]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
tools/bpf: Add tests for BTF_KIND_FUNC_PROTO and BTF_KIND_FUNC
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
14#include <linux/kernel.h>
15#include <linux/types.h>
16#include <linux/slab.h>
17#include <linux/bpf.h>
58e2af8b 18#include <linux/bpf_verifier.h>
51580e79
AS
19#include <linux/filter.h>
20#include <net/netlink.h>
21#include <linux/file.h>
22#include <linux/vmalloc.h>
ebb676da 23#include <linux/stringify.h>
cc8b0b92
AS
24#include <linux/bsearch.h>
25#include <linux/sort.h>
c195651e 26#include <linux/perf_event.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34
JK
30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31#define BPF_PROG_TYPE(_id, _name) \
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
34#include <linux/bpf_types.h>
35#undef BPF_PROG_TYPE
36#undef BPF_MAP_TYPE
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
cbd35700
AS
174};
175
8e17c1b1 176#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
177#define BPF_COMPLEXITY_LIMIT_STACK 1024
178
c93552c4
DB
179#define BPF_MAP_PTR_UNPRIV 1UL
180#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
181 POISON_POINTER_DELTA))
182#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183
184static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185{
186 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
187}
188
189static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190{
191 return aux->map_state & BPF_MAP_PTR_UNPRIV;
192}
193
194static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 const struct bpf_map *map, bool unpriv)
196{
197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 unpriv |= bpf_map_ptr_unpriv(aux);
199 aux->map_state = (unsigned long)map |
200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201}
fad73a1a 202
33ff9823
DB
203struct bpf_call_arg_meta {
204 struct bpf_map *map_ptr;
435faee1 205 bool raw_mode;
36bbef52 206 bool pkt_access;
435faee1
DB
207 int regno;
208 int access_size;
849fa506
YS
209 s64 msize_smax_value;
210 u64 msize_umax_value;
fd978bf7 211 int ptr_id;
33ff9823
DB
212};
213
cbd35700
AS
214static DEFINE_MUTEX(bpf_verifier_lock);
215
77d2e05a
MKL
216void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
217 va_list args)
cbd35700 218{
a2a7d570 219 unsigned int n;
cbd35700 220
a2a7d570 221 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
222
223 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
224 "verifier log line truncated - local buffer too short\n");
225
226 n = min(log->len_total - log->len_used - 1, n);
227 log->kbuf[n] = '\0';
228
229 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
230 log->len_used += n;
231 else
232 log->ubuf = NULL;
cbd35700 233}
abe08840
JO
234
235/* log_level controls verbosity level of eBPF verifier.
236 * bpf_verifier_log_write() is used to dump the verification trace to the log,
237 * so the user can figure out what's wrong with the program
430e68d1 238 */
abe08840
JO
239__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
240 const char *fmt, ...)
241{
242 va_list args;
243
77d2e05a
MKL
244 if (!bpf_verifier_log_needed(&env->log))
245 return;
246
abe08840 247 va_start(args, fmt);
77d2e05a 248 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
249 va_end(args);
250}
251EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
252
253__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
254{
77d2e05a 255 struct bpf_verifier_env *env = private_data;
abe08840
JO
256 va_list args;
257
77d2e05a
MKL
258 if (!bpf_verifier_log_needed(&env->log))
259 return;
260
abe08840 261 va_start(args, fmt);
77d2e05a 262 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
263 va_end(args);
264}
cbd35700 265
de8f3a83
DB
266static bool type_is_pkt_pointer(enum bpf_reg_type type)
267{
268 return type == PTR_TO_PACKET ||
269 type == PTR_TO_PACKET_META;
270}
271
840b9615
JS
272static bool reg_type_may_be_null(enum bpf_reg_type type)
273{
fd978bf7
JS
274 return type == PTR_TO_MAP_VALUE_OR_NULL ||
275 type == PTR_TO_SOCKET_OR_NULL;
276}
277
278static bool type_is_refcounted(enum bpf_reg_type type)
279{
280 return type == PTR_TO_SOCKET;
281}
282
283static bool type_is_refcounted_or_null(enum bpf_reg_type type)
284{
285 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
286}
287
288static bool reg_is_refcounted(const struct bpf_reg_state *reg)
289{
290 return type_is_refcounted(reg->type);
291}
292
293static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
294{
295 return type_is_refcounted_or_null(reg->type);
296}
297
298static bool arg_type_is_refcounted(enum bpf_arg_type type)
299{
300 return type == ARG_PTR_TO_SOCKET;
301}
302
303/* Determine whether the function releases some resources allocated by another
304 * function call. The first reference type argument will be assumed to be
305 * released by release_reference().
306 */
307static bool is_release_function(enum bpf_func_id func_id)
308{
6acc9b43 309 return func_id == BPF_FUNC_sk_release;
840b9615
JS
310}
311
17a52670
AS
312/* string representation of 'enum bpf_reg_type' */
313static const char * const reg_type_str[] = {
314 [NOT_INIT] = "?",
f1174f77 315 [SCALAR_VALUE] = "inv",
17a52670
AS
316 [PTR_TO_CTX] = "ctx",
317 [CONST_PTR_TO_MAP] = "map_ptr",
318 [PTR_TO_MAP_VALUE] = "map_value",
319 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 320 [PTR_TO_STACK] = "fp",
969bf05e 321 [PTR_TO_PACKET] = "pkt",
de8f3a83 322 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 323 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 324 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
325 [PTR_TO_SOCKET] = "sock",
326 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
327};
328
8efea21d
EC
329static char slot_type_char[] = {
330 [STACK_INVALID] = '?',
331 [STACK_SPILL] = 'r',
332 [STACK_MISC] = 'm',
333 [STACK_ZERO] = '0',
334};
335
4e92024a
AS
336static void print_liveness(struct bpf_verifier_env *env,
337 enum bpf_reg_liveness live)
338{
339 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
340 verbose(env, "_");
341 if (live & REG_LIVE_READ)
342 verbose(env, "r");
343 if (live & REG_LIVE_WRITTEN)
344 verbose(env, "w");
345}
346
f4d7e40a
AS
347static struct bpf_func_state *func(struct bpf_verifier_env *env,
348 const struct bpf_reg_state *reg)
349{
350 struct bpf_verifier_state *cur = env->cur_state;
351
352 return cur->frame[reg->frameno];
353}
354
61bd5218 355static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 356 const struct bpf_func_state *state)
17a52670 357{
f4d7e40a 358 const struct bpf_reg_state *reg;
17a52670
AS
359 enum bpf_reg_type t;
360 int i;
361
f4d7e40a
AS
362 if (state->frameno)
363 verbose(env, " frame%d:", state->frameno);
17a52670 364 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
365 reg = &state->regs[i];
366 t = reg->type;
17a52670
AS
367 if (t == NOT_INIT)
368 continue;
4e92024a
AS
369 verbose(env, " R%d", i);
370 print_liveness(env, reg->live);
371 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
372 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
373 tnum_is_const(reg->var_off)) {
374 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 375 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
376 if (t == PTR_TO_STACK)
377 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 378 } else {
61bd5218 379 verbose(env, "(id=%d", reg->id);
f1174f77 380 if (t != SCALAR_VALUE)
61bd5218 381 verbose(env, ",off=%d", reg->off);
de8f3a83 382 if (type_is_pkt_pointer(t))
61bd5218 383 verbose(env, ",r=%d", reg->range);
f1174f77
EC
384 else if (t == CONST_PTR_TO_MAP ||
385 t == PTR_TO_MAP_VALUE ||
386 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 387 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
388 reg->map_ptr->key_size,
389 reg->map_ptr->value_size);
7d1238f2
EC
390 if (tnum_is_const(reg->var_off)) {
391 /* Typically an immediate SCALAR_VALUE, but
392 * could be a pointer whose offset is too big
393 * for reg->off
394 */
61bd5218 395 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
396 } else {
397 if (reg->smin_value != reg->umin_value &&
398 reg->smin_value != S64_MIN)
61bd5218 399 verbose(env, ",smin_value=%lld",
7d1238f2
EC
400 (long long)reg->smin_value);
401 if (reg->smax_value != reg->umax_value &&
402 reg->smax_value != S64_MAX)
61bd5218 403 verbose(env, ",smax_value=%lld",
7d1238f2
EC
404 (long long)reg->smax_value);
405 if (reg->umin_value != 0)
61bd5218 406 verbose(env, ",umin_value=%llu",
7d1238f2
EC
407 (unsigned long long)reg->umin_value);
408 if (reg->umax_value != U64_MAX)
61bd5218 409 verbose(env, ",umax_value=%llu",
7d1238f2
EC
410 (unsigned long long)reg->umax_value);
411 if (!tnum_is_unknown(reg->var_off)) {
412 char tn_buf[48];
f1174f77 413
7d1238f2 414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 415 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 416 }
f1174f77 417 }
61bd5218 418 verbose(env, ")");
f1174f77 419 }
17a52670 420 }
638f5b90 421 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
422 char types_buf[BPF_REG_SIZE + 1];
423 bool valid = false;
424 int j;
425
426 for (j = 0; j < BPF_REG_SIZE; j++) {
427 if (state->stack[i].slot_type[j] != STACK_INVALID)
428 valid = true;
429 types_buf[j] = slot_type_char[
430 state->stack[i].slot_type[j]];
431 }
432 types_buf[BPF_REG_SIZE] = 0;
433 if (!valid)
434 continue;
435 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
436 print_liveness(env, state->stack[i].spilled_ptr.live);
437 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 438 verbose(env, "=%s",
638f5b90 439 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
440 else
441 verbose(env, "=%s", types_buf);
17a52670 442 }
fd978bf7
JS
443 if (state->acquired_refs && state->refs[0].id) {
444 verbose(env, " refs=%d", state->refs[0].id);
445 for (i = 1; i < state->acquired_refs; i++)
446 if (state->refs[i].id)
447 verbose(env, ",%d", state->refs[i].id);
448 }
61bd5218 449 verbose(env, "\n");
17a52670
AS
450}
451
84dbf350
JS
452#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
453static int copy_##NAME##_state(struct bpf_func_state *dst, \
454 const struct bpf_func_state *src) \
455{ \
456 if (!src->FIELD) \
457 return 0; \
458 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
459 /* internal bug, make state invalid to reject the program */ \
460 memset(dst, 0, sizeof(*dst)); \
461 return -EFAULT; \
462 } \
463 memcpy(dst->FIELD, src->FIELD, \
464 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
465 return 0; \
638f5b90 466}
fd978bf7
JS
467/* copy_reference_state() */
468COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
469/* copy_stack_state() */
470COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
471#undef COPY_STATE_FN
472
473#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
474static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
475 bool copy_old) \
476{ \
477 u32 old_size = state->COUNT; \
478 struct bpf_##NAME##_state *new_##FIELD; \
479 int slot = size / SIZE; \
480 \
481 if (size <= old_size || !size) { \
482 if (copy_old) \
483 return 0; \
484 state->COUNT = slot * SIZE; \
485 if (!size && old_size) { \
486 kfree(state->FIELD); \
487 state->FIELD = NULL; \
488 } \
489 return 0; \
490 } \
491 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
492 GFP_KERNEL); \
493 if (!new_##FIELD) \
494 return -ENOMEM; \
495 if (copy_old) { \
496 if (state->FIELD) \
497 memcpy(new_##FIELD, state->FIELD, \
498 sizeof(*new_##FIELD) * (old_size / SIZE)); \
499 memset(new_##FIELD + old_size / SIZE, 0, \
500 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
501 } \
502 state->COUNT = slot * SIZE; \
503 kfree(state->FIELD); \
504 state->FIELD = new_##FIELD; \
505 return 0; \
506}
fd978bf7
JS
507/* realloc_reference_state() */
508REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
509/* realloc_stack_state() */
510REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
511#undef REALLOC_STATE_FN
638f5b90
AS
512
513/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
514 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 515 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
516 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
517 * which realloc_stack_state() copies over. It points to previous
518 * bpf_verifier_state which is never reallocated.
638f5b90 519 */
fd978bf7
JS
520static int realloc_func_state(struct bpf_func_state *state, int stack_size,
521 int refs_size, bool copy_old)
638f5b90 522{
fd978bf7
JS
523 int err = realloc_reference_state(state, refs_size, copy_old);
524 if (err)
525 return err;
526 return realloc_stack_state(state, stack_size, copy_old);
527}
528
529/* Acquire a pointer id from the env and update the state->refs to include
530 * this new pointer reference.
531 * On success, returns a valid pointer id to associate with the register
532 * On failure, returns a negative errno.
638f5b90 533 */
fd978bf7 534static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 535{
fd978bf7
JS
536 struct bpf_func_state *state = cur_func(env);
537 int new_ofs = state->acquired_refs;
538 int id, err;
539
540 err = realloc_reference_state(state, state->acquired_refs + 1, true);
541 if (err)
542 return err;
543 id = ++env->id_gen;
544 state->refs[new_ofs].id = id;
545 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 546
fd978bf7
JS
547 return id;
548}
549
550/* release function corresponding to acquire_reference_state(). Idempotent. */
551static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
552{
553 int i, last_idx;
554
555 if (!ptr_id)
556 return -EFAULT;
557
558 last_idx = state->acquired_refs - 1;
559 for (i = 0; i < state->acquired_refs; i++) {
560 if (state->refs[i].id == ptr_id) {
561 if (last_idx && i != last_idx)
562 memcpy(&state->refs[i], &state->refs[last_idx],
563 sizeof(*state->refs));
564 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
565 state->acquired_refs--;
638f5b90 566 return 0;
638f5b90 567 }
638f5b90 568 }
fd978bf7
JS
569 return -EFAULT;
570}
571
572/* variation on the above for cases where we expect that there must be an
573 * outstanding reference for the specified ptr_id.
574 */
575static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
576{
577 struct bpf_func_state *state = cur_func(env);
578 int err;
579
580 err = __release_reference_state(state, ptr_id);
581 if (WARN_ON_ONCE(err != 0))
582 verbose(env, "verifier internal error: can't release reference\n");
583 return err;
584}
585
586static int transfer_reference_state(struct bpf_func_state *dst,
587 struct bpf_func_state *src)
588{
589 int err = realloc_reference_state(dst, src->acquired_refs, false);
590 if (err)
591 return err;
592 err = copy_reference_state(dst, src);
593 if (err)
594 return err;
638f5b90
AS
595 return 0;
596}
597
f4d7e40a
AS
598static void free_func_state(struct bpf_func_state *state)
599{
5896351e
AS
600 if (!state)
601 return;
fd978bf7 602 kfree(state->refs);
f4d7e40a
AS
603 kfree(state->stack);
604 kfree(state);
605}
606
1969db47
AS
607static void free_verifier_state(struct bpf_verifier_state *state,
608 bool free_self)
638f5b90 609{
f4d7e40a
AS
610 int i;
611
612 for (i = 0; i <= state->curframe; i++) {
613 free_func_state(state->frame[i]);
614 state->frame[i] = NULL;
615 }
1969db47
AS
616 if (free_self)
617 kfree(state);
638f5b90
AS
618}
619
620/* copy verifier state from src to dst growing dst stack space
621 * when necessary to accommodate larger src stack
622 */
f4d7e40a
AS
623static int copy_func_state(struct bpf_func_state *dst,
624 const struct bpf_func_state *src)
638f5b90
AS
625{
626 int err;
627
fd978bf7
JS
628 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
629 false);
630 if (err)
631 return err;
632 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
633 err = copy_reference_state(dst, src);
638f5b90
AS
634 if (err)
635 return err;
638f5b90
AS
636 return copy_stack_state(dst, src);
637}
638
f4d7e40a
AS
639static int copy_verifier_state(struct bpf_verifier_state *dst_state,
640 const struct bpf_verifier_state *src)
641{
642 struct bpf_func_state *dst;
643 int i, err;
644
645 /* if dst has more stack frames then src frame, free them */
646 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
647 free_func_state(dst_state->frame[i]);
648 dst_state->frame[i] = NULL;
649 }
650 dst_state->curframe = src->curframe;
f4d7e40a
AS
651 for (i = 0; i <= src->curframe; i++) {
652 dst = dst_state->frame[i];
653 if (!dst) {
654 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
655 if (!dst)
656 return -ENOMEM;
657 dst_state->frame[i] = dst;
658 }
659 err = copy_func_state(dst, src->frame[i]);
660 if (err)
661 return err;
662 }
663 return 0;
664}
665
638f5b90
AS
666static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
667 int *insn_idx)
668{
669 struct bpf_verifier_state *cur = env->cur_state;
670 struct bpf_verifier_stack_elem *elem, *head = env->head;
671 int err;
17a52670
AS
672
673 if (env->head == NULL)
638f5b90 674 return -ENOENT;
17a52670 675
638f5b90
AS
676 if (cur) {
677 err = copy_verifier_state(cur, &head->st);
678 if (err)
679 return err;
680 }
681 if (insn_idx)
682 *insn_idx = head->insn_idx;
17a52670 683 if (prev_insn_idx)
638f5b90
AS
684 *prev_insn_idx = head->prev_insn_idx;
685 elem = head->next;
1969db47 686 free_verifier_state(&head->st, false);
638f5b90 687 kfree(head);
17a52670
AS
688 env->head = elem;
689 env->stack_size--;
638f5b90 690 return 0;
17a52670
AS
691}
692
58e2af8b
JK
693static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
694 int insn_idx, int prev_insn_idx)
17a52670 695{
638f5b90 696 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 697 struct bpf_verifier_stack_elem *elem;
638f5b90 698 int err;
17a52670 699
638f5b90 700 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
701 if (!elem)
702 goto err;
703
17a52670
AS
704 elem->insn_idx = insn_idx;
705 elem->prev_insn_idx = prev_insn_idx;
706 elem->next = env->head;
707 env->head = elem;
708 env->stack_size++;
1969db47
AS
709 err = copy_verifier_state(&elem->st, cur);
710 if (err)
711 goto err;
07016151 712 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 713 verbose(env, "BPF program is too complex\n");
17a52670
AS
714 goto err;
715 }
716 return &elem->st;
717err:
5896351e
AS
718 free_verifier_state(env->cur_state, true);
719 env->cur_state = NULL;
17a52670 720 /* pop all elements and return */
638f5b90 721 while (!pop_stack(env, NULL, NULL));
17a52670
AS
722 return NULL;
723}
724
725#define CALLER_SAVED_REGS 6
726static const int caller_saved[CALLER_SAVED_REGS] = {
727 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
728};
729
f1174f77
EC
730static void __mark_reg_not_init(struct bpf_reg_state *reg);
731
b03c9f9f
EC
732/* Mark the unknown part of a register (variable offset or scalar value) as
733 * known to have the value @imm.
734 */
735static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
736{
a9c676bc
AS
737 /* Clear id, off, and union(map_ptr, range) */
738 memset(((u8 *)reg) + sizeof(reg->type), 0,
739 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
740 reg->var_off = tnum_const(imm);
741 reg->smin_value = (s64)imm;
742 reg->smax_value = (s64)imm;
743 reg->umin_value = imm;
744 reg->umax_value = imm;
745}
746
f1174f77
EC
747/* Mark the 'variable offset' part of a register as zero. This should be
748 * used only on registers holding a pointer type.
749 */
750static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 751{
b03c9f9f 752 __mark_reg_known(reg, 0);
f1174f77 753}
a9789ef9 754
cc2b14d5
AS
755static void __mark_reg_const_zero(struct bpf_reg_state *reg)
756{
757 __mark_reg_known(reg, 0);
cc2b14d5
AS
758 reg->type = SCALAR_VALUE;
759}
760
61bd5218
JK
761static void mark_reg_known_zero(struct bpf_verifier_env *env,
762 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
763{
764 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 765 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
766 /* Something bad happened, let's kill all regs */
767 for (regno = 0; regno < MAX_BPF_REG; regno++)
768 __mark_reg_not_init(regs + regno);
769 return;
770 }
771 __mark_reg_known_zero(regs + regno);
772}
773
de8f3a83
DB
774static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
775{
776 return type_is_pkt_pointer(reg->type);
777}
778
779static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
780{
781 return reg_is_pkt_pointer(reg) ||
782 reg->type == PTR_TO_PACKET_END;
783}
784
785/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
786static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
787 enum bpf_reg_type which)
788{
789 /* The register can already have a range from prior markings.
790 * This is fine as long as it hasn't been advanced from its
791 * origin.
792 */
793 return reg->type == which &&
794 reg->id == 0 &&
795 reg->off == 0 &&
796 tnum_equals_const(reg->var_off, 0);
797}
798
b03c9f9f
EC
799/* Attempts to improve min/max values based on var_off information */
800static void __update_reg_bounds(struct bpf_reg_state *reg)
801{
802 /* min signed is max(sign bit) | min(other bits) */
803 reg->smin_value = max_t(s64, reg->smin_value,
804 reg->var_off.value | (reg->var_off.mask & S64_MIN));
805 /* max signed is min(sign bit) | max(other bits) */
806 reg->smax_value = min_t(s64, reg->smax_value,
807 reg->var_off.value | (reg->var_off.mask & S64_MAX));
808 reg->umin_value = max(reg->umin_value, reg->var_off.value);
809 reg->umax_value = min(reg->umax_value,
810 reg->var_off.value | reg->var_off.mask);
811}
812
813/* Uses signed min/max values to inform unsigned, and vice-versa */
814static void __reg_deduce_bounds(struct bpf_reg_state *reg)
815{
816 /* Learn sign from signed bounds.
817 * If we cannot cross the sign boundary, then signed and unsigned bounds
818 * are the same, so combine. This works even in the negative case, e.g.
819 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
820 */
821 if (reg->smin_value >= 0 || reg->smax_value < 0) {
822 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
823 reg->umin_value);
824 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
825 reg->umax_value);
826 return;
827 }
828 /* Learn sign from unsigned bounds. Signed bounds cross the sign
829 * boundary, so we must be careful.
830 */
831 if ((s64)reg->umax_value >= 0) {
832 /* Positive. We can't learn anything from the smin, but smax
833 * is positive, hence safe.
834 */
835 reg->smin_value = reg->umin_value;
836 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
837 reg->umax_value);
838 } else if ((s64)reg->umin_value < 0) {
839 /* Negative. We can't learn anything from the smax, but smin
840 * is negative, hence safe.
841 */
842 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
843 reg->umin_value);
844 reg->smax_value = reg->umax_value;
845 }
846}
847
848/* Attempts to improve var_off based on unsigned min/max information */
849static void __reg_bound_offset(struct bpf_reg_state *reg)
850{
851 reg->var_off = tnum_intersect(reg->var_off,
852 tnum_range(reg->umin_value,
853 reg->umax_value));
854}
855
856/* Reset the min/max bounds of a register */
857static void __mark_reg_unbounded(struct bpf_reg_state *reg)
858{
859 reg->smin_value = S64_MIN;
860 reg->smax_value = S64_MAX;
861 reg->umin_value = 0;
862 reg->umax_value = U64_MAX;
863}
864
f1174f77
EC
865/* Mark a register as having a completely unknown (scalar) value. */
866static void __mark_reg_unknown(struct bpf_reg_state *reg)
867{
a9c676bc
AS
868 /*
869 * Clear type, id, off, and union(map_ptr, range) and
870 * padding between 'type' and union
871 */
872 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 873 reg->type = SCALAR_VALUE;
f1174f77 874 reg->var_off = tnum_unknown;
f4d7e40a 875 reg->frameno = 0;
b03c9f9f 876 __mark_reg_unbounded(reg);
f1174f77
EC
877}
878
61bd5218
JK
879static void mark_reg_unknown(struct bpf_verifier_env *env,
880 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
881{
882 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 883 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
884 /* Something bad happened, let's kill all regs except FP */
885 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
886 __mark_reg_not_init(regs + regno);
887 return;
888 }
889 __mark_reg_unknown(regs + regno);
890}
891
892static void __mark_reg_not_init(struct bpf_reg_state *reg)
893{
894 __mark_reg_unknown(reg);
895 reg->type = NOT_INIT;
896}
897
61bd5218
JK
898static void mark_reg_not_init(struct bpf_verifier_env *env,
899 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
900{
901 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 902 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
903 /* Something bad happened, let's kill all regs except FP */
904 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
905 __mark_reg_not_init(regs + regno);
906 return;
907 }
908 __mark_reg_not_init(regs + regno);
a9789ef9
DB
909}
910
61bd5218 911static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 912 struct bpf_func_state *state)
17a52670 913{
f4d7e40a 914 struct bpf_reg_state *regs = state->regs;
17a52670
AS
915 int i;
916
dc503a8a 917 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 918 mark_reg_not_init(env, regs, i);
dc503a8a 919 regs[i].live = REG_LIVE_NONE;
679c782d 920 regs[i].parent = NULL;
dc503a8a 921 }
17a52670
AS
922
923 /* frame pointer */
f1174f77 924 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 925 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 926 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
927
928 /* 1st arg to a function */
929 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 930 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
931}
932
f4d7e40a
AS
933#define BPF_MAIN_FUNC (-1)
934static void init_func_state(struct bpf_verifier_env *env,
935 struct bpf_func_state *state,
936 int callsite, int frameno, int subprogno)
937{
938 state->callsite = callsite;
939 state->frameno = frameno;
940 state->subprogno = subprogno;
941 init_reg_state(env, state);
942}
943
17a52670
AS
944enum reg_arg_type {
945 SRC_OP, /* register is used as source operand */
946 DST_OP, /* register is used as destination operand */
947 DST_OP_NO_MARK /* same as above, check only, don't mark */
948};
949
cc8b0b92
AS
950static int cmp_subprogs(const void *a, const void *b)
951{
9c8105bd
JW
952 return ((struct bpf_subprog_info *)a)->start -
953 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
954}
955
956static int find_subprog(struct bpf_verifier_env *env, int off)
957{
9c8105bd 958 struct bpf_subprog_info *p;
cc8b0b92 959
9c8105bd
JW
960 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
961 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
962 if (!p)
963 return -ENOENT;
9c8105bd 964 return p - env->subprog_info;
cc8b0b92
AS
965
966}
967
968static int add_subprog(struct bpf_verifier_env *env, int off)
969{
970 int insn_cnt = env->prog->len;
971 int ret;
972
973 if (off >= insn_cnt || off < 0) {
974 verbose(env, "call to invalid destination\n");
975 return -EINVAL;
976 }
977 ret = find_subprog(env, off);
978 if (ret >= 0)
979 return 0;
4cb3d99c 980 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
981 verbose(env, "too many subprograms\n");
982 return -E2BIG;
983 }
9c8105bd
JW
984 env->subprog_info[env->subprog_cnt++].start = off;
985 sort(env->subprog_info, env->subprog_cnt,
986 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
987 return 0;
988}
989
990static int check_subprogs(struct bpf_verifier_env *env)
991{
992 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 993 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
994 struct bpf_insn *insn = env->prog->insnsi;
995 int insn_cnt = env->prog->len;
996
f910cefa
JW
997 /* Add entry function. */
998 ret = add_subprog(env, 0);
999 if (ret < 0)
1000 return ret;
1001
cc8b0b92
AS
1002 /* determine subprog starts. The end is one before the next starts */
1003 for (i = 0; i < insn_cnt; i++) {
1004 if (insn[i].code != (BPF_JMP | BPF_CALL))
1005 continue;
1006 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1007 continue;
1008 if (!env->allow_ptr_leaks) {
1009 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1010 return -EPERM;
1011 }
cc8b0b92
AS
1012 ret = add_subprog(env, i + insn[i].imm + 1);
1013 if (ret < 0)
1014 return ret;
1015 }
1016
4cb3d99c
JW
1017 /* Add a fake 'exit' subprog which could simplify subprog iteration
1018 * logic. 'subprog_cnt' should not be increased.
