]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'af_xdp-common-alloc'
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
51580e79 24
f4ac7e0b
JK
25#include "disasm.h"
26
00176a34 27static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 28#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
29 [_id] = & _name ## _verifier_ops,
30#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 31#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
32#include <linux/bpf_types.h>
33#undef BPF_PROG_TYPE
34#undef BPF_MAP_TYPE
f2e10bff 35#undef BPF_LINK_TYPE
00176a34
JK
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
c64b7983
JS
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84 * four pointer types recognized by check_mem_access() function.
51580e79
AS
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
143 *
144 * The following reference types represent a potential reference to a kernel
145 * resource which, after first being allocated, must be checked and freed by
146 * the BPF program:
147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148 *
149 * When the verifier sees a helper call return a reference type, it allocates a
150 * pointer id for the reference and stores it in the current function state.
151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153 * passes through a NULL-check conditional. For the branch wherein the state is
154 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
155 *
156 * For each helper function that allocates a reference, such as
157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158 * bpf_sk_release(). When a reference type passes into the release function,
159 * the verifier also releases the reference. If any unchecked or unreleased
160 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
161 */
162
17a52670 163/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 164struct bpf_verifier_stack_elem {
17a52670
AS
165 /* verifer state is 'st'
166 * before processing instruction 'insn_idx'
167 * and after processing instruction 'prev_insn_idx'
168 */
58e2af8b 169 struct bpf_verifier_state st;
17a52670
AS
170 int insn_idx;
171 int prev_insn_idx;
58e2af8b 172 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
173 /* length of verifier log at the time this state was pushed on stack */
174 u32 log_pos;
cbd35700
AS
175};
176
b285fcb7 177#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 178#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 179
d2e4c1e6
DB
180#define BPF_MAP_KEY_POISON (1ULL << 63)
181#define BPF_MAP_KEY_SEEN (1ULL << 62)
182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
d2e4c1e6 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
d2e4c1e6 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
203 aux->map_ptr_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
206
207static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208{
209 return aux->map_key_state & BPF_MAP_KEY_POISON;
210}
211
212static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213{
214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215}
216
217static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218{
219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220}
221
222static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223{
224 bool poisoned = bpf_map_key_poisoned(aux);
225
226 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 228}
fad73a1a 229
33ff9823
DB
230struct bpf_call_arg_meta {
231 struct bpf_map *map_ptr;
435faee1 232 bool raw_mode;
36bbef52 233 bool pkt_access;
435faee1
DB
234 int regno;
235 int access_size;
10060503 236 u64 msize_max_value;
1b986589 237 int ref_obj_id;
d83525ca 238 int func_id;
a7658e1a 239 u32 btf_id;
33ff9823
DB
240};
241
8580ac94
AS
242struct btf *btf_vmlinux;
243
cbd35700
AS
244static DEFINE_MUTEX(bpf_verifier_lock);
245
d9762e84
MKL
246static const struct bpf_line_info *
247find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
248{
249 const struct bpf_line_info *linfo;
250 const struct bpf_prog *prog;
251 u32 i, nr_linfo;
252
253 prog = env->prog;
254 nr_linfo = prog->aux->nr_linfo;
255
256 if (!nr_linfo || insn_off >= prog->len)
257 return NULL;
258
259 linfo = prog->aux->linfo;
260 for (i = 1; i < nr_linfo; i++)
261 if (insn_off < linfo[i].insn_off)
262 break;
263
264 return &linfo[i - 1];
265}
266
77d2e05a
MKL
267void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
268 va_list args)
cbd35700 269{
a2a7d570 270 unsigned int n;
cbd35700 271
a2a7d570 272 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
273
274 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
275 "verifier log line truncated - local buffer too short\n");
276
277 n = min(log->len_total - log->len_used - 1, n);
278 log->kbuf[n] = '\0';
279
8580ac94
AS
280 if (log->level == BPF_LOG_KERNEL) {
281 pr_err("BPF:%s\n", log->kbuf);
282 return;
283 }
a2a7d570
JK
284 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
285 log->len_used += n;
286 else
287 log->ubuf = NULL;
cbd35700 288}
abe08840 289
6f8a57cc
AN
290static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
291{
292 char zero = 0;
293
294 if (!bpf_verifier_log_needed(log))
295 return;
296
297 log->len_used = new_pos;
298 if (put_user(zero, log->ubuf + new_pos))
299 log->ubuf = NULL;
300}
301
abe08840
JO
302/* log_level controls verbosity level of eBPF verifier.
303 * bpf_verifier_log_write() is used to dump the verification trace to the log,
304 * so the user can figure out what's wrong with the program
430e68d1 305 */
abe08840
JO
306__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
307 const char *fmt, ...)
308{
309 va_list args;
310
77d2e05a
MKL
311 if (!bpf_verifier_log_needed(&env->log))
312 return;
313
abe08840 314 va_start(args, fmt);
77d2e05a 315 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
316 va_end(args);
317}
318EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
319
320__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
321{
77d2e05a 322 struct bpf_verifier_env *env = private_data;
abe08840
JO
323 va_list args;
324
77d2e05a
MKL
325 if (!bpf_verifier_log_needed(&env->log))
326 return;
327
abe08840 328 va_start(args, fmt);
77d2e05a 329 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
330 va_end(args);
331}
cbd35700 332
9e15db66
AS
333__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
334 const char *fmt, ...)
335{
336 va_list args;
337
338 if (!bpf_verifier_log_needed(log))
339 return;
340
341 va_start(args, fmt);
342 bpf_verifier_vlog(log, fmt, args);
343 va_end(args);
344}
345
d9762e84
MKL
346static const char *ltrim(const char *s)
347{
348 while (isspace(*s))
349 s++;
350
351 return s;
352}
353
354__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
355 u32 insn_off,
356 const char *prefix_fmt, ...)
357{
358 const struct bpf_line_info *linfo;
359
360 if (!bpf_verifier_log_needed(&env->log))
361 return;
362
363 linfo = find_linfo(env, insn_off);
364 if (!linfo || linfo == env->prev_linfo)
365 return;
366
367 if (prefix_fmt) {
368 va_list args;
369
370 va_start(args, prefix_fmt);
371 bpf_verifier_vlog(&env->log, prefix_fmt, args);
372 va_end(args);
373 }
374
375 verbose(env, "%s\n",
376 ltrim(btf_name_by_offset(env->prog->aux->btf,
377 linfo->line_off)));
378
379 env->prev_linfo = linfo;
380}
381
de8f3a83
DB
382static bool type_is_pkt_pointer(enum bpf_reg_type type)
383{
384 return type == PTR_TO_PACKET ||
385 type == PTR_TO_PACKET_META;
386}
387
46f8bc92
MKL
388static bool type_is_sk_pointer(enum bpf_reg_type type)
389{
390 return type == PTR_TO_SOCKET ||
655a51e5 391 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
392 type == PTR_TO_TCP_SOCK ||
393 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
394}
395
840b9615
JS
396static bool reg_type_may_be_null(enum bpf_reg_type type)
397{
fd978bf7 398 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 399 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 400 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341
YS
401 type == PTR_TO_TCP_SOCK_OR_NULL ||
402 type == PTR_TO_BTF_ID_OR_NULL;
fd978bf7
JS
403}
404
d83525ca
AS
405static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
406{
407 return reg->type == PTR_TO_MAP_VALUE &&
408 map_value_has_spin_lock(reg->map_ptr);
409}
410
cba368c1
MKL
411static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
412{
413 return type == PTR_TO_SOCKET ||
414 type == PTR_TO_SOCKET_OR_NULL ||
415 type == PTR_TO_TCP_SOCK ||
416 type == PTR_TO_TCP_SOCK_OR_NULL;
417}
418
1b986589 419static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 420{
1b986589 421 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
422}
423
424/* Determine whether the function releases some resources allocated by another
425 * function call. The first reference type argument will be assumed to be
426 * released by release_reference().
427 */
428static bool is_release_function(enum bpf_func_id func_id)
429{
6acc9b43 430 return func_id == BPF_FUNC_sk_release;
840b9615
JS
431}
432
64d85290 433static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
434{
435 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 436 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290
JS
437 func_id == BPF_FUNC_skc_lookup_tcp ||
438 func_id == BPF_FUNC_map_lookup_elem;
439}
440
441static bool is_acquire_function(enum bpf_func_id func_id,
442 const struct bpf_map *map)
443{
444 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
445
446 if (func_id == BPF_FUNC_sk_lookup_tcp ||
447 func_id == BPF_FUNC_sk_lookup_udp ||
448 func_id == BPF_FUNC_skc_lookup_tcp)
449 return true;
450
451 if (func_id == BPF_FUNC_map_lookup_elem &&
452 (map_type == BPF_MAP_TYPE_SOCKMAP ||
453 map_type == BPF_MAP_TYPE_SOCKHASH))
454 return true;
455
456 return false;
46f8bc92
MKL
457}
458
1b986589
MKL
459static bool is_ptr_cast_function(enum bpf_func_id func_id)
460{
461 return func_id == BPF_FUNC_tcp_sock ||
462 func_id == BPF_FUNC_sk_fullsock;
463}
464
17a52670
AS
465/* string representation of 'enum bpf_reg_type' */
466static const char * const reg_type_str[] = {
467 [NOT_INIT] = "?",
f1174f77 468 [SCALAR_VALUE] = "inv",
17a52670
AS
469 [PTR_TO_CTX] = "ctx",
470 [CONST_PTR_TO_MAP] = "map_ptr",
471 [PTR_TO_MAP_VALUE] = "map_value",
472 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 473 [PTR_TO_STACK] = "fp",
969bf05e 474 [PTR_TO_PACKET] = "pkt",
de8f3a83 475 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 476 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 477 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
478 [PTR_TO_SOCKET] = "sock",
479 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
480 [PTR_TO_SOCK_COMMON] = "sock_common",
481 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
482 [PTR_TO_TCP_SOCK] = "tcp_sock",
483 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 484 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 485 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 486 [PTR_TO_BTF_ID] = "ptr_",
b121b341 487 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
17a52670
AS
488};
489
8efea21d
EC
490static char slot_type_char[] = {
491 [STACK_INVALID] = '?',
492 [STACK_SPILL] = 'r',
493 [STACK_MISC] = 'm',
494 [STACK_ZERO] = '0',
495};
496
4e92024a
AS
497static void print_liveness(struct bpf_verifier_env *env,
498 enum bpf_reg_liveness live)
499{
9242b5f5 500 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
501 verbose(env, "_");
502 if (live & REG_LIVE_READ)
503 verbose(env, "r");
504 if (live & REG_LIVE_WRITTEN)
505 verbose(env, "w");
9242b5f5
AS
506 if (live & REG_LIVE_DONE)
507 verbose(env, "D");
4e92024a
AS
508}
509
f4d7e40a
AS
510static struct bpf_func_state *func(struct bpf_verifier_env *env,
511 const struct bpf_reg_state *reg)
512{
513 struct bpf_verifier_state *cur = env->cur_state;
514
515 return cur->frame[reg->frameno];
516}
517
9e15db66
AS
518const char *kernel_type_name(u32 id)
519{
520 return btf_name_by_offset(btf_vmlinux,
521 btf_type_by_id(btf_vmlinux, id)->name_off);
522}
523
61bd5218 524static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 525 const struct bpf_func_state *state)
17a52670 526{
f4d7e40a 527 const struct bpf_reg_state *reg;
17a52670
AS
528 enum bpf_reg_type t;
529 int i;
530
f4d7e40a
AS
531 if (state->frameno)
532 verbose(env, " frame%d:", state->frameno);
17a52670 533 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
534 reg = &state->regs[i];
535 t = reg->type;
17a52670
AS
536 if (t == NOT_INIT)
537 continue;
4e92024a
AS
538 verbose(env, " R%d", i);
539 print_liveness(env, reg->live);
540 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
541 if (t == SCALAR_VALUE && reg->precise)
542 verbose(env, "P");
f1174f77
EC
543 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
544 tnum_is_const(reg->var_off)) {
545 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 546 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 547 } else {
b121b341 548 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
9e15db66 549 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
550 verbose(env, "(id=%d", reg->id);
551 if (reg_type_may_be_refcounted_or_null(t))
552 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 553 if (t != SCALAR_VALUE)
61bd5218 554 verbose(env, ",off=%d", reg->off);
de8f3a83 555 if (type_is_pkt_pointer(t))
61bd5218 556 verbose(env, ",r=%d", reg->range);
f1174f77
EC
557 else if (t == CONST_PTR_TO_MAP ||
558 t == PTR_TO_MAP_VALUE ||
559 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 560 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
561 reg->map_ptr->key_size,
562 reg->map_ptr->value_size);
7d1238f2
EC
563 if (tnum_is_const(reg->var_off)) {
564 /* Typically an immediate SCALAR_VALUE, but
565 * could be a pointer whose offset is too big
566 * for reg->off
567 */
61bd5218 568 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
569 } else {
570 if (reg->smin_value != reg->umin_value &&
571 reg->smin_value != S64_MIN)
61bd5218 572 verbose(env, ",smin_value=%lld",
7d1238f2
EC
573 (long long)reg->smin_value);
574 if (reg->smax_value != reg->umax_value &&
575 reg->smax_value != S64_MAX)
61bd5218 576 verbose(env, ",smax_value=%lld",
7d1238f2
EC
577 (long long)reg->smax_value);
578 if (reg->umin_value != 0)
61bd5218 579 verbose(env, ",umin_value=%llu",
7d1238f2
EC
580 (unsigned long long)reg->umin_value);
581 if (reg->umax_value != U64_MAX)
61bd5218 582 verbose(env, ",umax_value=%llu",
7d1238f2
EC
583 (unsigned long long)reg->umax_value);
584 if (!tnum_is_unknown(reg->var_off)) {
585 char tn_buf[48];
f1174f77 586
7d1238f2 587 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 588 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 589 }
3f50f132
JF
590 if (reg->s32_min_value != reg->smin_value &&
591 reg->s32_min_value != S32_MIN)
592 verbose(env, ",s32_min_value=%d",
593 (int)(reg->s32_min_value));
594 if (reg->s32_max_value != reg->smax_value &&
595 reg->s32_max_value != S32_MAX)
596 verbose(env, ",s32_max_value=%d",
597 (int)(reg->s32_max_value));
598 if (reg->u32_min_value != reg->umin_value &&
599 reg->u32_min_value != U32_MIN)
600 verbose(env, ",u32_min_value=%d",
601 (int)(reg->u32_min_value));
602 if (reg->u32_max_value != reg->umax_value &&
603 reg->u32_max_value != U32_MAX)
604 verbose(env, ",u32_max_value=%d",
605 (int)(reg->u32_max_value));
f1174f77 606 }
61bd5218 607 verbose(env, ")");
f1174f77 608 }
17a52670 609 }
638f5b90 610 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
611 char types_buf[BPF_REG_SIZE + 1];
612 bool valid = false;
613 int j;
614
615 for (j = 0; j < BPF_REG_SIZE; j++) {
616 if (state->stack[i].slot_type[j] != STACK_INVALID)
617 valid = true;
618 types_buf[j] = slot_type_char[
619 state->stack[i].slot_type[j]];
620 }
621 types_buf[BPF_REG_SIZE] = 0;
622 if (!valid)
623 continue;
624 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
625 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
626 if (state->stack[i].slot_type[0] == STACK_SPILL) {
627 reg = &state->stack[i].spilled_ptr;
628 t = reg->type;
629 verbose(env, "=%s", reg_type_str[t]);
630 if (t == SCALAR_VALUE && reg->precise)
631 verbose(env, "P");
632 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
633 verbose(env, "%lld", reg->var_off.value + reg->off);
634 } else {
8efea21d 635 verbose(env, "=%s", types_buf);
b5dc0163 636 }
17a52670 637 }
fd978bf7
JS
638 if (state->acquired_refs && state->refs[0].id) {
639 verbose(env, " refs=%d", state->refs[0].id);
640 for (i = 1; i < state->acquired_refs; i++)
641 if (state->refs[i].id)
642 verbose(env, ",%d", state->refs[i].id);
643 }
61bd5218 644 verbose(env, "\n");
17a52670
AS
645}
646
84dbf350
JS
647#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
648static int copy_##NAME##_state(struct bpf_func_state *dst, \
649 const struct bpf_func_state *src) \
650{ \
651 if (!src->FIELD) \
652 return 0; \
653 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
654 /* internal bug, make state invalid to reject the program */ \
655 memset(dst, 0, sizeof(*dst)); \
656 return -EFAULT; \
657 } \
658 memcpy(dst->FIELD, src->FIELD, \
659 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
660 return 0; \
638f5b90 661}
fd978bf7
JS
662/* copy_reference_state() */
663COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
664/* copy_stack_state() */
665COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
666#undef COPY_STATE_FN
667
668#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
669static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
670 bool copy_old) \
671{ \
672 u32 old_size = state->COUNT; \
673 struct bpf_##NAME##_state *new_##FIELD; \
674 int slot = size / SIZE; \
675 \
676 if (size <= old_size || !size) { \
677 if (copy_old) \
678 return 0; \
679 state->COUNT = slot * SIZE; \
680 if (!size && old_size) { \
681 kfree(state->FIELD); \
682 state->FIELD = NULL; \
683 } \
684 return 0; \
685 } \
686 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
687 GFP_KERNEL); \
688 if (!new_##FIELD) \
689 return -ENOMEM; \
690 if (copy_old) { \
691 if (state->FIELD) \
692 memcpy(new_##FIELD, state->FIELD, \
693 sizeof(*new_##FIELD) * (old_size / SIZE)); \
694 memset(new_##FIELD + old_size / SIZE, 0, \
695 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
696 } \
697 state->COUNT = slot * SIZE; \
698 kfree(state->FIELD); \
699 state->FIELD = new_##FIELD; \
700 return 0; \
701}
fd978bf7
JS
702/* realloc_reference_state() */
703REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
704/* realloc_stack_state() */
705REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
706#undef REALLOC_STATE_FN
638f5b90
AS
707
708/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
709 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 710 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
711 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
712 * which realloc_stack_state() copies over. It points to previous
713 * bpf_verifier_state which is never reallocated.
638f5b90 714 */
fd978bf7
JS
715static int realloc_func_state(struct bpf_func_state *state, int stack_size,
716 int refs_size, bool copy_old)
638f5b90 717{
fd978bf7
JS
718 int err = realloc_reference_state(state, refs_size, copy_old);
719 if (err)
720 return err;
721 return realloc_stack_state(state, stack_size, copy_old);
722}
723
724/* Acquire a pointer id from the env and update the state->refs to include
725 * this new pointer reference.
726 * On success, returns a valid pointer id to associate with the register
727 * On failure, returns a negative errno.
638f5b90 728 */
fd978bf7 729static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 730{
fd978bf7
JS
731 struct bpf_func_state *state = cur_func(env);
732 int new_ofs = state->acquired_refs;
733 int id, err;
734
735 err = realloc_reference_state(state, state->acquired_refs + 1, true);
736 if (err)
737 return err;
738 id = ++env->id_gen;
739 state->refs[new_ofs].id = id;
740 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 741
fd978bf7
JS
742 return id;
743}
744
745/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 746static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
747{
748 int i, last_idx;
749
fd978bf7
JS
750 last_idx = state->acquired_refs - 1;
751 for (i = 0; i < state->acquired_refs; i++) {
752 if (state->refs[i].id == ptr_id) {
753 if (last_idx && i != last_idx)
754 memcpy(&state->refs[i], &state->refs[last_idx],
755 sizeof(*state->refs));
756 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
757 state->acquired_refs--;
638f5b90 758 return 0;
638f5b90 759 }
638f5b90 760 }
46f8bc92 761 return -EINVAL;
fd978bf7
JS
762}
763
764static int transfer_reference_state(struct bpf_func_state *dst,
765 struct bpf_func_state *src)
766{
767 int err = realloc_reference_state(dst, src->acquired_refs, false);
768 if (err)
769 return err;
770 err = copy_reference_state(dst, src);
771 if (err)
772 return err;
638f5b90
AS
773 return 0;
774}
775
f4d7e40a
AS
776static void free_func_state(struct bpf_func_state *state)
777{
5896351e
AS
778 if (!state)
779 return;
fd978bf7 780 kfree(state->refs);
f4d7e40a
AS
781 kfree(state->stack);
782 kfree(state);
783}
784
b5dc0163
AS
785static void clear_jmp_history(struct bpf_verifier_state *state)
786{
787 kfree(state->jmp_history);
788 state->jmp_history = NULL;
789 state->jmp_history_cnt = 0;
790}
791
1969db47
AS
792static void free_verifier_state(struct bpf_verifier_state *state,
793 bool free_self)
638f5b90 794{
f4d7e40a
AS
795 int i;
796
797 for (i = 0; i <= state->curframe; i++) {
798 free_func_state(state->frame[i]);
799 state->frame[i] = NULL;
800 }
b5dc0163 801 clear_jmp_history(state);
1969db47
AS
802 if (free_self)
803 kfree(state);
638f5b90
AS
804}
805
806/* copy verifier state from src to dst growing dst stack space
807 * when necessary to accommodate larger src stack
808 */
f4d7e40a
AS
809static int copy_func_state(struct bpf_func_state *dst,
810 const struct bpf_func_state *src)
638f5b90
AS
811{
812 int err;
813
fd978bf7
JS
814 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
815 false);
816 if (err)
817 return err;
818 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
819 err = copy_reference_state(dst, src);
638f5b90
AS
820 if (err)
821 return err;
638f5b90
AS
822 return copy_stack_state(dst, src);
823}
824
f4d7e40a
AS
825static int copy_verifier_state(struct bpf_verifier_state *dst_state,
826 const struct bpf_verifier_state *src)
827{
828 struct bpf_func_state *dst;
b5dc0163 829 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
830 int i, err;
831
b5dc0163
AS
832 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
833 kfree(dst_state->jmp_history);
834 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
835 if (!dst_state->jmp_history)
836 return -ENOMEM;
837 }
838 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
839 dst_state->jmp_history_cnt = src->jmp_history_cnt;
840
f4d7e40a
AS
841 /* if dst has more stack frames then src frame, free them */
842 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
843 free_func_state(dst_state->frame[i]);
844 dst_state->frame[i] = NULL;
845 }
979d63d5 846 dst_state->speculative = src->speculative;
f4d7e40a 847 dst_state->curframe = src->curframe;
d83525ca 848 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
849 dst_state->branches = src->branches;
850 dst_state->parent = src->parent;
b5dc0163
AS
851 dst_state->first_insn_idx = src->first_insn_idx;
852 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
853 for (i = 0; i <= src->curframe; i++) {
854 dst = dst_state->frame[i];
855 if (!dst) {
856 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
857 if (!dst)
858 return -ENOMEM;
859 dst_state->frame[i] = dst;
860 }
861 err = copy_func_state(dst, src->frame[i]);
862 if (err)
863 return err;
864 }
865 return 0;
866}
867
2589726d
AS
868static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
869{
870 while (st) {
871 u32 br = --st->branches;
872
873 /* WARN_ON(br > 1) technically makes sense here,
874 * but see comment in push_stack(), hence:
875 */
876 WARN_ONCE((int)br < 0,
877 "BUG update_branch_counts:branches_to_explore=%d\n",
878 br);
879 if (br)
880 break;
881 st = st->parent;
882 }
883}
884
638f5b90 885static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 886 int *insn_idx, bool pop_log)
638f5b90
AS
887{
888 struct bpf_verifier_state *cur = env->cur_state;
889 struct bpf_verifier_stack_elem *elem, *head = env->head;
890 int err;
17a52670
AS
891
892 if (env->head == NULL)
638f5b90 893 return -ENOENT;
17a52670 894
638f5b90
AS
895 if (cur) {
896 err = copy_verifier_state(cur, &head->st);
897 if (err)
898 return err;
899 }
6f8a57cc
AN
900 if (pop_log)
901 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
902 if (insn_idx)
903 *insn_idx = head->insn_idx;
17a52670 904 if (prev_insn_idx)
638f5b90
AS
905 *prev_insn_idx = head->prev_insn_idx;
906 elem = head->next;
1969db47 907 free_verifier_state(&head->st, false);
638f5b90 908 kfree(head);
17a52670
AS
909 env->head = elem;
910 env->stack_size--;
638f5b90 911 return 0;
17a52670
AS
912}
913
58e2af8b 914static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
915 int insn_idx, int prev_insn_idx,
916 bool speculative)
17a52670 917{
638f5b90 918 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 919 struct bpf_verifier_stack_elem *elem;
638f5b90 920 int err;
17a52670 921
638f5b90 922 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
923 if (!elem)
924 goto err;
925
17a52670
AS
926 elem->insn_idx = insn_idx;
927 elem->prev_insn_idx = prev_insn_idx;
928 elem->next = env->head;
6f8a57cc 929 elem->log_pos = env->log.len_used;
17a52670
AS
930 env->head = elem;
931 env->stack_size++;
1969db47
AS
932 err = copy_verifier_state(&elem->st, cur);
933 if (err)
934 goto err;
979d63d5 935 elem->st.speculative |= speculative;
b285fcb7
AS
936 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
937 verbose(env, "The sequence of %d jumps is too complex.\n",
938 env->stack_size);
17a52670
AS
939 goto err;
940 }
2589726d
AS
941 if (elem->st.parent) {
942 ++elem->st.parent->branches;
943 /* WARN_ON(branches > 2) technically makes sense here,
944 * but
945 * 1. speculative states will bump 'branches' for non-branch
946 * instructions
947 * 2. is_state_visited() heuristics may decide not to create
948 * a new state for a sequence of branches and all such current
949 * and cloned states will be pointing to a single parent state
950 * which might have large 'branches' count.
951 */
952 }
17a52670
AS
953 return &elem->st;
954err:
5896351e
AS
955 free_verifier_state(env->cur_state, true);
956 env->cur_state = NULL;
17a52670 957 /* pop all elements and return */
6f8a57cc 958 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
959 return NULL;
960}
961
962#define CALLER_SAVED_REGS 6
963static const int caller_saved[CALLER_SAVED_REGS] = {
964 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
965};
966
f54c7898
DB
967static void __mark_reg_not_init(const struct bpf_verifier_env *env,
968 struct bpf_reg_state *reg);
f1174f77 969
b03c9f9f
EC
970/* Mark the unknown part of a register (variable offset or scalar value) as
971 * known to have the value @imm.
972 */
973static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
974{
a9c676bc
AS
975 /* Clear id, off, and union(map_ptr, range) */
976 memset(((u8 *)reg) + sizeof(reg->type), 0,
977 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
978 reg->var_off = tnum_const(imm);
979 reg->smin_value = (s64)imm;
980 reg->smax_value = (s64)imm;
981 reg->umin_value = imm;
982 reg->umax_value = imm;
3f50f132
JF
983
984 reg->s32_min_value = (s32)imm;
985 reg->s32_max_value = (s32)imm;
986 reg->u32_min_value = (u32)imm;
987 reg->u32_max_value = (u32)imm;
988}
989
990static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
991{
992 reg->var_off = tnum_const_subreg(reg->var_off, imm);
993 reg->s32_min_value = (s32)imm;
994 reg->s32_max_value = (s32)imm;
995 reg->u32_min_value = (u32)imm;
996 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
997}
998
f1174f77
EC
999/* Mark the 'variable offset' part of a register as zero. This should be
1000 * used only on registers holding a pointer type.
1001 */
1002static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1003{
b03c9f9f 1004 __mark_reg_known(reg, 0);
f1174f77 1005}
a9789ef9 1006
cc2b14d5
AS
1007static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1008{
1009 __mark_reg_known(reg, 0);
cc2b14d5
AS
1010 reg->type = SCALAR_VALUE;
1011}
1012
61bd5218
JK
1013static void mark_reg_known_zero(struct bpf_verifier_env *env,
1014 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1015{
1016 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1017 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1018 /* Something bad happened, let's kill all regs */
1019 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1020 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1021 return;
1022 }
1023 __mark_reg_known_zero(regs + regno);
1024}
1025
de8f3a83
DB
1026static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1027{
1028 return type_is_pkt_pointer(reg->type);
1029}
1030
1031static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1032{
1033 return reg_is_pkt_pointer(reg) ||
1034 reg->type == PTR_TO_PACKET_END;
1035}
1036
1037/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1038static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1039 enum bpf_reg_type which)
1040{
1041 /* The register can already have a range from prior markings.
1042 * This is fine as long as it hasn't been advanced from its
1043 * origin.
1044 */
1045 return reg->type == which &&
1046 reg->id == 0 &&
1047 reg->off == 0 &&
1048 tnum_equals_const(reg->var_off, 0);
1049}
1050
3f50f132
JF
1051/* Reset the min/max bounds of a register */
1052static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1053{
1054 reg->smin_value = S64_MIN;
1055 reg->smax_value = S64_MAX;
1056 reg->umin_value = 0;
1057 reg->umax_value = U64_MAX;
1058
1059 reg->s32_min_value = S32_MIN;
1060 reg->s32_max_value = S32_MAX;
1061 reg->u32_min_value = 0;
1062 reg->u32_max_value = U32_MAX;
1063}
1064
1065static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1066{
1067 reg->smin_value = S64_MIN;
1068 reg->smax_value = S64_MAX;
1069 reg->umin_value = 0;
1070 reg->umax_value = U64_MAX;
1071}
1072
1073static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1074{
1075 reg->s32_min_value = S32_MIN;
1076 reg->s32_max_value = S32_MAX;
1077 reg->u32_min_value = 0;
1078 reg->u32_max_value = U32_MAX;
1079}
1080
1081static void __update_reg32_bounds(struct bpf_reg_state *reg)
1082{
1083 struct tnum var32_off = tnum_subreg(reg->var_off);
1084
1085 /* min signed is max(sign bit) | min(other bits) */
1086 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1087 var32_off.value | (var32_off.mask & S32_MIN));
1088 /* max signed is min(sign bit) | max(other bits) */
1089 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1090 var32_off.value | (var32_off.mask & S32_MAX));
1091 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1092 reg->u32_max_value = min(reg->u32_max_value,
1093 (u32)(var32_off.value | var32_off.mask));
1094}
1095
1096static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1097{
1098 /* min signed is max(sign bit) | min(other bits) */
1099 reg->smin_value = max_t(s64, reg->smin_value,
1100 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1101 /* max signed is min(sign bit) | max(other bits) */
1102 reg->smax_value = min_t(s64, reg->smax_value,
1103 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1104 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1105 reg->umax_value = min(reg->umax_value,
1106 reg->var_off.value | reg->var_off.mask);
1107}
1108
3f50f132
JF
1109static void __update_reg_bounds(struct bpf_reg_state *reg)
1110{
1111 __update_reg32_bounds(reg);
1112 __update_reg64_bounds(reg);
1113}
1114
b03c9f9f 1115/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1116static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1117{
1118 /* Learn sign from signed bounds.
1119 * If we cannot cross the sign boundary, then signed and unsigned bounds
1120 * are the same, so combine. This works even in the negative case, e.g.
1121 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1122 */
1123 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1124 reg->s32_min_value = reg->u32_min_value =
1125 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1126 reg->s32_max_value = reg->u32_max_value =
1127 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1128 return;
1129 }
1130 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1131 * boundary, so we must be careful.
1132 */
1133 if ((s32)reg->u32_max_value >= 0) {
1134 /* Positive. We can't learn anything from the smin, but smax
1135 * is positive, hence safe.
1136 */
1137 reg->s32_min_value = reg->u32_min_value;
1138 reg->s32_max_value = reg->u32_max_value =
1139 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1140 } else if ((s32)reg->u32_min_value < 0) {
1141 /* Negative. We can't learn anything from the smax, but smin
1142 * is negative, hence safe.
1143 */
1144 reg->s32_min_value = reg->u32_min_value =
1145 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1146 reg->s32_max_value = reg->u32_max_value;
1147 }
1148}
1149
1150static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1151{
1152 /* Learn sign from signed bounds.
1153 * If we cannot cross the sign boundary, then signed and unsigned bounds
1154 * are the same, so combine. This works even in the negative case, e.g.
1155 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1156 */
1157 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1158 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1159 reg->umin_value);
1160 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1161 reg->umax_value);
1162 return;
1163 }
1164 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1165 * boundary, so we must be careful.
1166 */
1167 if ((s64)reg->umax_value >= 0) {
1168 /* Positive. We can't learn anything from the smin, but smax
1169 * is positive, hence safe.
1170 */
1171 reg->smin_value = reg->umin_value;
1172 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1173 reg->umax_value);
1174 } else if ((s64)reg->umin_value < 0) {
1175 /* Negative. We can't learn anything from the smax, but smin
1176 * is negative, hence safe.
1177 */
1178 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1179 reg->umin_value);
1180 reg->smax_value = reg->umax_value;
1181 }
1182}
1183
3f50f132
JF
1184static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1185{
1186 __reg32_deduce_bounds(reg);
1187 __reg64_deduce_bounds(reg);
1188}
1189
b03c9f9f
EC
1190/* Attempts to improve var_off based on unsigned min/max information */
1191static void __reg_bound_offset(struct bpf_reg_state *reg)
1192{
3f50f132
JF
1193 struct tnum var64_off = tnum_intersect(reg->var_off,
1194 tnum_range(reg->umin_value,
1195 reg->umax_value));
1196 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1197 tnum_range(reg->u32_min_value,
1198 reg->u32_max_value));
1199
1200 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1201}
1202
3f50f132 1203static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1204{
3f50f132
JF
1205 reg->umin_value = reg->u32_min_value;
1206 reg->umax_value = reg->u32_max_value;
1207 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1208 * but must be positive otherwise set to worse case bounds
1209 * and refine later from tnum.
1210 */
1211 if (reg->s32_min_value > 0)
1212 reg->smin_value = reg->s32_min_value;
1213 else
1214 reg->smin_value = 0;
1215 if (reg->s32_max_value > 0)
1216 reg->smax_value = reg->s32_max_value;
1217 else
1218 reg->smax_value = U32_MAX;
1219}
1220
1221static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1222{
1223 /* special case when 64-bit register has upper 32-bit register
1224 * zeroed. Typically happens after zext or <<32, >>32 sequence
1225 * allowing us to use 32-bit bounds directly,
1226 */
1227 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1228 __reg_assign_32_into_64(reg);
1229 } else {
1230 /* Otherwise the best we can do is push lower 32bit known and
1231 * unknown bits into register (var_off set from jmp logic)
1232 * then learn as much as possible from the 64-bit tnum
1233 * known and unknown bits. The previous smin/smax bounds are
1234 * invalid here because of jmp32 compare so mark them unknown
1235 * so they do not impact tnum bounds calculation.
1236 */
1237 __mark_reg64_unbounded(reg);
1238 __update_reg_bounds(reg);
1239 }
1240
1241 /* Intersecting with the old var_off might have improved our bounds
1242 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1243 * then new var_off is (0; 0x7f...fc) which improves our umax.
1244 */
1245 __reg_deduce_bounds(reg);
1246 __reg_bound_offset(reg);
1247 __update_reg_bounds(reg);
1248}
1249
1250static bool __reg64_bound_s32(s64 a)
1251{
1252 if (a > S32_MIN && a < S32_MAX)
1253 return true;
1254 return false;
1255}
1256
1257static bool __reg64_bound_u32(u64 a)
1258{
1259 if (a > U32_MIN && a < U32_MAX)
1260 return true;
1261 return false;
1262}
1263
1264static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1265{
1266 __mark_reg32_unbounded(reg);
1267
1268 if (__reg64_bound_s32(reg->smin_value))
1269 reg->s32_min_value = (s32)reg->smin_value;
1270 if (__reg64_bound_s32(reg->smax_value))
1271 reg->s32_max_value = (s32)reg->smax_value;
1272 if (__reg64_bound_u32(reg->umin_value))
1273 reg->u32_min_value = (u32)reg->umin_value;
1274 if (__reg64_bound_u32(reg->umax_value))
1275 reg->u32_max_value = (u32)reg->umax_value;
1276
1277 /* Intersecting with the old var_off might have improved our bounds
1278 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1279 * then new var_off is (0; 0x7f...fc) which improves our umax.
1280 */
1281 __reg_deduce_bounds(reg);
1282 __reg_bound_offset(reg);
1283 __update_reg_bounds(reg);
b03c9f9f
EC
1284}
1285
f1174f77 1286/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1287static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1288 struct bpf_reg_state *reg)
f1174f77 1289{
a9c676bc
AS
1290 /*
1291 * Clear type, id, off, and union(map_ptr, range) and
1292 * padding between 'type' and union
1293 */
1294 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1295 reg->type = SCALAR_VALUE;
f1174f77 1296 reg->var_off = tnum_unknown;
f4d7e40a 1297 reg->frameno = 0;
2c78ee89 1298 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1299 __mark_reg_unbounded(reg);
f1174f77
EC
1300}
1301
61bd5218
JK
1302static void mark_reg_unknown(struct bpf_verifier_env *env,
1303 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1304{
1305 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1306 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1307 /* Something bad happened, let's kill all regs except FP */
1308 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1309 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1310 return;
1311 }
f54c7898 1312 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1313}
1314
f54c7898
DB
1315static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1316 struct bpf_reg_state *reg)
f1174f77 1317{
f54c7898 1318 __mark_reg_unknown(env, reg);
f1174f77
EC
1319 reg->type = NOT_INIT;
1320}
1321
61bd5218
JK
1322static void mark_reg_not_init(struct bpf_verifier_env *env,
1323 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1324{
1325 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1326 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1327 /* Something bad happened, let's kill all regs except FP */
1328 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1329 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1330 return;
1331 }
f54c7898 1332 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1333}
1334
5327ed3d 1335#define DEF_NOT_SUBREG (0)
61bd5218 1336static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1337 struct bpf_func_state *state)
17a52670 1338{
f4d7e40a 1339 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1340 int i;
1341
dc503a8a 1342 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1343 mark_reg_not_init(env, regs, i);
dc503a8a 1344 regs[i].live = REG_LIVE_NONE;
679c782d 1345 regs[i].parent = NULL;
5327ed3d 1346 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1347 }
17a52670
AS
1348
1349 /* frame pointer */
f1174f77 1350 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1351 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1352 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1353}
1354
f4d7e40a
AS
1355#define BPF_MAIN_FUNC (-1)
1356static void init_func_state(struct bpf_verifier_env *env,
1357 struct bpf_func_state *state,
1358 int callsite, int frameno, int subprogno)
1359{
1360 state->callsite = callsite;
1361 state->frameno = frameno;
1362 state->subprogno = subprogno;
1363 init_reg_state(env, state);
1364}
1365
17a52670
AS
1366enum reg_arg_type {
1367 SRC_OP, /* register is used as source operand */
1368 DST_OP, /* register is used as destination operand */
1369 DST_OP_NO_MARK /* same as above, check only, don't mark */
1370};
1371
cc8b0b92
AS
1372static int cmp_subprogs(const void *a, const void *b)
1373{
9c8105bd
JW
1374 return ((struct bpf_subprog_info *)a)->start -
1375 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1376}
1377
1378static int find_subprog(struct bpf_verifier_env *env, int off)
1379{
9c8105bd 1380 struct bpf_subprog_info *p;
cc8b0b92 1381
9c8105bd
JW
1382 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1383 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1384 if (!p)
1385 return -ENOENT;
9c8105bd 1386 return p - env->subprog_info;
cc8b0b92
AS
1387
1388}
1389
1390static int add_subprog(struct bpf_verifier_env *env, int off)
1391{
1392 int insn_cnt = env->prog->len;
1393 int ret;
1394
1395 if (off >= insn_cnt || off < 0) {
1396 verbose(env, "call to invalid destination\n");
1397 return -EINVAL;
1398 }
1399 ret = find_subprog(env, off);
1400 if (ret >= 0)
1401 return 0;
4cb3d99c 1402 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1403 verbose(env, "too many subprograms\n");
1404 return -E2BIG;
1405 }
9c8105bd
JW
1406 env->subprog_info[env->subprog_cnt++].start = off;
1407 sort(env->subprog_info, env->subprog_cnt,
1408 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1409 return 0;
1410}
1411
1412static int check_subprogs(struct bpf_verifier_env *env)
1413{
1414 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1415 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1416 struct bpf_insn *insn = env->prog->insnsi;
1417 int insn_cnt = env->prog->len;
1418
f910cefa
JW
1419 /* Add entry function. */
1420 ret = add_subprog(env, 0);
1421 if (ret < 0)
1422 return ret;
1423
cc8b0b92
AS
1424 /* determine subprog starts. The end is one before the next starts */
1425 for (i = 0; i < insn_cnt; i++) {
1426 if (insn[i].code != (BPF_JMP | BPF_CALL))
1427 continue;
1428 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1429 continue;
2c78ee89
AS
1430 if (!env->bpf_capable) {
1431 verbose(env,
1432 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1433 return -EPERM;
1434 }
cc8b0b92
AS
1435 ret = add_subprog(env, i + insn[i].imm + 1);
1436 if (ret < 0)
1437 return ret;
1438 }
1439
4cb3d99c
JW
1440 /* Add a fake 'exit' subprog which could simplify subprog iteration
1441 * logic. 'subprog_cnt' should not be increased.
1442 */
1443 subprog[env->subprog_cnt].start = insn_cnt;
1444
06ee7115 1445 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1446 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1447 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1448
1449 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1450 subprog_start = subprog[cur_subprog].start;
1451 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1452 for (i = 0; i < insn_cnt; i++) {
1453 u8 code = insn[i].code;
1454
092ed096 1455 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1456 goto next;
1457 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1458 goto next;
1459 off = i + insn[i].off + 1;
1460 if (off < subprog_start || off >= subprog_end) {
1461 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1462 return -EINVAL;
1463 }
1464next:
1465 if (i == subprog_end - 1) {
1466 /* to avoid fall-through from one subprog into another
1467 * the last insn of the subprog should be either exit
1468 * or unconditional jump back
1469 */
1470 if (code != (BPF_JMP | BPF_EXIT) &&
1471 code != (BPF_JMP | BPF_JA)) {
1472 verbose(env, "last insn is not an exit or jmp\n");
1473 return -EINVAL;
1474 }
1475 subprog_start = subprog_end;
4cb3d99c
JW
1476 cur_subprog++;
1477 if (cur_subprog < env->subprog_cnt)
9c8105bd 1478 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1479 }
1480 }
1481 return 0;
1482}
1483
679c782d
EC
1484/* Parentage chain of this register (or stack slot) should take care of all
1485 * issues like callee-saved registers, stack slot allocation time, etc.
1486 */
f4d7e40a 1487static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1488 const struct bpf_reg_state *state,
5327ed3d 1489 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1490{
1491 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1492 int cnt = 0;
dc503a8a
EC
1493
1494 while (parent) {
1495 /* if read wasn't screened by an earlier write ... */
679c782d 1496 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1497 break;
9242b5f5
AS
1498 if (parent->live & REG_LIVE_DONE) {
1499 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1500 reg_type_str[parent->type],
1501 parent->var_off.value, parent->off);
1502 return -EFAULT;
1503 }
5327ed3d
JW
1504 /* The first condition is more likely to be true than the
1505 * second, checked it first.
1506 */
1507 if ((parent->live & REG_LIVE_READ) == flag ||
1508 parent->live & REG_LIVE_READ64)
25af32da
AS
1509 /* The parentage chain never changes and
1510 * this parent was already marked as LIVE_READ.
1511 * There is no need to keep walking the chain again and
1512 * keep re-marking all parents as LIVE_READ.
1513 * This case happens when the same register is read
1514 * multiple times without writes into it in-between.
5327ed3d
JW
1515 * Also, if parent has the stronger REG_LIVE_READ64 set,
1516 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1517 */
1518 break;
dc503a8a 1519 /* ... then we depend on parent's value */
5327ed3d
JW
1520 parent->live |= flag;
1521 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1522 if (flag == REG_LIVE_READ64)
1523 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1524 state = parent;
1525 parent = state->parent;
f4d7e40a 1526 writes = true;
06ee7115 1527 cnt++;
dc503a8a 1528 }
06ee7115
AS
1529
1530 if (env->longest_mark_read_walk < cnt)
1531 env->longest_mark_read_walk = cnt;
f4d7e40a 1532 return 0;
dc503a8a
EC
1533}
1534
5327ed3d
JW
1535/* This function is supposed to be used by the following 32-bit optimization
1536 * code only. It returns TRUE if the source or destination register operates
1537 * on 64-bit, otherwise return FALSE.
