]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
sctp: do not mark sk dumped when inet_sctp_diag_fill returns err
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
8e17c1b1 143#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
f1174f77 183 [SCALAR_VALUE] = "inv",
17a52670
AS
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 188 [PTR_TO_STACK] = "fp",
969bf05e
AS
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
191};
192
ebb676da
TG
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196};
197#undef __BPF_FUNC_STR_FN
198
199static const char *func_id_name(int id)
200{
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207}
208
58e2af8b 209static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 210{
58e2af8b 211 struct bpf_reg_state *reg;
17a52670
AS
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
216 reg = &state->regs[i];
217 t = reg->type;
17a52670
AS
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
7d1238f2
EC
237 if (tnum_is_const(reg->var_off)) {
238 /* Typically an immediate SCALAR_VALUE, but
239 * could be a pointer whose offset is too big
240 * for reg->off
241 */
242 verbose(",imm=%llx", reg->var_off.value);
243 } else {
244 if (reg->smin_value != reg->umin_value &&
245 reg->smin_value != S64_MIN)
246 verbose(",smin_value=%lld",
247 (long long)reg->smin_value);
248 if (reg->smax_value != reg->umax_value &&
249 reg->smax_value != S64_MAX)
250 verbose(",smax_value=%lld",
251 (long long)reg->smax_value);
252 if (reg->umin_value != 0)
253 verbose(",umin_value=%llu",
254 (unsigned long long)reg->umin_value);
255 if (reg->umax_value != U64_MAX)
256 verbose(",umax_value=%llu",
257 (unsigned long long)reg->umax_value);
258 if (!tnum_is_unknown(reg->var_off)) {
259 char tn_buf[48];
f1174f77 260
7d1238f2
EC
261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 verbose(",var_off=%s", tn_buf);
263 }
f1174f77
EC
264 }
265 verbose(")");
266 }
17a52670 267 }
9c399760 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 269 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
272 }
273 verbose("\n");
274}
275
cbd35700
AS
276static const char *const bpf_class_string[] = {
277 [BPF_LD] = "ld",
278 [BPF_LDX] = "ldx",
279 [BPF_ST] = "st",
280 [BPF_STX] = "stx",
281 [BPF_ALU] = "alu",
282 [BPF_JMP] = "jmp",
283 [BPF_RET] = "BUG",
284 [BPF_ALU64] = "alu64",
285};
286
687f0715 287static const char *const bpf_alu_string[16] = {
cbd35700
AS
288 [BPF_ADD >> 4] = "+=",
289 [BPF_SUB >> 4] = "-=",
290 [BPF_MUL >> 4] = "*=",
291 [BPF_DIV >> 4] = "/=",
292 [BPF_OR >> 4] = "|=",
293 [BPF_AND >> 4] = "&=",
294 [BPF_LSH >> 4] = "<<=",
295 [BPF_RSH >> 4] = ">>=",
296 [BPF_NEG >> 4] = "neg",
297 [BPF_MOD >> 4] = "%=",
298 [BPF_XOR >> 4] = "^=",
299 [BPF_MOV >> 4] = "=",
300 [BPF_ARSH >> 4] = "s>>=",
301 [BPF_END >> 4] = "endian",
302};
303
304static const char *const bpf_ldst_string[] = {
305 [BPF_W >> 3] = "u32",
306 [BPF_H >> 3] = "u16",
307 [BPF_B >> 3] = "u8",
308 [BPF_DW >> 3] = "u64",
309};
310
687f0715 311static const char *const bpf_jmp_string[16] = {
cbd35700
AS
312 [BPF_JA >> 4] = "jmp",
313 [BPF_JEQ >> 4] = "==",
314 [BPF_JGT >> 4] = ">",
b4e432f1 315 [BPF_JLT >> 4] = "<",
cbd35700 316 [BPF_JGE >> 4] = ">=",
b4e432f1 317 [BPF_JLE >> 4] = "<=",
cbd35700
AS
318 [BPF_JSET >> 4] = "&",
319 [BPF_JNE >> 4] = "!=",
320 [BPF_JSGT >> 4] = "s>",
b4e432f1 321 [BPF_JSLT >> 4] = "s<",
cbd35700 322 [BPF_JSGE >> 4] = "s>=",
b4e432f1 323 [BPF_JSLE >> 4] = "s<=",
cbd35700
AS
324 [BPF_CALL >> 4] = "call",
325 [BPF_EXIT >> 4] = "exit",
326};
327
0d0e5769
DB
328static void print_bpf_insn(const struct bpf_verifier_env *env,
329 const struct bpf_insn *insn)
cbd35700
AS
330{
331 u8 class = BPF_CLASS(insn->code);
332
333 if (class == BPF_ALU || class == BPF_ALU64) {
334 if (BPF_SRC(insn->code) == BPF_X)
335 verbose("(%02x) %sr%d %s %sr%d\n",
336 insn->code, class == BPF_ALU ? "(u32) " : "",
337 insn->dst_reg,
338 bpf_alu_string[BPF_OP(insn->code) >> 4],
339 class == BPF_ALU ? "(u32) " : "",
340 insn->src_reg);
341 else
342 verbose("(%02x) %sr%d %s %s%d\n",
343 insn->code, class == BPF_ALU ? "(u32) " : "",
344 insn->dst_reg,
345 bpf_alu_string[BPF_OP(insn->code) >> 4],
346 class == BPF_ALU ? "(u32) " : "",
347 insn->imm);
348 } else if (class == BPF_STX) {
349 if (BPF_MODE(insn->code) == BPF_MEM)
350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 insn->code,
352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 insn->dst_reg,
354 insn->off, insn->src_reg);
355 else if (BPF_MODE(insn->code) == BPF_XADD)
356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->dst_reg, insn->off,
360 insn->src_reg);
361 else
362 verbose("BUG_%02x\n", insn->code);
363 } else if (class == BPF_ST) {
364 if (BPF_MODE(insn->code) != BPF_MEM) {
365 verbose("BUG_st_%02x\n", insn->code);
366 return;
367 }
368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->dst_reg,
372 insn->off, insn->imm);
373 } else if (class == BPF_LDX) {
374 if (BPF_MODE(insn->code) != BPF_MEM) {
375 verbose("BUG_ldx_%02x\n", insn->code);
376 return;
377 }
378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 insn->code, insn->dst_reg,
380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 insn->src_reg, insn->off);
382 } else if (class == BPF_LD) {
383 if (BPF_MODE(insn->code) == BPF_ABS) {
384 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 insn->code,
386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 insn->imm);
388 } else if (BPF_MODE(insn->code) == BPF_IND) {
389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 insn->code,
391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 insn->src_reg, insn->imm);
0d0e5769
DB
393 } else if (BPF_MODE(insn->code) == BPF_IMM &&
394 BPF_SIZE(insn->code) == BPF_DW) {
395 /* At this point, we already made sure that the second
396 * part of the ldimm64 insn is accessible.
