]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/bpf/verifier.c
bpf: expose internal verfier structures
[mirror_ubuntu-eoan-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
22
23/* bpf_check() is a static code analyzer that walks eBPF program
24 * instruction by instruction and updates register/stack state.
25 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
26 *
27 * The first pass is depth-first-search to check that the program is a DAG.
28 * It rejects the following programs:
29 * - larger than BPF_MAXINSNS insns
30 * - if loop is present (detected via back-edge)
31 * - unreachable insns exist (shouldn't be a forest. program = one function)
32 * - out of bounds or malformed jumps
33 * The second pass is all possible path descent from the 1st insn.
34 * Since it's analyzing all pathes through the program, the length of the
35 * analysis is limited to 32k insn, which may be hit even if total number of
36 * insn is less then 4K, but there are too many branches that change stack/regs.
37 * Number of 'branches to be analyzed' is limited to 1k
38 *
39 * On entry to each instruction, each register has a type, and the instruction
40 * changes the types of the registers depending on instruction semantics.
41 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
42 * copied to R1.
43 *
44 * All registers are 64-bit.
45 * R0 - return register
46 * R1-R5 argument passing registers
47 * R6-R9 callee saved registers
48 * R10 - frame pointer read-only
49 *
50 * At the start of BPF program the register R1 contains a pointer to bpf_context
51 * and has type PTR_TO_CTX.
52 *
53 * Verifier tracks arithmetic operations on pointers in case:
54 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
55 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
56 * 1st insn copies R10 (which has FRAME_PTR) type into R1
57 * and 2nd arithmetic instruction is pattern matched to recognize
58 * that it wants to construct a pointer to some element within stack.
59 * So after 2nd insn, the register R1 has type PTR_TO_STACK
60 * (and -20 constant is saved for further stack bounds checking).
61 * Meaning that this reg is a pointer to stack plus known immediate constant.
62 *
63 * Most of the time the registers have UNKNOWN_VALUE type, which
64 * means the register has some value, but it's not a valid pointer.
65 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
66 *
67 * When verifier sees load or store instructions the type of base register
68 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
69 * types recognized by check_mem_access() function.
70 *
71 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
72 * and the range of [ptr, ptr + map's value_size) is accessible.
73 *
74 * registers used to pass values to function calls are checked against
75 * function argument constraints.
76 *
77 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
78 * It means that the register type passed to this function must be
79 * PTR_TO_STACK and it will be used inside the function as
80 * 'pointer to map element key'
81 *
82 * For example the argument constraints for bpf_map_lookup_elem():
83 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
84 * .arg1_type = ARG_CONST_MAP_PTR,
85 * .arg2_type = ARG_PTR_TO_MAP_KEY,
86 *
87 * ret_type says that this function returns 'pointer to map elem value or null'
88 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
89 * 2nd argument should be a pointer to stack, which will be used inside
90 * the helper function as a pointer to map element key.
91 *
92 * On the kernel side the helper function looks like:
93 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
94 * {
95 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
96 * void *key = (void *) (unsigned long) r2;
97 * void *value;
98 *
99 * here kernel can access 'key' and 'map' pointers safely, knowing that
100 * [key, key + map->key_size) bytes are valid and were initialized on
101 * the stack of eBPF program.
102 * }
103 *
104 * Corresponding eBPF program may look like:
105 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
106 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
107 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
108 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
109 * here verifier looks at prototype of map_lookup_elem() and sees:
110 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
111 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
112 *
113 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
114 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
115 * and were initialized prior to this call.
116 * If it's ok, then verifier allows this BPF_CALL insn and looks at
117 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
118 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
119 * returns ether pointer to map value or NULL.
120 *
121 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
122 * insn, the register holding that pointer in the true branch changes state to
123 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
124 * branch. See check_cond_jmp_op().
125 *
126 * After the call R0 is set to return type of the function and registers R1-R5
127 * are set to NOT_INIT to indicate that they are no longer readable.
128 */
129
17a52670 130/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 131struct bpf_verifier_stack_elem {
17a52670
AS
132 /* verifer state is 'st'
133 * before processing instruction 'insn_idx'
134 * and after processing instruction 'prev_insn_idx'
135 */
58e2af8b 136 struct bpf_verifier_state st;
17a52670
AS
137 int insn_idx;
138 int prev_insn_idx;
58e2af8b 139 struct bpf_verifier_stack_elem *next;
cbd35700
AS
140};
141
07016151
DB
142#define BPF_COMPLEXITY_LIMIT_INSNS 65536
143#define BPF_COMPLEXITY_LIMIT_STACK 1024
144
33ff9823
DB
145struct bpf_call_arg_meta {
146 struct bpf_map *map_ptr;
435faee1 147 bool raw_mode;
36bbef52 148 bool pkt_access;
435faee1
DB
149 int regno;
150 int access_size;
33ff9823
DB
151};
152
cbd35700
AS
153/* verbose verifier prints what it's seeing
154 * bpf_check() is called under lock, so no race to access these global vars
155 */
156static u32 log_level, log_size, log_len;
157static char *log_buf;
158
159static DEFINE_MUTEX(bpf_verifier_lock);
160
161/* log_level controls verbosity level of eBPF verifier.
162 * verbose() is used to dump the verification trace to the log, so the user
163 * can figure out what's wrong with the program
164 */
1d056d9c 165static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
166{
167 va_list args;
168
169 if (log_level == 0 || log_len >= log_size - 1)
170 return;
171
172 va_start(args, fmt);
173 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
174 va_end(args);
175}
176
17a52670
AS
177/* string representation of 'enum bpf_reg_type' */
178static const char * const reg_type_str[] = {
179 [NOT_INIT] = "?",
180 [UNKNOWN_VALUE] = "inv",
181 [PTR_TO_CTX] = "ctx",
182 [CONST_PTR_TO_MAP] = "map_ptr",
183 [PTR_TO_MAP_VALUE] = "map_value",
184 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
185 [FRAME_PTR] = "fp",
186 [PTR_TO_STACK] = "fp",
187 [CONST_IMM] = "imm",
969bf05e
AS
188 [PTR_TO_PACKET] = "pkt",
189 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
190};
191
58e2af8b 192static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 193{
58e2af8b 194 struct bpf_reg_state *reg;
17a52670
AS
195 enum bpf_reg_type t;
196 int i;
197
198 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
199 reg = &state->regs[i];
200 t = reg->type;
17a52670
AS
201 if (t == NOT_INIT)
202 continue;
203 verbose(" R%d=%s", i, reg_type_str[t]);
204 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
205 verbose("%lld", reg->imm);
206 else if (t == PTR_TO_PACKET)
207 verbose("(id=%d,off=%d,r=%d)",
208 reg->id, reg->off, reg->range);
209 else if (t == UNKNOWN_VALUE && reg->imm)
210 verbose("%lld", reg->imm);
17a52670
AS
211 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
212 t == PTR_TO_MAP_VALUE_OR_NULL)
213 verbose("(ks=%d,vs=%d)",
1a0dc1ac
AS
214 reg->map_ptr->key_size,
215 reg->map_ptr->value_size);
17a52670 216 }
9c399760 217 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 218 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 219 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 220 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
221 }
222 verbose("\n");
223}
224
cbd35700
AS
225static const char *const bpf_class_string[] = {
226 [BPF_LD] = "ld",
227 [BPF_LDX] = "ldx",
228 [BPF_ST] = "st",
229 [BPF_STX] = "stx",
230 [BPF_ALU] = "alu",
231 [BPF_JMP] = "jmp",
232 [BPF_RET] = "BUG",
233 [BPF_ALU64] = "alu64",
234};
235
687f0715 236static const char *const bpf_alu_string[16] = {
cbd35700
AS
237 [BPF_ADD >> 4] = "+=",
238 [BPF_SUB >> 4] = "-=",
239 [BPF_MUL >> 4] = "*=",
240 [BPF_DIV >> 4] = "/=",
241 [BPF_OR >> 4] = "|=",
242 [BPF_AND >> 4] = "&=",
243 [BPF_LSH >> 4] = "<<=",
244 [BPF_RSH >> 4] = ">>=",
245 [BPF_NEG >> 4] = "neg",
246 [BPF_MOD >> 4] = "%=",
247 [BPF_XOR >> 4] = "^=",
248 [BPF_MOV >> 4] = "=",
249 [BPF_ARSH >> 4] = "s>>=",
250 [BPF_END >> 4] = "endian",
251};
252
253static const char *const bpf_ldst_string[] = {
254 [BPF_W >> 3] = "u32",
255 [BPF_H >> 3] = "u16",
256 [BPF_B >> 3] = "u8",
257 [BPF_DW >> 3] = "u64",
258};
259
687f0715 260static const char *const bpf_jmp_string[16] = {
cbd35700
AS
261 [BPF_JA >> 4] = "jmp",
262 [BPF_JEQ >> 4] = "==",
263 [BPF_JGT >> 4] = ">",
264 [BPF_JGE >> 4] = ">=",
265 [BPF_JSET >> 4] = "&",
266 [BPF_JNE >> 4] = "!=",
267 [BPF_JSGT >> 4] = "s>",
268 [BPF_JSGE >> 4] = "s>=",
269 [BPF_CALL >> 4] = "call",
270 [BPF_EXIT >> 4] = "exit",
271};
272
273static void print_bpf_insn(struct bpf_insn *insn)
274{
275 u8 class = BPF_CLASS(insn->code);
276
277 if (class == BPF_ALU || class == BPF_ALU64) {
278 if (BPF_SRC(insn->code) == BPF_X)
279 verbose("(%02x) %sr%d %s %sr%d\n",
280 insn->code, class == BPF_ALU ? "(u32) " : "",
281 insn->dst_reg,
282 bpf_alu_string[BPF_OP(insn->code) >> 4],
283 class == BPF_ALU ? "(u32) " : "",
284 insn->src_reg);
285 else
286 verbose("(%02x) %sr%d %s %s%d\n",
287 insn->code, class == BPF_ALU ? "(u32) " : "",
288 insn->dst_reg,
289 bpf_alu_string[BPF_OP(insn->code) >> 4],
290 class == BPF_ALU ? "(u32) " : "",
291 insn->imm);
292 } else if (class == BPF_STX) {
293 if (BPF_MODE(insn->code) == BPF_MEM)
294 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
295 insn->code,
296 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
297 insn->dst_reg,
298 insn->off, insn->src_reg);
299 else if (BPF_MODE(insn->code) == BPF_XADD)
300 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
301 insn->code,
302 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
303 insn->dst_reg, insn->off,
304 insn->src_reg);
305 else
306 verbose("BUG_%02x\n", insn->code);
307 } else if (class == BPF_ST) {
308 if (BPF_MODE(insn->code) != BPF_MEM) {
309 verbose("BUG_st_%02x\n", insn->code);
310 return;
311 }
312 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
313 insn->code,
314 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
315 insn->dst_reg,
316 insn->off, insn->imm);
317 } else if (class == BPF_LDX) {
318 if (BPF_MODE(insn->code) != BPF_MEM) {
319 verbose("BUG_ldx_%02x\n", insn->code);
320 return;
321 }
322 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
323 insn->code, insn->dst_reg,
324 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
325 insn->src_reg, insn->off);
326 } else if (class == BPF_LD) {
327 if (BPF_MODE(insn->code) == BPF_ABS) {
328 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
329 insn->code,
330 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
331 insn->imm);
332 } else if (BPF_MODE(insn->code) == BPF_IND) {
333 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
334 insn->code,
335 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
336 insn->src_reg, insn->imm);
337 } else if (BPF_MODE(insn->code) == BPF_IMM) {
338 verbose("(%02x) r%d = 0x%x\n",
339 insn->code, insn->dst_reg, insn->imm);
340 } else {
341 verbose("BUG_ld_%02x\n", insn->code);
342 return;
343 }
344 } else if (class == BPF_JMP) {
345 u8 opcode = BPF_OP(insn->code);
346
347 if (opcode == BPF_CALL) {
348 verbose("(%02x) call %d\n", insn->code, insn->imm);
349 } else if (insn->code == (BPF_JMP | BPF_JA)) {
350 verbose("(%02x) goto pc%+d\n",
351 insn->code, insn->off);
352 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
353 verbose("(%02x) exit\n", insn->code);
354 } else if (BPF_SRC(insn->code) == BPF_X) {
355 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
356 insn->code, insn->dst_reg,
357 bpf_jmp_string[BPF_OP(insn->code) >> 4],
358 insn->src_reg, insn->off);
359 } else {
360 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
361 insn->code, insn->dst_reg,
362 bpf_jmp_string[BPF_OP(insn->code) >> 4],
363 insn->imm, insn->off);
364 }
365 } else {
366 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
367 }
368}
369
58e2af8b 370static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 371{
58e2af8b 372 struct bpf_verifier_stack_elem *elem;
