]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/bpf/verifier.c
bpf: Prevent memory disambiguation attack
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
3c2ce60b 143#define BPF_COMPLEXITY_LIMIT_INSNS 98304
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
d1174416
DM
244 if (reg->min_align)
245 verbose(",min_align=%u", reg->min_align);
246 if (reg->aux_off)
247 verbose(",aux_off=%u", reg->aux_off);
248 if (reg->aux_off_align)
249 verbose(",aux_off_align=%u", reg->aux_off_align);
17a52670 250 }
9c399760 251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 252 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 253 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
255 }
256 verbose("\n");
257}
258
cbd35700
AS
259static const char *const bpf_class_string[] = {
260 [BPF_LD] = "ld",
261 [BPF_LDX] = "ldx",
262 [BPF_ST] = "st",
263 [BPF_STX] = "stx",
264 [BPF_ALU] = "alu",
265 [BPF_JMP] = "jmp",
266 [BPF_RET] = "BUG",
267 [BPF_ALU64] = "alu64",
268};
269
687f0715 270static const char *const bpf_alu_string[16] = {
cbd35700
AS
271 [BPF_ADD >> 4] = "+=",
272 [BPF_SUB >> 4] = "-=",
273 [BPF_MUL >> 4] = "*=",
274 [BPF_DIV >> 4] = "/=",
275 [BPF_OR >> 4] = "|=",
276 [BPF_AND >> 4] = "&=",
277 [BPF_LSH >> 4] = "<<=",
278 [BPF_RSH >> 4] = ">>=",
279 [BPF_NEG >> 4] = "neg",
280 [BPF_MOD >> 4] = "%=",
281 [BPF_XOR >> 4] = "^=",
282 [BPF_MOV >> 4] = "=",
283 [BPF_ARSH >> 4] = "s>>=",
284 [BPF_END >> 4] = "endian",
285};
286
287static const char *const bpf_ldst_string[] = {
288 [BPF_W >> 3] = "u32",
289 [BPF_H >> 3] = "u16",
290 [BPF_B >> 3] = "u8",
291 [BPF_DW >> 3] = "u64",
292};
293
687f0715 294static const char *const bpf_jmp_string[16] = {
cbd35700
AS
295 [BPF_JA >> 4] = "jmp",
296 [BPF_JEQ >> 4] = "==",
297 [BPF_JGT >> 4] = ">",
298 [BPF_JGE >> 4] = ">=",
299 [BPF_JSET >> 4] = "&",
300 [BPF_JNE >> 4] = "!=",
301 [BPF_JSGT >> 4] = "s>",
302 [BPF_JSGE >> 4] = "s>=",
303 [BPF_CALL >> 4] = "call",
304 [BPF_EXIT >> 4] = "exit",
305};
306
0d0e5769
DB
307static void print_bpf_insn(const struct bpf_verifier_env *env,
308 const struct bpf_insn *insn)
cbd35700
AS
309{
310 u8 class = BPF_CLASS(insn->code);
311
312 if (class == BPF_ALU || class == BPF_ALU64) {
313 if (BPF_SRC(insn->code) == BPF_X)
314 verbose("(%02x) %sr%d %s %sr%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->src_reg);
320 else
321 verbose("(%02x) %sr%d %s %s%d\n",
322 insn->code, class == BPF_ALU ? "(u32) " : "",
323 insn->dst_reg,
324 bpf_alu_string[BPF_OP(insn->code) >> 4],
325 class == BPF_ALU ? "(u32) " : "",
326 insn->imm);
327 } else if (class == BPF_STX) {
328 if (BPF_MODE(insn->code) == BPF_MEM)
329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg,
333 insn->off, insn->src_reg);
334 else if (BPF_MODE(insn->code) == BPF_XADD)
335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 insn->code,
337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 insn->dst_reg, insn->off,
339 insn->src_reg);
340 else
341 verbose("BUG_%02x\n", insn->code);
342 } else if (class == BPF_ST) {
343 if (BPF_MODE(insn->code) != BPF_MEM) {
344 verbose("BUG_st_%02x\n", insn->code);
345 return;
346 }
347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 insn->code,
349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 insn->dst_reg,
351 insn->off, insn->imm);
352 } else if (class == BPF_LDX) {
353 if (BPF_MODE(insn->code) != BPF_MEM) {
354 verbose("BUG_ldx_%02x\n", insn->code);
355 return;
356 }
357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 insn->code, insn->dst_reg,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->src_reg, insn->off);
361 } else if (class == BPF_LD) {
362 if (BPF_MODE(insn->code) == BPF_ABS) {
363 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 insn->code,
365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 insn->imm);
367 } else if (BPF_MODE(insn->code) == BPF_IND) {
368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->src_reg, insn->imm);
0d0e5769
DB
372 } else if (BPF_MODE(insn->code) == BPF_IMM &&
373 BPF_SIZE(insn->code) == BPF_DW) {
374 /* At this point, we already made sure that the second
375 * part of the ldimm64 insn is accessible.
376 */
377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379
380 if (map_ptr && !env->allow_ptr_leaks)
381 imm = 0;
382
383 verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
385 } else {
386 verbose("BUG_ld_%02x\n", insn->code);
387 return;
388 }
389 } else if (class == BPF_JMP) {
390 u8 opcode = BPF_OP(insn->code);
391
392 if (opcode == BPF_CALL) {
ebb676da
TG
393 verbose("(%02x) call %s#%d\n", insn->code,
394 func_id_name(insn->imm), insn->imm);
cbd35700
AS
395 } else if (insn->code == (BPF_JMP | BPF_JA)) {
396 verbose("(%02x) goto pc%+d\n",
397 insn->code, insn->off);
398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 verbose("(%02x) exit\n", insn->code);
400 } else if (BPF_SRC(insn->code) == BPF_X) {
401 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 insn->code, insn->dst_reg,
403 bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 insn->src_reg, insn->off);
405 } else {
406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 insn->code, insn->dst_reg,
408 bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 insn->imm, insn->off);
410 }
411 } else {
412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 }
414}
415
58e2af8b 416static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 417{
58e2af8b 418 struct bpf_verifier_stack_elem *elem;
17a52670
AS
419 int insn_idx;
420
421 if (env->head == NULL)
422 return -1;
423
424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 insn_idx = env->head->insn_idx;
426 if (prev_insn_idx)
427 *prev_insn_idx = env->head->prev_insn_idx;
428 elem = env->head->next;
429 kfree(env->head);
430 env->head = elem;
431 env->stack_size--;
432 return insn_idx;
433}
434
58e2af8b
JK
435static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 int insn_idx, int prev_insn_idx)
17a52670 437{
58e2af8b 438 struct bpf_verifier_stack_elem *elem;
17a52670 439
58e2af8b 440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
441 if (!elem)
442 goto err;
443
444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 elem->insn_idx = insn_idx;
446 elem->prev_insn_idx = prev_insn_idx;
447 elem->next = env->head;
448 env->head = elem;
449 env->stack_size++;
07016151 450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
451 verbose("BPF program is too complex\n");
452 goto err;
453 }
454 return &elem->st;
455err:
456 /* pop all elements and return */
457 while (pop_stack(env, NULL) >= 0);
458 return NULL;
459}
460
461#define CALLER_SAVED_REGS 6
462static const int caller_saved[CALLER_SAVED_REGS] = {
463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464};
465
a9789ef9
DB
466static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
467{
468 BUG_ON(regno >= MAX_BPF_REG);
469
470 memset(&regs[regno], 0, sizeof(regs[regno]));
471 regs[regno].type = NOT_INIT;
472 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
473 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
474}
475
58e2af8b 476static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
477{
478 int i;
479
a9789ef9
DB
480 for (i = 0; i < MAX_BPF_REG; i++)
481 mark_reg_not_init(regs, i);
17a52670
AS
482
483 /* frame pointer */
484 regs[BPF_REG_FP].type = FRAME_PTR;
485
486 /* 1st arg to a function */
487 regs[BPF_REG_1].type = PTR_TO_CTX;
488}
489
6760bf2d 490static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 491{
17a52670 492 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 493 regs[regno].id = 0;
17a52670 494 regs[regno].imm = 0;
17a52670
AS
495}
496
6760bf2d
DB
497static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
498{
499 BUG_ON(regno >= MAX_BPF_REG);
500 __mark_reg_unknown_value(regs, regno);
501}
502
48461135
JB
503static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
504{
505 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
506 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
4cabc5b1 507 regs[regno].value_from_signed = false;
d1174416 508 regs[regno].min_align = 0;
48461135
JB
509}
510
f0318d01
GB
511static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
512 u32 regno)
513{
514 mark_reg_unknown_value(regs, regno);
515 reset_reg_range_values(regs, regno);
516}
517
17a52670
AS
518enum reg_arg_type {
519 SRC_OP, /* register is used as source operand */
520 DST_OP, /* register is used as destination operand */
521 DST_OP_NO_MARK /* same as above, check only, don't mark */
522};
523
58e2af8b 524static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
525 enum reg_arg_type t)
526{
527 if (regno >= MAX_BPF_REG) {
528 verbose("R%d is invalid\n", regno);
529 return -EINVAL;
530 }
531
532 if (t == SRC_OP) {
533 /* check whether register used as source operand can be read */
534 if (regs[regno].type == NOT_INIT) {
535 verbose("R%d !read_ok\n", regno);
536 return -EACCES;
537 }
538 } else {
539 /* check whether register used as dest operand can be written to */
540 if (regno == BPF_REG_FP) {
541 verbose("frame pointer is read only\n");
542 return -EACCES;
543 }
544 if (t == DST_OP)
545 mark_reg_unknown_value(regs, regno);
546 }
547 return 0;
548}
549
1be7f75d
AS
550static bool is_spillable_regtype(enum bpf_reg_type type)
551{
552 switch (type) {
553 case PTR_TO_MAP_VALUE:
554 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 555 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
556 case PTR_TO_STACK:
557 case PTR_TO_CTX:
969bf05e
AS
558 case PTR_TO_PACKET:
559 case PTR_TO_PACKET_END:
1be7f75d
AS
560 case FRAME_PTR:
561 case CONST_PTR_TO_MAP:
562 return true;
563 default:
564 return false;
565 }
566}
567
17a52670
AS
568/* check_stack_read/write functions track spill/fill of registers,
569 * stack boundary and alignment are checked in check_mem_access()
570 */
674d8995
AS
571static int check_stack_write(struct bpf_verifier_env *env,
572 struct bpf_verifier_state *state, int off,
573 int size, int value_regno, int insn_idx)
17a52670 574{
17a52670 575 int i;
9c399760
AS
576 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
577 * so it's aligned access and [off, off + size) are within stack limits
578 */
17a52670
AS
579
580 if (value_regno >= 0 &&
1be7f75d 581 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
582
583 /* register containing pointer is being spilled into stack */
9c399760 584 if (size != BPF_REG_SIZE) {
17a52670
AS
585 verbose("invalid size of register spill\n");
586 return -EACCES;
587 }
588
17a52670 589 /* save register state */
9c399760
AS
590 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
591 state->regs[value_regno];
17a52670 592
674d8995
AS
593 for (i = 0; i < BPF_REG_SIZE; i++) {
594 if (state->stack_slot_type[MAX_BPF_STACK + off + i] == STACK_MISC &&
595 !env->allow_ptr_leaks) {
596 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
597 int soff = off;
598
599 /* detected reuse of integer stack slot with a pointer
600 * which means either llvm is reusing stack slot or
601 * an attacker is trying to exploit CVE-2018-3639
602 * (speculative store bypass)
603 * Have to sanitize that slot with preemptive
604 * store of zero.
605 */
606 if (*poff && *poff != soff) {
607 /* disallow programs where single insn stores
608 * into two different stack slots, since verifier
609 * cannot sanitize them
610 */
611 verbose("insn %d cannot access two stack slots fp%d and fp%d",
612 insn_idx, *poff, soff);
613 return -EINVAL;
614 }
615 *poff = soff;
616 }
9c399760 617 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
674d8995 618 }
9c399760 619 } else {
17a52670 620 /* regular write of data into stack */
9c399760 621 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 622 (struct bpf_reg_state) {};
9c399760
AS
623
624 for (i = 0; i < size; i++)
625 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
626 }
627 return 0;
628}
629
58e2af8b 630static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
631 int value_regno)
632{
9c399760 633 u8 *slot_type;
17a52670 634 int i;
17a52670 635
9c399760 636 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 637
9c399760
AS
638 if (slot_type[0] == STACK_SPILL) {
639 if (size != BPF_REG_SIZE) {
17a52670
AS
640 verbose("invalid size of register spill\n");
641 return -EACCES;
642 }
9c399760
AS
643 for (i = 1; i < BPF_REG_SIZE; i++) {
644 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
645 verbose("corrupted spill memory\n");
646 return -EACCES;
647 }
648 }
649
650 if (value_regno >= 0)
651 /* restore register state from stack */
9c399760
AS
652 state->regs[value_regno] =
653 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
654 return 0;
655 } else {
656 for (i = 0; i < size; i++) {
9c399760 657 if (slot_type[i] != STACK_MISC) {
17a52670
AS
658 verbose("invalid read from stack off %d+%d size %d\n",
659 off, i, size);
660 return -EACCES;
661 }
662 }
663 if (value_regno >= 0)
664 /* have read misc data from the stack */
f0318d01
GB
665 mark_reg_unknown_value_and_range(state->regs,
666 value_regno);
17a52670
AS
667 return 0;
668 }
669}
670
671/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 672static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
673 int size)
674{
675 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
676
5722569b 677 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
678 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
679 map->value_size, off, size);
680 return -EACCES;
681 }
682 return 0;
683}
684
dbcfe5f7
GB
685/* check read/write into an adjusted map element */
686static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
687 int off, int size)
688{
689 struct bpf_verifier_state *state = &env->cur_state;
690 struct bpf_reg_state *reg = &state->regs[regno];
691 int err;
692
693 /* We adjusted the register to this map value, so we
694 * need to change off and size to min_value and max_value
695 * respectively to make sure our theoretical access will be
696 * safe.
697 */
698 if (log_level)
699 print_verifier_state(state);
700 env->varlen_map_value_access = true;
701 /* The minimum value is only important with signed
702 * comparisons where we can't assume the floor of a
703 * value is 0. If we are using signed variables for our
704 * index'es we need to make sure that whatever we use
705 * will have a set floor within our range.
706 */
707 if (reg->min_value < 0) {
708 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
709 regno);
710 return -EACCES;
711 }
712 err = check_map_access(env, regno, reg->min_value + off, size);
713 if (err) {
714 verbose("R%d min value is outside of the array range\n",
715 regno);
716 return err;
717 }
718
719 /* If we haven't set a max value then we need to bail
720 * since we can't be sure we won't do bad things.