397 */
398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400
401 if (map_ptr && !env->allow_ptr_leaks)
402 imm = 0;
403
404 verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
406 } else {
407 verbose("BUG_ld_%02x\n", insn->code);
408 return;
409 }
410 } else if (class == BPF_JMP) {
411 u8 opcode = BPF_OP(insn->code);
412
413 if (opcode == BPF_CALL) {
ebb676da
TG
414 verbose("(%02x) call %s#%d\n", insn->code,
415 func_id_name(insn->imm), insn->imm);
cbd35700
AS
416 } else if (insn->code == (BPF_JMP | BPF_JA)) {
417 verbose("(%02x) goto pc%+d\n",
418 insn->code, insn->off);
419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 verbose("(%02x) exit\n", insn->code);
421 } else if (BPF_SRC(insn->code) == BPF_X) {
422 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 insn->code, insn->dst_reg,
424 bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 insn->src_reg, insn->off);
426 } else {
427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 insn->code, insn->dst_reg,
429 bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 insn->imm, insn->off);
431 }
432 } else {
433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 }
435}
436
58e2af8b 437static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 438{
58e2af8b 439 struct bpf_verifier_stack_elem *elem;
17a52670
AS
440 int insn_idx;
441
442 if (env->head == NULL)
443 return -1;
444
445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 insn_idx = env->head->insn_idx;
447 if (prev_insn_idx)
448 *prev_insn_idx = env->head->prev_insn_idx;
449 elem = env->head->next;
450 kfree(env->head);
451 env->head = elem;
452 env->stack_size--;
453 return insn_idx;
454}
455
58e2af8b
JK
456static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 int insn_idx, int prev_insn_idx)
17a52670 458{
58e2af8b 459 struct bpf_verifier_stack_elem *elem;
17a52670 460
58e2af8b 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
462 if (!elem)
463 goto err;
464
465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 elem->insn_idx = insn_idx;
467 elem->prev_insn_idx = prev_insn_idx;
468 elem->next = env->head;
469 env->head = elem;
470 env->stack_size++;
07016151 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
472 verbose("BPF program is too complex\n");
473 goto err;
474 }
475 return &elem->st;
476err:
477 /* pop all elements and return */
478 while (pop_stack(env, NULL) >= 0);
479 return NULL;
480}
481
482#define CALLER_SAVED_REGS 6
483static const int caller_saved[CALLER_SAVED_REGS] = {
484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485};
486
f1174f77
EC
487static void __mark_reg_not_init(struct bpf_reg_state *reg);
488
b03c9f9f
EC
489/* Mark the unknown part of a register (variable offset or scalar value) as
490 * known to have the value @imm.
491 */
492static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493{
494 reg->id = 0;
495 reg->var_off = tnum_const(imm);
496 reg->smin_value = (s64)imm;
497 reg->smax_value = (s64)imm;
498 reg->umin_value = imm;
499 reg->umax_value = imm;
500}
501
f1174f77
EC
502/* Mark the 'variable offset' part of a register as zero. This should be
503 * used only on registers holding a pointer type.
504 */
505static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 506{
b03c9f9f 507 __mark_reg_known(reg, 0);
f1174f77 508}
a9789ef9 509
f1174f77
EC
510static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511{
512 if (WARN_ON(regno >= MAX_BPF_REG)) {
513 verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 /* Something bad happened, let's kill all regs */
515 for (regno = 0; regno < MAX_BPF_REG; regno++)
516 __mark_reg_not_init(regs + regno);
517 return;
518 }
519 __mark_reg_known_zero(regs + regno);
520}
521
b03c9f9f
EC
522/* Attempts to improve min/max values based on var_off information */
523static void __update_reg_bounds(struct bpf_reg_state *reg)
524{
525 /* min signed is max(sign bit) | min(other bits) */
526 reg->smin_value = max_t(s64, reg->smin_value,
527 reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 /* max signed is min(sign bit) | max(other bits) */
529 reg->smax_value = min_t(s64, reg->smax_value,
530 reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 reg->umax_value = min(reg->umax_value,
533 reg->var_off.value | reg->var_off.mask);
534}
535
536/* Uses signed min/max values to inform unsigned, and vice-versa */
537static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538{
539 /* Learn sign from signed bounds.
540 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 * are the same, so combine. This works even in the negative case, e.g.
542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 */
544 if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 reg->umin_value);
547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 reg->umax_value);
549 return;
550 }
551 /* Learn sign from unsigned bounds. Signed bounds cross the sign
552 * boundary, so we must be careful.
553 */
554 if ((s64)reg->umax_value >= 0) {
555 /* Positive. We can't learn anything from the smin, but smax
556 * is positive, hence safe.
557 */
558 reg->smin_value = reg->umin_value;
559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 reg->umax_value);
561 } else if ((s64)reg->umin_value < 0) {
562 /* Negative. We can't learn anything from the smax, but smin
563 * is negative, hence safe.
564 */
565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 reg->umin_value);
567 reg->smax_value = reg->umax_value;
568 }
569}
570
571/* Attempts to improve var_off based on unsigned min/max information */
572static void __reg_bound_offset(struct bpf_reg_state *reg)
573{
574 reg->var_off = tnum_intersect(reg->var_off,
575 tnum_range(reg->umin_value,
576 reg->umax_value));
577}
578
579/* Reset the min/max bounds of a register */
580static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581{
582 reg->smin_value = S64_MIN;
583 reg->smax_value = S64_MAX;
584 reg->umin_value = 0;
585 reg->umax_value = U64_MAX;
586}
587
f1174f77
EC
588/* Mark a register as having a completely unknown (scalar) value. */
589static void __mark_reg_unknown(struct bpf_reg_state *reg)
590{
591 reg->type = SCALAR_VALUE;
592 reg->id = 0;
593 reg->off = 0;
594 reg->var_off = tnum_unknown;
b03c9f9f 595 __mark_reg_unbounded(reg);
f1174f77
EC
596}
597
598static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599{
600 if (WARN_ON(regno >= MAX_BPF_REG)) {
601 verbose("mark_reg_unknown(regs, %u)\n", regno);
602 /* Something bad happened, let's kill all regs */
603 for (regno = 0; regno < MAX_BPF_REG; regno++)
604 __mark_reg_not_init(regs + regno);
605 return;
606 }
607 __mark_reg_unknown(regs + regno);
608}
609
610static void __mark_reg_not_init(struct bpf_reg_state *reg)
611{
612 __mark_reg_unknown(reg);
613 reg->type = NOT_INIT;
614}
615
616static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617{
618 if (WARN_ON(regno >= MAX_BPF_REG)) {
619 verbose("mark_reg_not_init(regs, %u)\n", regno);
620 /* Something bad happened, let's kill all regs */
621 for (regno = 0; regno < MAX_BPF_REG; regno++)
622 __mark_reg_not_init(regs + regno);
623 return;
624 }
625 __mark_reg_not_init(regs + regno);
a9789ef9
DB
626}
627
58e2af8b 628static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
