
1043 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1044 return -EACCES;
1045 }
6841de8b
AS
1046 if (regs[regno - 1].type == PTR_TO_PACKET)
1047 err = check_packet_access(env, regno - 1, 0, reg->imm);
1048 else
1049 err = check_stack_boundary(env, regno - 1, reg->imm,
1050 zero_size_allowed, meta);
17a52670
AS
1051 }
1052
1053 return err;
6841de8b
AS
1054err_type:
1055 verbose("R%d type=%s expected=%s\n", regno,
1056 reg_type_str[type], reg_type_str[expected_type]);
1057 return -EACCES;
17a52670
AS
1058}
1059
35578d79
KX
1060static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1061{
35578d79
KX
1062 if (!map)
1063 return 0;
1064
6aff67c8
AS
1065 /* We need a two way check, first is from map perspective ... */
1066 switch (map->map_type) {
1067 case BPF_MAP_TYPE_PROG_ARRAY:
1068 if (func_id != BPF_FUNC_tail_call)
1069 goto error;
1070 break;
1071 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1072 if (func_id != BPF_FUNC_perf_event_read &&
1073 func_id != BPF_FUNC_perf_event_output)
1074 goto error;
1075 break;
1076 case BPF_MAP_TYPE_STACK_TRACE:
1077 if (func_id != BPF_FUNC_get_stackid)
1078 goto error;
1079 break;
4ed8ec52 1080 case BPF_MAP_TYPE_CGROUP_ARRAY:
60d20f91
SD
1081 if (func_id != BPF_FUNC_skb_in_cgroup &&
1082 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1083 goto error;
1084 break;
6aff67c8
AS
1085 default:
1086 break;
1087 }
1088
1089 /* ... and second from the function itself. */
1090 switch (func_id) {
1091 case BPF_FUNC_tail_call:
1092 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1093 goto error;
1094 break;
1095 case BPF_FUNC_perf_event_read:
1096 case BPF_FUNC_perf_event_output:
1097 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1098 goto error;
1099 break;
1100 case BPF_FUNC_get_stackid:
1101 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1102 goto error;
1103 break;
60d20f91 1104 case BPF_FUNC_current_task_under_cgroup:
4a482f34
MKL
1105 case BPF_FUNC_skb_in_cgroup:
1106 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1107 goto error;
1108 break;
6aff67c8
AS
1109 default:
1110 break;
35578d79
KX
1111 }
1112
1113 return 0;
6aff67c8
AS
1114error:
1115 verbose("cannot pass map_type %d into func %d\n",
1116 map->map_type, func_id);
1117 return -EINVAL;
35578d79
KX
1118}
1119
435faee1
DB
1120static int check_raw_mode(const struct bpf_func_proto *fn)
1121{
1122 int count = 0;
1123
1124 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1125 count++;
1126 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1127 count++;
1128 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1129 count++;
1130 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1131 count++;
1132 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1133 count++;
1134
1135 return count > 1 ? -EINVAL : 0;
1136}
1137
969bf05e
AS
1138static void clear_all_pkt_pointers(struct verifier_env *env)
1139{
1140 struct verifier_state *state = &env->cur_state;
1141 struct reg_state *regs = state->regs, *reg;
1142 int i;
1143
1144 for (i = 0; i < MAX_BPF_REG; i++)
1145 if (regs[i].type == PTR_TO_PACKET ||
1146 regs[i].type == PTR_TO_PACKET_END)
1147 mark_reg_unknown_value(regs, i);
1148
1149 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1150 if (state->stack_slot_type[i] != STACK_SPILL)
1151 continue;
1152 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1153 if (reg->type != PTR_TO_PACKET &&
1154 reg->type != PTR_TO_PACKET_END)
1155 continue;
1156 reg->type = UNKNOWN_VALUE;
1157 reg->imm = 0;
1158 }
1159}
1160
17a52670
AS
1161static int check_call(struct verifier_env *env, int func_id)
1162{
1163 struct verifier_state *state = &env->cur_state;
1164 const struct bpf_func_proto *fn = NULL;
1165 struct reg_state *regs = state->regs;
17a52670 1166 struct reg_state *reg;
33ff9823 1167 struct bpf_call_arg_meta meta;
969bf05e 1168 bool changes_data;
17a52670
AS
1169 int i, err;
1170
1171 /* find function prototype */
1172 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1173 verbose("invalid func %d\n", func_id);
1174 return -EINVAL;
1175 }
1176
1177 if (env->prog->aux->ops->get_func_proto)
1178 fn = env->prog->aux->ops->get_func_proto(func_id);
1179
1180 if (!fn) {
1181 verbose("unknown func %d\n", func_id);
1182 return -EINVAL;
1183 }
1184
1185 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1186 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1187 verbose("cannot call GPL only function from proprietary program\n");
1188 return -EINVAL;
1189 }
1190
969bf05e
AS
1191 changes_data = bpf_helper_changes_skb_data(fn->func);
1192
33ff9823
DB
1193 memset(&meta, 0, sizeof(meta));
1194
435faee1
DB
1195 /* We only support one arg being in raw mode at the moment, which
1196 * is sufficient for the helper functions we have right now.
1197 */
1198 err = check_raw_mode(fn);
1199 if (err) {
1200 verbose("kernel subsystem misconfigured func %d\n", func_id);
1201 return err;
1202 }
1203
17a52670 1204 /* check args */
33ff9823 1205 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1206 if (err)
1207 return err;
33ff9823 1208 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1209 if (err)
1210 return err;
33ff9823 1211 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1212 if (err)
1213 return err;
33ff9823 1214 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1215 if (err)
1216 return err;
33ff9823 1217 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1218 if (err)
1219 return err;
1220
435faee1
DB
1221 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1222 * is inferred from register state.
1223 */
1224 for (i = 0; i < meta.access_size; i++) {
1225 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1226 if (err)
1227 return err;
1228 }
1229
17a52670
AS
1230 /* reset caller saved regs */
1231 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1232 reg = regs + caller_saved[i];
1233 reg->type = NOT_INIT;
1234 reg->imm = 0;
1235 }
1236
1237 /* update return register */
1238 if (fn->ret_type == RET_INTEGER) {
1239 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1240 } else if (fn->ret_type == RET_VOID) {
1241 regs[BPF_REG_0].type = NOT_INIT;
1242 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1243 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1244 /* remember map_ptr, so that check_map_access()
1245 * can check 'value_size' boundary of memory access
1246 * to map element returned from bpf_map_lookup_elem()
1247 */
33ff9823 1248 if (meta.map_ptr == NULL) {
17a52670
AS
1249 verbose("kernel subsystem misconfigured verifier\n");
1250 return -EINVAL;
1251 }
33ff9823 1252 regs[BPF_REG_0].map_ptr = meta.map_ptr;
17a52670
AS
1253 } else {
1254 verbose("unknown return type %d of func %d\n",
1255 fn->ret_type, func_id);
1256 return -EINVAL;
1257 }
04fd61ab 1258
33ff9823 1259 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1260 if (err)
1261 return err;
04fd61ab 1262
969bf05e
AS
1263 if (changes_data)
1264 clear_all_pkt_pointers(env);
1265 return 0;
1266}
1267
1268static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
1269{
1270 struct reg_state *regs = env->cur_state.regs;
1271 struct reg_state *dst_reg = &regs[insn->dst_reg];
1272 struct reg_state *src_reg = &regs[insn->src_reg];
1b9b69ec 1273 struct reg_state tmp_reg;
969bf05e
AS
1274 s32 imm;
1275
1276 if (BPF_SRC(insn->code) == BPF_K) {
1277 /* pkt_ptr += imm */
1278 imm = insn->imm;
1279
1280add_imm:
1281 if (imm <= 0) {
1282 verbose("addition of negative constant to packet pointer is not allowed\n");
1283 return -EACCES;
1284 }
1285 if (imm >= MAX_PACKET_OFF ||
1286 imm + dst_reg->off >= MAX_PACKET_OFF) {
1287 verbose("constant %d is too large to add to packet pointer\n",
1288 imm);
1289 return -EACCES;
1290 }
1291 /* a constant was added to pkt_ptr.
