]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
bpf: devmap fix arithmetic overflow in bitmap_size calculation
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
8e17c1b1 143#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
f1174f77 183 [SCALAR_VALUE] = "inv",
17a52670
AS
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 188 [PTR_TO_STACK] = "fp",
969bf05e
AS
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
191};
192
ebb676da
TG
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196};
197#undef __BPF_FUNC_STR_FN
198
199static const char *func_id_name(int id)
200{
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207}
208
58e2af8b 209static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 210{
58e2af8b 211 struct bpf_reg_state *reg;
17a52670
AS
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
216 reg = &state->regs[i];
217 t = reg->type;
17a52670
AS
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
7d1238f2
EC
237 if (tnum_is_const(reg->var_off)) {
238 /* Typically an immediate SCALAR_VALUE, but
239 * could be a pointer whose offset is too big
240 * for reg->off
241 */
242 verbose(",imm=%llx", reg->var_off.value);
243 } else {
244 if (reg->smin_value != reg->umin_value &&
245 reg->smin_value != S64_MIN)
246 verbose(",smin_value=%lld",
247 (long long)reg->smin_value);
248 if (reg->smax_value != reg->umax_value &&
249 reg->smax_value != S64_MAX)
250 verbose(",smax_value=%lld",
251 (long long)reg->smax_value);
252 if (reg->umin_value != 0)
253 verbose(",umin_value=%llu",
254 (unsigned long long)reg->umin_value);
255 if (reg->umax_value != U64_MAX)
256 verbose(",umax_value=%llu",
257 (unsigned long long)reg->umax_value);
258 if (!tnum_is_unknown(reg->var_off)) {
259 char tn_buf[48];
f1174f77 260
7d1238f2
EC
261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 verbose(",var_off=%s", tn_buf);
263 }
f1174f77
EC
264 }
265 verbose(")");
266 }
17a52670 267 }
9c399760 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 269 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
272 }
273 verbose("\n");
274}
275
cbd35700
AS
276static const char *const bpf_class_string[] = {
277 [BPF_LD] = "ld",
278 [BPF_LDX] = "ldx",
279 [BPF_ST] = "st",
280 [BPF_STX] = "stx",
281 [BPF_ALU] = "alu",
282 [BPF_JMP] = "jmp",
283 [BPF_RET] = "BUG",
284 [BPF_ALU64] = "alu64",
285};
286
687f0715 287static const char *const bpf_alu_string[16] = {
cbd35700
AS
288 [BPF_ADD >> 4] = "+=",
289 [BPF_SUB >> 4] = "-=",
290 [BPF_MUL >> 4] = "*=",
291 [BPF_DIV >> 4] = "/=",
292 [BPF_OR >> 4] = "|=",
293 [BPF_AND >> 4] = "&=",
294 [BPF_LSH >> 4] = "<<=",
295 [BPF_RSH >> 4] = ">>=",
296 [BPF_NEG >> 4] = "neg",
297 [BPF_MOD >> 4] = "%=",
298 [BPF_XOR >> 4] = "^=",
299 [BPF_MOV >> 4] = "=",
300 [BPF_ARSH >> 4] = "s>>=",
301 [BPF_END >> 4] = "endian",
302};
303
304static const char *const bpf_ldst_string[] = {
305 [BPF_W >> 3] = "u32",
306 [BPF_H >> 3] = "u16",
307 [BPF_B >> 3] = "u8",
308 [BPF_DW >> 3] = "u64",
309};
310
687f0715 311static const char *const bpf_jmp_string[16] = {
cbd35700
AS
312 [BPF_JA >> 4] = "jmp",
313 [BPF_JEQ >> 4] = "==",
314 [BPF_JGT >> 4] = ">",
b4e432f1 315 [BPF_JLT >> 4] = "<",
cbd35700 316 [BPF_JGE >> 4] = ">=",
b4e432f1 317 [BPF_JLE >> 4] = "<=",
cbd35700
AS
318 [BPF_JSET >> 4] = "&",
319 [BPF_JNE >> 4] = "!=",
320 [BPF_JSGT >> 4] = "s>",
b4e432f1 321 [BPF_JSLT >> 4] = "s<",
cbd35700 322 [BPF_JSGE >> 4] = "s>=",
b4e432f1 323 [BPF_JSLE >> 4] = "s<=",
cbd35700
AS
324 [BPF_CALL >> 4] = "call",
325 [BPF_EXIT >> 4] = "exit",
326};
327
0d0e5769
DB
328static void print_bpf_insn(const struct bpf_verifier_env *env,
329 const struct bpf_insn *insn)
cbd35700
AS
330{
331 u8 class = BPF_CLASS(insn->code);
332
333 if (class == BPF_ALU || class == BPF_ALU64) {
334 if (BPF_SRC(insn->code) == BPF_X)
335 verbose("(%02x) %sr%d %s %sr%d\n",
336 insn->code, class == BPF_ALU ? "(u32) " : "",
337 insn->dst_reg,
338 bpf_alu_string[BPF_OP(insn->code) >> 4],
339 class == BPF_ALU ? "(u32) " : "",
340 insn->src_reg);
341 else
342 verbose("(%02x) %sr%d %s %s%d\n",
343 insn->code, class == BPF_ALU ? "(u32) " : "",
344 insn->dst_reg,
345 bpf_alu_string[BPF_OP(insn->code) >> 4],
346 class == BPF_ALU ? "(u32) " : "",
347 insn->imm);
348 } else if (class == BPF_STX) {
349 if (BPF_MODE(insn->code) == BPF_MEM)
350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 insn->code,
352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 insn->dst_reg,
354 insn->off, insn->src_reg);
355 else if (BPF_MODE(insn->code) == BPF_XADD)
356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->dst_reg, insn->off,
360 insn->src_reg);
361 else
362 verbose("BUG_%02x\n", insn->code);
363 } else if (class == BPF_ST) {
364 if (BPF_MODE(insn->code) != BPF_MEM) {
365 verbose("BUG_st_%02x\n", insn->code);
366 return;
367 }
368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->dst_reg,
372 insn->off, insn->imm);
373 } else if (class == BPF_LDX) {
374 if (BPF_MODE(insn->code) != BPF_MEM) {
375 verbose("BUG_ldx_%02x\n", insn->code);
376 return;
377 }
378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 insn->code, insn->dst_reg,
380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 insn->src_reg, insn->off);
382 } else if (class == BPF_LD) {
383 if (BPF_MODE(insn->code) == BPF_ABS) {
384 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 insn->code,
386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 insn->imm);
388 } else if (BPF_MODE(insn->code) == BPF_IND) {
389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 insn->code,
391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 insn->src_reg, insn->imm);
0d0e5769
DB
393 } else if (BPF_MODE(insn->code) == BPF_IMM &&
394 BPF_SIZE(insn->code) == BPF_DW) {
395 /* At this point, we already made sure that the second
396 * part of the ldimm64 insn is accessible.
397 */
398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400
401 if (map_ptr && !env->allow_ptr_leaks)
402 imm = 0;
403
404 verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
406 } else {
407 verbose("BUG_ld_%02x\n", insn->code);
408 return;
409 }
410 } else if (class == BPF_JMP) {
411 u8 opcode = BPF_OP(insn->code);
412
413 if (opcode == BPF_CALL) {
ebb676da
TG
414 verbose("(%02x) call %s#%d\n", insn->code,
415 func_id_name(insn->imm), insn->imm);
cbd35700
AS
416 } else if (insn->code == (BPF_JMP | BPF_JA)) {
417 verbose("(%02x) goto pc%+d\n",
418 insn->code, insn->off);
419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 verbose("(%02x) exit\n", insn->code);
421 } else if (BPF_SRC(insn->code) == BPF_X) {
422 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 insn->code, insn->dst_reg,
424 bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 insn->src_reg, insn->off);
426 } else {
427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 insn->code, insn->dst_reg,
429 bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 insn->imm, insn->off);
431 }
432 } else {
433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 }
435}
436
58e2af8b 437static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 438{
58e2af8b 439 struct bpf_verifier_stack_elem *elem;
17a52670
AS
440 int insn_idx;
441
442 if (env->head == NULL)
443 return -1;
444
445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 insn_idx = env->head->insn_idx;
447 if (prev_insn_idx)
448 *prev_insn_idx = env->head->prev_insn_idx;
449 elem = env->head->next;
450 kfree(env->head);
451 env->head = elem;
452 env->stack_size--;
453 return insn_idx;
454}
455
58e2af8b
JK
456static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 int insn_idx, int prev_insn_idx)
17a52670 458{
58e2af8b 459 struct bpf_verifier_stack_elem *elem;
17a52670 460
58e2af8b 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
462 if (!elem)
463 goto err;
464
465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 elem->insn_idx = insn_idx;
467 elem->prev_insn_idx = prev_insn_idx;
468 elem->next = env->head;
469 env->head = elem;
470 env->stack_size++;
07016151 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
472 verbose("BPF program is too complex\n");
473 goto err;
474 }
475 return &elem->st;
476err:
477 /* pop all elements and return */
478 while (pop_stack(env, NULL) >= 0);
479 return NULL;
480}
481
482#define CALLER_SAVED_REGS 6
483static const int caller_saved[CALLER_SAVED_REGS] = {
484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485};
486
f1174f77
EC
487static void __mark_reg_not_init(struct bpf_reg_state *reg);
488
b03c9f9f
EC
489/* Mark the unknown part of a register (variable offset or scalar value) as
490 * known to have the value @imm.
491 */
492static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493{
494 reg->id = 0;
495 reg->var_off = tnum_const(imm);
496 reg->smin_value = (s64)imm;
497 reg->smax_value = (s64)imm;
498 reg->umin_value = imm;
499 reg->umax_value = imm;
500}
501
f1174f77
EC
502/* Mark the 'variable offset' part of a register as zero. This should be
503 * used only on registers holding a pointer type.
504 */
505static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 506{
b03c9f9f 507 __mark_reg_known(reg, 0);
f1174f77 508}
a9789ef9 509
f1174f77
EC
510static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511{
512 if (WARN_ON(regno >= MAX_BPF_REG)) {
513 verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 /* Something bad happened, let's kill all regs */
515 for (regno = 0; regno < MAX_BPF_REG; regno++)
516 __mark_reg_not_init(regs + regno);
517 return;
518 }
519 __mark_reg_known_zero(regs + regno);
520}
521
b03c9f9f
EC
522/* Attempts to improve min/max values based on var_off information */
523static void __update_reg_bounds(struct bpf_reg_state *reg)
524{
525 /* min signed is max(sign bit) | min(other bits) */
526 reg->smin_value = max_t(s64, reg->smin_value,
527 reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 /* max signed is min(sign bit) | max(other bits) */
529 reg->smax_value = min_t(s64, reg->smax_value,
530 reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 reg->umax_value = min(reg->umax_value,
533 reg->var_off.value | reg->var_off.mask);
534}
535
536/* Uses signed min/max values to inform unsigned, and vice-versa */
537static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538{
539 /* Learn sign from signed bounds.
540 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 * are the same, so combine. This works even in the negative case, e.g.
542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 */
544 if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 reg->umin_value);
547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 reg->umax_value);
549 return;
550 }
551 /* Learn sign from unsigned bounds. Signed bounds cross the sign
552 * boundary, so we must be careful.
553 */
554 if ((s64)reg->umax_value >= 0) {
555 /* Positive. We can't learn anything from the smin, but smax
556 * is positive, hence safe.
557 */
558 reg->smin_value = reg->umin_value;
559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 reg->umax_value);
561 } else if ((s64)reg->umin_value < 0) {
562 /* Negative. We can't learn anything from the smax, but smin
563 * is negative, hence safe.
564 */
565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 reg->umin_value);
567 reg->smax_value = reg->umax_value;
568 }
569}
570
571/* Attempts to improve var_off based on unsigned min/max information */
572static void __reg_bound_offset(struct bpf_reg_state *reg)
573{
574 reg->var_off = tnum_intersect(reg->var_off,
575 tnum_range(reg->umin_value,
576 reg->umax_value));
577}
578
579/* Reset the min/max bounds of a register */
580static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581{
582 reg->smin_value = S64_MIN;
583 reg->smax_value = S64_MAX;
584 reg->umin_value = 0;
585 reg->umax_value = U64_MAX;
586}
587
f1174f77
EC
588/* Mark a register as having a completely unknown (scalar) value. */
589static void __mark_reg_unknown(struct bpf_reg_state *reg)
590{
591 reg->type = SCALAR_VALUE;
592 reg->id = 0;
593 reg->off = 0;
594 reg->var_off = tnum_unknown;
b03c9f9f 595 __mark_reg_unbounded(reg);
f1174f77
EC
596}
597
598static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599{
600 if (WARN_ON(regno >= MAX_BPF_REG)) {
601 verbose("mark_reg_unknown(regs, %u)\n", regno);
602 /* Something bad happened, let's kill all regs */
603 for (regno = 0; regno < MAX_BPF_REG; regno++)
604 __mark_reg_not_init(regs + regno);
605 return;
606 }
607 __mark_reg_unknown(regs + regno);
608}
609
610static void __mark_reg_not_init(struct bpf_reg_state *reg)
611{
612 __mark_reg_unknown(reg);
613 reg->type = NOT_INIT;
614}
615
616static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617{
618 if (WARN_ON(regno >= MAX_BPF_REG)) {
619 verbose("mark_reg_not_init(regs, %u)\n", regno);
620 /* Something bad happened, let's kill all regs */
621 for (regno = 0; regno < MAX_BPF_REG; regno++)
622 __mark_reg_not_init(regs + regno);
623 return;
624 }
625 __mark_reg_not_init(regs + regno);
a9789ef9
DB
626}
627
58e2af8b 628static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
629{
630 int i;
631
dc503a8a 632 for (i = 0; i < MAX_BPF_REG; i++) {
a9789ef9 633 mark_reg_not_init(regs, i);
dc503a8a
EC
634 regs[i].live = REG_LIVE_NONE;
635 }
17a52670
AS
636
637 /* frame pointer */
f1174f77
EC
638 regs[BPF_REG_FP].type = PTR_TO_STACK;
639 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
640
641 /* 1st arg to a function */
642 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 643 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
644}
645
17a52670
AS
646enum reg_arg_type {
647 SRC_OP, /* register is used as source operand */
648 DST_OP, /* register is used as destination operand */
649 DST_OP_NO_MARK /* same as above, check only, don't mark */
650};
651
dc503a8a
EC
652static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653{
654 struct bpf_verifier_state *parent = state->parent;
655
8fe2d6cc
AS
656 if (regno == BPF_REG_FP)
657 /* We don't need to worry about FP liveness because it's read-only */
658 return;
659
dc503a8a
EC
660 while (parent) {
661 /* if read wasn't screened by an earlier write ... */
662 if (state->regs[regno].live & REG_LIVE_WRITTEN)
663 break;
664 /* ... then we depend on parent's value */
665 parent->regs[regno].live |= REG_LIVE_READ;
666 state = parent;
667 parent = state->parent;
668 }
669}
670
671static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
672 enum reg_arg_type t)
673{
dc503a8a
EC
674 struct bpf_reg_state *regs = env->cur_state.regs;
675
17a52670
AS
676 if (regno >= MAX_BPF_REG) {
677 verbose("R%d is invalid\n", regno);
678 return -EINVAL;
679 }
680
681 if (t == SRC_OP) {
682 /* check whether register used as source operand can be read */
683 if (regs[regno].type == NOT_INIT) {
684 verbose("R%d !read_ok\n", regno);
685 return -EACCES;
686 }
dc503a8a 687 mark_reg_read(&env->cur_state, regno);
17a52670
AS
688 } else {
689 /* check whether register used as dest operand can be written to */
690 if (regno == BPF_REG_FP) {
691 verbose("frame pointer is read only\n");
692 return -EACCES;
693 }
dc503a8a 694 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 695 if (t == DST_OP)
f1174f77 696 mark_reg_unknown(regs, regno);
17a52670
AS
697 }
698 return 0;
699}
700
1be7f75d
AS
701static bool is_spillable_regtype(enum bpf_reg_type type)
702{
703 switch (type) {
704 case PTR_TO_MAP_VALUE:
705 case PTR_TO_MAP_VALUE_OR_NULL:
706 case PTR_TO_STACK:
707 case PTR_TO_CTX:
969bf05e
AS
708 case PTR_TO_PACKET:
709 case PTR_TO_PACKET_END:
1be7f75d
AS
710 case CONST_PTR_TO_MAP:
711 return true;
712 default:
713 return false;
714 }
715}
716
17a52670
AS
717/* check_stack_read/write functions track spill/fill of registers,
718 * stack boundary and alignment are checked in check_mem_access()
719 */
58e2af8b
JK
720static int check_stack_write(struct bpf_verifier_state *state, int off,
721 int size, int value_regno)
17a52670 722{
dc503a8a 723 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
724 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
725 * so it's aligned access and [off, off + size) are within stack limits
726 */
17a52670
AS
727
728 if (value_regno >= 0 &&
1be7f75d 729 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
730
731 /* register containing pointer is being spilled into stack */
9c399760 732 if (size != BPF_REG_SIZE) {
17a52670
AS
733 verbose("invalid size of register spill\n");
734 return -EACCES;
735 }
736
17a52670 737 /* save register state */
dc503a8a
EC
738 state->spilled_regs[spi] = state->regs[value_regno];
739 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 740
9c399760
AS
741 for (i = 0; i < BPF_REG_SIZE; i++)
742 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
743 } else {
17a52670 744 /* regular write of data into stack */
dc503a8a 745 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
746
747 for (i = 0; i < size; i++)
748 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
749 }
750 return 0;
751}
752
dc503a8a
EC
753static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
754{
755 struct bpf_verifier_state *parent = state->parent;
756
757 while (parent) {
758 /* if read wasn't screened by an earlier write ... */
759 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
760 break;
761 /* ... then we depend on parent's value */
762 parent->spilled_regs[slot].live |= REG_LIVE_READ;
763 state = parent;
764 parent = state->parent;
765 }
766}
767
58e2af8b 768static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
769 int value_regno)
770{
9c399760 771 u8 *slot_type;
dc503a8a 772 int i, spi;
17a52670 773
9c399760 774 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 775
9c399760
AS
776 if (slot_type[0] == STACK_SPILL) {
777 if (size != BPF_REG_SIZE) {
17a52670
AS
778 verbose("invalid size of register spill\n");
779 return -EACCES;
780 }
9c399760
AS
781 for (i = 1; i < BPF_REG_SIZE; i++) {
782 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
783 verbose("corrupted spill memory\n");
784 return -EACCES;
785 }
786 }
787
dc503a8a
EC
788 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
789
790 if (value_regno >= 0) {
17a52670 791 /* restore register state from stack */
dc503a8a
EC
792 state->regs[value_regno] = state->spilled_regs[spi];
793 mark_stack_slot_read(state, spi);
794 }
17a52670
AS
795 return 0;
796 } else {
797 for (i = 0; i < size; i++) {
9c399760 798 if (slot_type[i] != STACK_MISC) {
17a52670
AS
799 verbose("invalid read from stack off %d+%d size %d\n",
800 off, i, size);
801 return -EACCES;
802 }
803 }
804 if (value_regno >= 0)
805 /* have read misc data from the stack */
f1174f77 806 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
807 return 0;
808 }
809}
810
811/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 812static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
813 int size)
814{
815 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
816
5722569b 817 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
818 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
819 map->value_size, off, size);
820 return -EACCES;
821 }
822 return 0;
823}
824
f1174f77
EC
825/* check read/write into a map element with possible variable offset */
826static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
827 int off, int size)
828{
829 struct bpf_verifier_state *state = &env->cur_state;
830 struct bpf_reg_state *reg = &state->regs[regno];
831 int err;
832
f1174f77
EC
833 /* We may have adjusted the register to this map value, so we
834 * need to try adding each of min_value and max_value to off
835 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
836 */
837 if (log_level)
838 print_verifier_state(state);
dbcfe5f7
GB
839 /* The minimum value is only important with signed
840 * comparisons where we can't assume the floor of a
841 * value is 0. If we are using signed variables for our
842 * index'es we need to make sure that whatever we use
843 * will have a set floor within our range.