1019 */
1020 subprog[env->subprog_cnt].start = insn_cnt;
1021
cc8b0b92
AS
1022 if (env->log.level > 1)
1023 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1024 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1025
1026 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1027 subprog_start = subprog[cur_subprog].start;
1028 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1029 for (i = 0; i < insn_cnt; i++) {
1030 u8 code = insn[i].code;
1031
1032 if (BPF_CLASS(code) != BPF_JMP)
1033 goto next;
1034 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1035 goto next;
1036 off = i + insn[i].off + 1;
1037 if (off < subprog_start || off >= subprog_end) {
1038 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1039 return -EINVAL;
1040 }
1041next:
1042 if (i == subprog_end - 1) {
1043 /* to avoid fall-through from one subprog into another
1044 * the last insn of the subprog should be either exit
1045 * or unconditional jump back
1046 */
1047 if (code != (BPF_JMP | BPF_EXIT) &&
1048 code != (BPF_JMP | BPF_JA)) {
1049 verbose(env, "last insn is not an exit or jmp\n");
1050 return -EINVAL;
1051 }
1052 subprog_start = subprog_end;
4cb3d99c
JW
1053 cur_subprog++;
1054 if (cur_subprog < env->subprog_cnt)
9c8105bd 1055 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1056 }
1057 }
1058 return 0;
1059}
1060
679c782d
EC
1061/* Parentage chain of this register (or stack slot) should take care of all
1062 * issues like callee-saved registers, stack slot allocation time, etc.
1063 */
f4d7e40a 1064static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1065 const struct bpf_reg_state *state,
1066 struct bpf_reg_state *parent)
f4d7e40a
AS
1067{
1068 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1069
1070 while (parent) {
1071 /* if read wasn't screened by an earlier write ... */
679c782d 1072 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a
EC
1073 break;
1074 /* ... then we depend on parent's value */
679c782d 1075 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1076 state = parent;
1077 parent = state->parent;
f4d7e40a 1078 writes = true;
dc503a8a 1079 }
f4d7e40a 1080 return 0;
dc503a8a
EC
1081}
1082
1083static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1084 enum reg_arg_type t)
1085{
f4d7e40a
AS
1086 struct bpf_verifier_state *vstate = env->cur_state;
1087 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1088 struct bpf_reg_state *regs = state->regs;
dc503a8a 1089
17a52670 1090 if (regno >= MAX_BPF_REG) {
61bd5218 1091 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1092 return -EINVAL;
1093 }
1094
1095 if (t == SRC_OP) {
1096 /* check whether register used as source operand can be read */
1097 if (regs[regno].type == NOT_INIT) {
61bd5218 1098 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1099 return -EACCES;
1100 }
679c782d
EC
1101 /* We don't need to worry about FP liveness because it's read-only */
1102 if (regno != BPF_REG_FP)
1103 return mark_reg_read(env, &regs[regno],
1104 regs[regno].parent);
17a52670
AS
1105 } else {
1106 /* check whether register used as dest operand can be written to */
1107 if (regno == BPF_REG_FP) {
61bd5218 1108 verbose(env, "frame pointer is read only\n");
17a52670
AS
1109 return -EACCES;
1110 }
dc503a8a 1111 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1112 if (t == DST_OP)
61bd5218 1113 mark_reg_unknown(env, regs, regno);
17a52670
AS
1114 }
1115 return 0;
1116}
1117
1be7f75d
AS
1118static bool is_spillable_regtype(enum bpf_reg_type type)
1119{
1120 switch (type) {
1121 case PTR_TO_MAP_VALUE:
1122 case PTR_TO_MAP_VALUE_OR_NULL:
1123 case PTR_TO_STACK:
1124 case PTR_TO_CTX:
969bf05e 1125 case PTR_TO_PACKET:
de8f3a83 1126 case PTR_TO_PACKET_META:
969bf05e 1127 case PTR_TO_PACKET_END:
d58e468b 1128 case PTR_TO_FLOW_KEYS:
1be7f75d 1129 case CONST_PTR_TO_MAP:
c64b7983
JS
1130 case PTR_TO_SOCKET:
1131 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1132 return true;
1133 default:
1134 return false;
1135 }
1136}
1137
cc2b14d5
AS
1138/* Does this register contain a constant zero? */
1139static bool register_is_null(struct bpf_reg_state *reg)
1140{
1141 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1142}
1143
17a52670
AS
1144/* check_stack_read/write functions track spill/fill of registers,
1145 * stack boundary and alignment are checked in check_mem_access()
1146 */
61bd5218 1147static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1148 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1149 int off, int size, int value_regno, int insn_idx)
17a52670 1150{
f4d7e40a 1151 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1152 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1153 enum bpf_reg_type type;
638f5b90 1154
f4d7e40a 1155 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1156 state->acquired_refs, true);
638f5b90
AS
1157 if (err)
1158 return err;
9c399760
AS
1159 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1160 * so it's aligned access and [off, off + size) are within stack limits
1161 */
638f5b90
AS
1162 if (!env->allow_ptr_leaks &&
1163 state->stack[spi].slot_type[0] == STACK_SPILL &&
1164 size != BPF_REG_SIZE) {
1165 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1166 return -EACCES;
1167 }
17a52670 1168
f4d7e40a 1169 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1170 if (value_regno >= 0 &&
f4d7e40a 1171 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1172
1173 /* register containing pointer is being spilled into stack */
9c399760 1174 if (size != BPF_REG_SIZE) {
61bd5218 1175 verbose(env, "invalid size of register spill\n");
17a52670
AS
1176 return -EACCES;
1177 }
1178
f4d7e40a
AS
1179 if (state != cur && type == PTR_TO_STACK) {
1180 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1181 return -EINVAL;
1182 }
1183
17a52670 1184 /* save register state */
f4d7e40a 1185 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1186 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1187
af86ca4e
AS
1188 for (i = 0; i < BPF_REG_SIZE; i++) {
1189 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1190 !env->allow_ptr_leaks) {
1191 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1192 int soff = (-spi - 1) * BPF_REG_SIZE;
1193
1194 /* detected reuse of integer stack slot with a pointer
1195 * which means either llvm is reusing stack slot or
1196 * an attacker is trying to exploit CVE-2018-3639
1197 * (speculative store bypass)
1198 * Have to sanitize that slot with preemptive
1199 * store of zero.
1200 */
1201 if (*poff && *poff != soff) {
1202 /* disallow programs where single insn stores
1203 * into two different stack slots, since verifier
1204 * cannot sanitize them
1205 */
1206 verbose(env,
1207 "insn %d cannot access two stack slots fp%d and fp%d",
1208 insn_idx, *poff, soff);
1209 return -EINVAL;
1210 }
1211 *poff = soff;
1212 }
638f5b90 1213 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1214 }
9c399760 1215 } else {
cc2b14d5
AS
1216 u8 type = STACK_MISC;
1217
679c782d
EC
1218 /* regular write of data into stack destroys any spilled ptr */
1219 state->stack[spi].spilled_ptr.type = NOT_INIT;
9c399760 1220
cc2b14d5
AS
1221 /* only mark the slot as written if all 8 bytes were written
1222 * otherwise read propagation may incorrectly stop too soon
1223 * when stack slots are partially written.
1224 * This heuristic means that read propagation will be
1225 * conservative, since it will add reg_live_read marks
1226 * to stack slots all the way to first state when programs
1227 * writes+reads less than 8 bytes
1228 */
1229 if (size == BPF_REG_SIZE)
1230 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1231
1232 /* when we zero initialize stack slots mark them as such */
1233 if (value_regno >= 0 &&
1234 register_is_null(&cur->regs[value_regno]))
1235 type = STACK_ZERO;
1236
9c399760 1237 for (i = 0; i < size; i++)
638f5b90 1238 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1239 type;
17a52670
AS
1240 }
1241 return 0;
1242}
1243
61bd5218 1244static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1245 struct bpf_func_state *reg_state /* func where register points to */,
1246 int off, int size, int value_regno)
17a52670 1247{
f4d7e40a
AS
1248 struct bpf_verifier_state *vstate = env->cur_state;
1249 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1250 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1251 u8 *stype;
17a52670 1252
f4d7e40a 1253 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1254 verbose(env, "invalid read from stack off %d+0 size %d\n",
1255 off, size);
1256 return -EACCES;
1257 }
f4d7e40a 1258 stype = reg_state->stack[spi].slot_type;
17a52670 1259
638f5b90 1260 if (stype[0] == STACK_SPILL) {
9c399760 1261 if (size != BPF_REG_SIZE) {
61bd5218 1262 verbose(env, "invalid size of register spill\n");
17a52670
AS
1263 return -EACCES;
1264 }
9c399760 1265 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1266 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1267 verbose(env, "corrupted spill memory\n");
17a52670
AS
1268 return -EACCES;
1269 }
1270 }
1271
dc503a8a 1272 if (value_regno >= 0) {
17a52670 1273 /* restore register state from stack */
f4d7e40a 1274 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1275 /* mark reg as written since spilled pointer state likely
1276 * has its liveness marks cleared by is_state_visited()
1277 * which resets stack/reg liveness for state transitions
1278 */
1279 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1280 }
679c782d
EC
1281 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1282 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1283 return 0;
1284 } else {
cc2b14d5
AS
1285 int zeros = 0;
1286
17a52670 1287 for (i = 0; i < size; i++) {
cc2b14d5
AS
1288 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1289 continue;
1290 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1291 zeros++;
1292 continue;
17a52670 1293 }
cc2b14d5
AS
1294 verbose(env, "invalid read from stack off %d+%d size %d\n",
1295 off, i, size);
1296 return -EACCES;
1297 }
679c782d
EC
1298 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1299 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1300 if (value_regno >= 0) {
1301 if (zeros == size) {
1302 /* any size read into register is zero extended,
1303 * so the whole register == const_zero
1304 */
1305 __mark_reg_const_zero(&state->regs[value_regno]);
1306 } else {
1307 /* have read misc data from the stack */
1308 mark_reg_unknown(env, state->regs, value_regno);
1309 }
1310 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1311 }
17a52670
AS
1312 return 0;
1313 }
1314}
1315
1316/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1317static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1318 int size, bool zero_size_allowed)
17a52670 1319{
638f5b90
AS
1320 struct bpf_reg_state *regs = cur_regs(env);
1321 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1322
9fd29c08
YS
1323 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1324 off + size > map->value_size) {
61bd5218 1325 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1326 map->value_size, off, size);
1327 return -EACCES;
1328 }
1329 return 0;
1330}
1331
f1174f77
EC
1332/* check read/write into a map element with possible variable offset */
1333static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1334 int off, int size, bool zero_size_allowed)
dbcfe5f7 1335{
f4d7e40a
AS
1336 struct bpf_verifier_state *vstate = env->cur_state;
1337 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1338 struct bpf_reg_state *reg = &state->regs[regno];
1339 int err;
1340
f1174f77
EC
1341 /* We may have adjusted the register to this map value, so we
1342 * need to try adding each of min_value and max_value to off
1343 * to make sure our theoretical access will be safe.
dbcfe5f7 1344 */
61bd5218
JK
1345 if (env->log.level)
1346 print_verifier_state(env, state);
dbcfe5f7
GB
1347 /* The minimum value is only important with signed
1348 * comparisons where we can't assume the floor of a
1349 * value is 0. If we are using signed variables for our
1350 * index'es we need to make sure that whatever we use
1351 * will have a set floor within our range.
1352 */
b03c9f9f 1353 if (reg->smin_value < 0) {
61bd5218 1354 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1355 regno);
1356 return -EACCES;
1357 }
9fd29c08
YS
1358 err = __check_map_access(env, regno, reg->smin_value + off, size,
1359 zero_size_allowed);
dbcfe5f7 1360 if (err) {
61bd5218
JK
1361 verbose(env, "R%d min value is outside of the array range\n",
1362 regno);
dbcfe5f7
GB
1363 return err;
1364 }
1365
b03c9f9f
EC
1366 /* If we haven't set a max value then we need to bail since we can't be
1367 * sure we won't do bad things.
1368 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1369 */
b03c9f9f 1370 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1371 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1372 regno);
1373 return -EACCES;
1374 }
9fd29c08
YS
1375 err = __check_map_access(env, regno, reg->umax_value + off, size,
1376 zero_size_allowed);
f1174f77 1377 if (err)
61bd5218
JK
1378 verbose(env, "R%d max value is outside of the array range\n",
1379 regno);
f1174f77 1380 return err;
dbcfe5f7
GB
1381}
1382
969bf05e
AS
1383#define MAX_PACKET_OFF 0xffff
1384
58e2af8b 1385static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1386 const struct bpf_call_arg_meta *meta,
1387 enum bpf_access_type t)
4acf6c0b 1388{
36bbef52 1389 switch (env->prog->type) {
5d66fa7d 1390 /* Program types only with direct read access go here! */
3a0af8fd
TG
1391 case BPF_PROG_TYPE_LWT_IN:
1392 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1393 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1394 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1395 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1396 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1397 if (t == BPF_WRITE)
1398 return false;
7e57fbb2 1399 /* fallthrough */
5d66fa7d
DB
1400
1401 /* Program types with direct read + write access go here! */
36bbef52
DB
1402 case BPF_PROG_TYPE_SCHED_CLS:
1403 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1404 case BPF_PROG_TYPE_XDP:
3a0af8fd 1405 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1406 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1407 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1408 if (meta)
1409 return meta->pkt_access;
1410
1411 env->seen_direct_write = true;
4acf6c0b
BB
1412 return true;
1413 default:
1414 return false;
1415 }
1416}
1417
f1174f77 1418static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1419 int off, int size, bool zero_size_allowed)
969bf05e 1420{
638f5b90 1421 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1422 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1423
9fd29c08
YS
1424 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1425 (u64)off + size > reg->range) {
61bd5218 1426 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1427 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1428 return -EACCES;
1429 }
1430 return 0;
1431}
1432
f1174f77 1433static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1434 int size, bool zero_size_allowed)
f1174f77 1435{
638f5b90 1436 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1437 struct bpf_reg_state *reg = &regs[regno];
1438 int err;
1439
1440 /* We may have added a variable offset to the packet pointer; but any
1441 * reg->range we have comes after that. We are only checking the fixed
1442 * offset.
1443 */
1444
1445 /* We don't allow negative numbers, because we aren't tracking enough
1446 * detail to prove they're safe.
1447 */
b03c9f9f 1448 if (reg->smin_value < 0) {
61bd5218 1449 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1450 regno);
1451 return -EACCES;
1452 }
9fd29c08 1453 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1454 if (err) {
61bd5218 1455 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1456 return err;
1457 }
e647815a
JW
1458
1459 /* __check_packet_access has made sure "off + size - 1" is within u16.
1460 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1461 * otherwise find_good_pkt_pointers would have refused to set range info
1462 * that __check_packet_access would have rejected this pkt access.
1463 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1464 */
1465 env->prog->aux->max_pkt_offset =
1466 max_t(u32, env->prog->aux->max_pkt_offset,
1467 off + reg->umax_value + size - 1);
1468
f1174f77
EC
1469 return err;
1470}
1471
1472/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1473static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1474 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1475{
f96da094
DB
1476 struct bpf_insn_access_aux info = {
1477 .reg_type = *reg_type,
1478 };
31fd8581 1479
4f9218aa 1480 if (env->ops->is_valid_access &&
5e43f899 1481 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1482 /* A non zero info.ctx_field_size indicates that this field is a
1483 * candidate for later verifier transformation to load the whole
1484 * field and then apply a mask when accessed with a narrower
1485 * access than actual ctx access size. A zero info.ctx_field_size
1486 * will only allow for whole field access and rejects any other
1487 * type of narrower access.
31fd8581 1488 */
23994631 1489 *reg_type = info.reg_type;
31fd8581 1490
4f9218aa 1491 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1492 /* remember the offset of last byte accessed in ctx */
1493 if (env->prog->aux->max_ctx_offset < off + size)
1494 env->prog->aux->max_ctx_offset = off + size;
17a52670 1495 return 0;
32bbe007 1496 }
17a52670 1497
61bd5218 1498 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1499 return -EACCES;
1500}
1501
d58e468b
PP
1502static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1503 int size)
1504{
1505 if (size < 0 || off < 0 ||
1506 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1507 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1508 off, size);
1509 return -EACCES;
1510 }
1511 return 0;
1512}
1513
c64b7983
JS
1514static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1515 int size, enum bpf_access_type t)
1516{
1517 struct bpf_reg_state *regs = cur_regs(env);
1518 struct bpf_reg_state *reg = &regs[regno];
1519 struct bpf_insn_access_aux info;
1520
1521 if (reg->smin_value < 0) {
1522 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1523 regno);
1524 return -EACCES;
1525 }
1526
1527 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1528 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1529 off, size);
1530 return -EACCES;
1531 }
1532
1533 return 0;
1534}
1535
4cabc5b1
DB
1536static bool __is_pointer_value(bool allow_ptr_leaks,
1537 const struct bpf_reg_state *reg)
1be7f75d 1538{
4cabc5b1 1539 if (allow_ptr_leaks)
1be7f75d
AS
1540 return false;
1541
f1174f77 1542 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1543}
1544
2a159c6f
DB
1545static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1546{
1547 return cur_regs(env) + regno;
1548}
1549
4cabc5b1
DB
1550static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1551{
2a159c6f 1552 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1553}
1554
f37a8cb8
DB
1555static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1556{
2a159c6f 1557 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1558
fd978bf7
JS
1559 return reg->type == PTR_TO_CTX ||
1560 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1561}
1562
ca369602
DB
1563static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1564{
2a159c6f 1565 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1566
1567 return type_is_pkt_pointer(reg->type);
1568}
1569
4b5defde
DB
1570static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1571{
1572 const struct bpf_reg_state *reg = reg_state(env, regno);
1573
1574 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1575 return reg->type == PTR_TO_FLOW_KEYS;
1576}
1577
61bd5218
JK
1578static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1579 const struct bpf_reg_state *reg,
d1174416 1580 int off, int size, bool strict)
969bf05e 1581{
f1174f77 1582 struct tnum reg_off;
e07b98d9 1583 int ip_align;
d1174416
DM
1584
1585 /* Byte size accesses are always allowed. */
1586 if (!strict || size == 1)
1587 return 0;
1588
e4eda884
DM
1589 /* For platforms that do not have a Kconfig enabling
1590 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1591 * NET_IP_ALIGN is universally set to '2'. And on platforms
1592 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1593 * to this code only in strict mode where we want to emulate
1594 * the NET_IP_ALIGN==2 checking. Therefore use an
1595 * unconditional IP align value of '2'.
e07b98d9 1596 */
e4eda884 1597 ip_align = 2;
f1174f77
EC
1598
1599 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1600 if (!tnum_is_aligned(reg_off, size)) {
1601 char tn_buf[48];
1602
1603 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1604 verbose(env,
1605 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1606 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1607 return -EACCES;
1608 }
79adffcd 1609
969bf05e
AS
1610 return 0;
1611}
1612
61bd5218
JK
1613static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1614 const struct bpf_reg_state *reg,
f1174f77
EC
1615 const char *pointer_desc,
1616 int off, int size, bool strict)
79adffcd 1617{
f1174f77
EC
1618 struct tnum reg_off;
1619
1620 /* Byte size accesses are always allowed. */
1621 if (!strict || size == 1)
1622 return 0;
1623
1624 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1625 if (!tnum_is_aligned(reg_off, size)) {
1626 char tn_buf[48];
1627
1628 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1629 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1630 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1631 return -EACCES;
1632 }
1633
969bf05e
AS
1634 return 0;
1635}
1636
e07b98d9 1637static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1638 const struct bpf_reg_state *reg, int off,
1639 int size, bool strict_alignment_once)
79adffcd 1640{
ca369602 1641 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1642 const char *pointer_desc = "";
d1174416 1643
79adffcd
DB
1644 switch (reg->type) {
1645 case PTR_TO_PACKET:
de8f3a83
DB
1646 case PTR_TO_PACKET_META:
1647 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1648 * right in front, treat it the very same way.
1649 */
61bd5218 1650 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1651 case PTR_TO_FLOW_KEYS:
1652 pointer_desc = "flow keys ";
1653 break;
f1174f77
EC
1654 case PTR_TO_MAP_VALUE:
1655 pointer_desc = "value ";
1656 break;
1657 case PTR_TO_CTX:
1658 pointer_desc = "context ";
1659 break;
1660 case PTR_TO_STACK:
1661 pointer_desc = "stack ";
a5ec6ae1
JH
1662 /* The stack spill tracking logic in check_stack_write()
1663 * and check_stack_read() relies on stack accesses being
1664 * aligned.
1665 */
1666 strict = true;
f1174f77 1667 break;
c64b7983
JS
1668 case PTR_TO_SOCKET:
1669 pointer_desc = "sock ";
1670 break;
79adffcd 1671 default:
f1174f77 1672 break;
79adffcd 1673 }
61bd5218
JK
1674 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1675 strict);
79adffcd
DB
1676}
1677
f4d7e40a
AS
1678static int update_stack_depth(struct bpf_verifier_env *env,
1679 const struct bpf_func_state *func,
1680 int off)
1681{
9c8105bd 1682 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1683
1684 if (stack >= -off)
1685 return 0;
1686
1687 /* update known max for given subprogram */
9c8105bd 1688 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1689 return 0;
1690}
f4d7e40a 1691
70a87ffe
AS
1692/* starting from main bpf function walk all instructions of the function
1693 * and recursively walk all callees that given function can call.
1694 * Ignore jump and exit insns.
1695 * Since recursion is prevented by check_cfg() this algorithm
1696 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1697 */
1698static int check_max_stack_depth(struct bpf_verifier_env *env)
1699{
9c8105bd
JW
1700 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1701 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1702 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1703 int ret_insn[MAX_CALL_FRAMES];
1704 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1705
70a87ffe
AS
1706process_func:
1707 /* round up to 32-bytes, since this is granularity
1708 * of interpreter stack size
1709 */
9c8105bd 1710 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1711 if (depth > MAX_BPF_STACK) {
f4d7e40a 1712 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1713 frame + 1, depth);
f4d7e40a
AS
1714 return -EACCES;
1715 }
70a87ffe 1716continue_func:
4cb3d99c 1717 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1718 for (; i < subprog_end; i++) {
1719 if (insn[i].code != (BPF_JMP | BPF_CALL))
1720 continue;
1721 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1722 continue;
1723 /* remember insn and function to return to */
1724 ret_insn[frame] = i + 1;
9c8105bd 1725 ret_prog[frame] = idx;
70a87ffe
AS
1726
1727 /* find the callee */
1728 i = i + insn[i].imm + 1;
9c8105bd
JW
1729 idx = find_subprog(env, i);
1730 if (idx < 0) {
70a87ffe
AS
1731 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1732 i);
1733 return -EFAULT;
1734 }
70a87ffe
AS
1735 frame++;
1736 if (frame >= MAX_CALL_FRAMES) {
1737 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1738 return -EFAULT;
1739 }
1740 goto process_func;
1741 }
1742 /* end of for() loop means the last insn of the 'subprog'
1743 * was reached. Doesn't matter whether it was JA or EXIT
1744 */
1745 if (frame == 0)
1746 return 0;
9c8105bd 1747 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1748 frame--;
1749 i = ret_insn[frame];
9c8105bd 1750 idx = ret_prog[frame];
70a87ffe 1751 goto continue_func;
f4d7e40a
AS
1752}
1753
19d28fbd 1754#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1755static int get_callee_stack_depth(struct bpf_verifier_env *env,
1756 const struct bpf_insn *insn, int idx)
1757{
1758 int start = idx + insn->imm + 1, subprog;
1759
1760 subprog = find_subprog(env, start);
1761 if (subprog < 0) {
1762 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1763 start);
1764 return -EFAULT;
1765 }
9c8105bd 1766 return env->subprog_info[subprog].stack_depth;
1ea47e01 1767}
19d28fbd 1768#endif
1ea47e01 1769
58990d1f
DB
1770static int check_ctx_reg(struct bpf_verifier_env *env,
1771 const struct bpf_reg_state *reg, int regno)
1772{
1773 /* Access to ctx or passing it to a helper is only allowed in
1774 * its original, unmodified form.