1538 */
1539static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1540 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1541{
1542 u8 code, class, op;
1543
1544 code = insn->code;
1545 class = BPF_CLASS(code);
1546 op = BPF_OP(code);
1547 if (class == BPF_JMP) {
1548 /* BPF_EXIT for "main" will reach here. Return TRUE
1549 * conservatively.
1550 */
1551 if (op == BPF_EXIT)
1552 return true;
1553 if (op == BPF_CALL) {
1554 /* BPF to BPF call will reach here because of marking
1555 * caller saved clobber with DST_OP_NO_MARK for which we
1556 * don't care the register def because they are anyway
1557 * marked as NOT_INIT already.
1558 */
1559 if (insn->src_reg == BPF_PSEUDO_CALL)
1560 return false;
1561 /* Helper call will reach here because of arg type
1562 * check, conservatively return TRUE.
1563 */
1564 if (t == SRC_OP)
1565 return true;
1566
1567 return false;
1568 }
1569 }
1570
1571 if (class == BPF_ALU64 || class == BPF_JMP ||
1572 /* BPF_END always use BPF_ALU class. */
1573 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1574 return true;
1575
1576 if (class == BPF_ALU || class == BPF_JMP32)
1577 return false;
1578
1579 if (class == BPF_LDX) {
1580 if (t != SRC_OP)
1581 return BPF_SIZE(code) == BPF_DW;
1582 /* LDX source must be ptr. */
1583 return true;
1584 }
1585
1586 if (class == BPF_STX) {
1587 if (reg->type != SCALAR_VALUE)
1588 return true;
1589 return BPF_SIZE(code) == BPF_DW;
1590 }
1591
1592 if (class == BPF_LD) {
1593 u8 mode = BPF_MODE(code);
1594
1595 /* LD_IMM64 */
1596 if (mode == BPF_IMM)
1597 return true;
1598
1599 /* Both LD_IND and LD_ABS return 32-bit data. */
1600 if (t != SRC_OP)
1601 return false;
1602
1603 /* Implicit ctx ptr. */
1604 if (regno == BPF_REG_6)
1605 return true;
1606
1607 /* Explicit source could be any width. */
1608 return true;
1609 }
1610
1611 if (class == BPF_ST)
1612 /* The only source register for BPF_ST is a ptr. */
1613 return true;
1614
1615 /* Conservatively return true at default. */
1616 return true;
1617}
1618
b325fbca
JW
1619/* Return TRUE if INSN doesn't have explicit value define. */
1620static bool insn_no_def(struct bpf_insn *insn)
1621{
1622 u8 class = BPF_CLASS(insn->code);
1623
1624 return (class == BPF_JMP || class == BPF_JMP32 ||
1625 class == BPF_STX || class == BPF_ST);
1626}
1627
1628/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1629static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1630{
1631 if (insn_no_def(insn))
1632 return false;
1633
1634 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1635}
1636
5327ed3d
JW
1637static void mark_insn_zext(struct bpf_verifier_env *env,
1638 struct bpf_reg_state *reg)
1639{
1640 s32 def_idx = reg->subreg_def;
1641
1642 if (def_idx == DEF_NOT_SUBREG)
1643 return;
1644
1645 env->insn_aux_data[def_idx - 1].zext_dst = true;
1646 /* The dst will be zero extended, so won't be sub-register anymore. */
1647 reg->subreg_def = DEF_NOT_SUBREG;
1648}
1649
dc503a8a 1650static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1651 enum reg_arg_type t)
1652{
f4d7e40a
AS
1653 struct bpf_verifier_state *vstate = env->cur_state;
1654 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1655 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1656 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1657 bool rw64;
dc503a8a 1658
17a52670 1659 if (regno >= MAX_BPF_REG) {
61bd5218 1660 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1661 return -EINVAL;
1662 }
1663
c342dc10 1664 reg = &regs[regno];
5327ed3d 1665 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1666 if (t == SRC_OP) {
1667 /* check whether register used as source operand can be read */
c342dc10 1668 if (reg->type == NOT_INIT) {
61bd5218 1669 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1670 return -EACCES;
1671 }
679c782d 1672 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1673 if (regno == BPF_REG_FP)
1674 return 0;
1675
5327ed3d
JW
1676 if (rw64)
1677 mark_insn_zext(env, reg);
1678
1679 return mark_reg_read(env, reg, reg->parent,
1680 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1681 } else {
1682 /* check whether register used as dest operand can be written to */
1683 if (regno == BPF_REG_FP) {
61bd5218 1684 verbose(env, "frame pointer is read only\n");
17a52670
AS
1685 return -EACCES;
1686 }
c342dc10 1687 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1688 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1689 if (t == DST_OP)
61bd5218 1690 mark_reg_unknown(env, regs, regno);
17a52670
AS
1691 }
1692 return 0;
1693}
1694
b5dc0163
AS
1695/* for any branch, call, exit record the history of jmps in the given state */
1696static int push_jmp_history(struct bpf_verifier_env *env,
1697 struct bpf_verifier_state *cur)
1698{
1699 u32 cnt = cur->jmp_history_cnt;
1700 struct bpf_idx_pair *p;
1701
1702 cnt++;
1703 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1704 if (!p)
1705 return -ENOMEM;
1706 p[cnt - 1].idx = env->insn_idx;
1707 p[cnt - 1].prev_idx = env->prev_insn_idx;
1708 cur->jmp_history = p;
1709 cur->jmp_history_cnt = cnt;
1710 return 0;
1711}
1712
1713/* Backtrack one insn at a time. If idx is not at the top of recorded
1714 * history then previous instruction came from straight line execution.
1715 */
1716static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1717 u32 *history)
1718{
1719 u32 cnt = *history;
1720
1721 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1722 i = st->jmp_history[cnt - 1].prev_idx;
1723 (*history)--;
1724 } else {
1725 i--;
1726 }
1727 return i;
1728}
1729
1730/* For given verifier state backtrack_insn() is called from the last insn to
1731 * the first insn. Its purpose is to compute a bitmask of registers and
1732 * stack slots that needs precision in the parent verifier state.
1733 */
1734static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1735 u32 *reg_mask, u64 *stack_mask)
1736{
1737 const struct bpf_insn_cbs cbs = {
1738 .cb_print = verbose,
1739 .private_data = env,
1740 };
1741 struct bpf_insn *insn = env->prog->insnsi + idx;
1742 u8 class = BPF_CLASS(insn->code);
1743 u8 opcode = BPF_OP(insn->code);
1744 u8 mode = BPF_MODE(insn->code);
1745 u32 dreg = 1u << insn->dst_reg;
1746 u32 sreg = 1u << insn->src_reg;
1747 u32 spi;
1748
1749 if (insn->code == 0)
1750 return 0;
1751 if (env->log.level & BPF_LOG_LEVEL) {
1752 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1753 verbose(env, "%d: ", idx);
1754 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1755 }
1756
1757 if (class == BPF_ALU || class == BPF_ALU64) {
1758 if (!(*reg_mask & dreg))
1759 return 0;
1760 if (opcode == BPF_MOV) {
1761 if (BPF_SRC(insn->code) == BPF_X) {
1762 /* dreg = sreg
1763 * dreg needs precision after this insn
1764 * sreg needs precision before this insn
1765 */
1766 *reg_mask &= ~dreg;
1767 *reg_mask |= sreg;
1768 } else {
1769 /* dreg = K
1770 * dreg needs precision after this insn.
1771 * Corresponding register is already marked
1772 * as precise=true in this verifier state.
1773 * No further markings in parent are necessary
1774 */
1775 *reg_mask &= ~dreg;
1776 }
1777 } else {
1778 if (BPF_SRC(insn->code) == BPF_X) {
1779 /* dreg += sreg
1780 * both dreg and sreg need precision
1781 * before this insn
1782 */
1783 *reg_mask |= sreg;
1784 } /* else dreg += K
1785 * dreg still needs precision before this insn
1786 */
1787 }
1788 } else if (class == BPF_LDX) {
1789 if (!(*reg_mask & dreg))
1790 return 0;
1791 *reg_mask &= ~dreg;
1792
1793 /* scalars can only be spilled into stack w/o losing precision.
1794 * Load from any other memory can be zero extended.
1795 * The desire to keep that precision is already indicated
1796 * by 'precise' mark in corresponding register of this state.
1797 * No further tracking necessary.
1798 */
1799 if (insn->src_reg != BPF_REG_FP)
1800 return 0;
1801 if (BPF_SIZE(insn->code) != BPF_DW)
1802 return 0;
1803
1804 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1805 * that [fp - off] slot contains scalar that needs to be
1806 * tracked with precision
1807 */
1808 spi = (-insn->off - 1) / BPF_REG_SIZE;
1809 if (spi >= 64) {
1810 verbose(env, "BUG spi %d\n", spi);
1811 WARN_ONCE(1, "verifier backtracking bug");
1812 return -EFAULT;
1813 }
1814 *stack_mask |= 1ull << spi;
b3b50f05 1815 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1816 if (*reg_mask & dreg)
b3b50f05 1817 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1818 * to access memory. It means backtracking
1819 * encountered a case of pointer subtraction.
1820 */
1821 return -ENOTSUPP;
1822 /* scalars can only be spilled into stack */
1823 if (insn->dst_reg != BPF_REG_FP)
1824 return 0;
1825 if (BPF_SIZE(insn->code) != BPF_DW)
1826 return 0;
1827 spi = (-insn->off - 1) / BPF_REG_SIZE;
1828 if (spi >= 64) {
1829 verbose(env, "BUG spi %d\n", spi);
1830 WARN_ONCE(1, "verifier backtracking bug");
1831 return -EFAULT;
1832 }
1833 if (!(*stack_mask & (1ull << spi)))
1834 return 0;
1835 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1836 if (class == BPF_STX)
1837 *reg_mask |= sreg;
b5dc0163
AS
1838 } else if (class == BPF_JMP || class == BPF_JMP32) {
1839 if (opcode == BPF_CALL) {
1840 if (insn->src_reg == BPF_PSEUDO_CALL)
1841 return -ENOTSUPP;
1842 /* regular helper call sets R0 */
1843 *reg_mask &= ~1;
1844 if (*reg_mask & 0x3f) {
1845 /* if backtracing was looking for registers R1-R5
1846 * they should have been found already.
1847 */
1848 verbose(env, "BUG regs %x\n", *reg_mask);
1849 WARN_ONCE(1, "verifier backtracking bug");
1850 return -EFAULT;
1851 }
1852 } else if (opcode == BPF_EXIT) {
1853 return -ENOTSUPP;
1854 }
1855 } else if (class == BPF_LD) {
1856 if (!(*reg_mask & dreg))
1857 return 0;
1858 *reg_mask &= ~dreg;
1859 /* It's ld_imm64 or ld_abs or ld_ind.
1860 * For ld_imm64 no further tracking of precision
1861 * into parent is necessary
1862 */
1863 if (mode == BPF_IND || mode == BPF_ABS)
1864 /* to be analyzed */
1865 return -ENOTSUPP;
b5dc0163
AS
1866 }
1867 return 0;
1868}
1869
1870/* the scalar precision tracking algorithm:
1871 * . at the start all registers have precise=false.
1872 * . scalar ranges are tracked as normal through alu and jmp insns.
1873 * . once precise value of the scalar register is used in:
1874 * . ptr + scalar alu
1875 * . if (scalar cond K|scalar)
1876 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1877 * backtrack through the verifier states and mark all registers and
1878 * stack slots with spilled constants that these scalar regisers
1879 * should be precise.
1880 * . during state pruning two registers (or spilled stack slots)
1881 * are equivalent if both are not precise.
1882 *
1883 * Note the verifier cannot simply walk register parentage chain,
1884 * since many different registers and stack slots could have been
1885 * used to compute single precise scalar.
1886 *
1887 * The approach of starting with precise=true for all registers and then
1888 * backtrack to mark a register as not precise when the verifier detects
1889 * that program doesn't care about specific value (e.g., when helper
1890 * takes register as ARG_ANYTHING parameter) is not safe.
1891 *
1892 * It's ok to walk single parentage chain of the verifier states.
1893 * It's possible that this backtracking will go all the way till 1st insn.
1894 * All other branches will be explored for needing precision later.
1895 *
1896 * The backtracking needs to deal with cases like:
1897 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1898 * r9 -= r8
1899 * r5 = r9
1900 * if r5 > 0x79f goto pc+7
1901 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1902 * r5 += 1
1903 * ...
1904 * call bpf_perf_event_output#25
1905 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1906 *
1907 * and this case:
1908 * r6 = 1
1909 * call foo // uses callee's r6 inside to compute r0
1910 * r0 += r6
1911 * if r0 == 0 goto
1912 *
1913 * to track above reg_mask/stack_mask needs to be independent for each frame.
1914 *
1915 * Also if parent's curframe > frame where backtracking started,
1916 * the verifier need to mark registers in both frames, otherwise callees
1917 * may incorrectly prune callers. This is similar to
1918 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1919 *
1920 * For now backtracking falls back into conservative marking.
1921 */
1922static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1923 struct bpf_verifier_state *st)
1924{
1925 struct bpf_func_state *func;
1926 struct bpf_reg_state *reg;
1927 int i, j;
1928
1929 /* big hammer: mark all scalars precise in this path.
1930 * pop_stack may still get !precise scalars.
1931 */
1932 for (; st; st = st->parent)
1933 for (i = 0; i <= st->curframe; i++) {
1934 func = st->frame[i];
1935 for (j = 0; j < BPF_REG_FP; j++) {
1936 reg = &func->regs[j];
1937 if (reg->type != SCALAR_VALUE)
1938 continue;
1939 reg->precise = true;
1940 }
1941 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1942 if (func->stack[j].slot_type[0] != STACK_SPILL)
1943 continue;
1944 reg = &func->stack[j].spilled_ptr;
1945 if (reg->type != SCALAR_VALUE)
1946 continue;
1947 reg->precise = true;
1948 }
1949 }
1950}
1951
a3ce685d
AS
1952static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1953 int spi)
b5dc0163
AS
1954{
1955 struct bpf_verifier_state *st = env->cur_state;
1956 int first_idx = st->first_insn_idx;
1957 int last_idx = env->insn_idx;
1958 struct bpf_func_state *func;
1959 struct bpf_reg_state *reg;
a3ce685d
AS
1960 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1961 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1962 bool skip_first = true;
a3ce685d 1963 bool new_marks = false;
b5dc0163
AS
1964 int i, err;
1965
2c78ee89 1966 if (!env->bpf_capable)
b5dc0163
AS
1967 return 0;
1968
1969 func = st->frame[st->curframe];
a3ce685d
AS
1970 if (regno >= 0) {
1971 reg = &func->regs[regno];
1972 if (reg->type != SCALAR_VALUE) {
1973 WARN_ONCE(1, "backtracing misuse");
1974 return -EFAULT;
1975 }
1976 if (!reg->precise)
1977 new_marks = true;
1978 else
1979 reg_mask = 0;
1980 reg->precise = true;
b5dc0163 1981 }
b5dc0163 1982
a3ce685d
AS
1983 while (spi >= 0) {
1984 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1985 stack_mask = 0;
1986 break;
1987 }
1988 reg = &func->stack[spi].spilled_ptr;
1989 if (reg->type != SCALAR_VALUE) {
1990 stack_mask = 0;
1991 break;
1992 }
1993 if (!reg->precise)
1994 new_marks = true;
1995 else
1996 stack_mask = 0;
1997 reg->precise = true;
1998 break;
1999 }
2000
2001 if (!new_marks)
2002 return 0;
2003 if (!reg_mask && !stack_mask)
2004 return 0;
b5dc0163
AS
2005 for (;;) {
2006 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2007 u32 history = st->jmp_history_cnt;
2008
2009 if (env->log.level & BPF_LOG_LEVEL)
2010 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2011 for (i = last_idx;;) {
2012 if (skip_first) {
2013 err = 0;
2014 skip_first = false;
2015 } else {
2016 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2017 }
2018 if (err == -ENOTSUPP) {
2019 mark_all_scalars_precise(env, st);
2020 return 0;
2021 } else if (err) {
2022 return err;
2023 }
2024 if (!reg_mask && !stack_mask)
2025 /* Found assignment(s) into tracked register in this state.
2026 * Since this state is already marked, just return.
2027 * Nothing to be tracked further in the parent state.
2028 */
2029 return 0;
2030 if (i == first_idx)
2031 break;
2032 i = get_prev_insn_idx(st, i, &history);
2033 if (i >= env->prog->len) {
2034 /* This can happen if backtracking reached insn 0
2035 * and there are still reg_mask or stack_mask
2036 * to backtrack.
2037 * It means the backtracking missed the spot where
2038 * particular register was initialized with a constant.
2039 */
2040 verbose(env, "BUG backtracking idx %d\n", i);
2041 WARN_ONCE(1, "verifier backtracking bug");
2042 return -EFAULT;
2043 }
2044 }
2045 st = st->parent;
2046 if (!st)
2047 break;
2048
a3ce685d 2049 new_marks = false;
b5dc0163
AS
2050 func = st->frame[st->curframe];
2051 bitmap_from_u64(mask, reg_mask);
2052 for_each_set_bit(i, mask, 32) {
2053 reg = &func->regs[i];
a3ce685d
AS
2054 if (reg->type != SCALAR_VALUE) {
2055 reg_mask &= ~(1u << i);
b5dc0163 2056 continue;
a3ce685d 2057 }
b5dc0163
AS
2058 if (!reg->precise)
2059 new_marks = true;
2060 reg->precise = true;
2061 }
2062
2063 bitmap_from_u64(mask, stack_mask);
2064 for_each_set_bit(i, mask, 64) {
2065 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2066 /* the sequence of instructions:
2067 * 2: (bf) r3 = r10
2068 * 3: (7b) *(u64 *)(r3 -8) = r0
2069 * 4: (79) r4 = *(u64 *)(r10 -8)
2070 * doesn't contain jmps. It's backtracked
2071 * as a single block.
2072 * During backtracking insn 3 is not recognized as
2073 * stack access, so at the end of backtracking
2074 * stack slot fp-8 is still marked in stack_mask.
2075 * However the parent state may not have accessed
2076 * fp-8 and it's "unallocated" stack space.
2077 * In such case fallback to conservative.
b5dc0163 2078 */
2339cd6c
AS
2079 mark_all_scalars_precise(env, st);
2080 return 0;
b5dc0163
AS
2081 }
2082
a3ce685d
AS
2083 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2084 stack_mask &= ~(1ull << i);
b5dc0163 2085 continue;
a3ce685d 2086 }
b5dc0163 2087 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2088 if (reg->type != SCALAR_VALUE) {
2089 stack_mask &= ~(1ull << i);
b5dc0163 2090 continue;
a3ce685d 2091 }
b5dc0163
AS
2092 if (!reg->precise)
2093 new_marks = true;
2094 reg->precise = true;
2095 }
2096 if (env->log.level & BPF_LOG_LEVEL) {
2097 print_verifier_state(env, func);
2098 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2099 new_marks ? "didn't have" : "already had",
2100 reg_mask, stack_mask);
2101 }
2102
a3ce685d
AS
2103 if (!reg_mask && !stack_mask)
2104 break;
b5dc0163
AS
2105 if (!new_marks)
2106 break;
2107
2108 last_idx = st->last_insn_idx;
2109 first_idx = st->first_insn_idx;
2110 }
2111 return 0;
2112}
2113
a3ce685d
AS
2114static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2115{
2116 return __mark_chain_precision(env, regno, -1);
2117}
2118
2119static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2120{
2121 return __mark_chain_precision(env, -1, spi);
2122}
b5dc0163 2123
1be7f75d
AS
2124static bool is_spillable_regtype(enum bpf_reg_type type)
2125{
2126 switch (type) {
2127 case PTR_TO_MAP_VALUE:
2128 case PTR_TO_MAP_VALUE_OR_NULL:
2129 case PTR_TO_STACK:
2130 case PTR_TO_CTX:
969bf05e 2131 case PTR_TO_PACKET:
de8f3a83 2132 case PTR_TO_PACKET_META:
969bf05e 2133 case PTR_TO_PACKET_END:
d58e468b 2134 case PTR_TO_FLOW_KEYS:
1be7f75d 2135 case CONST_PTR_TO_MAP:
c64b7983
JS
2136 case PTR_TO_SOCKET:
2137 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2138 case PTR_TO_SOCK_COMMON:
2139 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2140 case PTR_TO_TCP_SOCK:
2141 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2142 case PTR_TO_XDP_SOCK:
65726b5b 2143 case PTR_TO_BTF_ID:
b121b341 2144 case PTR_TO_BTF_ID_OR_NULL:
1be7f75d
AS
2145 return true;
2146 default:
2147 return false;
2148 }
2149}
2150
cc2b14d5
AS
2151/* Does this register contain a constant zero? */
2152static bool register_is_null(struct bpf_reg_state *reg)
2153{
2154 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2155}
2156
f7cf25b2
AS
2157static bool register_is_const(struct bpf_reg_state *reg)
2158{
2159 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2160}
2161
6e7e63cb
JH
2162static bool __is_pointer_value(bool allow_ptr_leaks,
2163 const struct bpf_reg_state *reg)
2164{
2165 if (allow_ptr_leaks)
2166 return false;
2167
2168 return reg->type != SCALAR_VALUE;
2169}
2170
f7cf25b2
AS
2171static void save_register_state(struct bpf_func_state *state,
2172 int spi, struct bpf_reg_state *reg)
2173{
2174 int i;
2175
2176 state->stack[spi].spilled_ptr = *reg;
2177 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2178
2179 for (i = 0; i < BPF_REG_SIZE; i++)
2180 state->stack[spi].slot_type[i] = STACK_SPILL;
2181}
2182
17a52670
AS
2183/* check_stack_read/write functions track spill/fill of registers,
2184 * stack boundary and alignment are checked in check_mem_access()
2185 */
61bd5218 2186static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2187 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2188 int off, int size, int value_regno, int insn_idx)
17a52670 2189{
f4d7e40a 2190 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2191 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2192 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2193 struct bpf_reg_state *reg = NULL;
638f5b90 2194
f4d7e40a 2195 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2196 state->acquired_refs, true);
638f5b90
AS
2197 if (err)
2198 return err;
9c399760
AS
2199 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2200 * so it's aligned access and [off, off + size) are within stack limits
2201 */
638f5b90
AS
2202 if (!env->allow_ptr_leaks &&
2203 state->stack[spi].slot_type[0] == STACK_SPILL &&
2204 size != BPF_REG_SIZE) {
2205 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2206 return -EACCES;
2207 }
17a52670 2208
f4d7e40a 2209 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2210 if (value_regno >= 0)
2211 reg = &cur->regs[value_regno];
17a52670 2212
f7cf25b2 2213 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2c78ee89 2214 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2215 if (dst_reg != BPF_REG_FP) {
2216 /* The backtracking logic can only recognize explicit
2217 * stack slot address like [fp - 8]. Other spill of
2218 * scalar via different register has to be conervative.
2219 * Backtrack from here and mark all registers as precise
2220 * that contributed into 'reg' being a constant.
2221 */
2222 err = mark_chain_precision(env, value_regno);
2223 if (err)
2224 return err;
2225 }
f7cf25b2
AS
2226 save_register_state(state, spi, reg);
2227 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2228 /* register containing pointer is being spilled into stack */
9c399760 2229 if (size != BPF_REG_SIZE) {
f7cf25b2 2230 verbose_linfo(env, insn_idx, "; ");
61bd5218 2231 verbose(env, "invalid size of register spill\n");
17a52670
AS
2232 return -EACCES;
2233 }
2234
f7cf25b2 2235 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2236 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2237 return -EINVAL;
2238 }
2239
2c78ee89 2240 if (!env->bypass_spec_v4) {
f7cf25b2 2241 bool sanitize = false;
17a52670 2242
f7cf25b2
AS
2243 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2244 register_is_const(&state->stack[spi].spilled_ptr))
2245 sanitize = true;
2246 for (i = 0; i < BPF_REG_SIZE; i++)
2247 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2248 sanitize = true;
2249 break;
2250 }
2251 if (sanitize) {
af86ca4e
AS
2252 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2253 int soff = (-spi - 1) * BPF_REG_SIZE;
2254
2255 /* detected reuse of integer stack slot with a pointer
2256 * which means either llvm is reusing stack slot or
2257 * an attacker is trying to exploit CVE-2018-3639
2258 * (speculative store bypass)
2259 * Have to sanitize that slot with preemptive
2260 * store of zero.
2261 */
2262 if (*poff && *poff != soff) {
2263 /* disallow programs where single insn stores
2264 * into two different stack slots, since verifier
2265 * cannot sanitize them
2266 */
2267 verbose(env,
2268 "insn %d cannot access two stack slots fp%d and fp%d",
2269 insn_idx, *poff, soff);
2270 return -EINVAL;
2271 }
2272 *poff = soff;
2273 }
af86ca4e 2274 }
f7cf25b2 2275 save_register_state(state, spi, reg);
9c399760 2276 } else {
cc2b14d5
AS
2277 u8 type = STACK_MISC;
2278
679c782d
EC
2279 /* regular write of data into stack destroys any spilled ptr */
2280 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2281 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2282 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2283 for (i = 0; i < BPF_REG_SIZE; i++)
2284 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2285
cc2b14d5
AS
2286 /* only mark the slot as written if all 8 bytes were written
2287 * otherwise read propagation may incorrectly stop too soon
2288 * when stack slots are partially written.
2289 * This heuristic means that read propagation will be
2290 * conservative, since it will add reg_live_read marks
2291 * to stack slots all the way to first state when programs
2292 * writes+reads less than 8 bytes
2293 */
2294 if (size == BPF_REG_SIZE)
2295 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2296
2297 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2298 if (reg && register_is_null(reg)) {
2299 /* backtracking doesn't work for STACK_ZERO yet. */
2300 err = mark_chain_precision(env, value_regno);
2301 if (err)
2302 return err;
cc2b14d5 2303 type = STACK_ZERO;
b5dc0163 2304 }
cc2b14d5 2305
0bae2d4d 2306 /* Mark slots affected by this stack write. */
9c399760 2307 for (i = 0; i < size; i++)
638f5b90 2308 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2309 type;
17a52670
AS
2310 }
2311 return 0;
2312}
2313
61bd5218 2314static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2315 struct bpf_func_state *reg_state /* func where register points to */,
2316 int off, int size, int value_regno)
17a52670 2317{
f4d7e40a
AS
2318 struct bpf_verifier_state *vstate = env->cur_state;
2319 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2320 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2321 struct bpf_reg_state *reg;
638f5b90 2322 u8 *stype;
17a52670 2323
f4d7e40a 2324 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2325 verbose(env, "invalid read from stack off %d+0 size %d\n",
2326 off, size);
2327 return -EACCES;
2328 }
f4d7e40a 2329 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2330 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2331
638f5b90 2332 if (stype[0] == STACK_SPILL) {
9c399760 2333 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2334 if (reg->type != SCALAR_VALUE) {
2335 verbose_linfo(env, env->insn_idx, "; ");
2336 verbose(env, "invalid size of register fill\n");
2337 return -EACCES;
2338 }
2339 if (value_regno >= 0) {
2340 mark_reg_unknown(env, state->regs, value_regno);
2341 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2342 }
2343 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2344 return 0;
17a52670 2345 }
9c399760 2346 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2347 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2348 verbose(env, "corrupted spill memory\n");
17a52670
AS
2349 return -EACCES;
2350 }
2351 }
2352
dc503a8a 2353 if (value_regno >= 0) {
17a52670 2354 /* restore register state from stack */
f7cf25b2 2355 state->regs[value_regno] = *reg;
2f18f62e
AS
2356 /* mark reg as written since spilled pointer state likely
2357 * has its liveness marks cleared by is_state_visited()
2358 * which resets stack/reg liveness for state transitions
2359 */
2360 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2361 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2362 /* If value_regno==-1, the caller is asking us whether
2363 * it is acceptable to use this value as a SCALAR_VALUE
2364 * (e.g. for XADD).
2365 * We must not allow unprivileged callers to do that
2366 * with spilled pointers.
2367 */
2368 verbose(env, "leaking pointer from stack off %d\n",
2369 off);
2370 return -EACCES;
dc503a8a 2371 }
f7cf25b2 2372 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2373 } else {
cc2b14d5
AS
2374 int zeros = 0;
2375
17a52670 2376 for (i = 0; i < size; i++) {
cc2b14d5
AS
2377 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2378 continue;
2379 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2380 zeros++;
2381 continue;
17a52670 2382 }
cc2b14d5
AS
2383 verbose(env, "invalid read from stack off %d+%d size %d\n",
2384 off, i, size);
2385 return -EACCES;
2386 }
f7cf25b2 2387 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2388 if (value_regno >= 0) {
2389 if (zeros == size) {
2390 /* any size read into register is zero extended,
2391 * so the whole register == const_zero
2392 */
2393 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2394 /* backtracking doesn't support STACK_ZERO yet,
2395 * so mark it precise here, so that later
2396 * backtracking can stop here.
2397 * Backtracking may not need this if this register
2398 * doesn't participate in pointer adjustment.
2399 * Forward propagation of precise flag is not
2400 * necessary either. This mark is only to stop
2401 * backtracking. Any register that contributed
2402 * to const 0 was marked precise before spill.
2403 */
2404 state->regs[value_regno].precise = true;
cc2b14d5
AS
2405 } else {
2406 /* have read misc data from the stack */
2407 mark_reg_unknown(env, state->regs, value_regno);
2408 }
2409 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2410 }
17a52670 2411 }
f7cf25b2 2412 return 0;
17a52670
AS
2413}
2414
e4298d25
DB
2415static int check_stack_access(struct bpf_verifier_env *env,
2416 const struct bpf_reg_state *reg,
2417 int off, int size)
2418{
2419 /* Stack accesses must be at a fixed offset, so that we
2420 * can determine what type of data were returned. See
2421 * check_stack_read().
2422 */
2423 if (!tnum_is_const(reg->var_off)) {
2424 char tn_buf[48];
2425
2426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2427 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2428 tn_buf, off, size);
2429 return -EACCES;
2430 }
2431
2432 if (off >= 0 || off < -MAX_BPF_STACK) {
2433 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2434 return -EACCES;
2435 }
2436
2437 return 0;
2438}
2439
591fe988
DB
2440static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2441 int off, int size, enum bpf_access_type type)
2442{
2443 struct bpf_reg_state *regs = cur_regs(env);
2444 struct bpf_map *map = regs[regno].map_ptr;
2445 u32 cap = bpf_map_flags_to_cap(map);
2446
2447 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2448 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2449 map->value_size, off, size);
2450 return -EACCES;
2451 }
2452
2453 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2454 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2455 map->value_size, off, size);
2456 return -EACCES;
2457 }
2458
2459 return 0;
2460}
2461
17a52670 2462/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2463static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2464 int size, bool zero_size_allowed)
17a52670 2465{
638f5b90
AS
2466 struct bpf_reg_state *regs = cur_regs(env);
2467 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2468
9fd29c08
YS
2469 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2470 off + size > map->value_size) {
61bd5218 2471 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2472 map->value_size, off, size);
2473 return -EACCES;
2474 }
2475 return 0;
2476}
2477
f1174f77
EC
2478/* check read/write into a map element with possible variable offset */
2479static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2480 int off, int size, bool zero_size_allowed)
dbcfe5f7 2481{
f4d7e40a
AS
2482 struct bpf_verifier_state *vstate = env->cur_state;
2483 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2484 struct bpf_reg_state *reg = &state->regs[regno];
2485 int err;
2486
f1174f77
EC
2487 /* We may have adjusted the register to this map value, so we
2488 * need to try adding each of min_value and max_value to off
2489 * to make sure our theoretical access will be safe.
dbcfe5f7 2490 */
06ee7115 2491 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2492 print_verifier_state(env, state);
b7137c4e 2493
dbcfe5f7
GB
2494 /* The minimum value is only important with signed
2495 * comparisons where we can't assume the floor of a
2496 * value is 0. If we are using signed variables for our
2497 * index'es we need to make sure that whatever we use
2498 * will have a set floor within our range.
2499 */
b7137c4e
DB
2500 if (reg->smin_value < 0 &&
2501 (reg->smin_value == S64_MIN ||
2502 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2503 reg->smin_value + off < 0)) {
61bd5218 2504 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2505 regno);
2506 return -EACCES;
2507 }
9fd29c08
YS
2508 err = __check_map_access(env, regno, reg->smin_value + off, size,
2509 zero_size_allowed);
dbcfe5f7 2510 if (err) {
61bd5218
JK
2511 verbose(env, "R%d min value is outside of the array range\n",
2512 regno);
dbcfe5f7
GB
2513 return err;
2514 }
2515
b03c9f9f
EC
2516 /* If we haven't set a max value then we need to bail since we can't be
2517 * sure we won't do bad things.
2518 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2519 */
b03c9f9f 2520 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2521 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2522 regno);
2523 return -EACCES;
2524 }
9fd29c08
YS
2525 err = __check_map_access(env, regno, reg->umax_value + off, size,
2526 zero_size_allowed);
f1174f77 2527 if (err)
61bd5218
JK
2528 verbose(env, "R%d max value is outside of the array range\n",
2529 regno);
d83525ca
AS
2530
2531 if (map_value_has_spin_lock(reg->map_ptr)) {
2532 u32 lock = reg->map_ptr->spin_lock_off;
2533
2534 /* if any part of struct bpf_spin_lock can be touched by
2535 * load/store reject this program.
2536 * To check that [x1, x2) overlaps with [y1, y2)
2537 * it is sufficient to check x1 < y2 && y1 < x2.
2538 */
2539 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2540 lock < reg->umax_value + off + size) {
2541 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2542 return -EACCES;
2543 }
2544 }
f1174f77 2545 return err;
dbcfe5f7
GB
2546}
2547
969bf05e
AS
2548#define MAX_PACKET_OFF 0xffff
2549
58e2af8b 2550static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2551 const struct bpf_call_arg_meta *meta,
2552 enum bpf_access_type t)
4acf6c0b 2553{
36bbef52 2554 switch (env->prog->type) {
5d66fa7d 2555 /* Program types only with direct read access go here! */
3a0af8fd
TG
2556 case BPF_PROG_TYPE_LWT_IN:
2557 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2558 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2559 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2560 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2561 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2562 if (t == BPF_WRITE)
2563 return false;
7e57fbb2 2564 /* fallthrough */
5d66fa7d
DB
2565
2566 /* Program types with direct read + write access go here! */
36bbef52
DB
2567 case BPF_PROG_TYPE_SCHED_CLS:
2568 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2569 case BPF_PROG_TYPE_XDP:
3a0af8fd 2570 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2571 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2572 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2573 if (meta)
2574 return meta->pkt_access;
2575
2576 env->seen_direct_write = true;
4acf6c0b 2577 return true;
0d01da6a
SF
2578
2579 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2580 if (t == BPF_WRITE)
2581 env->seen_direct_write = true;
2582
2583 return true;
2584
4acf6c0b
BB
2585 default:
2586 return false;
2587 }
2588}
2589
f1174f77 2590static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2591 int off, int size, bool zero_size_allowed)
969bf05e 2592{
638f5b90 2593 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2594 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2595
9fd29c08
YS
2596 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2597 (u64)off + size > reg->range) {
61bd5218 2598 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2599 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2600 return -EACCES;
2601 }
2602 return 0;
2603}
2604
f1174f77 2605static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2606 int size, bool zero_size_allowed)
f1174f77 2607{
638f5b90 2608 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2609 struct bpf_reg_state *reg = &regs[regno];
2610 int err;
2611
2612 /* We may have added a variable offset to the packet pointer; but any
2613 * reg->range we have comes after that. We are only checking the fixed
2614 * offset.
2615 */
2616
2617 /* We don't allow negative numbers, because we aren't tracking enough
2618 * detail to prove they're safe.
2619 */
b03c9f9f 2620 if (reg->smin_value < 0) {
61bd5218 2621 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2622 regno);
2623 return -EACCES;
2624 }
9fd29c08 2625 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2626 if (err) {
61bd5218 2627 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2628 return err;
2629 }
e647815a
JW
2630
2631 /* __check_packet_access has made sure "off + size - 1" is within u16.
2632 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2633 * otherwise find_good_pkt_pointers would have refused to set range info
2634 * that __check_packet_access would have rejected this pkt access.
2635 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2636 */
2637 env->prog->aux->max_pkt_offset =
2638 max_t(u32, env->prog->aux->max_pkt_offset,
2639 off + reg->umax_value + size - 1);
2640
f1174f77
EC
2641 return err;
2642}
2643
2644/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2645static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2646 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2647 u32 *btf_id)
17a52670 2648{
f96da094
DB
2649 struct bpf_insn_access_aux info = {
2650 .reg_type = *reg_type,
9e15db66 2651 .log = &env->log,
f96da094 2652 };
31fd8581 2653
4f9218aa 2654 if (env->ops->is_valid_access &&
5e43f899 2655 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2656 /* A non zero info.ctx_field_size indicates that this field is a
2657 * candidate for later verifier transformation to load the whole
2658 * field and then apply a mask when accessed with a narrower
2659 * access than actual ctx access size. A zero info.ctx_field_size
2660 * will only allow for whole field access and rejects any other
2661 * type of narrower access.
31fd8581 2662 */
23994631 2663 *reg_type = info.reg_type;
31fd8581 2664
b121b341 2665 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2666 *btf_id = info.btf_id;
2667 else
2668 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2669 /* remember the offset of last byte accessed in ctx */
2670 if (env->prog->aux->max_ctx_offset < off + size)
2671 env->prog->aux->max_ctx_offset = off + size;
17a52670 2672 return 0;
32bbe007 2673 }
17a52670 2674
61bd5218 2675 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2676 return -EACCES;
2677}
2678
d58e468b
PP
2679static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2680 int size)
2681{
2682 if (size < 0 || off < 0 ||
2683 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2684 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2685 off, size);
2686 return -EACCES;
2687 }
2688 return 0;
2689}
2690
5f456649
MKL
2691static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2692 u32 regno, int off, int size,
2693 enum bpf_access_type t)
c64b7983
JS
2694{
2695 struct bpf_reg_state *regs = cur_regs(env);
2696 struct bpf_reg_state *reg = &regs[regno];
5f456649 2697 struct bpf_insn_access_aux info = {};
46f8bc92 2698 bool valid;
c64b7983
JS
2699
2700 if (reg->smin_value < 0) {
2701 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2702 regno);
2703 return -EACCES;
2704 }
2705
46f8bc92
MKL
2706 switch (reg->type) {
2707 case PTR_TO_SOCK_COMMON:
2708 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2709 break;
2710 case PTR_TO_SOCKET:
2711 valid = bpf_sock_is_valid_access(off, size, t, &info);
2712 break;
655a51e5
MKL
2713 case PTR_TO_TCP_SOCK:
2714 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2715 break;
fada7fdc
JL
2716 case PTR_TO_XDP_SOCK:
2717 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2718 break;
46f8bc92
MKL
2719 default:
2720 valid = false;
c64b7983
JS
2721 }
2722
5f456649 2723
46f8bc92
MKL
2724 if (valid) {
2725 env->insn_aux_data[insn_idx].ctx_field_size =
2726 info.ctx_field_size;
2727 return 0;
2728 }
2729
2730 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2731 regno, reg_type_str[reg->type], off, size);
2732
2733 return -EACCES;
c64b7983
JS
2734}
2735
2a159c6f
DB
2736static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2737{
2738 return cur_regs(env) + regno;
2739}
2740
4cabc5b1
DB
2741static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2742{
2a159c6f 2743 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2744}
2745
f37a8cb8
DB
2746static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2747{
2a159c6f 2748 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2749
46f8bc92
MKL
2750 return reg->type == PTR_TO_CTX;
2751}
2752
2753static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2754{
2755 const struct bpf_reg_state *reg = reg_state(env, regno);
2756
2757 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2758}
2759
ca369602
DB
2760static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2761{
2a159c6f 2762 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2763
2764 return type_is_pkt_pointer(reg->type);
2765}
2766
4b5defde
DB
2767static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2768{
2769 const struct bpf_reg_state *reg = reg_state(env, regno);
2770
2771 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2772 return reg->type == PTR_TO_FLOW_KEYS;
2773}
2774
61bd5218
JK
2775static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2776 const struct bpf_reg_state *reg,
d1174416 2777 int off, int size, bool strict)
969bf05e 2778{
f1174f77 2779 struct tnum reg_off;
e07b98d9 2780 int ip_align;
d1174416
DM
2781
2782 /* Byte size accesses are always allowed. */
2783 if (!strict || size == 1)
2784 return 0;
2785
e4eda884
DM
2786 /* For platforms that do not have a Kconfig enabling
2787 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2788 * NET_IP_ALIGN is universally set to '2'. And on platforms
2789 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2790 * to this code only in strict mode where we want to emulate
2791 * the NET_IP_ALIGN==2 checking. Therefore use an
2792 * unconditional IP align value of '2'.
e07b98d9 2793 */
e4eda884 2794 ip_align = 2;
f1174f77
EC
2795
2796 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2797 if (!tnum_is_aligned(reg_off, size)) {
2798 char tn_buf[48];
2799
2800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2801 verbose(env,
2802 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2803 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2804 return -EACCES;
2805 }
79adffcd 2806
969bf05e
AS
2807 return 0;
2808}
2809
61bd5218
JK
2810static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2811 const struct bpf_reg_state *reg,
f1174f77
EC
2812 const char *pointer_desc,
2813 int off, int size, bool strict)
79adffcd 2814{
f1174f77
EC
2815 struct tnum reg_off;
2816
2817 /* Byte size accesses are always allowed. */
2818 if (!strict || size == 1)
2819 return 0;
2820
2821 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2822 if (!tnum_is_aligned(reg_off, size)) {
2823 char tn_buf[48];
2824
2825 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2826 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2827 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2828 return -EACCES;
2829 }
2830
969bf05e
AS
2831 return 0;
2832}
2833
e07b98d9 2834static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2835 const struct bpf_reg_state *reg, int off,
2836 int size, bool strict_alignment_once)
79adffcd 2837{
ca369602 2838 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2839 const char *pointer_desc = "";
d1174416 2840
79adffcd
DB
2841 switch (reg->type) {
2842 case PTR_TO_PACKET:
de8f3a83
DB
2843 case PTR_TO_PACKET_META:
2844 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2845 * right in front, treat it the very same way.
2846 */
61bd5218 2847 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2848 case PTR_TO_FLOW_KEYS:
2849 pointer_desc = "flow keys ";
2850 break;
f1174f77
EC
2851 case PTR_TO_MAP_VALUE:
2852 pointer_desc = "value ";
2853 break;
2854 case PTR_TO_CTX:
2855 pointer_desc = "context ";
2856 break;
2857 case PTR_TO_STACK:
2858 pointer_desc = "stack ";
a5ec6ae1
JH
2859 /* The stack spill tracking logic in check_stack_write()
2860 * and check_stack_read() relies on stack accesses being
2861 * aligned.
2862 */
2863 strict = true;
f1174f77 2864 break;
c64b7983
JS
2865 case PTR_TO_SOCKET:
2866 pointer_desc = "sock ";
2867 break;
46f8bc92
MKL
2868 case PTR_TO_SOCK_COMMON:
2869 pointer_desc = "sock_common ";
2870 break;
655a51e5
MKL
2871 case PTR_TO_TCP_SOCK:
2872 pointer_desc = "tcp_sock ";
2873 break;
fada7fdc
JL
2874 case PTR_TO_XDP_SOCK:
2875 pointer_desc = "xdp_sock ";
2876 break;
79adffcd 2877 default:
f1174f77 2878 break;
79adffcd 2879 }
61bd5218
JK
2880 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2881 strict);
79adffcd
DB
2882}
2883
f4d7e40a
AS
2884static int update_stack_depth(struct bpf_verifier_env *env,
2885 const struct bpf_func_state *func,
2886 int off)
2887{
9c8105bd 2888 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2889
2890 if (stack >= -off)
2891 return 0;
2892
2893 /* update known max for given subprogram */
9c8105bd 2894 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2895 return 0;
2896}
f4d7e40a 2897
70a87ffe
AS
2898/* starting from main bpf function walk all instructions of the function
2899 * and recursively walk all callees that given function can call.
2900 * Ignore jump and exit insns.