844 */
b03c9f9f 845 if (reg->smin_value < 0) {
dbcfe5f7
GB
846 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
847 regno);
848 return -EACCES;
849 }
b03c9f9f 850 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 851 if (err) {
f1174f77 852 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
853 return err;
854 }
855
b03c9f9f
EC
856 /* If we haven't set a max value then we need to bail since we can't be
857 * sure we won't do bad things.
858 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 859 */
b03c9f9f 860 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
861 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
862 regno);
863 return -EACCES;
864 }
b03c9f9f 865 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
866 if (err)
867 verbose("R%d max value is outside of the array range\n", regno);
868 return err;
dbcfe5f7
GB
869}
870
969bf05e
AS
871#define MAX_PACKET_OFF 0xffff
872
58e2af8b 873static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
874 const struct bpf_call_arg_meta *meta,
875 enum bpf_access_type t)
4acf6c0b 876{
36bbef52 877 switch (env->prog->type) {
3a0af8fd
TG
878 case BPF_PROG_TYPE_LWT_IN:
879 case BPF_PROG_TYPE_LWT_OUT:
880 /* dst_input() and dst_output() can't write for now */
881 if (t == BPF_WRITE)
882 return false;
7e57fbb2 883 /* fallthrough */
36bbef52
DB
884 case BPF_PROG_TYPE_SCHED_CLS:
885 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 886 case BPF_PROG_TYPE_XDP:
3a0af8fd 887 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 888 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
889 if (meta)
890 return meta->pkt_access;
891
892 env->seen_direct_write = true;
4acf6c0b
BB
893 return true;
894 default:
895 return false;
896 }
897}
898
f1174f77
EC
899static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
900 int off, int size)
969bf05e 901{
58e2af8b
JK
902 struct bpf_reg_state *regs = env->cur_state.regs;
903 struct bpf_reg_state *reg = &regs[regno];
969bf05e 904
f1174f77 905 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
906 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
907 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
908 return -EACCES;
909 }
910 return 0;
911}
912
f1174f77
EC
913static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
914 int size)
915{
916 struct bpf_reg_state *regs = env->cur_state.regs;
917 struct bpf_reg_state *reg = &regs[regno];
918 int err;
919
920 /* We may have added a variable offset to the packet pointer; but any
921 * reg->range we have comes after that. We are only checking the fixed
922 * offset.
923 */
924
925 /* We don't allow negative numbers, because we aren't tracking enough
926 * detail to prove they're safe.
927 */
b03c9f9f 928 if (reg->smin_value < 0) {
f1174f77
EC
929 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
930 regno);
931 return -EACCES;
932 }
933 err = __check_packet_access(env, regno, off, size);
934 if (err) {
935 verbose("R%d offset is outside of the packet\n", regno);
936 return err;
937 }
938 return err;
939}
940
941/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 942static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 943 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 944{
f96da094
DB
945 struct bpf_insn_access_aux info = {
946 .reg_type = *reg_type,
947 };
31fd8581 948
13a27dfc
JK
949 /* for analyzer ctx accesses are already validated and converted */
950 if (env->analyzer_ops)
951 return 0;
952
17a52670 953 if (env->prog->aux->ops->is_valid_access &&
23994631 954 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
955 /* A non zero info.ctx_field_size indicates that this field is a
956 * candidate for later verifier transformation to load the whole
957 * field and then apply a mask when accessed with a narrower
958 * access than actual ctx access size. A zero info.ctx_field_size
959 * will only allow for whole field access and rejects any other
960 * type of narrower access.
31fd8581 961 */
f96da094 962 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 963 *reg_type = info.reg_type;
31fd8581 964
32bbe007
AS
965 /* remember the offset of last byte accessed in ctx */
966 if (env->prog->aux->max_ctx_offset < off + size)
967 env->prog->aux->max_ctx_offset = off + size;
17a52670 968 return 0;
32bbe007 969 }
17a52670
AS
970
971 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
972 return -EACCES;
973}
974
4cabc5b1
DB
975static bool __is_pointer_value(bool allow_ptr_leaks,
976 const struct bpf_reg_state *reg)
1be7f75d 977{
4cabc5b1 978 if (allow_ptr_leaks)
1be7f75d
AS
979 return false;
980
f1174f77 981 return reg->type != SCALAR_VALUE;
1be7f75d
AS
982}
983
4cabc5b1
DB
984static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
985{
986 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
987}
988
79adffcd 989static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 990 int off, int size, bool strict)
969bf05e 991{
f1174f77 992 struct tnum reg_off;
e07b98d9 993 int ip_align;
d1174416
DM
994
995 /* Byte size accesses are always allowed. */
996 if (!strict || size == 1)
997 return 0;
998
e4eda884
DM
999 /* For platforms that do not have a Kconfig enabling
1000 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1001 * NET_IP_ALIGN is universally set to '2'. And on platforms
1002 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1003 * to this code only in strict mode where we want to emulate
1004 * the NET_IP_ALIGN==2 checking. Therefore use an
1005 * unconditional IP align value of '2'.
e07b98d9 1006 */
e4eda884 1007 ip_align = 2;
f1174f77
EC
1008
1009 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1010 if (!tnum_is_aligned(reg_off, size)) {
1011 char tn_buf[48];
1012
1013 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1014 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1015 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1016 return -EACCES;
1017 }
79adffcd 1018
969bf05e
AS
1019 return 0;
1020}
1021
f1174f77
EC
1022static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1023 const char *pointer_desc,
1024 int off, int size, bool strict)
79adffcd 1025{
f1174f77
EC
1026 struct tnum reg_off;
1027
1028 /* Byte size accesses are always allowed. */
1029 if (!strict || size == 1)
1030 return 0;
1031
1032 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1033 if (!tnum_is_aligned(reg_off, size)) {
1034 char tn_buf[48];
1035
1036 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1037 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1038 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1039 return -EACCES;
1040 }
1041
969bf05e
AS
1042 return 0;
1043}
1044
e07b98d9
DM
1045static int check_ptr_alignment(struct bpf_verifier_env *env,
1046 const struct bpf_reg_state *reg,
79adffcd
DB
1047 int off, int size)
1048{
e07b98d9 1049 bool strict = env->strict_alignment;
f1174f77 1050 const char *pointer_desc = "";
d1174416 1051
79adffcd
DB
1052 switch (reg->type) {
1053 case PTR_TO_PACKET:
f1174f77 1054 /* special case, because of NET_IP_ALIGN */
d1174416 1055 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1056 case PTR_TO_MAP_VALUE:
1057 pointer_desc = "value ";
1058 break;
1059 case PTR_TO_CTX:
1060 pointer_desc = "context ";
1061 break;
1062 case PTR_TO_STACK:
1063 pointer_desc = "stack ";
1064 break;
79adffcd 1065 default:
f1174f77 1066 break;
79adffcd 1067 }
f1174f77 1068 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1069}
1070
17a52670
AS
1071/* check whether memory at (regno + off) is accessible for t = (read | write)
1072 * if t==write, value_regno is a register which value is stored into memory
1073 * if t==read, value_regno is a register which will receive the value from memory
1074 * if t==write && value_regno==-1, some unknown value is stored into memory
1075 * if t==read && value_regno==-1, don't care what we read from memory
1076 */
31fd8581 1077static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1078 int bpf_size, enum bpf_access_type t,
1079 int value_regno)
1080{
58e2af8b
JK
1081 struct bpf_verifier_state *state = &env->cur_state;
1082 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1083 int size, err = 0;
1084
1085 size = bpf_size_to_bytes(bpf_size);
1086 if (size < 0)
1087 return size;
1088
f1174f77 1089 /* alignment checks will add in reg->off themselves */
e07b98d9 1090 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1091 if (err)
1092 return err;
17a52670 1093
f1174f77
EC
1094 /* for access checks, reg->off is just part of off */
1095 off += reg->off;
1096
1097 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1098 if (t == BPF_WRITE && value_regno >= 0 &&
1099 is_pointer_value(env, value_regno)) {
1100 verbose("R%d leaks addr into map\n", value_regno);
1101 return -EACCES;
1102 }
48461135 1103
f1174f77 1104 err = check_map_access(env, regno, off, size);
17a52670 1105 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1106 mark_reg_unknown(state->regs, value_regno);
17a52670 1107
1a0dc1ac 1108 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1109 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1110
1be7f75d
AS
1111 if (t == BPF_WRITE && value_regno >= 0 &&
1112 is_pointer_value(env, value_regno)) {
1113 verbose("R%d leaks addr into ctx\n", value_regno);
1114 return -EACCES;
1115 }
f1174f77
EC
1116 /* ctx accesses must be at a fixed offset, so that we can
1117 * determine what type of data were returned.
1118 */
28e33f9d
JK
1119 if (reg->off) {
1120 verbose("dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1121 regno, reg->off, off - reg->off);
1122 return -EACCES;
1123 }
1124 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1125 char tn_buf[48];
1126
1127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1128 verbose("variable ctx access var_off=%s off=%d size=%d",
1129 tn_buf, off, size);
1130 return -EACCES;
1131 }
31fd8581 1132 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1133 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77
EC
1134 /* ctx access returns either a scalar, or a
1135 * PTR_TO_PACKET[_END]. In the latter case, we know
1136 * the offset is zero.
1137 */
1138 if (reg_type == SCALAR_VALUE)
1139 mark_reg_unknown(state->regs, value_regno);
1140 else
1141 mark_reg_known_zero(state->regs, value_regno);
1142 state->regs[value_regno].id = 0;
1143 state->regs[value_regno].off = 0;
1144 state->regs[value_regno].range = 0;
1955351d 1145 state->regs[value_regno].type = reg_type;
969bf05e 1146 }
17a52670 1147
f1174f77
EC
1148 } else if (reg->type == PTR_TO_STACK) {
1149 /* stack accesses must be at a fixed offset, so that we can
1150 * determine what type of data were returned.
1151 * See check_stack_read().
1152 */
1153 if (!tnum_is_const(reg->var_off)) {
1154 char tn_buf[48];
1155
1156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1157 verbose("variable stack access var_off=%s off=%d size=%d",
1158 tn_buf, off, size);
1159 return -EACCES;
1160 }
1161 off += reg->var_off.value;
17a52670
AS
1162 if (off >= 0 || off < -MAX_BPF_STACK) {
1163 verbose("invalid stack off=%d size=%d\n", off, size);
1164 return -EACCES;
1165 }
8726679a
AS
1166
1167 if (env->prog->aux->stack_depth < -off)
1168 env->prog->aux->stack_depth = -off;
1169
1be7f75d
AS
1170 if (t == BPF_WRITE) {
1171 if (!env->allow_ptr_leaks &&
1172 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1173 size != BPF_REG_SIZE) {
1174 verbose("attempt to corrupt spilled pointer on stack\n");
1175 return -EACCES;
1176 }
17a52670 1177 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1178 } else {
17a52670 1179 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1180 }
f1174f77 1181 } else if (reg->type == PTR_TO_PACKET) {
3a0af8fd 1182 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1183 verbose("cannot write into packet\n");
1184 return -EACCES;
1185 }
4acf6c0b
BB
1186 if (t == BPF_WRITE && value_regno >= 0 &&
1187 is_pointer_value(env, value_regno)) {
1188 verbose("R%d leaks addr into packet\n", value_regno);
1189 return -EACCES;
1190 }
969bf05e
AS
1191 err = check_packet_access(env, regno, off, size);
1192 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1193 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1194 } else {
1195 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1196 regno, reg_type_str[reg->type]);
17a52670
AS
1197 return -EACCES;
1198 }
969bf05e 1199
f1174f77
EC
1200 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201 state->regs[value_regno].type == SCALAR_VALUE) {
1202 /* b/h/w load zero-extends, mark upper bits as known 0 */
1203 state->regs[value_regno].var_off = tnum_cast(
1204 state->regs[value_regno].var_off, size);
b03c9f9f 1205 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1206 }
17a52670
AS
1207 return err;
1208}
1209
31fd8581 1210static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1211{
17a52670
AS
1212 int err;
1213
1214 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 insn->imm != 0) {
1216 verbose("BPF_XADD uses reserved fields\n");
1217 return -EINVAL;
1218 }
1219
1220 /* check src1 operand */
dc503a8a 1221 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1222 if (err)
1223 return err;
1224
1225 /* check src2 operand */
dc503a8a 1226 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1227 if (err)
1228 return err;
1229
6bdf6abc
DB
1230 if (is_pointer_value(env, insn->src_reg)) {
1231 verbose("R%d leaks addr into mem\n", insn->src_reg);
1232 return -EACCES;
1233 }
1234
17a52670 1235 /* check whether atomic_add can read the memory */
31fd8581 1236 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1237 BPF_SIZE(insn->code), BPF_READ, -1);
1238 if (err)
1239 return err;
1240
1241 /* check whether atomic_add can write into the same memory */
31fd8581 1242 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1243 BPF_SIZE(insn->code), BPF_WRITE, -1);
1244}
1245
f1174f77
EC
1246/* Does this register contain a constant zero? */
1247static bool register_is_null(struct bpf_reg_state reg)
1248{
1249 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250}
1251
17a52670
AS
1252/* when register 'regno' is passed into function that will read 'access_size'
1253 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1254 * and all elements of stack are initialized.
1255 * Unlike most pointer bounds-checking functions, this one doesn't take an
1256 * 'off' argument, so it has to add in reg->off itself.