1775 */
1776
1777 if (reg->off) {
1778 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1779 regno, reg->off);
1780 return -EACCES;
1781 }
1782
1783 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1784 char tn_buf[48];
1785
1786 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1787 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1788 return -EACCES;
1789 }
1790
1791 return 0;
1792}
1793
0c17d1d2
JH
1794/* truncate register to smaller size (in bytes)
1795 * must be called with size < BPF_REG_SIZE
1796 */
1797static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1798{
1799 u64 mask;
1800
1801 /* clear high bits in bit representation */
1802 reg->var_off = tnum_cast(reg->var_off, size);
1803
1804 /* fix arithmetic bounds */
1805 mask = ((u64)1 << (size * 8)) - 1;
1806 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1807 reg->umin_value &= mask;
1808 reg->umax_value &= mask;
1809 } else {
1810 reg->umin_value = 0;
1811 reg->umax_value = mask;
1812 }
1813 reg->smin_value = reg->umin_value;
1814 reg->smax_value = reg->umax_value;
1815}
1816
17a52670
AS
1817/* check whether memory at (regno + off) is accessible for t = (read | write)
1818 * if t==write, value_regno is a register which value is stored into memory
1819 * if t==read, value_regno is a register which will receive the value from memory
1820 * if t==write && value_regno==-1, some unknown value is stored into memory
1821 * if t==read && value_regno==-1, don't care what we read from memory
1822 */
ca369602
DB
1823static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1824 int off, int bpf_size, enum bpf_access_type t,
1825 int value_regno, bool strict_alignment_once)
17a52670 1826{
638f5b90
AS
1827 struct bpf_reg_state *regs = cur_regs(env);
1828 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1829 struct bpf_func_state *state;
17a52670
AS
1830 int size, err = 0;
1831
1832 size = bpf_size_to_bytes(bpf_size);
1833 if (size < 0)
1834 return size;
1835
f1174f77 1836 /* alignment checks will add in reg->off themselves */
ca369602 1837 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1838 if (err)
1839 return err;
17a52670 1840
f1174f77
EC
1841 /* for access checks, reg->off is just part of off */
1842 off += reg->off;
1843
1844 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1845 if (t == BPF_WRITE && value_regno >= 0 &&
1846 is_pointer_value(env, value_regno)) {
61bd5218 1847 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1848 return -EACCES;
1849 }
48461135 1850
9fd29c08 1851 err = check_map_access(env, regno, off, size, false);
17a52670 1852 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1853 mark_reg_unknown(env, regs, value_regno);
17a52670 1854
1a0dc1ac 1855 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1856 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1857
1be7f75d
AS
1858 if (t == BPF_WRITE && value_regno >= 0 &&
1859 is_pointer_value(env, value_regno)) {
61bd5218 1860 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1861 return -EACCES;
1862 }
f1174f77 1863
58990d1f
DB
1864 err = check_ctx_reg(env, reg, regno);
1865 if (err < 0)
1866 return err;
1867
31fd8581 1868 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1869 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1870 /* ctx access returns either a scalar, or a
de8f3a83
DB
1871 * PTR_TO_PACKET[_META,_END]. In the latter
1872 * case, we know the offset is zero.
f1174f77
EC
1873 */
1874 if (reg_type == SCALAR_VALUE)
638f5b90 1875 mark_reg_unknown(env, regs, value_regno);
f1174f77 1876 else
638f5b90 1877 mark_reg_known_zero(env, regs,
61bd5218 1878 value_regno);
638f5b90 1879 regs[value_regno].type = reg_type;
969bf05e 1880 }
17a52670 1881
f1174f77
EC
1882 } else if (reg->type == PTR_TO_STACK) {
1883 /* stack accesses must be at a fixed offset, so that we can
1884 * determine what type of data were returned.
1885 * See check_stack_read().
1886 */
1887 if (!tnum_is_const(reg->var_off)) {
1888 char tn_buf[48];
1889
1890 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1891 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1892 tn_buf, off, size);
1893 return -EACCES;
1894 }
1895 off += reg->var_off.value;
17a52670 1896 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1897 verbose(env, "invalid stack off=%d size=%d\n", off,
1898 size);
17a52670
AS
1899 return -EACCES;
1900 }
8726679a 1901
f4d7e40a
AS
1902 state = func(env, reg);
1903 err = update_stack_depth(env, state, off);
1904 if (err)
1905 return err;
8726679a 1906
638f5b90 1907 if (t == BPF_WRITE)
61bd5218 1908 err = check_stack_write(env, state, off, size,
af86ca4e 1909 value_regno, insn_idx);
638f5b90 1910 else
61bd5218
JK
1911 err = check_stack_read(env, state, off, size,
1912 value_regno);
de8f3a83 1913 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1914 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1915 verbose(env, "cannot write into packet\n");
969bf05e
AS
1916 return -EACCES;
1917 }
4acf6c0b
BB
1918 if (t == BPF_WRITE && value_regno >= 0 &&
1919 is_pointer_value(env, value_regno)) {
61bd5218
JK
1920 verbose(env, "R%d leaks addr into packet\n",
1921 value_regno);
4acf6c0b
BB
1922 return -EACCES;
1923 }
9fd29c08 1924 err = check_packet_access(env, regno, off, size, false);
969bf05e 1925 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1926 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
1927 } else if (reg->type == PTR_TO_FLOW_KEYS) {
1928 if (t == BPF_WRITE && value_regno >= 0 &&
1929 is_pointer_value(env, value_regno)) {
1930 verbose(env, "R%d leaks addr into flow keys\n",
1931 value_regno);
1932 return -EACCES;
1933 }
1934
1935 err = check_flow_keys_access(env, off, size);
1936 if (!err && t == BPF_READ && value_regno >= 0)
1937 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
1938 } else if (reg->type == PTR_TO_SOCKET) {
1939 if (t == BPF_WRITE) {
1940 verbose(env, "cannot write into socket\n");
1941 return -EACCES;
1942 }
1943 err = check_sock_access(env, regno, off, size, t);
1944 if (!err && value_regno >= 0)
1945 mark_reg_unknown(env, regs, value_regno);
17a52670 1946 } else {
61bd5218
JK
1947 verbose(env, "R%d invalid mem access '%s'\n", regno,
1948 reg_type_str[reg->type]);
17a52670
AS
1949 return -EACCES;
1950 }
969bf05e 1951
f1174f77 1952 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1953 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1954 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1955 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1956 }
17a52670
AS
1957 return err;
1958}
1959
31fd8581 1960static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1961{
17a52670
AS
1962 int err;
1963
1964 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1965 insn->imm != 0) {
61bd5218 1966 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1967 return -EINVAL;
1968 }
1969
1970 /* check src1 operand */
dc503a8a 1971 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1972 if (err)
1973 return err;
1974
1975 /* check src2 operand */
dc503a8a 1976 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1977 if (err)
1978 return err;
1979
6bdf6abc 1980 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1981 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1982 return -EACCES;
1983 }
1984
ca369602 1985 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde
DB
1986 is_pkt_reg(env, insn->dst_reg) ||
1987 is_flow_key_reg(env, insn->dst_reg)) {
ca369602 1988 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
1989 insn->dst_reg,
1990 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
1991 return -EACCES;
1992 }
1993
17a52670 1994 /* check whether atomic_add can read the memory */
31fd8581 1995 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1996 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1997 if (err)
1998 return err;
1999
2000 /* check whether atomic_add can write into the same memory */
31fd8581 2001 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2002 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2003}
2004
2005/* when register 'regno' is passed into function that will read 'access_size'
2006 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2007 * and all elements of stack are initialized.
2008 * Unlike most pointer bounds-checking functions, this one doesn't take an
2009 * 'off' argument, so it has to add in reg->off itself.
17a52670 2010 */
58e2af8b 2011static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2012 int access_size, bool zero_size_allowed,
2013 struct bpf_call_arg_meta *meta)
17a52670 2014{
2a159c6f 2015 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2016 struct bpf_func_state *state = func(env, reg);
638f5b90 2017 int off, i, slot, spi;
17a52670 2018
914cb781 2019 if (reg->type != PTR_TO_STACK) {
f1174f77 2020 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2021 if (zero_size_allowed && access_size == 0 &&
914cb781 2022 register_is_null(reg))
8e2fe1d9
DB
2023 return 0;
2024
61bd5218 2025 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2026 reg_type_str[reg->type],
8e2fe1d9 2027 reg_type_str[PTR_TO_STACK]);
17a52670 2028 return -EACCES;
8e2fe1d9 2029 }
17a52670 2030
f1174f77 2031 /* Only allow fixed-offset stack reads */
914cb781 2032 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2033 char tn_buf[48];
2034
914cb781 2035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2036 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2037 regno, tn_buf);
ea25f914 2038 return -EACCES;
f1174f77 2039 }
914cb781 2040 off = reg->off + reg->var_off.value;
17a52670 2041 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2042 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2043 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2044 regno, off, access_size);
2045 return -EACCES;
2046 }
2047
435faee1
DB
2048 if (meta && meta->raw_mode) {
2049 meta->access_size = access_size;
2050 meta->regno = regno;
2051 return 0;
2052 }
2053
17a52670 2054 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2055 u8 *stype;
2056
638f5b90
AS
2057 slot = -(off + i) - 1;
2058 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2059 if (state->allocated_stack <= slot)
2060 goto err;
2061 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2062 if (*stype == STACK_MISC)
2063 goto mark;
2064 if (*stype == STACK_ZERO) {
2065 /* helper can write anything into the stack */
2066 *stype = STACK_MISC;
2067 goto mark;
17a52670 2068 }
cc2b14d5
AS
2069err:
2070 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2071 off, i, access_size);
2072 return -EACCES;
2073mark:
2074 /* reading any byte out of 8-byte 'spill_slot' will cause
2075 * the whole slot to be marked as 'read'
2076 */
679c782d
EC
2077 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2078 state->stack[spi].spilled_ptr.parent);
17a52670 2079 }
f4d7e40a 2080 return update_stack_depth(env, state, off);
17a52670
AS
2081}
2082
06c1c049
GB
2083static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2084 int access_size, bool zero_size_allowed,
2085 struct bpf_call_arg_meta *meta)
2086{
638f5b90 2087 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2088
f1174f77 2089 switch (reg->type) {
06c1c049 2090 case PTR_TO_PACKET:
de8f3a83 2091 case PTR_TO_PACKET_META:
9fd29c08
YS
2092 return check_packet_access(env, regno, reg->off, access_size,
2093 zero_size_allowed);
06c1c049 2094 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2095 return check_map_access(env, regno, reg->off, access_size,
2096 zero_size_allowed);
f1174f77 2097 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2098 return check_stack_boundary(env, regno, access_size,
2099 zero_size_allowed, meta);
2100 }
2101}
2102
90133415
DB
2103static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2104{
2105 return type == ARG_PTR_TO_MEM ||
2106 type == ARG_PTR_TO_MEM_OR_NULL ||
2107 type == ARG_PTR_TO_UNINIT_MEM;
2108}
2109
2110static bool arg_type_is_mem_size(enum bpf_arg_type type)
2111{
2112 return type == ARG_CONST_SIZE ||
2113 type == ARG_CONST_SIZE_OR_ZERO;
2114}
2115
58e2af8b 2116static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2117 enum bpf_arg_type arg_type,
2118 struct bpf_call_arg_meta *meta)
17a52670 2119{
638f5b90 2120 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2121 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2122 int err = 0;
2123
80f1d68c 2124 if (arg_type == ARG_DONTCARE)
17a52670
AS
2125 return 0;
2126
dc503a8a
EC
2127 err = check_reg_arg(env, regno, SRC_OP);
2128 if (err)
2129 return err;
17a52670 2130
1be7f75d
AS
2131 if (arg_type == ARG_ANYTHING) {
2132 if (is_pointer_value(env, regno)) {
61bd5218
JK
2133 verbose(env, "R%d leaks addr into helper function\n",
2134 regno);
1be7f75d
AS
2135 return -EACCES;
2136 }
80f1d68c 2137 return 0;
1be7f75d 2138 }
80f1d68c 2139
de8f3a83 2140 if (type_is_pkt_pointer(type) &&
3a0af8fd 2141 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2142 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2143 return -EACCES;
2144 }
2145
8e2fe1d9 2146 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2147 arg_type == ARG_PTR_TO_MAP_VALUE ||
2148 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2149 expected_type = PTR_TO_STACK;
d71962f3 2150 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2151 type != expected_type)
6841de8b 2152 goto err_type;
39f19ebb
AS
2153 } else if (arg_type == ARG_CONST_SIZE ||
2154 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2155 expected_type = SCALAR_VALUE;
2156 if (type != expected_type)
6841de8b 2157 goto err_type;
17a52670
AS
2158 } else if (arg_type == ARG_CONST_MAP_PTR) {
2159 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2160 if (type != expected_type)
2161 goto err_type;
608cd71a
AS
2162 } else if (arg_type == ARG_PTR_TO_CTX) {
2163 expected_type = PTR_TO_CTX;
6841de8b
AS
2164 if (type != expected_type)
2165 goto err_type;
58990d1f
DB
2166 err = check_ctx_reg(env, reg, regno);
2167 if (err < 0)
2168 return err;
c64b7983
JS
2169 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2170 expected_type = PTR_TO_SOCKET;
2171 if (type != expected_type)
2172 goto err_type;
fd978bf7
JS
2173 if (meta->ptr_id || !reg->id) {
2174 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2175 meta->ptr_id, reg->id);
2176 return -EFAULT;
2177 }
2178 meta->ptr_id = reg->id;
90133415 2179 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2180 expected_type = PTR_TO_STACK;
2181 /* One exception here. In case function allows for NULL to be
f1174f77 2182 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2183 * happens during stack boundary checking.
2184 */
914cb781 2185 if (register_is_null(reg) &&
db1ac496 2186 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2187 /* final test in check_stack_boundary() */;
de8f3a83
DB
2188 else if (!type_is_pkt_pointer(type) &&
2189 type != PTR_TO_MAP_VALUE &&
f1174f77 2190 type != expected_type)
6841de8b 2191 goto err_type;
39f19ebb 2192 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2193 } else {
61bd5218 2194 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2195 return -EFAULT;
2196 }
2197
17a52670
AS
2198 if (arg_type == ARG_CONST_MAP_PTR) {
2199 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2200 meta->map_ptr = reg->map_ptr;
17a52670
AS
2201 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2202 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2203 * check that [key, key + map->key_size) are within
2204 * stack limits and initialized
2205 */
33ff9823 2206 if (!meta->map_ptr) {
17a52670
AS
2207 /* in function declaration map_ptr must come before
2208 * map_key, so that it's verified and known before
2209 * we have to check map_key here. Otherwise it means
2210 * that kernel subsystem misconfigured verifier
2211 */
61bd5218 2212 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2213 return -EACCES;
2214 }
d71962f3
PC
2215 err = check_helper_mem_access(env, regno,
2216 meta->map_ptr->key_size, false,
2217 NULL);
2ea864c5
MV
2218 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2219 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2220 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2221 * check [value, value + map->value_size) validity
2222 */
33ff9823 2223 if (!meta->map_ptr) {
17a52670 2224 /* kernel subsystem misconfigured verifier */
61bd5218 2225 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2226 return -EACCES;
2227 }
2ea864c5 2228 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2229 err = check_helper_mem_access(env, regno,
2230 meta->map_ptr->value_size, false,
2ea864c5 2231 meta);
90133415 2232 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2233 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2234
849fa506
YS
2235 /* remember the mem_size which may be used later
2236 * to refine return values.
2237 */
2238 meta->msize_smax_value = reg->smax_value;
2239 meta->msize_umax_value = reg->umax_value;
2240
f1174f77
EC
2241 /* The register is SCALAR_VALUE; the access check
2242 * happens using its boundaries.
06c1c049 2243 */
f1174f77 2244 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2245 /* For unprivileged variable accesses, disable raw
2246 * mode so that the program is required to
2247 * initialize all the memory that the helper could
2248 * just partially fill up.
2249 */
2250 meta = NULL;
2251
b03c9f9f 2252 if (reg->smin_value < 0) {
61bd5218 2253 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2254 regno);
2255 return -EACCES;
2256 }
06c1c049 2257
b03c9f9f 2258 if (reg->umin_value == 0) {
f1174f77
EC
2259 err = check_helper_mem_access(env, regno - 1, 0,
2260 zero_size_allowed,
2261 meta);
06c1c049
GB
2262 if (err)
2263 return err;
06c1c049 2264 }
f1174f77 2265
b03c9f9f 2266 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2267 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2268 regno);
2269 return -EACCES;
2270 }
2271 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2272 reg->umax_value,
f1174f77 2273 zero_size_allowed, meta);
17a52670
AS
2274 }
2275
2276 return err;
6841de8b 2277err_type:
61bd5218 2278 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2279 reg_type_str[type], reg_type_str[expected_type]);
2280 return -EACCES;
17a52670
AS
2281}
2282
61bd5218
JK
2283static int check_map_func_compatibility(struct bpf_verifier_env *env,
2284 struct bpf_map *map, int func_id)
35578d79 2285{
35578d79
KX
2286 if (!map)
2287 return 0;
2288
6aff67c8
AS
2289 /* We need a two way check, first is from map perspective ... */
2290 switch (map->map_type) {
2291 case BPF_MAP_TYPE_PROG_ARRAY:
2292 if (func_id != BPF_FUNC_tail_call)
2293 goto error;
2294 break;
2295 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2296 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2297 func_id != BPF_FUNC_perf_event_output &&
2298 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2299 goto error;
2300 break;
2301 case BPF_MAP_TYPE_STACK_TRACE:
2302 if (func_id != BPF_FUNC_get_stackid)
2303 goto error;
2304 break;
4ed8ec52 2305 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2306 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2307 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2308 goto error;
2309 break;
cd339431 2310 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2311 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2312 if (func_id != BPF_FUNC_get_local_storage)
2313 goto error;
2314 break;
546ac1ff
JF
2315 /* devmap returns a pointer to a live net_device ifindex that we cannot
2316 * allow to be modified from bpf side. So do not allow lookup elements
2317 * for now.
2318 */
2319 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2320 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2321 goto error;
2322 break;
fbfc504a
BT
2323 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2324 * appear.
2325 */
6710e112 2326 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2327 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2328 if (func_id != BPF_FUNC_redirect_map)
2329 goto error;
2330 break;
56f668df 2331 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2332 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2333 if (func_id != BPF_FUNC_map_lookup_elem)
2334 goto error;
16a43625 2335 break;
174a79ff
JF
2336 case BPF_MAP_TYPE_SOCKMAP:
2337 if (func_id != BPF_FUNC_sk_redirect_map &&
2338 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2339 func_id != BPF_FUNC_map_delete_elem &&
2340 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2341 goto error;
2342 break;
81110384
JF
2343 case BPF_MAP_TYPE_SOCKHASH:
2344 if (func_id != BPF_FUNC_sk_redirect_hash &&
2345 func_id != BPF_FUNC_sock_hash_update &&
2346 func_id != BPF_FUNC_map_delete_elem &&
2347 func_id != BPF_FUNC_msg_redirect_hash)
2348 goto error;
2349 break;
2dbb9b9e
MKL
2350 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2351 if (func_id != BPF_FUNC_sk_select_reuseport)
2352 goto error;
2353 break;
f1a2e44a
MV
2354 case BPF_MAP_TYPE_QUEUE:
2355 case BPF_MAP_TYPE_STACK:
2356 if (func_id != BPF_FUNC_map_peek_elem &&
2357 func_id != BPF_FUNC_map_pop_elem &&
2358 func_id != BPF_FUNC_map_push_elem)
2359 goto error;
2360 break;
6aff67c8
AS
2361 default:
2362 break;
2363 }
2364
2365 /* ... and second from the function itself. */
2366 switch (func_id) {
2367 case BPF_FUNC_tail_call:
2368 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2369 goto error;
f910cefa 2370 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2371 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2372 return -EINVAL;
2373 }
6aff67c8
AS
2374 break;
2375 case BPF_FUNC_perf_event_read:
2376 case BPF_FUNC_perf_event_output:
908432ca 2377 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2378 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2379 goto error;
2380 break;
2381 case BPF_FUNC_get_stackid:
2382 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2383 goto error;
2384 break;
60d20f91 2385 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2386 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2387 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2388 goto error;
2389 break;
97f91a7c 2390 case BPF_FUNC_redirect_map:
9c270af3 2391 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2392 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2393 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2394 goto error;
2395 break;
174a79ff 2396 case BPF_FUNC_sk_redirect_map:
4f738adb 2397 case BPF_FUNC_msg_redirect_map:
81110384 2398 case BPF_FUNC_sock_map_update:
174a79ff
JF
2399 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2400 goto error;
2401 break;
81110384
JF
2402 case BPF_FUNC_sk_redirect_hash:
2403 case BPF_FUNC_msg_redirect_hash:
2404 case BPF_FUNC_sock_hash_update:
2405 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2406 goto error;
2407 break;
cd339431 2408 case BPF_FUNC_get_local_storage:
b741f163
RG
2409 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2410 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2411 goto error;
2412 break;
2dbb9b9e
MKL
2413 case BPF_FUNC_sk_select_reuseport:
2414 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2415 goto error;
2416 break;
f1a2e44a
MV
2417 case BPF_FUNC_map_peek_elem:
2418 case BPF_FUNC_map_pop_elem:
2419 case BPF_FUNC_map_push_elem:
2420 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2421 map->map_type != BPF_MAP_TYPE_STACK)
2422 goto error;
2423 break;
6aff67c8
AS
2424 default:
2425 break;
35578d79
KX
2426 }
2427
2428 return 0;
6aff67c8 2429error:
61bd5218 2430 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2431 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2432 return -EINVAL;
35578d79
KX
2433}
2434
90133415 2435static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2436{
2437 int count = 0;
2438
39f19ebb 2439 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2440 count++;
39f19ebb 2441 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2442 count++;
39f19ebb 2443 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2444 count++;
39f19ebb 2445 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2446 count++;
39f19ebb 2447 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2448 count++;
2449
90133415
DB
2450 /* We only support one arg being in raw mode at the moment,
2451 * which is sufficient for the helper functions we have
2452 * right now.
2453 */
2454 return count <= 1;
2455}
2456
2457static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2458 enum bpf_arg_type arg_next)
2459{
2460 return (arg_type_is_mem_ptr(arg_curr) &&
2461 !arg_type_is_mem_size(arg_next)) ||
2462 (!arg_type_is_mem_ptr(arg_curr) &&
2463 arg_type_is_mem_size(arg_next));
2464}
2465
2466static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2467{
2468 /* bpf_xxx(..., buf, len) call will access 'len'
2469 * bytes from memory 'buf'. Both arg types need
2470 * to be paired, so make sure there's no buggy
2471 * helper function specification.
2472 */
2473 if (arg_type_is_mem_size(fn->arg1_type) ||
2474 arg_type_is_mem_ptr(fn->arg5_type) ||
2475 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2476 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2477 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2478 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2479 return false;
2480
2481 return true;
2482}
2483
fd978bf7
JS
2484static bool check_refcount_ok(const struct bpf_func_proto *fn)
2485{
2486 int count = 0;
2487
2488 if (arg_type_is_refcounted(fn->arg1_type))
2489 count++;
2490 if (arg_type_is_refcounted(fn->arg2_type))
2491 count++;
2492 if (arg_type_is_refcounted(fn->arg3_type))
2493 count++;
2494 if (arg_type_is_refcounted(fn->arg4_type))
2495 count++;
2496 if (arg_type_is_refcounted(fn->arg5_type))
2497 count++;
2498
2499 /* We only support one arg being unreferenced at the moment,
2500 * which is sufficient for the helper functions we have right now.
2501 */
2502 return count <= 1;
2503}
2504
90133415
DB
2505static int check_func_proto(const struct bpf_func_proto *fn)
2506{
2507 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2508 check_arg_pair_ok(fn) &&
2509 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2510}
2511
de8f3a83
DB
2512/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2513 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2514 */
f4d7e40a
AS
2515static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2516 struct bpf_func_state *state)
969bf05e 2517{
58e2af8b 2518 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2519 int i;
2520
2521 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2522 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2523 mark_reg_unknown(env, regs, i);
969bf05e 2524
f3709f69
JS
2525 bpf_for_each_spilled_reg(i, state, reg) {
2526 if (!reg)
969bf05e 2527 continue;
de8f3a83
DB
2528 if (reg_is_pkt_pointer_any(reg))
2529 __mark_reg_unknown(reg);
969bf05e
AS
2530 }
2531}
2532
f4d7e40a
AS
2533static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2534{
2535 struct bpf_verifier_state *vstate = env->cur_state;
2536 int i;
2537
2538 for (i = 0; i <= vstate->curframe; i++)
2539 __clear_all_pkt_pointers(env, vstate->frame[i]);
2540}
2541
fd978bf7
JS
2542static void release_reg_references(struct bpf_verifier_env *env,
2543 struct bpf_func_state *state, int id)
2544{
2545 struct bpf_reg_state *regs = state->regs, *reg;
2546 int i;
2547
2548 for (i = 0; i < MAX_BPF_REG; i++)
2549 if (regs[i].id == id)
2550 mark_reg_unknown(env, regs, i);
2551
2552 bpf_for_each_spilled_reg(i, state, reg) {
2553 if (!reg)
2554 continue;
2555 if (reg_is_refcounted(reg) && reg->id == id)
2556 __mark_reg_unknown(reg);
2557 }
2558}
2559
2560/* The pointer with the specified id has released its reference to kernel
2561 * resources. Identify all copies of the same pointer and clear the reference.
