]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/bpf/verifier.c
bpf: enable verifier to add 0 to packet ptr
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 32k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
33ff9823
DB
146struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
435faee1 148 bool raw_mode;
36bbef52 149 bool pkt_access;
435faee1
DB
150 int regno;
151 int access_size;
33ff9823
DB
152};
153
cbd35700
AS
154/* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
156 */
157static u32 log_level, log_size, log_len;
158static char *log_buf;
159
160static DEFINE_MUTEX(bpf_verifier_lock);
161
162/* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
165 */
1d056d9c 166static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
167{
168 va_list args;
169
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
172
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
176}
177
17a52670
AS
178/* string representation of 'enum bpf_reg_type' */
179static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
969bf05e
AS
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
192};
193
ebb676da
TG
194#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197};
198#undef __BPF_FUNC_STR_FN
199
200static const char *func_id_name(int id)
201{
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
208}
209
58e2af8b 210static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 211{
58e2af8b 212 struct bpf_reg_state *reg;
17a52670
AS
213 enum bpf_reg_type t;
214 int i;
215
216 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
217 reg = &state->regs[i];
218 t = reg->type;
17a52670
AS
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
17a52670 229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 232 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 233 reg->map_ptr->key_size,
57a09bf0
TG
234 reg->map_ptr->value_size,
235 reg->id);
48461135 236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
48461135
JB
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
17a52670 242 }
9c399760 243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 244 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
247 }
248 verbose("\n");
249}
250
cbd35700
AS
251static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
260};
261
687f0715 262static const char *const bpf_alu_string[16] = {
cbd35700
AS
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
277};
278
279static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
284};
285
687f0715 286static const char *const bpf_jmp_string[16] = {
cbd35700
AS
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
297};
298
299static void print_bpf_insn(struct bpf_insn *insn)
300{
301 u8 class = BPF_CLASS(insn->code);
302
303 if (class == BPF_ALU || class == BPF_ALU64) {
304 if (BPF_SRC(insn->code) == BPF_X)
305 verbose("(%02x) %sr%d %s %sr%d\n",
306 insn->code, class == BPF_ALU ? "(u32) " : "",
307 insn->dst_reg,
308 bpf_alu_string[BPF_OP(insn->code) >> 4],
309 class == BPF_ALU ? "(u32) " : "",
310 insn->src_reg);
311 else
312 verbose("(%02x) %sr%d %s %s%d\n",
313 insn->code, class == BPF_ALU ? "(u32) " : "",
314 insn->dst_reg,
315 bpf_alu_string[BPF_OP(insn->code) >> 4],
316 class == BPF_ALU ? "(u32) " : "",
317 insn->imm);
318 } else if (class == BPF_STX) {
319 if (BPF_MODE(insn->code) == BPF_MEM)
320 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 insn->code,
322 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 insn->dst_reg,
324 insn->off, insn->src_reg);
325 else if (BPF_MODE(insn->code) == BPF_XADD)
326 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 insn->code,
328 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 insn->dst_reg, insn->off,
330 insn->src_reg);
331 else
332 verbose("BUG_%02x\n", insn->code);
333 } else if (class == BPF_ST) {
334 if (BPF_MODE(insn->code) != BPF_MEM) {
335 verbose("BUG_st_%02x\n", insn->code);
336 return;
337 }
338 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->imm);
343 } else if (class == BPF_LDX) {
344 if (BPF_MODE(insn->code) != BPF_MEM) {
345 verbose("BUG_ldx_%02x\n", insn->code);
346 return;
347 }
348 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 insn->code, insn->dst_reg,
350 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 insn->src_reg, insn->off);
352 } else if (class == BPF_LD) {
353 if (BPF_MODE(insn->code) == BPF_ABS) {
354 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->imm);
358 } else if (BPF_MODE(insn->code) == BPF_IND) {
359 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 insn->code,
361 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 insn->src_reg, insn->imm);
363 } else if (BPF_MODE(insn->code) == BPF_IMM) {
364 verbose("(%02x) r%d = 0x%x\n",
365 insn->code, insn->dst_reg, insn->imm);
366 } else {
367 verbose("BUG_ld_%02x\n", insn->code);
368 return;
369 }
370 } else if (class == BPF_JMP) {
371 u8 opcode = BPF_OP(insn->code);
372
373 if (opcode == BPF_CALL) {
ebb676da
TG
374 verbose("(%02x) call %s#%d\n", insn->code,
375 func_id_name(insn->imm), insn->imm);
cbd35700
AS
376 } else if (insn->code == (BPF_JMP | BPF_JA)) {
377 verbose("(%02x) goto pc%+d\n",
378 insn->code, insn->off);
379 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 verbose("(%02x) exit\n", insn->code);
381 } else if (BPF_SRC(insn->code) == BPF_X) {
382 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 insn->code, insn->dst_reg,
384 bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 insn->src_reg, insn->off);
386 } else {
387 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 insn->code, insn->dst_reg,
389 bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 insn->imm, insn->off);
391 }
392 } else {
393 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 }
395}
396
58e2af8b 397static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 398{
58e2af8b 399 struct bpf_verifier_stack_elem *elem;
17a52670
AS
400 int insn_idx;
401
402 if (env->head == NULL)
403 return -1;
404
405 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 insn_idx = env->head->insn_idx;
407 if (prev_insn_idx)
408 *prev_insn_idx = env->head->prev_insn_idx;
409 elem = env->head->next;
410 kfree(env->head);
411 env->head = elem;
412 env->stack_size--;
413 return insn_idx;
414}
415
58e2af8b
JK
416static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 int insn_idx, int prev_insn_idx)
17a52670 418{
58e2af8b 419 struct bpf_verifier_stack_elem *elem;
17a52670 420
58e2af8b 421 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
422 if (!elem)
423 goto err;
424
425 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 elem->insn_idx = insn_idx;
427 elem->prev_insn_idx = prev_insn_idx;
428 elem->next = env->head;
429 env->head = elem;
430 env->stack_size++;
07016151 431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
432 verbose("BPF program is too complex\n");
433 goto err;
434 }
435 return &elem->st;
436err:
437 /* pop all elements and return */
438 while (pop_stack(env, NULL) >= 0);
439 return NULL;
440}
441
442#define CALLER_SAVED_REGS 6
443static const int caller_saved[CALLER_SAVED_REGS] = {
444 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445};
446
58e2af8b 447static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
448{
449 int i;
450
451 for (i = 0; i < MAX_BPF_REG; i++) {
452 regs[i].type = NOT_INIT;
453 regs[i].imm = 0;
48461135
JB
454 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
456 }
457
458 /* frame pointer */
459 regs[BPF_REG_FP].type = FRAME_PTR;
460
461 /* 1st arg to a function */
462 regs[BPF_REG_1].type = PTR_TO_CTX;
463}
464
6760bf2d 465static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 466{
17a52670 467 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 468 regs[regno].id = 0;
17a52670 469 regs[regno].imm = 0;
17a52670
AS
470}
471
6760bf2d
DB
472static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
473{
474 BUG_ON(regno >= MAX_BPF_REG);
475 __mark_reg_unknown_value(regs, regno);
476}
477
48461135
JB
478static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
479{
480 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
481 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
482}
483
f0318d01
GB
484static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
485 u32 regno)
486{
487 mark_reg_unknown_value(regs, regno);
488 reset_reg_range_values(regs, regno);
489}
490
17a52670
AS
491enum reg_arg_type {
492 SRC_OP, /* register is used as source operand */
493 DST_OP, /* register is used as destination operand */
494 DST_OP_NO_MARK /* same as above, check only, don't mark */
495};
496
58e2af8b 497static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
498 enum reg_arg_type t)
499{
500 if (regno >= MAX_BPF_REG) {
501 verbose("R%d is invalid\n", regno);
502 return -EINVAL;
503 }
504
505 if (t == SRC_OP) {
506 /* check whether register used as source operand can be read */
507 if (regs[regno].type == NOT_INIT) {
508 verbose("R%d !read_ok\n", regno);
509 return -EACCES;
510 }
511 } else {
512 /* check whether register used as dest operand can be written to */
513 if (regno == BPF_REG_FP) {
514 verbose("frame pointer is read only\n");
515 return -EACCES;
516 }
517 if (t == DST_OP)
518 mark_reg_unknown_value(regs, regno);
519 }
520 return 0;
521}
522
523static int bpf_size_to_bytes(int bpf_size)
524{
525 if (bpf_size == BPF_W)
526 return 4;
527 else if (bpf_size == BPF_H)
528 return 2;
529 else if (bpf_size == BPF_B)
530 return 1;
531 else if (bpf_size == BPF_DW)
532 return 8;
533 else
534 return -EINVAL;
535}
536
1be7f75d
AS
537static bool is_spillable_regtype(enum bpf_reg_type type)
538{
539 switch (type) {
540 case PTR_TO_MAP_VALUE:
541 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 542 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
543 case PTR_TO_STACK:
544 case PTR_TO_CTX:
969bf05e
AS
545 case PTR_TO_PACKET:
546 case PTR_TO_PACKET_END:
1be7f75d
AS
547 case FRAME_PTR:
548 case CONST_PTR_TO_MAP:
549 return true;
550 default:
551 return false;
552 }
553}
554
17a52670
AS
555/* check_stack_read/write functions track spill/fill of registers,
556 * stack boundary and alignment are checked in check_mem_access()
557 */
58e2af8b
JK
558static int check_stack_write(struct bpf_verifier_state *state, int off,
559 int size, int value_regno)
17a52670 560{
17a52670 561 int i;
9c399760
AS
562 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
563 * so it's aligned access and [off, off + size) are within stack limits
564 */
17a52670
AS
565
566 if (value_regno >= 0 &&
1be7f75d 567 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
568
569 /* register containing pointer is being spilled into stack */
9c399760 570 if (size != BPF_REG_SIZE) {
17a52670
AS
571 verbose("invalid size of register spill\n");
572 return -EACCES;
573 }
574
17a52670 575 /* save register state */
9c399760
AS
576 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
577 state->regs[value_regno];
17a52670 578
9c399760
AS
579 for (i = 0; i < BPF_REG_SIZE; i++)
580 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
581 } else {
17a52670 582 /* regular write of data into stack */
9c399760 583 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 584 (struct bpf_reg_state) {};
9c399760
AS
585
586 for (i = 0; i < size; i++)
587 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
588 }
589 return 0;
590}
591
58e2af8b 592static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
593 int value_regno)
594{
9c399760 595 u8 *slot_type;
17a52670 596 int i;
17a52670 597
9c399760 598 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 599
9c399760
AS
600 if (slot_type[0] == STACK_SPILL) {
601 if (size != BPF_REG_SIZE) {
17a52670
AS
602 verbose("invalid size of register spill\n");
603 return -EACCES;
604 }
9c399760
AS
605 for (i = 1; i < BPF_REG_SIZE; i++) {
606 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
607 verbose("corrupted spill memory\n");
608 return -EACCES;
609 }
610 }
611
612 if (value_regno >= 0)
613 /* restore register state from stack */
9c399760
AS
614 state->regs[value_regno] =
615 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
616 return 0;
617 } else {
618 for (i = 0; i < size; i++) {
9c399760 619 if (slot_type[i] != STACK_MISC) {
17a52670
AS
620 verbose("invalid read from stack off %d+%d size %d\n",
621 off, i, size);
622 return -EACCES;
623 }
624 }
625 if (value_regno >= 0)
626 /* have read misc data from the stack */
f0318d01
GB
627 mark_reg_unknown_value_and_range(state->regs,
628 value_regno);
17a52670
AS
629 return 0;
630 }
631}
632
633/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 634static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
635 int size)
636{
637 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
638
5722569b 639 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
640 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
641 map->value_size, off, size);
642 return -EACCES;
643 }
644 return 0;
645}
646
dbcfe5f7
GB
647/* check read/write into an adjusted map element */
648static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
649 int off, int size)
650{
651 struct bpf_verifier_state *state = &env->cur_state;
652 struct bpf_reg_state *reg = &state->regs[regno];
653 int err;
654
655 /* We adjusted the register to this map value, so we
656 * need to change off and size to min_value and max_value
657 * respectively to make sure our theoretical access will be
658 * safe.
659 */
660 if (log_level)
661 print_verifier_state(state);
662 env->varlen_map_value_access = true;
663 /* The minimum value is only important with signed
664 * comparisons where we can't assume the floor of a
665 * value is 0. If we are using signed variables for our
666 * index'es we need to make sure that whatever we use
667 * will have a set floor within our range.