17a52670 1257 */
58e2af8b 1258static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1259 int access_size, bool zero_size_allowed,
1260 struct bpf_call_arg_meta *meta)
17a52670 1261{
58e2af8b
JK
1262 struct bpf_verifier_state *state = &env->cur_state;
1263 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1264 int off, i;
1265
8e2fe1d9 1266 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1267 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1268 if (zero_size_allowed && access_size == 0 &&
f1174f77 1269 register_is_null(regs[regno]))
8e2fe1d9
DB
1270 return 0;
1271
1272 verbose("R%d type=%s expected=%s\n", regno,
1273 reg_type_str[regs[regno].type],
1274 reg_type_str[PTR_TO_STACK]);
17a52670 1275 return -EACCES;
8e2fe1d9 1276 }
17a52670 1277
f1174f77
EC
1278 /* Only allow fixed-offset stack reads */
1279 if (!tnum_is_const(regs[regno].var_off)) {
1280 char tn_buf[48];
1281
1282 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283 verbose("invalid variable stack read R%d var_off=%s\n",
1284 regno, tn_buf);
1285 }
1286 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1287 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288 access_size <= 0) {
1289 verbose("invalid stack type R%d off=%d access_size=%d\n",
1290 regno, off, access_size);
1291 return -EACCES;
1292 }
1293
8726679a
AS
1294 if (env->prog->aux->stack_depth < -off)
1295 env->prog->aux->stack_depth = -off;
1296
435faee1
DB
1297 if (meta && meta->raw_mode) {
1298 meta->access_size = access_size;
1299 meta->regno = regno;
1300 return 0;
1301 }
1302
17a52670 1303 for (i = 0; i < access_size; i++) {
9c399760 1304 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1305 verbose("invalid indirect read from stack off %d+%d size %d\n",
1306 off, i, access_size);
1307 return -EACCES;
1308 }
1309 }
1310 return 0;
1311}
1312
06c1c049
GB
1313static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1314 int access_size, bool zero_size_allowed,
1315 struct bpf_call_arg_meta *meta)
1316{
f1174f77 1317 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1318
f1174f77 1319 switch (reg->type) {
06c1c049 1320 case PTR_TO_PACKET:
f1174f77 1321 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1322 case PTR_TO_MAP_VALUE:
f1174f77
EC
1323 return check_map_access(env, regno, reg->off, access_size);
1324 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1325 return check_stack_boundary(env, regno, access_size,
1326 zero_size_allowed, meta);
1327 }
1328}
1329
58e2af8b 1330static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1331 enum bpf_arg_type arg_type,
1332 struct bpf_call_arg_meta *meta)
17a52670 1333{
58e2af8b 1334 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1335 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1336 int err = 0;
1337
80f1d68c 1338 if (arg_type == ARG_DONTCARE)
17a52670
AS
1339 return 0;
1340
dc503a8a
EC
1341 err = check_reg_arg(env, regno, SRC_OP);
1342 if (err)
1343 return err;
17a52670 1344
1be7f75d
AS
1345 if (arg_type == ARG_ANYTHING) {
1346 if (is_pointer_value(env, regno)) {
1347 verbose("R%d leaks addr into helper function\n", regno);
1348 return -EACCES;
1349 }
80f1d68c 1350 return 0;
1be7f75d 1351 }
80f1d68c 1352
3a0af8fd
TG
1353 if (type == PTR_TO_PACKET &&
1354 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1355 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1356 return -EACCES;
1357 }
1358
8e2fe1d9 1359 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1360 arg_type == ARG_PTR_TO_MAP_VALUE) {
1361 expected_type = PTR_TO_STACK;
6841de8b
AS
1362 if (type != PTR_TO_PACKET && type != expected_type)
1363 goto err_type;
39f19ebb
AS
1364 } else if (arg_type == ARG_CONST_SIZE ||
1365 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1366 expected_type = SCALAR_VALUE;
1367 if (type != expected_type)
6841de8b 1368 goto err_type;
17a52670
AS
1369 } else if (arg_type == ARG_CONST_MAP_PTR) {
1370 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1371 if (type != expected_type)
1372 goto err_type;
608cd71a
AS
1373 } else if (arg_type == ARG_PTR_TO_CTX) {
1374 expected_type = PTR_TO_CTX;
6841de8b
AS
1375 if (type != expected_type)
1376 goto err_type;
39f19ebb
AS
1377 } else if (arg_type == ARG_PTR_TO_MEM ||
1378 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1379 expected_type = PTR_TO_STACK;
1380 /* One exception here. In case function allows for NULL to be
f1174f77 1381 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1382 * happens during stack boundary checking.
1383 */
f1174f77 1384 if (register_is_null(*reg))
6841de8b 1385 /* final test in check_stack_boundary() */;
5722569b 1386 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
f1174f77 1387 type != expected_type)
6841de8b 1388 goto err_type;
39f19ebb 1389 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1390 } else {
1391 verbose("unsupported arg_type %d\n", arg_type);
1392 return -EFAULT;
1393 }
1394
17a52670
AS
1395 if (arg_type == ARG_CONST_MAP_PTR) {
1396 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1397 meta->map_ptr = reg->map_ptr;
17a52670
AS
1398 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1399 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1400 * check that [key, key + map->key_size) are within
1401 * stack limits and initialized
1402 */
33ff9823 1403 if (!meta->map_ptr) {
17a52670
AS
1404 /* in function declaration map_ptr must come before
1405 * map_key, so that it's verified and known before
1406 * we have to check map_key here. Otherwise it means
1407 * that kernel subsystem misconfigured verifier
1408 */
1409 verbose("invalid map_ptr to access map->key\n");
1410 return -EACCES;
1411 }
6841de8b 1412 if (type == PTR_TO_PACKET)
f1174f77 1413 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1414 meta->map_ptr->key_size);
1415 else
1416 err = check_stack_boundary(env, regno,
1417 meta->map_ptr->key_size,
1418 false, NULL);
17a52670
AS
1419 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1420 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1421 * check [value, value + map->value_size) validity
1422 */
33ff9823 1423 if (!meta->map_ptr) {
17a52670
AS
1424 /* kernel subsystem misconfigured verifier */
1425 verbose("invalid map_ptr to access map->value\n");
1426 return -EACCES;
1427 }
6841de8b 1428 if (type == PTR_TO_PACKET)
f1174f77 1429 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1430 meta->map_ptr->value_size);
1431 else
1432 err = check_stack_boundary(env, regno,
1433 meta->map_ptr->value_size,
1434 false, NULL);
39f19ebb
AS
1435 } else if (arg_type == ARG_CONST_SIZE ||
1436 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1437 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1438
17a52670
AS
1439 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1440 * from stack pointer 'buf'. Check it
1441 * note: regno == len, regno - 1 == buf
1442 */
1443 if (regno == 0) {
1444 /* kernel subsystem misconfigured verifier */
39f19ebb 1445 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1446 return -EACCES;
1447 }
06c1c049 1448
f1174f77
EC
1449 /* The register is SCALAR_VALUE; the access check
1450 * happens using its boundaries.
06c1c049 1451 */
f1174f77
EC
1452
1453 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1454 /* For unprivileged variable accesses, disable raw
1455 * mode so that the program is required to
1456 * initialize all the memory that the helper could
1457 * just partially fill up.
1458 */
1459 meta = NULL;
1460
b03c9f9f 1461 if (reg->smin_value < 0) {
f1174f77
EC
1462 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1463 regno);
1464 return -EACCES;
1465 }
06c1c049 1466
b03c9f9f 1467 if (reg->umin_value == 0) {
f1174f77
EC
1468 err = check_helper_mem_access(env, regno - 1, 0,
1469 zero_size_allowed,
1470 meta);
06c1c049
GB
1471 if (err)
1472 return err;
06c1c049 1473 }
f1174f77 1474
b03c9f9f 1475 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1476 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1477 regno);
1478 return -EACCES;
1479 }
1480 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1481 reg->umax_value,
f1174f77 1482 zero_size_allowed, meta);
17a52670
AS
1483 }
1484
1485 return err;
6841de8b
AS
1486err_type:
1487 verbose("R%d type=%s expected=%s\n", regno,
1488 reg_type_str[type], reg_type_str[expected_type]);
1489 return -EACCES;
17a52670
AS
1490}
1491
35578d79
KX
1492static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1493{
35578d79
KX
1494 if (!map)
1495 return 0;
1496
6aff67c8
AS
1497 /* We need a two way check, first is from map perspective ... */
1498 switch (map->map_type) {
1499 case BPF_MAP_TYPE_PROG_ARRAY:
1500 if (func_id != BPF_FUNC_tail_call)
1501 goto error;
1502 break;
1503 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1504 if (func_id != BPF_FUNC_perf_event_read &&
1505 func_id != BPF_FUNC_perf_event_output)
1506 goto error;
1507 break;
1508 case BPF_MAP_TYPE_STACK_TRACE:
1509 if (func_id != BPF_FUNC_get_stackid)
1510 goto error;
1511 break;
4ed8ec52 1512 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1513 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1514 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1515 goto error;
1516 break;
546ac1ff
JF
1517 /* devmap returns a pointer to a live net_device ifindex that we cannot
1518 * allow to be modified from bpf side. So do not allow lookup elements
1519 * for now.
1520 */
1521 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1522 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1523 goto error;
1524 break;
56f668df 1525 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1526 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1527 if (func_id != BPF_FUNC_map_lookup_elem)
1528 goto error;
16a43625 1529 break;
174a79ff
JF
1530 case BPF_MAP_TYPE_SOCKMAP:
1531 if (func_id != BPF_FUNC_sk_redirect_map &&
1532 func_id != BPF_FUNC_sock_map_update &&
1533 func_id != BPF_FUNC_map_delete_elem)
1534 goto error;
1535 break;
6aff67c8
AS
1536 default:
1537 break;
1538 }
1539
1540 /* ... and second from the function itself. */
1541 switch (func_id) {
1542 case BPF_FUNC_tail_call:
1543 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1544 goto error;
1545 break;
1546 case BPF_FUNC_perf_event_read:
1547 case BPF_FUNC_perf_event_output:
1548 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1549 goto error;
1550 break;
1551 case BPF_FUNC_get_stackid:
1552 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1553 goto error;
1554 break;
60d20f91 1555 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1556 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1557 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1558 goto error;
1559 break;
97f91a7c
JF
1560 case BPF_FUNC_redirect_map:
1561 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1562 goto error;
1563 break;
174a79ff
JF
1564 case BPF_FUNC_sk_redirect_map:
1565 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1566 goto error;
1567 break;
1568 case BPF_FUNC_sock_map_update:
1569 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1570 goto error;
1571 break;
6aff67c8
AS
1572 default:
1573 break;
35578d79
KX
1574 }
1575
1576 return 0;
6aff67c8 1577error:
ebb676da
TG
1578 verbose("cannot pass map_type %d into func %s#%d\n",
1579 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1580 return -EINVAL;
35578d79
KX
1581}
1582
435faee1
DB
1583static int check_raw_mode(const struct bpf_func_proto *fn)
1584{
1585 int count = 0;
1586
39f19ebb 1587 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1588 count++;
39f19ebb 1589 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1590 count++;
39f19ebb 1591 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1592 count++;
39f19ebb 1593 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1594 count++;
39f19ebb 1595 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1596 count++;
1597
1598 return count > 1 ? -EINVAL : 0;
1599}
1600
f1174f77
EC
1601/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1602 * so turn them into unknown SCALAR_VALUE.
1603 */
58e2af8b 1604static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1605{
58e2af8b
JK
1606 struct bpf_verifier_state *state = &env->cur_state;
1607 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1608 int i;
1609
1610 for (i = 0; i < MAX_BPF_REG; i++)
1611 if (regs[i].type == PTR_TO_PACKET ||
1612 regs[i].type == PTR_TO_PACKET_END)
f1174f77 1613 mark_reg_unknown(regs, i);
969bf05e
AS
1614
1615 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1616 if (state->stack_slot_type[i] != STACK_SPILL)
1617 continue;
1618 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1619 if (reg->type != PTR_TO_PACKET &&
1620 reg->type != PTR_TO_PACKET_END)
1621 continue;
f1174f77 1622 __mark_reg_unknown(reg);
969bf05e
AS
1623 }
1624}
1625
81ed18ab 1626static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1627{
58e2af8b 1628 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1629 const struct bpf_func_proto *fn = NULL;
58e2af8b 1630 struct bpf_reg_state *regs = state->regs;
33ff9823 1631 struct bpf_call_arg_meta meta;
969bf05e 1632 bool changes_data;
17a52670
AS
1633 int i, err;
1634
1635 /* find function prototype */
1636 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1637 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1638 return -EINVAL;
1639 }
1640
1641 if (env->prog->aux->ops->get_func_proto)
1642 fn = env->prog->aux->ops->get_func_proto(func_id);
1643
1644 if (!fn) {
ebb676da 1645 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1646 return -EINVAL;
1647 }
1648
1649 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1650 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1651 verbose("cannot call GPL only function from proprietary program\n");
1652 return -EINVAL;
1653 }
1654
17bedab2 1655 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1656
33ff9823 1657 memset(&meta, 0, sizeof(meta));
36bbef52 1658 meta.pkt_access = fn->pkt_access;
33ff9823 1659
435faee1
DB
1660 /* We only support one arg being in raw mode at the moment, which
1661 * is sufficient for the helper functions we have right now.
1662 */
1663 err = check_raw_mode(fn);
1664 if (err) {
ebb676da
TG
1665 verbose("kernel subsystem misconfigured func %s#%d\n",
1666 func_id_name(func_id), func_id);
435faee1
DB
1667 return err;
1668 }
1669
17a52670 1670 /* check args */
33ff9823 1671 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1672 if (err)
1673 return err;
33ff9823 1674 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1675 if (err)
1676 return err;
33ff9823 1677 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1678 if (err)
1679 return err;
33ff9823 1680 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1681 if (err)
1682 return err;
33ff9823 1683 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1684 if (err)
1685 return err;
1686
435faee1
DB
1687 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1688 * is inferred from register state.
1689 */
1690 for (i = 0; i < meta.access_size; i++) {
31fd8581 1691 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1692 if (err)
1693 return err;
1694 }
1695
17a52670 1696 /* reset caller saved regs */
dc503a8a 1697 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 1698 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
1699 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1700 }
17a52670 1701
dc503a8a 1702 /* update return register (already marked as written above) */
17a52670 1703 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1704 /* sets type to SCALAR_VALUE */
1705 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1706 } else if (fn->ret_type == RET_VOID) {
1707 regs[BPF_REG_0].type = NOT_INIT;
1708 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1709 struct bpf_insn_aux_data *insn_aux;
1710
17a52670 1711 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1712 /* There is no offset yet applied, variable or fixed */
1713 mark_reg_known_zero(regs, BPF_REG_0);
1714 regs[BPF_REG_0].off = 0;
17a52670
AS
1715 /* remember map_ptr, so that check_map_access()
1716 * can check 'value_size' boundary of memory access
1717 * to map element returned from bpf_map_lookup_elem()
1718 */
33ff9823 1719 if (meta.map_ptr == NULL) {
17a52670
AS
1720 verbose("kernel subsystem misconfigured verifier\n");
1721 return -EINVAL;
1722 }
33ff9823 1723 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1724 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1725 insn_aux = &env->insn_aux_data[insn_idx];
1726 if (!insn_aux->map_ptr)
1727 insn_aux->map_ptr = meta.map_ptr;
1728 else if (insn_aux->map_ptr != meta.map_ptr)
1729 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1730 } else {
ebb676da
TG
1731 verbose("unknown return type %d of func %s#%d\n",
1732 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1733 return -EINVAL;
1734 }
04fd61ab 1735
33ff9823 1736 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1737 if (err)
1738 return err;
04fd61ab 1739
969bf05e
AS
1740 if (changes_data)
1741 clear_all_pkt_pointers(env);
1742 return 0;
1743}
1744
f1174f77
EC
1745static void coerce_reg_to_32(struct bpf_reg_state *reg)
1746{
f1174f77
EC
1747 /* clear high 32 bits */
1748 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1749 /* Update bounds */
1750 __update_reg_bounds(reg);
1751}
1752
1753static bool signed_add_overflows(s64 a, s64 b)
1754{
1755 /* Do the add in u64, where overflow is well-defined */
1756 s64 res = (s64)((u64)a + (u64)b);
1757
1758 if (b < 0)
1759 return res > a;
1760 return res < a;
1761}
1762
1763static bool signed_sub_overflows(s64 a, s64 b)
1764{
1765 /* Do the sub in u64, where overflow is well-defined */
1766 s64 res = (s64)((u64)a - (u64)b);
1767
1768 if (b < 0)
1769 return res < a;
1770 return res > a;
969bf05e
AS
1771}
1772
f1174f77 1773/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1774 * Caller should also handle BPF_MOV case separately.
1775 * If we return -EACCES, caller may want to try again treating pointer as a
1776 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1777 */
1778static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1779 struct bpf_insn *insn,
1780 const struct bpf_reg_state *ptr_reg,
1781 const struct bpf_reg_state *off_reg)
969bf05e 1782{
f1174f77
EC
1783 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1784 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1785 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1786 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1787 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1788 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1789 u8 opcode = BPF_OP(insn->code);
f1174f77 1790 u32 dst = insn->dst_reg;
969bf05e 1791
f1174f77 1792 dst_reg = &regs[dst];
969bf05e 1793
b03c9f9f 1794 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1795 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1796 verbose("verifier internal error: known but bad sbounds\n");
1797 return -EINVAL;
1798 }
1799 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1800 print_verifier_state(&env->cur_state);
1801 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1802 return -EINVAL;
1803 }
1804
1805 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1806 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1807 if (!env->allow_ptr_leaks)
1808 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1809 dst);
1810 return -EACCES;
969bf05e
AS
1811 }
1812
f1174f77
EC
1813 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1814 if (!env->allow_ptr_leaks)
1815 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1816 dst);
1817 return -EACCES;
1818 }
1819 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1820 if (!env->allow_ptr_leaks)
1821 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1822 dst);
1823 return -EACCES;
1824 }
1825 if (ptr_reg->type == PTR_TO_PACKET_END) {
1826 if (!env->allow_ptr_leaks)
1827 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1828 dst);
1829 return -EACCES;
1830 }
1831
1832 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1833 * The id may be overwritten later if we create a new variable offset.