17a52670
AS
373 int insn_idx;
374
375 if (env->head == NULL)
376 return -1;
377
378 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
379 insn_idx = env->head->insn_idx;
380 if (prev_insn_idx)
381 *prev_insn_idx = env->head->prev_insn_idx;
382 elem = env->head->next;
383 kfree(env->head);
384 env->head = elem;
385 env->stack_size--;
386 return insn_idx;
387}
388
58e2af8b
JK
389static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
390 int insn_idx, int prev_insn_idx)
17a52670 391{
58e2af8b 392 struct bpf_verifier_stack_elem *elem;
17a52670 393
58e2af8b 394 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
395 if (!elem)
396 goto err;
397
398 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
399 elem->insn_idx = insn_idx;
400 elem->prev_insn_idx = prev_insn_idx;
401 elem->next = env->head;
402 env->head = elem;
403 env->stack_size++;
07016151 404 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
405 verbose("BPF program is too complex\n");
406 goto err;
407 }
408 return &elem->st;
409err:
410 /* pop all elements and return */
411 while (pop_stack(env, NULL) >= 0);
412 return NULL;
413}
414
415#define CALLER_SAVED_REGS 6
416static const int caller_saved[CALLER_SAVED_REGS] = {
417 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
418};
419
58e2af8b 420static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
421{
422 int i;
423
424 for (i = 0; i < MAX_BPF_REG; i++) {
425 regs[i].type = NOT_INIT;
426 regs[i].imm = 0;
17a52670
AS
427 }
428
429 /* frame pointer */
430 regs[BPF_REG_FP].type = FRAME_PTR;
431
432 /* 1st arg to a function */
433 regs[BPF_REG_1].type = PTR_TO_CTX;
434}
435
58e2af8b 436static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670
AS
437{
438 BUG_ON(regno >= MAX_BPF_REG);
439 regs[regno].type = UNKNOWN_VALUE;
440 regs[regno].imm = 0;
17a52670
AS
441}
442
443enum reg_arg_type {
444 SRC_OP, /* register is used as source operand */
445 DST_OP, /* register is used as destination operand */
446 DST_OP_NO_MARK /* same as above, check only, don't mark */
447};
448
58e2af8b 449static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
450 enum reg_arg_type t)
451{
452 if (regno >= MAX_BPF_REG) {
453 verbose("R%d is invalid\n", regno);
454 return -EINVAL;
455 }
456
457 if (t == SRC_OP) {
458 /* check whether register used as source operand can be read */
459 if (regs[regno].type == NOT_INIT) {
460 verbose("R%d !read_ok\n", regno);
461 return -EACCES;
462 }
463 } else {
464 /* check whether register used as dest operand can be written to */
465 if (regno == BPF_REG_FP) {
466 verbose("frame pointer is read only\n");
467 return -EACCES;
468 }
469 if (t == DST_OP)
470 mark_reg_unknown_value(regs, regno);
471 }
472 return 0;
473}
474
475static int bpf_size_to_bytes(int bpf_size)
476{
477 if (bpf_size == BPF_W)
478 return 4;
479 else if (bpf_size == BPF_H)
480 return 2;
481 else if (bpf_size == BPF_B)
482 return 1;
483 else if (bpf_size == BPF_DW)
484 return 8;
485 else
486 return -EINVAL;
487}
488
1be7f75d
AS
489static bool is_spillable_regtype(enum bpf_reg_type type)
490{
491 switch (type) {
492 case PTR_TO_MAP_VALUE:
493 case PTR_TO_MAP_VALUE_OR_NULL:
494 case PTR_TO_STACK:
495 case PTR_TO_CTX:
969bf05e
AS
496 case PTR_TO_PACKET:
497 case PTR_TO_PACKET_END:
1be7f75d
AS
498 case FRAME_PTR:
499 case CONST_PTR_TO_MAP:
500 return true;
501 default:
502 return false;
503 }
504}
505
17a52670
AS
506/* check_stack_read/write functions track spill/fill of registers,
507 * stack boundary and alignment are checked in check_mem_access()
508 */
58e2af8b
JK
509static int check_stack_write(struct bpf_verifier_state *state, int off,
510 int size, int value_regno)
17a52670 511{
17a52670 512 int i;
9c399760
AS
513 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
514 * so it's aligned access and [off, off + size) are within stack limits
515 */
17a52670
AS
516
517 if (value_regno >= 0 &&
1be7f75d 518 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
519
520 /* register containing pointer is being spilled into stack */
9c399760 521 if (size != BPF_REG_SIZE) {
17a52670
AS
522 verbose("invalid size of register spill\n");
523 return -EACCES;
524 }
525
17a52670 526 /* save register state */
9c399760
AS
527 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
528 state->regs[value_regno];
17a52670 529
9c399760
AS
530 for (i = 0; i < BPF_REG_SIZE; i++)
531 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
532 } else {
17a52670 533 /* regular write of data into stack */
9c399760 534 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 535 (struct bpf_reg_state) {};
9c399760
AS
536
537 for (i = 0; i < size; i++)
538 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
539 }
540 return 0;
541}
542
58e2af8b 543static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
544 int value_regno)
545{
9c399760 546 u8 *slot_type;
17a52670 547 int i;
17a52670 548
9c399760 549 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 550
9c399760
AS
551 if (slot_type[0] == STACK_SPILL) {
552 if (size != BPF_REG_SIZE) {
17a52670
AS
553 verbose("invalid size of register spill\n");
554 return -EACCES;
555 }
9c399760
AS
556 for (i = 1; i < BPF_REG_SIZE; i++) {
557 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
558 verbose("corrupted spill memory\n");
559 return -EACCES;
560 }
561 }
562
563 if (value_regno >= 0)
564 /* restore register state from stack */
9c399760
AS
565 state->regs[value_regno] =
566 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
567 return 0;
568 } else {
569 for (i = 0; i < size; i++) {
9c399760 570 if (slot_type[i] != STACK_MISC) {
17a52670
AS
571 verbose("invalid read from stack off %d+%d size %d\n",
572 off, i, size);
573 return -EACCES;
574 }
575 }
576 if (value_regno >= 0)
577 /* have read misc data from the stack */
578 mark_reg_unknown_value(state->regs, value_regno);
579 return 0;
580 }
581}
582
583/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 584static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
585 int size)
586{
587 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
588
589 if (off < 0 || off + size > map->value_size) {
590 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
591 map->value_size, off, size);
592 return -EACCES;
593 }
594 return 0;
595}
596
969bf05e
AS
597#define MAX_PACKET_OFF 0xffff
598
58e2af8b 599static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
36bbef52 600 const struct bpf_call_arg_meta *meta)
4acf6c0b 601{
36bbef52
DB
602 switch (env->prog->type) {
603 case BPF_PROG_TYPE_SCHED_CLS:
604 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 605 case BPF_PROG_TYPE_XDP:
36bbef52
DB
606 if (meta)
607 return meta->pkt_access;
608
609 env->seen_direct_write = true;
4acf6c0b
BB
610 return true;
611 default:
612 return false;
613 }
614}
615
58e2af8b 616static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
617 int size)
618{
58e2af8b
JK
619 struct bpf_reg_state *regs = env->cur_state.regs;
620 struct bpf_reg_state *reg = &regs[regno];
969bf05e 621
d91b28ed 622 off += reg->off;
b399cf64 623 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
624 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
625 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
626 return -EACCES;
627 }
628 return 0;
629}
630
17a52670 631/* check access to 'struct bpf_context' fields */
58e2af8b 632static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 633 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670
AS
634{
635 if (env->prog->aux->ops->is_valid_access &&
19de99f7 636 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
637 /* remember the offset of last byte accessed in ctx */
638 if (env->prog->aux->max_ctx_offset < off + size)
639 env->prog->aux->max_ctx_offset = off + size;
17a52670 640 return 0;
32bbe007 641 }
17a52670
AS
642
643 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
644 return -EACCES;
645}
646
58e2af8b 647static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
648{
649 if (env->allow_ptr_leaks)
650 return false;
651
652 switch (env->cur_state.regs[regno].type) {
653 case UNKNOWN_VALUE:
654 case CONST_IMM:
655 return false;
656 default:
657 return true;
658 }
659}
660
58e2af8b
JK
661static int check_ptr_alignment(struct bpf_verifier_env *env,
662 struct bpf_reg_state *reg, int off, int size)
969bf05e
AS
663{
664 if (reg->type != PTR_TO_PACKET) {
665 if (off % size != 0) {
58e2af8b
JK
666 verbose("misaligned access off %d size %d\n",
667 off, size);
969bf05e
AS
668 return -EACCES;
669 } else {
670 return 0;
671 }
672 }
673
674 switch (env->prog->type) {
675 case BPF_PROG_TYPE_SCHED_CLS:
676 case BPF_PROG_TYPE_SCHED_ACT:
6a773a15 677 case BPF_PROG_TYPE_XDP:
969bf05e
AS
678 break;
679 default:
680 verbose("verifier is misconfigured\n");
681 return -EACCES;
682 }
683
684 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
685 /* misaligned access to packet is ok on x86,arm,arm64 */
686 return 0;
687
688 if (reg->id && size != 1) {
689 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
690 return -EACCES;
691 }
692
693 /* skb->data is NET_IP_ALIGN-ed */
694 if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
695 verbose("misaligned packet access off %d+%d+%d size %d\n",
696 NET_IP_ALIGN, reg->off, off, size);
697 return -EACCES;
698 }
699 return 0;
700}
701
17a52670
AS
702/* check whether memory at (regno + off) is accessible for t = (read | write)
703 * if t==write, value_regno is a register which value is stored into memory
704 * if t==read, value_regno is a register which will receive the value from memory
705 * if t==write && value_regno==-1, some unknown value is stored into memory
706 * if t==read && value_regno==-1, don't care what we read from memory
707 */
58e2af8b 708static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
709 int bpf_size, enum bpf_access_type t,
710 int value_regno)
711{
58e2af8b
JK
712 struct bpf_verifier_state *state = &env->cur_state;
713 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
714 int size, err = 0;
715
1a0dc1ac
AS
716 if (reg->type == PTR_TO_STACK)
717 off += reg->imm;
24b4d2ab 718
17a52670
AS
719 size = bpf_size_to_bytes(bpf_size);
720 if (size < 0)
721 return size;
722
969bf05e
AS
723 err = check_ptr_alignment(env, reg, off, size);
724 if (err)
725 return err;
17a52670 726
1a0dc1ac 727 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
728 if (t == BPF_WRITE && value_regno >= 0 &&
729 is_pointer_value(env, value_regno)) {
730 verbose("R%d leaks addr into map\n", value_regno);
731 return -EACCES;
732 }
17a52670
AS
733 err = check_map_access(env, regno, off, size);
734 if (!err && t == BPF_READ && value_regno >= 0)
735 mark_reg_unknown_value(state->regs, value_regno);
736
1a0dc1ac 737 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
738 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
739
1be7f75d
AS
740 if (t == BPF_WRITE && value_regno >= 0 &&
741 is_pointer_value(env, value_regno)) {
742 verbose("R%d leaks addr into ctx\n", value_regno);
743 return -EACCES;
744 }
19de99f7 745 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 746 if (!err && t == BPF_READ && value_regno >= 0) {
17a52670 747 mark_reg_unknown_value(state->regs, value_regno);
19de99f7 748 if (env->allow_ptr_leaks)
969bf05e 749 /* note that reg.[id|off|range] == 0 */
19de99f7 750 state->regs[value_regno].type = reg_type;
969bf05e 751 }
17a52670 752
1a0dc1ac 753 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
754 if (off >= 0 || off < -MAX_BPF_STACK) {
755 verbose("invalid stack off=%d size=%d\n", off, size);
756 return -EACCES;
757 }
1be7f75d
AS
758 if (t == BPF_WRITE) {
759 if (!env->allow_ptr_leaks &&
760 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
761 size != BPF_REG_SIZE) {
762 verbose("attempt to corrupt spilled pointer on stack\n");
763 return -EACCES;
764 }
17a52670 765 err = check_stack_write(state, off, size, value_regno);
1be7f75d 766 } else {
17a52670 767 err = check_stack_read(state, off, size, value_regno);
1be7f75d 768 }
969bf05e 769 } else if (state->regs[regno].type == PTR_TO_PACKET) {
36bbef52 770 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL)) {
969bf05e
AS
771 verbose("cannot write into packet\n");
772 return -EACCES;
773 }
4acf6c0b
BB
774 if (t == BPF_WRITE && value_regno >= 0 &&
775 is_pointer_value(env, value_regno)) {
776 verbose("R%d leaks addr into packet\n", value_regno);
777 return -EACCES;
778 }
969bf05e
AS
779 err = check_packet_access(env, regno, off, size);
780 if (!err && t == BPF_READ && value_regno >= 0)
781 mark_reg_unknown_value(state->regs, value_regno);
17a52670
AS
782 } else {
783 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 784 regno, reg_type_str[reg->type]);
17a52670
AS
785 return -EACCES;
786 }
969bf05e
AS
787
788 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
789 state->regs[value_regno].type == UNKNOWN_VALUE) {
790 /* 1 or 2 byte load zero-extends, determine the number of
791 * zero upper bits. Not doing it fo 4 byte load, since
792 * such values cannot be added to ptr_to_packet anyway.