2901 * Since recursion is prevented by check_cfg() this algorithm
2902 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2903 */
2904static int check_max_stack_depth(struct bpf_verifier_env *env)
2905{
9c8105bd
JW
2906 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2907 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2908 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2909 int ret_insn[MAX_CALL_FRAMES];
2910 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2911
70a87ffe
AS
2912process_func:
2913 /* round up to 32-bytes, since this is granularity
2914 * of interpreter stack size
2915 */
9c8105bd 2916 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2917 if (depth > MAX_BPF_STACK) {
f4d7e40a 2918 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2919 frame + 1, depth);
f4d7e40a
AS
2920 return -EACCES;
2921 }
70a87ffe 2922continue_func:
4cb3d99c 2923 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2924 for (; i < subprog_end; i++) {
2925 if (insn[i].code != (BPF_JMP | BPF_CALL))
2926 continue;
2927 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2928 continue;
2929 /* remember insn and function to return to */
2930 ret_insn[frame] = i + 1;
9c8105bd 2931 ret_prog[frame] = idx;
70a87ffe
AS
2932
2933 /* find the callee */
2934 i = i + insn[i].imm + 1;
9c8105bd
JW
2935 idx = find_subprog(env, i);
2936 if (idx < 0) {
70a87ffe
AS
2937 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2938 i);
2939 return -EFAULT;
2940 }
70a87ffe
AS
2941 frame++;
2942 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2943 verbose(env, "the call stack of %d frames is too deep !\n",
2944 frame);
2945 return -E2BIG;
70a87ffe
AS
2946 }
2947 goto process_func;
2948 }
2949 /* end of for() loop means the last insn of the 'subprog'
2950 * was reached. Doesn't matter whether it was JA or EXIT
2951 */
2952 if (frame == 0)
2953 return 0;
9c8105bd 2954 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2955 frame--;
2956 i = ret_insn[frame];
9c8105bd 2957 idx = ret_prog[frame];
70a87ffe 2958 goto continue_func;
f4d7e40a
AS
2959}
2960
19d28fbd 2961#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2962static int get_callee_stack_depth(struct bpf_verifier_env *env,
2963 const struct bpf_insn *insn, int idx)
2964{
2965 int start = idx + insn->imm + 1, subprog;
2966
2967 subprog = find_subprog(env, start);
2968 if (subprog < 0) {
2969 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2970 start);
2971 return -EFAULT;
2972 }
9c8105bd 2973 return env->subprog_info[subprog].stack_depth;
1ea47e01 2974}
19d28fbd 2975#endif
1ea47e01 2976
51c39bb1
AS
2977int check_ctx_reg(struct bpf_verifier_env *env,
2978 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
2979{
2980 /* Access to ctx or passing it to a helper is only allowed in
2981 * its original, unmodified form.
2982 */
2983
2984 if (reg->off) {
2985 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2986 regno, reg->off);
2987 return -EACCES;
2988 }
2989
2990 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2991 char tn_buf[48];
2992
2993 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2994 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2995 return -EACCES;
2996 }
2997
2998 return 0;
2999}
3000
9df1c28b
MM
3001static int check_tp_buffer_access(struct bpf_verifier_env *env,
3002 const struct bpf_reg_state *reg,
3003 int regno, int off, int size)
3004{
3005 if (off < 0) {
3006 verbose(env,
3007 "R%d invalid tracepoint buffer access: off=%d, size=%d",
3008 regno, off, size);
3009 return -EACCES;
3010 }
3011 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3012 char tn_buf[48];
3013
3014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3015 verbose(env,
3016 "R%d invalid variable buffer offset: off=%d, var_off=%s",
3017 regno, off, tn_buf);
3018 return -EACCES;
3019 }
3020 if (off + size > env->prog->aux->max_tp_access)
3021 env->prog->aux->max_tp_access = off + size;
3022
3023 return 0;
3024}
3025
3f50f132
JF
3026/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3027static void zext_32_to_64(struct bpf_reg_state *reg)
3028{
3029 reg->var_off = tnum_subreg(reg->var_off);
3030 __reg_assign_32_into_64(reg);
3031}
9df1c28b 3032
0c17d1d2
JH
3033/* truncate register to smaller size (in bytes)
3034 * must be called with size < BPF_REG_SIZE
3035 */
3036static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3037{
3038 u64 mask;
3039
3040 /* clear high bits in bit representation */
3041 reg->var_off = tnum_cast(reg->var_off, size);
3042
3043 /* fix arithmetic bounds */
3044 mask = ((u64)1 << (size * 8)) - 1;
3045 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3046 reg->umin_value &= mask;
3047 reg->umax_value &= mask;
3048 } else {
3049 reg->umin_value = 0;
3050 reg->umax_value = mask;
3051 }
3052 reg->smin_value = reg->umin_value;
3053 reg->smax_value = reg->umax_value;
3f50f132
JF
3054
3055 /* If size is smaller than 32bit register the 32bit register
3056 * values are also truncated so we push 64-bit bounds into
3057 * 32-bit bounds. Above were truncated < 32-bits already.
3058 */
3059 if (size >= 4)
3060 return;
3061 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3062}
3063
a23740ec
AN
3064static bool bpf_map_is_rdonly(const struct bpf_map *map)
3065{
3066 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3067}
3068
3069static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3070{
3071 void *ptr;
3072 u64 addr;
3073 int err;
3074
3075 err = map->ops->map_direct_value_addr(map, &addr, off);
3076 if (err)
3077 return err;
2dedd7d2 3078 ptr = (void *)(long)addr + off;
a23740ec
AN
3079
3080 switch (size) {
3081 case sizeof(u8):
3082 *val = (u64)*(u8 *)ptr;
3083 break;
3084 case sizeof(u16):
3085 *val = (u64)*(u16 *)ptr;
3086 break;
3087 case sizeof(u32):
3088 *val = (u64)*(u32 *)ptr;
3089 break;
3090 case sizeof(u64):
3091 *val = *(u64 *)ptr;
3092 break;
3093 default:
3094 return -EINVAL;
3095 }
3096 return 0;
3097}
3098
9e15db66
AS
3099static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3100 struct bpf_reg_state *regs,
3101 int regno, int off, int size,
3102 enum bpf_access_type atype,
3103 int value_regno)
3104{
3105 struct bpf_reg_state *reg = regs + regno;
3106 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3107 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3108 u32 btf_id;
3109 int ret;
3110
9e15db66
AS
3111 if (off < 0) {
3112 verbose(env,
3113 "R%d is ptr_%s invalid negative access: off=%d\n",
3114 regno, tname, off);
3115 return -EACCES;
3116 }
3117 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3118 char tn_buf[48];
3119
3120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3121 verbose(env,
3122 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3123 regno, tname, off, tn_buf);
3124 return -EACCES;
3125 }
3126
27ae7997
MKL
3127 if (env->ops->btf_struct_access) {
3128 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3129 atype, &btf_id);
3130 } else {
3131 if (atype != BPF_READ) {
3132 verbose(env, "only read is supported\n");
3133 return -EACCES;
3134 }
3135
3136 ret = btf_struct_access(&env->log, t, off, size, atype,
3137 &btf_id);
3138 }
3139
9e15db66
AS
3140 if (ret < 0)
3141 return ret;
3142
8ff3571f 3143 if (atype == BPF_READ && value_regno >= 0) {
27ae7997
MKL
3144 if (ret == SCALAR_VALUE) {
3145 mark_reg_unknown(env, regs, value_regno);
3146 return 0;
3147 }
3148 mark_reg_known_zero(env, regs, value_regno);
3149 regs[value_regno].type = PTR_TO_BTF_ID;
3150 regs[value_regno].btf_id = btf_id;
9e15db66 3151 }
27ae7997 3152
9e15db66
AS
3153 return 0;
3154}
3155
17a52670
AS
3156/* check whether memory at (regno + off) is accessible for t = (read | write)
3157 * if t==write, value_regno is a register which value is stored into memory
3158 * if t==read, value_regno is a register which will receive the value from memory
3159 * if t==write && value_regno==-1, some unknown value is stored into memory
3160 * if t==read && value_regno==-1, don't care what we read from memory
3161 */
ca369602
DB
3162static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3163 int off, int bpf_size, enum bpf_access_type t,
3164 int value_regno, bool strict_alignment_once)
17a52670 3165{
638f5b90
AS
3166 struct bpf_reg_state *regs = cur_regs(env);
3167 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3168 struct bpf_func_state *state;
17a52670
AS
3169 int size, err = 0;
3170
3171 size = bpf_size_to_bytes(bpf_size);
3172 if (size < 0)
3173 return size;
3174
f1174f77 3175 /* alignment checks will add in reg->off themselves */
ca369602 3176 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3177 if (err)
3178 return err;
17a52670 3179
f1174f77
EC
3180 /* for access checks, reg->off is just part of off */
3181 off += reg->off;
3182
3183 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3184 if (t == BPF_WRITE && value_regno >= 0 &&
3185 is_pointer_value(env, value_regno)) {
61bd5218 3186 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3187 return -EACCES;
3188 }
591fe988
DB
3189 err = check_map_access_type(env, regno, off, size, t);
3190 if (err)
3191 return err;
9fd29c08 3192 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3193 if (!err && t == BPF_READ && value_regno >= 0) {
3194 struct bpf_map *map = reg->map_ptr;
3195
3196 /* if map is read-only, track its contents as scalars */
3197 if (tnum_is_const(reg->var_off) &&
3198 bpf_map_is_rdonly(map) &&
3199 map->ops->map_direct_value_addr) {
3200 int map_off = off + reg->var_off.value;
3201 u64 val = 0;
3202
3203 err = bpf_map_direct_read(map, map_off, size,
3204 &val);
3205 if (err)
3206 return err;
3207
3208 regs[value_regno].type = SCALAR_VALUE;
3209 __mark_reg_known(&regs[value_regno], val);
3210 } else {
3211 mark_reg_unknown(env, regs, value_regno);
3212 }
3213 }
1a0dc1ac 3214 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3215 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3216 u32 btf_id = 0;
19de99f7 3217
1be7f75d
AS
3218 if (t == BPF_WRITE && value_regno >= 0 &&
3219 is_pointer_value(env, value_regno)) {
61bd5218 3220 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3221 return -EACCES;
3222 }
f1174f77 3223
58990d1f
DB
3224 err = check_ctx_reg(env, reg, regno);
3225 if (err < 0)
3226 return err;
3227
9e15db66
AS
3228 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3229 if (err)
3230 verbose_linfo(env, insn_idx, "; ");
969bf05e 3231 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3232 /* ctx access returns either a scalar, or a
de8f3a83
DB
3233 * PTR_TO_PACKET[_META,_END]. In the latter
3234 * case, we know the offset is zero.
f1174f77 3235 */
46f8bc92 3236 if (reg_type == SCALAR_VALUE) {
638f5b90 3237 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3238 } else {
638f5b90 3239 mark_reg_known_zero(env, regs,
61bd5218 3240 value_regno);
46f8bc92
MKL
3241 if (reg_type_may_be_null(reg_type))
3242 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3243 /* A load of ctx field could have different
3244 * actual load size with the one encoded in the
3245 * insn. When the dst is PTR, it is for sure not
3246 * a sub-register.
3247 */
3248 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3249 if (reg_type == PTR_TO_BTF_ID ||
3250 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3251 regs[value_regno].btf_id = btf_id;
46f8bc92 3252 }
638f5b90 3253 regs[value_regno].type = reg_type;
969bf05e 3254 }
17a52670 3255
f1174f77 3256 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3257 off += reg->var_off.value;
e4298d25
DB
3258 err = check_stack_access(env, reg, off, size);
3259 if (err)
3260 return err;
8726679a 3261
f4d7e40a
AS
3262 state = func(env, reg);
3263 err = update_stack_depth(env, state, off);
3264 if (err)
3265 return err;
8726679a 3266
638f5b90 3267 if (t == BPF_WRITE)
61bd5218 3268 err = check_stack_write(env, state, off, size,
af86ca4e 3269 value_regno, insn_idx);
638f5b90 3270 else
61bd5218
JK
3271 err = check_stack_read(env, state, off, size,
3272 value_regno);
de8f3a83 3273 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3274 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3275 verbose(env, "cannot write into packet\n");
969bf05e
AS
3276 return -EACCES;
3277 }
4acf6c0b
BB
3278 if (t == BPF_WRITE && value_regno >= 0 &&
3279 is_pointer_value(env, value_regno)) {
61bd5218
JK
3280 verbose(env, "R%d leaks addr into packet\n",
3281 value_regno);
4acf6c0b
BB
3282 return -EACCES;
3283 }
9fd29c08 3284 err = check_packet_access(env, regno, off, size, false);
969bf05e 3285 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3286 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3287 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3288 if (t == BPF_WRITE && value_regno >= 0 &&
3289 is_pointer_value(env, value_regno)) {
3290 verbose(env, "R%d leaks addr into flow keys\n",
3291 value_regno);
3292 return -EACCES;
3293 }
3294
3295 err = check_flow_keys_access(env, off, size);
3296 if (!err && t == BPF_READ && value_regno >= 0)
3297 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3298 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3299 if (t == BPF_WRITE) {
46f8bc92
MKL
3300 verbose(env, "R%d cannot write into %s\n",
3301 regno, reg_type_str[reg->type]);
c64b7983
JS
3302 return -EACCES;
3303 }
5f456649 3304 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3305 if (!err && value_regno >= 0)
3306 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3307 } else if (reg->type == PTR_TO_TP_BUFFER) {
3308 err = check_tp_buffer_access(env, reg, regno, off, size);
3309 if (!err && t == BPF_READ && value_regno >= 0)
3310 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3311 } else if (reg->type == PTR_TO_BTF_ID) {
3312 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3313 value_regno);
17a52670 3314 } else {
61bd5218
JK
3315 verbose(env, "R%d invalid mem access '%s'\n", regno,
3316 reg_type_str[reg->type]);
17a52670
AS
3317 return -EACCES;
3318 }
969bf05e 3319
f1174f77 3320 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3321 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3322 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3323 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3324 }
17a52670
AS
3325 return err;
3326}
3327
31fd8581 3328static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3329{
17a52670
AS
3330 int err;
3331
3332 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3333 insn->imm != 0) {
61bd5218 3334 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3335 return -EINVAL;
3336 }
3337
3338 /* check src1 operand */
dc503a8a 3339 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3340 if (err)
3341 return err;
3342
3343 /* check src2 operand */
dc503a8a 3344 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3345 if (err)
3346 return err;
3347
6bdf6abc 3348 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3349 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3350 return -EACCES;
3351 }
3352
ca369602 3353 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3354 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3355 is_flow_key_reg(env, insn->dst_reg) ||
3356 is_sk_reg(env, insn->dst_reg)) {
ca369602 3357 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3358 insn->dst_reg,
3359 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3360 return -EACCES;
3361 }
3362
17a52670 3363 /* check whether atomic_add can read the memory */
31fd8581 3364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3365 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3366 if (err)
3367 return err;
3368
3369 /* check whether atomic_add can write into the same memory */
31fd8581 3370 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3371 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3372}
3373
2011fccf
AI
3374static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3375 int off, int access_size,
3376 bool zero_size_allowed)
3377{
3378 struct bpf_reg_state *reg = reg_state(env, regno);
3379
3380 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3381 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3382 if (tnum_is_const(reg->var_off)) {
3383 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3384 regno, off, access_size);
3385 } else {
3386 char tn_buf[48];
3387
3388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3389 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3390 regno, tn_buf, access_size);
3391 }
3392 return -EACCES;
3393 }
3394 return 0;
3395}
3396
17a52670
AS
3397/* when register 'regno' is passed into function that will read 'access_size'
3398 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3399 * and all elements of stack are initialized.
3400 * Unlike most pointer bounds-checking functions, this one doesn't take an
3401 * 'off' argument, so it has to add in reg->off itself.
17a52670 3402 */
58e2af8b 3403static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3404 int access_size, bool zero_size_allowed,
3405 struct bpf_call_arg_meta *meta)
17a52670 3406{
2a159c6f 3407 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3408 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3409 int err, min_off, max_off, i, j, slot, spi;
17a52670 3410
914cb781 3411 if (reg->type != PTR_TO_STACK) {
f1174f77 3412 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3413 if (zero_size_allowed && access_size == 0 &&
914cb781 3414 register_is_null(reg))
8e2fe1d9
DB
3415 return 0;
3416
61bd5218 3417 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3418 reg_type_str[reg->type],
8e2fe1d9 3419 reg_type_str[PTR_TO_STACK]);
17a52670 3420 return -EACCES;
8e2fe1d9 3421 }
17a52670 3422
2011fccf
AI
3423 if (tnum_is_const(reg->var_off)) {
3424 min_off = max_off = reg->var_off.value + reg->off;
3425 err = __check_stack_boundary(env, regno, min_off, access_size,
3426 zero_size_allowed);
3427 if (err)
3428 return err;
3429 } else {
088ec26d
AI
3430 /* Variable offset is prohibited for unprivileged mode for
3431 * simplicity since it requires corresponding support in
3432 * Spectre masking for stack ALU.
3433 * See also retrieve_ptr_limit().
3434 */
2c78ee89 3435 if (!env->bypass_spec_v1) {
088ec26d 3436 char tn_buf[48];
f1174f77 3437
088ec26d
AI
3438 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3439 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3440 regno, tn_buf);
3441 return -EACCES;
3442 }
f2bcd05e
AI
3443 /* Only initialized buffer on stack is allowed to be accessed
3444 * with variable offset. With uninitialized buffer it's hard to
3445 * guarantee that whole memory is marked as initialized on
3446 * helper return since specific bounds are unknown what may
3447 * cause uninitialized stack leaking.
3448 */
3449 if (meta && meta->raw_mode)
3450 meta = NULL;
3451
107c26a7
AI
3452 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3453 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3454 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3455 regno);
3456 return -EACCES;
3457 }
2011fccf 3458 min_off = reg->smin_value + reg->off;
107c26a7 3459 max_off = reg->smax_value + reg->off;
2011fccf
AI
3460 err = __check_stack_boundary(env, regno, min_off, access_size,
3461 zero_size_allowed);
107c26a7
AI
3462 if (err) {
3463 verbose(env, "R%d min value is outside of stack bound\n",
3464 regno);
2011fccf 3465 return err;
107c26a7 3466 }
2011fccf
AI
3467 err = __check_stack_boundary(env, regno, max_off, access_size,
3468 zero_size_allowed);
107c26a7
AI
3469 if (err) {
3470 verbose(env, "R%d max value is outside of stack bound\n",
3471 regno);
2011fccf 3472 return err;
107c26a7 3473 }
17a52670
AS
3474 }
3475
435faee1
DB
3476 if (meta && meta->raw_mode) {
3477 meta->access_size = access_size;
3478 meta->regno = regno;
3479 return 0;
3480 }
3481
2011fccf 3482 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3483 u8 *stype;
3484
2011fccf 3485 slot = -i - 1;
638f5b90 3486 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3487 if (state->allocated_stack <= slot)
3488 goto err;
3489 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3490 if (*stype == STACK_MISC)
3491 goto mark;
3492 if (*stype == STACK_ZERO) {
3493 /* helper can write anything into the stack */
3494 *stype = STACK_MISC;
3495 goto mark;
17a52670 3496 }
1d68f22b
YS
3497
3498 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3499 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3500 goto mark;
3501
f7cf25b2
AS
3502 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3503 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3504 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3505 for (j = 0; j < BPF_REG_SIZE; j++)
3506 state->stack[spi].slot_type[j] = STACK_MISC;
3507 goto mark;
3508 }
3509
cc2b14d5 3510err:
2011fccf
AI
3511 if (tnum_is_const(reg->var_off)) {
3512 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3513 min_off, i - min_off, access_size);
3514 } else {
3515 char tn_buf[48];
3516
3517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3518 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3519 tn_buf, i - min_off, access_size);
3520 }
cc2b14d5
AS
3521 return -EACCES;
3522mark:
3523 /* reading any byte out of 8-byte 'spill_slot' will cause
3524 * the whole slot to be marked as 'read'
3525 */
679c782d 3526 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3527 state->stack[spi].spilled_ptr.parent,
3528 REG_LIVE_READ64);
17a52670 3529 }
2011fccf 3530 return update_stack_depth(env, state, min_off);
17a52670
AS
3531}
3532
06c1c049
GB
3533static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3534 int access_size, bool zero_size_allowed,
3535 struct bpf_call_arg_meta *meta)
3536{
638f5b90 3537 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3538
f1174f77 3539 switch (reg->type) {
06c1c049 3540 case PTR_TO_PACKET:
de8f3a83 3541 case PTR_TO_PACKET_META:
9fd29c08
YS
3542 return check_packet_access(env, regno, reg->off, access_size,
3543 zero_size_allowed);
06c1c049 3544 case PTR_TO_MAP_VALUE:
591fe988
DB
3545 if (check_map_access_type(env, regno, reg->off, access_size,
3546 meta && meta->raw_mode ? BPF_WRITE :
3547 BPF_READ))
3548 return -EACCES;
9fd29c08
YS
3549 return check_map_access(env, regno, reg->off, access_size,
3550 zero_size_allowed);
f1174f77 3551 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3552 return check_stack_boundary(env, regno, access_size,
3553 zero_size_allowed, meta);
3554 }
3555}
3556
d83525ca
AS
3557/* Implementation details:
3558 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3559 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3560 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3561 * value_or_null->value transition, since the verifier only cares about
3562 * the range of access to valid map value pointer and doesn't care about actual
3563 * address of the map element.
3564 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3565 * reg->id > 0 after value_or_null->value transition. By doing so
3566 * two bpf_map_lookups will be considered two different pointers that
3567 * point to different bpf_spin_locks.
3568 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3569 * dead-locks.
3570 * Since only one bpf_spin_lock is allowed the checks are simpler than
3571 * reg_is_refcounted() logic. The verifier needs to remember only
3572 * one spin_lock instead of array of acquired_refs.
3573 * cur_state->active_spin_lock remembers which map value element got locked
3574 * and clears it after bpf_spin_unlock.
3575 */
3576static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3577 bool is_lock)
3578{
3579 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3580 struct bpf_verifier_state *cur = env->cur_state;
3581 bool is_const = tnum_is_const(reg->var_off);
3582 struct bpf_map *map = reg->map_ptr;
3583 u64 val = reg->var_off.value;
3584
3585 if (reg->type != PTR_TO_MAP_VALUE) {
3586 verbose(env, "R%d is not a pointer to map_value\n", regno);
3587 return -EINVAL;
3588 }
3589 if (!is_const) {
3590 verbose(env,
3591 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3592 regno);
3593 return -EINVAL;
3594 }
3595 if (!map->btf) {
3596 verbose(env,
3597 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3598 map->name);
3599 return -EINVAL;
3600 }
3601 if (!map_value_has_spin_lock(map)) {
3602 if (map->spin_lock_off == -E2BIG)
3603 verbose(env,
3604 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3605 map->name);
3606 else if (map->spin_lock_off == -ENOENT)
3607 verbose(env,
3608 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3609 map->name);
3610 else
3611 verbose(env,
3612 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3613 map->name);
3614 return -EINVAL;
3615 }
3616 if (map->spin_lock_off != val + reg->off) {
3617 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3618 val + reg->off);
3619 return -EINVAL;
3620 }
3621 if (is_lock) {
3622 if (cur->active_spin_lock) {
3623 verbose(env,
3624 "Locking two bpf_spin_locks are not allowed\n");
3625 return -EINVAL;
3626 }
3627 cur->active_spin_lock = reg->id;
3628 } else {
3629 if (!cur->active_spin_lock) {
3630 verbose(env, "bpf_spin_unlock without taking a lock\n");
3631 return -EINVAL;
3632 }
3633 if (cur->active_spin_lock != reg->id) {
3634 verbose(env, "bpf_spin_unlock of different lock\n");
3635 return -EINVAL;
3636 }
3637 cur->active_spin_lock = 0;
3638 }
3639 return 0;
3640}
3641
90133415
DB
3642static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3643{
3644 return type == ARG_PTR_TO_MEM ||
3645 type == ARG_PTR_TO_MEM_OR_NULL ||
3646 type == ARG_PTR_TO_UNINIT_MEM;
3647}
3648
3649static bool arg_type_is_mem_size(enum bpf_arg_type type)
3650{
3651 return type == ARG_CONST_SIZE ||
3652 type == ARG_CONST_SIZE_OR_ZERO;
3653}
3654
57c3bb72
AI
3655static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3656{
3657 return type == ARG_PTR_TO_INT ||
3658 type == ARG_PTR_TO_LONG;
3659}
3660
3661static int int_ptr_type_to_size(enum bpf_arg_type type)
3662{
3663 if (type == ARG_PTR_TO_INT)
3664 return sizeof(u32);
3665 else if (type == ARG_PTR_TO_LONG)
3666 return sizeof(u64);
3667
3668 return -EINVAL;
3669}
3670
58e2af8b 3671static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3672 enum bpf_arg_type arg_type,
3673 struct bpf_call_arg_meta *meta)
17a52670 3674{
638f5b90 3675 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3676 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3677 int err = 0;
3678
80f1d68c 3679 if (arg_type == ARG_DONTCARE)
17a52670
AS
3680 return 0;
3681
dc503a8a
EC
3682 err = check_reg_arg(env, regno, SRC_OP);
3683 if (err)
3684 return err;
17a52670 3685
1be7f75d
AS
3686 if (arg_type == ARG_ANYTHING) {
3687 if (is_pointer_value(env, regno)) {
61bd5218
JK
3688 verbose(env, "R%d leaks addr into helper function\n",
3689 regno);
1be7f75d
AS
3690 return -EACCES;
3691 }
80f1d68c 3692 return 0;
1be7f75d 3693 }
80f1d68c 3694
de8f3a83 3695 if (type_is_pkt_pointer(type) &&
3a0af8fd 3696 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3697 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3698 return -EACCES;
3699 }
3700
8e2fe1d9 3701 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3702 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3703 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3704 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3705 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3706 if (register_is_null(reg) &&
3707 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3708 /* final test in check_stack_boundary() */;
3709 else if (!type_is_pkt_pointer(type) &&
3710 type != PTR_TO_MAP_VALUE &&
3711 type != expected_type)
6841de8b 3712 goto err_type;
39f19ebb
AS
3713 } else if (arg_type == ARG_CONST_SIZE ||
3714 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3715 expected_type = SCALAR_VALUE;
3716 if (type != expected_type)
6841de8b 3717 goto err_type;
17a52670
AS
3718 } else if (arg_type == ARG_CONST_MAP_PTR) {
3719 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3720 if (type != expected_type)
3721 goto err_type;
f318903c
DB
3722 } else if (arg_type == ARG_PTR_TO_CTX ||
3723 arg_type == ARG_PTR_TO_CTX_OR_NULL) {
608cd71a 3724 expected_type = PTR_TO_CTX;
f318903c
DB
3725 if (!(register_is_null(reg) &&
3726 arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3727 if (type != expected_type)
3728 goto err_type;
3729 err = check_ctx_reg(env, reg, regno);
3730 if (err < 0)
3731 return err;
3732 }
46f8bc92
MKL
3733 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3734 expected_type = PTR_TO_SOCK_COMMON;
3735 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3736 if (!type_is_sk_pointer(type))
3737 goto err_type;
1b986589
MKL
3738 if (reg->ref_obj_id) {
3739 if (meta->ref_obj_id) {
3740 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3741 regno, reg->ref_obj_id,
3742 meta->ref_obj_id);
3743 return -EFAULT;
3744 }
3745 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3746 }
6ac99e8f
MKL
3747 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3748 expected_type = PTR_TO_SOCKET;
3749 if (type != expected_type)
3750 goto err_type;
a7658e1a
AS
3751 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3752 expected_type = PTR_TO_BTF_ID;
3753 if (type != expected_type)
3754 goto err_type;
3755 if (reg->btf_id != meta->btf_id) {
3756 verbose(env, "Helper has type %s got %s in R%d\n",
3757 kernel_type_name(meta->btf_id),
3758 kernel_type_name(reg->btf_id), regno);
3759
3760 return -EACCES;
3761 }
3762 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3763 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3764 regno);
3765 return -EACCES;
3766 }
d83525ca
AS
3767 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3768 if (meta->func_id == BPF_FUNC_spin_lock) {
3769 if (process_spin_lock(env, regno, true))
3770 return -EACCES;
3771 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3772 if (process_spin_lock(env, regno, false))
3773 return -EACCES;
3774 } else {
3775 verbose(env, "verifier internal error\n");
3776 return -EFAULT;
3777 }
90133415 3778 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3779 expected_type = PTR_TO_STACK;
3780 /* One exception here. In case function allows for NULL to be
f1174f77 3781 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3782 * happens during stack boundary checking.
3783 */
914cb781 3784 if (register_is_null(reg) &&
db1ac496 3785 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3786 /* final test in check_stack_boundary() */;
de8f3a83
DB
3787 else if (!type_is_pkt_pointer(type) &&
3788 type != PTR_TO_MAP_VALUE &&
f1174f77 3789 type != expected_type)
6841de8b 3790 goto err_type;
39f19ebb 3791 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3792 } else if (arg_type_is_int_ptr(arg_type)) {
3793 expected_type = PTR_TO_STACK;
3794 if (!type_is_pkt_pointer(type) &&
3795 type != PTR_TO_MAP_VALUE &&
3796 type != expected_type)
3797 goto err_type;
17a52670 3798 } else {
61bd5218 3799 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3800 return -EFAULT;
3801 }
3802
17a52670
AS
3803 if (arg_type == ARG_CONST_MAP_PTR) {
3804 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3805 meta->map_ptr = reg->map_ptr;
17a52670
AS
3806 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3807 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3808 * check that [key, key + map->key_size) are within
3809 * stack limits and initialized
3810 */
33ff9823 3811 if (!meta->map_ptr) {
17a52670
AS
3812 /* in function declaration map_ptr must come before
3813 * map_key, so that it's verified and known before
3814 * we have to check map_key here. Otherwise it means
3815 * that kernel subsystem misconfigured verifier
3816 */
61bd5218 3817 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3818 return -EACCES;
3819 }
d71962f3
PC
3820 err = check_helper_mem_access(env, regno,
3821 meta->map_ptr->key_size, false,
3822 NULL);
2ea864c5 3823 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3824 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3825 !register_is_null(reg)) ||
2ea864c5 3826 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3827 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3828 * check [value, value + map->value_size) validity
3829 */
33ff9823 3830 if (!meta->map_ptr) {
17a52670 3831 /* kernel subsystem misconfigured verifier */
61bd5218 3832 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3833 return -EACCES;
3834 }
2ea864c5 3835 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3836 err = check_helper_mem_access(env, regno,
3837 meta->map_ptr->value_size, false,
2ea864c5 3838 meta);
90133415 3839 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3840 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3841
10060503
JF
3842 /* This is used to refine r0 return value bounds for helpers
3843 * that enforce this value as an upper bound on return values.
3844 * See do_refine_retval_range() for helpers that can refine
3845 * the return value. C type of helper is u32 so we pull register
3846 * bound from umax_value however, if negative verifier errors
3847 * out. Only upper bounds can be learned because retval is an
3848 * int type and negative retvals are allowed.
849fa506 3849 */
10060503 3850 meta->msize_max_value = reg->umax_value;
849fa506 3851
f1174f77
EC
3852 /* The register is SCALAR_VALUE; the access check
3853 * happens using its boundaries.
06c1c049 3854 */
f1174f77 3855 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3856 /* For unprivileged variable accesses, disable raw
3857 * mode so that the program is required to
3858 * initialize all the memory that the helper could
3859 * just partially fill up.
3860 */
3861 meta = NULL;
3862
b03c9f9f 3863 if (reg->smin_value < 0) {
61bd5218 3864 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3865 regno);
3866 return -EACCES;
3867 }
06c1c049 3868
b03c9f9f 3869 if (reg->umin_value == 0) {
f1174f77
EC
3870 err = check_helper_mem_access(env, regno - 1, 0,
3871 zero_size_allowed,
3872 meta);
06c1c049
GB
3873 if (err)
3874 return err;
06c1c049 3875 }
f1174f77 3876
b03c9f9f 3877 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3878 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3879 regno);
3880 return -EACCES;
3881 }
3882 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3883 reg->umax_value,
f1174f77 3884 zero_size_allowed, meta);
b5dc0163
AS
3885 if (!err)
3886 err = mark_chain_precision(env, regno);
57c3bb72
AI
3887 } else if (arg_type_is_int_ptr(arg_type)) {
3888 int size = int_ptr_type_to_size(arg_type);
3889
3890 err = check_helper_mem_access(env, regno, size, false, meta);
3891 if (err)
3892 return err;
3893 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3894 }
3895
3896 return err;
6841de8b 3897err_type:
61bd5218 3898 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3899 reg_type_str[type], reg_type_str[expected_type]);
3900 return -EACCES;
17a52670
AS
3901}
3902
61bd5218
JK
3903static int check_map_func_compatibility(struct bpf_verifier_env *env,
3904 struct bpf_map *map, int func_id)
35578d79 3905{
35578d79
KX
3906 if (!map)
3907 return 0;
3908
6aff67c8
AS
3909 /* We need a two way check, first is from map perspective ... */
3910 switch (map->map_type) {
3911 case BPF_MAP_TYPE_PROG_ARRAY:
3912 if (func_id != BPF_FUNC_tail_call)
3913 goto error;
3914 break;
3915 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3916 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 3917 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 3918 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
3919 func_id != BPF_FUNC_perf_event_read_value &&
3920 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
3921 goto error;
3922 break;
3923 case BPF_MAP_TYPE_STACK_TRACE:
3924 if (func_id != BPF_FUNC_get_stackid)
3925 goto error;
3926 break;
4ed8ec52 3927 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3928 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3929 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3930 goto error;
3931 break;
cd339431 3932 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3933 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3934 if (func_id != BPF_FUNC_get_local_storage)
3935 goto error;
3936 break;
546ac1ff 3937 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3938 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3939 if (func_id != BPF_FUNC_redirect_map &&
3940 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3941 goto error;
3942 break;
fbfc504a
BT
3943 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3944 * appear.
3945 */
6710e112
JDB
3946 case BPF_MAP_TYPE_CPUMAP:
3947 if (func_id != BPF_FUNC_redirect_map)
3948 goto error;
3949 break;
fada7fdc
JL
3950 case BPF_MAP_TYPE_XSKMAP:
3951 if (func_id != BPF_FUNC_redirect_map &&
3952 func_id != BPF_FUNC_map_lookup_elem)
3953 goto error;
3954 break;
56f668df 3955 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3956 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3957 if (func_id != BPF_FUNC_map_lookup_elem)
3958 goto error;
16a43625 3959 break;
174a79ff
JF
3960 case BPF_MAP_TYPE_SOCKMAP:
3961 if (func_id != BPF_FUNC_sk_redirect_map &&
3962 func_id != BPF_FUNC_sock_map_update &&
4f738adb 3963 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 3964 func_id != BPF_FUNC_msg_redirect_map &&
64d85290
JS
3965 func_id != BPF_FUNC_sk_select_reuseport &&
3966 func_id != BPF_FUNC_map_lookup_elem)
174a79ff
JF
3967 goto error;
3968 break;
81110384
JF
3969 case BPF_MAP_TYPE_SOCKHASH:
3970 if (func_id != BPF_FUNC_sk_redirect_hash &&
3971 func_id != BPF_FUNC_sock_hash_update &&
3972 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 3973 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290
JS
3974 func_id != BPF_FUNC_sk_select_reuseport &&
3975 func_id != BPF_FUNC_map_lookup_elem)
81110384
JF
3976 goto error;
3977 break;
2dbb9b9e
MKL
3978 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3979 if (func_id != BPF_FUNC_sk_select_reuseport)
3980 goto error;
3981 break;
f1a2e44a
MV
3982 case BPF_MAP_TYPE_QUEUE:
3983 case BPF_MAP_TYPE_STACK:
3984 if (func_id != BPF_FUNC_map_peek_elem &&
3985 func_id != BPF_FUNC_map_pop_elem &&
3986 func_id != BPF_FUNC_map_push_elem)
3987 goto error;
3988 break;
6ac99e8f
MKL
3989 case BPF_MAP_TYPE_SK_STORAGE:
3990 if (func_id != BPF_FUNC_sk_storage_get &&
3991 func_id != BPF_FUNC_sk_storage_delete)
3992 goto error;
3993 break;
6aff67c8
AS
3994 default:
3995 break;
3996 }
3997
3998 /* ... and second from the function itself. */
3999 switch (func_id) {
4000 case BPF_FUNC_tail_call:
4001 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4002 goto error;
f910cefa 4003 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4004 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4005 return -EINVAL;
4006 }
6aff67c8
AS
4007 break;
4008 case BPF_FUNC_perf_event_read:
4009 case BPF_FUNC_perf_event_output:
908432ca 4010 case BPF_FUNC_perf_event_read_value:
a7658e1a 4011 case BPF_FUNC_skb_output:
d831ee84 4012 case BPF_FUNC_xdp_output:
6aff67c8
AS
4013 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4014 goto error;
4015 break;
4016 case BPF_FUNC_get_stackid:
4017 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4018 goto error;
4019 break;
60d20f91 4020 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4021 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4022 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4023 goto error;
4024 break;
97f91a7c 4025 case BPF_FUNC_redirect_map:
9c270af3 4026 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4027 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4028 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4029 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4030 goto error;
4031 break;
174a79ff 4032 case BPF_FUNC_sk_redirect_map:
4f738adb 4033 case BPF_FUNC_msg_redirect_map:
81110384 4034 case BPF_FUNC_sock_map_update:
174a79ff
JF
4035 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4036 goto error;
4037 break;
81110384
JF
4038 case BPF_FUNC_sk_redirect_hash:
4039 case BPF_FUNC_msg_redirect_hash:
4040 case BPF_FUNC_sock_hash_update:
4041 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4042 goto error;
4043 break;
cd339431 4044 case BPF_FUNC_get_local_storage:
b741f163
RG
4045 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4046 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4047 goto error;
4048 break;
2dbb9b9e 4049 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4050 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4051 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4052 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4053 goto error;
4054 break;
f1a2e44a
MV
4055 case BPF_FUNC_map_peek_elem:
4056 case BPF_FUNC_map_pop_elem:
4057 case BPF_FUNC_map_push_elem:
4058 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4059 map->map_type != BPF_MAP_TYPE_STACK)
4060 goto error;
4061 break;
6ac99e8f
MKL
4062 case BPF_FUNC_sk_storage_get:
4063 case BPF_FUNC_sk_storage_delete:
4064 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4065 goto error;
4066 break;
6aff67c8
AS
4067 default:
4068 break;
35578d79
KX
4069 }
4070
4071 return 0;
6aff67c8 4072error:
61bd5218 4073 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4074 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4075 return -EINVAL;
35578d79
KX
4076}
4077
90133415 4078static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4079{
4080 int count = 0;
4081
39f19ebb 4082 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4083 count++;
39f19ebb 4084 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4085 count++;
39f19ebb 4086 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4087 count++;
39f19ebb 4088 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4089 count++;
39f19ebb 4090 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4091 count++;
4092
90133415
DB
4093 /* We only support one arg being in raw mode at the moment,
4094 * which is sufficient for the helper functions we have
4095 * right now.
4096 */
4097 return count <= 1;
4098}
4099
4100static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4101 enum bpf_arg_type arg_next)
4102{
4103 return (arg_type_is_mem_ptr(arg_curr) &&
4104 !arg_type_is_mem_size(arg_next)) ||
4105 (!arg_type_is_mem_ptr(arg_curr) &&
4106 arg_type_is_mem_size(arg_next));
4107}
4108
4109static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4110{
4111 /* bpf_xxx(..., buf, len) call will access 'len'
4112 * bytes from memory 'buf'. Both arg types need
4113 * to be paired, so make sure there's no buggy
4114 * helper function specification.
4115 */
4116 if (arg_type_is_mem_size(fn->arg1_type) ||
4117 arg_type_is_mem_ptr(fn->arg5_type) ||
4118 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4119 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4120 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4121 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4122 return false;
4123
4124 return true;
4125}
4126
1b986589 4127static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4128{
4129 int count = 0;
4130
1b986589 4131 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4132 count++;
1b986589 4133 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4134 count++;
1b986589 4135 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4136 count++;
1b986589 4137 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4138 count++;
1b986589 4139 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4140 count++;
4141
1b986589
MKL
4142 /* A reference acquiring function cannot acquire
4143 * another refcounted ptr.
4144 */
64d85290 4145 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4146 return false;
4147
fd978bf7
JS
4148 /* We only support one arg being unreferenced at the moment,
4149 * which is sufficient for the helper functions we have right now.
4150 */
4151 return count <= 1;
4152}
4153
1b986589 4154static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4155{
4156 return check_raw_mode_ok(fn) &&
fd978bf7 4157 check_arg_pair_ok(fn) &&
1b986589 4158 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4159}
4160
de8f3a83
DB
4161/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4162 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4163 */
f4d7e40a
AS
4164static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4165 struct bpf_func_state *state)
969bf05e 4166{
58e2af8b 4167 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4168 int i;
4169
4170 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4171 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4172 mark_reg_unknown(env, regs, i);
969bf05e 4173
f3709f69
JS
4174 bpf_for_each_spilled_reg(i, state, reg) {
4175 if (!reg)
969bf05e 4176 continue;
de8f3a83 4177 if (reg_is_pkt_pointer_any(reg))
f54c7898 4178 __mark_reg_unknown(env, reg);
969bf05e
AS
4179 }
4180}
4181
f4d7e40a
AS
4182static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4183{
4184 struct bpf_verifier_state *vstate = env->cur_state;
4185 int i;
4186
4187 for (i = 0; i <= vstate->curframe; i++)
4188 __clear_all_pkt_pointers(env, vstate->frame[i]);
4189}
4190
fd978bf7 4191static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4192 struct bpf_func_state *state,
4193 int ref_obj_id)
fd978bf7
JS
4194{
4195 struct bpf_reg_state *regs = state->regs, *reg;
4196 int i;
4197
4198 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4199 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4200 mark_reg_unknown(env, regs, i);
4201
4202 bpf_for_each_spilled_reg(i, state, reg) {
4203 if (!reg)
4204 continue;
1b986589 4205 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4206 __mark_reg_unknown(env, reg);
fd978bf7
JS
4207 }
4208}
4209
4210/* The pointer with the specified id has released its reference to kernel
4211 * resources. Identify all copies of the same pointer and clear the reference.
4212 */
4213static int release_reference(struct bpf_verifier_env *env,
1b986589 4214 int ref_obj_id)
fd978bf7
JS
4215{
4216 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4217 int err;
fd978bf7
JS
4218 int i;
4219
1b986589
MKL
4220 err = release_reference_state(cur_func(env), ref_obj_id);
4221 if (err)
4222 return err;
4223
fd978bf7 4224 for (i = 0; i <= vstate->curframe; i++)
1b986589 4225 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4226
1b986589 4227 return 0;
fd978bf7
JS
4228}
4229
51c39bb1
AS
4230static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4231 struct bpf_reg_state *regs)
4232{
4233 int i;
4234
4235 /* after the call registers r0 - r5 were scratched */
4236 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4237 mark_reg_not_init(env, regs, caller_saved[i]);
4238 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4239 }
4240}
4241
f4d7e40a
AS
4242static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4243 int *insn_idx)
4244{
4245 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4246 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4247 struct bpf_func_state *caller, *callee;
fd978bf7 4248 int i, err, subprog, target_insn;
51c39bb1 4249 bool is_global = false;
f4d7e40a 4250
aada9ce6 4251 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4252 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4253 state->curframe + 2);
f4d7e40a
AS
4254 return -E2BIG;
4255 }
4256
4257 target_insn = *insn_idx + insn->imm;
4258 subprog = find_subprog(env, target_insn + 1);
4259 if (subprog < 0) {
4260 verbose(env, "verifier bug. No program starts at insn %d\n",
4261 target_insn + 1);
4262 return -EFAULT;
4263 }
4264
4265 caller = state->frame[state->curframe];
4266 if (state->frame[state->curframe + 1]) {
4267 verbose(env, "verifier bug. Frame %d already allocated\n",
4268 state->curframe + 1);
4269 return -EFAULT;
4270 }
4271
51c39bb1
AS
4272 func_info_aux = env->prog->aux->func_info_aux;
4273 if (func_info_aux)
4274 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4275 err = btf_check_func_arg_match(env, subprog, caller->regs);
4276 if (err == -EFAULT)
4277 return err;
4278 if (is_global) {
4279 if (err) {
4280 verbose(env, "Caller passes invalid args into func#%d\n",
4281 subprog);
4282 return err;
4283 } else {
4284 if (env->log.level & BPF_LOG_LEVEL)
4285 verbose(env,
4286 "Func#%d is global and valid. Skipping.\n",
4287 subprog);
4288 clear_caller_saved_regs(env, caller->regs);
4289
4290 /* All global functions return SCALAR_VALUE */
4291 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4292
4293 /* continue with next insn after call */
4294 return 0;
4295 }
4296 }
4297
f4d7e40a
AS
4298 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4299 if (!callee)
4300 return -ENOMEM;
4301 state->frame[state->curframe + 1] = callee;
4302
4303 /* callee cannot access r0, r6 - r9 for reading and has to write
4304 * into its own stack before reading from it.