2562 */
2563static int release_reference(struct bpf_verifier_env *env,
2564 struct bpf_call_arg_meta *meta)
2565{
2566 struct bpf_verifier_state *vstate = env->cur_state;
2567 int i;
2568
2569 for (i = 0; i <= vstate->curframe; i++)
2570 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2571
2572 return release_reference_state(env, meta->ptr_id);
2573}
2574
f4d7e40a
AS
2575static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2576 int *insn_idx)
2577{
2578 struct bpf_verifier_state *state = env->cur_state;
2579 struct bpf_func_state *caller, *callee;
fd978bf7 2580 int i, err, subprog, target_insn;
f4d7e40a 2581
aada9ce6 2582 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2583 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2584 state->curframe + 2);
f4d7e40a
AS
2585 return -E2BIG;
2586 }
2587
2588 target_insn = *insn_idx + insn->imm;
2589 subprog = find_subprog(env, target_insn + 1);
2590 if (subprog < 0) {
2591 verbose(env, "verifier bug. No program starts at insn %d\n",
2592 target_insn + 1);
2593 return -EFAULT;
2594 }
2595
2596 caller = state->frame[state->curframe];
2597 if (state->frame[state->curframe + 1]) {
2598 verbose(env, "verifier bug. Frame %d already allocated\n",
2599 state->curframe + 1);
2600 return -EFAULT;
2601 }
2602
2603 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2604 if (!callee)
2605 return -ENOMEM;
2606 state->frame[state->curframe + 1] = callee;
2607
2608 /* callee cannot access r0, r6 - r9 for reading and has to write
2609 * into its own stack before reading from it.
2610 * callee can read/write into caller's stack
2611 */
2612 init_func_state(env, callee,
2613 /* remember the callsite, it will be used by bpf_exit */
2614 *insn_idx /* callsite */,
2615 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2616 subprog /* subprog number within this prog */);
f4d7e40a 2617
fd978bf7
JS
2618 /* Transfer references to the callee */
2619 err = transfer_reference_state(callee, caller);
2620 if (err)
2621 return err;
2622
679c782d
EC
2623 /* copy r1 - r5 args that callee can access. The copy includes parent
2624 * pointers, which connects us up to the liveness chain
2625 */
f4d7e40a
AS
2626 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2627 callee->regs[i] = caller->regs[i];
2628
679c782d 2629 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2630 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2631 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2632 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2633 }
2634
2635 /* only increment it after check_reg_arg() finished */
2636 state->curframe++;
2637
2638 /* and go analyze first insn of the callee */
2639 *insn_idx = target_insn;
2640
2641 if (env->log.level) {
2642 verbose(env, "caller:\n");
2643 print_verifier_state(env, caller);
2644 verbose(env, "callee:\n");
2645 print_verifier_state(env, callee);
2646 }
2647 return 0;
2648}
2649
2650static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2651{
2652 struct bpf_verifier_state *state = env->cur_state;
2653 struct bpf_func_state *caller, *callee;
2654 struct bpf_reg_state *r0;
fd978bf7 2655 int err;
f4d7e40a
AS
2656
2657 callee = state->frame[state->curframe];
2658 r0 = &callee->regs[BPF_REG_0];
2659 if (r0->type == PTR_TO_STACK) {
2660 /* technically it's ok to return caller's stack pointer
2661 * (or caller's caller's pointer) back to the caller,
2662 * since these pointers are valid. Only current stack
2663 * pointer will be invalid as soon as function exits,
2664 * but let's be conservative
2665 */
2666 verbose(env, "cannot return stack pointer to the caller\n");
2667 return -EINVAL;
2668 }
2669
2670 state->curframe--;
2671 caller = state->frame[state->curframe];
2672 /* return to the caller whatever r0 had in the callee */
2673 caller->regs[BPF_REG_0] = *r0;
2674
fd978bf7
JS
2675 /* Transfer references to the caller */
2676 err = transfer_reference_state(caller, callee);
2677 if (err)
2678 return err;
2679
f4d7e40a
AS
2680 *insn_idx = callee->callsite + 1;
2681 if (env->log.level) {
2682 verbose(env, "returning from callee:\n");
2683 print_verifier_state(env, callee);
2684 verbose(env, "to caller at %d:\n", *insn_idx);
2685 print_verifier_state(env, caller);
2686 }
2687 /* clear everything in the callee */
2688 free_func_state(callee);
2689 state->frame[state->curframe + 1] = NULL;
2690 return 0;
2691}
2692
849fa506
YS
2693static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2694 int func_id,
2695 struct bpf_call_arg_meta *meta)
2696{
2697 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2698
2699 if (ret_type != RET_INTEGER ||
2700 (func_id != BPF_FUNC_get_stack &&
2701 func_id != BPF_FUNC_probe_read_str))
2702 return;
2703
2704 ret_reg->smax_value = meta->msize_smax_value;
2705 ret_reg->umax_value = meta->msize_umax_value;
2706 __reg_deduce_bounds(ret_reg);
2707 __reg_bound_offset(ret_reg);
2708}
2709
c93552c4
DB
2710static int
2711record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2712 int func_id, int insn_idx)
2713{
2714 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2715
2716 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2717 func_id != BPF_FUNC_map_lookup_elem &&
2718 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2719 func_id != BPF_FUNC_map_delete_elem &&
2720 func_id != BPF_FUNC_map_push_elem &&
2721 func_id != BPF_FUNC_map_pop_elem &&
2722 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2723 return 0;
09772d92 2724
c93552c4
DB
2725 if (meta->map_ptr == NULL) {
2726 verbose(env, "kernel subsystem misconfigured verifier\n");
2727 return -EINVAL;
2728 }
2729
2730 if (!BPF_MAP_PTR(aux->map_state))
2731 bpf_map_ptr_store(aux, meta->map_ptr,
2732 meta->map_ptr->unpriv_array);
2733 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2734 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2735 meta->map_ptr->unpriv_array);
2736 return 0;
2737}
2738
fd978bf7
JS
2739static int check_reference_leak(struct bpf_verifier_env *env)
2740{
2741 struct bpf_func_state *state = cur_func(env);
2742 int i;
2743
2744 for (i = 0; i < state->acquired_refs; i++) {
2745 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2746 state->refs[i].id, state->refs[i].insn_idx);
2747 }
2748 return state->acquired_refs ? -EINVAL : 0;
2749}
2750
f4d7e40a 2751static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2752{
17a52670 2753 const struct bpf_func_proto *fn = NULL;
638f5b90 2754 struct bpf_reg_state *regs;
33ff9823 2755 struct bpf_call_arg_meta meta;
969bf05e 2756 bool changes_data;
17a52670
AS
2757 int i, err;
2758
2759 /* find function prototype */
2760 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2761 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2762 func_id);
17a52670
AS
2763 return -EINVAL;
2764 }
2765
00176a34 2766 if (env->ops->get_func_proto)
5e43f899 2767 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2768 if (!fn) {
61bd5218
JK
2769 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2770 func_id);
17a52670
AS
2771 return -EINVAL;
2772 }
2773
2774 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2775 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2776 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2777 return -EINVAL;
2778 }
2779
04514d13 2780 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2781 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2782 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2783 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2784 func_id_name(func_id), func_id);
2785 return -EINVAL;
2786 }
969bf05e 2787
33ff9823 2788 memset(&meta, 0, sizeof(meta));
36bbef52 2789 meta.pkt_access = fn->pkt_access;
33ff9823 2790
90133415 2791 err = check_func_proto(fn);
435faee1 2792 if (err) {
61bd5218 2793 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2794 func_id_name(func_id), func_id);
435faee1
DB
2795 return err;
2796 }
2797
17a52670 2798 /* check args */
33ff9823 2799 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2800 if (err)
2801 return err;
33ff9823 2802 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2803 if (err)
2804 return err;
33ff9823 2805 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2806 if (err)
2807 return err;
33ff9823 2808 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2809 if (err)
2810 return err;
33ff9823 2811 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2812 if (err)
2813 return err;
2814
c93552c4
DB
2815 err = record_func_map(env, &meta, func_id, insn_idx);
2816 if (err)
2817 return err;
2818
435faee1
DB
2819 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2820 * is inferred from register state.
2821 */
2822 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2823 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2824 BPF_WRITE, -1, false);
435faee1
DB
2825 if (err)
2826 return err;
2827 }
2828
fd978bf7
JS
2829 if (func_id == BPF_FUNC_tail_call) {
2830 err = check_reference_leak(env);
2831 if (err) {
2832 verbose(env, "tail_call would lead to reference leak\n");
2833 return err;
2834 }
2835 } else if (is_release_function(func_id)) {
2836 err = release_reference(env, &meta);
2837 if (err)
2838 return err;
2839 }
2840
638f5b90 2841 regs = cur_regs(env);
cd339431
RG
2842
2843 /* check that flags argument in get_local_storage(map, flags) is 0,
2844 * this is required because get_local_storage() can't return an error.
2845 */
2846 if (func_id == BPF_FUNC_get_local_storage &&
2847 !register_is_null(&regs[BPF_REG_2])) {
2848 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2849 return -EINVAL;
2850 }
2851
17a52670 2852 /* reset caller saved regs */
dc503a8a 2853 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2854 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2855 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2856 }
17a52670 2857
dc503a8a 2858 /* update return register (already marked as written above) */
17a52670 2859 if (fn->ret_type == RET_INTEGER) {
f1174f77 2860 /* sets type to SCALAR_VALUE */
61bd5218 2861 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2862 } else if (fn->ret_type == RET_VOID) {
2863 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2864 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2865 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 2866 /* There is no offset yet applied, variable or fixed */
61bd5218 2867 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2868 /* remember map_ptr, so that check_map_access()
2869 * can check 'value_size' boundary of memory access
2870 * to map element returned from bpf_map_lookup_elem()
2871 */
33ff9823 2872 if (meta.map_ptr == NULL) {
61bd5218
JK
2873 verbose(env,
2874 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2875 return -EINVAL;
2876 }
33ff9823 2877 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
2878 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2879 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2880 } else {
2881 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2882 regs[BPF_REG_0].id = ++env->id_gen;
2883 }
c64b7983 2884 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
2885 int id = acquire_reference_state(env, insn_idx);
2886 if (id < 0)
2887 return id;
c64b7983
JS
2888 mark_reg_known_zero(env, regs, BPF_REG_0);
2889 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 2890 regs[BPF_REG_0].id = id;
17a52670 2891 } else {
61bd5218 2892 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2893 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2894 return -EINVAL;
2895 }
04fd61ab 2896
849fa506
YS
2897 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2898
61bd5218 2899 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2900 if (err)
2901 return err;
04fd61ab 2902
c195651e
YS
2903 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2904 const char *err_str;
2905
2906#ifdef CONFIG_PERF_EVENTS
2907 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2908 err_str = "cannot get callchain buffer for func %s#%d\n";
2909#else
2910 err = -ENOTSUPP;
2911 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2912#endif
2913 if (err) {
2914 verbose(env, err_str, func_id_name(func_id), func_id);
2915 return err;
2916 }
2917
2918 env->prog->has_callchain_buf = true;
2919 }
2920
969bf05e
AS
2921 if (changes_data)
2922 clear_all_pkt_pointers(env);
2923 return 0;
2924}
2925
b03c9f9f
EC
2926static bool signed_add_overflows(s64 a, s64 b)
2927{
2928 /* Do the add in u64, where overflow is well-defined */
2929 s64 res = (s64)((u64)a + (u64)b);
2930
2931 if (b < 0)
2932 return res > a;
2933 return res < a;
2934}
2935
2936static bool signed_sub_overflows(s64 a, s64 b)
2937{
2938 /* Do the sub in u64, where overflow is well-defined */
2939 s64 res = (s64)((u64)a - (u64)b);
2940
2941 if (b < 0)
2942 return res < a;
2943 return res > a;
969bf05e
AS
2944}
2945
bb7f0f98
AS
2946static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2947 const struct bpf_reg_state *reg,
2948 enum bpf_reg_type type)
2949{
2950 bool known = tnum_is_const(reg->var_off);
2951 s64 val = reg->var_off.value;
2952 s64 smin = reg->smin_value;
2953
2954 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2955 verbose(env, "math between %s pointer and %lld is not allowed\n",
2956 reg_type_str[type], val);
2957 return false;
2958 }
2959
2960 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2961 verbose(env, "%s pointer offset %d is not allowed\n",
2962 reg_type_str[type], reg->off);
2963 return false;
2964 }
2965
2966 if (smin == S64_MIN) {
2967 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2968 reg_type_str[type]);
2969 return false;
2970 }
2971
2972 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2973 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2974 smin, reg_type_str[type]);
2975 return false;
2976 }
2977
2978 return true;
2979}
2980
f1174f77 2981/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2982 * Caller should also handle BPF_MOV case separately.
2983 * If we return -EACCES, caller may want to try again treating pointer as a
2984 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2985 */
2986static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2987 struct bpf_insn *insn,
2988 const struct bpf_reg_state *ptr_reg,
2989 const struct bpf_reg_state *off_reg)
969bf05e 2990{
f4d7e40a
AS
2991 struct bpf_verifier_state *vstate = env->cur_state;
2992 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2993 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2994 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2995 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2996 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2997 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2998 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2999 u8 opcode = BPF_OP(insn->code);
f1174f77 3000 u32 dst = insn->dst_reg;
969bf05e 3001
f1174f77 3002 dst_reg = &regs[dst];
969bf05e 3003
6f16101e
DB
3004 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3005 smin_val > smax_val || umin_val > umax_val) {
3006 /* Taint dst register if offset had invalid bounds derived from
3007 * e.g. dead branches.
3008 */
3009 __mark_reg_unknown(dst_reg);
3010 return 0;
f1174f77
EC
3011 }
3012
3013 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3014 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3015 verbose(env,
3016 "R%d 32-bit pointer arithmetic prohibited\n",
3017 dst);
f1174f77 3018 return -EACCES;
969bf05e
AS
3019 }
3020
aad2eeaf
JS
3021 switch (ptr_reg->type) {
3022 case PTR_TO_MAP_VALUE_OR_NULL:
3023 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3024 dst, reg_type_str[ptr_reg->type]);
f1174f77 3025 return -EACCES;
aad2eeaf
JS
3026 case CONST_PTR_TO_MAP:
3027 case PTR_TO_PACKET_END:
c64b7983
JS
3028 case PTR_TO_SOCKET:
3029 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
3030 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3031 dst, reg_type_str[ptr_reg->type]);
f1174f77 3032 return -EACCES;
aad2eeaf
JS
3033 default:
3034 break;
f1174f77
EC
3035 }
3036
3037 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3038 * The id may be overwritten later if we create a new variable offset.
969bf05e 3039 */
f1174f77
EC
3040 dst_reg->type = ptr_reg->type;
3041 dst_reg->id = ptr_reg->id;
969bf05e 3042
bb7f0f98
AS
3043 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3044 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3045 return -EINVAL;
3046
f1174f77
EC
3047 switch (opcode) {
3048 case BPF_ADD:
3049 /* We can take a fixed offset as long as it doesn't overflow
3050 * the s32 'off' field
969bf05e 3051 */
b03c9f9f
EC
3052 if (known && (ptr_reg->off + smin_val ==
3053 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3054 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3055 dst_reg->smin_value = smin_ptr;
3056 dst_reg->smax_value = smax_ptr;
3057 dst_reg->umin_value = umin_ptr;
3058 dst_reg->umax_value = umax_ptr;
f1174f77 3059 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3060 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3061 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3062 break;
3063 }
f1174f77
EC
3064 /* A new variable offset is created. Note that off_reg->off
3065 * == 0, since it's a scalar.
3066 * dst_reg gets the pointer type and since some positive
3067 * integer value was added to the pointer, give it a new 'id'
3068 * if it's a PTR_TO_PACKET.
3069 * this creates a new 'base' pointer, off_reg (variable) gets
3070 * added into the variable offset, and we copy the fixed offset
3071 * from ptr_reg.
969bf05e 3072 */
b03c9f9f
EC
3073 if (signed_add_overflows(smin_ptr, smin_val) ||
3074 signed_add_overflows(smax_ptr, smax_val)) {
3075 dst_reg->smin_value = S64_MIN;
3076 dst_reg->smax_value = S64_MAX;
3077 } else {
3078 dst_reg->smin_value = smin_ptr + smin_val;
3079 dst_reg->smax_value = smax_ptr + smax_val;
3080 }
3081 if (umin_ptr + umin_val < umin_ptr ||
3082 umax_ptr + umax_val < umax_ptr) {
3083 dst_reg->umin_value = 0;
3084 dst_reg->umax_value = U64_MAX;
3085 } else {
3086 dst_reg->umin_value = umin_ptr + umin_val;
3087 dst_reg->umax_value = umax_ptr + umax_val;
3088 }
f1174f77
EC
3089 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3090 dst_reg->off = ptr_reg->off;
0962590e 3091 dst_reg->raw = ptr_reg->raw;
de8f3a83 3092 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3093 dst_reg->id = ++env->id_gen;
3094 /* something was added to pkt_ptr, set range to zero */
0962590e 3095 dst_reg->raw = 0;
f1174f77
EC
3096 }
3097 break;
3098 case BPF_SUB:
3099 if (dst_reg == off_reg) {
3100 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3101 verbose(env, "R%d tried to subtract pointer from scalar\n",
3102 dst);
f1174f77
EC
3103 return -EACCES;
3104 }
3105 /* We don't allow subtraction from FP, because (according to
3106 * test_verifier.c test "invalid fp arithmetic", JITs might not
3107 * be able to deal with it.
969bf05e 3108 */
f1174f77 3109 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3110 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3111 dst);
f1174f77
EC
3112 return -EACCES;
3113 }
b03c9f9f
EC
3114 if (known && (ptr_reg->off - smin_val ==
3115 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3116 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3117 dst_reg->smin_value = smin_ptr;
3118 dst_reg->smax_value = smax_ptr;
3119 dst_reg->umin_value = umin_ptr;
3120 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3121 dst_reg->var_off = ptr_reg->var_off;
3122 dst_reg->id = ptr_reg->id;
b03c9f9f 3123 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3124 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3125 break;
3126 }
f1174f77
EC
3127 /* A new variable offset is created. If the subtrahend is known
3128 * nonnegative, then any reg->range we had before is still good.
969bf05e 3129 */
b03c9f9f
EC
3130 if (signed_sub_overflows(smin_ptr, smax_val) ||
3131 signed_sub_overflows(smax_ptr, smin_val)) {
3132 /* Overflow possible, we know nothing */
3133 dst_reg->smin_value = S64_MIN;
3134 dst_reg->smax_value = S64_MAX;
3135 } else {
3136 dst_reg->smin_value = smin_ptr - smax_val;
3137 dst_reg->smax_value = smax_ptr - smin_val;
3138 }
3139 if (umin_ptr < umax_val) {
3140 /* Overflow possible, we know nothing */
3141 dst_reg->umin_value = 0;
3142 dst_reg->umax_value = U64_MAX;
3143 } else {
3144 /* Cannot overflow (as long as bounds are consistent) */
3145 dst_reg->umin_value = umin_ptr - umax_val;
3146 dst_reg->umax_value = umax_ptr - umin_val;
3147 }
f1174f77
EC
3148 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3149 dst_reg->off = ptr_reg->off;
0962590e 3150 dst_reg->raw = ptr_reg->raw;
de8f3a83 3151 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3152 dst_reg->id = ++env->id_gen;
3153 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3154 if (smin_val < 0)
0962590e 3155 dst_reg->raw = 0;
43188702 3156 }
f1174f77
EC
3157 break;
3158 case BPF_AND:
3159 case BPF_OR:
3160 case BPF_XOR:
82abbf8d
AS
3161 /* bitwise ops on pointers are troublesome, prohibit. */
3162 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3163 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3164 return -EACCES;
3165 default:
3166 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3167 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3168 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3169 return -EACCES;
43188702
JF
3170 }
3171
bb7f0f98
AS
3172 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3173 return -EINVAL;
3174
b03c9f9f
EC
3175 __update_reg_bounds(dst_reg);
3176 __reg_deduce_bounds(dst_reg);
3177 __reg_bound_offset(dst_reg);
43188702
JF
3178 return 0;
3179}
3180
468f6eaf
JH
3181/* WARNING: This function does calculations on 64-bit values, but the actual
3182 * execution may occur on 32-bit values. Therefore, things like bitshifts
3183 * need extra checks in the 32-bit case.
3184 */
f1174f77
EC
3185static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3186 struct bpf_insn *insn,
3187 struct bpf_reg_state *dst_reg,
3188 struct bpf_reg_state src_reg)
969bf05e 3189{
638f5b90 3190 struct bpf_reg_state *regs = cur_regs(env);
48461135 3191 u8 opcode = BPF_OP(insn->code);
f1174f77 3192 bool src_known, dst_known;
b03c9f9f
EC
3193 s64 smin_val, smax_val;
3194 u64 umin_val, umax_val;
468f6eaf 3195 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 3196
b799207e
JH
3197 if (insn_bitness == 32) {
3198 /* Relevant for 32-bit RSH: Information can propagate towards
3199 * LSB, so it isn't sufficient to only truncate the output to
3200 * 32 bits.
3201 */
3202 coerce_reg_to_size(dst_reg, 4);
3203 coerce_reg_to_size(&src_reg, 4);
3204 }
3205
b03c9f9f
EC
3206 smin_val = src_reg.smin_value;
3207 smax_val = src_reg.smax_value;
3208 umin_val = src_reg.umin_value;
3209 umax_val = src_reg.umax_value;
f1174f77
EC
3210 src_known = tnum_is_const(src_reg.var_off);
3211 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3212
6f16101e
DB
3213 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3214 smin_val > smax_val || umin_val > umax_val) {
3215 /* Taint dst register if offset had invalid bounds derived from
3216 * e.g. dead branches.
3217 */
3218 __mark_reg_unknown(dst_reg);
3219 return 0;
3220 }
3221
bb7f0f98
AS
3222 if (!src_known &&
3223 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3224 __mark_reg_unknown(dst_reg);
3225 return 0;
3226 }
3227
48461135
JB
3228 switch (opcode) {
3229 case BPF_ADD:
b03c9f9f
EC
3230 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3231 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3232 dst_reg->smin_value = S64_MIN;
3233 dst_reg->smax_value = S64_MAX;
3234 } else {
3235 dst_reg->smin_value += smin_val;
3236 dst_reg->smax_value += smax_val;
3237 }
3238 if (dst_reg->umin_value + umin_val < umin_val ||
3239 dst_reg->umax_value + umax_val < umax_val) {
3240 dst_reg->umin_value = 0;
3241 dst_reg->umax_value = U64_MAX;
3242 } else {
3243 dst_reg->umin_value += umin_val;
3244 dst_reg->umax_value += umax_val;
3245 }
f1174f77 3246 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3247 break;
3248 case BPF_SUB:
b03c9f9f
EC
3249 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3250 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3251 /* Overflow possible, we know nothing */
3252 dst_reg->smin_value = S64_MIN;
3253 dst_reg->smax_value = S64_MAX;
3254 } else {
3255 dst_reg->smin_value -= smax_val;
3256 dst_reg->smax_value -= smin_val;
3257 }
3258 if (dst_reg->umin_value < umax_val) {
3259 /* Overflow possible, we know nothing */
3260 dst_reg->umin_value = 0;
3261 dst_reg->umax_value = U64_MAX;
3262 } else {
3263 /* Cannot overflow (as long as bounds are consistent) */
3264 dst_reg->umin_value -= umax_val;
3265 dst_reg->umax_value -= umin_val;
3266 }
f1174f77 3267 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3268 break;
3269 case BPF_MUL:
b03c9f9f
EC
3270 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3271 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3272 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3273 __mark_reg_unbounded(dst_reg);
3274 __update_reg_bounds(dst_reg);
f1174f77
EC
3275 break;
3276 }
b03c9f9f
EC
3277 /* Both values are positive, so we can work with unsigned and
3278 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3279 */
b03c9f9f
EC
3280 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3281 /* Potential overflow, we know nothing */
3282 __mark_reg_unbounded(dst_reg);
3283 /* (except what we can learn from the var_off) */
3284 __update_reg_bounds(dst_reg);
3285 break;
3286 }
3287 dst_reg->umin_value *= umin_val;
3288 dst_reg->umax_value *= umax_val;
3289 if (dst_reg->umax_value > S64_MAX) {
3290 /* Overflow possible, we know nothing */
3291 dst_reg->smin_value = S64_MIN;
3292 dst_reg->smax_value = S64_MAX;
3293 } else {
3294 dst_reg->smin_value = dst_reg->umin_value;
3295 dst_reg->smax_value = dst_reg->umax_value;
3296 }
48461135
JB
3297 break;
3298 case BPF_AND:
f1174f77 3299 if (src_known && dst_known) {
b03c9f9f
EC
3300 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3301 src_reg.var_off.value);
f1174f77
EC
3302 break;
3303 }
b03c9f9f
EC
3304 /* We get our minimum from the var_off, since that's inherently
3305 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3306 */
f1174f77 3307 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3308 dst_reg->umin_value = dst_reg->var_off.value;
3309 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3310 if (dst_reg->smin_value < 0 || smin_val < 0) {
3311 /* Lose signed bounds when ANDing negative numbers,
3312 * ain't nobody got time for that.