1292 * Remember it while keeping the same 'id'
1293 */
1294 dst_reg->off += imm;
1295 } else {
1b9b69ec
AS
1296 if (src_reg->type == PTR_TO_PACKET) {
1297 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1298 tmp_reg = *dst_reg; /* save r7 state */
1299 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1300 src_reg = &tmp_reg; /* pretend it's src_reg state */
1301 /* if the checks below reject it, the copy won't matter,
1302 * since we're rejecting the whole program. If all ok,
1303 * then imm22 state will be added to r7
1304 * and r7 will be pkt(id=0,off=22,r=62) while
1305 * r6 will stay as pkt(id=0,off=0,r=62)
1306 */
1307 }
1308
969bf05e
AS
1309 if (src_reg->type == CONST_IMM) {
1310 /* pkt_ptr += reg where reg is known constant */
1311 imm = src_reg->imm;
1312 goto add_imm;
1313 }
1314 /* disallow pkt_ptr += reg
1315 * if reg is not uknown_value with guaranteed zero upper bits
1316 * otherwise pkt_ptr may overflow and addition will become
1317 * subtraction which is not allowed
1318 */
1319 if (src_reg->type != UNKNOWN_VALUE) {
1320 verbose("cannot add '%s' to ptr_to_packet\n",
1321 reg_type_str[src_reg->type]);
1322 return -EACCES;
1323 }
1324 if (src_reg->imm < 48) {
1325 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1326 src_reg->imm);
1327 return -EACCES;
1328 }
1329 /* dst_reg stays as pkt_ptr type and since some positive
1330 * integer value was added to the pointer, increment its 'id'
1331 */
1f415a74 1332 dst_reg->id = ++env->id_gen;
969bf05e
AS
1333
1334 /* something was added to pkt_ptr, set range and off to zero */
1335 dst_reg->off = 0;
1336 dst_reg->range = 0;
1337 }
1338 return 0;
1339}
1340
1341static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
1342{
1343 struct reg_state *regs = env->cur_state.regs;
1344 struct reg_state *dst_reg = &regs[insn->dst_reg];
1345 u8 opcode = BPF_OP(insn->code);
1346 s64 imm_log2;
1347
1348 /* for type == UNKNOWN_VALUE:
1349 * imm > 0 -> number of zero upper bits
1350 * imm == 0 -> don't track which is the same as all bits can be non-zero
1351 */
1352
1353 if (BPF_SRC(insn->code) == BPF_X) {
1354 struct reg_state *src_reg = &regs[insn->src_reg];
1355
1356 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1357 dst_reg->imm && opcode == BPF_ADD) {
1358 /* dreg += sreg
1359 * where both have zero upper bits. Adding them
1360 * can only result making one more bit non-zero
1361 * in the larger value.
1362 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1363 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1364 */
1365 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1366 dst_reg->imm--;
1367 return 0;
1368 }
1369 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1370 dst_reg->imm && opcode == BPF_ADD) {
1371 /* dreg += sreg
1372 * where dreg has zero upper bits and sreg is const.
1373 * Adding them can only result making one more bit
1374 * non-zero in the larger value.
1375 */
1376 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1377 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1378 dst_reg->imm--;
1379 return 0;
1380 }
1381 /* all other cases non supported yet, just mark dst_reg */
1382 dst_reg->imm = 0;
1383 return 0;
1384 }
1385
1386 /* sign extend 32-bit imm into 64-bit to make sure that
1387 * negative values occupy bit 63. Note ilog2() would have
1388 * been incorrect, since sizeof(insn->imm) == 4
1389 */
1390 imm_log2 = __ilog2_u64((long long)insn->imm);
1391
1392 if (dst_reg->imm && opcode == BPF_LSH) {
1393 /* reg <<= imm
1394 * if reg was a result of 2 byte load, then its imm == 48
1395 * which means that upper 48 bits are zero and shifting this reg
1396 * left by 4 would mean that upper 44 bits are still zero
1397 */
1398 dst_reg->imm -= insn->imm;
1399 } else if (dst_reg->imm && opcode == BPF_MUL) {
1400 /* reg *= imm
1401 * if multiplying by 14 subtract 4
1402 * This is conservative calculation of upper zero bits.
1403 * It's not trying to special case insn->imm == 1 or 0 cases
1404 */
1405 dst_reg->imm -= imm_log2 + 1;
1406 } else if (opcode == BPF_AND) {
1407 /* reg &= imm */
1408 dst_reg->imm = 63 - imm_log2;
1409 } else if (dst_reg->imm && opcode == BPF_ADD) {
1410 /* reg += imm */
1411 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1412 dst_reg->imm--;
1413 } else if (opcode == BPF_RSH) {
1414 /* reg >>= imm
1415 * which means that after right shift, upper bits will be zero
1416 * note that verifier already checked that
1417 * 0 <= imm < 64 for shift insn
1418 */
1419 dst_reg->imm += insn->imm;
1420 if (unlikely(dst_reg->imm > 64))
1421 /* some dumb code did:
1422 * r2 = *(u32 *)mem;
1423 * r2 >>= 32;
1424 * and all bits are zero now */
1425 dst_reg->imm = 64;
1426 } else {
1427 /* all other alu ops, means that we don't know what will
1428 * happen to the value, mark it with unknown number of zero bits
1429 */
1430 dst_reg->imm = 0;
1431 }
1432
1433 if (dst_reg->imm < 0) {
1434 /* all 64 bits of the register can contain non-zero bits
1435 * and such value cannot be added to ptr_to_packet, since it
1436 * may overflow, mark it as unknown to avoid further eval
1437 */
1438 dst_reg->imm = 0;
1439 }
1440 return 0;
1441}
1442
1443static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
1444{
1445 struct reg_state *regs = env->cur_state.regs;
1446 struct reg_state *dst_reg = &regs[insn->dst_reg];
1447 struct reg_state *src_reg = &regs[insn->src_reg];
1448 u8 opcode = BPF_OP(insn->code);
1449
1450 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1451 * Don't care about overflow or negative values, just add them
1452 */
1453 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1454 dst_reg->imm += insn->imm;
1455 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1456 src_reg->type == CONST_IMM)
1457 dst_reg->imm += src_reg->imm;
1458 else
1459 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1460 return 0;
1461}
1462
1463/* check validity of 32-bit and 64-bit arithmetic operations */
1be7f75d 1464static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
17a52670 1465{
1a0dc1ac 1466 struct reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1467 u8 opcode = BPF_OP(insn->code);
1468 int err;
1469
1470 if (opcode == BPF_END || opcode == BPF_NEG) {
1471 if (opcode == BPF_NEG) {
1472 if (BPF_SRC(insn->code) != 0 ||
1473 insn->src_reg != BPF_REG_0 ||
1474 insn->off != 0 || insn->imm != 0) {
1475 verbose("BPF_NEG uses reserved fields\n");
1476 return -EINVAL;
1477 }
1478 } else {
1479 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1480 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1481 verbose("BPF_END uses reserved fields\n");
1482 return -EINVAL;
1483 }
1484 }
1485
1486 /* check src operand */
1487 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1488 if (err)
1489 return err;
1490
1be7f75d
AS
1491 if (is_pointer_value(env, insn->dst_reg)) {