793 */
794 state->regs[value_regno].imm = 64 - size * 8;
795 }
17a52670
AS
796 return err;
797}
798
58e2af8b 799static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 800{
58e2af8b 801 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
802 int err;
803
804 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
805 insn->imm != 0) {
806 verbose("BPF_XADD uses reserved fields\n");
807 return -EINVAL;
808 }
809
810 /* check src1 operand */
811 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
812 if (err)
813 return err;
814
815 /* check src2 operand */
816 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
817 if (err)
818 return err;
819
820 /* check whether atomic_add can read the memory */
821 err = check_mem_access(env, insn->dst_reg, insn->off,
822 BPF_SIZE(insn->code), BPF_READ, -1);
823 if (err)
824 return err;
825
826 /* check whether atomic_add can write into the same memory */
827 return check_mem_access(env, insn->dst_reg, insn->off,
828 BPF_SIZE(insn->code), BPF_WRITE, -1);
829}
830
831/* when register 'regno' is passed into function that will read 'access_size'
832 * bytes from that pointer, make sure that it's within stack boundary
833 * and all elements of stack are initialized
834 */
58e2af8b 835static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
836 int access_size, bool zero_size_allowed,
837 struct bpf_call_arg_meta *meta)
17a52670 838{
58e2af8b
JK
839 struct bpf_verifier_state *state = &env->cur_state;
840 struct bpf_reg_state *regs = state->regs;
17a52670
AS
841 int off, i;
842
8e2fe1d9
DB
843 if (regs[regno].type != PTR_TO_STACK) {
844 if (zero_size_allowed && access_size == 0 &&
845 regs[regno].type == CONST_IMM &&
846 regs[regno].imm == 0)
847 return 0;
848
849 verbose("R%d type=%s expected=%s\n", regno,
850 reg_type_str[regs[regno].type],
851 reg_type_str[PTR_TO_STACK]);
17a52670 852 return -EACCES;
8e2fe1d9 853 }
17a52670
AS
854
855 off = regs[regno].imm;
856 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
857 access_size <= 0) {
858 verbose("invalid stack type R%d off=%d access_size=%d\n",
859 regno, off, access_size);
860 return -EACCES;
861 }
862
435faee1
DB
863 if (meta && meta->raw_mode) {
864 meta->access_size = access_size;
865 meta->regno = regno;
866 return 0;
867 }
868
17a52670 869 for (i = 0; i < access_size; i++) {
9c399760 870 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
871 verbose("invalid indirect read from stack off %d+%d size %d\n",
872 off, i, access_size);
873 return -EACCES;
874 }
875 }
876 return 0;
877}
878
58e2af8b 879static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
880 enum bpf_arg_type arg_type,
881 struct bpf_call_arg_meta *meta)
17a52670 882{
58e2af8b 883 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 884 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
885 int err = 0;
886
80f1d68c 887 if (arg_type == ARG_DONTCARE)
17a52670
AS
888 return 0;
889
6841de8b 890 if (type == NOT_INIT) {
17a52670
AS
891 verbose("R%d !read_ok\n", regno);
892 return -EACCES;
893 }
894
1be7f75d
AS
895 if (arg_type == ARG_ANYTHING) {
896 if (is_pointer_value(env, regno)) {
897 verbose("R%d leaks addr into helper function\n", regno);
898 return -EACCES;
899 }
80f1d68c 900 return 0;
1be7f75d 901 }
80f1d68c 902
36bbef52
DB
903 if (type == PTR_TO_PACKET && !may_access_direct_pkt_data(env, meta)) {
904 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
905 return -EACCES;
906 }
907
8e2fe1d9 908 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
909 arg_type == ARG_PTR_TO_MAP_VALUE) {
910 expected_type = PTR_TO_STACK;
6841de8b
AS
911 if (type != PTR_TO_PACKET && type != expected_type)
912 goto err_type;
8e2fe1d9
DB
913 } else if (arg_type == ARG_CONST_STACK_SIZE ||
914 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 915 expected_type = CONST_IMM;
6841de8b
AS
916 if (type != expected_type)
917 goto err_type;
17a52670
AS
918 } else if (arg_type == ARG_CONST_MAP_PTR) {
919 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
920 if (type != expected_type)
921 goto err_type;
608cd71a
AS
922 } else if (arg_type == ARG_PTR_TO_CTX) {
923 expected_type = PTR_TO_CTX;
6841de8b
AS
924 if (type != expected_type)
925 goto err_type;
435faee1
DB
926 } else if (arg_type == ARG_PTR_TO_STACK ||
927 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
928 expected_type = PTR_TO_STACK;
929 /* One exception here. In case function allows for NULL to be
930 * passed in as argument, it's a CONST_IMM type. Final test
931 * happens during stack boundary checking.
932 */
6841de8b
AS
933 if (type == CONST_IMM && reg->imm == 0)
934 /* final test in check_stack_boundary() */;
935 else if (type != PTR_TO_PACKET && type != expected_type)
936 goto err_type;
435faee1 937 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
938 } else {
939 verbose("unsupported arg_type %d\n", arg_type);
940 return -EFAULT;
941 }
942
17a52670
AS
943 if (arg_type == ARG_CONST_MAP_PTR) {
944 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 945 meta->map_ptr = reg->map_ptr;
17a52670
AS
946 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
947 /* bpf_map_xxx(..., map_ptr, ..., key) call:
948 * check that [key, key + map->key_size) are within
949 * stack limits and initialized
950 */
33ff9823 951 if (!meta->map_ptr) {
17a52670
AS
952 /* in function declaration map_ptr must come before
953 * map_key, so that it's verified and known before
954 * we have to check map_key here. Otherwise it means
955 * that kernel subsystem misconfigured verifier
956 */
957 verbose("invalid map_ptr to access map->key\n");
958 return -EACCES;
959 }
6841de8b
AS
960 if (type == PTR_TO_PACKET)
961 err = check_packet_access(env, regno, 0,
962 meta->map_ptr->key_size);
963 else
964 err = check_stack_boundary(env, regno,
965 meta->map_ptr->key_size,
966 false, NULL);
17a52670
AS
967 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
968 /* bpf_map_xxx(..., map_ptr, ..., value) call:
969 * check [value, value + map->value_size) validity
970 */
33ff9823 971 if (!meta->map_ptr) {
17a52670
AS
972 /* kernel subsystem misconfigured verifier */
973 verbose("invalid map_ptr to access map->value\n");
974 return -EACCES;
975 }
6841de8b
AS
976 if (type == PTR_TO_PACKET)
977 err = check_packet_access(env, regno, 0,
978 meta->map_ptr->value_size);
979 else
980 err = check_stack_boundary(env, regno,
981 meta->map_ptr->value_size,
982 false, NULL);
8e2fe1d9
DB
983 } else if (arg_type == ARG_CONST_STACK_SIZE ||
984 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
985 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 986
17a52670
AS
987 /* bpf_xxx(..., buf, len) call will access 'len' bytes
988 * from stack pointer 'buf'. Check it
989 * note: regno == len, regno - 1 == buf
990 */
991 if (regno == 0) {
992 /* kernel subsystem misconfigured verifier */
993 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
994 return -EACCES;
995 }
6841de8b
AS
996 if (regs[regno - 1].type == PTR_TO_PACKET)
997 err = check_packet_access(env, regno - 1, 0, reg->imm);
998 else
999 err = check_stack_boundary(env, regno - 1, reg->imm,
1000 zero_size_allowed, meta);
17a52670
AS
1001 }
1002
1003 return err;
6841de8b
AS
1004err_type:
1005 verbose("R%d type=%s expected=%s\n", regno,
1006 reg_type_str[type], reg_type_str[expected_type]);
1007 return -EACCES;
17a52670
AS
1008}
1009
35578d79
KX
1010static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1011{
35578d79
KX
1012 if (!map)
1013 return 0;
1014
6aff67c8
AS
1015 /* We need a two way check, first is from map perspective ... */
1016 switch (map->map_type) {
1017 case BPF_MAP_TYPE_PROG_ARRAY:
1018 if (func_id != BPF_FUNC_tail_call)
1019 goto error;
1020 break;
1021 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1022 if (func_id != BPF_FUNC_perf_event_read &&
1023 func_id != BPF_FUNC_perf_event_output)
1024 goto error;
1025 break;
1026 case BPF_MAP_TYPE_STACK_TRACE:
1027 if (func_id != BPF_FUNC_get_stackid)
1028 goto error;
1029 break;
4ed8ec52 1030 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1031 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1032 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1033 goto error;
1034 break;
6aff67c8
AS
1035 default:
1036 break;
1037 }
1038
1039 /* ... and second from the function itself. */
1040 switch (func_id) {
1041 case BPF_FUNC_tail_call:
1042 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1043 goto error;
1044 break;
1045 case BPF_FUNC_perf_event_read:
1046 case BPF_FUNC_perf_event_output:
1047 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1048 goto error;
1049 break;
1050 case BPF_FUNC_get_stackid:
1051 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1052 goto error;
1053 break;
60d20f91 1054 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1055 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1056 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1057 goto error;
1058 break;
6aff67c8
AS
1059 default:
1060 break;
35578d79
KX
1061 }
1062
1063 return 0;
6aff67c8
AS
1064error:
1065 verbose("cannot pass map_type %d into func %d\n",
1066 map->map_type, func_id);
1067 return -EINVAL;
35578d79
KX
1068}
1069
435faee1
DB
1070static int check_raw_mode(const struct bpf_func_proto *fn)
1071{
1072 int count = 0;
1073
1074 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1075 count++;
1076 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1077 count++;