668 */
669 if (reg->min_value < 0) {
670 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
671 regno);
672 return -EACCES;
673 }
674 err = check_map_access(env, regno, reg->min_value + off, size);
675 if (err) {
676 verbose("R%d min value is outside of the array range\n",
677 regno);
678 return err;
679 }
680
681 /* If we haven't set a max value then we need to bail
682 * since we can't be sure we won't do bad things.
683 */
684 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
685 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
686 regno);
687 return -EACCES;
688 }
689 return check_map_access(env, regno, reg->max_value + off, size);
690}
691
969bf05e
AS
692#define MAX_PACKET_OFF 0xffff
693
58e2af8b 694static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
695 const struct bpf_call_arg_meta *meta,
696 enum bpf_access_type t)
4acf6c0b 697{
36bbef52 698 switch (env->prog->type) {
3a0af8fd
TG
699 case BPF_PROG_TYPE_LWT_IN:
700 case BPF_PROG_TYPE_LWT_OUT:
701 /* dst_input() and dst_output() can't write for now */
702 if (t == BPF_WRITE)
703 return false;
36bbef52
DB
704 case BPF_PROG_TYPE_SCHED_CLS:
705 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 706 case BPF_PROG_TYPE_XDP:
3a0af8fd 707 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
708 if (meta)
709 return meta->pkt_access;
710
711 env->seen_direct_write = true;
4acf6c0b
BB
712 return true;
713 default:
714 return false;
715 }
716}
717
58e2af8b 718static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
719 int size)
720{
58e2af8b
JK
721 struct bpf_reg_state *regs = env->cur_state.regs;
722 struct bpf_reg_state *reg = &regs[regno];
969bf05e 723
d91b28ed 724 off += reg->off;
b399cf64 725 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
726 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
727 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
728 return -EACCES;
729 }
730 return 0;
731}
732
17a52670 733/* check access to 'struct bpf_context' fields */
58e2af8b 734static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 735 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 736{
13a27dfc
JK
737 /* for analyzer ctx accesses are already validated and converted */
738 if (env->analyzer_ops)
739 return 0;
740
17a52670 741 if (env->prog->aux->ops->is_valid_access &&
19de99f7 742 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
743 /* remember the offset of last byte accessed in ctx */
744 if (env->prog->aux->max_ctx_offset < off + size)
745 env->prog->aux->max_ctx_offset = off + size;
17a52670 746 return 0;
32bbe007 747 }
17a52670
AS
748
749 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
750 return -EACCES;
751}
752
58e2af8b 753static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
754{
755 if (env->allow_ptr_leaks)
756 return false;
757
758 switch (env->cur_state.regs[regno].type) {
759 case UNKNOWN_VALUE:
760 case CONST_IMM:
761 return false;
762 default:
763 return true;
764 }
765}
766
58e2af8b
JK
767static int check_ptr_alignment(struct bpf_verifier_env *env,
768 struct bpf_reg_state *reg, int off, int size)
969bf05e 769{
48461135 770 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
969bf05e 771 if (off % size != 0) {
58e2af8b
JK
772 verbose("misaligned access off %d size %d\n",
773 off, size);
969bf05e
AS
774 return -EACCES;
775 } else {
776 return 0;
777 }
778 }
779
969bf05e
AS
780 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
781 /* misaligned access to packet is ok on x86,arm,arm64 */
782 return 0;
783
784 if (reg->id && size != 1) {
785 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
786 return -EACCES;
787 }
788
789 /* skb->data is NET_IP_ALIGN-ed */
48461135
JB
790 if (reg->type == PTR_TO_PACKET &&
791 (NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
792 verbose("misaligned packet access off %d+%d+%d size %d\n",
793 NET_IP_ALIGN, reg->off, off, size);
794 return -EACCES;
795 }
796 return 0;
797}
798
17a52670
AS
799/* check whether memory at (regno + off) is accessible for t = (read | write)
800 * if t==write, value_regno is a register which value is stored into memory
801 * if t==read, value_regno is a register which will receive the value from memory
802 * if t==write && value_regno==-1, some unknown value is stored into memory
803 * if t==read && value_regno==-1, don't care what we read from memory
804 */
58e2af8b 805static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
806 int bpf_size, enum bpf_access_type t,
807 int value_regno)
808{
58e2af8b
JK
809 struct bpf_verifier_state *state = &env->cur_state;
810 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
811 int size, err = 0;
812
1a0dc1ac
AS
813 if (reg->type == PTR_TO_STACK)
814 off += reg->imm;
24b4d2ab 815
17a52670
AS
816 size = bpf_size_to_bytes(bpf_size);
817 if (size < 0)
818 return size;
819
969bf05e
AS
820 err = check_ptr_alignment(env, reg, off, size);
821 if (err)
822 return err;
17a52670 823
48461135
JB
824 if (reg->type == PTR_TO_MAP_VALUE ||
825 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
826 if (t == BPF_WRITE && value_regno >= 0 &&
827 is_pointer_value(env, value_regno)) {
828 verbose("R%d leaks addr into map\n", value_regno);
829 return -EACCES;
830 }
48461135 831
dbcfe5f7
GB
832 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
833 err = check_map_access_adj(env, regno, off, size);
834 else
835 err = check_map_access(env, regno, off, size);
17a52670 836 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
837 mark_reg_unknown_value_and_range(state->regs,
838 value_regno);
17a52670 839
1a0dc1ac 840 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
841 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
842
1be7f75d
AS
843 if (t == BPF_WRITE && value_regno >= 0 &&
844 is_pointer_value(env, value_regno)) {
845 verbose("R%d leaks addr into ctx\n", value_regno);
846 return -EACCES;
847 }
19de99f7 848 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 849 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
850 mark_reg_unknown_value_and_range(state->regs,
851 value_regno);
1955351d
MS
852 /* note that reg.[id|off|range] == 0 */
853 state->regs[value_regno].type = reg_type;
969bf05e 854 }
17a52670 855
1a0dc1ac 856 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
857 if (off >= 0 || off < -MAX_BPF_STACK) {
858 verbose("invalid stack off=%d size=%d\n", off, size);
859 return -EACCES;
860 }
1be7f75d
AS
861 if (t == BPF_WRITE) {
862 if (!env->allow_ptr_leaks &&
863 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
864 size != BPF_REG_SIZE) {
865 verbose("attempt to corrupt spilled pointer on stack\n");
866 return -EACCES;
867 }
17a52670 868 err = check_stack_write(state, off, size, value_regno);
1be7f75d 869 } else {
17a52670 870 err = check_stack_read(state, off, size, value_regno);
1be7f75d 871 }
969bf05e 872 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 873 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
874 verbose("cannot write into packet\n");
875 return -EACCES;
876 }
4acf6c0b
BB
877 if (t == BPF_WRITE && value_regno >= 0 &&
878 is_pointer_value(env, value_regno)) {
879 verbose("R%d leaks addr into packet\n", value_regno);
880 return -EACCES;
881 }
969bf05e
AS
882 err = check_packet_access(env, regno, off, size);
883 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
884 mark_reg_unknown_value_and_range(state->regs,
885 value_regno);
17a52670
AS
886 } else {
887 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 888 regno, reg_type_str[reg->type]);
17a52670
AS
889 return -EACCES;
890 }
969bf05e
AS
891
892 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
893 state->regs[value_regno].type == UNKNOWN_VALUE) {
894 /* 1 or 2 byte load zero-extends, determine the number of
895 * zero upper bits. Not doing it fo 4 byte load, since
896 * such values cannot be added to ptr_to_packet anyway.
897 */
898 state->regs[value_regno].imm = 64 - size * 8;
899 }
17a52670
AS
900 return err;
901}
902
58e2af8b 903static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 904{
58e2af8b 905 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
906 int err;
907
908 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
909 insn->imm != 0) {
910 verbose("BPF_XADD uses reserved fields\n");
911 return -EINVAL;
912 }
913
914 /* check src1 operand */
915 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
916 if (err)
917 return err;
918
919 /* check src2 operand */
920 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
921 if (err)
922 return err;
923
924 /* check whether atomic_add can read the memory */
925 err = check_mem_access(env, insn->dst_reg, insn->off,
926 BPF_SIZE(insn->code), BPF_READ, -1);
927 if (err)
928 return err;
929
930 /* check whether atomic_add can write into the same memory */
931 return check_mem_access(env, insn->dst_reg, insn->off,
932 BPF_SIZE(insn->code), BPF_WRITE, -1);
933}
934
935/* when register 'regno' is passed into function that will read 'access_size'
936 * bytes from that pointer, make sure that it's within stack boundary
937 * and all elements of stack are initialized
938 */
58e2af8b 939static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
940 int access_size, bool zero_size_allowed,
941 struct bpf_call_arg_meta *meta)
17a52670 942{
58e2af8b
JK
943 struct bpf_verifier_state *state = &env->cur_state;
944 struct bpf_reg_state *regs = state->regs;
17a52670
AS
945 int off, i;
946
8e2fe1d9
DB
947 if (regs[regno].type != PTR_TO_STACK) {
948 if (zero_size_allowed && access_size == 0 &&
949 regs[regno].type == CONST_IMM &&
950 regs[regno].imm == 0)
951 return 0;
952
953 verbose("R%d type=%s expected=%s\n", regno,
954 reg_type_str[regs[regno].type],
955 reg_type_str[PTR_TO_STACK]);
17a52670 956 return -EACCES;
8e2fe1d9 957 }
17a52670
AS
958
959 off = regs[regno].imm;
960 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
961 access_size <= 0) {
962 verbose("invalid stack type R%d off=%d access_size=%d\n",
963 regno, off, access_size);
964 return -EACCES;
965 }
966
435faee1
DB
967 if (meta && meta->raw_mode) {
968 meta->access_size = access_size;
969 meta->regno = regno;
970 return 0;
971 }
972
17a52670 973 for (i = 0; i < access_size; i++) {
9c399760 974 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
975 verbose("invalid indirect read from stack off %d+%d size %d\n",
976 off, i, access_size);
977 return -EACCES;
978 }
979 }
980 return 0;
981}
982
06c1c049
GB
983static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
984 int access_size, bool zero_size_allowed,
985 struct bpf_call_arg_meta *meta)
986{
987 struct bpf_reg_state *regs = env->cur_state.regs;
988
989 switch (regs[regno].type) {
990 case PTR_TO_PACKET:
991 return check_packet_access(env, regno, 0, access_size);
992 case PTR_TO_MAP_VALUE:
993 return check_map_access(env, regno, 0, access_size);
994 case PTR_TO_MAP_VALUE_ADJ:
995 return check_map_access_adj(env, regno, 0, access_size);
996 default: /* const_imm|ptr_to_stack or invalid ptr */
997 return check_stack_boundary(env, regno, access_size,
998 zero_size_allowed, meta);
999 }
1000}
1001
58e2af8b 1002static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1003 enum bpf_arg_type arg_type,
1004 struct bpf_call_arg_meta *meta)
17a52670 1005{
58e2af8b 1006 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1007 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1008 int err = 0;
1009
80f1d68c 1010 if (arg_type == ARG_DONTCARE)
17a52670
AS
1011 return 0;
1012
6841de8b 1013 if (type == NOT_INIT) {
17a52670
AS
1014 verbose("R%d !read_ok\n", regno);
1015 return -EACCES;
1016 }
1017
1be7f75d
AS
1018 if (arg_type == ARG_ANYTHING) {
1019 if (is_pointer_value(env, regno)) {
1020 verbose("R%d leaks addr into helper function\n", regno);
1021 return -EACCES;
1022 }
80f1d68c 1023 return 0;
1be7f75d 1024 }
80f1d68c 1025
3a0af8fd
TG
1026 if (type == PTR_TO_PACKET &&
1027 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1028 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1029 return -EACCES;
1030 }
1031
8e2fe1d9 1032 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1033 arg_type == ARG_PTR_TO_MAP_VALUE) {
1034 expected_type = PTR_TO_STACK;
6841de8b
AS
1035 if (type != PTR_TO_PACKET && type != expected_type)
1036 goto err_type;
39f19ebb
AS
1037 } else if (arg_type == ARG_CONST_SIZE ||
1038 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1039 expected_type = CONST_IMM;
06c1c049
GB
1040 /* One exception. Allow UNKNOWN_VALUE registers when the
1041 * boundaries are known and don't cause unsafe memory accesses
1042 */
1043 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1044 goto err_type;
17a52670
AS
1045 } else if (arg_type == ARG_CONST_MAP_PTR) {
1046 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1047 if (type != expected_type)
1048 goto err_type;
608cd71a
AS
1049 } else if (arg_type == ARG_PTR_TO_CTX) {
1050 expected_type = PTR_TO_CTX;
6841de8b
AS
1051 if (type != expected_type)
1052 goto err_type;
39f19ebb
AS
1053 } else if (arg_type == ARG_PTR_TO_MEM ||
1054 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1055 expected_type = PTR_TO_STACK;
1056 /* One exception here. In case function allows for NULL to be
1057 * passed in as argument, it's a CONST_IMM type. Final test
1058 * happens during stack boundary checking.
