]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
mm/error_inject: Fix allow_error_inject function signatures.
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
51580e79 24
f4ac7e0b
JK
25#include "disasm.h"
26
00176a34 27static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 28#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
29 [_id] = & _name ## _verifier_ops,
30#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 31#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
32#include <linux/bpf_types.h>
33#undef BPF_PROG_TYPE
34#undef BPF_MAP_TYPE
f2e10bff 35#undef BPF_LINK_TYPE
00176a34
JK
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
c64b7983
JS
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84 * four pointer types recognized by check_mem_access() function.
51580e79
AS
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
143 *
144 * The following reference types represent a potential reference to a kernel
145 * resource which, after first being allocated, must be checked and freed by
146 * the BPF program:
147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148 *
149 * When the verifier sees a helper call return a reference type, it allocates a
150 * pointer id for the reference and stores it in the current function state.
151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153 * passes through a NULL-check conditional. For the branch wherein the state is
154 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
155 *
156 * For each helper function that allocates a reference, such as
157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158 * bpf_sk_release(). When a reference type passes into the release function,
159 * the verifier also releases the reference. If any unchecked or unreleased
160 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
161 */
162
17a52670 163/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 164struct bpf_verifier_stack_elem {
17a52670
AS
165 /* verifer state is 'st'
166 * before processing instruction 'insn_idx'
167 * and after processing instruction 'prev_insn_idx'
168 */
58e2af8b 169 struct bpf_verifier_state st;
17a52670
AS
170 int insn_idx;
171 int prev_insn_idx;
58e2af8b 172 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
173 /* length of verifier log at the time this state was pushed on stack */
174 u32 log_pos;
cbd35700
AS
175};
176
b285fcb7 177#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 178#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 179
d2e4c1e6
DB
180#define BPF_MAP_KEY_POISON (1ULL << 63)
181#define BPF_MAP_KEY_SEEN (1ULL << 62)
182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
d2e4c1e6 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
d2e4c1e6 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
203 aux->map_ptr_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
206
207static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208{
209 return aux->map_key_state & BPF_MAP_KEY_POISON;
210}
211
212static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213{
214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215}
216
217static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218{
219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220}
221
222static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223{
224 bool poisoned = bpf_map_key_poisoned(aux);
225
226 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 228}
fad73a1a 229
33ff9823
DB
230struct bpf_call_arg_meta {
231 struct bpf_map *map_ptr;
435faee1 232 bool raw_mode;
36bbef52 233 bool pkt_access;
435faee1
DB
234 int regno;
235 int access_size;
457f4436 236 int mem_size;
10060503 237 u64 msize_max_value;
1b986589 238 int ref_obj_id;
d83525ca 239 int func_id;
a7658e1a 240 u32 btf_id;
33ff9823
DB
241};
242
8580ac94
AS
243struct btf *btf_vmlinux;
244
cbd35700
AS
245static DEFINE_MUTEX(bpf_verifier_lock);
246
d9762e84
MKL
247static const struct bpf_line_info *
248find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249{
250 const struct bpf_line_info *linfo;
251 const struct bpf_prog *prog;
252 u32 i, nr_linfo;
253
254 prog = env->prog;
255 nr_linfo = prog->aux->nr_linfo;
256
257 if (!nr_linfo || insn_off >= prog->len)
258 return NULL;
259
260 linfo = prog->aux->linfo;
261 for (i = 1; i < nr_linfo; i++)
262 if (insn_off < linfo[i].insn_off)
263 break;
264
265 return &linfo[i - 1];
266}
267
77d2e05a
MKL
268void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 va_list args)
cbd35700 270{
a2a7d570 271 unsigned int n;
cbd35700 272
a2a7d570 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
274
275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 "verifier log line truncated - local buffer too short\n");
277
278 n = min(log->len_total - log->len_used - 1, n);
279 log->kbuf[n] = '\0';
280
8580ac94
AS
281 if (log->level == BPF_LOG_KERNEL) {
282 pr_err("BPF:%s\n", log->kbuf);
283 return;
284 }
a2a7d570
JK
285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 log->len_used += n;
287 else
288 log->ubuf = NULL;
cbd35700 289}
abe08840 290
6f8a57cc
AN
291static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292{
293 char zero = 0;
294
295 if (!bpf_verifier_log_needed(log))
296 return;
297
298 log->len_used = new_pos;
299 if (put_user(zero, log->ubuf + new_pos))
300 log->ubuf = NULL;
301}
302
abe08840
JO
303/* log_level controls verbosity level of eBPF verifier.
304 * bpf_verifier_log_write() is used to dump the verification trace to the log,
305 * so the user can figure out what's wrong with the program
430e68d1 306 */
abe08840
JO
307__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 const char *fmt, ...)
309{
310 va_list args;
311
77d2e05a
MKL
312 if (!bpf_verifier_log_needed(&env->log))
313 return;
314
abe08840 315 va_start(args, fmt);
77d2e05a 316 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
317 va_end(args);
318}
319EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320
321__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322{
77d2e05a 323 struct bpf_verifier_env *env = private_data;
abe08840
JO
324 va_list args;
325
77d2e05a
MKL
326 if (!bpf_verifier_log_needed(&env->log))
327 return;
328
abe08840 329 va_start(args, fmt);
77d2e05a 330 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
331 va_end(args);
332}
cbd35700 333
9e15db66
AS
334__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 const char *fmt, ...)
336{
337 va_list args;
338
339 if (!bpf_verifier_log_needed(log))
340 return;
341
342 va_start(args, fmt);
343 bpf_verifier_vlog(log, fmt, args);
344 va_end(args);
345}
346
d9762e84
MKL
347static const char *ltrim(const char *s)
348{
349 while (isspace(*s))
350 s++;
351
352 return s;
353}
354
355__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 u32 insn_off,
357 const char *prefix_fmt, ...)
358{
359 const struct bpf_line_info *linfo;
360
361 if (!bpf_verifier_log_needed(&env->log))
362 return;
363
364 linfo = find_linfo(env, insn_off);
365 if (!linfo || linfo == env->prev_linfo)
366 return;
367
368 if (prefix_fmt) {
369 va_list args;
370
371 va_start(args, prefix_fmt);
372 bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 va_end(args);
374 }
375
376 verbose(env, "%s\n",
377 ltrim(btf_name_by_offset(env->prog->aux->btf,
378 linfo->line_off)));
379
380 env->prev_linfo = linfo;
381}
382
de8f3a83
DB
383static bool type_is_pkt_pointer(enum bpf_reg_type type)
384{
385 return type == PTR_TO_PACKET ||
386 type == PTR_TO_PACKET_META;
387}
388
46f8bc92
MKL
389static bool type_is_sk_pointer(enum bpf_reg_type type)
390{
391 return type == PTR_TO_SOCKET ||
655a51e5 392 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
393 type == PTR_TO_TCP_SOCK ||
394 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
395}
396
cac616db
JF
397static bool reg_type_not_null(enum bpf_reg_type type)
398{
399 return type == PTR_TO_SOCKET ||
400 type == PTR_TO_TCP_SOCK ||
401 type == PTR_TO_MAP_VALUE ||
01c66c48 402 type == PTR_TO_SOCK_COMMON;
cac616db
JF
403}
404
840b9615
JS
405static bool reg_type_may_be_null(enum bpf_reg_type type)
406{
fd978bf7 407 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 408 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 409 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 410 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 411 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
412 type == PTR_TO_MEM_OR_NULL ||
413 type == PTR_TO_RDONLY_BUF_OR_NULL ||
414 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
415}
416
d83525ca
AS
417static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
418{
419 return reg->type == PTR_TO_MAP_VALUE &&
420 map_value_has_spin_lock(reg->map_ptr);
421}
422
cba368c1
MKL
423static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
424{
425 return type == PTR_TO_SOCKET ||
426 type == PTR_TO_SOCKET_OR_NULL ||
427 type == PTR_TO_TCP_SOCK ||
457f4436
AN
428 type == PTR_TO_TCP_SOCK_OR_NULL ||
429 type == PTR_TO_MEM ||
430 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
431}
432
1b986589 433static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 434{
1b986589 435 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
436}
437
438/* Determine whether the function releases some resources allocated by another
439 * function call. The first reference type argument will be assumed to be
440 * released by release_reference().
441 */
442static bool is_release_function(enum bpf_func_id func_id)
443{
457f4436
AN
444 return func_id == BPF_FUNC_sk_release ||
445 func_id == BPF_FUNC_ringbuf_submit ||
446 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
447}
448
64d85290 449static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
450{
451 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 452 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 453 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
454 func_id == BPF_FUNC_map_lookup_elem ||
455 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
456}
457
458static bool is_acquire_function(enum bpf_func_id func_id,
459 const struct bpf_map *map)
460{
461 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
462
463 if (func_id == BPF_FUNC_sk_lookup_tcp ||
464 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
465 func_id == BPF_FUNC_skc_lookup_tcp ||
466 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
467 return true;
468
469 if (func_id == BPF_FUNC_map_lookup_elem &&
470 (map_type == BPF_MAP_TYPE_SOCKMAP ||
471 map_type == BPF_MAP_TYPE_SOCKHASH))
472 return true;
473
474 return false;
46f8bc92
MKL
475}
476
1b986589
MKL
477static bool is_ptr_cast_function(enum bpf_func_id func_id)
478{
479 return func_id == BPF_FUNC_tcp_sock ||
480 func_id == BPF_FUNC_sk_fullsock;
481}
482
17a52670
AS
483/* string representation of 'enum bpf_reg_type' */
484static const char * const reg_type_str[] = {
485 [NOT_INIT] = "?",
f1174f77 486 [SCALAR_VALUE] = "inv",
17a52670
AS
487 [PTR_TO_CTX] = "ctx",
488 [CONST_PTR_TO_MAP] = "map_ptr",
489 [PTR_TO_MAP_VALUE] = "map_value",
490 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 491 [PTR_TO_STACK] = "fp",
969bf05e 492 [PTR_TO_PACKET] = "pkt",
de8f3a83 493 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 494 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 495 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
496 [PTR_TO_SOCKET] = "sock",
497 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
498 [PTR_TO_SOCK_COMMON] = "sock_common",
499 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
500 [PTR_TO_TCP_SOCK] = "tcp_sock",
501 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 502 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 503 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 504 [PTR_TO_BTF_ID] = "ptr_",
b121b341 505 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
457f4436
AN
506 [PTR_TO_MEM] = "mem",
507 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
508 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
509 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
510 [PTR_TO_RDWR_BUF] = "rdwr_buf",
511 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
512};
513
8efea21d
EC
514static char slot_type_char[] = {
515 [STACK_INVALID] = '?',
516 [STACK_SPILL] = 'r',
517 [STACK_MISC] = 'm',
518 [STACK_ZERO] = '0',
519};
520
4e92024a
AS
521static void print_liveness(struct bpf_verifier_env *env,
522 enum bpf_reg_liveness live)
523{
9242b5f5 524 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
525 verbose(env, "_");
526 if (live & REG_LIVE_READ)
527 verbose(env, "r");
528 if (live & REG_LIVE_WRITTEN)
529 verbose(env, "w");
9242b5f5
AS
530 if (live & REG_LIVE_DONE)
531 verbose(env, "D");
4e92024a
AS
532}
533
f4d7e40a
AS
534static struct bpf_func_state *func(struct bpf_verifier_env *env,
535 const struct bpf_reg_state *reg)
536{
537 struct bpf_verifier_state *cur = env->cur_state;
538
539 return cur->frame[reg->frameno];
540}
541
9e15db66
AS
542const char *kernel_type_name(u32 id)
543{
544 return btf_name_by_offset(btf_vmlinux,
545 btf_type_by_id(btf_vmlinux, id)->name_off);
546}
547
61bd5218 548static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 549 const struct bpf_func_state *state)
17a52670 550{
f4d7e40a 551 const struct bpf_reg_state *reg;
17a52670
AS
552 enum bpf_reg_type t;
553 int i;
554
f4d7e40a
AS
555 if (state->frameno)
556 verbose(env, " frame%d:", state->frameno);
17a52670 557 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
558 reg = &state->regs[i];
559 t = reg->type;
17a52670
AS
560 if (t == NOT_INIT)
561 continue;
4e92024a
AS
562 verbose(env, " R%d", i);
563 print_liveness(env, reg->live);
564 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
565 if (t == SCALAR_VALUE && reg->precise)
566 verbose(env, "P");
f1174f77
EC
567 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
568 tnum_is_const(reg->var_off)) {
569 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 570 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 571 } else {
b121b341 572 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
9e15db66 573 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
574 verbose(env, "(id=%d", reg->id);
575 if (reg_type_may_be_refcounted_or_null(t))
576 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 577 if (t != SCALAR_VALUE)
61bd5218 578 verbose(env, ",off=%d", reg->off);
de8f3a83 579 if (type_is_pkt_pointer(t))
61bd5218 580 verbose(env, ",r=%d", reg->range);
f1174f77
EC
581 else if (t == CONST_PTR_TO_MAP ||
582 t == PTR_TO_MAP_VALUE ||
583 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 584 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
585 reg->map_ptr->key_size,
586 reg->map_ptr->value_size);
7d1238f2
EC
587 if (tnum_is_const(reg->var_off)) {
588 /* Typically an immediate SCALAR_VALUE, but
589 * could be a pointer whose offset is too big
590 * for reg->off
591 */
61bd5218 592 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
593 } else {
594 if (reg->smin_value != reg->umin_value &&
595 reg->smin_value != S64_MIN)
61bd5218 596 verbose(env, ",smin_value=%lld",
7d1238f2
EC
597 (long long)reg->smin_value);
598 if (reg->smax_value != reg->umax_value &&
599 reg->smax_value != S64_MAX)
61bd5218 600 verbose(env, ",smax_value=%lld",
7d1238f2
EC
601 (long long)reg->smax_value);
602 if (reg->umin_value != 0)
61bd5218 603 verbose(env, ",umin_value=%llu",
7d1238f2
EC
604 (unsigned long long)reg->umin_value);
605 if (reg->umax_value != U64_MAX)
61bd5218 606 verbose(env, ",umax_value=%llu",
7d1238f2
EC
607 (unsigned long long)reg->umax_value);
608 if (!tnum_is_unknown(reg->var_off)) {
609 char tn_buf[48];
f1174f77 610
7d1238f2 611 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 612 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 613 }
3f50f132
JF
614 if (reg->s32_min_value != reg->smin_value &&
615 reg->s32_min_value != S32_MIN)
616 verbose(env, ",s32_min_value=%d",
617 (int)(reg->s32_min_value));
618 if (reg->s32_max_value != reg->smax_value &&
619 reg->s32_max_value != S32_MAX)
620 verbose(env, ",s32_max_value=%d",
621 (int)(reg->s32_max_value));
622 if (reg->u32_min_value != reg->umin_value &&
623 reg->u32_min_value != U32_MIN)
624 verbose(env, ",u32_min_value=%d",
625 (int)(reg->u32_min_value));
626 if (reg->u32_max_value != reg->umax_value &&
627 reg->u32_max_value != U32_MAX)
628 verbose(env, ",u32_max_value=%d",
629 (int)(reg->u32_max_value));
f1174f77 630 }
61bd5218 631 verbose(env, ")");
f1174f77 632 }
17a52670 633 }
638f5b90 634 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
635 char types_buf[BPF_REG_SIZE + 1];
636 bool valid = false;
637 int j;
638
639 for (j = 0; j < BPF_REG_SIZE; j++) {
640 if (state->stack[i].slot_type[j] != STACK_INVALID)
641 valid = true;
642 types_buf[j] = slot_type_char[
643 state->stack[i].slot_type[j]];
644 }
645 types_buf[BPF_REG_SIZE] = 0;
646 if (!valid)
647 continue;
648 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
649 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
650 if (state->stack[i].slot_type[0] == STACK_SPILL) {
651 reg = &state->stack[i].spilled_ptr;
652 t = reg->type;
653 verbose(env, "=%s", reg_type_str[t]);
654 if (t == SCALAR_VALUE && reg->precise)
655 verbose(env, "P");
656 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
657 verbose(env, "%lld", reg->var_off.value + reg->off);
658 } else {
8efea21d 659 verbose(env, "=%s", types_buf);
b5dc0163 660 }
17a52670 661 }
fd978bf7
JS
662 if (state->acquired_refs && state->refs[0].id) {
663 verbose(env, " refs=%d", state->refs[0].id);
664 for (i = 1; i < state->acquired_refs; i++)
665 if (state->refs[i].id)
666 verbose(env, ",%d", state->refs[i].id);
667 }
61bd5218 668 verbose(env, "\n");
17a52670
AS
669}
670
84dbf350
JS
671#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
672static int copy_##NAME##_state(struct bpf_func_state *dst, \
673 const struct bpf_func_state *src) \
674{ \
675 if (!src->FIELD) \
676 return 0; \
677 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
678 /* internal bug, make state invalid to reject the program */ \
679 memset(dst, 0, sizeof(*dst)); \
680 return -EFAULT; \
681 } \
682 memcpy(dst->FIELD, src->FIELD, \
683 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
684 return 0; \
638f5b90 685}
fd978bf7
JS
686/* copy_reference_state() */
687COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
688/* copy_stack_state() */
689COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
690#undef COPY_STATE_FN
691
692#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
693static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
694 bool copy_old) \
695{ \
696 u32 old_size = state->COUNT; \
697 struct bpf_##NAME##_state *new_##FIELD; \
698 int slot = size / SIZE; \
699 \
700 if (size <= old_size || !size) { \
701 if (copy_old) \
702 return 0; \
703 state->COUNT = slot * SIZE; \
704 if (!size && old_size) { \
705 kfree(state->FIELD); \
706 state->FIELD = NULL; \
707 } \
708 return 0; \
709 } \
710 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
711 GFP_KERNEL); \
712 if (!new_##FIELD) \
713 return -ENOMEM; \
714 if (copy_old) { \
715 if (state->FIELD) \
716 memcpy(new_##FIELD, state->FIELD, \
717 sizeof(*new_##FIELD) * (old_size / SIZE)); \
718 memset(new_##FIELD + old_size / SIZE, 0, \
719 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
720 } \
721 state->COUNT = slot * SIZE; \
722 kfree(state->FIELD); \
723 state->FIELD = new_##FIELD; \
724 return 0; \
725}
fd978bf7
JS
726/* realloc_reference_state() */
727REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
728/* realloc_stack_state() */
729REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
730#undef REALLOC_STATE_FN
638f5b90
AS
731
732/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
733 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 734 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
735 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
736 * which realloc_stack_state() copies over. It points to previous
737 * bpf_verifier_state which is never reallocated.
638f5b90 738 */
fd978bf7
JS
739static int realloc_func_state(struct bpf_func_state *state, int stack_size,
740 int refs_size, bool copy_old)
638f5b90 741{
fd978bf7
JS
742 int err = realloc_reference_state(state, refs_size, copy_old);
743 if (err)
744 return err;
745 return realloc_stack_state(state, stack_size, copy_old);
746}
747
748/* Acquire a pointer id from the env and update the state->refs to include
749 * this new pointer reference.
750 * On success, returns a valid pointer id to associate with the register
751 * On failure, returns a negative errno.
638f5b90 752 */
fd978bf7 753static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 754{
fd978bf7
JS
755 struct bpf_func_state *state = cur_func(env);
756 int new_ofs = state->acquired_refs;
757 int id, err;
758
759 err = realloc_reference_state(state, state->acquired_refs + 1, true);
760 if (err)
761 return err;
762 id = ++env->id_gen;
763 state->refs[new_ofs].id = id;
764 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 765
fd978bf7
JS
766 return id;
767}
768
769/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 770static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
771{
772 int i, last_idx;
773
fd978bf7
JS
774 last_idx = state->acquired_refs - 1;
775 for (i = 0; i < state->acquired_refs; i++) {
776 if (state->refs[i].id == ptr_id) {
777 if (last_idx && i != last_idx)
778 memcpy(&state->refs[i], &state->refs[last_idx],
779 sizeof(*state->refs));
780 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
781 state->acquired_refs--;
638f5b90 782 return 0;
638f5b90 783 }
638f5b90 784 }
46f8bc92 785 return -EINVAL;
fd978bf7
JS
786}
787
788static int transfer_reference_state(struct bpf_func_state *dst,
789 struct bpf_func_state *src)
790{
791 int err = realloc_reference_state(dst, src->acquired_refs, false);
792 if (err)
793 return err;
794 err = copy_reference_state(dst, src);
795 if (err)
796 return err;
638f5b90
AS
797 return 0;
798}
799
f4d7e40a
AS
800static void free_func_state(struct bpf_func_state *state)
801{
5896351e
AS
802 if (!state)
803 return;
fd978bf7 804 kfree(state->refs);
f4d7e40a
AS
805 kfree(state->stack);
806 kfree(state);
807}
808
b5dc0163
AS
809static void clear_jmp_history(struct bpf_verifier_state *state)
810{
811 kfree(state->jmp_history);
812 state->jmp_history = NULL;
813 state->jmp_history_cnt = 0;
814}
815
1969db47
AS
816static void free_verifier_state(struct bpf_verifier_state *state,
817 bool free_self)
638f5b90 818{
f4d7e40a
AS
819 int i;
820
821 for (i = 0; i <= state->curframe; i++) {
822 free_func_state(state->frame[i]);
823 state->frame[i] = NULL;
824 }
b5dc0163 825 clear_jmp_history(state);
1969db47
AS
826 if (free_self)
827 kfree(state);
638f5b90
AS
828}
829
830/* copy verifier state from src to dst growing dst stack space
831 * when necessary to accommodate larger src stack
832 */
f4d7e40a
AS
833static int copy_func_state(struct bpf_func_state *dst,
834 const struct bpf_func_state *src)
638f5b90
AS
835{
836 int err;
837
fd978bf7
JS
838 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
839 false);
840 if (err)
841 return err;
842 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
843 err = copy_reference_state(dst, src);
638f5b90
AS
844 if (err)
845 return err;
638f5b90
AS
846 return copy_stack_state(dst, src);
847}
848
f4d7e40a
AS
849static int copy_verifier_state(struct bpf_verifier_state *dst_state,
850 const struct bpf_verifier_state *src)
851{
852 struct bpf_func_state *dst;
b5dc0163 853 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
854 int i, err;
855
b5dc0163
AS
856 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
857 kfree(dst_state->jmp_history);
858 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
859 if (!dst_state->jmp_history)
860 return -ENOMEM;
861 }
862 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
863 dst_state->jmp_history_cnt = src->jmp_history_cnt;
864
f4d7e40a
AS
865 /* if dst has more stack frames then src frame, free them */
866 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
867 free_func_state(dst_state->frame[i]);
868 dst_state->frame[i] = NULL;
869 }
979d63d5 870 dst_state->speculative = src->speculative;
f4d7e40a 871 dst_state->curframe = src->curframe;
d83525ca 872 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
873 dst_state->branches = src->branches;
874 dst_state->parent = src->parent;
b5dc0163
AS
875 dst_state->first_insn_idx = src->first_insn_idx;
876 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
877 for (i = 0; i <= src->curframe; i++) {
878 dst = dst_state->frame[i];
879 if (!dst) {
880 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
881 if (!dst)
882 return -ENOMEM;
883 dst_state->frame[i] = dst;
884 }
885 err = copy_func_state(dst, src->frame[i]);
886 if (err)
887 return err;
888 }
889 return 0;
890}
891
2589726d
AS
892static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
893{
894 while (st) {
895 u32 br = --st->branches;
896
897 /* WARN_ON(br > 1) technically makes sense here,
898 * but see comment in push_stack(), hence:
899 */
900 WARN_ONCE((int)br < 0,
901 "BUG update_branch_counts:branches_to_explore=%d\n",
902 br);
903 if (br)
904 break;
905 st = st->parent;
906 }
907}
908
638f5b90 909static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 910 int *insn_idx, bool pop_log)
638f5b90
AS
911{
912 struct bpf_verifier_state *cur = env->cur_state;
913 struct bpf_verifier_stack_elem *elem, *head = env->head;
914 int err;
17a52670
AS
915
916 if (env->head == NULL)
638f5b90 917 return -ENOENT;
17a52670 918
638f5b90
AS
919 if (cur) {
920 err = copy_verifier_state(cur, &head->st);
921 if (err)
922 return err;
923 }
6f8a57cc
AN
924 if (pop_log)
925 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
926 if (insn_idx)
927 *insn_idx = head->insn_idx;
17a52670 928 if (prev_insn_idx)
638f5b90
AS
929 *prev_insn_idx = head->prev_insn_idx;
930 elem = head->next;
1969db47 931 free_verifier_state(&head->st, false);
638f5b90 932 kfree(head);
17a52670
AS
933 env->head = elem;
934 env->stack_size--;
638f5b90 935 return 0;
17a52670
AS
936}
937
58e2af8b 938static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
939 int insn_idx, int prev_insn_idx,
940 bool speculative)
17a52670 941{
638f5b90 942 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 943 struct bpf_verifier_stack_elem *elem;
638f5b90 944 int err;
17a52670 945
638f5b90 946 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
947 if (!elem)
948 goto err;
949
17a52670
AS
950 elem->insn_idx = insn_idx;
951 elem->prev_insn_idx = prev_insn_idx;
952 elem->next = env->head;
6f8a57cc 953 elem->log_pos = env->log.len_used;
17a52670
AS
954 env->head = elem;
955 env->stack_size++;
1969db47
AS
956 err = copy_verifier_state(&elem->st, cur);
957 if (err)
958 goto err;
979d63d5 959 elem->st.speculative |= speculative;
b285fcb7
AS
960 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
961 verbose(env, "The sequence of %d jumps is too complex.\n",
962 env->stack_size);
17a52670
AS
963 goto err;
964 }
2589726d
AS
965 if (elem->st.parent) {
966 ++elem->st.parent->branches;
967 /* WARN_ON(branches > 2) technically makes sense here,
968 * but
969 * 1. speculative states will bump 'branches' for non-branch
970 * instructions
971 * 2. is_state_visited() heuristics may decide not to create
972 * a new state for a sequence of branches and all such current
973 * and cloned states will be pointing to a single parent state
974 * which might have large 'branches' count.
975 */
976 }
17a52670
AS
977 return &elem->st;
978err:
5896351e
AS
979 free_verifier_state(env->cur_state, true);
980 env->cur_state = NULL;
17a52670 981 /* pop all elements and return */
6f8a57cc 982 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
983 return NULL;
984}
985
986#define CALLER_SAVED_REGS 6
987static const int caller_saved[CALLER_SAVED_REGS] = {
988 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
989};
990
f54c7898
DB
991static void __mark_reg_not_init(const struct bpf_verifier_env *env,
992 struct bpf_reg_state *reg);
f1174f77 993
b03c9f9f
EC
994/* Mark the unknown part of a register (variable offset or scalar value) as
995 * known to have the value @imm.
996 */
997static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
998{
a9c676bc
AS
999 /* Clear id, off, and union(map_ptr, range) */
1000 memset(((u8 *)reg) + sizeof(reg->type), 0,
1001 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
1002 reg->var_off = tnum_const(imm);
1003 reg->smin_value = (s64)imm;
1004 reg->smax_value = (s64)imm;
1005 reg->umin_value = imm;
1006 reg->umax_value = imm;
3f50f132
JF
1007
1008 reg->s32_min_value = (s32)imm;
1009 reg->s32_max_value = (s32)imm;
1010 reg->u32_min_value = (u32)imm;
1011 reg->u32_max_value = (u32)imm;
1012}
1013
1014static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1015{
1016 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1017 reg->s32_min_value = (s32)imm;
1018 reg->s32_max_value = (s32)imm;
1019 reg->u32_min_value = (u32)imm;
1020 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1021}
1022
f1174f77
EC
1023/* Mark the 'variable offset' part of a register as zero. This should be
1024 * used only on registers holding a pointer type.
1025 */
1026static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1027{
b03c9f9f 1028 __mark_reg_known(reg, 0);
f1174f77 1029}
a9789ef9 1030
cc2b14d5
AS
1031static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1032{
1033 __mark_reg_known(reg, 0);
cc2b14d5
AS
1034 reg->type = SCALAR_VALUE;
1035}
1036
61bd5218
JK
1037static void mark_reg_known_zero(struct bpf_verifier_env *env,
1038 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1039{
1040 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1041 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1042 /* Something bad happened, let's kill all regs */
1043 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1044 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1045 return;
1046 }
1047 __mark_reg_known_zero(regs + regno);
1048}
1049
de8f3a83
DB
1050static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1051{
1052 return type_is_pkt_pointer(reg->type);
1053}
1054
1055static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1056{
1057 return reg_is_pkt_pointer(reg) ||
1058 reg->type == PTR_TO_PACKET_END;
1059}
1060
1061/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1062static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1063 enum bpf_reg_type which)
1064{
1065 /* The register can already have a range from prior markings.
1066 * This is fine as long as it hasn't been advanced from its
1067 * origin.
1068 */
1069 return reg->type == which &&
1070 reg->id == 0 &&
1071 reg->off == 0 &&
1072 tnum_equals_const(reg->var_off, 0);
1073}
1074
3f50f132
JF
1075/* Reset the min/max bounds of a register */
1076static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1077{
1078 reg->smin_value = S64_MIN;
1079 reg->smax_value = S64_MAX;
1080 reg->umin_value = 0;
1081 reg->umax_value = U64_MAX;
1082
1083 reg->s32_min_value = S32_MIN;
1084 reg->s32_max_value = S32_MAX;
1085 reg->u32_min_value = 0;
1086 reg->u32_max_value = U32_MAX;
1087}
1088
1089static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1090{
1091 reg->smin_value = S64_MIN;
1092 reg->smax_value = S64_MAX;
1093 reg->umin_value = 0;
1094 reg->umax_value = U64_MAX;
1095}
1096
1097static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1098{
1099 reg->s32_min_value = S32_MIN;
1100 reg->s32_max_value = S32_MAX;
1101 reg->u32_min_value = 0;
1102 reg->u32_max_value = U32_MAX;
1103}
1104
1105static void __update_reg32_bounds(struct bpf_reg_state *reg)
1106{
1107 struct tnum var32_off = tnum_subreg(reg->var_off);
1108
1109 /* min signed is max(sign bit) | min(other bits) */
1110 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1111 var32_off.value | (var32_off.mask & S32_MIN));
1112 /* max signed is min(sign bit) | max(other bits) */
1113 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1114 var32_off.value | (var32_off.mask & S32_MAX));
1115 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1116 reg->u32_max_value = min(reg->u32_max_value,
1117 (u32)(var32_off.value | var32_off.mask));
1118}
1119
1120static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1121{
1122 /* min signed is max(sign bit) | min(other bits) */
1123 reg->smin_value = max_t(s64, reg->smin_value,
1124 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1125 /* max signed is min(sign bit) | max(other bits) */
1126 reg->smax_value = min_t(s64, reg->smax_value,
1127 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1128 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1129 reg->umax_value = min(reg->umax_value,
1130 reg->var_off.value | reg->var_off.mask);
1131}
1132
3f50f132
JF
1133static void __update_reg_bounds(struct bpf_reg_state *reg)
1134{
1135 __update_reg32_bounds(reg);
1136 __update_reg64_bounds(reg);
1137}
1138
b03c9f9f 1139/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1140static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1141{
1142 /* Learn sign from signed bounds.
1143 * If we cannot cross the sign boundary, then signed and unsigned bounds
1144 * are the same, so combine. This works even in the negative case, e.g.
1145 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1146 */
1147 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1148 reg->s32_min_value = reg->u32_min_value =
1149 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1150 reg->s32_max_value = reg->u32_max_value =
1151 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1152 return;
1153 }
1154 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1155 * boundary, so we must be careful.
1156 */
1157 if ((s32)reg->u32_max_value >= 0) {
1158 /* Positive. We can't learn anything from the smin, but smax
1159 * is positive, hence safe.
1160 */
1161 reg->s32_min_value = reg->u32_min_value;
1162 reg->s32_max_value = reg->u32_max_value =
1163 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1164 } else if ((s32)reg->u32_min_value < 0) {
1165 /* Negative. We can't learn anything from the smax, but smin
1166 * is negative, hence safe.
1167 */
1168 reg->s32_min_value = reg->u32_min_value =
1169 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1170 reg->s32_max_value = reg->u32_max_value;
1171 }
1172}
1173
1174static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1175{
1176 /* Learn sign from signed bounds.
1177 * If we cannot cross the sign boundary, then signed and unsigned bounds
1178 * are the same, so combine. This works even in the negative case, e.g.
1179 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1180 */
1181 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1182 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1183 reg->umin_value);
1184 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1185 reg->umax_value);
1186 return;
1187 }
1188 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1189 * boundary, so we must be careful.
1190 */
1191 if ((s64)reg->umax_value >= 0) {
1192 /* Positive. We can't learn anything from the smin, but smax
1193 * is positive, hence safe.
1194 */
1195 reg->smin_value = reg->umin_value;
1196 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1197 reg->umax_value);
1198 } else if ((s64)reg->umin_value < 0) {
1199 /* Negative. We can't learn anything from the smax, but smin
1200 * is negative, hence safe.
1201 */
1202 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1203 reg->umin_value);
1204 reg->smax_value = reg->umax_value;
1205 }
1206}
1207
3f50f132
JF
1208static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1209{
1210 __reg32_deduce_bounds(reg);
1211 __reg64_deduce_bounds(reg);
1212}
1213
b03c9f9f
EC
1214/* Attempts to improve var_off based on unsigned min/max information */
1215static void __reg_bound_offset(struct bpf_reg_state *reg)
1216{
3f50f132
JF
1217 struct tnum var64_off = tnum_intersect(reg->var_off,
1218 tnum_range(reg->umin_value,
1219 reg->umax_value));
1220 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1221 tnum_range(reg->u32_min_value,
1222 reg->u32_max_value));
1223
1224 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1225}
1226
3f50f132 1227static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1228{
3f50f132
JF
1229 reg->umin_value = reg->u32_min_value;
1230 reg->umax_value = reg->u32_max_value;
1231 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1232 * but must be positive otherwise set to worse case bounds
1233 * and refine later from tnum.
1234 */
3a71dc36 1235 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1236 reg->smax_value = reg->s32_max_value;
1237 else
1238 reg->smax_value = U32_MAX;
3a71dc36
JF
1239 if (reg->s32_min_value >= 0)
1240 reg->smin_value = reg->s32_min_value;
1241 else
1242 reg->smin_value = 0;
3f50f132
JF
1243}
1244
1245static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1246{
1247 /* special case when 64-bit register has upper 32-bit register
1248 * zeroed. Typically happens after zext or <<32, >>32 sequence
1249 * allowing us to use 32-bit bounds directly,
1250 */
1251 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1252 __reg_assign_32_into_64(reg);
1253 } else {
1254 /* Otherwise the best we can do is push lower 32bit known and
1255 * unknown bits into register (var_off set from jmp logic)
1256 * then learn as much as possible from the 64-bit tnum
1257 * known and unknown bits. The previous smin/smax bounds are
1258 * invalid here because of jmp32 compare so mark them unknown
1259 * so they do not impact tnum bounds calculation.
1260 */
1261 __mark_reg64_unbounded(reg);
1262 __update_reg_bounds(reg);
1263 }
1264
1265 /* Intersecting with the old var_off might have improved our bounds
1266 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1267 * then new var_off is (0; 0x7f...fc) which improves our umax.
1268 */
1269 __reg_deduce_bounds(reg);
1270 __reg_bound_offset(reg);
1271 __update_reg_bounds(reg);
1272}
1273
1274static bool __reg64_bound_s32(s64 a)
1275{
1276 if (a > S32_MIN && a < S32_MAX)
1277 return true;
1278 return false;
1279}
1280
1281static bool __reg64_bound_u32(u64 a)
1282{
1283 if (a > U32_MIN && a < U32_MAX)
1284 return true;
1285 return false;
1286}
1287
1288static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1289{
1290 __mark_reg32_unbounded(reg);
1291
1292 if (__reg64_bound_s32(reg->smin_value))
1293 reg->s32_min_value = (s32)reg->smin_value;
1294 if (__reg64_bound_s32(reg->smax_value))
1295 reg->s32_max_value = (s32)reg->smax_value;
1296 if (__reg64_bound_u32(reg->umin_value))
1297 reg->u32_min_value = (u32)reg->umin_value;
1298 if (__reg64_bound_u32(reg->umax_value))
1299 reg->u32_max_value = (u32)reg->umax_value;
1300
1301 /* Intersecting with the old var_off might have improved our bounds
1302 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1303 * then new var_off is (0; 0x7f...fc) which improves our umax.
1304 */
1305 __reg_deduce_bounds(reg);
1306 __reg_bound_offset(reg);
1307 __update_reg_bounds(reg);
b03c9f9f
EC
1308}
1309
f1174f77 1310/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1311static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1312 struct bpf_reg_state *reg)
f1174f77 1313{
a9c676bc
AS
1314 /*
1315 * Clear type, id, off, and union(map_ptr, range) and
1316 * padding between 'type' and union
1317 */
1318 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1319 reg->type = SCALAR_VALUE;
f1174f77 1320 reg->var_off = tnum_unknown;
f4d7e40a 1321 reg->frameno = 0;
2c78ee89 1322 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1323 __mark_reg_unbounded(reg);
f1174f77
EC
1324}
1325
61bd5218
JK
1326static void mark_reg_unknown(struct bpf_verifier_env *env,
1327 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1328{
1329 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1330 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1331 /* Something bad happened, let's kill all regs except FP */
1332 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1333 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1334 return;
1335 }
f54c7898 1336 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1337}
1338
f54c7898
DB
1339static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1340 struct bpf_reg_state *reg)
f1174f77 1341{
f54c7898 1342 __mark_reg_unknown(env, reg);
f1174f77
EC
1343 reg->type = NOT_INIT;
1344}
1345
61bd5218
JK
1346static void mark_reg_not_init(struct bpf_verifier_env *env,
1347 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1348{
1349 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1350 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1351 /* Something bad happened, let's kill all regs except FP */
1352 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1353 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1354 return;
1355 }
f54c7898 1356 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1357}
1358
41c48f3a
AI
1359static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1360 struct bpf_reg_state *regs, u32 regno,
1361 enum bpf_reg_type reg_type, u32 btf_id)
1362{
1363 if (reg_type == SCALAR_VALUE) {
1364 mark_reg_unknown(env, regs, regno);
1365 return;
1366 }
1367 mark_reg_known_zero(env, regs, regno);
1368 regs[regno].type = PTR_TO_BTF_ID;
1369 regs[regno].btf_id = btf_id;
1370}
1371
5327ed3d 1372#define DEF_NOT_SUBREG (0)
61bd5218 1373static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1374 struct bpf_func_state *state)
17a52670 1375{
f4d7e40a 1376 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1377 int i;
1378
dc503a8a 1379 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1380 mark_reg_not_init(env, regs, i);
dc503a8a 1381 regs[i].live = REG_LIVE_NONE;
679c782d 1382 regs[i].parent = NULL;
5327ed3d 1383 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1384 }
17a52670
AS
1385
1386 /* frame pointer */
f1174f77 1387 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1388 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1389 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1390}
1391
f4d7e40a
AS
1392#define BPF_MAIN_FUNC (-1)
1393static void init_func_state(struct bpf_verifier_env *env,
1394 struct bpf_func_state *state,
1395 int callsite, int frameno, int subprogno)
1396{
1397 state->callsite = callsite;
1398 state->frameno = frameno;
1399 state->subprogno = subprogno;
1400 init_reg_state(env, state);
1401}
1402
17a52670
AS
1403enum reg_arg_type {
1404 SRC_OP, /* register is used as source operand */
1405 DST_OP, /* register is used as destination operand */
1406 DST_OP_NO_MARK /* same as above, check only, don't mark */
1407};
1408
cc8b0b92
AS
1409static int cmp_subprogs(const void *a, const void *b)
1410{
9c8105bd
JW
1411 return ((struct bpf_subprog_info *)a)->start -
1412 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1413}
1414
1415static int find_subprog(struct bpf_verifier_env *env, int off)
1416{
9c8105bd 1417 struct bpf_subprog_info *p;
cc8b0b92 1418
9c8105bd
JW
1419 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1420 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1421 if (!p)
1422 return -ENOENT;
9c8105bd 1423 return p - env->subprog_info;
cc8b0b92
AS
1424
1425}
1426
1427static int add_subprog(struct bpf_verifier_env *env, int off)
1428{
1429 int insn_cnt = env->prog->len;
1430 int ret;
1431
1432 if (off >= insn_cnt || off < 0) {
1433 verbose(env, "call to invalid destination\n");
1434 return -EINVAL;
1435 }
1436 ret = find_subprog(env, off);
1437 if (ret >= 0)
1438 return 0;
4cb3d99c 1439 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1440 verbose(env, "too many subprograms\n");
1441 return -E2BIG;
1442 }
9c8105bd
JW
1443 env->subprog_info[env->subprog_cnt++].start = off;
1444 sort(env->subprog_info, env->subprog_cnt,
1445 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1446 return 0;
1447}
1448
1449static int check_subprogs(struct bpf_verifier_env *env)
1450{
1451 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1452 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1453 struct bpf_insn *insn = env->prog->insnsi;
1454 int insn_cnt = env->prog->len;
1455
f910cefa
JW
1456 /* Add entry function. */
1457 ret = add_subprog(env, 0);
1458 if (ret < 0)
1459 return ret;
1460
cc8b0b92
AS
1461 /* determine subprog starts. The end is one before the next starts */
1462 for (i = 0; i < insn_cnt; i++) {
1463 if (insn[i].code != (BPF_JMP | BPF_CALL))
1464 continue;
1465 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1466 continue;
2c78ee89
AS
1467 if (!env->bpf_capable) {
1468 verbose(env,
1469 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1470 return -EPERM;
1471 }
cc8b0b92
AS
1472 ret = add_subprog(env, i + insn[i].imm + 1);
1473 if (ret < 0)
1474 return ret;
1475 }
1476
4cb3d99c
JW
1477 /* Add a fake 'exit' subprog which could simplify subprog iteration
1478 * logic. 'subprog_cnt' should not be increased.
1479 */
1480 subprog[env->subprog_cnt].start = insn_cnt;
1481
06ee7115 1482 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1483 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1484 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1485
1486 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1487 subprog_start = subprog[cur_subprog].start;
1488 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1489 for (i = 0; i < insn_cnt; i++) {
1490 u8 code = insn[i].code;
1491
092ed096 1492 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1493 goto next;
1494 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1495 goto next;
1496 off = i + insn[i].off + 1;
1497 if (off < subprog_start || off >= subprog_end) {
1498 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1499 return -EINVAL;
1500 }
1501next:
1502 if (i == subprog_end - 1) {
1503 /* to avoid fall-through from one subprog into another
1504 * the last insn of the subprog should be either exit
1505 * or unconditional jump back
1506 */
1507 if (code != (BPF_JMP | BPF_EXIT) &&
1508 code != (BPF_JMP | BPF_JA)) {
1509 verbose(env, "last insn is not an exit or jmp\n");
1510 return -EINVAL;
1511 }
1512 subprog_start = subprog_end;
4cb3d99c
JW
1513 cur_subprog++;
1514 if (cur_subprog < env->subprog_cnt)
9c8105bd 1515 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1516 }
1517 }
1518 return 0;
1519}
1520
679c782d
EC
1521/* Parentage chain of this register (or stack slot) should take care of all
1522 * issues like callee-saved registers, stack slot allocation time, etc.
1523 */
f4d7e40a 1524static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1525 const struct bpf_reg_state *state,
5327ed3d 1526 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1527{
1528 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1529 int cnt = 0;
dc503a8a
EC
1530
1531 while (parent) {
1532 /* if read wasn't screened by an earlier write ... */
679c782d 1533 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1534 break;
9242b5f5
AS
1535 if (parent->live & REG_LIVE_DONE) {
1536 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1537 reg_type_str[parent->type],
1538 parent->var_off.value, parent->off);
1539 return -EFAULT;
1540 }
5327ed3d
JW
1541 /* The first condition is more likely to be true than the
1542 * second, checked it first.
1543 */
1544 if ((parent->live & REG_LIVE_READ) == flag ||
1545 parent->live & REG_LIVE_READ64)
25af32da
AS
1546 /* The parentage chain never changes and
1547 * this parent was already marked as LIVE_READ.
1548 * There is no need to keep walking the chain again and
1549 * keep re-marking all parents as LIVE_READ.
1550 * This case happens when the same register is read
1551 * multiple times without writes into it in-between.
5327ed3d
JW
1552 * Also, if parent has the stronger REG_LIVE_READ64 set,
1553 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1554 */
1555 break;
dc503a8a 1556 /* ... then we depend on parent's value */
5327ed3d
JW
1557 parent->live |= flag;
1558 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1559 if (flag == REG_LIVE_READ64)
1560 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1561 state = parent;
1562 parent = state->parent;
f4d7e40a 1563 writes = true;
06ee7115 1564 cnt++;
dc503a8a 1565 }
06ee7115
AS
1566
1567 if (env->longest_mark_read_walk < cnt)
1568 env->longest_mark_read_walk = cnt;
f4d7e40a 1569 return 0;
dc503a8a
EC
1570}
1571
5327ed3d
JW
1572/* This function is supposed to be used by the following 32-bit optimization
1573 * code only. It returns TRUE if the source or destination register operates
1574 * on 64-bit, otherwise return FALSE.
1575 */
1576static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1577 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1578{
1579 u8 code, class, op;
1580
1581 code = insn->code;
1582 class = BPF_CLASS(code);
1583 op = BPF_OP(code);
1584 if (class == BPF_JMP) {
1585 /* BPF_EXIT for "main" will reach here. Return TRUE
1586 * conservatively.
1587 */
1588 if (op == BPF_EXIT)
1589 return true;
1590 if (op == BPF_CALL) {
1591 /* BPF to BPF call will reach here because of marking
1592 * caller saved clobber with DST_OP_NO_MARK for which we
1593 * don't care the register def because they are anyway
1594 * marked as NOT_INIT already.
1595 */
1596 if (insn->src_reg == BPF_PSEUDO_CALL)
1597 return false;
1598 /* Helper call will reach here because of arg type
1599 * check, conservatively return TRUE.