4305 * callee can read/write into caller's stack
4306 */
4307 init_func_state(env, callee,
4308 /* remember the callsite, it will be used by bpf_exit */
4309 *insn_idx /* callsite */,
4310 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4311 subprog /* subprog number within this prog */);
f4d7e40a 4312
fd978bf7
JS
4313 /* Transfer references to the callee */
4314 err = transfer_reference_state(callee, caller);
4315 if (err)
4316 return err;
4317
679c782d
EC
4318 /* copy r1 - r5 args that callee can access. The copy includes parent
4319 * pointers, which connects us up to the liveness chain
4320 */
f4d7e40a
AS
4321 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4322 callee->regs[i] = caller->regs[i];
4323
51c39bb1 4324 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4325
4326 /* only increment it after check_reg_arg() finished */
4327 state->curframe++;
4328
4329 /* and go analyze first insn of the callee */
4330 *insn_idx = target_insn;
4331
06ee7115 4332 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4333 verbose(env, "caller:\n");
4334 print_verifier_state(env, caller);
4335 verbose(env, "callee:\n");
4336 print_verifier_state(env, callee);
4337 }
4338 return 0;
4339}
4340
4341static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4342{
4343 struct bpf_verifier_state *state = env->cur_state;
4344 struct bpf_func_state *caller, *callee;
4345 struct bpf_reg_state *r0;
fd978bf7 4346 int err;
f4d7e40a
AS
4347
4348 callee = state->frame[state->curframe];
4349 r0 = &callee->regs[BPF_REG_0];
4350 if (r0->type == PTR_TO_STACK) {
4351 /* technically it's ok to return caller's stack pointer
4352 * (or caller's caller's pointer) back to the caller,
4353 * since these pointers are valid. Only current stack
4354 * pointer will be invalid as soon as function exits,
4355 * but let's be conservative
4356 */
4357 verbose(env, "cannot return stack pointer to the caller\n");
4358 return -EINVAL;
4359 }
4360
4361 state->curframe--;
4362 caller = state->frame[state->curframe];
4363 /* return to the caller whatever r0 had in the callee */
4364 caller->regs[BPF_REG_0] = *r0;
4365
fd978bf7
JS
4366 /* Transfer references to the caller */
4367 err = transfer_reference_state(caller, callee);
4368 if (err)
4369 return err;
4370
f4d7e40a 4371 *insn_idx = callee->callsite + 1;
06ee7115 4372 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4373 verbose(env, "returning from callee:\n");
4374 print_verifier_state(env, callee);
4375 verbose(env, "to caller at %d:\n", *insn_idx);
4376 print_verifier_state(env, caller);
4377 }
4378 /* clear everything in the callee */
4379 free_func_state(callee);
4380 state->frame[state->curframe + 1] = NULL;
4381 return 0;
4382}
4383
849fa506
YS
4384static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4385 int func_id,
4386 struct bpf_call_arg_meta *meta)
4387{
4388 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4389
4390 if (ret_type != RET_INTEGER ||
4391 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4392 func_id != BPF_FUNC_probe_read_str &&
4393 func_id != BPF_FUNC_probe_read_kernel_str &&
4394 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4395 return;
4396
10060503 4397 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4398 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4399 __reg_deduce_bounds(ret_reg);
4400 __reg_bound_offset(ret_reg);
10060503 4401 __update_reg_bounds(ret_reg);
849fa506
YS
4402}
4403
c93552c4
DB
4404static int
4405record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4406 int func_id, int insn_idx)
4407{
4408 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4409 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4410
4411 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4412 func_id != BPF_FUNC_map_lookup_elem &&
4413 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4414 func_id != BPF_FUNC_map_delete_elem &&
4415 func_id != BPF_FUNC_map_push_elem &&
4416 func_id != BPF_FUNC_map_pop_elem &&
4417 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4418 return 0;
09772d92 4419
591fe988 4420 if (map == NULL) {
c93552c4
DB
4421 verbose(env, "kernel subsystem misconfigured verifier\n");
4422 return -EINVAL;
4423 }
4424
591fe988
DB
4425 /* In case of read-only, some additional restrictions
4426 * need to be applied in order to prevent altering the
4427 * state of the map from program side.
4428 */
4429 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4430 (func_id == BPF_FUNC_map_delete_elem ||
4431 func_id == BPF_FUNC_map_update_elem ||
4432 func_id == BPF_FUNC_map_push_elem ||
4433 func_id == BPF_FUNC_map_pop_elem)) {
4434 verbose(env, "write into map forbidden\n");
4435 return -EACCES;
4436 }
4437
d2e4c1e6 4438 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4439 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4440 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4441 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4442 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4443 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4444 return 0;
4445}
4446
d2e4c1e6
DB
4447static int
4448record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4449 int func_id, int insn_idx)
4450{
4451 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4452 struct bpf_reg_state *regs = cur_regs(env), *reg;
4453 struct bpf_map *map = meta->map_ptr;
4454 struct tnum range;
4455 u64 val;
cc52d914 4456 int err;
d2e4c1e6
DB
4457
4458 if (func_id != BPF_FUNC_tail_call)
4459 return 0;
4460 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4461 verbose(env, "kernel subsystem misconfigured verifier\n");
4462 return -EINVAL;
4463 }
4464
4465 range = tnum_range(0, map->max_entries - 1);
4466 reg = &regs[BPF_REG_3];
4467
4468 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4469 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4470 return 0;
4471 }
4472
cc52d914
DB
4473 err = mark_chain_precision(env, BPF_REG_3);
4474 if (err)
4475 return err;
4476
d2e4c1e6
DB
4477 val = reg->var_off.value;
4478 if (bpf_map_key_unseen(aux))
4479 bpf_map_key_store(aux, val);
4480 else if (!bpf_map_key_poisoned(aux) &&
4481 bpf_map_key_immediate(aux) != val)
4482 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4483 return 0;
4484}
4485
fd978bf7
JS
4486static int check_reference_leak(struct bpf_verifier_env *env)
4487{
4488 struct bpf_func_state *state = cur_func(env);
4489 int i;
4490
4491 for (i = 0; i < state->acquired_refs; i++) {
4492 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4493 state->refs[i].id, state->refs[i].insn_idx);
4494 }
4495 return state->acquired_refs ? -EINVAL : 0;
4496}
4497
f4d7e40a 4498static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4499{
17a52670 4500 const struct bpf_func_proto *fn = NULL;
638f5b90 4501 struct bpf_reg_state *regs;
33ff9823 4502 struct bpf_call_arg_meta meta;
969bf05e 4503 bool changes_data;
17a52670
AS
4504 int i, err;
4505
4506 /* find function prototype */
4507 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4508 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4509 func_id);
17a52670
AS
4510 return -EINVAL;
4511 }
4512
00176a34 4513 if (env->ops->get_func_proto)
5e43f899 4514 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4515 if (!fn) {
61bd5218
JK
4516 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4517 func_id);
17a52670
AS
4518 return -EINVAL;
4519 }
4520
4521 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4522 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4523 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4524 return -EINVAL;
4525 }
4526
04514d13 4527 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4528 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4529 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4530 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4531 func_id_name(func_id), func_id);
4532 return -EINVAL;
4533 }
969bf05e 4534
33ff9823 4535 memset(&meta, 0, sizeof(meta));
36bbef52 4536 meta.pkt_access = fn->pkt_access;
33ff9823 4537
1b986589 4538 err = check_func_proto(fn, func_id);
435faee1 4539 if (err) {
61bd5218 4540 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4541 func_id_name(func_id), func_id);
435faee1
DB
4542 return err;
4543 }
4544
d83525ca 4545 meta.func_id = func_id;
17a52670 4546 /* check args */
a7658e1a 4547 for (i = 0; i < 5; i++) {
9cc31b3a
AS
4548 err = btf_resolve_helper_id(&env->log, fn, i);
4549 if (err > 0)
4550 meta.btf_id = err;
a7658e1a
AS
4551 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4552 if (err)
4553 return err;
4554 }
17a52670 4555
c93552c4
DB
4556 err = record_func_map(env, &meta, func_id, insn_idx);
4557 if (err)
4558 return err;
4559
d2e4c1e6
DB
4560 err = record_func_key(env, &meta, func_id, insn_idx);
4561 if (err)
4562 return err;
4563
435faee1
DB
4564 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4565 * is inferred from register state.
4566 */
4567 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4568 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4569 BPF_WRITE, -1, false);
435faee1
DB
4570 if (err)
4571 return err;
4572 }
4573
fd978bf7
JS
4574 if (func_id == BPF_FUNC_tail_call) {
4575 err = check_reference_leak(env);
4576 if (err) {
4577 verbose(env, "tail_call would lead to reference leak\n");
4578 return err;
4579 }
4580 } else if (is_release_function(func_id)) {
1b986589 4581 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4582 if (err) {
4583 verbose(env, "func %s#%d reference has not been acquired before\n",
4584 func_id_name(func_id), func_id);
fd978bf7 4585 return err;
46f8bc92 4586 }
fd978bf7
JS
4587 }
4588
638f5b90 4589 regs = cur_regs(env);
cd339431
RG
4590
4591 /* check that flags argument in get_local_storage(map, flags) is 0,
4592 * this is required because get_local_storage() can't return an error.
4593 */
4594 if (func_id == BPF_FUNC_get_local_storage &&
4595 !register_is_null(&regs[BPF_REG_2])) {
4596 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4597 return -EINVAL;
4598 }
4599
17a52670 4600 /* reset caller saved regs */
dc503a8a 4601 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4602 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4603 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4604 }
17a52670 4605
5327ed3d
JW
4606 /* helper call returns 64-bit value. */
4607 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4608
dc503a8a 4609 /* update return register (already marked as written above) */
17a52670 4610 if (fn->ret_type == RET_INTEGER) {
f1174f77 4611 /* sets type to SCALAR_VALUE */
61bd5218 4612 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4613 } else if (fn->ret_type == RET_VOID) {
4614 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4615 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4616 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4617 /* There is no offset yet applied, variable or fixed */
61bd5218 4618 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4619 /* remember map_ptr, so that check_map_access()
4620 * can check 'value_size' boundary of memory access
4621 * to map element returned from bpf_map_lookup_elem()
4622 */
33ff9823 4623 if (meta.map_ptr == NULL) {
61bd5218
JK
4624 verbose(env,
4625 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4626 return -EINVAL;
4627 }
33ff9823 4628 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4629 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4630 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4631 if (map_value_has_spin_lock(meta.map_ptr))
4632 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4633 } else {
4634 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4635 regs[BPF_REG_0].id = ++env->id_gen;
4636 }
c64b7983
JS
4637 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4638 mark_reg_known_zero(env, regs, BPF_REG_0);
4639 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4640 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4641 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4642 mark_reg_known_zero(env, regs, BPF_REG_0);
4643 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4644 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4645 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4646 mark_reg_known_zero(env, regs, BPF_REG_0);
4647 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4648 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4649 } else {
61bd5218 4650 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4651 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4652 return -EINVAL;
4653 }
04fd61ab 4654
0f3adc28 4655 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4656 /* For release_reference() */
4657 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 4658 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
4659 int id = acquire_reference_state(env, insn_idx);
4660
4661 if (id < 0)
4662 return id;
4663 /* For mark_ptr_or_null_reg() */
4664 regs[BPF_REG_0].id = id;
4665 /* For release_reference() */
4666 regs[BPF_REG_0].ref_obj_id = id;
4667 }
1b986589 4668
849fa506
YS
4669 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4670
61bd5218 4671 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4672 if (err)
4673 return err;
04fd61ab 4674
c195651e
YS
4675 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4676 const char *err_str;
4677
4678#ifdef CONFIG_PERF_EVENTS
4679 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4680 err_str = "cannot get callchain buffer for func %s#%d\n";
4681#else
4682 err = -ENOTSUPP;
4683 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4684#endif
4685 if (err) {
4686 verbose(env, err_str, func_id_name(func_id), func_id);
4687 return err;
4688 }
4689
4690 env->prog->has_callchain_buf = true;
4691 }
4692
969bf05e
AS
4693 if (changes_data)
4694 clear_all_pkt_pointers(env);
4695 return 0;
4696}
4697
b03c9f9f
EC
4698static bool signed_add_overflows(s64 a, s64 b)
4699{
4700 /* Do the add in u64, where overflow is well-defined */
4701 s64 res = (s64)((u64)a + (u64)b);
4702
4703 if (b < 0)
4704 return res > a;
4705 return res < a;
4706}
4707
3f50f132
JF
4708static bool signed_add32_overflows(s64 a, s64 b)
4709{
4710 /* Do the add in u32, where overflow is well-defined */
4711 s32 res = (s32)((u32)a + (u32)b);
4712
4713 if (b < 0)
4714 return res > a;
4715 return res < a;
4716}
4717
4718static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
4719{
4720 /* Do the sub in u64, where overflow is well-defined */
4721 s64 res = (s64)((u64)a - (u64)b);
4722
4723 if (b < 0)
4724 return res < a;
4725 return res > a;
969bf05e
AS
4726}
4727
3f50f132
JF
4728static bool signed_sub32_overflows(s32 a, s32 b)
4729{
4730 /* Do the sub in u64, where overflow is well-defined */
4731 s32 res = (s32)((u32)a - (u32)b);
4732
4733 if (b < 0)
4734 return res < a;
4735 return res > a;
4736}
4737
bb7f0f98
AS
4738static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4739 const struct bpf_reg_state *reg,
4740 enum bpf_reg_type type)
4741{
4742 bool known = tnum_is_const(reg->var_off);
4743 s64 val = reg->var_off.value;
4744 s64 smin = reg->smin_value;
4745
4746 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4747 verbose(env, "math between %s pointer and %lld is not allowed\n",
4748 reg_type_str[type], val);
4749 return false;
4750 }
4751
4752 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4753 verbose(env, "%s pointer offset %d is not allowed\n",
4754 reg_type_str[type], reg->off);
4755 return false;
4756 }
4757
4758 if (smin == S64_MIN) {
4759 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4760 reg_type_str[type]);
4761 return false;
4762 }
4763
4764 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4765 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4766 smin, reg_type_str[type]);
4767 return false;
4768 }
4769
4770 return true;
4771}
4772
979d63d5
DB
4773static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4774{
4775 return &env->insn_aux_data[env->insn_idx];
4776}
4777
4778static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4779 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4780{
4781 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4782 (opcode == BPF_SUB && !off_is_neg);
4783 u32 off;
4784
4785 switch (ptr_reg->type) {
4786 case PTR_TO_STACK:
088ec26d
AI
4787 /* Indirect variable offset stack access is prohibited in
4788 * unprivileged mode so it's not handled here.
4789 */
979d63d5
DB
4790 off = ptr_reg->off + ptr_reg->var_off.value;
4791 if (mask_to_left)
4792 *ptr_limit = MAX_BPF_STACK + off;
4793 else
4794 *ptr_limit = -off;
4795 return 0;
4796 case PTR_TO_MAP_VALUE:
4797 if (mask_to_left) {
4798 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4799 } else {
4800 off = ptr_reg->smin_value + ptr_reg->off;
4801 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4802 }
4803 return 0;
4804 default:
4805 return -EINVAL;
4806 }
4807}
4808
d3bd7413
DB
4809static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4810 const struct bpf_insn *insn)
4811{
2c78ee89 4812 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
4813}
4814
4815static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4816 u32 alu_state, u32 alu_limit)
4817{
4818 /* If we arrived here from different branches with different
4819 * state or limits to sanitize, then this won't work.
4820 */
4821 if (aux->alu_state &&
4822 (aux->alu_state != alu_state ||
4823 aux->alu_limit != alu_limit))
4824 return -EACCES;
4825
4826 /* Corresponding fixup done in fixup_bpf_calls(). */
4827 aux->alu_state = alu_state;
4828 aux->alu_limit = alu_limit;
4829 return 0;
4830}
4831
4832static int sanitize_val_alu(struct bpf_verifier_env *env,
4833 struct bpf_insn *insn)
4834{
4835 struct bpf_insn_aux_data *aux = cur_aux(env);
4836
4837 if (can_skip_alu_sanitation(env, insn))
4838 return 0;
4839
4840 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4841}
4842
979d63d5
DB
4843static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4844 struct bpf_insn *insn,
4845 const struct bpf_reg_state *ptr_reg,
4846 struct bpf_reg_state *dst_reg,
4847 bool off_is_neg)
4848{
4849 struct bpf_verifier_state *vstate = env->cur_state;
4850 struct bpf_insn_aux_data *aux = cur_aux(env);
4851 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4852 u8 opcode = BPF_OP(insn->code);
4853 u32 alu_state, alu_limit;
4854 struct bpf_reg_state tmp;
4855 bool ret;
4856
d3bd7413 4857 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4858 return 0;
4859
4860 /* We already marked aux for masking from non-speculative
4861 * paths, thus we got here in the first place. We only care
4862 * to explore bad access from here.
4863 */
4864 if (vstate->speculative)
4865 goto do_sim;
4866
4867 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4868 alu_state |= ptr_is_dst_reg ?
4869 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4870
4871 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4872 return 0;
d3bd7413 4873 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4874 return -EACCES;
979d63d5
DB
4875do_sim:
4876 /* Simulate and find potential out-of-bounds access under
4877 * speculative execution from truncation as a result of
4878 * masking when off was not within expected range. If off
4879 * sits in dst, then we temporarily need to move ptr there
4880 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4881 * for cases where we use K-based arithmetic in one direction
4882 * and truncated reg-based in the other in order to explore
4883 * bad access.
4884 */
4885 if (!ptr_is_dst_reg) {
4886 tmp = *dst_reg;
4887 *dst_reg = *ptr_reg;
4888 }
4889 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4890 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4891 *dst_reg = tmp;
4892 return !ret ? -EFAULT : 0;
4893}
4894
f1174f77 4895/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4896 * Caller should also handle BPF_MOV case separately.
4897 * If we return -EACCES, caller may want to try again treating pointer as a
4898 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4899 */
4900static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4901 struct bpf_insn *insn,
4902 const struct bpf_reg_state *ptr_reg,
4903 const struct bpf_reg_state *off_reg)
969bf05e 4904{
f4d7e40a
AS
4905 struct bpf_verifier_state *vstate = env->cur_state;
4906 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4907 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4908 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4909 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4910 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4911 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4912 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4913 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4914 u8 opcode = BPF_OP(insn->code);
979d63d5 4915 int ret;
969bf05e 4916
f1174f77 4917 dst_reg = &regs[dst];
969bf05e 4918
6f16101e
DB
4919 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4920 smin_val > smax_val || umin_val > umax_val) {
4921 /* Taint dst register if offset had invalid bounds derived from
4922 * e.g. dead branches.
4923 */
f54c7898 4924 __mark_reg_unknown(env, dst_reg);
6f16101e 4925 return 0;
f1174f77
EC
4926 }
4927
4928 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4929 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4930 verbose(env,
4931 "R%d 32-bit pointer arithmetic prohibited\n",
4932 dst);
f1174f77 4933 return -EACCES;
969bf05e
AS
4934 }
4935
aad2eeaf
JS
4936 switch (ptr_reg->type) {
4937 case PTR_TO_MAP_VALUE_OR_NULL:
4938 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4939 dst, reg_type_str[ptr_reg->type]);
f1174f77 4940 return -EACCES;
aad2eeaf
JS
4941 case CONST_PTR_TO_MAP:
4942 case PTR_TO_PACKET_END:
c64b7983
JS
4943 case PTR_TO_SOCKET:
4944 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4945 case PTR_TO_SOCK_COMMON:
4946 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4947 case PTR_TO_TCP_SOCK:
4948 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4949 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4950 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4951 dst, reg_type_str[ptr_reg->type]);
f1174f77 4952 return -EACCES;
9d7eceed
DB
4953 case PTR_TO_MAP_VALUE:
4954 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4955 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4956 off_reg == dst_reg ? dst : src);
4957 return -EACCES;
4958 }
4959 /* fall-through */
aad2eeaf
JS
4960 default:
4961 break;
f1174f77
EC
4962 }
4963
4964 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4965 * The id may be overwritten later if we create a new variable offset.
969bf05e 4966 */
f1174f77
EC
4967 dst_reg->type = ptr_reg->type;
4968 dst_reg->id = ptr_reg->id;
969bf05e 4969
bb7f0f98
AS
4970 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4971 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4972 return -EINVAL;
4973
3f50f132
JF
4974 /* pointer types do not carry 32-bit bounds at the moment. */
4975 __mark_reg32_unbounded(dst_reg);
4976
f1174f77
EC
4977 switch (opcode) {
4978 case BPF_ADD:
979d63d5
DB
4979 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4980 if (ret < 0) {
4981 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4982 return ret;
4983 }
f1174f77
EC
4984 /* We can take a fixed offset as long as it doesn't overflow
4985 * the s32 'off' field
969bf05e 4986 */
b03c9f9f
EC
4987 if (known && (ptr_reg->off + smin_val ==
4988 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4989 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4990 dst_reg->smin_value = smin_ptr;
4991 dst_reg->smax_value = smax_ptr;
4992 dst_reg->umin_value = umin_ptr;
4993 dst_reg->umax_value = umax_ptr;
f1174f77 4994 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4995 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4996 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4997 break;
4998 }
f1174f77
EC
4999 /* A new variable offset is created. Note that off_reg->off
5000 * == 0, since it's a scalar.
5001 * dst_reg gets the pointer type and since some positive
5002 * integer value was added to the pointer, give it a new 'id'
5003 * if it's a PTR_TO_PACKET.
5004 * this creates a new 'base' pointer, off_reg (variable) gets
5005 * added into the variable offset, and we copy the fixed offset
5006 * from ptr_reg.
969bf05e 5007 */
b03c9f9f
EC
5008 if (signed_add_overflows(smin_ptr, smin_val) ||
5009 signed_add_overflows(smax_ptr, smax_val)) {
5010 dst_reg->smin_value = S64_MIN;
5011 dst_reg->smax_value = S64_MAX;
5012 } else {
5013 dst_reg->smin_value = smin_ptr + smin_val;
5014 dst_reg->smax_value = smax_ptr + smax_val;
5015 }
5016 if (umin_ptr + umin_val < umin_ptr ||
5017 umax_ptr + umax_val < umax_ptr) {
5018 dst_reg->umin_value = 0;
5019 dst_reg->umax_value = U64_MAX;
5020 } else {
5021 dst_reg->umin_value = umin_ptr + umin_val;
5022 dst_reg->umax_value = umax_ptr + umax_val;
5023 }
f1174f77
EC
5024 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5025 dst_reg->off = ptr_reg->off;
0962590e 5026 dst_reg->raw = ptr_reg->raw;
de8f3a83 5027 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5028 dst_reg->id = ++env->id_gen;
5029 /* something was added to pkt_ptr, set range to zero */
0962590e 5030 dst_reg->raw = 0;
f1174f77
EC
5031 }
5032 break;
5033 case BPF_SUB:
979d63d5
DB
5034 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5035 if (ret < 0) {
5036 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5037 return ret;
5038 }
f1174f77
EC
5039 if (dst_reg == off_reg) {
5040 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5041 verbose(env, "R%d tried to subtract pointer from scalar\n",
5042 dst);
f1174f77
EC
5043 return -EACCES;
5044 }
5045 /* We don't allow subtraction from FP, because (according to
5046 * test_verifier.c test "invalid fp arithmetic", JITs might not
5047 * be able to deal with it.
969bf05e 5048 */
f1174f77 5049 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5050 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5051 dst);
f1174f77
EC
5052 return -EACCES;
5053 }
b03c9f9f
EC
5054 if (known && (ptr_reg->off - smin_val ==
5055 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5056 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5057 dst_reg->smin_value = smin_ptr;
5058 dst_reg->smax_value = smax_ptr;
5059 dst_reg->umin_value = umin_ptr;
5060 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5061 dst_reg->var_off = ptr_reg->var_off;
5062 dst_reg->id = ptr_reg->id;
b03c9f9f 5063 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5064 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5065 break;
5066 }
f1174f77
EC
5067 /* A new variable offset is created. If the subtrahend is known
5068 * nonnegative, then any reg->range we had before is still good.
969bf05e 5069 */
b03c9f9f
EC
5070 if (signed_sub_overflows(smin_ptr, smax_val) ||
5071 signed_sub_overflows(smax_ptr, smin_val)) {
5072 /* Overflow possible, we know nothing */
5073 dst_reg->smin_value = S64_MIN;
5074 dst_reg->smax_value = S64_MAX;
5075 } else {
5076 dst_reg->smin_value = smin_ptr - smax_val;
5077 dst_reg->smax_value = smax_ptr - smin_val;
5078 }
5079 if (umin_ptr < umax_val) {
5080 /* Overflow possible, we know nothing */
5081 dst_reg->umin_value = 0;
5082 dst_reg->umax_value = U64_MAX;
5083 } else {
5084 /* Cannot overflow (as long as bounds are consistent) */
5085 dst_reg->umin_value = umin_ptr - umax_val;
5086 dst_reg->umax_value = umax_ptr - umin_val;
5087 }
f1174f77
EC
5088 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5089 dst_reg->off = ptr_reg->off;
0962590e 5090 dst_reg->raw = ptr_reg->raw;
de8f3a83 5091 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5092 dst_reg->id = ++env->id_gen;
5093 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5094 if (smin_val < 0)
0962590e 5095 dst_reg->raw = 0;
43188702 5096 }
f1174f77
EC
5097 break;
5098 case BPF_AND:
5099 case BPF_OR:
5100 case BPF_XOR:
82abbf8d
AS
5101 /* bitwise ops on pointers are troublesome, prohibit. */
5102 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5103 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5104 return -EACCES;
5105 default:
5106 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5107 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5108 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5109 return -EACCES;
43188702
JF
5110 }
5111
bb7f0f98
AS
5112 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5113 return -EINVAL;
5114
b03c9f9f
EC
5115 __update_reg_bounds(dst_reg);
5116 __reg_deduce_bounds(dst_reg);
5117 __reg_bound_offset(dst_reg);
0d6303db
DB
5118
5119 /* For unprivileged we require that resulting offset must be in bounds
5120 * in order to be able to sanitize access later on.
5121 */
2c78ee89 5122 if (!env->bypass_spec_v1) {
e4298d25
DB
5123 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5124 check_map_access(env, dst, dst_reg->off, 1, false)) {
5125 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5126 "prohibited for !root\n", dst);
5127 return -EACCES;
5128 } else if (dst_reg->type == PTR_TO_STACK &&
5129 check_stack_access(env, dst_reg, dst_reg->off +
5130 dst_reg->var_off.value, 1)) {
5131 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5132 "prohibited for !root\n", dst);
5133 return -EACCES;
5134 }
0d6303db
DB
5135 }
5136
43188702
JF
5137 return 0;
5138}
5139
3f50f132
JF
5140static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5141 struct bpf_reg_state *src_reg)
5142{
5143 s32 smin_val = src_reg->s32_min_value;
5144 s32 smax_val = src_reg->s32_max_value;
5145 u32 umin_val = src_reg->u32_min_value;
5146 u32 umax_val = src_reg->u32_max_value;
5147
5148 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5149 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5150 dst_reg->s32_min_value = S32_MIN;
5151 dst_reg->s32_max_value = S32_MAX;
5152 } else {
5153 dst_reg->s32_min_value += smin_val;
5154 dst_reg->s32_max_value += smax_val;
5155 }
5156 if (dst_reg->u32_min_value + umin_val < umin_val ||
5157 dst_reg->u32_max_value + umax_val < umax_val) {
5158 dst_reg->u32_min_value = 0;
5159 dst_reg->u32_max_value = U32_MAX;
5160 } else {
5161 dst_reg->u32_min_value += umin_val;
5162 dst_reg->u32_max_value += umax_val;
5163 }
5164}
5165
07cd2631
JF
5166static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5167 struct bpf_reg_state *src_reg)
5168{
5169 s64 smin_val = src_reg->smin_value;
5170 s64 smax_val = src_reg->smax_value;
5171 u64 umin_val = src_reg->umin_value;
5172 u64 umax_val = src_reg->umax_value;
5173
5174 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5175 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5176 dst_reg->smin_value = S64_MIN;
5177 dst_reg->smax_value = S64_MAX;
5178 } else {
5179 dst_reg->smin_value += smin_val;
5180 dst_reg->smax_value += smax_val;
5181 }
5182 if (dst_reg->umin_value + umin_val < umin_val ||
5183 dst_reg->umax_value + umax_val < umax_val) {
5184 dst_reg->umin_value = 0;
5185 dst_reg->umax_value = U64_MAX;
5186 } else {
5187 dst_reg->umin_value += umin_val;
5188 dst_reg->umax_value += umax_val;
5189 }
3f50f132
JF
5190}
5191
5192static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5193 struct bpf_reg_state *src_reg)
5194{
5195 s32 smin_val = src_reg->s32_min_value;
5196 s32 smax_val = src_reg->s32_max_value;
5197 u32 umin_val = src_reg->u32_min_value;
5198 u32 umax_val = src_reg->u32_max_value;
5199
5200 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5201 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5202 /* Overflow possible, we know nothing */
5203 dst_reg->s32_min_value = S32_MIN;
5204 dst_reg->s32_max_value = S32_MAX;
5205 } else {
5206 dst_reg->s32_min_value -= smax_val;
5207 dst_reg->s32_max_value -= smin_val;
5208 }
5209 if (dst_reg->u32_min_value < umax_val) {
5210 /* Overflow possible, we know nothing */
5211 dst_reg->u32_min_value = 0;
5212 dst_reg->u32_max_value = U32_MAX;
5213 } else {
5214 /* Cannot overflow (as long as bounds are consistent) */
5215 dst_reg->u32_min_value -= umax_val;
5216 dst_reg->u32_max_value -= umin_val;
5217 }
07cd2631
JF
5218}
5219
5220static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5221 struct bpf_reg_state *src_reg)
5222{
5223 s64 smin_val = src_reg->smin_value;
5224 s64 smax_val = src_reg->smax_value;
5225 u64 umin_val = src_reg->umin_value;
5226 u64 umax_val = src_reg->umax_value;
5227
5228 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5229 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5230 /* Overflow possible, we know nothing */
5231 dst_reg->smin_value = S64_MIN;
5232 dst_reg->smax_value = S64_MAX;
5233 } else {
5234 dst_reg->smin_value -= smax_val;
5235 dst_reg->smax_value -= smin_val;
5236 }
5237 if (dst_reg->umin_value < umax_val) {
5238 /* Overflow possible, we know nothing */
5239 dst_reg->umin_value = 0;
5240 dst_reg->umax_value = U64_MAX;
5241 } else {
5242 /* Cannot overflow (as long as bounds are consistent) */
5243 dst_reg->umin_value -= umax_val;
5244 dst_reg->umax_value -= umin_val;
5245 }
3f50f132
JF
5246}
5247
5248static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5249 struct bpf_reg_state *src_reg)
5250{
5251 s32 smin_val = src_reg->s32_min_value;
5252 u32 umin_val = src_reg->u32_min_value;
5253 u32 umax_val = src_reg->u32_max_value;
5254
5255 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5256 /* Ain't nobody got time to multiply that sign */
5257 __mark_reg32_unbounded(dst_reg);
5258 return;
5259 }
5260 /* Both values are positive, so we can work with unsigned and
5261 * copy the result to signed (unless it exceeds S32_MAX).
5262 */
5263 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5264 /* Potential overflow, we know nothing */
5265 __mark_reg32_unbounded(dst_reg);
5266 return;
5267 }
5268 dst_reg->u32_min_value *= umin_val;
5269 dst_reg->u32_max_value *= umax_val;
5270 if (dst_reg->u32_max_value > S32_MAX) {
5271 /* Overflow possible, we know nothing */
5272 dst_reg->s32_min_value = S32_MIN;
5273 dst_reg->s32_max_value = S32_MAX;
5274 } else {
5275 dst_reg->s32_min_value = dst_reg->u32_min_value;
5276 dst_reg->s32_max_value = dst_reg->u32_max_value;
5277 }
07cd2631
JF
5278}
5279
5280static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5281 struct bpf_reg_state *src_reg)
5282{
5283 s64 smin_val = src_reg->smin_value;
5284 u64 umin_val = src_reg->umin_value;
5285 u64 umax_val = src_reg->umax_value;
5286
07cd2631
JF
5287 if (smin_val < 0 || dst_reg->smin_value < 0) {
5288 /* Ain't nobody got time to multiply that sign */
3f50f132 5289 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5290 return;
5291 }
5292 /* Both values are positive, so we can work with unsigned and
5293 * copy the result to signed (unless it exceeds S64_MAX).
5294 */
5295 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5296 /* Potential overflow, we know nothing */
3f50f132 5297 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5298 return;
5299 }
5300 dst_reg->umin_value *= umin_val;
5301 dst_reg->umax_value *= umax_val;
5302 if (dst_reg->umax_value > S64_MAX) {
5303 /* Overflow possible, we know nothing */
5304 dst_reg->smin_value = S64_MIN;
5305 dst_reg->smax_value = S64_MAX;
5306 } else {
5307 dst_reg->smin_value = dst_reg->umin_value;
5308 dst_reg->smax_value = dst_reg->umax_value;
5309 }
5310}
5311
3f50f132
JF
5312static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5313 struct bpf_reg_state *src_reg)
5314{
5315 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5316 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5317 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5318 s32 smin_val = src_reg->s32_min_value;
5319 u32 umax_val = src_reg->u32_max_value;
5320
5321 /* Assuming scalar64_min_max_and will be called so its safe
5322 * to skip updating register for known 32-bit case.
5323 */
5324 if (src_known && dst_known)
5325 return;
5326
5327 /* We get our minimum from the var_off, since that's inherently
5328 * bitwise. Our maximum is the minimum of the operands' maxima.
5329 */
5330 dst_reg->u32_min_value = var32_off.value;
5331 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5332 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5333 /* Lose signed bounds when ANDing negative numbers,
5334 * ain't nobody got time for that.
5335 */
5336 dst_reg->s32_min_value = S32_MIN;
5337 dst_reg->s32_max_value = S32_MAX;
5338 } else {
5339 /* ANDing two positives gives a positive, so safe to
5340 * cast result into s64.
5341 */
5342 dst_reg->s32_min_value = dst_reg->u32_min_value;
5343 dst_reg->s32_max_value = dst_reg->u32_max_value;
5344 }
5345
5346}
5347
07cd2631
JF
5348static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5349 struct bpf_reg_state *src_reg)
5350{
3f50f132
JF
5351 bool src_known = tnum_is_const(src_reg->var_off);
5352 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5353 s64 smin_val = src_reg->smin_value;
5354 u64 umax_val = src_reg->umax_value;
5355
3f50f132
JF
5356 if (src_known && dst_known) {
5357 __mark_reg_known(dst_reg, dst_reg->var_off.value &
5358 src_reg->var_off.value);
5359 return;
5360 }
5361
07cd2631
JF
5362 /* We get our minimum from the var_off, since that's inherently
5363 * bitwise. Our maximum is the minimum of the operands' maxima.
5364 */
07cd2631
JF
5365 dst_reg->umin_value = dst_reg->var_off.value;
5366 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5367 if (dst_reg->smin_value < 0 || smin_val < 0) {
5368 /* Lose signed bounds when ANDing negative numbers,
5369 * ain't nobody got time for that.
5370 */
5371 dst_reg->smin_value = S64_MIN;
5372 dst_reg->smax_value = S64_MAX;
5373 } else {
5374 /* ANDing two positives gives a positive, so safe to
5375 * cast result into s64.
5376 */
5377 dst_reg->smin_value = dst_reg->umin_value;
5378 dst_reg->smax_value = dst_reg->umax_value;
5379 }
5380 /* We may learn something more from the var_off */
5381 __update_reg_bounds(dst_reg);
5382}
5383
3f50f132
JF
5384static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5385 struct bpf_reg_state *src_reg)
5386{
5387 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5388 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5389 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5390 s32 smin_val = src_reg->smin_value;
5391 u32 umin_val = src_reg->umin_value;
5392
5393 /* Assuming scalar64_min_max_or will be called so it is safe
5394 * to skip updating register for known case.
5395 */
5396 if (src_known && dst_known)
5397 return;
5398
5399 /* We get our maximum from the var_off, and our minimum is the
5400 * maximum of the operands' minima
5401 */
5402 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5403 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5404 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5405 /* Lose signed bounds when ORing negative numbers,
5406 * ain't nobody got time for that.
5407 */
5408 dst_reg->s32_min_value = S32_MIN;
5409 dst_reg->s32_max_value = S32_MAX;
5410 } else {
5411 /* ORing two positives gives a positive, so safe to
5412 * cast result into s64.
5413 */
5414 dst_reg->s32_min_value = dst_reg->umin_value;
5415 dst_reg->s32_max_value = dst_reg->umax_value;
5416 }
5417}
5418
07cd2631
JF
5419static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5420 struct bpf_reg_state *src_reg)
5421{
3f50f132
JF
5422 bool src_known = tnum_is_const(src_reg->var_off);
5423 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5424 s64 smin_val = src_reg->smin_value;
5425 u64 umin_val = src_reg->umin_value;
5426
3f50f132
JF
5427 if (src_known && dst_known) {
5428 __mark_reg_known(dst_reg, dst_reg->var_off.value |
5429 src_reg->var_off.value);
5430 return;
5431 }
5432
07cd2631
JF
5433 /* We get our maximum from the var_off, and our minimum is the
5434 * maximum of the operands' minima
5435 */
07cd2631
JF
5436 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5437 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5438 if (dst_reg->smin_value < 0 || smin_val < 0) {
5439 /* Lose signed bounds when ORing negative numbers,
5440 * ain't nobody got time for that.
5441 */
5442 dst_reg->smin_value = S64_MIN;
5443 dst_reg->smax_value = S64_MAX;
5444 } else {
5445 /* ORing two positives gives a positive, so safe to
5446 * cast result into s64.
5447 */
5448 dst_reg->smin_value = dst_reg->umin_value;
5449 dst_reg->smax_value = dst_reg->umax_value;
5450 }
5451 /* We may learn something more from the var_off */
5452 __update_reg_bounds(dst_reg);
5453}
5454
3f50f132
JF
5455static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5456 u64 umin_val, u64 umax_val)
07cd2631 5457{
07cd2631
JF
5458 /* We lose all sign bit information (except what we can pick
5459 * up from var_off)
5460 */
3f50f132
JF
5461 dst_reg->s32_min_value = S32_MIN;
5462 dst_reg->s32_max_value = S32_MAX;
5463 /* If we might shift our top bit out, then we know nothing */
5464 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5465 dst_reg->u32_min_value = 0;
5466 dst_reg->u32_max_value = U32_MAX;
5467 } else {
5468 dst_reg->u32_min_value <<= umin_val;
5469 dst_reg->u32_max_value <<= umax_val;
5470 }
5471}
5472
5473static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5474 struct bpf_reg_state *src_reg)
5475{
5476 u32 umax_val = src_reg->u32_max_value;
5477 u32 umin_val = src_reg->u32_min_value;
5478 /* u32 alu operation will zext upper bits */
5479 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5480
5481 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5482 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5483 /* Not required but being careful mark reg64 bounds as unknown so
5484 * that we are forced to pick them up from tnum and zext later and
5485 * if some path skips this step we are still safe.
5486 */
5487 __mark_reg64_unbounded(dst_reg);
5488 __update_reg32_bounds(dst_reg);
5489}
5490
5491static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5492 u64 umin_val, u64 umax_val)
5493{
5494 /* Special case <<32 because it is a common compiler pattern to sign
5495 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5496 * positive we know this shift will also be positive so we can track
5497 * bounds correctly. Otherwise we lose all sign bit information except
5498 * what we can pick up from var_off. Perhaps we can generalize this
5499 * later to shifts of any length.
5500 */
5501 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5502 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5503 else
5504 dst_reg->smax_value = S64_MAX;
5505
5506 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5507 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5508 else
5509 dst_reg->smin_value = S64_MIN;
5510
07cd2631
JF
5511 /* If we might shift our top bit out, then we know nothing */
5512 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5513 dst_reg->umin_value = 0;
5514 dst_reg->umax_value = U64_MAX;
5515 } else {
5516 dst_reg->umin_value <<= umin_val;
5517 dst_reg->umax_value <<= umax_val;
5518 }
3f50f132
JF
5519}
5520
5521static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5522 struct bpf_reg_state *src_reg)
5523{
5524 u64 umax_val = src_reg->umax_value;
5525 u64 umin_val = src_reg->umin_value;
5526
5527 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
5528 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5529 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5530
07cd2631
JF
5531 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5532 /* We may learn something more from the var_off */
5533 __update_reg_bounds(dst_reg);
5534}
5535
3f50f132
JF
5536static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5537 struct bpf_reg_state *src_reg)
5538{
5539 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5540 u32 umax_val = src_reg->u32_max_value;
5541 u32 umin_val = src_reg->u32_min_value;
5542
5543 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5544 * be negative, then either:
5545 * 1) src_reg might be zero, so the sign bit of the result is
5546 * unknown, so we lose our signed bounds
5547 * 2) it's known negative, thus the unsigned bounds capture the
5548 * signed bounds
5549 * 3) the signed bounds cross zero, so they tell us nothing
5550 * about the result
5551 * If the value in dst_reg is known nonnegative, then again the
5552 * unsigned bounts capture the signed bounds.
5553 * Thus, in all cases it suffices to blow away our signed bounds
5554 * and rely on inferring new ones from the unsigned bounds and
5555 * var_off of the result.
5556 */
5557 dst_reg->s32_min_value = S32_MIN;
5558 dst_reg->s32_max_value = S32_MAX;
5559
5560 dst_reg->var_off = tnum_rshift(subreg, umin_val);
5561 dst_reg->u32_min_value >>= umax_val;
5562 dst_reg->u32_max_value >>= umin_val;
5563
5564 __mark_reg64_unbounded(dst_reg);
5565 __update_reg32_bounds(dst_reg);
5566}
5567
07cd2631
JF
5568static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5569 struct bpf_reg_state *src_reg)
5570{
5571 u64 umax_val = src_reg->umax_value;
5572 u64 umin_val = src_reg->umin_value;
5573
5574 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5575 * be negative, then either:
5576 * 1) src_reg might be zero, so the sign bit of the result is
5577 * unknown, so we lose our signed bounds
5578 * 2) it's known negative, thus the unsigned bounds capture the
5579 * signed bounds
5580 * 3) the signed bounds cross zero, so they tell us nothing
5581 * about the result
5582 * If the value in dst_reg is known nonnegative, then again the
5583 * unsigned bounts capture the signed bounds.
5584 * Thus, in all cases it suffices to blow away our signed bounds
5585 * and rely on inferring new ones from the unsigned bounds and
5586 * var_off of the result.
5587 */
5588 dst_reg->smin_value = S64_MIN;
5589 dst_reg->smax_value = S64_MAX;
5590 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5591 dst_reg->umin_value >>= umax_val;
5592 dst_reg->umax_value >>= umin_val;
3f50f132
JF
5593
5594 /* Its not easy to operate on alu32 bounds here because it depends
5595 * on bits being shifted in. Take easy way out and mark unbounded
5596 * so we can recalculate later from tnum.
5597 */
5598 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
5599 __update_reg_bounds(dst_reg);
5600}
5601
3f50f132
JF
5602static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5603 struct bpf_reg_state *src_reg)
07cd2631 5604{
3f50f132 5605 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
5606
5607 /* Upon reaching here, src_known is true and
5608 * umax_val is equal to umin_val.
5609 */
3f50f132
JF
5610 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5611 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 5612
3f50f132
JF
5613 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5614
5615 /* blow away the dst_reg umin_value/umax_value and rely on
5616 * dst_reg var_off to refine the result.
5617 */
5618 dst_reg->u32_min_value = 0;
5619 dst_reg->u32_max_value = U32_MAX;
5620
5621 __mark_reg64_unbounded(dst_reg);
5622 __update_reg32_bounds(dst_reg);
5623}
5624
5625static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5626 struct bpf_reg_state *src_reg)
5627{
5628 u64 umin_val = src_reg->umin_value;
5629
5630 /* Upon reaching here, src_known is true and umax_val is equal
5631 * to umin_val.