1078 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1079 count++;
1080 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1081 count++;
1082 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1083 count++;
1084
1085 return count > 1 ? -EINVAL : 0;
1086}
1087
58e2af8b 1088static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1089{
58e2af8b
JK
1090 struct bpf_verifier_state *state = &env->cur_state;
1091 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1092 int i;
1093
1094 for (i = 0; i < MAX_BPF_REG; i++)
1095 if (regs[i].type == PTR_TO_PACKET ||
1096 regs[i].type == PTR_TO_PACKET_END)
1097 mark_reg_unknown_value(regs, i);
1098
1099 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1100 if (state->stack_slot_type[i] != STACK_SPILL)
1101 continue;
1102 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1103 if (reg->type != PTR_TO_PACKET &&
1104 reg->type != PTR_TO_PACKET_END)
1105 continue;
1106 reg->type = UNKNOWN_VALUE;
1107 reg->imm = 0;
1108 }
1109}
1110
58e2af8b 1111static int check_call(struct bpf_verifier_env *env, int func_id)
17a52670 1112{
58e2af8b 1113 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1114 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1115 struct bpf_reg_state *regs = state->regs;
1116 struct bpf_reg_state *reg;
33ff9823 1117 struct bpf_call_arg_meta meta;
969bf05e 1118 bool changes_data;
17a52670
AS
1119 int i, err;
1120
1121 /* find function prototype */
1122 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1123 verbose("invalid func %d\n", func_id);
1124 return -EINVAL;
1125 }
1126
1127 if (env->prog->aux->ops->get_func_proto)
1128 fn = env->prog->aux->ops->get_func_proto(func_id);
1129
1130 if (!fn) {
1131 verbose("unknown func %d\n", func_id);
1132 return -EINVAL;
1133 }
1134
1135 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1136 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1137 verbose("cannot call GPL only function from proprietary program\n");
1138 return -EINVAL;
1139 }
1140
969bf05e
AS
1141 changes_data = bpf_helper_changes_skb_data(fn->func);
1142
33ff9823 1143 memset(&meta, 0, sizeof(meta));
36bbef52 1144 meta.pkt_access = fn->pkt_access;
33ff9823 1145
435faee1
DB
1146 /* We only support one arg being in raw mode at the moment, which
1147 * is sufficient for the helper functions we have right now.
1148 */
1149 err = check_raw_mode(fn);
1150 if (err) {
1151 verbose("kernel subsystem misconfigured func %d\n", func_id);
1152 return err;
1153 }
1154
17a52670 1155 /* check args */
33ff9823 1156 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1157 if (err)
1158 return err;
33ff9823 1159 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1160 if (err)
1161 return err;
33ff9823 1162 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1163 if (err)
1164 return err;
33ff9823 1165 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1166 if (err)
1167 return err;
33ff9823 1168 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1169 if (err)
1170 return err;
1171
435faee1
DB
1172 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1173 * is inferred from register state.
1174 */
1175 for (i = 0; i < meta.access_size; i++) {
1176 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1177 if (err)
1178 return err;
1179 }
1180
17a52670
AS
1181 /* reset caller saved regs */
1182 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1183 reg = regs + caller_saved[i];
1184 reg->type = NOT_INIT;
1185 reg->imm = 0;
1186 }
1187
1188 /* update return register */
1189 if (fn->ret_type == RET_INTEGER) {
1190 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1191 } else if (fn->ret_type == RET_VOID) {
1192 regs[BPF_REG_0].type = NOT_INIT;
1193 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1194 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1195 /* remember map_ptr, so that check_map_access()
1196 * can check 'value_size' boundary of memory access
1197 * to map element returned from bpf_map_lookup_elem()
1198 */
33ff9823 1199 if (meta.map_ptr == NULL) {
17a52670
AS
1200 verbose("kernel subsystem misconfigured verifier\n");
1201 return -EINVAL;
1202 }
33ff9823 1203 regs[BPF_REG_0].map_ptr = meta.map_ptr;
17a52670
AS
1204 } else {
1205 verbose("unknown return type %d of func %d\n",
1206 fn->ret_type, func_id);
1207 return -EINVAL;
1208 }
04fd61ab 1209
33ff9823 1210 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1211 if (err)
1212 return err;
04fd61ab 1213
969bf05e
AS
1214 if (changes_data)
1215 clear_all_pkt_pointers(env);
1216 return 0;
1217}
1218
58e2af8b
JK
1219static int check_packet_ptr_add(struct bpf_verifier_env *env,
1220 struct bpf_insn *insn)
969bf05e 1221{
58e2af8b
JK
1222 struct bpf_reg_state *regs = env->cur_state.regs;
1223 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1224 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1225 struct bpf_reg_state tmp_reg;
969bf05e
AS
1226 s32 imm;
1227
1228 if (BPF_SRC(insn->code) == BPF_K) {
1229 /* pkt_ptr += imm */
1230 imm = insn->imm;
1231
1232add_imm:
1233 if (imm <= 0) {
1234 verbose("addition of negative constant to packet pointer is not allowed\n");
1235 return -EACCES;
1236 }
1237 if (imm >= MAX_PACKET_OFF ||
1238 imm + dst_reg->off >= MAX_PACKET_OFF) {
1239 verbose("constant %d is too large to add to packet pointer\n",
1240 imm);
1241 return -EACCES;
1242 }
1243 /* a constant was added to pkt_ptr.
1244 * Remember it while keeping the same 'id'
1245 */
1246 dst_reg->off += imm;
1247 } else {
1b9b69ec
AS
1248 if (src_reg->type == PTR_TO_PACKET) {
1249 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1250 tmp_reg = *dst_reg; /* save r7 state */
1251 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1252 src_reg = &tmp_reg; /* pretend it's src_reg state */
1253 /* if the checks below reject it, the copy won't matter,
1254 * since we're rejecting the whole program. If all ok,
1255 * then imm22 state will be added to r7
1256 * and r7 will be pkt(id=0,off=22,r=62) while
1257 * r6 will stay as pkt(id=0,off=0,r=62)
1258 */
1259 }
1260
969bf05e
AS
1261 if (src_reg->type == CONST_IMM) {
1262 /* pkt_ptr += reg where reg is known constant */
1263 imm = src_reg->imm;
1264 goto add_imm;
1265 }
1266 /* disallow pkt_ptr += reg
1267 * if reg is not uknown_value with guaranteed zero upper bits
1268 * otherwise pkt_ptr may overflow and addition will become
1269 * subtraction which is not allowed
1270 */
1271 if (src_reg->type != UNKNOWN_VALUE) {
1272 verbose("cannot add '%s' to ptr_to_packet\n",
1273 reg_type_str[src_reg->type]);
1274 return -EACCES;
1275 }
1276 if (src_reg->imm < 48) {
1277 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1278 src_reg->imm);
1279 return -EACCES;
1280 }
1281 /* dst_reg stays as pkt_ptr type and since some positive
1282 * integer value was added to the pointer, increment its 'id'
1283 */
1f415a74 1284 dst_reg->id = ++env->id_gen;
969bf05e
AS
1285
1286 /* something was added to pkt_ptr, set range and off to zero */
1287 dst_reg->off = 0;
1288 dst_reg->range = 0;
1289 }
1290 return 0;
1291}
1292
58e2af8b 1293static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1294{
58e2af8b
JK
1295 struct bpf_reg_state *regs = env->cur_state.regs;
1296 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1297 u8 opcode = BPF_OP(insn->code);
1298 s64 imm_log2;
1299
1300 /* for type == UNKNOWN_VALUE:
1301 * imm > 0 -> number of zero upper bits
1302 * imm == 0 -> don't track which is the same as all bits can be non-zero
1303 */
1304
1305 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1306 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1307
1308 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1309 dst_reg->imm && opcode == BPF_ADD) {
1310 /* dreg += sreg
1311 * where both have zero upper bits. Adding them
1312 * can only result making one more bit non-zero
1313 * in the larger value.
1314 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1315 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1316 */
1317 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1318 dst_reg->imm--;
1319 return 0;
1320 }
1321 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1322 dst_reg->imm && opcode == BPF_ADD) {
1323 /* dreg += sreg
1324 * where dreg has zero upper bits and sreg is const.
1325 * Adding them can only result making one more bit
1326 * non-zero in the larger value.
1327 */
1328 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1329 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1330 dst_reg->imm--;
1331 return 0;
1332 }
1333 /* all other cases non supported yet, just mark dst_reg */
1334 dst_reg->imm = 0;
1335 return 0;
1336 }
1337
1338 /* sign extend 32-bit imm into 64-bit to make sure that
1339 * negative values occupy bit 63. Note ilog2() would have
1340 * been incorrect, since sizeof(insn->imm) == 4
1341 */
1342 imm_log2 = __ilog2_u64((long long)insn->imm);
1343
1344 if (dst_reg->imm && opcode == BPF_LSH) {
1345 /* reg <<= imm
1346 * if reg was a result of 2 byte load, then its imm == 48
1347 * which means that upper 48 bits are zero and shifting this reg
1348 * left by 4 would mean that upper 44 bits are still zero
1349 */
1350 dst_reg->imm -= insn->imm;
1351 } else if (dst_reg->imm && opcode == BPF_MUL) {
1352 /* reg *= imm
1353 * if multiplying by 14 subtract 4
1354 * This is conservative calculation of upper zero bits.