629{
630 int i;
631
dc503a8a 632 for (i = 0; i < MAX_BPF_REG; i++) {
a9789ef9 633 mark_reg_not_init(regs, i);
dc503a8a
EC
634 regs[i].live = REG_LIVE_NONE;
635 }
17a52670
AS
636
637 /* frame pointer */
f1174f77
EC
638 regs[BPF_REG_FP].type = PTR_TO_STACK;
639 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
640
641 /* 1st arg to a function */
642 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 643 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
644}
645
17a52670
AS
646enum reg_arg_type {
647 SRC_OP, /* register is used as source operand */
648 DST_OP, /* register is used as destination operand */
649 DST_OP_NO_MARK /* same as above, check only, don't mark */
650};
651
dc503a8a
EC
652static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653{
654 struct bpf_verifier_state *parent = state->parent;
655
656 while (parent) {
657 /* if read wasn't screened by an earlier write ... */
658 if (state->regs[regno].live & REG_LIVE_WRITTEN)
659 break;
660 /* ... then we depend on parent's value */
661 parent->regs[regno].live |= REG_LIVE_READ;
662 state = parent;
663 parent = state->parent;
664 }
665}
666
667static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
668 enum reg_arg_type t)
669{
dc503a8a
EC
670 struct bpf_reg_state *regs = env->cur_state.regs;
671
17a52670
AS
672 if (regno >= MAX_BPF_REG) {
673 verbose("R%d is invalid\n", regno);
674 return -EINVAL;
675 }
676
677 if (t == SRC_OP) {
678 /* check whether register used as source operand can be read */
679 if (regs[regno].type == NOT_INIT) {
680 verbose("R%d !read_ok\n", regno);
681 return -EACCES;
682 }
dc503a8a 683 mark_reg_read(&env->cur_state, regno);
17a52670
AS
684 } else {
685 /* check whether register used as dest operand can be written to */
686 if (regno == BPF_REG_FP) {
687 verbose("frame pointer is read only\n");
688 return -EACCES;
689 }
dc503a8a 690 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 691 if (t == DST_OP)
f1174f77 692 mark_reg_unknown(regs, regno);
17a52670
AS
693 }
694 return 0;
695}
696
1be7f75d
AS
697static bool is_spillable_regtype(enum bpf_reg_type type)
698{
699 switch (type) {
700 case PTR_TO_MAP_VALUE:
701 case PTR_TO_MAP_VALUE_OR_NULL:
702 case PTR_TO_STACK:
703 case PTR_TO_CTX:
969bf05e
AS
704 case PTR_TO_PACKET:
705 case PTR_TO_PACKET_END:
1be7f75d
AS
706 case CONST_PTR_TO_MAP:
707 return true;
708 default:
709 return false;
710 }
711}
712
17a52670
AS
713/* check_stack_read/write functions track spill/fill of registers,
714 * stack boundary and alignment are checked in check_mem_access()
715 */
58e2af8b
JK
716static int check_stack_write(struct bpf_verifier_state *state, int off,
717 int size, int value_regno)
17a52670 718{
dc503a8a 719 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
720 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
721 * so it's aligned access and [off, off + size) are within stack limits
722 */
17a52670
AS
723
724 if (value_regno >= 0 &&
1be7f75d 725 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
726
727 /* register containing pointer is being spilled into stack */
9c399760 728 if (size != BPF_REG_SIZE) {
17a52670
AS
729 verbose("invalid size of register spill\n");
730 return -EACCES;
731 }
732
17a52670 733 /* save register state */
dc503a8a
EC
734 state->spilled_regs[spi] = state->regs[value_regno];
735 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 736
9c399760
AS
737 for (i = 0; i < BPF_REG_SIZE; i++)
738 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
739 } else {
17a52670 740 /* regular write of data into stack */
dc503a8a 741 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
742
743 for (i = 0; i < size; i++)
744 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
745 }
746 return 0;
747}
748
dc503a8a
EC
749static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
750{
751 struct bpf_verifier_state *parent = state->parent;
752
753 while (parent) {
754 /* if read wasn't screened by an earlier write ... */
755 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
756 break;
757 /* ... then we depend on parent's value */
758 parent->spilled_regs[slot].live |= REG_LIVE_READ;
759 state = parent;
760 parent = state->parent;
761 }
762}
763
58e2af8b 764static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
765 int value_regno)
766{
9c399760 767 u8 *slot_type;
dc503a8a 768 int i, spi;
17a52670 769
9c399760 770 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 771
9c399760
AS
772 if (slot_type[0] == STACK_SPILL) {
773 if (size != BPF_REG_SIZE) {
17a52670
AS
774 verbose("invalid size of register spill\n");
775 return -EACCES;
776 }
9c399760
AS
777 for (i = 1; i < BPF_REG_SIZE; i++) {
778 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
779 verbose("corrupted spill memory\n");
780 return -EACCES;
781 }
782 }
783
dc503a8a
EC
784 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
785
786 if (value_regno >= 0) {
17a52670 787 /* restore register state from stack */
dc503a8a
EC
788 state->regs[value_regno] = state->spilled_regs[spi];
789 mark_stack_slot_read(state, spi);
790 }
17a52670
AS
791 return 0;
792 } else {
793 for (i = 0; i < size; i++) {
9c399760 794 if (slot_type[i] != STACK_MISC) {
17a52670
AS
795 verbose("invalid read from stack off %d+%d size %d\n",
796 off, i, size);
797 return -EACCES;
798 }
799 }
800 if (value_regno >= 0)
801 /* have read misc data from the stack */
f1174f77 802 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
803 return 0;
804 }
805}
806
807/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 808static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
809 int size)
810{
811 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
812
5722569b 813 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
814 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
815 map->value_size, off, size);
816 return -EACCES;
817 }
818 return 0;
819}
820
f1174f77
EC
821/* check read/write into a map element with possible variable offset */
822static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
823 int off, int size)
824{
825 struct bpf_verifier_state *state = &env->cur_state;
826 struct bpf_reg_state *reg = &state->regs[regno];
827 int err;
828
f1174f77
EC
829 /* We may have adjusted the register to this map value, so we
830 * need to try adding each of min_value and max_value to off
831 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
832 */
833 if (log_level)
834 print_verifier_state(state);
dbcfe5f7
GB
835 /* The minimum value is only important with signed
836 * comparisons where we can't assume the floor of a
837 * value is 0. If we are using signed variables for our
838 * index'es we need to make sure that whatever we use
839 * will have a set floor within our range.
840 */
b03c9f9f 841 if (reg->smin_value < 0) {
dbcfe5f7
GB
842 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
843 regno);
844 return -EACCES;
845 }
b03c9f9f 846 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 847 if (err) {
f1174f77 848 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
849 return err;
850 }
851
b03c9f9f
EC
852 /* If we haven't set a max value then we need to bail since we can't be
853 * sure we won't do bad things.