1600 */
1601 if (t == SRC_OP)
1602 return true;
1603
1604 return false;
1605 }
1606 }
1607
1608 if (class == BPF_ALU64 || class == BPF_JMP ||
1609 /* BPF_END always use BPF_ALU class. */
1610 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1611 return true;
1612
1613 if (class == BPF_ALU || class == BPF_JMP32)
1614 return false;
1615
1616 if (class == BPF_LDX) {
1617 if (t != SRC_OP)
1618 return BPF_SIZE(code) == BPF_DW;
1619 /* LDX source must be ptr. */
1620 return true;
1621 }
1622
1623 if (class == BPF_STX) {
1624 if (reg->type != SCALAR_VALUE)
1625 return true;
1626 return BPF_SIZE(code) == BPF_DW;
1627 }
1628
1629 if (class == BPF_LD) {
1630 u8 mode = BPF_MODE(code);
1631
1632 /* LD_IMM64 */
1633 if (mode == BPF_IMM)
1634 return true;
1635
1636 /* Both LD_IND and LD_ABS return 32-bit data. */
1637 if (t != SRC_OP)
1638 return false;
1639
1640 /* Implicit ctx ptr. */
1641 if (regno == BPF_REG_6)
1642 return true;
1643
1644 /* Explicit source could be any width. */
1645 return true;
1646 }
1647
1648 if (class == BPF_ST)
1649 /* The only source register for BPF_ST is a ptr. */
1650 return true;
1651
1652 /* Conservatively return true at default. */
1653 return true;
1654}
1655
b325fbca
JW
1656/* Return TRUE if INSN doesn't have explicit value define. */
1657static bool insn_no_def(struct bpf_insn *insn)
1658{
1659 u8 class = BPF_CLASS(insn->code);
1660
1661 return (class == BPF_JMP || class == BPF_JMP32 ||
1662 class == BPF_STX || class == BPF_ST);
1663}
1664
1665/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1666static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1667{
1668 if (insn_no_def(insn))
1669 return false;
1670
1671 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1672}
1673
5327ed3d
JW
1674static void mark_insn_zext(struct bpf_verifier_env *env,
1675 struct bpf_reg_state *reg)
1676{
1677 s32 def_idx = reg->subreg_def;
1678
1679 if (def_idx == DEF_NOT_SUBREG)
1680 return;
1681
1682 env->insn_aux_data[def_idx - 1].zext_dst = true;
1683 /* The dst will be zero extended, so won't be sub-register anymore. */
1684 reg->subreg_def = DEF_NOT_SUBREG;
1685}
1686
dc503a8a 1687static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1688 enum reg_arg_type t)
1689{
f4d7e40a
AS
1690 struct bpf_verifier_state *vstate = env->cur_state;
1691 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1692 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1693 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1694 bool rw64;
dc503a8a 1695
17a52670 1696 if (regno >= MAX_BPF_REG) {
61bd5218 1697 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1698 return -EINVAL;
1699 }
1700
c342dc10 1701 reg = &regs[regno];
5327ed3d 1702 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1703 if (t == SRC_OP) {
1704 /* check whether register used as source operand can be read */
c342dc10 1705 if (reg->type == NOT_INIT) {
61bd5218 1706 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1707 return -EACCES;
1708 }
679c782d 1709 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1710 if (regno == BPF_REG_FP)
1711 return 0;
1712
5327ed3d
JW
1713 if (rw64)
1714 mark_insn_zext(env, reg);
1715
1716 return mark_reg_read(env, reg, reg->parent,
1717 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1718 } else {
1719 /* check whether register used as dest operand can be written to */
1720 if (regno == BPF_REG_FP) {
61bd5218 1721 verbose(env, "frame pointer is read only\n");
17a52670
AS
1722 return -EACCES;
1723 }
c342dc10 1724 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1725 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1726 if (t == DST_OP)
61bd5218 1727 mark_reg_unknown(env, regs, regno);
17a52670
AS
1728 }
1729 return 0;
1730}
1731
b5dc0163
AS
1732/* for any branch, call, exit record the history of jmps in the given state */
1733static int push_jmp_history(struct bpf_verifier_env *env,
1734 struct bpf_verifier_state *cur)
1735{
1736 u32 cnt = cur->jmp_history_cnt;
1737 struct bpf_idx_pair *p;
1738
1739 cnt++;
1740 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1741 if (!p)
1742 return -ENOMEM;
1743 p[cnt - 1].idx = env->insn_idx;
1744 p[cnt - 1].prev_idx = env->prev_insn_idx;
1745 cur->jmp_history = p;
1746 cur->jmp_history_cnt = cnt;
1747 return 0;
1748}
1749
1750/* Backtrack one insn at a time. If idx is not at the top of recorded
1751 * history then previous instruction came from straight line execution.
1752 */
1753static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1754 u32 *history)
1755{
1756 u32 cnt = *history;
1757
1758 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1759 i = st->jmp_history[cnt - 1].prev_idx;
1760 (*history)--;
1761 } else {
1762 i--;
1763 }
1764 return i;
1765}
1766
1767/* For given verifier state backtrack_insn() is called from the last insn to
1768 * the first insn. Its purpose is to compute a bitmask of registers and
1769 * stack slots that needs precision in the parent verifier state.
1770 */
1771static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1772 u32 *reg_mask, u64 *stack_mask)
1773{
1774 const struct bpf_insn_cbs cbs = {
1775 .cb_print = verbose,
1776 .private_data = env,
1777 };
1778 struct bpf_insn *insn = env->prog->insnsi + idx;
1779 u8 class = BPF_CLASS(insn->code);
1780 u8 opcode = BPF_OP(insn->code);
1781 u8 mode = BPF_MODE(insn->code);
1782 u32 dreg = 1u << insn->dst_reg;
1783 u32 sreg = 1u << insn->src_reg;
1784 u32 spi;
1785
1786 if (insn->code == 0)
1787 return 0;
1788 if (env->log.level & BPF_LOG_LEVEL) {
1789 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1790 verbose(env, "%d: ", idx);
1791 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1792 }
1793
1794 if (class == BPF_ALU || class == BPF_ALU64) {
1795 if (!(*reg_mask & dreg))
1796 return 0;
1797 if (opcode == BPF_MOV) {
1798 if (BPF_SRC(insn->code) == BPF_X) {
1799 /* dreg = sreg
1800 * dreg needs precision after this insn
1801 * sreg needs precision before this insn
1802 */
1803 *reg_mask &= ~dreg;
1804 *reg_mask |= sreg;
1805 } else {
1806 /* dreg = K
1807 * dreg needs precision after this insn.
1808 * Corresponding register is already marked
1809 * as precise=true in this verifier state.
1810 * No further markings in parent are necessary
1811 */
1812 *reg_mask &= ~dreg;
1813 }
1814 } else {
1815 if (BPF_SRC(insn->code) == BPF_X) {
1816 /* dreg += sreg
1817 * both dreg and sreg need precision
1818 * before this insn
1819 */
1820 *reg_mask |= sreg;
1821 } /* else dreg += K
1822 * dreg still needs precision before this insn
1823 */
1824 }
1825 } else if (class == BPF_LDX) {
1826 if (!(*reg_mask & dreg))
1827 return 0;
1828 *reg_mask &= ~dreg;
1829
1830 /* scalars can only be spilled into stack w/o losing precision.
1831 * Load from any other memory can be zero extended.
1832 * The desire to keep that precision is already indicated
1833 * by 'precise' mark in corresponding register of this state.
1834 * No further tracking necessary.
1835 */
1836 if (insn->src_reg != BPF_REG_FP)
1837 return 0;
1838 if (BPF_SIZE(insn->code) != BPF_DW)
1839 return 0;
1840
1841 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1842 * that [fp - off] slot contains scalar that needs to be
1843 * tracked with precision
1844 */
1845 spi = (-insn->off - 1) / BPF_REG_SIZE;
1846 if (spi >= 64) {
1847 verbose(env, "BUG spi %d\n", spi);
1848 WARN_ONCE(1, "verifier backtracking bug");
1849 return -EFAULT;
1850 }
1851 *stack_mask |= 1ull << spi;
b3b50f05 1852 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1853 if (*reg_mask & dreg)
b3b50f05 1854 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1855 * to access memory. It means backtracking
1856 * encountered a case of pointer subtraction.
1857 */
1858 return -ENOTSUPP;
1859 /* scalars can only be spilled into stack */
1860 if (insn->dst_reg != BPF_REG_FP)
1861 return 0;
1862 if (BPF_SIZE(insn->code) != BPF_DW)
1863 return 0;
1864 spi = (-insn->off - 1) / BPF_REG_SIZE;
1865 if (spi >= 64) {
1866 verbose(env, "BUG spi %d\n", spi);
1867 WARN_ONCE(1, "verifier backtracking bug");
1868 return -EFAULT;
1869 }
1870 if (!(*stack_mask & (1ull << spi)))
1871 return 0;
1872 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1873 if (class == BPF_STX)
1874 *reg_mask |= sreg;
b5dc0163
AS
1875 } else if (class == BPF_JMP || class == BPF_JMP32) {
1876 if (opcode == BPF_CALL) {
1877 if (insn->src_reg == BPF_PSEUDO_CALL)
1878 return -ENOTSUPP;
1879 /* regular helper call sets R0 */
1880 *reg_mask &= ~1;
1881 if (*reg_mask & 0x3f) {
1882 /* if backtracing was looking for registers R1-R5
1883 * they should have been found already.
1884 */
1885 verbose(env, "BUG regs %x\n", *reg_mask);
1886 WARN_ONCE(1, "verifier backtracking bug");
1887 return -EFAULT;
1888 }
1889 } else if (opcode == BPF_EXIT) {
1890 return -ENOTSUPP;
1891 }
1892 } else if (class == BPF_LD) {
1893 if (!(*reg_mask & dreg))
1894 return 0;
1895 *reg_mask &= ~dreg;
1896 /* It's ld_imm64 or ld_abs or ld_ind.
1897 * For ld_imm64 no further tracking of precision
1898 * into parent is necessary
1899 */
1900 if (mode == BPF_IND || mode == BPF_ABS)
1901 /* to be analyzed */
1902 return -ENOTSUPP;
b5dc0163
AS
1903 }
1904 return 0;
1905}
1906
1907/* the scalar precision tracking algorithm:
1908 * . at the start all registers have precise=false.
1909 * . scalar ranges are tracked as normal through alu and jmp insns.
1910 * . once precise value of the scalar register is used in:
1911 * . ptr + scalar alu
1912 * . if (scalar cond K|scalar)
1913 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1914 * backtrack through the verifier states and mark all registers and
1915 * stack slots with spilled constants that these scalar regisers
1916 * should be precise.
1917 * . during state pruning two registers (or spilled stack slots)
1918 * are equivalent if both are not precise.
1919 *
1920 * Note the verifier cannot simply walk register parentage chain,
1921 * since many different registers and stack slots could have been
1922 * used to compute single precise scalar.
1923 *
1924 * The approach of starting with precise=true for all registers and then
1925 * backtrack to mark a register as not precise when the verifier detects
1926 * that program doesn't care about specific value (e.g., when helper
1927 * takes register as ARG_ANYTHING parameter) is not safe.
1928 *
1929 * It's ok to walk single parentage chain of the verifier states.
1930 * It's possible that this backtracking will go all the way till 1st insn.
1931 * All other branches will be explored for needing precision later.
1932 *
1933 * The backtracking needs to deal with cases like:
1934 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1935 * r9 -= r8
1936 * r5 = r9
1937 * if r5 > 0x79f goto pc+7
1938 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1939 * r5 += 1
1940 * ...
1941 * call bpf_perf_event_output#25
1942 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1943 *
1944 * and this case:
1945 * r6 = 1
1946 * call foo // uses callee's r6 inside to compute r0
1947 * r0 += r6
1948 * if r0 == 0 goto
1949 *
1950 * to track above reg_mask/stack_mask needs to be independent for each frame.
1951 *
1952 * Also if parent's curframe > frame where backtracking started,
1953 * the verifier need to mark registers in both frames, otherwise callees
1954 * may incorrectly prune callers. This is similar to
1955 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1956 *
1957 * For now backtracking falls back into conservative marking.
1958 */
1959static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1960 struct bpf_verifier_state *st)
1961{
1962 struct bpf_func_state *func;
1963 struct bpf_reg_state *reg;
1964 int i, j;
1965
1966 /* big hammer: mark all scalars precise in this path.
1967 * pop_stack may still get !precise scalars.
1968 */
1969 for (; st; st = st->parent)
1970 for (i = 0; i <= st->curframe; i++) {
1971 func = st->frame[i];
1972 for (j = 0; j < BPF_REG_FP; j++) {
1973 reg = &func->regs[j];
1974 if (reg->type != SCALAR_VALUE)
1975 continue;
1976 reg->precise = true;
1977 }
1978 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1979 if (func->stack[j].slot_type[0] != STACK_SPILL)
1980 continue;
1981 reg = &func->stack[j].spilled_ptr;
1982 if (reg->type != SCALAR_VALUE)
1983 continue;
1984 reg->precise = true;
1985 }
1986 }
1987}
1988
a3ce685d
AS
1989static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1990 int spi)
b5dc0163
AS
1991{
1992 struct bpf_verifier_state *st = env->cur_state;
1993 int first_idx = st->first_insn_idx;
1994 int last_idx = env->insn_idx;
1995 struct bpf_func_state *func;
1996 struct bpf_reg_state *reg;
a3ce685d
AS
1997 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1998 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1999 bool skip_first = true;
a3ce685d 2000 bool new_marks = false;
b5dc0163
AS
2001 int i, err;
2002
2c78ee89 2003 if (!env->bpf_capable)
b5dc0163
AS
2004 return 0;
2005
2006 func = st->frame[st->curframe];
a3ce685d
AS
2007 if (regno >= 0) {
2008 reg = &func->regs[regno];
2009 if (reg->type != SCALAR_VALUE) {
2010 WARN_ONCE(1, "backtracing misuse");
2011 return -EFAULT;
2012 }
2013 if (!reg->precise)
2014 new_marks = true;
2015 else
2016 reg_mask = 0;
2017 reg->precise = true;
b5dc0163 2018 }
b5dc0163 2019
a3ce685d
AS
2020 while (spi >= 0) {
2021 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2022 stack_mask = 0;
2023 break;
2024 }
2025 reg = &func->stack[spi].spilled_ptr;
2026 if (reg->type != SCALAR_VALUE) {
2027 stack_mask = 0;
2028 break;
2029 }
2030 if (!reg->precise)
2031 new_marks = true;
2032 else
2033 stack_mask = 0;
2034 reg->precise = true;
2035 break;
2036 }
2037
2038 if (!new_marks)
2039 return 0;
2040 if (!reg_mask && !stack_mask)
2041 return 0;
b5dc0163
AS
2042 for (;;) {
2043 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2044 u32 history = st->jmp_history_cnt;
2045
2046 if (env->log.level & BPF_LOG_LEVEL)
2047 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2048 for (i = last_idx;;) {
2049 if (skip_first) {
2050 err = 0;
2051 skip_first = false;
2052 } else {
2053 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2054 }
2055 if (err == -ENOTSUPP) {
2056 mark_all_scalars_precise(env, st);
2057 return 0;
2058 } else if (err) {
2059 return err;
2060 }
2061 if (!reg_mask && !stack_mask)
2062 /* Found assignment(s) into tracked register in this state.
2063 * Since this state is already marked, just return.
2064 * Nothing to be tracked further in the parent state.
2065 */
2066 return 0;
2067 if (i == first_idx)
2068 break;
2069 i = get_prev_insn_idx(st, i, &history);
2070 if (i >= env->prog->len) {
2071 /* This can happen if backtracking reached insn 0
2072 * and there are still reg_mask or stack_mask
2073 * to backtrack.
2074 * It means the backtracking missed the spot where
2075 * particular register was initialized with a constant.
2076 */
2077 verbose(env, "BUG backtracking idx %d\n", i);
2078 WARN_ONCE(1, "verifier backtracking bug");
2079 return -EFAULT;
2080 }
2081 }
2082 st = st->parent;
2083 if (!st)
2084 break;
2085
a3ce685d 2086 new_marks = false;
b5dc0163
AS
2087 func = st->frame[st->curframe];
2088 bitmap_from_u64(mask, reg_mask);
2089 for_each_set_bit(i, mask, 32) {
2090 reg = &func->regs[i];
a3ce685d
AS
2091 if (reg->type != SCALAR_VALUE) {
2092 reg_mask &= ~(1u << i);
b5dc0163 2093 continue;
a3ce685d 2094 }
b5dc0163
AS
2095 if (!reg->precise)
2096 new_marks = true;
2097 reg->precise = true;
2098 }
2099
2100 bitmap_from_u64(mask, stack_mask);
2101 for_each_set_bit(i, mask, 64) {
2102 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2103 /* the sequence of instructions:
2104 * 2: (bf) r3 = r10
2105 * 3: (7b) *(u64 *)(r3 -8) = r0
2106 * 4: (79) r4 = *(u64 *)(r10 -8)
2107 * doesn't contain jmps. It's backtracked
2108 * as a single block.
2109 * During backtracking insn 3 is not recognized as
2110 * stack access, so at the end of backtracking
2111 * stack slot fp-8 is still marked in stack_mask.
2112 * However the parent state may not have accessed
2113 * fp-8 and it's "unallocated" stack space.
2114 * In such case fallback to conservative.
b5dc0163 2115 */
2339cd6c
AS
2116 mark_all_scalars_precise(env, st);
2117 return 0;
b5dc0163
AS
2118 }
2119
a3ce685d
AS
2120 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2121 stack_mask &= ~(1ull << i);
b5dc0163 2122 continue;
a3ce685d 2123 }
b5dc0163 2124 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2125 if (reg->type != SCALAR_VALUE) {
2126 stack_mask &= ~(1ull << i);
b5dc0163 2127 continue;
a3ce685d 2128 }
b5dc0163
AS
2129 if (!reg->precise)
2130 new_marks = true;
2131 reg->precise = true;
2132 }
2133 if (env->log.level & BPF_LOG_LEVEL) {
2134 print_verifier_state(env, func);
2135 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2136 new_marks ? "didn't have" : "already had",
2137 reg_mask, stack_mask);
2138 }
2139
a3ce685d
AS
2140 if (!reg_mask && !stack_mask)
2141 break;
b5dc0163
AS
2142 if (!new_marks)
2143 break;
2144
2145 last_idx = st->last_insn_idx;
2146 first_idx = st->first_insn_idx;
2147 }
2148 return 0;
2149}
2150
a3ce685d
AS
2151static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2152{
2153 return __mark_chain_precision(env, regno, -1);
2154}
2155
2156static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2157{
2158 return __mark_chain_precision(env, -1, spi);
2159}
b5dc0163 2160
1be7f75d
AS
2161static bool is_spillable_regtype(enum bpf_reg_type type)
2162{
2163 switch (type) {
2164 case PTR_TO_MAP_VALUE:
2165 case PTR_TO_MAP_VALUE_OR_NULL:
2166 case PTR_TO_STACK:
2167 case PTR_TO_CTX:
969bf05e 2168 case PTR_TO_PACKET:
de8f3a83 2169 case PTR_TO_PACKET_META:
969bf05e 2170 case PTR_TO_PACKET_END:
d58e468b 2171 case PTR_TO_FLOW_KEYS:
1be7f75d 2172 case CONST_PTR_TO_MAP:
c64b7983
JS
2173 case PTR_TO_SOCKET:
2174 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2175 case PTR_TO_SOCK_COMMON:
2176 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2177 case PTR_TO_TCP_SOCK:
2178 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2179 case PTR_TO_XDP_SOCK:
65726b5b 2180 case PTR_TO_BTF_ID:
b121b341 2181 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2182 case PTR_TO_RDONLY_BUF:
2183 case PTR_TO_RDONLY_BUF_OR_NULL:
2184 case PTR_TO_RDWR_BUF:
2185 case PTR_TO_RDWR_BUF_OR_NULL:
1be7f75d
AS
2186 return true;
2187 default:
2188 return false;
2189 }
2190}
2191
cc2b14d5
AS
2192/* Does this register contain a constant zero? */
2193static bool register_is_null(struct bpf_reg_state *reg)
2194{
2195 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2196}
2197
f7cf25b2
AS
2198static bool register_is_const(struct bpf_reg_state *reg)
2199{
2200 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2201}
2202
6e7e63cb
JH
2203static bool __is_pointer_value(bool allow_ptr_leaks,
2204 const struct bpf_reg_state *reg)
2205{
2206 if (allow_ptr_leaks)
2207 return false;
2208
2209 return reg->type != SCALAR_VALUE;
2210}
2211
f7cf25b2
AS
2212static void save_register_state(struct bpf_func_state *state,
2213 int spi, struct bpf_reg_state *reg)
2214{
2215 int i;
2216
2217 state->stack[spi].spilled_ptr = *reg;
2218 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2219
2220 for (i = 0; i < BPF_REG_SIZE; i++)
2221 state->stack[spi].slot_type[i] = STACK_SPILL;
2222}
2223
17a52670
AS
2224/* check_stack_read/write functions track spill/fill of registers,
2225 * stack boundary and alignment are checked in check_mem_access()
2226 */
61bd5218 2227static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2228 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2229 int off, int size, int value_regno, int insn_idx)
17a52670 2230{
f4d7e40a 2231 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2232 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2233 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2234 struct bpf_reg_state *reg = NULL;
638f5b90 2235
f4d7e40a 2236 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2237 state->acquired_refs, true);
638f5b90
AS
2238 if (err)
2239 return err;
9c399760
AS
2240 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2241 * so it's aligned access and [off, off + size) are within stack limits
2242 */
638f5b90
AS
2243 if (!env->allow_ptr_leaks &&
2244 state->stack[spi].slot_type[0] == STACK_SPILL &&
2245 size != BPF_REG_SIZE) {
2246 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2247 return -EACCES;
2248 }
17a52670 2249
f4d7e40a 2250 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2251 if (value_regno >= 0)
2252 reg = &cur->regs[value_regno];
17a52670 2253
f7cf25b2 2254 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2c78ee89 2255 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2256 if (dst_reg != BPF_REG_FP) {
2257 /* The backtracking logic can only recognize explicit
2258 * stack slot address like [fp - 8]. Other spill of
2259 * scalar via different register has to be conervative.
2260 * Backtrack from here and mark all registers as precise
2261 * that contributed into 'reg' being a constant.
2262 */
2263 err = mark_chain_precision(env, value_regno);
2264 if (err)
2265 return err;
2266 }
f7cf25b2
AS
2267 save_register_state(state, spi, reg);
2268 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2269 /* register containing pointer is being spilled into stack */
9c399760 2270 if (size != BPF_REG_SIZE) {
f7cf25b2 2271 verbose_linfo(env, insn_idx, "; ");
61bd5218 2272 verbose(env, "invalid size of register spill\n");
17a52670
AS
2273 return -EACCES;
2274 }
2275
f7cf25b2 2276 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2277 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2278 return -EINVAL;
2279 }
2280
2c78ee89 2281 if (!env->bypass_spec_v4) {
f7cf25b2 2282 bool sanitize = false;
17a52670 2283
f7cf25b2
AS
2284 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2285 register_is_const(&state->stack[spi].spilled_ptr))
2286 sanitize = true;
2287 for (i = 0; i < BPF_REG_SIZE; i++)
2288 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2289 sanitize = true;
2290 break;
2291 }
2292 if (sanitize) {
af86ca4e
AS
2293 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2294 int soff = (-spi - 1) * BPF_REG_SIZE;
2295
2296 /* detected reuse of integer stack slot with a pointer
2297 * which means either llvm is reusing stack slot or
2298 * an attacker is trying to exploit CVE-2018-3639
2299 * (speculative store bypass)
2300 * Have to sanitize that slot with preemptive
2301 * store of zero.
2302 */
2303 if (*poff && *poff != soff) {
2304 /* disallow programs where single insn stores
2305 * into two different stack slots, since verifier
2306 * cannot sanitize them
2307 */
2308 verbose(env,
2309 "insn %d cannot access two stack slots fp%d and fp%d",
2310 insn_idx, *poff, soff);
2311 return -EINVAL;
2312 }
2313 *poff = soff;
2314 }
af86ca4e 2315 }
f7cf25b2 2316 save_register_state(state, spi, reg);
9c399760 2317 } else {
cc2b14d5
AS
2318 u8 type = STACK_MISC;
2319
679c782d
EC
2320 /* regular write of data into stack destroys any spilled ptr */
2321 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2322 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2323 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2324 for (i = 0; i < BPF_REG_SIZE; i++)
2325 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2326
cc2b14d5
AS
2327 /* only mark the slot as written if all 8 bytes were written
2328 * otherwise read propagation may incorrectly stop too soon
2329 * when stack slots are partially written.
2330 * This heuristic means that read propagation will be
2331 * conservative, since it will add reg_live_read marks
2332 * to stack slots all the way to first state when programs
2333 * writes+reads less than 8 bytes
2334 */
2335 if (size == BPF_REG_SIZE)
2336 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2337
2338 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2339 if (reg && register_is_null(reg)) {
2340 /* backtracking doesn't work for STACK_ZERO yet. */
2341 err = mark_chain_precision(env, value_regno);
2342 if (err)
2343 return err;
cc2b14d5 2344 type = STACK_ZERO;
b5dc0163 2345 }
cc2b14d5 2346
0bae2d4d 2347 /* Mark slots affected by this stack write. */
9c399760 2348 for (i = 0; i < size; i++)
638f5b90 2349 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2350 type;
17a52670
AS
2351 }
2352 return 0;
2353}
2354
61bd5218 2355static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2356 struct bpf_func_state *reg_state /* func where register points to */,
2357 int off, int size, int value_regno)
17a52670 2358{
f4d7e40a
AS
2359 struct bpf_verifier_state *vstate = env->cur_state;
2360 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2361 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2362 struct bpf_reg_state *reg;
638f5b90 2363 u8 *stype;
17a52670 2364
f4d7e40a 2365 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2366 verbose(env, "invalid read from stack off %d+0 size %d\n",
2367 off, size);
2368 return -EACCES;
2369 }
f4d7e40a 2370 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2371 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2372
638f5b90 2373 if (stype[0] == STACK_SPILL) {
9c399760 2374 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2375 if (reg->type != SCALAR_VALUE) {
2376 verbose_linfo(env, env->insn_idx, "; ");
2377 verbose(env, "invalid size of register fill\n");
2378 return -EACCES;
2379 }
2380 if (value_regno >= 0) {
2381 mark_reg_unknown(env, state->regs, value_regno);
2382 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2383 }
2384 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2385 return 0;
17a52670 2386 }
9c399760 2387 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2388 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2389 verbose(env, "corrupted spill memory\n");
17a52670
AS
2390 return -EACCES;
2391 }
2392 }
2393
dc503a8a 2394 if (value_regno >= 0) {
17a52670 2395 /* restore register state from stack */
f7cf25b2 2396 state->regs[value_regno] = *reg;
2f18f62e
AS
2397 /* mark reg as written since spilled pointer state likely
2398 * has its liveness marks cleared by is_state_visited()
2399 * which resets stack/reg liveness for state transitions
2400 */
2401 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2402 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2403 /* If value_regno==-1, the caller is asking us whether
2404 * it is acceptable to use this value as a SCALAR_VALUE
2405 * (e.g. for XADD).
2406 * We must not allow unprivileged callers to do that
2407 * with spilled pointers.
2408 */
2409 verbose(env, "leaking pointer from stack off %d\n",
2410 off);
2411 return -EACCES;
dc503a8a 2412 }
f7cf25b2 2413 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2414 } else {
cc2b14d5
AS
2415 int zeros = 0;
2416
17a52670 2417 for (i = 0; i < size; i++) {
cc2b14d5
AS
2418 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2419 continue;
2420 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2421 zeros++;
2422 continue;
17a52670 2423 }
cc2b14d5
AS
2424 verbose(env, "invalid read from stack off %d+%d size %d\n",
2425 off, i, size);
2426 return -EACCES;
2427 }
f7cf25b2 2428 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2429 if (value_regno >= 0) {
2430 if (zeros == size) {
2431 /* any size read into register is zero extended,
2432 * so the whole register == const_zero
2433 */
2434 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2435 /* backtracking doesn't support STACK_ZERO yet,
2436 * so mark it precise here, so that later
2437 * backtracking can stop here.
2438 * Backtracking may not need this if this register
2439 * doesn't participate in pointer adjustment.
2440 * Forward propagation of precise flag is not
2441 * necessary either. This mark is only to stop
2442 * backtracking. Any register that contributed
2443 * to const 0 was marked precise before spill.
2444 */
2445 state->regs[value_regno].precise = true;
cc2b14d5
AS
2446 } else {
2447 /* have read misc data from the stack */
2448 mark_reg_unknown(env, state->regs, value_regno);
2449 }
2450 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2451 }
17a52670 2452 }
f7cf25b2 2453 return 0;
17a52670
AS
2454}
2455
e4298d25
DB
2456static int check_stack_access(struct bpf_verifier_env *env,
2457 const struct bpf_reg_state *reg,
2458 int off, int size)
2459{
2460 /* Stack accesses must be at a fixed offset, so that we
2461 * can determine what type of data were returned. See
2462 * check_stack_read().
2463 */
2464 if (!tnum_is_const(reg->var_off)) {
2465 char tn_buf[48];
2466
2467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2468 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2469 tn_buf, off, size);
2470 return -EACCES;
2471 }
2472
2473 if (off >= 0 || off < -MAX_BPF_STACK) {
2474 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2475 return -EACCES;
2476 }
2477
2478 return 0;
2479}
2480
591fe988
DB
2481static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2482 int off, int size, enum bpf_access_type type)
2483{
2484 struct bpf_reg_state *regs = cur_regs(env);
2485 struct bpf_map *map = regs[regno].map_ptr;
2486 u32 cap = bpf_map_flags_to_cap(map);
2487
2488 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2489 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2490 map->value_size, off, size);
2491 return -EACCES;
2492 }
2493
2494 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2495 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2496 map->value_size, off, size);
2497 return -EACCES;
2498 }
2499
2500 return 0;
2501}
2502
457f4436
AN
2503/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2504static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2505 int off, int size, u32 mem_size,
2506 bool zero_size_allowed)
17a52670 2507{
457f4436
AN
2508 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2509 struct bpf_reg_state *reg;
2510
2511 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2512 return 0;
17a52670 2513
457f4436
AN
2514 reg = &cur_regs(env)[regno];
2515 switch (reg->type) {
2516 case PTR_TO_MAP_VALUE:
61bd5218 2517 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2518 mem_size, off, size);
2519 break;
2520 case PTR_TO_PACKET:
2521 case PTR_TO_PACKET_META:
2522 case PTR_TO_PACKET_END:
2523 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2524 off, size, regno, reg->id, off, mem_size);
2525 break;
2526 case PTR_TO_MEM:
2527 default:
2528 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2529 mem_size, off, size);
17a52670 2530 }
457f4436
AN
2531
2532 return -EACCES;
17a52670
AS
2533}
2534
457f4436
AN
2535/* check read/write into a memory region with possible variable offset */
2536static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2537 int off, int size, u32 mem_size,
2538 bool zero_size_allowed)
dbcfe5f7 2539{
f4d7e40a
AS
2540 struct bpf_verifier_state *vstate = env->cur_state;
2541 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2542 struct bpf_reg_state *reg = &state->regs[regno];
2543 int err;
2544
457f4436 2545 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2546 * need to try adding each of min_value and max_value to off
2547 * to make sure our theoretical access will be safe.
dbcfe5f7 2548 */
06ee7115 2549 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2550 print_verifier_state(env, state);
b7137c4e 2551
dbcfe5f7
GB
2552 /* The minimum value is only important with signed
2553 * comparisons where we can't assume the floor of a
2554 * value is 0. If we are using signed variables for our
2555 * index'es we need to make sure that whatever we use
2556 * will have a set floor within our range.
2557 */
b7137c4e
DB
2558 if (reg->smin_value < 0 &&
2559 (reg->smin_value == S64_MIN ||
2560 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2561 reg->smin_value + off < 0)) {
61bd5218 2562 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2563 regno);
2564 return -EACCES;
2565 }
457f4436
AN
2566 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2567 mem_size, zero_size_allowed);
dbcfe5f7 2568 if (err) {
457f4436 2569 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2570 regno);
dbcfe5f7
GB
2571 return err;
2572 }
2573
b03c9f9f
EC
2574 /* If we haven't set a max value then we need to bail since we can't be
2575 * sure we won't do bad things.
2576 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2577 */
b03c9f9f 2578 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2579 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2580 regno);
2581 return -EACCES;
2582 }
457f4436
AN
2583 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2584 mem_size, zero_size_allowed);
2585 if (err) {
2586 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2587 regno);
457f4436
AN
2588 return err;
2589 }
2590
2591 return 0;
2592}
d83525ca 2593
457f4436
AN
2594/* check read/write into a map element with possible variable offset */
2595static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2596 int off, int size, bool zero_size_allowed)
2597{
2598 struct bpf_verifier_state *vstate = env->cur_state;
2599 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2600 struct bpf_reg_state *reg = &state->regs[regno];
2601 struct bpf_map *map = reg->map_ptr;
2602 int err;
2603
2604 err = check_mem_region_access(env, regno, off, size, map->value_size,
2605 zero_size_allowed);
2606 if (err)
2607 return err;
2608
2609 if (map_value_has_spin_lock(map)) {
2610 u32 lock = map->spin_lock_off;
d83525ca
AS
2611
2612 /* if any part of struct bpf_spin_lock can be touched by
2613 * load/store reject this program.
2614 * To check that [x1, x2) overlaps with [y1, y2)
2615 * it is sufficient to check x1 < y2 && y1 < x2.
2616 */
2617 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2618 lock < reg->umax_value + off + size) {
2619 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2620 return -EACCES;
2621 }
2622 }
f1174f77 2623 return err;
dbcfe5f7
GB
2624}
2625
969bf05e
AS
2626#define MAX_PACKET_OFF 0xffff
2627
7e40781c
UP
2628static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2629{
2630 return prog->aux->linked_prog ? prog->aux->linked_prog->type
2631 : prog->type;
2632}
2633
58e2af8b 2634static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2635 const struct bpf_call_arg_meta *meta,
2636 enum bpf_access_type t)
4acf6c0b 2637{
7e40781c
UP
2638 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2639
2640 switch (prog_type) {
5d66fa7d 2641 /* Program types only with direct read access go here! */
3a0af8fd
TG
2642 case BPF_PROG_TYPE_LWT_IN:
2643 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2644 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2645 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2646 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2647 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2648 if (t == BPF_WRITE)
2649 return false;
7e57fbb2 2650 /* fallthrough */
5d66fa7d
DB
2651
2652 /* Program types with direct read + write access go here! */
36bbef52
DB
2653 case BPF_PROG_TYPE_SCHED_CLS:
2654 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2655 case BPF_PROG_TYPE_XDP:
3a0af8fd 2656 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2657 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2658 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2659 if (meta)
2660 return meta->pkt_access;
2661
2662 env->seen_direct_write = true;
4acf6c0b 2663 return true;
0d01da6a
SF
2664
2665 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2666 if (t == BPF_WRITE)
2667 env->seen_direct_write = true;
2668
2669 return true;
2670
4acf6c0b
BB
2671 default:
2672 return false;
2673 }
2674}
2675
f1174f77 2676static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2677 int size, bool zero_size_allowed)
f1174f77 2678{
638f5b90 2679 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2680 struct bpf_reg_state *reg = &regs[regno];
2681 int err;
2682
2683 /* We may have added a variable offset to the packet pointer; but any
2684 * reg->range we have comes after that. We are only checking the fixed
2685 * offset.
2686 */
2687
2688 /* We don't allow negative numbers, because we aren't tracking enough
2689 * detail to prove they're safe.
2690 */
b03c9f9f 2691 if (reg->smin_value < 0) {
61bd5218 2692 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2693 regno);
2694 return -EACCES;
2695 }
457f4436
AN
2696 err = __check_mem_access(env, regno, off, size, reg->range,
2697 zero_size_allowed);
f1174f77 2698 if (err) {
61bd5218 2699 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2700 return err;
2701 }
e647815a 2702
457f4436 2703 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2704 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2705 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2706 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2707 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2708 */
2709 env->prog->aux->max_pkt_offset =
2710 max_t(u32, env->prog->aux->max_pkt_offset,
2711 off + reg->umax_value + size - 1);
2712
f1174f77
EC
2713 return err;
2714}
2715
2716/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2717static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2718 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2719 u32 *btf_id)
17a52670 2720{
f96da094
DB
2721 struct bpf_insn_access_aux info = {
2722 .reg_type = *reg_type,
9e15db66 2723 .log = &env->log,
f96da094 2724 };
31fd8581 2725
4f9218aa 2726 if (env->ops->is_valid_access &&
5e43f899 2727 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2728 /* A non zero info.ctx_field_size indicates that this field is a
2729 * candidate for later verifier transformation to load the whole
2730 * field and then apply a mask when accessed with a narrower
2731 * access than actual ctx access size. A zero info.ctx_field_size
2732 * will only allow for whole field access and rejects any other
2733 * type of narrower access.
31fd8581 2734 */
23994631 2735 *reg_type = info.reg_type;
31fd8581 2736
b121b341 2737 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2738 *btf_id = info.btf_id;
2739 else
2740 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2741 /* remember the offset of last byte accessed in ctx */
2742 if (env->prog->aux->max_ctx_offset < off + size)
2743 env->prog->aux->max_ctx_offset = off + size;
17a52670 2744 return 0;
32bbe007 2745 }
17a52670 2746
61bd5218 2747 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2748 return -EACCES;
2749}
2750
d58e468b
PP
2751static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2752 int size)
2753{
2754 if (size < 0 || off < 0 ||
2755 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2756 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2757 off, size);
2758 return -EACCES;
2759 }
2760 return 0;
2761}
2762
5f456649
MKL
2763static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2764 u32 regno, int off, int size,
2765 enum bpf_access_type t)
c64b7983
JS
2766{
2767 struct bpf_reg_state *regs = cur_regs(env);
2768 struct bpf_reg_state *reg = &regs[regno];
5f456649 2769 struct bpf_insn_access_aux info = {};
46f8bc92 2770 bool valid;
c64b7983
JS
2771
2772 if (reg->smin_value < 0) {
2773 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2774 regno);
2775 return -EACCES;
2776 }
2777
46f8bc92
MKL
2778 switch (reg->type) {
2779 case PTR_TO_SOCK_COMMON:
2780 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2781 break;
2782 case PTR_TO_SOCKET:
2783 valid = bpf_sock_is_valid_access(off, size, t, &info);
2784 break;
655a51e5
MKL
2785 case PTR_TO_TCP_SOCK:
2786 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2787 break;
fada7fdc
JL
2788 case PTR_TO_XDP_SOCK:
2789 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2790 break;
46f8bc92
MKL
2791 default:
2792 valid = false;
c64b7983
JS
2793 }
2794
5f456649 2795
46f8bc92
MKL
2796 if (valid) {
2797 env->insn_aux_data[insn_idx].ctx_field_size =
2798 info.ctx_field_size;
2799 return 0;
2800 }
2801
2802 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2803 regno, reg_type_str[reg->type], off, size);
2804
2805 return -EACCES;
c64b7983
JS
2806}
2807
2a159c6f
DB
2808static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2809{
2810 return cur_regs(env) + regno;
2811}
2812
4cabc5b1
DB
2813static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2814{
2a159c6f 2815 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2816}
2817
f37a8cb8
DB
2818static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2819{
2a159c6f 2820 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2821
46f8bc92
MKL
2822 return reg->type == PTR_TO_CTX;
2823}
2824
2825static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2826{
2827 const struct bpf_reg_state *reg = reg_state(env, regno);
2828
2829 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2830}
2831
ca369602
DB
2832static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2833{
2a159c6f 2834 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2835
2836 return type_is_pkt_pointer(reg->type);
2837}
2838
4b5defde
DB
2839static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2840{
2841 const struct bpf_reg_state *reg = reg_state(env, regno);
2842
2843 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2844 return reg->type == PTR_TO_FLOW_KEYS;
2845}
2846
61bd5218
JK
2847static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2848 const struct bpf_reg_state *reg,
d1174416 2849 int off, int size, bool strict)
969bf05e 2850{
f1174f77 2851 struct tnum reg_off;
e07b98d9 2852 int ip_align;
d1174416
DM
2853
2854 /* Byte size accesses are always allowed. */
2855 if (!strict || size == 1)
2856 return 0;
2857
e4eda884
DM
2858 /* For platforms that do not have a Kconfig enabling
2859 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2860 * NET_IP_ALIGN is universally set to '2'. And on platforms
2861 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2862 * to this code only in strict mode where we want to emulate
2863 * the NET_IP_ALIGN==2 checking. Therefore use an
2864 * unconditional IP align value of '2'.
e07b98d9 2865 */
e4eda884 2866 ip_align = 2;
f1174f77
EC
2867
2868 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2869 if (!tnum_is_aligned(reg_off, size)) {
2870 char tn_buf[48];
2871
2872 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2873 verbose(env,
2874 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2875 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2876 return -EACCES;
2877 }
79adffcd 2878
969bf05e
AS
2879 return 0;
2880}
2881
61bd5218
JK
2882static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2883 const struct bpf_reg_state *reg,
f1174f77
EC
2884 const char *pointer_desc,
2885 int off, int size, bool strict)
79adffcd 2886{
f1174f77
EC
2887 struct tnum reg_off;
2888
2889 /* Byte size accesses are always allowed. */
2890 if (!strict || size == 1)
2891 return 0;
2892
2893 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2894 if (!tnum_is_aligned(reg_off, size)) {
2895 char tn_buf[48];
2896
2897 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2898 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2899 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2900 return -EACCES;
2901 }
2902
969bf05e
AS
2903 return 0;
2904}
2905
e07b98d9 2906static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2907 const struct bpf_reg_state *reg, int off,
2908 int size, bool strict_alignment_once)
79adffcd 2909{
ca369602 2910 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2911 const char *pointer_desc = "";
d1174416 2912
79adffcd
DB
2913 switch (reg->type) {
2914 case PTR_TO_PACKET:
de8f3a83
DB
2915 case PTR_TO_PACKET_META:
2916 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2917 * right in front, treat it the very same way.
2918 */
61bd5218 2919 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2920 case PTR_TO_FLOW_KEYS:
2921 pointer_desc = "flow keys ";
2922 break;
f1174f77
EC
2923 case PTR_TO_MAP_VALUE:
2924 pointer_desc = "value ";
2925 break;
2926 case PTR_TO_CTX:
2927 pointer_desc = "context ";
2928 break;
2929 case PTR_TO_STACK:
2930 pointer_desc = "stack ";
a5ec6ae1
JH
2931 /* The stack spill tracking logic in check_stack_write()
2932 * and check_stack_read() relies on stack accesses being
2933 * aligned.
2934 */
2935 strict = true;
f1174f77 2936 break;
c64b7983
JS
2937 case PTR_TO_SOCKET:
2938 pointer_desc = "sock ";
2939 break;
46f8bc92
MKL
2940 case PTR_TO_SOCK_COMMON:
2941 pointer_desc = "sock_common ";
2942 break;
655a51e5
MKL
2943 case PTR_TO_TCP_SOCK:
2944 pointer_desc = "tcp_sock ";
2945 break;
fada7fdc
JL
2946 case PTR_TO_XDP_SOCK:
2947 pointer_desc = "xdp_sock ";
2948 break;
79adffcd 2949 default:
f1174f77 2950 break;
79adffcd 2951 }
61bd5218
JK
2952 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2953 strict);
79adffcd
DB
2954}
2955
f4d7e40a
AS
2956static int update_stack_depth(struct bpf_verifier_env *env,
2957 const struct bpf_func_state *func,
2958 int off)
2959{
9c8105bd 2960 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2961
2962 if (stack >= -off)
2963 return 0;
2964
2965 /* update known max for given subprogram */
9c8105bd 2966 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2967 return 0;
2968}
f4d7e40a 2969
70a87ffe
AS
2970/* starting from main bpf function walk all instructions of the function
2971 * and recursively walk all callees that given function can call.
2972 * Ignore jump and exit insns.
2973 * Since recursion is prevented by check_cfg() this algorithm
2974 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2975 */
2976static int check_max_stack_depth(struct bpf_verifier_env *env)
2977{
9c8105bd
JW
2978 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2979 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2980 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2981 int ret_insn[MAX_CALL_FRAMES];
2982 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2983
70a87ffe
AS
2984process_func:
2985 /* round up to 32-bytes, since this is granularity
2986 * of interpreter stack size
2987 */
9c8105bd 2988 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2989 if (depth > MAX_BPF_STACK) {
f4d7e40a 2990 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2991 frame + 1, depth);
f4d7e40a
AS
2992 return -EACCES;
2993 }
70a87ffe 2994continue_func:
4cb3d99c 2995 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2996 for (; i < subprog_end; i++) {
2997 if (insn[i].code != (BPF_JMP | BPF_CALL))
2998 continue;
2999 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3000 continue;
3001 /* remember insn and function to return to */
3002 ret_insn[frame] = i + 1;
9c8105bd 3003 ret_prog[frame] = idx;
70a87ffe
AS
3004
3005 /* find the callee */
3006 i = i + insn[i].imm + 1;
9c8105bd
JW
3007 idx = find_subprog(env, i);
3008 if (idx < 0) {
70a87ffe
AS
3009 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3010 i);
3011 return -EFAULT;
3012 }
70a87ffe
AS
3013 frame++;
3014 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3015 verbose(env, "the call stack of %d frames is too deep !\n",
3016 frame);
3017 return -E2BIG;
70a87ffe
AS
3018 }
3019 goto process_func;
3020 }
3021 /* end of for() loop means the last insn of the 'subprog'
3022 * was reached. Doesn't matter whether it was JA or EXIT
3023 */
3024 if (frame == 0)
3025 return 0;
9c8105bd 3026 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3027 frame--;
3028 i = ret_insn[frame];
9c8105bd 3029 idx = ret_prog[frame];
70a87ffe 3030 goto continue_func;
f4d7e40a
AS
3031}
3032
19d28fbd 3033#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3034static int get_callee_stack_depth(struct bpf_verifier_env *env,
3035 const struct bpf_insn *insn, int idx)
3036{
3037 int start = idx + insn->imm + 1, subprog;
3038
3039 subprog = find_subprog(env, start);
3040 if (subprog < 0) {
3041 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3042 start);
3043 return -EFAULT;
3044 }
9c8105bd 3045 return env->subprog_info[subprog].stack_depth;
1ea47e01 3046}
19d28fbd 3047#endif
1ea47e01 3048
51c39bb1
AS
3049int check_ctx_reg(struct bpf_verifier_env *env,
3050 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3051{
3052 /* Access to ctx or passing it to a helper is only allowed in
3053 * its original, unmodified form.