1059 */
6841de8b
AS
1060 if (type == CONST_IMM && reg->imm == 0)
1061 /* final test in check_stack_boundary() */;
5722569b
GB
1062 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1063 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1064 goto err_type;
39f19ebb 1065 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1066 } else {
1067 verbose("unsupported arg_type %d\n", arg_type);
1068 return -EFAULT;
1069 }
1070
17a52670
AS
1071 if (arg_type == ARG_CONST_MAP_PTR) {
1072 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1073 meta->map_ptr = reg->map_ptr;
17a52670
AS
1074 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1075 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1076 * check that [key, key + map->key_size) are within
1077 * stack limits and initialized
1078 */
33ff9823 1079 if (!meta->map_ptr) {
17a52670
AS
1080 /* in function declaration map_ptr must come before
1081 * map_key, so that it's verified and known before
1082 * we have to check map_key here. Otherwise it means
1083 * that kernel subsystem misconfigured verifier
1084 */
1085 verbose("invalid map_ptr to access map->key\n");
1086 return -EACCES;
1087 }
6841de8b
AS
1088 if (type == PTR_TO_PACKET)
1089 err = check_packet_access(env, regno, 0,
1090 meta->map_ptr->key_size);
1091 else
1092 err = check_stack_boundary(env, regno,
1093 meta->map_ptr->key_size,
1094 false, NULL);
17a52670
AS
1095 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1096 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1097 * check [value, value + map->value_size) validity
1098 */
33ff9823 1099 if (!meta->map_ptr) {
17a52670
AS
1100 /* kernel subsystem misconfigured verifier */
1101 verbose("invalid map_ptr to access map->value\n");
1102 return -EACCES;
1103 }
6841de8b
AS
1104 if (type == PTR_TO_PACKET)
1105 err = check_packet_access(env, regno, 0,
1106 meta->map_ptr->value_size);
1107 else
1108 err = check_stack_boundary(env, regno,
1109 meta->map_ptr->value_size,
1110 false, NULL);
39f19ebb
AS
1111 } else if (arg_type == ARG_CONST_SIZE ||
1112 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1113 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1114
17a52670
AS
1115 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1116 * from stack pointer 'buf'. Check it
1117 * note: regno == len, regno - 1 == buf
1118 */
1119 if (regno == 0) {
1120 /* kernel subsystem misconfigured verifier */
39f19ebb 1121 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1122 return -EACCES;
1123 }
06c1c049
GB
1124
1125 /* If the register is UNKNOWN_VALUE, the access check happens
1126 * using its boundaries. Otherwise, just use its imm
1127 */
1128 if (type == UNKNOWN_VALUE) {
1129 /* For unprivileged variable accesses, disable raw
1130 * mode so that the program is required to
1131 * initialize all the memory that the helper could
1132 * just partially fill up.
1133 */
1134 meta = NULL;
1135
1136 if (reg->min_value < 0) {
1137 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1138 regno);
1139 return -EACCES;
1140 }
1141
1142 if (reg->min_value == 0) {
1143 err = check_helper_mem_access(env, regno - 1, 0,
1144 zero_size_allowed,
1145 meta);
1146 if (err)
1147 return err;
1148 }
1149
1150 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1151 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1152 regno);
1153 return -EACCES;
1154 }
1155 err = check_helper_mem_access(env, regno - 1,
1156 reg->max_value,
1157 zero_size_allowed, meta);
1158 if (err)
1159 return err;
1160 } else {
1161 /* register is CONST_IMM */
1162 err = check_helper_mem_access(env, regno - 1, reg->imm,
1163 zero_size_allowed, meta);
1164 }
17a52670
AS
1165 }
1166
1167 return err;
6841de8b
AS
1168err_type:
1169 verbose("R%d type=%s expected=%s\n", regno,
1170 reg_type_str[type], reg_type_str[expected_type]);
1171 return -EACCES;
17a52670
AS
1172}
1173
35578d79
KX
1174static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1175{
35578d79
KX
1176 if (!map)
1177 return 0;
1178
6aff67c8
AS
1179 /* We need a two way check, first is from map perspective ... */
1180 switch (map->map_type) {
1181 case BPF_MAP_TYPE_PROG_ARRAY:
1182 if (func_id != BPF_FUNC_tail_call)
1183 goto error;
1184 break;
1185 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1186 if (func_id != BPF_FUNC_perf_event_read &&
1187 func_id != BPF_FUNC_perf_event_output)
1188 goto error;
1189 break;
1190 case BPF_MAP_TYPE_STACK_TRACE:
1191 if (func_id != BPF_FUNC_get_stackid)
1192 goto error;
1193 break;
4ed8ec52 1194 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1195 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1196 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1197 goto error;
1198 break;
6aff67c8
AS
1199 default:
1200 break;
1201 }
1202
1203 /* ... and second from the function itself. */
1204 switch (func_id) {
1205 case BPF_FUNC_tail_call:
1206 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1207 goto error;
1208 break;
1209 case BPF_FUNC_perf_event_read:
1210 case BPF_FUNC_perf_event_output:
1211 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1212 goto error;
1213 break;
1214 case BPF_FUNC_get_stackid:
1215 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1216 goto error;
1217 break;
60d20f91 1218 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1219 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1220 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1221 goto error;
1222 break;
6aff67c8
AS
1223 default:
1224 break;
35578d79
KX
1225 }
1226
1227 return 0;
6aff67c8 1228error:
ebb676da
TG
1229 verbose("cannot pass map_type %d into func %s#%d\n",
1230 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1231 return -EINVAL;
35578d79
KX
1232}
1233
435faee1
DB
1234static int check_raw_mode(const struct bpf_func_proto *fn)
1235{
1236 int count = 0;
1237
39f19ebb 1238 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1239 count++;
39f19ebb 1240 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1241 count++;
39f19ebb 1242 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1243 count++;
39f19ebb 1244 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1245 count++;
39f19ebb 1246 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1247 count++;
1248
1249 return count > 1 ? -EINVAL : 0;
1250}
1251
58e2af8b 1252static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1253{
58e2af8b
JK
1254 struct bpf_verifier_state *state = &env->cur_state;
1255 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1256 int i;
1257
1258 for (i = 0; i < MAX_BPF_REG; i++)
1259 if (regs[i].type == PTR_TO_PACKET ||
1260 regs[i].type == PTR_TO_PACKET_END)
1261 mark_reg_unknown_value(regs, i);
1262
1263 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1264 if (state->stack_slot_type[i] != STACK_SPILL)
1265 continue;
1266 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1267 if (reg->type != PTR_TO_PACKET &&
1268 reg->type != PTR_TO_PACKET_END)
1269 continue;
1270 reg->type = UNKNOWN_VALUE;
1271 reg->imm = 0;
1272 }
1273}
1274
58e2af8b 1275static int check_call(struct bpf_verifier_env *env, int func_id)
17a52670 1276{
58e2af8b 1277 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1278 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1279 struct bpf_reg_state *regs = state->regs;
1280 struct bpf_reg_state *reg;
33ff9823 1281 struct bpf_call_arg_meta meta;
969bf05e 1282 bool changes_data;
17a52670
AS
1283 int i, err;
1284
1285 /* find function prototype */
1286 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1287 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1288 return -EINVAL;
1289 }
1290
1291 if (env->prog->aux->ops->get_func_proto)
1292 fn = env->prog->aux->ops->get_func_proto(func_id);
1293
1294 if (!fn) {
ebb676da 1295 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1296 return -EINVAL;
1297 }
1298
1299 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1300 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1301 verbose("cannot call GPL only function from proprietary program\n");
1302 return -EINVAL;
1303 }
1304
17bedab2 1305 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1306
33ff9823 1307 memset(&meta, 0, sizeof(meta));
36bbef52 1308 meta.pkt_access = fn->pkt_access;
33ff9823 1309
435faee1
DB
1310 /* We only support one arg being in raw mode at the moment, which
1311 * is sufficient for the helper functions we have right now.
1312 */
1313 err = check_raw_mode(fn);
1314 if (err) {
ebb676da
TG
1315 verbose("kernel subsystem misconfigured func %s#%d\n",
1316 func_id_name(func_id), func_id);
435faee1
DB
1317 return err;
1318 }
1319
17a52670 1320 /* check args */
33ff9823 1321 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1322 if (err)
1323 return err;
33ff9823 1324 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1325 if (err)
1326 return err;
33ff9823 1327 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1328 if (err)
1329 return err;
33ff9823 1330 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1331 if (err)
1332 return err;
33ff9823 1333 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1334 if (err)
1335 return err;
1336
435faee1
DB
1337 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1338 * is inferred from register state.
1339 */
1340 for (i = 0; i < meta.access_size; i++) {
1341 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1342 if (err)
1343 return err;
1344 }
1345
17a52670
AS
1346 /* reset caller saved regs */
1347 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1348 reg = regs + caller_saved[i];
1349 reg->type = NOT_INIT;
1350 reg->imm = 0;
1351 }
1352
1353 /* update return register */
1354 if (fn->ret_type == RET_INTEGER) {
1355 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1356 } else if (fn->ret_type == RET_VOID) {
1357 regs[BPF_REG_0].type = NOT_INIT;
1358 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1359 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1360 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1361 /* remember map_ptr, so that check_map_access()
1362 * can check 'value_size' boundary of memory access
1363 * to map element returned from bpf_map_lookup_elem()
1364 */
33ff9823 1365 if (meta.map_ptr == NULL) {
17a52670
AS
1366 verbose("kernel subsystem misconfigured verifier\n");
1367 return -EINVAL;
1368 }
33ff9823 1369 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1370 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 1371 } else {
ebb676da
TG
1372 verbose("unknown return type %d of func %s#%d\n",
1373 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1374 return -EINVAL;
1375 }
04fd61ab 1376
33ff9823 1377 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1378 if (err)
1379 return err;
04fd61ab 1380
969bf05e
AS
1381 if (changes_data)
1382 clear_all_pkt_pointers(env);
1383 return 0;
1384}
1385
58e2af8b
JK
1386static int check_packet_ptr_add(struct bpf_verifier_env *env,
1387 struct bpf_insn *insn)
969bf05e 1388{
58e2af8b
JK
1389 struct bpf_reg_state *regs = env->cur_state.regs;
1390 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1391 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1392 struct bpf_reg_state tmp_reg;
969bf05e
AS
1393 s32 imm;
1394
1395 if (BPF_SRC(insn->code) == BPF_K) {
1396 /* pkt_ptr += imm */
1397 imm = insn->imm;
1398
1399add_imm:
63dfef75 1400 if (imm < 0) {
969bf05e
AS
1401 verbose("addition of negative constant to packet pointer is not allowed\n");
1402 return -EACCES;
1403 }
1404 if (imm >= MAX_PACKET_OFF ||
1405 imm + dst_reg->off >= MAX_PACKET_OFF) {
1406 verbose("constant %d is too large to add to packet pointer\n",
1407 imm);
1408 return -EACCES;
1409 }
1410 /* a constant was added to pkt_ptr.