854 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 855 */
b03c9f9f 856 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
857 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
858 regno);
859 return -EACCES;
860 }
b03c9f9f 861 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
862 if (err)
863 verbose("R%d max value is outside of the array range\n", regno);
864 return err;
dbcfe5f7
GB
865}
866
969bf05e
AS
867#define MAX_PACKET_OFF 0xffff
868
58e2af8b 869static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
870 const struct bpf_call_arg_meta *meta,
871 enum bpf_access_type t)
4acf6c0b 872{
36bbef52 873 switch (env->prog->type) {
3a0af8fd
TG
874 case BPF_PROG_TYPE_LWT_IN:
875 case BPF_PROG_TYPE_LWT_OUT:
876 /* dst_input() and dst_output() can't write for now */
877 if (t == BPF_WRITE)
878 return false;
7e57fbb2 879 /* fallthrough */
36bbef52
DB
880 case BPF_PROG_TYPE_SCHED_CLS:
881 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 882 case BPF_PROG_TYPE_XDP:
3a0af8fd 883 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 884 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
885 if (meta)
886 return meta->pkt_access;
887
888 env->seen_direct_write = true;
4acf6c0b
BB
889 return true;
890 default:
891 return false;
892 }
893}
894
f1174f77
EC
895static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
896 int off, int size)
969bf05e 897{
58e2af8b
JK
898 struct bpf_reg_state *regs = env->cur_state.regs;
899 struct bpf_reg_state *reg = &regs[regno];
969bf05e 900
f1174f77 901 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
902 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77
EC
909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 int size)
911{
912 struct bpf_reg_state *regs = env->cur_state.regs;
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
f1174f77
EC
925 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 regno);
927 return -EACCES;
928 }
929 err = __check_packet_access(env, regno, off, size);
930 if (err) {
931 verbose("R%d offset is outside of the packet\n", regno);
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
13a27dfc
JK
945 /* for analyzer ctx accesses are already validated and converted */
946 if (env->analyzer_ops)
947 return 0;
948
17a52670 949 if (env->prog->aux->ops->is_valid_access &&
23994631 950 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
951 /* A non zero info.ctx_field_size indicates that this field is a
952 * candidate for later verifier transformation to load the whole
953 * field and then apply a mask when accessed with a narrower
954 * access than actual ctx access size. A zero info.ctx_field_size
955 * will only allow for whole field access and rejects any other
956 * type of narrower access.
31fd8581 957 */
f96da094 958 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 959 *reg_type = info.reg_type;
31fd8581 960
32bbe007
AS
961 /* remember the offset of last byte accessed in ctx */
962 if (env->prog->aux->max_ctx_offset < off + size)
963 env->prog->aux->max_ctx_offset = off + size;
17a52670 964 return 0;
32bbe007 965 }
17a52670
AS
966
967 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
968 return -EACCES;
969}
970
4cabc5b1
DB
971static bool __is_pointer_value(bool allow_ptr_leaks,
972 const struct bpf_reg_state *reg)
1be7f75d 973{
4cabc5b1 974 if (allow_ptr_leaks)
1be7f75d
AS
975 return false;
976
f1174f77 977 return reg->type != SCALAR_VALUE;
1be7f75d
AS
978}
979
4cabc5b1
DB
980static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
981{
982 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
983}
984
79adffcd 985static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 986 int off, int size, bool strict)
969bf05e 987{
f1174f77 988 struct tnum reg_off;
e07b98d9 989 int ip_align;
d1174416
DM
990
991 /* Byte size accesses are always allowed. */
992 if (!strict || size == 1)
993 return 0;
994
e4eda884
DM
995 /* For platforms that do not have a Kconfig enabling
996 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
997 * NET_IP_ALIGN is universally set to '2'. And on platforms
998 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
999 * to this code only in strict mode where we want to emulate
1000 * the NET_IP_ALIGN==2 checking. Therefore use an
1001 * unconditional IP align value of '2'.
e07b98d9 1002 */
e4eda884 1003 ip_align = 2;
f1174f77
EC
1004
1005 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1006 if (!tnum_is_aligned(reg_off, size)) {
1007 char tn_buf[48];
1008
1009 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1010 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1011 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1012 return -EACCES;
1013 }
79adffcd 1014
969bf05e
AS
1015 return 0;
1016}
1017
f1174f77
EC
1018static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1019 const char *pointer_desc,
1020 int off, int size, bool strict)
79adffcd 1021{
f1174f77
EC
1022 struct tnum reg_off;
1023
1024 /* Byte size accesses are always allowed. */
1025 if (!strict || size == 1)
1026 return 0;
1027
1028 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1029 if (!tnum_is_aligned(reg_off, size)) {
1030 char tn_buf[48];
1031
1032 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1033 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1034 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1035 return -EACCES;
1036 }
1037
969bf05e
AS
1038 return 0;
1039}
1040
e07b98d9
DM
1041static int check_ptr_alignment(struct bpf_verifier_env *env,
1042 const struct bpf_reg_state *reg,
79adffcd
DB
1043 int off, int size)
1044{
e07b98d9 1045 bool strict = env->strict_alignment;
f1174f77 1046 const char *pointer_desc = "";
d1174416 1047
79adffcd
DB
1048 switch (reg->type) {
1049 case PTR_TO_PACKET:
f1174f77 1050 /* special case, because of NET_IP_ALIGN */
d1174416 1051 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1052 case PTR_TO_MAP_VALUE:
1053 pointer_desc = "value ";
1054 break;
1055 case PTR_TO_CTX:
1056 pointer_desc = "context ";
1057 break;
1058 case PTR_TO_STACK:
1059 pointer_desc = "stack ";
1060 break;
79adffcd 1061 default:
f1174f77 1062 break;
79adffcd 1063 }
f1174f77 1064 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1065}
1066
17a52670
AS
1067/* check whether memory at (regno + off) is accessible for t = (read | write)
1068 * if t==write, value_regno is a register which value is stored into memory
1069 * if t==read, value_regno is a register which will receive the value from memory
1070 * if t==write && value_regno==-1, some unknown value is stored into memory
1071 * if t==read && value_regno==-1, don't care what we read from memory
1072 */
31fd8581 1073static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1074 int bpf_size, enum bpf_access_type t,
1075 int value_regno)
1076{
58e2af8b
JK
1077 struct bpf_verifier_state *state = &env->cur_state;
1078 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1079 int size, err = 0;
1080
1081 size = bpf_size_to_bytes(bpf_size);
1082 if (size < 0)
1083 return size;
1084
f1174f77 1085 /* alignment checks will add in reg->off themselves */
e07b98d9 1086 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1087 if (err)
1088 return err;
17a52670 1089
f1174f77
EC
1090 /* for access checks, reg->off is just part of off */
1091 off += reg->off;
1092
1093 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1094 if (t == BPF_WRITE && value_regno >= 0 &&
1095 is_pointer_value(env, value_regno)) {
1096 verbose("R%d leaks addr into map\n", value_regno);
1097 return -EACCES;
1098 }
48461135 1099
f1174f77 1100 err = check_map_access(env, regno, off, size);
17a52670 1101 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1102 mark_reg_unknown(state->regs, value_regno);
17a52670 1103
1a0dc1ac 1104 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1105 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1106
1be7f75d
AS
1107 if (t == BPF_WRITE && value_regno >= 0 &&
1108 is_pointer_value(env, value_regno)) {
1109 verbose("R%d leaks addr into ctx\n", value_regno);
1110 return -EACCES;
1111 }
f1174f77
EC
1112 /* ctx accesses must be at a fixed offset, so that we can
1113 * determine what type of data were returned.