721 */
722 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
723 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
724 regno);
725 return -EACCES;
726 }
727 return check_map_access(env, regno, reg->max_value + off, size);
728}
729
969bf05e
AS
730#define MAX_PACKET_OFF 0xffff
731
58e2af8b 732static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
733 const struct bpf_call_arg_meta *meta,
734 enum bpf_access_type t)
4acf6c0b 735{
36bbef52 736 switch (env->prog->type) {
3a0af8fd
TG
737 case BPF_PROG_TYPE_LWT_IN:
738 case BPF_PROG_TYPE_LWT_OUT:
739 /* dst_input() and dst_output() can't write for now */
740 if (t == BPF_WRITE)
741 return false;
7e57fbb2 742 /* fallthrough */
36bbef52
DB
743 case BPF_PROG_TYPE_SCHED_CLS:
744 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 745 case BPF_PROG_TYPE_XDP:
3a0af8fd 746 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
747 if (meta)
748 return meta->pkt_access;
749
750 env->seen_direct_write = true;
4acf6c0b
BB
751 return true;
752 default:
753 return false;
754 }
755}
756
58e2af8b 757static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
758 int size)
759{
58e2af8b
JK
760 struct bpf_reg_state *regs = env->cur_state.regs;
761 struct bpf_reg_state *reg = &regs[regno];
969bf05e 762
d91b28ed 763 off += reg->off;
b399cf64 764 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
765 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
766 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
767 return -EACCES;
768 }
769 return 0;
770}
771
17a52670 772/* check access to 'struct bpf_context' fields */
31fd8581 773static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 774 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 775{
f96da094
DB
776 struct bpf_insn_access_aux info = {
777 .reg_type = *reg_type,
778 };
31fd8581 779
13a27dfc
JK
780 /* for analyzer ctx accesses are already validated and converted */
781 if (env->analyzer_ops)
782 return 0;
783
17a52670 784 if (env->prog->aux->ops->is_valid_access &&
23994631 785 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
786 /* A non zero info.ctx_field_size indicates that this field is a
787 * candidate for later verifier transformation to load the whole
788 * field and then apply a mask when accessed with a narrower
789 * access than actual ctx access size. A zero info.ctx_field_size
790 * will only allow for whole field access and rejects any other
791 * type of narrower access.
31fd8581 792 */
f96da094 793 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 794 *reg_type = info.reg_type;
31fd8581 795
32bbe007
AS
796 /* remember the offset of last byte accessed in ctx */
797 if (env->prog->aux->max_ctx_offset < off + size)
798 env->prog->aux->max_ctx_offset = off + size;
17a52670 799 return 0;
32bbe007 800 }
17a52670
AS
801
802 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
803 return -EACCES;
804}
805
4cabc5b1
DB
806static bool __is_pointer_value(bool allow_ptr_leaks,
807 const struct bpf_reg_state *reg)
1be7f75d 808{
4cabc5b1 809 if (allow_ptr_leaks)
1be7f75d
AS
810 return false;
811
4cabc5b1 812 switch (reg->type) {
1be7f75d
AS
813 case UNKNOWN_VALUE:
814 case CONST_IMM:
815 return false;
816 default:
817 return true;
818 }
819}
820
4cabc5b1
DB
821static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
822{
823 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
824}
825
79adffcd 826static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 827 int off, int size, bool strict)
969bf05e 828{
e07b98d9 829 int ip_align;
d1174416
DM
830 int reg_off;
831
832 /* Byte size accesses are always allowed. */
833 if (!strict || size == 1)
834 return 0;
835
836 reg_off = reg->off;
837 if (reg->id) {
838 if (reg->aux_off_align % size) {
839 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
840 reg->aux_off_align, size);
841 return -EACCES;
842 }
843 reg_off += reg->aux_off;
969bf05e
AS
844 }
845
e4eda884
DM
846 /* For platforms that do not have a Kconfig enabling
847 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
848 * NET_IP_ALIGN is universally set to '2'. And on platforms
849 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
850 * to this code only in strict mode where we want to emulate
851 * the NET_IP_ALIGN==2 checking. Therefore use an
852 * unconditional IP align value of '2'.
e07b98d9 853 */
e4eda884 854 ip_align = 2;
e07b98d9 855 if ((ip_align + reg_off + off) % size != 0) {
969bf05e 856 verbose("misaligned packet access off %d+%d+%d size %d\n",
e07b98d9 857 ip_align, reg_off, off, size);
969bf05e
AS
858 return -EACCES;
859 }
79adffcd 860
969bf05e
AS
861 return 0;
862}
863
79adffcd 864static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 865 int size, bool strict)
79adffcd 866{
d1174416 867 if (strict && size != 1) {
79adffcd
DB
868 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
869 return -EACCES;
870 }
871
969bf05e
AS
872 return 0;
873}
874
e07b98d9
DM
875static int check_ptr_alignment(struct bpf_verifier_env *env,
876 const struct bpf_reg_state *reg,
79adffcd
DB
877 int off, int size)
878{
e07b98d9 879 bool strict = env->strict_alignment;
d1174416 880
79adffcd
DB
881 switch (reg->type) {
882 case PTR_TO_PACKET:
d1174416 883 return check_pkt_ptr_alignment(reg, off, size, strict);
79adffcd 884 case PTR_TO_MAP_VALUE_ADJ:
d1174416 885 return check_val_ptr_alignment(reg, size, strict);
79adffcd
DB
886 default:
887 if (off % size != 0) {
888 verbose("misaligned access off %d size %d\n",
889 off, size);
890 return -EACCES;
891 }
892
893 return 0;
894 }
895}
896
17a52670
AS
897/* check whether memory at (regno + off) is accessible for t = (read | write)
898 * if t==write, value_regno is a register which value is stored into memory
899 * if t==read, value_regno is a register which will receive the value from memory
900 * if t==write && value_regno==-1, some unknown value is stored into memory
901 * if t==read && value_regno==-1, don't care what we read from memory
902 */
31fd8581 903static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
904 int bpf_size, enum bpf_access_type t,
905 int value_regno)
906{
58e2af8b
JK
907 struct bpf_verifier_state *state = &env->cur_state;
908 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
909 int size, err = 0;
910
1a0dc1ac
AS
911 if (reg->type == PTR_TO_STACK)
912 off += reg->imm;
24b4d2ab 913
17a52670
AS
914 size = bpf_size_to_bytes(bpf_size);
915 if (size < 0)
916 return size;
917
e07b98d9 918 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
919 if (err)
920 return err;
17a52670 921
48461135
JB
922 if (reg->type == PTR_TO_MAP_VALUE ||
923 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
924 if (t == BPF_WRITE && value_regno >= 0 &&
925 is_pointer_value(env, value_regno)) {
926 verbose("R%d leaks addr into map\n", value_regno);
927 return -EACCES;
928 }
48461135 929
dbcfe5f7
GB
930 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
931 err = check_map_access_adj(env, regno, off, size);
932 else
933 err = check_map_access(env, regno, off, size);
17a52670 934 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
935 mark_reg_unknown_value_and_range(state->regs,
936 value_regno);
17a52670 937
1a0dc1ac 938 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
939 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
940
1be7f75d
AS
941 if (t == BPF_WRITE && value_regno >= 0 &&
942 is_pointer_value(env, value_regno)) {
943 verbose("R%d leaks addr into ctx\n", value_regno);
944 return -EACCES;
945 }
31fd8581 946 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 947 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
948 mark_reg_unknown_value_and_range(state->regs,
949 value_regno);
1955351d
MS
950 /* note that reg.[id|off|range] == 0 */
951 state->regs[value_regno].type = reg_type;
d1174416
DM
952 state->regs[value_regno].aux_off = 0;
953 state->regs[value_regno].aux_off_align = 0;
969bf05e 954 }
17a52670 955
1a0dc1ac 956 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
957 if (off >= 0 || off < -MAX_BPF_STACK) {
958 verbose("invalid stack off=%d size=%d\n", off, size);
959 return -EACCES;
960 }
8726679a
AS
961
962 if (env->prog->aux->stack_depth < -off)
963 env->prog->aux->stack_depth = -off;
964
1be7f75d
AS
965 if (t == BPF_WRITE) {
966 if (!env->allow_ptr_leaks &&
967 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
968 size != BPF_REG_SIZE) {
969 verbose("attempt to corrupt spilled pointer on stack\n");
970 return -EACCES;
971 }
674d8995
AS
972 err = check_stack_write(env, state, off, size,
973 value_regno, insn_idx);
1be7f75d 974 } else {
17a52670 975 err = check_stack_read(state, off, size, value_regno);
1be7f75d 976 }
969bf05e 977 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 978 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
979 verbose("cannot write into packet\n");
980 return -EACCES;
981 }
4acf6c0b
BB
982 if (t == BPF_WRITE && value_regno >= 0 &&
983 is_pointer_value(env, value_regno)) {
984 verbose("R%d leaks addr into packet\n", value_regno);
985 return -EACCES;
986 }
969bf05e
AS
987 err = check_packet_access(env, regno, off, size);
988 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
989 mark_reg_unknown_value_and_range(state->regs,
990 value_regno);
17a52670
AS
991 } else {
992 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 993 regno, reg_type_str[reg->type]);
17a52670
AS
994 return -EACCES;
995 }
969bf05e
AS
996
997 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
998 state->regs[value_regno].type == UNKNOWN_VALUE) {
999 /* 1 or 2 byte load zero-extends, determine the number of
1000 * zero upper bits. Not doing it fo 4 byte load, since
1001 * such values cannot be added to ptr_to_packet anyway.
1002 */
1003 state->regs[value_regno].imm = 64 - size * 8;
1004 }
17a52670
AS
1005 return err;
1006}
1007
31fd8581 1008static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1009{
58e2af8b 1010 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
1011 int err;
1012
1013 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1014 insn->imm != 0) {
1015 verbose("BPF_XADD uses reserved fields\n");
1016 return -EINVAL;
1017 }
1018
1019 /* check src1 operand */
1020 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1021 if (err)
1022 return err;
1023
1024 /* check src2 operand */
1025 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1026 if (err)
1027 return err;
1028
6bdf6abc
DB
1029 if (is_pointer_value(env, insn->src_reg)) {
1030 verbose("R%d leaks addr into mem\n", insn->src_reg);
1031 return -EACCES;
1032 }
1033
17a52670 1034 /* check whether atomic_add can read the memory */
31fd8581 1035 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1036 BPF_SIZE(insn->code), BPF_READ, -1);
1037 if (err)
1038 return err;
1039
1040 /* check whether atomic_add can write into the same memory */
31fd8581 1041 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1042 BPF_SIZE(insn->code), BPF_WRITE, -1);
1043}
1044
1045/* when register 'regno' is passed into function that will read 'access_size'
1046 * bytes from that pointer, make sure that it's within stack boundary
1047 * and all elements of stack are initialized
1048 */
58e2af8b 1049static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1050 int access_size, bool zero_size_allowed,
1051 struct bpf_call_arg_meta *meta)
17a52670 1052{
58e2af8b
JK
1053 struct bpf_verifier_state *state = &env->cur_state;
1054 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1055 int off, i;
1056
8e2fe1d9
DB
1057 if (regs[regno].type != PTR_TO_STACK) {
1058 if (zero_size_allowed && access_size == 0 &&
1059 regs[regno].type == CONST_IMM &&
1060 regs[regno].imm == 0)
1061 return 0;
1062
1063 verbose("R%d type=%s expected=%s\n", regno,
1064 reg_type_str[regs[regno].type],
1065 reg_type_str[PTR_TO_STACK]);
17a52670 1066 return -EACCES;
8e2fe1d9 1067 }
17a52670
AS
1068
1069 off = regs[regno].imm;
1070 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1071 access_size <= 0) {
1072 verbose("invalid stack type R%d off=%d access_size=%d\n",
1073 regno, off, access_size);
1074 return -EACCES;
1075 }
1076
8726679a
AS
1077 if (env->prog->aux->stack_depth < -off)
1078 env->prog->aux->stack_depth = -off;
1079
435faee1
DB
1080 if (meta && meta->raw_mode) {
1081 meta->access_size = access_size;
1082 meta->regno = regno;
1083 return 0;
1084 }
1085
17a52670 1086 for (i = 0; i < access_size; i++) {
9c399760 1087 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1088 verbose("invalid indirect read from stack off %d+%d size %d\n",
1089 off, i, access_size);
1090 return -EACCES;
1091 }
1092 }
1093 return 0;
1094}
1095
06c1c049
GB
1096static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1097 int access_size, bool zero_size_allowed,
1098 struct bpf_call_arg_meta *meta)
1099{
1100 struct bpf_reg_state *regs = env->cur_state.regs;
1101
1102 switch (regs[regno].type) {
1103 case PTR_TO_PACKET:
1104 return check_packet_access(env, regno, 0, access_size);
1105 case PTR_TO_MAP_VALUE:
1106 return check_map_access(env, regno, 0, access_size);
1107 case PTR_TO_MAP_VALUE_ADJ:
1108 return check_map_access_adj(env, regno, 0, access_size);
1109 default: /* const_imm|ptr_to_stack or invalid ptr */
1110 return check_stack_boundary(env, regno, access_size,
1111 zero_size_allowed, meta);
1112 }
1113}
1114
58e2af8b 1115static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1116 enum bpf_arg_type arg_type,
1117 struct bpf_call_arg_meta *meta)
17a52670 1118{
58e2af8b 1119 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1120 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1121 int err = 0;
1122
80f1d68c 1123 if (arg_type == ARG_DONTCARE)
17a52670
AS
1124 return 0;
1125
6841de8b 1126 if (type == NOT_INIT) {
17a52670
AS
1127 verbose("R%d !read_ok\n", regno);
1128 return -EACCES;
1129 }
1130
1be7f75d
AS
1131 if (arg_type == ARG_ANYTHING) {
1132 if (is_pointer_value(env, regno)) {
1133 verbose("R%d leaks addr into helper function\n", regno);
1134 return -EACCES;
1135 }
80f1d68c 1136 return 0;
1be7f75d 1137 }
80f1d68c 1138
3a0af8fd
TG
1139 if (type == PTR_TO_PACKET &&
1140 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1141 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1142 return -EACCES;
1143 }
1144
8e2fe1d9 1145 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1146 arg_type == ARG_PTR_TO_MAP_VALUE) {
1147 expected_type = PTR_TO_STACK;
6841de8b
AS
1148 if (type != PTR_TO_PACKET && type != expected_type)
1149 goto err_type;
39f19ebb
AS
1150 } else if (arg_type == ARG_CONST_SIZE ||
1151 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1152 expected_type = CONST_IMM;
06c1c049
GB
1153 /* One exception. Allow UNKNOWN_VALUE registers when the
1154 * boundaries are known and don't cause unsafe memory accesses
1155 */
1156 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1157 goto err_type;
17a52670
AS
1158 } else if (arg_type == ARG_CONST_MAP_PTR) {
1159 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1160 if (type != expected_type)
1161 goto err_type;
608cd71a
AS
1162 } else if (arg_type == ARG_PTR_TO_CTX) {
1163 expected_type = PTR_TO_CTX;
6841de8b
AS
1164 if (type != expected_type)
1165 goto err_type;
39f19ebb
AS
1166 } else if (arg_type == ARG_PTR_TO_MEM ||
1167 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1168 expected_type = PTR_TO_STACK;
1169 /* One exception here. In case function allows for NULL to be
1170 * passed in as argument, it's a CONST_IMM type. Final test
1171 * happens during stack boundary checking.