1411 * Remember it while keeping the same 'id'
1412 */
1413 dst_reg->off += imm;
1414 } else {
1b9b69ec
AS
1415 if (src_reg->type == PTR_TO_PACKET) {
1416 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1417 tmp_reg = *dst_reg; /* save r7 state */
1418 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1419 src_reg = &tmp_reg; /* pretend it's src_reg state */
1420 /* if the checks below reject it, the copy won't matter,
1421 * since we're rejecting the whole program. If all ok,
1422 * then imm22 state will be added to r7
1423 * and r7 will be pkt(id=0,off=22,r=62) while
1424 * r6 will stay as pkt(id=0,off=0,r=62)
1425 */
1426 }
1427
969bf05e
AS
1428 if (src_reg->type == CONST_IMM) {
1429 /* pkt_ptr += reg where reg is known constant */
1430 imm = src_reg->imm;
1431 goto add_imm;
1432 }
1433 /* disallow pkt_ptr += reg
1434 * if reg is not uknown_value with guaranteed zero upper bits
1435 * otherwise pkt_ptr may overflow and addition will become
1436 * subtraction which is not allowed
1437 */
1438 if (src_reg->type != UNKNOWN_VALUE) {
1439 verbose("cannot add '%s' to ptr_to_packet\n",
1440 reg_type_str[src_reg->type]);
1441 return -EACCES;
1442 }
1443 if (src_reg->imm < 48) {
1444 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1445 src_reg->imm);
1446 return -EACCES;
1447 }
1448 /* dst_reg stays as pkt_ptr type and since some positive
1449 * integer value was added to the pointer, increment its 'id'
1450 */
1f415a74 1451 dst_reg->id = ++env->id_gen;
969bf05e
AS
1452
1453 /* something was added to pkt_ptr, set range and off to zero */
1454 dst_reg->off = 0;
1455 dst_reg->range = 0;
1456 }
1457 return 0;
1458}
1459
58e2af8b 1460static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1461{
58e2af8b
JK
1462 struct bpf_reg_state *regs = env->cur_state.regs;
1463 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1464 u8 opcode = BPF_OP(insn->code);
1465 s64 imm_log2;
1466
1467 /* for type == UNKNOWN_VALUE:
1468 * imm > 0 -> number of zero upper bits
1469 * imm == 0 -> don't track which is the same as all bits can be non-zero
1470 */
1471
1472 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1473 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1474
1475 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1476 dst_reg->imm && opcode == BPF_ADD) {
1477 /* dreg += sreg
1478 * where both have zero upper bits. Adding them
1479 * can only result making one more bit non-zero
1480 * in the larger value.
1481 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1482 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1483 */
1484 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1485 dst_reg->imm--;
1486 return 0;
1487 }
1488 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1489 dst_reg->imm && opcode == BPF_ADD) {
1490 /* dreg += sreg
1491 * where dreg has zero upper bits and sreg is const.
1492 * Adding them can only result making one more bit
1493 * non-zero in the larger value.
1494 */
1495 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1496 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1497 dst_reg->imm--;
1498 return 0;
1499 }
1500 /* all other cases non supported yet, just mark dst_reg */
1501 dst_reg->imm = 0;
1502 return 0;
1503 }
1504
1505 /* sign extend 32-bit imm into 64-bit to make sure that
1506 * negative values occupy bit 63. Note ilog2() would have
1507 * been incorrect, since sizeof(insn->imm) == 4
1508 */
1509 imm_log2 = __ilog2_u64((long long)insn->imm);
1510
1511 if (dst_reg->imm && opcode == BPF_LSH) {
1512 /* reg <<= imm
1513 * if reg was a result of 2 byte load, then its imm == 48
1514 * which means that upper 48 bits are zero and shifting this reg
1515 * left by 4 would mean that upper 44 bits are still zero
1516 */
1517 dst_reg->imm -= insn->imm;
1518 } else if (dst_reg->imm && opcode == BPF_MUL) {
1519 /* reg *= imm
1520 * if multiplying by 14 subtract 4
1521 * This is conservative calculation of upper zero bits.
1522 * It's not trying to special case insn->imm == 1 or 0 cases
1523 */
1524 dst_reg->imm -= imm_log2 + 1;
1525 } else if (opcode == BPF_AND) {
1526 /* reg &= imm */
1527 dst_reg->imm = 63 - imm_log2;
1528 } else if (dst_reg->imm && opcode == BPF_ADD) {
1529 /* reg += imm */
1530 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1531 dst_reg->imm--;
1532 } else if (opcode == BPF_RSH) {
1533 /* reg >>= imm
1534 * which means that after right shift, upper bits will be zero
1535 * note that verifier already checked that
1536 * 0 <= imm < 64 for shift insn
1537 */
1538 dst_reg->imm += insn->imm;
1539 if (unlikely(dst_reg->imm > 64))
1540 /* some dumb code did:
1541 * r2 = *(u32 *)mem;
1542 * r2 >>= 32;
1543 * and all bits are zero now */
1544 dst_reg->imm = 64;
1545 } else {
1546 /* all other alu ops, means that we don't know what will
1547 * happen to the value, mark it with unknown number of zero bits
1548 */
1549 dst_reg->imm = 0;
1550 }
1551
1552 if (dst_reg->imm < 0) {
1553 /* all 64 bits of the register can contain non-zero bits
1554 * and such value cannot be added to ptr_to_packet, since it
1555 * may overflow, mark it as unknown to avoid further eval
1556 */
1557 dst_reg->imm = 0;
1558 }
1559 return 0;
1560}
1561
58e2af8b
JK
1562static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1563 struct bpf_insn *insn)
969bf05e 1564{
58e2af8b
JK
1565 struct bpf_reg_state *regs = env->cur_state.regs;
1566 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1567 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1568 u8 opcode = BPF_OP(insn->code);
3fadc801 1569 u64 dst_imm = dst_reg->imm;
969bf05e 1570
3fadc801
DB
1571 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1572 * containing ALU ops. Don't care about overflow or negative
1573 * values, just add/sub/... them; registers are in u64.
969bf05e 1574 */
3fadc801
DB
1575 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1576 dst_imm += insn->imm;
1577 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1578 src_reg->type == CONST_IMM) {
1579 dst_imm += src_reg->imm;
1580 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1581 dst_imm -= insn->imm;
1582 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1583 src_reg->type == CONST_IMM) {
1584 dst_imm -= src_reg->imm;
1585 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1586 dst_imm *= insn->imm;
1587 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1588 src_reg->type == CONST_IMM) {
1589 dst_imm *= src_reg->imm;
1590 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1591 dst_imm |= insn->imm;
1592 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1593 src_reg->type == CONST_IMM) {
1594 dst_imm |= src_reg->imm;
1595 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1596 dst_imm &= insn->imm;
1597 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1598 src_reg->type == CONST_IMM) {
1599 dst_imm &= src_reg->imm;
1600 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1601 dst_imm >>= insn->imm;
1602 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1603 src_reg->type == CONST_IMM) {
1604 dst_imm >>= src_reg->imm;
1605 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1606 dst_imm <<= insn->imm;
1607 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1608 src_reg->type == CONST_IMM) {
1609 dst_imm <<= src_reg->imm;
1610 } else {
969bf05e 1611 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1612 goto out;
1613 }
1614
1615 dst_reg->imm = dst_imm;
1616out:
17a52670
AS
1617 return 0;
1618}
1619
48461135
JB
1620static void check_reg_overflow(struct bpf_reg_state *reg)
1621{
1622 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1623 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1624 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1625 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1626 reg->min_value = BPF_REGISTER_MIN_RANGE;
1627}
1628
1629static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1630 struct bpf_insn *insn)
1631{
1632 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1633 s64 min_val = BPF_REGISTER_MIN_RANGE;
1634 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1635 u8 opcode = BPF_OP(insn->code);
1636
1637 dst_reg = &regs[insn->dst_reg];
1638 if (BPF_SRC(insn->code) == BPF_X) {
1639 check_reg_overflow(&regs[insn->src_reg]);
1640 min_val = regs[insn->src_reg].min_value;
1641 max_val = regs[insn->src_reg].max_value;
1642
1643 /* If the source register is a random pointer then the
1644 * min_value/max_value values represent the range of the known
1645 * accesses into that value, not the actual min/max value of the
1646 * register itself. In this case we have to reset the reg range
1647 * values so we know it is not safe to look at.
1648 */
1649 if (regs[insn->src_reg].type != CONST_IMM &&
1650 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1651 min_val = BPF_REGISTER_MIN_RANGE;
1652 max_val = BPF_REGISTER_MAX_RANGE;
1653 }
1654 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1655 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1656 min_val = max_val = insn->imm;
48461135
JB
1657 }
1658
1659 /* We don't know anything about what was done to this register, mark it
1660 * as unknown.
1661 */
1662 if (min_val == BPF_REGISTER_MIN_RANGE &&
1663 max_val == BPF_REGISTER_MAX_RANGE) {
1664 reset_reg_range_values(regs, insn->dst_reg);
1665 return;
1666 }
1667
f23cc643
JB
1668 /* If one of our values was at the end of our ranges then we can't just
1669 * do our normal operations to the register, we need to set the values
1670 * to the min/max since they are undefined.
1671 */
1672 if (min_val == BPF_REGISTER_MIN_RANGE)
1673 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1674 if (max_val == BPF_REGISTER_MAX_RANGE)
1675 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1676
48461135
JB
1677 switch (opcode) {
1678 case BPF_ADD:
f23cc643
JB
1679 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1680 dst_reg->min_value += min_val;
1681 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1682 dst_reg->max_value += max_val;
48461135
JB
1683 break;
1684 case BPF_SUB:
f23cc643
JB
1685 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1686 dst_reg->min_value -= min_val;
1687 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1688 dst_reg->max_value -= max_val;
48461135
JB
1689 break;
1690 case BPF_MUL:
f23cc643
JB
1691 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1692 dst_reg->min_value *= min_val;
1693 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1694 dst_reg->max_value *= max_val;
48461135
JB
1695 break;
1696 case BPF_AND:
f23cc643
JB
1697 /* Disallow AND'ing of negative numbers, ain't nobody got time
1698 * for that. Otherwise the minimum is 0 and the max is the max
1699 * value we could AND against.
1700 */
1701 if (min_val < 0)
1702 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1703 else
1704 dst_reg->min_value = 0;
48461135
JB
1705 dst_reg->max_value = max_val;
1706 break;
1707 case BPF_LSH:
1708 /* Gotta have special overflow logic here, if we're shifting
1709 * more than MAX_RANGE then just assume we have an invalid
1710 * range.
1711 */
1712 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1713 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1714 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1715 dst_reg->min_value <<= min_val;
1716
1717 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1718 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1719 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1720 dst_reg->max_value <<= max_val;
1721 break;
1722 case BPF_RSH:
f23cc643
JB
1723 /* RSH by a negative number is undefined, and the BPF_RSH is an
1724 * unsigned shift, so make the appropriate casts.
48461135 1725 */
f23cc643
JB
1726 if (min_val < 0 || dst_reg->min_value < 0)
1727 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1728 else
1729 dst_reg->min_value =
1730 (u64)(dst_reg->min_value) >> min_val;
1731 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1732 dst_reg->max_value >>= max_val;
48461135
JB
1733 break;
1734 default:
1735 reset_reg_range_values(regs, insn->dst_reg);
1736 break;
1737 }
1738
1739 check_reg_overflow(dst_reg);
1740}
1741
17a52670 1742/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1743static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1744{
58e2af8b 1745 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1746 u8 opcode = BPF_OP(insn->code);
1747 int err;
1748
1749 if (opcode == BPF_END || opcode == BPF_NEG) {
1750 if (opcode == BPF_NEG) {
1751 if (BPF_SRC(insn->code) != 0 ||
1752 insn->src_reg != BPF_REG_0 ||
1753 insn->off != 0 || insn->imm != 0) {
1754 verbose("BPF_NEG uses reserved fields\n");
1755 return -EINVAL;
1756 }
1757 } else {
1758 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1759 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1760 verbose("BPF_END uses reserved fields\n");
1761 return -EINVAL;
1762 }
1763 }
1764
1765 /* check src operand */
1766 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1767 if (err)
1768 return err;
1769
1be7f75d
AS
1770 if (is_pointer_value(env, insn->dst_reg)) {
1771 verbose("R%d pointer arithmetic prohibited\n",
1772 insn->dst_reg);
1773 return -EACCES;
1774 }
1775
17a52670
AS
1776 /* check dest operand */
1777 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1778 if (err)
1779 return err;
1780
1781 } else if (opcode == BPF_MOV) {
1782
1783 if (BPF_SRC(insn->code) == BPF_X) {
1784 if (insn->imm != 0 || insn->off != 0) {
1785 verbose("BPF_MOV uses reserved fields\n");
1786 return -EINVAL;
1787 }
1788
1789 /* check src operand */
1790 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1791 if (err)
1792 return err;
1793 } else {
1794 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1795 verbose("BPF_MOV uses reserved fields\n");
1796 return -EINVAL;
1797 }
1798 }
1799
1800 /* check dest operand */
1801 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1802 if (err)
1803 return err;
1804
48461135
JB
1805 /* we are setting our register to something new, we need to
1806 * reset its range values.