1114 */
1115 if (!tnum_is_const(reg->var_off)) {
1116 char tn_buf[48];
1117
1118 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1119 verbose("variable ctx access var_off=%s off=%d size=%d",
1120 tn_buf, off, size);
1121 return -EACCES;
1122 }
1123 off += reg->var_off.value;
31fd8581 1124 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1125 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77
EC
1126 /* ctx access returns either a scalar, or a
1127 * PTR_TO_PACKET[_END]. In the latter case, we know
1128 * the offset is zero.
1129 */
1130 if (reg_type == SCALAR_VALUE)
1131 mark_reg_unknown(state->regs, value_regno);
1132 else
1133 mark_reg_known_zero(state->regs, value_regno);
1134 state->regs[value_regno].id = 0;
1135 state->regs[value_regno].off = 0;
1136 state->regs[value_regno].range = 0;
1955351d 1137 state->regs[value_regno].type = reg_type;
969bf05e 1138 }
17a52670 1139
f1174f77
EC
1140 } else if (reg->type == PTR_TO_STACK) {
1141 /* stack accesses must be at a fixed offset, so that we can
1142 * determine what type of data were returned.
1143 * See check_stack_read().
1144 */
1145 if (!tnum_is_const(reg->var_off)) {
1146 char tn_buf[48];
1147
1148 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1149 verbose("variable stack access var_off=%s off=%d size=%d",
1150 tn_buf, off, size);
1151 return -EACCES;
1152 }
1153 off += reg->var_off.value;
17a52670
AS
1154 if (off >= 0 || off < -MAX_BPF_STACK) {
1155 verbose("invalid stack off=%d size=%d\n", off, size);
1156 return -EACCES;
1157 }
8726679a
AS
1158
1159 if (env->prog->aux->stack_depth < -off)
1160 env->prog->aux->stack_depth = -off;
1161
1be7f75d
AS
1162 if (t == BPF_WRITE) {
1163 if (!env->allow_ptr_leaks &&
1164 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1165 size != BPF_REG_SIZE) {
1166 verbose("attempt to corrupt spilled pointer on stack\n");
1167 return -EACCES;
1168 }
17a52670 1169 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1170 } else {
17a52670 1171 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1172 }
f1174f77 1173 } else if (reg->type == PTR_TO_PACKET) {
3a0af8fd 1174 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1175 verbose("cannot write into packet\n");
1176 return -EACCES;
1177 }
4acf6c0b
BB
1178 if (t == BPF_WRITE && value_regno >= 0 &&
1179 is_pointer_value(env, value_regno)) {
1180 verbose("R%d leaks addr into packet\n", value_regno);
1181 return -EACCES;
1182 }
969bf05e
AS
1183 err = check_packet_access(env, regno, off, size);
1184 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1185 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1186 } else {
1187 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1188 regno, reg_type_str[reg->type]);
17a52670
AS
1189 return -EACCES;
1190 }
969bf05e 1191
f1174f77
EC
1192 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1193 state->regs[value_regno].type == SCALAR_VALUE) {
1194 /* b/h/w load zero-extends, mark upper bits as known 0 */
1195 state->regs[value_regno].var_off = tnum_cast(
1196 state->regs[value_regno].var_off, size);
b03c9f9f 1197 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1198 }
17a52670
AS
1199 return err;
1200}
1201
31fd8581 1202static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1203{
17a52670
AS
1204 int err;
1205
1206 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1207 insn->imm != 0) {
1208 verbose("BPF_XADD uses reserved fields\n");
1209 return -EINVAL;
1210 }
1211
1212 /* check src1 operand */
dc503a8a 1213 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1214 if (err)
1215 return err;
1216
1217 /* check src2 operand */
dc503a8a 1218 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1219 if (err)
1220 return err;
1221
6bdf6abc
DB
1222 if (is_pointer_value(env, insn->src_reg)) {
1223 verbose("R%d leaks addr into mem\n", insn->src_reg);
1224 return -EACCES;
1225 }
1226
17a52670 1227 /* check whether atomic_add can read the memory */
31fd8581 1228 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1229 BPF_SIZE(insn->code), BPF_READ, -1);
1230 if (err)
1231 return err;
1232
1233 /* check whether atomic_add can write into the same memory */
31fd8581 1234 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1235 BPF_SIZE(insn->code), BPF_WRITE, -1);
1236}
1237
f1174f77
EC
1238/* Does this register contain a constant zero? */
1239static bool register_is_null(struct bpf_reg_state reg)
1240{
1241 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1242}
1243
17a52670
AS
1244/* when register 'regno' is passed into function that will read 'access_size'
1245 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1246 * and all elements of stack are initialized.
1247 * Unlike most pointer bounds-checking functions, this one doesn't take an
1248 * 'off' argument, so it has to add in reg->off itself.
17a52670 1249 */
58e2af8b 1250static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1251 int access_size, bool zero_size_allowed,
1252 struct bpf_call_arg_meta *meta)
17a52670 1253{
58e2af8b
JK
1254 struct bpf_verifier_state *state = &env->cur_state;
1255 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1256 int off, i;
1257
8e2fe1d9 1258 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1259 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1260 if (zero_size_allowed && access_size == 0 &&
f1174f77 1261 register_is_null(regs[regno]))
8e2fe1d9
DB
1262 return 0;
1263
1264 verbose("R%d type=%s expected=%s\n", regno,
1265 reg_type_str[regs[regno].type],
1266 reg_type_str[PTR_TO_STACK]);
17a52670 1267 return -EACCES;
8e2fe1d9 1268 }
17a52670 1269
f1174f77
EC
1270 /* Only allow fixed-offset stack reads */
1271 if (!tnum_is_const(regs[regno].var_off)) {
1272 char tn_buf[48];
1273
1274 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1275 verbose("invalid variable stack read R%d var_off=%s\n",
1276 regno, tn_buf);
1277 }
1278 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1279 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1280 access_size <= 0) {
1281 verbose("invalid stack type R%d off=%d access_size=%d\n",
1282 regno, off, access_size);
1283 return -EACCES;
1284 }
1285
8726679a
AS
1286 if (env->prog->aux->stack_depth < -off)
1287 env->prog->aux->stack_depth = -off;
1288
435faee1
DB
1289 if (meta && meta->raw_mode) {
1290 meta->access_size = access_size;
1291 meta->regno = regno;
1292 return 0;
1293 }
1294
17a52670 1295 for (i = 0; i < access_size; i++) {
9c399760 1296 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1297 verbose("invalid indirect read from stack off %d+%d size %d\n",
1298 off, i, access_size);
1299 return -EACCES;
1300 }
1301 }
1302 return 0;
1303}
1304
06c1c049
GB
1305static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1306 int access_size, bool zero_size_allowed,
1307 struct bpf_call_arg_meta *meta)
1308{
f1174f77 1309 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1310
f1174f77 1311 switch (reg->type) {
06c1c049 1312 case PTR_TO_PACKET:
f1174f77 1313 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1314 case PTR_TO_MAP_VALUE:
f1174f77
EC