3054 */
3055
3056 if (reg->off) {
3057 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3058 regno, reg->off);
3059 return -EACCES;
3060 }
3061
3062 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3063 char tn_buf[48];
3064
3065 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3066 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3067 return -EACCES;
3068 }
3069
3070 return 0;
3071}
3072
afbf21dc
YS
3073static int __check_buffer_access(struct bpf_verifier_env *env,
3074 const char *buf_info,
3075 const struct bpf_reg_state *reg,
3076 int regno, int off, int size)
9df1c28b
MM
3077{
3078 if (off < 0) {
3079 verbose(env,
4fc00b79 3080 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3081 regno, buf_info, off, size);
9df1c28b
MM
3082 return -EACCES;
3083 }
3084 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3085 char tn_buf[48];
3086
3087 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3088 verbose(env,
4fc00b79 3089 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3090 regno, off, tn_buf);
3091 return -EACCES;
3092 }
afbf21dc
YS
3093
3094 return 0;
3095}
3096
3097static int check_tp_buffer_access(struct bpf_verifier_env *env,
3098 const struct bpf_reg_state *reg,
3099 int regno, int off, int size)
3100{
3101 int err;
3102
3103 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3104 if (err)
3105 return err;
3106
9df1c28b
MM
3107 if (off + size > env->prog->aux->max_tp_access)
3108 env->prog->aux->max_tp_access = off + size;
3109
3110 return 0;
3111}
3112
afbf21dc
YS
3113static int check_buffer_access(struct bpf_verifier_env *env,
3114 const struct bpf_reg_state *reg,
3115 int regno, int off, int size,
3116 bool zero_size_allowed,
3117 const char *buf_info,
3118 u32 *max_access)
3119{
3120 int err;
3121
3122 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3123 if (err)
3124 return err;
3125
3126 if (off + size > *max_access)
3127 *max_access = off + size;
3128
3129 return 0;
3130}
3131
3f50f132
JF
3132/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3133static void zext_32_to_64(struct bpf_reg_state *reg)
3134{
3135 reg->var_off = tnum_subreg(reg->var_off);
3136 __reg_assign_32_into_64(reg);
3137}
9df1c28b 3138
0c17d1d2
JH
3139/* truncate register to smaller size (in bytes)
3140 * must be called with size < BPF_REG_SIZE
3141 */
3142static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3143{
3144 u64 mask;
3145
3146 /* clear high bits in bit representation */
3147 reg->var_off = tnum_cast(reg->var_off, size);
3148
3149 /* fix arithmetic bounds */
3150 mask = ((u64)1 << (size * 8)) - 1;
3151 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3152 reg->umin_value &= mask;
3153 reg->umax_value &= mask;
3154 } else {
3155 reg->umin_value = 0;
3156 reg->umax_value = mask;
3157 }
3158 reg->smin_value = reg->umin_value;
3159 reg->smax_value = reg->umax_value;
3f50f132
JF
3160
3161 /* If size is smaller than 32bit register the 32bit register
3162 * values are also truncated so we push 64-bit bounds into
3163 * 32-bit bounds. Above were truncated < 32-bits already.
3164 */
3165 if (size >= 4)
3166 return;
3167 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3168}
3169
a23740ec
AN
3170static bool bpf_map_is_rdonly(const struct bpf_map *map)
3171{
3172 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3173}
3174
3175static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3176{
3177 void *ptr;
3178 u64 addr;
3179 int err;
3180
3181 err = map->ops->map_direct_value_addr(map, &addr, off);
3182 if (err)
3183 return err;
2dedd7d2 3184 ptr = (void *)(long)addr + off;
a23740ec
AN
3185
3186 switch (size) {
3187 case sizeof(u8):
3188 *val = (u64)*(u8 *)ptr;
3189 break;
3190 case sizeof(u16):
3191 *val = (u64)*(u16 *)ptr;
3192 break;
3193 case sizeof(u32):
3194 *val = (u64)*(u32 *)ptr;
3195 break;
3196 case sizeof(u64):
3197 *val = *(u64 *)ptr;
3198 break;
3199 default:
3200 return -EINVAL;
3201 }
3202 return 0;
3203}
3204
9e15db66
AS
3205static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3206 struct bpf_reg_state *regs,
3207 int regno, int off, int size,
3208 enum bpf_access_type atype,
3209 int value_regno)
3210{
3211 struct bpf_reg_state *reg = regs + regno;
3212 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3213 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3214 u32 btf_id;
3215 int ret;
3216
9e15db66
AS
3217 if (off < 0) {
3218 verbose(env,
3219 "R%d is ptr_%s invalid negative access: off=%d\n",
3220 regno, tname, off);
3221 return -EACCES;
3222 }
3223 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3224 char tn_buf[48];
3225
3226 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3227 verbose(env,
3228 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3229 regno, tname, off, tn_buf);
3230 return -EACCES;
3231 }
3232
27ae7997
MKL
3233 if (env->ops->btf_struct_access) {
3234 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3235 atype, &btf_id);
3236 } else {
3237 if (atype != BPF_READ) {
3238 verbose(env, "only read is supported\n");
3239 return -EACCES;
3240 }
3241
3242 ret = btf_struct_access(&env->log, t, off, size, atype,
3243 &btf_id);
3244 }
3245
9e15db66
AS
3246 if (ret < 0)
3247 return ret;
3248
41c48f3a
AI
3249 if (atype == BPF_READ && value_regno >= 0)
3250 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3251
3252 return 0;
3253}
3254
3255static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3256 struct bpf_reg_state *regs,
3257 int regno, int off, int size,
3258 enum bpf_access_type atype,
3259 int value_regno)
3260{
3261 struct bpf_reg_state *reg = regs + regno;
3262 struct bpf_map *map = reg->map_ptr;
3263 const struct btf_type *t;
3264 const char *tname;
3265 u32 btf_id;
3266 int ret;
3267
3268 if (!btf_vmlinux) {
3269 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3270 return -ENOTSUPP;
3271 }
3272
3273 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3274 verbose(env, "map_ptr access not supported for map type %d\n",
3275 map->map_type);
3276 return -ENOTSUPP;
3277 }
3278
3279 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3280 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3281
3282 if (!env->allow_ptr_to_map_access) {
3283 verbose(env,
3284 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3285 tname);
3286 return -EPERM;
9e15db66 3287 }
27ae7997 3288
41c48f3a
AI
3289 if (off < 0) {
3290 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3291 regno, tname, off);
3292 return -EACCES;
3293 }
3294
3295 if (atype != BPF_READ) {
3296 verbose(env, "only read from %s is supported\n", tname);
3297 return -EACCES;
3298 }
3299
3300 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3301 if (ret < 0)
3302 return ret;
3303
3304 if (value_regno >= 0)
3305 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3306
9e15db66
AS
3307 return 0;
3308}
3309
41c48f3a 3310
17a52670
AS
3311/* check whether memory at (regno + off) is accessible for t = (read | write)
3312 * if t==write, value_regno is a register which value is stored into memory
3313 * if t==read, value_regno is a register which will receive the value from memory
3314 * if t==write && value_regno==-1, some unknown value is stored into memory
3315 * if t==read && value_regno==-1, don't care what we read from memory
3316 */
ca369602
DB
3317static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3318 int off, int bpf_size, enum bpf_access_type t,
3319 int value_regno, bool strict_alignment_once)
17a52670 3320{
638f5b90
AS
3321 struct bpf_reg_state *regs = cur_regs(env);
3322 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3323 struct bpf_func_state *state;
17a52670
AS
3324 int size, err = 0;
3325
3326 size = bpf_size_to_bytes(bpf_size);
3327 if (size < 0)
3328 return size;
3329
f1174f77 3330 /* alignment checks will add in reg->off themselves */
ca369602 3331 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3332 if (err)
3333 return err;
17a52670 3334
f1174f77
EC
3335 /* for access checks, reg->off is just part of off */
3336 off += reg->off;
3337
3338 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3339 if (t == BPF_WRITE && value_regno >= 0 &&
3340 is_pointer_value(env, value_regno)) {
61bd5218 3341 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3342 return -EACCES;
3343 }
591fe988
DB
3344 err = check_map_access_type(env, regno, off, size, t);
3345 if (err)
3346 return err;
9fd29c08 3347 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3348 if (!err && t == BPF_READ && value_regno >= 0) {
3349 struct bpf_map *map = reg->map_ptr;
3350
3351 /* if map is read-only, track its contents as scalars */
3352 if (tnum_is_const(reg->var_off) &&
3353 bpf_map_is_rdonly(map) &&
3354 map->ops->map_direct_value_addr) {
3355 int map_off = off + reg->var_off.value;
3356 u64 val = 0;
3357
3358 err = bpf_map_direct_read(map, map_off, size,
3359 &val);
3360 if (err)
3361 return err;
3362
3363 regs[value_regno].type = SCALAR_VALUE;
3364 __mark_reg_known(&regs[value_regno], val);
3365 } else {
3366 mark_reg_unknown(env, regs, value_regno);
3367 }
3368 }
457f4436
AN
3369 } else if (reg->type == PTR_TO_MEM) {
3370 if (t == BPF_WRITE && value_regno >= 0 &&
3371 is_pointer_value(env, value_regno)) {
3372 verbose(env, "R%d leaks addr into mem\n", value_regno);
3373 return -EACCES;
3374 }
3375 err = check_mem_region_access(env, regno, off, size,
3376 reg->mem_size, false);
3377 if (!err && t == BPF_READ && value_regno >= 0)
3378 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3379 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3380 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3381 u32 btf_id = 0;
19de99f7 3382
1be7f75d
AS
3383 if (t == BPF_WRITE && value_regno >= 0 &&
3384 is_pointer_value(env, value_regno)) {
61bd5218 3385 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3386 return -EACCES;
3387 }
f1174f77 3388
58990d1f
DB
3389 err = check_ctx_reg(env, reg, regno);
3390 if (err < 0)
3391 return err;
3392
9e15db66
AS
3393 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3394 if (err)
3395 verbose_linfo(env, insn_idx, "; ");
969bf05e 3396 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3397 /* ctx access returns either a scalar, or a
de8f3a83
DB
3398 * PTR_TO_PACKET[_META,_END]. In the latter
3399 * case, we know the offset is zero.
f1174f77 3400 */
46f8bc92 3401 if (reg_type == SCALAR_VALUE) {
638f5b90 3402 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3403 } else {
638f5b90 3404 mark_reg_known_zero(env, regs,
61bd5218 3405 value_regno);
46f8bc92
MKL
3406 if (reg_type_may_be_null(reg_type))
3407 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3408 /* A load of ctx field could have different
3409 * actual load size with the one encoded in the
3410 * insn. When the dst is PTR, it is for sure not
3411 * a sub-register.
3412 */
3413 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3414 if (reg_type == PTR_TO_BTF_ID ||
3415 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3416 regs[value_regno].btf_id = btf_id;
46f8bc92 3417 }
638f5b90 3418 regs[value_regno].type = reg_type;
969bf05e 3419 }
17a52670 3420
f1174f77 3421 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3422 off += reg->var_off.value;
e4298d25
DB
3423 err = check_stack_access(env, reg, off, size);
3424 if (err)
3425 return err;
8726679a 3426
f4d7e40a
AS
3427 state = func(env, reg);
3428 err = update_stack_depth(env, state, off);
3429 if (err)
3430 return err;
8726679a 3431
638f5b90 3432 if (t == BPF_WRITE)
61bd5218 3433 err = check_stack_write(env, state, off, size,
af86ca4e 3434 value_regno, insn_idx);
638f5b90 3435 else
61bd5218
JK
3436 err = check_stack_read(env, state, off, size,
3437 value_regno);
de8f3a83 3438 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3439 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3440 verbose(env, "cannot write into packet\n");
969bf05e
AS
3441 return -EACCES;
3442 }
4acf6c0b
BB
3443 if (t == BPF_WRITE && value_regno >= 0 &&
3444 is_pointer_value(env, value_regno)) {
61bd5218
JK
3445 verbose(env, "R%d leaks addr into packet\n",
3446 value_regno);
4acf6c0b
BB
3447 return -EACCES;
3448 }
9fd29c08 3449 err = check_packet_access(env, regno, off, size, false);
969bf05e 3450 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3451 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3452 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3453 if (t == BPF_WRITE && value_regno >= 0 &&
3454 is_pointer_value(env, value_regno)) {
3455 verbose(env, "R%d leaks addr into flow keys\n",
3456 value_regno);
3457 return -EACCES;
3458 }
3459
3460 err = check_flow_keys_access(env, off, size);
3461 if (!err && t == BPF_READ && value_regno >= 0)
3462 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3463 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3464 if (t == BPF_WRITE) {
46f8bc92
MKL
3465 verbose(env, "R%d cannot write into %s\n",
3466 regno, reg_type_str[reg->type]);
c64b7983
JS
3467 return -EACCES;
3468 }
5f456649 3469 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3470 if (!err && value_regno >= 0)
3471 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3472 } else if (reg->type == PTR_TO_TP_BUFFER) {
3473 err = check_tp_buffer_access(env, reg, regno, off, size);
3474 if (!err && t == BPF_READ && value_regno >= 0)
3475 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3476 } else if (reg->type == PTR_TO_BTF_ID) {
3477 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3478 value_regno);
41c48f3a
AI
3479 } else if (reg->type == CONST_PTR_TO_MAP) {
3480 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3481 value_regno);
afbf21dc
YS
3482 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3483 if (t == BPF_WRITE) {
3484 verbose(env, "R%d cannot write into %s\n",
3485 regno, reg_type_str[reg->type]);
3486 return -EACCES;
3487 }
f6dfbe31
CIK
3488 err = check_buffer_access(env, reg, regno, off, size, false,
3489 "rdonly",
afbf21dc
YS
3490 &env->prog->aux->max_rdonly_access);
3491 if (!err && value_regno >= 0)
3492 mark_reg_unknown(env, regs, value_regno);
3493 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3494 err = check_buffer_access(env, reg, regno, off, size, false,
3495 "rdwr",
afbf21dc
YS
3496 &env->prog->aux->max_rdwr_access);
3497 if (!err && t == BPF_READ && value_regno >= 0)
3498 mark_reg_unknown(env, regs, value_regno);
17a52670 3499 } else {
61bd5218
JK
3500 verbose(env, "R%d invalid mem access '%s'\n", regno,
3501 reg_type_str[reg->type]);
17a52670
AS
3502 return -EACCES;
3503 }
969bf05e 3504
f1174f77 3505 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3506 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3507 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3508 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3509 }
17a52670
AS
3510 return err;
3511}
3512
31fd8581 3513static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3514{
17a52670
AS
3515 int err;
3516
3517 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3518 insn->imm != 0) {
61bd5218 3519 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3520 return -EINVAL;
3521 }
3522
3523 /* check src1 operand */
dc503a8a 3524 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3525 if (err)
3526 return err;
3527
3528 /* check src2 operand */
dc503a8a 3529 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3530 if (err)
3531 return err;
3532
6bdf6abc 3533 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3534 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3535 return -EACCES;
3536 }
3537
ca369602 3538 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3539 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3540 is_flow_key_reg(env, insn->dst_reg) ||
3541 is_sk_reg(env, insn->dst_reg)) {
ca369602 3542 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3543 insn->dst_reg,
3544 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3545 return -EACCES;
3546 }
3547
17a52670 3548 /* check whether atomic_add can read the memory */
31fd8581 3549 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3550 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3551 if (err)
3552 return err;
3553
3554 /* check whether atomic_add can write into the same memory */
31fd8581 3555 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3556 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3557}
3558
2011fccf
AI
3559static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3560 int off, int access_size,
3561 bool zero_size_allowed)
3562{
3563 struct bpf_reg_state *reg = reg_state(env, regno);
3564
3565 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3566 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3567 if (tnum_is_const(reg->var_off)) {
3568 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3569 regno, off, access_size);
3570 } else {
3571 char tn_buf[48];
3572
3573 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3574 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3575 regno, tn_buf, access_size);
3576 }
3577 return -EACCES;
3578 }
3579 return 0;
3580}
3581
17a52670
AS
3582/* when register 'regno' is passed into function that will read 'access_size'
3583 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3584 * and all elements of stack are initialized.
3585 * Unlike most pointer bounds-checking functions, this one doesn't take an
3586 * 'off' argument, so it has to add in reg->off itself.
17a52670 3587 */
58e2af8b 3588static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3589 int access_size, bool zero_size_allowed,
3590 struct bpf_call_arg_meta *meta)
17a52670 3591{
2a159c6f 3592 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3593 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3594 int err, min_off, max_off, i, j, slot, spi;
17a52670 3595
914cb781 3596 if (reg->type != PTR_TO_STACK) {
f1174f77 3597 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3598 if (zero_size_allowed && access_size == 0 &&
914cb781 3599 register_is_null(reg))
8e2fe1d9
DB
3600 return 0;
3601
61bd5218 3602 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3603 reg_type_str[reg->type],
8e2fe1d9 3604 reg_type_str[PTR_TO_STACK]);
17a52670 3605 return -EACCES;
8e2fe1d9 3606 }
17a52670 3607
2011fccf
AI
3608 if (tnum_is_const(reg->var_off)) {
3609 min_off = max_off = reg->var_off.value + reg->off;
3610 err = __check_stack_boundary(env, regno, min_off, access_size,
3611 zero_size_allowed);
3612 if (err)
3613 return err;
3614 } else {
088ec26d
AI
3615 /* Variable offset is prohibited for unprivileged mode for
3616 * simplicity since it requires corresponding support in
3617 * Spectre masking for stack ALU.
3618 * See also retrieve_ptr_limit().
3619 */
2c78ee89 3620 if (!env->bypass_spec_v1) {
088ec26d 3621 char tn_buf[48];
f1174f77 3622
088ec26d
AI
3623 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3624 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3625 regno, tn_buf);
3626 return -EACCES;
3627 }
f2bcd05e
AI
3628 /* Only initialized buffer on stack is allowed to be accessed
3629 * with variable offset. With uninitialized buffer it's hard to
3630 * guarantee that whole memory is marked as initialized on
3631 * helper return since specific bounds are unknown what may
3632 * cause uninitialized stack leaking.
3633 */
3634 if (meta && meta->raw_mode)
3635 meta = NULL;
3636
107c26a7
AI
3637 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3638 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3639 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3640 regno);
3641 return -EACCES;
3642 }
2011fccf 3643 min_off = reg->smin_value + reg->off;
107c26a7 3644 max_off = reg->smax_value + reg->off;
2011fccf
AI
3645 err = __check_stack_boundary(env, regno, min_off, access_size,
3646 zero_size_allowed);
107c26a7
AI
3647 if (err) {
3648 verbose(env, "R%d min value is outside of stack bound\n",
3649 regno);
2011fccf 3650 return err;
107c26a7 3651 }
2011fccf
AI
3652 err = __check_stack_boundary(env, regno, max_off, access_size,
3653 zero_size_allowed);
107c26a7
AI
3654 if (err) {
3655 verbose(env, "R%d max value is outside of stack bound\n",
3656 regno);
2011fccf 3657 return err;
107c26a7 3658 }
17a52670
AS
3659 }
3660
435faee1
DB
3661 if (meta && meta->raw_mode) {
3662 meta->access_size = access_size;
3663 meta->regno = regno;
3664 return 0;
3665 }
3666
2011fccf 3667 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3668 u8 *stype;
3669
2011fccf 3670 slot = -i - 1;
638f5b90 3671 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3672 if (state->allocated_stack <= slot)
3673 goto err;
3674 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3675 if (*stype == STACK_MISC)
3676 goto mark;
3677 if (*stype == STACK_ZERO) {
3678 /* helper can write anything into the stack */
3679 *stype = STACK_MISC;
3680 goto mark;
17a52670 3681 }
1d68f22b
YS
3682
3683 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3684 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3685 goto mark;
3686
f7cf25b2
AS
3687 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3688 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3689 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3690 for (j = 0; j < BPF_REG_SIZE; j++)
3691 state->stack[spi].slot_type[j] = STACK_MISC;
3692 goto mark;
3693 }
3694
cc2b14d5 3695err:
2011fccf
AI
3696 if (tnum_is_const(reg->var_off)) {
3697 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3698 min_off, i - min_off, access_size);
3699 } else {
3700 char tn_buf[48];
3701
3702 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3703 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3704 tn_buf, i - min_off, access_size);
3705 }
cc2b14d5
AS
3706 return -EACCES;
3707mark:
3708 /* reading any byte out of 8-byte 'spill_slot' will cause
3709 * the whole slot to be marked as 'read'
3710 */
679c782d 3711 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3712 state->stack[spi].spilled_ptr.parent,
3713 REG_LIVE_READ64);
17a52670 3714 }
2011fccf 3715 return update_stack_depth(env, state, min_off);
17a52670
AS
3716}
3717
06c1c049
GB
3718static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3719 int access_size, bool zero_size_allowed,
3720 struct bpf_call_arg_meta *meta)
3721{
638f5b90 3722 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3723
f1174f77 3724 switch (reg->type) {
06c1c049 3725 case PTR_TO_PACKET:
de8f3a83 3726 case PTR_TO_PACKET_META:
9fd29c08
YS
3727 return check_packet_access(env, regno, reg->off, access_size,
3728 zero_size_allowed);
06c1c049 3729 case PTR_TO_MAP_VALUE:
591fe988
DB
3730 if (check_map_access_type(env, regno, reg->off, access_size,
3731 meta && meta->raw_mode ? BPF_WRITE :
3732 BPF_READ))
3733 return -EACCES;
9fd29c08
YS
3734 return check_map_access(env, regno, reg->off, access_size,
3735 zero_size_allowed);
457f4436
AN
3736 case PTR_TO_MEM:
3737 return check_mem_region_access(env, regno, reg->off,
3738 access_size, reg->mem_size,
3739 zero_size_allowed);
afbf21dc
YS
3740 case PTR_TO_RDONLY_BUF:
3741 if (meta && meta->raw_mode)
3742 return -EACCES;
3743 return check_buffer_access(env, reg, regno, reg->off,
3744 access_size, zero_size_allowed,
3745 "rdonly",
3746 &env->prog->aux->max_rdonly_access);
3747 case PTR_TO_RDWR_BUF:
3748 return check_buffer_access(env, reg, regno, reg->off,
3749 access_size, zero_size_allowed,
3750 "rdwr",
3751 &env->prog->aux->max_rdwr_access);
f1174f77 3752 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3753 return check_stack_boundary(env, regno, access_size,
3754 zero_size_allowed, meta);
3755 }
3756}
3757
d83525ca
AS
3758/* Implementation details:
3759 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3760 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3761 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3762 * value_or_null->value transition, since the verifier only cares about
3763 * the range of access to valid map value pointer and doesn't care about actual
3764 * address of the map element.
3765 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3766 * reg->id > 0 after value_or_null->value transition. By doing so
3767 * two bpf_map_lookups will be considered two different pointers that
3768 * point to different bpf_spin_locks.
3769 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3770 * dead-locks.
3771 * Since only one bpf_spin_lock is allowed the checks are simpler than
3772 * reg_is_refcounted() logic. The verifier needs to remember only
3773 * one spin_lock instead of array of acquired_refs.
3774 * cur_state->active_spin_lock remembers which map value element got locked
3775 * and clears it after bpf_spin_unlock.
3776 */
3777static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3778 bool is_lock)
3779{
3780 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3781 struct bpf_verifier_state *cur = env->cur_state;
3782 bool is_const = tnum_is_const(reg->var_off);
3783 struct bpf_map *map = reg->map_ptr;
3784 u64 val = reg->var_off.value;
3785
3786 if (reg->type != PTR_TO_MAP_VALUE) {
3787 verbose(env, "R%d is not a pointer to map_value\n", regno);
3788 return -EINVAL;
3789 }
3790 if (!is_const) {
3791 verbose(env,
3792 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3793 regno);
3794 return -EINVAL;
3795 }
3796 if (!map->btf) {
3797 verbose(env,
3798 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3799 map->name);
3800 return -EINVAL;
3801 }
3802 if (!map_value_has_spin_lock(map)) {
3803 if (map->spin_lock_off == -E2BIG)
3804 verbose(env,
3805 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3806 map->name);
3807 else if (map->spin_lock_off == -ENOENT)
3808 verbose(env,
3809 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3810 map->name);
3811 else
3812 verbose(env,
3813 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3814 map->name);
3815 return -EINVAL;
3816 }
3817 if (map->spin_lock_off != val + reg->off) {
3818 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3819 val + reg->off);
3820 return -EINVAL;
3821 }
3822 if (is_lock) {
3823 if (cur->active_spin_lock) {
3824 verbose(env,
3825 "Locking two bpf_spin_locks are not allowed\n");
3826 return -EINVAL;
3827 }
3828 cur->active_spin_lock = reg->id;
3829 } else {
3830 if (!cur->active_spin_lock) {
3831 verbose(env, "bpf_spin_unlock without taking a lock\n");
3832 return -EINVAL;
3833 }
3834 if (cur->active_spin_lock != reg->id) {
3835 verbose(env, "bpf_spin_unlock of different lock\n");
3836 return -EINVAL;
3837 }
3838 cur->active_spin_lock = 0;
3839 }
3840 return 0;
3841}
3842
90133415
DB
3843static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3844{
3845 return type == ARG_PTR_TO_MEM ||
3846 type == ARG_PTR_TO_MEM_OR_NULL ||
3847 type == ARG_PTR_TO_UNINIT_MEM;
3848}
3849
3850static bool arg_type_is_mem_size(enum bpf_arg_type type)
3851{
3852 return type == ARG_CONST_SIZE ||
3853 type == ARG_CONST_SIZE_OR_ZERO;
3854}
3855
457f4436
AN
3856static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3857{
3858 return type == ARG_PTR_TO_ALLOC_MEM ||
3859 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3860}
3861
3862static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3863{
3864 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3865}
3866
57c3bb72
AI
3867static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3868{
3869 return type == ARG_PTR_TO_INT ||
3870 type == ARG_PTR_TO_LONG;
3871}
3872
3873static int int_ptr_type_to_size(enum bpf_arg_type type)
3874{
3875 if (type == ARG_PTR_TO_INT)
3876 return sizeof(u32);
3877 else if (type == ARG_PTR_TO_LONG)
3878 return sizeof(u64);
3879
3880 return -EINVAL;
3881}
3882
912f442c
LB
3883static int resolve_map_arg_type(struct bpf_verifier_env *env,
3884 const struct bpf_call_arg_meta *meta,
3885 enum bpf_arg_type *arg_type)
3886{
3887 if (!meta->map_ptr) {
3888 /* kernel subsystem misconfigured verifier */
3889 verbose(env, "invalid map_ptr to access map->type\n");
3890 return -EACCES;
3891 }
3892
3893 switch (meta->map_ptr->map_type) {
3894 case BPF_MAP_TYPE_SOCKMAP:
3895 case BPF_MAP_TYPE_SOCKHASH:
3896 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3897 *arg_type = ARG_PTR_TO_SOCKET;
3898 } else {
3899 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3900 return -EINVAL;
3901 }
3902 break;
3903
3904 default:
3905 break;
3906 }
3907 return 0;
3908}
3909
af7ec138
YS
3910static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
3911 struct bpf_call_arg_meta *meta,
3912 const struct bpf_func_proto *fn)
17a52670 3913{
af7ec138 3914 u32 regno = BPF_REG_1 + arg;
638f5b90 3915 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3916 enum bpf_reg_type expected_type, type = reg->type;
af7ec138 3917 enum bpf_arg_type arg_type = fn->arg_type[arg];
17a52670
AS
3918 int err = 0;
3919
80f1d68c 3920 if (arg_type == ARG_DONTCARE)
17a52670
AS
3921 return 0;
3922
dc503a8a
EC
3923 err = check_reg_arg(env, regno, SRC_OP);
3924 if (err)
3925 return err;
17a52670 3926
1be7f75d
AS
3927 if (arg_type == ARG_ANYTHING) {
3928 if (is_pointer_value(env, regno)) {
61bd5218
JK
3929 verbose(env, "R%d leaks addr into helper function\n",
3930 regno);
1be7f75d
AS
3931 return -EACCES;
3932 }
80f1d68c 3933 return 0;
1be7f75d 3934 }
80f1d68c 3935
de8f3a83 3936 if (type_is_pkt_pointer(type) &&
3a0af8fd 3937 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3938 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3939 return -EACCES;
3940 }
3941
912f442c
LB
3942 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3943 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3944 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3945 err = resolve_map_arg_type(env, meta, &arg_type);
3946 if (err)
3947 return err;
3948 }
3949
8e2fe1d9 3950 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3951 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3952 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3953 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3954 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3955 if (register_is_null(reg) &&
3956 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3957 /* final test in check_stack_boundary() */;
3958 else if (!type_is_pkt_pointer(type) &&
3959 type != PTR_TO_MAP_VALUE &&
3960 type != expected_type)
6841de8b 3961 goto err_type;
39f19ebb 3962 } else if (arg_type == ARG_CONST_SIZE ||
457f4436
AN
3963 arg_type == ARG_CONST_SIZE_OR_ZERO ||
3964 arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
f1174f77
EC
3965 expected_type = SCALAR_VALUE;
3966 if (type != expected_type)
6841de8b 3967 goto err_type;
17a52670
AS
3968 } else if (arg_type == ARG_CONST_MAP_PTR) {
3969 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3970 if (type != expected_type)
3971 goto err_type;
f318903c
DB
3972 } else if (arg_type == ARG_PTR_TO_CTX ||
3973 arg_type == ARG_PTR_TO_CTX_OR_NULL) {
608cd71a 3974 expected_type = PTR_TO_CTX;
f318903c
DB
3975 if (!(register_is_null(reg) &&
3976 arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3977 if (type != expected_type)
3978 goto err_type;
3979 err = check_ctx_reg(env, reg, regno);
3980 if (err < 0)
3981 return err;
3982 }
46f8bc92
MKL
3983 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3984 expected_type = PTR_TO_SOCK_COMMON;
3985 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3986 if (!type_is_sk_pointer(type))
3987 goto err_type;
1b986589
MKL
3988 if (reg->ref_obj_id) {
3989 if (meta->ref_obj_id) {
3990 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3991 regno, reg->ref_obj_id,
3992 meta->ref_obj_id);
3993 return -EFAULT;
3994 }
3995 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3996 }
e9ddbb77
JS
3997 } else if (arg_type == ARG_PTR_TO_SOCKET ||
3998 arg_type == ARG_PTR_TO_SOCKET_OR_NULL) {
6ac99e8f 3999 expected_type = PTR_TO_SOCKET;
e9ddbb77
JS
4000 if (!(register_is_null(reg) &&
4001 arg_type == ARG_PTR_TO_SOCKET_OR_NULL)) {
4002 if (type != expected_type)
4003 goto err_type;
4004 }
a7658e1a 4005 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
faaf4a79
JO
4006 bool ids_match = false;
4007
a7658e1a
AS
4008 expected_type = PTR_TO_BTF_ID;
4009 if (type != expected_type)
4010 goto err_type;
af7ec138
YS
4011 if (!fn->check_btf_id) {
4012 if (reg->btf_id != meta->btf_id) {
faaf4a79
JO
4013 ids_match = btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4014 meta->btf_id);
4015 if (!ids_match) {
4016 verbose(env, "Helper has type %s got %s in R%d\n",
4017 kernel_type_name(meta->btf_id),
4018 kernel_type_name(reg->btf_id), regno);
4019 return -EACCES;
4020 }
af7ec138
YS
4021 }
4022 } else if (!fn->check_btf_id(reg->btf_id, arg)) {
4023 verbose(env, "Helper does not support %s in R%d\n",
a7658e1a
AS
4024 kernel_type_name(reg->btf_id), regno);
4025
4026 return -EACCES;
4027 }
faaf4a79 4028 if ((reg->off && !ids_match) || !tnum_is_const(reg->var_off) || reg->var_off.value) {
a7658e1a
AS
4029 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4030 regno);
4031 return -EACCES;
4032 }
d83525ca
AS
4033 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4034 if (meta->func_id == BPF_FUNC_spin_lock) {
4035 if (process_spin_lock(env, regno, true))
4036 return -EACCES;
4037 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4038 if (process_spin_lock(env, regno, false))
4039 return -EACCES;
4040 } else {
4041 verbose(env, "verifier internal error\n");
4042 return -EFAULT;
4043 }
90133415 4044 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
4045 expected_type = PTR_TO_STACK;
4046 /* One exception here. In case function allows for NULL to be
f1174f77 4047 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
4048 * happens during stack boundary checking.
4049 */
914cb781 4050 if (register_is_null(reg) &&
457f4436
AN
4051 (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
4052 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
6841de8b 4053 /* final test in check_stack_boundary() */;
de8f3a83
DB
4054 else if (!type_is_pkt_pointer(type) &&
4055 type != PTR_TO_MAP_VALUE &&
457f4436 4056 type != PTR_TO_MEM &&
afbf21dc
YS
4057 type != PTR_TO_RDONLY_BUF &&
4058 type != PTR_TO_RDWR_BUF &&
f1174f77 4059 type != expected_type)
6841de8b 4060 goto err_type;
39f19ebb 4061 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
457f4436
AN
4062 } else if (arg_type_is_alloc_mem_ptr(arg_type)) {
4063 expected_type = PTR_TO_MEM;
4064 if (register_is_null(reg) &&
4065 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
4066 /* final test in check_stack_boundary() */;
4067 else if (type != expected_type)
4068 goto err_type;
4069 if (meta->ref_obj_id) {
4070 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4071 regno, reg->ref_obj_id,
4072 meta->ref_obj_id);
4073 return -EFAULT;
4074 }
4075 meta->ref_obj_id = reg->ref_obj_id;
57c3bb72
AI
4076 } else if (arg_type_is_int_ptr(arg_type)) {
4077 expected_type = PTR_TO_STACK;
4078 if (!type_is_pkt_pointer(type) &&
4079 type != PTR_TO_MAP_VALUE &&
4080 type != expected_type)
4081 goto err_type;
17a52670 4082 } else {
61bd5218 4083 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
4084 return -EFAULT;
4085 }
4086
17a52670
AS
4087 if (arg_type == ARG_CONST_MAP_PTR) {
4088 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4089 meta->map_ptr = reg->map_ptr;
17a52670
AS
4090 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4091 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4092 * check that [key, key + map->key_size) are within
4093 * stack limits and initialized
4094 */
33ff9823 4095 if (!meta->map_ptr) {
17a52670
AS
4096 /* in function declaration map_ptr must come before
4097 * map_key, so that it's verified and known before
4098 * we have to check map_key here. Otherwise it means
4099 * that kernel subsystem misconfigured verifier
4100 */
61bd5218 4101 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4102 return -EACCES;
4103 }
d71962f3
PC
4104 err = check_helper_mem_access(env, regno,
4105 meta->map_ptr->key_size, false,
4106 NULL);
2ea864c5 4107 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4108 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4109 !register_is_null(reg)) ||
2ea864c5 4110 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4111 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4112 * check [value, value + map->value_size) validity
4113 */
33ff9823 4114 if (!meta->map_ptr) {
17a52670 4115 /* kernel subsystem misconfigured verifier */
61bd5218 4116 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4117 return -EACCES;
4118 }
2ea864c5 4119 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4120 err = check_helper_mem_access(env, regno,
4121 meta->map_ptr->value_size, false,
2ea864c5 4122 meta);
90133415 4123 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4124 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4125
10060503
JF
4126 /* This is used to refine r0 return value bounds for helpers
4127 * that enforce this value as an upper bound on return values.
4128 * See do_refine_retval_range() for helpers that can refine
4129 * the return value. C type of helper is u32 so we pull register
4130 * bound from umax_value however, if negative verifier errors
4131 * out. Only upper bounds can be learned because retval is an
4132 * int type and negative retvals are allowed.
849fa506 4133 */
10060503 4134 meta->msize_max_value = reg->umax_value;
849fa506 4135
f1174f77
EC
4136 /* The register is SCALAR_VALUE; the access check
4137 * happens using its boundaries.
06c1c049 4138 */
f1174f77 4139 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4140 /* For unprivileged variable accesses, disable raw
4141 * mode so that the program is required to
4142 * initialize all the memory that the helper could
4143 * just partially fill up.
4144 */
4145 meta = NULL;
4146
b03c9f9f 4147 if (reg->smin_value < 0) {
61bd5218 4148 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4149 regno);
4150 return -EACCES;
4151 }
06c1c049 4152
b03c9f9f 4153 if (reg->umin_value == 0) {
f1174f77
EC
4154 err = check_helper_mem_access(env, regno - 1, 0,
4155 zero_size_allowed,
4156 meta);
06c1c049
GB
4157 if (err)
4158 return err;
06c1c049 4159 }
f1174f77 4160
b03c9f9f 4161 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4162 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4163 regno);
4164 return -EACCES;
4165 }
4166 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4167 reg->umax_value,
f1174f77 4168 zero_size_allowed, meta);
b5dc0163
AS
4169 if (!err)
4170 err = mark_chain_precision(env, regno);
457f4436
AN
4171 } else if (arg_type_is_alloc_size(arg_type)) {
4172 if (!tnum_is_const(reg->var_off)) {
4173 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4174 regno);
4175 return -EACCES;
4176 }
4177 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4178 } else if (arg_type_is_int_ptr(arg_type)) {
4179 int size = int_ptr_type_to_size(arg_type);
4180
4181 err = check_helper_mem_access(env, regno, size, false, meta);
4182 if (err)
4183 return err;
4184 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4185 }
4186
4187 return err;
6841de8b 4188err_type:
61bd5218 4189 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
4190 reg_type_str[type], reg_type_str[expected_type]);
4191 return -EACCES;
17a52670
AS
4192}
4193
0126240f
LB
4194static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4195{
4196 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4197 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4198
4199 if (func_id != BPF_FUNC_map_update_elem)
4200 return false;
4201
4202 /* It's not possible to get access to a locked struct sock in these
4203 * contexts, so updating is safe.
4204 */
4205 switch (type) {
4206 case BPF_PROG_TYPE_TRACING:
4207 if (eatype == BPF_TRACE_ITER)
4208 return true;
4209 break;
4210 case BPF_PROG_TYPE_SOCKET_FILTER:
4211 case BPF_PROG_TYPE_SCHED_CLS:
4212 case BPF_PROG_TYPE_SCHED_ACT:
4213 case BPF_PROG_TYPE_XDP:
4214 case BPF_PROG_TYPE_SK_REUSEPORT:
4215 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4216 case BPF_PROG_TYPE_SK_LOOKUP:
4217 return true;
4218 default:
4219 break;
4220 }
4221
4222 verbose(env, "cannot update sockmap in this context\n");
4223 return false;
4224}
4225
61bd5218
JK
4226static int check_map_func_compatibility(struct bpf_verifier_env *env,
4227 struct bpf_map *map, int func_id)
35578d79 4228{
35578d79
KX
4229 if (!map)
4230 return 0;
4231
6aff67c8
AS
4232 /* We need a two way check, first is from map perspective ... */
4233 switch (map->map_type) {
4234 case BPF_MAP_TYPE_PROG_ARRAY:
4235 if (func_id != BPF_FUNC_tail_call)
4236 goto error;
4237 break;
4238 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4239 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4240 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4241 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4242 func_id != BPF_FUNC_perf_event_read_value &&
4243 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4244 goto error;
4245 break;
457f4436
AN
4246 case BPF_MAP_TYPE_RINGBUF:
4247 if (func_id != BPF_FUNC_ringbuf_output &&
4248 func_id != BPF_FUNC_ringbuf_reserve &&
4249 func_id != BPF_FUNC_ringbuf_submit &&
4250 func_id != BPF_FUNC_ringbuf_discard &&
4251 func_id != BPF_FUNC_ringbuf_query)
4252 goto error;
4253 break;
6aff67c8
AS
4254 case BPF_MAP_TYPE_STACK_TRACE:
4255 if (func_id != BPF_FUNC_get_stackid)
4256 goto error;
4257 break;
4ed8ec52 4258 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4259 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4260 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4261 goto error;
4262 break;
cd339431 4263 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4264 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4265 if (func_id != BPF_FUNC_get_local_storage)
4266 goto error;
4267 break;
546ac1ff 4268 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4269 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4270 if (func_id != BPF_FUNC_redirect_map &&
4271 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4272 goto error;
4273 break;
fbfc504a
BT
4274 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4275 * appear.
4276 */
6710e112
JDB
4277 case BPF_MAP_TYPE_CPUMAP:
4278 if (func_id != BPF_FUNC_redirect_map)
4279 goto error;
4280 break;
fada7fdc
JL
4281 case BPF_MAP_TYPE_XSKMAP:
4282 if (func_id != BPF_FUNC_redirect_map &&
4283 func_id != BPF_FUNC_map_lookup_elem)
4284 goto error;
4285 break;
56f668df 4286 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4287 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4288 if (func_id != BPF_FUNC_map_lookup_elem)
4289 goto error;
16a43625 4290 break;
174a79ff
JF
4291 case BPF_MAP_TYPE_SOCKMAP:
4292 if (func_id != BPF_FUNC_sk_redirect_map &&
4293 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4294 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4295 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4296 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4297 func_id != BPF_FUNC_map_lookup_elem &&
4298 !may_update_sockmap(env, func_id))
174a79ff
JF
4299 goto error;
4300 break;
81110384
JF
4301 case BPF_MAP_TYPE_SOCKHASH:
4302 if (func_id != BPF_FUNC_sk_redirect_hash &&
4303 func_id != BPF_FUNC_sock_hash_update &&
4304 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4305 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4306 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4307 func_id != BPF_FUNC_map_lookup_elem &&
4308 !may_update_sockmap(env, func_id))
81110384
JF
4309 goto error;
4310 break;
2dbb9b9e
MKL
4311 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4312 if (func_id != BPF_FUNC_sk_select_reuseport)
4313 goto error;
4314 break;
f1a2e44a
MV
4315 case BPF_MAP_TYPE_QUEUE:
4316 case BPF_MAP_TYPE_STACK:
4317 if (func_id != BPF_FUNC_map_peek_elem &&
4318 func_id != BPF_FUNC_map_pop_elem &&
4319 func_id != BPF_FUNC_map_push_elem)
4320 goto error;
4321 break;
6ac99e8f
MKL
4322 case BPF_MAP_TYPE_SK_STORAGE:
4323 if (func_id != BPF_FUNC_sk_storage_get &&
4324 func_id != BPF_FUNC_sk_storage_delete)
4325 goto error;
4326 break;
8ea63684
KS
4327 case BPF_MAP_TYPE_INODE_STORAGE:
4328 if (func_id != BPF_FUNC_inode_storage_get &&
4329 func_id != BPF_FUNC_inode_storage_delete)
4330 goto error;
4331 break;
6aff67c8
AS
4332 default:
4333 break;
4334 }
4335
4336 /* ... and second from the function itself. */
4337 switch (func_id) {
4338 case BPF_FUNC_tail_call:
4339 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4340 goto error;
f910cefa 4341 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4342 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4343 return -EINVAL;
4344 }
6aff67c8
AS
4345 break;
4346 case BPF_FUNC_perf_event_read:
4347 case BPF_FUNC_perf_event_output:
908432ca 4348 case BPF_FUNC_perf_event_read_value:
a7658e1a 4349 case BPF_FUNC_skb_output:
d831ee84 4350 case BPF_FUNC_xdp_output:
6aff67c8
AS
4351 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4352 goto error;
4353 break;
4354 case BPF_FUNC_get_stackid:
4355 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4356 goto error;
4357 break;
60d20f91 4358 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4359 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4360 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4361 goto error;
4362 break;
97f91a7c 4363 case BPF_FUNC_redirect_map:
9c270af3 4364 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4365 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4366 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4367 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4368 goto error;
4369 break;
174a79ff 4370 case BPF_FUNC_sk_redirect_map:
4f738adb 4371 case BPF_FUNC_msg_redirect_map:
81110384 4372 case BPF_FUNC_sock_map_update:
174a79ff
JF
4373 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4374 goto error;
4375 break;
81110384
JF
4376 case BPF_FUNC_sk_redirect_hash:
4377 case BPF_FUNC_msg_redirect_hash:
4378 case BPF_FUNC_sock_hash_update:
4379 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4380 goto error;
4381 break;
cd339431 4382 case BPF_FUNC_get_local_storage:
b741f163
RG
4383 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4384 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4385 goto error;
4386 break;
2dbb9b9e 4387 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4388 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4389 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4390 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4391 goto error;
4392 break;
f1a2e44a
MV
4393 case BPF_FUNC_map_peek_elem:
4394 case BPF_FUNC_map_pop_elem:
4395 case BPF_FUNC_map_push_elem:
4396 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4397 map->map_type != BPF_MAP_TYPE_STACK)
4398 goto error;
4399 break;
6ac99e8f
MKL
4400 case BPF_FUNC_sk_storage_get:
4401 case BPF_FUNC_sk_storage_delete:
4402 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4403 goto error;
4404 break;
8ea63684
KS
4405 case BPF_FUNC_inode_storage_get:
4406 case BPF_FUNC_inode_storage_delete:
4407 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4408 goto error;
4409 break;
6aff67c8
AS
4410 default:
4411 break;
35578d79
KX
4412 }
4413
4414 return 0;
6aff67c8 4415error:
61bd5218 4416 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4417 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4418 return -EINVAL;
35578d79
KX
4419}
4420
90133415 4421static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4422{
4423 int count = 0;
4424
39f19ebb 4425 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4426 count++;
39f19ebb 4427 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4428 count++;
39f19ebb 4429 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4430 count++;
39f19ebb 4431 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4432 count++;
39f19ebb 4433 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4434 count++;
4435
90133415
DB
4436 /* We only support one arg being in raw mode at the moment,
4437 * which is sufficient for the helper functions we have
4438 * right now.