1172 */
6841de8b
AS
1173 if (type == CONST_IMM && reg->imm == 0)
1174 /* final test in check_stack_boundary() */;
5722569b
GB
1175 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1176 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1177 goto err_type;
39f19ebb 1178 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1179 } else {
1180 verbose("unsupported arg_type %d\n", arg_type);
1181 return -EFAULT;
1182 }
1183
17a52670
AS
1184 if (arg_type == ARG_CONST_MAP_PTR) {
1185 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1186 meta->map_ptr = reg->map_ptr;
17a52670
AS
1187 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1188 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1189 * check that [key, key + map->key_size) are within
1190 * stack limits and initialized
1191 */
33ff9823 1192 if (!meta->map_ptr) {
17a52670
AS
1193 /* in function declaration map_ptr must come before
1194 * map_key, so that it's verified and known before
1195 * we have to check map_key here. Otherwise it means
1196 * that kernel subsystem misconfigured verifier
1197 */
1198 verbose("invalid map_ptr to access map->key\n");
1199 return -EACCES;
1200 }
6841de8b
AS
1201 if (type == PTR_TO_PACKET)
1202 err = check_packet_access(env, regno, 0,
1203 meta->map_ptr->key_size);
1204 else
1205 err = check_stack_boundary(env, regno,
1206 meta->map_ptr->key_size,
1207 false, NULL);
17a52670
AS
1208 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1209 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1210 * check [value, value + map->value_size) validity
1211 */
33ff9823 1212 if (!meta->map_ptr) {
17a52670
AS
1213 /* kernel subsystem misconfigured verifier */
1214 verbose("invalid map_ptr to access map->value\n");
1215 return -EACCES;
1216 }
6841de8b
AS
1217 if (type == PTR_TO_PACKET)
1218 err = check_packet_access(env, regno, 0,
1219 meta->map_ptr->value_size);
1220 else
1221 err = check_stack_boundary(env, regno,
1222 meta->map_ptr->value_size,
1223 false, NULL);
39f19ebb
AS
1224 } else if (arg_type == ARG_CONST_SIZE ||
1225 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1226 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1227
17a52670
AS
1228 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1229 * from stack pointer 'buf'. Check it
1230 * note: regno == len, regno - 1 == buf
1231 */
1232 if (regno == 0) {
1233 /* kernel subsystem misconfigured verifier */
39f19ebb 1234 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1235 return -EACCES;
1236 }
06c1c049
GB
1237
1238 /* If the register is UNKNOWN_VALUE, the access check happens
1239 * using its boundaries. Otherwise, just use its imm
1240 */
1241 if (type == UNKNOWN_VALUE) {
1242 /* For unprivileged variable accesses, disable raw
1243 * mode so that the program is required to
1244 * initialize all the memory that the helper could
1245 * just partially fill up.
1246 */
1247 meta = NULL;
1248
1249 if (reg->min_value < 0) {
1250 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1251 regno);
1252 return -EACCES;
1253 }
1254
1255 if (reg->min_value == 0) {
1256 err = check_helper_mem_access(env, regno - 1, 0,
1257 zero_size_allowed,
1258 meta);
1259 if (err)
1260 return err;
1261 }
1262
1263 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1264 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1265 regno);
1266 return -EACCES;
1267 }
1268 err = check_helper_mem_access(env, regno - 1,
1269 reg->max_value,
1270 zero_size_allowed, meta);
1271 if (err)
1272 return err;
1273 } else {
1274 /* register is CONST_IMM */
1275 err = check_helper_mem_access(env, regno - 1, reg->imm,
1276 zero_size_allowed, meta);
1277 }
17a52670
AS
1278 }
1279
1280 return err;
6841de8b
AS
1281err_type:
1282 verbose("R%d type=%s expected=%s\n", regno,
1283 reg_type_str[type], reg_type_str[expected_type]);
1284 return -EACCES;
17a52670
AS
1285}
1286
35578d79
KX
1287static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1288{
35578d79
KX
1289 if (!map)
1290 return 0;
1291
6aff67c8
AS
1292 /* We need a two way check, first is from map perspective ... */
1293 switch (map->map_type) {
1294 case BPF_MAP_TYPE_PROG_ARRAY:
1295 if (func_id != BPF_FUNC_tail_call)
1296 goto error;
1297 break;
1298 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1299 if (func_id != BPF_FUNC_perf_event_read &&
1300 func_id != BPF_FUNC_perf_event_output)
1301 goto error;
1302 break;
1303 case BPF_MAP_TYPE_STACK_TRACE:
1304 if (func_id != BPF_FUNC_get_stackid)
1305 goto error;
1306 break;
4ed8ec52 1307 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1308 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1309 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1310 goto error;
1311 break;
56f668df 1312 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1313 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1314 if (func_id != BPF_FUNC_map_lookup_elem)
1315 goto error;
6aff67c8
AS
1316 default:
1317 break;
1318 }
1319
1320 /* ... and second from the function itself. */
1321 switch (func_id) {
1322 case BPF_FUNC_tail_call:
1323 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1324 goto error;
1325 break;
1326 case BPF_FUNC_perf_event_read:
1327 case BPF_FUNC_perf_event_output:
1328 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1329 goto error;
1330 break;
1331 case BPF_FUNC_get_stackid:
1332 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1333 goto error;
1334 break;
60d20f91 1335 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1336 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1337 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1338 goto error;
1339 break;
6aff67c8
AS
1340 default:
1341 break;
35578d79
KX
1342 }
1343
1344 return 0;
6aff67c8 1345error:
ebb676da
TG
1346 verbose("cannot pass map_type %d into func %s#%d\n",
1347 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1348 return -EINVAL;
35578d79
KX
1349}
1350
435faee1
DB
1351static int check_raw_mode(const struct bpf_func_proto *fn)
1352{
1353 int count = 0;
1354
39f19ebb 1355 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1356 count++;
39f19ebb 1357 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1358 count++;
39f19ebb 1359 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1360 count++;
39f19ebb 1361 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1362 count++;
39f19ebb 1363 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1364 count++;
1365
1366 return count > 1 ? -EINVAL : 0;
1367}
1368
58e2af8b 1369static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1370{
58e2af8b
JK
1371 struct bpf_verifier_state *state = &env->cur_state;
1372 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1373 int i;
1374
1375 for (i = 0; i < MAX_BPF_REG; i++)
1376 if (regs[i].type == PTR_TO_PACKET ||
1377 regs[i].type == PTR_TO_PACKET_END)
1378 mark_reg_unknown_value(regs, i);
1379
1380 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1381 if (state->stack_slot_type[i] != STACK_SPILL)
1382 continue;
1383 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1384 if (reg->type != PTR_TO_PACKET &&
1385 reg->type != PTR_TO_PACKET_END)
1386 continue;
36e24c00
DB
1387 __mark_reg_unknown_value(state->spilled_regs,
1388 i / BPF_REG_SIZE);
969bf05e
AS
1389 }
1390}
1391
81ed18ab 1392static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1393{
58e2af8b 1394 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1395 const struct bpf_func_proto *fn = NULL;
58e2af8b 1396 struct bpf_reg_state *regs = state->regs;
33ff9823 1397 struct bpf_call_arg_meta meta;
969bf05e 1398 bool changes_data;
17a52670
AS
1399 int i, err;
1400
1401 /* find function prototype */
1402 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1403 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1404 return -EINVAL;
1405 }
1406
1407 if (env->prog->aux->ops->get_func_proto)
1408 fn = env->prog->aux->ops->get_func_proto(func_id);
1409
1410 if (!fn) {
ebb676da 1411 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1412 return -EINVAL;
1413 }
1414
1415 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1416 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1417 verbose("cannot call GPL only function from proprietary program\n");
1418 return -EINVAL;
1419 }
1420
17bedab2 1421 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1422
33ff9823 1423 memset(&meta, 0, sizeof(meta));
36bbef52 1424 meta.pkt_access = fn->pkt_access;
33ff9823 1425
435faee1
DB
1426 /* We only support one arg being in raw mode at the moment, which
1427 * is sufficient for the helper functions we have right now.
1428 */
1429 err = check_raw_mode(fn);
1430 if (err) {
ebb676da
TG
1431 verbose("kernel subsystem misconfigured func %s#%d\n",
1432 func_id_name(func_id), func_id);
435faee1
DB
1433 return err;
1434 }
1435
17a52670 1436 /* check args */
33ff9823 1437 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1438 if (err)
1439 return err;
33ff9823 1440 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1441 if (err)
1442 return err;
33ff9823 1443 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1444 if (err)
1445 return err;
33ff9823 1446 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1447 if (err)
1448 return err;
33ff9823 1449 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1450 if (err)
1451 return err;
1452
435faee1
DB
1453 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1454 * is inferred from register state.
1455 */
1456 for (i = 0; i < meta.access_size; i++) {
31fd8581 1457 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1458 if (err)
1459 return err;
1460 }
1461
17a52670 1462 /* reset caller saved regs */
a9789ef9
DB
1463 for (i = 0; i < CALLER_SAVED_REGS; i++)
1464 mark_reg_not_init(regs, caller_saved[i]);
17a52670
AS
1465
1466 /* update return register */
1467 if (fn->ret_type == RET_INTEGER) {
1468 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1469 } else if (fn->ret_type == RET_VOID) {
1470 regs[BPF_REG_0].type = NOT_INIT;
1471 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1472 struct bpf_insn_aux_data *insn_aux;
1473
17a52670 1474 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1475 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1476 /* remember map_ptr, so that check_map_access()
1477 * can check 'value_size' boundary of memory access
1478 * to map element returned from bpf_map_lookup_elem()
1479 */
33ff9823 1480 if (meta.map_ptr == NULL) {
17a52670
AS
1481 verbose("kernel subsystem misconfigured verifier\n");
1482 return -EINVAL;
1483 }
33ff9823 1484 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1485 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1486 insn_aux = &env->insn_aux_data[insn_idx];
1487 if (!insn_aux->map_ptr)
1488 insn_aux->map_ptr = meta.map_ptr;
1489 else if (insn_aux->map_ptr != meta.map_ptr)
1490 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1491 } else {
ebb676da
TG
1492 verbose("unknown return type %d of func %s#%d\n",
1493 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1494 return -EINVAL;
1495 }
04fd61ab 1496
33ff9823 1497 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1498 if (err)
1499 return err;
04fd61ab 1500
969bf05e
AS
1501 if (changes_data)
1502 clear_all_pkt_pointers(env);
1503 return 0;
1504}
1505
58e2af8b
JK
1506static int check_packet_ptr_add(struct bpf_verifier_env *env,
1507 struct bpf_insn *insn)
969bf05e 1508{
58e2af8b
JK
1509 struct bpf_reg_state *regs = env->cur_state.regs;
1510 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1511 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1512 struct bpf_reg_state tmp_reg;
969bf05e
AS
1513 s32 imm;
1514
1515 if (BPF_SRC(insn->code) == BPF_K) {
1516 /* pkt_ptr += imm */
1517 imm = insn->imm;
1518
1519add_imm:
63dfef75 1520 if (imm < 0) {
969bf05e
AS
1521 verbose("addition of negative constant to packet pointer is not allowed\n");
1522 return -EACCES;
1523 }
1524 if (imm >= MAX_PACKET_OFF ||
1525 imm + dst_reg->off >= MAX_PACKET_OFF) {
1526 verbose("constant %d is too large to add to packet pointer\n",
1527 imm);
1528 return -EACCES;
1529 }
1530 /* a constant was added to pkt_ptr.
1531 * Remember it while keeping the same 'id'
1532 */
1533 dst_reg->off += imm;
1534 } else {
d1174416
DM
1535 bool had_id;
1536
1b9b69ec
AS
1537 if (src_reg->type == PTR_TO_PACKET) {
1538 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1539 tmp_reg = *dst_reg; /* save r7 state */
1540 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1541 src_reg = &tmp_reg; /* pretend it's src_reg state */
1542 /* if the checks below reject it, the copy won't matter,
1543 * since we're rejecting the whole program. If all ok,
1544 * then imm22 state will be added to r7
1545 * and r7 will be pkt(id=0,off=22,r=62) while
1546 * r6 will stay as pkt(id=0,off=0,r=62)
1547 */
1548 }
1549
969bf05e
AS
1550 if (src_reg->type == CONST_IMM) {
1551 /* pkt_ptr += reg where reg is known constant */
1552 imm = src_reg->imm;
1553 goto add_imm;
1554 }
1555 /* disallow pkt_ptr += reg
1556 * if reg is not uknown_value with guaranteed zero upper bits
1557 * otherwise pkt_ptr may overflow and addition will become
1558 * subtraction which is not allowed
1559 */
1560 if (src_reg->type != UNKNOWN_VALUE) {
1561 verbose("cannot add '%s' to ptr_to_packet\n",
1562 reg_type_str[src_reg->type]);
1563 return -EACCES;
1564 }
1565 if (src_reg->imm < 48) {
1566 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1567 src_reg->imm);
1568 return -EACCES;
1569 }
d1174416
DM
1570
1571 had_id = (dst_reg->id != 0);
1572
969bf05e
AS
1573 /* dst_reg stays as pkt_ptr type and since some positive
1574 * integer value was added to the pointer, increment its 'id'
1575 */
1f415a74 1576 dst_reg->id = ++env->id_gen;
969bf05e 1577
d1174416 1578 /* something was added to pkt_ptr, set range to zero */
6832a333 1579 dst_reg->aux_off += dst_reg->off;
969bf05e
AS
1580 dst_reg->off = 0;
1581 dst_reg->range = 0;
d1174416
DM
1582 if (had_id)
1583 dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1584 src_reg->min_align);
1585 else
1586 dst_reg->aux_off_align = src_reg->min_align;
969bf05e
AS
1587 }
1588 return 0;
1589}
1590
58e2af8b 1591static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1592{
58e2af8b
JK
1593 struct bpf_reg_state *regs = env->cur_state.regs;
1594 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1595 u8 opcode = BPF_OP(insn->code);
1596 s64 imm_log2;
1597
1598 /* for type == UNKNOWN_VALUE:
1599 * imm > 0 -> number of zero upper bits
1600 * imm == 0 -> don't track which is the same as all bits can be non-zero
1601 */
1602
1603 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1604 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1605
1606 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1607 dst_reg->imm && opcode == BPF_ADD) {
1608 /* dreg += sreg
1609 * where both have zero upper bits. Adding them
1610 * can only result making one more bit non-zero
1611 * in the larger value.
1612 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1613 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1614 */
1615 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1616 dst_reg->imm--;
1617 return 0;
1618 }
1619 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1620 dst_reg->imm && opcode == BPF_ADD) {
1621 /* dreg += sreg
1622 * where dreg has zero upper bits and sreg is const.
1623 * Adding them can only result making one more bit
1624 * non-zero in the larger value.
1625 */
1626 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1627 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1628 dst_reg->imm--;
1629 return 0;
1630 }
1631 /* all other cases non supported yet, just mark dst_reg */
1632 dst_reg->imm = 0;
1633 return 0;
1634 }
1635
1636 /* sign extend 32-bit imm into 64-bit to make sure that
1637 * negative values occupy bit 63. Note ilog2() would have
1638 * been incorrect, since sizeof(insn->imm) == 4
1639 */
1640 imm_log2 = __ilog2_u64((long long)insn->imm);
1641
1642 if (dst_reg->imm && opcode == BPF_LSH) {
1643 /* reg <<= imm
1644 * if reg was a result of 2 byte load, then its imm == 48
1645 * which means that upper 48 bits are zero and shifting this reg
1646 * left by 4 would mean that upper 44 bits are still zero
1647 */
1648 dst_reg->imm -= insn->imm;
1649 } else if (dst_reg->imm && opcode == BPF_MUL) {
1650 /* reg *= imm
1651 * if multiplying by 14 subtract 4
1652 * This is conservative calculation of upper zero bits.