1315 return check_map_access(env, regno, reg->off, access_size);
1316 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1317 return check_stack_boundary(env, regno, access_size,
1318 zero_size_allowed, meta);
1319 }
1320}
1321
58e2af8b 1322static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1323 enum bpf_arg_type arg_type,
1324 struct bpf_call_arg_meta *meta)
17a52670 1325{
58e2af8b 1326 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1327 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1328 int err = 0;
1329
80f1d68c 1330 if (arg_type == ARG_DONTCARE)
17a52670
AS
1331 return 0;
1332
dc503a8a
EC
1333 err = check_reg_arg(env, regno, SRC_OP);
1334 if (err)
1335 return err;
17a52670 1336
1be7f75d
AS
1337 if (arg_type == ARG_ANYTHING) {
1338 if (is_pointer_value(env, regno)) {
1339 verbose("R%d leaks addr into helper function\n", regno);
1340 return -EACCES;
1341 }
80f1d68c 1342 return 0;
1be7f75d 1343 }
80f1d68c 1344
3a0af8fd
TG
1345 if (type == PTR_TO_PACKET &&
1346 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1347 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1348 return -EACCES;
1349 }
1350
8e2fe1d9 1351 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1352 arg_type == ARG_PTR_TO_MAP_VALUE) {
1353 expected_type = PTR_TO_STACK;
6841de8b
AS
1354 if (type != PTR_TO_PACKET && type != expected_type)
1355 goto err_type;
39f19ebb
AS
1356 } else if (arg_type == ARG_CONST_SIZE ||
1357 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1358 expected_type = SCALAR_VALUE;
1359 if (type != expected_type)
6841de8b 1360 goto err_type;
17a52670
AS
1361 } else if (arg_type == ARG_CONST_MAP_PTR) {
1362 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1363 if (type != expected_type)
1364 goto err_type;
608cd71a
AS
1365 } else if (arg_type == ARG_PTR_TO_CTX) {
1366 expected_type = PTR_TO_CTX;
6841de8b
AS
1367 if (type != expected_type)
1368 goto err_type;
39f19ebb
AS
1369 } else if (arg_type == ARG_PTR_TO_MEM ||
1370 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1371 expected_type = PTR_TO_STACK;
1372 /* One exception here. In case function allows for NULL to be
f1174f77 1373 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1374 * happens during stack boundary checking.
1375 */
f1174f77 1376 if (register_is_null(*reg))
6841de8b 1377 /* final test in check_stack_boundary() */;
5722569b 1378 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
f1174f77 1379 type != expected_type)
6841de8b 1380 goto err_type;
39f19ebb 1381 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1382 } else {
1383 verbose("unsupported arg_type %d\n", arg_type);
1384 return -EFAULT;
1385 }
1386
17a52670
AS
1387 if (arg_type == ARG_CONST_MAP_PTR) {
1388 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1389 meta->map_ptr = reg->map_ptr;
17a52670
AS
1390 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1391 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1392 * check that [key, key + map->key_size) are within
1393 * stack limits and initialized
1394 */
33ff9823 1395 if (!meta->map_ptr) {
17a52670
AS
1396 /* in function declaration map_ptr must come before
1397 * map_key, so that it's verified and known before
1398 * we have to check map_key here. Otherwise it means
1399 * that kernel subsystem misconfigured verifier
1400 */
1401 verbose("invalid map_ptr to access map->key\n");
1402 return -EACCES;
1403 }
6841de8b 1404 if (type == PTR_TO_PACKET)
f1174f77 1405 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1406 meta->map_ptr->key_size);
1407 else
1408 err = check_stack_boundary(env, regno,
1409 meta->map_ptr->key_size,
1410 false, NULL);
17a52670
AS
1411 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1412 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1413 * check [value, value + map->value_size) validity
1414 */
33ff9823 1415 if (!meta->map_ptr) {
17a52670
AS
1416 /* kernel subsystem misconfigured verifier */
1417 verbose("invalid map_ptr to access map->value\n");
1418 return -EACCES;
1419 }
6841de8b 1420 if (type == PTR_TO_PACKET)
f1174f77 1421 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1422 meta->map_ptr->value_size);
1423 else
1424 err = check_stack_boundary(env, regno,
1425 meta->map_ptr->value_size,
1426 false, NULL);
39f19ebb
AS
1427 } else if (arg_type == ARG_CONST_SIZE ||
1428 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1429 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1430
17a52670
AS
1431 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1432 * from stack pointer 'buf'. Check it
1433 * note: regno == len, regno - 1 == buf
1434 */
1435 if (regno == 0) {
1436 /* kernel subsystem misconfigured verifier */
39f19ebb 1437 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1438 return -EACCES;
1439 }
06c1c049 1440
f1174f77
EC
1441 /* The register is SCALAR_VALUE; the access check
1442 * happens using its boundaries.
06c1c049 1443 */
f1174f77
EC
1444
1445 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1446 /* For unprivileged variable accesses, disable raw
1447 * mode so that the program is required to
1448 * initialize all the memory that the helper could
1449 * just partially fill up.
1450 */
1451 meta = NULL;
1452
b03c9f9f 1453 if (reg->smin_value < 0) {
f1174f77
EC
1454 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1455 regno);
1456 return -EACCES;
1457 }
06c1c049 1458
b03c9f9f 1459 if (reg->umin_value == 0) {
f1174f77
EC
1460 err = check_helper_mem_access(env, regno - 1, 0,
1461 zero_size_allowed,
1462 meta);
06c1c049
GB
1463 if (err)
1464 return err;
06c1c049 1465 }
f1174f77 1466
b03c9f9f 1467 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1468 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1469 regno);
1470 return -EACCES;
1471 }
1472 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1473 reg->umax_value,
f1174f77 1474 zero_size_allowed, meta);
17a52670
AS
1475 }
1476
1477 return err;
6841de8b
AS
1478err_type:
1479 verbose("R%d type=%s expected=%s\n", regno,
1480 reg_type_str[type], reg_type_str[expected_type]);
1481 return -EACCES;
17a52670
AS
1482}
1483
35578d79
KX
1484static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1485{
35578d79
KX
1486 if (!map)
1487 return 0;
1488
6aff67c8
AS
1489 /* We need a two way check, first is from map perspective ... */
1490 switch (map->map_type) {
1491 case BPF_MAP_TYPE_PROG_ARRAY:
1492 if (func_id != BPF_FUNC_tail_call)
1493 goto error;
1494 break;
1495 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1496 if (func_id != BPF_FUNC_perf_event_read &&
1497 func_id != BPF_FUNC_perf_event_output)
1498 goto error;
1499 break;
1500 case BPF_MAP_TYPE_STACK_TRACE:
1501 if (func_id != BPF_FUNC_get_stackid)
1502 goto error;
1503 break;
4ed8ec52 1504 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1505 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1506 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1507 goto error;
1508 break;
546ac1ff
JF
1509 /* devmap returns a pointer to a live net_device ifindex that we cannot
1510 * allow to be modified from bpf side. So do not allow lookup elements
1511 * for now.