1492 verbose("R%d pointer arithmetic prohibited\n",
1493 insn->dst_reg);
1494 return -EACCES;
1495 }
1496
17a52670
AS
1497 /* check dest operand */
1498 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1499 if (err)
1500 return err;
1501
1502 } else if (opcode == BPF_MOV) {
1503
1504 if (BPF_SRC(insn->code) == BPF_X) {
1505 if (insn->imm != 0 || insn->off != 0) {
1506 verbose("BPF_MOV uses reserved fields\n");
1507 return -EINVAL;
1508 }
1509
1510 /* check src operand */
1511 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1512 if (err)
1513 return err;
1514 } else {
1515 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1516 verbose("BPF_MOV uses reserved fields\n");
1517 return -EINVAL;
1518 }
1519 }
1520
1521 /* check dest operand */
1522 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1523 if (err)
1524 return err;
1525
1526 if (BPF_SRC(insn->code) == BPF_X) {
1527 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1528 /* case: R1 = R2
1529 * copy register state to dest reg
1530 */
1531 regs[insn->dst_reg] = regs[insn->src_reg];
1532 } else {
1be7f75d
AS
1533 if (is_pointer_value(env, insn->src_reg)) {
1534 verbose("R%d partial copy of pointer\n",
1535 insn->src_reg);
1536 return -EACCES;
1537 }
17a52670
AS
1538 regs[insn->dst_reg].type = UNKNOWN_VALUE;
1539 regs[insn->dst_reg].map_ptr = NULL;
1540 }
1541 } else {
1542 /* case: R = imm
1543 * remember the value we stored into this reg
1544 */
1545 regs[insn->dst_reg].type = CONST_IMM;
1546 regs[insn->dst_reg].imm = insn->imm;
1547 }
1548
1549 } else if (opcode > BPF_END) {
1550 verbose("invalid BPF_ALU opcode %x\n", opcode);
1551 return -EINVAL;
1552
1553 } else { /* all other ALU ops: and, sub, xor, add, ... */
1554
17a52670
AS
1555 if (BPF_SRC(insn->code) == BPF_X) {
1556 if (insn->imm != 0 || insn->off != 0) {
1557 verbose("BPF_ALU uses reserved fields\n");
1558 return -EINVAL;
1559 }
1560 /* check src1 operand */
1561 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1562 if (err)
1563 return err;
1564 } else {
1565 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1566 verbose("BPF_ALU uses reserved fields\n");
1567 return -EINVAL;
1568 }
1569 }
1570
1571 /* check src2 operand */
1572 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1573 if (err)
1574 return err;
1575
1576 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1577 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1578 verbose("div by zero\n");
1579 return -EINVAL;
1580 }
1581
229394e8
RV
1582 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1583 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1584 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1585
1586 if (insn->imm < 0 || insn->imm >= size) {
1587 verbose("invalid shift %d\n", insn->imm);
1588 return -EINVAL;
1589 }
1590 }
1591
1a0dc1ac
AS
1592 /* check dest operand */
1593 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1594 if (err)
1595 return err;
1596
1597 dst_reg = &regs[insn->dst_reg];
1598
17a52670
AS
1599 /* pattern match 'bpf_add Rx, imm' instruction */
1600 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1601 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1602 dst_reg->type = PTR_TO_STACK;
1603 dst_reg->imm = insn->imm;
1604 return 0;
969bf05e
AS
1605 } else if (opcode == BPF_ADD &&
1606 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1607 (dst_reg->type == PTR_TO_PACKET ||
1608 (BPF_SRC(insn->code) == BPF_X &&
1609 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1610 /* ptr_to_packet += K|X */
1611 return check_packet_ptr_add(env, insn);
1612 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1613 dst_reg->type == UNKNOWN_VALUE &&
1614 env->allow_ptr_leaks) {
1615 /* unknown += K|X */
1616 return evaluate_reg_alu(env, insn);
1617 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1618 dst_reg->type == CONST_IMM &&
1619 env->allow_ptr_leaks) {
1620 /* reg_imm += K|X */
1621 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1622 } else if (is_pointer_value(env, insn->dst_reg)) {
1623 verbose("R%d pointer arithmetic prohibited\n",
1624 insn->dst_reg);
1625 return -EACCES;
1626 } else if (BPF_SRC(insn->code) == BPF_X &&
1627 is_pointer_value(env, insn->src_reg)) {
1628 verbose("R%d pointer arithmetic prohibited\n",
1629 insn->src_reg);
1630 return -EACCES;
1631 }
17a52670 1632
1a0dc1ac
AS
1633 /* mark dest operand */
1634 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1635 }
1636
1637 return 0;
1638}
1639
969bf05e
AS
1640static void find_good_pkt_pointers(struct verifier_env *env,
1641 struct reg_state *dst_reg)
1642{
1643 struct verifier_state *state = &env->cur_state;
1644 struct reg_state *regs = state->regs, *reg;
1645 int i;
1646 /* r2 = r3;
1647 * r2 += 8
1648 * if (r2 > pkt_end) goto somewhere
1649 * r2 == dst_reg, pkt_end == src_reg,
1650 * r2=pkt(id=n,off=8,r=0)
1651 * r3=pkt(id=n,off=0,r=0)
1652 * find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1653 * so that range of bytes [r3, r3 + 8) is safe to access
1654 */
1655 for (i = 0; i < MAX_BPF_REG; i++)
1656 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1657 regs[i].range = dst_reg->off;
1658
1659 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1660 if (state->stack_slot_type[i] != STACK_SPILL)
1661 continue;
1662 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1663 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1664 reg->range = dst_reg->off;
1665 }
1666}
1667
17a52670
AS
1668static int check_cond_jmp_op(struct verifier_env *env,
1669 struct bpf_insn *insn, int *insn_idx)
1670{
1a0dc1ac 1671 struct reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1672 struct verifier_state *other_branch;
1673 u8 opcode = BPF_OP(insn->code);
1674 int err;
1675
1676 if (opcode > BPF_EXIT) {
1677 verbose("invalid BPF_JMP opcode %x\n", opcode);
1678 return -EINVAL;
1679 }
1680
1681 if (BPF_SRC(insn->code) == BPF_X) {
1682 if (insn->imm != 0) {
1683 verbose("BPF_JMP uses reserved fields\n");
1684 return -EINVAL;
1685 }
1686
1687 /* check src1 operand */
1688 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1689 if (err)
1690 return err;
1be7f75d
AS
1691
1692 if (is_pointer_value(env, insn->src_reg)) {
1693 verbose("R%d pointer comparison prohibited\n",
1694 insn->src_reg);
1695 return -EACCES;
1696 }
17a52670
AS
1697 } else {
1698 if (insn->src_reg != BPF_REG_0) {
1699 verbose("BPF_JMP uses reserved fields\n");
1700 return -EINVAL;
1701 }
1702 }
1703
1704 /* check src2 operand */
1705 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1706 if (err)
1707 return err;
1708
1a0dc1ac
AS
1709 dst_reg = &regs[insn->dst_reg];
1710
17a52670
AS
1711 /* detect if R == 0 where R was initialized to zero earlier */
1712 if (BPF_SRC(insn->code) == BPF_K &&
1713 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 1714 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