4439 */
4440 return count <= 1;
4441}
4442
4443static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4444 enum bpf_arg_type arg_next)
4445{
4446 return (arg_type_is_mem_ptr(arg_curr) &&
4447 !arg_type_is_mem_size(arg_next)) ||
4448 (!arg_type_is_mem_ptr(arg_curr) &&
4449 arg_type_is_mem_size(arg_next));
4450}
4451
4452static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4453{
4454 /* bpf_xxx(..., buf, len) call will access 'len'
4455 * bytes from memory 'buf'. Both arg types need
4456 * to be paired, so make sure there's no buggy
4457 * helper function specification.
4458 */
4459 if (arg_type_is_mem_size(fn->arg1_type) ||
4460 arg_type_is_mem_ptr(fn->arg5_type) ||
4461 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4462 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4463 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4464 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4465 return false;
4466
4467 return true;
4468}
4469
1b986589 4470static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4471{
4472 int count = 0;
4473
1b986589 4474 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4475 count++;
1b986589 4476 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4477 count++;
1b986589 4478 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4479 count++;
1b986589 4480 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4481 count++;
1b986589 4482 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4483 count++;
4484
1b986589
MKL
4485 /* A reference acquiring function cannot acquire
4486 * another refcounted ptr.
4487 */
64d85290 4488 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4489 return false;
4490
fd978bf7
JS
4491 /* We only support one arg being unreferenced at the moment,
4492 * which is sufficient for the helper functions we have right now.
4493 */
4494 return count <= 1;
4495}
4496
1b986589 4497static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4498{
4499 return check_raw_mode_ok(fn) &&
fd978bf7 4500 check_arg_pair_ok(fn) &&
1b986589 4501 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4502}
4503
de8f3a83
DB
4504/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4505 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4506 */
f4d7e40a
AS
4507static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4508 struct bpf_func_state *state)
969bf05e 4509{
58e2af8b 4510 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4511 int i;
4512
4513 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4514 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4515 mark_reg_unknown(env, regs, i);
969bf05e 4516
f3709f69
JS
4517 bpf_for_each_spilled_reg(i, state, reg) {
4518 if (!reg)
969bf05e 4519 continue;
de8f3a83 4520 if (reg_is_pkt_pointer_any(reg))
f54c7898 4521 __mark_reg_unknown(env, reg);
969bf05e
AS
4522 }
4523}
4524
f4d7e40a
AS
4525static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4526{
4527 struct bpf_verifier_state *vstate = env->cur_state;
4528 int i;
4529
4530 for (i = 0; i <= vstate->curframe; i++)
4531 __clear_all_pkt_pointers(env, vstate->frame[i]);
4532}
4533
fd978bf7 4534static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4535 struct bpf_func_state *state,
4536 int ref_obj_id)
fd978bf7
JS
4537{
4538 struct bpf_reg_state *regs = state->regs, *reg;
4539 int i;
4540
4541 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4542 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4543 mark_reg_unknown(env, regs, i);
4544
4545 bpf_for_each_spilled_reg(i, state, reg) {
4546 if (!reg)
4547 continue;
1b986589 4548 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4549 __mark_reg_unknown(env, reg);
fd978bf7
JS
4550 }
4551}
4552
4553/* The pointer with the specified id has released its reference to kernel
4554 * resources. Identify all copies of the same pointer and clear the reference.
4555 */
4556static int release_reference(struct bpf_verifier_env *env,
1b986589 4557 int ref_obj_id)
fd978bf7
JS
4558{
4559 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4560 int err;
fd978bf7
JS
4561 int i;
4562
1b986589
MKL
4563 err = release_reference_state(cur_func(env), ref_obj_id);
4564 if (err)
4565 return err;
4566
fd978bf7 4567 for (i = 0; i <= vstate->curframe; i++)
1b986589 4568 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4569
1b986589 4570 return 0;
fd978bf7
JS
4571}
4572
51c39bb1
AS
4573static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4574 struct bpf_reg_state *regs)
4575{
4576 int i;
4577
4578 /* after the call registers r0 - r5 were scratched */
4579 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4580 mark_reg_not_init(env, regs, caller_saved[i]);
4581 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4582 }
4583}
4584
f4d7e40a
AS
4585static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4586 int *insn_idx)
4587{
4588 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4589 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4590 struct bpf_func_state *caller, *callee;
fd978bf7 4591 int i, err, subprog, target_insn;
51c39bb1 4592 bool is_global = false;
f4d7e40a 4593
aada9ce6 4594 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4595 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4596 state->curframe + 2);
f4d7e40a
AS
4597 return -E2BIG;
4598 }
4599
4600 target_insn = *insn_idx + insn->imm;
4601 subprog = find_subprog(env, target_insn + 1);
4602 if (subprog < 0) {
4603 verbose(env, "verifier bug. No program starts at insn %d\n",
4604 target_insn + 1);
4605 return -EFAULT;
4606 }
4607
4608 caller = state->frame[state->curframe];
4609 if (state->frame[state->curframe + 1]) {
4610 verbose(env, "verifier bug. Frame %d already allocated\n",
4611 state->curframe + 1);
4612 return -EFAULT;
4613 }
4614
51c39bb1
AS
4615 func_info_aux = env->prog->aux->func_info_aux;
4616 if (func_info_aux)
4617 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4618 err = btf_check_func_arg_match(env, subprog, caller->regs);
4619 if (err == -EFAULT)
4620 return err;
4621 if (is_global) {
4622 if (err) {
4623 verbose(env, "Caller passes invalid args into func#%d\n",
4624 subprog);
4625 return err;
4626 } else {
4627 if (env->log.level & BPF_LOG_LEVEL)
4628 verbose(env,
4629 "Func#%d is global and valid. Skipping.\n",
4630 subprog);
4631 clear_caller_saved_regs(env, caller->regs);
4632
4633 /* All global functions return SCALAR_VALUE */
4634 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4635
4636 /* continue with next insn after call */
4637 return 0;
4638 }
4639 }
4640
f4d7e40a
AS
4641 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4642 if (!callee)
4643 return -ENOMEM;
4644 state->frame[state->curframe + 1] = callee;
4645
4646 /* callee cannot access r0, r6 - r9 for reading and has to write
4647 * into its own stack before reading from it.
4648 * callee can read/write into caller's stack
4649 */
4650 init_func_state(env, callee,
4651 /* remember the callsite, it will be used by bpf_exit */
4652 *insn_idx /* callsite */,
4653 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4654 subprog /* subprog number within this prog */);
f4d7e40a 4655
fd978bf7
JS
4656 /* Transfer references to the callee */
4657 err = transfer_reference_state(callee, caller);
4658 if (err)
4659 return err;
4660
679c782d
EC
4661 /* copy r1 - r5 args that callee can access. The copy includes parent
4662 * pointers, which connects us up to the liveness chain
4663 */
f4d7e40a
AS
4664 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4665 callee->regs[i] = caller->regs[i];
4666
51c39bb1 4667 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4668
4669 /* only increment it after check_reg_arg() finished */
4670 state->curframe++;
4671
4672 /* and go analyze first insn of the callee */
4673 *insn_idx = target_insn;
4674
06ee7115 4675 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4676 verbose(env, "caller:\n");
4677 print_verifier_state(env, caller);
4678 verbose(env, "callee:\n");
4679 print_verifier_state(env, callee);
4680 }
4681 return 0;
4682}
4683
4684static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4685{
4686 struct bpf_verifier_state *state = env->cur_state;
4687 struct bpf_func_state *caller, *callee;
4688 struct bpf_reg_state *r0;
fd978bf7 4689 int err;
f4d7e40a
AS
4690
4691 callee = state->frame[state->curframe];
4692 r0 = &callee->regs[BPF_REG_0];
4693 if (r0->type == PTR_TO_STACK) {
4694 /* technically it's ok to return caller's stack pointer
4695 * (or caller's caller's pointer) back to the caller,
4696 * since these pointers are valid. Only current stack
4697 * pointer will be invalid as soon as function exits,
4698 * but let's be conservative
4699 */
4700 verbose(env, "cannot return stack pointer to the caller\n");
4701 return -EINVAL;
4702 }
4703
4704 state->curframe--;
4705 caller = state->frame[state->curframe];
4706 /* return to the caller whatever r0 had in the callee */
4707 caller->regs[BPF_REG_0] = *r0;
4708
fd978bf7
JS
4709 /* Transfer references to the caller */
4710 err = transfer_reference_state(caller, callee);
4711 if (err)
4712 return err;
4713
f4d7e40a 4714 *insn_idx = callee->callsite + 1;
06ee7115 4715 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4716 verbose(env, "returning from callee:\n");
4717 print_verifier_state(env, callee);
4718 verbose(env, "to caller at %d:\n", *insn_idx);
4719 print_verifier_state(env, caller);
4720 }
4721 /* clear everything in the callee */
4722 free_func_state(callee);
4723 state->frame[state->curframe + 1] = NULL;
4724 return 0;
4725}
4726
849fa506
YS
4727static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4728 int func_id,
4729 struct bpf_call_arg_meta *meta)
4730{
4731 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4732
4733 if (ret_type != RET_INTEGER ||
4734 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4735 func_id != BPF_FUNC_probe_read_str &&
4736 func_id != BPF_FUNC_probe_read_kernel_str &&
4737 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4738 return;
4739
10060503 4740 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4741 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4742 __reg_deduce_bounds(ret_reg);
4743 __reg_bound_offset(ret_reg);
10060503 4744 __update_reg_bounds(ret_reg);
849fa506
YS
4745}
4746
c93552c4
DB
4747static int
4748record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4749 int func_id, int insn_idx)
4750{
4751 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4752 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4753
4754 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4755 func_id != BPF_FUNC_map_lookup_elem &&
4756 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4757 func_id != BPF_FUNC_map_delete_elem &&
4758 func_id != BPF_FUNC_map_push_elem &&
4759 func_id != BPF_FUNC_map_pop_elem &&
4760 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4761 return 0;
09772d92 4762
591fe988 4763 if (map == NULL) {
c93552c4
DB
4764 verbose(env, "kernel subsystem misconfigured verifier\n");
4765 return -EINVAL;
4766 }
4767
591fe988
DB
4768 /* In case of read-only, some additional restrictions
4769 * need to be applied in order to prevent altering the
4770 * state of the map from program side.
4771 */
4772 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4773 (func_id == BPF_FUNC_map_delete_elem ||
4774 func_id == BPF_FUNC_map_update_elem ||
4775 func_id == BPF_FUNC_map_push_elem ||
4776 func_id == BPF_FUNC_map_pop_elem)) {
4777 verbose(env, "write into map forbidden\n");
4778 return -EACCES;
4779 }
4780
d2e4c1e6 4781 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4782 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4783 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4784 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4785 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4786 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4787 return 0;
4788}
4789
d2e4c1e6
DB
4790static int
4791record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4792 int func_id, int insn_idx)
4793{
4794 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4795 struct bpf_reg_state *regs = cur_regs(env), *reg;
4796 struct bpf_map *map = meta->map_ptr;
4797 struct tnum range;
4798 u64 val;
cc52d914 4799 int err;
d2e4c1e6
DB
4800
4801 if (func_id != BPF_FUNC_tail_call)
4802 return 0;
4803 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4804 verbose(env, "kernel subsystem misconfigured verifier\n");
4805 return -EINVAL;
4806 }
4807
4808 range = tnum_range(0, map->max_entries - 1);
4809 reg = &regs[BPF_REG_3];
4810
4811 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4812 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4813 return 0;
4814 }
4815
cc52d914
DB
4816 err = mark_chain_precision(env, BPF_REG_3);
4817 if (err)
4818 return err;
4819
d2e4c1e6
DB
4820 val = reg->var_off.value;
4821 if (bpf_map_key_unseen(aux))
4822 bpf_map_key_store(aux, val);
4823 else if (!bpf_map_key_poisoned(aux) &&
4824 bpf_map_key_immediate(aux) != val)
4825 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4826 return 0;
4827}
4828
fd978bf7
JS
4829static int check_reference_leak(struct bpf_verifier_env *env)
4830{
4831 struct bpf_func_state *state = cur_func(env);
4832 int i;
4833
4834 for (i = 0; i < state->acquired_refs; i++) {
4835 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4836 state->refs[i].id, state->refs[i].insn_idx);
4837 }
4838 return state->acquired_refs ? -EINVAL : 0;
4839}
4840
f4d7e40a 4841static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4842{
17a52670 4843 const struct bpf_func_proto *fn = NULL;
638f5b90 4844 struct bpf_reg_state *regs;
33ff9823 4845 struct bpf_call_arg_meta meta;
969bf05e 4846 bool changes_data;
17a52670
AS
4847 int i, err;
4848
4849 /* find function prototype */
4850 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4851 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4852 func_id);
17a52670
AS
4853 return -EINVAL;
4854 }
4855
00176a34 4856 if (env->ops->get_func_proto)
5e43f899 4857 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4858 if (!fn) {
61bd5218
JK
4859 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4860 func_id);
17a52670
AS
4861 return -EINVAL;
4862 }
4863
4864 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4865 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4866 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4867 return -EINVAL;
4868 }
4869
eae2e83e
JO
4870 if (fn->allowed && !fn->allowed(env->prog)) {
4871 verbose(env, "helper call is not allowed in probe\n");
4872 return -EINVAL;
4873 }
4874
04514d13 4875 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4876 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4877 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4878 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4879 func_id_name(func_id), func_id);
4880 return -EINVAL;
4881 }
969bf05e 4882
33ff9823 4883 memset(&meta, 0, sizeof(meta));
36bbef52 4884 meta.pkt_access = fn->pkt_access;
33ff9823 4885
1b986589 4886 err = check_func_proto(fn, func_id);
435faee1 4887 if (err) {
61bd5218 4888 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4889 func_id_name(func_id), func_id);
435faee1
DB
4890 return err;
4891 }
4892
d83525ca 4893 meta.func_id = func_id;
17a52670 4894 /* check args */
a7658e1a 4895 for (i = 0; i < 5; i++) {
af7ec138
YS
4896 if (!fn->check_btf_id) {
4897 err = btf_resolve_helper_id(&env->log, fn, i);
4898 if (err > 0)
4899 meta.btf_id = err;
4900 }
4901 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
4902 if (err)
4903 return err;
4904 }
17a52670 4905
c93552c4
DB
4906 err = record_func_map(env, &meta, func_id, insn_idx);
4907 if (err)
4908 return err;
4909
d2e4c1e6
DB
4910 err = record_func_key(env, &meta, func_id, insn_idx);
4911 if (err)
4912 return err;
4913
435faee1
DB
4914 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4915 * is inferred from register state.
4916 */
4917 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4918 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4919 BPF_WRITE, -1, false);
435faee1
DB
4920 if (err)
4921 return err;
4922 }
4923
fd978bf7
JS
4924 if (func_id == BPF_FUNC_tail_call) {
4925 err = check_reference_leak(env);
4926 if (err) {
4927 verbose(env, "tail_call would lead to reference leak\n");
4928 return err;
4929 }
4930 } else if (is_release_function(func_id)) {
1b986589 4931 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4932 if (err) {
4933 verbose(env, "func %s#%d reference has not been acquired before\n",
4934 func_id_name(func_id), func_id);
fd978bf7 4935 return err;
46f8bc92 4936 }
fd978bf7
JS
4937 }
4938
638f5b90 4939 regs = cur_regs(env);
cd339431
RG
4940
4941 /* check that flags argument in get_local_storage(map, flags) is 0,
4942 * this is required because get_local_storage() can't return an error.
4943 */
4944 if (func_id == BPF_FUNC_get_local_storage &&
4945 !register_is_null(&regs[BPF_REG_2])) {
4946 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4947 return -EINVAL;
4948 }
4949
17a52670 4950 /* reset caller saved regs */
dc503a8a 4951 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4952 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4953 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4954 }
17a52670 4955
5327ed3d
JW
4956 /* helper call returns 64-bit value. */
4957 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4958
dc503a8a 4959 /* update return register (already marked as written above) */
17a52670 4960 if (fn->ret_type == RET_INTEGER) {
f1174f77 4961 /* sets type to SCALAR_VALUE */
61bd5218 4962 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4963 } else if (fn->ret_type == RET_VOID) {
4964 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4965 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4966 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4967 /* There is no offset yet applied, variable or fixed */
61bd5218 4968 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4969 /* remember map_ptr, so that check_map_access()
4970 * can check 'value_size' boundary of memory access
4971 * to map element returned from bpf_map_lookup_elem()
4972 */
33ff9823 4973 if (meta.map_ptr == NULL) {
61bd5218
JK
4974 verbose(env,
4975 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4976 return -EINVAL;
4977 }
33ff9823 4978 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4979 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4980 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4981 if (map_value_has_spin_lock(meta.map_ptr))
4982 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4983 } else {
4984 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4985 regs[BPF_REG_0].id = ++env->id_gen;
4986 }
c64b7983
JS
4987 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4988 mark_reg_known_zero(env, regs, BPF_REG_0);
4989 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4990 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4991 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4992 mark_reg_known_zero(env, regs, BPF_REG_0);
4993 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4994 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4995 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4996 mark_reg_known_zero(env, regs, BPF_REG_0);
4997 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4998 regs[BPF_REG_0].id = ++env->id_gen;
457f4436
AN
4999 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5000 mark_reg_known_zero(env, regs, BPF_REG_0);
5001 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5002 regs[BPF_REG_0].id = ++env->id_gen;
5003 regs[BPF_REG_0].mem_size = meta.mem_size;
af7ec138
YS
5004 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5005 int ret_btf_id;
5006
5007 mark_reg_known_zero(env, regs, BPF_REG_0);
5008 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5009 ret_btf_id = *fn->ret_btf_id;
5010 if (ret_btf_id == 0) {
5011 verbose(env, "invalid return type %d of func %s#%d\n",
5012 fn->ret_type, func_id_name(func_id), func_id);
5013 return -EINVAL;
5014 }
5015 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5016 } else {
61bd5218 5017 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5018 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5019 return -EINVAL;
5020 }
04fd61ab 5021
0f3adc28 5022 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5023 /* For release_reference() */
5024 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5025 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5026 int id = acquire_reference_state(env, insn_idx);
5027
5028 if (id < 0)
5029 return id;
5030 /* For mark_ptr_or_null_reg() */
5031 regs[BPF_REG_0].id = id;
5032 /* For release_reference() */
5033 regs[BPF_REG_0].ref_obj_id = id;
5034 }
1b986589 5035
849fa506
YS
5036 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5037
61bd5218 5038 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5039 if (err)
5040 return err;
04fd61ab 5041
fa28dcb8
SL
5042 if ((func_id == BPF_FUNC_get_stack ||
5043 func_id == BPF_FUNC_get_task_stack) &&
5044 !env->prog->has_callchain_buf) {
c195651e
YS
5045 const char *err_str;
5046
5047#ifdef CONFIG_PERF_EVENTS
5048 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5049 err_str = "cannot get callchain buffer for func %s#%d\n";
5050#else
5051 err = -ENOTSUPP;
5052 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5053#endif
5054 if (err) {
5055 verbose(env, err_str, func_id_name(func_id), func_id);
5056 return err;
5057 }
5058
5059 env->prog->has_callchain_buf = true;
5060 }
5061
5d99cb2c
SL
5062 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5063 env->prog->call_get_stack = true;
5064
969bf05e
AS
5065 if (changes_data)
5066 clear_all_pkt_pointers(env);
5067 return 0;
5068}
5069
b03c9f9f
EC
5070static bool signed_add_overflows(s64 a, s64 b)
5071{
5072 /* Do the add in u64, where overflow is well-defined */
5073 s64 res = (s64)((u64)a + (u64)b);
5074
5075 if (b < 0)
5076 return res > a;
5077 return res < a;
5078}
5079
3f50f132
JF
5080static bool signed_add32_overflows(s64 a, s64 b)
5081{
5082 /* Do the add in u32, where overflow is well-defined */
5083 s32 res = (s32)((u32)a + (u32)b);
5084
5085 if (b < 0)
5086 return res > a;
5087 return res < a;
5088}
5089
5090static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
5091{
5092 /* Do the sub in u64, where overflow is well-defined */
5093 s64 res = (s64)((u64)a - (u64)b);
5094
5095 if (b < 0)
5096 return res < a;
5097 return res > a;
969bf05e
AS
5098}
5099
3f50f132
JF
5100static bool signed_sub32_overflows(s32 a, s32 b)
5101{
5102 /* Do the sub in u64, where overflow is well-defined */
5103 s32 res = (s32)((u32)a - (u32)b);
5104
5105 if (b < 0)
5106 return res < a;
5107 return res > a;
5108}
5109
bb7f0f98
AS
5110static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5111 const struct bpf_reg_state *reg,
5112 enum bpf_reg_type type)
5113{
5114 bool known = tnum_is_const(reg->var_off);
5115 s64 val = reg->var_off.value;
5116 s64 smin = reg->smin_value;
5117
5118 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5119 verbose(env, "math between %s pointer and %lld is not allowed\n",
5120 reg_type_str[type], val);
5121 return false;
5122 }
5123
5124 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5125 verbose(env, "%s pointer offset %d is not allowed\n",
5126 reg_type_str[type], reg->off);
5127 return false;
5128 }
5129
5130 if (smin == S64_MIN) {
5131 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5132 reg_type_str[type]);
5133 return false;
5134 }
5135
5136 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5137 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5138 smin, reg_type_str[type]);
5139 return false;
5140 }
5141
5142 return true;
5143}
5144
979d63d5
DB
5145static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5146{
5147 return &env->insn_aux_data[env->insn_idx];
5148}
5149
5150static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5151 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5152{
5153 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5154 (opcode == BPF_SUB && !off_is_neg);
5155 u32 off;
5156
5157 switch (ptr_reg->type) {
5158 case PTR_TO_STACK:
088ec26d
AI
5159 /* Indirect variable offset stack access is prohibited in
5160 * unprivileged mode so it's not handled here.
5161 */
979d63d5
DB
5162 off = ptr_reg->off + ptr_reg->var_off.value;
5163 if (mask_to_left)
5164 *ptr_limit = MAX_BPF_STACK + off;
5165 else
5166 *ptr_limit = -off;
5167 return 0;
5168 case PTR_TO_MAP_VALUE:
5169 if (mask_to_left) {
5170 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5171 } else {
5172 off = ptr_reg->smin_value + ptr_reg->off;
5173 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5174 }
5175 return 0;
5176 default:
5177 return -EINVAL;
5178 }
5179}
5180
d3bd7413
DB
5181static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5182 const struct bpf_insn *insn)
5183{
2c78ee89 5184 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5185}
5186
5187static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5188 u32 alu_state, u32 alu_limit)
5189{
5190 /* If we arrived here from different branches with different
5191 * state or limits to sanitize, then this won't work.
5192 */
5193 if (aux->alu_state &&
5194 (aux->alu_state != alu_state ||
5195 aux->alu_limit != alu_limit))
5196 return -EACCES;
5197
5198 /* Corresponding fixup done in fixup_bpf_calls(). */
5199 aux->alu_state = alu_state;
5200 aux->alu_limit = alu_limit;
5201 return 0;
5202}
5203
5204static int sanitize_val_alu(struct bpf_verifier_env *env,
5205 struct bpf_insn *insn)
5206{
5207 struct bpf_insn_aux_data *aux = cur_aux(env);
5208
5209 if (can_skip_alu_sanitation(env, insn))
5210 return 0;
5211
5212 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5213}
5214
979d63d5
DB
5215static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5216 struct bpf_insn *insn,
5217 const struct bpf_reg_state *ptr_reg,
5218 struct bpf_reg_state *dst_reg,
5219 bool off_is_neg)
5220{
5221 struct bpf_verifier_state *vstate = env->cur_state;
5222 struct bpf_insn_aux_data *aux = cur_aux(env);
5223 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5224 u8 opcode = BPF_OP(insn->code);
5225 u32 alu_state, alu_limit;
5226 struct bpf_reg_state tmp;
5227 bool ret;
5228
d3bd7413 5229 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5230 return 0;
5231
5232 /* We already marked aux for masking from non-speculative
5233 * paths, thus we got here in the first place. We only care
5234 * to explore bad access from here.
5235 */
5236 if (vstate->speculative)
5237 goto do_sim;
5238
5239 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5240 alu_state |= ptr_is_dst_reg ?
5241 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5242
5243 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5244 return 0;
d3bd7413 5245 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5246 return -EACCES;
979d63d5
DB
5247do_sim:
5248 /* Simulate and find potential out-of-bounds access under
5249 * speculative execution from truncation as a result of
5250 * masking when off was not within expected range. If off
5251 * sits in dst, then we temporarily need to move ptr there
5252 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5253 * for cases where we use K-based arithmetic in one direction
5254 * and truncated reg-based in the other in order to explore
5255 * bad access.
5256 */
5257 if (!ptr_is_dst_reg) {
5258 tmp = *dst_reg;
5259 *dst_reg = *ptr_reg;
5260 }
5261 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5262 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5263 *dst_reg = tmp;
5264 return !ret ? -EFAULT : 0;
5265}
5266
f1174f77 5267/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5268 * Caller should also handle BPF_MOV case separately.
5269 * If we return -EACCES, caller may want to try again treating pointer as a
5270 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5271 */
5272static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5273 struct bpf_insn *insn,
5274 const struct bpf_reg_state *ptr_reg,
5275 const struct bpf_reg_state *off_reg)
969bf05e 5276{
f4d7e40a
AS
5277 struct bpf_verifier_state *vstate = env->cur_state;
5278 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5279 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5280 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5281 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5282 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5283 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5284 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5285 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5286 u8 opcode = BPF_OP(insn->code);
979d63d5 5287 int ret;
969bf05e 5288
f1174f77 5289 dst_reg = &regs[dst];
969bf05e 5290
6f16101e
DB
5291 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5292 smin_val > smax_val || umin_val > umax_val) {
5293 /* Taint dst register if offset had invalid bounds derived from
5294 * e.g. dead branches.
5295 */
f54c7898 5296 __mark_reg_unknown(env, dst_reg);
6f16101e 5297 return 0;
f1174f77
EC
5298 }
5299
5300 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5301 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5302 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5303 __mark_reg_unknown(env, dst_reg);
5304 return 0;
5305 }
5306
82abbf8d
AS
5307 verbose(env,
5308 "R%d 32-bit pointer arithmetic prohibited\n",
5309 dst);
f1174f77 5310 return -EACCES;
969bf05e
AS
5311 }
5312
aad2eeaf
JS
5313 switch (ptr_reg->type) {
5314 case PTR_TO_MAP_VALUE_OR_NULL:
5315 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5316 dst, reg_type_str[ptr_reg->type]);
f1174f77 5317 return -EACCES;
aad2eeaf
JS
5318 case CONST_PTR_TO_MAP:
5319 case PTR_TO_PACKET_END:
c64b7983
JS
5320 case PTR_TO_SOCKET:
5321 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5322 case PTR_TO_SOCK_COMMON:
5323 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5324 case PTR_TO_TCP_SOCK:
5325 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5326 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5327 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5328 dst, reg_type_str[ptr_reg->type]);
f1174f77 5329 return -EACCES;
9d7eceed
DB
5330 case PTR_TO_MAP_VALUE:
5331 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5332 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5333 off_reg == dst_reg ? dst : src);
5334 return -EACCES;
5335 }
5336 /* fall-through */
aad2eeaf
JS
5337 default:
5338 break;
f1174f77
EC
5339 }
5340
5341 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5342 * The id may be overwritten later if we create a new variable offset.
969bf05e 5343 */
f1174f77
EC
5344 dst_reg->type = ptr_reg->type;
5345 dst_reg->id = ptr_reg->id;
969bf05e 5346
bb7f0f98
AS
5347 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5348 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5349 return -EINVAL;
5350
3f50f132
JF
5351 /* pointer types do not carry 32-bit bounds at the moment. */
5352 __mark_reg32_unbounded(dst_reg);
5353
f1174f77
EC
5354 switch (opcode) {
5355 case BPF_ADD:
979d63d5
DB
5356 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5357 if (ret < 0) {
5358 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5359 return ret;
5360 }
f1174f77
EC
5361 /* We can take a fixed offset as long as it doesn't overflow
5362 * the s32 'off' field
969bf05e 5363 */
b03c9f9f
EC
5364 if (known && (ptr_reg->off + smin_val ==
5365 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5366 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5367 dst_reg->smin_value = smin_ptr;
5368 dst_reg->smax_value = smax_ptr;
5369 dst_reg->umin_value = umin_ptr;
5370 dst_reg->umax_value = umax_ptr;
f1174f77 5371 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5372 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5373 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5374 break;
5375 }
f1174f77
EC
5376 /* A new variable offset is created. Note that off_reg->off
5377 * == 0, since it's a scalar.
5378 * dst_reg gets the pointer type and since some positive
5379 * integer value was added to the pointer, give it a new 'id'
5380 * if it's a PTR_TO_PACKET.
5381 * this creates a new 'base' pointer, off_reg (variable) gets
5382 * added into the variable offset, and we copy the fixed offset
5383 * from ptr_reg.
969bf05e 5384 */
b03c9f9f
EC
5385 if (signed_add_overflows(smin_ptr, smin_val) ||
5386 signed_add_overflows(smax_ptr, smax_val)) {
5387 dst_reg->smin_value = S64_MIN;
5388 dst_reg->smax_value = S64_MAX;
5389 } else {
5390 dst_reg->smin_value = smin_ptr + smin_val;
5391 dst_reg->smax_value = smax_ptr + smax_val;
5392 }
5393 if (umin_ptr + umin_val < umin_ptr ||
5394 umax_ptr + umax_val < umax_ptr) {
5395 dst_reg->umin_value = 0;
5396 dst_reg->umax_value = U64_MAX;
5397 } else {
5398 dst_reg->umin_value = umin_ptr + umin_val;
5399 dst_reg->umax_value = umax_ptr + umax_val;
5400 }
f1174f77
EC
5401 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5402 dst_reg->off = ptr_reg->off;
0962590e 5403 dst_reg->raw = ptr_reg->raw;
de8f3a83 5404 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5405 dst_reg->id = ++env->id_gen;
5406 /* something was added to pkt_ptr, set range to zero */
0962590e 5407 dst_reg->raw = 0;
f1174f77
EC
5408 }
5409 break;
5410 case BPF_SUB:
979d63d5
DB
5411 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5412 if (ret < 0) {
5413 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5414 return ret;
5415 }
f1174f77
EC
5416 if (dst_reg == off_reg) {
5417 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5418 verbose(env, "R%d tried to subtract pointer from scalar\n",
5419 dst);
f1174f77
EC
5420 return -EACCES;
5421 }
5422 /* We don't allow subtraction from FP, because (according to
5423 * test_verifier.c test "invalid fp arithmetic", JITs might not
5424 * be able to deal with it.
969bf05e 5425 */
f1174f77 5426 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5427 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5428 dst);
f1174f77
EC
5429 return -EACCES;
5430 }
b03c9f9f
EC
5431 if (known && (ptr_reg->off - smin_val ==
5432 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5433 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5434 dst_reg->smin_value = smin_ptr;
5435 dst_reg->smax_value = smax_ptr;
5436 dst_reg->umin_value = umin_ptr;
5437 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5438 dst_reg->var_off = ptr_reg->var_off;
5439 dst_reg->id = ptr_reg->id;
b03c9f9f 5440 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5441 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5442 break;
5443 }
f1174f77
EC
5444 /* A new variable offset is created. If the subtrahend is known
5445 * nonnegative, then any reg->range we had before is still good.
969bf05e 5446 */
b03c9f9f
EC
5447 if (signed_sub_overflows(smin_ptr, smax_val) ||
5448 signed_sub_overflows(smax_ptr, smin_val)) {
5449 /* Overflow possible, we know nothing */
5450 dst_reg->smin_value = S64_MIN;
5451 dst_reg->smax_value = S64_MAX;
5452 } else {
5453 dst_reg->smin_value = smin_ptr - smax_val;
5454 dst_reg->smax_value = smax_ptr - smin_val;
5455 }
5456 if (umin_ptr < umax_val) {
5457 /* Overflow possible, we know nothing */
5458 dst_reg->umin_value = 0;
5459 dst_reg->umax_value = U64_MAX;
5460 } else {
5461 /* Cannot overflow (as long as bounds are consistent) */
5462 dst_reg->umin_value = umin_ptr - umax_val;
5463 dst_reg->umax_value = umax_ptr - umin_val;
5464 }
f1174f77
EC
5465 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5466 dst_reg->off = ptr_reg->off;
0962590e 5467 dst_reg->raw = ptr_reg->raw;
de8f3a83 5468 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5469 dst_reg->id = ++env->id_gen;
5470 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5471 if (smin_val < 0)
0962590e 5472 dst_reg->raw = 0;
43188702 5473 }
f1174f77
EC
5474 break;
5475 case BPF_AND:
5476 case BPF_OR:
5477 case BPF_XOR:
82abbf8d
AS
5478 /* bitwise ops on pointers are troublesome, prohibit. */
5479 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5480 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5481 return -EACCES;
5482 default:
5483 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5484 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5485 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5486 return -EACCES;
43188702
JF
5487 }
5488
bb7f0f98
AS
5489 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5490 return -EINVAL;
5491
b03c9f9f
EC
5492 __update_reg_bounds(dst_reg);
5493 __reg_deduce_bounds(dst_reg);
5494 __reg_bound_offset(dst_reg);
0d6303db
DB
5495
5496 /* For unprivileged we require that resulting offset must be in bounds
5497 * in order to be able to sanitize access later on.
5498 */
2c78ee89 5499 if (!env->bypass_spec_v1) {
e4298d25
DB
5500 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5501 check_map_access(env, dst, dst_reg->off, 1, false)) {
5502 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5503 "prohibited for !root\n", dst);
5504 return -EACCES;
5505 } else if (dst_reg->type == PTR_TO_STACK &&
5506 check_stack_access(env, dst_reg, dst_reg->off +
5507 dst_reg->var_off.value, 1)) {
5508 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5509 "prohibited for !root\n", dst);
5510 return -EACCES;
5511 }
0d6303db
DB
5512 }
5513
43188702
JF
5514 return 0;
5515}
5516
3f50f132
JF
5517static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5518 struct bpf_reg_state *src_reg)
5519{
5520 s32 smin_val = src_reg->s32_min_value;
5521 s32 smax_val = src_reg->s32_max_value;
5522 u32 umin_val = src_reg->u32_min_value;
5523 u32 umax_val = src_reg->u32_max_value;
5524
5525 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5526 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5527 dst_reg->s32_min_value = S32_MIN;
5528 dst_reg->s32_max_value = S32_MAX;
5529 } else {
5530 dst_reg->s32_min_value += smin_val;
5531 dst_reg->s32_max_value += smax_val;
5532 }
5533 if (dst_reg->u32_min_value + umin_val < umin_val ||
5534 dst_reg->u32_max_value + umax_val < umax_val) {
5535 dst_reg->u32_min_value = 0;
5536 dst_reg->u32_max_value = U32_MAX;
5537 } else {
5538 dst_reg->u32_min_value += umin_val;
5539 dst_reg->u32_max_value += umax_val;
5540 }
5541}
5542
07cd2631
JF
5543static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5544 struct bpf_reg_state *src_reg)
5545{
5546 s64 smin_val = src_reg->smin_value;
5547 s64 smax_val = src_reg->smax_value;
5548 u64 umin_val = src_reg->umin_value;
5549 u64 umax_val = src_reg->umax_value;
5550
5551 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5552 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5553 dst_reg->smin_value = S64_MIN;
5554 dst_reg->smax_value = S64_MAX;
5555 } else {
5556 dst_reg->smin_value += smin_val;
5557 dst_reg->smax_value += smax_val;
5558 }
5559 if (dst_reg->umin_value + umin_val < umin_val ||
5560 dst_reg->umax_value + umax_val < umax_val) {
5561 dst_reg->umin_value = 0;
5562 dst_reg->umax_value = U64_MAX;
5563 } else {
5564 dst_reg->umin_value += umin_val;
5565 dst_reg->umax_value += umax_val;
5566 }
3f50f132
JF
5567}
5568
5569static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5570 struct bpf_reg_state *src_reg)
5571{
5572 s32 smin_val = src_reg->s32_min_value;
5573 s32 smax_val = src_reg->s32_max_value;
5574 u32 umin_val = src_reg->u32_min_value;
5575 u32 umax_val = src_reg->u32_max_value;
5576
5577 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5578 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5579 /* Overflow possible, we know nothing */
5580 dst_reg->s32_min_value = S32_MIN;
5581 dst_reg->s32_max_value = S32_MAX;
5582 } else {
5583 dst_reg->s32_min_value -= smax_val;
5584 dst_reg->s32_max_value -= smin_val;
5585 }
5586 if (dst_reg->u32_min_value < umax_val) {
5587 /* Overflow possible, we know nothing */
5588 dst_reg->u32_min_value = 0;
5589 dst_reg->u32_max_value = U32_MAX;
5590 } else {
5591 /* Cannot overflow (as long as bounds are consistent) */
5592 dst_reg->u32_min_value -= umax_val;
5593 dst_reg->u32_max_value -= umin_val;
5594 }
07cd2631
JF
5595}
5596
5597static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5598 struct bpf_reg_state *src_reg)
5599{
5600 s64 smin_val = src_reg->smin_value;
5601 s64 smax_val = src_reg->smax_value;
5602 u64 umin_val = src_reg->umin_value;
5603 u64 umax_val = src_reg->umax_value;
5604
5605 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5606 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5607 /* Overflow possible, we know nothing */
5608 dst_reg->smin_value = S64_MIN;
5609 dst_reg->smax_value = S64_MAX;
5610 } else {
5611 dst_reg->smin_value -= smax_val;
5612 dst_reg->smax_value -= smin_val;
5613 }
5614 if (dst_reg->umin_value < umax_val) {
5615 /* Overflow possible, we know nothing */
5616 dst_reg->umin_value = 0;
5617 dst_reg->umax_value = U64_MAX;
5618 } else {
5619 /* Cannot overflow (as long as bounds are consistent) */
5620 dst_reg->umin_value -= umax_val;
5621 dst_reg->umax_value -= umin_val;
5622 }
3f50f132
JF
5623}
5624
5625static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5626 struct bpf_reg_state *src_reg)
5627{
5628 s32 smin_val = src_reg->s32_min_value;
5629 u32 umin_val = src_reg->u32_min_value;
5630 u32 umax_val = src_reg->u32_max_value;
5631
5632 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5633 /* Ain't nobody got time to multiply that sign */
5634 __mark_reg32_unbounded(dst_reg);
5635 return;
5636 }
5637 /* Both values are positive, so we can work with unsigned and
5638 * copy the result to signed (unless it exceeds S32_MAX).
5639 */
5640 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5641 /* Potential overflow, we know nothing */
5642 __mark_reg32_unbounded(dst_reg);
5643 return;
5644 }
5645 dst_reg->u32_min_value *= umin_val;
5646 dst_reg->u32_max_value *= umax_val;
5647 if (dst_reg->u32_max_value > S32_MAX) {
5648 /* Overflow possible, we know nothing */
5649 dst_reg->s32_min_value = S32_MIN;
5650 dst_reg->s32_max_value = S32_MAX;
5651 } else {
5652 dst_reg->s32_min_value = dst_reg->u32_min_value;
5653 dst_reg->s32_max_value = dst_reg->u32_max_value;
5654 }
07cd2631
JF
5655}
5656
5657static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5658 struct bpf_reg_state *src_reg)
5659{
5660 s64 smin_val = src_reg->smin_value;
5661 u64 umin_val = src_reg->umin_value;
5662 u64 umax_val = src_reg->umax_value;
5663
07cd2631
JF
5664 if (smin_val < 0 || dst_reg->smin_value < 0) {
5665 /* Ain't nobody got time to multiply that sign */
3f50f132 5666 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5667 return;
5668 }
5669 /* Both values are positive, so we can work with unsigned and
5670 * copy the result to signed (unless it exceeds S64_MAX).
5671 */
5672 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5673 /* Potential overflow, we know nothing */
3f50f132 5674 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5675 return;
5676 }
5677 dst_reg->umin_value *= umin_val;
5678 dst_reg->umax_value *= umax_val;
5679 if (dst_reg->umax_value > S64_MAX) {
5680 /* Overflow possible, we know nothing */
5681 dst_reg->smin_value = S64_MIN;
5682 dst_reg->smax_value = S64_MAX;
5683 } else {
5684 dst_reg->smin_value = dst_reg->umin_value;
5685 dst_reg->smax_value = dst_reg->umax_value;
5686 }
5687}
5688
3f50f132
JF
5689static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5690 struct bpf_reg_state *src_reg)
5691{
5692 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5693 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5694 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5695 s32 smin_val = src_reg->s32_min_value;
5696 u32 umax_val = src_reg->u32_max_value;
5697
5698 /* Assuming scalar64_min_max_and will be called so its safe
5699 * to skip updating register for known 32-bit case.
5700 */
5701 if (src_known && dst_known)
5702 return;
5703
5704 /* We get our minimum from the var_off, since that's inherently
5705 * bitwise. Our maximum is the minimum of the operands' maxima.
5706 */
5707 dst_reg->u32_min_value = var32_off.value;
5708 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5709 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5710 /* Lose signed bounds when ANDing negative numbers,
5711 * ain't nobody got time for that.
5712 */
5713 dst_reg->s32_min_value = S32_MIN;
5714 dst_reg->s32_max_value = S32_MAX;
5715 } else {
5716 /* ANDing two positives gives a positive, so safe to
5717 * cast result into s64.
5718 */
5719 dst_reg->s32_min_value = dst_reg->u32_min_value;
5720 dst_reg->s32_max_value = dst_reg->u32_max_value;
5721 }
5722
5723}
5724
07cd2631
JF
5725static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5726 struct bpf_reg_state *src_reg)
5727{
3f50f132
JF
5728 bool src_known = tnum_is_const(src_reg->var_off);
5729 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5730 s64 smin_val = src_reg->smin_value;
5731 u64 umax_val = src_reg->umax_value;
5732
3f50f132
JF
5733 if (src_known && dst_known) {
5734 __mark_reg_known(dst_reg, dst_reg->var_off.value &
5735 src_reg->var_off.value);
5736 return;
5737 }
5738
07cd2631
JF
5739 /* We get our minimum from the var_off, since that's inherently
5740 * bitwise. Our maximum is the minimum of the operands' maxima.
5741 */
07cd2631
JF
5742 dst_reg->umin_value = dst_reg->var_off.value;
5743 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5744 if (dst_reg->smin_value < 0 || smin_val < 0) {
5745 /* Lose signed bounds when ANDing negative numbers,
5746 * ain't nobody got time for that.
5747 */
5748 dst_reg->smin_value = S64_MIN;
5749 dst_reg->smax_value = S64_MAX;
5750 } else {
5751 /* ANDing two positives gives a positive, so safe to
5752 * cast result into s64.
5753 */
5754 dst_reg->smin_value = dst_reg->umin_value;
5755 dst_reg->smax_value = dst_reg->umax_value;
5756 }
5757 /* We may learn something more from the var_off */
5758 __update_reg_bounds(dst_reg);
5759}
5760
3f50f132
JF
5761static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5762 struct bpf_reg_state *src_reg)
5763{
5764 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5765 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5766 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5767 s32 smin_val = src_reg->smin_value;
5768 u32 umin_val = src_reg->umin_value;
5769
5770 /* Assuming scalar64_min_max_or will be called so it is safe
5771 * to skip updating register for known case.
5772 */
5773 if (src_known && dst_known)
5774 return;
5775
5776 /* We get our maximum from the var_off, and our minimum is the
5777 * maximum of the operands' minima
5778 */
5779 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5780 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5781 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5782 /* Lose signed bounds when ORing negative numbers,
5783 * ain't nobody got time for that.
5784 */
5785 dst_reg->s32_min_value = S32_MIN;
5786 dst_reg->s32_max_value = S32_MAX;
5787 } else {
5788 /* ORing two positives gives a positive, so safe to
5789 * cast result into s64.
5790 */
5791 dst_reg->s32_min_value = dst_reg->umin_value;
5792 dst_reg->s32_max_value = dst_reg->umax_value;
5793 }
5794}
5795
07cd2631
JF
5796static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5797 struct bpf_reg_state *src_reg)
5798{
3f50f132
JF
5799 bool src_known = tnum_is_const(src_reg->var_off);
5800 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5801 s64 smin_val = src_reg->smin_value;
5802 u64 umin_val = src_reg->umin_value;
5803
3f50f132
JF
5804 if (src_known && dst_known) {
5805 __mark_reg_known(dst_reg, dst_reg->var_off.value |
5806 src_reg->var_off.value);
5807 return;
5808 }
5809
07cd2631
JF
5810 /* We get our maximum from the var_off, and our minimum is the
5811 * maximum of the operands' minima
5812 */
07cd2631
JF
5813 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5814 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5815 if (dst_reg->smin_value < 0 || smin_val < 0) {
5816 /* Lose signed bounds when ORing negative numbers,
5817 * ain't nobody got time for that.
5818 */
5819 dst_reg->smin_value = S64_MIN;
5820 dst_reg->smax_value = S64_MAX;
5821 } else {
5822 /* ORing two positives gives a positive, so safe to
5823 * cast result into s64.
5824 */
5825 dst_reg->smin_value = dst_reg->umin_value;
5826 dst_reg->smax_value = dst_reg->umax_value;
5827 }
5828 /* We may learn something more from the var_off */
5829 __update_reg_bounds(dst_reg);
5830}
5831
2921c90d
YS
5832static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
5833 struct bpf_reg_state *src_reg)
5834{
5835 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5836 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5837 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5838 s32 smin_val = src_reg->s32_min_value;
5839
5840 /* Assuming scalar64_min_max_xor will be called so it is safe
5841 * to skip updating register for known case.