1807 */
1808 reset_reg_range_values(regs, insn->dst_reg);
1809
17a52670
AS
1810 if (BPF_SRC(insn->code) == BPF_X) {
1811 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1812 /* case: R1 = R2
1813 * copy register state to dest reg
1814 */
1815 regs[insn->dst_reg] = regs[insn->src_reg];
1816 } else {
1be7f75d
AS
1817 if (is_pointer_value(env, insn->src_reg)) {
1818 verbose("R%d partial copy of pointer\n",
1819 insn->src_reg);
1820 return -EACCES;
1821 }
57a09bf0 1822 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1823 }
1824 } else {
1825 /* case: R = imm
1826 * remember the value we stored into this reg
1827 */
1828 regs[insn->dst_reg].type = CONST_IMM;
1829 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1830 regs[insn->dst_reg].max_value = insn->imm;
1831 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1832 }
1833
1834 } else if (opcode > BPF_END) {
1835 verbose("invalid BPF_ALU opcode %x\n", opcode);
1836 return -EINVAL;
1837
1838 } else { /* all other ALU ops: and, sub, xor, add, ... */
1839
17a52670
AS
1840 if (BPF_SRC(insn->code) == BPF_X) {
1841 if (insn->imm != 0 || insn->off != 0) {
1842 verbose("BPF_ALU uses reserved fields\n");
1843 return -EINVAL;
1844 }
1845 /* check src1 operand */
1846 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1847 if (err)
1848 return err;
1849 } else {
1850 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1851 verbose("BPF_ALU uses reserved fields\n");
1852 return -EINVAL;
1853 }
1854 }
1855
1856 /* check src2 operand */
1857 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1858 if (err)
1859 return err;
1860
1861 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1862 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1863 verbose("div by zero\n");
1864 return -EINVAL;
1865 }
1866
229394e8
RV
1867 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1868 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1869 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1870
1871 if (insn->imm < 0 || insn->imm >= size) {
1872 verbose("invalid shift %d\n", insn->imm);
1873 return -EINVAL;
1874 }
1875 }
1876
1a0dc1ac
AS
1877 /* check dest operand */
1878 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1879 if (err)
1880 return err;
1881
1882 dst_reg = &regs[insn->dst_reg];
1883
48461135
JB
1884 /* first we want to adjust our ranges. */
1885 adjust_reg_min_max_vals(env, insn);
1886
17a52670
AS
1887 /* pattern match 'bpf_add Rx, imm' instruction */
1888 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1889 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1890 dst_reg->type = PTR_TO_STACK;
1891 dst_reg->imm = insn->imm;
1892 return 0;
969bf05e
AS
1893 } else if (opcode == BPF_ADD &&
1894 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1895 (dst_reg->type == PTR_TO_PACKET ||
1896 (BPF_SRC(insn->code) == BPF_X &&
1897 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1898 /* ptr_to_packet += K|X */
1899 return check_packet_ptr_add(env, insn);
1900 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1901 dst_reg->type == UNKNOWN_VALUE &&
1902 env->allow_ptr_leaks) {
1903 /* unknown += K|X */
1904 return evaluate_reg_alu(env, insn);
1905 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1906 dst_reg->type == CONST_IMM &&
1907 env->allow_ptr_leaks) {
1908 /* reg_imm += K|X */
1909 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1910 } else if (is_pointer_value(env, insn->dst_reg)) {
1911 verbose("R%d pointer arithmetic prohibited\n",
1912 insn->dst_reg);
1913 return -EACCES;
1914 } else if (BPF_SRC(insn->code) == BPF_X &&
1915 is_pointer_value(env, insn->src_reg)) {
1916 verbose("R%d pointer arithmetic prohibited\n",
1917 insn->src_reg);
1918 return -EACCES;
1919 }
17a52670 1920
48461135
JB
1921 /* If we did pointer math on a map value then just set it to our
1922 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1923 * loads to this register appropriately, otherwise just mark the
1924 * register as unknown.
1925 */
1926 if (env->allow_ptr_leaks &&
1927 (dst_reg->type == PTR_TO_MAP_VALUE ||
1928 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1929 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1930 else
1931 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1932 }
1933
1934 return 0;
1935}
1936
58e2af8b
JK
1937static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1938 struct bpf_reg_state *dst_reg)
969bf05e 1939{
58e2af8b 1940 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1941 int i;
2d2be8ca
DB
1942
1943 /* LLVM can generate two kind of checks:
1944 *
1945 * Type 1:
1946 *
1947 * r2 = r3;
1948 * r2 += 8;
1949 * if (r2 > pkt_end) goto <handle exception>
1950 * <access okay>
1951 *
1952 * Where:
1953 * r2 == dst_reg, pkt_end == src_reg
1954 * r2=pkt(id=n,off=8,r=0)
1955 * r3=pkt(id=n,off=0,r=0)
1956 *
1957 * Type 2:
1958 *
1959 * r2 = r3;
1960 * r2 += 8;
1961 * if (pkt_end >= r2) goto <access okay>
1962 * <handle exception>
1963 *
1964 * Where:
1965 * pkt_end == dst_reg, r2 == src_reg
1966 * r2=pkt(id=n,off=8,r=0)
1967 * r3=pkt(id=n,off=0,r=0)
1968 *
1969 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1970 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1971 */
2d2be8ca 1972
969bf05e
AS
1973 for (i = 0; i < MAX_BPF_REG; i++)
1974 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1975 regs[i].range = dst_reg->off;
1976
1977 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1978 if (state->stack_slot_type[i] != STACK_SPILL)
1979 continue;
1980 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1981 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1982 reg->range = dst_reg->off;
1983 }
1984}
1985
48461135
JB
1986/* Adjusts the register min/max values in the case that the dst_reg is the
1987 * variable register that we are working on, and src_reg is a constant or we're
1988 * simply doing a BPF_K check.
1989 */
1990static void reg_set_min_max(struct bpf_reg_state *true_reg,
1991 struct bpf_reg_state *false_reg, u64 val,
1992 u8 opcode)
1993{
1994 switch (opcode) {
1995 case BPF_JEQ:
1996 /* If this is false then we know nothing Jon Snow, but if it is
1997 * true then we know for sure.
1998 */
1999 true_reg->max_value = true_reg->min_value = val;
2000 break;
2001 case BPF_JNE:
2002 /* If this is true we know nothing Jon Snow, but if it is false
2003 * we know the value for sure;
2004 */
2005 false_reg->max_value = false_reg->min_value = val;
2006 break;
2007 case BPF_JGT:
2008 /* Unsigned comparison, the minimum value is 0. */
2009 false_reg->min_value = 0;
2010 case BPF_JSGT:
2011 /* If this is false then we know the maximum val is val,
2012 * otherwise we know the min val is val+1.
2013 */
2014 false_reg->max_value = val;
2015 true_reg->min_value = val + 1;
2016 break;
2017 case BPF_JGE:
2018 /* Unsigned comparison, the minimum value is 0. */
2019 false_reg->min_value = 0;
2020 case BPF_JSGE:
2021 /* If this is false then we know the maximum value is val - 1,
2022 * otherwise we know the mimimum value is val.
2023 */
2024 false_reg->max_value = val - 1;
2025 true_reg->min_value = val;
2026 break;
2027 default:
2028 break;
2029 }
2030
2031 check_reg_overflow(false_reg);
2032 check_reg_overflow(true_reg);
2033}
2034
2035/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2036 * is the variable reg.
2037 */
2038static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2039 struct bpf_reg_state *false_reg, u64 val,
2040 u8 opcode)
2041{
2042 switch (opcode) {
2043 case BPF_JEQ:
2044 /* If this is false then we know nothing Jon Snow, but if it is
2045 * true then we know for sure.
2046 */
2047 true_reg->max_value = true_reg->min_value = val;
2048 break;
2049 case BPF_JNE:
2050 /* If this is true we know nothing Jon Snow, but if it is false
2051 * we know the value for sure;
2052 */
2053 false_reg->max_value = false_reg->min_value = val;
2054 break;
2055 case BPF_JGT:
2056 /* Unsigned comparison, the minimum value is 0. */
2057 true_reg->min_value = 0;
2058 case BPF_JSGT:
2059 /*
2060 * If this is false, then the val is <= the register, if it is
2061 * true the register <= to the val.
2062 */
2063 false_reg->min_value = val;
2064 true_reg->max_value = val - 1;
2065 break;
2066 case BPF_JGE:
2067 /* Unsigned comparison, the minimum value is 0. */
2068 true_reg->min_value = 0;
2069 case BPF_JSGE:
2070 /* If this is false then constant < register, if it is true then
2071 * the register < constant.
2072 */
2073 false_reg->min_value = val + 1;
2074 true_reg->max_value = val;
2075 break;
2076 default:
2077 break;
2078 }
2079
2080 check_reg_overflow(false_reg);
2081 check_reg_overflow(true_reg);
2082}
2083
57a09bf0
TG
2084static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2085 enum bpf_reg_type type)
2086{
2087 struct bpf_reg_state *reg = &regs[regno];
2088
2089 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2090 reg->type = type;
a08dd0da
DB
2091 /* We don't need id from this point onwards anymore, thus we
2092 * should better reset it, so that state pruning has chances
2093 * to take effect.
2094 */
2095 reg->id = 0;
57a09bf0 2096 if (type == UNKNOWN_VALUE)
6760bf2d 2097 __mark_reg_unknown_value(regs, regno);
57a09bf0
TG
2098 }
2099}
2100
2101/* The logic is similar to find_good_pkt_pointers(), both could eventually
2102 * be folded together at some point.
2103 */
2104static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2105 enum bpf_reg_type type)
2106{
2107 struct bpf_reg_state *regs = state->regs;
a08dd0da 2108 u32 id = regs[regno].id;
57a09bf0
TG
2109 int i;
2110
2111 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2112 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2113
2114 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2115 if (state->stack_slot_type[i] != STACK_SPILL)
2116 continue;
a08dd0da 2117 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2118 }
2119}
2120
58e2af8b 2121static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2122 struct bpf_insn *insn, int *insn_idx)
2123{
58e2af8b
JK
2124 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2125 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2126 u8 opcode = BPF_OP(insn->code);
2127 int err;
2128
2129 if (opcode > BPF_EXIT) {
2130 verbose("invalid BPF_JMP opcode %x\n", opcode);
2131 return -EINVAL;
2132 }
2133
2134 if (BPF_SRC(insn->code) == BPF_X) {
2135 if (insn->imm != 0) {
2136 verbose("BPF_JMP uses reserved fields\n");
2137 return -EINVAL;
2138 }
2139
2140 /* check src1 operand */
2141 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2142 if (err)
2143 return err;
1be7f75d
AS
2144
2145 if (is_pointer_value(env, insn->src_reg)) {
2146 verbose("R%d pointer comparison prohibited\n",
2147 insn->src_reg);
2148 return -EACCES;
2149 }
17a52670
AS
2150 } else {
2151 if (insn->src_reg != BPF_REG_0) {
2152 verbose("BPF_JMP uses reserved fields\n");
2153 return -EINVAL;
2154 }
2155 }
2156
2157 /* check src2 operand */
2158 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2159 if (err)
2160 return err;
2161
1a0dc1ac
AS
2162 dst_reg = &regs[insn->dst_reg];
2163
17a52670
AS
2164 /* detect if R == 0 where R was initialized to zero earlier */
2165 if (BPF_SRC(insn->code) == BPF_K &&
2166 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2167 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2168 if (opcode == BPF_JEQ) {
2169 /* if (imm == imm) goto pc+off;
2170 * only follow the goto, ignore fall-through
2171 */
2172 *insn_idx += insn->off;
2173 return 0;
2174 } else {
2175 /* if (imm != imm) goto pc+off;
2176 * only follow fall-through branch, since
2177 * that's where the program will go
2178 */
2179 return 0;
2180 }
2181 }
2182
2183 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2184 if (!other_branch)
2185 return -EFAULT;
2186
48461135
JB
2187 /* detect if we are comparing against a constant value so we can adjust
2188 * our min/max values for our dst register.
2189 */
2190 if (BPF_SRC(insn->code) == BPF_X) {
2191 if (regs[insn->src_reg].type == CONST_IMM)
2192 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2193 dst_reg, regs[insn->src_reg].imm,
2194 opcode);
2195 else if (dst_reg->type == CONST_IMM)
2196 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2197 &regs[insn->src_reg], dst_reg->imm,
2198 opcode);
2199 } else {
2200 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2201 dst_reg, insn->imm, opcode);
2202 }
2203
58e2af8b 2204 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2205 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2206 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2207 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2208 /* Mark all identical map registers in each branch as either
2209 * safe or unknown depending R == 0 or R != 0 conditional.