1653 * It's not trying to special case insn->imm == 1 or 0 cases
1654 */
1655 dst_reg->imm -= imm_log2 + 1;
1656 } else if (opcode == BPF_AND) {
1657 /* reg &= imm */
1658 dst_reg->imm = 63 - imm_log2;
1659 } else if (dst_reg->imm && opcode == BPF_ADD) {
1660 /* reg += imm */
1661 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1662 dst_reg->imm--;
1663 } else if (opcode == BPF_RSH) {
1664 /* reg >>= imm
1665 * which means that after right shift, upper bits will be zero
1666 * note that verifier already checked that
1667 * 0 <= imm < 64 for shift insn
1668 */
1669 dst_reg->imm += insn->imm;
1670 if (unlikely(dst_reg->imm > 64))
1671 /* some dumb code did:
1672 * r2 = *(u32 *)mem;
1673 * r2 >>= 32;
1674 * and all bits are zero now */
1675 dst_reg->imm = 64;
1676 } else {
1677 /* all other alu ops, means that we don't know what will
1678 * happen to the value, mark it with unknown number of zero bits
1679 */
1680 dst_reg->imm = 0;
1681 }
1682
1683 if (dst_reg->imm < 0) {
1684 /* all 64 bits of the register can contain non-zero bits
1685 * and such value cannot be added to ptr_to_packet, since it
1686 * may overflow, mark it as unknown to avoid further eval
1687 */
1688 dst_reg->imm = 0;
1689 }
1690 return 0;
1691}
1692
43188702
JF
1693static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env *env,
1694 struct bpf_insn *insn)
1695{
1696 struct bpf_reg_state *regs = env->cur_state.regs;
1697 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1698 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1699 u8 opcode = BPF_OP(insn->code);
1700 s64 imm_log2 = __ilog2_u64((long long)dst_reg->imm);
1701
1702 /* BPF_X code with src_reg->type UNKNOWN_VALUE here. */
1703 if (src_reg->imm > 0 && dst_reg->imm) {
1704 switch (opcode) {
1705 case BPF_ADD:
1706 /* dreg += sreg
1707 * where both have zero upper bits. Adding them
1708 * can only result making one more bit non-zero
1709 * in the larger value.
1710 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1711 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1712 */
1713 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1714 dst_reg->imm--;
1715 break;
1716 case BPF_AND:
1717 /* dreg &= sreg
1718 * AND can not extend zero bits only shrink
1719 * Ex. 0x00..00ffffff
1720 * & 0x0f..ffffffff
1721 * ----------------
1722 * 0x00..00ffffff
1723 */
1724 dst_reg->imm = max(src_reg->imm, 63 - imm_log2);
1725 break;
1726 case BPF_OR:
1727 /* dreg |= sreg
1728 * OR can only extend zero bits
1729 * Ex. 0x00..00ffffff
1730 * | 0x0f..ffffffff
1731 * ----------------
1732 * 0x0f..00ffffff
1733 */
1734 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1735 break;
1736 case BPF_SUB:
1737 case BPF_MUL:
1738 case BPF_RSH:
1739 case BPF_LSH:
1740 /* These may be flushed out later */
1741 default:
1742 mark_reg_unknown_value(regs, insn->dst_reg);
1743 }
1744 } else {
1745 mark_reg_unknown_value(regs, insn->dst_reg);
1746 }
1747
1748 dst_reg->type = UNKNOWN_VALUE;
1749 return 0;
1750}
1751
58e2af8b
JK
1752static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1753 struct bpf_insn *insn)
969bf05e 1754{
58e2af8b
JK
1755 struct bpf_reg_state *regs = env->cur_state.regs;
1756 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1757 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1758 u8 opcode = BPF_OP(insn->code);
3fadc801 1759 u64 dst_imm = dst_reg->imm;
969bf05e 1760
43188702
JF
1761 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == UNKNOWN_VALUE)
1762 return evaluate_reg_imm_alu_unknown(env, insn);
1763
3fadc801
DB
1764 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1765 * containing ALU ops. Don't care about overflow or negative
1766 * values, just add/sub/... them; registers are in u64.
969bf05e 1767 */
3fadc801
DB
1768 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1769 dst_imm += insn->imm;
1770 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1771 src_reg->type == CONST_IMM) {
1772 dst_imm += src_reg->imm;
1773 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1774 dst_imm -= insn->imm;
1775 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1776 src_reg->type == CONST_IMM) {
1777 dst_imm -= src_reg->imm;
1778 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1779 dst_imm *= insn->imm;
1780 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1781 src_reg->type == CONST_IMM) {
1782 dst_imm *= src_reg->imm;
1783 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1784 dst_imm |= insn->imm;
1785 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1786 src_reg->type == CONST_IMM) {
1787 dst_imm |= src_reg->imm;
1788 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1789 dst_imm &= insn->imm;
1790 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1791 src_reg->type == CONST_IMM) {
1792 dst_imm &= src_reg->imm;
1793 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1794 dst_imm >>= insn->imm;
1795 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1796 src_reg->type == CONST_IMM) {
1797 dst_imm >>= src_reg->imm;
1798 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1799 dst_imm <<= insn->imm;
1800 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1801 src_reg->type == CONST_IMM) {
1802 dst_imm <<= src_reg->imm;
1803 } else {
969bf05e 1804 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1805 goto out;
1806 }
1807
1808 dst_reg->imm = dst_imm;
1809out:
17a52670
AS
1810 return 0;
1811}
1812
48461135
JB
1813static void check_reg_overflow(struct bpf_reg_state *reg)
1814{
1815 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1816 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1817 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1818 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1819 reg->min_value = BPF_REGISTER_MIN_RANGE;
1820}
1821
d1174416
DM
1822static u32 calc_align(u32 imm)
1823{
1824 if (!imm)
1825 return 1U << 31;
1826 return imm - ((imm - 1) & imm);
1827}
1828
48461135
JB
1829static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1830 struct bpf_insn *insn)
1831{
1832 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1833 s64 min_val = BPF_REGISTER_MIN_RANGE;
1834 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135 1835 u8 opcode = BPF_OP(insn->code);
d1174416 1836 u32 dst_align, src_align;
48461135
JB
1837
1838 dst_reg = &regs[insn->dst_reg];
d1174416 1839 src_align = 0;
48461135
JB
1840 if (BPF_SRC(insn->code) == BPF_X) {
1841 check_reg_overflow(&regs[insn->src_reg]);
1842 min_val = regs[insn->src_reg].min_value;
1843 max_val = regs[insn->src_reg].max_value;
1844
1845 /* If the source register is a random pointer then the
1846 * min_value/max_value values represent the range of the known
1847 * accesses into that value, not the actual min/max value of the
1848 * register itself. In this case we have to reset the reg range
1849 * values so we know it is not safe to look at.
1850 */
1851 if (regs[insn->src_reg].type != CONST_IMM &&
1852 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1853 min_val = BPF_REGISTER_MIN_RANGE;
1854 max_val = BPF_REGISTER_MAX_RANGE;
d1174416
DM
1855 src_align = 0;
1856 } else {
1857 src_align = regs[insn->src_reg].min_align;
48461135
JB
1858 }
1859 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1860 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1861 min_val = max_val = insn->imm;
d1174416 1862 src_align = calc_align(insn->imm);
48461135
JB
1863 }
1864
d1174416
DM
1865 dst_align = dst_reg->min_align;
1866
48461135 1867 /* We don't know anything about what was done to this register, mark it
4cabc5b1
DB
1868 * as unknown. Also, if both derived bounds came from signed/unsigned
1869 * mixed compares and one side is unbounded, we cannot really do anything
1870 * with them as boundaries cannot be trusted. Thus, arithmetic of two
1871 * regs of such kind will get invalidated bounds on the dst side.
48461135 1872 */
4cabc5b1
DB
1873 if ((min_val == BPF_REGISTER_MIN_RANGE &&
1874 max_val == BPF_REGISTER_MAX_RANGE) ||
1875 (BPF_SRC(insn->code) == BPF_X &&
1876 ((min_val != BPF_REGISTER_MIN_RANGE &&
1877 max_val == BPF_REGISTER_MAX_RANGE) ||
1878 (min_val == BPF_REGISTER_MIN_RANGE &&
1879 max_val != BPF_REGISTER_MAX_RANGE) ||
1880 (dst_reg->min_value != BPF_REGISTER_MIN_RANGE &&
1881 dst_reg->max_value == BPF_REGISTER_MAX_RANGE) ||
1882 (dst_reg->min_value == BPF_REGISTER_MIN_RANGE &&
1883 dst_reg->max_value != BPF_REGISTER_MAX_RANGE)) &&
1884 regs[insn->dst_reg].value_from_signed !=
1885 regs[insn->src_reg].value_from_signed)) {
48461135
JB
1886 reset_reg_range_values(regs, insn->dst_reg);
1887 return;
1888 }
1889
f23cc643
JB
1890 /* If one of our values was at the end of our ranges then we can't just
1891 * do our normal operations to the register, we need to set the values
1892 * to the min/max since they are undefined.
1893 */
9305706c
EC
1894 if (opcode != BPF_SUB) {
1895 if (min_val == BPF_REGISTER_MIN_RANGE)
1896 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1897 if (max_val == BPF_REGISTER_MAX_RANGE)
1898 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1899 }
f23cc643 1900
48461135
JB
1901 switch (opcode) {
1902 case BPF_ADD:
f23cc643
JB
1903 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1904 dst_reg->min_value += min_val;
1905 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1906 dst_reg->max_value += max_val;
d1174416 1907 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1908 break;
1909 case BPF_SUB:
9305706c
EC
1910 /* If one of our values was at the end of our ranges, then the
1911 * _opposite_ value in the dst_reg goes to the end of our range.
1912 */
1913 if (min_val == BPF_REGISTER_MIN_RANGE)
1914 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1915 if (max_val == BPF_REGISTER_MAX_RANGE)
1916 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1917 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
9305706c 1918 dst_reg->min_value -= max_val;
f23cc643 1919 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
9305706c 1920 dst_reg->max_value -= min_val;
d1174416 1921 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1922 break;
1923 case BPF_MUL:
f23cc643
JB
1924 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1925 dst_reg->min_value *= min_val;
1926 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1927 dst_reg->max_value *= max_val;
d1174416 1928 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1929 break;
1930 case BPF_AND:
f23cc643
JB
1931 /* Disallow AND'ing of negative numbers, ain't nobody got time
1932 * for that. Otherwise the minimum is 0 and the max is the max
1933 * value we could AND against.
1934 */
1935 if (min_val < 0)
1936 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1937 else
1938 dst_reg->min_value = 0;
48461135 1939 dst_reg->max_value = max_val;
d1174416 1940 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1941 break;
1942 case BPF_LSH:
1943 /* Gotta have special overflow logic here, if we're shifting
1944 * more than MAX_RANGE then just assume we have an invalid
1945 * range.
1946 */
d1174416 1947 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
48461135 1948 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416
DM
1949 dst_reg->min_align = 1;
1950 } else {
1951 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1952 dst_reg->min_value <<= min_val;
1953 if (!dst_reg->min_align)
1954 dst_reg->min_align = 1;
1955 dst_reg->min_align <<= min_val;
1956 }
48461135
JB
1957 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1958 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1959 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1960 dst_reg->max_value <<= max_val;
1961 break;
1962 case BPF_RSH:
f23cc643
JB
1963 /* RSH by a negative number is undefined, and the BPF_RSH is an
1964 * unsigned shift, so make the appropriate casts.
48461135 1965 */
d1174416 1966 if (min_val < 0 || dst_reg->min_value < 0) {
f23cc643 1967 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416 1968 } else {
f23cc643
JB
1969 dst_reg->min_value =
1970 (u64)(dst_reg->min_value) >> min_val;
d1174416
DM
1971 }
1972 if (min_val < 0) {
1973 dst_reg->min_align = 1;
1974 } else {
1975 dst_reg->min_align >>= (u64) min_val;
1976 if (!dst_reg->min_align)
1977 dst_reg->min_align = 1;
1978 }
f23cc643
JB
1979 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1980 dst_reg->max_value >>= max_val;
48461135
JB
1981 break;
1982 default:
1983 reset_reg_range_values(regs, insn->dst_reg);
1984 break;
1985 }
1986
1987 check_reg_overflow(dst_reg);
1988}
1989
17a52670 1990/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1991static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1992{
58e2af8b 1993 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1994 u8 opcode = BPF_OP(insn->code);
1995 int err;
1996
1997 if (opcode == BPF_END || opcode == BPF_NEG) {
1998 if (opcode == BPF_NEG) {
1999 if (BPF_SRC(insn->code) != 0 ||
2000 insn->src_reg != BPF_REG_0 ||
2001 insn->off != 0 || insn->imm != 0) {
2002 verbose("BPF_NEG uses reserved fields\n");
2003 return -EINVAL;
2004 }
2005 } else {
2006 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
ef0fb511
EC
2007 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2008 BPF_CLASS(insn->code) == BPF_ALU64) {
17a52670
AS
2009 verbose("BPF_END uses reserved fields\n");
2010 return -EINVAL;
2011 }
2012 }
2013
2014 /* check src operand */
2015 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2016 if (err)
2017 return err;
2018
1be7f75d
AS
2019 if (is_pointer_value(env, insn->dst_reg)) {
2020 verbose("R%d pointer arithmetic prohibited\n",
2021 insn->dst_reg);
2022 return -EACCES;
2023 }
2024
17a52670
AS
2025 /* check dest operand */
2026 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2027 if (err)
2028 return err;
2029
2030 } else if (opcode == BPF_MOV) {
2031
2032 if (BPF_SRC(insn->code) == BPF_X) {
2033 if (insn->imm != 0 || insn->off != 0) {
2034 verbose("BPF_MOV uses reserved fields\n");
2035 return -EINVAL;
2036 }
2037
2038 /* check src operand */
2039 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2040 if (err)
2041 return err;
2042 } else {
2043 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2044 verbose("BPF_MOV uses reserved fields\n");
2045 return -EINVAL;
2046 }
2047 }
2048
2049 /* check dest operand */
2050 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2051 if (err)
2052 return err;
2053
48461135
JB
2054 /* we are setting our register to something new, we need to
2055 * reset its range values.