1355 * It's not trying to special case insn->imm == 1 or 0 cases
1356 */
1357 dst_reg->imm -= imm_log2 + 1;
1358 } else if (opcode == BPF_AND) {
1359 /* reg &= imm */
1360 dst_reg->imm = 63 - imm_log2;
1361 } else if (dst_reg->imm && opcode == BPF_ADD) {
1362 /* reg += imm */
1363 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1364 dst_reg->imm--;
1365 } else if (opcode == BPF_RSH) {
1366 /* reg >>= imm
1367 * which means that after right shift, upper bits will be zero
1368 * note that verifier already checked that
1369 * 0 <= imm < 64 for shift insn
1370 */
1371 dst_reg->imm += insn->imm;
1372 if (unlikely(dst_reg->imm > 64))
1373 /* some dumb code did:
1374 * r2 = *(u32 *)mem;
1375 * r2 >>= 32;
1376 * and all bits are zero now */
1377 dst_reg->imm = 64;
1378 } else {
1379 /* all other alu ops, means that we don't know what will
1380 * happen to the value, mark it with unknown number of zero bits
1381 */
1382 dst_reg->imm = 0;
1383 }
1384
1385 if (dst_reg->imm < 0) {
1386 /* all 64 bits of the register can contain non-zero bits
1387 * and such value cannot be added to ptr_to_packet, since it
1388 * may overflow, mark it as unknown to avoid further eval
1389 */
1390 dst_reg->imm = 0;
1391 }
1392 return 0;
1393}
1394
58e2af8b
JK
1395static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1396 struct bpf_insn *insn)
969bf05e 1397{
58e2af8b
JK
1398 struct bpf_reg_state *regs = env->cur_state.regs;
1399 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1400 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1401 u8 opcode = BPF_OP(insn->code);
1402
1403 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1404 * Don't care about overflow or negative values, just add them
1405 */
1406 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1407 dst_reg->imm += insn->imm;
1408 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1409 src_reg->type == CONST_IMM)
1410 dst_reg->imm += src_reg->imm;
1411 else
1412 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1413 return 0;
1414}
1415
1416/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1417static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1418{
58e2af8b 1419 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1420 u8 opcode = BPF_OP(insn->code);
1421 int err;
1422
1423 if (opcode == BPF_END || opcode == BPF_NEG) {
1424 if (opcode == BPF_NEG) {
1425 if (BPF_SRC(insn->code) != 0 ||
1426 insn->src_reg != BPF_REG_0 ||
1427 insn->off != 0 || insn->imm != 0) {
1428 verbose("BPF_NEG uses reserved fields\n");
1429 return -EINVAL;
1430 }
1431 } else {
1432 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1433 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1434 verbose("BPF_END uses reserved fields\n");
1435 return -EINVAL;
1436 }
1437 }
1438
1439 /* check src operand */
1440 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1441 if (err)
1442 return err;
1443
1be7f75d
AS
1444 if (is_pointer_value(env, insn->dst_reg)) {
1445 verbose("R%d pointer arithmetic prohibited\n",
1446 insn->dst_reg);
1447 return -EACCES;
1448 }
1449
17a52670
AS
1450 /* check dest operand */
1451 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1452 if (err)
1453 return err;
1454
1455 } else if (opcode == BPF_MOV) {
1456
1457 if (BPF_SRC(insn->code) == BPF_X) {
1458 if (insn->imm != 0 || insn->off != 0) {
1459 verbose("BPF_MOV uses reserved fields\n");
1460 return -EINVAL;
1461 }
1462
1463 /* check src operand */
1464 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1465 if (err)
1466 return err;
1467 } else {
1468 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1469 verbose("BPF_MOV uses reserved fields\n");
1470 return -EINVAL;
1471 }
1472 }
1473
1474 /* check dest operand */
1475 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1476 if (err)
1477 return err;
1478
1479 if (BPF_SRC(insn->code) == BPF_X) {
1480 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1481 /* case: R1 = R2
1482 * copy register state to dest reg
1483 */
1484 regs[insn->dst_reg] = regs[insn->src_reg];
1485 } else {
1be7f75d
AS
1486 if (is_pointer_value(env, insn->src_reg)) {
1487 verbose("R%d partial copy of pointer\n",
1488 insn->src_reg);
1489 return -EACCES;
1490 }
17a52670
AS
1491 regs[insn->dst_reg].type = UNKNOWN_VALUE;
1492 regs[insn->dst_reg].map_ptr = NULL;
1493 }
1494 } else {
1495 /* case: R = imm
1496 * remember the value we stored into this reg
1497 */
1498 regs[insn->dst_reg].type = CONST_IMM;
1499 regs[insn->dst_reg].imm = insn->imm;
1500 }
1501
1502 } else if (opcode > BPF_END) {
1503 verbose("invalid BPF_ALU opcode %x\n", opcode);
1504 return -EINVAL;
1505
1506 } else { /* all other ALU ops: and, sub, xor, add, ... */
1507
17a52670
AS
1508 if (BPF_SRC(insn->code) == BPF_X) {
1509 if (insn->imm != 0 || insn->off != 0) {
1510 verbose("BPF_ALU uses reserved fields\n");
1511 return -EINVAL;
1512 }
1513 /* check src1 operand */
1514 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1515 if (err)
1516 return err;
1517 } else {
1518 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1519 verbose("BPF_ALU uses reserved fields\n");
1520 return -EINVAL;
1521 }
1522 }
1523
1524 /* check src2 operand */
1525 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1526 if (err)
1527 return err;
1528
1529 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1530 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1531 verbose("div by zero\n");
1532 return -EINVAL;
1533 }
1534
229394e8
RV
1535 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1536 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1537 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1538
1539 if (insn->imm < 0 || insn->imm >= size) {
1540 verbose("invalid shift %d\n", insn->imm);
1541 return -EINVAL;
1542 }
1543 }
1544
1a0dc1ac
AS
1545 /* check dest operand */
1546 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1547 if (err)
1548 return err;
1549
1550 dst_reg = &regs[insn->dst_reg];
1551
17a52670
AS
1552 /* pattern match 'bpf_add Rx, imm' instruction */
1553 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1554 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1555 dst_reg->type = PTR_TO_STACK;
1556 dst_reg->imm = insn->imm;
1557 return 0;
969bf05e
AS
1558 } else if (opcode == BPF_ADD &&
1559 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1560 (dst_reg->type == PTR_TO_PACKET ||
1561 (BPF_SRC(insn->code) == BPF_X &&
1562 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1563 /* ptr_to_packet += K|X */
1564 return check_packet_ptr_add(env, insn);
1565 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1566 dst_reg->type == UNKNOWN_VALUE &&
1567 env->allow_ptr_leaks) {
1568 /* unknown += K|X */
1569 return evaluate_reg_alu(env, insn);
1570 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1571 dst_reg->type == CONST_IMM &&
1572 env->allow_ptr_leaks) {
1573 /* reg_imm += K|X */
1574 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1575 } else if (is_pointer_value(env, insn->dst_reg)) {
1576 verbose("R%d pointer arithmetic prohibited\n",
1577 insn->dst_reg);
1578 return -EACCES;
1579 } else if (BPF_SRC(insn->code) == BPF_X &&
1580 is_pointer_value(env, insn->src_reg)) {
1581 verbose("R%d pointer arithmetic prohibited\n",
1582 insn->src_reg);
1583 return -EACCES;
1584 }
17a52670 1585
1a0dc1ac
AS
1586 /* mark dest operand */
1587 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1588 }
1589
1590 return 0;
1591}
1592
58e2af8b
JK
1593static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1594 struct bpf_reg_state *dst_reg)
969bf05e 1595{
58e2af8b 1596 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1597 int i;
2d2be8ca
DB
1598
1599 /* LLVM can generate two kind of checks:
1600 *
1601 * Type 1:
1602 *
1603 * r2 = r3;
1604 * r2 += 8;
1605 * if (r2 > pkt_end) goto <handle exception>
1606 * <access okay>
1607 *
1608 * Where:
1609 * r2 == dst_reg, pkt_end == src_reg
1610 * r2=pkt(id=n,off=8,r=0)
1611 * r3=pkt(id=n,off=0,r=0)
1612 *
1613 * Type 2:
1614 *
1615 * r2 = r3;
1616 * r2 += 8;
1617 * if (pkt_end >= r2) goto <access okay>
1618 * <handle exception>
1619 *
1620 * Where:
1621 * pkt_end == dst_reg, r2 == src_reg
1622 * r2=pkt(id=n,off=8,r=0)
1623 * r3=pkt(id=n,off=0,r=0)
1624 *
1625 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1626 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1627 */
2d2be8ca 1628
969bf05e
AS
1629 for (i = 0; i < MAX_BPF_REG; i++)
1630 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1631 regs[i].range = dst_reg->off;
1632
1633 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1634 if (state->stack_slot_type[i] != STACK_SPILL)
1635 continue;
1636 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1637 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1638 reg->range = dst_reg->off;
1639 }
1640}
1641
58e2af8b 1642static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
1643 struct bpf_insn *insn, int *insn_idx)
1644{
58e2af8b
JK
1645 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
1646 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
1647 u8 opcode = BPF_OP(insn->code);
1648 int err;
1649
1650 if (opcode > BPF_EXIT) {
1651 verbose("invalid BPF_JMP opcode %x\n", opcode);
1652 return -EINVAL;
1653 }
1654
1655 if (BPF_SRC(insn->code) == BPF_X) {
1656 if (insn->imm != 0) {
1657 verbose("BPF_JMP uses reserved fields\n");
1658 return -EINVAL;
1659 }
1660
1661 /* check src1 operand */
1662 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1663 if (err)
1664 return err;
1be7f75d
AS
1665
1666 if (is_pointer_value(env, insn->src_reg)) {
1667 verbose("R%d pointer comparison prohibited\n",
1668 insn->src_reg);
1669 return -EACCES;
1670 }
17a52670
AS
1671 } else {
1672 if (insn->src_reg != BPF_REG_0) {
1673 verbose("BPF_JMP uses reserved fields\n");
1674 return -EINVAL;
1675 }
1676 }
1677
1678 /* check src2 operand */
1679 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1680 if (err)
1681 return err;
1682
1a0dc1ac
AS
1683 dst_reg = &regs[insn->dst_reg];
1684
17a52670
AS
1685 /* detect if R == 0 where R was initialized to zero earlier */
1686 if (BPF_SRC(insn->code) == BPF_K &&
1687 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 1688 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
1689 if (opcode == BPF_JEQ) {
1690 /* if (imm == imm) goto pc+off;
1691 * only follow the goto, ignore fall-through
1692 */
1693 *insn_idx += insn->off;
1694 return 0;
1695 } else {
1696 /* if (imm != imm) goto pc+off;
1697 * only follow fall-through branch, since
1698 * that's where the program will go
1699 */
1700 return 0;
1701 }
1702 }
1703
1704 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1705 if (!other_branch)
1706 return -EFAULT;
1707
58e2af8b 1708 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 1709 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
1710 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1711 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
17a52670
AS
1712 if (opcode == BPF_JEQ) {
1713 /* next fallthrough insn can access memory via
1714 * this register
1715 */
1716 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1717 /* branch targer cannot access it, since reg == 0 */
735b4333
AS
1718 mark_reg_unknown_value(other_branch->regs,
1719 insn->dst_reg);
17a52670
AS
1720 } else {
1721 other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
735b4333 1722 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670 1723 }
969bf05e
AS
1724 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
1725 dst_reg->type == PTR_TO_PACKET &&
1726 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
1727 find_good_pkt_pointers(this_branch, dst_reg);
1728 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
1729 dst_reg->type == PTR_TO_PACKET_END &&
1730 regs[insn->src_reg].type == PTR_TO_PACKET) {
1731 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
1732 } else if (is_pointer_value(env, insn->dst_reg)) {
1733 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1734 return -EACCES;
17a52670
AS
1735 }
1736 if (log_level)
2d2be8ca 1737 print_verifier_state(this_branch);
17a52670
AS