1715 if (opcode == BPF_JEQ) {
1716 /* if (imm == imm) goto pc+off;
1717 * only follow the goto, ignore fall-through
1718 */
1719 *insn_idx += insn->off;
1720 return 0;
1721 } else {
1722 /* if (imm != imm) goto pc+off;
1723 * only follow fall-through branch, since
1724 * that's where the program will go
1725 */
1726 return 0;
1727 }
1728 }
1729
1730 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1731 if (!other_branch)
1732 return -EFAULT;
1733
1734 /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1735 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
1736 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1737 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
17a52670
AS
1738 if (opcode == BPF_JEQ) {
1739 /* next fallthrough insn can access memory via
1740 * this register
1741 */
1742 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1743 /* branch targer cannot access it, since reg == 0 */
735b4333
AS
1744 mark_reg_unknown_value(other_branch->regs,
1745 insn->dst_reg);
17a52670
AS
1746 } else {
1747 other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
735b4333 1748 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670 1749 }
969bf05e
AS
1750 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
1751 dst_reg->type == PTR_TO_PACKET &&
1752 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
1753 find_good_pkt_pointers(env, dst_reg);
1be7f75d
AS
1754 } else if (is_pointer_value(env, insn->dst_reg)) {
1755 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1756 return -EACCES;
17a52670
AS
1757 }
1758 if (log_level)
1a0dc1ac 1759 print_verifier_state(&env->cur_state);
17a52670
AS
1760 return 0;
1761}
1762
0246e64d
AS
1763/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1764static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1765{
1766 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1767
1768 return (struct bpf_map *) (unsigned long) imm64;
1769}
1770
17a52670
AS
1771/* verify BPF_LD_IMM64 instruction */
1772static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1773{
1774 struct reg_state *regs = env->cur_state.regs;
1775 int err;
1776
1777 if (BPF_SIZE(insn->code) != BPF_DW) {
1778 verbose("invalid BPF_LD_IMM insn\n");
1779 return -EINVAL;
1780 }
1781 if (insn->off != 0) {
1782 verbose("BPF_LD_IMM64 uses reserved fields\n");
1783 return -EINVAL;
1784 }
1785
1786 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1787 if (err)
1788 return err;
1789
1790 if (insn->src_reg == 0)
1791 /* generic move 64-bit immediate into a register */
1792 return 0;
1793
1794 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1795 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1796
1797 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1798 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1799 return 0;
1800}
1801
96be4325
DB
1802static bool may_access_skb(enum bpf_prog_type type)
1803{
1804 switch (type) {
1805 case BPF_PROG_TYPE_SOCKET_FILTER:
1806 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 1807 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
1808 return true;
1809 default:
1810 return false;
1811 }
1812}
1813
ddd872bc
AS
1814/* verify safety of LD_ABS|LD_IND instructions:
1815 * - they can only appear in the programs where ctx == skb
1816 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1817 * preserve R6-R9, and store return value into R0
1818 *
1819 * Implicit input:
1820 * ctx == skb == R6 == CTX
1821 *
1822 * Explicit input:
1823 * SRC == any register
1824 * IMM == 32-bit immediate
1825 *
1826 * Output:
1827 * R0 - 8/16/32-bit skb data converted to cpu endianness
1828 */
1829static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1830{
1831 struct reg_state *regs = env->cur_state.regs;
1832 u8 mode = BPF_MODE(insn->code);
1833 struct reg_state *reg;
1834 int i, err;
1835
24701ece 1836 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 1837 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
1838 return -EINVAL;
1839 }
1840
1841 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 1842 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 1843 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 1844 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
1845 return -EINVAL;
1846 }
1847
1848 /* check whether implicit source operand (register R6) is readable */
1849 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1850 if (err)
1851 return err;
1852
1853 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1854 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1855 return -EINVAL;
1856 }
1857
1858 if (mode == BPF_IND) {
1859 /* check explicit source operand */
1860 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1861 if (err)
1862 return err;
1863 }
1864
1865 /* reset caller saved regs to unreadable */
1866 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1867 reg = regs + caller_saved[i];
1868 reg->type = NOT_INIT;
1869 reg->imm = 0;
1870 }
1871
1872 /* mark destination R0 register as readable, since it contains
1873 * the value fetched from the packet
1874 */
1875 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1876 return 0;
1877}
1878
475fb78f
AS
1879/* non-recursive DFS pseudo code
1880 * 1 procedure DFS-iterative(G,v):
1881 * 2 label v as discovered
1882 * 3 let S be a stack
1883 * 4 S.push(v)
1884 * 5 while S is not empty
1885 * 6 t <- S.pop()
1886 * 7 if t is what we're looking for:
1887 * 8 return t
1888 * 9 for all edges e in G.adjacentEdges(t) do
1889 * 10 if edge e is already labelled
1890 * 11 continue with the next edge
1891 * 12 w <- G.adjacentVertex(t,e)
1892 * 13 if vertex w is not discovered and not explored
1893 * 14 label e as tree-edge
1894 * 15 label w as discovered
1895 * 16 S.push(w)
1896 * 17 continue at 5
1897 * 18 else if vertex w is discovered
1898 * 19 label e as back-edge
1899 * 20 else
1900 * 21 // vertex w is explored
1901 * 22 label e as forward- or cross-edge
1902 * 23 label t as explored
1903 * 24 S.pop()
1904 *
1905 * convention:
1906 * 0x10 - discovered
1907 * 0x11 - discovered and fall-through edge labelled
1908 * 0x12 - discovered and fall-through and branch edges labelled
1909 * 0x20 - explored
1910 */
1911
1912enum {
1913 DISCOVERED = 0x10,
1914 EXPLORED = 0x20,
1915 FALLTHROUGH = 1,
1916 BRANCH = 2,
1917};
1918
f1bca824
AS
1919#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1920
475fb78f
AS
1921static int *insn_stack; /* stack of insns to process */
1922static int cur_stack; /* current stack index */
1923static int *insn_state;
1924
1925/* t, w, e - match pseudo-code above:
1926 * t - index of current instruction
1927 * w - next instruction
1928 * e - edge
1929 */
1930static int push_insn(int t, int w, int e, struct verifier_env *env)
1931{