2056 */
2057 reset_reg_range_values(regs, insn->dst_reg);
2058
17a52670
AS
2059 if (BPF_SRC(insn->code) == BPF_X) {
2060 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2061 /* case: R1 = R2
2062 * copy register state to dest reg
2063 */
2064 regs[insn->dst_reg] = regs[insn->src_reg];
2065 } else {
1be7f75d
AS
2066 if (is_pointer_value(env, insn->src_reg)) {
2067 verbose("R%d partial copy of pointer\n",
2068 insn->src_reg);
2069 return -EACCES;
2070 }
57a09bf0 2071 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2072 }
2073 } else {
2074 /* case: R = imm
2075 * remember the value we stored into this reg
2076 */
868c8812
JH
2077 u64 imm;
2078
2079 if (BPF_CLASS(insn->code) == BPF_ALU64)
2080 imm = insn->imm;
2081 else
2082 imm = (u32)insn->imm;
2083
17a52670 2084 regs[insn->dst_reg].type = CONST_IMM;
868c8812 2085 regs[insn->dst_reg].imm = imm;
4a2ff55a 2086 regs[insn->dst_reg].id = 0;
868c8812
JH
2087 regs[insn->dst_reg].max_value = imm;
2088 regs[insn->dst_reg].min_value = imm;
2089 regs[insn->dst_reg].min_align = calc_align(imm);
4cabc5b1 2090 regs[insn->dst_reg].value_from_signed = false;
17a52670
AS
2091 }
2092
2093 } else if (opcode > BPF_END) {
2094 verbose("invalid BPF_ALU opcode %x\n", opcode);
2095 return -EINVAL;
2096
2097 } else { /* all other ALU ops: and, sub, xor, add, ... */
2098
17a52670
AS
2099 if (BPF_SRC(insn->code) == BPF_X) {
2100 if (insn->imm != 0 || insn->off != 0) {
2101 verbose("BPF_ALU uses reserved fields\n");
2102 return -EINVAL;
2103 }
2104 /* check src1 operand */
2105 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2106 if (err)
2107 return err;
2108 } else {
2109 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2110 verbose("BPF_ALU uses reserved fields\n");
2111 return -EINVAL;
2112 }
2113 }
2114
2115 /* check src2 operand */
2116 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2117 if (err)
2118 return err;
2119
2120 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2121 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2122 verbose("div by zero\n");
2123 return -EINVAL;
2124 }
2125
229394e8
RV
2126 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2127 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2128 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2129
2130 if (insn->imm < 0 || insn->imm >= size) {
2131 verbose("invalid shift %d\n", insn->imm);
2132 return -EINVAL;
2133 }
2134 }
2135
1a0dc1ac
AS
2136 /* check dest operand */
2137 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2138 if (err)
2139 return err;
2140
2141 dst_reg = &regs[insn->dst_reg];
2142
48461135
JB
2143 /* first we want to adjust our ranges. */
2144 adjust_reg_min_max_vals(env, insn);
2145
17a52670
AS
2146 /* pattern match 'bpf_add Rx, imm' instruction */
2147 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
2148 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2149 dst_reg->type = PTR_TO_STACK;
2150 dst_reg->imm = insn->imm;
2151 return 0;
332270fd
YS
2152 } else if (opcode == BPF_ADD &&
2153 BPF_CLASS(insn->code) == BPF_ALU64 &&
2154 dst_reg->type == PTR_TO_STACK &&
2155 ((BPF_SRC(insn->code) == BPF_X &&
2156 regs[insn->src_reg].type == CONST_IMM) ||
2157 BPF_SRC(insn->code) == BPF_K)) {
1c26ffd0
JH
2158 if (BPF_SRC(insn->code) == BPF_X) {
2159 /* check in case the register contains a big
2160 * 64-bit value
2161 */
2162 if (regs[insn->src_reg].imm < -MAX_BPF_STACK ||
2163 regs[insn->src_reg].imm > MAX_BPF_STACK) {
2164 verbose("R%d value too big in R%d pointer arithmetic\n",
2165 insn->src_reg, insn->dst_reg);
2166 return -EACCES;
2167 }
332270fd 2168 dst_reg->imm += regs[insn->src_reg].imm;
1c26ffd0
JH
2169 } else {
2170 /* safe against overflow: addition of 32-bit
2171 * numbers in 64-bit representation
2172 */
332270fd 2173 dst_reg->imm += insn->imm;
1c26ffd0
JH
2174 }
2175 if (dst_reg->imm > 0 || dst_reg->imm < -MAX_BPF_STACK) {
2176 verbose("R%d out-of-bounds pointer arithmetic\n",
2177 insn->dst_reg);
2178 return -EACCES;
2179 }
332270fd 2180 return 0;
969bf05e
AS
2181 } else if (opcode == BPF_ADD &&
2182 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
2183 (dst_reg->type == PTR_TO_PACKET ||
2184 (BPF_SRC(insn->code) == BPF_X &&
2185 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
2186 /* ptr_to_packet += K|X */
2187 return check_packet_ptr_add(env, insn);
2188 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2189 dst_reg->type == UNKNOWN_VALUE &&
2190 env->allow_ptr_leaks) {
2191 /* unknown += K|X */
2192 return evaluate_reg_alu(env, insn);
2193 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2194 dst_reg->type == CONST_IMM &&
2195 env->allow_ptr_leaks) {
2196 /* reg_imm += K|X */
2197 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
2198 } else if (is_pointer_value(env, insn->dst_reg)) {
2199 verbose("R%d pointer arithmetic prohibited\n",
2200 insn->dst_reg);
2201 return -EACCES;
2202 } else if (BPF_SRC(insn->code) == BPF_X &&
2203 is_pointer_value(env, insn->src_reg)) {
2204 verbose("R%d pointer arithmetic prohibited\n",
2205 insn->src_reg);
2206 return -EACCES;
2207 }
17a52670 2208
48461135
JB
2209 /* If we did pointer math on a map value then just set it to our
2210 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2211 * loads to this register appropriately, otherwise just mark the
2212 * register as unknown.
2213 */
2214 if (env->allow_ptr_leaks &&
fce366a9 2215 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
48461135
JB
2216 (dst_reg->type == PTR_TO_MAP_VALUE ||
2217 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2218 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2219 else
2220 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2221 }
2222
2223 return 0;
2224}
2225
58e2af8b
JK
2226static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2227 struct bpf_reg_state *dst_reg)
969bf05e 2228{
58e2af8b 2229 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2230 int i;
2d2be8ca
DB
2231
2232 /* LLVM can generate two kind of checks:
2233 *
2234 * Type 1:
2235 *
2236 * r2 = r3;
2237 * r2 += 8;
2238 * if (r2 > pkt_end) goto <handle exception>
2239 * <access okay>
2240 *
2241 * Where:
2242 * r2 == dst_reg, pkt_end == src_reg
2243 * r2=pkt(id=n,off=8,r=0)
2244 * r3=pkt(id=n,off=0,r=0)
2245 *
2246 * Type 2:
2247 *
2248 * r2 = r3;
2249 * r2 += 8;
2250 * if (pkt_end >= r2) goto <access okay>
2251 * <handle exception>
2252 *
2253 * Where:
2254 * pkt_end == dst_reg, r2 == src_reg
2255 * r2=pkt(id=n,off=8,r=0)
2256 * r3=pkt(id=n,off=0,r=0)
2257 *
2258 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2259 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2260 */
2d2be8ca 2261
969bf05e
AS
2262 for (i = 0; i < MAX_BPF_REG; i++)
2263 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682
AS
2264 /* keep the maximum range already checked */
2265 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
2266
2267 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2268 if (state->stack_slot_type[i] != STACK_SPILL)
2269 continue;
2270 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2271 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
b1977682 2272 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
2273 }
2274}
2275
48461135
JB
2276/* Adjusts the register min/max values in the case that the dst_reg is the
2277 * variable register that we are working on, and src_reg is a constant or we're
2278 * simply doing a BPF_K check.
2279 */
2280static void reg_set_min_max(struct bpf_reg_state *true_reg,
2281 struct bpf_reg_state *false_reg, u64 val,
2282 u8 opcode)
2283{
4cabc5b1
DB
2284 bool value_from_signed = true;
2285 bool is_range = true;
2286
48461135
JB
2287 switch (opcode) {
2288 case BPF_JEQ:
2289 /* If this is false then we know nothing Jon Snow, but if it is
2290 * true then we know for sure.
2291 */
2292 true_reg->max_value = true_reg->min_value = val;
4cabc5b1 2293 is_range = false;
48461135
JB
2294 break;
2295 case BPF_JNE:
2296 /* If this is true we know nothing Jon Snow, but if it is false
2297 * we know the value for sure;
2298 */
2299 false_reg->max_value = false_reg->min_value = val;
4cabc5b1 2300 is_range = false;
48461135
JB
2301 break;
2302 case BPF_JGT:
4cabc5b1 2303 value_from_signed = false;
7e57fbb2 2304 /* fallthrough */
48461135 2305 case BPF_JSGT:
4cabc5b1
DB
2306 if (true_reg->value_from_signed != value_from_signed)
2307 reset_reg_range_values(true_reg, 0);
2308 if (false_reg->value_from_signed != value_from_signed)
2309 reset_reg_range_values(false_reg, 0);
2310 if (opcode == BPF_JGT) {
2311 /* Unsigned comparison, the minimum value is 0. */
2312 false_reg->min_value = 0;
2313 }
48461135
JB
2314 /* If this is false then we know the maximum val is val,
2315 * otherwise we know the min val is val+1.
2316 */
2317 false_reg->max_value = val;
4cabc5b1 2318 false_reg->value_from_signed = value_from_signed;
48461135 2319 true_reg->min_value = val + 1;
4cabc5b1 2320 true_reg->value_from_signed = value_from_signed;
48461135
JB
2321 break;
2322 case BPF_JGE:
4cabc5b1 2323 value_from_signed = false;
7e57fbb2 2324 /* fallthrough */
48461135 2325 case BPF_JSGE:
4cabc5b1
DB
2326 if (true_reg->value_from_signed != value_from_signed)
2327 reset_reg_range_values(true_reg, 0);
2328 if (false_reg->value_from_signed != value_from_signed)
2329 reset_reg_range_values(false_reg, 0);
2330 if (opcode == BPF_JGE) {
2331 /* Unsigned comparison, the minimum value is 0. */
2332 false_reg->min_value = 0;
2333 }
48461135
JB
2334 /* If this is false then we know the maximum value is val - 1,
2335 * otherwise we know the mimimum value is val.
2336 */
2337 false_reg->max_value = val - 1;
4cabc5b1 2338 false_reg->value_from_signed = value_from_signed;
48461135 2339 true_reg->min_value = val;
4cabc5b1 2340 true_reg->value_from_signed = value_from_signed;
48461135
JB
2341 break;
2342 default:
2343 break;
2344 }
2345
2346 check_reg_overflow(false_reg);
2347 check_reg_overflow(true_reg);
4cabc5b1
DB
2348 if (is_range) {
2349 if (__is_pointer_value(false, false_reg))
2350 reset_reg_range_values(false_reg, 0);
2351 if (__is_pointer_value(false, true_reg))
2352 reset_reg_range_values(true_reg, 0);
2353 }
48461135
JB
2354}
2355
2356/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2357 * is the variable reg.
2358 */
2359static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2360 struct bpf_reg_state *false_reg, u64 val,
2361 u8 opcode)
2362{
4cabc5b1
DB
2363 bool value_from_signed = true;
2364 bool is_range = true;
2365
48461135
JB
2366 switch (opcode) {
2367 case BPF_JEQ:
2368 /* If this is false then we know nothing Jon Snow, but if it is
2369 * true then we know for sure.
2370 */
2371 true_reg->max_value = true_reg->min_value = val;
4cabc5b1 2372 is_range = false;
48461135
JB
2373 break;
2374 case BPF_JNE:
2375 /* If this is true we know nothing Jon Snow, but if it is false
2376 * we know the value for sure;
2377 */
2378 false_reg->max_value = false_reg->min_value = val;
4cabc5b1 2379 is_range = false;
48461135
JB
2380 break;
2381 case BPF_JGT:
4cabc5b1 2382 value_from_signed = false;
7e57fbb2 2383 /* fallthrough */
48461135 2384 case BPF_JSGT:
4cabc5b1
DB
2385 if (true_reg->value_from_signed != value_from_signed)
2386 reset_reg_range_values(true_reg, 0);
2387 if (false_reg->value_from_signed != value_from_signed)
2388 reset_reg_range_values(false_reg, 0);
2389 if (opcode == BPF_JGT) {
2390 /* Unsigned comparison, the minimum value is 0. */
2391 true_reg->min_value = 0;
2392 }
48461135
JB
2393 /*
2394 * If this is false, then the val is <= the register, if it is
2395 * true the register <= to the val.
2396 */
2397 false_reg->min_value = val;
4cabc5b1 2398 false_reg->value_from_signed = value_from_signed;
48461135 2399 true_reg->max_value = val - 1;
4cabc5b1 2400 true_reg->value_from_signed = value_from_signed;
48461135
JB
2401 break;
2402 case BPF_JGE:
4cabc5b1 2403 value_from_signed = false;
7e57fbb2 2404 /* fallthrough */
48461135 2405 case BPF_JSGE:
4cabc5b1
DB
2406 if (true_reg->value_from_signed != value_from_signed)
2407 reset_reg_range_values(true_reg, 0);
2408 if (false_reg->value_from_signed != value_from_signed)
2409 reset_reg_range_values(false_reg, 0);
2410 if (opcode == BPF_JGE) {
2411 /* Unsigned comparison, the minimum value is 0. */
2412 true_reg->min_value = 0;
2413 }
48461135
JB
2414 /* If this is false then constant < register, if it is true then
2415 * the register < constant.
2416 */
2417 false_reg->min_value = val + 1;
4cabc5b1 2418 false_reg->value_from_signed = value_from_signed;
48461135 2419 true_reg->max_value = val;
4cabc5b1 2420 true_reg->value_from_signed = value_from_signed;
48461135
JB
2421 break;
2422 default:
2423 break;
2424 }
2425
2426 check_reg_overflow(false_reg);
2427 check_reg_overflow(true_reg);
4cabc5b1
DB
2428 if (is_range) {
2429 if (__is_pointer_value(false, false_reg))
2430 reset_reg_range_values(false_reg, 0);
2431 if (__is_pointer_value(false, true_reg))
2432 reset_reg_range_values(true_reg, 0);
2433 }
48461135
JB
2434}
2435
57a09bf0
TG
2436static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2437 enum bpf_reg_type type)
2438{
2439 struct bpf_reg_state *reg = &regs[regno];
2440
2441 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
56f668df
MKL
2442 if (type == UNKNOWN_VALUE) {
2443 __mark_reg_unknown_value(regs, regno);
2444 } else if (reg->map_ptr->inner_map_meta) {
2445 reg->type = CONST_PTR_TO_MAP;
2446 reg->map_ptr = reg->map_ptr->inner_map_meta;
2447 } else {
2448 reg->type = type;
2449 }
a08dd0da
DB
2450 /* We don't need id from this point onwards anymore, thus we
2451 * should better reset it, so that state pruning has chances
2452 * to take effect.
2453 */
2454 reg->id = 0;
57a09bf0
TG
2455 }
2456}
2457
2458/* The logic is similar to find_good_pkt_pointers(), both could eventually
2459 * be folded together at some point.
2460 */
2461static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2462 enum bpf_reg_type type)
2463{
2464 struct bpf_reg_state *regs = state->regs;
a08dd0da 2465 u32 id = regs[regno].id;
57a09bf0
TG
2466 int i;
2467
2468 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2469 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2470
2471 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2472 if (state->stack_slot_type[i] != STACK_SPILL)
2473 continue;
a08dd0da 2474 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2475 }
2476}
2477
58e2af8b 2478static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2479 struct bpf_insn *insn, int *insn_idx)
2480{
58e2af8b
JK
2481 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2482 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2483 u8 opcode = BPF_OP(insn->code);
2484 int err;
2485
2486 if (opcode > BPF_EXIT) {
2487 verbose("invalid BPF_JMP opcode %x\n", opcode);
2488 return -EINVAL;
2489 }
2490
2491 if (BPF_SRC(insn->code) == BPF_X) {
2492 if (insn->imm != 0) {
2493 verbose("BPF_JMP uses reserved fields\n");
2494 return -EINVAL;
2495 }
2496
2497 /* check src1 operand */
2498 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2499 if (err)
2500 return err;
1be7f75d
AS
2501
2502 if (is_pointer_value(env, insn->src_reg)) {
2503 verbose("R%d pointer comparison prohibited\n",
2504 insn->src_reg);
2505 return -EACCES;
2506 }
17a52670
AS
2507 } else {
2508 if (insn->src_reg != BPF_REG_0) {
2509 verbose("BPF_JMP uses reserved fields\n");
2510 return -EINVAL;
2511 }
2512 }
2513
2514 /* check src2 operand */
2515 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2516 if (err)
2517 return err;
2518
1a0dc1ac
AS
2519 dst_reg = &regs[insn->dst_reg];
2520
17a52670
AS
2521 /* detect if R == 0 where R was initialized to zero earlier */
2522 if (BPF_SRC(insn->code) == BPF_K &&
2523 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2524 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2525 if (opcode == BPF_JEQ) {
2526 /* if (imm == imm) goto pc+off;
2527 * only follow the goto, ignore fall-through
2528 */
2529 *insn_idx += insn->off;
2530 return 0;
2531 } else {
2532 /* if (imm != imm) goto pc+off;
2533 * only follow fall-through branch, since
2534 * that's where the program will go
2535 */
2536 return 0;
2537 }
2538 }
2539
2540 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2541 if (!other_branch)
2542 return -EFAULT;
2543
48461135
JB
2544 /* detect if we are comparing against a constant value so we can adjust
2545 * our min/max values for our dst register.