3313 */
3314 dst_reg->smin_value = S64_MIN;
3315 dst_reg->smax_value = S64_MAX;
3316 } else {
3317 /* ANDing two positives gives a positive, so safe to
3318 * cast result into s64.
3319 */
3320 dst_reg->smin_value = dst_reg->umin_value;
3321 dst_reg->smax_value = dst_reg->umax_value;
3322 }
3323 /* We may learn something more from the var_off */
3324 __update_reg_bounds(dst_reg);
f1174f77
EC
3325 break;
3326 case BPF_OR:
3327 if (src_known && dst_known) {
b03c9f9f
EC
3328 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3329 src_reg.var_off.value);
f1174f77
EC
3330 break;
3331 }
b03c9f9f
EC
3332 /* We get our maximum from the var_off, and our minimum is the
3333 * maximum of the operands' minima
f1174f77
EC
3334 */
3335 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3336 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3337 dst_reg->umax_value = dst_reg->var_off.value |
3338 dst_reg->var_off.mask;
3339 if (dst_reg->smin_value < 0 || smin_val < 0) {
3340 /* Lose signed bounds when ORing negative numbers,
3341 * ain't nobody got time for that.
3342 */
3343 dst_reg->smin_value = S64_MIN;
3344 dst_reg->smax_value = S64_MAX;
f1174f77 3345 } else {
b03c9f9f
EC
3346 /* ORing two positives gives a positive, so safe to
3347 * cast result into s64.
3348 */
3349 dst_reg->smin_value = dst_reg->umin_value;
3350 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3351 }
b03c9f9f
EC
3352 /* We may learn something more from the var_off */
3353 __update_reg_bounds(dst_reg);
48461135
JB
3354 break;
3355 case BPF_LSH:
468f6eaf
JH
3356 if (umax_val >= insn_bitness) {
3357 /* Shifts greater than 31 or 63 are undefined.
3358 * This includes shifts by a negative number.
b03c9f9f 3359 */
61bd5218 3360 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3361 break;
3362 }
b03c9f9f
EC
3363 /* We lose all sign bit information (except what we can pick
3364 * up from var_off)
48461135 3365 */
b03c9f9f
EC
3366 dst_reg->smin_value = S64_MIN;
3367 dst_reg->smax_value = S64_MAX;
3368 /* If we might shift our top bit out, then we know nothing */
3369 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3370 dst_reg->umin_value = 0;
3371 dst_reg->umax_value = U64_MAX;
d1174416 3372 } else {
b03c9f9f
EC
3373 dst_reg->umin_value <<= umin_val;
3374 dst_reg->umax_value <<= umax_val;
d1174416 3375 }
afbe1a5b 3376 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3377 /* We may learn something more from the var_off */
3378 __update_reg_bounds(dst_reg);
48461135
JB
3379 break;
3380 case BPF_RSH:
468f6eaf
JH
3381 if (umax_val >= insn_bitness) {
3382 /* Shifts greater than 31 or 63 are undefined.
3383 * This includes shifts by a negative number.
b03c9f9f 3384 */
61bd5218 3385 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3386 break;
3387 }
4374f256
EC
3388 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3389 * be negative, then either:
3390 * 1) src_reg might be zero, so the sign bit of the result is
3391 * unknown, so we lose our signed bounds
3392 * 2) it's known negative, thus the unsigned bounds capture the
3393 * signed bounds
3394 * 3) the signed bounds cross zero, so they tell us nothing
3395 * about the result
3396 * If the value in dst_reg is known nonnegative, then again the
3397 * unsigned bounts capture the signed bounds.
3398 * Thus, in all cases it suffices to blow away our signed bounds
3399 * and rely on inferring new ones from the unsigned bounds and
3400 * var_off of the result.
3401 */
3402 dst_reg->smin_value = S64_MIN;
3403 dst_reg->smax_value = S64_MAX;
afbe1a5b 3404 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3405 dst_reg->umin_value >>= umax_val;
3406 dst_reg->umax_value >>= umin_val;
3407 /* We may learn something more from the var_off */
3408 __update_reg_bounds(dst_reg);
48461135 3409 break;
9cbe1f5a
YS
3410 case BPF_ARSH:
3411 if (umax_val >= insn_bitness) {
3412 /* Shifts greater than 31 or 63 are undefined.
3413 * This includes shifts by a negative number.
3414 */
3415 mark_reg_unknown(env, regs, insn->dst_reg);
3416 break;
3417 }
3418
3419 /* Upon reaching here, src_known is true and
3420 * umax_val is equal to umin_val.
3421 */
3422 dst_reg->smin_value >>= umin_val;
3423 dst_reg->smax_value >>= umin_val;
3424 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3425
3426 /* blow away the dst_reg umin_value/umax_value and rely on
3427 * dst_reg var_off to refine the result.
3428 */
3429 dst_reg->umin_value = 0;
3430 dst_reg->umax_value = U64_MAX;
3431 __update_reg_bounds(dst_reg);
3432 break;
48461135 3433 default:
61bd5218 3434 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3435 break;
3436 }
3437
468f6eaf
JH
3438 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3439 /* 32-bit ALU ops are (32,32)->32 */
3440 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3441 }
3442
b03c9f9f
EC
3443 __reg_deduce_bounds(dst_reg);
3444 __reg_bound_offset(dst_reg);
f1174f77
EC
3445 return 0;
3446}
3447
3448/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3449 * and var_off.
3450 */
3451static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3452 struct bpf_insn *insn)
3453{
f4d7e40a
AS
3454 struct bpf_verifier_state *vstate = env->cur_state;
3455 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3456 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3457 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3458 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3459
3460 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3461 src_reg = NULL;
3462 if (dst_reg->type != SCALAR_VALUE)
3463 ptr_reg = dst_reg;
3464 if (BPF_SRC(insn->code) == BPF_X) {
3465 src_reg = &regs[insn->src_reg];
f1174f77
EC
3466 if (src_reg->type != SCALAR_VALUE) {
3467 if (dst_reg->type != SCALAR_VALUE) {
3468 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3469 * an arbitrary scalar. Disallow all math except
3470 * pointer subtraction
f1174f77 3471 */
dd066823 3472 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3473 mark_reg_unknown(env, regs, insn->dst_reg);
3474 return 0;
f1174f77 3475 }
82abbf8d
AS
3476 verbose(env, "R%d pointer %s pointer prohibited\n",
3477 insn->dst_reg,
3478 bpf_alu_string[opcode >> 4]);
3479 return -EACCES;
f1174f77
EC
3480 } else {
3481 /* scalar += pointer
3482 * This is legal, but we have to reverse our
3483 * src/dest handling in computing the range
3484 */
82abbf8d
AS
3485 return adjust_ptr_min_max_vals(env, insn,
3486 src_reg, dst_reg);
f1174f77
EC
3487 }
3488 } else if (ptr_reg) {
3489 /* pointer += scalar */
82abbf8d
AS
3490 return adjust_ptr_min_max_vals(env, insn,
3491 dst_reg, src_reg);
f1174f77
EC
3492 }
3493 } else {
3494 /* Pretend the src is a reg with a known value, since we only
3495 * need to be able to read from this state.
3496 */
3497 off_reg.type = SCALAR_VALUE;
b03c9f9f 3498 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3499 src_reg = &off_reg;
82abbf8d
AS
3500 if (ptr_reg) /* pointer += K */
3501 return adjust_ptr_min_max_vals(env, insn,
3502 ptr_reg, src_reg);
f1174f77
EC
3503 }
3504
3505 /* Got here implies adding two SCALAR_VALUEs */
3506 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3507 print_verifier_state(env, state);
61bd5218 3508 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3509 return -EINVAL;
3510 }
3511 if (WARN_ON(!src_reg)) {
f4d7e40a 3512 print_verifier_state(env, state);
61bd5218 3513 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3514 return -EINVAL;
3515 }
3516 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3517}
3518
17a52670 3519/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3520static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3521{
638f5b90 3522 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3523 u8 opcode = BPF_OP(insn->code);
3524 int err;
3525
3526 if (opcode == BPF_END || opcode == BPF_NEG) {
3527 if (opcode == BPF_NEG) {
3528 if (BPF_SRC(insn->code) != 0 ||
3529 insn->src_reg != BPF_REG_0 ||
3530 insn->off != 0 || insn->imm != 0) {
61bd5218 3531 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3532 return -EINVAL;
3533 }
3534 } else {
3535 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3536 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3537 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3538 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3539 return -EINVAL;
3540 }
3541 }
3542
3543 /* check src operand */
dc503a8a 3544 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3545 if (err)
3546 return err;
3547
1be7f75d 3548 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3549 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3550 insn->dst_reg);
3551 return -EACCES;
3552 }
3553
17a52670 3554 /* check dest operand */
dc503a8a 3555 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3556 if (err)
3557 return err;
3558
3559 } else if (opcode == BPF_MOV) {
3560
3561 if (BPF_SRC(insn->code) == BPF_X) {
3562 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3563 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3564 return -EINVAL;
3565 }
3566
3567 /* check src operand */
dc503a8a 3568 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3569 if (err)
3570 return err;
3571 } else {
3572 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3573 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3574 return -EINVAL;
3575 }
3576 }
3577
fbeb1603
AF
3578 /* check dest operand, mark as required later */
3579 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3580 if (err)
3581 return err;
3582
3583 if (BPF_SRC(insn->code) == BPF_X) {
3584 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3585 /* case: R1 = R2
3586 * copy register state to dest reg
3587 */
3588 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3589 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3590 } else {
f1174f77 3591 /* R1 = (u32) R2 */
1be7f75d 3592 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3593 verbose(env,
3594 "R%d partial copy of pointer\n",
1be7f75d
AS
3595 insn->src_reg);
3596 return -EACCES;
3597 }
61bd5218 3598 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3599 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3600 }
3601 } else {
3602 /* case: R = imm
3603 * remember the value we stored into this reg
3604 */
fbeb1603
AF
3605 /* clear any state __mark_reg_known doesn't set */
3606 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3607 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3608 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3609 __mark_reg_known(regs + insn->dst_reg,
3610 insn->imm);
3611 } else {
3612 __mark_reg_known(regs + insn->dst_reg,
3613 (u32)insn->imm);
3614 }
17a52670
AS
3615 }
3616
3617 } else if (opcode > BPF_END) {
61bd5218 3618 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3619 return -EINVAL;
3620
3621 } else { /* all other ALU ops: and, sub, xor, add, ... */
3622
17a52670
AS
3623 if (BPF_SRC(insn->code) == BPF_X) {
3624 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3625 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3626 return -EINVAL;
3627 }
3628 /* check src1 operand */
dc503a8a 3629 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3630 if (err)
3631 return err;
3632 } else {
3633 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3634 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3635 return -EINVAL;
3636 }
3637 }
3638
3639 /* check src2 operand */
dc503a8a 3640 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3641 if (err)
3642 return err;
3643
3644 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3645 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3646 verbose(env, "div by zero\n");
17a52670
AS
3647 return -EINVAL;
3648 }
3649
7891a87e
DB
3650 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3651 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3652 return -EINVAL;
3653 }
3654
229394e8
RV
3655 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3656 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3657 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3658
3659 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3660 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3661 return -EINVAL;
3662 }
3663 }
3664
1a0dc1ac 3665 /* check dest operand */
dc503a8a 3666 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3667 if (err)
3668 return err;
3669
f1174f77 3670 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3671 }
3672
3673 return 0;
3674}
3675
f4d7e40a 3676static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3677 struct bpf_reg_state *dst_reg,
f8ddadc4 3678 enum bpf_reg_type type,
fb2a311a 3679 bool range_right_open)
969bf05e 3680{
f4d7e40a 3681 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3682 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3683 u16 new_range;
f4d7e40a 3684 int i, j;
2d2be8ca 3685
fb2a311a
DB
3686 if (dst_reg->off < 0 ||
3687 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3688 /* This doesn't give us any range */
3689 return;
3690
b03c9f9f
EC
3691 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3692 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3693 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3694 * than pkt_end, but that's because it's also less than pkt.
3695 */
3696 return;
3697
fb2a311a
DB
3698 new_range = dst_reg->off;
3699 if (range_right_open)
3700 new_range--;
3701
3702 /* Examples for register markings:
2d2be8ca 3703 *
fb2a311a 3704 * pkt_data in dst register:
2d2be8ca
DB
3705 *
3706 * r2 = r3;
3707 * r2 += 8;
3708 * if (r2 > pkt_end) goto <handle exception>
3709 * <access okay>
3710 *
b4e432f1
DB
3711 * r2 = r3;
3712 * r2 += 8;
3713 * if (r2 < pkt_end) goto <access okay>
3714 * <handle exception>
3715 *
2d2be8ca
DB
3716 * Where:
3717 * r2 == dst_reg, pkt_end == src_reg
3718 * r2=pkt(id=n,off=8,r=0)
3719 * r3=pkt(id=n,off=0,r=0)
3720 *
fb2a311a 3721 * pkt_data in src register:
2d2be8ca
DB
3722 *
3723 * r2 = r3;
3724 * r2 += 8;
3725 * if (pkt_end >= r2) goto <access okay>
3726 * <handle exception>
3727 *
b4e432f1
DB
3728 * r2 = r3;
3729 * r2 += 8;
3730 * if (pkt_end <= r2) goto <handle exception>
3731 * <access okay>
3732 *
2d2be8ca
DB
3733 * Where:
3734 * pkt_end == dst_reg, r2 == src_reg
3735 * r2=pkt(id=n,off=8,r=0)
3736 * r3=pkt(id=n,off=0,r=0)
3737 *
3738 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3739 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3740 * and [r3, r3 + 8-1) respectively is safe to access depending on
3741 * the check.
969bf05e 3742 */
2d2be8ca 3743
f1174f77
EC
3744 /* If our ids match, then we must have the same max_value. And we
3745 * don't care about the other reg's fixed offset, since if it's too big
3746 * the range won't allow anything.
3747 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3748 */
969bf05e 3749 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3750 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3751 /* keep the maximum range already checked */
fb2a311a 3752 regs[i].range = max(regs[i].range, new_range);
969bf05e 3753
f4d7e40a
AS
3754 for (j = 0; j <= vstate->curframe; j++) {
3755 state = vstate->frame[j];
f3709f69
JS
3756 bpf_for_each_spilled_reg(i, state, reg) {
3757 if (!reg)
f4d7e40a 3758 continue;
f4d7e40a
AS
3759 if (reg->type == type && reg->id == dst_reg->id)
3760 reg->range = max(reg->range, new_range);
3761 }
969bf05e
AS
3762 }
3763}
3764
48461135
JB
3765/* Adjusts the register min/max values in the case that the dst_reg is the
3766 * variable register that we are working on, and src_reg is a constant or we're
3767 * simply doing a BPF_K check.
f1174f77 3768 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3769 */
3770static void reg_set_min_max(struct bpf_reg_state *true_reg,
3771 struct bpf_reg_state *false_reg, u64 val,
3772 u8 opcode)
3773{
f1174f77
EC
3774 /* If the dst_reg is a pointer, we can't learn anything about its
3775 * variable offset from the compare (unless src_reg were a pointer into
3776 * the same object, but we don't bother with that.
3777 * Since false_reg and true_reg have the same type by construction, we
3778 * only need to check one of them for pointerness.
3779 */
3780 if (__is_pointer_value(false, false_reg))
3781 return;
4cabc5b1 3782
48461135
JB
3783 switch (opcode) {
3784 case BPF_JEQ:
3785 /* If this is false then we know nothing Jon Snow, but if it is
3786 * true then we know for sure.
3787 */
b03c9f9f 3788 __mark_reg_known(true_reg, val);
48461135
JB
3789 break;
3790 case BPF_JNE:
3791 /* If this is true we know nothing Jon Snow, but if it is false
3792 * we know the value for sure;
3793 */
b03c9f9f 3794 __mark_reg_known(false_reg, val);
48461135
JB
3795 break;
3796 case BPF_JGT:
b03c9f9f
EC
3797 false_reg->umax_value = min(false_reg->umax_value, val);
3798 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3799 break;
48461135 3800 case BPF_JSGT:
b03c9f9f
EC
3801 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3802 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3803 break;
b4e432f1
DB
3804 case BPF_JLT:
3805 false_reg->umin_value = max(false_reg->umin_value, val);
3806 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3807 break;
3808 case BPF_JSLT:
3809 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3810 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3811 break;
48461135 3812 case BPF_JGE:
b03c9f9f
EC
3813 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3814 true_reg->umin_value = max(true_reg->umin_value, val);
3815 break;
48461135 3816 case BPF_JSGE:
b03c9f9f
EC
3817 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3818 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3819 break;
b4e432f1
DB
3820 case BPF_JLE:
3821 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3822 true_reg->umax_value = min(true_reg->umax_value, val);
3823 break;
3824 case BPF_JSLE:
3825 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3826 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3827 break;
48461135
JB
3828 default:
3829 break;
3830 }
3831
b03c9f9f
EC
3832 __reg_deduce_bounds(false_reg);
3833 __reg_deduce_bounds(true_reg);
3834 /* We might have learned some bits from the bounds. */
3835 __reg_bound_offset(false_reg);
3836 __reg_bound_offset(true_reg);
3837 /* Intersecting with the old var_off might have improved our bounds
3838 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3839 * then new var_off is (0; 0x7f...fc) which improves our umax.
3840 */
3841 __update_reg_bounds(false_reg);
3842 __update_reg_bounds(true_reg);
48461135
JB
3843}
3844
f1174f77
EC
3845/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3846 * the variable reg.
48461135
JB
3847 */
3848static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3849 struct bpf_reg_state *false_reg, u64 val,
3850 u8 opcode)
3851{
f1174f77
EC
3852 if (__is_pointer_value(false, false_reg))
3853 return;
4cabc5b1 3854
48461135
JB
3855 switch (opcode) {
3856 case BPF_JEQ:
3857 /* If this is false then we know nothing Jon Snow, but if it is
3858 * true then we know for sure.
3859 */
b03c9f9f 3860 __mark_reg_known(true_reg, val);
48461135
JB
3861 break;
3862 case BPF_JNE:
3863 /* If this is true we know nothing Jon Snow, but if it is false
3864 * we know the value for sure;
3865 */
b03c9f9f 3866 __mark_reg_known(false_reg, val);
48461135
JB
3867 break;
3868 case BPF_JGT:
b03c9f9f
EC
3869 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3870 false_reg->umin_value = max(false_reg->umin_value, val);
3871 break;
48461135 3872 case BPF_JSGT:
b03c9f9f
EC
3873 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3874 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3875 break;
b4e432f1
DB
3876 case BPF_JLT:
3877 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3878 false_reg->umax_value = min(false_reg->umax_value, val);
3879 break;
3880 case BPF_JSLT:
3881 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3882 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3883 break;
48461135 3884 case BPF_JGE:
b03c9f9f
EC
3885 true_reg->umax_value = min(true_reg->umax_value, val);
3886 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3887 break;
48461135 3888 case BPF_JSGE:
b03c9f9f
EC
3889 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3890 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3891 break;
b4e432f1
DB
3892 case BPF_JLE:
3893 true_reg->umin_value = max(true_reg->umin_value, val);
3894 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3895 break;
3896 case BPF_JSLE:
3897 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3898 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3899 break;
48461135
JB
3900 default:
3901 break;
3902 }
3903
b03c9f9f
EC
3904 __reg_deduce_bounds(false_reg);
3905 __reg_deduce_bounds(true_reg);
3906 /* We might have learned some bits from the bounds. */
3907 __reg_bound_offset(false_reg);
3908 __reg_bound_offset(true_reg);
3909 /* Intersecting with the old var_off might have improved our bounds
3910 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3911 * then new var_off is (0; 0x7f...fc) which improves our umax.
3912 */
3913 __update_reg_bounds(false_reg);
3914 __update_reg_bounds(true_reg);
f1174f77
EC
3915}
3916
3917/* Regs are known to be equal, so intersect their min/max/var_off */
3918static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3919 struct bpf_reg_state *dst_reg)
3920{
b03c9f9f
EC
3921 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3922 dst_reg->umin_value);
3923 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3924 dst_reg->umax_value);
3925 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3926 dst_reg->smin_value);
3927 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3928 dst_reg->smax_value);
f1174f77
EC
3929 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3930 dst_reg->var_off);
b03c9f9f
EC
3931 /* We might have learned new bounds from the var_off. */
3932 __update_reg_bounds(src_reg);
3933 __update_reg_bounds(dst_reg);
3934 /* We might have learned something about the sign bit. */
3935 __reg_deduce_bounds(src_reg);
3936 __reg_deduce_bounds(dst_reg);
3937 /* We might have learned some bits from the bounds. */
3938 __reg_bound_offset(src_reg);
3939 __reg_bound_offset(dst_reg);
3940 /* Intersecting with the old var_off might have improved our bounds
3941 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3942 * then new var_off is (0; 0x7f...fc) which improves our umax.
3943 */
3944 __update_reg_bounds(src_reg);
3945 __update_reg_bounds(dst_reg);
f1174f77
EC
3946}
3947
3948static void reg_combine_min_max(struct bpf_reg_state *true_src,
3949 struct bpf_reg_state *true_dst,
3950 struct bpf_reg_state *false_src,
3951 struct bpf_reg_state *false_dst,
3952 u8 opcode)
3953{
3954 switch (opcode) {
3955 case BPF_JEQ:
3956 __reg_combine_min_max(true_src, true_dst);
3957 break;
3958 case BPF_JNE:
3959 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3960 break;
4cabc5b1 3961 }
48461135
JB
3962}
3963
fd978bf7
JS
3964static void mark_ptr_or_null_reg(struct bpf_func_state *state,
3965 struct bpf_reg_state *reg, u32 id,
840b9615 3966 bool is_null)
57a09bf0 3967{
840b9615 3968 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
3969 /* Old offset (both fixed and variable parts) should
3970 * have been known-zero, because we don't allow pointer
3971 * arithmetic on pointers that might be NULL.
3972 */
b03c9f9f
EC
3973 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3974 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3975 reg->off)) {
b03c9f9f
EC
3976 __mark_reg_known_zero(reg);
3977 reg->off = 0;
f1174f77
EC
3978 }
3979 if (is_null) {
3980 reg->type = SCALAR_VALUE;
840b9615
JS
3981 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3982 if (reg->map_ptr->inner_map_meta) {
3983 reg->type = CONST_PTR_TO_MAP;
3984 reg->map_ptr = reg->map_ptr->inner_map_meta;
3985 } else {
3986 reg->type = PTR_TO_MAP_VALUE;
3987 }
c64b7983
JS
3988 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3989 reg->type = PTR_TO_SOCKET;
56f668df 3990 }
fd978bf7
JS
3991 if (is_null || !reg_is_refcounted(reg)) {
3992 /* We don't need id from this point onwards anymore,
3993 * thus we should better reset it, so that state
3994 * pruning has chances to take effect.
3995 */
3996 reg->id = 0;
56f668df 3997 }
57a09bf0
TG
3998 }
3999}
4000
4001/* The logic is similar to find_good_pkt_pointers(), both could eventually
4002 * be folded together at some point.