1932 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1933 return 0;
1934
1935 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1936 return 0;
1937
1938 if (w < 0 || w >= env->prog->len) {
1939 verbose("jump out of range from insn %d to %d\n", t, w);
1940 return -EINVAL;
1941 }
1942
f1bca824
AS
1943 if (e == BRANCH)
1944 /* mark branch target for state pruning */
1945 env->explored_states[w] = STATE_LIST_MARK;
1946
475fb78f
AS
1947 if (insn_state[w] == 0) {
1948 /* tree-edge */
1949 insn_state[t] = DISCOVERED | e;
1950 insn_state[w] = DISCOVERED;
1951 if (cur_stack >= env->prog->len)
1952 return -E2BIG;
1953 insn_stack[cur_stack++] = w;
1954 return 1;
1955 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1956 verbose("back-edge from insn %d to %d\n", t, w);
1957 return -EINVAL;
1958 } else if (insn_state[w] == EXPLORED) {
1959 /* forward- or cross-edge */
1960 insn_state[t] = DISCOVERED | e;
1961 } else {
1962 verbose("insn state internal bug\n");
1963 return -EFAULT;
1964 }
1965 return 0;
1966}
1967
1968/* non-recursive depth-first-search to detect loops in BPF program
1969 * loop == back-edge in directed graph
1970 */
1971static int check_cfg(struct verifier_env *env)
1972{
1973 struct bpf_insn *insns = env->prog->insnsi;
1974 int insn_cnt = env->prog->len;
1975 int ret = 0;
1976 int i, t;
1977
1978 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1979 if (!insn_state)
1980 return -ENOMEM;
1981
1982 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1983 if (!insn_stack) {
1984 kfree(insn_state);
1985 return -ENOMEM;
1986 }
1987
1988 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1989 insn_stack[0] = 0; /* 0 is the first instruction */
1990 cur_stack = 1;
1991
1992peek_stack:
1993 if (cur_stack == 0)
1994 goto check_state;
1995 t = insn_stack[cur_stack - 1];
1996
1997 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1998 u8 opcode = BPF_OP(insns[t].code);
1999
2000 if (opcode == BPF_EXIT) {
2001 goto mark_explored;
2002 } else if (opcode == BPF_CALL) {
2003 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2004 if (ret == 1)
2005 goto peek_stack;
2006 else if (ret < 0)
2007 goto err_free;
07016151
DB
2008 if (t + 1 < insn_cnt)
2009 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2010 } else if (opcode == BPF_JA) {
2011 if (BPF_SRC(insns[t].code) != BPF_K) {
2012 ret = -EINVAL;
2013 goto err_free;
2014 }
2015 /* unconditional jump with single edge */
2016 ret = push_insn(t, t + insns[t].off + 1,
2017 FALLTHROUGH, env);
2018 if (ret == 1)
2019 goto peek_stack;
2020 else if (ret < 0)
2021 goto err_free;
f1bca824
AS
2022 /* tell verifier to check for equivalent states
2023 * after every call and jump
2024 */
c3de6317
AS
2025 if (t + 1 < insn_cnt)
2026 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2027 } else {
2028 /* conditional jump with two edges */
2029 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2030 if (ret == 1)
2031 goto peek_stack;
2032 else if (ret < 0)
2033 goto err_free;
2034
2035 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2036 if (ret == 1)
2037 goto peek_stack;
2038 else if (ret < 0)
2039 goto err_free;
2040 }
2041 } else {
2042 /* all other non-branch instructions with single
2043 * fall-through edge
2044 */
2045 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2046 if (ret == 1)
2047 goto peek_stack;
2048 else if (ret < 0)
2049 goto err_free;
2050 }
2051
2052mark_explored:
2053 insn_state[t] = EXPLORED;
2054 if (cur_stack-- <= 0) {
2055 verbose("pop stack internal bug\n");
2056 ret = -EFAULT;
2057 goto err_free;
2058 }
2059 goto peek_stack;
2060
2061check_state:
2062 for (i = 0; i < insn_cnt; i++) {
2063 if (insn_state[i] != EXPLORED) {
2064 verbose("unreachable insn %d\n", i);
2065 ret = -EINVAL;
2066 goto err_free;
2067 }
2068 }
2069 ret = 0; /* cfg looks good */
2070
2071err_free:
2072 kfree(insn_state);
2073 kfree(insn_stack);
2074 return ret;
2075}
2076
969bf05e
AS
2077/* the following conditions reduce the number of explored insns
2078 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2079 */
2080static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
2081{
2082 if (old->id != cur->id)
2083 return false;
2084
2085 /* old ptr_to_packet is more conservative, since it allows smaller
2086 * range. Ex:
2087 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2088 * old(off=0,r=10) means that with range=10 the verifier proceeded
2089 * further and found no issues with the program. Now we're in the same
2090 * spot with cur(off=0,r=20), so we're safe too, since anything further
2091 * will only be looking at most 10 bytes after this pointer.
2092 */
2093 if (old->off == cur->off && old->range < cur->range)
2094 return true;
2095
2096 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2097 * since both cannot be used for packet access and safe(old)
2098 * pointer has smaller off that could be used for further
2099 * 'if (ptr > data_end)' check
2100 * Ex:
2101 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2102 * that we cannot access the packet.
2103 * The safe range is:
2104 * [ptr, ptr + range - off)
2105 * so whenever off >=range, it means no safe bytes from this pointer.
2106 * When comparing old->off <= cur->off, it means that older code
2107 * went with smaller offset and that offset was later
2108 * used to figure out the safe range after 'if (ptr > data_end)' check
2109 * Say, 'old' state was explored like:
2110 * ... R3(off=0, r=0)
2111 * R4 = R3 + 20
2112 * ... now R4(off=20,r=0) <-- here
2113 * if (R4 > data_end)
2114 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2115 * ... the code further went all the way to bpf_exit.
2116 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2117 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2118 * goes further, such cur_R4 will give larger safe packet range after
2119 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2120 * so they will be good with r=30 and we can prune the search.
2121 */
2122 if (old->off <= cur->off &&
2123 old->off >= old->range && cur->off >= cur->range)
2124 return true;
2125
2126 return false;
2127}
2128
f1bca824
AS
2129/* compare two verifier states
2130 *
2131 * all states stored in state_list are known to be valid, since
2132 * verifier reached 'bpf_exit' instruction through them
2133 *
2134 * this function is called when verifier exploring different branches of
2135 * execution popped from the state stack. If it sees an old state that has
2136 * more strict register state and more strict stack state then this execution
2137 * branch doesn't need to be explored further, since verifier already
2138 * concluded that more strict state leads to valid finish.
2139 *
2140 * Therefore two states are equivalent if register state is more conservative
2141 * and explored stack state is more conservative than the current one.