5632 */
5633 dst_reg->smin_value >>= umin_val;
5634 dst_reg->smax_value >>= umin_val;
5635
5636 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
5637
5638 /* blow away the dst_reg umin_value/umax_value and rely on
5639 * dst_reg var_off to refine the result.
5640 */
5641 dst_reg->umin_value = 0;
5642 dst_reg->umax_value = U64_MAX;
3f50f132
JF
5643
5644 /* Its not easy to operate on alu32 bounds here because it depends
5645 * on bits being shifted in from upper 32-bits. Take easy way out
5646 * and mark unbounded so we can recalculate later from tnum.
5647 */
5648 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
5649 __update_reg_bounds(dst_reg);
5650}
5651
468f6eaf
JH
5652/* WARNING: This function does calculations on 64-bit values, but the actual
5653 * execution may occur on 32-bit values. Therefore, things like bitshifts
5654 * need extra checks in the 32-bit case.
5655 */
f1174f77
EC
5656static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5657 struct bpf_insn *insn,
5658 struct bpf_reg_state *dst_reg,
5659 struct bpf_reg_state src_reg)
969bf05e 5660{
638f5b90 5661 struct bpf_reg_state *regs = cur_regs(env);
48461135 5662 u8 opcode = BPF_OP(insn->code);
b0b3fb67 5663 bool src_known;
b03c9f9f
EC
5664 s64 smin_val, smax_val;
5665 u64 umin_val, umax_val;
3f50f132
JF
5666 s32 s32_min_val, s32_max_val;
5667 u32 u32_min_val, u32_max_val;
468f6eaf 5668 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
5669 u32 dst = insn->dst_reg;
5670 int ret;
3f50f132 5671 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 5672
b03c9f9f
EC
5673 smin_val = src_reg.smin_value;
5674 smax_val = src_reg.smax_value;
5675 umin_val = src_reg.umin_value;
5676 umax_val = src_reg.umax_value;
f23cc643 5677
3f50f132
JF
5678 s32_min_val = src_reg.s32_min_value;
5679 s32_max_val = src_reg.s32_max_value;
5680 u32_min_val = src_reg.u32_min_value;
5681 u32_max_val = src_reg.u32_max_value;
5682
5683 if (alu32) {
5684 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
5685 if ((src_known &&
5686 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5687 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5688 /* Taint dst register if offset had invalid bounds
5689 * derived from e.g. dead branches.
5690 */
5691 __mark_reg_unknown(env, dst_reg);
5692 return 0;
5693 }
5694 } else {
5695 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
5696 if ((src_known &&
5697 (smin_val != smax_val || umin_val != umax_val)) ||
5698 smin_val > smax_val || umin_val > umax_val) {
5699 /* Taint dst register if offset had invalid bounds
5700 * derived from e.g. dead branches.
5701 */
5702 __mark_reg_unknown(env, dst_reg);
5703 return 0;
5704 }
6f16101e
DB
5705 }
5706
bb7f0f98
AS
5707 if (!src_known &&
5708 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 5709 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
5710 return 0;
5711 }
5712
3f50f132
JF
5713 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5714 * There are two classes of instructions: The first class we track both
5715 * alu32 and alu64 sign/unsigned bounds independently this provides the
5716 * greatest amount of precision when alu operations are mixed with jmp32
5717 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5718 * and BPF_OR. This is possible because these ops have fairly easy to
5719 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5720 * See alu32 verifier tests for examples. The second class of
5721 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5722 * with regards to tracking sign/unsigned bounds because the bits may
5723 * cross subreg boundaries in the alu64 case. When this happens we mark
5724 * the reg unbounded in the subreg bound space and use the resulting
5725 * tnum to calculate an approximation of the sign/unsigned bounds.
5726 */
48461135
JB
5727 switch (opcode) {
5728 case BPF_ADD:
d3bd7413
DB
5729 ret = sanitize_val_alu(env, insn);
5730 if (ret < 0) {
5731 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5732 return ret;
5733 }
3f50f132 5734 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 5735 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 5736 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
5737 break;
5738 case BPF_SUB:
d3bd7413
DB
5739 ret = sanitize_val_alu(env, insn);
5740 if (ret < 0) {
5741 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5742 return ret;
5743 }
3f50f132 5744 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 5745 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 5746 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
5747 break;
5748 case BPF_MUL:
3f50f132
JF
5749 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5750 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 5751 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
5752 break;
5753 case BPF_AND:
3f50f132
JF
5754 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5755 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 5756 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
5757 break;
5758 case BPF_OR:
3f50f132
JF
5759 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5760 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 5761 scalar_min_max_or(dst_reg, &src_reg);
48461135
JB
5762 break;
5763 case BPF_LSH:
468f6eaf
JH
5764 if (umax_val >= insn_bitness) {
5765 /* Shifts greater than 31 or 63 are undefined.
5766 * This includes shifts by a negative number.
b03c9f9f 5767 */
61bd5218 5768 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5769 break;
5770 }
3f50f132
JF
5771 if (alu32)
5772 scalar32_min_max_lsh(dst_reg, &src_reg);
5773 else
5774 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
5775 break;
5776 case BPF_RSH:
468f6eaf
JH
5777 if (umax_val >= insn_bitness) {
5778 /* Shifts greater than 31 or 63 are undefined.
5779 * This includes shifts by a negative number.
b03c9f9f 5780 */
61bd5218 5781 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5782 break;
5783 }
3f50f132
JF
5784 if (alu32)
5785 scalar32_min_max_rsh(dst_reg, &src_reg);
5786 else
5787 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 5788 break;
9cbe1f5a
YS
5789 case BPF_ARSH:
5790 if (umax_val >= insn_bitness) {
5791 /* Shifts greater than 31 or 63 are undefined.
5792 * This includes shifts by a negative number.
5793 */
5794 mark_reg_unknown(env, regs, insn->dst_reg);
5795 break;
5796 }
3f50f132
JF
5797 if (alu32)
5798 scalar32_min_max_arsh(dst_reg, &src_reg);
5799 else
5800 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 5801 break;
48461135 5802 default:
61bd5218 5803 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
5804 break;
5805 }
5806
3f50f132
JF
5807 /* ALU32 ops are zero extended into 64bit register */
5808 if (alu32)
5809 zext_32_to_64(dst_reg);
468f6eaf 5810
294f2fc6 5811 __update_reg_bounds(dst_reg);
b03c9f9f
EC
5812 __reg_deduce_bounds(dst_reg);
5813 __reg_bound_offset(dst_reg);
f1174f77
EC
5814 return 0;
5815}
5816
5817/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5818 * and var_off.
5819 */
5820static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5821 struct bpf_insn *insn)
5822{
f4d7e40a
AS
5823 struct bpf_verifier_state *vstate = env->cur_state;
5824 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5825 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
5826 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5827 u8 opcode = BPF_OP(insn->code);
b5dc0163 5828 int err;
f1174f77
EC
5829
5830 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
5831 src_reg = NULL;
5832 if (dst_reg->type != SCALAR_VALUE)
5833 ptr_reg = dst_reg;
5834 if (BPF_SRC(insn->code) == BPF_X) {
5835 src_reg = &regs[insn->src_reg];
f1174f77
EC
5836 if (src_reg->type != SCALAR_VALUE) {
5837 if (dst_reg->type != SCALAR_VALUE) {
5838 /* Combining two pointers by any ALU op yields
82abbf8d
AS
5839 * an arbitrary scalar. Disallow all math except
5840 * pointer subtraction
f1174f77 5841 */
dd066823 5842 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
5843 mark_reg_unknown(env, regs, insn->dst_reg);
5844 return 0;
f1174f77 5845 }
82abbf8d
AS
5846 verbose(env, "R%d pointer %s pointer prohibited\n",
5847 insn->dst_reg,
5848 bpf_alu_string[opcode >> 4]);
5849 return -EACCES;
f1174f77
EC
5850 } else {
5851 /* scalar += pointer
5852 * This is legal, but we have to reverse our
5853 * src/dest handling in computing the range
5854 */
b5dc0163
AS
5855 err = mark_chain_precision(env, insn->dst_reg);
5856 if (err)
5857 return err;
82abbf8d
AS
5858 return adjust_ptr_min_max_vals(env, insn,
5859 src_reg, dst_reg);
f1174f77
EC
5860 }
5861 } else if (ptr_reg) {
5862 /* pointer += scalar */
b5dc0163
AS
5863 err = mark_chain_precision(env, insn->src_reg);
5864 if (err)
5865 return err;
82abbf8d
AS
5866 return adjust_ptr_min_max_vals(env, insn,
5867 dst_reg, src_reg);
f1174f77
EC
5868 }
5869 } else {
5870 /* Pretend the src is a reg with a known value, since we only
5871 * need to be able to read from this state.
5872 */
5873 off_reg.type = SCALAR_VALUE;
b03c9f9f 5874 __mark_reg_known(&off_reg, insn->imm);
f1174f77 5875 src_reg = &off_reg;
82abbf8d
AS
5876 if (ptr_reg) /* pointer += K */
5877 return adjust_ptr_min_max_vals(env, insn,
5878 ptr_reg, src_reg);
f1174f77
EC
5879 }
5880
5881 /* Got here implies adding two SCALAR_VALUEs */
5882 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 5883 print_verifier_state(env, state);
61bd5218 5884 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
5885 return -EINVAL;
5886 }
5887 if (WARN_ON(!src_reg)) {
f4d7e40a 5888 print_verifier_state(env, state);
61bd5218 5889 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
5890 return -EINVAL;
5891 }
5892 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
5893}
5894
17a52670 5895/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 5896static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5897{
638f5b90 5898 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
5899 u8 opcode = BPF_OP(insn->code);
5900 int err;
5901
5902 if (opcode == BPF_END || opcode == BPF_NEG) {
5903 if (opcode == BPF_NEG) {
5904 if (BPF_SRC(insn->code) != 0 ||
5905 insn->src_reg != BPF_REG_0 ||
5906 insn->off != 0 || insn->imm != 0) {
61bd5218 5907 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
5908 return -EINVAL;
5909 }
5910 } else {
5911 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
5912 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5913 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 5914 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
5915 return -EINVAL;
5916 }
5917 }
5918
5919 /* check src operand */
dc503a8a 5920 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5921 if (err)
5922 return err;
5923
1be7f75d 5924 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 5925 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
5926 insn->dst_reg);
5927 return -EACCES;
5928 }
5929
17a52670 5930 /* check dest operand */
dc503a8a 5931 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5932 if (err)
5933 return err;
5934
5935 } else if (opcode == BPF_MOV) {
5936
5937 if (BPF_SRC(insn->code) == BPF_X) {
5938 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5939 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5940 return -EINVAL;
5941 }
5942
5943 /* check src operand */
dc503a8a 5944 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5945 if (err)
5946 return err;
5947 } else {
5948 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5949 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5950 return -EINVAL;
5951 }
5952 }
5953
fbeb1603
AF
5954 /* check dest operand, mark as required later */
5955 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5956 if (err)
5957 return err;
5958
5959 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
5960 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5961 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5962
17a52670
AS
5963 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5964 /* case: R1 = R2
5965 * copy register state to dest reg
5966 */
e434b8cd
JW
5967 *dst_reg = *src_reg;
5968 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5969 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 5970 } else {
f1174f77 5971 /* R1 = (u32) R2 */
1be7f75d 5972 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
5973 verbose(env,
5974 "R%d partial copy of pointer\n",
1be7f75d
AS
5975 insn->src_reg);
5976 return -EACCES;
e434b8cd
JW
5977 } else if (src_reg->type == SCALAR_VALUE) {
5978 *dst_reg = *src_reg;
5979 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5980 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
5981 } else {
5982 mark_reg_unknown(env, regs,
5983 insn->dst_reg);
1be7f75d 5984 }
3f50f132 5985 zext_32_to_64(dst_reg);
17a52670
AS
5986 }
5987 } else {
5988 /* case: R = imm
5989 * remember the value we stored into this reg
5990 */
fbeb1603
AF
5991 /* clear any state __mark_reg_known doesn't set */
5992 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5993 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5994 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5995 __mark_reg_known(regs + insn->dst_reg,
5996 insn->imm);
5997 } else {
5998 __mark_reg_known(regs + insn->dst_reg,
5999 (u32)insn->imm);
6000 }
17a52670
AS
6001 }
6002
6003 } else if (opcode > BPF_END) {
61bd5218 6004 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6005 return -EINVAL;
6006
6007 } else { /* all other ALU ops: and, sub, xor, add, ... */
6008
17a52670
AS
6009 if (BPF_SRC(insn->code) == BPF_X) {
6010 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6011 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6012 return -EINVAL;
6013 }
6014 /* check src1 operand */
dc503a8a 6015 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6016 if (err)
6017 return err;
6018 } else {
6019 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6020 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6021 return -EINVAL;
6022 }
6023 }
6024
6025 /* check src2 operand */
dc503a8a 6026 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6027 if (err)
6028 return err;
6029
6030 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6031 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6032 verbose(env, "div by zero\n");
17a52670
AS
6033 return -EINVAL;
6034 }
6035
229394e8
RV
6036 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6037 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6038 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6039
6040 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6041 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6042 return -EINVAL;
6043 }
6044 }
6045
1a0dc1ac 6046 /* check dest operand */
dc503a8a 6047 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6048 if (err)
6049 return err;
6050
f1174f77 6051 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6052 }
6053
6054 return 0;
6055}
6056
c6a9efa1
PC
6057static void __find_good_pkt_pointers(struct bpf_func_state *state,
6058 struct bpf_reg_state *dst_reg,
6059 enum bpf_reg_type type, u16 new_range)
6060{
6061 struct bpf_reg_state *reg;
6062 int i;
6063
6064 for (i = 0; i < MAX_BPF_REG; i++) {
6065 reg = &state->regs[i];
6066 if (reg->type == type && reg->id == dst_reg->id)
6067 /* keep the maximum range already checked */
6068 reg->range = max(reg->range, new_range);
6069 }
6070
6071 bpf_for_each_spilled_reg(i, state, reg) {
6072 if (!reg)
6073 continue;
6074 if (reg->type == type && reg->id == dst_reg->id)
6075 reg->range = max(reg->range, new_range);
6076 }
6077}
6078
f4d7e40a 6079static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6080 struct bpf_reg_state *dst_reg,
f8ddadc4 6081 enum bpf_reg_type type,
fb2a311a 6082 bool range_right_open)
969bf05e 6083{
fb2a311a 6084 u16 new_range;
c6a9efa1 6085 int i;
2d2be8ca 6086
fb2a311a
DB
6087 if (dst_reg->off < 0 ||
6088 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6089 /* This doesn't give us any range */
6090 return;
6091
b03c9f9f
EC
6092 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6093 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6094 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6095 * than pkt_end, but that's because it's also less than pkt.
6096 */
6097 return;
6098
fb2a311a
DB
6099 new_range = dst_reg->off;
6100 if (range_right_open)
6101 new_range--;
6102
6103 /* Examples for register markings:
2d2be8ca 6104 *
fb2a311a 6105 * pkt_data in dst register:
2d2be8ca
DB
6106 *
6107 * r2 = r3;
6108 * r2 += 8;
6109 * if (r2 > pkt_end) goto <handle exception>
6110 * <access okay>
6111 *
b4e432f1
DB
6112 * r2 = r3;
6113 * r2 += 8;
6114 * if (r2 < pkt_end) goto <access okay>
6115 * <handle exception>
6116 *
2d2be8ca
DB
6117 * Where:
6118 * r2 == dst_reg, pkt_end == src_reg
6119 * r2=pkt(id=n,off=8,r=0)
6120 * r3=pkt(id=n,off=0,r=0)
6121 *
fb2a311a 6122 * pkt_data in src register:
2d2be8ca
DB
6123 *
6124 * r2 = r3;
6125 * r2 += 8;
6126 * if (pkt_end >= r2) goto <access okay>
6127 * <handle exception>
6128 *
b4e432f1
DB
6129 * r2 = r3;
6130 * r2 += 8;
6131 * if (pkt_end <= r2) goto <handle exception>
6132 * <access okay>
6133 *
2d2be8ca
DB
6134 * Where:
6135 * pkt_end == dst_reg, r2 == src_reg
6136 * r2=pkt(id=n,off=8,r=0)
6137 * r3=pkt(id=n,off=0,r=0)
6138 *
6139 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6140 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6141 * and [r3, r3 + 8-1) respectively is safe to access depending on
6142 * the check.
969bf05e 6143 */
2d2be8ca 6144
f1174f77
EC
6145 /* If our ids match, then we must have the same max_value. And we
6146 * don't care about the other reg's fixed offset, since if it's too big
6147 * the range won't allow anything.
6148 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6149 */
c6a9efa1
PC
6150 for (i = 0; i <= vstate->curframe; i++)
6151 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6152 new_range);
969bf05e
AS
6153}
6154
3f50f132 6155static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6156{
3f50f132
JF
6157 struct tnum subreg = tnum_subreg(reg->var_off);
6158 s32 sval = (s32)val;
a72dafaf 6159
3f50f132
JF
6160 switch (opcode) {
6161 case BPF_JEQ:
6162 if (tnum_is_const(subreg))
6163 return !!tnum_equals_const(subreg, val);
6164 break;
6165 case BPF_JNE:
6166 if (tnum_is_const(subreg))
6167 return !tnum_equals_const(subreg, val);
6168 break;
6169 case BPF_JSET:
6170 if ((~subreg.mask & subreg.value) & val)
6171 return 1;
6172 if (!((subreg.mask | subreg.value) & val))
6173 return 0;
6174 break;
6175 case BPF_JGT:
6176 if (reg->u32_min_value > val)
6177 return 1;
6178 else if (reg->u32_max_value <= val)
6179 return 0;
6180 break;
6181 case BPF_JSGT:
6182 if (reg->s32_min_value > sval)
6183 return 1;
6184 else if (reg->s32_max_value < sval)
6185 return 0;
6186 break;
6187 case BPF_JLT:
6188 if (reg->u32_max_value < val)
6189 return 1;
6190 else if (reg->u32_min_value >= val)
6191 return 0;
6192 break;
6193 case BPF_JSLT:
6194 if (reg->s32_max_value < sval)
6195 return 1;
6196 else if (reg->s32_min_value >= sval)
6197 return 0;
6198 break;
6199 case BPF_JGE:
6200 if (reg->u32_min_value >= val)
6201 return 1;
6202 else if (reg->u32_max_value < val)
6203 return 0;
6204 break;
6205 case BPF_JSGE:
6206 if (reg->s32_min_value >= sval)
6207 return 1;
6208 else if (reg->s32_max_value < sval)
6209 return 0;
6210 break;
6211 case BPF_JLE:
6212 if (reg->u32_max_value <= val)
6213 return 1;
6214 else if (reg->u32_min_value > val)
6215 return 0;
6216 break;
6217 case BPF_JSLE:
6218 if (reg->s32_max_value <= sval)
6219 return 1;
6220 else if (reg->s32_min_value > sval)
6221 return 0;
6222 break;
6223 }
4f7b3e82 6224
3f50f132
JF
6225 return -1;
6226}
092ed096 6227
3f50f132
JF
6228
6229static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6230{
6231 s64 sval = (s64)val;
a72dafaf 6232
4f7b3e82
AS
6233 switch (opcode) {
6234 case BPF_JEQ:
6235 if (tnum_is_const(reg->var_off))
6236 return !!tnum_equals_const(reg->var_off, val);
6237 break;
6238 case BPF_JNE:
6239 if (tnum_is_const(reg->var_off))
6240 return !tnum_equals_const(reg->var_off, val);
6241 break;
960ea056
JK
6242 case BPF_JSET:
6243 if ((~reg->var_off.mask & reg->var_off.value) & val)
6244 return 1;
6245 if (!((reg->var_off.mask | reg->var_off.value) & val))
6246 return 0;
6247 break;
4f7b3e82
AS
6248 case BPF_JGT:
6249 if (reg->umin_value > val)
6250 return 1;
6251 else if (reg->umax_value <= val)
6252 return 0;
6253 break;
6254 case BPF_JSGT:
a72dafaf 6255 if (reg->smin_value > sval)
4f7b3e82 6256 return 1;
a72dafaf 6257 else if (reg->smax_value < sval)
4f7b3e82
AS
6258 return 0;
6259 break;
6260 case BPF_JLT:
6261 if (reg->umax_value < val)
6262 return 1;
6263 else if (reg->umin_value >= val)
6264 return 0;
6265 break;
6266 case BPF_JSLT:
a72dafaf 6267 if (reg->smax_value < sval)
4f7b3e82 6268 return 1;
a72dafaf 6269 else if (reg->smin_value >= sval)
4f7b3e82
AS
6270 return 0;
6271 break;
6272 case BPF_JGE:
6273 if (reg->umin_value >= val)
6274 return 1;
6275 else if (reg->umax_value < val)
6276 return 0;
6277 break;
6278 case BPF_JSGE:
a72dafaf 6279 if (reg->smin_value >= sval)
4f7b3e82 6280 return 1;
a72dafaf 6281 else if (reg->smax_value < sval)
4f7b3e82
AS
6282 return 0;
6283 break;
6284 case BPF_JLE:
6285 if (reg->umax_value <= val)
6286 return 1;
6287 else if (reg->umin_value > val)
6288 return 0;
6289 break;
6290 case BPF_JSLE:
a72dafaf 6291 if (reg->smax_value <= sval)
4f7b3e82 6292 return 1;
a72dafaf 6293 else if (reg->smin_value > sval)
4f7b3e82
AS
6294 return 0;
6295 break;
6296 }
6297
6298 return -1;
6299}
6300
3f50f132
JF
6301/* compute branch direction of the expression "if (reg opcode val) goto target;"
6302 * and return:
6303 * 1 - branch will be taken and "goto target" will be executed
6304 * 0 - branch will not be taken and fall-through to next insn
6305 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6306 * range [0,10]
604dca5e 6307 */
3f50f132
JF
6308static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6309 bool is_jmp32)
604dca5e 6310{
3f50f132
JF
6311 if (__is_pointer_value(false, reg))
6312 return -1;
604dca5e 6313
3f50f132
JF
6314 if (is_jmp32)
6315 return is_branch32_taken(reg, val, opcode);
6316 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6317}
6318
48461135
JB
6319/* Adjusts the register min/max values in the case that the dst_reg is the
6320 * variable register that we are working on, and src_reg is a constant or we're
6321 * simply doing a BPF_K check.
f1174f77 6322 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6323 */
6324static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6325 struct bpf_reg_state *false_reg,
6326 u64 val, u32 val32,
092ed096 6327 u8 opcode, bool is_jmp32)
48461135 6328{
3f50f132
JF
6329 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6330 struct tnum false_64off = false_reg->var_off;
6331 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6332 struct tnum true_64off = true_reg->var_off;
6333 s64 sval = (s64)val;
6334 s32 sval32 = (s32)val32;
a72dafaf 6335
f1174f77
EC
6336 /* If the dst_reg is a pointer, we can't learn anything about its
6337 * variable offset from the compare (unless src_reg were a pointer into
6338 * the same object, but we don't bother with that.
6339 * Since false_reg and true_reg have the same type by construction, we
6340 * only need to check one of them for pointerness.
6341 */
6342 if (__is_pointer_value(false, false_reg))
6343 return;
4cabc5b1 6344
48461135
JB
6345 switch (opcode) {
6346 case BPF_JEQ:
48461135 6347 case BPF_JNE:
a72dafaf
JW
6348 {
6349 struct bpf_reg_state *reg =
6350 opcode == BPF_JEQ ? true_reg : false_reg;
6351
6352 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6353 * if it is true we know the value for sure. Likewise for
6354 * BPF_JNE.
48461135 6355 */
3f50f132
JF
6356 if (is_jmp32)
6357 __mark_reg32_known(reg, val32);
6358 else
092ed096 6359 __mark_reg_known(reg, val);
48461135 6360 break;
a72dafaf 6361 }
960ea056 6362 case BPF_JSET:
3f50f132
JF
6363 if (is_jmp32) {
6364 false_32off = tnum_and(false_32off, tnum_const(~val32));
6365 if (is_power_of_2(val32))
6366 true_32off = tnum_or(true_32off,
6367 tnum_const(val32));
6368 } else {
6369 false_64off = tnum_and(false_64off, tnum_const(~val));
6370 if (is_power_of_2(val))
6371 true_64off = tnum_or(true_64off,
6372 tnum_const(val));
6373 }
960ea056 6374 break;
48461135 6375 case BPF_JGE:
a72dafaf
JW
6376 case BPF_JGT:
6377 {
3f50f132
JF
6378 if (is_jmp32) {
6379 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
6380 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6381
6382 false_reg->u32_max_value = min(false_reg->u32_max_value,
6383 false_umax);
6384 true_reg->u32_min_value = max(true_reg->u32_min_value,
6385 true_umin);
6386 } else {
6387 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
6388 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6389
6390 false_reg->umax_value = min(false_reg->umax_value, false_umax);
6391 true_reg->umin_value = max(true_reg->umin_value, true_umin);
6392 }
b03c9f9f 6393 break;
a72dafaf 6394 }
48461135 6395 case BPF_JSGE:
a72dafaf
JW
6396 case BPF_JSGT:
6397 {
3f50f132
JF
6398 if (is_jmp32) {
6399 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
6400 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 6401
3f50f132
JF
6402 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6403 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6404 } else {
6405 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
6406 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6407
6408 false_reg->smax_value = min(false_reg->smax_value, false_smax);
6409 true_reg->smin_value = max(true_reg->smin_value, true_smin);
6410 }
48461135 6411 break;
a72dafaf 6412 }
b4e432f1 6413 case BPF_JLE:
a72dafaf
JW
6414 case BPF_JLT:
6415 {
3f50f132
JF
6416 if (is_jmp32) {
6417 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
6418 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6419
6420 false_reg->u32_min_value = max(false_reg->u32_min_value,
6421 false_umin);
6422 true_reg->u32_max_value = min(true_reg->u32_max_value,
6423 true_umax);
6424 } else {
6425 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
6426 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6427
6428 false_reg->umin_value = max(false_reg->umin_value, false_umin);
6429 true_reg->umax_value = min(true_reg->umax_value, true_umax);
6430 }
b4e432f1 6431 break;
a72dafaf 6432 }
b4e432f1 6433 case BPF_JSLE:
a72dafaf
JW
6434 case BPF_JSLT:
6435 {
3f50f132
JF
6436 if (is_jmp32) {
6437 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
6438 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 6439
3f50f132
JF
6440 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6441 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6442 } else {
6443 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
6444 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6445
6446 false_reg->smin_value = max(false_reg->smin_value, false_smin);
6447 true_reg->smax_value = min(true_reg->smax_value, true_smax);
6448 }
b4e432f1 6449 break;
a72dafaf 6450 }
48461135 6451 default:
0fc31b10 6452 return;
48461135
JB
6453 }
6454
3f50f132
JF
6455 if (is_jmp32) {
6456 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6457 tnum_subreg(false_32off));
6458 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6459 tnum_subreg(true_32off));
6460 __reg_combine_32_into_64(false_reg);
6461 __reg_combine_32_into_64(true_reg);
6462 } else {
6463 false_reg->var_off = false_64off;
6464 true_reg->var_off = true_64off;
6465 __reg_combine_64_into_32(false_reg);
6466 __reg_combine_64_into_32(true_reg);
6467 }
48461135
JB
6468}
6469
f1174f77
EC
6470/* Same as above, but for the case that dst_reg holds a constant and src_reg is
6471 * the variable reg.
48461135
JB
6472 */
6473static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
6474 struct bpf_reg_state *false_reg,
6475 u64 val, u32 val32,
092ed096 6476 u8 opcode, bool is_jmp32)
48461135 6477{
0fc31b10
JH
6478 /* How can we transform "a <op> b" into "b <op> a"? */
6479 static const u8 opcode_flip[16] = {
6480 /* these stay the same */
6481 [BPF_JEQ >> 4] = BPF_JEQ,
6482 [BPF_JNE >> 4] = BPF_JNE,
6483 [BPF_JSET >> 4] = BPF_JSET,
6484 /* these swap "lesser" and "greater" (L and G in the opcodes) */
6485 [BPF_JGE >> 4] = BPF_JLE,
6486 [BPF_JGT >> 4] = BPF_JLT,
6487 [BPF_JLE >> 4] = BPF_JGE,
6488 [BPF_JLT >> 4] = BPF_JGT,
6489 [BPF_JSGE >> 4] = BPF_JSLE,
6490 [BPF_JSGT >> 4] = BPF_JSLT,
6491 [BPF_JSLE >> 4] = BPF_JSGE,
6492 [BPF_JSLT >> 4] = BPF_JSGT
6493 };
6494 opcode = opcode_flip[opcode >> 4];
6495 /* This uses zero as "not present in table"; luckily the zero opcode,
6496 * BPF_JA, can't get here.
b03c9f9f 6497 */
0fc31b10 6498 if (opcode)
3f50f132 6499 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
6500}
6501
6502/* Regs are known to be equal, so intersect their min/max/var_off */
6503static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6504 struct bpf_reg_state *dst_reg)
6505{
b03c9f9f
EC
6506 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6507 dst_reg->umin_value);
6508 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6509 dst_reg->umax_value);
6510 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6511 dst_reg->smin_value);
6512 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6513 dst_reg->smax_value);
f1174f77
EC
6514 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6515 dst_reg->var_off);
b03c9f9f
EC
6516 /* We might have learned new bounds from the var_off. */
6517 __update_reg_bounds(src_reg);
6518 __update_reg_bounds(dst_reg);
6519 /* We might have learned something about the sign bit. */
6520 __reg_deduce_bounds(src_reg);
6521 __reg_deduce_bounds(dst_reg);
6522 /* We might have learned some bits from the bounds. */
6523 __reg_bound_offset(src_reg);
6524 __reg_bound_offset(dst_reg);
6525 /* Intersecting with the old var_off might have improved our bounds
6526 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6527 * then new var_off is (0; 0x7f...fc) which improves our umax.
6528 */
6529 __update_reg_bounds(src_reg);
6530 __update_reg_bounds(dst_reg);
f1174f77
EC
6531}
6532
6533static void reg_combine_min_max(struct bpf_reg_state *true_src,
6534 struct bpf_reg_state *true_dst,
6535 struct bpf_reg_state *false_src,
6536 struct bpf_reg_state *false_dst,
6537 u8 opcode)
6538{
6539 switch (opcode) {
6540 case BPF_JEQ:
6541 __reg_combine_min_max(true_src, true_dst);
6542 break;
6543 case BPF_JNE:
6544 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 6545 break;
4cabc5b1 6546 }
48461135
JB
6547}
6548
fd978bf7
JS
6549static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6550 struct bpf_reg_state *reg, u32 id,
840b9615 6551 bool is_null)
57a09bf0 6552{
840b9615 6553 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
6554 /* Old offset (both fixed and variable parts) should
6555 * have been known-zero, because we don't allow pointer
6556 * arithmetic on pointers that might be NULL.
6557 */
b03c9f9f
EC
6558 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6559 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 6560 reg->off)) {
b03c9f9f
EC
6561 __mark_reg_known_zero(reg);
6562 reg->off = 0;
f1174f77
EC
6563 }
6564 if (is_null) {
6565 reg->type = SCALAR_VALUE;
840b9615 6566 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
6567 const struct bpf_map *map = reg->map_ptr;
6568
6569 if (map->inner_map_meta) {
840b9615 6570 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
6571 reg->map_ptr = map->inner_map_meta;
6572 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 6573 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
6574 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6575 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6576 reg->type = PTR_TO_SOCKET;
840b9615
JS
6577 } else {
6578 reg->type = PTR_TO_MAP_VALUE;
6579 }
c64b7983
JS
6580 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6581 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
6582 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6583 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
6584 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6585 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
6586 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
6587 reg->type = PTR_TO_BTF_ID;
56f668df 6588 }
1b986589
MKL
6589 if (is_null) {
6590 /* We don't need id and ref_obj_id from this point
6591 * onwards anymore, thus we should better reset it,
6592 * so that state pruning has chances to take effect.
6593 */
6594 reg->id = 0;
6595 reg->ref_obj_id = 0;
6596 } else if (!reg_may_point_to_spin_lock(reg)) {
6597 /* For not-NULL ptr, reg->ref_obj_id will be reset
6598 * in release_reg_references().
6599 *
6600 * reg->id is still used by spin_lock ptr. Other
6601 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
6602 */
6603 reg->id = 0;
56f668df 6604 }
57a09bf0
TG
6605 }
6606}
6607
c6a9efa1
PC
6608static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6609 bool is_null)
6610{
6611 struct bpf_reg_state *reg;
6612 int i;
6613
6614 for (i = 0; i < MAX_BPF_REG; i++)
6615 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6616
6617 bpf_for_each_spilled_reg(i, state, reg) {
6618 if (!reg)
6619 continue;
6620 mark_ptr_or_null_reg(state, reg, id, is_null);
6621 }
6622}
6623
57a09bf0
TG
6624/* The logic is similar to find_good_pkt_pointers(), both could eventually
6625 * be folded together at some point.
6626 */
840b9615
JS
6627static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6628 bool is_null)
57a09bf0 6629{
f4d7e40a 6630 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 6631 struct bpf_reg_state *regs = state->regs;
1b986589 6632 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 6633 u32 id = regs[regno].id;
c6a9efa1 6634 int i;
57a09bf0 6635
1b986589
MKL
6636 if (ref_obj_id && ref_obj_id == id && is_null)
6637 /* regs[regno] is in the " == NULL" branch.
6638 * No one could have freed the reference state before
6639 * doing the NULL check.
6640 */
6641 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 6642
c6a9efa1
PC
6643 for (i = 0; i <= vstate->curframe; i++)
6644 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
6645}
6646
5beca081
DB
6647static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6648 struct bpf_reg_state *dst_reg,
6649 struct bpf_reg_state *src_reg,
6650 struct bpf_verifier_state *this_branch,
6651 struct bpf_verifier_state *other_branch)
6652{
6653 if (BPF_SRC(insn->code) != BPF_X)
6654 return false;
6655
092ed096
JW
6656 /* Pointers are always 64-bit. */
6657 if (BPF_CLASS(insn->code) == BPF_JMP32)
6658 return false;
6659
5beca081
DB
6660 switch (BPF_OP(insn->code)) {
6661 case BPF_JGT:
6662 if ((dst_reg->type == PTR_TO_PACKET &&
6663 src_reg->type == PTR_TO_PACKET_END) ||
6664 (dst_reg->type == PTR_TO_PACKET_META &&
6665 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6666 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6667 find_good_pkt_pointers(this_branch, dst_reg,
6668 dst_reg->type, false);
6669 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6670 src_reg->type == PTR_TO_PACKET) ||
6671 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6672 src_reg->type == PTR_TO_PACKET_META)) {
6673 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
6674 find_good_pkt_pointers(other_branch, src_reg,
6675 src_reg->type, true);
6676 } else {
6677 return false;
6678 }
6679 break;
6680 case BPF_JLT:
6681 if ((dst_reg->type == PTR_TO_PACKET &&
6682 src_reg->type == PTR_TO_PACKET_END) ||
6683 (dst_reg->type == PTR_TO_PACKET_META &&
6684 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6685 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6686 find_good_pkt_pointers(other_branch, dst_reg,
6687 dst_reg->type, true);
6688 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6689 src_reg->type == PTR_TO_PACKET) ||
6690 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6691 src_reg->type == PTR_TO_PACKET_META)) {
6692 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
6693 find_good_pkt_pointers(this_branch, src_reg,
6694 src_reg->type, false);
6695 } else {
6696 return false;
6697 }
6698 break;
6699 case BPF_JGE:
6700 if ((dst_reg->type == PTR_TO_PACKET &&
6701 src_reg->type == PTR_TO_PACKET_END) ||
6702 (dst_reg->type == PTR_TO_PACKET_META &&
6703 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6704 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6705 find_good_pkt_pointers(this_branch, dst_reg,
6706 dst_reg->type, true);
6707 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6708 src_reg->type == PTR_TO_PACKET) ||
6709 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6710 src_reg->type == PTR_TO_PACKET_META)) {
6711 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6712 find_good_pkt_pointers(other_branch, src_reg,
6713 src_reg->type, false);
6714 } else {
6715 return false;
6716 }
6717 break;
6718 case BPF_JLE:
6719 if ((dst_reg->type == PTR_TO_PACKET &&
6720 src_reg->type == PTR_TO_PACKET_END) ||
6721 (dst_reg->type == PTR_TO_PACKET_META &&
6722 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6723 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6724 find_good_pkt_pointers(other_branch, dst_reg,
6725 dst_reg->type, false);
6726 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6727 src_reg->type == PTR_TO_PACKET) ||
6728 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6729 src_reg->type == PTR_TO_PACKET_META)) {
6730 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6731 find_good_pkt_pointers(this_branch, src_reg,
6732 src_reg->type, true);
6733 } else {
6734 return false;
6735 }
6736 break;
6737 default:
6738 return false;
6739 }
6740
6741 return true;
6742}
6743
58e2af8b 6744static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
6745 struct bpf_insn *insn, int *insn_idx)
6746{
f4d7e40a
AS
6747 struct bpf_verifier_state *this_branch = env->cur_state;
6748 struct bpf_verifier_state *other_branch;
6749 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 6750 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 6751 u8 opcode = BPF_OP(insn->code);
092ed096 6752 bool is_jmp32;
fb8d251e 6753 int pred = -1;
17a52670
AS
6754 int err;
6755
092ed096
JW
6756 /* Only conditional jumps are expected to reach here. */
6757 if (opcode == BPF_JA || opcode > BPF_JSLE) {
6758 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
6759 return -EINVAL;
6760 }
6761
6762 if (BPF_SRC(insn->code) == BPF_X) {
6763 if (insn->imm != 0) {
092ed096 6764 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6765 return -EINVAL;
6766 }
6767
6768 /* check src1 operand */
dc503a8a 6769 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6770 if (err)
6771 return err;
1be7f75d
AS
6772
6773 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6774 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
6775 insn->src_reg);
6776 return -EACCES;
6777 }
fb8d251e 6778 src_reg = &regs[insn->src_reg];
17a52670
AS
6779 } else {
6780 if (insn->src_reg != BPF_REG_0) {
092ed096 6781 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6782 return -EINVAL;
6783 }
6784 }
6785
6786 /* check src2 operand */
dc503a8a 6787 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6788 if (err)
6789 return err;
6790
1a0dc1ac 6791 dst_reg = &regs[insn->dst_reg];
092ed096 6792 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 6793
3f50f132
JF
6794 if (BPF_SRC(insn->code) == BPF_K) {
6795 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6796 } else if (src_reg->type == SCALAR_VALUE &&
6797 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6798 pred = is_branch_taken(dst_reg,
6799 tnum_subreg(src_reg->var_off).value,
6800 opcode,
6801 is_jmp32);
6802 } else if (src_reg->type == SCALAR_VALUE &&
6803 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6804 pred = is_branch_taken(dst_reg,
6805 src_reg->var_off.value,
6806 opcode,
6807 is_jmp32);
6808 }
6809
b5dc0163
AS
6810 if (pred >= 0) {
6811 err = mark_chain_precision(env, insn->dst_reg);
6812 if (BPF_SRC(insn->code) == BPF_X && !err)
6813 err = mark_chain_precision(env, insn->src_reg);
6814 if (err)
6815 return err;
6816 }
fb8d251e
AS
6817 if (pred == 1) {
6818 /* only follow the goto, ignore fall-through */
6819 *insn_idx += insn->off;
6820 return 0;
6821 } else if (pred == 0) {
6822 /* only follow fall-through branch, since
6823 * that's where the program will go
6824 */
6825 return 0;
17a52670
AS
6826 }
6827
979d63d5
DB
6828 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6829 false);
17a52670
AS
6830 if (!other_branch)
6831 return -EFAULT;
f4d7e40a 6832 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 6833
48461135
JB
6834 /* detect if we are comparing against a constant value so we can adjust
6835 * our min/max values for our dst register.
f1174f77
EC
6836 * this is only legit if both are scalars (or pointers to the same
6837 * object, I suppose, but we don't support that right now), because
6838 * otherwise the different base pointers mean the offsets aren't
6839 * comparable.
48461135
JB
6840 */
6841 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 6842 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 6843
f1174f77 6844 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
6845 src_reg->type == SCALAR_VALUE) {
6846 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
6847 (is_jmp32 &&
6848 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 6849 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 6850 dst_reg,
3f50f132
JF
6851 src_reg->var_off.value,
6852 tnum_subreg(src_reg->var_off).value,
092ed096
JW
6853 opcode, is_jmp32);
6854 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
6855 (is_jmp32 &&
6856 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 6857 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 6858 src_reg,
3f50f132
JF
6859 dst_reg->var_off.value,
6860 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
6861 opcode, is_jmp32);
6862 else if (!is_jmp32 &&
6863 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 6864 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
6865 reg_combine_min_max(&other_branch_regs[insn->src_reg],
6866 &other_branch_regs[insn->dst_reg],
092ed096 6867 src_reg, dst_reg, opcode);
f1174f77
EC
6868 }
6869 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 6870 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
6871 dst_reg, insn->imm, (u32)insn->imm,
6872 opcode, is_jmp32);
48461135
JB
6873 }
6874
092ed096
JW
6875 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6876 * NOTE: these optimizations below are related with pointer comparison
6877 * which will never be JMP32.
6878 */
6879 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 6880 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
6881 reg_type_may_be_null(dst_reg->type)) {
6882 /* Mark all identical registers in each branch as either
57a09bf0
TG
6883 * safe or unknown depending R == 0 or R != 0 conditional.
6884 */
840b9615
JS
6885 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6886 opcode == BPF_JNE);
6887 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6888 opcode == BPF_JEQ);
5beca081
DB
6889 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6890 this_branch, other_branch) &&
6891 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
6892 verbose(env, "R%d pointer comparison prohibited\n",
6893 insn->dst_reg);
1be7f75d 6894 return -EACCES;
17a52670 6895 }
06ee7115 6896 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 6897 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
6898 return 0;
6899}
6900
17a52670 6901/* verify BPF_LD_IMM64 instruction */
58e2af8b 6902static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6903{
d8eca5bb 6904 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 6905 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 6906 struct bpf_map *map;
17a52670
AS
6907 int err;
6908
6909 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 6910 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
6911 return -EINVAL;
6912 }
6913 if (insn->off != 0) {
61bd5218 6914 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
6915 return -EINVAL;
6916 }
6917
dc503a8a 6918 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6919 if (err)
6920 return err;
6921
6b173873 6922 if (insn->src_reg == 0) {
6b173873
JK
6923 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6924
f1174f77 6925 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 6926 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 6927 return 0;
6b173873 6928 }
17a52670 6929
d8eca5bb
DB
6930 map = env->used_maps[aux->map_index];
6931 mark_reg_known_zero(env, regs, insn->dst_reg);
6932 regs[insn->dst_reg].map_ptr = map;
6933
6934 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6935 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6936 regs[insn->dst_reg].off = aux->map_off;
6937 if (map_value_has_spin_lock(map))
6938 regs[insn->dst_reg].id = ++env->id_gen;
6939 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6940 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6941 } else {
6942 verbose(env, "bpf verifier is misconfigured\n");
6943 return -EINVAL;
6944 }
17a52670 6945
17a52670
AS
6946 return 0;
6947}
6948
96be4325
DB
6949static bool may_access_skb(enum bpf_prog_type type)
6950{
6951 switch (type) {
6952 case BPF_PROG_TYPE_SOCKET_FILTER:
6953 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 6954 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
6955 return true;
6956 default:
6957 return false;
6958 }
6959}
6960
ddd872bc
AS
6961/* verify safety of LD_ABS|LD_IND instructions:
6962 * - they can only appear in the programs where ctx == skb
6963 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6964 * preserve R6-R9, and store return value into R0
6965 *
6966 * Implicit input:
6967 * ctx == skb == R6 == CTX
6968 *
6969 * Explicit input:
6970 * SRC == any register
6971 * IMM == 32-bit immediate
6972 *
6973 * Output:
6974 * R0 - 8/16/32-bit skb data converted to cpu endianness
6975 */
58e2af8b 6976static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6977{
638f5b90 6978 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 6979 static const int ctx_reg = BPF_REG_6;
ddd872bc 6980 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6981 int i, err;
6982
24701ece 6983 if (!may_access_skb(env->prog->type)) {
61bd5218 6984 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6985 return -EINVAL;
6986 }
6987
e0cea7ce
DB
6988 if (!env->ops->gen_ld_abs) {
6989 verbose(env, "bpf verifier is misconfigured\n");
6990 return -EINVAL;
6991 }
6992
f910cefa 6993 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6994 /* when program has LD_ABS insn JITs and interpreter assume
6995 * that r1 == ctx == skb which is not the case for callees
6996 * that can have arbitrary arguments. It's problematic
6997 * for main prog as well since JITs would need to analyze
6998 * all functions in order to make proper register save/restore
6999 * decisions in the main prog. Hence disallow LD_ABS with calls
7000 */
7001 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7002 return -EINVAL;
7003 }
7004
ddd872bc 7005 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7006 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7007 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7008 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7009 return -EINVAL;
7010 }
7011
7012 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7013 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7014 if (err)
7015 return err;
7016
fd978bf7
JS
7017 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7018 * gen_ld_abs() may terminate the program at runtime, leading to
7019 * reference leak.