1738 return 0;
1739}
1740
0246e64d
AS
1741/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1742static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1743{
1744 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1745
1746 return (struct bpf_map *) (unsigned long) imm64;
1747}
1748
17a52670 1749/* verify BPF_LD_IMM64 instruction */
58e2af8b 1750static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1751{
58e2af8b 1752 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
1753 int err;
1754
1755 if (BPF_SIZE(insn->code) != BPF_DW) {
1756 verbose("invalid BPF_LD_IMM insn\n");
1757 return -EINVAL;
1758 }
1759 if (insn->off != 0) {
1760 verbose("BPF_LD_IMM64 uses reserved fields\n");
1761 return -EINVAL;
1762 }
1763
1764 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1765 if (err)
1766 return err;
1767
1768 if (insn->src_reg == 0)
1769 /* generic move 64-bit immediate into a register */
1770 return 0;
1771
1772 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1773 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1774
1775 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1776 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1777 return 0;
1778}
1779
96be4325
DB
1780static bool may_access_skb(enum bpf_prog_type type)
1781{
1782 switch (type) {
1783 case BPF_PROG_TYPE_SOCKET_FILTER:
1784 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 1785 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
1786 return true;
1787 default:
1788 return false;
1789 }
1790}
1791
ddd872bc
AS
1792/* verify safety of LD_ABS|LD_IND instructions:
1793 * - they can only appear in the programs where ctx == skb
1794 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1795 * preserve R6-R9, and store return value into R0
1796 *
1797 * Implicit input:
1798 * ctx == skb == R6 == CTX
1799 *
1800 * Explicit input:
1801 * SRC == any register
1802 * IMM == 32-bit immediate
1803 *
1804 * Output:
1805 * R0 - 8/16/32-bit skb data converted to cpu endianness
1806 */
58e2af8b 1807static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 1808{
58e2af8b 1809 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 1810 u8 mode = BPF_MODE(insn->code);
58e2af8b 1811 struct bpf_reg_state *reg;
ddd872bc
AS
1812 int i, err;
1813
24701ece 1814 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 1815 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
1816 return -EINVAL;
1817 }
1818
1819 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 1820 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 1821 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 1822 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
1823 return -EINVAL;
1824 }
1825
1826 /* check whether implicit source operand (register R6) is readable */
1827 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1828 if (err)
1829 return err;
1830
1831 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1832 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1833 return -EINVAL;
1834 }
1835
1836 if (mode == BPF_IND) {
1837 /* check explicit source operand */
1838 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1839 if (err)
1840 return err;
1841 }
1842
1843 /* reset caller saved regs to unreadable */
1844 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1845 reg = regs + caller_saved[i];
1846 reg->type = NOT_INIT;
1847 reg->imm = 0;
1848 }
1849
1850 /* mark destination R0 register as readable, since it contains
1851 * the value fetched from the packet
1852 */
1853 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1854 return 0;
1855}
1856
475fb78f
AS
1857/* non-recursive DFS pseudo code
1858 * 1 procedure DFS-iterative(G,v):
1859 * 2 label v as discovered
1860 * 3 let S be a stack
1861 * 4 S.push(v)
1862 * 5 while S is not empty
1863 * 6 t <- S.pop()
1864 * 7 if t is what we're looking for:
1865 * 8 return t
1866 * 9 for all edges e in G.adjacentEdges(t) do
1867 * 10 if edge e is already labelled
1868 * 11 continue with the next edge
1869 * 12 w <- G.adjacentVertex(t,e)
1870 * 13 if vertex w is not discovered and not explored
1871 * 14 label e as tree-edge
1872 * 15 label w as discovered
1873 * 16 S.push(w)
1874 * 17 continue at 5
1875 * 18 else if vertex w is discovered
1876 * 19 label e as back-edge
1877 * 20 else
1878 * 21 // vertex w is explored
1879 * 22 label e as forward- or cross-edge
1880 * 23 label t as explored
1881 * 24 S.pop()
1882 *
1883 * convention:
1884 * 0x10 - discovered
1885 * 0x11 - discovered and fall-through edge labelled
1886 * 0x12 - discovered and fall-through and branch edges labelled
1887 * 0x20 - explored
1888 */
1889
1890enum {
1891 DISCOVERED = 0x10,
1892 EXPLORED = 0x20,
1893 FALLTHROUGH = 1,
1894 BRANCH = 2,
1895};
1896
58e2af8b 1897#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 1898
475fb78f
AS
1899static int *insn_stack; /* stack of insns to process */
1900static int cur_stack; /* current stack index */
1901static int *insn_state;
1902
1903/* t, w, e - match pseudo-code above:
1904 * t - index of current instruction
1905 * w - next instruction
1906 * e - edge
1907 */
58e2af8b 1908static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
1909{
1910 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1911 return 0;
1912
1913 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1914 return 0;
1915
1916 if (w < 0 || w >= env->prog->len) {
1917 verbose("jump out of range from insn %d to %d\n", t, w);
1918 return -EINVAL;
1919 }
1920
f1bca824
AS
1921 if (e == BRANCH)
1922 /* mark branch target for state pruning */
1923 env->explored_states[w] = STATE_LIST_MARK;
1924
475fb78f
AS
1925 if (insn_state[w] == 0) {
1926 /* tree-edge */
1927 insn_state[t] = DISCOVERED | e;
1928 insn_state[w] = DISCOVERED;
1929 if (cur_stack >= env->prog->len)
1930 return -E2BIG;
1931 insn_stack[cur_stack++] = w;
1932 return 1;
1933 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1934 verbose("back-edge from insn %d to %d\n", t, w);
1935 return -EINVAL;
1936 } else if (insn_state[w] == EXPLORED) {
1937 /* forward- or cross-edge */
1938 insn_state[t] = DISCOVERED | e;
1939 } else {
1940 verbose("insn state internal bug\n");
1941 return -EFAULT;
1942 }
1943 return 0;
1944}
1945
1946/* non-recursive depth-first-search to detect loops in BPF program
1947 * loop == back-edge in directed graph
1948 */
58e2af8b 1949static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
1950{
1951 struct bpf_insn *insns = env->prog->insnsi;
1952 int insn_cnt = env->prog->len;
1953 int ret = 0;
1954 int i, t;
1955
1956 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1957 if (!insn_state)
1958 return -ENOMEM;
1959
1960 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1961 if (!insn_stack) {
1962 kfree(insn_state);
1963 return -ENOMEM;
1964 }
1965
1966 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1967 insn_stack[0] = 0; /* 0 is the first instruction */
1968 cur_stack = 1;
1969
1970peek_stack:
1971 if (cur_stack == 0)
1972 goto check_state;
1973 t = insn_stack[cur_stack - 1];
1974
1975 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1976 u8 opcode = BPF_OP(insns[t].code);
1977
1978 if (opcode == BPF_EXIT) {
1979 goto mark_explored;
1980 } else if (opcode == BPF_CALL) {
1981 ret = push_insn(t, t + 1, FALLTHROUGH, env);
1982 if (ret == 1)
1983 goto peek_stack;
1984 else if (ret < 0)
1985 goto err_free;
07016151
DB
1986 if (t + 1 < insn_cnt)
1987 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
1988 } else if (opcode == BPF_JA) {
1989 if (BPF_SRC(insns[t].code) != BPF_K) {
1990 ret = -EINVAL;
1991 goto err_free;
1992 }
1993 /* unconditional jump with single edge */
1994 ret = push_insn(t, t + insns[t].off + 1,
1995 FALLTHROUGH, env);
1996 if (ret == 1)
1997 goto peek_stack;
1998 else if (ret < 0)
1999 goto err_free;
f1bca824
AS
2000 /* tell verifier to check for equivalent states
2001 * after every call and jump
2002 */
c3de6317
AS
2003 if (t + 1 < insn_cnt)
2004 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2005 } else {
2006 /* conditional jump with two edges */
2007 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2008 if (ret == 1)
2009 goto peek_stack;
2010 else if (ret < 0)
2011 goto err_free;
2012
2013 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2014 if (ret == 1)
2015 goto peek_stack;
2016 else if (ret < 0)
2017 goto err_free;
2018 }
2019 } else {
2020 /* all other non-branch instructions with single
2021 * fall-through edge
2022 */
2023 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2024 if (ret == 1)
2025 goto peek_stack;
2026 else if (ret < 0)
2027 goto err_free;
2028 }
2029
2030mark_explored:
2031 insn_state[t] = EXPLORED;
2032 if (cur_stack-- <= 0) {
2033 verbose("pop stack internal bug\n");
2034 ret = -EFAULT;
2035 goto err_free;
2036 }
2037 goto peek_stack;
2038
2039check_state:
2040 for (i = 0; i < insn_cnt; i++) {
2041 if (insn_state[i] != EXPLORED) {
2042 verbose("unreachable insn %d\n", i);
2043 ret = -EINVAL;
2044 goto err_free;
2045 }
2046 }
2047 ret = 0; /* cfg looks good */
2048
2049err_free:
2050 kfree(insn_state);
2051 kfree(insn_stack);
2052 return ret;
2053}
2054
969bf05e
AS
2055/* the following conditions reduce the number of explored insns
2056 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2057 */
58e2af8b
JK
2058static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2059 struct bpf_reg_state *cur)
969bf05e
AS
2060{
2061 if (old->id != cur->id)
2062 return false;
2063
2064 /* old ptr_to_packet is more conservative, since it allows smaller
2065 * range. Ex:
2066 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2067 * old(off=0,r=10) means that with range=10 the verifier proceeded
2068 * further and found no issues with the program. Now we're in the same
2069 * spot with cur(off=0,r=20), so we're safe too, since anything further
2070 * will only be looking at most 10 bytes after this pointer.
2071 */
2072 if (old->off == cur->off && old->range < cur->range)
2073 return true;
2074
2075 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2076 * since both cannot be used for packet access and safe(old)
2077 * pointer has smaller off that could be used for further
2078 * 'if (ptr > data_end)' check
2079 * Ex:
2080 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2081 * that we cannot access the packet.
2082 * The safe range is:
2083 * [ptr, ptr + range - off)
2084 * so whenever off >=range, it means no safe bytes from this pointer.
2085 * When comparing old->off <= cur->off, it means that older code
2086 * went with smaller offset and that offset was later
2087 * used to figure out the safe range after 'if (ptr > data_end)' check
2088 * Say, 'old' state was explored like:
2089 * ... R3(off=0, r=0)
2090 * R4 = R3 + 20
2091 * ... now R4(off=20,r=0) <-- here
2092 * if (R4 > data_end)
2093 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2094 * ... the code further went all the way to bpf_exit.
2095 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2096 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2097 * goes further, such cur_R4 will give larger safe packet range after
2098 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2099 * so they will be good with r=30 and we can prune the search.
2100 */
2101 if (old->off <= cur->off &&
2102 old->off >= old->range && cur->off >= cur->range)
2103 return true;
2104
2105 return false;
2106}
2107
f1bca824
AS
2108/* compare two verifier states
2109 *
2110 * all states stored in state_list are known to be valid, since
2111 * verifier reached 'bpf_exit' instruction through them
2112 *
2113 * this function is called when verifier exploring different branches of
2114 * execution popped from the state stack. If it sees an old state that has
2115 * more strict register state and more strict stack state then this execution
2116 * branch doesn't need to be explored further, since verifier already
2117 * concluded that more strict state leads to valid finish.
2118 *
2119 * Therefore two states are equivalent if register state is more conservative
2120 * and explored stack state is more conservative than the current one.