5842 */
5843 if (src_known && dst_known)
5844 return;
5845
5846 /* We get both minimum and maximum from the var32_off. */
5847 dst_reg->u32_min_value = var32_off.value;
5848 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5849
5850 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
5851 /* XORing two positive sign numbers gives a positive,
5852 * so safe to cast u32 result into s32.
5853 */
5854 dst_reg->s32_min_value = dst_reg->u32_min_value;
5855 dst_reg->s32_max_value = dst_reg->u32_max_value;
5856 } else {
5857 dst_reg->s32_min_value = S32_MIN;
5858 dst_reg->s32_max_value = S32_MAX;
5859 }
5860}
5861
5862static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
5863 struct bpf_reg_state *src_reg)
5864{
5865 bool src_known = tnum_is_const(src_reg->var_off);
5866 bool dst_known = tnum_is_const(dst_reg->var_off);
5867 s64 smin_val = src_reg->smin_value;
5868
5869 if (src_known && dst_known) {
5870 /* dst_reg->var_off.value has been updated earlier */
5871 __mark_reg_known(dst_reg, dst_reg->var_off.value);
5872 return;
5873 }
5874
5875 /* We get both minimum and maximum from the var_off. */
5876 dst_reg->umin_value = dst_reg->var_off.value;
5877 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5878
5879 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
5880 /* XORing two positive sign numbers gives a positive,
5881 * so safe to cast u64 result into s64.
5882 */
5883 dst_reg->smin_value = dst_reg->umin_value;
5884 dst_reg->smax_value = dst_reg->umax_value;
5885 } else {
5886 dst_reg->smin_value = S64_MIN;
5887 dst_reg->smax_value = S64_MAX;
5888 }
5889
5890 __update_reg_bounds(dst_reg);
5891}
5892
3f50f132
JF
5893static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5894 u64 umin_val, u64 umax_val)
07cd2631 5895{
07cd2631
JF
5896 /* We lose all sign bit information (except what we can pick
5897 * up from var_off)
5898 */
3f50f132
JF
5899 dst_reg->s32_min_value = S32_MIN;
5900 dst_reg->s32_max_value = S32_MAX;
5901 /* If we might shift our top bit out, then we know nothing */
5902 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5903 dst_reg->u32_min_value = 0;
5904 dst_reg->u32_max_value = U32_MAX;
5905 } else {
5906 dst_reg->u32_min_value <<= umin_val;
5907 dst_reg->u32_max_value <<= umax_val;
5908 }
5909}
5910
5911static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5912 struct bpf_reg_state *src_reg)
5913{
5914 u32 umax_val = src_reg->u32_max_value;
5915 u32 umin_val = src_reg->u32_min_value;
5916 /* u32 alu operation will zext upper bits */
5917 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5918
5919 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5920 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5921 /* Not required but being careful mark reg64 bounds as unknown so
5922 * that we are forced to pick them up from tnum and zext later and
5923 * if some path skips this step we are still safe.
5924 */
5925 __mark_reg64_unbounded(dst_reg);
5926 __update_reg32_bounds(dst_reg);
5927}
5928
5929static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5930 u64 umin_val, u64 umax_val)
5931{
5932 /* Special case <<32 because it is a common compiler pattern to sign
5933 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5934 * positive we know this shift will also be positive so we can track
5935 * bounds correctly. Otherwise we lose all sign bit information except
5936 * what we can pick up from var_off. Perhaps we can generalize this
5937 * later to shifts of any length.
5938 */
5939 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5940 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5941 else
5942 dst_reg->smax_value = S64_MAX;
5943
5944 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5945 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5946 else
5947 dst_reg->smin_value = S64_MIN;
5948
07cd2631
JF
5949 /* If we might shift our top bit out, then we know nothing */
5950 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5951 dst_reg->umin_value = 0;
5952 dst_reg->umax_value = U64_MAX;
5953 } else {
5954 dst_reg->umin_value <<= umin_val;
5955 dst_reg->umax_value <<= umax_val;
5956 }
3f50f132
JF
5957}
5958
5959static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5960 struct bpf_reg_state *src_reg)
5961{
5962 u64 umax_val = src_reg->umax_value;
5963 u64 umin_val = src_reg->umin_value;
5964
5965 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
5966 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5967 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5968
07cd2631
JF
5969 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5970 /* We may learn something more from the var_off */
5971 __update_reg_bounds(dst_reg);
5972}
5973
3f50f132
JF
5974static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5975 struct bpf_reg_state *src_reg)
5976{
5977 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5978 u32 umax_val = src_reg->u32_max_value;
5979 u32 umin_val = src_reg->u32_min_value;
5980
5981 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5982 * be negative, then either:
5983 * 1) src_reg might be zero, so the sign bit of the result is
5984 * unknown, so we lose our signed bounds
5985 * 2) it's known negative, thus the unsigned bounds capture the
5986 * signed bounds
5987 * 3) the signed bounds cross zero, so they tell us nothing
5988 * about the result
5989 * If the value in dst_reg is known nonnegative, then again the
5990 * unsigned bounts capture the signed bounds.
5991 * Thus, in all cases it suffices to blow away our signed bounds
5992 * and rely on inferring new ones from the unsigned bounds and
5993 * var_off of the result.
5994 */
5995 dst_reg->s32_min_value = S32_MIN;
5996 dst_reg->s32_max_value = S32_MAX;
5997
5998 dst_reg->var_off = tnum_rshift(subreg, umin_val);
5999 dst_reg->u32_min_value >>= umax_val;
6000 dst_reg->u32_max_value >>= umin_val;
6001
6002 __mark_reg64_unbounded(dst_reg);
6003 __update_reg32_bounds(dst_reg);
6004}
6005
07cd2631
JF
6006static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6007 struct bpf_reg_state *src_reg)
6008{
6009 u64 umax_val = src_reg->umax_value;
6010 u64 umin_val = src_reg->umin_value;
6011
6012 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6013 * be negative, then either:
6014 * 1) src_reg might be zero, so the sign bit of the result is
6015 * unknown, so we lose our signed bounds
6016 * 2) it's known negative, thus the unsigned bounds capture the
6017 * signed bounds
6018 * 3) the signed bounds cross zero, so they tell us nothing
6019 * about the result
6020 * If the value in dst_reg is known nonnegative, then again the
6021 * unsigned bounts capture the signed bounds.
6022 * Thus, in all cases it suffices to blow away our signed bounds
6023 * and rely on inferring new ones from the unsigned bounds and
6024 * var_off of the result.
6025 */
6026 dst_reg->smin_value = S64_MIN;
6027 dst_reg->smax_value = S64_MAX;
6028 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6029 dst_reg->umin_value >>= umax_val;
6030 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6031
6032 /* Its not easy to operate on alu32 bounds here because it depends
6033 * on bits being shifted in. Take easy way out and mark unbounded
6034 * so we can recalculate later from tnum.
6035 */
6036 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6037 __update_reg_bounds(dst_reg);
6038}
6039
3f50f132
JF
6040static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6041 struct bpf_reg_state *src_reg)
07cd2631 6042{
3f50f132 6043 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6044
6045 /* Upon reaching here, src_known is true and
6046 * umax_val is equal to umin_val.
6047 */
3f50f132
JF
6048 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6049 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6050
3f50f132
JF
6051 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6052
6053 /* blow away the dst_reg umin_value/umax_value and rely on
6054 * dst_reg var_off to refine the result.
6055 */
6056 dst_reg->u32_min_value = 0;
6057 dst_reg->u32_max_value = U32_MAX;
6058
6059 __mark_reg64_unbounded(dst_reg);
6060 __update_reg32_bounds(dst_reg);
6061}
6062
6063static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6064 struct bpf_reg_state *src_reg)
6065{
6066 u64 umin_val = src_reg->umin_value;
6067
6068 /* Upon reaching here, src_known is true and umax_val is equal
6069 * to umin_val.
6070 */
6071 dst_reg->smin_value >>= umin_val;
6072 dst_reg->smax_value >>= umin_val;
6073
6074 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6075
6076 /* blow away the dst_reg umin_value/umax_value and rely on
6077 * dst_reg var_off to refine the result.
6078 */
6079 dst_reg->umin_value = 0;
6080 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6081
6082 /* Its not easy to operate on alu32 bounds here because it depends
6083 * on bits being shifted in from upper 32-bits. Take easy way out
6084 * and mark unbounded so we can recalculate later from tnum.
6085 */
6086 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6087 __update_reg_bounds(dst_reg);
6088}
6089
468f6eaf
JH
6090/* WARNING: This function does calculations on 64-bit values, but the actual
6091 * execution may occur on 32-bit values. Therefore, things like bitshifts
6092 * need extra checks in the 32-bit case.
6093 */
f1174f77
EC
6094static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6095 struct bpf_insn *insn,
6096 struct bpf_reg_state *dst_reg,
6097 struct bpf_reg_state src_reg)
969bf05e 6098{
638f5b90 6099 struct bpf_reg_state *regs = cur_regs(env);
48461135 6100 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6101 bool src_known;
b03c9f9f
EC
6102 s64 smin_val, smax_val;
6103 u64 umin_val, umax_val;
3f50f132
JF
6104 s32 s32_min_val, s32_max_val;
6105 u32 u32_min_val, u32_max_val;
468f6eaf 6106 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6107 u32 dst = insn->dst_reg;
6108 int ret;
3f50f132 6109 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6110
b03c9f9f
EC
6111 smin_val = src_reg.smin_value;
6112 smax_val = src_reg.smax_value;
6113 umin_val = src_reg.umin_value;
6114 umax_val = src_reg.umax_value;
f23cc643 6115
3f50f132
JF
6116 s32_min_val = src_reg.s32_min_value;
6117 s32_max_val = src_reg.s32_max_value;
6118 u32_min_val = src_reg.u32_min_value;
6119 u32_max_val = src_reg.u32_max_value;
6120
6121 if (alu32) {
6122 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6123 if ((src_known &&
6124 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6125 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6126 /* Taint dst register if offset had invalid bounds
6127 * derived from e.g. dead branches.
6128 */
6129 __mark_reg_unknown(env, dst_reg);
6130 return 0;
6131 }
6132 } else {
6133 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6134 if ((src_known &&
6135 (smin_val != smax_val || umin_val != umax_val)) ||
6136 smin_val > smax_val || umin_val > umax_val) {
6137 /* Taint dst register if offset had invalid bounds
6138 * derived from e.g. dead branches.
6139 */
6140 __mark_reg_unknown(env, dst_reg);
6141 return 0;
6142 }
6f16101e
DB
6143 }
6144
bb7f0f98
AS
6145 if (!src_known &&
6146 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6147 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6148 return 0;
6149 }
6150
3f50f132
JF
6151 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6152 * There are two classes of instructions: The first class we track both
6153 * alu32 and alu64 sign/unsigned bounds independently this provides the
6154 * greatest amount of precision when alu operations are mixed with jmp32
6155 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6156 * and BPF_OR. This is possible because these ops have fairly easy to
6157 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6158 * See alu32 verifier tests for examples. The second class of
6159 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6160 * with regards to tracking sign/unsigned bounds because the bits may
6161 * cross subreg boundaries in the alu64 case. When this happens we mark
6162 * the reg unbounded in the subreg bound space and use the resulting
6163 * tnum to calculate an approximation of the sign/unsigned bounds.
6164 */
48461135
JB
6165 switch (opcode) {
6166 case BPF_ADD:
d3bd7413
DB
6167 ret = sanitize_val_alu(env, insn);
6168 if (ret < 0) {
6169 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6170 return ret;
6171 }
3f50f132 6172 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6173 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6174 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6175 break;
6176 case BPF_SUB:
d3bd7413
DB
6177 ret = sanitize_val_alu(env, insn);
6178 if (ret < 0) {
6179 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6180 return ret;
6181 }
3f50f132 6182 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6183 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6184 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6185 break;
6186 case BPF_MUL:
3f50f132
JF
6187 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6188 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6189 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6190 break;
6191 case BPF_AND:
3f50f132
JF
6192 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6193 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6194 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6195 break;
6196 case BPF_OR:
3f50f132
JF
6197 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6198 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6199 scalar_min_max_or(dst_reg, &src_reg);
48461135 6200 break;
2921c90d
YS
6201 case BPF_XOR:
6202 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6203 scalar32_min_max_xor(dst_reg, &src_reg);
6204 scalar_min_max_xor(dst_reg, &src_reg);
6205 break;
48461135 6206 case BPF_LSH:
468f6eaf
JH
6207 if (umax_val >= insn_bitness) {
6208 /* Shifts greater than 31 or 63 are undefined.
6209 * This includes shifts by a negative number.
b03c9f9f 6210 */
61bd5218 6211 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6212 break;
6213 }
3f50f132
JF
6214 if (alu32)
6215 scalar32_min_max_lsh(dst_reg, &src_reg);
6216 else
6217 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6218 break;
6219 case BPF_RSH:
468f6eaf
JH
6220 if (umax_val >= insn_bitness) {
6221 /* Shifts greater than 31 or 63 are undefined.
6222 * This includes shifts by a negative number.
b03c9f9f 6223 */
61bd5218 6224 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6225 break;
6226 }
3f50f132
JF
6227 if (alu32)
6228 scalar32_min_max_rsh(dst_reg, &src_reg);
6229 else
6230 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6231 break;
9cbe1f5a
YS
6232 case BPF_ARSH:
6233 if (umax_val >= insn_bitness) {
6234 /* Shifts greater than 31 or 63 are undefined.
6235 * This includes shifts by a negative number.
6236 */
6237 mark_reg_unknown(env, regs, insn->dst_reg);
6238 break;
6239 }
3f50f132
JF
6240 if (alu32)
6241 scalar32_min_max_arsh(dst_reg, &src_reg);
6242 else
6243 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6244 break;
48461135 6245 default:
61bd5218 6246 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6247 break;
6248 }
6249
3f50f132
JF
6250 /* ALU32 ops are zero extended into 64bit register */
6251 if (alu32)
6252 zext_32_to_64(dst_reg);
468f6eaf 6253
294f2fc6 6254 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6255 __reg_deduce_bounds(dst_reg);
6256 __reg_bound_offset(dst_reg);
f1174f77
EC
6257 return 0;
6258}
6259
6260/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6261 * and var_off.
6262 */
6263static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6264 struct bpf_insn *insn)
6265{
f4d7e40a
AS
6266 struct bpf_verifier_state *vstate = env->cur_state;
6267 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6268 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6269 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6270 u8 opcode = BPF_OP(insn->code);
b5dc0163 6271 int err;
f1174f77
EC
6272
6273 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6274 src_reg = NULL;
6275 if (dst_reg->type != SCALAR_VALUE)
6276 ptr_reg = dst_reg;
6277 if (BPF_SRC(insn->code) == BPF_X) {
6278 src_reg = &regs[insn->src_reg];
f1174f77
EC
6279 if (src_reg->type != SCALAR_VALUE) {
6280 if (dst_reg->type != SCALAR_VALUE) {
6281 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6282 * an arbitrary scalar. Disallow all math except
6283 * pointer subtraction
f1174f77 6284 */
dd066823 6285 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6286 mark_reg_unknown(env, regs, insn->dst_reg);
6287 return 0;
f1174f77 6288 }
82abbf8d
AS
6289 verbose(env, "R%d pointer %s pointer prohibited\n",
6290 insn->dst_reg,
6291 bpf_alu_string[opcode >> 4]);
6292 return -EACCES;
f1174f77
EC
6293 } else {
6294 /* scalar += pointer
6295 * This is legal, but we have to reverse our
6296 * src/dest handling in computing the range
6297 */
b5dc0163
AS
6298 err = mark_chain_precision(env, insn->dst_reg);
6299 if (err)
6300 return err;
82abbf8d
AS
6301 return adjust_ptr_min_max_vals(env, insn,
6302 src_reg, dst_reg);
f1174f77
EC
6303 }
6304 } else if (ptr_reg) {
6305 /* pointer += scalar */
b5dc0163
AS
6306 err = mark_chain_precision(env, insn->src_reg);
6307 if (err)
6308 return err;
82abbf8d
AS
6309 return adjust_ptr_min_max_vals(env, insn,
6310 dst_reg, src_reg);
f1174f77
EC
6311 }
6312 } else {
6313 /* Pretend the src is a reg with a known value, since we only
6314 * need to be able to read from this state.
6315 */
6316 off_reg.type = SCALAR_VALUE;
b03c9f9f 6317 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6318 src_reg = &off_reg;
82abbf8d
AS
6319 if (ptr_reg) /* pointer += K */
6320 return adjust_ptr_min_max_vals(env, insn,
6321 ptr_reg, src_reg);
f1174f77
EC
6322 }
6323
6324 /* Got here implies adding two SCALAR_VALUEs */
6325 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6326 print_verifier_state(env, state);
61bd5218 6327 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6328 return -EINVAL;
6329 }
6330 if (WARN_ON(!src_reg)) {
f4d7e40a 6331 print_verifier_state(env, state);
61bd5218 6332 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6333 return -EINVAL;
6334 }
6335 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6336}
6337
17a52670 6338/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6339static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6340{
638f5b90 6341 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6342 u8 opcode = BPF_OP(insn->code);
6343 int err;
6344
6345 if (opcode == BPF_END || opcode == BPF_NEG) {
6346 if (opcode == BPF_NEG) {
6347 if (BPF_SRC(insn->code) != 0 ||
6348 insn->src_reg != BPF_REG_0 ||
6349 insn->off != 0 || insn->imm != 0) {
61bd5218 6350 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6351 return -EINVAL;
6352 }
6353 } else {
6354 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6355 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6356 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6357 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6358 return -EINVAL;
6359 }
6360 }
6361
6362 /* check src operand */
dc503a8a 6363 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6364 if (err)
6365 return err;
6366
1be7f75d 6367 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6368 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6369 insn->dst_reg);
6370 return -EACCES;
6371 }
6372
17a52670 6373 /* check dest operand */
dc503a8a 6374 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6375 if (err)
6376 return err;
6377
6378 } else if (opcode == BPF_MOV) {
6379
6380 if (BPF_SRC(insn->code) == BPF_X) {
6381 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6382 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6383 return -EINVAL;
6384 }
6385
6386 /* check src operand */
dc503a8a 6387 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6388 if (err)
6389 return err;
6390 } else {
6391 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6392 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6393 return -EINVAL;
6394 }
6395 }
6396
fbeb1603
AF
6397 /* check dest operand, mark as required later */
6398 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6399 if (err)
6400 return err;
6401
6402 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6403 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6404 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6405
17a52670
AS
6406 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6407 /* case: R1 = R2
6408 * copy register state to dest reg
6409 */
e434b8cd
JW
6410 *dst_reg = *src_reg;
6411 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6412 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6413 } else {
f1174f77 6414 /* R1 = (u32) R2 */
1be7f75d 6415 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6416 verbose(env,
6417 "R%d partial copy of pointer\n",
1be7f75d
AS
6418 insn->src_reg);
6419 return -EACCES;
e434b8cd
JW
6420 } else if (src_reg->type == SCALAR_VALUE) {
6421 *dst_reg = *src_reg;
6422 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6423 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6424 } else {
6425 mark_reg_unknown(env, regs,
6426 insn->dst_reg);
1be7f75d 6427 }
3f50f132 6428 zext_32_to_64(dst_reg);
17a52670
AS
6429 }
6430 } else {
6431 /* case: R = imm
6432 * remember the value we stored into this reg
6433 */
fbeb1603
AF
6434 /* clear any state __mark_reg_known doesn't set */
6435 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6436 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6437 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6438 __mark_reg_known(regs + insn->dst_reg,
6439 insn->imm);
6440 } else {
6441 __mark_reg_known(regs + insn->dst_reg,
6442 (u32)insn->imm);
6443 }
17a52670
AS
6444 }
6445
6446 } else if (opcode > BPF_END) {
61bd5218 6447 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6448 return -EINVAL;
6449
6450 } else { /* all other ALU ops: and, sub, xor, add, ... */
6451
17a52670
AS
6452 if (BPF_SRC(insn->code) == BPF_X) {
6453 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6454 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6455 return -EINVAL;
6456 }
6457 /* check src1 operand */
dc503a8a 6458 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6459 if (err)
6460 return err;
6461 } else {
6462 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6463 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6464 return -EINVAL;
6465 }
6466 }
6467
6468 /* check src2 operand */
dc503a8a 6469 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6470 if (err)
6471 return err;
6472
6473 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6474 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6475 verbose(env, "div by zero\n");
17a52670
AS
6476 return -EINVAL;
6477 }
6478
229394e8
RV
6479 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6480 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6481 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6482
6483 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6484 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6485 return -EINVAL;
6486 }
6487 }
6488
1a0dc1ac 6489 /* check dest operand */
dc503a8a 6490 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6491 if (err)
6492 return err;
6493
f1174f77 6494 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6495 }
6496
6497 return 0;
6498}
6499
c6a9efa1
PC
6500static void __find_good_pkt_pointers(struct bpf_func_state *state,
6501 struct bpf_reg_state *dst_reg,
6502 enum bpf_reg_type type, u16 new_range)
6503{
6504 struct bpf_reg_state *reg;
6505 int i;
6506
6507 for (i = 0; i < MAX_BPF_REG; i++) {
6508 reg = &state->regs[i];
6509 if (reg->type == type && reg->id == dst_reg->id)
6510 /* keep the maximum range already checked */
6511 reg->range = max(reg->range, new_range);
6512 }
6513
6514 bpf_for_each_spilled_reg(i, state, reg) {
6515 if (!reg)
6516 continue;
6517 if (reg->type == type && reg->id == dst_reg->id)
6518 reg->range = max(reg->range, new_range);
6519 }
6520}
6521
f4d7e40a 6522static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6523 struct bpf_reg_state *dst_reg,
f8ddadc4 6524 enum bpf_reg_type type,
fb2a311a 6525 bool range_right_open)
969bf05e 6526{
fb2a311a 6527 u16 new_range;
c6a9efa1 6528 int i;
2d2be8ca 6529
fb2a311a
DB
6530 if (dst_reg->off < 0 ||
6531 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6532 /* This doesn't give us any range */
6533 return;
6534
b03c9f9f
EC
6535 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6536 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6537 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6538 * than pkt_end, but that's because it's also less than pkt.
6539 */
6540 return;
6541
fb2a311a
DB
6542 new_range = dst_reg->off;
6543 if (range_right_open)
6544 new_range--;
6545
6546 /* Examples for register markings:
2d2be8ca 6547 *
fb2a311a 6548 * pkt_data in dst register:
2d2be8ca
DB
6549 *
6550 * r2 = r3;
6551 * r2 += 8;
6552 * if (r2 > pkt_end) goto <handle exception>
6553 * <access okay>
6554 *
b4e432f1
DB
6555 * r2 = r3;
6556 * r2 += 8;
6557 * if (r2 < pkt_end) goto <access okay>
6558 * <handle exception>
6559 *
2d2be8ca
DB
6560 * Where:
6561 * r2 == dst_reg, pkt_end == src_reg
6562 * r2=pkt(id=n,off=8,r=0)
6563 * r3=pkt(id=n,off=0,r=0)
6564 *
fb2a311a 6565 * pkt_data in src register:
2d2be8ca
DB
6566 *
6567 * r2 = r3;
6568 * r2 += 8;
6569 * if (pkt_end >= r2) goto <access okay>
6570 * <handle exception>
6571 *
b4e432f1
DB
6572 * r2 = r3;
6573 * r2 += 8;
6574 * if (pkt_end <= r2) goto <handle exception>
6575 * <access okay>
6576 *
2d2be8ca
DB
6577 * Where:
6578 * pkt_end == dst_reg, r2 == src_reg
6579 * r2=pkt(id=n,off=8,r=0)
6580 * r3=pkt(id=n,off=0,r=0)
6581 *
6582 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6583 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6584 * and [r3, r3 + 8-1) respectively is safe to access depending on
6585 * the check.
969bf05e 6586 */
2d2be8ca 6587
f1174f77
EC
6588 /* If our ids match, then we must have the same max_value. And we
6589 * don't care about the other reg's fixed offset, since if it's too big
6590 * the range won't allow anything.
6591 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6592 */
c6a9efa1
PC
6593 for (i = 0; i <= vstate->curframe; i++)
6594 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6595 new_range);
969bf05e
AS
6596}
6597
3f50f132 6598static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6599{
3f50f132
JF
6600 struct tnum subreg = tnum_subreg(reg->var_off);
6601 s32 sval = (s32)val;
a72dafaf 6602
3f50f132
JF
6603 switch (opcode) {
6604 case BPF_JEQ:
6605 if (tnum_is_const(subreg))
6606 return !!tnum_equals_const(subreg, val);
6607 break;
6608 case BPF_JNE:
6609 if (tnum_is_const(subreg))
6610 return !tnum_equals_const(subreg, val);
6611 break;
6612 case BPF_JSET:
6613 if ((~subreg.mask & subreg.value) & val)
6614 return 1;
6615 if (!((subreg.mask | subreg.value) & val))
6616 return 0;
6617 break;
6618 case BPF_JGT:
6619 if (reg->u32_min_value > val)
6620 return 1;
6621 else if (reg->u32_max_value <= val)
6622 return 0;
6623 break;
6624 case BPF_JSGT:
6625 if (reg->s32_min_value > sval)
6626 return 1;
6627 else if (reg->s32_max_value < sval)
6628 return 0;
6629 break;
6630 case BPF_JLT:
6631 if (reg->u32_max_value < val)
6632 return 1;
6633 else if (reg->u32_min_value >= val)
6634 return 0;
6635 break;
6636 case BPF_JSLT:
6637 if (reg->s32_max_value < sval)
6638 return 1;
6639 else if (reg->s32_min_value >= sval)
6640 return 0;
6641 break;
6642 case BPF_JGE:
6643 if (reg->u32_min_value >= val)
6644 return 1;
6645 else if (reg->u32_max_value < val)
6646 return 0;
6647 break;
6648 case BPF_JSGE:
6649 if (reg->s32_min_value >= sval)
6650 return 1;
6651 else if (reg->s32_max_value < sval)
6652 return 0;
6653 break;
6654 case BPF_JLE:
6655 if (reg->u32_max_value <= val)
6656 return 1;
6657 else if (reg->u32_min_value > val)
6658 return 0;
6659 break;
6660 case BPF_JSLE:
6661 if (reg->s32_max_value <= sval)
6662 return 1;
6663 else if (reg->s32_min_value > sval)
6664 return 0;
6665 break;
6666 }
4f7b3e82 6667
3f50f132
JF
6668 return -1;
6669}
092ed096 6670
3f50f132
JF
6671
6672static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6673{
6674 s64 sval = (s64)val;
a72dafaf 6675
4f7b3e82
AS
6676 switch (opcode) {
6677 case BPF_JEQ:
6678 if (tnum_is_const(reg->var_off))
6679 return !!tnum_equals_const(reg->var_off, val);
6680 break;
6681 case BPF_JNE:
6682 if (tnum_is_const(reg->var_off))
6683 return !tnum_equals_const(reg->var_off, val);
6684 break;
960ea056
JK
6685 case BPF_JSET:
6686 if ((~reg->var_off.mask & reg->var_off.value) & val)
6687 return 1;
6688 if (!((reg->var_off.mask | reg->var_off.value) & val))
6689 return 0;
6690 break;
4f7b3e82
AS
6691 case BPF_JGT:
6692 if (reg->umin_value > val)
6693 return 1;
6694 else if (reg->umax_value <= val)
6695 return 0;
6696 break;
6697 case BPF_JSGT:
a72dafaf 6698 if (reg->smin_value > sval)
4f7b3e82 6699 return 1;
a72dafaf 6700 else if (reg->smax_value < sval)
4f7b3e82
AS
6701 return 0;
6702 break;
6703 case BPF_JLT:
6704 if (reg->umax_value < val)
6705 return 1;
6706 else if (reg->umin_value >= val)
6707 return 0;
6708 break;
6709 case BPF_JSLT:
a72dafaf 6710 if (reg->smax_value < sval)
4f7b3e82 6711 return 1;
a72dafaf 6712 else if (reg->smin_value >= sval)
4f7b3e82
AS
6713 return 0;
6714 break;
6715 case BPF_JGE:
6716 if (reg->umin_value >= val)
6717 return 1;
6718 else if (reg->umax_value < val)
6719 return 0;
6720 break;
6721 case BPF_JSGE:
a72dafaf 6722 if (reg->smin_value >= sval)
4f7b3e82 6723 return 1;
a72dafaf 6724 else if (reg->smax_value < sval)
4f7b3e82
AS
6725 return 0;
6726 break;
6727 case BPF_JLE:
6728 if (reg->umax_value <= val)
6729 return 1;
6730 else if (reg->umin_value > val)
6731 return 0;
6732 break;
6733 case BPF_JSLE:
a72dafaf 6734 if (reg->smax_value <= sval)
4f7b3e82 6735 return 1;
a72dafaf 6736 else if (reg->smin_value > sval)
4f7b3e82
AS
6737 return 0;
6738 break;
6739 }
6740
6741 return -1;
6742}
6743
3f50f132
JF
6744/* compute branch direction of the expression "if (reg opcode val) goto target;"
6745 * and return:
6746 * 1 - branch will be taken and "goto target" will be executed
6747 * 0 - branch will not be taken and fall-through to next insn
6748 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6749 * range [0,10]
604dca5e 6750 */
3f50f132
JF
6751static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6752 bool is_jmp32)
604dca5e 6753{
cac616db
JF
6754 if (__is_pointer_value(false, reg)) {
6755 if (!reg_type_not_null(reg->type))
6756 return -1;
6757
6758 /* If pointer is valid tests against zero will fail so we can
6759 * use this to direct branch taken.
6760 */
6761 if (val != 0)
6762 return -1;
6763
6764 switch (opcode) {
6765 case BPF_JEQ:
6766 return 0;
6767 case BPF_JNE:
6768 return 1;
6769 default:
6770 return -1;
6771 }
6772 }
604dca5e 6773
3f50f132
JF
6774 if (is_jmp32)
6775 return is_branch32_taken(reg, val, opcode);
6776 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6777}
6778
48461135
JB
6779/* Adjusts the register min/max values in the case that the dst_reg is the
6780 * variable register that we are working on, and src_reg is a constant or we're
6781 * simply doing a BPF_K check.
f1174f77 6782 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6783 */
6784static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6785 struct bpf_reg_state *false_reg,
6786 u64 val, u32 val32,
092ed096 6787 u8 opcode, bool is_jmp32)
48461135 6788{
3f50f132
JF
6789 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6790 struct tnum false_64off = false_reg->var_off;
6791 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6792 struct tnum true_64off = true_reg->var_off;
6793 s64 sval = (s64)val;
6794 s32 sval32 = (s32)val32;
a72dafaf 6795
f1174f77
EC
6796 /* If the dst_reg is a pointer, we can't learn anything about its
6797 * variable offset from the compare (unless src_reg were a pointer into
6798 * the same object, but we don't bother with that.
6799 * Since false_reg and true_reg have the same type by construction, we
6800 * only need to check one of them for pointerness.
6801 */
6802 if (__is_pointer_value(false, false_reg))
6803 return;
4cabc5b1 6804
48461135
JB
6805 switch (opcode) {
6806 case BPF_JEQ:
48461135 6807 case BPF_JNE:
a72dafaf
JW
6808 {
6809 struct bpf_reg_state *reg =
6810 opcode == BPF_JEQ ? true_reg : false_reg;
6811
6812 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6813 * if it is true we know the value for sure. Likewise for
6814 * BPF_JNE.
48461135 6815 */
3f50f132
JF
6816 if (is_jmp32)
6817 __mark_reg32_known(reg, val32);
6818 else
092ed096 6819 __mark_reg_known(reg, val);
48461135 6820 break;
a72dafaf 6821 }
960ea056 6822 case BPF_JSET:
3f50f132
JF
6823 if (is_jmp32) {
6824 false_32off = tnum_and(false_32off, tnum_const(~val32));
6825 if (is_power_of_2(val32))
6826 true_32off = tnum_or(true_32off,
6827 tnum_const(val32));
6828 } else {
6829 false_64off = tnum_and(false_64off, tnum_const(~val));
6830 if (is_power_of_2(val))
6831 true_64off = tnum_or(true_64off,
6832 tnum_const(val));
6833 }
960ea056 6834 break;
48461135 6835 case BPF_JGE:
a72dafaf
JW
6836 case BPF_JGT:
6837 {
3f50f132
JF
6838 if (is_jmp32) {
6839 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
6840 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6841
6842 false_reg->u32_max_value = min(false_reg->u32_max_value,
6843 false_umax);
6844 true_reg->u32_min_value = max(true_reg->u32_min_value,
6845 true_umin);
6846 } else {
6847 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
6848 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6849
6850 false_reg->umax_value = min(false_reg->umax_value, false_umax);
6851 true_reg->umin_value = max(true_reg->umin_value, true_umin);
6852 }
b03c9f9f 6853 break;
a72dafaf 6854 }
48461135 6855 case BPF_JSGE:
a72dafaf
JW
6856 case BPF_JSGT:
6857 {
3f50f132
JF
6858 if (is_jmp32) {
6859 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
6860 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 6861
3f50f132
JF
6862 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6863 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6864 } else {
6865 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
6866 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6867
6868 false_reg->smax_value = min(false_reg->smax_value, false_smax);
6869 true_reg->smin_value = max(true_reg->smin_value, true_smin);
6870 }
48461135 6871 break;
a72dafaf 6872 }
b4e432f1 6873 case BPF_JLE:
a72dafaf
JW
6874 case BPF_JLT:
6875 {
3f50f132
JF
6876 if (is_jmp32) {
6877 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
6878 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6879
6880 false_reg->u32_min_value = max(false_reg->u32_min_value,
6881 false_umin);
6882 true_reg->u32_max_value = min(true_reg->u32_max_value,
6883 true_umax);
6884 } else {
6885 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
6886 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6887
6888 false_reg->umin_value = max(false_reg->umin_value, false_umin);
6889 true_reg->umax_value = min(true_reg->umax_value, true_umax);
6890 }
b4e432f1 6891 break;
a72dafaf 6892 }
b4e432f1 6893 case BPF_JSLE:
a72dafaf
JW
6894 case BPF_JSLT:
6895 {
3f50f132
JF
6896 if (is_jmp32) {
6897 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
6898 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 6899
3f50f132
JF
6900 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6901 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6902 } else {
6903 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
6904 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6905
6906 false_reg->smin_value = max(false_reg->smin_value, false_smin);
6907 true_reg->smax_value = min(true_reg->smax_value, true_smax);
6908 }
b4e432f1 6909 break;
a72dafaf 6910 }
48461135 6911 default:
0fc31b10 6912 return;
48461135
JB
6913 }
6914
3f50f132
JF
6915 if (is_jmp32) {
6916 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6917 tnum_subreg(false_32off));
6918 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6919 tnum_subreg(true_32off));
6920 __reg_combine_32_into_64(false_reg);
6921 __reg_combine_32_into_64(true_reg);
6922 } else {
6923 false_reg->var_off = false_64off;
6924 true_reg->var_off = true_64off;
6925 __reg_combine_64_into_32(false_reg);
6926 __reg_combine_64_into_32(true_reg);
6927 }
48461135
JB
6928}
6929
f1174f77
EC
6930/* Same as above, but for the case that dst_reg holds a constant and src_reg is
6931 * the variable reg.
48461135
JB
6932 */
6933static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
6934 struct bpf_reg_state *false_reg,
6935 u64 val, u32 val32,
092ed096 6936 u8 opcode, bool is_jmp32)
48461135 6937{
0fc31b10
JH
6938 /* How can we transform "a <op> b" into "b <op> a"? */
6939 static const u8 opcode_flip[16] = {
6940 /* these stay the same */
6941 [BPF_JEQ >> 4] = BPF_JEQ,
6942 [BPF_JNE >> 4] = BPF_JNE,
6943 [BPF_JSET >> 4] = BPF_JSET,
6944 /* these swap "lesser" and "greater" (L and G in the opcodes) */
6945 [BPF_JGE >> 4] = BPF_JLE,
6946 [BPF_JGT >> 4] = BPF_JLT,
6947 [BPF_JLE >> 4] = BPF_JGE,
6948 [BPF_JLT >> 4] = BPF_JGT,
6949 [BPF_JSGE >> 4] = BPF_JSLE,
6950 [BPF_JSGT >> 4] = BPF_JSLT,
6951 [BPF_JSLE >> 4] = BPF_JSGE,
6952 [BPF_JSLT >> 4] = BPF_JSGT
6953 };
6954 opcode = opcode_flip[opcode >> 4];
6955 /* This uses zero as "not present in table"; luckily the zero opcode,
6956 * BPF_JA, can't get here.
b03c9f9f 6957 */
0fc31b10 6958 if (opcode)
3f50f132 6959 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
6960}
6961
6962/* Regs are known to be equal, so intersect their min/max/var_off */
6963static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6964 struct bpf_reg_state *dst_reg)
6965{
b03c9f9f
EC
6966 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6967 dst_reg->umin_value);
6968 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6969 dst_reg->umax_value);
6970 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6971 dst_reg->smin_value);
6972 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6973 dst_reg->smax_value);
f1174f77
EC
6974 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6975 dst_reg->var_off);
b03c9f9f
EC
6976 /* We might have learned new bounds from the var_off. */
6977 __update_reg_bounds(src_reg);
6978 __update_reg_bounds(dst_reg);
6979 /* We might have learned something about the sign bit. */
6980 __reg_deduce_bounds(src_reg);
6981 __reg_deduce_bounds(dst_reg);
6982 /* We might have learned some bits from the bounds. */
6983 __reg_bound_offset(src_reg);
6984 __reg_bound_offset(dst_reg);
6985 /* Intersecting with the old var_off might have improved our bounds
6986 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6987 * then new var_off is (0; 0x7f...fc) which improves our umax.
6988 */
6989 __update_reg_bounds(src_reg);
6990 __update_reg_bounds(dst_reg);
f1174f77
EC
6991}
6992
6993static void reg_combine_min_max(struct bpf_reg_state *true_src,
6994 struct bpf_reg_state *true_dst,
6995 struct bpf_reg_state *false_src,
6996 struct bpf_reg_state *false_dst,
6997 u8 opcode)
6998{
6999 switch (opcode) {
7000 case BPF_JEQ:
7001 __reg_combine_min_max(true_src, true_dst);
7002 break;
7003 case BPF_JNE:
7004 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7005 break;
4cabc5b1 7006 }
48461135
JB
7007}
7008
fd978bf7
JS
7009static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7010 struct bpf_reg_state *reg, u32 id,
840b9615 7011 bool is_null)
57a09bf0 7012{
840b9615 7013 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
7014 /* Old offset (both fixed and variable parts) should
7015 * have been known-zero, because we don't allow pointer
7016 * arithmetic on pointers that might be NULL.
7017 */
b03c9f9f
EC
7018 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7019 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7020 reg->off)) {
b03c9f9f
EC
7021 __mark_reg_known_zero(reg);
7022 reg->off = 0;
f1174f77
EC
7023 }
7024 if (is_null) {
7025 reg->type = SCALAR_VALUE;
840b9615 7026 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7027 const struct bpf_map *map = reg->map_ptr;
7028
7029 if (map->inner_map_meta) {
840b9615 7030 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7031 reg->map_ptr = map->inner_map_meta;
7032 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7033 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7034 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7035 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7036 reg->type = PTR_TO_SOCKET;
840b9615
JS
7037 } else {
7038 reg->type = PTR_TO_MAP_VALUE;
7039 }
c64b7983
JS
7040 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7041 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7042 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7043 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7044 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7045 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7046 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7047 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7048 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7049 reg->type = PTR_TO_MEM;
afbf21dc
YS
7050 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7051 reg->type = PTR_TO_RDONLY_BUF;
7052 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7053 reg->type = PTR_TO_RDWR_BUF;
56f668df 7054 }
1b986589
MKL
7055 if (is_null) {
7056 /* We don't need id and ref_obj_id from this point
7057 * onwards anymore, thus we should better reset it,
7058 * so that state pruning has chances to take effect.
7059 */
7060 reg->id = 0;
7061 reg->ref_obj_id = 0;
7062 } else if (!reg_may_point_to_spin_lock(reg)) {
7063 /* For not-NULL ptr, reg->ref_obj_id will be reset
7064 * in release_reg_references().
7065 *
7066 * reg->id is still used by spin_lock ptr. Other
7067 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7068 */
7069 reg->id = 0;
56f668df 7070 }
57a09bf0
TG
7071 }
7072}
7073
c6a9efa1
PC
7074static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7075 bool is_null)
7076{
7077 struct bpf_reg_state *reg;
7078 int i;
7079
7080 for (i = 0; i < MAX_BPF_REG; i++)
7081 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7082
7083 bpf_for_each_spilled_reg(i, state, reg) {
7084 if (!reg)
7085 continue;
7086 mark_ptr_or_null_reg(state, reg, id, is_null);
7087 }
7088}
7089
57a09bf0
TG
7090/* The logic is similar to find_good_pkt_pointers(), both could eventually
7091 * be folded together at some point.
7092 */
840b9615
JS
7093static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7094 bool is_null)
57a09bf0 7095{
f4d7e40a 7096 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7097 struct bpf_reg_state *regs = state->regs;
1b986589 7098 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7099 u32 id = regs[regno].id;
c6a9efa1 7100 int i;
57a09bf0 7101
1b986589
MKL
7102 if (ref_obj_id && ref_obj_id == id && is_null)
7103 /* regs[regno] is in the " == NULL" branch.
7104 * No one could have freed the reference state before
7105 * doing the NULL check.
7106 */
7107 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7108
c6a9efa1
PC
7109 for (i = 0; i <= vstate->curframe; i++)
7110 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7111}
7112
5beca081
DB
7113static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7114 struct bpf_reg_state *dst_reg,
7115 struct bpf_reg_state *src_reg,
7116 struct bpf_verifier_state *this_branch,
7117 struct bpf_verifier_state *other_branch)
7118{
7119 if (BPF_SRC(insn->code) != BPF_X)
7120 return false;
7121
092ed096
JW
7122 /* Pointers are always 64-bit. */
7123 if (BPF_CLASS(insn->code) == BPF_JMP32)
7124 return false;
7125
5beca081
DB
7126 switch (BPF_OP(insn->code)) {
7127 case BPF_JGT:
7128 if ((dst_reg->type == PTR_TO_PACKET &&
7129 src_reg->type == PTR_TO_PACKET_END) ||
7130 (dst_reg->type == PTR_TO_PACKET_META &&
7131 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7132 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7133 find_good_pkt_pointers(this_branch, dst_reg,
7134 dst_reg->type, false);
7135 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7136 src_reg->type == PTR_TO_PACKET) ||
7137 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7138 src_reg->type == PTR_TO_PACKET_META)) {
7139 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7140 find_good_pkt_pointers(other_branch, src_reg,
7141 src_reg->type, true);
7142 } else {
7143 return false;
7144 }
7145 break;
7146 case BPF_JLT:
7147 if ((dst_reg->type == PTR_TO_PACKET &&
7148 src_reg->type == PTR_TO_PACKET_END) ||
7149 (dst_reg->type == PTR_TO_PACKET_META &&
7150 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7151 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7152 find_good_pkt_pointers(other_branch, dst_reg,
7153 dst_reg->type, true);
7154 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7155 src_reg->type == PTR_TO_PACKET) ||
7156 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7157 src_reg->type == PTR_TO_PACKET_META)) {
7158 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7159 find_good_pkt_pointers(this_branch, src_reg,
7160 src_reg->type, false);
7161 } else {
7162 return false;
7163 }
7164 break;
7165 case BPF_JGE:
7166 if ((dst_reg->type == PTR_TO_PACKET &&
7167 src_reg->type == PTR_TO_PACKET_END) ||
7168 (dst_reg->type == PTR_TO_PACKET_META &&
7169 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7170 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7171 find_good_pkt_pointers(this_branch, dst_reg,
7172 dst_reg->type, true);
7173 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7174 src_reg->type == PTR_TO_PACKET) ||
7175 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7176 src_reg->type == PTR_TO_PACKET_META)) {
7177 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7178 find_good_pkt_pointers(other_branch, src_reg,
7179 src_reg->type, false);
7180 } else {
7181 return false;
7182 }
7183 break;
7184 case BPF_JLE:
7185 if ((dst_reg->type == PTR_TO_PACKET &&
7186 src_reg->type == PTR_TO_PACKET_END) ||
7187 (dst_reg->type == PTR_TO_PACKET_META &&
7188 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7189 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7190 find_good_pkt_pointers(other_branch, dst_reg,
7191 dst_reg->type, false);
7192 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7193 src_reg->type == PTR_TO_PACKET) ||
7194 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7195 src_reg->type == PTR_TO_PACKET_META)) {
7196 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7197 find_good_pkt_pointers(this_branch, src_reg,
7198 src_reg->type, true);
7199 } else {
7200 return false;
7201 }
7202 break;
7203 default:
7204 return false;
7205 }
7206
7207 return true;
7208}
7209
58e2af8b 7210static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7211 struct bpf_insn *insn, int *insn_idx)
7212{
f4d7e40a
AS
7213 struct bpf_verifier_state *this_branch = env->cur_state;
7214 struct bpf_verifier_state *other_branch;
7215 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7216 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7217 u8 opcode = BPF_OP(insn->code);
092ed096 7218 bool is_jmp32;
fb8d251e 7219 int pred = -1;
17a52670
AS
7220 int err;
7221
092ed096
JW
7222 /* Only conditional jumps are expected to reach here. */
7223 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7224 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7225 return -EINVAL;
7226 }
7227
7228 if (BPF_SRC(insn->code) == BPF_X) {
7229 if (insn->imm != 0) {
092ed096 7230 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7231 return -EINVAL;
7232 }
7233
7234 /* check src1 operand */
dc503a8a 7235 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7236 if (err)
7237 return err;
1be7f75d
AS
7238
7239 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7240 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7241 insn->src_reg);
7242 return -EACCES;
7243 }
fb8d251e 7244 src_reg = &regs[insn->src_reg];
17a52670
AS
7245 } else {
7246 if (insn->src_reg != BPF_REG_0) {
092ed096 7247 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7248 return -EINVAL;
7249 }
7250 }
7251
7252 /* check src2 operand */
dc503a8a 7253 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7254 if (err)
7255 return err;
7256
1a0dc1ac 7257 dst_reg = &regs[insn->dst_reg];
092ed096 7258 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7259
3f50f132
JF
7260 if (BPF_SRC(insn->code) == BPF_K) {
7261 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7262 } else if (src_reg->type == SCALAR_VALUE &&
7263 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7264 pred = is_branch_taken(dst_reg,
7265 tnum_subreg(src_reg->var_off).value,
7266 opcode,
7267 is_jmp32);
7268 } else if (src_reg->type == SCALAR_VALUE &&
7269 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7270 pred = is_branch_taken(dst_reg,
7271 src_reg->var_off.value,
7272 opcode,
7273 is_jmp32);
7274 }
7275
b5dc0163 7276 if (pred >= 0) {
cac616db
JF
7277 /* If we get here with a dst_reg pointer type it is because
7278 * above is_branch_taken() special cased the 0 comparison.