1512 */
1513 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1514 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1515 goto error;
1516 break;
56f668df 1517 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1518 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1519 if (func_id != BPF_FUNC_map_lookup_elem)
1520 goto error;
16a43625 1521 break;
174a79ff
JF
1522 case BPF_MAP_TYPE_SOCKMAP:
1523 if (func_id != BPF_FUNC_sk_redirect_map &&
1524 func_id != BPF_FUNC_sock_map_update &&
1525 func_id != BPF_FUNC_map_delete_elem)
1526 goto error;
1527 break;
6aff67c8
AS
1528 default:
1529 break;
1530 }
1531
1532 /* ... and second from the function itself. */
1533 switch (func_id) {
1534 case BPF_FUNC_tail_call:
1535 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1536 goto error;
1537 break;
1538 case BPF_FUNC_perf_event_read:
1539 case BPF_FUNC_perf_event_output:
1540 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1541 goto error;
1542 break;
1543 case BPF_FUNC_get_stackid:
1544 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1545 goto error;
1546 break;
60d20f91 1547 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1548 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1549 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1550 goto error;
1551 break;
97f91a7c
JF
1552 case BPF_FUNC_redirect_map:
1553 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1554 goto error;
1555 break;
174a79ff
JF
1556 case BPF_FUNC_sk_redirect_map:
1557 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1558 goto error;
1559 break;
1560 case BPF_FUNC_sock_map_update:
1561 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1562 goto error;
1563 break;
6aff67c8
AS
1564 default:
1565 break;
35578d79
KX
1566 }
1567
1568 return 0;
6aff67c8 1569error:
ebb676da
TG
1570 verbose("cannot pass map_type %d into func %s#%d\n",
1571 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1572 return -EINVAL;
35578d79
KX
1573}
1574
435faee1
DB
1575static int check_raw_mode(const struct bpf_func_proto *fn)
1576{
1577 int count = 0;
1578
39f19ebb 1579 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1580 count++;
39f19ebb 1581 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1582 count++;
39f19ebb 1583 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1584 count++;
39f19ebb 1585 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1586 count++;
39f19ebb 1587 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1588 count++;
1589
1590 return count > 1 ? -EINVAL : 0;
1591}
1592
f1174f77
EC
1593/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1594 * so turn them into unknown SCALAR_VALUE.
1595 */
58e2af8b 1596static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1597{
58e2af8b
JK
1598 struct bpf_verifier_state *state = &env->cur_state;
1599 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1600 int i;
1601
1602 for (i = 0; i < MAX_BPF_REG; i++)
1603 if (regs[i].type == PTR_TO_PACKET ||
1604 regs[i].type == PTR_TO_PACKET_END)
f1174f77 1605 mark_reg_unknown(regs, i);
969bf05e
AS
1606
1607 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1608 if (state->stack_slot_type[i] != STACK_SPILL)
1609 continue;
1610 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1611 if (reg->type != PTR_TO_PACKET &&
1612 reg->type != PTR_TO_PACKET_END)
1613 continue;
f1174f77 1614 __mark_reg_unknown(reg);
969bf05e
AS
1615 }
1616}
1617
81ed18ab 1618static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1619{
58e2af8b 1620 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1621 const struct bpf_func_proto *fn = NULL;
58e2af8b 1622 struct bpf_reg_state *regs = state->regs;
33ff9823 1623 struct bpf_call_arg_meta meta;
969bf05e 1624 bool changes_data;
17a52670
AS
1625 int i, err;
1626
1627 /* find function prototype */
1628 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1629 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1630 return -EINVAL;
1631 }
1632
1633 if (env->prog->aux->ops->get_func_proto)
1634 fn = env->prog->aux->ops->get_func_proto(func_id);
1635
1636 if (!fn) {
ebb676da 1637 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1638 return -EINVAL;
1639 }
1640
1641 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1642 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1643 verbose("cannot call GPL only function from proprietary program\n");
1644 return -EINVAL;
1645 }
1646
17bedab2 1647 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1648
33ff9823 1649 memset(&meta, 0, sizeof(meta));
36bbef52 1650 meta.pkt_access = fn->pkt_access;
33ff9823 1651
435faee1
DB
1652 /* We only support one arg being in raw mode at the moment, which
1653 * is sufficient for the helper functions we have right now.
1654 */
1655 err = check_raw_mode(fn);
1656 if (err) {
ebb676da
TG
1657 verbose("kernel subsystem misconfigured func %s#%d\n",
1658 func_id_name(func_id), func_id);
435faee1
DB
1659 return err;
1660 }
1661
17a52670 1662 /* check args */
33ff9823 1663 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1664 if (err)
1665 return err;
33ff9823 1666 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1667 if (err)
1668 return err;
33ff9823 1669 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1670 if (err)
1671 return err;
33ff9823 1672 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1673 if (err)
1674 return err;
33ff9823 1675 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1676 if (err)
1677 return err;
1678
435faee1
DB
1679 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1680 * is inferred from register state.
1681 */
1682 for (i = 0; i < meta.access_size; i++) {
31fd8581 1683 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1684 if (err)
1685 return err;
1686 }
1687
17a52670 1688 /* reset caller saved regs */
dc503a8a 1689 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 1690 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
1691 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1692 }
17a52670 1693
dc503a8a 1694 /* update return register (already marked as written above) */
17a52670 1695 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1696 /* sets type to SCALAR_VALUE */
1697 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1698 } else if (fn->ret_type == RET_VOID) {
1699 regs[BPF_REG_0].type = NOT_INIT;
1700 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1701 struct bpf_insn_aux_data *insn_aux;
1702
17a52670 1703 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1704 /* There is no offset yet applied, variable or fixed */
1705 mark_reg_known_zero(regs, BPF_REG_0);
1706 regs[BPF_REG_0].off = 0;
17a52670
AS
1707 /* remember map_ptr, so that check_map_access()
1708 * can check 'value_size' boundary of memory access
1709 * to map element returned from bpf_map_lookup_elem()
1710 */
33ff9823 1711 if (meta.map_ptr == NULL) {
17a52670
AS
1712 verbose("kernel subsystem misconfigured verifier\n");
1713 return -EINVAL;
1714 }
33ff9823 1715 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1716 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1717 insn_aux = &env->insn_aux_data[insn_idx];
1718 if (!insn_aux->map_ptr)
1719 insn_aux->map_ptr = meta.map_ptr;
1720 else if (insn_aux->map_ptr != meta.map_ptr)
1721 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1722 } else {
ebb676da
TG
1723 verbose("unknown return type %d of func %s#%d\n",
1724 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1725 return -EINVAL;
1726 }
04fd61ab 1727
33ff9823 1728 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1729 if (err)
1730 return err;
04fd61ab 1731
969bf05e
AS
1732 if (changes_data)
1733 clear_all_pkt_pointers(env);
1734 return 0;
1735}
1736
f1174f77
EC
1737static void coerce_reg_to_32(struct bpf_reg_state *reg)
1738{
f1174f77
EC
1739 /* clear high 32 bits */
1740 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1741 /* Update bounds */
1742 __update_reg_bounds(reg);
1743}
1744
1745static bool signed_add_overflows(s64 a, s64 b)
1746{
1747 /* Do the add in u64, where overflow is well-defined */
1748 s64 res = (s64)((u64)a + (u64)b);
1749
1750 if (b < 0)
1751 return res > a;
1752 return res < a;
1753}
1754
1755static bool signed_sub_overflows(s64 a, s64 b)
1756{
1757 /* Do the sub in u64, where overflow is well-defined */
1758 s64 res = (s64)((u64)a - (u64)b);
1759
1760 if (b < 0)
1761 return res < a;
1762 return res > a;
969bf05e
AS
1763}
1764
f1174f77 1765/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1766 * Caller should also handle BPF_MOV case separately.