969bf05e 1834 */
f1174f77
EC
1835 dst_reg->type = ptr_reg->type;
1836 dst_reg->id = ptr_reg->id;
969bf05e 1837
f1174f77
EC
1838 switch (opcode) {
1839 case BPF_ADD:
1840 /* We can take a fixed offset as long as it doesn't overflow
1841 * the s32 'off' field
969bf05e 1842 */
b03c9f9f
EC
1843 if (known && (ptr_reg->off + smin_val ==
1844 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1845 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1846 dst_reg->smin_value = smin_ptr;
1847 dst_reg->smax_value = smax_ptr;
1848 dst_reg->umin_value = umin_ptr;
1849 dst_reg->umax_value = umax_ptr;
f1174f77 1850 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1851 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1852 dst_reg->range = ptr_reg->range;
1853 break;
1854 }
f1174f77
EC
1855 /* A new variable offset is created. Note that off_reg->off
1856 * == 0, since it's a scalar.
1857 * dst_reg gets the pointer type and since some positive
1858 * integer value was added to the pointer, give it a new 'id'
1859 * if it's a PTR_TO_PACKET.
1860 * this creates a new 'base' pointer, off_reg (variable) gets
1861 * added into the variable offset, and we copy the fixed offset
1862 * from ptr_reg.
969bf05e 1863 */
b03c9f9f
EC
1864 if (signed_add_overflows(smin_ptr, smin_val) ||
1865 signed_add_overflows(smax_ptr, smax_val)) {
1866 dst_reg->smin_value = S64_MIN;
1867 dst_reg->smax_value = S64_MAX;
1868 } else {
1869 dst_reg->smin_value = smin_ptr + smin_val;
1870 dst_reg->smax_value = smax_ptr + smax_val;
1871 }
1872 if (umin_ptr + umin_val < umin_ptr ||
1873 umax_ptr + umax_val < umax_ptr) {
1874 dst_reg->umin_value = 0;
1875 dst_reg->umax_value = U64_MAX;
1876 } else {
1877 dst_reg->umin_value = umin_ptr + umin_val;
1878 dst_reg->umax_value = umax_ptr + umax_val;
1879 }
f1174f77
EC
1880 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1881 dst_reg->off = ptr_reg->off;
1882 if (ptr_reg->type == PTR_TO_PACKET) {
1883 dst_reg->id = ++env->id_gen;
1884 /* something was added to pkt_ptr, set range to zero */
1885 dst_reg->range = 0;
1886 }
1887 break;
1888 case BPF_SUB:
1889 if (dst_reg == off_reg) {
1890 /* scalar -= pointer. Creates an unknown scalar */
1891 if (!env->allow_ptr_leaks)
1892 verbose("R%d tried to subtract pointer from scalar\n",
1893 dst);
1894 return -EACCES;
1895 }
1896 /* We don't allow subtraction from FP, because (according to
1897 * test_verifier.c test "invalid fp arithmetic", JITs might not
1898 * be able to deal with it.
969bf05e 1899 */
f1174f77
EC
1900 if (ptr_reg->type == PTR_TO_STACK) {
1901 if (!env->allow_ptr_leaks)
1902 verbose("R%d subtraction from stack pointer prohibited\n",
1903 dst);
1904 return -EACCES;
1905 }
b03c9f9f
EC
1906 if (known && (ptr_reg->off - smin_val ==
1907 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1908 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1909 dst_reg->smin_value = smin_ptr;
1910 dst_reg->smax_value = smax_ptr;
1911 dst_reg->umin_value = umin_ptr;
1912 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1913 dst_reg->var_off = ptr_reg->var_off;
1914 dst_reg->id = ptr_reg->id;
b03c9f9f 1915 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1916 dst_reg->range = ptr_reg->range;
1917 break;
1918 }
f1174f77
EC
1919 /* A new variable offset is created. If the subtrahend is known
1920 * nonnegative, then any reg->range we had before is still good.
969bf05e 1921 */
b03c9f9f
EC
1922 if (signed_sub_overflows(smin_ptr, smax_val) ||
1923 signed_sub_overflows(smax_ptr, smin_val)) {
1924 /* Overflow possible, we know nothing */
1925 dst_reg->smin_value = S64_MIN;
1926 dst_reg->smax_value = S64_MAX;
1927 } else {
1928 dst_reg->smin_value = smin_ptr - smax_val;
1929 dst_reg->smax_value = smax_ptr - smin_val;
1930 }
1931 if (umin_ptr < umax_val) {
1932 /* Overflow possible, we know nothing */
1933 dst_reg->umin_value = 0;
1934 dst_reg->umax_value = U64_MAX;
1935 } else {
1936 /* Cannot overflow (as long as bounds are consistent) */
1937 dst_reg->umin_value = umin_ptr - umax_val;
1938 dst_reg->umax_value = umax_ptr - umin_val;
1939 }
f1174f77
EC
1940 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1941 dst_reg->off = ptr_reg->off;
1942 if (ptr_reg->type == PTR_TO_PACKET) {
1943 dst_reg->id = ++env->id_gen;
1944 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1945 if (smin_val < 0)
f1174f77 1946 dst_reg->range = 0;
43188702 1947 }
f1174f77
EC
1948 break;
1949 case BPF_AND:
1950 case BPF_OR:
1951 case BPF_XOR:
1952 /* bitwise ops on pointers are troublesome, prohibit for now.
1953 * (However, in principle we could allow some cases, e.g.
1954 * ptr &= ~3 which would reduce min_value by 3.)
1955 */
1956 if (!env->allow_ptr_leaks)
1957 verbose("R%d bitwise operator %s on pointer prohibited\n",
1958 dst, bpf_alu_string[opcode >> 4]);
1959 return -EACCES;
1960 default:
1961 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1962 if (!env->allow_ptr_leaks)
1963 verbose("R%d pointer arithmetic with %s operator prohibited\n",
1964 dst, bpf_alu_string[opcode >> 4]);
1965 return -EACCES;
43188702
JF
1966 }
1967
b03c9f9f
EC
1968 __update_reg_bounds(dst_reg);
1969 __reg_deduce_bounds(dst_reg);
1970 __reg_bound_offset(dst_reg);
43188702
JF
1971 return 0;
1972}
1973
f1174f77
EC
1974static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1975 struct bpf_insn *insn,
1976 struct bpf_reg_state *dst_reg,
1977 struct bpf_reg_state src_reg)
969bf05e 1978{
58e2af8b 1979 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1980 u8 opcode = BPF_OP(insn->code);
f1174f77 1981 bool src_known, dst_known;
b03c9f9f
EC
1982 s64 smin_val, smax_val;
1983 u64 umin_val, umax_val;
48461135 1984
f1174f77
EC
1985 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1986 /* 32-bit ALU ops are (32,32)->64 */
1987 coerce_reg_to_32(dst_reg);
1988 coerce_reg_to_32(&src_reg);
9305706c 1989 }
b03c9f9f
EC
1990 smin_val = src_reg.smin_value;
1991 smax_val = src_reg.smax_value;
1992 umin_val = src_reg.umin_value;
1993 umax_val = src_reg.umax_value;
f1174f77
EC
1994 src_known = tnum_is_const(src_reg.var_off);
1995 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1996
48461135
JB
1997 switch (opcode) {
1998 case BPF_ADD:
b03c9f9f
EC
1999 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2000 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2001 dst_reg->smin_value = S64_MIN;
2002 dst_reg->smax_value = S64_MAX;
2003 } else {
2004 dst_reg->smin_value += smin_val;
2005 dst_reg->smax_value += smax_val;
2006 }
2007 if (dst_reg->umin_value + umin_val < umin_val ||
2008 dst_reg->umax_value + umax_val < umax_val) {
2009 dst_reg->umin_value = 0;
2010 dst_reg->umax_value = U64_MAX;
2011 } else {
2012 dst_reg->umin_value += umin_val;
2013 dst_reg->umax_value += umax_val;
2014 }
f1174f77 2015 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2016 break;
2017 case BPF_SUB:
b03c9f9f
EC
2018 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2019 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2020 /* Overflow possible, we know nothing */
2021 dst_reg->smin_value = S64_MIN;
2022 dst_reg->smax_value = S64_MAX;
2023 } else {
2024 dst_reg->smin_value -= smax_val;
2025 dst_reg->smax_value -= smin_val;
2026 }
2027 if (dst_reg->umin_value < umax_val) {
2028 /* Overflow possible, we know nothing */
2029 dst_reg->umin_value = 0;
2030 dst_reg->umax_value = U64_MAX;
2031 } else {
2032 /* Cannot overflow (as long as bounds are consistent) */
2033 dst_reg->umin_value -= umax_val;
2034 dst_reg->umax_value -= umin_val;
2035 }
f1174f77 2036 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2037 break;
2038 case BPF_MUL:
b03c9f9f
EC
2039 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2040 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2041 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2042 __mark_reg_unbounded(dst_reg);
2043 __update_reg_bounds(dst_reg);
f1174f77
EC
2044 break;
2045 }
b03c9f9f
EC
2046 /* Both values are positive, so we can work with unsigned and
2047 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2048 */
b03c9f9f
EC
2049 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2050 /* Potential overflow, we know nothing */
2051 __mark_reg_unbounded(dst_reg);
2052 /* (except what we can learn from the var_off) */
2053 __update_reg_bounds(dst_reg);
2054 break;
2055 }
2056 dst_reg->umin_value *= umin_val;
2057 dst_reg->umax_value *= umax_val;
2058 if (dst_reg->umax_value > S64_MAX) {
2059 /* Overflow possible, we know nothing */
2060 dst_reg->smin_value = S64_MIN;
2061 dst_reg->smax_value = S64_MAX;
2062 } else {
2063 dst_reg->smin_value = dst_reg->umin_value;
2064 dst_reg->smax_value = dst_reg->umax_value;
2065 }
48461135
JB
2066 break;
2067 case BPF_AND:
f1174f77 2068 if (src_known && dst_known) {
b03c9f9f
EC
2069 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2070 src_reg.var_off.value);
f1174f77
EC
2071 break;
2072 }
b03c9f9f
EC
2073 /* We get our minimum from the var_off, since that's inherently
2074 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2075 */
f1174f77 2076 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2077 dst_reg->umin_value = dst_reg->var_off.value;
2078 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2079 if (dst_reg->smin_value < 0 || smin_val < 0) {
2080 /* Lose signed bounds when ANDing negative numbers,
2081 * ain't nobody got time for that.
2082 */
2083 dst_reg->smin_value = S64_MIN;
2084 dst_reg->smax_value = S64_MAX;
2085 } else {
2086 /* ANDing two positives gives a positive, so safe to
2087 * cast result into s64.
2088 */
2089 dst_reg->smin_value = dst_reg->umin_value;
2090 dst_reg->smax_value = dst_reg->umax_value;
2091 }
2092 /* We may learn something more from the var_off */
2093 __update_reg_bounds(dst_reg);
f1174f77
EC
2094 break;
2095 case BPF_OR:
2096 if (src_known && dst_known) {
b03c9f9f
EC
2097 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2098 src_reg.var_off.value);
f1174f77
EC
2099 break;
2100 }
b03c9f9f
EC
2101 /* We get our maximum from the var_off, and our minimum is the
2102 * maximum of the operands' minima
f1174f77
EC
2103 */
2104 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2105 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2106 dst_reg->umax_value = dst_reg->var_off.value |
2107 dst_reg->var_off.mask;
2108 if (dst_reg->smin_value < 0 || smin_val < 0) {
2109 /* Lose signed bounds when ORing negative numbers,
2110 * ain't nobody got time for that.
2111 */
2112 dst_reg->smin_value = S64_MIN;
2113 dst_reg->smax_value = S64_MAX;
f1174f77 2114 } else {
b03c9f9f
EC
2115 /* ORing two positives gives a positive, so safe to
2116 * cast result into s64.
2117 */
2118 dst_reg->smin_value = dst_reg->umin_value;
2119 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2120 }
b03c9f9f
EC
2121 /* We may learn something more from the var_off */
2122 __update_reg_bounds(dst_reg);
48461135
JB
2123 break;
2124 case BPF_LSH:
b03c9f9f
EC
2125 if (umax_val > 63) {
2126 /* Shifts greater than 63 are undefined. This includes
2127 * shifts by a negative number.
2128 */
f1174f77
EC
2129 mark_reg_unknown(regs, insn->dst_reg);
2130 break;
2131 }
b03c9f9f
EC
2132 /* We lose all sign bit information (except what we can pick
2133 * up from var_off)
48461135 2134 */
b03c9f9f
EC
2135 dst_reg->smin_value = S64_MIN;
2136 dst_reg->smax_value = S64_MAX;
2137 /* If we might shift our top bit out, then we know nothing */
2138 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2139 dst_reg->umin_value = 0;
2140 dst_reg->umax_value = U64_MAX;
d1174416 2141 } else {
b03c9f9f
EC
2142 dst_reg->umin_value <<= umin_val;
2143 dst_reg->umax_value <<= umax_val;
d1174416 2144 }
b03c9f9f
EC
2145 if (src_known)
2146 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2147 else
2148 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2149 /* We may learn something more from the var_off */
2150 __update_reg_bounds(dst_reg);
48461135
JB
2151 break;
2152 case BPF_RSH:
b03c9f9f
EC
2153 if (umax_val > 63) {
2154 /* Shifts greater than 63 are undefined. This includes
2155 * shifts by a negative number.
2156 */
f1174f77
EC
2157 mark_reg_unknown(regs, insn->dst_reg);
2158 break;
2159 }
2160 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2161 if (dst_reg->smin_value < 0) {
2162 if (umin_val) {
f1174f77 2163 /* Sign bit will be cleared */
b03c9f9f
EC
2164 dst_reg->smin_value = 0;
2165 } else {
2166 /* Lost sign bit information */
2167 dst_reg->smin_value = S64_MIN;
2168 dst_reg->smax_value = S64_MAX;
2169 }
d1174416 2170 } else {
b03c9f9f
EC
2171 dst_reg->smin_value =
2172 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2173 }
f1174f77 2174 if (src_known)
b03c9f9f
EC
2175 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2176 umin_val);
f1174f77 2177 else
b03c9f9f
EC
2178 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2179 dst_reg->umin_value >>= umax_val;
2180 dst_reg->umax_value >>= umin_val;
2181 /* We may learn something more from the var_off */
2182 __update_reg_bounds(dst_reg);
48461135
JB
2183 break;
2184 default:
f1174f77 2185 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2186 break;
2187 }
2188
b03c9f9f
EC
2189 __reg_deduce_bounds(dst_reg);
2190 __reg_bound_offset(dst_reg);
f1174f77
EC
2191 return 0;
2192}
2193
2194/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2195 * and var_off.
2196 */
2197static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2198 struct bpf_insn *insn)
2199{
2200 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2201 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2202 u8 opcode = BPF_OP(insn->code);
2203 int rc;
2204
2205 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2206 src_reg = NULL;
2207 if (dst_reg->type != SCALAR_VALUE)
2208 ptr_reg = dst_reg;
2209 if (BPF_SRC(insn->code) == BPF_X) {
2210 src_reg = &regs[insn->src_reg];
f1174f77
EC
2211 if (src_reg->type != SCALAR_VALUE) {
2212 if (dst_reg->type != SCALAR_VALUE) {
2213 /* Combining two pointers by any ALU op yields
2214 * an arbitrary scalar.
2215 */
2216 if (!env->allow_ptr_leaks) {
2217 verbose("R%d pointer %s pointer prohibited\n",
2218 insn->dst_reg,
2219 bpf_alu_string[opcode >> 4]);
2220 return -EACCES;
2221 }
2222 mark_reg_unknown(regs, insn->dst_reg);
2223 return 0;
2224 } else {
2225 /* scalar += pointer
2226 * This is legal, but we have to reverse our
2227 * src/dest handling in computing the range
2228 */
2229 rc = adjust_ptr_min_max_vals(env, insn,
2230 src_reg, dst_reg);
2231 if (rc == -EACCES && env->allow_ptr_leaks) {
2232 /* scalar += unknown scalar */
2233 __mark_reg_unknown(&off_reg);
2234 return adjust_scalar_min_max_vals(
2235 env, insn,
2236 dst_reg, off_reg);
2237 }
2238 return rc;
2239 }
2240 } else if (ptr_reg) {
2241 /* pointer += scalar */
2242 rc = adjust_ptr_min_max_vals(env, insn,
2243 dst_reg, src_reg);
2244 if (rc == -EACCES && env->allow_ptr_leaks) {
2245 /* unknown scalar += scalar */
2246 __mark_reg_unknown(dst_reg);
2247 return adjust_scalar_min_max_vals(
2248 env, insn, dst_reg, *src_reg);
2249 }
2250 return rc;
2251 }
2252 } else {
2253 /* Pretend the src is a reg with a known value, since we only
2254 * need to be able to read from this state.