2546 */
2547 if (BPF_SRC(insn->code) == BPF_X) {
2548 if (regs[insn->src_reg].type == CONST_IMM)
2549 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2550 dst_reg, regs[insn->src_reg].imm,
2551 opcode);
2552 else if (dst_reg->type == CONST_IMM)
2553 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2554 &regs[insn->src_reg], dst_reg->imm,
2555 opcode);
2556 } else {
2557 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2558 dst_reg, insn->imm, opcode);
2559 }
2560
58e2af8b 2561 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2562 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2563 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2564 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2565 /* Mark all identical map registers in each branch as either
2566 * safe or unknown depending R == 0 or R != 0 conditional.
2567 */
2568 mark_map_regs(this_branch, insn->dst_reg,
2569 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2570 mark_map_regs(other_branch, insn->dst_reg,
2571 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2572 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2573 dst_reg->type == PTR_TO_PACKET &&
2574 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2575 find_good_pkt_pointers(this_branch, dst_reg);
2576 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2577 dst_reg->type == PTR_TO_PACKET_END &&
2578 regs[insn->src_reg].type == PTR_TO_PACKET) {
2579 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2580 } else if (is_pointer_value(env, insn->dst_reg)) {
2581 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2582 return -EACCES;
17a52670
AS
2583 }
2584 if (log_level)
2d2be8ca 2585 print_verifier_state(this_branch);
17a52670
AS
2586 return 0;
2587}
2588
0246e64d
AS
2589/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2590static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2591{
2592 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2593
2594 return (struct bpf_map *) (unsigned long) imm64;
2595}
2596
17a52670 2597/* verify BPF_LD_IMM64 instruction */
58e2af8b 2598static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2599{
58e2af8b 2600 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2601 int err;
2602
2603 if (BPF_SIZE(insn->code) != BPF_DW) {
2604 verbose("invalid BPF_LD_IMM insn\n");
2605 return -EINVAL;
2606 }
2607 if (insn->off != 0) {
2608 verbose("BPF_LD_IMM64 uses reserved fields\n");
2609 return -EINVAL;
2610 }
2611
2612 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2613 if (err)
2614 return err;
2615
6b173873 2616 if (insn->src_reg == 0) {
6b173873
JK
2617 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2618
6b173873
JK
2619 regs[insn->dst_reg].type = CONST_IMM;
2620 regs[insn->dst_reg].imm = imm;
4a2ff55a 2621 regs[insn->dst_reg].id = 0;
17a52670 2622 return 0;
6b173873 2623 }
17a52670
AS
2624
2625 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2626 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2627
2628 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2629 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2630 return 0;
2631}
2632
96be4325
DB
2633static bool may_access_skb(enum bpf_prog_type type)
2634{
2635 switch (type) {
2636 case BPF_PROG_TYPE_SOCKET_FILTER:
2637 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2638 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2639 return true;
2640 default:
2641 return false;
2642 }
2643}
2644
ddd872bc
AS
2645/* verify safety of LD_ABS|LD_IND instructions:
2646 * - they can only appear in the programs where ctx == skb
2647 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2648 * preserve R6-R9, and store return value into R0
2649 *
2650 * Implicit input:
2651 * ctx == skb == R6 == CTX
2652 *
2653 * Explicit input:
2654 * SRC == any register
2655 * IMM == 32-bit immediate
2656 *
2657 * Output:
2658 * R0 - 8/16/32-bit skb data converted to cpu endianness
2659 */
58e2af8b 2660static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2661{
58e2af8b 2662 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2663 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2664 int i, err;
2665
24701ece 2666 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2667 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2668 return -EINVAL;
2669 }
2670
2671 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2672 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2673 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2674 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2675 return -EINVAL;
2676 }
2677
2678 /* check whether implicit source operand (register R6) is readable */
2679 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2680 if (err)
2681 return err;
2682
2683 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2684 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2685 return -EINVAL;
2686 }
2687
2688 if (mode == BPF_IND) {
2689 /* check explicit source operand */
2690 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2691 if (err)
2692 return err;
2693 }
2694
2695 /* reset caller saved regs to unreadable */
a9789ef9
DB
2696 for (i = 0; i < CALLER_SAVED_REGS; i++)
2697 mark_reg_not_init(regs, caller_saved[i]);
ddd872bc
AS
2698
2699 /* mark destination R0 register as readable, since it contains
2700 * the value fetched from the packet
2701 */
2702 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2703 return 0;
2704}
2705
475fb78f
AS
2706/* non-recursive DFS pseudo code
2707 * 1 procedure DFS-iterative(G,v):
2708 * 2 label v as discovered
2709 * 3 let S be a stack
2710 * 4 S.push(v)
2711 * 5 while S is not empty
2712 * 6 t <- S.pop()
2713 * 7 if t is what we're looking for:
2714 * 8 return t
2715 * 9 for all edges e in G.adjacentEdges(t) do
2716 * 10 if edge e is already labelled
2717 * 11 continue with the next edge
2718 * 12 w <- G.adjacentVertex(t,e)
2719 * 13 if vertex w is not discovered and not explored
2720 * 14 label e as tree-edge
2721 * 15 label w as discovered
2722 * 16 S.push(w)
2723 * 17 continue at 5
2724 * 18 else if vertex w is discovered
2725 * 19 label e as back-edge
2726 * 20 else
2727 * 21 // vertex w is explored
2728 * 22 label e as forward- or cross-edge
2729 * 23 label t as explored
2730 * 24 S.pop()
2731 *
2732 * convention:
2733 * 0x10 - discovered
2734 * 0x11 - discovered and fall-through edge labelled
2735 * 0x12 - discovered and fall-through and branch edges labelled
2736 * 0x20 - explored
2737 */
2738
2739enum {
2740 DISCOVERED = 0x10,
2741 EXPLORED = 0x20,
2742 FALLTHROUGH = 1,
2743 BRANCH = 2,
2744};
2745
58e2af8b 2746#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2747
475fb78f
AS
2748static int *insn_stack; /* stack of insns to process */
2749static int cur_stack; /* current stack index */
2750static int *insn_state;
2751
2752/* t, w, e - match pseudo-code above:
2753 * t - index of current instruction
2754 * w - next instruction
2755 * e - edge
2756 */
58e2af8b 2757static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2758{
2759 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2760 return 0;
2761
2762 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2763 return 0;
2764
2765 if (w < 0 || w >= env->prog->len) {
2766 verbose("jump out of range from insn %d to %d\n", t, w);
2767 return -EINVAL;
2768 }
2769
f1bca824
AS
2770 if (e == BRANCH)
2771 /* mark branch target for state pruning */
2772 env->explored_states[w] = STATE_LIST_MARK;
2773
475fb78f
AS
2774 if (insn_state[w] == 0) {
2775 /* tree-edge */
2776 insn_state[t] = DISCOVERED | e;
2777 insn_state[w] = DISCOVERED;
2778 if (cur_stack >= env->prog->len)
2779 return -E2BIG;
2780 insn_stack[cur_stack++] = w;
2781 return 1;
2782 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2783 verbose("back-edge from insn %d to %d\n", t, w);
2784 return -EINVAL;
2785 } else if (insn_state[w] == EXPLORED) {
2786 /* forward- or cross-edge */
2787 insn_state[t] = DISCOVERED | e;
2788 } else {
2789 verbose("insn state internal bug\n");
2790 return -EFAULT;
2791 }
2792 return 0;
2793}
2794
2795/* non-recursive depth-first-search to detect loops in BPF program
2796 * loop == back-edge in directed graph
2797 */
58e2af8b 2798static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2799{
2800 struct bpf_insn *insns = env->prog->insnsi;
2801 int insn_cnt = env->prog->len;
2802 int ret = 0;
2803 int i, t;
2804
2805 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2806 if (!insn_state)
2807 return -ENOMEM;
2808
2809 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2810 if (!insn_stack) {
2811 kfree(insn_state);
2812 return -ENOMEM;
2813 }
2814
2815 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2816 insn_stack[0] = 0; /* 0 is the first instruction */
2817 cur_stack = 1;
2818
2819peek_stack:
2820 if (cur_stack == 0)
2821 goto check_state;
2822 t = insn_stack[cur_stack - 1];
2823
2824 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2825 u8 opcode = BPF_OP(insns[t].code);
2826
2827 if (opcode == BPF_EXIT) {
2828 goto mark_explored;
2829 } else if (opcode == BPF_CALL) {
2830 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2831 if (ret == 1)
2832 goto peek_stack;
2833 else if (ret < 0)
2834 goto err_free;
07016151
DB
2835 if (t + 1 < insn_cnt)
2836 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2837 } else if (opcode == BPF_JA) {
2838 if (BPF_SRC(insns[t].code) != BPF_K) {
2839 ret = -EINVAL;
2840 goto err_free;
2841 }
2842 /* unconditional jump with single edge */
2843 ret = push_insn(t, t + insns[t].off + 1,
2844 FALLTHROUGH, env);
2845 if (ret == 1)
2846 goto peek_stack;
2847 else if (ret < 0)
2848 goto err_free;
f1bca824
AS
2849 /* tell verifier to check for equivalent states
2850 * after every call and jump
2851 */
c3de6317
AS
2852 if (t + 1 < insn_cnt)
2853 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2854 } else {
2855 /* conditional jump with two edges */
3c2ce60b 2856 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
2857 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2858 if (ret == 1)
2859 goto peek_stack;
2860 else if (ret < 0)
2861 goto err_free;
2862
2863 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2864 if (ret == 1)
2865 goto peek_stack;
2866 else if (ret < 0)
2867 goto err_free;
2868 }
2869 } else {
2870 /* all other non-branch instructions with single
2871 * fall-through edge
2872 */
2873 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2874 if (ret == 1)
2875 goto peek_stack;
2876 else if (ret < 0)
2877 goto err_free;
2878 }
2879
2880mark_explored:
2881 insn_state[t] = EXPLORED;
2882 if (cur_stack-- <= 0) {
2883 verbose("pop stack internal bug\n");
2884 ret = -EFAULT;
2885 goto err_free;
2886 }
2887 goto peek_stack;
2888
2889check_state:
2890 for (i = 0; i < insn_cnt; i++) {
2891 if (insn_state[i] != EXPLORED) {
2892 verbose("unreachable insn %d\n", i);
2893 ret = -EINVAL;
2894 goto err_free;
2895 }
2896 }
2897 ret = 0; /* cfg looks good */
2898
2899err_free:
2900 kfree(insn_state);
2901 kfree(insn_stack);
2902 return ret;
2903}
2904
969bf05e
AS
2905/* the following conditions reduce the number of explored insns
2906 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2907 */
1ad2f583
DB
2908static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2909 struct bpf_reg_state *old,
58e2af8b 2910 struct bpf_reg_state *cur)
969bf05e
AS
2911{
2912 if (old->id != cur->id)
2913 return false;
2914
2915 /* old ptr_to_packet is more conservative, since it allows smaller
2916 * range. Ex:
2917 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2918 * old(off=0,r=10) means that with range=10 the verifier proceeded
2919 * further and found no issues with the program. Now we're in the same
2920 * spot with cur(off=0,r=20), so we're safe too, since anything further
2921 * will only be looking at most 10 bytes after this pointer.
2922 */
2923 if (old->off == cur->off && old->range < cur->range)
2924 return true;
2925
2926 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2927 * since both cannot be used for packet access and safe(old)
2928 * pointer has smaller off that could be used for further
2929 * 'if (ptr > data_end)' check
2930 * Ex:
2931 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2932 * that we cannot access the packet.
2933 * The safe range is:
2934 * [ptr, ptr + range - off)
2935 * so whenever off >=range, it means no safe bytes from this pointer.
2936 * When comparing old->off <= cur->off, it means that older code
2937 * went with smaller offset and that offset was later
2938 * used to figure out the safe range after 'if (ptr > data_end)' check
2939 * Say, 'old' state was explored like:
2940 * ... R3(off=0, r=0)
2941 * R4 = R3 + 20
2942 * ... now R4(off=20,r=0) <-- here
2943 * if (R4 > data_end)
2944 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2945 * ... the code further went all the way to bpf_exit.
2946 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2947 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2948 * goes further, such cur_R4 will give larger safe packet range after
2949 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2950 * so they will be good with r=30 and we can prune the search.
2951 */
1ad2f583 2952 if (!env->strict_alignment && old->off <= cur->off &&
969bf05e
AS
2953 old->off >= old->range && cur->off >= cur->range)
2954 return true;
2955
2956 return false;
2957}
2958
f1bca824
AS
2959/* compare two verifier states
2960 *
2961 * all states stored in state_list are known to be valid, since
2962 * verifier reached 'bpf_exit' instruction through them
2963 *
2964 * this function is called when verifier exploring different branches of
2965 * execution popped from the state stack. If it sees an old state that has
2966 * more strict register state and more strict stack state then this execution
2967 * branch doesn't need to be explored further, since verifier already
2968 * concluded that more strict state leads to valid finish.
2969 *
2970 * Therefore two states are equivalent if register state is more conservative
2971 * and explored stack state is more conservative than the current one.
2972 * Example:
2973 * explored current
2974 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2975 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2976 *
2977 * In other words if current stack state (one being explored) has more
2978 * valid slots than old one that already passed validation, it means
2979 * the verifier can stop exploring and conclude that current state is valid too
2980 *
2981 * Similarly with registers. If explored state has register type as invalid
2982 * whereas register type in current state is meaningful, it means that
2983 * the current state will reach 'bpf_exit' instruction safely
2984 */
48461135
JB
2985static bool states_equal(struct bpf_verifier_env *env,
2986 struct bpf_verifier_state *old,
58e2af8b 2987 struct bpf_verifier_state *cur)
f1bca824 2988{
e2d2afe1 2989 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2990 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2991 int i;
2992
2993 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2994 rold = &old->regs[i];
2995 rcur = &cur->regs[i];
2996
2997 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2998 continue;
2999
48461135
JB
3000 /* If the ranges were not the same, but everything else was and
3001 * we didn't do a variable access into a map then we are a-ok.
3002 */
e2d2afe1 3003 if (!varlen_map_access &&
d2a4dd37 3004 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
3005 continue;
3006
e2d2afe1
JB
3007 /* If we didn't map access then again we don't care about the
3008 * mismatched range values and it's ok if our old type was
3fb43780 3009 * UNKNOWN and we didn't go to a NOT_INIT'ed or pointer reg.
e2d2afe1 3010 */
1a0dc1ac 3011 if (rold->type == NOT_INIT ||
e2d2afe1 3012 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
3fb43780
BH
3013 rcur->type != NOT_INIT &&
3014 !__is_pointer_value(env->allow_ptr_leaks, rcur)))
1a0dc1ac
AS
3015 continue;
3016
3c2ce60b
DB
3017 /* Don't care about the reg->id in this case. */
3018 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
3019 rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
3020 rold->map_ptr == rcur->map_ptr)
3021 continue;
3022
969bf05e 3023 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
1ad2f583 3024 compare_ptrs_to_packet(env, rold, rcur))
969bf05e
AS
3025 continue;
3026
1a0dc1ac 3027 return false;
f1bca824
AS
3028 }
3029
3030 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3031 if (old->stack_slot_type[i] == STACK_INVALID)
3032 continue;
3033 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3034 /* Ex: old explored (safe) state has STACK_SPILL in
3035 * this stack slot, but current has has STACK_MISC ->
3036 * this verifier states are not equivalent,
3037 * return false to continue verification of this path
3038 */
f1bca824 3039 return false;
9c399760
AS
3040 if (i % BPF_REG_SIZE)
3041 continue;
d25da6ca
DB
3042 if (old->stack_slot_type[i] != STACK_SPILL)
3043 continue;
9c399760
AS
3044 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
3045 &cur->spilled_regs[i / BPF_REG_SIZE],
3046 sizeof(old->spilled_regs[0])))
3047 /* when explored and current stack slot types are
3048 * the same, check that stored pointers types
3049 * are the same as well.