7279 */
7280 if (!__is_pointer_value(false, dst_reg))
7281 err = mark_chain_precision(env, insn->dst_reg);
b5dc0163
AS
7282 if (BPF_SRC(insn->code) == BPF_X && !err)
7283 err = mark_chain_precision(env, insn->src_reg);
7284 if (err)
7285 return err;
7286 }
fb8d251e
AS
7287 if (pred == 1) {
7288 /* only follow the goto, ignore fall-through */
7289 *insn_idx += insn->off;
7290 return 0;
7291 } else if (pred == 0) {
7292 /* only follow fall-through branch, since
7293 * that's where the program will go
7294 */
7295 return 0;
17a52670
AS
7296 }
7297
979d63d5
DB
7298 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7299 false);
17a52670
AS
7300 if (!other_branch)
7301 return -EFAULT;
f4d7e40a 7302 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7303
48461135
JB
7304 /* detect if we are comparing against a constant value so we can adjust
7305 * our min/max values for our dst register.
f1174f77
EC
7306 * this is only legit if both are scalars (or pointers to the same
7307 * object, I suppose, but we don't support that right now), because
7308 * otherwise the different base pointers mean the offsets aren't
7309 * comparable.
48461135
JB
7310 */
7311 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7312 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7313
f1174f77 7314 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7315 src_reg->type == SCALAR_VALUE) {
7316 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7317 (is_jmp32 &&
7318 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7319 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7320 dst_reg,
3f50f132
JF
7321 src_reg->var_off.value,
7322 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7323 opcode, is_jmp32);
7324 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7325 (is_jmp32 &&
7326 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7327 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7328 src_reg,
3f50f132
JF
7329 dst_reg->var_off.value,
7330 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7331 opcode, is_jmp32);
7332 else if (!is_jmp32 &&
7333 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7334 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7335 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7336 &other_branch_regs[insn->dst_reg],
092ed096 7337 src_reg, dst_reg, opcode);
f1174f77
EC
7338 }
7339 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7340 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7341 dst_reg, insn->imm, (u32)insn->imm,
7342 opcode, is_jmp32);
48461135
JB
7343 }
7344
092ed096
JW
7345 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7346 * NOTE: these optimizations below are related with pointer comparison
7347 * which will never be JMP32.
7348 */
7349 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7350 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7351 reg_type_may_be_null(dst_reg->type)) {
7352 /* Mark all identical registers in each branch as either
57a09bf0
TG
7353 * safe or unknown depending R == 0 or R != 0 conditional.
7354 */
840b9615
JS
7355 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7356 opcode == BPF_JNE);
7357 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7358 opcode == BPF_JEQ);
5beca081
DB
7359 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7360 this_branch, other_branch) &&
7361 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7362 verbose(env, "R%d pointer comparison prohibited\n",
7363 insn->dst_reg);
1be7f75d 7364 return -EACCES;
17a52670 7365 }
06ee7115 7366 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7367 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7368 return 0;
7369}
7370
17a52670 7371/* verify BPF_LD_IMM64 instruction */
58e2af8b 7372static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7373{
d8eca5bb 7374 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7375 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 7376 struct bpf_map *map;
17a52670
AS
7377 int err;
7378
7379 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7380 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7381 return -EINVAL;
7382 }
7383 if (insn->off != 0) {
61bd5218 7384 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7385 return -EINVAL;
7386 }
7387
dc503a8a 7388 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7389 if (err)
7390 return err;
7391
6b173873 7392 if (insn->src_reg == 0) {
6b173873
JK
7393 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7394
f1174f77 7395 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 7396 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7397 return 0;
6b173873 7398 }
17a52670 7399
d8eca5bb
DB
7400 map = env->used_maps[aux->map_index];
7401 mark_reg_known_zero(env, regs, insn->dst_reg);
7402 regs[insn->dst_reg].map_ptr = map;
7403
7404 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7405 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7406 regs[insn->dst_reg].off = aux->map_off;
7407 if (map_value_has_spin_lock(map))
7408 regs[insn->dst_reg].id = ++env->id_gen;
7409 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7410 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7411 } else {
7412 verbose(env, "bpf verifier is misconfigured\n");
7413 return -EINVAL;
7414 }
17a52670 7415
17a52670
AS
7416 return 0;
7417}
7418
96be4325
DB
7419static bool may_access_skb(enum bpf_prog_type type)
7420{
7421 switch (type) {
7422 case BPF_PROG_TYPE_SOCKET_FILTER:
7423 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7424 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7425 return true;
7426 default:
7427 return false;
7428 }
7429}
7430
ddd872bc
AS
7431/* verify safety of LD_ABS|LD_IND instructions:
7432 * - they can only appear in the programs where ctx == skb
7433 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7434 * preserve R6-R9, and store return value into R0
7435 *
7436 * Implicit input:
7437 * ctx == skb == R6 == CTX
7438 *
7439 * Explicit input:
7440 * SRC == any register
7441 * IMM == 32-bit immediate
7442 *
7443 * Output:
7444 * R0 - 8/16/32-bit skb data converted to cpu endianness
7445 */
58e2af8b 7446static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7447{
638f5b90 7448 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7449 static const int ctx_reg = BPF_REG_6;
ddd872bc 7450 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7451 int i, err;
7452
7e40781c 7453 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7454 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7455 return -EINVAL;
7456 }
7457
e0cea7ce
DB
7458 if (!env->ops->gen_ld_abs) {
7459 verbose(env, "bpf verifier is misconfigured\n");
7460 return -EINVAL;
7461 }
7462
f910cefa 7463 if (env->subprog_cnt > 1) {
f4d7e40a
AS
7464 /* when program has LD_ABS insn JITs and interpreter assume
7465 * that r1 == ctx == skb which is not the case for callees
7466 * that can have arbitrary arguments. It's problematic
7467 * for main prog as well since JITs would need to analyze
7468 * all functions in order to make proper register save/restore
7469 * decisions in the main prog. Hence disallow LD_ABS with calls
7470 */
7471 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7472 return -EINVAL;
7473 }
7474
ddd872bc 7475 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7476 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7477 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7478 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7479 return -EINVAL;
7480 }
7481
7482 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7483 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7484 if (err)
7485 return err;
7486
fd978bf7
JS
7487 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7488 * gen_ld_abs() may terminate the program at runtime, leading to
7489 * reference leak.
7490 */
7491 err = check_reference_leak(env);
7492 if (err) {
7493 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7494 return err;
7495 }
7496
d83525ca
AS
7497 if (env->cur_state->active_spin_lock) {
7498 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7499 return -EINVAL;
7500 }
7501
6d4f151a 7502 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7503 verbose(env,
7504 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7505 return -EINVAL;
7506 }
7507
7508 if (mode == BPF_IND) {
7509 /* check explicit source operand */
dc503a8a 7510 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7511 if (err)
7512 return err;
7513 }
7514
6d4f151a
DB
7515 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7516 if (err < 0)
7517 return err;
7518
ddd872bc 7519 /* reset caller saved regs to unreadable */
dc503a8a 7520 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7521 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7522 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7523 }
ddd872bc
AS
7524
7525 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7526 * the value fetched from the packet.
7527 * Already marked as written above.
ddd872bc 7528 */
61bd5218 7529 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7530 /* ld_abs load up to 32-bit skb data. */
7531 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7532 return 0;
7533}
7534
390ee7e2
AS
7535static int check_return_code(struct bpf_verifier_env *env)
7536{
5cf1e914 7537 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7538 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7539 struct bpf_reg_state *reg;
7540 struct tnum range = tnum_range(0, 1);
7e40781c 7541 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997
MKL
7542 int err;
7543
9e4e01df 7544 /* LSM and struct_ops func-ptr's return type could be "void" */
7e40781c
UP
7545 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7546 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7547 !prog->aux->attach_func_proto->type)
7548 return 0;
7549
7550 /* eBPF calling convetion is such that R0 is used
7551 * to return the value from eBPF program.
7552 * Make sure that it's readable at this time
7553 * of bpf_exit, which means that program wrote
7554 * something into it earlier
7555 */
7556 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7557 if (err)
7558 return err;
7559
7560 if (is_pointer_value(env, BPF_REG_0)) {
7561 verbose(env, "R0 leaks addr as return value\n");
7562 return -EACCES;
7563 }
390ee7e2 7564
7e40781c 7565 switch (prog_type) {
983695fa
DB
7566 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7567 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7568 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7569 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7570 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7571 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7572 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7573 range = tnum_range(1, 1);
ed4ed404 7574 break;
390ee7e2 7575 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7576 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7577 range = tnum_range(0, 3);
7578 enforce_attach_type_range = tnum_range(2, 3);
7579 }
ed4ed404 7580 break;
390ee7e2
AS
7581 case BPF_PROG_TYPE_CGROUP_SOCK:
7582 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7583 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7584 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7585 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7586 break;
15ab09bd
AS
7587 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7588 if (!env->prog->aux->attach_btf_id)
7589 return 0;
7590 range = tnum_const(0);
7591 break;
15d83c4d 7592 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7593 switch (env->prog->expected_attach_type) {
7594 case BPF_TRACE_FENTRY:
7595 case BPF_TRACE_FEXIT:
7596 range = tnum_const(0);
7597 break;
7598 case BPF_TRACE_RAW_TP:
7599 case BPF_MODIFY_RETURN:
15d83c4d 7600 return 0;
2ec0616e
DB
7601 case BPF_TRACE_ITER:
7602 break;
e92888c7
YS
7603 default:
7604 return -ENOTSUPP;
7605 }
15d83c4d 7606 break;
e9ddbb77
JS
7607 case BPF_PROG_TYPE_SK_LOOKUP:
7608 range = tnum_range(SK_DROP, SK_PASS);
7609 break;
e92888c7
YS
7610 case BPF_PROG_TYPE_EXT:
7611 /* freplace program can return anything as its return value
7612 * depends on the to-be-replaced kernel func or bpf program.
7613 */
390ee7e2
AS
7614 default:
7615 return 0;
7616 }
7617
638f5b90 7618 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7619 if (reg->type != SCALAR_VALUE) {
61bd5218 7620 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7621 reg_type_str[reg->type]);
7622 return -EINVAL;
7623 }
7624
7625 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7626 char tn_buf[48];
7627
61bd5218 7628 verbose(env, "At program exit the register R0 ");
390ee7e2 7629 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7631 verbose(env, "has value %s", tn_buf);
390ee7e2 7632 } else {
61bd5218 7633 verbose(env, "has unknown scalar value");
390ee7e2 7634 }
5cf1e914 7635 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7636 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7637 return -EINVAL;
7638 }
5cf1e914 7639
7640 if (!tnum_is_unknown(enforce_attach_type_range) &&
7641 tnum_in(enforce_attach_type_range, reg->var_off))
7642 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7643 return 0;
7644}
7645
475fb78f
AS
7646/* non-recursive DFS pseudo code
7647 * 1 procedure DFS-iterative(G,v):
7648 * 2 label v as discovered
7649 * 3 let S be a stack
7650 * 4 S.push(v)
7651 * 5 while S is not empty
7652 * 6 t <- S.pop()
7653 * 7 if t is what we're looking for:
7654 * 8 return t
7655 * 9 for all edges e in G.adjacentEdges(t) do
7656 * 10 if edge e is already labelled
7657 * 11 continue with the next edge
7658 * 12 w <- G.adjacentVertex(t,e)
7659 * 13 if vertex w is not discovered and not explored
7660 * 14 label e as tree-edge
7661 * 15 label w as discovered
7662 * 16 S.push(w)
7663 * 17 continue at 5
7664 * 18 else if vertex w is discovered
7665 * 19 label e as back-edge
7666 * 20 else
7667 * 21 // vertex w is explored
7668 * 22 label e as forward- or cross-edge
7669 * 23 label t as explored
7670 * 24 S.pop()
7671 *
7672 * convention:
7673 * 0x10 - discovered
7674 * 0x11 - discovered and fall-through edge labelled
7675 * 0x12 - discovered and fall-through and branch edges labelled
7676 * 0x20 - explored
7677 */
7678
7679enum {
7680 DISCOVERED = 0x10,
7681 EXPLORED = 0x20,
7682 FALLTHROUGH = 1,
7683 BRANCH = 2,
7684};
7685
dc2a4ebc
AS
7686static u32 state_htab_size(struct bpf_verifier_env *env)
7687{
7688 return env->prog->len;
7689}
7690
5d839021
AS
7691static struct bpf_verifier_state_list **explored_state(
7692 struct bpf_verifier_env *env,
7693 int idx)
7694{
dc2a4ebc
AS
7695 struct bpf_verifier_state *cur = env->cur_state;
7696 struct bpf_func_state *state = cur->frame[cur->curframe];
7697
7698 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7699}
7700
7701static void init_explored_state(struct bpf_verifier_env *env, int idx)
7702{
a8f500af 7703 env->insn_aux_data[idx].prune_point = true;
5d839021 7704}
f1bca824 7705
475fb78f
AS
7706/* t, w, e - match pseudo-code above:
7707 * t - index of current instruction
7708 * w - next instruction
7709 * e - edge
7710 */
2589726d
AS
7711static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7712 bool loop_ok)
475fb78f 7713{
7df737e9
AS
7714 int *insn_stack = env->cfg.insn_stack;
7715 int *insn_state = env->cfg.insn_state;
7716
475fb78f
AS
7717 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7718 return 0;
7719
7720 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7721 return 0;
7722
7723 if (w < 0 || w >= env->prog->len) {
d9762e84 7724 verbose_linfo(env, t, "%d: ", t);
61bd5218 7725 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7726 return -EINVAL;
7727 }
7728
f1bca824
AS
7729 if (e == BRANCH)
7730 /* mark branch target for state pruning */
5d839021 7731 init_explored_state(env, w);
f1bca824 7732
475fb78f
AS
7733 if (insn_state[w] == 0) {
7734 /* tree-edge */
7735 insn_state[t] = DISCOVERED | e;
7736 insn_state[w] = DISCOVERED;
7df737e9 7737 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7738 return -E2BIG;
7df737e9 7739 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7740 return 1;
7741 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7742 if (loop_ok && env->bpf_capable)
2589726d 7743 return 0;
d9762e84
MKL
7744 verbose_linfo(env, t, "%d: ", t);
7745 verbose_linfo(env, w, "%d: ", w);
61bd5218 7746 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7747 return -EINVAL;
7748 } else if (insn_state[w] == EXPLORED) {
7749 /* forward- or cross-edge */
7750 insn_state[t] = DISCOVERED | e;
7751 } else {
61bd5218 7752 verbose(env, "insn state internal bug\n");
475fb78f
AS
7753 return -EFAULT;
7754 }
7755 return 0;
7756}
7757
7758/* non-recursive depth-first-search to detect loops in BPF program
7759 * loop == back-edge in directed graph
7760 */
58e2af8b 7761static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
7762{
7763 struct bpf_insn *insns = env->prog->insnsi;
7764 int insn_cnt = env->prog->len;
7df737e9 7765 int *insn_stack, *insn_state;
475fb78f
AS
7766 int ret = 0;
7767 int i, t;
7768
7df737e9 7769 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
7770 if (!insn_state)
7771 return -ENOMEM;
7772
7df737e9 7773 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 7774 if (!insn_stack) {
71dde681 7775 kvfree(insn_state);
475fb78f
AS
7776 return -ENOMEM;
7777 }
7778
7779 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7780 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 7781 env->cfg.cur_stack = 1;
475fb78f
AS
7782
7783peek_stack:
7df737e9 7784 if (env->cfg.cur_stack == 0)
475fb78f 7785 goto check_state;
7df737e9 7786 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 7787
092ed096
JW
7788 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7789 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
7790 u8 opcode = BPF_OP(insns[t].code);
7791
7792 if (opcode == BPF_EXIT) {
7793 goto mark_explored;
7794 } else if (opcode == BPF_CALL) {
2589726d 7795 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7796 if (ret == 1)
7797 goto peek_stack;
7798 else if (ret < 0)
7799 goto err_free;
07016151 7800 if (t + 1 < insn_cnt)
5d839021 7801 init_explored_state(env, t + 1);
cc8b0b92 7802 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 7803 init_explored_state(env, t);
2589726d
AS
7804 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7805 env, false);
cc8b0b92
AS
7806 if (ret == 1)
7807 goto peek_stack;
7808 else if (ret < 0)
7809 goto err_free;
7810 }
475fb78f
AS
7811 } else if (opcode == BPF_JA) {
7812 if (BPF_SRC(insns[t].code) != BPF_K) {
7813 ret = -EINVAL;
7814 goto err_free;
7815 }
7816 /* unconditional jump with single edge */
7817 ret = push_insn(t, t + insns[t].off + 1,
2589726d 7818 FALLTHROUGH, env, true);
475fb78f
AS
7819 if (ret == 1)
7820 goto peek_stack;
7821 else if (ret < 0)
7822 goto err_free;
b5dc0163
AS
7823 /* unconditional jmp is not a good pruning point,
7824 * but it's marked, since backtracking needs
7825 * to record jmp history in is_state_visited().
7826 */
7827 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
7828 /* tell verifier to check for equivalent states
7829 * after every call and jump
7830 */
c3de6317 7831 if (t + 1 < insn_cnt)
5d839021 7832 init_explored_state(env, t + 1);
475fb78f
AS
7833 } else {
7834 /* conditional jump with two edges */
5d839021 7835 init_explored_state(env, t);
2589726d 7836 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
7837 if (ret == 1)
7838 goto peek_stack;
7839 else if (ret < 0)
7840 goto err_free;
7841
2589726d 7842 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
7843 if (ret == 1)
7844 goto peek_stack;
7845 else if (ret < 0)
7846 goto err_free;
7847 }
7848 } else {
7849 /* all other non-branch instructions with single
7850 * fall-through edge
7851 */
2589726d 7852 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7853 if (ret == 1)
7854 goto peek_stack;
7855 else if (ret < 0)
7856 goto err_free;
7857 }
7858
7859mark_explored:
7860 insn_state[t] = EXPLORED;
7df737e9 7861 if (env->cfg.cur_stack-- <= 0) {
61bd5218 7862 verbose(env, "pop stack internal bug\n");
475fb78f
AS
7863 ret = -EFAULT;
7864 goto err_free;
7865 }
7866 goto peek_stack;
7867
7868check_state:
7869 for (i = 0; i < insn_cnt; i++) {
7870 if (insn_state[i] != EXPLORED) {
61bd5218 7871 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
7872 ret = -EINVAL;
7873 goto err_free;
7874 }
7875 }
7876 ret = 0; /* cfg looks good */
7877
7878err_free:
71dde681
AS
7879 kvfree(insn_state);
7880 kvfree(insn_stack);
7df737e9 7881 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
7882 return ret;
7883}
7884
838e9690
YS
7885/* The minimum supported BTF func info size */
7886#define MIN_BPF_FUNCINFO_SIZE 8
7887#define MAX_FUNCINFO_REC_SIZE 252
7888
c454a46b
MKL
7889static int check_btf_func(struct bpf_verifier_env *env,
7890 const union bpf_attr *attr,
7891 union bpf_attr __user *uattr)
838e9690 7892{
d0b2818e 7893 u32 i, nfuncs, urec_size, min_size;
838e9690 7894 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 7895 struct bpf_func_info *krecord;
8c1b6e69 7896 struct bpf_func_info_aux *info_aux = NULL;
838e9690 7897 const struct btf_type *type;
c454a46b
MKL
7898 struct bpf_prog *prog;
7899 const struct btf *btf;
838e9690 7900 void __user *urecord;
d0b2818e 7901 u32 prev_offset = 0;
e7ed83d6 7902 int ret = -ENOMEM;
838e9690
YS
7903
7904 nfuncs = attr->func_info_cnt;
7905 if (!nfuncs)
7906 return 0;
7907
7908 if (nfuncs != env->subprog_cnt) {
7909 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7910 return -EINVAL;
7911 }
7912
7913 urec_size = attr->func_info_rec_size;
7914 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7915 urec_size > MAX_FUNCINFO_REC_SIZE ||
7916 urec_size % sizeof(u32)) {
7917 verbose(env, "invalid func info rec size %u\n", urec_size);
7918 return -EINVAL;
7919 }
7920
c454a46b
MKL
7921 prog = env->prog;
7922 btf = prog->aux->btf;
838e9690
YS
7923
7924 urecord = u64_to_user_ptr(attr->func_info);
7925 min_size = min_t(u32, krec_size, urec_size);
7926
ba64e7d8 7927 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
7928 if (!krecord)
7929 return -ENOMEM;
8c1b6e69
AS
7930 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7931 if (!info_aux)
7932 goto err_free;
ba64e7d8 7933
838e9690
YS
7934 for (i = 0; i < nfuncs; i++) {
7935 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7936 if (ret) {
7937 if (ret == -E2BIG) {
7938 verbose(env, "nonzero tailing record in func info");
7939 /* set the size kernel expects so loader can zero
7940 * out the rest of the record.
7941 */
7942 if (put_user(min_size, &uattr->func_info_rec_size))
7943 ret = -EFAULT;
7944 }
c454a46b 7945 goto err_free;
838e9690
YS
7946 }
7947
ba64e7d8 7948 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 7949 ret = -EFAULT;
c454a46b 7950 goto err_free;
838e9690
YS
7951 }
7952
d30d42e0 7953 /* check insn_off */
838e9690 7954 if (i == 0) {
d30d42e0 7955 if (krecord[i].insn_off) {
838e9690 7956 verbose(env,
d30d42e0
MKL
7957 "nonzero insn_off %u for the first func info record",
7958 krecord[i].insn_off);
838e9690 7959 ret = -EINVAL;
c454a46b 7960 goto err_free;
838e9690 7961 }
d30d42e0 7962 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
7963 verbose(env,
7964 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 7965 krecord[i].insn_off, prev_offset);
838e9690 7966 ret = -EINVAL;
c454a46b 7967 goto err_free;
838e9690
YS
7968 }
7969
d30d42e0 7970 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
7971 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7972 ret = -EINVAL;
c454a46b 7973 goto err_free;
838e9690
YS
7974 }
7975
7976 /* check type_id */
ba64e7d8 7977 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 7978 if (!type || !btf_type_is_func(type)) {
838e9690 7979 verbose(env, "invalid type id %d in func info",
ba64e7d8 7980 krecord[i].type_id);
838e9690 7981 ret = -EINVAL;
c454a46b 7982 goto err_free;
838e9690 7983 }
51c39bb1 7984 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
d30d42e0 7985 prev_offset = krecord[i].insn_off;
838e9690
YS
7986 urecord += urec_size;
7987 }
7988
ba64e7d8
YS
7989 prog->aux->func_info = krecord;
7990 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 7991 prog->aux->func_info_aux = info_aux;
838e9690
YS
7992 return 0;
7993
c454a46b 7994err_free:
ba64e7d8 7995 kvfree(krecord);
8c1b6e69 7996 kfree(info_aux);
838e9690
YS
7997 return ret;
7998}
7999
ba64e7d8
YS
8000static void adjust_btf_func(struct bpf_verifier_env *env)
8001{
8c1b6e69 8002 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8003 int i;
8004
8c1b6e69 8005 if (!aux->func_info)
ba64e7d8
YS
8006 return;
8007
8008 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8009 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8010}
8011
c454a46b
MKL
8012#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8013 sizeof(((struct bpf_line_info *)(0))->line_col))
8014#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8015
8016static int check_btf_line(struct bpf_verifier_env *env,
8017 const union bpf_attr *attr,
8018 union bpf_attr __user *uattr)
8019{
8020 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8021 struct bpf_subprog_info *sub;
8022 struct bpf_line_info *linfo;
8023 struct bpf_prog *prog;
8024 const struct btf *btf;
8025 void __user *ulinfo;
8026 int err;
8027
8028 nr_linfo = attr->line_info_cnt;
8029 if (!nr_linfo)
8030 return 0;
8031
8032 rec_size = attr->line_info_rec_size;
8033 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8034 rec_size > MAX_LINEINFO_REC_SIZE ||
8035 rec_size & (sizeof(u32) - 1))
8036 return -EINVAL;
8037
8038 /* Need to zero it in case the userspace may
8039 * pass in a smaller bpf_line_info object.
8040 */
8041 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8042 GFP_KERNEL | __GFP_NOWARN);
8043 if (!linfo)
8044 return -ENOMEM;
8045
8046 prog = env->prog;
8047 btf = prog->aux->btf;
8048
8049 s = 0;
8050 sub = env->subprog_info;
8051 ulinfo = u64_to_user_ptr(attr->line_info);
8052 expected_size = sizeof(struct bpf_line_info);
8053 ncopy = min_t(u32, expected_size, rec_size);
8054 for (i = 0; i < nr_linfo; i++) {
8055 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8056 if (err) {
8057 if (err == -E2BIG) {
8058 verbose(env, "nonzero tailing record in line_info");
8059 if (put_user(expected_size,
8060 &uattr->line_info_rec_size))
8061 err = -EFAULT;
8062 }
8063 goto err_free;
8064 }
8065
8066 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8067 err = -EFAULT;
8068 goto err_free;
8069 }
8070
8071 /*
8072 * Check insn_off to ensure
8073 * 1) strictly increasing AND
8074 * 2) bounded by prog->len
8075 *
8076 * The linfo[0].insn_off == 0 check logically falls into
8077 * the later "missing bpf_line_info for func..." case
8078 * because the first linfo[0].insn_off must be the
8079 * first sub also and the first sub must have
8080 * subprog_info[0].start == 0.
8081 */
8082 if ((i && linfo[i].insn_off <= prev_offset) ||
8083 linfo[i].insn_off >= prog->len) {
8084 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8085 i, linfo[i].insn_off, prev_offset,
8086 prog->len);
8087 err = -EINVAL;
8088 goto err_free;
8089 }
8090
fdbaa0be
MKL
8091 if (!prog->insnsi[linfo[i].insn_off].code) {
8092 verbose(env,
8093 "Invalid insn code at line_info[%u].insn_off\n",
8094 i);
8095 err = -EINVAL;
8096 goto err_free;
8097 }
8098
23127b33
MKL
8099 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8100 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8101 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8102 err = -EINVAL;
8103 goto err_free;
8104 }
8105
8106 if (s != env->subprog_cnt) {
8107 if (linfo[i].insn_off == sub[s].start) {
8108 sub[s].linfo_idx = i;
8109 s++;
8110 } else if (sub[s].start < linfo[i].insn_off) {
8111 verbose(env, "missing bpf_line_info for func#%u\n", s);
8112 err = -EINVAL;
8113 goto err_free;
8114 }
8115 }
8116
8117 prev_offset = linfo[i].insn_off;
8118 ulinfo += rec_size;
8119 }
8120
8121 if (s != env->subprog_cnt) {
8122 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8123 env->subprog_cnt - s, s);
8124 err = -EINVAL;
8125 goto err_free;
8126 }
8127
8128 prog->aux->linfo = linfo;
8129 prog->aux->nr_linfo = nr_linfo;
8130
8131 return 0;
8132
8133err_free:
8134 kvfree(linfo);
8135 return err;
8136}
8137
8138static int check_btf_info(struct bpf_verifier_env *env,
8139 const union bpf_attr *attr,
8140 union bpf_attr __user *uattr)
8141{
8142 struct btf *btf;
8143 int err;
8144
8145 if (!attr->func_info_cnt && !attr->line_info_cnt)
8146 return 0;
8147
8148 btf = btf_get_by_fd(attr->prog_btf_fd);
8149 if (IS_ERR(btf))
8150 return PTR_ERR(btf);
8151 env->prog->aux->btf = btf;
8152
8153 err = check_btf_func(env, attr, uattr);
8154 if (err)
8155 return err;
8156
8157 err = check_btf_line(env, attr, uattr);
8158 if (err)
8159 return err;
8160
8161 return 0;
ba64e7d8
YS
8162}
8163
f1174f77
EC
8164/* check %cur's range satisfies %old's */
8165static bool range_within(struct bpf_reg_state *old,
8166 struct bpf_reg_state *cur)
8167{
b03c9f9f
EC
8168 return old->umin_value <= cur->umin_value &&
8169 old->umax_value >= cur->umax_value &&
8170 old->smin_value <= cur->smin_value &&
8171 old->smax_value >= cur->smax_value;
f1174f77
EC
8172}
8173
8174/* Maximum number of register states that can exist at once */
8175#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8176struct idpair {
8177 u32 old;
8178 u32 cur;
8179};
8180
8181/* If in the old state two registers had the same id, then they need to have
8182 * the same id in the new state as well. But that id could be different from
8183 * the old state, so we need to track the mapping from old to new ids.
8184 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8185 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8186 * regs with a different old id could still have new id 9, we don't care about
8187 * that.
8188 * So we look through our idmap to see if this old id has been seen before. If
8189 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8190 */
f1174f77 8191static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8192{
f1174f77 8193 unsigned int i;
969bf05e 8194
f1174f77
EC
8195 for (i = 0; i < ID_MAP_SIZE; i++) {
8196 if (!idmap[i].old) {
8197 /* Reached an empty slot; haven't seen this id before */
8198 idmap[i].old = old_id;
8199 idmap[i].cur = cur_id;
8200 return true;
8201 }
8202 if (idmap[i].old == old_id)
8203 return idmap[i].cur == cur_id;
8204 }
8205 /* We ran out of idmap slots, which should be impossible */
8206 WARN_ON_ONCE(1);
8207 return false;
8208}
8209
9242b5f5
AS
8210static void clean_func_state(struct bpf_verifier_env *env,
8211 struct bpf_func_state *st)
8212{
8213 enum bpf_reg_liveness live;
8214 int i, j;
8215
8216 for (i = 0; i < BPF_REG_FP; i++) {
8217 live = st->regs[i].live;
8218 /* liveness must not touch this register anymore */
8219 st->regs[i].live |= REG_LIVE_DONE;
8220 if (!(live & REG_LIVE_READ))
8221 /* since the register is unused, clear its state
8222 * to make further comparison simpler
8223 */
f54c7898 8224 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8225 }
8226
8227 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8228 live = st->stack[i].spilled_ptr.live;
8229 /* liveness must not touch this stack slot anymore */
8230 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8231 if (!(live & REG_LIVE_READ)) {
f54c7898 8232 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8233 for (j = 0; j < BPF_REG_SIZE; j++)
8234 st->stack[i].slot_type[j] = STACK_INVALID;
8235 }
8236 }
8237}
8238
8239static void clean_verifier_state(struct bpf_verifier_env *env,
8240 struct bpf_verifier_state *st)
8241{
8242 int i;
8243
8244 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8245 /* all regs in this state in all frames were already marked */
8246 return;
8247
8248 for (i = 0; i <= st->curframe; i++)
8249 clean_func_state(env, st->frame[i]);
8250}
8251
8252/* the parentage chains form a tree.
8253 * the verifier states are added to state lists at given insn and
8254 * pushed into state stack for future exploration.
8255 * when the verifier reaches bpf_exit insn some of the verifer states
8256 * stored in the state lists have their final liveness state already,
8257 * but a lot of states will get revised from liveness point of view when
8258 * the verifier explores other branches.
8259 * Example:
8260 * 1: r0 = 1
8261 * 2: if r1 == 100 goto pc+1
8262 * 3: r0 = 2
8263 * 4: exit
8264 * when the verifier reaches exit insn the register r0 in the state list of
8265 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8266 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8267 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8268 *
8269 * Since the verifier pushes the branch states as it sees them while exploring
8270 * the program the condition of walking the branch instruction for the second
8271 * time means that all states below this branch were already explored and
8272 * their final liveness markes are already propagated.
8273 * Hence when the verifier completes the search of state list in is_state_visited()
8274 * we can call this clean_live_states() function to mark all liveness states
8275 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8276 * will not be used.
8277 * This function also clears the registers and stack for states that !READ
8278 * to simplify state merging.
8279 *
8280 * Important note here that walking the same branch instruction in the callee
8281 * doesn't meant that the states are DONE. The verifier has to compare
8282 * the callsites
8283 */
8284static void clean_live_states(struct bpf_verifier_env *env, int insn,
8285 struct bpf_verifier_state *cur)
8286{
8287 struct bpf_verifier_state_list *sl;
8288 int i;
8289
5d839021 8290 sl = *explored_state(env, insn);
a8f500af 8291 while (sl) {
2589726d
AS
8292 if (sl->state.branches)
8293 goto next;
dc2a4ebc
AS
8294 if (sl->state.insn_idx != insn ||
8295 sl->state.curframe != cur->curframe)
9242b5f5
AS
8296 goto next;
8297 for (i = 0; i <= cur->curframe; i++)
8298 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8299 goto next;
8300 clean_verifier_state(env, &sl->state);
8301next:
8302 sl = sl->next;
8303 }
8304}
8305
f1174f77 8306/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8307static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8308 struct idpair *idmap)
f1174f77 8309{
f4d7e40a
AS
8310 bool equal;
8311
dc503a8a
EC
8312 if (!(rold->live & REG_LIVE_READ))
8313 /* explored state didn't use this */
8314 return true;
8315
679c782d 8316 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8317
8318 if (rold->type == PTR_TO_STACK)
8319 /* two stack pointers are equal only if they're pointing to
8320 * the same stack frame, since fp-8 in foo != fp-8 in bar
8321 */
8322 return equal && rold->frameno == rcur->frameno;
8323
8324 if (equal)
969bf05e
AS
8325 return true;
8326
f1174f77
EC
8327 if (rold->type == NOT_INIT)
8328 /* explored state can't have used this */
969bf05e 8329 return true;
f1174f77
EC
8330 if (rcur->type == NOT_INIT)
8331 return false;
8332 switch (rold->type) {
8333 case SCALAR_VALUE:
8334 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8335 if (!rold->precise && !rcur->precise)
8336 return true;
f1174f77
EC
8337 /* new val must satisfy old val knowledge */
8338 return range_within(rold, rcur) &&
8339 tnum_in(rold->var_off, rcur->var_off);
8340 } else {
179d1c56
JH
8341 /* We're trying to use a pointer in place of a scalar.
8342 * Even if the scalar was unbounded, this could lead to
8343 * pointer leaks because scalars are allowed to leak
8344 * while pointers are not. We could make this safe in
8345 * special cases if root is calling us, but it's
8346 * probably not worth the hassle.
f1174f77 8347 */
179d1c56 8348 return false;
f1174f77
EC
8349 }
8350 case PTR_TO_MAP_VALUE:
1b688a19
EC
8351 /* If the new min/max/var_off satisfy the old ones and
8352 * everything else matches, we are OK.
d83525ca
AS
8353 * 'id' is not compared, since it's only used for maps with
8354 * bpf_spin_lock inside map element and in such cases if
8355 * the rest of the prog is valid for one map element then
8356 * it's valid for all map elements regardless of the key
8357 * used in bpf_map_lookup()
1b688a19
EC
8358 */
8359 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8360 range_within(rold, rcur) &&
8361 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8362 case PTR_TO_MAP_VALUE_OR_NULL:
8363 /* a PTR_TO_MAP_VALUE could be safe to use as a
8364 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8365 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8366 * checked, doing so could have affected others with the same
8367 * id, and we can't check for that because we lost the id when
8368 * we converted to a PTR_TO_MAP_VALUE.
8369 */
8370 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8371 return false;
8372 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8373 return false;
8374 /* Check our ids match any regs they're supposed to */
8375 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8376 case PTR_TO_PACKET_META:
f1174f77 8377 case PTR_TO_PACKET:
de8f3a83 8378 if (rcur->type != rold->type)
f1174f77
EC
8379 return false;
8380 /* We must have at least as much range as the old ptr
8381 * did, so that any accesses which were safe before are
8382 * still safe. This is true even if old range < old off,
8383 * since someone could have accessed through (ptr - k), or
8384 * even done ptr -= k in a register, to get a safe access.
8385 */
8386 if (rold->range > rcur->range)
8387 return false;
8388 /* If the offsets don't match, we can't trust our alignment;
8389 * nor can we be sure that we won't fall out of range.
8390 */
8391 if (rold->off != rcur->off)
8392 return false;
8393 /* id relations must be preserved */
8394 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8395 return false;
8396 /* new val must satisfy old val knowledge */
8397 return range_within(rold, rcur) &&
8398 tnum_in(rold->var_off, rcur->var_off);
8399 case PTR_TO_CTX:
8400 case CONST_PTR_TO_MAP:
f1174f77 8401 case PTR_TO_PACKET_END:
d58e468b 8402 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8403 case PTR_TO_SOCKET:
8404 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8405 case PTR_TO_SOCK_COMMON:
8406 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8407 case PTR_TO_TCP_SOCK:
8408 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8409 case PTR_TO_XDP_SOCK:
f1174f77
EC
8410 /* Only valid matches are exact, which memcmp() above
8411 * would have accepted
8412 */
8413 default:
8414 /* Don't know what's going on, just say it's not safe */
8415 return false;
8416 }
969bf05e 8417
f1174f77
EC
8418 /* Shouldn't get here; if we do, say it's not safe */
8419 WARN_ON_ONCE(1);
969bf05e
AS
8420 return false;
8421}
8422
f4d7e40a
AS
8423static bool stacksafe(struct bpf_func_state *old,
8424 struct bpf_func_state *cur,
638f5b90
AS
8425 struct idpair *idmap)
8426{
8427 int i, spi;
8428
638f5b90
AS
8429 /* walk slots of the explored stack and ignore any additional
8430 * slots in the current stack, since explored(safe) state
8431 * didn't use them
8432 */
8433 for (i = 0; i < old->allocated_stack; i++) {
8434 spi = i / BPF_REG_SIZE;
8435
b233920c
AS
8436 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8437 i += BPF_REG_SIZE - 1;
cc2b14d5 8438 /* explored state didn't use this */
fd05e57b 8439 continue;
b233920c 8440 }
cc2b14d5 8441
638f5b90
AS
8442 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8443 continue;
19e2dbb7
AS
8444
8445 /* explored stack has more populated slots than current stack
8446 * and these slots were used
8447 */
8448 if (i >= cur->allocated_stack)
8449 return false;
8450
cc2b14d5
AS
8451 /* if old state was safe with misc data in the stack
8452 * it will be safe with zero-initialized stack.
8453 * The opposite is not true
8454 */
8455 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8456 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8457 continue;
638f5b90
AS
8458 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8459 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8460 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8461 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8462 * this verifier states are not equivalent,
8463 * return false to continue verification of this path
8464 */
8465 return false;
8466 if (i % BPF_REG_SIZE)
8467 continue;
8468 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8469 continue;
8470 if (!regsafe(&old->stack[spi].spilled_ptr,
8471 &cur->stack[spi].spilled_ptr,
8472 idmap))
8473 /* when explored and current stack slot are both storing
8474 * spilled registers, check that stored pointers types
8475 * are the same as well.
8476 * Ex: explored safe path could have stored
8477 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8478 * but current path has stored:
8479 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8480 * such verifier states are not equivalent.
8481 * return false to continue verification of this path
8482 */
8483 return false;
8484 }
8485 return true;
8486}
8487
fd978bf7
JS
8488static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8489{
8490 if (old->acquired_refs != cur->acquired_refs)
8491 return false;
8492 return !memcmp(old->refs, cur->refs,
8493 sizeof(*old->refs) * old->acquired_refs);
8494}
8495
f1bca824
AS
8496/* compare two verifier states
8497 *
8498 * all states stored in state_list are known to be valid, since
8499 * verifier reached 'bpf_exit' instruction through them
8500 *
8501 * this function is called when verifier exploring different branches of
8502 * execution popped from the state stack. If it sees an old state that has
8503 * more strict register state and more strict stack state then this execution
8504 * branch doesn't need to be explored further, since verifier already
8505 * concluded that more strict state leads to valid finish.
8506 *
8507 * Therefore two states are equivalent if register state is more conservative
8508 * and explored stack state is more conservative than the current one.
8509 * Example:
8510 * explored current
8511 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8512 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8513 *
8514 * In other words if current stack state (one being explored) has more
8515 * valid slots than old one that already passed validation, it means
8516 * the verifier can stop exploring and conclude that current state is valid too
8517 *
8518 * Similarly with registers. If explored state has register type as invalid
8519 * whereas register type in current state is meaningful, it means that
8520 * the current state will reach 'bpf_exit' instruction safely
8521 */
f4d7e40a
AS
8522static bool func_states_equal(struct bpf_func_state *old,
8523 struct bpf_func_state *cur)
f1bca824 8524{
f1174f77
EC
8525 struct idpair *idmap;
8526 bool ret = false;
f1bca824
AS
8527 int i;
8528
f1174f77
EC
8529 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8530 /* If we failed to allocate the idmap, just say it's not safe */
8531 if (!idmap)
1a0dc1ac 8532 return false;
f1174f77
EC
8533
8534 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8535 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8536 goto out_free;
f1bca824
AS
8537 }
8538
638f5b90
AS
8539 if (!stacksafe(old, cur, idmap))
8540 goto out_free;
fd978bf7
JS
8541
8542 if (!refsafe(old, cur))
8543 goto out_free;
f1174f77
EC
8544 ret = true;
8545out_free:
8546 kfree(idmap);
8547 return ret;
f1bca824
AS
8548}
8549
f4d7e40a
AS
8550static bool states_equal(struct bpf_verifier_env *env,
8551 struct bpf_verifier_state *old,
8552 struct bpf_verifier_state *cur)
8553{
8554 int i;
8555
8556 if (old->curframe != cur->curframe)
8557 return false;
8558
979d63d5
DB
8559 /* Verification state from speculative execution simulation
8560 * must never prune a non-speculative execution one.
8561 */
8562 if (old->speculative && !cur->speculative)
8563 return false;
8564
d83525ca
AS
8565 if (old->active_spin_lock != cur->active_spin_lock)
8566 return false;
8567
f4d7e40a
AS
8568 /* for states to be equal callsites have to be the same
8569 * and all frame states need to be equivalent
8570 */
8571 for (i = 0; i <= old->curframe; i++) {
8572 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8573 return false;
8574 if (!func_states_equal(old->frame[i], cur->frame[i]))
8575 return false;
8576 }
8577 return true;
8578}
8579
5327ed3d
JW
8580/* Return 0 if no propagation happened. Return negative error code if error
8581 * happened. Otherwise, return the propagated bit.
8582 */
55e7f3b5
JW
8583static int propagate_liveness_reg(struct bpf_verifier_env *env,
8584 struct bpf_reg_state *reg,
8585 struct bpf_reg_state *parent_reg)
8586{
5327ed3d
JW
8587 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8588 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8589 int err;
8590
5327ed3d
JW
8591 /* When comes here, read flags of PARENT_REG or REG could be any of
8592 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8593 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8594 */
8595 if (parent_flag == REG_LIVE_READ64 ||
8596 /* Or if there is no read flag from REG. */
8597 !flag ||
8598 /* Or if the read flag from REG is the same as PARENT_REG. */
8599 parent_flag == flag)
55e7f3b5
JW
8600 return 0;
8601
5327ed3d 8602 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8603 if (err)
8604 return err;
8605
5327ed3d 8606 return flag;
55e7f3b5
JW
8607}
8608
8e9cd9ce 8609/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8610 * straight-line code between a state and its parent. When we arrive at an
8611 * equivalent state (jump target or such) we didn't arrive by the straight-line
8612 * code, so read marks in the state must propagate to the parent regardless
8613 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8614 * in mark_reg_read() is for.