7020 */
7021 err = check_reference_leak(env);
7022 if (err) {
7023 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7024 return err;
7025 }
7026
d83525ca
AS
7027 if (env->cur_state->active_spin_lock) {
7028 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7029 return -EINVAL;
7030 }
7031
6d4f151a 7032 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7033 verbose(env,
7034 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7035 return -EINVAL;
7036 }
7037
7038 if (mode == BPF_IND) {
7039 /* check explicit source operand */
dc503a8a 7040 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7041 if (err)
7042 return err;
7043 }
7044
6d4f151a
DB
7045 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7046 if (err < 0)
7047 return err;
7048
ddd872bc 7049 /* reset caller saved regs to unreadable */
dc503a8a 7050 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7051 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7052 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7053 }
ddd872bc
AS
7054
7055 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7056 * the value fetched from the packet.
7057 * Already marked as written above.
ddd872bc 7058 */
61bd5218 7059 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7060 /* ld_abs load up to 32-bit skb data. */
7061 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7062 return 0;
7063}
7064
390ee7e2
AS
7065static int check_return_code(struct bpf_verifier_env *env)
7066{
5cf1e914 7067 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7068 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7069 struct bpf_reg_state *reg;
7070 struct tnum range = tnum_range(0, 1);
27ae7997
MKL
7071 int err;
7072
9e4e01df
KS
7073 /* LSM and struct_ops func-ptr's return type could be "void" */
7074 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7075 env->prog->type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7076 !prog->aux->attach_func_proto->type)
7077 return 0;
7078
7079 /* eBPF calling convetion is such that R0 is used
7080 * to return the value from eBPF program.
7081 * Make sure that it's readable at this time
7082 * of bpf_exit, which means that program wrote
7083 * something into it earlier
7084 */
7085 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7086 if (err)
7087 return err;
7088
7089 if (is_pointer_value(env, BPF_REG_0)) {
7090 verbose(env, "R0 leaks addr as return value\n");
7091 return -EACCES;
7092 }
390ee7e2
AS
7093
7094 switch (env->prog->type) {
983695fa
DB
7095 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7096 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7097 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7098 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7099 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7100 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7101 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7102 range = tnum_range(1, 1);
ed4ed404 7103 break;
390ee7e2 7104 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7105 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7106 range = tnum_range(0, 3);
7107 enforce_attach_type_range = tnum_range(2, 3);
7108 }
ed4ed404 7109 break;
390ee7e2
AS
7110 case BPF_PROG_TYPE_CGROUP_SOCK:
7111 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7112 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7113 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7114 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7115 break;
15ab09bd
AS
7116 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7117 if (!env->prog->aux->attach_btf_id)
7118 return 0;
7119 range = tnum_const(0);
7120 break;
15d83c4d 7121 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7122 switch (env->prog->expected_attach_type) {
7123 case BPF_TRACE_FENTRY:
7124 case BPF_TRACE_FEXIT:
7125 range = tnum_const(0);
7126 break;
7127 case BPF_TRACE_RAW_TP:
7128 case BPF_MODIFY_RETURN:
15d83c4d 7129 return 0;
2ec0616e
DB
7130 case BPF_TRACE_ITER:
7131 break;
e92888c7
YS
7132 default:
7133 return -ENOTSUPP;
7134 }
15d83c4d 7135 break;
e92888c7
YS
7136 case BPF_PROG_TYPE_EXT:
7137 /* freplace program can return anything as its return value
7138 * depends on the to-be-replaced kernel func or bpf program.
7139 */
390ee7e2
AS
7140 default:
7141 return 0;
7142 }
7143
638f5b90 7144 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7145 if (reg->type != SCALAR_VALUE) {
61bd5218 7146 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7147 reg_type_str[reg->type]);
7148 return -EINVAL;
7149 }
7150
7151 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7152 char tn_buf[48];
7153
61bd5218 7154 verbose(env, "At program exit the register R0 ");
390ee7e2 7155 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7157 verbose(env, "has value %s", tn_buf);
390ee7e2 7158 } else {
61bd5218 7159 verbose(env, "has unknown scalar value");
390ee7e2 7160 }
5cf1e914 7161 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7162 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7163 return -EINVAL;
7164 }
5cf1e914 7165
7166 if (!tnum_is_unknown(enforce_attach_type_range) &&
7167 tnum_in(enforce_attach_type_range, reg->var_off))
7168 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7169 return 0;
7170}
7171
475fb78f
AS
7172/* non-recursive DFS pseudo code
7173 * 1 procedure DFS-iterative(G,v):
7174 * 2 label v as discovered
7175 * 3 let S be a stack
7176 * 4 S.push(v)
7177 * 5 while S is not empty
7178 * 6 t <- S.pop()
7179 * 7 if t is what we're looking for:
7180 * 8 return t
7181 * 9 for all edges e in G.adjacentEdges(t) do
7182 * 10 if edge e is already labelled
7183 * 11 continue with the next edge
7184 * 12 w <- G.adjacentVertex(t,e)
7185 * 13 if vertex w is not discovered and not explored
7186 * 14 label e as tree-edge
7187 * 15 label w as discovered
7188 * 16 S.push(w)
7189 * 17 continue at 5
7190 * 18 else if vertex w is discovered
7191 * 19 label e as back-edge
7192 * 20 else
7193 * 21 // vertex w is explored
7194 * 22 label e as forward- or cross-edge
7195 * 23 label t as explored
7196 * 24 S.pop()
7197 *
7198 * convention:
7199 * 0x10 - discovered
7200 * 0x11 - discovered and fall-through edge labelled
7201 * 0x12 - discovered and fall-through and branch edges labelled
7202 * 0x20 - explored
7203 */
7204
7205enum {
7206 DISCOVERED = 0x10,
7207 EXPLORED = 0x20,
7208 FALLTHROUGH = 1,
7209 BRANCH = 2,
7210};
7211
dc2a4ebc
AS
7212static u32 state_htab_size(struct bpf_verifier_env *env)
7213{
7214 return env->prog->len;
7215}
7216
5d839021
AS
7217static struct bpf_verifier_state_list **explored_state(
7218 struct bpf_verifier_env *env,
7219 int idx)
7220{
dc2a4ebc
AS
7221 struct bpf_verifier_state *cur = env->cur_state;
7222 struct bpf_func_state *state = cur->frame[cur->curframe];
7223
7224 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7225}
7226
7227static void init_explored_state(struct bpf_verifier_env *env, int idx)
7228{
a8f500af 7229 env->insn_aux_data[idx].prune_point = true;
5d839021 7230}
f1bca824 7231
475fb78f
AS
7232/* t, w, e - match pseudo-code above:
7233 * t - index of current instruction
7234 * w - next instruction
7235 * e - edge
7236 */
2589726d
AS
7237static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7238 bool loop_ok)
475fb78f 7239{
7df737e9
AS
7240 int *insn_stack = env->cfg.insn_stack;
7241 int *insn_state = env->cfg.insn_state;
7242
475fb78f
AS
7243 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7244 return 0;
7245
7246 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7247 return 0;
7248
7249 if (w < 0 || w >= env->prog->len) {
d9762e84 7250 verbose_linfo(env, t, "%d: ", t);
61bd5218 7251 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7252 return -EINVAL;
7253 }
7254
f1bca824
AS
7255 if (e == BRANCH)
7256 /* mark branch target for state pruning */
5d839021 7257 init_explored_state(env, w);
f1bca824 7258
475fb78f
AS
7259 if (insn_state[w] == 0) {
7260 /* tree-edge */
7261 insn_state[t] = DISCOVERED | e;
7262 insn_state[w] = DISCOVERED;
7df737e9 7263 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7264 return -E2BIG;
7df737e9 7265 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7266 return 1;
7267 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7268 if (loop_ok && env->bpf_capable)
2589726d 7269 return 0;
d9762e84
MKL
7270 verbose_linfo(env, t, "%d: ", t);
7271 verbose_linfo(env, w, "%d: ", w);
61bd5218 7272 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7273 return -EINVAL;
7274 } else if (insn_state[w] == EXPLORED) {
7275 /* forward- or cross-edge */
7276 insn_state[t] = DISCOVERED | e;
7277 } else {
61bd5218 7278 verbose(env, "insn state internal bug\n");
475fb78f
AS
7279 return -EFAULT;
7280 }
7281 return 0;
7282}
7283
7284/* non-recursive depth-first-search to detect loops in BPF program
7285 * loop == back-edge in directed graph
7286 */
58e2af8b 7287static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
7288{
7289 struct bpf_insn *insns = env->prog->insnsi;
7290 int insn_cnt = env->prog->len;
7df737e9 7291 int *insn_stack, *insn_state;
475fb78f
AS
7292 int ret = 0;
7293 int i, t;
7294
7df737e9 7295 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
7296 if (!insn_state)
7297 return -ENOMEM;
7298
7df737e9 7299 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 7300 if (!insn_stack) {
71dde681 7301 kvfree(insn_state);
475fb78f
AS
7302 return -ENOMEM;
7303 }
7304
7305 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7306 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 7307 env->cfg.cur_stack = 1;
475fb78f
AS
7308
7309peek_stack:
7df737e9 7310 if (env->cfg.cur_stack == 0)
475fb78f 7311 goto check_state;
7df737e9 7312 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 7313
092ed096
JW
7314 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7315 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
7316 u8 opcode = BPF_OP(insns[t].code);
7317
7318 if (opcode == BPF_EXIT) {
7319 goto mark_explored;
7320 } else if (opcode == BPF_CALL) {
2589726d 7321 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7322 if (ret == 1)
7323 goto peek_stack;
7324 else if (ret < 0)
7325 goto err_free;
07016151 7326 if (t + 1 < insn_cnt)
5d839021 7327 init_explored_state(env, t + 1);
cc8b0b92 7328 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 7329 init_explored_state(env, t);
2589726d
AS
7330 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7331 env, false);
cc8b0b92
AS
7332 if (ret == 1)
7333 goto peek_stack;
7334 else if (ret < 0)
7335 goto err_free;
7336 }
475fb78f
AS
7337 } else if (opcode == BPF_JA) {
7338 if (BPF_SRC(insns[t].code) != BPF_K) {
7339 ret = -EINVAL;
7340 goto err_free;
7341 }
7342 /* unconditional jump with single edge */
7343 ret = push_insn(t, t + insns[t].off + 1,
2589726d 7344 FALLTHROUGH, env, true);
475fb78f
AS
7345 if (ret == 1)
7346 goto peek_stack;
7347 else if (ret < 0)
7348 goto err_free;
b5dc0163
AS
7349 /* unconditional jmp is not a good pruning point,
7350 * but it's marked, since backtracking needs
7351 * to record jmp history in is_state_visited().
7352 */
7353 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
7354 /* tell verifier to check for equivalent states
7355 * after every call and jump
7356 */
c3de6317 7357 if (t + 1 < insn_cnt)
5d839021 7358 init_explored_state(env, t + 1);
475fb78f
AS
7359 } else {
7360 /* conditional jump with two edges */
5d839021 7361 init_explored_state(env, t);
2589726d 7362 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
7363 if (ret == 1)
7364 goto peek_stack;
7365 else if (ret < 0)
7366 goto err_free;
7367
2589726d 7368 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
7369 if (ret == 1)
7370 goto peek_stack;
7371 else if (ret < 0)
7372 goto err_free;
7373 }
7374 } else {
7375 /* all other non-branch instructions with single
7376 * fall-through edge
7377 */
2589726d 7378 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7379 if (ret == 1)
7380 goto peek_stack;
7381 else if (ret < 0)
7382 goto err_free;
7383 }
7384
7385mark_explored:
7386 insn_state[t] = EXPLORED;
7df737e9 7387 if (env->cfg.cur_stack-- <= 0) {
61bd5218 7388 verbose(env, "pop stack internal bug\n");
475fb78f
AS
7389 ret = -EFAULT;
7390 goto err_free;
7391 }
7392 goto peek_stack;
7393
7394check_state:
7395 for (i = 0; i < insn_cnt; i++) {
7396 if (insn_state[i] != EXPLORED) {
61bd5218 7397 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
7398 ret = -EINVAL;
7399 goto err_free;
7400 }
7401 }
7402 ret = 0; /* cfg looks good */
7403
7404err_free:
71dde681
AS
7405 kvfree(insn_state);
7406 kvfree(insn_stack);
7df737e9 7407 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
7408 return ret;
7409}
7410
838e9690
YS
7411/* The minimum supported BTF func info size */
7412#define MIN_BPF_FUNCINFO_SIZE 8
7413#define MAX_FUNCINFO_REC_SIZE 252
7414
c454a46b
MKL
7415static int check_btf_func(struct bpf_verifier_env *env,
7416 const union bpf_attr *attr,
7417 union bpf_attr __user *uattr)
838e9690 7418{
d0b2818e 7419 u32 i, nfuncs, urec_size, min_size;
838e9690 7420 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 7421 struct bpf_func_info *krecord;
8c1b6e69 7422 struct bpf_func_info_aux *info_aux = NULL;
838e9690 7423 const struct btf_type *type;
c454a46b
MKL
7424 struct bpf_prog *prog;
7425 const struct btf *btf;
838e9690 7426 void __user *urecord;
d0b2818e 7427 u32 prev_offset = 0;
838e9690
YS
7428 int ret = 0;
7429
7430 nfuncs = attr->func_info_cnt;
7431 if (!nfuncs)
7432 return 0;
7433
7434 if (nfuncs != env->subprog_cnt) {
7435 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7436 return -EINVAL;
7437 }
7438
7439 urec_size = attr->func_info_rec_size;
7440 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7441 urec_size > MAX_FUNCINFO_REC_SIZE ||
7442 urec_size % sizeof(u32)) {
7443 verbose(env, "invalid func info rec size %u\n", urec_size);
7444 return -EINVAL;
7445 }
7446
c454a46b
MKL
7447 prog = env->prog;
7448 btf = prog->aux->btf;
838e9690
YS
7449
7450 urecord = u64_to_user_ptr(attr->func_info);
7451 min_size = min_t(u32, krec_size, urec_size);
7452
ba64e7d8 7453 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
7454 if (!krecord)
7455 return -ENOMEM;
8c1b6e69
AS
7456 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7457 if (!info_aux)
7458 goto err_free;
ba64e7d8 7459
838e9690
YS
7460 for (i = 0; i < nfuncs; i++) {
7461 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7462 if (ret) {
7463 if (ret == -E2BIG) {
7464 verbose(env, "nonzero tailing record in func info");
7465 /* set the size kernel expects so loader can zero
7466 * out the rest of the record.
7467 */
7468 if (put_user(min_size, &uattr->func_info_rec_size))
7469 ret = -EFAULT;
7470 }
c454a46b 7471 goto err_free;
838e9690
YS
7472 }
7473
ba64e7d8 7474 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 7475 ret = -EFAULT;
c454a46b 7476 goto err_free;
838e9690
YS
7477 }
7478
d30d42e0 7479 /* check insn_off */
838e9690 7480 if (i == 0) {
d30d42e0 7481 if (krecord[i].insn_off) {
838e9690 7482 verbose(env,
d30d42e0
MKL
7483 "nonzero insn_off %u for the first func info record",
7484 krecord[i].insn_off);
838e9690 7485 ret = -EINVAL;
c454a46b 7486 goto err_free;
838e9690 7487 }
d30d42e0 7488 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
7489 verbose(env,
7490 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 7491 krecord[i].insn_off, prev_offset);
838e9690 7492 ret = -EINVAL;
c454a46b 7493 goto err_free;
838e9690
YS
7494 }
7495
d30d42e0 7496 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
7497 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7498 ret = -EINVAL;
c454a46b 7499 goto err_free;
838e9690
YS
7500 }
7501
7502 /* check type_id */
ba64e7d8 7503 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 7504 if (!type || !btf_type_is_func(type)) {
838e9690 7505 verbose(env, "invalid type id %d in func info",
ba64e7d8 7506 krecord[i].type_id);
838e9690 7507 ret = -EINVAL;
c454a46b 7508 goto err_free;
838e9690 7509 }
51c39bb1 7510 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
d30d42e0 7511 prev_offset = krecord[i].insn_off;
838e9690
YS
7512 urecord += urec_size;
7513 }
7514
ba64e7d8
YS
7515 prog->aux->func_info = krecord;
7516 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 7517 prog->aux->func_info_aux = info_aux;
838e9690
YS
7518 return 0;
7519
c454a46b 7520err_free:
ba64e7d8 7521 kvfree(krecord);
8c1b6e69 7522 kfree(info_aux);
838e9690
YS
7523 return ret;
7524}
7525
ba64e7d8
YS
7526static void adjust_btf_func(struct bpf_verifier_env *env)
7527{
8c1b6e69 7528 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
7529 int i;
7530
8c1b6e69 7531 if (!aux->func_info)
ba64e7d8
YS
7532 return;
7533
7534 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 7535 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
7536}
7537
c454a46b
MKL
7538#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
7539 sizeof(((struct bpf_line_info *)(0))->line_col))
7540#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
7541
7542static int check_btf_line(struct bpf_verifier_env *env,
7543 const union bpf_attr *attr,
7544 union bpf_attr __user *uattr)
7545{
7546 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7547 struct bpf_subprog_info *sub;
7548 struct bpf_line_info *linfo;
7549 struct bpf_prog *prog;
7550 const struct btf *btf;
7551 void __user *ulinfo;
7552 int err;
7553
7554 nr_linfo = attr->line_info_cnt;
7555 if (!nr_linfo)
7556 return 0;
7557
7558 rec_size = attr->line_info_rec_size;
7559 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7560 rec_size > MAX_LINEINFO_REC_SIZE ||
7561 rec_size & (sizeof(u32) - 1))
7562 return -EINVAL;
7563
7564 /* Need to zero it in case the userspace may
7565 * pass in a smaller bpf_line_info object.
7566 */
7567 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7568 GFP_KERNEL | __GFP_NOWARN);
7569 if (!linfo)
7570 return -ENOMEM;
7571
7572 prog = env->prog;
7573 btf = prog->aux->btf;
7574
7575 s = 0;
7576 sub = env->subprog_info;
7577 ulinfo = u64_to_user_ptr(attr->line_info);
7578 expected_size = sizeof(struct bpf_line_info);
7579 ncopy = min_t(u32, expected_size, rec_size);
7580 for (i = 0; i < nr_linfo; i++) {
7581 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7582 if (err) {
7583 if (err == -E2BIG) {
7584 verbose(env, "nonzero tailing record in line_info");
7585 if (put_user(expected_size,
7586 &uattr->line_info_rec_size))
7587 err = -EFAULT;
7588 }
7589 goto err_free;
7590 }
7591
7592 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7593 err = -EFAULT;
7594 goto err_free;
7595 }
7596
7597 /*
7598 * Check insn_off to ensure
7599 * 1) strictly increasing AND
7600 * 2) bounded by prog->len
7601 *
7602 * The linfo[0].insn_off == 0 check logically falls into
7603 * the later "missing bpf_line_info for func..." case
7604 * because the first linfo[0].insn_off must be the
7605 * first sub also and the first sub must have
7606 * subprog_info[0].start == 0.
7607 */
7608 if ((i && linfo[i].insn_off <= prev_offset) ||
7609 linfo[i].insn_off >= prog->len) {
7610 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7611 i, linfo[i].insn_off, prev_offset,
7612 prog->len);
7613 err = -EINVAL;
7614 goto err_free;
7615 }
7616
fdbaa0be
MKL
7617 if (!prog->insnsi[linfo[i].insn_off].code) {
7618 verbose(env,
7619 "Invalid insn code at line_info[%u].insn_off\n",
7620 i);
7621 err = -EINVAL;
7622 goto err_free;
7623 }
7624
23127b33
MKL
7625 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7626 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
7627 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7628 err = -EINVAL;
7629 goto err_free;
7630 }
7631
7632 if (s != env->subprog_cnt) {
7633 if (linfo[i].insn_off == sub[s].start) {
7634 sub[s].linfo_idx = i;
7635 s++;
7636 } else if (sub[s].start < linfo[i].insn_off) {
7637 verbose(env, "missing bpf_line_info for func#%u\n", s);
7638 err = -EINVAL;
7639 goto err_free;
7640 }
7641 }
7642
7643 prev_offset = linfo[i].insn_off;
7644 ulinfo += rec_size;
7645 }
7646
7647 if (s != env->subprog_cnt) {
7648 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7649 env->subprog_cnt - s, s);
7650 err = -EINVAL;
7651 goto err_free;
7652 }
7653
7654 prog->aux->linfo = linfo;
7655 prog->aux->nr_linfo = nr_linfo;
7656
7657 return 0;
7658
7659err_free:
7660 kvfree(linfo);
7661 return err;
7662}
7663
7664static int check_btf_info(struct bpf_verifier_env *env,
7665 const union bpf_attr *attr,
7666 union bpf_attr __user *uattr)
7667{
7668 struct btf *btf;
7669 int err;
7670
7671 if (!attr->func_info_cnt && !attr->line_info_cnt)
7672 return 0;
7673
7674 btf = btf_get_by_fd(attr->prog_btf_fd);
7675 if (IS_ERR(btf))
7676 return PTR_ERR(btf);
7677 env->prog->aux->btf = btf;
7678
7679 err = check_btf_func(env, attr, uattr);
7680 if (err)
7681 return err;
7682
7683 err = check_btf_line(env, attr, uattr);
7684 if (err)
7685 return err;
7686
7687 return 0;
ba64e7d8
YS
7688}
7689
f1174f77
EC
7690/* check %cur's range satisfies %old's */
7691static bool range_within(struct bpf_reg_state *old,
7692 struct bpf_reg_state *cur)
7693{
b03c9f9f
EC
7694 return old->umin_value <= cur->umin_value &&
7695 old->umax_value >= cur->umax_value &&
7696 old->smin_value <= cur->smin_value &&
7697 old->smax_value >= cur->smax_value;
f1174f77
EC
7698}
7699
7700/* Maximum number of register states that can exist at once */
7701#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7702struct idpair {
7703 u32 old;
7704 u32 cur;
7705};
7706
7707/* If in the old state two registers had the same id, then they need to have
7708 * the same id in the new state as well. But that id could be different from
7709 * the old state, so we need to track the mapping from old to new ids.
7710 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7711 * regs with old id 5 must also have new id 9 for the new state to be safe. But
7712 * regs with a different old id could still have new id 9, we don't care about
7713 * that.
7714 * So we look through our idmap to see if this old id has been seen before. If
7715 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 7716 */
f1174f77 7717static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 7718{
f1174f77 7719 unsigned int i;
969bf05e 7720
f1174f77
EC
7721 for (i = 0; i < ID_MAP_SIZE; i++) {
7722 if (!idmap[i].old) {
7723 /* Reached an empty slot; haven't seen this id before */
7724 idmap[i].old = old_id;
7725 idmap[i].cur = cur_id;
7726 return true;
7727 }
7728 if (idmap[i].old == old_id)
7729 return idmap[i].cur == cur_id;
7730 }
7731 /* We ran out of idmap slots, which should be impossible */
7732 WARN_ON_ONCE(1);
7733 return false;
7734}
7735
9242b5f5
AS
7736static void clean_func_state(struct bpf_verifier_env *env,
7737 struct bpf_func_state *st)
7738{
7739 enum bpf_reg_liveness live;
7740 int i, j;
7741
7742 for (i = 0; i < BPF_REG_FP; i++) {
7743 live = st->regs[i].live;
7744 /* liveness must not touch this register anymore */
7745 st->regs[i].live |= REG_LIVE_DONE;
7746 if (!(live & REG_LIVE_READ))
7747 /* since the register is unused, clear its state
7748 * to make further comparison simpler
7749 */
f54c7898 7750 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
7751 }
7752
7753 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7754 live = st->stack[i].spilled_ptr.live;
7755 /* liveness must not touch this stack slot anymore */
7756 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7757 if (!(live & REG_LIVE_READ)) {
f54c7898 7758 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
7759 for (j = 0; j < BPF_REG_SIZE; j++)
7760 st->stack[i].slot_type[j] = STACK_INVALID;
7761 }
7762 }
7763}
7764
7765static void clean_verifier_state(struct bpf_verifier_env *env,
7766 struct bpf_verifier_state *st)
7767{
7768 int i;
7769
7770 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7771 /* all regs in this state in all frames were already marked */
7772 return;
7773
7774 for (i = 0; i <= st->curframe; i++)
7775 clean_func_state(env, st->frame[i]);
7776}
7777
7778/* the parentage chains form a tree.
7779 * the verifier states are added to state lists at given insn and
7780 * pushed into state stack for future exploration.
7781 * when the verifier reaches bpf_exit insn some of the verifer states
7782 * stored in the state lists have their final liveness state already,
7783 * but a lot of states will get revised from liveness point of view when
7784 * the verifier explores other branches.
7785 * Example:
7786 * 1: r0 = 1
7787 * 2: if r1 == 100 goto pc+1
7788 * 3: r0 = 2
7789 * 4: exit
7790 * when the verifier reaches exit insn the register r0 in the state list of
7791 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7792 * of insn 2 and goes exploring further. At the insn 4 it will walk the
7793 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7794 *
7795 * Since the verifier pushes the branch states as it sees them while exploring
7796 * the program the condition of walking the branch instruction for the second
7797 * time means that all states below this branch were already explored and
7798 * their final liveness markes are already propagated.
7799 * Hence when the verifier completes the search of state list in is_state_visited()
7800 * we can call this clean_live_states() function to mark all liveness states
7801 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7802 * will not be used.
7803 * This function also clears the registers and stack for states that !READ
7804 * to simplify state merging.
7805 *
7806 * Important note here that walking the same branch instruction in the callee
7807 * doesn't meant that the states are DONE. The verifier has to compare
7808 * the callsites
7809 */
7810static void clean_live_states(struct bpf_verifier_env *env, int insn,
7811 struct bpf_verifier_state *cur)
7812{
7813 struct bpf_verifier_state_list *sl;
7814 int i;
7815
5d839021 7816 sl = *explored_state(env, insn);
a8f500af 7817 while (sl) {
2589726d
AS
7818 if (sl->state.branches)
7819 goto next;
dc2a4ebc
AS
7820 if (sl->state.insn_idx != insn ||
7821 sl->state.curframe != cur->curframe)
9242b5f5
AS
7822 goto next;
7823 for (i = 0; i <= cur->curframe; i++)
7824 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7825 goto next;
7826 clean_verifier_state(env, &sl->state);
7827next:
7828 sl = sl->next;
7829 }
7830}
7831
f1174f77 7832/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
7833static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7834 struct idpair *idmap)
f1174f77 7835{
f4d7e40a
AS
7836 bool equal;
7837
dc503a8a
EC
7838 if (!(rold->live & REG_LIVE_READ))
7839 /* explored state didn't use this */
7840 return true;
7841
679c782d 7842 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
7843
7844 if (rold->type == PTR_TO_STACK)
7845 /* two stack pointers are equal only if they're pointing to
7846 * the same stack frame, since fp-8 in foo != fp-8 in bar
7847 */
7848 return equal && rold->frameno == rcur->frameno;
7849
7850 if (equal)
969bf05e
AS
7851 return true;
7852
f1174f77
EC
7853 if (rold->type == NOT_INIT)
7854 /* explored state can't have used this */
969bf05e 7855 return true;
f1174f77
EC
7856 if (rcur->type == NOT_INIT)
7857 return false;
7858 switch (rold->type) {
7859 case SCALAR_VALUE:
7860 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
7861 if (!rold->precise && !rcur->precise)
7862 return true;
f1174f77
EC
7863 /* new val must satisfy old val knowledge */
7864 return range_within(rold, rcur) &&
7865 tnum_in(rold->var_off, rcur->var_off);
7866 } else {
179d1c56
JH
7867 /* We're trying to use a pointer in place of a scalar.
7868 * Even if the scalar was unbounded, this could lead to
7869 * pointer leaks because scalars are allowed to leak
7870 * while pointers are not. We could make this safe in
7871 * special cases if root is calling us, but it's
7872 * probably not worth the hassle.
f1174f77 7873 */
179d1c56 7874 return false;
f1174f77
EC
7875 }
7876 case PTR_TO_MAP_VALUE:
1b688a19
EC
7877 /* If the new min/max/var_off satisfy the old ones and
7878 * everything else matches, we are OK.
d83525ca
AS
7879 * 'id' is not compared, since it's only used for maps with
7880 * bpf_spin_lock inside map element and in such cases if
7881 * the rest of the prog is valid for one map element then
7882 * it's valid for all map elements regardless of the key
7883 * used in bpf_map_lookup()
1b688a19
EC
7884 */
7885 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7886 range_within(rold, rcur) &&
7887 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
7888 case PTR_TO_MAP_VALUE_OR_NULL:
7889 /* a PTR_TO_MAP_VALUE could be safe to use as a
7890 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7891 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7892 * checked, doing so could have affected others with the same
7893 * id, and we can't check for that because we lost the id when
7894 * we converted to a PTR_TO_MAP_VALUE.
7895 */
7896 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7897 return false;
7898 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7899 return false;
7900 /* Check our ids match any regs they're supposed to */
7901 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 7902 case PTR_TO_PACKET_META:
f1174f77 7903 case PTR_TO_PACKET:
de8f3a83 7904 if (rcur->type != rold->type)
f1174f77
EC
7905 return false;
7906 /* We must have at least as much range as the old ptr
7907 * did, so that any accesses which were safe before are
7908 * still safe. This is true even if old range < old off,
7909 * since someone could have accessed through (ptr - k), or
7910 * even done ptr -= k in a register, to get a safe access.
7911 */
7912 if (rold->range > rcur->range)
7913 return false;
7914 /* If the offsets don't match, we can't trust our alignment;
7915 * nor can we be sure that we won't fall out of range.
7916 */
7917 if (rold->off != rcur->off)
7918 return false;
7919 /* id relations must be preserved */
7920 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7921 return false;
7922 /* new val must satisfy old val knowledge */
7923 return range_within(rold, rcur) &&
7924 tnum_in(rold->var_off, rcur->var_off);
7925 case PTR_TO_CTX:
7926 case CONST_PTR_TO_MAP:
f1174f77 7927 case PTR_TO_PACKET_END:
d58e468b 7928 case PTR_TO_FLOW_KEYS:
c64b7983
JS
7929 case PTR_TO_SOCKET:
7930 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7931 case PTR_TO_SOCK_COMMON:
7932 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7933 case PTR_TO_TCP_SOCK:
7934 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7935 case PTR_TO_XDP_SOCK:
f1174f77
EC
7936 /* Only valid matches are exact, which memcmp() above
7937 * would have accepted
7938 */
7939 default:
7940 /* Don't know what's going on, just say it's not safe */
7941 return false;
7942 }
969bf05e 7943
f1174f77
EC
7944 /* Shouldn't get here; if we do, say it's not safe */
7945 WARN_ON_ONCE(1);
969bf05e
AS
7946 return false;
7947}
7948
f4d7e40a
AS
7949static bool stacksafe(struct bpf_func_state *old,
7950 struct bpf_func_state *cur,
638f5b90
AS
7951 struct idpair *idmap)
7952{
7953 int i, spi;
7954
638f5b90
AS
7955 /* walk slots of the explored stack and ignore any additional
7956 * slots in the current stack, since explored(safe) state
7957 * didn't use them
7958 */
7959 for (i = 0; i < old->allocated_stack; i++) {
7960 spi = i / BPF_REG_SIZE;
7961
b233920c
AS
7962 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7963 i += BPF_REG_SIZE - 1;
cc2b14d5 7964 /* explored state didn't use this */
fd05e57b 7965 continue;
b233920c 7966 }
cc2b14d5 7967
638f5b90
AS
7968 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7969 continue;
19e2dbb7
AS
7970
7971 /* explored stack has more populated slots than current stack
7972 * and these slots were used
7973 */
7974 if (i >= cur->allocated_stack)
7975 return false;
7976
cc2b14d5
AS
7977 /* if old state was safe with misc data in the stack
7978 * it will be safe with zero-initialized stack.
7979 * The opposite is not true
7980 */
7981 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7982 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7983 continue;
638f5b90
AS
7984 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7985 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7986 /* Ex: old explored (safe) state has STACK_SPILL in
7987 * this stack slot, but current has has STACK_MISC ->
7988 * this verifier states are not equivalent,
7989 * return false to continue verification of this path
7990 */
7991 return false;
7992 if (i % BPF_REG_SIZE)
7993 continue;
7994 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7995 continue;
7996 if (!regsafe(&old->stack[spi].spilled_ptr,
7997 &cur->stack[spi].spilled_ptr,
7998 idmap))
7999 /* when explored and current stack slot are both storing
8000 * spilled registers, check that stored pointers types
8001 * are the same as well.
8002 * Ex: explored safe path could have stored
8003 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8004 * but current path has stored:
8005 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8006 * such verifier states are not equivalent.
8007 * return false to continue verification of this path
8008 */
8009 return false;
8010 }
8011 return true;
8012}
8013
fd978bf7
JS
8014static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8015{
8016 if (old->acquired_refs != cur->acquired_refs)
8017 return false;
8018 return !memcmp(old->refs, cur->refs,
8019 sizeof(*old->refs) * old->acquired_refs);
8020}
8021
f1bca824
AS
8022/* compare two verifier states
8023 *
8024 * all states stored in state_list are known to be valid, since
8025 * verifier reached 'bpf_exit' instruction through them
8026 *
8027 * this function is called when verifier exploring different branches of
8028 * execution popped from the state stack. If it sees an old state that has
8029 * more strict register state and more strict stack state then this execution
8030 * branch doesn't need to be explored further, since verifier already
8031 * concluded that more strict state leads to valid finish.
8032 *
8033 * Therefore two states are equivalent if register state is more conservative
8034 * and explored stack state is more conservative than the current one.
8035 * Example:
8036 * explored current
8037 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8038 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8039 *
8040 * In other words if current stack state (one being explored) has more
8041 * valid slots than old one that already passed validation, it means
8042 * the verifier can stop exploring and conclude that current state is valid too
8043 *
8044 * Similarly with registers. If explored state has register type as invalid
8045 * whereas register type in current state is meaningful, it means that
8046 * the current state will reach 'bpf_exit' instruction safely
8047 */
f4d7e40a
AS
8048static bool func_states_equal(struct bpf_func_state *old,
8049 struct bpf_func_state *cur)
f1bca824 8050{
f1174f77
EC
8051 struct idpair *idmap;
8052 bool ret = false;
f1bca824
AS
8053 int i;
8054
f1174f77
EC
8055 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8056 /* If we failed to allocate the idmap, just say it's not safe */
8057 if (!idmap)
1a0dc1ac 8058 return false;
f1174f77
EC
8059
8060 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8061 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8062 goto out_free;
f1bca824
AS
8063 }
8064
638f5b90
AS
8065 if (!stacksafe(old, cur, idmap))
8066 goto out_free;
fd978bf7
JS
8067
8068 if (!refsafe(old, cur))
8069 goto out_free;
f1174f77
EC
8070 ret = true;
8071out_free:
8072 kfree(idmap);
8073 return ret;
f1bca824
AS
8074}
8075
f4d7e40a
AS
8076static bool states_equal(struct bpf_verifier_env *env,
8077 struct bpf_verifier_state *old,
8078 struct bpf_verifier_state *cur)
8079{
8080 int i;
8081
8082 if (old->curframe != cur->curframe)
8083 return false;
8084
979d63d5
DB
8085 /* Verification state from speculative execution simulation
8086 * must never prune a non-speculative execution one.
8087 */
8088 if (old->speculative && !cur->speculative)
8089 return false;
8090
d83525ca
AS
8091 if (old->active_spin_lock != cur->active_spin_lock)
8092 return false;
8093
f4d7e40a
AS
8094 /* for states to be equal callsites have to be the same
8095 * and all frame states need to be equivalent
8096 */
8097 for (i = 0; i <= old->curframe; i++) {
8098 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8099 return false;
8100 if (!func_states_equal(old->frame[i], cur->frame[i]))
8101 return false;
8102 }
8103 return true;
8104}
8105
5327ed3d
JW
8106/* Return 0 if no propagation happened. Return negative error code if error
8107 * happened. Otherwise, return the propagated bit.
8108 */
55e7f3b5
JW
8109static int propagate_liveness_reg(struct bpf_verifier_env *env,
8110 struct bpf_reg_state *reg,
8111 struct bpf_reg_state *parent_reg)
8112{
5327ed3d
JW
8113 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8114 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8115 int err;
8116
5327ed3d
JW
8117 /* When comes here, read flags of PARENT_REG or REG could be any of
8118 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8119 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8120 */
8121 if (parent_flag == REG_LIVE_READ64 ||
8122 /* Or if there is no read flag from REG. */
8123 !flag ||
8124 /* Or if the read flag from REG is the same as PARENT_REG. */
8125 parent_flag == flag)
55e7f3b5
JW
8126 return 0;
8127
5327ed3d 8128 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8129 if (err)
8130 return err;
8131
5327ed3d 8132 return flag;
55e7f3b5
JW
8133}
8134
8e9cd9ce 8135/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8136 * straight-line code between a state and its parent. When we arrive at an
8137 * equivalent state (jump target or such) we didn't arrive by the straight-line
8138 * code, so read marks in the state must propagate to the parent regardless
8139 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8140 * in mark_reg_read() is for.
8e9cd9ce 8141 */
f4d7e40a
AS
8142static int propagate_liveness(struct bpf_verifier_env *env,
8143 const struct bpf_verifier_state *vstate,
8144 struct bpf_verifier_state *vparent)
dc503a8a 8145{
3f8cafa4 8146 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8147 struct bpf_func_state *state, *parent;
3f8cafa4 8148 int i, frame, err = 0;
dc503a8a 8149
f4d7e40a
AS
8150 if (vparent->curframe != vstate->curframe) {
8151 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8152 vparent->curframe, vstate->curframe);
8153 return -EFAULT;
8154 }
dc503a8a
EC
8155 /* Propagate read liveness of registers... */
8156 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8157 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8158 parent = vparent->frame[frame];
8159 state = vstate->frame[frame];
8160 parent_reg = parent->regs;
8161 state_reg = state->regs;
83d16312
JK
8162 /* We don't need to worry about FP liveness, it's read-only */
8163 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8164 err = propagate_liveness_reg(env, &state_reg[i],
8165 &parent_reg[i]);
5327ed3d 8166 if (err < 0)
3f8cafa4 8167 return err;
5327ed3d
JW
8168 if (err == REG_LIVE_READ64)
8169 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8170 }
f4d7e40a 8171
1b04aee7 8172 /* Propagate stack slots. */
f4d7e40a
AS
8173 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8174 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8175 parent_reg = &parent->stack[i].spilled_ptr;
8176 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8177 err = propagate_liveness_reg(env, state_reg,
8178 parent_reg);
5327ed3d 8179 if (err < 0)
3f8cafa4 8180 return err;
dc503a8a
EC
8181 }
8182 }
5327ed3d 8183 return 0;
dc503a8a
EC
8184}
8185
a3ce685d
AS
8186/* find precise scalars in the previous equivalent state and
8187 * propagate them into the current state
8188 */
8189static int propagate_precision(struct bpf_verifier_env *env,
8190 const struct bpf_verifier_state *old)
8191{
8192 struct bpf_reg_state *state_reg;
8193 struct bpf_func_state *state;
8194 int i, err = 0;
8195
8196 state = old->frame[old->curframe];
8197 state_reg = state->regs;
8198 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8199 if (state_reg->type != SCALAR_VALUE ||
8200 !state_reg->precise)
8201 continue;
8202 if (env->log.level & BPF_LOG_LEVEL2)
8203 verbose(env, "propagating r%d\n", i);
8204 err = mark_chain_precision(env, i);
8205 if (err < 0)
8206 return err;
8207 }
8208
8209 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8210 if (state->stack[i].slot_type[0] != STACK_SPILL)
8211 continue;
8212 state_reg = &state->stack[i].spilled_ptr;
8213 if (state_reg->type != SCALAR_VALUE ||
8214 !state_reg->precise)
8215 continue;
8216 if (env->log.level & BPF_LOG_LEVEL2)
8217 verbose(env, "propagating fp%d\n",
8218 (-i - 1) * BPF_REG_SIZE);
8219 err = mark_chain_precision_stack(env, i);
8220 if (err < 0)
8221 return err;
8222 }
8223 return 0;
8224}
8225
2589726d
AS
8226static bool states_maybe_looping(struct bpf_verifier_state *old,
8227 struct bpf_verifier_state *cur)
8228{
8229 struct bpf_func_state *fold, *fcur;
8230 int i, fr = cur->curframe;
8231
8232 if (old->curframe != fr)
8233 return false;
8234
8235 fold = old->frame[fr];
8236 fcur = cur->frame[fr];
8237 for (i = 0; i < MAX_BPF_REG; i++)
8238 if (memcmp(&fold->regs[i], &fcur->regs[i],
8239 offsetof(struct bpf_reg_state, parent)))
8240 return false;
8241 return true;
8242}
8243
8244
58e2af8b 8245static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 8246{
58e2af8b 8247 struct bpf_verifier_state_list *new_sl;
9f4686c4 8248 struct bpf_verifier_state_list *sl, **pprev;
679c782d 8249 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 8250 int i, j, err, states_cnt = 0;
10d274e8 8251 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 8252
b5dc0163 8253 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 8254 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
8255 /* this 'insn_idx' instruction wasn't marked, so we will not
8256 * be doing state search here
8257 */
8258 return 0;
8259
2589726d
AS
8260 /* bpf progs typically have pruning point every 4 instructions
8261 * http://vger.kernel.org/bpfconf2019.html#session-1
8262 * Do not add new state for future pruning if the verifier hasn't seen
8263 * at least 2 jumps and at least 8 instructions.
8264 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8265 * In tests that amounts to up to 50% reduction into total verifier
8266 * memory consumption and 20% verifier time speedup.
8267 */
8268 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8269 env->insn_processed - env->prev_insn_processed >= 8)
8270 add_new_state = true;
8271
a8f500af
AS
8272 pprev = explored_state(env, insn_idx);
8273 sl = *pprev;
8274
9242b5f5
AS
8275 clean_live_states(env, insn_idx, cur);
8276
a8f500af 8277 while (sl) {
dc2a4ebc
AS
8278 states_cnt++;
8279 if (sl->state.insn_idx != insn_idx)
8280 goto next;
2589726d
AS
8281 if (sl->state.branches) {
8282 if (states_maybe_looping(&sl->state, cur) &&
8283 states_equal(env, &sl->state, cur)) {
8284 verbose_linfo(env, insn_idx, "; ");
8285 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8286 return -EINVAL;
8287 }
8288 /* if the verifier is processing a loop, avoid adding new state
8289 * too often, since different loop iterations have distinct
8290 * states and may not help future pruning.
8291 * This threshold shouldn't be too low to make sure that
8292 * a loop with large bound will be rejected quickly.
8293 * The most abusive loop will be:
8294 * r1 += 1
8295 * if r1 < 1000000 goto pc-2
8296 * 1M insn_procssed limit / 100 == 10k peak states.
8297 * This threshold shouldn't be too high either, since states
8298 * at the end of the loop are likely to be useful in pruning.
8299 */
8300 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8301 env->insn_processed - env->prev_insn_processed < 100)
8302 add_new_state = false;
8303 goto miss;
8304 }
638f5b90 8305 if (states_equal(env, &sl->state, cur)) {
9f4686c4 8306 sl->hit_cnt++;
f1bca824 8307 /* reached equivalent register/stack state,
dc503a8a
EC
8308 * prune the search.