2255 */
2256 off_reg.type = SCALAR_VALUE;
b03c9f9f 2257 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2258 src_reg = &off_reg;
f1174f77
EC
2259 if (ptr_reg) { /* pointer += K */
2260 rc = adjust_ptr_min_max_vals(env, insn,
2261 ptr_reg, src_reg);
2262 if (rc == -EACCES && env->allow_ptr_leaks) {
2263 /* unknown scalar += K */
2264 __mark_reg_unknown(dst_reg);
2265 return adjust_scalar_min_max_vals(
2266 env, insn, dst_reg, off_reg);
2267 }
2268 return rc;
2269 }
2270 }
2271
2272 /* Got here implies adding two SCALAR_VALUEs */
2273 if (WARN_ON_ONCE(ptr_reg)) {
2274 print_verifier_state(&env->cur_state);
2275 verbose("verifier internal error: unexpected ptr_reg\n");
2276 return -EINVAL;
2277 }
2278 if (WARN_ON(!src_reg)) {
2279 print_verifier_state(&env->cur_state);
2280 verbose("verifier internal error: no src_reg\n");
2281 return -EINVAL;
2282 }
2283 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2284}
2285
17a52670 2286/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2287static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2288{
f1174f77 2289 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2290 u8 opcode = BPF_OP(insn->code);
2291 int err;
2292
2293 if (opcode == BPF_END || opcode == BPF_NEG) {
2294 if (opcode == BPF_NEG) {
2295 if (BPF_SRC(insn->code) != 0 ||
2296 insn->src_reg != BPF_REG_0 ||
2297 insn->off != 0 || insn->imm != 0) {
2298 verbose("BPF_NEG uses reserved fields\n");
2299 return -EINVAL;
2300 }
2301 } else {
2302 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2303 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2304 BPF_CLASS(insn->code) == BPF_ALU64) {
17a52670
AS
2305 verbose("BPF_END uses reserved fields\n");
2306 return -EINVAL;
2307 }
2308 }
2309
2310 /* check src operand */
dc503a8a 2311 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2312 if (err)
2313 return err;
2314
1be7f75d
AS
2315 if (is_pointer_value(env, insn->dst_reg)) {
2316 verbose("R%d pointer arithmetic prohibited\n",
2317 insn->dst_reg);
2318 return -EACCES;
2319 }
2320
17a52670 2321 /* check dest operand */
dc503a8a 2322 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2323 if (err)
2324 return err;
2325
2326 } else if (opcode == BPF_MOV) {
2327
2328 if (BPF_SRC(insn->code) == BPF_X) {
2329 if (insn->imm != 0 || insn->off != 0) {
2330 verbose("BPF_MOV uses reserved fields\n");
2331 return -EINVAL;
2332 }
2333
2334 /* check src operand */
dc503a8a 2335 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2336 if (err)
2337 return err;
2338 } else {
2339 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2340 verbose("BPF_MOV uses reserved fields\n");
2341 return -EINVAL;
2342 }
2343 }
2344
2345 /* check dest operand */
dc503a8a 2346 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2347 if (err)
2348 return err;
2349
2350 if (BPF_SRC(insn->code) == BPF_X) {
2351 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2352 /* case: R1 = R2
2353 * copy register state to dest reg
2354 */
2355 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2356 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2357 } else {
f1174f77 2358 /* R1 = (u32) R2 */
1be7f75d
AS
2359 if (is_pointer_value(env, insn->src_reg)) {
2360 verbose("R%d partial copy of pointer\n",
2361 insn->src_reg);
2362 return -EACCES;
2363 }
f1174f77 2364 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2365 /* high 32 bits are known zero. */
f1174f77
EC
2366 regs[insn->dst_reg].var_off = tnum_cast(
2367 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2368 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2369 }
2370 } else {
2371 /* case: R = imm
2372 * remember the value we stored into this reg
2373 */
f1174f77 2374 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2375 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2376 }
2377
2378 } else if (opcode > BPF_END) {
2379 verbose("invalid BPF_ALU opcode %x\n", opcode);
2380 return -EINVAL;
2381
2382 } else { /* all other ALU ops: and, sub, xor, add, ... */
2383
17a52670
AS
2384 if (BPF_SRC(insn->code) == BPF_X) {
2385 if (insn->imm != 0 || insn->off != 0) {
2386 verbose("BPF_ALU uses reserved fields\n");
2387 return -EINVAL;
2388 }
2389 /* check src1 operand */
dc503a8a 2390 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2391 if (err)
2392 return err;
2393 } else {
2394 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2395 verbose("BPF_ALU uses reserved fields\n");
2396 return -EINVAL;
2397 }
2398 }
2399
2400 /* check src2 operand */
dc503a8a 2401 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2402 if (err)
2403 return err;
2404
2405 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2406 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2407 verbose("div by zero\n");
2408 return -EINVAL;
2409 }
2410
229394e8
RV
2411 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2412 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2413 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2414
2415 if (insn->imm < 0 || insn->imm >= size) {
2416 verbose("invalid shift %d\n", insn->imm);
2417 return -EINVAL;
2418 }
2419 }
2420
1a0dc1ac 2421 /* check dest operand */
dc503a8a 2422 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2423 if (err)
2424 return err;
2425
f1174f77 2426 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2427 }
2428
2429 return 0;
2430}
2431
58e2af8b
JK
2432static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2433 struct bpf_reg_state *dst_reg)
969bf05e 2434{
58e2af8b 2435 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2436 int i;
2d2be8ca 2437
f1174f77
EC
2438 if (dst_reg->off < 0)
2439 /* This doesn't give us any range */
2440 return;
2441
b03c9f9f
EC
2442 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2443 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2444 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2445 * than pkt_end, but that's because it's also less than pkt.
2446 */
2447 return;
2448
b4e432f1 2449 /* LLVM can generate four kind of checks:
2d2be8ca 2450 *
b4e432f1 2451 * Type 1/2:
2d2be8ca
DB
2452 *
2453 * r2 = r3;
2454 * r2 += 8;
2455 * if (r2 > pkt_end) goto <handle exception>
2456 * <access okay>
2457 *
b4e432f1
DB
2458 * r2 = r3;
2459 * r2 += 8;
2460 * if (r2 < pkt_end) goto <access okay>
2461 * <handle exception>
2462 *
2d2be8ca
DB
2463 * Where:
2464 * r2 == dst_reg, pkt_end == src_reg
2465 * r2=pkt(id=n,off=8,r=0)
2466 * r3=pkt(id=n,off=0,r=0)
2467 *
b4e432f1 2468 * Type 3/4:
2d2be8ca
DB
2469 *
2470 * r2 = r3;
2471 * r2 += 8;
2472 * if (pkt_end >= r2) goto <access okay>
2473 * <handle exception>
2474 *
b4e432f1
DB
2475 * r2 = r3;
2476 * r2 += 8;
2477 * if (pkt_end <= r2) goto <handle exception>
2478 * <access okay>
2479 *
2d2be8ca
DB
2480 * Where:
2481 * pkt_end == dst_reg, r2 == src_reg
2482 * r2=pkt(id=n,off=8,r=0)
2483 * r3=pkt(id=n,off=0,r=0)
2484 *
2485 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2486 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2487 */
2d2be8ca 2488
f1174f77
EC
2489 /* If our ids match, then we must have the same max_value. And we
2490 * don't care about the other reg's fixed offset, since if it's too big
2491 * the range won't allow anything.
2492 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2493 */
969bf05e
AS
2494 for (i = 0; i < MAX_BPF_REG; i++)
2495 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682 2496 /* keep the maximum range already checked */
f1174f77 2497 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2498
2499 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2500 if (state->stack_slot_type[i] != STACK_SPILL)
2501 continue;
2502 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2503 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
f1174f77 2504 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2505 }
2506}
2507
48461135
JB
2508/* Adjusts the register min/max values in the case that the dst_reg is the
2509 * variable register that we are working on, and src_reg is a constant or we're
2510 * simply doing a BPF_K check.
f1174f77 2511 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2512 */
2513static void reg_set_min_max(struct bpf_reg_state *true_reg,
2514 struct bpf_reg_state *false_reg, u64 val,
2515 u8 opcode)
2516{
f1174f77
EC
2517 /* If the dst_reg is a pointer, we can't learn anything about its
2518 * variable offset from the compare (unless src_reg were a pointer into
2519 * the same object, but we don't bother with that.
2520 * Since false_reg and true_reg have the same type by construction, we
2521 * only need to check one of them for pointerness.
2522 */
2523 if (__is_pointer_value(false, false_reg))
2524 return;
4cabc5b1 2525
48461135
JB
2526 switch (opcode) {
2527 case BPF_JEQ:
2528 /* If this is false then we know nothing Jon Snow, but if it is
2529 * true then we know for sure.
2530 */
b03c9f9f 2531 __mark_reg_known(true_reg, val);
48461135
JB
2532 break;
2533 case BPF_JNE:
2534 /* If this is true we know nothing Jon Snow, but if it is false
2535 * we know the value for sure;
2536 */
b03c9f9f 2537 __mark_reg_known(false_reg, val);
48461135
JB
2538 break;
2539 case BPF_JGT:
b03c9f9f
EC
2540 false_reg->umax_value = min(false_reg->umax_value, val);
2541 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2542 break;
48461135 2543 case BPF_JSGT:
b03c9f9f
EC
2544 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2545 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2546 break;
b4e432f1
DB
2547 case BPF_JLT:
2548 false_reg->umin_value = max(false_reg->umin_value, val);
2549 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2550 break;
2551 case BPF_JSLT:
2552 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2553 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2554 break;
48461135 2555 case BPF_JGE:
b03c9f9f
EC
2556 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2557 true_reg->umin_value = max(true_reg->umin_value, val);
2558 break;
48461135 2559 case BPF_JSGE:
b03c9f9f
EC
2560 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2561 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2562 break;
b4e432f1
DB
2563 case BPF_JLE:
2564 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2565 true_reg->umax_value = min(true_reg->umax_value, val);
2566 break;
2567 case BPF_JSLE:
2568 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2569 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2570 break;
48461135
JB
2571 default:
2572 break;
2573 }
2574
b03c9f9f
EC
2575 __reg_deduce_bounds(false_reg);
2576 __reg_deduce_bounds(true_reg);
2577 /* We might have learned some bits from the bounds. */
2578 __reg_bound_offset(false_reg);
2579 __reg_bound_offset(true_reg);
2580 /* Intersecting with the old var_off might have improved our bounds
2581 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2582 * then new var_off is (0; 0x7f...fc) which improves our umax.
2583 */
2584 __update_reg_bounds(false_reg);
2585 __update_reg_bounds(true_reg);
48461135
JB
2586}
2587
f1174f77
EC
2588/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2589 * the variable reg.
48461135
JB
2590 */
2591static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2592 struct bpf_reg_state *false_reg, u64 val,
2593 u8 opcode)
2594{
f1174f77
EC
2595 if (__is_pointer_value(false, false_reg))
2596 return;
4cabc5b1 2597
48461135
JB
2598 switch (opcode) {
2599 case BPF_JEQ:
2600 /* If this is false then we know nothing Jon Snow, but if it is
2601 * true then we know for sure.
2602 */
b03c9f9f 2603 __mark_reg_known(true_reg, val);
48461135
JB
2604 break;
2605 case BPF_JNE:
2606 /* If this is true we know nothing Jon Snow, but if it is false
2607 * we know the value for sure;
2608 */
b03c9f9f 2609 __mark_reg_known(false_reg, val);
48461135
JB
2610 break;
2611 case BPF_JGT:
b03c9f9f
EC
2612 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2613 false_reg->umin_value = max(false_reg->umin_value, val);
2614 break;
48461135 2615 case BPF_JSGT:
b03c9f9f
EC
2616 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2617 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2618 break;
b4e432f1
DB
2619 case BPF_JLT:
2620 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2621 false_reg->umax_value = min(false_reg->umax_value, val);
2622 break;
2623 case BPF_JSLT:
2624 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2625 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2626 break;
48461135 2627 case BPF_JGE:
b03c9f9f
EC
2628 true_reg->umax_value = min(true_reg->umax_value, val);
2629 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2630 break;
48461135 2631 case BPF_JSGE:
b03c9f9f
EC
2632 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2633 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2634 break;
b4e432f1
DB
2635 case BPF_JLE:
2636 true_reg->umin_value = max(true_reg->umin_value, val);
2637 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2638 break;
2639 case BPF_JSLE:
2640 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2641 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2642 break;
48461135
JB
2643 default:
2644 break;
2645 }
2646
b03c9f9f
EC
2647 __reg_deduce_bounds(false_reg);
2648 __reg_deduce_bounds(true_reg);
2649 /* We might have learned some bits from the bounds. */
2650 __reg_bound_offset(false_reg);
2651 __reg_bound_offset(true_reg);
2652 /* Intersecting with the old var_off might have improved our bounds
2653 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2654 * then new var_off is (0; 0x7f...fc) which improves our umax.
2655 */
2656 __update_reg_bounds(false_reg);
2657 __update_reg_bounds(true_reg);
f1174f77
EC
2658}
2659
2660/* Regs are known to be equal, so intersect their min/max/var_off */
2661static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2662 struct bpf_reg_state *dst_reg)
2663{
b03c9f9f
EC
2664 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2665 dst_reg->umin_value);
2666 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2667 dst_reg->umax_value);
2668 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2669 dst_reg->smin_value);
2670 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2671 dst_reg->smax_value);
f1174f77
EC
2672 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2673 dst_reg->var_off);
b03c9f9f
EC
2674 /* We might have learned new bounds from the var_off. */
2675 __update_reg_bounds(src_reg);
2676 __update_reg_bounds(dst_reg);
2677 /* We might have learned something about the sign bit. */
2678 __reg_deduce_bounds(src_reg);
2679 __reg_deduce_bounds(dst_reg);
2680 /* We might have learned some bits from the bounds. */
2681 __reg_bound_offset(src_reg);
2682 __reg_bound_offset(dst_reg);
2683 /* Intersecting with the old var_off might have improved our bounds
2684 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2685 * then new var_off is (0; 0x7f...fc) which improves our umax.
2686 */
2687 __update_reg_bounds(src_reg);
2688 __update_reg_bounds(dst_reg);
f1174f77
EC
2689}
2690
2691static void reg_combine_min_max(struct bpf_reg_state *true_src,
2692 struct bpf_reg_state *true_dst,
2693 struct bpf_reg_state *false_src,
2694 struct bpf_reg_state *false_dst,
2695 u8 opcode)
2696{
2697 switch (opcode) {
2698 case BPF_JEQ:
2699 __reg_combine_min_max(true_src, true_dst);
2700 break;
2701 case BPF_JNE:
2702 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2703 break;
4cabc5b1 2704 }
48461135
JB
2705}
2706
57a09bf0 2707static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2708 bool is_null)
57a09bf0
TG
2709{
2710 struct bpf_reg_state *reg = &regs[regno];
2711
2712 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2713 /* Old offset (both fixed and variable parts) should
2714 * have been known-zero, because we don't allow pointer
2715 * arithmetic on pointers that might be NULL.
2716 */
b03c9f9f
EC
2717 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2718 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2719 reg->off)) {
b03c9f9f
EC
2720 __mark_reg_known_zero(reg);
2721 reg->off = 0;
f1174f77
EC
2722 }
2723 if (is_null) {
2724 reg->type = SCALAR_VALUE;
56f668df
MKL
2725 } else if (reg->map_ptr->inner_map_meta) {
2726 reg->type = CONST_PTR_TO_MAP;
2727 reg->map_ptr = reg->map_ptr->inner_map_meta;
2728 } else {
f1174f77 2729 reg->type = PTR_TO_MAP_VALUE;
56f668df 2730 }
a08dd0da
DB
2731 /* We don't need id from this point onwards anymore, thus we
2732 * should better reset it, so that state pruning has chances
2733 * to take effect.
2734 */
2735 reg->id = 0;
57a09bf0
TG
2736 }
2737}
2738
2739/* The logic is similar to find_good_pkt_pointers(), both could eventually
2740 * be folded together at some point.
2741 */
2742static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2743 bool is_null)
57a09bf0
TG
2744{
2745 struct bpf_reg_state *regs = state->regs;
a08dd0da 2746 u32 id = regs[regno].id;
57a09bf0
TG
2747 int i;
2748
2749 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2750 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2751
2752 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2753 if (state->stack_slot_type[i] != STACK_SPILL)
2754 continue;
f1174f77 2755 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2756 }
2757}
2758
58e2af8b 2759static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2760 struct bpf_insn *insn, int *insn_idx)
2761{
58e2af8b
JK
2762 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2763 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2764 u8 opcode = BPF_OP(insn->code);
2765 int err;
2766
b4e432f1 2767 if (opcode > BPF_JSLE) {
17a52670
AS
2768 verbose("invalid BPF_JMP opcode %x\n", opcode);
2769 return -EINVAL;
2770 }
2771
2772 if (BPF_SRC(insn->code) == BPF_X) {
2773 if (insn->imm != 0) {
2774 verbose("BPF_JMP uses reserved fields\n");
2775 return -EINVAL;
2776 }
2777
2778 /* check src1 operand */
dc503a8a 2779 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2780 if (err)
2781 return err;
1be7f75d
AS
2782
2783 if (is_pointer_value(env, insn->src_reg)) {
2784 verbose("R%d pointer comparison prohibited\n",
2785 insn->src_reg);
2786 return -EACCES;
2787 }
17a52670
AS
2788 } else {
2789 if (insn->src_reg != BPF_REG_0) {
2790 verbose("BPF_JMP uses reserved fields\n");
2791 return -EINVAL;
2792 }
2793 }
2794
2795 /* check src2 operand */
dc503a8a 2796 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2797 if (err)
2798 return err;
2799
1a0dc1ac
AS
2800 dst_reg = &regs[insn->dst_reg];
2801
17a52670
AS
2802 /* detect if R == 0 where R was initialized to zero earlier */
2803 if (BPF_SRC(insn->code) == BPF_K &&
2804 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2805 dst_reg->type == SCALAR_VALUE &&
2806 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2807 if (opcode == BPF_JEQ) {
2808 /* if (imm == imm) goto pc+off;
2809 * only follow the goto, ignore fall-through
2810 */
2811 *insn_idx += insn->off;
2812 return 0;
2813 } else {
2814 /* if (imm != imm) goto pc+off;
2815 * only follow fall-through branch, since
2816 * that's where the program will go
2817 */
2818 return 0;
2819 }
2820 }
2821
2822 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2823 if (!other_branch)
2824 return -EFAULT;
2825
48461135
JB
2826 /* detect if we are comparing against a constant value so we can adjust
2827 * our min/max values for our dst register.
f1174f77
EC
2828 * this is only legit if both are scalars (or pointers to the same
2829 * object, I suppose, but we don't support that right now), because
2830 * otherwise the different base pointers mean the offsets aren't
2831 * comparable.