2121 * Example:
2122 * explored current
2123 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2124 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2125 *
2126 * In other words if current stack state (one being explored) has more
2127 * valid slots than old one that already passed validation, it means
2128 * the verifier can stop exploring and conclude that current state is valid too
2129 *
2130 * Similarly with registers. If explored state has register type as invalid
2131 * whereas register type in current state is meaningful, it means that
2132 * the current state will reach 'bpf_exit' instruction safely
2133 */
58e2af8b
JK
2134static bool states_equal(struct bpf_verifier_state *old,
2135 struct bpf_verifier_state *cur)
f1bca824 2136{
58e2af8b 2137 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2138 int i;
2139
2140 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2141 rold = &old->regs[i];
2142 rcur = &cur->regs[i];
2143
2144 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2145 continue;
2146
2147 if (rold->type == NOT_INIT ||
2148 (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2149 continue;
2150
969bf05e
AS
2151 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2152 compare_ptrs_to_packet(rold, rcur))
2153 continue;
2154
1a0dc1ac 2155 return false;
f1bca824
AS
2156 }
2157
2158 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2159 if (old->stack_slot_type[i] == STACK_INVALID)
2160 continue;
2161 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2162 /* Ex: old explored (safe) state has STACK_SPILL in
2163 * this stack slot, but current has has STACK_MISC ->
2164 * this verifier states are not equivalent,
2165 * return false to continue verification of this path
2166 */
f1bca824 2167 return false;
9c399760
AS
2168 if (i % BPF_REG_SIZE)
2169 continue;
2170 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2171 &cur->spilled_regs[i / BPF_REG_SIZE],
2172 sizeof(old->spilled_regs[0])))
2173 /* when explored and current stack slot types are
2174 * the same, check that stored pointers types
2175 * are the same as well.
2176 * Ex: explored safe path could have stored
58e2af8b 2177 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2178 * but current path has stored:
58e2af8b 2179 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2180 * such verifier states are not equivalent.
2181 * return false to continue verification of this path
2182 */
2183 return false;
2184 else
2185 continue;
f1bca824
AS
2186 }
2187 return true;
2188}
2189
58e2af8b 2190static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2191{
58e2af8b
JK
2192 struct bpf_verifier_state_list *new_sl;
2193 struct bpf_verifier_state_list *sl;
f1bca824
AS
2194
2195 sl = env->explored_states[insn_idx];
2196 if (!sl)
2197 /* this 'insn_idx' instruction wasn't marked, so we will not
2198 * be doing state search here
2199 */
2200 return 0;
2201
2202 while (sl != STATE_LIST_MARK) {
2203 if (states_equal(&sl->state, &env->cur_state))
2204 /* reached equivalent register/stack state,
2205 * prune the search
2206 */
2207 return 1;
2208 sl = sl->next;
2209 }
2210
2211 /* there were no equivalent states, remember current one.
2212 * technically the current state is not proven to be safe yet,
2213 * but it will either reach bpf_exit (which means it's safe) or
2214 * it will be rejected. Since there are no loops, we won't be
2215 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2216 */
58e2af8b 2217 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2218 if (!new_sl)
2219 return -ENOMEM;
2220
2221 /* add new state to the head of linked list */
2222 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2223 new_sl->next = env->explored_states[insn_idx];
2224 env->explored_states[insn_idx] = new_sl;
2225 return 0;
2226}
2227
58e2af8b 2228static int do_check(struct bpf_verifier_env *env)
17a52670 2229{
58e2af8b 2230 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2231 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2232 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2233 int insn_cnt = env->prog->len;
2234 int insn_idx, prev_insn_idx = 0;
2235 int insn_processed = 0;
2236 bool do_print_state = false;
2237
2238 init_reg_state(regs);
2239 insn_idx = 0;
2240 for (;;) {
2241 struct bpf_insn *insn;
2242 u8 class;
2243 int err;
2244
2245 if (insn_idx >= insn_cnt) {
2246 verbose("invalid insn idx %d insn_cnt %d\n",
2247 insn_idx, insn_cnt);
2248 return -EFAULT;
2249 }
2250
2251 insn = &insns[insn_idx];
2252 class = BPF_CLASS(insn->code);
2253
07016151 2254 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2255 verbose("BPF program is too large. Proccessed %d insn\n",
2256 insn_processed);
2257 return -E2BIG;
2258 }
2259
f1bca824
AS
2260 err = is_state_visited(env, insn_idx);
2261 if (err < 0)
2262 return err;
2263 if (err == 1) {
2264 /* found equivalent state, can prune the search */
2265 if (log_level) {
2266 if (do_print_state)
2267 verbose("\nfrom %d to %d: safe\n",
2268 prev_insn_idx, insn_idx);
2269 else
2270 verbose("%d: safe\n", insn_idx);
2271 }
2272 goto process_bpf_exit;
2273 }
2274
17a52670
AS
2275 if (log_level && do_print_state) {
2276 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2277 print_verifier_state(&env->cur_state);
17a52670
AS
2278 do_print_state = false;
2279 }
2280
2281 if (log_level) {
2282 verbose("%d: ", insn_idx);
2283 print_bpf_insn(insn);
2284 }
2285
2286 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2287 err = check_alu_op(env, insn);
17a52670
AS
2288 if (err)
2289 return err;
2290
2291 } else if (class == BPF_LDX) {
3df126f3 2292 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2293
2294 /* check for reserved fields is already done */
2295
17a52670
AS
2296 /* check src operand */
2297 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2298 if (err)
2299 return err;
2300
2301 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2302 if (err)
2303 return err;
2304
725f9dcd
AS
2305 src_reg_type = regs[insn->src_reg].type;
2306
17a52670
AS
2307 /* check that memory (src_reg + off) is readable,
2308 * the state of dst_reg will be updated by this func
2309 */
2310 err = check_mem_access(env, insn->src_reg, insn->off,
2311 BPF_SIZE(insn->code), BPF_READ,
2312 insn->dst_reg);
2313 if (err)
2314 return err;
2315
ea2e7ce5
AS
2316 if (BPF_SIZE(insn->code) != BPF_W &&
2317 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2318 insn_idx++;
2319 continue;
2320 }
9bac3d6d 2321
3df126f3
JK
2322 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2323
2324 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2325 /* saw a valid insn
2326 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2327 * save type to validate intersecting paths
9bac3d6d 2328 */
3df126f3 2329 *prev_src_type = src_reg_type;
9bac3d6d 2330
3df126f3 2331 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2332 (src_reg_type == PTR_TO_CTX ||
3df126f3 2333 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2334 /* ABuser program is trying to use the same insn
2335 * dst_reg = *(u32*) (src_reg + off)
2336 * with different pointer types:
2337 * src_reg == ctx in one branch and
2338 * src_reg == stack|map in some other branch.
2339 * Reject it.
2340 */
2341 verbose("same insn cannot be used with different pointers\n");
2342 return -EINVAL;
2343 }
2344
17a52670 2345 } else if (class == BPF_STX) {
3df126f3 2346 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2347
17a52670
AS
2348 if (BPF_MODE(insn->code) == BPF_XADD) {
2349 err = check_xadd(env, insn);
2350 if (err)
2351 return err;
2352 insn_idx++;
2353 continue;
2354 }
2355
17a52670
AS
2356 /* check src1 operand */
2357 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2358 if (err)
2359 return err;
2360 /* check src2 operand */
2361 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2362 if (err)
2363 return err;
2364
d691f9e8
AS
2365 dst_reg_type = regs[insn->dst_reg].type;
2366
17a52670
AS
2367 /* check that memory (dst_reg + off) is writeable */
2368 err = check_mem_access(env, insn->dst_reg, insn->off,
2369 BPF_SIZE(insn->code), BPF_WRITE,
2370 insn->src_reg);
2371 if (err)
2372 return err;
2373
3df126f3
JK
2374 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2375
2376 if (*prev_dst_type == NOT_INIT) {
2377 *prev_dst_type = dst_reg_type;
2378 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2379 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2380 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2381 verbose("same insn cannot be used with different pointers\n");
2382 return -EINVAL;
2383 }
2384
17a52670
AS
2385 } else if (class == BPF_ST) {
2386 if (BPF_MODE(insn->code) != BPF_MEM ||
2387 insn->src_reg != BPF_REG_0) {
2388 verbose("BPF_ST uses reserved fields\n");
2389 return -EINVAL;
2390 }
2391 /* check src operand */
2392 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2393 if (err)
2394 return err;
2395
2396 /* check that memory (dst_reg + off) is writeable */
2397 err = check_mem_access(env, insn->dst_reg, insn->off,
2398 BPF_SIZE(insn->code), BPF_WRITE,
2399 -1);
2400 if (err)
2401 return err;
2402
2403 } else if (class == BPF_JMP) {
2404 u8 opcode = BPF_OP(insn->code);
2405
2406 if (opcode == BPF_CALL) {
2407 if (BPF_SRC(insn->code) != BPF_K ||
2408 insn->off != 0 ||
2409 insn->src_reg != BPF_REG_0 ||
2410 insn->dst_reg != BPF_REG_0) {
2411 verbose("BPF_CALL uses reserved fields\n");
2412 return -EINVAL;
2413 }
2414
2415 err = check_call(env, insn->imm);
2416 if (err)
2417 return err;
2418
2419 } else if (opcode == BPF_JA) {
2420 if (BPF_SRC(insn->code) != BPF_K ||
2421 insn->imm != 0 ||
2422 insn->src_reg != BPF_REG_0 ||
2423 insn->dst_reg != BPF_REG_0) {
2424 verbose("BPF_JA uses reserved fields\n");
2425 return -EINVAL;
2426 }
2427
2428 insn_idx += insn->off + 1;
2429 continue;
2430
2431 } else if (opcode == BPF_EXIT) {
2432 if (BPF_SRC(insn->code) != BPF_K ||
2433 insn->imm != 0 ||
2434 insn->src_reg != BPF_REG_0 ||
2435 insn->dst_reg != BPF_REG_0) {
2436 verbose("BPF_EXIT uses reserved fields\n");
2437 return -EINVAL;
2438 }
2439
2440 /* eBPF calling convetion is such that R0 is used
2441 * to return the value from eBPF program.