2142 * Example:
2143 * explored current
2144 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2145 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2146 *
2147 * In other words if current stack state (one being explored) has more
2148 * valid slots than old one that already passed validation, it means
2149 * the verifier can stop exploring and conclude that current state is valid too
2150 *
2151 * Similarly with registers. If explored state has register type as invalid
2152 * whereas register type in current state is meaningful, it means that
2153 * the current state will reach 'bpf_exit' instruction safely
2154 */
2155static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
2156{
1a0dc1ac 2157 struct reg_state *rold, *rcur;
f1bca824
AS
2158 int i;
2159
2160 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2161 rold = &old->regs[i];
2162 rcur = &cur->regs[i];
2163
2164 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2165 continue;
2166
2167 if (rold->type == NOT_INIT ||
2168 (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2169 continue;
2170
969bf05e
AS
2171 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2172 compare_ptrs_to_packet(rold, rcur))
2173 continue;
2174
1a0dc1ac 2175 return false;
f1bca824
AS
2176 }
2177
2178 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2179 if (old->stack_slot_type[i] == STACK_INVALID)
2180 continue;
2181 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2182 /* Ex: old explored (safe) state has STACK_SPILL in
2183 * this stack slot, but current has has STACK_MISC ->
2184 * this verifier states are not equivalent,
2185 * return false to continue verification of this path
2186 */
f1bca824 2187 return false;
9c399760
AS
2188 if (i % BPF_REG_SIZE)
2189 continue;
2190 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2191 &cur->spilled_regs[i / BPF_REG_SIZE],
2192 sizeof(old->spilled_regs[0])))
2193 /* when explored and current stack slot types are
2194 * the same, check that stored pointers types
2195 * are the same as well.
2196 * Ex: explored safe path could have stored
2197 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
2198 * but current path has stored:
2199 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
2200 * such verifier states are not equivalent.
2201 * return false to continue verification of this path
2202 */
2203 return false;
2204 else
2205 continue;
f1bca824
AS
2206 }
2207 return true;
2208}
2209
2210static int is_state_visited(struct verifier_env *env, int insn_idx)
2211{
2212 struct verifier_state_list *new_sl;
2213 struct verifier_state_list *sl;
2214
2215 sl = env->explored_states[insn_idx];
2216 if (!sl)
2217 /* this 'insn_idx' instruction wasn't marked, so we will not
2218 * be doing state search here
2219 */
2220 return 0;
2221
2222 while (sl != STATE_LIST_MARK) {
2223 if (states_equal(&sl->state, &env->cur_state))
2224 /* reached equivalent register/stack state,
2225 * prune the search
2226 */
2227 return 1;
2228 sl = sl->next;
2229 }
2230
2231 /* there were no equivalent states, remember current one.
2232 * technically the current state is not proven to be safe yet,
2233 * but it will either reach bpf_exit (which means it's safe) or
2234 * it will be rejected. Since there are no loops, we won't be
2235 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2236 */
2237 new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
2238 if (!new_sl)
2239 return -ENOMEM;
2240
2241 /* add new state to the head of linked list */
2242 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2243 new_sl->next = env->explored_states[insn_idx];
2244 env->explored_states[insn_idx] = new_sl;
2245 return 0;
2246}
2247
17a52670
AS
2248static int do_check(struct verifier_env *env)
2249{
2250 struct verifier_state *state = &env->cur_state;
2251 struct bpf_insn *insns = env->prog->insnsi;
2252 struct reg_state *regs = state->regs;
2253 int insn_cnt = env->prog->len;
2254 int insn_idx, prev_insn_idx = 0;
2255 int insn_processed = 0;
2256 bool do_print_state = false;
2257
2258 init_reg_state(regs);
2259 insn_idx = 0;
2260 for (;;) {
2261 struct bpf_insn *insn;
2262 u8 class;
2263 int err;
2264
2265 if (insn_idx >= insn_cnt) {
2266 verbose("invalid insn idx %d insn_cnt %d\n",
2267 insn_idx, insn_cnt);
2268 return -EFAULT;
2269 }
2270
2271 insn = &insns[insn_idx];
2272 class = BPF_CLASS(insn->code);
2273
07016151 2274 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2275 verbose("BPF program is too large. Proccessed %d insn\n",
2276 insn_processed);
2277 return -E2BIG;
2278 }
2279
f1bca824
AS
2280 err = is_state_visited(env, insn_idx);
2281 if (err < 0)
2282 return err;
2283 if (err == 1) {
2284 /* found equivalent state, can prune the search */
2285 if (log_level) {
2286 if (do_print_state)
2287 verbose("\nfrom %d to %d: safe\n",
2288 prev_insn_idx, insn_idx);
2289 else
2290 verbose("%d: safe\n", insn_idx);
2291 }
2292 goto process_bpf_exit;
2293 }
2294
17a52670
AS
2295 if (log_level && do_print_state) {
2296 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2297 print_verifier_state(&env->cur_state);
17a52670
AS
2298 do_print_state = false;
2299 }
2300
2301 if (log_level) {
2302 verbose("%d: ", insn_idx);
2303 print_bpf_insn(insn);
2304 }
2305
2306 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2307 err = check_alu_op(env, insn);
17a52670
AS
2308 if (err)
2309 return err;
2310
2311 } else if (class == BPF_LDX) {
9bac3d6d
AS
2312 enum bpf_reg_type src_reg_type;
2313
2314 /* check for reserved fields is already done */
2315
17a52670
AS
2316 /* check src operand */
2317 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2318 if (err)
2319 return err;
2320
2321 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2322 if (err)
2323 return err;
2324
725f9dcd
AS
2325 src_reg_type = regs[insn->src_reg].type;
2326
17a52670
AS
2327 /* check that memory (src_reg + off) is readable,
2328 * the state of dst_reg will be updated by this func
2329 */
2330 err = check_mem_access(env, insn->src_reg, insn->off,
2331 BPF_SIZE(insn->code), BPF_READ,
2332 insn->dst_reg);
2333 if (err)
2334 return err;
2335
725f9dcd
AS
2336 if (BPF_SIZE(insn->code) != BPF_W) {
2337 insn_idx++;
2338 continue;
2339 }
9bac3d6d 2340
725f9dcd 2341 if (insn->imm == 0) {
9bac3d6d
AS
2342 /* saw a valid insn
2343 * dst_reg = *(u32 *)(src_reg + off)
2344 * use reserved 'imm' field to mark this insn
2345 */
2346 insn->imm = src_reg_type;
2347
2348 } else if (src_reg_type != insn->imm &&
2349 (src_reg_type == PTR_TO_CTX ||
2350 insn->imm == PTR_TO_CTX)) {
2351 /* ABuser program is trying to use the same insn
2352 * dst_reg = *(u32*) (src_reg + off)
2353 * with different pointer types:
2354 * src_reg == ctx in one branch and
2355 * src_reg == stack|map in some other branch.
2356 * Reject it.