4003 */
840b9615
JS
4004static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4005 bool is_null)
57a09bf0 4006{
f4d7e40a 4007 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4008 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 4009 u32 id = regs[regno].id;
f4d7e40a 4010 int i, j;
57a09bf0 4011
fd978bf7
JS
4012 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4013 __release_reference_state(state, id);
4014
57a09bf0 4015 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4016 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4017
f4d7e40a
AS
4018 for (j = 0; j <= vstate->curframe; j++) {
4019 state = vstate->frame[j];
f3709f69
JS
4020 bpf_for_each_spilled_reg(i, state, reg) {
4021 if (!reg)
f4d7e40a 4022 continue;
fd978bf7 4023 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4024 }
57a09bf0
TG
4025 }
4026}
4027
5beca081
DB
4028static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4029 struct bpf_reg_state *dst_reg,
4030 struct bpf_reg_state *src_reg,
4031 struct bpf_verifier_state *this_branch,
4032 struct bpf_verifier_state *other_branch)
4033{
4034 if (BPF_SRC(insn->code) != BPF_X)
4035 return false;
4036
4037 switch (BPF_OP(insn->code)) {
4038 case BPF_JGT:
4039 if ((dst_reg->type == PTR_TO_PACKET &&
4040 src_reg->type == PTR_TO_PACKET_END) ||
4041 (dst_reg->type == PTR_TO_PACKET_META &&
4042 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4043 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4044 find_good_pkt_pointers(this_branch, dst_reg,
4045 dst_reg->type, false);
4046 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4047 src_reg->type == PTR_TO_PACKET) ||
4048 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4049 src_reg->type == PTR_TO_PACKET_META)) {
4050 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4051 find_good_pkt_pointers(other_branch, src_reg,
4052 src_reg->type, true);
4053 } else {
4054 return false;
4055 }
4056 break;
4057 case BPF_JLT:
4058 if ((dst_reg->type == PTR_TO_PACKET &&
4059 src_reg->type == PTR_TO_PACKET_END) ||
4060 (dst_reg->type == PTR_TO_PACKET_META &&
4061 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4062 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4063 find_good_pkt_pointers(other_branch, dst_reg,
4064 dst_reg->type, true);
4065 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4066 src_reg->type == PTR_TO_PACKET) ||
4067 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4068 src_reg->type == PTR_TO_PACKET_META)) {
4069 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4070 find_good_pkt_pointers(this_branch, src_reg,
4071 src_reg->type, false);
4072 } else {
4073 return false;
4074 }
4075 break;
4076 case BPF_JGE:
4077 if ((dst_reg->type == PTR_TO_PACKET &&
4078 src_reg->type == PTR_TO_PACKET_END) ||
4079 (dst_reg->type == PTR_TO_PACKET_META &&
4080 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4081 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4082 find_good_pkt_pointers(this_branch, dst_reg,
4083 dst_reg->type, true);
4084 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4085 src_reg->type == PTR_TO_PACKET) ||
4086 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4087 src_reg->type == PTR_TO_PACKET_META)) {
4088 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4089 find_good_pkt_pointers(other_branch, src_reg,
4090 src_reg->type, false);
4091 } else {
4092 return false;
4093 }
4094 break;
4095 case BPF_JLE:
4096 if ((dst_reg->type == PTR_TO_PACKET &&
4097 src_reg->type == PTR_TO_PACKET_END) ||
4098 (dst_reg->type == PTR_TO_PACKET_META &&
4099 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4100 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4101 find_good_pkt_pointers(other_branch, dst_reg,
4102 dst_reg->type, false);
4103 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4104 src_reg->type == PTR_TO_PACKET) ||
4105 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4106 src_reg->type == PTR_TO_PACKET_META)) {
4107 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4108 find_good_pkt_pointers(this_branch, src_reg,
4109 src_reg->type, true);
4110 } else {
4111 return false;
4112 }
4113 break;
4114 default:
4115 return false;
4116 }
4117
4118 return true;
4119}
4120
58e2af8b 4121static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4122 struct bpf_insn *insn, int *insn_idx)
4123{
f4d7e40a
AS
4124 struct bpf_verifier_state *this_branch = env->cur_state;
4125 struct bpf_verifier_state *other_branch;
4126 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4127 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
4128 u8 opcode = BPF_OP(insn->code);
4129 int err;
4130
b4e432f1 4131 if (opcode > BPF_JSLE) {
61bd5218 4132 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
4133 return -EINVAL;
4134 }
4135
4136 if (BPF_SRC(insn->code) == BPF_X) {
4137 if (insn->imm != 0) {
61bd5218 4138 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4139 return -EINVAL;
4140 }
4141
4142 /* check src1 operand */
dc503a8a 4143 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4144 if (err)
4145 return err;
1be7f75d
AS
4146
4147 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4148 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4149 insn->src_reg);
4150 return -EACCES;
4151 }
17a52670
AS
4152 } else {
4153 if (insn->src_reg != BPF_REG_0) {
61bd5218 4154 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4155 return -EINVAL;
4156 }
4157 }
4158
4159 /* check src2 operand */
dc503a8a 4160 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4161 if (err)
4162 return err;
4163
1a0dc1ac
AS
4164 dst_reg = &regs[insn->dst_reg];
4165
17a52670
AS
4166 /* detect if R == 0 where R was initialized to zero earlier */
4167 if (BPF_SRC(insn->code) == BPF_K &&
4168 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 4169 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
4170 tnum_is_const(dst_reg->var_off)) {
4171 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
4172 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
4173 /* if (imm == imm) goto pc+off;
4174 * only follow the goto, ignore fall-through
4175 */
4176 *insn_idx += insn->off;
4177 return 0;
4178 } else {
4179 /* if (imm != imm) goto pc+off;
4180 * only follow fall-through branch, since
4181 * that's where the program will go
4182 */
4183 return 0;
4184 }
4185 }
4186
4187 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4188 if (!other_branch)
4189 return -EFAULT;
f4d7e40a 4190 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4191
48461135
JB
4192 /* detect if we are comparing against a constant value so we can adjust
4193 * our min/max values for our dst register.
f1174f77
EC
4194 * this is only legit if both are scalars (or pointers to the same
4195 * object, I suppose, but we don't support that right now), because
4196 * otherwise the different base pointers mean the offsets aren't
4197 * comparable.
48461135
JB
4198 */
4199 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
4200 if (dst_reg->type == SCALAR_VALUE &&
4201 regs[insn->src_reg].type == SCALAR_VALUE) {
4202 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 4203 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
4204 dst_reg, regs[insn->src_reg].var_off.value,
4205 opcode);
4206 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 4207 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
4208 &regs[insn->src_reg],
4209 dst_reg->var_off.value, opcode);
4210 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4211 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4212 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4213 &other_branch_regs[insn->dst_reg],
f1174f77
EC
4214 &regs[insn->src_reg],
4215 &regs[insn->dst_reg], opcode);
4216 }
4217 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4218 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
4219 dst_reg, insn->imm, opcode);
4220 }
4221
58e2af8b 4222 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 4223 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4224 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4225 reg_type_may_be_null(dst_reg->type)) {
4226 /* Mark all identical registers in each branch as either
57a09bf0
TG
4227 * safe or unknown depending R == 0 or R != 0 conditional.
4228 */
840b9615
JS
4229 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4230 opcode == BPF_JNE);
4231 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4232 opcode == BPF_JEQ);
5beca081
DB
4233 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4234 this_branch, other_branch) &&
4235 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4236 verbose(env, "R%d pointer comparison prohibited\n",
4237 insn->dst_reg);
1be7f75d 4238 return -EACCES;
17a52670 4239 }
61bd5218 4240 if (env->log.level)
f4d7e40a 4241 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4242 return 0;
4243}
4244
0246e64d
AS
4245/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4246static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4247{
4248 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4249
4250 return (struct bpf_map *) (unsigned long) imm64;
4251}
4252
17a52670 4253/* verify BPF_LD_IMM64 instruction */
58e2af8b 4254static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4255{
638f5b90 4256 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4257 int err;
4258
4259 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4260 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4261 return -EINVAL;
4262 }
4263 if (insn->off != 0) {
61bd5218 4264 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4265 return -EINVAL;
4266 }
4267
dc503a8a 4268 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4269 if (err)
4270 return err;
4271
6b173873 4272 if (insn->src_reg == 0) {
6b173873
JK
4273 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4274
f1174f77 4275 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4276 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4277 return 0;
6b173873 4278 }
17a52670
AS
4279
4280 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4281 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4282
4283 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4284 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4285 return 0;
4286}
4287
96be4325
DB
4288static bool may_access_skb(enum bpf_prog_type type)
4289{
4290 switch (type) {
4291 case BPF_PROG_TYPE_SOCKET_FILTER:
4292 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4293 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4294 return true;
4295 default:
4296 return false;
4297 }
4298}
4299
ddd872bc
AS
4300/* verify safety of LD_ABS|LD_IND instructions:
4301 * - they can only appear in the programs where ctx == skb
4302 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4303 * preserve R6-R9, and store return value into R0
4304 *
4305 * Implicit input:
4306 * ctx == skb == R6 == CTX
4307 *
4308 * Explicit input:
4309 * SRC == any register
4310 * IMM == 32-bit immediate
4311 *
4312 * Output:
4313 * R0 - 8/16/32-bit skb data converted to cpu endianness
4314 */
58e2af8b 4315static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4316{
638f5b90 4317 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4318 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4319 int i, err;
4320
24701ece 4321 if (!may_access_skb(env->prog->type)) {
61bd5218 4322 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4323 return -EINVAL;
4324 }
4325
e0cea7ce
DB
4326 if (!env->ops->gen_ld_abs) {
4327 verbose(env, "bpf verifier is misconfigured\n");
4328 return -EINVAL;
4329 }
4330
f910cefa 4331 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4332 /* when program has LD_ABS insn JITs and interpreter assume
4333 * that r1 == ctx == skb which is not the case for callees
4334 * that can have arbitrary arguments. It's problematic
4335 * for main prog as well since JITs would need to analyze
4336 * all functions in order to make proper register save/restore
4337 * decisions in the main prog. Hence disallow LD_ABS with calls
4338 */
4339 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4340 return -EINVAL;
4341 }
4342
ddd872bc 4343 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4344 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4345 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4346 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4347 return -EINVAL;
4348 }
4349
4350 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4351 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4352 if (err)
4353 return err;
4354
fd978bf7
JS
4355 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4356 * gen_ld_abs() may terminate the program at runtime, leading to
4357 * reference leak.
4358 */
4359 err = check_reference_leak(env);
4360 if (err) {
4361 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4362 return err;
4363 }
4364
ddd872bc 4365 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4366 verbose(env,
4367 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4368 return -EINVAL;
4369 }
4370
4371 if (mode == BPF_IND) {
4372 /* check explicit source operand */
dc503a8a 4373 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4374 if (err)
4375 return err;
4376 }
4377
4378 /* reset caller saved regs to unreadable */
dc503a8a 4379 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4380 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4381 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4382 }
ddd872bc
AS
4383
4384 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4385 * the value fetched from the packet.
4386 * Already marked as written above.
ddd872bc 4387 */
61bd5218 4388 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4389 return 0;
4390}
4391
390ee7e2
AS
4392static int check_return_code(struct bpf_verifier_env *env)
4393{
4394 struct bpf_reg_state *reg;
4395 struct tnum range = tnum_range(0, 1);
4396
4397 switch (env->prog->type) {
4398 case BPF_PROG_TYPE_CGROUP_SKB:
4399 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4400 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4401 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4402 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4403 break;
4404 default:
4405 return 0;
4406 }
4407
638f5b90 4408 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4409 if (reg->type != SCALAR_VALUE) {
61bd5218 4410 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4411 reg_type_str[reg->type]);
4412 return -EINVAL;
4413 }
4414
4415 if (!tnum_in(range, reg->var_off)) {
61bd5218 4416 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4417 if (!tnum_is_unknown(reg->var_off)) {
4418 char tn_buf[48];
4419
4420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4421 verbose(env, "has value %s", tn_buf);
390ee7e2 4422 } else {
61bd5218 4423 verbose(env, "has unknown scalar value");
390ee7e2 4424 }
61bd5218 4425 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4426 return -EINVAL;
4427 }
4428 return 0;
4429}
4430
475fb78f
AS
4431/* non-recursive DFS pseudo code
4432 * 1 procedure DFS-iterative(G,v):
4433 * 2 label v as discovered
4434 * 3 let S be a stack
4435 * 4 S.push(v)
4436 * 5 while S is not empty
4437 * 6 t <- S.pop()
4438 * 7 if t is what we're looking for:
4439 * 8 return t
4440 * 9 for all edges e in G.adjacentEdges(t) do
4441 * 10 if edge e is already labelled
4442 * 11 continue with the next edge
4443 * 12 w <- G.adjacentVertex(t,e)
4444 * 13 if vertex w is not discovered and not explored
4445 * 14 label e as tree-edge
4446 * 15 label w as discovered
4447 * 16 S.push(w)
4448 * 17 continue at 5
4449 * 18 else if vertex w is discovered
4450 * 19 label e as back-edge
4451 * 20 else
4452 * 21 // vertex w is explored
4453 * 22 label e as forward- or cross-edge
4454 * 23 label t as explored
4455 * 24 S.pop()
4456 *
4457 * convention:
4458 * 0x10 - discovered
4459 * 0x11 - discovered and fall-through edge labelled
4460 * 0x12 - discovered and fall-through and branch edges labelled
4461 * 0x20 - explored
4462 */
4463
4464enum {
4465 DISCOVERED = 0x10,
4466 EXPLORED = 0x20,
4467 FALLTHROUGH = 1,
4468 BRANCH = 2,
4469};
4470
58e2af8b 4471#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4472
475fb78f
AS
4473static int *insn_stack; /* stack of insns to process */
4474static int cur_stack; /* current stack index */
4475static int *insn_state;
4476
4477/* t, w, e - match pseudo-code above:
4478 * t - index of current instruction
4479 * w - next instruction
4480 * e - edge
4481 */
58e2af8b 4482static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4483{
4484 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4485 return 0;
4486
4487 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4488 return 0;
4489
4490 if (w < 0 || w >= env->prog->len) {
61bd5218 4491 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4492 return -EINVAL;
4493 }
4494
f1bca824
AS
4495 if (e == BRANCH)
4496 /* mark branch target for state pruning */
4497 env->explored_states[w] = STATE_LIST_MARK;
4498
475fb78f
AS
4499 if (insn_state[w] == 0) {
4500 /* tree-edge */
4501 insn_state[t] = DISCOVERED | e;
4502 insn_state[w] = DISCOVERED;
4503 if (cur_stack >= env->prog->len)
4504 return -E2BIG;
4505 insn_stack[cur_stack++] = w;
4506 return 1;
4507 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4508 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4509 return -EINVAL;
4510 } else if (insn_state[w] == EXPLORED) {
4511 /* forward- or cross-edge */
4512 insn_state[t] = DISCOVERED | e;
4513 } else {
61bd5218 4514 verbose(env, "insn state internal bug\n");
475fb78f
AS
4515 return -EFAULT;
4516 }
4517 return 0;
4518}
4519
4520/* non-recursive depth-first-search to detect loops in BPF program
4521 * loop == back-edge in directed graph
4522 */
58e2af8b 4523static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4524{
4525 struct bpf_insn *insns = env->prog->insnsi;
4526 int insn_cnt = env->prog->len;
4527 int ret = 0;
4528 int i, t;
4529
cc8b0b92
AS
4530 ret = check_subprogs(env);
4531 if (ret < 0)
4532 return ret;
4533
475fb78f
AS
4534 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4535 if (!insn_state)
4536 return -ENOMEM;
4537
4538 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4539 if (!insn_stack) {
4540 kfree(insn_state);
4541 return -ENOMEM;
4542 }
4543
4544 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4545 insn_stack[0] = 0; /* 0 is the first instruction */
4546 cur_stack = 1;
4547
4548peek_stack:
4549 if (cur_stack == 0)
4550 goto check_state;
4551 t = insn_stack[cur_stack - 1];
4552
4553 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4554 u8 opcode = BPF_OP(insns[t].code);
4555
4556 if (opcode == BPF_EXIT) {
4557 goto mark_explored;
4558 } else if (opcode == BPF_CALL) {
4559 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4560 if (ret == 1)
4561 goto peek_stack;
4562 else if (ret < 0)
4563 goto err_free;
07016151
DB
4564 if (t + 1 < insn_cnt)
4565 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4566 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4567 env->explored_states[t] = STATE_LIST_MARK;
4568 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4569 if (ret == 1)
4570 goto peek_stack;
4571 else if (ret < 0)
4572 goto err_free;
4573 }
475fb78f
AS
4574 } else if (opcode == BPF_JA) {
4575 if (BPF_SRC(insns[t].code) != BPF_K) {
4576 ret = -EINVAL;
4577 goto err_free;
4578 }
4579 /* unconditional jump with single edge */
4580 ret = push_insn(t, t + insns[t].off + 1,
4581 FALLTHROUGH, env);
4582 if (ret == 1)
4583 goto peek_stack;
4584 else if (ret < 0)
4585 goto err_free;
f1bca824
AS
4586 /* tell verifier to check for equivalent states
4587 * after every call and jump
4588 */
c3de6317
AS
4589 if (t + 1 < insn_cnt)
4590 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4591 } else {
4592 /* conditional jump with two edges */
3c2ce60b 4593 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4594 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4595 if (ret == 1)
4596 goto peek_stack;
4597 else if (ret < 0)
4598 goto err_free;
4599
4600 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4601 if (ret == 1)
4602 goto peek_stack;
4603 else if (ret < 0)
4604 goto err_free;
4605 }
4606 } else {
4607 /* all other non-branch instructions with single
4608 * fall-through edge
4609 */
4610 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4611 if (ret == 1)
4612 goto peek_stack;
4613 else if (ret < 0)
4614 goto err_free;
4615 }
4616
4617mark_explored:
4618 insn_state[t] = EXPLORED;
4619 if (cur_stack-- <= 0) {
61bd5218 4620 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4621 ret = -EFAULT;
4622 goto err_free;
4623 }
4624 goto peek_stack;
4625
4626check_state:
4627 for (i = 0; i < insn_cnt; i++) {
4628 if (insn_state[i] != EXPLORED) {
61bd5218 4629 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4630 ret = -EINVAL;
4631 goto err_free;
4632 }
4633 }
4634 ret = 0; /* cfg looks good */
4635
4636err_free:
4637 kfree(insn_state);
4638 kfree(insn_stack);
4639 return ret;
4640}
4641
f1174f77
EC
4642/* check %cur's range satisfies %old's */
4643static bool range_within(struct bpf_reg_state *old,
4644 struct bpf_reg_state *cur)
4645{
b03c9f9f
EC
4646 return old->umin_value <= cur->umin_value &&
4647 old->umax_value >= cur->umax_value &&
4648 old->smin_value <= cur->smin_value &&
4649 old->smax_value >= cur->smax_value;
f1174f77
EC
4650}
4651
4652/* Maximum number of register states that can exist at once */
4653#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4654struct idpair {
4655 u32 old;
4656 u32 cur;
4657};
4658
4659/* If in the old state two registers had the same id, then they need to have
4660 * the same id in the new state as well. But that id could be different from
4661 * the old state, so we need to track the mapping from old to new ids.
4662 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4663 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4664 * regs with a different old id could still have new id 9, we don't care about
4665 * that.
4666 * So we look through our idmap to see if this old id has been seen before. If
4667 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4668 */
f1174f77 4669static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4670{
f1174f77 4671 unsigned int i;
969bf05e 4672
f1174f77
EC
4673 for (i = 0; i < ID_MAP_SIZE; i++) {
4674 if (!idmap[i].old) {
4675 /* Reached an empty slot; haven't seen this id before */
4676 idmap[i].old = old_id;
4677 idmap[i].cur = cur_id;
4678 return true;
4679 }
4680 if (idmap[i].old == old_id)
4681 return idmap[i].cur == cur_id;
4682 }
4683 /* We ran out of idmap slots, which should be impossible */
4684 WARN_ON_ONCE(1);
4685 return false;
4686}
4687
4688/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4689static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4690 struct idpair *idmap)
f1174f77 4691{
f4d7e40a
AS
4692 bool equal;
4693
dc503a8a
EC
4694 if (!(rold->live & REG_LIVE_READ))
4695 /* explored state didn't use this */
4696 return true;
4697
679c782d 4698 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
4699
4700 if (rold->type == PTR_TO_STACK)
4701 /* two stack pointers are equal only if they're pointing to
4702 * the same stack frame, since fp-8 in foo != fp-8 in bar
4703 */
4704 return equal && rold->frameno == rcur->frameno;
4705
4706 if (equal)
969bf05e
AS
4707 return true;
4708
f1174f77
EC
4709 if (rold->type == NOT_INIT)
4710 /* explored state can't have used this */
969bf05e 4711 return true;
f1174f77
EC
4712 if (rcur->type == NOT_INIT)
4713 return false;
4714 switch (rold->type) {
4715 case SCALAR_VALUE:
4716 if (rcur->type == SCALAR_VALUE) {
4717 /* new val must satisfy old val knowledge */
4718 return range_within(rold, rcur) &&
4719 tnum_in(rold->var_off, rcur->var_off);
4720 } else {
179d1c56
JH
4721 /* We're trying to use a pointer in place of a scalar.
4722 * Even if the scalar was unbounded, this could lead to
4723 * pointer leaks because scalars are allowed to leak
4724 * while pointers are not. We could make this safe in
4725 * special cases if root is calling us, but it's
4726 * probably not worth the hassle.
f1174f77 4727 */
179d1c56 4728 return false;
f1174f77
EC
4729 }
4730 case PTR_TO_MAP_VALUE:
1b688a19
EC
4731 /* If the new min/max/var_off satisfy the old ones and
4732 * everything else matches, we are OK.
4733 * We don't care about the 'id' value, because nothing
4734 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4735 */
4736 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4737 range_within(rold, rcur) &&
4738 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4739 case PTR_TO_MAP_VALUE_OR_NULL:
4740 /* a PTR_TO_MAP_VALUE could be safe to use as a
4741 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4742 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4743 * checked, doing so could have affected others with the same
4744 * id, and we can't check for that because we lost the id when
4745 * we converted to a PTR_TO_MAP_VALUE.
4746 */
4747 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4748 return false;
4749 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4750 return false;
4751 /* Check our ids match any regs they're supposed to */
4752 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4753 case PTR_TO_PACKET_META:
f1174f77 4754 case PTR_TO_PACKET:
de8f3a83 4755 if (rcur->type != rold->type)
f1174f77
EC
4756 return false;
4757 /* We must have at least as much range as the old ptr
4758 * did, so that any accesses which were safe before are
4759 * still safe. This is true even if old range < old off,
4760 * since someone could have accessed through (ptr - k), or
4761 * even done ptr -= k in a register, to get a safe access.
4762 */
4763 if (rold->range > rcur->range)
4764 return false;
4765 /* If the offsets don't match, we can't trust our alignment;
4766 * nor can we be sure that we won't fall out of range.
4767 */
4768 if (rold->off != rcur->off)
4769 return false;
4770 /* id relations must be preserved */
4771 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4772 return false;
4773 /* new val must satisfy old val knowledge */
4774 return range_within(rold, rcur) &&
4775 tnum_in(rold->var_off, rcur->var_off);
4776 case PTR_TO_CTX:
4777 case CONST_PTR_TO_MAP:
f1174f77 4778 case PTR_TO_PACKET_END:
d58e468b 4779 case PTR_TO_FLOW_KEYS:
c64b7983
JS
4780 case PTR_TO_SOCKET:
4781 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
4782 /* Only valid matches are exact, which memcmp() above
4783 * would have accepted
4784 */
4785 default:
4786 /* Don't know what's going on, just say it's not safe */
4787 return false;
4788 }
969bf05e 4789
f1174f77
EC
4790 /* Shouldn't get here; if we do, say it's not safe */
4791 WARN_ON_ONCE(1);
969bf05e
AS
4792 return false;
4793}
4794
f4d7e40a
AS
4795static bool stacksafe(struct bpf_func_state *old,
4796 struct bpf_func_state *cur,
638f5b90
AS
4797 struct idpair *idmap)
4798{
4799 int i, spi;
4800
4801 /* if explored stack has more populated slots than current stack
4802 * such stacks are not equivalent
4803 */
4804 if (old->allocated_stack > cur->allocated_stack)
4805 return false;
4806
4807 /* walk slots of the explored stack and ignore any additional
4808 * slots in the current stack, since explored(safe) state
4809 * didn't use them
4810 */
4811 for (i = 0; i < old->allocated_stack; i++) {
4812 spi = i / BPF_REG_SIZE;
4813
cc2b14d5
AS
4814 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4815 /* explored state didn't use this */
fd05e57b 4816 continue;
cc2b14d5 4817
638f5b90
AS
4818 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4819 continue;
cc2b14d5
AS
4820 /* if old state was safe with misc data in the stack
4821 * it will be safe with zero-initialized stack.
4822 * The opposite is not true
4823 */
4824 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4825 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4826 continue;
638f5b90
AS
4827 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4828 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4829 /* Ex: old explored (safe) state has STACK_SPILL in
4830 * this stack slot, but current has has STACK_MISC ->
4831 * this verifier states are not equivalent,
4832 * return false to continue verification of this path
4833 */
4834 return false;
4835 if (i % BPF_REG_SIZE)
4836 continue;
4837 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4838 continue;
4839 if (!regsafe(&old->stack[spi].spilled_ptr,
4840 &cur->stack[spi].spilled_ptr,
4841 idmap))
4842 /* when explored and current stack slot are both storing
4843 * spilled registers, check that stored pointers types
4844 * are the same as well.
4845 * Ex: explored safe path could have stored
4846 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4847 * but current path has stored:
4848 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4849 * such verifier states are not equivalent.
4850 * return false to continue verification of this path
4851 */
4852 return false;
4853 }
4854 return true;
4855}
4856
fd978bf7
JS
4857static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4858{
4859 if (old->acquired_refs != cur->acquired_refs)
4860 return false;
4861 return !memcmp(old->refs, cur->refs,
4862 sizeof(*old->refs) * old->acquired_refs);
4863}
4864
f1bca824
AS
4865/* compare two verifier states
4866 *
4867 * all states stored in state_list are known to be valid, since
4868 * verifier reached 'bpf_exit' instruction through them
4869 *
4870 * this function is called when verifier exploring different branches of
4871 * execution popped from the state stack. If it sees an old state that has
4872 * more strict register state and more strict stack state then this execution
4873 * branch doesn't need to be explored further, since verifier already
4874 * concluded that more strict state leads to valid finish.
4875 *
4876 * Therefore two states are equivalent if register state is more conservative
4877 * and explored stack state is more conservative than the current one.