2442 * Make sure that it's readable at this time
2443 * of bpf_exit, which means that program wrote
2444 * something into it earlier
2445 */
2446 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2447 if (err)
2448 return err;
2449
1be7f75d
AS
2450 if (is_pointer_value(env, BPF_REG_0)) {
2451 verbose("R0 leaks addr as return value\n");
2452 return -EACCES;
2453 }
2454
f1bca824 2455process_bpf_exit:
17a52670
AS
2456 insn_idx = pop_stack(env, &prev_insn_idx);
2457 if (insn_idx < 0) {
2458 break;
2459 } else {
2460 do_print_state = true;
2461 continue;
2462 }
2463 } else {
2464 err = check_cond_jmp_op(env, insn, &insn_idx);
2465 if (err)
2466 return err;
2467 }
2468 } else if (class == BPF_LD) {
2469 u8 mode = BPF_MODE(insn->code);
2470
2471 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2472 err = check_ld_abs(env, insn);
2473 if (err)
2474 return err;
2475
17a52670
AS
2476 } else if (mode == BPF_IMM) {
2477 err = check_ld_imm(env, insn);
2478 if (err)
2479 return err;
2480
2481 insn_idx++;
2482 } else {
2483 verbose("invalid BPF_LD mode\n");
2484 return -EINVAL;
2485 }
2486 } else {
2487 verbose("unknown insn class %d\n", class);
2488 return -EINVAL;
2489 }
2490
2491 insn_idx++;
2492 }
2493
1a0dc1ac 2494 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2495 return 0;
2496}
2497
fdc15d38
AS
2498static int check_map_prog_compatibility(struct bpf_map *map,
2499 struct bpf_prog *prog)
2500
2501{
2502 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2503 (map->map_type == BPF_MAP_TYPE_HASH ||
2504 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2505 (map->map_flags & BPF_F_NO_PREALLOC)) {
2506 verbose("perf_event programs can only use preallocated hash map\n");
2507 return -EINVAL;
2508 }
2509 return 0;
2510}
2511
0246e64d
AS
2512/* look for pseudo eBPF instructions that access map FDs and
2513 * replace them with actual map pointers
2514 */
58e2af8b 2515static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
2516{
2517 struct bpf_insn *insn = env->prog->insnsi;
2518 int insn_cnt = env->prog->len;
fdc15d38 2519 int i, j, err;
0246e64d
AS
2520
2521 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2522 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2523 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2524 verbose("BPF_LDX uses reserved fields\n");
2525 return -EINVAL;
2526 }
2527
d691f9e8
AS
2528 if (BPF_CLASS(insn->code) == BPF_STX &&
2529 ((BPF_MODE(insn->code) != BPF_MEM &&
2530 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2531 verbose("BPF_STX uses reserved fields\n");
2532 return -EINVAL;
2533 }
2534
0246e64d
AS
2535 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2536 struct bpf_map *map;
2537 struct fd f;
2538
2539 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2540 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2541 insn[1].off != 0) {
2542 verbose("invalid bpf_ld_imm64 insn\n");
2543 return -EINVAL;
2544 }
2545
2546 if (insn->src_reg == 0)
2547 /* valid generic load 64-bit imm */
2548 goto next_insn;
2549
2550 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2551 verbose("unrecognized bpf_ld_imm64 insn\n");
2552 return -EINVAL;
2553 }
2554
2555 f = fdget(insn->imm);
c2101297 2556 map = __bpf_map_get(f);
0246e64d
AS
2557 if (IS_ERR(map)) {
2558 verbose("fd %d is not pointing to valid bpf_map\n",
2559 insn->imm);
0246e64d
AS
2560 return PTR_ERR(map);
2561 }
2562
fdc15d38
AS
2563 err = check_map_prog_compatibility(map, env->prog);
2564 if (err) {
2565 fdput(f);
2566 return err;
2567 }
2568
0246e64d
AS
2569 /* store map pointer inside BPF_LD_IMM64 instruction */
2570 insn[0].imm = (u32) (unsigned long) map;
2571 insn[1].imm = ((u64) (unsigned long) map) >> 32;
2572
2573 /* check whether we recorded this map already */
2574 for (j = 0; j < env->used_map_cnt; j++)
2575 if (env->used_maps[j] == map) {
2576 fdput(f);
2577 goto next_insn;
2578 }
2579
2580 if (env->used_map_cnt >= MAX_USED_MAPS) {
2581 fdput(f);
2582 return -E2BIG;
2583 }
2584
0246e64d
AS
2585 /* hold the map. If the program is rejected by verifier,
2586 * the map will be released by release_maps() or it
2587 * will be used by the valid program until it's unloaded
2588 * and all maps are released in free_bpf_prog_info()
2589 */
92117d84
AS
2590 map = bpf_map_inc(map, false);
2591 if (IS_ERR(map)) {
2592 fdput(f);
2593 return PTR_ERR(map);
2594 }
2595 env->used_maps[env->used_map_cnt++] = map;
2596
0246e64d
AS
2597 fdput(f);
2598next_insn:
2599 insn++;
2600 i++;
2601 }
2602 }
2603
2604 /* now all pseudo BPF_LD_IMM64 instructions load valid
2605 * 'struct bpf_map *' into a register instead of user map_fd.
2606 * These pointers will be used later by verifier to validate map access.
2607 */
2608 return 0;
2609}
2610
2611/* drop refcnt of maps used by the rejected program */
58e2af8b 2612static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
2613{
2614 int i;
2615
2616 for (i = 0; i < env->used_map_cnt; i++)
2617 bpf_map_put(env->used_maps[i]);
2618}
2619
2620/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 2621static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
2622{
2623 struct bpf_insn *insn = env->prog->insnsi;
2624 int insn_cnt = env->prog->len;
2625 int i;
2626
2627 for (i = 0; i < insn_cnt; i++, insn++)
2628 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2629 insn->src_reg = 0;
2630}
2631
9bac3d6d
AS
2632/* convert load instructions that access fields of 'struct __sk_buff'
2633 * into sequence of instructions that access fields of 'struct sk_buff'
2634 */
58e2af8b 2635static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 2636{
36bbef52 2637 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 2638 const int insn_cnt = env->prog->len;
36bbef52 2639 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 2640 struct bpf_prog *new_prog;
d691f9e8 2641 enum bpf_access_type type;
3df126f3 2642 int i, cnt, delta = 0;
9bac3d6d 2643
36bbef52
DB
2644 if (ops->gen_prologue) {
2645 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
2646 env->prog);
2647 if (cnt >= ARRAY_SIZE(insn_buf)) {
2648 verbose("bpf verifier is misconfigured\n");
2649 return -EINVAL;
2650 } else if (cnt) {
2651 new_prog = bpf_patch_insn_single(env->prog, 0,
2652 insn_buf, cnt);
2653 if (!new_prog)
2654 return -ENOMEM;
2655 env->prog = new_prog;
3df126f3 2656 delta += cnt - 1;
36bbef52
DB
2657 }
2658 }
2659
2660 if (!ops->convert_ctx_access)
9bac3d6d
AS
2661 return 0;
2662
3df126f3 2663 insn = env->prog->insnsi + delta;
36bbef52 2664
9bac3d6d 2665 for (i = 0; i < insn_cnt; i++, insn++) {
ea2e7ce5
AS
2666 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2667 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 2668 type = BPF_READ;
ea2e7ce5
AS
2669 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
2670 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
2671 type = BPF_WRITE;
2672 else
9bac3d6d
AS
2673 continue;
2674
3df126f3 2675 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
9bac3d6d 2676 continue;
9bac3d6d 2677
36bbef52
DB
2678 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2679 insn->off, insn_buf, env->prog);
9bac3d6d
AS
2680 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2681 verbose("bpf verifier is misconfigured\n");
2682 return -EINVAL;
2683 }
2684
3df126f3
JK
2685 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
2686 cnt);
9bac3d6d
AS
2687 if (!new_prog)
2688 return -ENOMEM;
2689
3df126f3 2690 delta += cnt - 1;
9bac3d6d
AS
2691
2692 /* keep walking new program and skip insns we just inserted */
2693 env->prog = new_prog;
3df126f3 2694 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
2695 }
2696
2697 return 0;
2698}
2699
58e2af8b 2700static void free_states(struct bpf_verifier_env *env)
f1bca824 2701{
58e2af8b 2702 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
2703 int i;
2704
2705 if (!env->explored_states)
2706 return;
2707
2708 for (i = 0; i < env->prog->len; i++) {
2709 sl = env->explored_states[i];
2710
2711 if (sl)
2712 while (sl != STATE_LIST_MARK) {
2713 sln = sl->next;
2714 kfree(sl);
2715 sl = sln;
2716 }
2717 }
2718
2719 kfree(env->explored_states);
2720}
2721
9bac3d6d 2722int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 2723{
cbd35700 2724 char __user *log_ubuf = NULL;
58e2af8b 2725 struct bpf_verifier_env *env;
51580e79
AS
2726 int ret = -EINVAL;
2727
9bac3d6d 2728 if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
cbd35700
AS
2729 return -E2BIG;
2730
58e2af8b 2731 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
2732 * allocate/free it every time bpf_check() is called
2733 */
58e2af8b 2734 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
2735 if (!env)
2736 return -ENOMEM;
2737
3df126f3
JK
2738 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
2739 (*prog)->len);
2740 ret = -ENOMEM;
2741 if (!env->insn_aux_data)
2742 goto err_free_env;
9bac3d6d 2743 env->prog = *prog;
0246e64d 2744
cbd35700
AS
2745 /* grab the mutex to protect few globals used by verifier */
2746 mutex_lock(&bpf_verifier_lock);
2747
2748 if (attr->log_level || attr->log_buf || attr->log_size) {
2749 /* user requested verbose verifier output
2750 * and supplied buffer to store the verification trace
2751 */
2752 log_level = attr->log_level;
2753 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2754 log_size = attr->log_size;
2755 log_len = 0;
2756
2757 ret = -EINVAL;
2758 /* log_* values have to be sane */
2759 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2760 log_level == 0 || log_ubuf == NULL)
3df126f3 2761 goto err_unlock;
cbd35700
AS
2762
2763 ret = -ENOMEM;
2764 log_buf = vmalloc(log_size);
2765 if (!log_buf)
3df126f3 2766 goto err_unlock;
cbd35700
AS
2767 } else {
2768 log_level = 0;
2769 }
2770
0246e64d
AS
2771 ret = replace_map_fd_with_map_ptr(env);
2772 if (ret < 0)
2773 goto skip_full_check;
2774
9bac3d6d 2775 env->explored_states = kcalloc(env->prog->len,
58e2af8b 2776 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
2777 GFP_USER);
2778 ret = -ENOMEM;
2779 if (!env->explored_states)
2780 goto skip_full_check;
2781
475fb78f
AS
2782 ret = check_cfg(env);
2783 if (ret < 0)
2784 goto skip_full_check;
2785
1be7f75d
AS
2786 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2787
17a52670 2788 ret = do_check(env);
cbd35700 2789
0246e64d 2790skip_full_check:
17a52670 2791 while (pop_stack(env, NULL) >= 0);
f1bca824 2792 free_states(env);
0246e64d 2793
9bac3d6d
AS
2794 if (ret == 0)
2795 /* program is valid, convert *(u32*)(ctx + off) accesses */
2796 ret = convert_ctx_accesses(env);
2797
cbd35700
AS
2798 if (log_level && log_len >= log_size - 1) {
2799 BUG_ON(log_len >= log_size);
2800 /* verifier log exceeded user supplied buffer */
2801 ret = -ENOSPC;
2802 /* fall through to return what was recorded */
2803 }
2804
2805 /* copy verifier log back to user space including trailing zero */
2806 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2807 ret = -EFAULT;
2808 goto free_log_buf;
2809 }
2810
0246e64d
AS
2811 if (ret == 0 && env->used_map_cnt) {
2812 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
2813 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2814 sizeof(env->used_maps[0]),
2815 GFP_KERNEL);
0246e64d 2816
9bac3d6d 2817 if (!env->prog->aux->used_maps) {
0246e64d
AS
2818 ret = -ENOMEM;
2819 goto free_log_buf;
2820 }
2821
9bac3d6d 2822 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 2823 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 2824 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
2825
2826 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
2827 * bpf_ld_imm64 instructions
2828 */
2829 convert_pseudo_ld_imm64(env);
2830 }
cbd35700
AS
2831
2832free_log_buf:
2833 if (log_level)
2834 vfree(log_buf);
9bac3d6d 2835 if (!env->prog->aux->used_maps)
0246e64d
AS
2836 /* if we didn't copy map pointers into bpf_prog_info, release
2837 * them now. Otherwise free_bpf_prog_info() will release them.
2838 */
2839 release_maps(env);
9bac3d6d 2840 *prog = env->prog;
3df126f3 2841err_unlock:
cbd35700 2842 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
2843 vfree(env->insn_aux_data);
2844err_free_env:
2845 kfree(env);
51580e79
AS
2846 return ret;
2847}