2357 */
2358 verbose("same insn cannot be used with different pointers\n");
2359 return -EINVAL;
2360 }
2361
17a52670 2362 } else if (class == BPF_STX) {
d691f9e8
AS
2363 enum bpf_reg_type dst_reg_type;
2364
17a52670
AS
2365 if (BPF_MODE(insn->code) == BPF_XADD) {
2366 err = check_xadd(env, insn);
2367 if (err)
2368 return err;
2369 insn_idx++;
2370 continue;
2371 }
2372
17a52670
AS
2373 /* check src1 operand */
2374 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2375 if (err)
2376 return err;
2377 /* check src2 operand */
2378 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2379 if (err)
2380 return err;
2381
d691f9e8
AS
2382 dst_reg_type = regs[insn->dst_reg].type;
2383
17a52670
AS
2384 /* check that memory (dst_reg + off) is writeable */
2385 err = check_mem_access(env, insn->dst_reg, insn->off,
2386 BPF_SIZE(insn->code), BPF_WRITE,
2387 insn->src_reg);
2388 if (err)
2389 return err;
2390
d691f9e8
AS
2391 if (insn->imm == 0) {
2392 insn->imm = dst_reg_type;
2393 } else if (dst_reg_type != insn->imm &&
2394 (dst_reg_type == PTR_TO_CTX ||
2395 insn->imm == PTR_TO_CTX)) {
2396 verbose("same insn cannot be used with different pointers\n");
2397 return -EINVAL;
2398 }
2399
17a52670
AS
2400 } else if (class == BPF_ST) {
2401 if (BPF_MODE(insn->code) != BPF_MEM ||
2402 insn->src_reg != BPF_REG_0) {
2403 verbose("BPF_ST uses reserved fields\n");
2404 return -EINVAL;
2405 }
2406 /* check src operand */
2407 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2408 if (err)
2409 return err;
2410
2411 /* check that memory (dst_reg + off) is writeable */
2412 err = check_mem_access(env, insn->dst_reg, insn->off,
2413 BPF_SIZE(insn->code), BPF_WRITE,
2414 -1);
2415 if (err)
2416 return err;
2417
2418 } else if (class == BPF_JMP) {
2419 u8 opcode = BPF_OP(insn->code);
2420
2421 if (opcode == BPF_CALL) {
2422 if (BPF_SRC(insn->code) != BPF_K ||
2423 insn->off != 0 ||
2424 insn->src_reg != BPF_REG_0 ||
2425 insn->dst_reg != BPF_REG_0) {
2426 verbose("BPF_CALL uses reserved fields\n");
2427 return -EINVAL;
2428 }
2429
2430 err = check_call(env, insn->imm);
2431 if (err)
2432 return err;
2433
2434 } else if (opcode == BPF_JA) {
2435 if (BPF_SRC(insn->code) != BPF_K ||
2436 insn->imm != 0 ||
2437 insn->src_reg != BPF_REG_0 ||
2438 insn->dst_reg != BPF_REG_0) {
2439 verbose("BPF_JA uses reserved fields\n");
2440 return -EINVAL;
2441 }
2442
2443 insn_idx += insn->off + 1;
2444 continue;
2445
2446 } else if (opcode == BPF_EXIT) {
2447 if (BPF_SRC(insn->code) != BPF_K ||
2448 insn->imm != 0 ||
2449 insn->src_reg != BPF_REG_0 ||
2450 insn->dst_reg != BPF_REG_0) {
2451 verbose("BPF_EXIT uses reserved fields\n");
2452 return -EINVAL;
2453 }
2454
2455 /* eBPF calling convetion is such that R0 is used
2456 * to return the value from eBPF program.
2457 * Make sure that it's readable at this time
2458 * of bpf_exit, which means that program wrote
2459 * something into it earlier
2460 */
2461 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2462 if (err)
2463 return err;
2464
1be7f75d
AS
2465 if (is_pointer_value(env, BPF_REG_0)) {
2466 verbose("R0 leaks addr as return value\n");
2467 return -EACCES;
2468 }
2469
f1bca824 2470process_bpf_exit:
17a52670
AS
2471 insn_idx = pop_stack(env, &prev_insn_idx);
2472 if (insn_idx < 0) {
2473 break;
2474 } else {
2475 do_print_state = true;
2476 continue;
2477 }
2478 } else {
2479 err = check_cond_jmp_op(env, insn, &insn_idx);
2480 if (err)
2481 return err;
2482 }
2483 } else if (class == BPF_LD) {
2484 u8 mode = BPF_MODE(insn->code);
2485
2486 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2487 err = check_ld_abs(env, insn);
2488 if (err)
2489 return err;
2490
17a52670
AS
2491 } else if (mode == BPF_IMM) {
2492 err = check_ld_imm(env, insn);
2493 if (err)
2494 return err;
2495
2496 insn_idx++;
2497 } else {
2498 verbose("invalid BPF_LD mode\n");
2499 return -EINVAL;
2500 }
2501 } else {
2502 verbose("unknown insn class %d\n", class);
2503 return -EINVAL;
2504 }
2505
2506 insn_idx++;
2507 }
2508
1a0dc1ac 2509 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2510 return 0;
2511}
2512
0246e64d
AS
2513/* look for pseudo eBPF instructions that access map FDs and
2514 * replace them with actual map pointers
2515 */
2516static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2517{
2518 struct bpf_insn *insn = env->prog->insnsi;
2519 int insn_cnt = env->prog->len;
2520 int i, j;
2521
2522 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2523 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2524 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2525 verbose("BPF_LDX uses reserved fields\n");
2526 return -EINVAL;
2527 }
2528
d691f9e8
AS
2529 if (BPF_CLASS(insn->code) == BPF_STX &&
2530 ((BPF_MODE(insn->code) != BPF_MEM &&
2531 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2532 verbose("BPF_STX uses reserved fields\n");
2533 return -EINVAL;
2534 }
2535
0246e64d
AS
2536 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2537 struct bpf_map *map;
2538 struct fd f;
2539
2540 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2541 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2542 insn[1].off != 0) {
2543 verbose("invalid bpf_ld_imm64 insn\n");
2544 return -EINVAL;
2545 }
2546
2547 if (insn->src_reg == 0)
2548 /* valid generic load 64-bit imm */
2549 goto next_insn;
2550
2551 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2552 verbose("unrecognized bpf_ld_imm64 insn\n");
2553 return -EINVAL;
2554 }
2555
2556 f = fdget(insn->imm);
c2101297 2557 map = __bpf_map_get(f);
0246e64d
AS
2558 if (IS_ERR(map)) {
2559 verbose("fd %d is not pointing to valid bpf_map\n",
2560 insn->imm);
0246e64d
AS
2561 return PTR_ERR(map);
2562 }
2563
2564 /* store map pointer inside BPF_LD_IMM64 instruction */
2565 insn[0].imm = (u32) (unsigned long) map;
2566 insn[1].imm = ((u64) (unsigned long) map) >> 32;
2567
2568 /* check whether we recorded this map already */
2569 for (j = 0; j < env->used_map_cnt; j++)
2570 if (env->used_maps[j] == map) {
2571 fdput(f);
2572 goto next_insn;
2573 }
2574
2575 if (env->used_map_cnt >= MAX_USED_MAPS) {
2576 fdput(f);
2577 return -E2BIG;
2578 }
2579
0246e64d
AS
2580 /* hold the map. If the program is rejected by verifier,
2581 * the map will be released by release_maps() or it
2582 * will be used by the valid program until it's unloaded
2583 * and all maps are released in free_bpf_prog_info()
2584 */
92117d84
AS
2585 map = bpf_map_inc(map, false);
2586 if (IS_ERR(map)) {
2587 fdput(f);
2588 return PTR_ERR(map);
2589 }
2590 env->used_maps[env->used_map_cnt++] = map;
2591
0246e64d
AS
2592 fdput(f);
2593next_insn:
2594 insn++;
2595 i++;
2596 }
2597 }
2598
2599 /* now all pseudo BPF_LD_IMM64 instructions load valid
2600 * 'struct bpf_map *' into a register instead of user map_fd.
2601 * These pointers will be used later by verifier to validate map access.