48461135
JB
2832 */
2833 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2834 if (dst_reg->type == SCALAR_VALUE &&
2835 regs[insn->src_reg].type == SCALAR_VALUE) {
2836 if (tnum_is_const(regs[insn->src_reg].var_off))
2837 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2838 dst_reg, regs[insn->src_reg].var_off.value,
2839 opcode);
2840 else if (tnum_is_const(dst_reg->var_off))
2841 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2842 &regs[insn->src_reg],
2843 dst_reg->var_off.value, opcode);
2844 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2845 /* Comparing for equality, we can combine knowledge */
2846 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2847 &other_branch->regs[insn->dst_reg],
2848 &regs[insn->src_reg],
2849 &regs[insn->dst_reg], opcode);
2850 }
2851 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2852 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2853 dst_reg, insn->imm, opcode);
2854 }
2855
58e2af8b 2856 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2857 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2858 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2859 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2860 /* Mark all identical map registers in each branch as either
2861 * safe or unknown depending R == 0 or R != 0 conditional.
2862 */
f1174f77
EC
2863 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2864 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2865 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2866 dst_reg->type == PTR_TO_PACKET &&
2867 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca 2868 find_good_pkt_pointers(this_branch, dst_reg);
b4e432f1
DB
2869 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2870 dst_reg->type == PTR_TO_PACKET &&
2871 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2872 find_good_pkt_pointers(other_branch, dst_reg);
2d2be8ca
DB
2873 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2874 dst_reg->type == PTR_TO_PACKET_END &&
2875 regs[insn->src_reg].type == PTR_TO_PACKET) {
2876 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
b4e432f1
DB
2877 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2878 dst_reg->type == PTR_TO_PACKET_END &&
2879 regs[insn->src_reg].type == PTR_TO_PACKET) {
2880 find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
1be7f75d
AS
2881 } else if (is_pointer_value(env, insn->dst_reg)) {
2882 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2883 return -EACCES;
17a52670
AS
2884 }
2885 if (log_level)
2d2be8ca 2886 print_verifier_state(this_branch);
17a52670
AS
2887 return 0;
2888}
2889
0246e64d
AS
2890/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2891static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2892{
2893 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2894
2895 return (struct bpf_map *) (unsigned long) imm64;
2896}
2897
17a52670 2898/* verify BPF_LD_IMM64 instruction */
58e2af8b 2899static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2900{
58e2af8b 2901 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2902 int err;
2903
2904 if (BPF_SIZE(insn->code) != BPF_DW) {
2905 verbose("invalid BPF_LD_IMM insn\n");
2906 return -EINVAL;
2907 }
2908 if (insn->off != 0) {
2909 verbose("BPF_LD_IMM64 uses reserved fields\n");
2910 return -EINVAL;
2911 }
2912
dc503a8a 2913 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2914 if (err)
2915 return err;
2916
6b173873 2917 if (insn->src_reg == 0) {
6b173873
JK
2918 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2919
f1174f77 2920 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2921 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2922 return 0;
6b173873 2923 }
17a52670
AS
2924
2925 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2926 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2927
2928 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2929 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2930 return 0;
2931}
2932
96be4325
DB
2933static bool may_access_skb(enum bpf_prog_type type)
2934{
2935 switch (type) {
2936 case BPF_PROG_TYPE_SOCKET_FILTER:
2937 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2938 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2939 return true;
2940 default:
2941 return false;
2942 }
2943}
2944
ddd872bc
AS
2945/* verify safety of LD_ABS|LD_IND instructions:
2946 * - they can only appear in the programs where ctx == skb
2947 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2948 * preserve R6-R9, and store return value into R0
2949 *
2950 * Implicit input:
2951 * ctx == skb == R6 == CTX
2952 *
2953 * Explicit input:
2954 * SRC == any register
2955 * IMM == 32-bit immediate
2956 *
2957 * Output:
2958 * R0 - 8/16/32-bit skb data converted to cpu endianness
2959 */
58e2af8b 2960static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2961{
58e2af8b 2962 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2963 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2964 int i, err;
2965
24701ece 2966 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2967 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2968 return -EINVAL;
2969 }
2970
2971 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2972 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2973 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2974 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2975 return -EINVAL;
2976 }
2977
2978 /* check whether implicit source operand (register R6) is readable */
dc503a8a 2979 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
2980 if (err)
2981 return err;
2982
2983 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2984 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2985 return -EINVAL;
2986 }
2987
2988 if (mode == BPF_IND) {
2989 /* check explicit source operand */
dc503a8a 2990 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
2991 if (err)
2992 return err;
2993 }
2994
2995 /* reset caller saved regs to unreadable */
dc503a8a 2996 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 2997 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
2998 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2999 }
ddd872bc
AS
3000
3001 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3002 * the value fetched from the packet.
3003 * Already marked as written above.
ddd872bc 3004 */
f1174f77 3005 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
3006 return 0;
3007}
3008
475fb78f
AS
3009/* non-recursive DFS pseudo code
3010 * 1 procedure DFS-iterative(G,v):
3011 * 2 label v as discovered
3012 * 3 let S be a stack
3013 * 4 S.push(v)
3014 * 5 while S is not empty
3015 * 6 t <- S.pop()
3016 * 7 if t is what we're looking for:
3017 * 8 return t
3018 * 9 for all edges e in G.adjacentEdges(t) do
3019 * 10 if edge e is already labelled
3020 * 11 continue with the next edge
3021 * 12 w <- G.adjacentVertex(t,e)
3022 * 13 if vertex w is not discovered and not explored
3023 * 14 label e as tree-edge
3024 * 15 label w as discovered
3025 * 16 S.push(w)
3026 * 17 continue at 5
3027 * 18 else if vertex w is discovered
3028 * 19 label e as back-edge
3029 * 20 else
3030 * 21 // vertex w is explored
3031 * 22 label e as forward- or cross-edge
3032 * 23 label t as explored
3033 * 24 S.pop()
3034 *
3035 * convention:
3036 * 0x10 - discovered
3037 * 0x11 - discovered and fall-through edge labelled
3038 * 0x12 - discovered and fall-through and branch edges labelled
3039 * 0x20 - explored
3040 */
3041
3042enum {
3043 DISCOVERED = 0x10,
3044 EXPLORED = 0x20,
3045 FALLTHROUGH = 1,
3046 BRANCH = 2,
3047};
3048
58e2af8b 3049#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3050
475fb78f
AS
3051static int *insn_stack; /* stack of insns to process */
3052static int cur_stack; /* current stack index */
3053static int *insn_state;
3054
3055/* t, w, e - match pseudo-code above:
3056 * t - index of current instruction
3057 * w - next instruction
3058 * e - edge
3059 */
58e2af8b 3060static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3061{
3062 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3063 return 0;
3064
3065 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3066 return 0;
3067
3068 if (w < 0 || w >= env->prog->len) {
3069 verbose("jump out of range from insn %d to %d\n", t, w);
3070 return -EINVAL;
3071 }
3072
f1bca824
AS
3073 if (e == BRANCH)
3074 /* mark branch target for state pruning */
3075 env->explored_states[w] = STATE_LIST_MARK;
3076
475fb78f
AS
3077 if (insn_state[w] == 0) {
3078 /* tree-edge */
3079 insn_state[t] = DISCOVERED | e;
3080 insn_state[w] = DISCOVERED;
3081 if (cur_stack >= env->prog->len)
3082 return -E2BIG;
3083 insn_stack[cur_stack++] = w;
3084 return 1;
3085 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3086 verbose("back-edge from insn %d to %d\n", t, w);
3087 return -EINVAL;
3088 } else if (insn_state[w] == EXPLORED) {
3089 /* forward- or cross-edge */
3090 insn_state[t] = DISCOVERED | e;
3091 } else {
3092 verbose("insn state internal bug\n");
3093 return -EFAULT;
3094 }
3095 return 0;
3096}
3097
3098/* non-recursive depth-first-search to detect loops in BPF program
3099 * loop == back-edge in directed graph
3100 */
58e2af8b 3101static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3102{
3103 struct bpf_insn *insns = env->prog->insnsi;
3104 int insn_cnt = env->prog->len;
3105 int ret = 0;
3106 int i, t;
3107
3108 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3109 if (!insn_state)
3110 return -ENOMEM;
3111
3112 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3113 if (!insn_stack) {
3114 kfree(insn_state);
3115 return -ENOMEM;
3116 }
3117
3118 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3119 insn_stack[0] = 0; /* 0 is the first instruction */
3120 cur_stack = 1;
3121
3122peek_stack:
3123 if (cur_stack == 0)
3124 goto check_state;
3125 t = insn_stack[cur_stack - 1];
3126
3127 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3128 u8 opcode = BPF_OP(insns[t].code);
3129
3130 if (opcode == BPF_EXIT) {
3131 goto mark_explored;
3132 } else if (opcode == BPF_CALL) {
3133 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3134 if (ret == 1)
3135 goto peek_stack;
3136 else if (ret < 0)
3137 goto err_free;
07016151
DB
3138 if (t + 1 < insn_cnt)
3139 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3140 } else if (opcode == BPF_JA) {
3141 if (BPF_SRC(insns[t].code) != BPF_K) {
3142 ret = -EINVAL;
3143 goto err_free;
3144 }
3145 /* unconditional jump with single edge */
3146 ret = push_insn(t, t + insns[t].off + 1,
3147 FALLTHROUGH, env);
3148 if (ret == 1)
3149 goto peek_stack;
3150 else if (ret < 0)
3151 goto err_free;
f1bca824
AS
3152 /* tell verifier to check for equivalent states
3153 * after every call and jump
3154 */
c3de6317
AS
3155 if (t + 1 < insn_cnt)
3156 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3157 } else {
3158 /* conditional jump with two edges */
3c2ce60b 3159 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3160 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3161 if (ret == 1)
3162 goto peek_stack;
3163 else if (ret < 0)
3164 goto err_free;
3165
3166 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3167 if (ret == 1)
3168 goto peek_stack;
3169 else if (ret < 0)
3170 goto err_free;
3171 }
3172 } else {
3173 /* all other non-branch instructions with single
3174 * fall-through edge
3175 */
3176 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3177 if (ret == 1)
3178 goto peek_stack;
3179 else if (ret < 0)
3180 goto err_free;
3181 }
3182
3183mark_explored:
3184 insn_state[t] = EXPLORED;
3185 if (cur_stack-- <= 0) {
3186 verbose("pop stack internal bug\n");
3187 ret = -EFAULT;
3188 goto err_free;
3189 }
3190 goto peek_stack;
3191
3192check_state:
3193 for (i = 0; i < insn_cnt; i++) {
3194 if (insn_state[i] != EXPLORED) {
3195 verbose("unreachable insn %d\n", i);
3196 ret = -EINVAL;
3197 goto err_free;
3198 }
3199 }
3200 ret = 0; /* cfg looks good */
3201
3202err_free:
3203 kfree(insn_state);
3204 kfree(insn_stack);
3205 return ret;
3206}
3207
f1174f77
EC
3208/* check %cur's range satisfies %old's */
3209static bool range_within(struct bpf_reg_state *old,
3210 struct bpf_reg_state *cur)
3211{
b03c9f9f
EC
3212 return old->umin_value <= cur->umin_value &&
3213 old->umax_value >= cur->umax_value &&
3214 old->smin_value <= cur->smin_value &&
3215 old->smax_value >= cur->smax_value;
f1174f77
EC
3216}
3217
3218/* Maximum number of register states that can exist at once */
3219#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3220struct idpair {
3221 u32 old;
3222 u32 cur;
3223};
3224
3225/* If in the old state two registers had the same id, then they need to have
3226 * the same id in the new state as well. But that id could be different from
3227 * the old state, so we need to track the mapping from old to new ids.
3228 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3229 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3230 * regs with a different old id could still have new id 9, we don't care about
3231 * that.
3232 * So we look through our idmap to see if this old id has been seen before. If
3233 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3234 */
f1174f77 3235static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3236{
f1174f77 3237 unsigned int i;
969bf05e 3238
f1174f77
EC
3239 for (i = 0; i < ID_MAP_SIZE; i++) {
3240 if (!idmap[i].old) {
3241 /* Reached an empty slot; haven't seen this id before */
3242 idmap[i].old = old_id;
3243 idmap[i].cur = cur_id;
3244 return true;
3245 }
3246 if (idmap[i].old == old_id)
3247 return idmap[i].cur == cur_id;
3248 }
3249 /* We ran out of idmap slots, which should be impossible */
3250 WARN_ON_ONCE(1);
3251 return false;
3252}
3253
3254/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3255static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3256 struct idpair *idmap)
f1174f77 3257{
dc503a8a
EC
3258 if (!(rold->live & REG_LIVE_READ))
3259 /* explored state didn't use this */
3260 return true;
3261
3262 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3263 return true;
3264
f1174f77
EC
3265 if (rold->type == NOT_INIT)
3266 /* explored state can't have used this */
969bf05e 3267 return true;
f1174f77
EC
3268 if (rcur->type == NOT_INIT)
3269 return false;
3270 switch (rold->type) {
3271 case SCALAR_VALUE:
3272 if (rcur->type == SCALAR_VALUE) {
3273 /* new val must satisfy old val knowledge */
3274 return range_within(rold, rcur) &&
3275 tnum_in(rold->var_off, rcur->var_off);
3276 } else {
3277 /* if we knew anything about the old value, we're not
3278 * equal, because we can't know anything about the
3279 * scalar value of the pointer in the new value.
3280 */
b03c9f9f
EC
3281 return rold->umin_value == 0 &&
3282 rold->umax_value == U64_MAX &&
3283 rold->smin_value == S64_MIN &&
3284 rold->smax_value == S64_MAX &&
f1174f77
EC
3285 tnum_is_unknown(rold->var_off);
3286 }
3287 case PTR_TO_MAP_VALUE:
1b688a19
EC
3288 /* If the new min/max/var_off satisfy the old ones and
3289 * everything else matches, we are OK.
3290 * We don't care about the 'id' value, because nothing
3291 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3292 */
3293 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3294 range_within(rold, rcur) &&
3295 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3296 case PTR_TO_MAP_VALUE_OR_NULL:
3297 /* a PTR_TO_MAP_VALUE could be safe to use as a
3298 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3299 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3300 * checked, doing so could have affected others with the same
3301 * id, and we can't check for that because we lost the id when
3302 * we converted to a PTR_TO_MAP_VALUE.
3303 */
3304 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3305 return false;
3306 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3307 return false;
3308 /* Check our ids match any regs they're supposed to */
3309 return check_ids(rold->id, rcur->id, idmap);
3310 case PTR_TO_PACKET:
3311 if (rcur->type != PTR_TO_PACKET)
3312 return false;
3313 /* We must have at least as much range as the old ptr
3314 * did, so that any accesses which were safe before are
3315 * still safe. This is true even if old range < old off,
3316 * since someone could have accessed through (ptr - k), or
3317 * even done ptr -= k in a register, to get a safe access.
3318 */
3319 if (rold->range > rcur->range)
3320 return false;
3321 /* If the offsets don't match, we can't trust our alignment;
3322 * nor can we be sure that we won't fall out of range.
3323 */
3324 if (rold->off != rcur->off)
3325 return false;
3326 /* id relations must be preserved */
3327 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3328 return false;
3329 /* new val must satisfy old val knowledge */
3330 return range_within(rold, rcur) &&
3331 tnum_in(rold->var_off, rcur->var_off);
3332 case PTR_TO_CTX:
3333 case CONST_PTR_TO_MAP:
3334 case PTR_TO_STACK:
3335 case PTR_TO_PACKET_END:
3336 /* Only valid matches are exact, which memcmp() above
3337 * would have accepted
3338 */
3339 default:
3340 /* Don't know what's going on, just say it's not safe */
3341 return false;
3342 }
969bf05e 3343
f1174f77
EC
3344 /* Shouldn't get here; if we do, say it's not safe */
3345 WARN_ON_ONCE(1);
969bf05e
AS
3346 return false;
3347}
3348
f1bca824
AS
3349/* compare two verifier states
3350 *
3351 * all states stored in state_list are known to be valid, since
3352 * verifier reached 'bpf_exit' instruction through them
3353 *
3354 * this function is called when verifier exploring different branches of
3355 * execution popped from the state stack. If it sees an old state that has
3356 * more strict register state and more strict stack state then this execution
3357 * branch doesn't need to be explored further, since verifier already
3358 * concluded that more strict state leads to valid finish.
3359 *
3360 * Therefore two states are equivalent if register state is more conservative
3361 * and explored stack state is more conservative than the current one.