2210 */
2211 mark_map_regs(this_branch, insn->dst_reg,
2212 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2213 mark_map_regs(other_branch, insn->dst_reg,
2214 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2215 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2216 dst_reg->type == PTR_TO_PACKET &&
2217 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2218 find_good_pkt_pointers(this_branch, dst_reg);
2219 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2220 dst_reg->type == PTR_TO_PACKET_END &&
2221 regs[insn->src_reg].type == PTR_TO_PACKET) {
2222 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2223 } else if (is_pointer_value(env, insn->dst_reg)) {
2224 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2225 return -EACCES;
17a52670
AS
2226 }
2227 if (log_level)
2d2be8ca 2228 print_verifier_state(this_branch);
17a52670
AS
2229 return 0;
2230}
2231
0246e64d
AS
2232/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2233static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2234{
2235 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2236
2237 return (struct bpf_map *) (unsigned long) imm64;
2238}
2239
17a52670 2240/* verify BPF_LD_IMM64 instruction */
58e2af8b 2241static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2242{
58e2af8b 2243 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2244 int err;
2245
2246 if (BPF_SIZE(insn->code) != BPF_DW) {
2247 verbose("invalid BPF_LD_IMM insn\n");
2248 return -EINVAL;
2249 }
2250 if (insn->off != 0) {
2251 verbose("BPF_LD_IMM64 uses reserved fields\n");
2252 return -EINVAL;
2253 }
2254
2255 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2256 if (err)
2257 return err;
2258
6b173873 2259 if (insn->src_reg == 0) {
6b173873
JK
2260 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2261
6b173873
JK
2262 regs[insn->dst_reg].type = CONST_IMM;
2263 regs[insn->dst_reg].imm = imm;
17a52670 2264 return 0;
6b173873 2265 }
17a52670
AS
2266
2267 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2268 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2269
2270 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2271 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2272 return 0;
2273}
2274
96be4325
DB
2275static bool may_access_skb(enum bpf_prog_type type)
2276{
2277 switch (type) {
2278 case BPF_PROG_TYPE_SOCKET_FILTER:
2279 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2280 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2281 return true;
2282 default:
2283 return false;
2284 }
2285}
2286
ddd872bc
AS
2287/* verify safety of LD_ABS|LD_IND instructions:
2288 * - they can only appear in the programs where ctx == skb
2289 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2290 * preserve R6-R9, and store return value into R0
2291 *
2292 * Implicit input:
2293 * ctx == skb == R6 == CTX
2294 *
2295 * Explicit input:
2296 * SRC == any register
2297 * IMM == 32-bit immediate
2298 *
2299 * Output:
2300 * R0 - 8/16/32-bit skb data converted to cpu endianness
2301 */
58e2af8b 2302static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2303{
58e2af8b 2304 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2305 u8 mode = BPF_MODE(insn->code);
58e2af8b 2306 struct bpf_reg_state *reg;
ddd872bc
AS
2307 int i, err;
2308
24701ece 2309 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2310 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2311 return -EINVAL;
2312 }
2313
2314 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2315 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2316 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2317 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2318 return -EINVAL;
2319 }
2320
2321 /* check whether implicit source operand (register R6) is readable */
2322 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2323 if (err)
2324 return err;
2325
2326 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2327 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2328 return -EINVAL;
2329 }
2330
2331 if (mode == BPF_IND) {
2332 /* check explicit source operand */
2333 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2334 if (err)
2335 return err;
2336 }
2337
2338 /* reset caller saved regs to unreadable */
2339 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2340 reg = regs + caller_saved[i];
2341 reg->type = NOT_INIT;
2342 reg->imm = 0;
2343 }
2344
2345 /* mark destination R0 register as readable, since it contains
2346 * the value fetched from the packet
2347 */
2348 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2349 return 0;
2350}
2351
475fb78f
AS
2352/* non-recursive DFS pseudo code
2353 * 1 procedure DFS-iterative(G,v):
2354 * 2 label v as discovered
2355 * 3 let S be a stack
2356 * 4 S.push(v)
2357 * 5 while S is not empty
2358 * 6 t <- S.pop()
2359 * 7 if t is what we're looking for:
2360 * 8 return t
2361 * 9 for all edges e in G.adjacentEdges(t) do
2362 * 10 if edge e is already labelled
2363 * 11 continue with the next edge
2364 * 12 w <- G.adjacentVertex(t,e)
2365 * 13 if vertex w is not discovered and not explored
2366 * 14 label e as tree-edge
2367 * 15 label w as discovered
2368 * 16 S.push(w)
2369 * 17 continue at 5
2370 * 18 else if vertex w is discovered
2371 * 19 label e as back-edge
2372 * 20 else
2373 * 21 // vertex w is explored
2374 * 22 label e as forward- or cross-edge
2375 * 23 label t as explored
2376 * 24 S.pop()
2377 *
2378 * convention:
2379 * 0x10 - discovered
2380 * 0x11 - discovered and fall-through edge labelled
2381 * 0x12 - discovered and fall-through and branch edges labelled
2382 * 0x20 - explored
2383 */
2384
2385enum {
2386 DISCOVERED = 0x10,
2387 EXPLORED = 0x20,
2388 FALLTHROUGH = 1,
2389 BRANCH = 2,
2390};
2391
58e2af8b 2392#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2393
475fb78f
AS
2394static int *insn_stack; /* stack of insns to process */
2395static int cur_stack; /* current stack index */
2396static int *insn_state;
2397
2398/* t, w, e - match pseudo-code above:
2399 * t - index of current instruction
2400 * w - next instruction
2401 * e - edge
2402 */
58e2af8b 2403static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2404{
2405 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2406 return 0;
2407
2408 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2409 return 0;
2410
2411 if (w < 0 || w >= env->prog->len) {
2412 verbose("jump out of range from insn %d to %d\n", t, w);
2413 return -EINVAL;
2414 }
2415
f1bca824
AS
2416 if (e == BRANCH)
2417 /* mark branch target for state pruning */
2418 env->explored_states[w] = STATE_LIST_MARK;
2419
475fb78f
AS
2420 if (insn_state[w] == 0) {
2421 /* tree-edge */
2422 insn_state[t] = DISCOVERED | e;
2423 insn_state[w] = DISCOVERED;
2424 if (cur_stack >= env->prog->len)
2425 return -E2BIG;
2426 insn_stack[cur_stack++] = w;
2427 return 1;
2428 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2429 verbose("back-edge from insn %d to %d\n", t, w);
2430 return -EINVAL;
2431 } else if (insn_state[w] == EXPLORED) {
2432 /* forward- or cross-edge */
2433 insn_state[t] = DISCOVERED | e;
2434 } else {
2435 verbose("insn state internal bug\n");
2436 return -EFAULT;
2437 }
2438 return 0;
2439}
2440
2441/* non-recursive depth-first-search to detect loops in BPF program
2442 * loop == back-edge in directed graph
2443 */
58e2af8b 2444static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2445{
2446 struct bpf_insn *insns = env->prog->insnsi;
2447 int insn_cnt = env->prog->len;
2448 int ret = 0;
2449 int i, t;
2450
2451 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2452 if (!insn_state)
2453 return -ENOMEM;
2454
2455 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2456 if (!insn_stack) {
2457 kfree(insn_state);
2458 return -ENOMEM;
2459 }
2460
2461 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2462 insn_stack[0] = 0; /* 0 is the first instruction */
2463 cur_stack = 1;
2464
2465peek_stack:
2466 if (cur_stack == 0)
2467 goto check_state;
2468 t = insn_stack[cur_stack - 1];
2469
2470 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2471 u8 opcode = BPF_OP(insns[t].code);
2472
2473 if (opcode == BPF_EXIT) {
2474 goto mark_explored;
2475 } else if (opcode == BPF_CALL) {
2476 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2477 if (ret == 1)
2478 goto peek_stack;
2479 else if (ret < 0)
2480 goto err_free;
07016151
DB
2481 if (t + 1 < insn_cnt)
2482 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2483 } else if (opcode == BPF_JA) {
2484 if (BPF_SRC(insns[t].code) != BPF_K) {
2485 ret = -EINVAL;
2486 goto err_free;
2487 }
2488 /* unconditional jump with single edge */
2489 ret = push_insn(t, t + insns[t].off + 1,
2490 FALLTHROUGH, env);
2491 if (ret == 1)
2492 goto peek_stack;
2493 else if (ret < 0)
2494 goto err_free;
f1bca824
AS
2495 /* tell verifier to check for equivalent states
2496 * after every call and jump
2497 */
c3de6317
AS
2498 if (t + 1 < insn_cnt)
2499 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2500 } else {
2501 /* conditional jump with two edges */
2502 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2503 if (ret == 1)
2504 goto peek_stack;
2505 else if (ret < 0)
2506 goto err_free;
2507
2508 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2509 if (ret == 1)
2510 goto peek_stack;
2511 else if (ret < 0)
2512 goto err_free;
2513 }
2514 } else {
2515 /* all other non-branch instructions with single
2516 * fall-through edge
2517 */
2518 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2519 if (ret == 1)
2520 goto peek_stack;
2521 else if (ret < 0)
2522 goto err_free;
2523 }
2524
2525mark_explored:
2526 insn_state[t] = EXPLORED;
2527 if (cur_stack-- <= 0) {
2528 verbose("pop stack internal bug\n");
2529 ret = -EFAULT;
2530 goto err_free;
2531 }
2532 goto peek_stack;
2533
2534check_state:
2535 for (i = 0; i < insn_cnt; i++) {
2536 if (insn_state[i] != EXPLORED) {
2537 verbose("unreachable insn %d\n", i);
2538 ret = -EINVAL;
2539 goto err_free;
2540 }
2541 }
2542 ret = 0; /* cfg looks good */
2543
2544err_free:
2545 kfree(insn_state);
2546 kfree(insn_stack);
2547 return ret;
2548}
2549
969bf05e
AS
2550/* the following conditions reduce the number of explored insns
2551 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2552 */
58e2af8b
JK
2553static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2554 struct bpf_reg_state *cur)
969bf05e
AS
2555{
2556 if (old->id != cur->id)
2557 return false;
2558
2559 /* old ptr_to_packet is more conservative, since it allows smaller
2560 * range. Ex:
2561 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2562 * old(off=0,r=10) means that with range=10 the verifier proceeded
2563 * further and found no issues with the program. Now we're in the same
2564 * spot with cur(off=0,r=20), so we're safe too, since anything further
2565 * will only be looking at most 10 bytes after this pointer.
2566 */
2567 if (old->off == cur->off && old->range < cur->range)
2568 return true;
2569
2570 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2571 * since both cannot be used for packet access and safe(old)
2572 * pointer has smaller off that could be used for further
2573 * 'if (ptr > data_end)' check
2574 * Ex:
2575 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2576 * that we cannot access the packet.
2577 * The safe range is:
2578 * [ptr, ptr + range - off)
2579 * so whenever off >=range, it means no safe bytes from this pointer.
2580 * When comparing old->off <= cur->off, it means that older code
2581 * went with smaller offset and that offset was later
2582 * used to figure out the safe range after 'if (ptr > data_end)' check
2583 * Say, 'old' state was explored like:
2584 * ... R3(off=0, r=0)
2585 * R4 = R3 + 20
2586 * ... now R4(off=20,r=0) <-- here
2587 * if (R4 > data_end)
2588 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2589 * ... the code further went all the way to bpf_exit.
2590 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2591 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2592 * goes further, such cur_R4 will give larger safe packet range after
2593 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2594 * so they will be good with r=30 and we can prune the search.
2595 */
2596 if (old->off <= cur->off &&
2597 old->off >= old->range && cur->off >= cur->range)
2598 return true;
2599
2600 return false;
2601}
2602
f1bca824
AS
2603/* compare two verifier states
2604 *
2605 * all states stored in state_list are known to be valid, since
2606 * verifier reached 'bpf_exit' instruction through them
2607 *
2608 * this function is called when verifier exploring different branches of
2609 * execution popped from the state stack. If it sees an old state that has
2610 * more strict register state and more strict stack state then this execution
2611 * branch doesn't need to be explored further, since verifier already
2612 * concluded that more strict state leads to valid finish.
2613 *
2614 * Therefore two states are equivalent if register state is more conservative
2615 * and explored stack state is more conservative than the current one.