3050 * Ex: explored safe path could have stored
58e2af8b 3051 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 3052 * but current path has stored:
58e2af8b 3053 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
3054 * such verifier states are not equivalent.
3055 * return false to continue verification of this path
3056 */
3057 return false;
3058 else
3059 continue;
f1bca824
AS
3060 }
3061 return true;
3062}
3063
58e2af8b 3064static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3065{
58e2af8b
JK
3066 struct bpf_verifier_state_list *new_sl;
3067 struct bpf_verifier_state_list *sl;
f1bca824
AS
3068
3069 sl = env->explored_states[insn_idx];
3070 if (!sl)
3071 /* this 'insn_idx' instruction wasn't marked, so we will not
3072 * be doing state search here
3073 */
3074 return 0;
3075
3076 while (sl != STATE_LIST_MARK) {
48461135 3077 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
3078 /* reached equivalent register/stack state,
3079 * prune the search
3080 */
3081 return 1;
3082 sl = sl->next;
3083 }
3084
3085 /* there were no equivalent states, remember current one.
3086 * technically the current state is not proven to be safe yet,
3087 * but it will either reach bpf_exit (which means it's safe) or
3088 * it will be rejected. Since there are no loops, we won't be
3089 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3090 */
58e2af8b 3091 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3092 if (!new_sl)
3093 return -ENOMEM;
3094
3095 /* add new state to the head of linked list */
3096 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3097 new_sl->next = env->explored_states[insn_idx];
3098 env->explored_states[insn_idx] = new_sl;
3099 return 0;
3100}
3101
13a27dfc
JK
3102static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3103 int insn_idx, int prev_insn_idx)
3104{
3105 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3106 return 0;
3107
3108 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3109}
3110
58e2af8b 3111static int do_check(struct bpf_verifier_env *env)
17a52670 3112{
58e2af8b 3113 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3114 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3115 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3116 int insn_cnt = env->prog->len;
3117 int insn_idx, prev_insn_idx = 0;
3118 int insn_processed = 0;
3119 bool do_print_state = false;
3120
3121 init_reg_state(regs);
3122 insn_idx = 0;
48461135 3123 env->varlen_map_value_access = false;
17a52670
AS
3124 for (;;) {
3125 struct bpf_insn *insn;
3126 u8 class;
3127 int err;
3128
3129 if (insn_idx >= insn_cnt) {
3130 verbose("invalid insn idx %d insn_cnt %d\n",
3131 insn_idx, insn_cnt);
3132 return -EFAULT;
3133 }
3134
3135 insn = &insns[insn_idx];
3136 class = BPF_CLASS(insn->code);
3137
07016151 3138 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3139 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3140 insn_processed);
3141 return -E2BIG;
3142 }
3143
f1bca824
AS
3144 err = is_state_visited(env, insn_idx);
3145 if (err < 0)
3146 return err;
3147 if (err == 1) {
3148 /* found equivalent state, can prune the search */
3149 if (log_level) {
3150 if (do_print_state)
3151 verbose("\nfrom %d to %d: safe\n",
3152 prev_insn_idx, insn_idx);
3153 else
3154 verbose("%d: safe\n", insn_idx);
3155 }
3156 goto process_bpf_exit;
3157 }
3158
3c2ce60b
DB
3159 if (need_resched())
3160 cond_resched();
3161
c5fc9692
DM
3162 if (log_level > 1 || (log_level && do_print_state)) {
3163 if (log_level > 1)
3164 verbose("%d:", insn_idx);
3165 else
3166 verbose("\nfrom %d to %d:",
3167 prev_insn_idx, insn_idx);
1a0dc1ac 3168 print_verifier_state(&env->cur_state);
17a52670
AS
3169 do_print_state = false;
3170 }
3171
3172 if (log_level) {
3173 verbose("%d: ", insn_idx);
0d0e5769 3174 print_bpf_insn(env, insn);
17a52670
AS
3175 }
3176
13a27dfc
JK
3177 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3178 if (err)
3179 return err;
3180
2df70878 3181 env->insn_aux_data[insn_idx].seen = true;
17a52670 3182 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3183 err = check_alu_op(env, insn);
17a52670
AS
3184 if (err)
3185 return err;
3186
3187 } else if (class == BPF_LDX) {
3df126f3 3188 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3189
3190 /* check for reserved fields is already done */
3191
17a52670
AS
3192 /* check src operand */
3193 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3194 if (err)
3195 return err;
3196
3197 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
3198 if (err)
3199 return err;
3200
725f9dcd
AS
3201 src_reg_type = regs[insn->src_reg].type;
3202
17a52670
AS
3203 /* check that memory (src_reg + off) is readable,
3204 * the state of dst_reg will be updated by this func
3205 */
31fd8581 3206 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3207 BPF_SIZE(insn->code), BPF_READ,
3208 insn->dst_reg);
3209 if (err)
3210 return err;
3211
3df126f3
JK
3212 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3213
3214 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3215 /* saw a valid insn
3216 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3217 * save type to validate intersecting paths
9bac3d6d 3218 */
3df126f3 3219 *prev_src_type = src_reg_type;
9bac3d6d 3220
3df126f3 3221 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3222 (src_reg_type == PTR_TO_CTX ||
3df126f3 3223 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3224 /* ABuser program is trying to use the same insn
3225 * dst_reg = *(u32*) (src_reg + off)
3226 * with different pointer types:
3227 * src_reg == ctx in one branch and
3228 * src_reg == stack|map in some other branch.
3229 * Reject it.
3230 */
3231 verbose("same insn cannot be used with different pointers\n");
3232 return -EINVAL;
3233 }
3234
17a52670 3235 } else if (class == BPF_STX) {
3df126f3 3236 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3237
17a52670 3238 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3239 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3240 if (err)
3241 return err;
3242 insn_idx++;
3243 continue;
3244 }
3245
17a52670
AS
3246 /* check src1 operand */
3247 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3248 if (err)
3249 return err;
3250 /* check src2 operand */
3251 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3252 if (err)
3253 return err;
3254
d691f9e8
AS
3255 dst_reg_type = regs[insn->dst_reg].type;
3256
17a52670 3257 /* check that memory (dst_reg + off) is writeable */
31fd8581 3258 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3259 BPF_SIZE(insn->code), BPF_WRITE,
3260 insn->src_reg);
3261 if (err)
3262 return err;
3263
3df126f3
JK
3264 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3265
3266 if (*prev_dst_type == NOT_INIT) {
3267 *prev_dst_type = dst_reg_type;
3268 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3269 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3270 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3271 verbose("same insn cannot be used with different pointers\n");
3272 return -EINVAL;
3273 }
3274
17a52670
AS
3275 } else if (class == BPF_ST) {
3276 if (BPF_MODE(insn->code) != BPF_MEM ||
3277 insn->src_reg != BPF_REG_0) {
3278 verbose("BPF_ST uses reserved fields\n");
3279 return -EINVAL;
3280 }
3281 /* check src operand */
3282 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3283 if (err)
3284 return err;
3285
3286 /* check that memory (dst_reg + off) is writeable */
31fd8581 3287 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3288 BPF_SIZE(insn->code), BPF_WRITE,
3289 -1);
3290 if (err)
3291 return err;
3292
3293 } else if (class == BPF_JMP) {
3294 u8 opcode = BPF_OP(insn->code);
3295
3296 if (opcode == BPF_CALL) {
3297 if (BPF_SRC(insn->code) != BPF_K ||
3298 insn->off != 0 ||
3299 insn->src_reg != BPF_REG_0 ||
3300 insn->dst_reg != BPF_REG_0) {
3301 verbose("BPF_CALL uses reserved fields\n");
3302 return -EINVAL;
3303 }
3304
81ed18ab 3305 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3306 if (err)
3307 return err;
3308
3309 } else if (opcode == BPF_JA) {
3310 if (BPF_SRC(insn->code) != BPF_K ||
3311 insn->imm != 0 ||
3312 insn->src_reg != BPF_REG_0 ||
3313 insn->dst_reg != BPF_REG_0) {
3314 verbose("BPF_JA uses reserved fields\n");
3315 return -EINVAL;
3316 }
3317
3318 insn_idx += insn->off + 1;
3319 continue;
3320
3321 } else if (opcode == BPF_EXIT) {
3322 if (BPF_SRC(insn->code) != BPF_K ||
3323 insn->imm != 0 ||
3324 insn->src_reg != BPF_REG_0 ||
3325 insn->dst_reg != BPF_REG_0) {
3326 verbose("BPF_EXIT uses reserved fields\n");
3327 return -EINVAL;
3328 }
3329
3330 /* eBPF calling convetion is such that R0 is used
3331 * to return the value from eBPF program.
3332 * Make sure that it's readable at this time
3333 * of bpf_exit, which means that program wrote
3334 * something into it earlier
3335 */
3336 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3337 if (err)
3338 return err;
3339
1be7f75d
AS
3340 if (is_pointer_value(env, BPF_REG_0)) {
3341 verbose("R0 leaks addr as return value\n");
3342 return -EACCES;
3343 }
3344
f1bca824 3345process_bpf_exit:
17a52670
AS
3346 insn_idx = pop_stack(env, &prev_insn_idx);
3347 if (insn_idx < 0) {
3348 break;
3349 } else {
3350 do_print_state = true;
3351 continue;
3352 }
3353 } else {
3354 err = check_cond_jmp_op(env, insn, &insn_idx);
3355 if (err)
3356 return err;
3357 }
3358 } else if (class == BPF_LD) {
3359 u8 mode = BPF_MODE(insn->code);
3360
3361 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3362 err = check_ld_abs(env, insn);
3363 if (err)
3364 return err;
3365
17a52670
AS
3366 } else if (mode == BPF_IMM) {
3367 err = check_ld_imm(env, insn);
3368 if (err)
3369 return err;
3370
3371 insn_idx++;
2df70878 3372 env->insn_aux_data[insn_idx].seen = true;
17a52670
AS
3373 } else {
3374 verbose("invalid BPF_LD mode\n");
3375 return -EINVAL;
3376 }
48461135 3377 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3378 } else {
3379 verbose("unknown insn class %d\n", class);
3380 return -EINVAL;
3381 }
3382
3383 insn_idx++;
3384 }
3385
8726679a
AS
3386 verbose("processed %d insns, stack depth %d\n",
3387 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3388 return 0;
3389}
3390
56f668df
MKL
3391static int check_map_prealloc(struct bpf_map *map)
3392{
3393 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3394 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3395 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3396 !(map->map_flags & BPF_F_NO_PREALLOC);
3397}
3398
fdc15d38
AS
3399static int check_map_prog_compatibility(struct bpf_map *map,
3400 struct bpf_prog *prog)
3401
3402{
56f668df
MKL
3403 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3404 * preallocated hash maps, since doing memory allocation
3405 * in overflow_handler can crash depending on where nmi got
3406 * triggered.
3407 */
3408 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3409 if (!check_map_prealloc(map)) {
3410 verbose("perf_event programs can only use preallocated hash map\n");
3411 return -EINVAL;
3412 }
3413 if (map->inner_map_meta &&
3414 !check_map_prealloc(map->inner_map_meta)) {
3415 verbose("perf_event programs can only use preallocated inner hash map\n");
3416 return -EINVAL;
3417 }
fdc15d38
AS
3418 }
3419 return 0;
3420}
3421
0246e64d
AS
3422/* look for pseudo eBPF instructions that access map FDs and
3423 * replace them with actual map pointers
3424 */
58e2af8b 3425static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3426{
3427 struct bpf_insn *insn = env->prog->insnsi;
3428 int insn_cnt = env->prog->len;
fdc15d38 3429 int i, j, err;
0246e64d 3430
f1f7714e 3431 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3432 if (err)
3433 return err;
3434
0246e64d 3435 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3436 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3437 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3438 verbose("BPF_LDX uses reserved fields\n");
3439 return -EINVAL;
3440 }
3441
d691f9e8
AS
3442 if (BPF_CLASS(insn->code) == BPF_STX &&
3443 ((BPF_MODE(insn->code) != BPF_MEM &&
3444 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3445 verbose("BPF_STX uses reserved fields\n");
3446 return -EINVAL;
3447 }
3448
0246e64d
AS
3449 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3450 struct bpf_map *map;
3451 struct fd f;
3452
3453 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3454 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3455 insn[1].off != 0) {
3456 verbose("invalid bpf_ld_imm64 insn\n");
3457 return -EINVAL;
3458 }
3459
3460 if (insn->src_reg == 0)
3461 /* valid generic load 64-bit imm */
3462 goto next_insn;
3463
3464 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3465 verbose("unrecognized bpf_ld_imm64 insn\n");
3466 return -EINVAL;
3467 }
3468
3469 f = fdget(insn->imm);
c2101297 3470 map = __bpf_map_get(f);
0246e64d
AS
3471 if (IS_ERR(map)) {
3472 verbose("fd %d is not pointing to valid bpf_map\n",
3473 insn->imm);
0246e64d
AS
3474 return PTR_ERR(map);
3475 }
3476
fdc15d38
AS
3477 err = check_map_prog_compatibility(map, env->prog);
3478 if (err) {
3479 fdput(f);
3480 return err;
3481 }
3482
0246e64d
AS
3483 /* store map pointer inside BPF_LD_IMM64 instruction */
3484 insn[0].imm = (u32) (unsigned long) map;
3485 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3486
3487 /* check whether we recorded this map already */
3488 for (j = 0; j < env->used_map_cnt; j++)
3489 if (env->used_maps[j] == map) {
3490 fdput(f);
3491 goto next_insn;
3492 }
3493
3494 if (env->used_map_cnt >= MAX_USED_MAPS) {
3495 fdput(f);
3496 return -E2BIG;
3497 }
3498
0246e64d
AS
3499 /* hold the map. If the program is rejected by verifier,
3500 * the map will be released by release_maps() or it
3501 * will be used by the valid program until it's unloaded
3502 * and all maps are released in free_bpf_prog_info()
3503 */
92117d84
AS
3504 map = bpf_map_inc(map, false);
3505 if (IS_ERR(map)) {
3506 fdput(f);
3507 return PTR_ERR(map);
3508 }
3509 env->used_maps[env->used_map_cnt++] = map;
3510
0246e64d
AS
3511 fdput(f);
3512next_insn:
3513 insn++;
3514 i++;
3515 }
3516 }
3517
3518 /* now all pseudo BPF_LD_IMM64 instructions load valid
3519 * 'struct bpf_map *' into a register instead of user map_fd.
3520 * These pointers will be used later by verifier to validate map access.