3362 * Example:
3363 * explored current
3364 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3365 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3366 *
3367 * In other words if current stack state (one being explored) has more
3368 * valid slots than old one that already passed validation, it means
3369 * the verifier can stop exploring and conclude that current state is valid too
3370 *
3371 * Similarly with registers. If explored state has register type as invalid
3372 * whereas register type in current state is meaningful, it means that
3373 * the current state will reach 'bpf_exit' instruction safely
3374 */
48461135
JB
3375static bool states_equal(struct bpf_verifier_env *env,
3376 struct bpf_verifier_state *old,
58e2af8b 3377 struct bpf_verifier_state *cur)
f1bca824 3378{
f1174f77
EC
3379 struct idpair *idmap;
3380 bool ret = false;
f1bca824
AS
3381 int i;
3382
f1174f77
EC
3383 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3384 /* If we failed to allocate the idmap, just say it's not safe */
3385 if (!idmap)
1a0dc1ac 3386 return false;
f1174f77
EC
3387
3388 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3389 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3390 goto out_free;
f1bca824
AS
3391 }
3392
3393 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3394 if (old->stack_slot_type[i] == STACK_INVALID)
3395 continue;
3396 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3397 /* Ex: old explored (safe) state has STACK_SPILL in
3398 * this stack slot, but current has has STACK_MISC ->
3399 * this verifier states are not equivalent,
3400 * return false to continue verification of this path
3401 */
f1174f77 3402 goto out_free;
9c399760
AS
3403 if (i % BPF_REG_SIZE)
3404 continue;
d25da6ca
DB
3405 if (old->stack_slot_type[i] != STACK_SPILL)
3406 continue;
f1174f77
EC
3407 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3408 &cur->spilled_regs[i / BPF_REG_SIZE],
1b688a19 3409 idmap))
f1174f77
EC
3410 /* when explored and current stack slot are both storing
3411 * spilled registers, check that stored pointers types
9c399760
AS
3412 * are the same as well.
3413 * Ex: explored safe path could have stored
f1174f77 3414 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3415 * but current path has stored:
f1174f77 3416 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3417 * such verifier states are not equivalent.
3418 * return false to continue verification of this path
3419 */
f1174f77 3420 goto out_free;
9c399760
AS
3421 else
3422 continue;
f1bca824 3423 }
f1174f77
EC
3424 ret = true;
3425out_free:
3426 kfree(idmap);
3427 return ret;
f1bca824
AS
3428}
3429
8e9cd9ce
EC
3430/* A write screens off any subsequent reads; but write marks come from the
3431 * straight-line code between a state and its parent. When we arrive at a
3432 * jump target (in the first iteration of the propagate_liveness() loop),
3433 * we didn't arrive by the straight-line code, so read marks in state must
3434 * propagate to parent regardless of state's write marks.
3435 */
dc503a8a
EC
3436static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3437 struct bpf_verifier_state *parent)
3438{
63f45f84 3439 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3440 bool touched = false; /* any changes made? */
3441 int i;
3442
3443 if (!parent)
3444 return touched;
3445 /* Propagate read liveness of registers... */
3446 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3447 /* We don't need to worry about FP liveness because it's read-only */
3448 for (i = 0; i < BPF_REG_FP; i++) {
3449 if (parent->regs[i].live & REG_LIVE_READ)
3450 continue;
63f45f84
EC
3451 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3452 continue;
3453 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3454 parent->regs[i].live |= REG_LIVE_READ;
3455 touched = true;
3456 }
3457 }
3458 /* ... and stack slots */
3459 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3460 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3461 continue;
3462 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3463 continue;
3464 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3465 continue;
63f45f84
EC
3466 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3467 continue;
3468 if (state->spilled_regs[i].live & REG_LIVE_READ) {
1ab2de2b 3469 parent->spilled_regs[i].live |= REG_LIVE_READ;
dc503a8a
EC
3470 touched = true;
3471 }
3472 }
3473 return touched;
3474}
3475
8e9cd9ce
EC
3476/* "parent" is "a state from which we reach the current state", but initially
3477 * it is not the state->parent (i.e. "the state whose straight-line code leads
3478 * to the current state"), instead it is the state that happened to arrive at
3479 * a (prunable) equivalent of the current state. See comment above
3480 * do_propagate_liveness() for consequences of this.
3481 * This function is just a more efficient way of calling mark_reg_read() or
3482 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3483 * though it requires that parent != state->parent in the call arguments.
3484 */
dc503a8a
EC
3485static void propagate_liveness(const struct bpf_verifier_state *state,
3486 struct bpf_verifier_state *parent)
3487{
3488 while (do_propagate_liveness(state, parent)) {
3489 /* Something changed, so we need to feed those changes onward */
3490 state = parent;
3491 parent = state->parent;
3492 }
3493}
3494
58e2af8b 3495static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3496{
58e2af8b
JK
3497 struct bpf_verifier_state_list *new_sl;
3498 struct bpf_verifier_state_list *sl;
dc503a8a 3499 int i;
f1bca824
AS
3500
3501 sl = env->explored_states[insn_idx];
3502 if (!sl)
3503 /* this 'insn_idx' instruction wasn't marked, so we will not
3504 * be doing state search here
3505 */
3506 return 0;
3507
3508 while (sl != STATE_LIST_MARK) {
dc503a8a 3509 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3510 /* reached equivalent register/stack state,
dc503a8a
EC
3511 * prune the search.
3512 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3513 * If we have any write marks in env->cur_state, they
3514 * will prevent corresponding reads in the continuation
3515 * from reaching our parent (an explored_state). Our
3516 * own state will get the read marks recorded, but
3517 * they'll be immediately forgotten as we're pruning
3518 * this state and will pop a new one.
f1bca824 3519 */
dc503a8a 3520 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3521 return 1;
dc503a8a 3522 }
f1bca824
AS
3523 sl = sl->next;
3524 }
3525
3526 /* there were no equivalent states, remember current one.
3527 * technically the current state is not proven to be safe yet,
3528 * but it will either reach bpf_exit (which means it's safe) or
3529 * it will be rejected. Since there are no loops, we won't be
3530 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3531 */
58e2af8b 3532 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3533 if (!new_sl)
3534 return -ENOMEM;
3535
3536 /* add new state to the head of linked list */
3537 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3538 new_sl->next = env->explored_states[insn_idx];
3539 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3540 /* connect new state to parentage chain */
3541 env->cur_state.parent = &new_sl->state;
8e9cd9ce
EC
3542 /* clear write marks in current state: the writes we did are not writes
3543 * our child did, so they don't screen off its reads from us.
3544 * (There are no read marks in current state, because reads always mark
3545 * their parent and current state never has children yet. Only
3546 * explored_states can get read marks.)
3547 */
dc503a8a
EC
3548 for (i = 0; i < BPF_REG_FP; i++)
3549 env->cur_state.regs[i].live = REG_LIVE_NONE;
3550 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3551 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3552 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3553 return 0;
3554}
3555
13a27dfc
JK
3556static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3557 int insn_idx, int prev_insn_idx)
3558{
3559 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3560 return 0;
3561
3562 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3563}
3564
58e2af8b 3565static int do_check(struct bpf_verifier_env *env)
17a52670 3566{
58e2af8b 3567 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3568 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3569 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3570 int insn_cnt = env->prog->len;
3571 int insn_idx, prev_insn_idx = 0;
3572 int insn_processed = 0;
3573 bool do_print_state = false;
3574
3575 init_reg_state(regs);
dc503a8a 3576 state->parent = NULL;
17a52670
AS
3577 insn_idx = 0;
3578 for (;;) {
3579 struct bpf_insn *insn;
3580 u8 class;
3581 int err;
3582
3583 if (insn_idx >= insn_cnt) {
3584 verbose("invalid insn idx %d insn_cnt %d\n",
3585 insn_idx, insn_cnt);
3586 return -EFAULT;
3587 }
3588
3589 insn = &insns[insn_idx];
3590 class = BPF_CLASS(insn->code);
3591
07016151 3592 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3593 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3594 insn_processed);
3595 return -E2BIG;
3596 }
3597
f1bca824
AS
3598 err = is_state_visited(env, insn_idx);
3599 if (err < 0)
3600 return err;
3601 if (err == 1) {
3602 /* found equivalent state, can prune the search */
3603 if (log_level) {
3604 if (do_print_state)
3605 verbose("\nfrom %d to %d: safe\n",
3606 prev_insn_idx, insn_idx);
3607 else
3608 verbose("%d: safe\n", insn_idx);
3609 }
3610 goto process_bpf_exit;
3611 }
3612
3c2ce60b
DB
3613 if (need_resched())
3614 cond_resched();
3615
c5fc9692
DM
3616 if (log_level > 1 || (log_level && do_print_state)) {
3617 if (log_level > 1)
3618 verbose("%d:", insn_idx);
3619 else
3620 verbose("\nfrom %d to %d:",
3621 prev_insn_idx, insn_idx);
1a0dc1ac 3622 print_verifier_state(&env->cur_state);
17a52670
AS
3623 do_print_state = false;
3624 }
3625
3626 if (log_level) {
3627 verbose("%d: ", insn_idx);
0d0e5769 3628 print_bpf_insn(env, insn);
17a52670
AS
3629 }
3630
13a27dfc
JK
3631 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3632 if (err)
3633 return err;
3634
17a52670 3635 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3636 err = check_alu_op(env, insn);
17a52670
AS
3637 if (err)
3638 return err;
3639
3640 } else if (class == BPF_LDX) {
3df126f3 3641 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3642
3643 /* check for reserved fields is already done */
3644
17a52670 3645 /* check src operand */
dc503a8a 3646 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3647 if (err)
3648 return err;
3649
dc503a8a 3650 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3651 if (err)
3652 return err;
3653
725f9dcd
AS
3654 src_reg_type = regs[insn->src_reg].type;
3655
17a52670
AS
3656 /* check that memory (src_reg + off) is readable,
3657 * the state of dst_reg will be updated by this func
3658 */
31fd8581 3659 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3660 BPF_SIZE(insn->code), BPF_READ,
3661 insn->dst_reg);
3662 if (err)
3663 return err;
3664
3df126f3
JK
3665 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3666
3667 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3668 /* saw a valid insn
3669 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3670 * save type to validate intersecting paths
9bac3d6d 3671 */
3df126f3 3672 *prev_src_type = src_reg_type;
9bac3d6d 3673
3df126f3 3674 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3675 (src_reg_type == PTR_TO_CTX ||
3df126f3 3676 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3677 /* ABuser program is trying to use the same insn
3678 * dst_reg = *(u32*) (src_reg + off)
3679 * with different pointer types:
3680 * src_reg == ctx in one branch and
3681 * src_reg == stack|map in some other branch.
3682 * Reject it.
3683 */
3684 verbose("same insn cannot be used with different pointers\n");
3685 return -EINVAL;
3686 }
3687
17a52670 3688 } else if (class == BPF_STX) {
3df126f3 3689 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3690
17a52670 3691 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3692 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3693 if (err)
3694 return err;
3695 insn_idx++;
3696 continue;
3697 }
3698
17a52670 3699 /* check src1 operand */
dc503a8a 3700 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3701 if (err)
3702 return err;
3703 /* check src2 operand */
dc503a8a 3704 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3705 if (err)
3706 return err;
3707
d691f9e8
AS
3708 dst_reg_type = regs[insn->dst_reg].type;
3709
17a52670 3710 /* check that memory (dst_reg + off) is writeable */
31fd8581 3711 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3712 BPF_SIZE(insn->code), BPF_WRITE,
3713 insn->src_reg);
3714 if (err)
3715 return err;
3716
3df126f3
JK
3717 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3718
3719 if (*prev_dst_type == NOT_INIT) {
3720 *prev_dst_type = dst_reg_type;
3721 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3722 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3723 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3724 verbose("same insn cannot be used with different pointers\n");
3725 return -EINVAL;
3726 }
3727
17a52670
AS
3728 } else if (class == BPF_ST) {
3729 if (BPF_MODE(insn->code) != BPF_MEM ||
3730 insn->src_reg != BPF_REG_0) {
3731 verbose("BPF_ST uses reserved fields\n");
3732 return -EINVAL;
3733 }
3734 /* check src operand */
dc503a8a 3735 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3736 if (err)
3737 return err;
3738
3739 /* check that memory (dst_reg + off) is writeable */
31fd8581 3740 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3741 BPF_SIZE(insn->code), BPF_WRITE,
3742 -1);
3743 if (err)
3744 return err;
3745
3746 } else if (class == BPF_JMP) {
3747 u8 opcode = BPF_OP(insn->code);
3748
3749 if (opcode == BPF_CALL) {
3750 if (BPF_SRC(insn->code) != BPF_K ||
3751 insn->off != 0 ||
3752 insn->src_reg != BPF_REG_0 ||
3753 insn->dst_reg != BPF_REG_0) {
3754 verbose("BPF_CALL uses reserved fields\n");
3755 return -EINVAL;
3756 }
3757
81ed18ab 3758 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3759 if (err)
3760 return err;
3761
3762 } else if (opcode == BPF_JA) {
3763 if (BPF_SRC(insn->code) != BPF_K ||
3764 insn->imm != 0 ||
3765 insn->src_reg != BPF_REG_0 ||
3766 insn->dst_reg != BPF_REG_0) {
3767 verbose("BPF_JA uses reserved fields\n");
3768 return -EINVAL;
3769 }
3770
3771 insn_idx += insn->off + 1;
3772 continue;
3773
3774 } else if (opcode == BPF_EXIT) {
3775 if (BPF_SRC(insn->code) != BPF_K ||
3776 insn->imm != 0 ||
3777 insn->src_reg != BPF_REG_0 ||
3778 insn->dst_reg != BPF_REG_0) {
3779 verbose("BPF_EXIT uses reserved fields\n");
3780 return -EINVAL;
3781 }
3782
3783 /* eBPF calling convetion is such that R0 is used
3784 * to return the value from eBPF program.
3785 * Make sure that it's readable at this time
3786 * of bpf_exit, which means that program wrote
3787 * something into it earlier
3788 */
dc503a8a 3789 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3790 if (err)
3791 return err;
3792
1be7f75d
AS
3793 if (is_pointer_value(env, BPF_REG_0)) {
3794 verbose("R0 leaks addr as return value\n");
3795 return -EACCES;
3796 }
3797
f1bca824 3798process_bpf_exit:
17a52670
AS
3799 insn_idx = pop_stack(env, &prev_insn_idx);
3800 if (insn_idx < 0) {
3801 break;
3802 } else {
3803 do_print_state = true;
3804 continue;
3805 }
3806 } else {
3807 err = check_cond_jmp_op(env, insn, &insn_idx);
3808 if (err)
3809 return err;
3810 }
3811 } else if (class == BPF_LD) {
3812 u8 mode = BPF_MODE(insn->code);
3813
3814 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3815 err = check_ld_abs(env, insn);
3816 if (err)
3817 return err;
3818
17a52670
AS
3819 } else if (mode == BPF_IMM) {
3820 err = check_ld_imm(env, insn);
3821 if (err)
3822 return err;
3823
3824 insn_idx++;
3825 } else {
3826 verbose("invalid BPF_LD mode\n");
3827 return -EINVAL;
3828 }
3829 } else {
3830 verbose("unknown insn class %d\n", class);
3831 return -EINVAL;
3832 }
3833
3834 insn_idx++;
3835 }
3836
8726679a
AS
3837 verbose("processed %d insns, stack depth %d\n",
3838 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3839 return 0;
3840}
3841
56f668df
MKL
3842static int check_map_prealloc(struct bpf_map *map)
3843{
3844 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3845 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3846 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3847 !(map->map_flags & BPF_F_NO_PREALLOC);
3848}
3849
fdc15d38
AS
3850static int check_map_prog_compatibility(struct bpf_map *map,
3851 struct bpf_prog *prog)
3852
3853{
56f668df
MKL
3854 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3855 * preallocated hash maps, since doing memory allocation
3856 * in overflow_handler can crash depending on where nmi got
3857 * triggered.