2602 */
2603 return 0;
2604}
2605
2606/* drop refcnt of maps used by the rejected program */
2607static void release_maps(struct verifier_env *env)
2608{
2609 int i;
2610
2611 for (i = 0; i < env->used_map_cnt; i++)
2612 bpf_map_put(env->used_maps[i]);
2613}
2614
2615/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2616static void convert_pseudo_ld_imm64(struct verifier_env *env)
2617{
2618 struct bpf_insn *insn = env->prog->insnsi;
2619 int insn_cnt = env->prog->len;
2620 int i;
2621
2622 for (i = 0; i < insn_cnt; i++, insn++)
2623 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2624 insn->src_reg = 0;
2625}
2626
9bac3d6d
AS
2627/* convert load instructions that access fields of 'struct __sk_buff'
2628 * into sequence of instructions that access fields of 'struct sk_buff'
2629 */
2630static int convert_ctx_accesses(struct verifier_env *env)
2631{
2632 struct bpf_insn *insn = env->prog->insnsi;
2633 int insn_cnt = env->prog->len;
2634 struct bpf_insn insn_buf[16];
2635 struct bpf_prog *new_prog;
d691f9e8 2636 enum bpf_access_type type;
c237ee5e 2637 int i;
9bac3d6d
AS
2638
2639 if (!env->prog->aux->ops->convert_ctx_access)
2640 return 0;
2641
2642 for (i = 0; i < insn_cnt; i++, insn++) {
c237ee5e
DB
2643 u32 insn_delta, cnt;
2644
d691f9e8
AS
2645 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2646 type = BPF_READ;
2647 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2648 type = BPF_WRITE;
2649 else
9bac3d6d
AS
2650 continue;
2651
2652 if (insn->imm != PTR_TO_CTX) {
2653 /* clear internal mark */
2654 insn->imm = 0;
2655 continue;
2656 }
2657
2658 cnt = env->prog->aux->ops->
d691f9e8 2659 convert_ctx_access(type, insn->dst_reg, insn->src_reg,
ff936a04 2660 insn->off, insn_buf, env->prog);
9bac3d6d
AS
2661 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2662 verbose("bpf verifier is misconfigured\n");
2663 return -EINVAL;
2664 }
2665
c237ee5e 2666 new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
9bac3d6d
AS
2667 if (!new_prog)
2668 return -ENOMEM;
2669
c237ee5e 2670 insn_delta = cnt - 1;
9bac3d6d
AS
2671
2672 /* keep walking new program and skip insns we just inserted */
2673 env->prog = new_prog;
c237ee5e
DB
2674 insn = new_prog->insnsi + i + insn_delta;
2675
2676 insn_cnt += insn_delta;
2677 i += insn_delta;
9bac3d6d
AS
2678 }
2679
2680 return 0;
2681}
2682
f1bca824
AS
2683static void free_states(struct verifier_env *env)
2684{
2685 struct verifier_state_list *sl, *sln;
2686 int i;
2687
2688 if (!env->explored_states)
2689 return;
2690
2691 for (i = 0; i < env->prog->len; i++) {
2692 sl = env->explored_states[i];
2693
2694 if (sl)
2695 while (sl != STATE_LIST_MARK) {
2696 sln = sl->next;
2697 kfree(sl);
2698 sl = sln;
2699 }
2700 }
2701
2702 kfree(env->explored_states);
2703}
2704
9bac3d6d 2705int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 2706{
cbd35700
AS
2707 char __user *log_ubuf = NULL;
2708 struct verifier_env *env;
51580e79
AS
2709 int ret = -EINVAL;
2710
9bac3d6d 2711 if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
cbd35700
AS
2712 return -E2BIG;
2713
2714 /* 'struct verifier_env' can be global, but since it's not small,
2715 * allocate/free it every time bpf_check() is called
2716 */
2717 env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2718 if (!env)
2719 return -ENOMEM;
2720
9bac3d6d 2721 env->prog = *prog;
0246e64d 2722
cbd35700
AS
2723 /* grab the mutex to protect few globals used by verifier */
2724 mutex_lock(&bpf_verifier_lock);
2725
2726 if (attr->log_level || attr->log_buf || attr->log_size) {
2727 /* user requested verbose verifier output
2728 * and supplied buffer to store the verification trace
2729 */
2730 log_level = attr->log_level;
2731 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2732 log_size = attr->log_size;
2733 log_len = 0;
2734
2735 ret = -EINVAL;
2736 /* log_* values have to be sane */
2737 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2738 log_level == 0 || log_ubuf == NULL)
2739 goto free_env;
2740
2741 ret = -ENOMEM;
2742 log_buf = vmalloc(log_size);
2743 if (!log_buf)
2744 goto free_env;
2745 } else {
2746 log_level = 0;
2747 }
2748
0246e64d
AS
2749 ret = replace_map_fd_with_map_ptr(env);
2750 if (ret < 0)
2751 goto skip_full_check;
2752
9bac3d6d 2753 env->explored_states = kcalloc(env->prog->len,
f1bca824
AS
2754 sizeof(struct verifier_state_list *),
2755 GFP_USER);
2756 ret = -ENOMEM;
2757 if (!env->explored_states)
2758 goto skip_full_check;
2759
475fb78f
AS
2760 ret = check_cfg(env);
2761 if (ret < 0)
2762 goto skip_full_check;
2763
1be7f75d
AS
2764 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2765
17a52670 2766 ret = do_check(env);
cbd35700 2767
0246e64d 2768skip_full_check:
17a52670 2769 while (pop_stack(env, NULL) >= 0);
f1bca824 2770 free_states(env);
0246e64d 2771
9bac3d6d
AS
2772 if (ret == 0)
2773 /* program is valid, convert *(u32*)(ctx + off) accesses */
2774 ret = convert_ctx_accesses(env);
2775
cbd35700
AS
2776 if (log_level && log_len >= log_size - 1) {
2777 BUG_ON(log_len >= log_size);
2778 /* verifier log exceeded user supplied buffer */
2779 ret = -ENOSPC;
2780 /* fall through to return what was recorded */
2781 }
2782
2783 /* copy verifier log back to user space including trailing zero */
2784 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2785 ret = -EFAULT;
2786 goto free_log_buf;
2787 }
2788
0246e64d
AS
2789 if (ret == 0 && env->used_map_cnt) {
2790 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
2791 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2792 sizeof(env->used_maps[0]),
2793 GFP_KERNEL);
0246e64d 2794
9bac3d6d 2795 if (!env->prog->aux->used_maps) {
0246e64d
AS
2796 ret = -ENOMEM;
2797 goto free_log_buf;
2798 }
2799
9bac3d6d 2800 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 2801 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 2802 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
2803
2804 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
2805 * bpf_ld_imm64 instructions
2806 */
2807 convert_pseudo_ld_imm64(env);
2808 }
cbd35700
AS
2809
2810free_log_buf:
2811 if (log_level)
2812 vfree(log_buf);
2813free_env:
9bac3d6d 2814 if (!env->prog->aux->used_maps)
0246e64d
AS
2815 /* if we didn't copy map pointers into bpf_prog_info, release
2816 * them now. Otherwise free_bpf_prog_info() will release them.
2817 */
2818 release_maps(env);
9bac3d6d 2819 *prog = env->prog;
cbd35700
AS
2820 kfree(env);
2821 mutex_unlock(&bpf_verifier_lock);
51580e79
AS
2822 return ret;
2823}