8309 * Registers read by the continuation are read by us.
8e9cd9ce
EC
8310 * If we have any write marks in env->cur_state, they
8311 * will prevent corresponding reads in the continuation
8312 * from reaching our parent (an explored_state). Our
8313 * own state will get the read marks recorded, but
8314 * they'll be immediately forgotten as we're pruning
8315 * this state and will pop a new one.
f1bca824 8316 */
f4d7e40a 8317 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
8318
8319 /* if previous state reached the exit with precision and
8320 * current state is equivalent to it (except precsion marks)
8321 * the precision needs to be propagated back in
8322 * the current state.
8323 */
8324 err = err ? : push_jmp_history(env, cur);
8325 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
8326 if (err)
8327 return err;
f1bca824 8328 return 1;
dc503a8a 8329 }
2589726d
AS
8330miss:
8331 /* when new state is not going to be added do not increase miss count.
8332 * Otherwise several loop iterations will remove the state
8333 * recorded earlier. The goal of these heuristics is to have
8334 * states from some iterations of the loop (some in the beginning
8335 * and some at the end) to help pruning.
8336 */
8337 if (add_new_state)
8338 sl->miss_cnt++;
9f4686c4
AS
8339 /* heuristic to determine whether this state is beneficial
8340 * to keep checking from state equivalence point of view.
8341 * Higher numbers increase max_states_per_insn and verification time,
8342 * but do not meaningfully decrease insn_processed.
8343 */
8344 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8345 /* the state is unlikely to be useful. Remove it to
8346 * speed up verification
8347 */
8348 *pprev = sl->next;
8349 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
8350 u32 br = sl->state.branches;
8351
8352 WARN_ONCE(br,
8353 "BUG live_done but branches_to_explore %d\n",
8354 br);
9f4686c4
AS
8355 free_verifier_state(&sl->state, false);
8356 kfree(sl);
8357 env->peak_states--;
8358 } else {
8359 /* cannot free this state, since parentage chain may
8360 * walk it later. Add it for free_list instead to
8361 * be freed at the end of verification
8362 */
8363 sl->next = env->free_list;
8364 env->free_list = sl;
8365 }
8366 sl = *pprev;
8367 continue;
8368 }
dc2a4ebc 8369next:
9f4686c4
AS
8370 pprev = &sl->next;
8371 sl = *pprev;
f1bca824
AS
8372 }
8373
06ee7115
AS
8374 if (env->max_states_per_insn < states_cnt)
8375 env->max_states_per_insn = states_cnt;
8376
2c78ee89 8377 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 8378 return push_jmp_history(env, cur);
ceefbc96 8379
2589726d 8380 if (!add_new_state)
b5dc0163 8381 return push_jmp_history(env, cur);
ceefbc96 8382
2589726d
AS
8383 /* There were no equivalent states, remember the current one.
8384 * Technically the current state is not proven to be safe yet,
f4d7e40a 8385 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 8386 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 8387 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
8388 * again on the way to bpf_exit.
8389 * When looping the sl->state.branches will be > 0 and this state
8390 * will not be considered for equivalence until branches == 0.
f1bca824 8391 */
638f5b90 8392 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
8393 if (!new_sl)
8394 return -ENOMEM;
06ee7115
AS
8395 env->total_states++;
8396 env->peak_states++;
2589726d
AS
8397 env->prev_jmps_processed = env->jmps_processed;
8398 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
8399
8400 /* add new state to the head of linked list */
679c782d
EC
8401 new = &new_sl->state;
8402 err = copy_verifier_state(new, cur);
1969db47 8403 if (err) {
679c782d 8404 free_verifier_state(new, false);
1969db47
AS
8405 kfree(new_sl);
8406 return err;
8407 }
dc2a4ebc 8408 new->insn_idx = insn_idx;
2589726d
AS
8409 WARN_ONCE(new->branches != 1,
8410 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 8411
2589726d 8412 cur->parent = new;
b5dc0163
AS
8413 cur->first_insn_idx = insn_idx;
8414 clear_jmp_history(cur);
5d839021
AS
8415 new_sl->next = *explored_state(env, insn_idx);
8416 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
8417 /* connect new state to parentage chain. Current frame needs all
8418 * registers connected. Only r6 - r9 of the callers are alive (pushed
8419 * to the stack implicitly by JITs) so in callers' frames connect just
8420 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8421 * the state of the call instruction (with WRITTEN set), and r0 comes
8422 * from callee with its full parentage chain, anyway.
8423 */
8e9cd9ce
EC
8424 /* clear write marks in current state: the writes we did are not writes
8425 * our child did, so they don't screen off its reads from us.
8426 * (There are no read marks in current state, because reads always mark
8427 * their parent and current state never has children yet. Only
8428 * explored_states can get read marks.)
8429 */
eea1c227
AS
8430 for (j = 0; j <= cur->curframe; j++) {
8431 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8432 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8433 for (i = 0; i < BPF_REG_FP; i++)
8434 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8435 }
f4d7e40a
AS
8436
8437 /* all stack frames are accessible from callee, clear them all */
8438 for (j = 0; j <= cur->curframe; j++) {
8439 struct bpf_func_state *frame = cur->frame[j];
679c782d 8440 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 8441
679c782d 8442 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 8443 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
8444 frame->stack[i].spilled_ptr.parent =
8445 &newframe->stack[i].spilled_ptr;
8446 }
f4d7e40a 8447 }
f1bca824
AS
8448 return 0;
8449}
8450
c64b7983
JS
8451/* Return true if it's OK to have the same insn return a different type. */
8452static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8453{
8454 switch (type) {
8455 case PTR_TO_CTX:
8456 case PTR_TO_SOCKET:
8457 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8458 case PTR_TO_SOCK_COMMON:
8459 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8460 case PTR_TO_TCP_SOCK:
8461 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8462 case PTR_TO_XDP_SOCK:
2a02759e 8463 case PTR_TO_BTF_ID:
b121b341 8464 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
8465 return false;
8466 default:
8467 return true;
8468 }
8469}
8470
8471/* If an instruction was previously used with particular pointer types, then we
8472 * need to be careful to avoid cases such as the below, where it may be ok
8473 * for one branch accessing the pointer, but not ok for the other branch:
8474 *
8475 * R1 = sock_ptr
8476 * goto X;
8477 * ...
8478 * R1 = some_other_valid_ptr;
8479 * goto X;
8480 * ...
8481 * R2 = *(u32 *)(R1 + 0);
8482 */
8483static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8484{
8485 return src != prev && (!reg_type_mismatch_ok(src) ||
8486 !reg_type_mismatch_ok(prev));
8487}
8488
58e2af8b 8489static int do_check(struct bpf_verifier_env *env)
17a52670 8490{
6f8a57cc 8491 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 8492 struct bpf_verifier_state *state = env->cur_state;
17a52670 8493 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 8494 struct bpf_reg_state *regs;
06ee7115 8495 int insn_cnt = env->prog->len;
17a52670 8496 bool do_print_state = false;
b5dc0163 8497 int prev_insn_idx = -1;
17a52670 8498
17a52670
AS
8499 for (;;) {
8500 struct bpf_insn *insn;
8501 u8 class;
8502 int err;
8503
b5dc0163 8504 env->prev_insn_idx = prev_insn_idx;
c08435ec 8505 if (env->insn_idx >= insn_cnt) {
61bd5218 8506 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 8507 env->insn_idx, insn_cnt);
17a52670
AS
8508 return -EFAULT;
8509 }
8510
c08435ec 8511 insn = &insns[env->insn_idx];
17a52670
AS
8512 class = BPF_CLASS(insn->code);
8513
06ee7115 8514 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
8515 verbose(env,
8516 "BPF program is too large. Processed %d insn\n",
06ee7115 8517 env->insn_processed);
17a52670
AS
8518 return -E2BIG;
8519 }
8520
c08435ec 8521 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
8522 if (err < 0)
8523 return err;
8524 if (err == 1) {
8525 /* found equivalent state, can prune the search */
06ee7115 8526 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 8527 if (do_print_state)
979d63d5
DB
8528 verbose(env, "\nfrom %d to %d%s: safe\n",
8529 env->prev_insn_idx, env->insn_idx,
8530 env->cur_state->speculative ?
8531 " (speculative execution)" : "");
f1bca824 8532 else
c08435ec 8533 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
8534 }
8535 goto process_bpf_exit;
8536 }
8537
c3494801
AS
8538 if (signal_pending(current))
8539 return -EAGAIN;
8540
3c2ce60b
DB
8541 if (need_resched())
8542 cond_resched();
8543
06ee7115
AS
8544 if (env->log.level & BPF_LOG_LEVEL2 ||
8545 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8546 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 8547 verbose(env, "%d:", env->insn_idx);
c5fc9692 8548 else
979d63d5
DB
8549 verbose(env, "\nfrom %d to %d%s:",
8550 env->prev_insn_idx, env->insn_idx,
8551 env->cur_state->speculative ?
8552 " (speculative execution)" : "");
f4d7e40a 8553 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
8554 do_print_state = false;
8555 }
8556
06ee7115 8557 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
8558 const struct bpf_insn_cbs cbs = {
8559 .cb_print = verbose,
abe08840 8560 .private_data = env,
7105e828
DB
8561 };
8562
c08435ec
DB
8563 verbose_linfo(env, env->insn_idx, "; ");
8564 verbose(env, "%d: ", env->insn_idx);
abe08840 8565 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
8566 }
8567
cae1927c 8568 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
8569 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8570 env->prev_insn_idx);
cae1927c
JK
8571 if (err)
8572 return err;
8573 }
13a27dfc 8574
638f5b90 8575 regs = cur_regs(env);
51c39bb1 8576 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 8577 prev_insn_idx = env->insn_idx;
fd978bf7 8578
17a52670 8579 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 8580 err = check_alu_op(env, insn);
17a52670
AS
8581 if (err)
8582 return err;
8583
8584 } else if (class == BPF_LDX) {
3df126f3 8585 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
8586
8587 /* check for reserved fields is already done */
8588
17a52670 8589 /* check src operand */
dc503a8a 8590 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8591 if (err)
8592 return err;
8593
dc503a8a 8594 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8595 if (err)
8596 return err;
8597
725f9dcd
AS
8598 src_reg_type = regs[insn->src_reg].type;
8599
17a52670
AS
8600 /* check that memory (src_reg + off) is readable,
8601 * the state of dst_reg will be updated by this func
8602 */
c08435ec
DB
8603 err = check_mem_access(env, env->insn_idx, insn->src_reg,
8604 insn->off, BPF_SIZE(insn->code),
8605 BPF_READ, insn->dst_reg, false);
17a52670
AS
8606 if (err)
8607 return err;
8608
c08435ec 8609 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
8610
8611 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
8612 /* saw a valid insn
8613 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 8614 * save type to validate intersecting paths
9bac3d6d 8615 */
3df126f3 8616 *prev_src_type = src_reg_type;
9bac3d6d 8617
c64b7983 8618 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
8619 /* ABuser program is trying to use the same insn
8620 * dst_reg = *(u32*) (src_reg + off)
8621 * with different pointer types:
8622 * src_reg == ctx in one branch and
8623 * src_reg == stack|map in some other branch.
8624 * Reject it.
8625 */
61bd5218 8626 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
8627 return -EINVAL;
8628 }
8629
17a52670 8630 } else if (class == BPF_STX) {
3df126f3 8631 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 8632
17a52670 8633 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 8634 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
8635 if (err)
8636 return err;
c08435ec 8637 env->insn_idx++;
17a52670
AS
8638 continue;
8639 }
8640
17a52670 8641 /* check src1 operand */
dc503a8a 8642 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8643 if (err)
8644 return err;
8645 /* check src2 operand */
dc503a8a 8646 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8647 if (err)
8648 return err;
8649
d691f9e8
AS
8650 dst_reg_type = regs[insn->dst_reg].type;
8651
17a52670 8652 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
8653 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8654 insn->off, BPF_SIZE(insn->code),
8655 BPF_WRITE, insn->src_reg, false);
17a52670
AS
8656 if (err)
8657 return err;
8658
c08435ec 8659 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
8660
8661 if (*prev_dst_type == NOT_INIT) {
8662 *prev_dst_type = dst_reg_type;
c64b7983 8663 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 8664 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
8665 return -EINVAL;
8666 }
8667
17a52670
AS
8668 } else if (class == BPF_ST) {
8669 if (BPF_MODE(insn->code) != BPF_MEM ||
8670 insn->src_reg != BPF_REG_0) {
61bd5218 8671 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
8672 return -EINVAL;
8673 }
8674 /* check src operand */
dc503a8a 8675 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8676 if (err)
8677 return err;
8678
f37a8cb8 8679 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 8680 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
8681 insn->dst_reg,
8682 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
8683 return -EACCES;
8684 }
8685
17a52670 8686 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
8687 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8688 insn->off, BPF_SIZE(insn->code),
8689 BPF_WRITE, -1, false);
17a52670
AS
8690 if (err)
8691 return err;
8692
092ed096 8693 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
8694 u8 opcode = BPF_OP(insn->code);
8695
2589726d 8696 env->jmps_processed++;
17a52670
AS
8697 if (opcode == BPF_CALL) {
8698 if (BPF_SRC(insn->code) != BPF_K ||
8699 insn->off != 0 ||
f4d7e40a
AS
8700 (insn->src_reg != BPF_REG_0 &&
8701 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
8702 insn->dst_reg != BPF_REG_0 ||
8703 class == BPF_JMP32) {
61bd5218 8704 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
8705 return -EINVAL;
8706 }
8707
d83525ca
AS
8708 if (env->cur_state->active_spin_lock &&
8709 (insn->src_reg == BPF_PSEUDO_CALL ||
8710 insn->imm != BPF_FUNC_spin_unlock)) {
8711 verbose(env, "function calls are not allowed while holding a lock\n");
8712 return -EINVAL;
8713 }
f4d7e40a 8714 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 8715 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 8716 else
c08435ec 8717 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
8718 if (err)
8719 return err;
8720
8721 } else if (opcode == BPF_JA) {
8722 if (BPF_SRC(insn->code) != BPF_K ||
8723 insn->imm != 0 ||
8724 insn->src_reg != BPF_REG_0 ||
092ed096
JW
8725 insn->dst_reg != BPF_REG_0 ||
8726 class == BPF_JMP32) {
61bd5218 8727 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
8728 return -EINVAL;
8729 }
8730
c08435ec 8731 env->insn_idx += insn->off + 1;
17a52670
AS
8732 continue;
8733
8734 } else if (opcode == BPF_EXIT) {
8735 if (BPF_SRC(insn->code) != BPF_K ||
8736 insn->imm != 0 ||
8737 insn->src_reg != BPF_REG_0 ||
092ed096
JW
8738 insn->dst_reg != BPF_REG_0 ||
8739 class == BPF_JMP32) {
61bd5218 8740 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
8741 return -EINVAL;
8742 }
8743
d83525ca
AS
8744 if (env->cur_state->active_spin_lock) {
8745 verbose(env, "bpf_spin_unlock is missing\n");
8746 return -EINVAL;
8747 }
8748
f4d7e40a
AS
8749 if (state->curframe) {
8750 /* exit from nested function */
c08435ec 8751 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
8752 if (err)
8753 return err;
8754 do_print_state = true;
8755 continue;
8756 }
8757
fd978bf7
JS
8758 err = check_reference_leak(env);
8759 if (err)
8760 return err;
8761
390ee7e2
AS
8762 err = check_return_code(env);
8763 if (err)
8764 return err;
f1bca824 8765process_bpf_exit:
2589726d 8766 update_branch_counts(env, env->cur_state);
b5dc0163 8767 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 8768 &env->insn_idx, pop_log);
638f5b90
AS
8769 if (err < 0) {
8770 if (err != -ENOENT)
8771 return err;
17a52670
AS
8772 break;
8773 } else {
8774 do_print_state = true;
8775 continue;
8776 }
8777 } else {
c08435ec 8778 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
8779 if (err)
8780 return err;
8781 }
8782 } else if (class == BPF_LD) {
8783 u8 mode = BPF_MODE(insn->code);
8784
8785 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
8786 err = check_ld_abs(env, insn);
8787 if (err)
8788 return err;
8789
17a52670
AS
8790 } else if (mode == BPF_IMM) {
8791 err = check_ld_imm(env, insn);
8792 if (err)
8793 return err;
8794
c08435ec 8795 env->insn_idx++;
51c39bb1 8796 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 8797 } else {
61bd5218 8798 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
8799 return -EINVAL;
8800 }
8801 } else {
61bd5218 8802 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
8803 return -EINVAL;
8804 }
8805
c08435ec 8806 env->insn_idx++;
17a52670
AS
8807 }
8808
8809 return 0;
8810}
8811
56f668df
MKL
8812static int check_map_prealloc(struct bpf_map *map)
8813{
8814 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
8815 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8816 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
8817 !(map->map_flags & BPF_F_NO_PREALLOC);
8818}
8819
d83525ca
AS
8820static bool is_tracing_prog_type(enum bpf_prog_type type)
8821{
8822 switch (type) {
8823 case BPF_PROG_TYPE_KPROBE:
8824 case BPF_PROG_TYPE_TRACEPOINT:
8825 case BPF_PROG_TYPE_PERF_EVENT:
8826 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8827 return true;
8828 default:
8829 return false;
8830 }
8831}
8832
94dacdbd
TG
8833static bool is_preallocated_map(struct bpf_map *map)
8834{
8835 if (!check_map_prealloc(map))
8836 return false;
8837 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8838 return false;
8839 return true;
8840}
8841
61bd5218
JK
8842static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8843 struct bpf_map *map,
fdc15d38
AS
8844 struct bpf_prog *prog)
8845
8846{
94dacdbd
TG
8847 /*
8848 * Validate that trace type programs use preallocated hash maps.
8849 *
8850 * For programs attached to PERF events this is mandatory as the
8851 * perf NMI can hit any arbitrary code sequence.
8852 *
8853 * All other trace types using preallocated hash maps are unsafe as
8854 * well because tracepoint or kprobes can be inside locked regions
8855 * of the memory allocator or at a place where a recursion into the
8856 * memory allocator would see inconsistent state.
8857 *
2ed905c5
TG
8858 * On RT enabled kernels run-time allocation of all trace type
8859 * programs is strictly prohibited due to lock type constraints. On
8860 * !RT kernels it is allowed for backwards compatibility reasons for
8861 * now, but warnings are emitted so developers are made aware of
8862 * the unsafety and can fix their programs before this is enforced.
56f668df 8863 */
94dacdbd
TG
8864 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8865 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 8866 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
8867 return -EINVAL;
8868 }
2ed905c5
TG
8869 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8870 verbose(env, "trace type programs can only use preallocated hash map\n");
8871 return -EINVAL;
8872 }
94dacdbd
TG
8873 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
8874 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 8875 }
a3884572 8876
d83525ca
AS
8877 if ((is_tracing_prog_type(prog->type) ||
8878 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8879 map_value_has_spin_lock(map)) {
8880 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8881 return -EINVAL;
8882 }
8883
a3884572 8884 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 8885 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
8886 verbose(env, "offload device mismatch between prog and map\n");
8887 return -EINVAL;
8888 }
8889
85d33df3
MKL
8890 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8891 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8892 return -EINVAL;
8893 }
8894
fdc15d38
AS
8895 return 0;
8896}
8897
b741f163
RG
8898static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8899{
8900 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8901 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8902}
8903
0246e64d
AS
8904/* look for pseudo eBPF instructions that access map FDs and
8905 * replace them with actual map pointers
8906 */
58e2af8b 8907static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
8908{
8909 struct bpf_insn *insn = env->prog->insnsi;
8910 int insn_cnt = env->prog->len;
fdc15d38 8911 int i, j, err;
0246e64d 8912
f1f7714e 8913 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
8914 if (err)
8915 return err;
8916
0246e64d 8917 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 8918 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 8919 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 8920 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
8921 return -EINVAL;
8922 }
8923
d691f9e8
AS
8924 if (BPF_CLASS(insn->code) == BPF_STX &&
8925 ((BPF_MODE(insn->code) != BPF_MEM &&
8926 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 8927 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
8928 return -EINVAL;
8929 }
8930
0246e64d 8931 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 8932 struct bpf_insn_aux_data *aux;
0246e64d
AS
8933 struct bpf_map *map;
8934 struct fd f;
d8eca5bb 8935 u64 addr;
0246e64d
AS
8936
8937 if (i == insn_cnt - 1 || insn[1].code != 0 ||
8938 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8939 insn[1].off != 0) {
61bd5218 8940 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
8941 return -EINVAL;
8942 }
8943
d8eca5bb 8944 if (insn[0].src_reg == 0)
0246e64d
AS
8945 /* valid generic load 64-bit imm */
8946 goto next_insn;
8947
d8eca5bb
DB
8948 /* In final convert_pseudo_ld_imm64() step, this is
8949 * converted into regular 64-bit imm load insn.
8950 */
8951 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8952 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8953 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8954 insn[1].imm != 0)) {
8955 verbose(env,
8956 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
8957 return -EINVAL;
8958 }
8959
20182390 8960 f = fdget(insn[0].imm);
c2101297 8961 map = __bpf_map_get(f);
0246e64d 8962 if (IS_ERR(map)) {
61bd5218 8963 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 8964 insn[0].imm);
0246e64d
AS
8965 return PTR_ERR(map);
8966 }
8967
61bd5218 8968 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
8969 if (err) {
8970 fdput(f);
8971 return err;
8972 }
8973
d8eca5bb
DB
8974 aux = &env->insn_aux_data[i];
8975 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8976 addr = (unsigned long)map;
8977 } else {
8978 u32 off = insn[1].imm;
8979
8980 if (off >= BPF_MAX_VAR_OFF) {
8981 verbose(env, "direct value offset of %u is not allowed\n", off);
8982 fdput(f);
8983 return -EINVAL;
8984 }
8985
8986 if (!map->ops->map_direct_value_addr) {
8987 verbose(env, "no direct value access support for this map type\n");
8988 fdput(f);
8989 return -EINVAL;
8990 }
8991
8992 err = map->ops->map_direct_value_addr(map, &addr, off);
8993 if (err) {
8994 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8995 map->value_size, off);
8996 fdput(f);
8997 return err;
8998 }
8999
9000 aux->map_off = off;
9001 addr += off;
9002 }
9003
9004 insn[0].imm = (u32)addr;
9005 insn[1].imm = addr >> 32;
0246e64d
AS
9006
9007 /* check whether we recorded this map already */
d8eca5bb 9008 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9009 if (env->used_maps[j] == map) {
d8eca5bb 9010 aux->map_index = j;
0246e64d
AS
9011 fdput(f);
9012 goto next_insn;
9013 }
d8eca5bb 9014 }
0246e64d
AS
9015
9016 if (env->used_map_cnt >= MAX_USED_MAPS) {
9017 fdput(f);
9018 return -E2BIG;
9019 }
9020
0246e64d
AS
9021 /* hold the map. If the program is rejected by verifier,
9022 * the map will be released by release_maps() or it
9023 * will be used by the valid program until it's unloaded
ab7f5bf0 9024 * and all maps are released in free_used_maps()
0246e64d 9025 */
1e0bd5a0 9026 bpf_map_inc(map);
d8eca5bb
DB
9027
9028 aux->map_index = env->used_map_cnt;
92117d84
AS
9029 env->used_maps[env->used_map_cnt++] = map;
9030
b741f163 9031 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9032 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9033 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9034 fdput(f);
9035 return -EBUSY;
9036 }
9037
0246e64d
AS
9038 fdput(f);
9039next_insn:
9040 insn++;
9041 i++;
5e581dad
DB
9042 continue;
9043 }
9044
9045 /* Basic sanity check before we invest more work here. */
9046 if (!bpf_opcode_in_insntable(insn->code)) {
9047 verbose(env, "unknown opcode %02x\n", insn->code);
9048 return -EINVAL;
0246e64d
AS
9049 }
9050 }
9051
9052 /* now all pseudo BPF_LD_IMM64 instructions load valid
9053 * 'struct bpf_map *' into a register instead of user map_fd.
9054 * These pointers will be used later by verifier to validate map access.
9055 */
9056 return 0;
9057}
9058
9059/* drop refcnt of maps used by the rejected program */
58e2af8b 9060static void release_maps(struct bpf_verifier_env *env)
0246e64d 9061{
a2ea0746
DB
9062 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9063 env->used_map_cnt);
0246e64d
AS
9064}
9065
9066/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9067static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9068{
9069 struct bpf_insn *insn = env->prog->insnsi;
9070 int insn_cnt = env->prog->len;
9071 int i;
9072
9073 for (i = 0; i < insn_cnt; i++, insn++)
9074 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9075 insn->src_reg = 0;
9076}
9077
8041902d
AS
9078/* single env->prog->insni[off] instruction was replaced with the range
9079 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9080 * [0, off) and [off, end) to new locations, so the patched range stays zero
9081 */
b325fbca
JW
9082static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9083 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9084{
9085 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9086 struct bpf_insn *insn = new_prog->insnsi;
9087 u32 prog_len;
c131187d 9088 int i;
8041902d 9089
b325fbca
JW
9090 /* aux info at OFF always needs adjustment, no matter fast path
9091 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9092 * original insn at old prog.
9093 */
9094 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9095
8041902d
AS
9096 if (cnt == 1)
9097 return 0;
b325fbca 9098 prog_len = new_prog->len;
fad953ce
KC
9099 new_data = vzalloc(array_size(prog_len,
9100 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9101 if (!new_data)
9102 return -ENOMEM;
9103 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9104 memcpy(new_data + off + cnt - 1, old_data + off,
9105 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9106 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9107 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9108 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9109 }
8041902d
AS
9110 env->insn_aux_data = new_data;
9111 vfree(old_data);
9112 return 0;
9113}
9114
cc8b0b92
AS
9115static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9116{
9117 int i;
9118
9119 if (len == 1)
9120 return;
4cb3d99c
JW
9121 /* NOTE: fake 'exit' subprog should be updated as well. */
9122 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 9123 if (env->subprog_info[i].start <= off)
cc8b0b92 9124 continue;
9c8105bd 9125 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
9126 }
9127}
9128
8041902d
AS
9129static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9130 const struct bpf_insn *patch, u32 len)
9131{
9132 struct bpf_prog *new_prog;
9133
9134 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
9135 if (IS_ERR(new_prog)) {
9136 if (PTR_ERR(new_prog) == -ERANGE)
9137 verbose(env,
9138 "insn %d cannot be patched due to 16-bit range\n",
9139 env->insn_aux_data[off].orig_idx);
8041902d 9140 return NULL;
4f73379e 9141 }
b325fbca 9142 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 9143 return NULL;
cc8b0b92 9144 adjust_subprog_starts(env, off, len);
8041902d
AS
9145 return new_prog;
9146}
9147
52875a04
JK
9148static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9149 u32 off, u32 cnt)
9150{
9151 int i, j;
9152
9153 /* find first prog starting at or after off (first to remove) */
9154 for (i = 0; i < env->subprog_cnt; i++)
9155 if (env->subprog_info[i].start >= off)
9156 break;
9157 /* find first prog starting at or after off + cnt (first to stay) */
9158 for (j = i; j < env->subprog_cnt; j++)
9159 if (env->subprog_info[j].start >= off + cnt)
9160 break;
9161 /* if j doesn't start exactly at off + cnt, we are just removing
9162 * the front of previous prog
9163 */
9164 if (env->subprog_info[j].start != off + cnt)
9165 j--;
9166
9167 if (j > i) {
9168 struct bpf_prog_aux *aux = env->prog->aux;
9169 int move;
9170
9171 /* move fake 'exit' subprog as well */
9172 move = env->subprog_cnt + 1 - j;
9173
9174 memmove(env->subprog_info + i,
9175 env->subprog_info + j,
9176 sizeof(*env->subprog_info) * move);
9177 env->subprog_cnt -= j - i;
9178
9179 /* remove func_info */
9180 if (aux->func_info) {
9181 move = aux->func_info_cnt - j;
9182
9183 memmove(aux->func_info + i,
9184 aux->func_info + j,
9185 sizeof(*aux->func_info) * move);
9186 aux->func_info_cnt -= j - i;
9187 /* func_info->insn_off is set after all code rewrites,
9188 * in adjust_btf_func() - no need to adjust
9189 */
9190 }
9191 } else {
9192 /* convert i from "first prog to remove" to "first to adjust" */
9193 if (env->subprog_info[i].start == off)
9194 i++;
9195 }
9196
9197 /* update fake 'exit' subprog as well */
9198 for (; i <= env->subprog_cnt; i++)
9199 env->subprog_info[i].start -= cnt;
9200
9201 return 0;
9202}
9203
9204static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9205 u32 cnt)
9206{
9207 struct bpf_prog *prog = env->prog;
9208 u32 i, l_off, l_cnt, nr_linfo;
9209 struct bpf_line_info *linfo;
9210
9211 nr_linfo = prog->aux->nr_linfo;
9212 if (!nr_linfo)
9213 return 0;
9214
9215 linfo = prog->aux->linfo;
9216
9217 /* find first line info to remove, count lines to be removed */
9218 for (i = 0; i < nr_linfo; i++)
9219 if (linfo[i].insn_off >= off)
9220 break;
9221
9222 l_off = i;
9223 l_cnt = 0;
9224 for (; i < nr_linfo; i++)
9225 if (linfo[i].insn_off < off + cnt)
9226 l_cnt++;
9227 else
9228 break;
9229
9230 /* First live insn doesn't match first live linfo, it needs to "inherit"
9231 * last removed linfo. prog is already modified, so prog->len == off
9232 * means no live instructions after (tail of the program was removed).
9233 */
9234 if (prog->len != off && l_cnt &&
9235 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9236 l_cnt--;
9237 linfo[--i].insn_off = off + cnt;
9238 }
9239
9240 /* remove the line info which refer to the removed instructions */
9241 if (l_cnt) {
9242 memmove(linfo + l_off, linfo + i,
9243 sizeof(*linfo) * (nr_linfo - i));
9244
9245 prog->aux->nr_linfo -= l_cnt;
9246 nr_linfo = prog->aux->nr_linfo;
9247 }
9248
9249 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
9250 for (i = l_off; i < nr_linfo; i++)
9251 linfo[i].insn_off -= cnt;
9252
9253 /* fix up all subprogs (incl. 'exit') which start >= off */
9254 for (i = 0; i <= env->subprog_cnt; i++)
9255 if (env->subprog_info[i].linfo_idx > l_off) {
9256 /* program may have started in the removed region but
9257 * may not be fully removed
9258 */
9259 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9260 env->subprog_info[i].linfo_idx -= l_cnt;
9261 else
9262 env->subprog_info[i].linfo_idx = l_off;
9263 }
9264
9265 return 0;
9266}
9267
9268static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9269{
9270 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9271 unsigned int orig_prog_len = env->prog->len;
9272 int err;
9273
08ca90af
JK
9274 if (bpf_prog_is_dev_bound(env->prog->aux))
9275 bpf_prog_offload_remove_insns(env, off, cnt);
9276
52875a04
JK
9277 err = bpf_remove_insns(env->prog, off, cnt);
9278 if (err)
9279 return err;
9280
9281 err = adjust_subprog_starts_after_remove(env, off, cnt);
9282 if (err)
9283 return err;
9284
9285 err = bpf_adj_linfo_after_remove(env, off, cnt);
9286 if (err)
9287 return err;
9288
9289 memmove(aux_data + off, aux_data + off + cnt,
9290 sizeof(*aux_data) * (orig_prog_len - off - cnt));
9291
9292 return 0;
9293}
9294
2a5418a1
DB
9295/* The verifier does more data flow analysis than llvm and will not
9296 * explore branches that are dead at run time. Malicious programs can
9297 * have dead code too. Therefore replace all dead at-run-time code
9298 * with 'ja -1'.
9299 *
9300 * Just nops are not optimal, e.g. if they would sit at the end of the
9301 * program and through another bug we would manage to jump there, then
9302 * we'd execute beyond program memory otherwise. Returning exception
9303 * code also wouldn't work since we can have subprogs where the dead
9304 * code could be located.
c131187d
AS
9305 */
9306static void sanitize_dead_code(struct bpf_verifier_env *env)
9307{
9308 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 9309 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
9310 struct bpf_insn *insn = env->prog->insnsi;
9311 const int insn_cnt = env->prog->len;
9312 int i;
9313
9314 for (i = 0; i < insn_cnt; i++) {
9315 if (aux_data[i].seen)
9316 continue;
2a5418a1 9317 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
9318 }
9319}
9320
e2ae4ca2
JK
9321static bool insn_is_cond_jump(u8 code)
9322{
9323 u8 op;
9324
092ed096
JW
9325 if (BPF_CLASS(code) == BPF_JMP32)
9326 return true;
9327
e2ae4ca2
JK
9328 if (BPF_CLASS(code) != BPF_JMP)
9329 return false;
9330
9331 op = BPF_OP(code);
9332 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9333}
9334
9335static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9336{
9337 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9338 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9339 struct bpf_insn *insn = env->prog->insnsi;
9340 const int insn_cnt = env->prog->len;
9341 int i;
9342
9343 for (i = 0; i < insn_cnt; i++, insn++) {
9344 if (!insn_is_cond_jump(insn->code))
9345 continue;
9346
9347 if (!aux_data[i + 1].seen)
9348 ja.off = insn->off;
9349 else if (!aux_data[i + 1 + insn->off].seen)
9350 ja.off = 0;
9351 else
9352 continue;
9353
08ca90af
JK
9354 if (bpf_prog_is_dev_bound(env->prog->aux))
9355 bpf_prog_offload_replace_insn(env, i, &ja);
9356
e2ae4ca2
JK
9357 memcpy(insn, &ja, sizeof(ja));
9358 }
9359}
9360
52875a04
JK
9361static int opt_remove_dead_code(struct bpf_verifier_env *env)
9362{
9363 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9364 int insn_cnt = env->prog->len;
9365 int i, err;
9366
9367 for (i = 0; i < insn_cnt; i++) {
9368 int j;
9369
9370 j = 0;
9371 while (i + j < insn_cnt && !aux_data[i + j].seen)
9372 j++;
9373 if (!j)
9374 continue;
9375
9376 err = verifier_remove_insns(env, i, j);
9377 if (err)
9378 return err;
9379 insn_cnt = env->prog->len;
9380 }
9381
9382 return 0;
9383}
9384
a1b14abc
JK
9385static int opt_remove_nops(struct bpf_verifier_env *env)
9386{
9387 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9388 struct bpf_insn *insn = env->prog->insnsi;
9389 int insn_cnt = env->prog->len;
9390 int i, err;
9391
9392 for (i = 0; i < insn_cnt; i++) {
9393 if (memcmp(&insn[i], &ja, sizeof(ja)))
9394 continue;
9395
9396 err = verifier_remove_insns(env, i, 1);
9397 if (err)
9398 return err;
9399 insn_cnt--;
9400 i--;
9401 }
9402
9403 return 0;
9404}
9405
d6c2308c
JW
9406static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9407 const union bpf_attr *attr)
a4b1d3c1 9408{
d6c2308c 9409 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 9410 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 9411 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 9412 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 9413 struct bpf_prog *new_prog;
d6c2308c 9414 bool rnd_hi32;
a4b1d3c1 9415
d6c2308c 9416 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 9417 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
9418 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9419 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9420 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
9421 for (i = 0; i < len; i++) {
9422 int adj_idx = i + delta;
9423 struct bpf_insn insn;
9424
d6c2308c
JW
9425 insn = insns[adj_idx];
9426 if (!aux[adj_idx].zext_dst) {
9427 u8 code, class;
9428 u32 imm_rnd;
9429
9430 if (!rnd_hi32)
9431 continue;
9432
9433 code = insn.code;
9434 class = BPF_CLASS(code);
9435 if (insn_no_def(&insn))
9436 continue;
9437
9438 /* NOTE: arg "reg" (the fourth one) is only used for
9439 * BPF_STX which has been ruled out in above
9440 * check, it is safe to pass NULL here.
9441 */
9442 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9443 if (class == BPF_LD &&
9444 BPF_MODE(code) == BPF_IMM)
9445 i++;
9446 continue;
9447 }
9448
9449 /* ctx load could be transformed into wider load. */
9450 if (class == BPF_LDX &&
9451 aux[adj_idx].ptr_type == PTR_TO_CTX)
9452 continue;
9453
9454 imm_rnd = get_random_int();
9455 rnd_hi32_patch[0] = insn;
9456 rnd_hi32_patch[1].imm = imm_rnd;
9457 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9458 patch = rnd_hi32_patch;
9459 patch_len = 4;
9460 goto apply_patch_buffer;
9461 }
9462
9463 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
9464 continue;
9465
a4b1d3c1
JW
9466 zext_patch[0] = insn;
9467 zext_patch[1].dst_reg = insn.dst_reg;
9468 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
9469 patch = zext_patch;
9470 patch_len = 2;
9471apply_patch_buffer:
9472 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
9473 if (!new_prog)
9474 return -ENOMEM;
9475 env->prog = new_prog;
9476 insns = new_prog->insnsi;
9477 aux = env->insn_aux_data;
d6c2308c 9478 delta += patch_len - 1;
a4b1d3c1
JW
9479 }
9480
9481 return 0;
9482}
9483
c64b7983
JS
9484/* convert load instructions that access fields of a context type into a
9485 * sequence of instructions that access fields of the underlying structure:
9486 * struct __sk_buff -> struct sk_buff
9487 * struct bpf_sock_ops -> struct sock
9bac3d6d 9488 */
58e2af8b 9489static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 9490{
00176a34 9491 const struct bpf_verifier_ops *ops = env->ops;
f96da094 9492 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 9493 const int insn_cnt = env->prog->len;
36bbef52 9494 struct bpf_insn insn_buf[16], *insn;
46f53a65 9495 u32 target_size, size_default, off;
9bac3d6d 9496 struct bpf_prog *new_prog;
d691f9e8 9497 enum bpf_access_type type;
f96da094 9498 bool is_narrower_load;
9bac3d6d 9499
b09928b9
DB
9500 if (ops->gen_prologue || env->seen_direct_write) {
9501 if (!ops->gen_prologue) {
9502 verbose(env, "bpf verifier is misconfigured\n");
9503 return -EINVAL;
9504 }
36bbef52
DB
9505 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9506 env->prog);
9507 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 9508 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
9509 return -EINVAL;
9510 } else if (cnt) {
8041902d 9511 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
9512 if (!new_prog)
9513 return -ENOMEM;
8041902d 9514
36bbef52 9515 env->prog = new_prog;
3df126f3 9516 delta += cnt - 1;
36bbef52
DB
9517 }
9518 }
9519
c64b7983 9520 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
9521 return 0;
9522
3df126f3 9523 insn = env->prog->insnsi + delta;
36bbef52 9524
9bac3d6d 9525 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
9526 bpf_convert_ctx_access_t convert_ctx_access;
9527
62c7989b
DB
9528 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9529 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9530 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 9531 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 9532 type = BPF_READ;
62c7989b
DB
9533 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9534 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9535 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 9536 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
9537 type = BPF_WRITE;
9538 else
9bac3d6d
AS
9539 continue;
9540
af86ca4e
AS
9541 if (type == BPF_WRITE &&
9542 env->insn_aux_data[i + delta].sanitize_stack_off) {
9543 struct bpf_insn patch[] = {
9544 /* Sanitize suspicious stack slot with zero.
9545 * There are no memory dependencies for this store,
9546 * since it's only using frame pointer and immediate
9547 * constant of zero
9548 */
9549 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9550 env->insn_aux_data[i + delta].sanitize_stack_off,
9551 0),
9552 /* the original STX instruction will immediately
9553 * overwrite the same stack slot with appropriate value
9554 */
9555 *insn,
9556 };
9557
9558 cnt = ARRAY_SIZE(patch);
9559 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9560 if (!new_prog)
9561 return -ENOMEM;
9562
9563 delta += cnt - 1;
9564 env->prog = new_prog;
9565 insn = new_prog->insnsi + i + delta;
9566 continue;
9567 }
9568
c64b7983
JS
9569 switch (env->insn_aux_data[i + delta].ptr_type) {
9570 case PTR_TO_CTX:
9571 if (!ops->convert_ctx_access)
9572 continue;
9573 convert_ctx_access = ops->convert_ctx_access;
9574 break;
9575 case PTR_TO_SOCKET:
46f8bc92 9576 case PTR_TO_SOCK_COMMON:
c64b7983
JS
9577 convert_ctx_access = bpf_sock_convert_ctx_access;
9578 break;
655a51e5
MKL
9579 case PTR_TO_TCP_SOCK:
9580 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9581 break;
fada7fdc
JL
9582 case PTR_TO_XDP_SOCK:
9583 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9584 break;
2a02759e 9585 case PTR_TO_BTF_ID:
27ae7997
MKL
9586 if (type == BPF_READ) {
9587 insn->code = BPF_LDX | BPF_PROBE_MEM |
9588 BPF_SIZE((insn)->code);
9589 env->prog->aux->num_exentries++;
9590 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
9591 verbose(env, "Writes through BTF pointers are not allowed\n");
9592 return -EINVAL;
9593 }
2a02759e 9594 continue;
c64b7983 9595 default:
9bac3d6d 9596 continue;
c64b7983 9597 }
9bac3d6d 9598
31fd8581 9599 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 9600 size = BPF_LDST_BYTES(insn);
31fd8581
YS
9601
9602 /* If the read access is a narrower load of the field,
9603 * convert to a 4/8-byte load, to minimum program type specific
9604 * convert_ctx_access changes. If conversion is successful,
9605 * we will apply proper mask to the result.
9606 */
f96da094 9607 is_narrower_load = size < ctx_field_size;
46f53a65
AI
9608 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9609 off = insn->off;
31fd8581 9610 if (is_narrower_load) {
f96da094
DB
9611 u8 size_code;
9612
9613 if (type == BPF_WRITE) {
61bd5218 9614 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
9615 return -EINVAL;
9616 }
31fd8581 9617
f96da094 9618 size_code = BPF_H;
31fd8581
YS
9619 if (ctx_field_size == 4)
9620 size_code = BPF_W;
9621 else if (ctx_field_size == 8)
9622 size_code = BPF_DW;
f96da094 9623
bc23105c 9624 insn->off = off & ~(size_default - 1);
31fd8581
YS
9625 insn->code = BPF_LDX | BPF_MEM | size_code;
9626 }
f96da094
DB
9627
9628 target_size = 0;
c64b7983
JS
9629 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9630 &target_size);
f96da094
DB
9631 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9632 (ctx_field_size && !target_size)) {
61bd5218 9633 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
9634 return -EINVAL;
9635 }
f96da094
DB
9636
9637 if (is_narrower_load && size < target_size) {
d895a0f1
IL
9638 u8 shift = bpf_ctx_narrow_access_offset(
9639 off, size, size_default) * 8;
46f53a65
AI
9640 if (ctx_field_size <= 4) {
9641 if (shift)
9642 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9643 insn->dst_reg,
9644 shift);
31fd8581 9645 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 9646 (1 << size * 8) - 1);
46f53a65
AI
9647 } else {
9648 if (shift)
9649 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9650 insn->dst_reg,
9651 shift);
31fd8581 9652 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 9653 (1ULL << size * 8) - 1);
46f53a65 9654 }
31fd8581 9655 }
9bac3d6d 9656
8041902d 9657 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
9658 if (!new_prog)
9659 return -ENOMEM;
9660
3df126f3 9661 delta += cnt - 1;
9bac3d6d
AS
9662
9663 /* keep walking new program and skip insns we just inserted */
9664 env->prog = new_prog;
3df126f3 9665 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
9666 }
9667
9668 return 0;
9669}
9670
1c2a088a
AS
9671static int jit_subprogs(struct bpf_verifier_env *env)
9672{
9673 struct bpf_prog *prog = env->prog, **func, *tmp;
9674 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 9675 struct bpf_insn *insn;
1c2a088a 9676 void *old_bpf_func;
c454a46b 9677 int err;
1c2a088a 9678
f910cefa 9679 if (env->subprog_cnt <= 1)
1c2a088a
AS
9680 return 0;
9681
7105e828 9682 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
9683 if (insn->code != (BPF_JMP | BPF_CALL) ||
9684 insn->src_reg != BPF_PSEUDO_CALL)
9685 continue;
c7a89784
DB
9686 /* Upon error here we cannot fall back to interpreter but
9687 * need a hard reject of the program. Thus -EFAULT is
9688 * propagated in any case.