3858 */
3859 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3860 if (!check_map_prealloc(map)) {
3861 verbose("perf_event programs can only use preallocated hash map\n");
3862 return -EINVAL;
3863 }
3864 if (map->inner_map_meta &&
3865 !check_map_prealloc(map->inner_map_meta)) {
3866 verbose("perf_event programs can only use preallocated inner hash map\n");
3867 return -EINVAL;
3868 }
fdc15d38
AS
3869 }
3870 return 0;
3871}
3872
0246e64d
AS
3873/* look for pseudo eBPF instructions that access map FDs and
3874 * replace them with actual map pointers
3875 */
58e2af8b 3876static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3877{
3878 struct bpf_insn *insn = env->prog->insnsi;
3879 int insn_cnt = env->prog->len;
fdc15d38 3880 int i, j, err;
0246e64d 3881
f1f7714e 3882 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3883 if (err)
3884 return err;
3885
0246e64d 3886 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3887 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3888 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3889 verbose("BPF_LDX uses reserved fields\n");
3890 return -EINVAL;
3891 }
3892
d691f9e8
AS
3893 if (BPF_CLASS(insn->code) == BPF_STX &&
3894 ((BPF_MODE(insn->code) != BPF_MEM &&
3895 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3896 verbose("BPF_STX uses reserved fields\n");
3897 return -EINVAL;
3898 }
3899
0246e64d
AS
3900 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3901 struct bpf_map *map;
3902 struct fd f;
3903
3904 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3905 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3906 insn[1].off != 0) {
3907 verbose("invalid bpf_ld_imm64 insn\n");
3908 return -EINVAL;
3909 }
3910
3911 if (insn->src_reg == 0)
3912 /* valid generic load 64-bit imm */
3913 goto next_insn;
3914
3915 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3916 verbose("unrecognized bpf_ld_imm64 insn\n");
3917 return -EINVAL;
3918 }
3919
3920 f = fdget(insn->imm);
c2101297 3921 map = __bpf_map_get(f);
0246e64d
AS
3922 if (IS_ERR(map)) {
3923 verbose("fd %d is not pointing to valid bpf_map\n",
3924 insn->imm);
0246e64d
AS
3925 return PTR_ERR(map);
3926 }
3927
fdc15d38
AS
3928 err = check_map_prog_compatibility(map, env->prog);
3929 if (err) {
3930 fdput(f);
3931 return err;
3932 }
3933
0246e64d
AS
3934 /* store map pointer inside BPF_LD_IMM64 instruction */
3935 insn[0].imm = (u32) (unsigned long) map;
3936 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3937
3938 /* check whether we recorded this map already */
3939 for (j = 0; j < env->used_map_cnt; j++)
3940 if (env->used_maps[j] == map) {
3941 fdput(f);
3942 goto next_insn;
3943 }
3944
3945 if (env->used_map_cnt >= MAX_USED_MAPS) {
3946 fdput(f);
3947 return -E2BIG;
3948 }
3949
0246e64d
AS
3950 /* hold the map. If the program is rejected by verifier,
3951 * the map will be released by release_maps() or it
3952 * will be used by the valid program until it's unloaded
3953 * and all maps are released in free_bpf_prog_info()
3954 */
92117d84
AS
3955 map = bpf_map_inc(map, false);
3956 if (IS_ERR(map)) {
3957 fdput(f);
3958 return PTR_ERR(map);
3959 }
3960 env->used_maps[env->used_map_cnt++] = map;
3961
0246e64d
AS
3962 fdput(f);
3963next_insn:
3964 insn++;
3965 i++;
3966 }
3967 }
3968
3969 /* now all pseudo BPF_LD_IMM64 instructions load valid
3970 * 'struct bpf_map *' into a register instead of user map_fd.
3971 * These pointers will be used later by verifier to validate map access.
3972 */
3973 return 0;
3974}
3975
3976/* drop refcnt of maps used by the rejected program */
58e2af8b 3977static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3978{
3979 int i;
3980
3981 for (i = 0; i < env->used_map_cnt; i++)
3982 bpf_map_put(env->used_maps[i]);
3983}
3984
3985/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3986static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3987{
3988 struct bpf_insn *insn = env->prog->insnsi;
3989 int insn_cnt = env->prog->len;
3990 int i;
3991
3992 for (i = 0; i < insn_cnt; i++, insn++)
3993 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3994 insn->src_reg = 0;
3995}
3996
8041902d
AS
3997/* single env->prog->insni[off] instruction was replaced with the range
3998 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3999 * [0, off) and [off, end) to new locations, so the patched range stays zero
4000 */
4001static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4002 u32 off, u32 cnt)
4003{
4004 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4005
4006 if (cnt == 1)
4007 return 0;
4008 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4009 if (!new_data)
4010 return -ENOMEM;
4011 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4012 memcpy(new_data + off + cnt - 1, old_data + off,
4013 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4014 env->insn_aux_data = new_data;
4015 vfree(old_data);
4016 return 0;
4017}
4018
4019static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4020 const struct bpf_insn *patch, u32 len)
4021{
4022 struct bpf_prog *new_prog;
4023
4024 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4025 if (!new_prog)
4026 return NULL;
4027 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4028 return NULL;
4029 return new_prog;
4030}
4031
9bac3d6d
AS
4032/* convert load instructions that access fields of 'struct __sk_buff'
4033 * into sequence of instructions that access fields of 'struct sk_buff'
4034 */
58e2af8b 4035static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4036{
36bbef52 4037 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 4038 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4039 const int insn_cnt = env->prog->len;
36bbef52 4040 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4041 struct bpf_prog *new_prog;
d691f9e8 4042 enum bpf_access_type type;
f96da094
DB
4043 bool is_narrower_load;
4044 u32 target_size;
9bac3d6d 4045
36bbef52
DB
4046 if (ops->gen_prologue) {
4047 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4048 env->prog);
4049 if (cnt >= ARRAY_SIZE(insn_buf)) {
4050 verbose("bpf verifier is misconfigured\n");
4051 return -EINVAL;
4052 } else if (cnt) {
8041902d 4053 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4054 if (!new_prog)
4055 return -ENOMEM;
8041902d 4056
36bbef52 4057 env->prog = new_prog;
3df126f3 4058 delta += cnt - 1;
36bbef52
DB
4059 }
4060 }
4061
4062 if (!ops->convert_ctx_access)
9bac3d6d
AS
4063 return 0;
4064
3df126f3 4065 insn = env->prog->insnsi + delta;
36bbef52 4066
9bac3d6d 4067 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4068 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4069 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4070 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4071 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4072 type = BPF_READ;
62c7989b
DB
4073 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4074 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4075 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4076 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4077 type = BPF_WRITE;
4078 else
9bac3d6d
AS
4079 continue;
4080
8041902d 4081 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4082 continue;
9bac3d6d 4083
31fd8581 4084 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4085 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4086
4087 /* If the read access is a narrower load of the field,
4088 * convert to a 4/8-byte load, to minimum program type specific
4089 * convert_ctx_access changes. If conversion is successful,
4090 * we will apply proper mask to the result.
4091 */
f96da094 4092 is_narrower_load = size < ctx_field_size;
31fd8581 4093 if (is_narrower_load) {
f96da094
DB
4094 u32 off = insn->off;
4095 u8 size_code;
4096
4097 if (type == BPF_WRITE) {
4098 verbose("bpf verifier narrow ctx access misconfigured\n");
4099 return -EINVAL;
4100 }
31fd8581 4101
f96da094 4102 size_code = BPF_H;
31fd8581
YS
4103 if (ctx_field_size == 4)
4104 size_code = BPF_W;
4105 else if (ctx_field_size == 8)
4106 size_code = BPF_DW;
f96da094 4107
31fd8581
YS
4108 insn->off = off & ~(ctx_field_size - 1);
4109 insn->code = BPF_LDX | BPF_MEM | size_code;
4110 }
f96da094
DB
4111
4112 target_size = 0;
4113 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4114 &target_size);
4115 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4116 (ctx_field_size && !target_size)) {
9bac3d6d
AS
4117 verbose("bpf verifier is misconfigured\n");
4118 return -EINVAL;
4119 }
f96da094
DB
4120
4121 if (is_narrower_load && size < target_size) {
31fd8581
YS
4122 if (ctx_field_size <= 4)
4123 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4124 (1 << size * 8) - 1);
31fd8581
YS
4125 else
4126 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4127 (1 << size * 8) - 1);
31fd8581 4128 }
9bac3d6d 4129
8041902d 4130 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4131 if (!new_prog)
4132 return -ENOMEM;
4133
3df126f3 4134 delta += cnt - 1;
9bac3d6d
AS
4135
4136 /* keep walking new program and skip insns we just inserted */
4137 env->prog = new_prog;
3df126f3 4138 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4139 }
4140
4141 return 0;
4142}
4143
79741b3b 4144/* fixup insn->imm field of bpf_call instructions
81ed18ab 4145 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4146 *
4147 * this function is called after eBPF program passed verification
4148 */
79741b3b 4149static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4150{
79741b3b
AS
4151 struct bpf_prog *prog = env->prog;
4152 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4153 const struct bpf_func_proto *fn;
79741b3b 4154 const int insn_cnt = prog->len;
81ed18ab
AS
4155 struct bpf_insn insn_buf[16];
4156 struct bpf_prog *new_prog;
4157 struct bpf_map *map_ptr;
4158 int i, cnt, delta = 0;
e245c5c6 4159
79741b3b
AS
4160 for (i = 0; i < insn_cnt; i++, insn++) {
4161 if (insn->code != (BPF_JMP | BPF_CALL))
4162 continue;
e245c5c6 4163
79741b3b
AS
4164 if (insn->imm == BPF_FUNC_get_route_realm)
4165 prog->dst_needed = 1;
4166 if (insn->imm == BPF_FUNC_get_prandom_u32)
4167 bpf_user_rnd_init_once();
79741b3b 4168 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4169 /* If we tail call into other programs, we
4170 * cannot make any assumptions since they can
4171 * be replaced dynamically during runtime in
4172 * the program array.
4173 */
4174 prog->cb_access = 1;
80a58d02 4175 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4176
79741b3b
AS
4177 /* mark bpf_tail_call as different opcode to avoid
4178 * conditional branch in the interpeter for every normal
4179 * call and to prevent accidental JITing by JIT compiler
4180 * that doesn't support bpf_tail_call yet
e245c5c6 4181 */
79741b3b 4182 insn->imm = 0;
71189fa9 4183 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4184 continue;
4185 }
e245c5c6 4186
89c63074
DB
4187 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4188 * handlers are currently limited to 64 bit only.
4189 */
4190 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4191 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4192 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4193 if (map_ptr == BPF_MAP_PTR_POISON ||
4194 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4195 goto patch_call_imm;
4196
4197 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4198 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4199 verbose("bpf verifier is misconfigured\n");
4200 return -EINVAL;
4201 }
4202
4203 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4204 cnt);
4205 if (!new_prog)
4206 return -ENOMEM;
4207
4208 delta += cnt - 1;
4209
4210 /* keep walking new program and skip insns we just inserted */
4211 env->prog = prog = new_prog;
4212 insn = new_prog->insnsi + i + delta;
4213 continue;
4214 }
4215
109980b8 4216 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4217 /* Note, we cannot use prog directly as imm as subsequent
4218 * rewrites would still change the prog pointer. The only
4219 * stable address we can use is aux, which also works with
4220 * prog clones during blinding.
4221 */
4222 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4223 struct bpf_insn r4_ld[] = {
4224 BPF_LD_IMM64(BPF_REG_4, addr),
4225 *insn,
4226 };
4227 cnt = ARRAY_SIZE(r4_ld);
4228
4229 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4230 if (!new_prog)
4231 return -ENOMEM;
4232
4233 delta += cnt - 1;
4234 env->prog = prog = new_prog;
4235 insn = new_prog->insnsi + i + delta;
4236 }
81ed18ab 4237patch_call_imm:
79741b3b
AS
4238 fn = prog->aux->ops->get_func_proto(insn->imm);
4239 /* all functions that have prototype and verifier allowed
4240 * programs to call them, must be real in-kernel functions
4241 */
4242 if (!fn->func) {
4243 verbose("kernel subsystem misconfigured func %s#%d\n",
4244 func_id_name(insn->imm), insn->imm);
4245 return -EFAULT;
e245c5c6 4246 }
79741b3b 4247 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4248 }
e245c5c6 4249
79741b3b
AS
4250 return 0;
4251}
e245c5c6 4252
58e2af8b 4253static void free_states(struct bpf_verifier_env *env)
f1bca824 4254{
58e2af8b 4255 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4256 int i;
4257
4258 if (!env->explored_states)
4259 return;
4260
4261 for (i = 0; i < env->prog->len; i++) {
4262 sl = env->explored_states[i];
4263
4264 if (sl)
4265 while (sl != STATE_LIST_MARK) {
4266 sln = sl->next;
4267 kfree(sl);
4268 sl = sln;
4269 }
4270 }
4271
4272 kfree(env->explored_states);
4273}
4274
9bac3d6d 4275int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4276{
cbd35700 4277 char __user *log_ubuf = NULL;
58e2af8b 4278 struct bpf_verifier_env *env;
51580e79
AS
4279 int ret = -EINVAL;
4280
58e2af8b 4281 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4282 * allocate/free it every time bpf_check() is called
4283 */
58e2af8b 4284 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4285 if (!env)
4286 return -ENOMEM;
4287
3df126f3
JK
4288 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4289 (*prog)->len);
4290 ret = -ENOMEM;
4291 if (!env->insn_aux_data)
4292 goto err_free_env;
9bac3d6d 4293 env->prog = *prog;
0246e64d 4294
cbd35700
AS
4295 /* grab the mutex to protect few globals used by verifier */
4296 mutex_lock(&bpf_verifier_lock);
4297
4298 if (attr->log_level || attr->log_buf || attr->log_size) {
4299 /* user requested verbose verifier output
4300 * and supplied buffer to store the verification trace
4301 */
4302 log_level = attr->log_level;
4303 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4304 log_size = attr->log_size;
4305 log_len = 0;
4306
4307 ret = -EINVAL;
4308 /* log_* values have to be sane */
4309 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4310 log_level == 0 || log_ubuf == NULL)
3df126f3 4311 goto err_unlock;
cbd35700
AS
4312
4313 ret = -ENOMEM;
4314 log_buf = vmalloc(log_size);
4315 if (!log_buf)
3df126f3 4316 goto err_unlock;
cbd35700
AS
4317 } else {
4318 log_level = 0;
4319 }
1ad2f583
DB
4320
4321 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4322 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4323 env->strict_alignment = true;
cbd35700 4324
0246e64d
AS
4325 ret = replace_map_fd_with_map_ptr(env);
4326 if (ret < 0)
4327 goto skip_full_check;
4328
9bac3d6d 4329 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4330 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4331 GFP_USER);
4332 ret = -ENOMEM;
4333 if (!env->explored_states)
4334 goto skip_full_check;
4335
475fb78f
AS
4336 ret = check_cfg(env);
4337 if (ret < 0)
4338 goto skip_full_check;
4339
1be7f75d
AS
4340 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4341
17a52670 4342 ret = do_check(env);
cbd35700 4343
0246e64d 4344skip_full_check:
17a52670 4345 while (pop_stack(env, NULL) >= 0);
f1bca824 4346 free_states(env);
0246e64d 4347
9bac3d6d
AS
4348 if (ret == 0)
4349 /* program is valid, convert *(u32*)(ctx + off) accesses */
4350 ret = convert_ctx_accesses(env);
4351
e245c5c6 4352 if (ret == 0)
79741b3b 4353 ret = fixup_bpf_calls(env);
e245c5c6 4354
cbd35700
AS
4355 if (log_level && log_len >= log_size - 1) {
4356 BUG_ON(log_len >= log_size);
4357 /* verifier log exceeded user supplied buffer */
4358 ret = -ENOSPC;
4359 /* fall through to return what was recorded */
4360 }
4361
4362 /* copy verifier log back to user space including trailing zero */
4363 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4364 ret = -EFAULT;
4365 goto free_log_buf;
4366 }
4367
0246e64d
AS
4368 if (ret == 0 && env->used_map_cnt) {
4369 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4370 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4371 sizeof(env->used_maps[0]),
4372 GFP_KERNEL);
0246e64d 4373
9bac3d6d 4374 if (!env->prog->aux->used_maps) {
0246e64d
AS
4375 ret = -ENOMEM;
4376 goto free_log_buf;
4377 }
4378
9bac3d6d 4379 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4380 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4381 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4382
4383 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4384 * bpf_ld_imm64 instructions
4385 */
4386 convert_pseudo_ld_imm64(env);
4387 }
cbd35700
AS
4388
4389free_log_buf:
4390 if (log_level)
4391 vfree(log_buf);
9bac3d6d 4392 if (!env->prog->aux->used_maps)
0246e64d
AS
4393 /* if we didn't copy map pointers into bpf_prog_info, release
4394 * them now. Otherwise free_bpf_prog_info() will release them.
4395 */
4396 release_maps(env);
9bac3d6d 4397 *prog = env->prog;
3df126f3 4398err_unlock:
cbd35700 4399 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4400 vfree(env->insn_aux_data);
4401err_free_env:
4402 kfree(env);
51580e79
AS
4403 return ret;
4404}
13a27dfc
JK
4405
4406int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4407 void *priv)
4408{
4409 struct bpf_verifier_env *env;
4410 int ret;
4411
4412 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4413 if (!env)
4414 return -ENOMEM;
4415
4416 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4417 prog->len);
4418 ret = -ENOMEM;
4419 if (!env->insn_aux_data)
4420 goto err_free_env;
4421 env->prog = prog;
4422 env->analyzer_ops = ops;
4423 env->analyzer_priv = priv;
4424
4425 /* grab the mutex to protect few globals used by verifier */
4426 mutex_lock(&bpf_verifier_lock);
4427
4428 log_level = 0;
1ad2f583 4429
e07b98d9 4430 env->strict_alignment = false;
1ad2f583
DB
4431 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4432 env->strict_alignment = true;
13a27dfc
JK
4433
4434 env->explored_states = kcalloc(env->prog->len,
4435 sizeof(struct bpf_verifier_state_list *),
4436 GFP_KERNEL);
4437 ret = -ENOMEM;
4438 if (!env->explored_states)
4439 goto skip_full_check;
4440
4441 ret = check_cfg(env);
4442 if (ret < 0)
4443 goto skip_full_check;
4444
4445 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4446
4447 ret = do_check(env);
4448
4449skip_full_check:
4450 while (pop_stack(env, NULL) >= 0);
4451 free_states(env);
4452
4453 mutex_unlock(&bpf_verifier_lock);
4454 vfree(env->insn_aux_data);
4455err_free_env:
4456 kfree(env);
4457 return ret;
4458}
4459EXPORT_SYMBOL_GPL(bpf_analyzer);