8e9cd9ce 8615 */
f4d7e40a
AS
8616static int propagate_liveness(struct bpf_verifier_env *env,
8617 const struct bpf_verifier_state *vstate,
8618 struct bpf_verifier_state *vparent)
dc503a8a 8619{
3f8cafa4 8620 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8621 struct bpf_func_state *state, *parent;
3f8cafa4 8622 int i, frame, err = 0;
dc503a8a 8623
f4d7e40a
AS
8624 if (vparent->curframe != vstate->curframe) {
8625 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8626 vparent->curframe, vstate->curframe);
8627 return -EFAULT;
8628 }
dc503a8a
EC
8629 /* Propagate read liveness of registers... */
8630 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8631 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8632 parent = vparent->frame[frame];
8633 state = vstate->frame[frame];
8634 parent_reg = parent->regs;
8635 state_reg = state->regs;
83d16312
JK
8636 /* We don't need to worry about FP liveness, it's read-only */
8637 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8638 err = propagate_liveness_reg(env, &state_reg[i],
8639 &parent_reg[i]);
5327ed3d 8640 if (err < 0)
3f8cafa4 8641 return err;
5327ed3d
JW
8642 if (err == REG_LIVE_READ64)
8643 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8644 }
f4d7e40a 8645
1b04aee7 8646 /* Propagate stack slots. */
f4d7e40a
AS
8647 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8648 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8649 parent_reg = &parent->stack[i].spilled_ptr;
8650 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8651 err = propagate_liveness_reg(env, state_reg,
8652 parent_reg);
5327ed3d 8653 if (err < 0)
3f8cafa4 8654 return err;
dc503a8a
EC
8655 }
8656 }
5327ed3d 8657 return 0;
dc503a8a
EC
8658}
8659
a3ce685d
AS
8660/* find precise scalars in the previous equivalent state and
8661 * propagate them into the current state
8662 */
8663static int propagate_precision(struct bpf_verifier_env *env,
8664 const struct bpf_verifier_state *old)
8665{
8666 struct bpf_reg_state *state_reg;
8667 struct bpf_func_state *state;
8668 int i, err = 0;
8669
8670 state = old->frame[old->curframe];
8671 state_reg = state->regs;
8672 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8673 if (state_reg->type != SCALAR_VALUE ||
8674 !state_reg->precise)
8675 continue;
8676 if (env->log.level & BPF_LOG_LEVEL2)
8677 verbose(env, "propagating r%d\n", i);
8678 err = mark_chain_precision(env, i);
8679 if (err < 0)
8680 return err;
8681 }
8682
8683 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8684 if (state->stack[i].slot_type[0] != STACK_SPILL)
8685 continue;
8686 state_reg = &state->stack[i].spilled_ptr;
8687 if (state_reg->type != SCALAR_VALUE ||
8688 !state_reg->precise)
8689 continue;
8690 if (env->log.level & BPF_LOG_LEVEL2)
8691 verbose(env, "propagating fp%d\n",
8692 (-i - 1) * BPF_REG_SIZE);
8693 err = mark_chain_precision_stack(env, i);
8694 if (err < 0)
8695 return err;
8696 }
8697 return 0;
8698}
8699
2589726d
AS
8700static bool states_maybe_looping(struct bpf_verifier_state *old,
8701 struct bpf_verifier_state *cur)
8702{
8703 struct bpf_func_state *fold, *fcur;
8704 int i, fr = cur->curframe;
8705
8706 if (old->curframe != fr)
8707 return false;
8708
8709 fold = old->frame[fr];
8710 fcur = cur->frame[fr];
8711 for (i = 0; i < MAX_BPF_REG; i++)
8712 if (memcmp(&fold->regs[i], &fcur->regs[i],
8713 offsetof(struct bpf_reg_state, parent)))
8714 return false;
8715 return true;
8716}
8717
8718
58e2af8b 8719static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 8720{
58e2af8b 8721 struct bpf_verifier_state_list *new_sl;
9f4686c4 8722 struct bpf_verifier_state_list *sl, **pprev;
679c782d 8723 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 8724 int i, j, err, states_cnt = 0;
10d274e8 8725 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 8726
b5dc0163 8727 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 8728 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
8729 /* this 'insn_idx' instruction wasn't marked, so we will not
8730 * be doing state search here
8731 */
8732 return 0;
8733
2589726d
AS
8734 /* bpf progs typically have pruning point every 4 instructions
8735 * http://vger.kernel.org/bpfconf2019.html#session-1
8736 * Do not add new state for future pruning if the verifier hasn't seen
8737 * at least 2 jumps and at least 8 instructions.
8738 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8739 * In tests that amounts to up to 50% reduction into total verifier
8740 * memory consumption and 20% verifier time speedup.
8741 */
8742 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8743 env->insn_processed - env->prev_insn_processed >= 8)
8744 add_new_state = true;
8745
a8f500af
AS
8746 pprev = explored_state(env, insn_idx);
8747 sl = *pprev;
8748
9242b5f5
AS
8749 clean_live_states(env, insn_idx, cur);
8750
a8f500af 8751 while (sl) {
dc2a4ebc
AS
8752 states_cnt++;
8753 if (sl->state.insn_idx != insn_idx)
8754 goto next;
2589726d
AS
8755 if (sl->state.branches) {
8756 if (states_maybe_looping(&sl->state, cur) &&
8757 states_equal(env, &sl->state, cur)) {
8758 verbose_linfo(env, insn_idx, "; ");
8759 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8760 return -EINVAL;
8761 }
8762 /* if the verifier is processing a loop, avoid adding new state
8763 * too often, since different loop iterations have distinct
8764 * states and may not help future pruning.
8765 * This threshold shouldn't be too low to make sure that
8766 * a loop with large bound will be rejected quickly.
8767 * The most abusive loop will be:
8768 * r1 += 1
8769 * if r1 < 1000000 goto pc-2
8770 * 1M insn_procssed limit / 100 == 10k peak states.
8771 * This threshold shouldn't be too high either, since states
8772 * at the end of the loop are likely to be useful in pruning.
8773 */
8774 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8775 env->insn_processed - env->prev_insn_processed < 100)
8776 add_new_state = false;
8777 goto miss;
8778 }
638f5b90 8779 if (states_equal(env, &sl->state, cur)) {
9f4686c4 8780 sl->hit_cnt++;
f1bca824 8781 /* reached equivalent register/stack state,
dc503a8a
EC
8782 * prune the search.
8783 * Registers read by the continuation are read by us.
8e9cd9ce
EC
8784 * If we have any write marks in env->cur_state, they
8785 * will prevent corresponding reads in the continuation
8786 * from reaching our parent (an explored_state). Our
8787 * own state will get the read marks recorded, but
8788 * they'll be immediately forgotten as we're pruning
8789 * this state and will pop a new one.
f1bca824 8790 */
f4d7e40a 8791 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
8792
8793 /* if previous state reached the exit with precision and
8794 * current state is equivalent to it (except precsion marks)
8795 * the precision needs to be propagated back in
8796 * the current state.
8797 */
8798 err = err ? : push_jmp_history(env, cur);
8799 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
8800 if (err)
8801 return err;
f1bca824 8802 return 1;
dc503a8a 8803 }
2589726d
AS
8804miss:
8805 /* when new state is not going to be added do not increase miss count.
8806 * Otherwise several loop iterations will remove the state
8807 * recorded earlier. The goal of these heuristics is to have
8808 * states from some iterations of the loop (some in the beginning
8809 * and some at the end) to help pruning.
8810 */
8811 if (add_new_state)
8812 sl->miss_cnt++;
9f4686c4
AS
8813 /* heuristic to determine whether this state is beneficial
8814 * to keep checking from state equivalence point of view.
8815 * Higher numbers increase max_states_per_insn and verification time,
8816 * but do not meaningfully decrease insn_processed.
8817 */
8818 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8819 /* the state is unlikely to be useful. Remove it to
8820 * speed up verification
8821 */
8822 *pprev = sl->next;
8823 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
8824 u32 br = sl->state.branches;
8825
8826 WARN_ONCE(br,
8827 "BUG live_done but branches_to_explore %d\n",
8828 br);
9f4686c4
AS
8829 free_verifier_state(&sl->state, false);
8830 kfree(sl);
8831 env->peak_states--;
8832 } else {
8833 /* cannot free this state, since parentage chain may
8834 * walk it later. Add it for free_list instead to
8835 * be freed at the end of verification
8836 */
8837 sl->next = env->free_list;
8838 env->free_list = sl;
8839 }
8840 sl = *pprev;
8841 continue;
8842 }
dc2a4ebc 8843next:
9f4686c4
AS
8844 pprev = &sl->next;
8845 sl = *pprev;
f1bca824
AS
8846 }
8847
06ee7115
AS
8848 if (env->max_states_per_insn < states_cnt)
8849 env->max_states_per_insn = states_cnt;
8850
2c78ee89 8851 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 8852 return push_jmp_history(env, cur);
ceefbc96 8853
2589726d 8854 if (!add_new_state)
b5dc0163 8855 return push_jmp_history(env, cur);
ceefbc96 8856
2589726d
AS
8857 /* There were no equivalent states, remember the current one.
8858 * Technically the current state is not proven to be safe yet,
f4d7e40a 8859 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 8860 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 8861 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
8862 * again on the way to bpf_exit.
8863 * When looping the sl->state.branches will be > 0 and this state
8864 * will not be considered for equivalence until branches == 0.
f1bca824 8865 */
638f5b90 8866 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
8867 if (!new_sl)
8868 return -ENOMEM;
06ee7115
AS
8869 env->total_states++;
8870 env->peak_states++;
2589726d
AS
8871 env->prev_jmps_processed = env->jmps_processed;
8872 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
8873
8874 /* add new state to the head of linked list */
679c782d
EC
8875 new = &new_sl->state;
8876 err = copy_verifier_state(new, cur);
1969db47 8877 if (err) {
679c782d 8878 free_verifier_state(new, false);
1969db47
AS
8879 kfree(new_sl);
8880 return err;
8881 }
dc2a4ebc 8882 new->insn_idx = insn_idx;
2589726d
AS
8883 WARN_ONCE(new->branches != 1,
8884 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 8885
2589726d 8886 cur->parent = new;
b5dc0163
AS
8887 cur->first_insn_idx = insn_idx;
8888 clear_jmp_history(cur);
5d839021
AS
8889 new_sl->next = *explored_state(env, insn_idx);
8890 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
8891 /* connect new state to parentage chain. Current frame needs all
8892 * registers connected. Only r6 - r9 of the callers are alive (pushed
8893 * to the stack implicitly by JITs) so in callers' frames connect just
8894 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8895 * the state of the call instruction (with WRITTEN set), and r0 comes
8896 * from callee with its full parentage chain, anyway.
8897 */
8e9cd9ce
EC
8898 /* clear write marks in current state: the writes we did are not writes
8899 * our child did, so they don't screen off its reads from us.
8900 * (There are no read marks in current state, because reads always mark
8901 * their parent and current state never has children yet. Only
8902 * explored_states can get read marks.)
8903 */
eea1c227
AS
8904 for (j = 0; j <= cur->curframe; j++) {
8905 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8906 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8907 for (i = 0; i < BPF_REG_FP; i++)
8908 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8909 }
f4d7e40a
AS
8910
8911 /* all stack frames are accessible from callee, clear them all */
8912 for (j = 0; j <= cur->curframe; j++) {
8913 struct bpf_func_state *frame = cur->frame[j];
679c782d 8914 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 8915
679c782d 8916 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 8917 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
8918 frame->stack[i].spilled_ptr.parent =
8919 &newframe->stack[i].spilled_ptr;
8920 }
f4d7e40a 8921 }
f1bca824
AS
8922 return 0;
8923}
8924
c64b7983
JS
8925/* Return true if it's OK to have the same insn return a different type. */
8926static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8927{
8928 switch (type) {
8929 case PTR_TO_CTX:
8930 case PTR_TO_SOCKET:
8931 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8932 case PTR_TO_SOCK_COMMON:
8933 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8934 case PTR_TO_TCP_SOCK:
8935 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8936 case PTR_TO_XDP_SOCK:
2a02759e 8937 case PTR_TO_BTF_ID:
b121b341 8938 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
8939 return false;
8940 default:
8941 return true;
8942 }
8943}
8944
8945/* If an instruction was previously used with particular pointer types, then we
8946 * need to be careful to avoid cases such as the below, where it may be ok
8947 * for one branch accessing the pointer, but not ok for the other branch:
8948 *
8949 * R1 = sock_ptr
8950 * goto X;
8951 * ...
8952 * R1 = some_other_valid_ptr;
8953 * goto X;
8954 * ...
8955 * R2 = *(u32 *)(R1 + 0);
8956 */
8957static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8958{
8959 return src != prev && (!reg_type_mismatch_ok(src) ||
8960 !reg_type_mismatch_ok(prev));
8961}
8962
58e2af8b 8963static int do_check(struct bpf_verifier_env *env)
17a52670 8964{
6f8a57cc 8965 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 8966 struct bpf_verifier_state *state = env->cur_state;
17a52670 8967 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 8968 struct bpf_reg_state *regs;
06ee7115 8969 int insn_cnt = env->prog->len;
17a52670 8970 bool do_print_state = false;
b5dc0163 8971 int prev_insn_idx = -1;
17a52670 8972
17a52670
AS
8973 for (;;) {
8974 struct bpf_insn *insn;
8975 u8 class;
8976 int err;
8977
b5dc0163 8978 env->prev_insn_idx = prev_insn_idx;
c08435ec 8979 if (env->insn_idx >= insn_cnt) {
61bd5218 8980 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 8981 env->insn_idx, insn_cnt);
17a52670
AS
8982 return -EFAULT;
8983 }
8984
c08435ec 8985 insn = &insns[env->insn_idx];
17a52670
AS
8986 class = BPF_CLASS(insn->code);
8987
06ee7115 8988 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
8989 verbose(env,
8990 "BPF program is too large. Processed %d insn\n",
06ee7115 8991 env->insn_processed);
17a52670
AS
8992 return -E2BIG;
8993 }
8994
c08435ec 8995 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
8996 if (err < 0)
8997 return err;
8998 if (err == 1) {
8999 /* found equivalent state, can prune the search */
06ee7115 9000 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9001 if (do_print_state)
979d63d5
DB
9002 verbose(env, "\nfrom %d to %d%s: safe\n",
9003 env->prev_insn_idx, env->insn_idx,
9004 env->cur_state->speculative ?
9005 " (speculative execution)" : "");
f1bca824 9006 else
c08435ec 9007 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9008 }
9009 goto process_bpf_exit;
9010 }
9011
c3494801
AS
9012 if (signal_pending(current))
9013 return -EAGAIN;
9014
3c2ce60b
DB
9015 if (need_resched())
9016 cond_resched();
9017
06ee7115
AS
9018 if (env->log.level & BPF_LOG_LEVEL2 ||
9019 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9020 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9021 verbose(env, "%d:", env->insn_idx);
c5fc9692 9022 else
979d63d5
DB
9023 verbose(env, "\nfrom %d to %d%s:",
9024 env->prev_insn_idx, env->insn_idx,
9025 env->cur_state->speculative ?
9026 " (speculative execution)" : "");
f4d7e40a 9027 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9028 do_print_state = false;
9029 }
9030
06ee7115 9031 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9032 const struct bpf_insn_cbs cbs = {
9033 .cb_print = verbose,
abe08840 9034 .private_data = env,
7105e828
DB
9035 };
9036
c08435ec
DB
9037 verbose_linfo(env, env->insn_idx, "; ");
9038 verbose(env, "%d: ", env->insn_idx);
abe08840 9039 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9040 }
9041
cae1927c 9042 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9043 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9044 env->prev_insn_idx);
cae1927c
JK
9045 if (err)
9046 return err;
9047 }
13a27dfc 9048
638f5b90 9049 regs = cur_regs(env);
51c39bb1 9050 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9051 prev_insn_idx = env->insn_idx;
fd978bf7 9052
17a52670 9053 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9054 err = check_alu_op(env, insn);
17a52670
AS
9055 if (err)
9056 return err;
9057
9058 } else if (class == BPF_LDX) {
3df126f3 9059 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9060
9061 /* check for reserved fields is already done */
9062
17a52670 9063 /* check src operand */
dc503a8a 9064 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9065 if (err)
9066 return err;
9067
dc503a8a 9068 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9069 if (err)
9070 return err;
9071
725f9dcd
AS
9072 src_reg_type = regs[insn->src_reg].type;
9073
17a52670
AS
9074 /* check that memory (src_reg + off) is readable,
9075 * the state of dst_reg will be updated by this func
9076 */
c08435ec
DB
9077 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9078 insn->off, BPF_SIZE(insn->code),
9079 BPF_READ, insn->dst_reg, false);
17a52670
AS
9080 if (err)
9081 return err;
9082
c08435ec 9083 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9084
9085 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9086 /* saw a valid insn
9087 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9088 * save type to validate intersecting paths
9bac3d6d 9089 */
3df126f3 9090 *prev_src_type = src_reg_type;
9bac3d6d 9091
c64b7983 9092 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9093 /* ABuser program is trying to use the same insn
9094 * dst_reg = *(u32*) (src_reg + off)
9095 * with different pointer types:
9096 * src_reg == ctx in one branch and
9097 * src_reg == stack|map in some other branch.
9098 * Reject it.
9099 */
61bd5218 9100 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9101 return -EINVAL;
9102 }
9103
17a52670 9104 } else if (class == BPF_STX) {
3df126f3 9105 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9106
17a52670 9107 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 9108 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
9109 if (err)
9110 return err;
c08435ec 9111 env->insn_idx++;
17a52670
AS
9112 continue;
9113 }
9114
17a52670 9115 /* check src1 operand */
dc503a8a 9116 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9117 if (err)
9118 return err;
9119 /* check src2 operand */
dc503a8a 9120 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9121 if (err)
9122 return err;
9123
d691f9e8
AS
9124 dst_reg_type = regs[insn->dst_reg].type;
9125
17a52670 9126 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9127 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9128 insn->off, BPF_SIZE(insn->code),
9129 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9130 if (err)
9131 return err;
9132
c08435ec 9133 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9134
9135 if (*prev_dst_type == NOT_INIT) {
9136 *prev_dst_type = dst_reg_type;
c64b7983 9137 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9138 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9139 return -EINVAL;
9140 }
9141
17a52670
AS
9142 } else if (class == BPF_ST) {
9143 if (BPF_MODE(insn->code) != BPF_MEM ||
9144 insn->src_reg != BPF_REG_0) {
61bd5218 9145 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9146 return -EINVAL;
9147 }
9148 /* check src operand */
dc503a8a 9149 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9150 if (err)
9151 return err;
9152
f37a8cb8 9153 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9154 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9155 insn->dst_reg,
9156 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9157 return -EACCES;
9158 }
9159
17a52670 9160 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9161 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9162 insn->off, BPF_SIZE(insn->code),
9163 BPF_WRITE, -1, false);
17a52670
AS
9164 if (err)
9165 return err;
9166
092ed096 9167 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9168 u8 opcode = BPF_OP(insn->code);
9169
2589726d 9170 env->jmps_processed++;
17a52670
AS
9171 if (opcode == BPF_CALL) {
9172 if (BPF_SRC(insn->code) != BPF_K ||
9173 insn->off != 0 ||
f4d7e40a
AS
9174 (insn->src_reg != BPF_REG_0 &&
9175 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9176 insn->dst_reg != BPF_REG_0 ||
9177 class == BPF_JMP32) {
61bd5218 9178 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9179 return -EINVAL;
9180 }
9181
d83525ca
AS
9182 if (env->cur_state->active_spin_lock &&
9183 (insn->src_reg == BPF_PSEUDO_CALL ||
9184 insn->imm != BPF_FUNC_spin_unlock)) {
9185 verbose(env, "function calls are not allowed while holding a lock\n");
9186 return -EINVAL;
9187 }
f4d7e40a 9188 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9189 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9190 else
c08435ec 9191 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9192 if (err)
9193 return err;
9194
9195 } else if (opcode == BPF_JA) {
9196 if (BPF_SRC(insn->code) != BPF_K ||
9197 insn->imm != 0 ||
9198 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9199 insn->dst_reg != BPF_REG_0 ||
9200 class == BPF_JMP32) {
61bd5218 9201 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9202 return -EINVAL;
9203 }
9204
c08435ec 9205 env->insn_idx += insn->off + 1;
17a52670
AS
9206 continue;
9207
9208 } else if (opcode == BPF_EXIT) {
9209 if (BPF_SRC(insn->code) != BPF_K ||
9210 insn->imm != 0 ||
9211 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9212 insn->dst_reg != BPF_REG_0 ||
9213 class == BPF_JMP32) {
61bd5218 9214 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9215 return -EINVAL;
9216 }
9217
d83525ca
AS
9218 if (env->cur_state->active_spin_lock) {
9219 verbose(env, "bpf_spin_unlock is missing\n");
9220 return -EINVAL;
9221 }
9222
f4d7e40a
AS
9223 if (state->curframe) {
9224 /* exit from nested function */
c08435ec 9225 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9226 if (err)
9227 return err;
9228 do_print_state = true;
9229 continue;
9230 }
9231
fd978bf7
JS
9232 err = check_reference_leak(env);
9233 if (err)
9234 return err;
9235
390ee7e2
AS
9236 err = check_return_code(env);
9237 if (err)
9238 return err;
f1bca824 9239process_bpf_exit:
2589726d 9240 update_branch_counts(env, env->cur_state);
b5dc0163 9241 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9242 &env->insn_idx, pop_log);
638f5b90
AS
9243 if (err < 0) {
9244 if (err != -ENOENT)
9245 return err;
17a52670
AS
9246 break;
9247 } else {
9248 do_print_state = true;
9249 continue;
9250 }
9251 } else {
c08435ec 9252 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9253 if (err)
9254 return err;
9255 }
9256 } else if (class == BPF_LD) {
9257 u8 mode = BPF_MODE(insn->code);
9258
9259 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9260 err = check_ld_abs(env, insn);
9261 if (err)
9262 return err;
9263
17a52670
AS
9264 } else if (mode == BPF_IMM) {
9265 err = check_ld_imm(env, insn);
9266 if (err)
9267 return err;
9268
c08435ec 9269 env->insn_idx++;
51c39bb1 9270 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9271 } else {
61bd5218 9272 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9273 return -EINVAL;
9274 }
9275 } else {
61bd5218 9276 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9277 return -EINVAL;
9278 }
9279
c08435ec 9280 env->insn_idx++;
17a52670
AS
9281 }
9282
9283 return 0;
9284}
9285
56f668df
MKL
9286static int check_map_prealloc(struct bpf_map *map)
9287{
9288 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9289 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9290 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9291 !(map->map_flags & BPF_F_NO_PREALLOC);
9292}
9293
d83525ca
AS
9294static bool is_tracing_prog_type(enum bpf_prog_type type)
9295{
9296 switch (type) {
9297 case BPF_PROG_TYPE_KPROBE:
9298 case BPF_PROG_TYPE_TRACEPOINT:
9299 case BPF_PROG_TYPE_PERF_EVENT:
9300 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9301 return true;
9302 default:
9303 return false;
9304 }
9305}
9306
94dacdbd
TG
9307static bool is_preallocated_map(struct bpf_map *map)
9308{
9309 if (!check_map_prealloc(map))
9310 return false;
9311 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9312 return false;
9313 return true;
9314}
9315
61bd5218
JK
9316static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9317 struct bpf_map *map,
fdc15d38
AS
9318 struct bpf_prog *prog)
9319
9320{
7e40781c 9321 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9322 /*
9323 * Validate that trace type programs use preallocated hash maps.
9324 *
9325 * For programs attached to PERF events this is mandatory as the
9326 * perf NMI can hit any arbitrary code sequence.
9327 *
9328 * All other trace types using preallocated hash maps are unsafe as
9329 * well because tracepoint or kprobes can be inside locked regions
9330 * of the memory allocator or at a place where a recursion into the
9331 * memory allocator would see inconsistent state.
9332 *
2ed905c5
TG
9333 * On RT enabled kernels run-time allocation of all trace type
9334 * programs is strictly prohibited due to lock type constraints. On
9335 * !RT kernels it is allowed for backwards compatibility reasons for
9336 * now, but warnings are emitted so developers are made aware of
9337 * the unsafety and can fix their programs before this is enforced.
56f668df 9338 */
7e40781c
UP
9339 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9340 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9341 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9342 return -EINVAL;
9343 }
2ed905c5
TG
9344 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9345 verbose(env, "trace type programs can only use preallocated hash map\n");
9346 return -EINVAL;
9347 }
94dacdbd
TG
9348 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9349 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9350 }
a3884572 9351
7e40781c
UP
9352 if ((is_tracing_prog_type(prog_type) ||
9353 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
d83525ca
AS
9354 map_value_has_spin_lock(map)) {
9355 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9356 return -EINVAL;
9357 }
9358
a3884572 9359 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9360 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9361 verbose(env, "offload device mismatch between prog and map\n");
9362 return -EINVAL;
9363 }
9364
85d33df3
MKL
9365 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9366 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9367 return -EINVAL;
9368 }
9369
fdc15d38
AS
9370 return 0;
9371}
9372
b741f163
RG
9373static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9374{
9375 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9376 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9377}
9378
0246e64d
AS
9379/* look for pseudo eBPF instructions that access map FDs and
9380 * replace them with actual map pointers
9381 */
58e2af8b 9382static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
9383{
9384 struct bpf_insn *insn = env->prog->insnsi;
9385 int insn_cnt = env->prog->len;
fdc15d38 9386 int i, j, err;
0246e64d 9387
f1f7714e 9388 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9389 if (err)
9390 return err;
9391
0246e64d 9392 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9393 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9394 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9395 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9396 return -EINVAL;
9397 }
9398
d691f9e8
AS
9399 if (BPF_CLASS(insn->code) == BPF_STX &&
9400 ((BPF_MODE(insn->code) != BPF_MEM &&
9401 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9402 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9403 return -EINVAL;
9404 }
9405
0246e64d 9406 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9407 struct bpf_insn_aux_data *aux;
0246e64d
AS
9408 struct bpf_map *map;
9409 struct fd f;
d8eca5bb 9410 u64 addr;
0246e64d
AS
9411
9412 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9413 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9414 insn[1].off != 0) {
61bd5218 9415 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9416 return -EINVAL;
9417 }
9418
d8eca5bb 9419 if (insn[0].src_reg == 0)
0246e64d
AS
9420 /* valid generic load 64-bit imm */
9421 goto next_insn;
9422
d8eca5bb
DB
9423 /* In final convert_pseudo_ld_imm64() step, this is
9424 * converted into regular 64-bit imm load insn.
9425 */
9426 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9427 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9428 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9429 insn[1].imm != 0)) {
9430 verbose(env,
9431 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9432 return -EINVAL;
9433 }
9434
20182390 9435 f = fdget(insn[0].imm);
c2101297 9436 map = __bpf_map_get(f);
0246e64d 9437 if (IS_ERR(map)) {
61bd5218 9438 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9439 insn[0].imm);
0246e64d
AS
9440 return PTR_ERR(map);
9441 }
9442
61bd5218 9443 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9444 if (err) {
9445 fdput(f);
9446 return err;
9447 }
9448
d8eca5bb
DB
9449 aux = &env->insn_aux_data[i];
9450 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9451 addr = (unsigned long)map;
9452 } else {
9453 u32 off = insn[1].imm;
9454
9455 if (off >= BPF_MAX_VAR_OFF) {
9456 verbose(env, "direct value offset of %u is not allowed\n", off);
9457 fdput(f);
9458 return -EINVAL;
9459 }
9460
9461 if (!map->ops->map_direct_value_addr) {
9462 verbose(env, "no direct value access support for this map type\n");
9463 fdput(f);
9464 return -EINVAL;
9465 }
9466
9467 err = map->ops->map_direct_value_addr(map, &addr, off);
9468 if (err) {
9469 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9470 map->value_size, off);
9471 fdput(f);
9472 return err;
9473 }
9474
9475 aux->map_off = off;
9476 addr += off;
9477 }
9478
9479 insn[0].imm = (u32)addr;
9480 insn[1].imm = addr >> 32;
0246e64d
AS
9481
9482 /* check whether we recorded this map already */
d8eca5bb 9483 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9484 if (env->used_maps[j] == map) {
d8eca5bb 9485 aux->map_index = j;
0246e64d
AS
9486 fdput(f);
9487 goto next_insn;
9488 }
d8eca5bb 9489 }
0246e64d
AS
9490
9491 if (env->used_map_cnt >= MAX_USED_MAPS) {
9492 fdput(f);
9493 return -E2BIG;
9494 }
9495
0246e64d
AS
9496 /* hold the map. If the program is rejected by verifier,
9497 * the map will be released by release_maps() or it
9498 * will be used by the valid program until it's unloaded
ab7f5bf0 9499 * and all maps are released in free_used_maps()
0246e64d 9500 */
1e0bd5a0 9501 bpf_map_inc(map);
d8eca5bb
DB
9502
9503 aux->map_index = env->used_map_cnt;
92117d84
AS
9504 env->used_maps[env->used_map_cnt++] = map;
9505
b741f163 9506 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9507 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9508 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9509 fdput(f);
9510 return -EBUSY;
9511 }
9512
0246e64d
AS
9513 fdput(f);
9514next_insn:
9515 insn++;
9516 i++;
5e581dad
DB
9517 continue;
9518 }
9519
9520 /* Basic sanity check before we invest more work here. */
9521 if (!bpf_opcode_in_insntable(insn->code)) {
9522 verbose(env, "unknown opcode %02x\n", insn->code);
9523 return -EINVAL;
0246e64d
AS
9524 }
9525 }
9526
9527 /* now all pseudo BPF_LD_IMM64 instructions load valid
9528 * 'struct bpf_map *' into a register instead of user map_fd.
9529 * These pointers will be used later by verifier to validate map access.
9530 */
9531 return 0;
9532}
9533
9534/* drop refcnt of maps used by the rejected program */
58e2af8b 9535static void release_maps(struct bpf_verifier_env *env)
0246e64d 9536{
a2ea0746
DB
9537 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9538 env->used_map_cnt);
0246e64d
AS
9539}
9540
9541/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9542static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9543{
9544 struct bpf_insn *insn = env->prog->insnsi;
9545 int insn_cnt = env->prog->len;
9546 int i;
9547
9548 for (i = 0; i < insn_cnt; i++, insn++)
9549 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9550 insn->src_reg = 0;
9551}
9552
8041902d
AS
9553/* single env->prog->insni[off] instruction was replaced with the range
9554 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9555 * [0, off) and [off, end) to new locations, so the patched range stays zero
9556 */
b325fbca
JW
9557static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9558 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9559{
9560 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9561 struct bpf_insn *insn = new_prog->insnsi;
9562 u32 prog_len;
c131187d 9563 int i;
8041902d 9564
b325fbca
JW
9565 /* aux info at OFF always needs adjustment, no matter fast path
9566 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9567 * original insn at old prog.
9568 */
9569 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9570
8041902d
AS
9571 if (cnt == 1)
9572 return 0;
b325fbca 9573 prog_len = new_prog->len;
fad953ce
KC
9574 new_data = vzalloc(array_size(prog_len,
9575 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9576 if (!new_data)
9577 return -ENOMEM;
9578 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9579 memcpy(new_data + off + cnt - 1, old_data + off,
9580 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9581 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9582 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9583 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9584 }
8041902d
AS
9585 env->insn_aux_data = new_data;
9586 vfree(old_data);
9587 return 0;
9588}
9589
cc8b0b92
AS
9590static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9591{
9592 int i;
9593
9594 if (len == 1)
9595 return;
4cb3d99c
JW
9596 /* NOTE: fake 'exit' subprog should be updated as well. */
9597 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 9598 if (env->subprog_info[i].start <= off)
cc8b0b92 9599 continue;
9c8105bd 9600 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
9601 }
9602}
9603
8041902d
AS
9604static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9605 const struct bpf_insn *patch, u32 len)
9606{
9607 struct bpf_prog *new_prog;
9608
9609 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
9610 if (IS_ERR(new_prog)) {
9611 if (PTR_ERR(new_prog) == -ERANGE)
9612 verbose(env,
9613 "insn %d cannot be patched due to 16-bit range\n",
9614 env->insn_aux_data[off].orig_idx);
8041902d 9615 return NULL;
4f73379e 9616 }
b325fbca 9617 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 9618 return NULL;
cc8b0b92 9619 adjust_subprog_starts(env, off, len);
8041902d
AS
9620 return new_prog;
9621}
9622
52875a04
JK
9623static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9624 u32 off, u32 cnt)
9625{
9626 int i, j;
9627
9628 /* find first prog starting at or after off (first to remove) */
9629 for (i = 0; i < env->subprog_cnt; i++)
9630 if (env->subprog_info[i].start >= off)
9631 break;
9632 /* find first prog starting at or after off + cnt (first to stay) */
9633 for (j = i; j < env->subprog_cnt; j++)
9634 if (env->subprog_info[j].start >= off + cnt)
9635 break;
9636 /* if j doesn't start exactly at off + cnt, we are just removing
9637 * the front of previous prog
9638 */
9639 if (env->subprog_info[j].start != off + cnt)
9640 j--;
9641
9642 if (j > i) {
9643 struct bpf_prog_aux *aux = env->prog->aux;
9644 int move;
9645
9646 /* move fake 'exit' subprog as well */
9647 move = env->subprog_cnt + 1 - j;
9648
9649 memmove(env->subprog_info + i,
9650 env->subprog_info + j,
9651 sizeof(*env->subprog_info) * move);
9652 env->subprog_cnt -= j - i;
9653
9654 /* remove func_info */
9655 if (aux->func_info) {
9656 move = aux->func_info_cnt - j;
9657
9658 memmove(aux->func_info + i,
9659 aux->func_info + j,
9660 sizeof(*aux->func_info) * move);
9661 aux->func_info_cnt -= j - i;
9662 /* func_info->insn_off is set after all code rewrites,
9663 * in adjust_btf_func() - no need to adjust
9664 */
9665 }
9666 } else {
9667 /* convert i from "first prog to remove" to "first to adjust" */
9668 if (env->subprog_info[i].start == off)
9669 i++;
9670 }
9671
9672 /* update fake 'exit' subprog as well */
9673 for (; i <= env->subprog_cnt; i++)
9674 env->subprog_info[i].start -= cnt;
9675
9676 return 0;
9677}
9678
9679static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9680 u32 cnt)
9681{
9682 struct bpf_prog *prog = env->prog;
9683 u32 i, l_off, l_cnt, nr_linfo;
9684 struct bpf_line_info *linfo;
9685
9686 nr_linfo = prog->aux->nr_linfo;
9687 if (!nr_linfo)
9688 return 0;
9689
9690 linfo = prog->aux->linfo;
9691
9692 /* find first line info to remove, count lines to be removed */
9693 for (i = 0; i < nr_linfo; i++)
9694 if (linfo[i].insn_off >= off)
9695 break;
9696
9697 l_off = i;
9698 l_cnt = 0;
9699 for (; i < nr_linfo; i++)
9700 if (linfo[i].insn_off < off + cnt)
9701 l_cnt++;
9702 else
9703 break;
9704
9705 /* First live insn doesn't match first live linfo, it needs to "inherit"
9706 * last removed linfo. prog is already modified, so prog->len == off
9707 * means no live instructions after (tail of the program was removed).
9708 */
9709 if (prog->len != off && l_cnt &&
9710 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9711 l_cnt--;
9712 linfo[--i].insn_off = off + cnt;
9713 }
9714
9715 /* remove the line info which refer to the removed instructions */
9716 if (l_cnt) {
9717 memmove(linfo + l_off, linfo + i,
9718 sizeof(*linfo) * (nr_linfo - i));
9719
9720 prog->aux->nr_linfo -= l_cnt;
9721 nr_linfo = prog->aux->nr_linfo;
9722 }
9723
9724 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
9725 for (i = l_off; i < nr_linfo; i++)
9726 linfo[i].insn_off -= cnt;
9727
9728 /* fix up all subprogs (incl. 'exit') which start >= off */
9729 for (i = 0; i <= env->subprog_cnt; i++)
9730 if (env->subprog_info[i].linfo_idx > l_off) {
9731 /* program may have started in the removed region but
9732 * may not be fully removed
9733 */
9734 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9735 env->subprog_info[i].linfo_idx -= l_cnt;
9736 else
9737 env->subprog_info[i].linfo_idx = l_off;
9738 }
9739
9740 return 0;
9741}
9742
9743static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9744{
9745 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9746 unsigned int orig_prog_len = env->prog->len;
9747 int err;
9748
08ca90af
JK
9749 if (bpf_prog_is_dev_bound(env->prog->aux))
9750 bpf_prog_offload_remove_insns(env, off, cnt);
9751
52875a04
JK
9752 err = bpf_remove_insns(env->prog, off, cnt);
9753 if (err)
9754 return err;
9755
9756 err = adjust_subprog_starts_after_remove(env, off, cnt);
9757 if (err)
9758 return err;
9759
9760 err = bpf_adj_linfo_after_remove(env, off, cnt);
9761 if (err)
9762 return err;
9763
9764 memmove(aux_data + off, aux_data + off + cnt,
9765 sizeof(*aux_data) * (orig_prog_len - off - cnt));
9766
9767 return 0;
9768}
9769
2a5418a1
DB
9770/* The verifier does more data flow analysis than llvm and will not
9771 * explore branches that are dead at run time. Malicious programs can
9772 * have dead code too. Therefore replace all dead at-run-time code
9773 * with 'ja -1'.
9774 *
9775 * Just nops are not optimal, e.g. if they would sit at the end of the
9776 * program and through another bug we would manage to jump there, then
9777 * we'd execute beyond program memory otherwise. Returning exception
9778 * code also wouldn't work since we can have subprogs where the dead
9779 * code could be located.
c131187d
AS
9780 */
9781static void sanitize_dead_code(struct bpf_verifier_env *env)
9782{
9783 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 9784 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
9785 struct bpf_insn *insn = env->prog->insnsi;
9786 const int insn_cnt = env->prog->len;
9787 int i;
9788
9789 for (i = 0; i < insn_cnt; i++) {
9790 if (aux_data[i].seen)
9791 continue;
2a5418a1 9792 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
9793 }
9794}
9795
e2ae4ca2
JK
9796static bool insn_is_cond_jump(u8 code)
9797{
9798 u8 op;
9799
092ed096
JW
9800 if (BPF_CLASS(code) == BPF_JMP32)
9801 return true;
9802
e2ae4ca2
JK
9803 if (BPF_CLASS(code) != BPF_JMP)
9804 return false;
9805
9806 op = BPF_OP(code);
9807 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9808}
9809
9810static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9811{
9812 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9813 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9814 struct bpf_insn *insn = env->prog->insnsi;
9815 const int insn_cnt = env->prog->len;
9816 int i;
9817
9818 for (i = 0; i < insn_cnt; i++, insn++) {
9819 if (!insn_is_cond_jump(insn->code))
9820 continue;
9821
9822 if (!aux_data[i + 1].seen)
9823 ja.off = insn->off;
9824 else if (!aux_data[i + 1 + insn->off].seen)
9825 ja.off = 0;
9826 else
9827 continue;
9828
08ca90af
JK
9829 if (bpf_prog_is_dev_bound(env->prog->aux))
9830 bpf_prog_offload_replace_insn(env, i, &ja);
9831
e2ae4ca2
JK
9832 memcpy(insn, &ja, sizeof(ja));
9833 }
9834}
9835
52875a04
JK
9836static int opt_remove_dead_code(struct bpf_verifier_env *env)
9837{
9838 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9839 int insn_cnt = env->prog->len;
9840 int i, err;
9841
9842 for (i = 0; i < insn_cnt; i++) {
9843 int j;
9844
9845 j = 0;
9846 while (i + j < insn_cnt && !aux_data[i + j].seen)
9847 j++;
9848 if (!j)
9849 continue;
9850
9851 err = verifier_remove_insns(env, i, j);
9852 if (err)
9853 return err;
9854 insn_cnt = env->prog->len;
9855 }
9856
9857 return 0;
9858}
9859
a1b14abc
JK
9860static int opt_remove_nops(struct bpf_verifier_env *env)
9861{
9862 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9863 struct bpf_insn *insn = env->prog->insnsi;
9864 int insn_cnt = env->prog->len;
9865 int i, err;
9866
9867 for (i = 0; i < insn_cnt; i++) {
9868 if (memcmp(&insn[i], &ja, sizeof(ja)))
9869 continue;
9870
9871 err = verifier_remove_insns(env, i, 1);
9872 if (err)
9873 return err;
9874 insn_cnt--;
9875 i--;
9876 }
9877
9878 return 0;
9879}
9880
d6c2308c
JW
9881static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9882 const union bpf_attr *attr)
a4b1d3c1 9883{
d6c2308c 9884 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 9885 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 9886 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 9887 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 9888 struct bpf_prog *new_prog;
d6c2308c 9889 bool rnd_hi32;
a4b1d3c1 9890
d6c2308c 9891 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 9892 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
9893 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9894 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9895 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
9896 for (i = 0; i < len; i++) {
9897 int adj_idx = i + delta;
9898 struct bpf_insn insn;
9899
d6c2308c
JW
9900 insn = insns[adj_idx];
9901 if (!aux[adj_idx].zext_dst) {
9902 u8 code, class;
9903 u32 imm_rnd;
9904
9905 if (!rnd_hi32)
9906 continue;
9907
9908 code = insn.code;
9909 class = BPF_CLASS(code);
9910 if (insn_no_def(&insn))
9911 continue;
9912
9913 /* NOTE: arg "reg" (the fourth one) is only used for
9914 * BPF_STX which has been ruled out in above
9915 * check, it is safe to pass NULL here.
9916 */
9917 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9918 if (class == BPF_LD &&
9919 BPF_MODE(code) == BPF_IMM)
9920 i++;
9921 continue;
9922 }
9923
9924 /* ctx load could be transformed into wider load. */
9925 if (class == BPF_LDX &&
9926 aux[adj_idx].ptr_type == PTR_TO_CTX)
9927 continue;
9928
9929 imm_rnd = get_random_int();
9930 rnd_hi32_patch[0] = insn;
9931 rnd_hi32_patch[1].imm = imm_rnd;
9932 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9933 patch = rnd_hi32_patch;
9934 patch_len = 4;
9935 goto apply_patch_buffer;
9936 }
9937
9938 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
9939 continue;
9940
a4b1d3c1
JW
9941 zext_patch[0] = insn;
9942 zext_patch[1].dst_reg = insn.dst_reg;
9943 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
9944 patch = zext_patch;
9945 patch_len = 2;
9946apply_patch_buffer:
9947 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
9948 if (!new_prog)
9949 return -ENOMEM;
9950 env->prog = new_prog;
9951 insns = new_prog->insnsi;
9952 aux = env->insn_aux_data;
d6c2308c 9953 delta += patch_len - 1;
a4b1d3c1
JW
9954 }
9955
9956 return 0;
9957}
9958
c64b7983
JS
9959/* convert load instructions that access fields of a context type into a
9960 * sequence of instructions that access fields of the underlying structure:
9961 * struct __sk_buff -> struct sk_buff
9962 * struct bpf_sock_ops -> struct sock
9bac3d6d 9963 */
58e2af8b 9964static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 9965{
00176a34 9966 const struct bpf_verifier_ops *ops = env->ops;
f96da094 9967 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 9968 const int insn_cnt = env->prog->len;
36bbef52 9969 struct bpf_insn insn_buf[16], *insn;
46f53a65 9970 u32 target_size, size_default, off;
9bac3d6d 9971 struct bpf_prog *new_prog;
d691f9e8 9972 enum bpf_access_type type;
f96da094 9973 bool is_narrower_load;
9bac3d6d 9974
b09928b9
DB
9975 if (ops->gen_prologue || env->seen_direct_write) {
9976 if (!ops->gen_prologue) {
9977 verbose(env, "bpf verifier is misconfigured\n");
9978 return -EINVAL;
9979 }
36bbef52
DB
9980 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9981 env->prog);
9982 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 9983 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
9984 return -EINVAL;
9985 } else if (cnt) {
8041902d 9986 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
9987 if (!new_prog)
9988 return -ENOMEM;
8041902d 9989
36bbef52 9990 env->prog = new_prog;
3df126f3 9991 delta += cnt - 1;
36bbef52
DB
9992 }
9993 }
9994
c64b7983 9995 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
9996 return 0;
9997
3df126f3 9998 insn = env->prog->insnsi + delta;
36bbef52 9999
9bac3d6d 10000 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10001 bpf_convert_ctx_access_t convert_ctx_access;
10002
62c7989b
DB
10003 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10004 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10005 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10006 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10007 type = BPF_READ;
62c7989b
DB
10008 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10009 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10010 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10011 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10012 type = BPF_WRITE;
10013 else
9bac3d6d
AS
10014 continue;
10015
af86ca4e
AS
10016 if (type == BPF_WRITE &&
10017 env->insn_aux_data[i + delta].sanitize_stack_off) {
10018 struct bpf_insn patch[] = {
10019 /* Sanitize suspicious stack slot with zero.
10020 * There are no memory dependencies for this store,
10021 * since it's only using frame pointer and immediate
10022 * constant of zero
10023 */
10024 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10025 env->insn_aux_data[i + delta].sanitize_stack_off,
10026 0),
10027 /* the original STX instruction will immediately
10028 * overwrite the same stack slot with appropriate value
10029 */
10030 *insn,
10031 };
10032
10033 cnt = ARRAY_SIZE(patch);
10034 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10035 if (!new_prog)
10036 return -ENOMEM;
10037
10038 delta += cnt - 1;
10039 env->prog = new_prog;
10040 insn = new_prog->insnsi + i + delta;
10041 continue;
10042 }
10043
c64b7983
JS
10044 switch (env->insn_aux_data[i + delta].ptr_type) {
10045 case PTR_TO_CTX:
10046 if (!ops->convert_ctx_access)
10047 continue;
10048 convert_ctx_access = ops->convert_ctx_access;
10049 break;
10050 case PTR_TO_SOCKET:
46f8bc92 10051 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10052 convert_ctx_access = bpf_sock_convert_ctx_access;
10053 break;
655a51e5
MKL
10054 case PTR_TO_TCP_SOCK:
10055 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10056 break;
fada7fdc
JL
10057 case PTR_TO_XDP_SOCK:
10058 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10059 break;
2a02759e 10060 case PTR_TO_BTF_ID:
27ae7997
MKL
10061 if (type == BPF_READ) {
10062 insn->code = BPF_LDX | BPF_PROBE_MEM |
10063 BPF_SIZE((insn)->code);
10064 env->prog->aux->num_exentries++;
7e40781c 10065 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10066 verbose(env, "Writes through BTF pointers are not allowed\n");
10067 return -EINVAL;
10068 }
2a02759e 10069 continue;
c64b7983 10070 default:
9bac3d6d 10071 continue;
c64b7983 10072 }
9bac3d6d 10073
31fd8581 10074 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10075 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10076
10077 /* If the read access is a narrower load of the field,
10078 * convert to a 4/8-byte load, to minimum program type specific
10079 * convert_ctx_access changes. If conversion is successful,
10080 * we will apply proper mask to the result.