9689 */
1c2a088a
AS
9690 subprog = find_subprog(env, i + insn->imm + 1);
9691 if (subprog < 0) {
9692 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9693 i + insn->imm + 1);
9694 return -EFAULT;
9695 }
9696 /* temporarily remember subprog id inside insn instead of
9697 * aux_data, since next loop will split up all insns into funcs
9698 */
f910cefa 9699 insn->off = subprog;
1c2a088a
AS
9700 /* remember original imm in case JIT fails and fallback
9701 * to interpreter will be needed
9702 */
9703 env->insn_aux_data[i].call_imm = insn->imm;
9704 /* point imm to __bpf_call_base+1 from JITs point of view */
9705 insn->imm = 1;
9706 }
9707
c454a46b
MKL
9708 err = bpf_prog_alloc_jited_linfo(prog);
9709 if (err)
9710 goto out_undo_insn;
9711
9712 err = -ENOMEM;
6396bb22 9713 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 9714 if (!func)
c7a89784 9715 goto out_undo_insn;
1c2a088a 9716
f910cefa 9717 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 9718 subprog_start = subprog_end;
4cb3d99c 9719 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
9720
9721 len = subprog_end - subprog_start;
492ecee8
AS
9722 /* BPF_PROG_RUN doesn't call subprogs directly,
9723 * hence main prog stats include the runtime of subprogs.
9724 * subprogs don't have IDs and not reachable via prog_get_next_id
9725 * func[i]->aux->stats will never be accessed and stays NULL
9726 */
9727 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
9728 if (!func[i])
9729 goto out_free;
9730 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9731 len * sizeof(struct bpf_insn));
4f74d809 9732 func[i]->type = prog->type;
1c2a088a 9733 func[i]->len = len;
4f74d809
DB
9734 if (bpf_prog_calc_tag(func[i]))
9735 goto out_free;
1c2a088a 9736 func[i]->is_func = 1;
ba64e7d8
YS
9737 func[i]->aux->func_idx = i;
9738 /* the btf and func_info will be freed only at prog->aux */
9739 func[i]->aux->btf = prog->aux->btf;
9740 func[i]->aux->func_info = prog->aux->func_info;
9741
1c2a088a
AS
9742 /* Use bpf_prog_F_tag to indicate functions in stack traces.
9743 * Long term would need debug info to populate names
9744 */
9745 func[i]->aux->name[0] = 'F';
9c8105bd 9746 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 9747 func[i]->jit_requested = 1;
c454a46b
MKL
9748 func[i]->aux->linfo = prog->aux->linfo;
9749 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9750 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9751 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
9752 func[i] = bpf_int_jit_compile(func[i]);
9753 if (!func[i]->jited) {
9754 err = -ENOTSUPP;
9755 goto out_free;
9756 }
9757 cond_resched();
9758 }
9759 /* at this point all bpf functions were successfully JITed
9760 * now populate all bpf_calls with correct addresses and
9761 * run last pass of JIT
9762 */
f910cefa 9763 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9764 insn = func[i]->insnsi;
9765 for (j = 0; j < func[i]->len; j++, insn++) {
9766 if (insn->code != (BPF_JMP | BPF_CALL) ||
9767 insn->src_reg != BPF_PSEUDO_CALL)
9768 continue;
9769 subprog = insn->off;
0d306c31
PB
9770 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9771 __bpf_call_base;
1c2a088a 9772 }
2162fed4
SD
9773
9774 /* we use the aux data to keep a list of the start addresses
9775 * of the JITed images for each function in the program
9776 *
9777 * for some architectures, such as powerpc64, the imm field
9778 * might not be large enough to hold the offset of the start
9779 * address of the callee's JITed image from __bpf_call_base
9780 *
9781 * in such cases, we can lookup the start address of a callee
9782 * by using its subprog id, available from the off field of
9783 * the call instruction, as an index for this list
9784 */
9785 func[i]->aux->func = func;
9786 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 9787 }
f910cefa 9788 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9789 old_bpf_func = func[i]->bpf_func;
9790 tmp = bpf_int_jit_compile(func[i]);
9791 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9792 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 9793 err = -ENOTSUPP;
1c2a088a
AS
9794 goto out_free;
9795 }
9796 cond_resched();
9797 }
9798
9799 /* finally lock prog and jit images for all functions and
9800 * populate kallsysm
9801 */
f910cefa 9802 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9803 bpf_prog_lock_ro(func[i]);
9804 bpf_prog_kallsyms_add(func[i]);
9805 }
7105e828
DB
9806
9807 /* Last step: make now unused interpreter insns from main
9808 * prog consistent for later dump requests, so they can
9809 * later look the same as if they were interpreted only.
9810 */
9811 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
9812 if (insn->code != (BPF_JMP | BPF_CALL) ||
9813 insn->src_reg != BPF_PSEUDO_CALL)
9814 continue;
9815 insn->off = env->insn_aux_data[i].call_imm;
9816 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 9817 insn->imm = subprog;
7105e828
DB
9818 }
9819
1c2a088a
AS
9820 prog->jited = 1;
9821 prog->bpf_func = func[0]->bpf_func;
9822 prog->aux->func = func;
f910cefa 9823 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 9824 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
9825 return 0;
9826out_free:
f910cefa 9827 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
9828 if (func[i])
9829 bpf_jit_free(func[i]);
9830 kfree(func);
c7a89784 9831out_undo_insn:
1c2a088a
AS
9832 /* cleanup main prog to be interpreted */
9833 prog->jit_requested = 0;
9834 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9835 if (insn->code != (BPF_JMP | BPF_CALL) ||
9836 insn->src_reg != BPF_PSEUDO_CALL)
9837 continue;
9838 insn->off = 0;
9839 insn->imm = env->insn_aux_data[i].call_imm;
9840 }
c454a46b 9841 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
9842 return err;
9843}
9844
1ea47e01
AS
9845static int fixup_call_args(struct bpf_verifier_env *env)
9846{
19d28fbd 9847#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9848 struct bpf_prog *prog = env->prog;
9849 struct bpf_insn *insn = prog->insnsi;
9850 int i, depth;
19d28fbd 9851#endif
e4052d06 9852 int err = 0;
1ea47e01 9853
e4052d06
QM
9854 if (env->prog->jit_requested &&
9855 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
9856 err = jit_subprogs(env);
9857 if (err == 0)
1c2a088a 9858 return 0;
c7a89784
DB
9859 if (err == -EFAULT)
9860 return err;
19d28fbd
DM
9861 }
9862#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9863 for (i = 0; i < prog->len; i++, insn++) {
9864 if (insn->code != (BPF_JMP | BPF_CALL) ||
9865 insn->src_reg != BPF_PSEUDO_CALL)
9866 continue;
9867 depth = get_callee_stack_depth(env, insn, i);
9868 if (depth < 0)
9869 return depth;
9870 bpf_patch_call_args(insn, depth);
9871 }
19d28fbd
DM
9872 err = 0;
9873#endif
9874 return err;
1ea47e01
AS
9875}
9876
79741b3b 9877/* fixup insn->imm field of bpf_call instructions
81ed18ab 9878 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
9879 *
9880 * this function is called after eBPF program passed verification
9881 */
79741b3b 9882static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 9883{
79741b3b 9884 struct bpf_prog *prog = env->prog;
d2e4c1e6 9885 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 9886 struct bpf_insn *insn = prog->insnsi;
e245c5c6 9887 const struct bpf_func_proto *fn;
79741b3b 9888 const int insn_cnt = prog->len;
09772d92 9889 const struct bpf_map_ops *ops;
c93552c4 9890 struct bpf_insn_aux_data *aux;
81ed18ab
AS
9891 struct bpf_insn insn_buf[16];
9892 struct bpf_prog *new_prog;
9893 struct bpf_map *map_ptr;
d2e4c1e6 9894 int i, ret, cnt, delta = 0;
e245c5c6 9895
79741b3b 9896 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
9897 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9898 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9899 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 9900 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
9901 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9902 struct bpf_insn mask_and_div[] = {
9903 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9904 /* Rx div 0 -> 0 */
9905 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9906 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9907 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9908 *insn,
9909 };
9910 struct bpf_insn mask_and_mod[] = {
9911 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9912 /* Rx mod 0 -> Rx */
9913 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9914 *insn,
9915 };
9916 struct bpf_insn *patchlet;
9917
9918 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9919 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9920 patchlet = mask_and_div + (is64 ? 1 : 0);
9921 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9922 } else {
9923 patchlet = mask_and_mod + (is64 ? 1 : 0);
9924 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9925 }
9926
9927 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
9928 if (!new_prog)
9929 return -ENOMEM;
9930
9931 delta += cnt - 1;
9932 env->prog = prog = new_prog;
9933 insn = new_prog->insnsi + i + delta;
9934 continue;
9935 }
9936
e0cea7ce
DB
9937 if (BPF_CLASS(insn->code) == BPF_LD &&
9938 (BPF_MODE(insn->code) == BPF_ABS ||
9939 BPF_MODE(insn->code) == BPF_IND)) {
9940 cnt = env->ops->gen_ld_abs(insn, insn_buf);
9941 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9942 verbose(env, "bpf verifier is misconfigured\n");
9943 return -EINVAL;
9944 }
9945
9946 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9947 if (!new_prog)
9948 return -ENOMEM;
9949
9950 delta += cnt - 1;
9951 env->prog = prog = new_prog;
9952 insn = new_prog->insnsi + i + delta;
9953 continue;
9954 }
9955
979d63d5
DB
9956 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9957 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9958 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9959 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9960 struct bpf_insn insn_buf[16];
9961 struct bpf_insn *patch = &insn_buf[0];
9962 bool issrc, isneg;
9963 u32 off_reg;
9964
9965 aux = &env->insn_aux_data[i + delta];
3612af78
DB
9966 if (!aux->alu_state ||
9967 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
9968 continue;
9969
9970 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9971 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9972 BPF_ALU_SANITIZE_SRC;
9973
9974 off_reg = issrc ? insn->src_reg : insn->dst_reg;
9975 if (isneg)
9976 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9977 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9978 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9979 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9980 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9981 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9982 if (issrc) {
9983 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9984 off_reg);
9985 insn->src_reg = BPF_REG_AX;
9986 } else {
9987 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9988 BPF_REG_AX);
9989 }
9990 if (isneg)
9991 insn->code = insn->code == code_add ?
9992 code_sub : code_add;
9993 *patch++ = *insn;
9994 if (issrc && isneg)
9995 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9996 cnt = patch - insn_buf;
9997
9998 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9999 if (!new_prog)
10000 return -ENOMEM;
10001
10002 delta += cnt - 1;
10003 env->prog = prog = new_prog;
10004 insn = new_prog->insnsi + i + delta;
10005 continue;
10006 }
10007
79741b3b
AS
10008 if (insn->code != (BPF_JMP | BPF_CALL))
10009 continue;
cc8b0b92
AS
10010 if (insn->src_reg == BPF_PSEUDO_CALL)
10011 continue;
e245c5c6 10012
79741b3b
AS
10013 if (insn->imm == BPF_FUNC_get_route_realm)
10014 prog->dst_needed = 1;
10015 if (insn->imm == BPF_FUNC_get_prandom_u32)
10016 bpf_user_rnd_init_once();
9802d865
JB
10017 if (insn->imm == BPF_FUNC_override_return)
10018 prog->kprobe_override = 1;
79741b3b 10019 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10020 /* If we tail call into other programs, we
10021 * cannot make any assumptions since they can
10022 * be replaced dynamically during runtime in
10023 * the program array.
10024 */
10025 prog->cb_access = 1;
80a58d02 10026 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 10027 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10028
79741b3b
AS
10029 /* mark bpf_tail_call as different opcode to avoid
10030 * conditional branch in the interpeter for every normal
10031 * call and to prevent accidental JITing by JIT compiler
10032 * that doesn't support bpf_tail_call yet
e245c5c6 10033 */
79741b3b 10034 insn->imm = 0;
71189fa9 10035 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10036
c93552c4 10037 aux = &env->insn_aux_data[i + delta];
2c78ee89 10038 if (env->bpf_capable && !expect_blinding &&
cc52d914 10039 prog->jit_requested &&
d2e4c1e6
DB
10040 !bpf_map_key_poisoned(aux) &&
10041 !bpf_map_ptr_poisoned(aux) &&
10042 !bpf_map_ptr_unpriv(aux)) {
10043 struct bpf_jit_poke_descriptor desc = {
10044 .reason = BPF_POKE_REASON_TAIL_CALL,
10045 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10046 .tail_call.key = bpf_map_key_immediate(aux),
10047 };
10048
10049 ret = bpf_jit_add_poke_descriptor(prog, &desc);
10050 if (ret < 0) {
10051 verbose(env, "adding tail call poke descriptor failed\n");
10052 return ret;
10053 }
10054
10055 insn->imm = ret + 1;
10056 continue;
10057 }
10058
c93552c4
DB
10059 if (!bpf_map_ptr_unpriv(aux))
10060 continue;
10061
b2157399
AS
10062 /* instead of changing every JIT dealing with tail_call
10063 * emit two extra insns:
10064 * if (index >= max_entries) goto out;
10065 * index &= array->index_mask;
10066 * to avoid out-of-bounds cpu speculation
10067 */
c93552c4 10068 if (bpf_map_ptr_poisoned(aux)) {
40950343 10069 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
10070 return -EINVAL;
10071 }
c93552c4 10072
d2e4c1e6 10073 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
10074 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10075 map_ptr->max_entries, 2);
10076 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10077 container_of(map_ptr,
10078 struct bpf_array,
10079 map)->index_mask);
10080 insn_buf[2] = *insn;
10081 cnt = 3;
10082 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10083 if (!new_prog)
10084 return -ENOMEM;
10085
10086 delta += cnt - 1;
10087 env->prog = prog = new_prog;
10088 insn = new_prog->insnsi + i + delta;
79741b3b
AS
10089 continue;
10090 }
e245c5c6 10091
89c63074 10092 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
10093 * and other inlining handlers are currently limited to 64 bit
10094 * only.
89c63074 10095 */
60b58afc 10096 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
10097 (insn->imm == BPF_FUNC_map_lookup_elem ||
10098 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
10099 insn->imm == BPF_FUNC_map_delete_elem ||
10100 insn->imm == BPF_FUNC_map_push_elem ||
10101 insn->imm == BPF_FUNC_map_pop_elem ||
10102 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
10103 aux = &env->insn_aux_data[i + delta];
10104 if (bpf_map_ptr_poisoned(aux))
10105 goto patch_call_imm;
10106
d2e4c1e6 10107 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
10108 ops = map_ptr->ops;
10109 if (insn->imm == BPF_FUNC_map_lookup_elem &&
10110 ops->map_gen_lookup) {
10111 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10112 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10113 verbose(env, "bpf verifier is misconfigured\n");
10114 return -EINVAL;
10115 }
81ed18ab 10116
09772d92
DB
10117 new_prog = bpf_patch_insn_data(env, i + delta,
10118 insn_buf, cnt);
10119 if (!new_prog)
10120 return -ENOMEM;
81ed18ab 10121
09772d92
DB
10122 delta += cnt - 1;
10123 env->prog = prog = new_prog;
10124 insn = new_prog->insnsi + i + delta;
10125 continue;
10126 }
81ed18ab 10127
09772d92
DB
10128 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10129 (void *(*)(struct bpf_map *map, void *key))NULL));
10130 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10131 (int (*)(struct bpf_map *map, void *key))NULL));
10132 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10133 (int (*)(struct bpf_map *map, void *key, void *value,
10134 u64 flags))NULL));
84430d42
DB
10135 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10136 (int (*)(struct bpf_map *map, void *value,
10137 u64 flags))NULL));
10138 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10139 (int (*)(struct bpf_map *map, void *value))NULL));
10140 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10141 (int (*)(struct bpf_map *map, void *value))NULL));
10142
09772d92
DB
10143 switch (insn->imm) {
10144 case BPF_FUNC_map_lookup_elem:
10145 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10146 __bpf_call_base;
10147 continue;
10148 case BPF_FUNC_map_update_elem:
10149 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10150 __bpf_call_base;
10151 continue;
10152 case BPF_FUNC_map_delete_elem:
10153 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10154 __bpf_call_base;
10155 continue;
84430d42
DB
10156 case BPF_FUNC_map_push_elem:
10157 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10158 __bpf_call_base;
10159 continue;
10160 case BPF_FUNC_map_pop_elem:
10161 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10162 __bpf_call_base;
10163 continue;
10164 case BPF_FUNC_map_peek_elem:
10165 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10166 __bpf_call_base;
10167 continue;
09772d92 10168 }
81ed18ab 10169
09772d92 10170 goto patch_call_imm;
81ed18ab
AS
10171 }
10172
5576b991
MKL
10173 if (prog->jit_requested && BITS_PER_LONG == 64 &&
10174 insn->imm == BPF_FUNC_jiffies64) {
10175 struct bpf_insn ld_jiffies_addr[2] = {
10176 BPF_LD_IMM64(BPF_REG_0,
10177 (unsigned long)&jiffies),
10178 };
10179
10180 insn_buf[0] = ld_jiffies_addr[0];
10181 insn_buf[1] = ld_jiffies_addr[1];
10182 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10183 BPF_REG_0, 0);
10184 cnt = 3;
10185
10186 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10187 cnt);
10188 if (!new_prog)
10189 return -ENOMEM;
10190
10191 delta += cnt - 1;
10192 env->prog = prog = new_prog;
10193 insn = new_prog->insnsi + i + delta;
10194 continue;
10195 }
10196
81ed18ab 10197patch_call_imm:
5e43f899 10198 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
10199 /* all functions that have prototype and verifier allowed
10200 * programs to call them, must be real in-kernel functions
10201 */
10202 if (!fn->func) {
61bd5218
JK
10203 verbose(env,
10204 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
10205 func_id_name(insn->imm), insn->imm);
10206 return -EFAULT;
e245c5c6 10207 }
79741b3b 10208 insn->imm = fn->func - __bpf_call_base;
e245c5c6 10209 }
e245c5c6 10210
d2e4c1e6
DB
10211 /* Since poke tab is now finalized, publish aux to tracker. */
10212 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10213 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10214 if (!map_ptr->ops->map_poke_track ||
10215 !map_ptr->ops->map_poke_untrack ||
10216 !map_ptr->ops->map_poke_run) {
10217 verbose(env, "bpf verifier is misconfigured\n");
10218 return -EINVAL;
10219 }
10220
10221 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10222 if (ret < 0) {
10223 verbose(env, "tracking tail call prog failed\n");
10224 return ret;
10225 }
10226 }
10227
79741b3b
AS
10228 return 0;
10229}
e245c5c6 10230
58e2af8b 10231static void free_states(struct bpf_verifier_env *env)
f1bca824 10232{
58e2af8b 10233 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
10234 int i;
10235
9f4686c4
AS
10236 sl = env->free_list;
10237 while (sl) {
10238 sln = sl->next;
10239 free_verifier_state(&sl->state, false);
10240 kfree(sl);
10241 sl = sln;
10242 }
51c39bb1 10243 env->free_list = NULL;
9f4686c4 10244
f1bca824
AS
10245 if (!env->explored_states)
10246 return;
10247
dc2a4ebc 10248 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
10249 sl = env->explored_states[i];
10250
a8f500af
AS
10251 while (sl) {
10252 sln = sl->next;
10253 free_verifier_state(&sl->state, false);
10254 kfree(sl);
10255 sl = sln;
10256 }
51c39bb1 10257 env->explored_states[i] = NULL;
f1bca824 10258 }
51c39bb1 10259}
f1bca824 10260
51c39bb1
AS
10261/* The verifier is using insn_aux_data[] to store temporary data during
10262 * verification and to store information for passes that run after the
10263 * verification like dead code sanitization. do_check_common() for subprogram N
10264 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10265 * temporary data after do_check_common() finds that subprogram N cannot be
10266 * verified independently. pass_cnt counts the number of times
10267 * do_check_common() was run and insn->aux->seen tells the pass number
10268 * insn_aux_data was touched. These variables are compared to clear temporary
10269 * data from failed pass. For testing and experiments do_check_common() can be
10270 * run multiple times even when prior attempt to verify is unsuccessful.
10271 */
10272static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10273{
10274 struct bpf_insn *insn = env->prog->insnsi;
10275 struct bpf_insn_aux_data *aux;
10276 int i, class;
10277
10278 for (i = 0; i < env->prog->len; i++) {
10279 class = BPF_CLASS(insn[i].code);
10280 if (class != BPF_LDX && class != BPF_STX)
10281 continue;
10282 aux = &env->insn_aux_data[i];
10283 if (aux->seen != env->pass_cnt)
10284 continue;
10285 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10286 }
f1bca824
AS
10287}
10288
51c39bb1
AS
10289static int do_check_common(struct bpf_verifier_env *env, int subprog)
10290{
6f8a57cc 10291 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
10292 struct bpf_verifier_state *state;
10293 struct bpf_reg_state *regs;
10294 int ret, i;
10295
10296 env->prev_linfo = NULL;
10297 env->pass_cnt++;
10298
10299 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10300 if (!state)
10301 return -ENOMEM;
10302 state->curframe = 0;
10303 state->speculative = false;
10304 state->branches = 1;
10305 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10306 if (!state->frame[0]) {
10307 kfree(state);
10308 return -ENOMEM;
10309 }
10310 env->cur_state = state;
10311 init_func_state(env, state->frame[0],
10312 BPF_MAIN_FUNC /* callsite */,
10313 0 /* frameno */,
10314 subprog);
10315
10316 regs = state->frame[state->curframe]->regs;
be8704ff 10317 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
10318 ret = btf_prepare_func_args(env, subprog, regs);
10319 if (ret)
10320 goto out;
10321 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10322 if (regs[i].type == PTR_TO_CTX)
10323 mark_reg_known_zero(env, regs, i);
10324 else if (regs[i].type == SCALAR_VALUE)
10325 mark_reg_unknown(env, regs, i);
10326 }
10327 } else {
10328 /* 1st arg to a function */
10329 regs[BPF_REG_1].type = PTR_TO_CTX;
10330 mark_reg_known_zero(env, regs, BPF_REG_1);
10331 ret = btf_check_func_arg_match(env, subprog, regs);
10332 if (ret == -EFAULT)
10333 /* unlikely verifier bug. abort.
10334 * ret == 0 and ret < 0 are sadly acceptable for
10335 * main() function due to backward compatibility.
10336 * Like socket filter program may be written as:
10337 * int bpf_prog(struct pt_regs *ctx)
10338 * and never dereference that ctx in the program.
10339 * 'struct pt_regs' is a type mismatch for socket
10340 * filter that should be using 'struct __sk_buff'.
10341 */
10342 goto out;
10343 }
10344
10345 ret = do_check(env);
10346out:
f59bbfc2
AS
10347 /* check for NULL is necessary, since cur_state can be freed inside
10348 * do_check() under memory pressure.
10349 */
10350 if (env->cur_state) {
10351 free_verifier_state(env->cur_state, true);
10352 env->cur_state = NULL;
10353 }
6f8a57cc
AN
10354 while (!pop_stack(env, NULL, NULL, false));
10355 if (!ret && pop_log)
10356 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
10357 free_states(env);
10358 if (ret)
10359 /* clean aux data in case subprog was rejected */
10360 sanitize_insn_aux_data(env);
10361 return ret;
10362}
10363
10364/* Verify all global functions in a BPF program one by one based on their BTF.
10365 * All global functions must pass verification. Otherwise the whole program is rejected.
10366 * Consider:
10367 * int bar(int);
10368 * int foo(int f)
10369 * {
10370 * return bar(f);
10371 * }
10372 * int bar(int b)
10373 * {
10374 * ...
10375 * }
10376 * foo() will be verified first for R1=any_scalar_value. During verification it
10377 * will be assumed that bar() already verified successfully and call to bar()
10378 * from foo() will be checked for type match only. Later bar() will be verified
10379 * independently to check that it's safe for R1=any_scalar_value.
10380 */
10381static int do_check_subprogs(struct bpf_verifier_env *env)
10382{
10383 struct bpf_prog_aux *aux = env->prog->aux;
10384 int i, ret;
10385
10386 if (!aux->func_info)
10387 return 0;
10388
10389 for (i = 1; i < env->subprog_cnt; i++) {
10390 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10391 continue;
10392 env->insn_idx = env->subprog_info[i].start;
10393 WARN_ON_ONCE(env->insn_idx == 0);
10394 ret = do_check_common(env, i);
10395 if (ret) {
10396 return ret;
10397 } else if (env->log.level & BPF_LOG_LEVEL) {
10398 verbose(env,
10399 "Func#%d is safe for any args that match its prototype\n",
10400 i);
10401 }
10402 }
10403 return 0;
10404}
10405
10406static int do_check_main(struct bpf_verifier_env *env)
10407{
10408 int ret;
10409
10410 env->insn_idx = 0;
10411 ret = do_check_common(env, 0);
10412 if (!ret)
10413 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10414 return ret;
10415}
10416
10417
06ee7115
AS
10418static void print_verification_stats(struct bpf_verifier_env *env)
10419{
10420 int i;
10421
10422 if (env->log.level & BPF_LOG_STATS) {
10423 verbose(env, "verification time %lld usec\n",
10424 div_u64(env->verification_time, 1000));
10425 verbose(env, "stack depth ");
10426 for (i = 0; i < env->subprog_cnt; i++) {
10427 u32 depth = env->subprog_info[i].stack_depth;
10428
10429 verbose(env, "%d", depth);
10430 if (i + 1 < env->subprog_cnt)
10431 verbose(env, "+");
10432 }
10433 verbose(env, "\n");
10434 }
10435 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10436 "total_states %d peak_states %d mark_read %d\n",
10437 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10438 env->max_states_per_insn, env->total_states,
10439 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
10440}
10441
27ae7997
MKL
10442static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10443{
10444 const struct btf_type *t, *func_proto;
10445 const struct bpf_struct_ops *st_ops;
10446 const struct btf_member *member;
10447 struct bpf_prog *prog = env->prog;
10448 u32 btf_id, member_idx;
10449 const char *mname;
10450
10451 btf_id = prog->aux->attach_btf_id;
10452 st_ops = bpf_struct_ops_find(btf_id);
10453 if (!st_ops) {
10454 verbose(env, "attach_btf_id %u is not a supported struct\n",
10455 btf_id);
10456 return -ENOTSUPP;
10457 }
10458
10459 t = st_ops->type;
10460 member_idx = prog->expected_attach_type;
10461 if (member_idx >= btf_type_vlen(t)) {
10462 verbose(env, "attach to invalid member idx %u of struct %s\n",
10463 member_idx, st_ops->name);
10464 return -EINVAL;
10465 }
10466
10467 member = &btf_type_member(t)[member_idx];
10468 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10469 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10470 NULL);
10471 if (!func_proto) {
10472 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10473 mname, member_idx, st_ops->name);
10474 return -EINVAL;
10475 }
10476
10477 if (st_ops->check_member) {
10478 int err = st_ops->check_member(t, member);
10479
10480 if (err) {
10481 verbose(env, "attach to unsupported member %s of struct %s\n",
10482 mname, st_ops->name);
10483 return err;
10484 }
10485 }
10486
10487 prog->aux->attach_func_proto = func_proto;
10488 prog->aux->attach_func_name = mname;
10489 env->ops = st_ops->verifier_ops;
10490
10491 return 0;
10492}
6ba43b76
KS
10493#define SECURITY_PREFIX "security_"
10494
10495static int check_attach_modify_return(struct bpf_verifier_env *env)
10496{
10497 struct bpf_prog *prog = env->prog;
10498 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr;
10499
6ba43b76
KS
10500 /* This is expected to be cleaned up in the future with the KRSI effort
10501 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h.
10502 */
69191754
KS
10503 if (within_error_injection_list(addr) ||
10504 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10505 sizeof(SECURITY_PREFIX) - 1))
6ba43b76 10506 return 0;
6ba43b76
KS
10507
10508 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n",
10509 prog->aux->attach_btf_id, prog->aux->attach_func_name);
10510
10511 return -EINVAL;
10512}
27ae7997 10513
38207291
MKL
10514static int check_attach_btf_id(struct bpf_verifier_env *env)
10515{
10516 struct bpf_prog *prog = env->prog;
be8704ff 10517 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
5b92a28a 10518 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 10519 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 10520 const char prefix[] = "btf_trace_";
15d83c4d 10521 struct btf_func_model fmodel;
5b92a28a 10522 int ret = 0, subprog = -1, i;
fec56f58 10523 struct bpf_trampoline *tr;
38207291 10524 const struct btf_type *t;
5b92a28a 10525 bool conservative = true;
38207291 10526 const char *tname;
5b92a28a 10527 struct btf *btf;
fec56f58 10528 long addr;
5b92a28a 10529 u64 key;
38207291 10530
27ae7997
MKL
10531 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10532 return check_struct_ops_btf_id(env);
10533
9e4e01df
KS
10534 if (prog->type != BPF_PROG_TYPE_TRACING &&
10535 prog->type != BPF_PROG_TYPE_LSM &&
10536 !prog_extension)
f1b9509c 10537 return 0;
38207291 10538
f1b9509c
AS
10539 if (!btf_id) {
10540 verbose(env, "Tracing programs must provide btf_id\n");
10541 return -EINVAL;
10542 }
5b92a28a
AS
10543 btf = bpf_prog_get_target_btf(prog);
10544 if (!btf) {
10545 verbose(env,
10546 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10547 return -EINVAL;
10548 }
10549 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
10550 if (!t) {
10551 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10552 return -EINVAL;
10553 }
5b92a28a 10554 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
10555 if (!tname) {
10556 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10557 return -EINVAL;
10558 }
5b92a28a
AS
10559 if (tgt_prog) {
10560 struct bpf_prog_aux *aux = tgt_prog->aux;
10561
10562 for (i = 0; i < aux->func_info_cnt; i++)
10563 if (aux->func_info[i].type_id == btf_id) {
10564 subprog = i;
10565 break;
10566 }
10567 if (subprog == -1) {
10568 verbose(env, "Subprog %s doesn't exist\n", tname);
10569 return -EINVAL;
10570 }
10571 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
10572 if (prog_extension) {
10573 if (conservative) {
10574 verbose(env,
10575 "Cannot replace static functions\n");
10576 return -EINVAL;
10577 }
10578 if (!prog->jit_requested) {
10579 verbose(env,
10580 "Extension programs should be JITed\n");
10581 return -EINVAL;
10582 }
10583 env->ops = bpf_verifier_ops[tgt_prog->type];
03f87c0b 10584 prog->expected_attach_type = tgt_prog->expected_attach_type;
be8704ff
AS
10585 }
10586 if (!tgt_prog->jited) {
10587 verbose(env, "Can attach to only JITed progs\n");
10588 return -EINVAL;
10589 }
10590 if (tgt_prog->type == prog->type) {
10591 /* Cannot fentry/fexit another fentry/fexit program.
10592 * Cannot attach program extension to another extension.
10593 * It's ok to attach fentry/fexit to extension program.
10594 */
10595 verbose(env, "Cannot recursively attach\n");
10596 return -EINVAL;
10597 }
10598 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10599 prog_extension &&
10600 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10601 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10602 /* Program extensions can extend all program types
10603 * except fentry/fexit. The reason is the following.
10604 * The fentry/fexit programs are used for performance
10605 * analysis, stats and can be attached to any program
10606 * type except themselves. When extension program is
10607 * replacing XDP function it is necessary to allow
10608 * performance analysis of all functions. Both original
10609 * XDP program and its program extension. Hence
10610 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10611 * allowed. If extending of fentry/fexit was allowed it
10612 * would be possible to create long call chain
10613 * fentry->extension->fentry->extension beyond
10614 * reasonable stack size. Hence extending fentry is not
10615 * allowed.
10616 */
10617 verbose(env, "Cannot extend fentry/fexit\n");
10618 return -EINVAL;
10619 }
5b92a28a
AS
10620 key = ((u64)aux->id) << 32 | btf_id;
10621 } else {
be8704ff
AS
10622 if (prog_extension) {
10623 verbose(env, "Cannot replace kernel functions\n");
10624 return -EINVAL;
10625 }
5b92a28a
AS
10626 key = btf_id;
10627 }
f1b9509c
AS
10628
10629 switch (prog->expected_attach_type) {
10630 case BPF_TRACE_RAW_TP:
5b92a28a
AS
10631 if (tgt_prog) {
10632 verbose(env,
10633 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10634 return -EINVAL;
10635 }
38207291
MKL
10636 if (!btf_type_is_typedef(t)) {
10637 verbose(env, "attach_btf_id %u is not a typedef\n",
10638 btf_id);
10639 return -EINVAL;
10640 }
f1b9509c 10641 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
10642 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10643 btf_id, tname);
10644 return -EINVAL;
10645 }
10646 tname += sizeof(prefix) - 1;
5b92a28a 10647 t = btf_type_by_id(btf, t->type);
38207291
MKL
10648 if (!btf_type_is_ptr(t))
10649 /* should never happen in valid vmlinux build */
10650 return -EINVAL;
5b92a28a 10651 t = btf_type_by_id(btf, t->type);
38207291
MKL
10652 if (!btf_type_is_func_proto(t))
10653 /* should never happen in valid vmlinux build */
10654 return -EINVAL;
10655
10656 /* remember two read only pointers that are valid for
10657 * the life time of the kernel
10658 */
10659 prog->aux->attach_func_name = tname;
10660 prog->aux->attach_func_proto = t;
10661 prog->aux->attach_btf_trace = true;
f1b9509c 10662 return 0;
15d83c4d
YS
10663 case BPF_TRACE_ITER:
10664 if (!btf_type_is_func(t)) {
10665 verbose(env, "attach_btf_id %u is not a function\n",
10666 btf_id);
10667 return -EINVAL;
10668 }
10669 t = btf_type_by_id(btf, t->type);
10670 if (!btf_type_is_func_proto(t))
10671 return -EINVAL;
10672 prog->aux->attach_func_name = tname;
10673 prog->aux->attach_func_proto = t;
10674 if (!bpf_iter_prog_supported(prog))
10675 return -EINVAL;
10676 ret = btf_distill_func_proto(&env->log, btf, t,
10677 tname, &fmodel);
10678 return ret;
be8704ff
AS
10679 default:
10680 if (!prog_extension)
10681 return -EINVAL;
10682 /* fallthrough */
ae240823 10683 case BPF_MODIFY_RETURN:
9e4e01df 10684 case BPF_LSM_MAC:
fec56f58
AS
10685 case BPF_TRACE_FENTRY:
10686 case BPF_TRACE_FEXIT:
9e4e01df
KS
10687 prog->aux->attach_func_name = tname;
10688 if (prog->type == BPF_PROG_TYPE_LSM) {
10689 ret = bpf_lsm_verify_prog(&env->log, prog);
10690 if (ret < 0)
10691 return ret;
10692 }
10693
fec56f58
AS
10694 if (!btf_type_is_func(t)) {
10695 verbose(env, "attach_btf_id %u is not a function\n",
10696 btf_id);
10697 return -EINVAL;
10698 }
be8704ff
AS
10699 if (prog_extension &&
10700 btf_check_type_match(env, prog, btf, t))
10701 return -EINVAL;
5b92a28a 10702 t = btf_type_by_id(btf, t->type);
fec56f58
AS
10703 if (!btf_type_is_func_proto(t))
10704 return -EINVAL;
5b92a28a 10705 tr = bpf_trampoline_lookup(key);
fec56f58
AS
10706 if (!tr)
10707 return -ENOMEM;
5b92a28a 10708 /* t is either vmlinux type or another program's type */
fec56f58
AS
10709 prog->aux->attach_func_proto = t;
10710 mutex_lock(&tr->mutex);
10711 if (tr->func.addr) {
10712 prog->aux->trampoline = tr;
10713 goto out;
10714 }
5b92a28a
AS
10715 if (tgt_prog && conservative) {
10716 prog->aux->attach_func_proto = NULL;
10717 t = NULL;
10718 }
10719 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
10720 tname, &tr->func.model);
10721 if (ret < 0)
10722 goto out;
5b92a28a 10723 if (tgt_prog) {
e9eeec58
YS
10724 if (subprog == 0)
10725 addr = (long) tgt_prog->bpf_func;
10726 else
10727 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
10728 } else {
10729 addr = kallsyms_lookup_name(tname);
10730 if (!addr) {
10731 verbose(env,
10732 "The address of function %s cannot be found\n",
10733 tname);
10734 ret = -ENOENT;
10735 goto out;
10736 }
fec56f58
AS
10737 }
10738 tr->func.addr = (void *)addr;
10739 prog->aux->trampoline = tr;
6ba43b76
KS
10740
10741 if (prog->expected_attach_type == BPF_MODIFY_RETURN)
10742 ret = check_attach_modify_return(env);
fec56f58
AS
10743out:
10744 mutex_unlock(&tr->mutex);
10745 if (ret)
10746 bpf_trampoline_put(tr);
10747 return ret;
38207291 10748 }
38207291
MKL
10749}
10750
838e9690
YS
10751int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10752 union bpf_attr __user *uattr)
51580e79 10753{
06ee7115 10754 u64 start_time = ktime_get_ns();
58e2af8b 10755 struct bpf_verifier_env *env;
b9193c1b 10756 struct bpf_verifier_log *log;
9e4c24e7 10757 int i, len, ret = -EINVAL;
e2ae4ca2 10758 bool is_priv;
51580e79 10759
eba0c929
AB
10760 /* no program is valid */
10761 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10762 return -EINVAL;
10763
58e2af8b 10764 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
10765 * allocate/free it every time bpf_check() is called
10766 */
58e2af8b 10767 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
10768 if (!env)
10769 return -ENOMEM;
61bd5218 10770 log = &env->log;
cbd35700 10771
9e4c24e7 10772 len = (*prog)->len;
fad953ce 10773 env->insn_aux_data =
9e4c24e7 10774 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
10775 ret = -ENOMEM;
10776 if (!env->insn_aux_data)
10777 goto err_free_env;
9e4c24e7
JK
10778 for (i = 0; i < len; i++)
10779 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 10780 env->prog = *prog;
00176a34 10781 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 10782 is_priv = bpf_capable();
0246e64d 10783
8580ac94
AS
10784 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10785 mutex_lock(&bpf_verifier_lock);
10786 if (!btf_vmlinux)
10787 btf_vmlinux = btf_parse_vmlinux();
10788 mutex_unlock(&bpf_verifier_lock);
10789 }
10790
cbd35700 10791 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
10792 if (!is_priv)
10793 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
10794
10795 if (attr->log_level || attr->log_buf || attr->log_size) {
10796 /* user requested verbose verifier output
10797 * and supplied buffer to store the verification trace
10798 */
e7bf8249
JK
10799 log->level = attr->log_level;
10800 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10801 log->len_total = attr->log_size;
cbd35700
AS
10802
10803 ret = -EINVAL;
e7bf8249 10804 /* log attributes have to be sane */
7a9f5c65 10805 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 10806 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 10807 goto err_unlock;
cbd35700 10808 }
1ad2f583 10809
8580ac94
AS
10810 if (IS_ERR(btf_vmlinux)) {
10811 /* Either gcc or pahole or kernel are broken. */
10812 verbose(env, "in-kernel BTF is malformed\n");
10813 ret = PTR_ERR(btf_vmlinux);
38207291 10814 goto skip_full_check;
8580ac94
AS
10815 }
10816
1ad2f583
DB
10817 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10818 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 10819 env->strict_alignment = true;
e9ee9efc
DM
10820 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10821 env->strict_alignment = false;
cbd35700 10822
2c78ee89
AS
10823 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
10824 env->bypass_spec_v1 = bpf_bypass_spec_v1();
10825 env->bypass_spec_v4 = bpf_bypass_spec_v4();
10826 env->bpf_capable = bpf_capable();
e2ae4ca2 10827
10d274e8
AS
10828 if (is_priv)
10829 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10830
f4e3ec0d
JK
10831 ret = replace_map_fd_with_map_ptr(env);
10832 if (ret < 0)
10833 goto skip_full_check;
10834
cae1927c 10835 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 10836 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 10837 if (ret)
f4e3ec0d 10838 goto skip_full_check;
ab3f0063
JK
10839 }
10840
dc2a4ebc 10841 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 10842 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
10843 GFP_USER);
10844 ret = -ENOMEM;
10845 if (!env->explored_states)
10846 goto skip_full_check;
10847
d9762e84 10848 ret = check_subprogs(env);
475fb78f
AS
10849 if (ret < 0)
10850 goto skip_full_check;
10851
c454a46b 10852 ret = check_btf_info(env, attr, uattr);
838e9690
YS
10853 if (ret < 0)
10854 goto skip_full_check;
10855
be8704ff
AS
10856 ret = check_attach_btf_id(env);
10857 if (ret)
10858 goto skip_full_check;
10859
d9762e84
MKL
10860 ret = check_cfg(env);
10861 if (ret < 0)
10862 goto skip_full_check;
10863
51c39bb1
AS
10864 ret = do_check_subprogs(env);
10865 ret = ret ?: do_check_main(env);
cbd35700 10866
c941ce9c
QM
10867 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10868 ret = bpf_prog_offload_finalize(env);
10869
0246e64d 10870skip_full_check:
51c39bb1 10871 kvfree(env->explored_states);
0246e64d 10872
c131187d 10873 if (ret == 0)
9b38c405 10874 ret = check_max_stack_depth(env);
c131187d 10875
9b38c405 10876 /* instruction rewrites happen after this point */
e2ae4ca2
JK
10877 if (is_priv) {
10878 if (ret == 0)
10879 opt_hard_wire_dead_code_branches(env);
52875a04
JK
10880 if (ret == 0)
10881 ret = opt_remove_dead_code(env);
a1b14abc
JK
10882 if (ret == 0)
10883 ret = opt_remove_nops(env);
52875a04
JK
10884 } else {
10885 if (ret == 0)
10886 sanitize_dead_code(env);
e2ae4ca2
JK
10887 }
10888
9bac3d6d
AS
10889 if (ret == 0)
10890 /* program is valid, convert *(u32*)(ctx + off) accesses */
10891 ret = convert_ctx_accesses(env);
10892
e245c5c6 10893 if (ret == 0)
79741b3b 10894 ret = fixup_bpf_calls(env);
e245c5c6 10895
a4b1d3c1
JW
10896 /* do 32-bit optimization after insn patching has done so those patched
10897 * insns could be handled correctly.
10898 */
d6c2308c
JW
10899 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10900 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10901 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10902 : false;
a4b1d3c1
JW
10903 }
10904
1ea47e01
AS
10905 if (ret == 0)
10906 ret = fixup_call_args(env);
10907
06ee7115
AS
10908 env->verification_time = ktime_get_ns() - start_time;
10909 print_verification_stats(env);
10910
a2a7d570 10911 if (log->level && bpf_verifier_log_full(log))
cbd35700 10912 ret = -ENOSPC;
a2a7d570 10913 if (log->level && !log->ubuf) {
cbd35700 10914 ret = -EFAULT;
a2a7d570 10915 goto err_release_maps;
cbd35700
AS
10916 }
10917
0246e64d
AS
10918 if (ret == 0 && env->used_map_cnt) {
10919 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
10920 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10921 sizeof(env->used_maps[0]),
10922 GFP_KERNEL);
0246e64d 10923
9bac3d6d 10924 if (!env->prog->aux->used_maps) {
0246e64d 10925 ret = -ENOMEM;
a2a7d570 10926 goto err_release_maps;
0246e64d
AS
10927 }
10928
9bac3d6d 10929 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 10930 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 10931 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
10932
10933 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
10934 * bpf_ld_imm64 instructions
10935 */
10936 convert_pseudo_ld_imm64(env);
10937 }
cbd35700 10938
ba64e7d8
YS
10939 if (ret == 0)
10940 adjust_btf_func(env);
10941
a2a7d570 10942err_release_maps:
9bac3d6d 10943 if (!env->prog->aux->used_maps)
0246e64d 10944 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 10945 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
10946 */
10947 release_maps(env);
03f87c0b
THJ
10948
10949 /* extension progs temporarily inherit the attach_type of their targets
10950 for verification purposes, so set it back to zero before returning
10951 */
10952 if (env->prog->type == BPF_PROG_TYPE_EXT)
10953 env->prog->expected_attach_type = 0;
10954
9bac3d6d 10955 *prog = env->prog;
3df126f3 10956err_unlock:
45a73c17
AS
10957 if (!is_priv)
10958 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
10959 vfree(env->insn_aux_data);
10960err_free_env:
10961 kfree(env);
51580e79
AS
10962 return ret;
10963}