2616 * Example:
2617 * explored current
2618 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2619 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2620 *
2621 * In other words if current stack state (one being explored) has more
2622 * valid slots than old one that already passed validation, it means
2623 * the verifier can stop exploring and conclude that current state is valid too
2624 *
2625 * Similarly with registers. If explored state has register type as invalid
2626 * whereas register type in current state is meaningful, it means that
2627 * the current state will reach 'bpf_exit' instruction safely
2628 */
48461135
JB
2629static bool states_equal(struct bpf_verifier_env *env,
2630 struct bpf_verifier_state *old,
58e2af8b 2631 struct bpf_verifier_state *cur)
f1bca824 2632{
e2d2afe1 2633 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2634 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2635 int i;
2636
2637 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2638 rold = &old->regs[i];
2639 rcur = &cur->regs[i];
2640
2641 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2642 continue;
2643
48461135
JB
2644 /* If the ranges were not the same, but everything else was and
2645 * we didn't do a variable access into a map then we are a-ok.
2646 */
e2d2afe1 2647 if (!varlen_map_access &&
d2a4dd37 2648 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2649 continue;
2650
e2d2afe1
JB
2651 /* If we didn't map access then again we don't care about the
2652 * mismatched range values and it's ok if our old type was
2653 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2654 */
1a0dc1ac 2655 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2656 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2657 rcur->type != NOT_INIT))
1a0dc1ac
AS
2658 continue;
2659
969bf05e
AS
2660 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2661 compare_ptrs_to_packet(rold, rcur))
2662 continue;
2663
1a0dc1ac 2664 return false;
f1bca824
AS
2665 }
2666
2667 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2668 if (old->stack_slot_type[i] == STACK_INVALID)
2669 continue;
2670 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2671 /* Ex: old explored (safe) state has STACK_SPILL in
2672 * this stack slot, but current has has STACK_MISC ->
2673 * this verifier states are not equivalent,
2674 * return false to continue verification of this path
2675 */
f1bca824 2676 return false;
9c399760
AS
2677 if (i % BPF_REG_SIZE)
2678 continue;
2679 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2680 &cur->spilled_regs[i / BPF_REG_SIZE],
2681 sizeof(old->spilled_regs[0])))
2682 /* when explored and current stack slot types are
2683 * the same, check that stored pointers types
2684 * are the same as well.
2685 * Ex: explored safe path could have stored
58e2af8b 2686 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2687 * but current path has stored:
58e2af8b 2688 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2689 * such verifier states are not equivalent.
2690 * return false to continue verification of this path
2691 */
2692 return false;
2693 else
2694 continue;
f1bca824
AS
2695 }
2696 return true;
2697}
2698
58e2af8b 2699static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2700{
58e2af8b
JK
2701 struct bpf_verifier_state_list *new_sl;
2702 struct bpf_verifier_state_list *sl;
f1bca824
AS
2703
2704 sl = env->explored_states[insn_idx];
2705 if (!sl)
2706 /* this 'insn_idx' instruction wasn't marked, so we will not
2707 * be doing state search here
2708 */
2709 return 0;
2710
2711 while (sl != STATE_LIST_MARK) {
48461135 2712 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2713 /* reached equivalent register/stack state,
2714 * prune the search
2715 */
2716 return 1;
2717 sl = sl->next;
2718 }
2719
2720 /* there were no equivalent states, remember current one.
2721 * technically the current state is not proven to be safe yet,
2722 * but it will either reach bpf_exit (which means it's safe) or
2723 * it will be rejected. Since there are no loops, we won't be
2724 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2725 */
58e2af8b 2726 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2727 if (!new_sl)
2728 return -ENOMEM;
2729
2730 /* add new state to the head of linked list */
2731 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2732 new_sl->next = env->explored_states[insn_idx];
2733 env->explored_states[insn_idx] = new_sl;
2734 return 0;
2735}
2736
13a27dfc
JK
2737static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2738 int insn_idx, int prev_insn_idx)
2739{
2740 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2741 return 0;
2742
2743 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2744}
2745
58e2af8b 2746static int do_check(struct bpf_verifier_env *env)
17a52670 2747{
58e2af8b 2748 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2749 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2750 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2751 int insn_cnt = env->prog->len;
2752 int insn_idx, prev_insn_idx = 0;
2753 int insn_processed = 0;
2754 bool do_print_state = false;
2755
2756 init_reg_state(regs);
2757 insn_idx = 0;
48461135 2758 env->varlen_map_value_access = false;
17a52670
AS
2759 for (;;) {
2760 struct bpf_insn *insn;
2761 u8 class;
2762 int err;
2763
2764 if (insn_idx >= insn_cnt) {
2765 verbose("invalid insn idx %d insn_cnt %d\n",
2766 insn_idx, insn_cnt);
2767 return -EFAULT;
2768 }
2769
2770 insn = &insns[insn_idx];
2771 class = BPF_CLASS(insn->code);
2772
07016151 2773 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2774 verbose("BPF program is too large. Proccessed %d insn\n",
2775 insn_processed);
2776 return -E2BIG;
2777 }
2778
f1bca824
AS
2779 err = is_state_visited(env, insn_idx);
2780 if (err < 0)
2781 return err;
2782 if (err == 1) {
2783 /* found equivalent state, can prune the search */
2784 if (log_level) {
2785 if (do_print_state)
2786 verbose("\nfrom %d to %d: safe\n",
2787 prev_insn_idx, insn_idx);
2788 else
2789 verbose("%d: safe\n", insn_idx);
2790 }
2791 goto process_bpf_exit;
2792 }
2793
17a52670
AS
2794 if (log_level && do_print_state) {
2795 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2796 print_verifier_state(&env->cur_state);
17a52670
AS
2797 do_print_state = false;
2798 }
2799
2800 if (log_level) {
2801 verbose("%d: ", insn_idx);
2802 print_bpf_insn(insn);
2803 }
2804
13a27dfc
JK
2805 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2806 if (err)
2807 return err;
2808
17a52670 2809 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2810 err = check_alu_op(env, insn);
17a52670
AS
2811 if (err)
2812 return err;
2813
2814 } else if (class == BPF_LDX) {
3df126f3 2815 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2816
2817 /* check for reserved fields is already done */
2818
17a52670
AS
2819 /* check src operand */
2820 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2821 if (err)
2822 return err;
2823
2824 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2825 if (err)
2826 return err;
2827
725f9dcd
AS
2828 src_reg_type = regs[insn->src_reg].type;
2829
17a52670
AS
2830 /* check that memory (src_reg + off) is readable,
2831 * the state of dst_reg will be updated by this func
2832 */
2833 err = check_mem_access(env, insn->src_reg, insn->off,
2834 BPF_SIZE(insn->code), BPF_READ,
2835 insn->dst_reg);
2836 if (err)
2837 return err;
2838
ea2e7ce5
AS
2839 if (BPF_SIZE(insn->code) != BPF_W &&
2840 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2841 insn_idx++;
2842 continue;
2843 }
9bac3d6d 2844
3df126f3
JK
2845 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2846
2847 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2848 /* saw a valid insn
2849 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2850 * save type to validate intersecting paths
9bac3d6d 2851 */
3df126f3 2852 *prev_src_type = src_reg_type;
9bac3d6d 2853
3df126f3 2854 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2855 (src_reg_type == PTR_TO_CTX ||
3df126f3 2856 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2857 /* ABuser program is trying to use the same insn
2858 * dst_reg = *(u32*) (src_reg + off)
2859 * with different pointer types:
2860 * src_reg == ctx in one branch and
2861 * src_reg == stack|map in some other branch.
2862 * Reject it.
2863 */
2864 verbose("same insn cannot be used with different pointers\n");
2865 return -EINVAL;
2866 }
2867
17a52670 2868 } else if (class == BPF_STX) {
3df126f3 2869 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2870
17a52670
AS
2871 if (BPF_MODE(insn->code) == BPF_XADD) {
2872 err = check_xadd(env, insn);
2873 if (err)
2874 return err;
2875 insn_idx++;
2876 continue;
2877 }
2878
17a52670
AS
2879 /* check src1 operand */
2880 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2881 if (err)
2882 return err;
2883 /* check src2 operand */
2884 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2885 if (err)
2886 return err;
2887
d691f9e8
AS
2888 dst_reg_type = regs[insn->dst_reg].type;
2889
17a52670
AS
2890 /* check that memory (dst_reg + off) is writeable */
2891 err = check_mem_access(env, insn->dst_reg, insn->off,
2892 BPF_SIZE(insn->code), BPF_WRITE,
2893 insn->src_reg);
2894 if (err)
2895 return err;
2896
3df126f3
JK
2897 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2898
2899 if (*prev_dst_type == NOT_INIT) {
2900 *prev_dst_type = dst_reg_type;
2901 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2902 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2903 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2904 verbose("same insn cannot be used with different pointers\n");
2905 return -EINVAL;
2906 }
2907
17a52670
AS
2908 } else if (class == BPF_ST) {
2909 if (BPF_MODE(insn->code) != BPF_MEM ||
2910 insn->src_reg != BPF_REG_0) {
2911 verbose("BPF_ST uses reserved fields\n");
2912 return -EINVAL;
2913 }
2914 /* check src operand */
2915 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2916 if (err)
2917 return err;
2918
2919 /* check that memory (dst_reg + off) is writeable */
2920 err = check_mem_access(env, insn->dst_reg, insn->off,
2921 BPF_SIZE(insn->code), BPF_WRITE,
2922 -1);
2923 if (err)
2924 return err;
2925
2926 } else if (class == BPF_JMP) {
2927 u8 opcode = BPF_OP(insn->code);
2928
2929 if (opcode == BPF_CALL) {
2930 if (BPF_SRC(insn->code) != BPF_K ||
2931 insn->off != 0 ||
2932 insn->src_reg != BPF_REG_0 ||
2933 insn->dst_reg != BPF_REG_0) {
2934 verbose("BPF_CALL uses reserved fields\n");
2935 return -EINVAL;
2936 }
2937
2938 err = check_call(env, insn->imm);
2939 if (err)
2940 return err;
2941
2942 } else if (opcode == BPF_JA) {
2943 if (BPF_SRC(insn->code) != BPF_K ||
2944 insn->imm != 0 ||
2945 insn->src_reg != BPF_REG_0 ||
2946 insn->dst_reg != BPF_REG_0) {
2947 verbose("BPF_JA uses reserved fields\n");
2948 return -EINVAL;
2949 }
2950
2951 insn_idx += insn->off + 1;
2952 continue;
2953
2954 } else if (opcode == BPF_EXIT) {
2955 if (BPF_SRC(insn->code) != BPF_K ||
2956 insn->imm != 0 ||
2957 insn->src_reg != BPF_REG_0 ||
2958 insn->dst_reg != BPF_REG_0) {
2959 verbose("BPF_EXIT uses reserved fields\n");
2960 return -EINVAL;
2961 }
2962
2963 /* eBPF calling convetion is such that R0 is used
2964 * to return the value from eBPF program.