3521 */
3522 return 0;
3523}
3524
3525/* drop refcnt of maps used by the rejected program */
58e2af8b 3526static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3527{
3528 int i;
3529
3530 for (i = 0; i < env->used_map_cnt; i++)
3531 bpf_map_put(env->used_maps[i]);
3532}
3533
3534/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3535static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3536{
3537 struct bpf_insn *insn = env->prog->insnsi;
3538 int insn_cnt = env->prog->len;
3539 int i;
3540
3541 for (i = 0; i < insn_cnt; i++, insn++)
3542 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3543 insn->src_reg = 0;
3544}
3545
8041902d
AS
3546/* single env->prog->insni[off] instruction was replaced with the range
3547 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3548 * [0, off) and [off, end) to new locations, so the patched range stays zero
3549 */
3550static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3551 u32 off, u32 cnt)
3552{
3553 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
2df70878 3554 int i;
8041902d
AS
3555
3556 if (cnt == 1)
3557 return 0;
3558 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3559 if (!new_data)
3560 return -ENOMEM;
3561 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3562 memcpy(new_data + off + cnt - 1, old_data + off,
3563 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
2df70878
AS
3564 for (i = off; i < off + cnt - 1; i++)
3565 new_data[i].seen = true;
8041902d
AS
3566 env->insn_aux_data = new_data;
3567 vfree(old_data);
3568 return 0;
3569}
3570
3571static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3572 const struct bpf_insn *patch, u32 len)
3573{
3574 struct bpf_prog *new_prog;
3575
3576 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3577 if (!new_prog)
3578 return NULL;
3579 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3580 return NULL;
3581 return new_prog;
3582}
3583
2df70878
AS
3584/* The verifier does more data flow analysis than llvm and will not explore
3585 * branches that are dead at run time. Malicious programs can have dead code
3586 * too. Therefore replace all dead at-run-time code with nops.
3587 */
3588static void sanitize_dead_code(struct bpf_verifier_env *env)
3589{
3590 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
3591 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
3592 struct bpf_insn *insn = env->prog->insnsi;
3593 const int insn_cnt = env->prog->len;
3594 int i;
3595
3596 for (i = 0; i < insn_cnt; i++) {
3597 if (aux_data[i].seen)
3598 continue;
3599 memcpy(insn + i, &nop, sizeof(nop));
3600 }
3601}
3602
9bac3d6d
AS
3603/* convert load instructions that access fields of 'struct __sk_buff'
3604 * into sequence of instructions that access fields of 'struct sk_buff'
3605 */
58e2af8b 3606static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3607{
36bbef52 3608 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 3609 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 3610 const int insn_cnt = env->prog->len;
36bbef52 3611 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3612 struct bpf_prog *new_prog;
d691f9e8 3613 enum bpf_access_type type;
f96da094
DB
3614 bool is_narrower_load;
3615 u32 target_size;
9bac3d6d 3616
36bbef52
DB
3617 if (ops->gen_prologue) {
3618 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3619 env->prog);
3620 if (cnt >= ARRAY_SIZE(insn_buf)) {
3621 verbose("bpf verifier is misconfigured\n");
3622 return -EINVAL;
3623 } else if (cnt) {
8041902d 3624 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3625 if (!new_prog)
3626 return -ENOMEM;
8041902d 3627
36bbef52 3628 env->prog = new_prog;
3df126f3 3629 delta += cnt - 1;
36bbef52
DB
3630 }
3631 }
3632
3633 if (!ops->convert_ctx_access)
9bac3d6d
AS
3634 return 0;
3635
3df126f3 3636 insn = env->prog->insnsi + delta;
36bbef52 3637
9bac3d6d 3638 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3639 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3640 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3641 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3642 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3643 type = BPF_READ;
62c7989b
DB
3644 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3645 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3646 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3647 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3648 type = BPF_WRITE;
3649 else
9bac3d6d
AS
3650 continue;
3651
674d8995
AS
3652 if (type == BPF_WRITE &&
3653 env->insn_aux_data[i + delta].sanitize_stack_off) {
3654 struct bpf_insn patch[] = {
3655 /* Sanitize suspicious stack slot with zero.
3656 * There are no memory dependencies for this store,
3657 * since it's only using frame pointer and immediate
3658 * constant of zero
3659 */
3660 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
3661 env->insn_aux_data[i + delta].sanitize_stack_off,
3662 0),
3663 /* the original STX instruction will immediately
3664 * overwrite the same stack slot with appropriate value
3665 */
3666 *insn,
3667 };
3668
3669 cnt = ARRAY_SIZE(patch);
3670 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
3671 if (!new_prog)
3672 return -ENOMEM;
3673
3674 delta += cnt - 1;
3675 env->prog = new_prog;
3676 insn = new_prog->insnsi + i + delta;
3677 continue;
3678 }
3679
8041902d 3680 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3681 continue;
9bac3d6d 3682
31fd8581 3683 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 3684 size = BPF_LDST_BYTES(insn);
31fd8581
YS
3685
3686 /* If the read access is a narrower load of the field,
3687 * convert to a 4/8-byte load, to minimum program type specific
3688 * convert_ctx_access changes. If conversion is successful,
3689 * we will apply proper mask to the result.
3690 */
f96da094 3691 is_narrower_load = size < ctx_field_size;
31fd8581 3692 if (is_narrower_load) {
f96da094
DB
3693 u32 off = insn->off;
3694 u8 size_code;
3695
3696 if (type == BPF_WRITE) {
3697 verbose("bpf verifier narrow ctx access misconfigured\n");
3698 return -EINVAL;
3699 }
31fd8581 3700
f96da094 3701 size_code = BPF_H;
31fd8581
YS
3702 if (ctx_field_size == 4)
3703 size_code = BPF_W;
3704 else if (ctx_field_size == 8)
3705 size_code = BPF_DW;
f96da094 3706
31fd8581
YS
3707 insn->off = off & ~(ctx_field_size - 1);
3708 insn->code = BPF_LDX | BPF_MEM | size_code;
3709 }
f96da094
DB
3710
3711 target_size = 0;
3712 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
3713 &target_size);
3714 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
3715 (ctx_field_size && !target_size)) {
9bac3d6d
AS
3716 verbose("bpf verifier is misconfigured\n");
3717 return -EINVAL;
3718 }
f96da094
DB
3719
3720 if (is_narrower_load && size < target_size) {
31fd8581
YS
3721 if (ctx_field_size <= 4)
3722 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 3723 (1 << size * 8) - 1);
31fd8581
YS
3724 else
3725 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 3726 (1 << size * 8) - 1);
31fd8581 3727 }
9bac3d6d 3728
8041902d 3729 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3730 if (!new_prog)
3731 return -ENOMEM;
3732
3df126f3 3733 delta += cnt - 1;
9bac3d6d
AS
3734
3735 /* keep walking new program and skip insns we just inserted */
3736 env->prog = new_prog;
3df126f3 3737 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3738 }
3739
3740 return 0;
3741}
3742
79741b3b 3743/* fixup insn->imm field of bpf_call instructions
81ed18ab 3744 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3745 *
3746 * this function is called after eBPF program passed verification
3747 */
79741b3b 3748static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3749{
79741b3b
AS
3750 struct bpf_prog *prog = env->prog;
3751 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3752 const struct bpf_func_proto *fn;
79741b3b 3753 const int insn_cnt = prog->len;
81ed18ab
AS
3754 struct bpf_insn insn_buf[16];
3755 struct bpf_prog *new_prog;
3756 struct bpf_map *map_ptr;
3757 int i, cnt, delta = 0;
e245c5c6 3758
79741b3b
AS
3759 for (i = 0; i < insn_cnt; i++, insn++) {
3760 if (insn->code != (BPF_JMP | BPF_CALL))
3761 continue;
e245c5c6 3762
79741b3b
AS
3763 if (insn->imm == BPF_FUNC_get_route_realm)
3764 prog->dst_needed = 1;
3765 if (insn->imm == BPF_FUNC_get_prandom_u32)
3766 bpf_user_rnd_init_once();
79741b3b 3767 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3768 /* If we tail call into other programs, we
3769 * cannot make any assumptions since they can
3770 * be replaced dynamically during runtime in
3771 * the program array.
3772 */
3773 prog->cb_access = 1;
80a58d02 3774 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 3775
79741b3b
AS
3776 /* mark bpf_tail_call as different opcode to avoid
3777 * conditional branch in the interpeter for every normal
3778 * call and to prevent accidental JITing by JIT compiler
3779 * that doesn't support bpf_tail_call yet
e245c5c6 3780 */
79741b3b 3781 insn->imm = 0;
71189fa9 3782 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
3783 continue;
3784 }
e245c5c6 3785
81ed18ab
AS
3786 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3787 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3788 if (map_ptr == BPF_MAP_PTR_POISON ||
3789 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3790 goto patch_call_imm;
3791
3792 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3793 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3794 verbose("bpf verifier is misconfigured\n");
3795 return -EINVAL;
3796 }
3797
3798 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3799 cnt);
3800 if (!new_prog)
3801 return -ENOMEM;
3802
3803 delta += cnt - 1;
3804
3805 /* keep walking new program and skip insns we just inserted */
3806 env->prog = prog = new_prog;
3807 insn = new_prog->insnsi + i + delta;
3808 continue;
3809 }
3810
3811patch_call_imm:
79741b3b
AS
3812 fn = prog->aux->ops->get_func_proto(insn->imm);
3813 /* all functions that have prototype and verifier allowed
3814 * programs to call them, must be real in-kernel functions
3815 */
3816 if (!fn->func) {
3817 verbose("kernel subsystem misconfigured func %s#%d\n",
3818 func_id_name(insn->imm), insn->imm);
3819 return -EFAULT;
e245c5c6 3820 }
79741b3b 3821 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3822 }
e245c5c6 3823
79741b3b
AS
3824 return 0;
3825}
e245c5c6 3826
58e2af8b 3827static void free_states(struct bpf_verifier_env *env)
f1bca824 3828{
58e2af8b 3829 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3830 int i;
3831
3832 if (!env->explored_states)
3833 return;
3834
3835 for (i = 0; i < env->prog->len; i++) {
3836 sl = env->explored_states[i];
3837
3838 if (sl)
3839 while (sl != STATE_LIST_MARK) {
3840 sln = sl->next;
3841 kfree(sl);
3842 sl = sln;
3843 }
3844 }
3845
3846 kfree(env->explored_states);
3847}
3848
9bac3d6d 3849int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3850{
cbd35700 3851 char __user *log_ubuf = NULL;
58e2af8b 3852 struct bpf_verifier_env *env;
51580e79
AS
3853 int ret = -EINVAL;
3854
58e2af8b 3855 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3856 * allocate/free it every time bpf_check() is called
3857 */
58e2af8b 3858 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3859 if (!env)
3860 return -ENOMEM;
3861
3df126f3
JK
3862 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3863 (*prog)->len);
3864 ret = -ENOMEM;
3865 if (!env->insn_aux_data)
3866 goto err_free_env;
9bac3d6d 3867 env->prog = *prog;
0246e64d 3868
cbd35700
AS
3869 /* grab the mutex to protect few globals used by verifier */
3870 mutex_lock(&bpf_verifier_lock);
3871
3872 if (attr->log_level || attr->log_buf || attr->log_size) {
3873 /* user requested verbose verifier output
3874 * and supplied buffer to store the verification trace
3875 */
3876 log_level = attr->log_level;
3877 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3878 log_size = attr->log_size;
3879 log_len = 0;
3880
3881 ret = -EINVAL;
3882 /* log_* values have to be sane */
3883 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3884 log_level == 0 || log_ubuf == NULL)
3df126f3 3885 goto err_unlock;
cbd35700
AS
3886
3887 ret = -ENOMEM;
3888 log_buf = vmalloc(log_size);
3889 if (!log_buf)
3df126f3 3890 goto err_unlock;
cbd35700
AS
3891 } else {
3892 log_level = 0;
3893 }
1ad2f583
DB
3894
3895 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3896 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 3897 env->strict_alignment = true;
cbd35700 3898
0246e64d
AS
3899 ret = replace_map_fd_with_map_ptr(env);
3900 if (ret < 0)
3901 goto skip_full_check;
3902
9bac3d6d 3903 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3904 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3905 GFP_USER);
3906 ret = -ENOMEM;
3907 if (!env->explored_states)
3908 goto skip_full_check;
3909
475fb78f
AS
3910 ret = check_cfg(env);
3911 if (ret < 0)
3912 goto skip_full_check;
3913
1be7f75d
AS
3914 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3915
17a52670 3916 ret = do_check(env);
cbd35700 3917
0246e64d 3918skip_full_check:
17a52670 3919 while (pop_stack(env, NULL) >= 0);
f1bca824 3920 free_states(env);
0246e64d 3921
2df70878
AS
3922 if (ret == 0)
3923 sanitize_dead_code(env);
3924
9bac3d6d
AS
3925 if (ret == 0)
3926 /* program is valid, convert *(u32*)(ctx + off) accesses */
3927 ret = convert_ctx_accesses(env);
3928
e245c5c6 3929 if (ret == 0)
79741b3b 3930 ret = fixup_bpf_calls(env);
e245c5c6 3931
cbd35700
AS
3932 if (log_level && log_len >= log_size - 1) {
3933 BUG_ON(log_len >= log_size);
3934 /* verifier log exceeded user supplied buffer */
3935 ret = -ENOSPC;
3936 /* fall through to return what was recorded */
3937 }
3938
3939 /* copy verifier log back to user space including trailing zero */
3940 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3941 ret = -EFAULT;
3942 goto free_log_buf;
3943 }
3944
0246e64d
AS
3945 if (ret == 0 && env->used_map_cnt) {
3946 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3947 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3948 sizeof(env->used_maps[0]),
3949 GFP_KERNEL);
0246e64d 3950
9bac3d6d 3951 if (!env->prog->aux->used_maps) {
0246e64d
AS
3952 ret = -ENOMEM;
3953 goto free_log_buf;
3954 }
3955
9bac3d6d 3956 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3957 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3958 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3959
3960 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3961 * bpf_ld_imm64 instructions
3962 */
3963 convert_pseudo_ld_imm64(env);
3964 }
cbd35700
AS
3965
3966free_log_buf:
3967 if (log_level)
3968 vfree(log_buf);
9bac3d6d 3969 if (!env->prog->aux->used_maps)
0246e64d
AS
3970 /* if we didn't copy map pointers into bpf_prog_info, release
3971 * them now. Otherwise free_bpf_prog_info() will release them.
3972 */
3973 release_maps(env);
9bac3d6d 3974 *prog = env->prog;
3df126f3 3975err_unlock:
cbd35700 3976 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3977 vfree(env->insn_aux_data);
3978err_free_env:
3979 kfree(env);
51580e79
AS
3980 return ret;
3981}
13a27dfc
JK
3982
3983int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3984 void *priv)
3985{
3986 struct bpf_verifier_env *env;
3987 int ret;
3988
3989 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3990 if (!env)
3991 return -ENOMEM;
3992
3993 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3994 prog->len);
3995 ret = -ENOMEM;
3996 if (!env->insn_aux_data)
3997 goto err_free_env;
3998 env->prog = prog;
3999 env->analyzer_ops = ops;
4000 env->analyzer_priv = priv;
4001
4002 /* grab the mutex to protect few globals used by verifier */
4003 mutex_lock(&bpf_verifier_lock);
4004
4005 log_level = 0;
1ad2f583 4006
e07b98d9 4007 env->strict_alignment = false;
1ad2f583
DB
4008 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4009 env->strict_alignment = true;
13a27dfc
JK
4010
4011 env->explored_states = kcalloc(env->prog->len,
4012 sizeof(struct bpf_verifier_state_list *),
4013 GFP_KERNEL);
4014 ret = -ENOMEM;
4015 if (!env->explored_states)
4016 goto skip_full_check;
4017
4018 ret = check_cfg(env);
4019 if (ret < 0)
4020 goto skip_full_check;
4021
4022 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4023
4024 ret = do_check(env);
4025
4026skip_full_check:
4027 while (pop_stack(env, NULL) >= 0);
4028 free_states(env);
4029
4030 mutex_unlock(&bpf_verifier_lock);
4031 vfree(env->insn_aux_data);
4032err_free_env:
4033 kfree(env);
4034 return ret;
4035}
4036EXPORT_SYMBOL_GPL(bpf_analyzer);