4878 * Example:
4879 * explored current
4880 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4881 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4882 *
4883 * In other words if current stack state (one being explored) has more
4884 * valid slots than old one that already passed validation, it means
4885 * the verifier can stop exploring and conclude that current state is valid too
4886 *
4887 * Similarly with registers. If explored state has register type as invalid
4888 * whereas register type in current state is meaningful, it means that
4889 * the current state will reach 'bpf_exit' instruction safely
4890 */
f4d7e40a
AS
4891static bool func_states_equal(struct bpf_func_state *old,
4892 struct bpf_func_state *cur)
f1bca824 4893{
f1174f77
EC
4894 struct idpair *idmap;
4895 bool ret = false;
f1bca824
AS
4896 int i;
4897
f1174f77
EC
4898 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4899 /* If we failed to allocate the idmap, just say it's not safe */
4900 if (!idmap)
1a0dc1ac 4901 return false;
f1174f77
EC
4902
4903 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4904 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4905 goto out_free;
f1bca824
AS
4906 }
4907
638f5b90
AS
4908 if (!stacksafe(old, cur, idmap))
4909 goto out_free;
fd978bf7
JS
4910
4911 if (!refsafe(old, cur))
4912 goto out_free;
f1174f77
EC
4913 ret = true;
4914out_free:
4915 kfree(idmap);
4916 return ret;
f1bca824
AS
4917}
4918
f4d7e40a
AS
4919static bool states_equal(struct bpf_verifier_env *env,
4920 struct bpf_verifier_state *old,
4921 struct bpf_verifier_state *cur)
4922{
4923 int i;
4924
4925 if (old->curframe != cur->curframe)
4926 return false;
4927
4928 /* for states to be equal callsites have to be the same
4929 * and all frame states need to be equivalent
4930 */
4931 for (i = 0; i <= old->curframe; i++) {
4932 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4933 return false;
4934 if (!func_states_equal(old->frame[i], cur->frame[i]))
4935 return false;
4936 }
4937 return true;
4938}
4939
8e9cd9ce 4940/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4941 * straight-line code between a state and its parent. When we arrive at an
4942 * equivalent state (jump target or such) we didn't arrive by the straight-line
4943 * code, so read marks in the state must propagate to the parent regardless
4944 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 4945 * in mark_reg_read() is for.
8e9cd9ce 4946 */
f4d7e40a
AS
4947static int propagate_liveness(struct bpf_verifier_env *env,
4948 const struct bpf_verifier_state *vstate,
4949 struct bpf_verifier_state *vparent)
dc503a8a 4950{
f4d7e40a
AS
4951 int i, frame, err = 0;
4952 struct bpf_func_state *state, *parent;
dc503a8a 4953
f4d7e40a
AS
4954 if (vparent->curframe != vstate->curframe) {
4955 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4956 vparent->curframe, vstate->curframe);
4957 return -EFAULT;
4958 }
dc503a8a
EC
4959 /* Propagate read liveness of registers... */
4960 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4961 /* We don't need to worry about FP liveness because it's read-only */
4962 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4963 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4964 continue;
f4d7e40a 4965 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
4966 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4967 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
4968 if (err)
4969 return err;
dc503a8a
EC
4970 }
4971 }
f4d7e40a 4972
dc503a8a 4973 /* ... and stack slots */
f4d7e40a
AS
4974 for (frame = 0; frame <= vstate->curframe; frame++) {
4975 state = vstate->frame[frame];
4976 parent = vparent->frame[frame];
4977 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4978 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4979 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4980 continue;
4981 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
4982 mark_reg_read(env, &state->stack[i].spilled_ptr,
4983 &parent->stack[i].spilled_ptr);
dc503a8a
EC
4984 }
4985 }
f4d7e40a 4986 return err;
dc503a8a
EC
4987}
4988
58e2af8b 4989static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4990{
58e2af8b
JK
4991 struct bpf_verifier_state_list *new_sl;
4992 struct bpf_verifier_state_list *sl;
679c782d 4993 struct bpf_verifier_state *cur = env->cur_state, *new;
f4d7e40a 4994 int i, j, err;
f1bca824
AS
4995
4996 sl = env->explored_states[insn_idx];
4997 if (!sl)
4998 /* this 'insn_idx' instruction wasn't marked, so we will not
4999 * be doing state search here
5000 */
5001 return 0;
5002
5003 while (sl != STATE_LIST_MARK) {
638f5b90 5004 if (states_equal(env, &sl->state, cur)) {
f1bca824 5005 /* reached equivalent register/stack state,
dc503a8a
EC
5006 * prune the search.
5007 * Registers read by the continuation are read by us.
8e9cd9ce
EC
5008 * If we have any write marks in env->cur_state, they
5009 * will prevent corresponding reads in the continuation
5010 * from reaching our parent (an explored_state). Our
5011 * own state will get the read marks recorded, but
5012 * they'll be immediately forgotten as we're pruning
5013 * this state and will pop a new one.
f1bca824 5014 */
f4d7e40a
AS
5015 err = propagate_liveness(env, &sl->state, cur);
5016 if (err)
5017 return err;
f1bca824 5018 return 1;
dc503a8a 5019 }
f1bca824
AS
5020 sl = sl->next;
5021 }
5022
5023 /* there were no equivalent states, remember current one.
5024 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
5025 * but it will either reach outer most bpf_exit (which means it's safe)
5026 * or it will be rejected. Since there are no loops, we won't be
5027 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5028 * again on the way to bpf_exit
f1bca824 5029 */
638f5b90 5030 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
5031 if (!new_sl)
5032 return -ENOMEM;
5033
5034 /* add new state to the head of linked list */
679c782d
EC
5035 new = &new_sl->state;
5036 err = copy_verifier_state(new, cur);
1969db47 5037 if (err) {
679c782d 5038 free_verifier_state(new, false);
1969db47
AS
5039 kfree(new_sl);
5040 return err;
5041 }
f1bca824
AS
5042 new_sl->next = env->explored_states[insn_idx];
5043 env->explored_states[insn_idx] = new_sl;
dc503a8a 5044 /* connect new state to parentage chain */
679c782d
EC
5045 for (i = 0; i < BPF_REG_FP; i++)
5046 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
8e9cd9ce
EC
5047 /* clear write marks in current state: the writes we did are not writes
5048 * our child did, so they don't screen off its reads from us.
5049 * (There are no read marks in current state, because reads always mark
5050 * their parent and current state never has children yet. Only
5051 * explored_states can get read marks.)
5052 */
dc503a8a 5053 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
5054 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5055
5056 /* all stack frames are accessible from callee, clear them all */
5057 for (j = 0; j <= cur->curframe; j++) {
5058 struct bpf_func_state *frame = cur->frame[j];
679c782d 5059 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 5060
679c782d 5061 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 5062 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
5063 frame->stack[i].spilled_ptr.parent =
5064 &newframe->stack[i].spilled_ptr;
5065 }
f4d7e40a 5066 }
f1bca824
AS
5067 return 0;
5068}
5069
c64b7983
JS
5070/* Return true if it's OK to have the same insn return a different type. */
5071static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5072{
5073 switch (type) {
5074 case PTR_TO_CTX:
5075 case PTR_TO_SOCKET:
5076 case PTR_TO_SOCKET_OR_NULL:
5077 return false;
5078 default:
5079 return true;
5080 }
5081}
5082
5083/* If an instruction was previously used with particular pointer types, then we
5084 * need to be careful to avoid cases such as the below, where it may be ok
5085 * for one branch accessing the pointer, but not ok for the other branch:
5086 *
5087 * R1 = sock_ptr
5088 * goto X;
5089 * ...
5090 * R1 = some_other_valid_ptr;
5091 * goto X;
5092 * ...
5093 * R2 = *(u32 *)(R1 + 0);
5094 */
5095static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5096{
5097 return src != prev && (!reg_type_mismatch_ok(src) ||
5098 !reg_type_mismatch_ok(prev));
5099}
5100
58e2af8b 5101static int do_check(struct bpf_verifier_env *env)
17a52670 5102{
638f5b90 5103 struct bpf_verifier_state *state;
17a52670 5104 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 5105 struct bpf_reg_state *regs;
f4d7e40a 5106 int insn_cnt = env->prog->len, i;
17a52670
AS
5107 int insn_idx, prev_insn_idx = 0;
5108 int insn_processed = 0;
5109 bool do_print_state = false;
5110
638f5b90
AS
5111 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5112 if (!state)
5113 return -ENOMEM;
f4d7e40a 5114 state->curframe = 0;
f4d7e40a
AS
5115 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5116 if (!state->frame[0]) {
5117 kfree(state);
5118 return -ENOMEM;
5119 }
5120 env->cur_state = state;
5121 init_func_state(env, state->frame[0],
5122 BPF_MAIN_FUNC /* callsite */,
5123 0 /* frameno */,
5124 0 /* subprogno, zero == main subprog */);
17a52670
AS
5125 insn_idx = 0;
5126 for (;;) {
5127 struct bpf_insn *insn;
5128 u8 class;
5129 int err;
5130
5131 if (insn_idx >= insn_cnt) {
61bd5218 5132 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
5133 insn_idx, insn_cnt);
5134 return -EFAULT;
5135 }
5136
5137 insn = &insns[insn_idx];
5138 class = BPF_CLASS(insn->code);
5139
07016151 5140 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
5141 verbose(env,
5142 "BPF program is too large. Processed %d insn\n",
17a52670
AS
5143 insn_processed);
5144 return -E2BIG;
5145 }
5146
f1bca824
AS
5147 err = is_state_visited(env, insn_idx);
5148 if (err < 0)
5149 return err;
5150 if (err == 1) {
5151 /* found equivalent state, can prune the search */
61bd5218 5152 if (env->log.level) {
f1bca824 5153 if (do_print_state)
61bd5218 5154 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
5155 prev_insn_idx, insn_idx);
5156 else
61bd5218 5157 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
5158 }
5159 goto process_bpf_exit;
5160 }
5161
3c2ce60b
DB
5162 if (need_resched())
5163 cond_resched();
5164
61bd5218
JK
5165 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5166 if (env->log.level > 1)
5167 verbose(env, "%d:", insn_idx);
c5fc9692 5168 else
61bd5218 5169 verbose(env, "\nfrom %d to %d:",
c5fc9692 5170 prev_insn_idx, insn_idx);
f4d7e40a 5171 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
5172 do_print_state = false;
5173 }
5174
61bd5218 5175 if (env->log.level) {
7105e828
DB
5176 const struct bpf_insn_cbs cbs = {
5177 .cb_print = verbose,
abe08840 5178 .private_data = env,
7105e828
DB
5179 };
5180
61bd5218 5181 verbose(env, "%d: ", insn_idx);
abe08840 5182 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
5183 }
5184
cae1927c
JK
5185 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5186 err = bpf_prog_offload_verify_insn(env, insn_idx,
5187 prev_insn_idx);
5188 if (err)
5189 return err;
5190 }
13a27dfc 5191
638f5b90 5192 regs = cur_regs(env);
c131187d 5193 env->insn_aux_data[insn_idx].seen = true;
fd978bf7 5194
17a52670 5195 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 5196 err = check_alu_op(env, insn);
17a52670
AS
5197 if (err)
5198 return err;
5199
5200 } else if (class == BPF_LDX) {
3df126f3 5201 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
5202
5203 /* check for reserved fields is already done */
5204
17a52670 5205 /* check src operand */
dc503a8a 5206 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5207 if (err)
5208 return err;
5209
dc503a8a 5210 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5211 if (err)
5212 return err;
5213
725f9dcd
AS
5214 src_reg_type = regs[insn->src_reg].type;
5215
17a52670
AS
5216 /* check that memory (src_reg + off) is readable,
5217 * the state of dst_reg will be updated by this func
5218 */
31fd8581 5219 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 5220 BPF_SIZE(insn->code), BPF_READ,
ca369602 5221 insn->dst_reg, false);
17a52670
AS
5222 if (err)
5223 return err;
5224
3df126f3
JK
5225 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5226
5227 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
5228 /* saw a valid insn
5229 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 5230 * save type to validate intersecting paths
9bac3d6d 5231 */
3df126f3 5232 *prev_src_type = src_reg_type;
9bac3d6d 5233
c64b7983 5234 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
5235 /* ABuser program is trying to use the same insn
5236 * dst_reg = *(u32*) (src_reg + off)
5237 * with different pointer types:
5238 * src_reg == ctx in one branch and
5239 * src_reg == stack|map in some other branch.
5240 * Reject it.
5241 */
61bd5218 5242 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
5243 return -EINVAL;
5244 }
5245
17a52670 5246 } else if (class == BPF_STX) {
3df126f3 5247 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 5248
17a52670 5249 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 5250 err = check_xadd(env, insn_idx, insn);
17a52670
AS
5251 if (err)
5252 return err;
5253 insn_idx++;
5254 continue;
5255 }
5256
17a52670 5257 /* check src1 operand */
dc503a8a 5258 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5259 if (err)
5260 return err;
5261 /* check src2 operand */
dc503a8a 5262 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5263 if (err)
5264 return err;
5265
d691f9e8
AS
5266 dst_reg_type = regs[insn->dst_reg].type;
5267
17a52670 5268 /* check that memory (dst_reg + off) is writeable */
31fd8581 5269 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5270 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5271 insn->src_reg, false);
17a52670
AS
5272 if (err)
5273 return err;
5274
3df126f3
JK
5275 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5276
5277 if (*prev_dst_type == NOT_INIT) {
5278 *prev_dst_type = dst_reg_type;
c64b7983 5279 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 5280 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
5281 return -EINVAL;
5282 }
5283
17a52670
AS
5284 } else if (class == BPF_ST) {
5285 if (BPF_MODE(insn->code) != BPF_MEM ||
5286 insn->src_reg != BPF_REG_0) {
61bd5218 5287 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
5288 return -EINVAL;
5289 }
5290 /* check src operand */
dc503a8a 5291 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5292 if (err)
5293 return err;
5294
f37a8cb8 5295 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 5296 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
5297 insn->dst_reg,
5298 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
5299 return -EACCES;
5300 }
5301
17a52670 5302 /* check that memory (dst_reg + off) is writeable */
31fd8581 5303 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5304 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5305 -1, false);
17a52670
AS
5306 if (err)
5307 return err;
5308
5309 } else if (class == BPF_JMP) {
5310 u8 opcode = BPF_OP(insn->code);
5311
5312 if (opcode == BPF_CALL) {
5313 if (BPF_SRC(insn->code) != BPF_K ||
5314 insn->off != 0 ||
f4d7e40a
AS
5315 (insn->src_reg != BPF_REG_0 &&
5316 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 5317 insn->dst_reg != BPF_REG_0) {
61bd5218 5318 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
5319 return -EINVAL;
5320 }
5321
f4d7e40a
AS
5322 if (insn->src_reg == BPF_PSEUDO_CALL)
5323 err = check_func_call(env, insn, &insn_idx);
5324 else
5325 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
5326 if (err)
5327 return err;
5328
5329 } else if (opcode == BPF_JA) {
5330 if (BPF_SRC(insn->code) != BPF_K ||
5331 insn->imm != 0 ||
5332 insn->src_reg != BPF_REG_0 ||
5333 insn->dst_reg != BPF_REG_0) {
61bd5218 5334 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
5335 return -EINVAL;
5336 }
5337
5338 insn_idx += insn->off + 1;
5339 continue;
5340
5341 } else if (opcode == BPF_EXIT) {
5342 if (BPF_SRC(insn->code) != BPF_K ||
5343 insn->imm != 0 ||
5344 insn->src_reg != BPF_REG_0 ||
5345 insn->dst_reg != BPF_REG_0) {
61bd5218 5346 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5347 return -EINVAL;
5348 }
5349
f4d7e40a
AS
5350 if (state->curframe) {
5351 /* exit from nested function */
5352 prev_insn_idx = insn_idx;
5353 err = prepare_func_exit(env, &insn_idx);
5354 if (err)
5355 return err;
5356 do_print_state = true;
5357 continue;
5358 }
5359
fd978bf7
JS
5360 err = check_reference_leak(env);
5361 if (err)
5362 return err;
5363
17a52670
AS
5364 /* eBPF calling convetion is such that R0 is used
5365 * to return the value from eBPF program.
5366 * Make sure that it's readable at this time
5367 * of bpf_exit, which means that program wrote
5368 * something into it earlier
5369 */
dc503a8a 5370 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5371 if (err)
5372 return err;
5373
1be7f75d 5374 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5375 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5376 return -EACCES;
5377 }
5378
390ee7e2
AS
5379 err = check_return_code(env);
5380 if (err)
5381 return err;
f1bca824 5382process_bpf_exit:
638f5b90
AS
5383 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5384 if (err < 0) {
5385 if (err != -ENOENT)
5386 return err;
17a52670
AS
5387 break;
5388 } else {
5389 do_print_state = true;
5390 continue;
5391 }
5392 } else {
5393 err = check_cond_jmp_op(env, insn, &insn_idx);
5394 if (err)
5395 return err;
5396 }
5397 } else if (class == BPF_LD) {
5398 u8 mode = BPF_MODE(insn->code);
5399
5400 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5401 err = check_ld_abs(env, insn);
5402 if (err)
5403 return err;
5404
17a52670
AS
5405 } else if (mode == BPF_IMM) {
5406 err = check_ld_imm(env, insn);
5407 if (err)
5408 return err;
5409
5410 insn_idx++;
c131187d 5411 env->insn_aux_data[insn_idx].seen = true;
17a52670 5412 } else {
61bd5218 5413 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5414 return -EINVAL;
5415 }
5416 } else {
61bd5218 5417 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5418 return -EINVAL;
5419 }
5420
5421 insn_idx++;
5422 }
5423
4bd95f4b
DB
5424 verbose(env, "processed %d insns (limit %d), stack depth ",
5425 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5426 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5427 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5428
5429 verbose(env, "%d", depth);
f910cefa 5430 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5431 verbose(env, "+");
5432 }
5433 verbose(env, "\n");
9c8105bd 5434 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5435 return 0;
5436}
5437
56f668df
MKL
5438static int check_map_prealloc(struct bpf_map *map)
5439{
5440 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5441 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5442 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5443 !(map->map_flags & BPF_F_NO_PREALLOC);
5444}
5445
61bd5218
JK
5446static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5447 struct bpf_map *map,
fdc15d38
AS
5448 struct bpf_prog *prog)
5449
5450{
56f668df
MKL
5451 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5452 * preallocated hash maps, since doing memory allocation
5453 * in overflow_handler can crash depending on where nmi got
5454 * triggered.
5455 */
5456 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5457 if (!check_map_prealloc(map)) {
61bd5218 5458 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
5459 return -EINVAL;
5460 }
5461 if (map->inner_map_meta &&
5462 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 5463 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
5464 return -EINVAL;
5465 }
fdc15d38 5466 }
a3884572
JK
5467
5468 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 5469 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
5470 verbose(env, "offload device mismatch between prog and map\n");
5471 return -EINVAL;
5472 }
5473
fdc15d38
AS
5474 return 0;
5475}
5476
b741f163
RG
5477static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5478{
5479 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5480 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5481}
5482
0246e64d
AS
5483/* look for pseudo eBPF instructions that access map FDs and
5484 * replace them with actual map pointers
5485 */
58e2af8b 5486static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
5487{
5488 struct bpf_insn *insn = env->prog->insnsi;
5489 int insn_cnt = env->prog->len;
fdc15d38 5490 int i, j, err;
0246e64d 5491
f1f7714e 5492 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
5493 if (err)
5494 return err;
5495
0246e64d 5496 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5497 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5498 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5499 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5500 return -EINVAL;
5501 }
5502
d691f9e8
AS
5503 if (BPF_CLASS(insn->code) == BPF_STX &&
5504 ((BPF_MODE(insn->code) != BPF_MEM &&
5505 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5506 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5507 return -EINVAL;
5508 }
5509
0246e64d
AS
5510 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5511 struct bpf_map *map;
5512 struct fd f;
5513
5514 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5515 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5516 insn[1].off != 0) {
61bd5218 5517 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5518 return -EINVAL;
5519 }
5520
5521 if (insn->src_reg == 0)
5522 /* valid generic load 64-bit imm */
5523 goto next_insn;
5524
5525 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5526 verbose(env,
5527 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5528 return -EINVAL;
5529 }
5530
5531 f = fdget(insn->imm);
c2101297 5532 map = __bpf_map_get(f);
0246e64d 5533 if (IS_ERR(map)) {
61bd5218 5534 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5535 insn->imm);
0246e64d
AS
5536 return PTR_ERR(map);
5537 }
5538
61bd5218 5539 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5540 if (err) {
5541 fdput(f);
5542 return err;
5543 }
5544
0246e64d
AS
5545 /* store map pointer inside BPF_LD_IMM64 instruction */
5546 insn[0].imm = (u32) (unsigned long) map;
5547 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5548
5549 /* check whether we recorded this map already */
5550 for (j = 0; j < env->used_map_cnt; j++)
5551 if (env->used_maps[j] == map) {
5552 fdput(f);
5553 goto next_insn;
5554 }
5555
5556 if (env->used_map_cnt >= MAX_USED_MAPS) {
5557 fdput(f);
5558 return -E2BIG;
5559 }
5560
0246e64d
AS
5561 /* hold the map. If the program is rejected by verifier,
5562 * the map will be released by release_maps() or it
5563 * will be used by the valid program until it's unloaded
ab7f5bf0 5564 * and all maps are released in free_used_maps()
0246e64d 5565 */
92117d84
AS
5566 map = bpf_map_inc(map, false);
5567 if (IS_ERR(map)) {
5568 fdput(f);
5569 return PTR_ERR(map);
5570 }
5571 env->used_maps[env->used_map_cnt++] = map;
5572
b741f163 5573 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 5574 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 5575 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
5576 fdput(f);
5577 return -EBUSY;
5578 }
5579
0246e64d
AS
5580 fdput(f);
5581next_insn:
5582 insn++;
5583 i++;
5e581dad
DB
5584 continue;
5585 }
5586
5587 /* Basic sanity check before we invest more work here. */
5588 if (!bpf_opcode_in_insntable(insn->code)) {
5589 verbose(env, "unknown opcode %02x\n", insn->code);
5590 return -EINVAL;
0246e64d
AS
5591 }
5592 }
5593
5594 /* now all pseudo BPF_LD_IMM64 instructions load valid
5595 * 'struct bpf_map *' into a register instead of user map_fd.
5596 * These pointers will be used later by verifier to validate map access.
5597 */
5598 return 0;
5599}
5600
5601/* drop refcnt of maps used by the rejected program */
58e2af8b 5602static void release_maps(struct bpf_verifier_env *env)
0246e64d 5603{
8bad74f9 5604 enum bpf_cgroup_storage_type stype;
0246e64d
AS
5605 int i;
5606
8bad74f9
RG
5607 for_each_cgroup_storage_type(stype) {
5608 if (!env->prog->aux->cgroup_storage[stype])
5609 continue;
de9cbbaa 5610 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
5611 env->prog->aux->cgroup_storage[stype]);
5612 }
de9cbbaa 5613
0246e64d
AS
5614 for (i = 0; i < env->used_map_cnt; i++)
5615 bpf_map_put(env->used_maps[i]);
5616}
5617
5618/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5619static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5620{
5621 struct bpf_insn *insn = env->prog->insnsi;
5622 int insn_cnt = env->prog->len;
5623 int i;
5624
5625 for (i = 0; i < insn_cnt; i++, insn++)
5626 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5627 insn->src_reg = 0;
5628}
5629
8041902d
AS
5630/* single env->prog->insni[off] instruction was replaced with the range
5631 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5632 * [0, off) and [off, end) to new locations, so the patched range stays zero
5633 */
5634static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5635 u32 off, u32 cnt)
5636{
5637 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5638 int i;
8041902d
AS
5639
5640 if (cnt == 1)
5641 return 0;
fad953ce
KC
5642 new_data = vzalloc(array_size(prog_len,
5643 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
5644 if (!new_data)
5645 return -ENOMEM;
5646 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5647 memcpy(new_data + off + cnt - 1, old_data + off,
5648 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5649 for (i = off; i < off + cnt - 1; i++)
5650 new_data[i].seen = true;
8041902d
AS
5651 env->insn_aux_data = new_data;
5652 vfree(old_data);
5653 return 0;
5654}
5655
cc8b0b92
AS
5656static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5657{
5658 int i;
5659
5660 if (len == 1)
5661 return;
4cb3d99c
JW
5662 /* NOTE: fake 'exit' subprog should be updated as well. */
5663 for (i = 0; i <= env->subprog_cnt; i++) {
9c8105bd 5664 if (env->subprog_info[i].start < off)
cc8b0b92 5665 continue;
9c8105bd 5666 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5667 }
5668}
5669
8041902d
AS
5670static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5671 const struct bpf_insn *patch, u32 len)
5672{
5673 struct bpf_prog *new_prog;
5674
5675 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5676 if (!new_prog)
5677 return NULL;
5678 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5679 return NULL;
cc8b0b92 5680 adjust_subprog_starts(env, off, len);
8041902d
AS
5681 return new_prog;
5682}
5683
2a5418a1
DB
5684/* The verifier does more data flow analysis than llvm and will not
5685 * explore branches that are dead at run time. Malicious programs can
5686 * have dead code too. Therefore replace all dead at-run-time code
5687 * with 'ja -1'.