2965 * Make sure that it's readable at this time
2966 * of bpf_exit, which means that program wrote
2967 * something into it earlier
2968 */
2969 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2970 if (err)
2971 return err;
2972
1be7f75d
AS
2973 if (is_pointer_value(env, BPF_REG_0)) {
2974 verbose("R0 leaks addr as return value\n");
2975 return -EACCES;
2976 }
2977
f1bca824 2978process_bpf_exit:
17a52670
AS
2979 insn_idx = pop_stack(env, &prev_insn_idx);
2980 if (insn_idx < 0) {
2981 break;
2982 } else {
2983 do_print_state = true;
2984 continue;
2985 }
2986 } else {
2987 err = check_cond_jmp_op(env, insn, &insn_idx);
2988 if (err)
2989 return err;
2990 }
2991 } else if (class == BPF_LD) {
2992 u8 mode = BPF_MODE(insn->code);
2993
2994 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2995 err = check_ld_abs(env, insn);
2996 if (err)
2997 return err;
2998
17a52670
AS
2999 } else if (mode == BPF_IMM) {
3000 err = check_ld_imm(env, insn);
3001 if (err)
3002 return err;
3003
3004 insn_idx++;
3005 } else {
3006 verbose("invalid BPF_LD mode\n");
3007 return -EINVAL;
3008 }
48461135 3009 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3010 } else {
3011 verbose("unknown insn class %d\n", class);
3012 return -EINVAL;
3013 }
3014
3015 insn_idx++;
3016 }
3017
1a0dc1ac 3018 verbose("processed %d insns\n", insn_processed);
17a52670
AS
3019 return 0;
3020}
3021
fdc15d38
AS
3022static int check_map_prog_compatibility(struct bpf_map *map,
3023 struct bpf_prog *prog)
3024
3025{
3026 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3027 (map->map_type == BPF_MAP_TYPE_HASH ||
3028 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3029 (map->map_flags & BPF_F_NO_PREALLOC)) {
3030 verbose("perf_event programs can only use preallocated hash map\n");
3031 return -EINVAL;
3032 }
3033 return 0;
3034}
3035
0246e64d
AS
3036/* look for pseudo eBPF instructions that access map FDs and
3037 * replace them with actual map pointers
3038 */
58e2af8b 3039static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3040{
3041 struct bpf_insn *insn = env->prog->insnsi;
3042 int insn_cnt = env->prog->len;
fdc15d38 3043 int i, j, err;
0246e64d 3044
f1f7714e 3045 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3046 if (err)
3047 return err;
3048
0246e64d 3049 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3050 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3051 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3052 verbose("BPF_LDX uses reserved fields\n");
3053 return -EINVAL;
3054 }
3055
d691f9e8
AS
3056 if (BPF_CLASS(insn->code) == BPF_STX &&
3057 ((BPF_MODE(insn->code) != BPF_MEM &&
3058 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3059 verbose("BPF_STX uses reserved fields\n");
3060 return -EINVAL;
3061 }
3062
0246e64d
AS
3063 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3064 struct bpf_map *map;
3065 struct fd f;
3066
3067 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3068 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3069 insn[1].off != 0) {
3070 verbose("invalid bpf_ld_imm64 insn\n");
3071 return -EINVAL;
3072 }
3073
3074 if (insn->src_reg == 0)
3075 /* valid generic load 64-bit imm */
3076 goto next_insn;
3077
3078 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3079 verbose("unrecognized bpf_ld_imm64 insn\n");
3080 return -EINVAL;
3081 }
3082
3083 f = fdget(insn->imm);
c2101297 3084 map = __bpf_map_get(f);
0246e64d
AS
3085 if (IS_ERR(map)) {
3086 verbose("fd %d is not pointing to valid bpf_map\n",
3087 insn->imm);
0246e64d
AS
3088 return PTR_ERR(map);
3089 }
3090
fdc15d38
AS
3091 err = check_map_prog_compatibility(map, env->prog);
3092 if (err) {
3093 fdput(f);
3094 return err;
3095 }
3096
0246e64d
AS
3097 /* store map pointer inside BPF_LD_IMM64 instruction */
3098 insn[0].imm = (u32) (unsigned long) map;
3099 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3100
3101 /* check whether we recorded this map already */
3102 for (j = 0; j < env->used_map_cnt; j++)
3103 if (env->used_maps[j] == map) {
3104 fdput(f);
3105 goto next_insn;
3106 }
3107
3108 if (env->used_map_cnt >= MAX_USED_MAPS) {
3109 fdput(f);
3110 return -E2BIG;
3111 }
3112
0246e64d
AS
3113 /* hold the map. If the program is rejected by verifier,
3114 * the map will be released by release_maps() or it
3115 * will be used by the valid program until it's unloaded
3116 * and all maps are released in free_bpf_prog_info()
3117 */
92117d84
AS
3118 map = bpf_map_inc(map, false);
3119 if (IS_ERR(map)) {
3120 fdput(f);
3121 return PTR_ERR(map);
3122 }
3123 env->used_maps[env->used_map_cnt++] = map;
3124
0246e64d
AS
3125 fdput(f);
3126next_insn:
3127 insn++;
3128 i++;
3129 }
3130 }
3131
3132 /* now all pseudo BPF_LD_IMM64 instructions load valid
3133 * 'struct bpf_map *' into a register instead of user map_fd.
3134 * These pointers will be used later by verifier to validate map access.
3135 */
3136 return 0;
3137}
3138
3139/* drop refcnt of maps used by the rejected program */
58e2af8b 3140static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3141{
3142 int i;
3143
3144 for (i = 0; i < env->used_map_cnt; i++)
3145 bpf_map_put(env->used_maps[i]);
3146}
3147
3148/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3149static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3150{
3151 struct bpf_insn *insn = env->prog->insnsi;
3152 int insn_cnt = env->prog->len;
3153 int i;
3154
3155 for (i = 0; i < insn_cnt; i++, insn++)
3156 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3157 insn->src_reg = 0;
3158}
3159
9bac3d6d
AS
3160/* convert load instructions that access fields of 'struct __sk_buff'
3161 * into sequence of instructions that access fields of 'struct sk_buff'
3162 */
58e2af8b 3163static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3164{
36bbef52 3165 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3166 const int insn_cnt = env->prog->len;
36bbef52 3167 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3168 struct bpf_prog *new_prog;
d691f9e8 3169 enum bpf_access_type type;
3df126f3 3170 int i, cnt, delta = 0;
9bac3d6d 3171
36bbef52
DB
3172 if (ops->gen_prologue) {
3173 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3174 env->prog);
3175 if (cnt >= ARRAY_SIZE(insn_buf)) {
3176 verbose("bpf verifier is misconfigured\n");
3177 return -EINVAL;
3178 } else if (cnt) {
3179 new_prog = bpf_patch_insn_single(env->prog, 0,
3180 insn_buf, cnt);
3181 if (!new_prog)
3182 return -ENOMEM;
3183 env->prog = new_prog;
3df126f3 3184 delta += cnt - 1;
36bbef52
DB
3185 }
3186 }
3187
3188 if (!ops->convert_ctx_access)
9bac3d6d
AS
3189 return 0;
3190
3df126f3 3191 insn = env->prog->insnsi + delta;
36bbef52 3192
9bac3d6d 3193 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3194 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3195 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3196 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3197 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3198 type = BPF_READ;
62c7989b
DB
3199 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3200 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3201 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3202 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3203 type = BPF_WRITE;
3204 else
9bac3d6d
AS
3205 continue;
3206
3df126f3 3207 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
9bac3d6d 3208 continue;
9bac3d6d 3209
6b8cc1d1 3210 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
9bac3d6d
AS
3211 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3212 verbose("bpf verifier is misconfigured\n");
3213 return -EINVAL;
3214 }
3215
3df126f3
JK
3216 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3217 cnt);
9bac3d6d
AS
3218 if (!new_prog)
3219 return -ENOMEM;
3220
3df126f3 3221 delta += cnt - 1;
9bac3d6d
AS
3222
3223 /* keep walking new program and skip insns we just inserted */
3224 env->prog = new_prog;
3df126f3 3225 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3226 }
3227
3228 return 0;
3229}
3230
58e2af8b 3231static void free_states(struct bpf_verifier_env *env)
f1bca824 3232{
58e2af8b 3233 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3234 int i;
3235
3236 if (!env->explored_states)
3237 return;
3238
3239 for (i = 0; i < env->prog->len; i++) {
3240 sl = env->explored_states[i];
3241
3242 if (sl)
3243 while (sl != STATE_LIST_MARK) {
3244 sln = sl->next;
3245 kfree(sl);
3246 sl = sln;
3247 }
3248 }
3249
3250 kfree(env->explored_states);
3251}
3252
9bac3d6d 3253int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3254{
cbd35700 3255 char __user *log_ubuf = NULL;
58e2af8b 3256 struct bpf_verifier_env *env;
51580e79
AS
3257 int ret = -EINVAL;
3258
58e2af8b 3259 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3260 * allocate/free it every time bpf_check() is called
3261 */
58e2af8b 3262 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3263 if (!env)
3264 return -ENOMEM;
3265
3df126f3
JK
3266 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3267 (*prog)->len);
3268 ret = -ENOMEM;
3269 if (!env->insn_aux_data)
3270 goto err_free_env;
9bac3d6d 3271 env->prog = *prog;
0246e64d 3272
cbd35700
AS
3273 /* grab the mutex to protect few globals used by verifier */
3274 mutex_lock(&bpf_verifier_lock);
3275
3276 if (attr->log_level || attr->log_buf || attr->log_size) {
3277 /* user requested verbose verifier output
3278 * and supplied buffer to store the verification trace
3279 */
3280 log_level = attr->log_level;
3281 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3282 log_size = attr->log_size;
3283 log_len = 0;
3284
3285 ret = -EINVAL;
3286 /* log_* values have to be sane */
3287 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3288 log_level == 0 || log_ubuf == NULL)
3df126f3 3289 goto err_unlock;
cbd35700
AS
3290
3291 ret = -ENOMEM;
3292 log_buf = vmalloc(log_size);
3293 if (!log_buf)
3df126f3 3294 goto err_unlock;
cbd35700
AS
3295 } else {
3296 log_level = 0;
3297 }
3298
0246e64d
AS
3299 ret = replace_map_fd_with_map_ptr(env);
3300 if (ret < 0)
3301 goto skip_full_check;
3302
9bac3d6d 3303 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3304 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3305 GFP_USER);
3306 ret = -ENOMEM;
3307 if (!env->explored_states)
3308 goto skip_full_check;
3309
475fb78f
AS
3310 ret = check_cfg(env);
3311 if (ret < 0)
3312 goto skip_full_check;
3313
1be7f75d
AS
3314 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3315
17a52670 3316 ret = do_check(env);
cbd35700 3317
0246e64d 3318skip_full_check:
17a52670 3319 while (pop_stack(env, NULL) >= 0);
f1bca824 3320 free_states(env);
0246e64d 3321
9bac3d6d
AS
3322 if (ret == 0)
3323 /* program is valid, convert *(u32*)(ctx + off) accesses */
3324 ret = convert_ctx_accesses(env);
3325
cbd35700
AS
3326 if (log_level && log_len >= log_size - 1) {
3327 BUG_ON(log_len >= log_size);
3328 /* verifier log exceeded user supplied buffer */
3329 ret = -ENOSPC;
3330 /* fall through to return what was recorded */
3331 }
3332
3333 /* copy verifier log back to user space including trailing zero */
3334 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3335 ret = -EFAULT;
3336 goto free_log_buf;
3337 }
3338
0246e64d
AS
3339 if (ret == 0 && env->used_map_cnt) {
3340 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3341 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3342 sizeof(env->used_maps[0]),
3343 GFP_KERNEL);
0246e64d 3344
9bac3d6d 3345 if (!env->prog->aux->used_maps) {
0246e64d
AS
3346 ret = -ENOMEM;
3347 goto free_log_buf;
3348 }
3349
9bac3d6d 3350 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3351 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3352 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3353
3354 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3355 * bpf_ld_imm64 instructions
3356 */
3357 convert_pseudo_ld_imm64(env);
3358 }
cbd35700
AS
3359
3360free_log_buf:
3361 if (log_level)
3362 vfree(log_buf);
9bac3d6d 3363 if (!env->prog->aux->used_maps)
0246e64d
AS
3364 /* if we didn't copy map pointers into bpf_prog_info, release
3365 * them now. Otherwise free_bpf_prog_info() will release them.
3366 */
3367 release_maps(env);
9bac3d6d 3368 *prog = env->prog;
3df126f3 3369err_unlock:
cbd35700 3370 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3371 vfree(env->insn_aux_data);
3372err_free_env:
3373 kfree(env);
51580e79
AS
3374 return ret;
3375}
13a27dfc
JK
3376
3377int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3378 void *priv)
3379{
3380 struct bpf_verifier_env *env;
3381 int ret;
3382
3383 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3384 if (!env)
3385 return -ENOMEM;
3386
3387 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3388 prog->len);
3389 ret = -ENOMEM;
3390 if (!env->insn_aux_data)
3391 goto err_free_env;
3392 env->prog = prog;
3393 env->analyzer_ops = ops;
3394 env->analyzer_priv = priv;
3395
3396 /* grab the mutex to protect few globals used by verifier */
3397 mutex_lock(&bpf_verifier_lock);
3398
3399 log_level = 0;
3400
3401 env->explored_states = kcalloc(env->prog->len,
3402 sizeof(struct bpf_verifier_state_list *),
3403 GFP_KERNEL);
3404 ret = -ENOMEM;
3405 if (!env->explored_states)
3406 goto skip_full_check;
3407
3408 ret = check_cfg(env);
3409 if (ret < 0)
3410 goto skip_full_check;
3411
3412 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3413
3414 ret = do_check(env);
3415
3416skip_full_check:
3417 while (pop_stack(env, NULL) >= 0);
3418 free_states(env);
3419
3420 mutex_unlock(&bpf_verifier_lock);
3421 vfree(env->insn_aux_data);
3422err_free_env:
3423 kfree(env);
3424 return ret;
3425}
3426EXPORT_SYMBOL_GPL(bpf_analyzer);