10081 */
f96da094 10082 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10083 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10084 off = insn->off;
31fd8581 10085 if (is_narrower_load) {
f96da094
DB
10086 u8 size_code;
10087
10088 if (type == BPF_WRITE) {
61bd5218 10089 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10090 return -EINVAL;
10091 }
31fd8581 10092
f96da094 10093 size_code = BPF_H;
31fd8581
YS
10094 if (ctx_field_size == 4)
10095 size_code = BPF_W;
10096 else if (ctx_field_size == 8)
10097 size_code = BPF_DW;
f96da094 10098
bc23105c 10099 insn->off = off & ~(size_default - 1);
31fd8581
YS
10100 insn->code = BPF_LDX | BPF_MEM | size_code;
10101 }
f96da094
DB
10102
10103 target_size = 0;
c64b7983
JS
10104 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10105 &target_size);
f96da094
DB
10106 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10107 (ctx_field_size && !target_size)) {
61bd5218 10108 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10109 return -EINVAL;
10110 }
f96da094
DB
10111
10112 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10113 u8 shift = bpf_ctx_narrow_access_offset(
10114 off, size, size_default) * 8;
46f53a65
AI
10115 if (ctx_field_size <= 4) {
10116 if (shift)
10117 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10118 insn->dst_reg,
10119 shift);
31fd8581 10120 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10121 (1 << size * 8) - 1);
46f53a65
AI
10122 } else {
10123 if (shift)
10124 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10125 insn->dst_reg,
10126 shift);
31fd8581 10127 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10128 (1ULL << size * 8) - 1);
46f53a65 10129 }
31fd8581 10130 }
9bac3d6d 10131
8041902d 10132 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10133 if (!new_prog)
10134 return -ENOMEM;
10135
3df126f3 10136 delta += cnt - 1;
9bac3d6d
AS
10137
10138 /* keep walking new program and skip insns we just inserted */
10139 env->prog = new_prog;
3df126f3 10140 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10141 }
10142
10143 return 0;
10144}
10145
1c2a088a
AS
10146static int jit_subprogs(struct bpf_verifier_env *env)
10147{
10148 struct bpf_prog *prog = env->prog, **func, *tmp;
10149 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 10150 struct bpf_insn *insn;
1c2a088a 10151 void *old_bpf_func;
c4c0bdc0 10152 int err, num_exentries;
1c2a088a 10153
f910cefa 10154 if (env->subprog_cnt <= 1)
1c2a088a
AS
10155 return 0;
10156
7105e828 10157 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10158 if (insn->code != (BPF_JMP | BPF_CALL) ||
10159 insn->src_reg != BPF_PSEUDO_CALL)
10160 continue;
c7a89784
DB
10161 /* Upon error here we cannot fall back to interpreter but
10162 * need a hard reject of the program. Thus -EFAULT is
10163 * propagated in any case.
10164 */
1c2a088a
AS
10165 subprog = find_subprog(env, i + insn->imm + 1);
10166 if (subprog < 0) {
10167 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10168 i + insn->imm + 1);
10169 return -EFAULT;
10170 }
10171 /* temporarily remember subprog id inside insn instead of
10172 * aux_data, since next loop will split up all insns into funcs
10173 */
f910cefa 10174 insn->off = subprog;
1c2a088a
AS
10175 /* remember original imm in case JIT fails and fallback
10176 * to interpreter will be needed
10177 */
10178 env->insn_aux_data[i].call_imm = insn->imm;
10179 /* point imm to __bpf_call_base+1 from JITs point of view */
10180 insn->imm = 1;
10181 }
10182
c454a46b
MKL
10183 err = bpf_prog_alloc_jited_linfo(prog);
10184 if (err)
10185 goto out_undo_insn;
10186
10187 err = -ENOMEM;
6396bb22 10188 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10189 if (!func)
c7a89784 10190 goto out_undo_insn;
1c2a088a 10191
f910cefa 10192 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10193 subprog_start = subprog_end;
4cb3d99c 10194 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10195
10196 len = subprog_end - subprog_start;
492ecee8
AS
10197 /* BPF_PROG_RUN doesn't call subprogs directly,
10198 * hence main prog stats include the runtime of subprogs.
10199 * subprogs don't have IDs and not reachable via prog_get_next_id
10200 * func[i]->aux->stats will never be accessed and stays NULL
10201 */
10202 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10203 if (!func[i])
10204 goto out_free;
10205 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10206 len * sizeof(struct bpf_insn));
4f74d809 10207 func[i]->type = prog->type;
1c2a088a 10208 func[i]->len = len;
4f74d809
DB
10209 if (bpf_prog_calc_tag(func[i]))
10210 goto out_free;
1c2a088a 10211 func[i]->is_func = 1;
ba64e7d8
YS
10212 func[i]->aux->func_idx = i;
10213 /* the btf and func_info will be freed only at prog->aux */
10214 func[i]->aux->btf = prog->aux->btf;
10215 func[i]->aux->func_info = prog->aux->func_info;
10216
1c2a088a
AS
10217 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10218 * Long term would need debug info to populate names
10219 */
10220 func[i]->aux->name[0] = 'F';
9c8105bd 10221 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10222 func[i]->jit_requested = 1;
c454a46b
MKL
10223 func[i]->aux->linfo = prog->aux->linfo;
10224 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10225 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10226 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10227 num_exentries = 0;
10228 insn = func[i]->insnsi;
10229 for (j = 0; j < func[i]->len; j++, insn++) {
10230 if (BPF_CLASS(insn->code) == BPF_LDX &&
10231 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10232 num_exentries++;
10233 }
10234 func[i]->aux->num_exentries = num_exentries;
1c2a088a
AS
10235 func[i] = bpf_int_jit_compile(func[i]);
10236 if (!func[i]->jited) {
10237 err = -ENOTSUPP;
10238 goto out_free;
10239 }
10240 cond_resched();
10241 }
10242 /* at this point all bpf functions were successfully JITed
10243 * now populate all bpf_calls with correct addresses and
10244 * run last pass of JIT
10245 */
f910cefa 10246 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10247 insn = func[i]->insnsi;
10248 for (j = 0; j < func[i]->len; j++, insn++) {
10249 if (insn->code != (BPF_JMP | BPF_CALL) ||
10250 insn->src_reg != BPF_PSEUDO_CALL)
10251 continue;
10252 subprog = insn->off;
0d306c31
PB
10253 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10254 __bpf_call_base;
1c2a088a 10255 }
2162fed4
SD
10256
10257 /* we use the aux data to keep a list of the start addresses
10258 * of the JITed images for each function in the program
10259 *
10260 * for some architectures, such as powerpc64, the imm field
10261 * might not be large enough to hold the offset of the start
10262 * address of the callee's JITed image from __bpf_call_base
10263 *
10264 * in such cases, we can lookup the start address of a callee
10265 * by using its subprog id, available from the off field of
10266 * the call instruction, as an index for this list
10267 */
10268 func[i]->aux->func = func;
10269 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10270 }
f910cefa 10271 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10272 old_bpf_func = func[i]->bpf_func;
10273 tmp = bpf_int_jit_compile(func[i]);
10274 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10275 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10276 err = -ENOTSUPP;
1c2a088a
AS
10277 goto out_free;
10278 }
10279 cond_resched();
10280 }
10281
10282 /* finally lock prog and jit images for all functions and
10283 * populate kallsysm
10284 */
f910cefa 10285 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10286 bpf_prog_lock_ro(func[i]);
10287 bpf_prog_kallsyms_add(func[i]);
10288 }
7105e828
DB
10289
10290 /* Last step: make now unused interpreter insns from main
10291 * prog consistent for later dump requests, so they can
10292 * later look the same as if they were interpreted only.
10293 */
10294 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10295 if (insn->code != (BPF_JMP | BPF_CALL) ||
10296 insn->src_reg != BPF_PSEUDO_CALL)
10297 continue;
10298 insn->off = env->insn_aux_data[i].call_imm;
10299 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10300 insn->imm = subprog;
7105e828
DB
10301 }
10302
1c2a088a
AS
10303 prog->jited = 1;
10304 prog->bpf_func = func[0]->bpf_func;
10305 prog->aux->func = func;
f910cefa 10306 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10307 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10308 return 0;
10309out_free:
f910cefa 10310 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
10311 if (func[i])
10312 bpf_jit_free(func[i]);
10313 kfree(func);
c7a89784 10314out_undo_insn:
1c2a088a
AS
10315 /* cleanup main prog to be interpreted */
10316 prog->jit_requested = 0;
10317 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10318 if (insn->code != (BPF_JMP | BPF_CALL) ||
10319 insn->src_reg != BPF_PSEUDO_CALL)
10320 continue;
10321 insn->off = 0;
10322 insn->imm = env->insn_aux_data[i].call_imm;
10323 }
c454a46b 10324 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10325 return err;
10326}
10327
1ea47e01
AS
10328static int fixup_call_args(struct bpf_verifier_env *env)
10329{
19d28fbd 10330#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10331 struct bpf_prog *prog = env->prog;
10332 struct bpf_insn *insn = prog->insnsi;
10333 int i, depth;
19d28fbd 10334#endif
e4052d06 10335 int err = 0;
1ea47e01 10336
e4052d06
QM
10337 if (env->prog->jit_requested &&
10338 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10339 err = jit_subprogs(env);
10340 if (err == 0)
1c2a088a 10341 return 0;
c7a89784
DB
10342 if (err == -EFAULT)
10343 return err;
19d28fbd
DM
10344 }
10345#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10346 for (i = 0; i < prog->len; i++, insn++) {
10347 if (insn->code != (BPF_JMP | BPF_CALL) ||
10348 insn->src_reg != BPF_PSEUDO_CALL)
10349 continue;
10350 depth = get_callee_stack_depth(env, insn, i);
10351 if (depth < 0)
10352 return depth;
10353 bpf_patch_call_args(insn, depth);
10354 }
19d28fbd
DM
10355 err = 0;
10356#endif
10357 return err;
1ea47e01
AS
10358}
10359
79741b3b 10360/* fixup insn->imm field of bpf_call instructions
81ed18ab 10361 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10362 *
10363 * this function is called after eBPF program passed verification
10364 */
79741b3b 10365static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10366{
79741b3b 10367 struct bpf_prog *prog = env->prog;
d2e4c1e6 10368 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10369 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10370 const struct bpf_func_proto *fn;
79741b3b 10371 const int insn_cnt = prog->len;
09772d92 10372 const struct bpf_map_ops *ops;
c93552c4 10373 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10374 struct bpf_insn insn_buf[16];
10375 struct bpf_prog *new_prog;
10376 struct bpf_map *map_ptr;
d2e4c1e6 10377 int i, ret, cnt, delta = 0;
e245c5c6 10378
79741b3b 10379 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
10380 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10381 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10382 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 10383 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
10384 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10385 struct bpf_insn mask_and_div[] = {
10386 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10387 /* Rx div 0 -> 0 */
10388 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10389 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10390 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10391 *insn,
10392 };
10393 struct bpf_insn mask_and_mod[] = {
10394 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10395 /* Rx mod 0 -> Rx */
10396 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10397 *insn,
10398 };
10399 struct bpf_insn *patchlet;
10400
10401 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10402 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10403 patchlet = mask_and_div + (is64 ? 1 : 0);
10404 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10405 } else {
10406 patchlet = mask_and_mod + (is64 ? 1 : 0);
10407 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10408 }
10409
10410 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
10411 if (!new_prog)
10412 return -ENOMEM;
10413
10414 delta += cnt - 1;
10415 env->prog = prog = new_prog;
10416 insn = new_prog->insnsi + i + delta;
10417 continue;
10418 }
10419
e0cea7ce
DB
10420 if (BPF_CLASS(insn->code) == BPF_LD &&
10421 (BPF_MODE(insn->code) == BPF_ABS ||
10422 BPF_MODE(insn->code) == BPF_IND)) {
10423 cnt = env->ops->gen_ld_abs(insn, insn_buf);
10424 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10425 verbose(env, "bpf verifier is misconfigured\n");
10426 return -EINVAL;
10427 }
10428
10429 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10430 if (!new_prog)
10431 return -ENOMEM;
10432
10433 delta += cnt - 1;
10434 env->prog = prog = new_prog;
10435 insn = new_prog->insnsi + i + delta;
10436 continue;
10437 }
10438
979d63d5
DB
10439 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10440 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10441 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10442 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10443 struct bpf_insn insn_buf[16];
10444 struct bpf_insn *patch = &insn_buf[0];
10445 bool issrc, isneg;
10446 u32 off_reg;
10447
10448 aux = &env->insn_aux_data[i + delta];
3612af78
DB
10449 if (!aux->alu_state ||
10450 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
10451 continue;
10452
10453 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10454 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10455 BPF_ALU_SANITIZE_SRC;
10456
10457 off_reg = issrc ? insn->src_reg : insn->dst_reg;
10458 if (isneg)
10459 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10460 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10461 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10462 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10463 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10464 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10465 if (issrc) {
10466 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10467 off_reg);
10468 insn->src_reg = BPF_REG_AX;
10469 } else {
10470 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10471 BPF_REG_AX);
10472 }
10473 if (isneg)
10474 insn->code = insn->code == code_add ?
10475 code_sub : code_add;
10476 *patch++ = *insn;
10477 if (issrc && isneg)
10478 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10479 cnt = patch - insn_buf;
10480
10481 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10482 if (!new_prog)
10483 return -ENOMEM;
10484
10485 delta += cnt - 1;
10486 env->prog = prog = new_prog;
10487 insn = new_prog->insnsi + i + delta;
10488 continue;
10489 }
10490
79741b3b
AS
10491 if (insn->code != (BPF_JMP | BPF_CALL))
10492 continue;
cc8b0b92
AS
10493 if (insn->src_reg == BPF_PSEUDO_CALL)
10494 continue;
e245c5c6 10495
79741b3b
AS
10496 if (insn->imm == BPF_FUNC_get_route_realm)
10497 prog->dst_needed = 1;
10498 if (insn->imm == BPF_FUNC_get_prandom_u32)
10499 bpf_user_rnd_init_once();
9802d865
JB
10500 if (insn->imm == BPF_FUNC_override_return)
10501 prog->kprobe_override = 1;
79741b3b 10502 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10503 /* If we tail call into other programs, we
10504 * cannot make any assumptions since they can
10505 * be replaced dynamically during runtime in
10506 * the program array.
10507 */
10508 prog->cb_access = 1;
80a58d02 10509 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 10510 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10511
79741b3b
AS
10512 /* mark bpf_tail_call as different opcode to avoid
10513 * conditional branch in the interpeter for every normal
10514 * call and to prevent accidental JITing by JIT compiler
10515 * that doesn't support bpf_tail_call yet
e245c5c6 10516 */
79741b3b 10517 insn->imm = 0;
71189fa9 10518 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10519
c93552c4 10520 aux = &env->insn_aux_data[i + delta];
2c78ee89 10521 if (env->bpf_capable && !expect_blinding &&
cc52d914 10522 prog->jit_requested &&
d2e4c1e6
DB
10523 !bpf_map_key_poisoned(aux) &&
10524 !bpf_map_ptr_poisoned(aux) &&
10525 !bpf_map_ptr_unpriv(aux)) {
10526 struct bpf_jit_poke_descriptor desc = {
10527 .reason = BPF_POKE_REASON_TAIL_CALL,
10528 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10529 .tail_call.key = bpf_map_key_immediate(aux),
10530 };
10531
10532 ret = bpf_jit_add_poke_descriptor(prog, &desc);
10533 if (ret < 0) {
10534 verbose(env, "adding tail call poke descriptor failed\n");
10535 return ret;
10536 }
10537
10538 insn->imm = ret + 1;
10539 continue;
10540 }
10541
c93552c4
DB
10542 if (!bpf_map_ptr_unpriv(aux))
10543 continue;
10544
b2157399
AS
10545 /* instead of changing every JIT dealing with tail_call
10546 * emit two extra insns:
10547 * if (index >= max_entries) goto out;
10548 * index &= array->index_mask;
10549 * to avoid out-of-bounds cpu speculation
10550 */
c93552c4 10551 if (bpf_map_ptr_poisoned(aux)) {
40950343 10552 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
10553 return -EINVAL;
10554 }
c93552c4 10555
d2e4c1e6 10556 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
10557 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10558 map_ptr->max_entries, 2);
10559 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10560 container_of(map_ptr,
10561 struct bpf_array,
10562 map)->index_mask);
10563 insn_buf[2] = *insn;
10564 cnt = 3;
10565 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10566 if (!new_prog)
10567 return -ENOMEM;
10568
10569 delta += cnt - 1;
10570 env->prog = prog = new_prog;
10571 insn = new_prog->insnsi + i + delta;
79741b3b
AS
10572 continue;
10573 }
e245c5c6 10574
89c63074 10575 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
10576 * and other inlining handlers are currently limited to 64 bit
10577 * only.
89c63074 10578 */
60b58afc 10579 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
10580 (insn->imm == BPF_FUNC_map_lookup_elem ||
10581 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
10582 insn->imm == BPF_FUNC_map_delete_elem ||
10583 insn->imm == BPF_FUNC_map_push_elem ||
10584 insn->imm == BPF_FUNC_map_pop_elem ||
10585 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
10586 aux = &env->insn_aux_data[i + delta];
10587 if (bpf_map_ptr_poisoned(aux))
10588 goto patch_call_imm;
10589
d2e4c1e6 10590 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
10591 ops = map_ptr->ops;
10592 if (insn->imm == BPF_FUNC_map_lookup_elem &&
10593 ops->map_gen_lookup) {
10594 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10595 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10596 verbose(env, "bpf verifier is misconfigured\n");
10597 return -EINVAL;
10598 }
81ed18ab 10599
09772d92
DB
10600 new_prog = bpf_patch_insn_data(env, i + delta,
10601 insn_buf, cnt);
10602 if (!new_prog)
10603 return -ENOMEM;
81ed18ab 10604
09772d92
DB
10605 delta += cnt - 1;
10606 env->prog = prog = new_prog;
10607 insn = new_prog->insnsi + i + delta;
10608 continue;
10609 }
81ed18ab 10610
09772d92
DB
10611 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10612 (void *(*)(struct bpf_map *map, void *key))NULL));
10613 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10614 (int (*)(struct bpf_map *map, void *key))NULL));
10615 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10616 (int (*)(struct bpf_map *map, void *key, void *value,
10617 u64 flags))NULL));
84430d42
DB
10618 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10619 (int (*)(struct bpf_map *map, void *value,
10620 u64 flags))NULL));
10621 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10622 (int (*)(struct bpf_map *map, void *value))NULL));
10623 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10624 (int (*)(struct bpf_map *map, void *value))NULL));
10625
09772d92
DB
10626 switch (insn->imm) {
10627 case BPF_FUNC_map_lookup_elem:
10628 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10629 __bpf_call_base;
10630 continue;
10631 case BPF_FUNC_map_update_elem:
10632 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10633 __bpf_call_base;
10634 continue;
10635 case BPF_FUNC_map_delete_elem:
10636 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10637 __bpf_call_base;
10638 continue;
84430d42
DB
10639 case BPF_FUNC_map_push_elem:
10640 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10641 __bpf_call_base;
10642 continue;
10643 case BPF_FUNC_map_pop_elem:
10644 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10645 __bpf_call_base;
10646 continue;
10647 case BPF_FUNC_map_peek_elem:
10648 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10649 __bpf_call_base;
10650 continue;
09772d92 10651 }
81ed18ab 10652
09772d92 10653 goto patch_call_imm;
81ed18ab
AS
10654 }
10655
5576b991
MKL
10656 if (prog->jit_requested && BITS_PER_LONG == 64 &&
10657 insn->imm == BPF_FUNC_jiffies64) {
10658 struct bpf_insn ld_jiffies_addr[2] = {
10659 BPF_LD_IMM64(BPF_REG_0,
10660 (unsigned long)&jiffies),
10661 };
10662
10663 insn_buf[0] = ld_jiffies_addr[0];
10664 insn_buf[1] = ld_jiffies_addr[1];
10665 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10666 BPF_REG_0, 0);
10667 cnt = 3;
10668
10669 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10670 cnt);
10671 if (!new_prog)
10672 return -ENOMEM;
10673
10674 delta += cnt - 1;
10675 env->prog = prog = new_prog;
10676 insn = new_prog->insnsi + i + delta;
10677 continue;
10678 }
10679
81ed18ab 10680patch_call_imm:
5e43f899 10681 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
10682 /* all functions that have prototype and verifier allowed
10683 * programs to call them, must be real in-kernel functions
10684 */
10685 if (!fn->func) {
61bd5218
JK
10686 verbose(env,
10687 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
10688 func_id_name(insn->imm), insn->imm);
10689 return -EFAULT;
e245c5c6 10690 }
79741b3b 10691 insn->imm = fn->func - __bpf_call_base;
e245c5c6 10692 }
e245c5c6 10693
d2e4c1e6
DB
10694 /* Since poke tab is now finalized, publish aux to tracker. */
10695 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10696 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10697 if (!map_ptr->ops->map_poke_track ||
10698 !map_ptr->ops->map_poke_untrack ||
10699 !map_ptr->ops->map_poke_run) {
10700 verbose(env, "bpf verifier is misconfigured\n");
10701 return -EINVAL;
10702 }
10703
10704 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10705 if (ret < 0) {
10706 verbose(env, "tracking tail call prog failed\n");
10707 return ret;
10708 }
10709 }
10710
79741b3b
AS
10711 return 0;
10712}
e245c5c6 10713
58e2af8b 10714static void free_states(struct bpf_verifier_env *env)
f1bca824 10715{
58e2af8b 10716 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
10717 int i;
10718
9f4686c4
AS
10719 sl = env->free_list;
10720 while (sl) {
10721 sln = sl->next;
10722 free_verifier_state(&sl->state, false);
10723 kfree(sl);
10724 sl = sln;
10725 }
51c39bb1 10726 env->free_list = NULL;
9f4686c4 10727
f1bca824
AS
10728 if (!env->explored_states)
10729 return;
10730
dc2a4ebc 10731 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
10732 sl = env->explored_states[i];
10733
a8f500af
AS
10734 while (sl) {
10735 sln = sl->next;
10736 free_verifier_state(&sl->state, false);
10737 kfree(sl);
10738 sl = sln;
10739 }
51c39bb1 10740 env->explored_states[i] = NULL;
f1bca824 10741 }
51c39bb1 10742}
f1bca824 10743
51c39bb1
AS
10744/* The verifier is using insn_aux_data[] to store temporary data during
10745 * verification and to store information for passes that run after the
10746 * verification like dead code sanitization. do_check_common() for subprogram N
10747 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10748 * temporary data after do_check_common() finds that subprogram N cannot be
10749 * verified independently. pass_cnt counts the number of times
10750 * do_check_common() was run and insn->aux->seen tells the pass number
10751 * insn_aux_data was touched. These variables are compared to clear temporary
10752 * data from failed pass. For testing and experiments do_check_common() can be
10753 * run multiple times even when prior attempt to verify is unsuccessful.
10754 */
10755static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10756{
10757 struct bpf_insn *insn = env->prog->insnsi;
10758 struct bpf_insn_aux_data *aux;
10759 int i, class;
10760
10761 for (i = 0; i < env->prog->len; i++) {
10762 class = BPF_CLASS(insn[i].code);
10763 if (class != BPF_LDX && class != BPF_STX)
10764 continue;
10765 aux = &env->insn_aux_data[i];
10766 if (aux->seen != env->pass_cnt)
10767 continue;
10768 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10769 }
f1bca824
AS
10770}
10771
51c39bb1
AS
10772static int do_check_common(struct bpf_verifier_env *env, int subprog)
10773{
6f8a57cc 10774 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
10775 struct bpf_verifier_state *state;
10776 struct bpf_reg_state *regs;
10777 int ret, i;
10778
10779 env->prev_linfo = NULL;
10780 env->pass_cnt++;
10781
10782 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10783 if (!state)
10784 return -ENOMEM;
10785 state->curframe = 0;
10786 state->speculative = false;
10787 state->branches = 1;
10788 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10789 if (!state->frame[0]) {
10790 kfree(state);
10791 return -ENOMEM;
10792 }
10793 env->cur_state = state;
10794 init_func_state(env, state->frame[0],
10795 BPF_MAIN_FUNC /* callsite */,
10796 0 /* frameno */,
10797 subprog);
10798
10799 regs = state->frame[state->curframe]->regs;
be8704ff 10800 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
10801 ret = btf_prepare_func_args(env, subprog, regs);
10802 if (ret)
10803 goto out;
10804 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10805 if (regs[i].type == PTR_TO_CTX)
10806 mark_reg_known_zero(env, regs, i);
10807 else if (regs[i].type == SCALAR_VALUE)
10808 mark_reg_unknown(env, regs, i);
10809 }
10810 } else {
10811 /* 1st arg to a function */
10812 regs[BPF_REG_1].type = PTR_TO_CTX;
10813 mark_reg_known_zero(env, regs, BPF_REG_1);
10814 ret = btf_check_func_arg_match(env, subprog, regs);
10815 if (ret == -EFAULT)
10816 /* unlikely verifier bug. abort.
10817 * ret == 0 and ret < 0 are sadly acceptable for
10818 * main() function due to backward compatibility.
10819 * Like socket filter program may be written as:
10820 * int bpf_prog(struct pt_regs *ctx)
10821 * and never dereference that ctx in the program.
10822 * 'struct pt_regs' is a type mismatch for socket
10823 * filter that should be using 'struct __sk_buff'.
10824 */
10825 goto out;
10826 }
10827
10828 ret = do_check(env);
10829out:
f59bbfc2
AS
10830 /* check for NULL is necessary, since cur_state can be freed inside
10831 * do_check() under memory pressure.
10832 */
10833 if (env->cur_state) {
10834 free_verifier_state(env->cur_state, true);
10835 env->cur_state = NULL;
10836 }
6f8a57cc
AN
10837 while (!pop_stack(env, NULL, NULL, false));
10838 if (!ret && pop_log)
10839 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
10840 free_states(env);
10841 if (ret)
10842 /* clean aux data in case subprog was rejected */
10843 sanitize_insn_aux_data(env);
10844 return ret;
10845}
10846
10847/* Verify all global functions in a BPF program one by one based on their BTF.
10848 * All global functions must pass verification. Otherwise the whole program is rejected.
10849 * Consider:
10850 * int bar(int);
10851 * int foo(int f)
10852 * {
10853 * return bar(f);
10854 * }
10855 * int bar(int b)
10856 * {
10857 * ...
10858 * }
10859 * foo() will be verified first for R1=any_scalar_value. During verification it
10860 * will be assumed that bar() already verified successfully and call to bar()
10861 * from foo() will be checked for type match only. Later bar() will be verified
10862 * independently to check that it's safe for R1=any_scalar_value.
10863 */
10864static int do_check_subprogs(struct bpf_verifier_env *env)
10865{
10866 struct bpf_prog_aux *aux = env->prog->aux;
10867 int i, ret;
10868
10869 if (!aux->func_info)
10870 return 0;
10871
10872 for (i = 1; i < env->subprog_cnt; i++) {
10873 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10874 continue;
10875 env->insn_idx = env->subprog_info[i].start;
10876 WARN_ON_ONCE(env->insn_idx == 0);
10877 ret = do_check_common(env, i);
10878 if (ret) {
10879 return ret;
10880 } else if (env->log.level & BPF_LOG_LEVEL) {
10881 verbose(env,
10882 "Func#%d is safe for any args that match its prototype\n",
10883 i);
10884 }
10885 }
10886 return 0;
10887}
10888
10889static int do_check_main(struct bpf_verifier_env *env)
10890{
10891 int ret;
10892
10893 env->insn_idx = 0;
10894 ret = do_check_common(env, 0);
10895 if (!ret)
10896 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10897 return ret;
10898}
10899
10900
06ee7115
AS
10901static void print_verification_stats(struct bpf_verifier_env *env)
10902{
10903 int i;
10904
10905 if (env->log.level & BPF_LOG_STATS) {
10906 verbose(env, "verification time %lld usec\n",
10907 div_u64(env->verification_time, 1000));
10908 verbose(env, "stack depth ");
10909 for (i = 0; i < env->subprog_cnt; i++) {
10910 u32 depth = env->subprog_info[i].stack_depth;
10911
10912 verbose(env, "%d", depth);
10913 if (i + 1 < env->subprog_cnt)
10914 verbose(env, "+");
10915 }
10916 verbose(env, "\n");
10917 }
10918 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10919 "total_states %d peak_states %d mark_read %d\n",
10920 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10921 env->max_states_per_insn, env->total_states,
10922 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
10923}
10924
27ae7997
MKL
10925static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10926{
10927 const struct btf_type *t, *func_proto;
10928 const struct bpf_struct_ops *st_ops;
10929 const struct btf_member *member;
10930 struct bpf_prog *prog = env->prog;
10931 u32 btf_id, member_idx;
10932 const char *mname;
10933
10934 btf_id = prog->aux->attach_btf_id;
10935 st_ops = bpf_struct_ops_find(btf_id);
10936 if (!st_ops) {
10937 verbose(env, "attach_btf_id %u is not a supported struct\n",
10938 btf_id);
10939 return -ENOTSUPP;
10940 }
10941
10942 t = st_ops->type;
10943 member_idx = prog->expected_attach_type;
10944 if (member_idx >= btf_type_vlen(t)) {
10945 verbose(env, "attach to invalid member idx %u of struct %s\n",
10946 member_idx, st_ops->name);
10947 return -EINVAL;
10948 }
10949
10950 member = &btf_type_member(t)[member_idx];
10951 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10952 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10953 NULL);
10954 if (!func_proto) {
10955 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10956 mname, member_idx, st_ops->name);
10957 return -EINVAL;
10958 }
10959
10960 if (st_ops->check_member) {
10961 int err = st_ops->check_member(t, member);
10962
10963 if (err) {
10964 verbose(env, "attach to unsupported member %s of struct %s\n",
10965 mname, st_ops->name);
10966 return err;
10967 }
10968 }
10969
10970 prog->aux->attach_func_proto = func_proto;
10971 prog->aux->attach_func_name = mname;
10972 env->ops = st_ops->verifier_ops;
10973
10974 return 0;
10975}
6ba43b76
KS
10976#define SECURITY_PREFIX "security_"
10977
18644cec 10978static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
6ba43b76 10979{
69191754
KS
10980 if (within_error_injection_list(addr) ||
10981 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10982 sizeof(SECURITY_PREFIX) - 1))
6ba43b76 10983 return 0;
6ba43b76 10984
6ba43b76
KS
10985 return -EINVAL;
10986}
27ae7997 10987
38207291
MKL
10988static int check_attach_btf_id(struct bpf_verifier_env *env)
10989{
10990 struct bpf_prog *prog = env->prog;
be8704ff 10991 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
5b92a28a 10992 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 10993 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 10994 const char prefix[] = "btf_trace_";
15d83c4d 10995 struct btf_func_model fmodel;
5b92a28a 10996 int ret = 0, subprog = -1, i;
fec56f58 10997 struct bpf_trampoline *tr;
38207291 10998 const struct btf_type *t;
5b92a28a 10999 bool conservative = true;
38207291 11000 const char *tname;
5b92a28a 11001 struct btf *btf;
fec56f58 11002 long addr;
5b92a28a 11003 u64 key;
38207291 11004
27ae7997
MKL
11005 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11006 return check_struct_ops_btf_id(env);
11007
9e4e01df
KS
11008 if (prog->type != BPF_PROG_TYPE_TRACING &&
11009 prog->type != BPF_PROG_TYPE_LSM &&
11010 !prog_extension)
f1b9509c 11011 return 0;
38207291 11012
f1b9509c
AS
11013 if (!btf_id) {
11014 verbose(env, "Tracing programs must provide btf_id\n");
11015 return -EINVAL;
11016 }
5b92a28a
AS
11017 btf = bpf_prog_get_target_btf(prog);
11018 if (!btf) {
11019 verbose(env,
11020 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11021 return -EINVAL;
11022 }
11023 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
11024 if (!t) {
11025 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
11026 return -EINVAL;
11027 }
5b92a28a 11028 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
11029 if (!tname) {
11030 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
11031 return -EINVAL;
11032 }
5b92a28a
AS
11033 if (tgt_prog) {
11034 struct bpf_prog_aux *aux = tgt_prog->aux;
11035
11036 for (i = 0; i < aux->func_info_cnt; i++)
11037 if (aux->func_info[i].type_id == btf_id) {
11038 subprog = i;
11039 break;
11040 }
11041 if (subprog == -1) {
11042 verbose(env, "Subprog %s doesn't exist\n", tname);
11043 return -EINVAL;
11044 }
11045 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11046 if (prog_extension) {
11047 if (conservative) {
11048 verbose(env,
11049 "Cannot replace static functions\n");
11050 return -EINVAL;
11051 }
11052 if (!prog->jit_requested) {
11053 verbose(env,
11054 "Extension programs should be JITed\n");
11055 return -EINVAL;
11056 }
11057 env->ops = bpf_verifier_ops[tgt_prog->type];
03f87c0b 11058 prog->expected_attach_type = tgt_prog->expected_attach_type;
be8704ff
AS
11059 }
11060 if (!tgt_prog->jited) {
11061 verbose(env, "Can attach to only JITed progs\n");
11062 return -EINVAL;
11063 }
11064 if (tgt_prog->type == prog->type) {
11065 /* Cannot fentry/fexit another fentry/fexit program.
11066 * Cannot attach program extension to another extension.
11067 * It's ok to attach fentry/fexit to extension program.
11068 */
11069 verbose(env, "Cannot recursively attach\n");
11070 return -EINVAL;
11071 }
11072 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11073 prog_extension &&
11074 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11075 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11076 /* Program extensions can extend all program types
11077 * except fentry/fexit. The reason is the following.
11078 * The fentry/fexit programs are used for performance
11079 * analysis, stats and can be attached to any program
11080 * type except themselves. When extension program is
11081 * replacing XDP function it is necessary to allow
11082 * performance analysis of all functions. Both original
11083 * XDP program and its program extension. Hence
11084 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11085 * allowed. If extending of fentry/fexit was allowed it
11086 * would be possible to create long call chain
11087 * fentry->extension->fentry->extension beyond
11088 * reasonable stack size. Hence extending fentry is not
11089 * allowed.
11090 */
11091 verbose(env, "Cannot extend fentry/fexit\n");
11092 return -EINVAL;
11093 }
5b92a28a
AS
11094 key = ((u64)aux->id) << 32 | btf_id;
11095 } else {
be8704ff
AS
11096 if (prog_extension) {
11097 verbose(env, "Cannot replace kernel functions\n");
11098 return -EINVAL;
11099 }
5b92a28a
AS
11100 key = btf_id;
11101 }
f1b9509c
AS
11102
11103 switch (prog->expected_attach_type) {
11104 case BPF_TRACE_RAW_TP:
5b92a28a
AS
11105 if (tgt_prog) {
11106 verbose(env,
11107 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11108 return -EINVAL;
11109 }
38207291
MKL
11110 if (!btf_type_is_typedef(t)) {
11111 verbose(env, "attach_btf_id %u is not a typedef\n",
11112 btf_id);
11113 return -EINVAL;
11114 }
f1b9509c 11115 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
11116 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
11117 btf_id, tname);
11118 return -EINVAL;
11119 }
11120 tname += sizeof(prefix) - 1;
5b92a28a 11121 t = btf_type_by_id(btf, t->type);
38207291
MKL
11122 if (!btf_type_is_ptr(t))
11123 /* should never happen in valid vmlinux build */
11124 return -EINVAL;
5b92a28a 11125 t = btf_type_by_id(btf, t->type);
38207291
MKL
11126 if (!btf_type_is_func_proto(t))
11127 /* should never happen in valid vmlinux build */
11128 return -EINVAL;
11129
11130 /* remember two read only pointers that are valid for
11131 * the life time of the kernel
11132 */
11133 prog->aux->attach_func_name = tname;
11134 prog->aux->attach_func_proto = t;
11135 prog->aux->attach_btf_trace = true;
f1b9509c 11136 return 0;
15d83c4d
YS
11137 case BPF_TRACE_ITER:
11138 if (!btf_type_is_func(t)) {
11139 verbose(env, "attach_btf_id %u is not a function\n",
11140 btf_id);
11141 return -EINVAL;
11142 }
11143 t = btf_type_by_id(btf, t->type);
11144 if (!btf_type_is_func_proto(t))
11145 return -EINVAL;
11146 prog->aux->attach_func_name = tname;
11147 prog->aux->attach_func_proto = t;
11148 if (!bpf_iter_prog_supported(prog))
11149 return -EINVAL;
11150 ret = btf_distill_func_proto(&env->log, btf, t,
11151 tname, &fmodel);
11152 return ret;
be8704ff
AS
11153 default:
11154 if (!prog_extension)
11155 return -EINVAL;
11156 /* fallthrough */
ae240823 11157 case BPF_MODIFY_RETURN:
9e4e01df 11158 case BPF_LSM_MAC:
fec56f58
AS
11159 case BPF_TRACE_FENTRY:
11160 case BPF_TRACE_FEXIT:
9e4e01df
KS
11161 prog->aux->attach_func_name = tname;
11162 if (prog->type == BPF_PROG_TYPE_LSM) {
11163 ret = bpf_lsm_verify_prog(&env->log, prog);
11164 if (ret < 0)
11165 return ret;
11166 }
11167
fec56f58
AS
11168 if (!btf_type_is_func(t)) {
11169 verbose(env, "attach_btf_id %u is not a function\n",
11170 btf_id);
11171 return -EINVAL;
11172 }
be8704ff
AS
11173 if (prog_extension &&
11174 btf_check_type_match(env, prog, btf, t))
11175 return -EINVAL;
5b92a28a 11176 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11177 if (!btf_type_is_func_proto(t))
11178 return -EINVAL;
5b92a28a 11179 tr = bpf_trampoline_lookup(key);
fec56f58
AS
11180 if (!tr)
11181 return -ENOMEM;
5b92a28a 11182 /* t is either vmlinux type or another program's type */
fec56f58
AS
11183 prog->aux->attach_func_proto = t;
11184 mutex_lock(&tr->mutex);
11185 if (tr->func.addr) {
11186 prog->aux->trampoline = tr;
11187 goto out;
11188 }
5b92a28a
AS
11189 if (tgt_prog && conservative) {
11190 prog->aux->attach_func_proto = NULL;
11191 t = NULL;
11192 }
11193 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
11194 tname, &tr->func.model);
11195 if (ret < 0)
11196 goto out;
5b92a28a 11197 if (tgt_prog) {
e9eeec58
YS
11198 if (subprog == 0)
11199 addr = (long) tgt_prog->bpf_func;
11200 else
11201 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11202 } else {
11203 addr = kallsyms_lookup_name(tname);
11204 if (!addr) {
11205 verbose(env,
11206 "The address of function %s cannot be found\n",
11207 tname);
11208 ret = -ENOENT;
11209 goto out;
11210 }
fec56f58 11211 }
18644cec
AS
11212
11213 if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11214 ret = check_attach_modify_return(prog, addr);
11215 if (ret)
11216 verbose(env, "%s() is not modifiable\n",
11217 prog->aux->attach_func_name);
11218 }
11219
11220 if (ret)
11221 goto out;
fec56f58
AS
11222 tr->func.addr = (void *)addr;
11223 prog->aux->trampoline = tr;
11224out:
11225 mutex_unlock(&tr->mutex);
11226 if (ret)
11227 bpf_trampoline_put(tr);
11228 return ret;
38207291 11229 }
38207291
MKL
11230}
11231
838e9690
YS
11232int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11233 union bpf_attr __user *uattr)
51580e79 11234{
06ee7115 11235 u64 start_time = ktime_get_ns();
58e2af8b 11236 struct bpf_verifier_env *env;
b9193c1b 11237 struct bpf_verifier_log *log;
9e4c24e7 11238 int i, len, ret = -EINVAL;
e2ae4ca2 11239 bool is_priv;
51580e79 11240
eba0c929
AB
11241 /* no program is valid */
11242 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11243 return -EINVAL;
11244
58e2af8b 11245 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11246 * allocate/free it every time bpf_check() is called
11247 */
58e2af8b 11248 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11249 if (!env)
11250 return -ENOMEM;
61bd5218 11251 log = &env->log;
cbd35700 11252
9e4c24e7 11253 len = (*prog)->len;
fad953ce 11254 env->insn_aux_data =
9e4c24e7 11255 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11256 ret = -ENOMEM;
11257 if (!env->insn_aux_data)
11258 goto err_free_env;
9e4c24e7
JK
11259 for (i = 0; i < len; i++)
11260 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11261 env->prog = *prog;
00176a34 11262 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11263 is_priv = bpf_capable();
0246e64d 11264
8580ac94
AS
11265 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11266 mutex_lock(&bpf_verifier_lock);
11267 if (!btf_vmlinux)
11268 btf_vmlinux = btf_parse_vmlinux();
11269 mutex_unlock(&bpf_verifier_lock);
11270 }
11271
cbd35700 11272 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11273 if (!is_priv)
11274 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11275
11276 if (attr->log_level || attr->log_buf || attr->log_size) {
11277 /* user requested verbose verifier output
11278 * and supplied buffer to store the verification trace
11279 */
e7bf8249
JK
11280 log->level = attr->log_level;
11281 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11282 log->len_total = attr->log_size;
cbd35700
AS
11283
11284 ret = -EINVAL;
e7bf8249 11285 /* log attributes have to be sane */
7a9f5c65 11286 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11287 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11288 goto err_unlock;
cbd35700 11289 }
1ad2f583 11290
8580ac94
AS
11291 if (IS_ERR(btf_vmlinux)) {
11292 /* Either gcc or pahole or kernel are broken. */
11293 verbose(env, "in-kernel BTF is malformed\n");
11294 ret = PTR_ERR(btf_vmlinux);
38207291 11295 goto skip_full_check;
8580ac94
AS
11296 }
11297
1ad2f583
DB
11298 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11299 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 11300 env->strict_alignment = true;
e9ee9efc
DM
11301 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11302 env->strict_alignment = false;
cbd35700 11303
2c78ee89 11304 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 11305 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
11306 env->bypass_spec_v1 = bpf_bypass_spec_v1();
11307 env->bypass_spec_v4 = bpf_bypass_spec_v4();
11308 env->bpf_capable = bpf_capable();
e2ae4ca2 11309
10d274e8
AS
11310 if (is_priv)
11311 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11312
f4e3ec0d
JK
11313 ret = replace_map_fd_with_map_ptr(env);
11314 if (ret < 0)
11315 goto skip_full_check;
11316
cae1927c 11317 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 11318 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 11319 if (ret)
f4e3ec0d 11320 goto skip_full_check;
ab3f0063
JK
11321 }
11322
dc2a4ebc 11323 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 11324 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
11325 GFP_USER);
11326 ret = -ENOMEM;
11327 if (!env->explored_states)
11328 goto skip_full_check;
11329
d9762e84 11330 ret = check_subprogs(env);
475fb78f
AS
11331 if (ret < 0)
11332 goto skip_full_check;
11333
c454a46b 11334 ret = check_btf_info(env, attr, uattr);
838e9690
YS
11335 if (ret < 0)
11336 goto skip_full_check;
11337
be8704ff
AS
11338 ret = check_attach_btf_id(env);
11339 if (ret)
11340 goto skip_full_check;
11341
d9762e84
MKL
11342 ret = check_cfg(env);
11343 if (ret < 0)
11344 goto skip_full_check;
11345
51c39bb1
AS
11346 ret = do_check_subprogs(env);
11347 ret = ret ?: do_check_main(env);
cbd35700 11348
c941ce9c
QM
11349 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11350 ret = bpf_prog_offload_finalize(env);
11351
0246e64d 11352skip_full_check:
51c39bb1 11353 kvfree(env->explored_states);
0246e64d 11354
c131187d 11355 if (ret == 0)
9b38c405 11356 ret = check_max_stack_depth(env);
c131187d 11357
9b38c405 11358 /* instruction rewrites happen after this point */
e2ae4ca2
JK
11359 if (is_priv) {
11360 if (ret == 0)
11361 opt_hard_wire_dead_code_branches(env);
52875a04
JK
11362 if (ret == 0)
11363 ret = opt_remove_dead_code(env);
a1b14abc
JK
11364 if (ret == 0)
11365 ret = opt_remove_nops(env);
52875a04
JK
11366 } else {
11367 if (ret == 0)
11368 sanitize_dead_code(env);
e2ae4ca2
JK
11369 }
11370
9bac3d6d
AS
11371 if (ret == 0)
11372 /* program is valid, convert *(u32*)(ctx + off) accesses */
11373 ret = convert_ctx_accesses(env);
11374
e245c5c6 11375 if (ret == 0)
79741b3b 11376 ret = fixup_bpf_calls(env);
e245c5c6 11377
a4b1d3c1
JW
11378 /* do 32-bit optimization after insn patching has done so those patched
11379 * insns could be handled correctly.
11380 */
d6c2308c
JW
11381 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11382 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11383 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11384 : false;
a4b1d3c1
JW
11385 }
11386
1ea47e01
AS
11387 if (ret == 0)
11388 ret = fixup_call_args(env);
11389
06ee7115
AS
11390 env->verification_time = ktime_get_ns() - start_time;
11391 print_verification_stats(env);
11392
a2a7d570 11393 if (log->level && bpf_verifier_log_full(log))
cbd35700 11394 ret = -ENOSPC;
a2a7d570 11395 if (log->level && !log->ubuf) {
cbd35700 11396 ret = -EFAULT;
a2a7d570 11397 goto err_release_maps;
cbd35700
AS
11398 }
11399
0246e64d
AS
11400 if (ret == 0 && env->used_map_cnt) {
11401 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
11402 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11403 sizeof(env->used_maps[0]),
11404 GFP_KERNEL);
0246e64d 11405
9bac3d6d 11406 if (!env->prog->aux->used_maps) {
0246e64d 11407 ret = -ENOMEM;
a2a7d570 11408 goto err_release_maps;
0246e64d
AS
11409 }
11410
9bac3d6d 11411 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 11412 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 11413 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
11414
11415 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11416 * bpf_ld_imm64 instructions
11417 */
11418 convert_pseudo_ld_imm64(env);
11419 }
cbd35700 11420
ba64e7d8
YS
11421 if (ret == 0)
11422 adjust_btf_func(env);
11423
a2a7d570 11424err_release_maps:
9bac3d6d 11425 if (!env->prog->aux->used_maps)
0246e64d 11426 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 11427 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
11428 */
11429 release_maps(env);
03f87c0b
THJ
11430
11431 /* extension progs temporarily inherit the attach_type of their targets
11432 for verification purposes, so set it back to zero before returning
11433 */
11434 if (env->prog->type == BPF_PROG_TYPE_EXT)
11435 env->prog->expected_attach_type = 0;
11436
9bac3d6d 11437 *prog = env->prog;
3df126f3 11438err_unlock:
45a73c17
AS
11439 if (!is_priv)
11440 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
11441 vfree(env->insn_aux_data);
11442err_free_env:
11443 kfree(env);
51580e79
AS
11444 return ret;
11445}