5688 *
5689 * Just nops are not optimal, e.g. if they would sit at the end of the
5690 * program and through another bug we would manage to jump there, then
5691 * we'd execute beyond program memory otherwise. Returning exception
5692 * code also wouldn't work since we can have subprogs where the dead
5693 * code could be located.
c131187d
AS
5694 */
5695static void sanitize_dead_code(struct bpf_verifier_env *env)
5696{
5697 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5698 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5699 struct bpf_insn *insn = env->prog->insnsi;
5700 const int insn_cnt = env->prog->len;
5701 int i;
5702
5703 for (i = 0; i < insn_cnt; i++) {
5704 if (aux_data[i].seen)
5705 continue;
2a5418a1 5706 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5707 }
5708}
5709
c64b7983
JS
5710/* convert load instructions that access fields of a context type into a
5711 * sequence of instructions that access fields of the underlying structure:
5712 * struct __sk_buff -> struct sk_buff
5713 * struct bpf_sock_ops -> struct sock
9bac3d6d 5714 */
58e2af8b 5715static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5716{
00176a34 5717 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5718 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5719 const int insn_cnt = env->prog->len;
36bbef52 5720 struct bpf_insn insn_buf[16], *insn;
46f53a65 5721 u32 target_size, size_default, off;
9bac3d6d 5722 struct bpf_prog *new_prog;
d691f9e8 5723 enum bpf_access_type type;
f96da094 5724 bool is_narrower_load;
9bac3d6d 5725
b09928b9
DB
5726 if (ops->gen_prologue || env->seen_direct_write) {
5727 if (!ops->gen_prologue) {
5728 verbose(env, "bpf verifier is misconfigured\n");
5729 return -EINVAL;
5730 }
36bbef52
DB
5731 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5732 env->prog);
5733 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5734 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5735 return -EINVAL;
5736 } else if (cnt) {
8041902d 5737 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5738 if (!new_prog)
5739 return -ENOMEM;
8041902d 5740
36bbef52 5741 env->prog = new_prog;
3df126f3 5742 delta += cnt - 1;
36bbef52
DB
5743 }
5744 }
5745
c64b7983 5746 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5747 return 0;
5748
3df126f3 5749 insn = env->prog->insnsi + delta;
36bbef52 5750
9bac3d6d 5751 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
5752 bpf_convert_ctx_access_t convert_ctx_access;
5753
62c7989b
DB
5754 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5755 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5756 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5757 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5758 type = BPF_READ;
62c7989b
DB
5759 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5760 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5761 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5762 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5763 type = BPF_WRITE;
5764 else
9bac3d6d
AS
5765 continue;
5766
af86ca4e
AS
5767 if (type == BPF_WRITE &&
5768 env->insn_aux_data[i + delta].sanitize_stack_off) {
5769 struct bpf_insn patch[] = {
5770 /* Sanitize suspicious stack slot with zero.
5771 * There are no memory dependencies for this store,
5772 * since it's only using frame pointer and immediate
5773 * constant of zero
5774 */
5775 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5776 env->insn_aux_data[i + delta].sanitize_stack_off,
5777 0),
5778 /* the original STX instruction will immediately
5779 * overwrite the same stack slot with appropriate value
5780 */
5781 *insn,
5782 };
5783
5784 cnt = ARRAY_SIZE(patch);
5785 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5786 if (!new_prog)
5787 return -ENOMEM;
5788
5789 delta += cnt - 1;
5790 env->prog = new_prog;
5791 insn = new_prog->insnsi + i + delta;
5792 continue;
5793 }
5794
c64b7983
JS
5795 switch (env->insn_aux_data[i + delta].ptr_type) {
5796 case PTR_TO_CTX:
5797 if (!ops->convert_ctx_access)
5798 continue;
5799 convert_ctx_access = ops->convert_ctx_access;
5800 break;
5801 case PTR_TO_SOCKET:
5802 convert_ctx_access = bpf_sock_convert_ctx_access;
5803 break;
5804 default:
9bac3d6d 5805 continue;
c64b7983 5806 }
9bac3d6d 5807
31fd8581 5808 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5809 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5810
5811 /* If the read access is a narrower load of the field,
5812 * convert to a 4/8-byte load, to minimum program type specific
5813 * convert_ctx_access changes. If conversion is successful,
5814 * we will apply proper mask to the result.
5815 */
f96da094 5816 is_narrower_load = size < ctx_field_size;
46f53a65
AI
5817 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5818 off = insn->off;
31fd8581 5819 if (is_narrower_load) {
f96da094
DB
5820 u8 size_code;
5821
5822 if (type == BPF_WRITE) {
61bd5218 5823 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5824 return -EINVAL;
5825 }
31fd8581 5826
f96da094 5827 size_code = BPF_H;
31fd8581
YS
5828 if (ctx_field_size == 4)
5829 size_code = BPF_W;
5830 else if (ctx_field_size == 8)
5831 size_code = BPF_DW;
f96da094 5832
bc23105c 5833 insn->off = off & ~(size_default - 1);
31fd8581
YS
5834 insn->code = BPF_LDX | BPF_MEM | size_code;
5835 }
f96da094
DB
5836
5837 target_size = 0;
c64b7983
JS
5838 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5839 &target_size);
f96da094
DB
5840 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5841 (ctx_field_size && !target_size)) {
61bd5218 5842 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5843 return -EINVAL;
5844 }
f96da094
DB
5845
5846 if (is_narrower_load && size < target_size) {
46f53a65
AI
5847 u8 shift = (off & (size_default - 1)) * 8;
5848
5849 if (ctx_field_size <= 4) {
5850 if (shift)
5851 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
5852 insn->dst_reg,
5853 shift);
31fd8581 5854 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5855 (1 << size * 8) - 1);
46f53a65
AI
5856 } else {
5857 if (shift)
5858 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
5859 insn->dst_reg,
5860 shift);
31fd8581 5861 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5862 (1 << size * 8) - 1);
46f53a65 5863 }
31fd8581 5864 }
9bac3d6d 5865
8041902d 5866 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5867 if (!new_prog)
5868 return -ENOMEM;
5869
3df126f3 5870 delta += cnt - 1;
9bac3d6d
AS
5871
5872 /* keep walking new program and skip insns we just inserted */
5873 env->prog = new_prog;
3df126f3 5874 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5875 }
5876
5877 return 0;
5878}
5879
1c2a088a
AS
5880static int jit_subprogs(struct bpf_verifier_env *env)
5881{
5882 struct bpf_prog *prog = env->prog, **func, *tmp;
5883 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5884 struct bpf_insn *insn;
1c2a088a
AS
5885 void *old_bpf_func;
5886 int err = -ENOMEM;
5887
f910cefa 5888 if (env->subprog_cnt <= 1)
1c2a088a
AS
5889 return 0;
5890
7105e828 5891 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5892 if (insn->code != (BPF_JMP | BPF_CALL) ||
5893 insn->src_reg != BPF_PSEUDO_CALL)
5894 continue;
c7a89784
DB
5895 /* Upon error here we cannot fall back to interpreter but
5896 * need a hard reject of the program. Thus -EFAULT is
5897 * propagated in any case.
5898 */
1c2a088a
AS
5899 subprog = find_subprog(env, i + insn->imm + 1);
5900 if (subprog < 0) {
5901 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5902 i + insn->imm + 1);
5903 return -EFAULT;
5904 }
5905 /* temporarily remember subprog id inside insn instead of
5906 * aux_data, since next loop will split up all insns into funcs
5907 */
f910cefa 5908 insn->off = subprog;
1c2a088a
AS
5909 /* remember original imm in case JIT fails and fallback
5910 * to interpreter will be needed
5911 */
5912 env->insn_aux_data[i].call_imm = insn->imm;
5913 /* point imm to __bpf_call_base+1 from JITs point of view */
5914 insn->imm = 1;
5915 }
5916
6396bb22 5917 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 5918 if (!func)
c7a89784 5919 goto out_undo_insn;
1c2a088a 5920
f910cefa 5921 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5922 subprog_start = subprog_end;
4cb3d99c 5923 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5924
5925 len = subprog_end - subprog_start;
5926 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5927 if (!func[i])
5928 goto out_free;
5929 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5930 len * sizeof(struct bpf_insn));
4f74d809 5931 func[i]->type = prog->type;
1c2a088a 5932 func[i]->len = len;
4f74d809
DB
5933 if (bpf_prog_calc_tag(func[i]))
5934 goto out_free;
1c2a088a
AS
5935 func[i]->is_func = 1;
5936 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5937 * Long term would need debug info to populate names
5938 */
5939 func[i]->aux->name[0] = 'F';
9c8105bd 5940 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5941 func[i]->jit_requested = 1;
5942 func[i] = bpf_int_jit_compile(func[i]);
5943 if (!func[i]->jited) {
5944 err = -ENOTSUPP;
5945 goto out_free;
5946 }
5947 cond_resched();
5948 }
5949 /* at this point all bpf functions were successfully JITed
5950 * now populate all bpf_calls with correct addresses and
5951 * run last pass of JIT
5952 */
f910cefa 5953 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5954 insn = func[i]->insnsi;
5955 for (j = 0; j < func[i]->len; j++, insn++) {
5956 if (insn->code != (BPF_JMP | BPF_CALL) ||
5957 insn->src_reg != BPF_PSEUDO_CALL)
5958 continue;
5959 subprog = insn->off;
1c2a088a
AS
5960 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5961 func[subprog]->bpf_func -
5962 __bpf_call_base;
5963 }
2162fed4
SD
5964
5965 /* we use the aux data to keep a list of the start addresses
5966 * of the JITed images for each function in the program
5967 *
5968 * for some architectures, such as powerpc64, the imm field
5969 * might not be large enough to hold the offset of the start
5970 * address of the callee's JITed image from __bpf_call_base
5971 *
5972 * in such cases, we can lookup the start address of a callee
5973 * by using its subprog id, available from the off field of
5974 * the call instruction, as an index for this list
5975 */
5976 func[i]->aux->func = func;
5977 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 5978 }
f910cefa 5979 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5980 old_bpf_func = func[i]->bpf_func;
5981 tmp = bpf_int_jit_compile(func[i]);
5982 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5983 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 5984 err = -ENOTSUPP;
1c2a088a
AS
5985 goto out_free;
5986 }
5987 cond_resched();
5988 }
5989
5990 /* finally lock prog and jit images for all functions and
5991 * populate kallsysm
5992 */
f910cefa 5993 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5994 bpf_prog_lock_ro(func[i]);
5995 bpf_prog_kallsyms_add(func[i]);
5996 }
7105e828
DB
5997
5998 /* Last step: make now unused interpreter insns from main
5999 * prog consistent for later dump requests, so they can
6000 * later look the same as if they were interpreted only.
6001 */
6002 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
6003 if (insn->code != (BPF_JMP | BPF_CALL) ||
6004 insn->src_reg != BPF_PSEUDO_CALL)
6005 continue;
6006 insn->off = env->insn_aux_data[i].call_imm;
6007 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 6008 insn->imm = subprog;
7105e828
DB
6009 }
6010
1c2a088a
AS
6011 prog->jited = 1;
6012 prog->bpf_func = func[0]->bpf_func;
6013 prog->aux->func = func;
f910cefa 6014 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
6015 return 0;
6016out_free:
f910cefa 6017 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
6018 if (func[i])
6019 bpf_jit_free(func[i]);
6020 kfree(func);
c7a89784 6021out_undo_insn:
1c2a088a
AS
6022 /* cleanup main prog to be interpreted */
6023 prog->jit_requested = 0;
6024 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6025 if (insn->code != (BPF_JMP | BPF_CALL) ||
6026 insn->src_reg != BPF_PSEUDO_CALL)
6027 continue;
6028 insn->off = 0;
6029 insn->imm = env->insn_aux_data[i].call_imm;
6030 }
6031 return err;
6032}
6033
1ea47e01
AS
6034static int fixup_call_args(struct bpf_verifier_env *env)
6035{
19d28fbd 6036#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6037 struct bpf_prog *prog = env->prog;
6038 struct bpf_insn *insn = prog->insnsi;
6039 int i, depth;
19d28fbd 6040#endif
e4052d06 6041 int err = 0;
1ea47e01 6042
e4052d06
QM
6043 if (env->prog->jit_requested &&
6044 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
6045 err = jit_subprogs(env);
6046 if (err == 0)
1c2a088a 6047 return 0;
c7a89784
DB
6048 if (err == -EFAULT)
6049 return err;
19d28fbd
DM
6050 }
6051#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6052 for (i = 0; i < prog->len; i++, insn++) {
6053 if (insn->code != (BPF_JMP | BPF_CALL) ||
6054 insn->src_reg != BPF_PSEUDO_CALL)
6055 continue;
6056 depth = get_callee_stack_depth(env, insn, i);
6057 if (depth < 0)
6058 return depth;
6059 bpf_patch_call_args(insn, depth);
6060 }
19d28fbd
DM
6061 err = 0;
6062#endif
6063 return err;
1ea47e01
AS
6064}
6065
79741b3b 6066/* fixup insn->imm field of bpf_call instructions
81ed18ab 6067 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
6068 *
6069 * this function is called after eBPF program passed verification
6070 */
79741b3b 6071static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 6072{
79741b3b
AS
6073 struct bpf_prog *prog = env->prog;
6074 struct bpf_insn *insn = prog->insnsi;
e245c5c6 6075 const struct bpf_func_proto *fn;
79741b3b 6076 const int insn_cnt = prog->len;
09772d92 6077 const struct bpf_map_ops *ops;
c93552c4 6078 struct bpf_insn_aux_data *aux;
81ed18ab
AS
6079 struct bpf_insn insn_buf[16];
6080 struct bpf_prog *new_prog;
6081 struct bpf_map *map_ptr;
6082 int i, cnt, delta = 0;
e245c5c6 6083
79741b3b 6084 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
6085 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6086 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6087 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 6088 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
6089 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6090 struct bpf_insn mask_and_div[] = {
6091 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6092 /* Rx div 0 -> 0 */
6093 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6094 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6095 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6096 *insn,
6097 };
6098 struct bpf_insn mask_and_mod[] = {
6099 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6100 /* Rx mod 0 -> Rx */
6101 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6102 *insn,
6103 };
6104 struct bpf_insn *patchlet;
6105
6106 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6107 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6108 patchlet = mask_and_div + (is64 ? 1 : 0);
6109 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6110 } else {
6111 patchlet = mask_and_mod + (is64 ? 1 : 0);
6112 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6113 }
6114
6115 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
6116 if (!new_prog)
6117 return -ENOMEM;
6118
6119 delta += cnt - 1;
6120 env->prog = prog = new_prog;
6121 insn = new_prog->insnsi + i + delta;
6122 continue;
6123 }
6124
e0cea7ce
DB
6125 if (BPF_CLASS(insn->code) == BPF_LD &&
6126 (BPF_MODE(insn->code) == BPF_ABS ||
6127 BPF_MODE(insn->code) == BPF_IND)) {
6128 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6129 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6130 verbose(env, "bpf verifier is misconfigured\n");
6131 return -EINVAL;
6132 }
6133
6134 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6135 if (!new_prog)
6136 return -ENOMEM;
6137
6138 delta += cnt - 1;
6139 env->prog = prog = new_prog;
6140 insn = new_prog->insnsi + i + delta;
6141 continue;
6142 }
6143
79741b3b
AS
6144 if (insn->code != (BPF_JMP | BPF_CALL))
6145 continue;
cc8b0b92
AS
6146 if (insn->src_reg == BPF_PSEUDO_CALL)
6147 continue;
e245c5c6 6148
79741b3b
AS
6149 if (insn->imm == BPF_FUNC_get_route_realm)
6150 prog->dst_needed = 1;
6151 if (insn->imm == BPF_FUNC_get_prandom_u32)
6152 bpf_user_rnd_init_once();
9802d865
JB
6153 if (insn->imm == BPF_FUNC_override_return)
6154 prog->kprobe_override = 1;
79741b3b 6155 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
6156 /* If we tail call into other programs, we
6157 * cannot make any assumptions since they can
6158 * be replaced dynamically during runtime in
6159 * the program array.
6160 */
6161 prog->cb_access = 1;
80a58d02 6162 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 6163 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 6164
79741b3b
AS
6165 /* mark bpf_tail_call as different opcode to avoid
6166 * conditional branch in the interpeter for every normal
6167 * call and to prevent accidental JITing by JIT compiler
6168 * that doesn't support bpf_tail_call yet
e245c5c6 6169 */
79741b3b 6170 insn->imm = 0;
71189fa9 6171 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 6172
c93552c4
DB
6173 aux = &env->insn_aux_data[i + delta];
6174 if (!bpf_map_ptr_unpriv(aux))
6175 continue;
6176
b2157399
AS
6177 /* instead of changing every JIT dealing with tail_call
6178 * emit two extra insns:
6179 * if (index >= max_entries) goto out;
6180 * index &= array->index_mask;
6181 * to avoid out-of-bounds cpu speculation
6182 */
c93552c4 6183 if (bpf_map_ptr_poisoned(aux)) {
40950343 6184 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
6185 return -EINVAL;
6186 }
c93552c4
DB
6187
6188 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
6189 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6190 map_ptr->max_entries, 2);
6191 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6192 container_of(map_ptr,
6193 struct bpf_array,
6194 map)->index_mask);
6195 insn_buf[2] = *insn;
6196 cnt = 3;
6197 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6198 if (!new_prog)
6199 return -ENOMEM;
6200
6201 delta += cnt - 1;
6202 env->prog = prog = new_prog;
6203 insn = new_prog->insnsi + i + delta;
79741b3b
AS
6204 continue;
6205 }
e245c5c6 6206
89c63074 6207 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
6208 * and other inlining handlers are currently limited to 64 bit
6209 * only.
89c63074 6210 */
60b58afc 6211 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
6212 (insn->imm == BPF_FUNC_map_lookup_elem ||
6213 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
6214 insn->imm == BPF_FUNC_map_delete_elem ||
6215 insn->imm == BPF_FUNC_map_push_elem ||
6216 insn->imm == BPF_FUNC_map_pop_elem ||
6217 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
6218 aux = &env->insn_aux_data[i + delta];
6219 if (bpf_map_ptr_poisoned(aux))
6220 goto patch_call_imm;
6221
6222 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
6223 ops = map_ptr->ops;
6224 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6225 ops->map_gen_lookup) {
6226 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6227 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6228 verbose(env, "bpf verifier is misconfigured\n");
6229 return -EINVAL;
6230 }
81ed18ab 6231
09772d92
DB
6232 new_prog = bpf_patch_insn_data(env, i + delta,
6233 insn_buf, cnt);
6234 if (!new_prog)
6235 return -ENOMEM;
81ed18ab 6236
09772d92
DB
6237 delta += cnt - 1;
6238 env->prog = prog = new_prog;
6239 insn = new_prog->insnsi + i + delta;
6240 continue;
6241 }
81ed18ab 6242
09772d92
DB
6243 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6244 (void *(*)(struct bpf_map *map, void *key))NULL));
6245 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6246 (int (*)(struct bpf_map *map, void *key))NULL));
6247 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6248 (int (*)(struct bpf_map *map, void *key, void *value,
6249 u64 flags))NULL));
84430d42
DB
6250 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6251 (int (*)(struct bpf_map *map, void *value,
6252 u64 flags))NULL));
6253 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6254 (int (*)(struct bpf_map *map, void *value))NULL));
6255 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6256 (int (*)(struct bpf_map *map, void *value))NULL));
6257
09772d92
DB
6258 switch (insn->imm) {
6259 case BPF_FUNC_map_lookup_elem:
6260 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6261 __bpf_call_base;
6262 continue;
6263 case BPF_FUNC_map_update_elem:
6264 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6265 __bpf_call_base;
6266 continue;
6267 case BPF_FUNC_map_delete_elem:
6268 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6269 __bpf_call_base;
6270 continue;
84430d42
DB
6271 case BPF_FUNC_map_push_elem:
6272 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6273 __bpf_call_base;
6274 continue;
6275 case BPF_FUNC_map_pop_elem:
6276 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6277 __bpf_call_base;
6278 continue;
6279 case BPF_FUNC_map_peek_elem:
6280 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6281 __bpf_call_base;
6282 continue;
09772d92 6283 }
81ed18ab 6284
09772d92 6285 goto patch_call_imm;
81ed18ab
AS
6286 }
6287
6288patch_call_imm:
5e43f899 6289 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
6290 /* all functions that have prototype and verifier allowed
6291 * programs to call them, must be real in-kernel functions
6292 */
6293 if (!fn->func) {
61bd5218
JK
6294 verbose(env,
6295 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
6296 func_id_name(insn->imm), insn->imm);
6297 return -EFAULT;
e245c5c6 6298 }
79741b3b 6299 insn->imm = fn->func - __bpf_call_base;
e245c5c6 6300 }
e245c5c6 6301
79741b3b
AS
6302 return 0;
6303}
e245c5c6 6304
58e2af8b 6305static void free_states(struct bpf_verifier_env *env)
f1bca824 6306{
58e2af8b 6307 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
6308 int i;
6309
6310 if (!env->explored_states)
6311 return;
6312
6313 for (i = 0; i < env->prog->len; i++) {
6314 sl = env->explored_states[i];
6315
6316 if (sl)
6317 while (sl != STATE_LIST_MARK) {
6318 sln = sl->next;
1969db47 6319 free_verifier_state(&sl->state, false);
f1bca824
AS
6320 kfree(sl);
6321 sl = sln;
6322 }
6323 }
6324
6325 kfree(env->explored_states);
6326}
6327
9bac3d6d 6328int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 6329{
58e2af8b 6330 struct bpf_verifier_env *env;
b9193c1b 6331 struct bpf_verifier_log *log;
51580e79
AS
6332 int ret = -EINVAL;
6333
eba0c929
AB
6334 /* no program is valid */
6335 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6336 return -EINVAL;
6337
58e2af8b 6338 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
6339 * allocate/free it every time bpf_check() is called
6340 */
58e2af8b 6341 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
6342 if (!env)
6343 return -ENOMEM;
61bd5218 6344 log = &env->log;
cbd35700 6345
fad953ce
KC
6346 env->insn_aux_data =
6347 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6348 (*prog)->len));
3df126f3
JK
6349 ret = -ENOMEM;
6350 if (!env->insn_aux_data)
6351 goto err_free_env;
9bac3d6d 6352 env->prog = *prog;
00176a34 6353 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 6354
cbd35700
AS
6355 /* grab the mutex to protect few globals used by verifier */
6356 mutex_lock(&bpf_verifier_lock);
6357
6358 if (attr->log_level || attr->log_buf || attr->log_size) {
6359 /* user requested verbose verifier output
6360 * and supplied buffer to store the verification trace
6361 */
e7bf8249
JK
6362 log->level = attr->log_level;
6363 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6364 log->len_total = attr->log_size;
cbd35700
AS
6365
6366 ret = -EINVAL;
e7bf8249
JK
6367 /* log attributes have to be sane */
6368 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6369 !log->level || !log->ubuf)
3df126f3 6370 goto err_unlock;
cbd35700 6371 }
1ad2f583
DB
6372
6373 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6374 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 6375 env->strict_alignment = true;
cbd35700 6376
f4e3ec0d
JK
6377 ret = replace_map_fd_with_map_ptr(env);
6378 if (ret < 0)
6379 goto skip_full_check;
6380
cae1927c 6381 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 6382 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 6383 if (ret)
f4e3ec0d 6384 goto skip_full_check;
ab3f0063
JK
6385 }
6386
9bac3d6d 6387 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6388 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6389 GFP_USER);
6390 ret = -ENOMEM;
6391 if (!env->explored_states)
6392 goto skip_full_check;
6393
cc8b0b92
AS
6394 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6395
475fb78f
AS
6396 ret = check_cfg(env);
6397 if (ret < 0)
6398 goto skip_full_check;
6399
17a52670 6400 ret = do_check(env);
8c01c4f8
CG
6401 if (env->cur_state) {
6402 free_verifier_state(env->cur_state, true);
6403 env->cur_state = NULL;
6404 }
cbd35700 6405
c941ce9c
QM
6406 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6407 ret = bpf_prog_offload_finalize(env);
6408
0246e64d 6409skip_full_check:
638f5b90 6410 while (!pop_stack(env, NULL, NULL));
f1bca824 6411 free_states(env);
0246e64d 6412
c131187d
AS
6413 if (ret == 0)
6414 sanitize_dead_code(env);
6415
70a87ffe
AS
6416 if (ret == 0)
6417 ret = check_max_stack_depth(env);
6418
9bac3d6d
AS
6419 if (ret == 0)
6420 /* program is valid, convert *(u32*)(ctx + off) accesses */
6421 ret = convert_ctx_accesses(env);
6422
e245c5c6 6423 if (ret == 0)
79741b3b 6424 ret = fixup_bpf_calls(env);
e245c5c6 6425
1ea47e01
AS
6426 if (ret == 0)
6427 ret = fixup_call_args(env);
6428
a2a7d570 6429 if (log->level && bpf_verifier_log_full(log))
cbd35700 6430 ret = -ENOSPC;
a2a7d570 6431 if (log->level && !log->ubuf) {
cbd35700 6432 ret = -EFAULT;
a2a7d570 6433 goto err_release_maps;
cbd35700
AS
6434 }
6435
0246e64d
AS
6436 if (ret == 0 && env->used_map_cnt) {
6437 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
6438 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6439 sizeof(env->used_maps[0]),
6440 GFP_KERNEL);
0246e64d 6441
9bac3d6d 6442 if (!env->prog->aux->used_maps) {
0246e64d 6443 ret = -ENOMEM;
a2a7d570 6444 goto err_release_maps;
0246e64d
AS
6445 }
6446
9bac3d6d 6447 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 6448 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 6449 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
6450
6451 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
6452 * bpf_ld_imm64 instructions
6453 */
6454 convert_pseudo_ld_imm64(env);
6455 }
cbd35700 6456
a2a7d570 6457err_release_maps:
9bac3d6d 6458 if (!env->prog->aux->used_maps)
0246e64d 6459 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 6460 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
6461 */
6462 release_maps(env);
9bac3d6d 6463 *prog = env->prog;
3df126f3 6464err_unlock:
cbd35700 6465 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
6466 vfree(env->insn_aux_data);
6467err_free_env:
6468 kfree(env);
51580e79
AS
6469 return ret;
6470}