1767 * If we return -EACCES, caller may want to try again treating pointer as a
1768 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1769 */
1770static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1771 struct bpf_insn *insn,
1772 const struct bpf_reg_state *ptr_reg,
1773 const struct bpf_reg_state *off_reg)
969bf05e 1774{
f1174f77
EC
1775 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1776 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1777 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1778 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1779 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1780 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1781 u8 opcode = BPF_OP(insn->code);
f1174f77 1782 u32 dst = insn->dst_reg;
969bf05e 1783
f1174f77 1784 dst_reg = &regs[dst];
969bf05e 1785
b03c9f9f 1786 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1787 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1788 verbose("verifier internal error: known but bad sbounds\n");
1789 return -EINVAL;
1790 }
1791 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1792 print_verifier_state(&env->cur_state);
1793 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1794 return -EINVAL;
1795 }
1796
1797 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1798 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1799 if (!env->allow_ptr_leaks)
1800 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1801 dst);
1802 return -EACCES;
969bf05e
AS
1803 }
1804
f1174f77
EC
1805 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1806 if (!env->allow_ptr_leaks)
1807 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1808 dst);
1809 return -EACCES;
1810 }
1811 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1812 if (!env->allow_ptr_leaks)
1813 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1814 dst);
1815 return -EACCES;
1816 }
1817 if (ptr_reg->type == PTR_TO_PACKET_END) {
1818 if (!env->allow_ptr_leaks)
1819 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1820 dst);
1821 return -EACCES;
1822 }
1823
1824 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1825 * The id may be overwritten later if we create a new variable offset.
969bf05e 1826 */
f1174f77
EC
1827 dst_reg->type = ptr_reg->type;
1828 dst_reg->id = ptr_reg->id;
969bf05e 1829
f1174f77
EC
1830 switch (opcode) {
1831 case BPF_ADD:
1832 /* We can take a fixed offset as long as it doesn't overflow
1833 * the s32 'off' field
969bf05e 1834 */
b03c9f9f
EC
1835 if (known && (ptr_reg->off + smin_val ==
1836 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1837 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1838 dst_reg->smin_value = smin_ptr;
1839 dst_reg->smax_value = smax_ptr;
1840 dst_reg->umin_value = umin_ptr;
1841 dst_reg->umax_value = umax_ptr;
f1174f77 1842 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1843 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1844 dst_reg->range = ptr_reg->range;
1845 break;
1846 }
f1174f77
EC
1847 /* A new variable offset is created. Note that off_reg->off
1848 * == 0, since it's a scalar.
1849 * dst_reg gets the pointer type and since some positive
1850 * integer value was added to the pointer, give it a new 'id'
1851 * if it's a PTR_TO_PACKET.
1852 * this creates a new 'base' pointer, off_reg (variable) gets
1853 * added into the variable offset, and we copy the fixed offset
1854 * from ptr_reg.
969bf05e 1855 */
b03c9f9f
EC
1856 if (signed_add_overflows(smin_ptr, smin_val) ||
1857 signed_add_overflows(smax_ptr, smax_val)) {
1858 dst_reg->smin_value = S64_MIN;
1859 dst_reg->smax_value = S64_MAX;
1860 } else {
1861 dst_reg->smin_value = smin_ptr + smin_val;
1862 dst_reg->smax_value = smax_ptr + smax_val;
1863 }
1864 if (umin_ptr + umin_val < umin_ptr ||
1865 umax_ptr + umax_val < umax_ptr) {
1866 dst_reg->umin_value = 0;
1867 dst_reg->umax_value = U64_MAX;
1868 } else {
1869 dst_reg->umin_value = umin_ptr + umin_val;
1870 dst_reg->umax_value = umax_ptr + umax_val;
1871 }
f1174f77
EC
1872 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1873 dst_reg->off = ptr_reg->off;
1874 if (ptr_reg->type == PTR_TO_PACKET) {
1875 dst_reg->id = ++env->id_gen;
1876 /* something was added to pkt_ptr, set range to zero */
1877 dst_reg->range = 0;
1878 }
1879 break;
1880 case BPF_SUB:
1881 if (dst_reg == off_reg) {
1882 /* scalar -= pointer. Creates an unknown scalar */
1883 if (!env->allow_ptr_leaks)
1884 verbose("R%d tried to subtract pointer from scalar\n",
1885 dst);
1886 return -EACCES;
1887 }
1888 /* We don't allow subtraction from FP, because (according to
1889 * test_verifier.c test "invalid fp arithmetic", JITs might not
1890 * be able to deal with it.
969bf05e 1891 */
f1174f77
EC
1892 if (ptr_reg->type == PTR_TO_STACK) {
1893 if (!env->allow_ptr_leaks)
1894 verbose("R%d subtraction from stack pointer prohibited\n",
1895 dst);
1896 return -EACCES;
1897 }
b03c9f9f
EC
1898 if (known && (ptr_reg->off - smin_val ==
1899 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1900 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1901 dst_reg->smin_value = smin_ptr;
1902 dst_reg->smax_value = smax_ptr;
1903 dst_reg->umin_value = umin_ptr;
1904 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1905 dst_reg->var_off = ptr_reg->var_off;
1906 dst_reg->id = ptr_reg->id;
b03c9f9f 1907 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1908 dst_reg->range = ptr_reg->range;
1909 break;
1910 }
f1174f77
EC
1911 /* A new variable offset is created. If the subtrahend is known
1912 * nonnegative, then any reg->range we had before is still good.
969bf05e 1913 */
b03c9f9f
EC
1914 if (signed_sub_overflows(smin_ptr, smax_val) ||
1915 signed_sub_overflows(smax_ptr, smin_val)) {
1916 /* Overflow possible, we know nothing */
1917 dst_reg->smin_value = S64_MIN;
1918 dst_reg->smax_value = S64_MAX;
1919 } else {
1920 dst_reg->smin_value = smin_ptr - smax_val;
1921 dst_reg->smax_value = smax_ptr - smin_val;
1922 }
1923 if (umin_ptr < umax_val) {
1924 /* Overflow possible, we know nothing */
1925 dst_reg->umin_value = 0;
1926 dst_reg->umax_value = U64_MAX;
1927 } else {
1928 /* Cannot overflow (as long as bounds are consistent) */
1929 dst_reg->umin_value = umin_ptr - umax_val;
1930 dst_reg->umax_value = umax_ptr - umin_val;
1931 }
f1174f77
EC
1932 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1933 dst_reg->off = ptr_reg->off;
1934 if (ptr_reg->type == PTR_TO_PACKET) {
1935 dst_reg->id = ++env->id_gen;
1936 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1937 if (smin_val < 0)
f1174f77 1938 dst_reg->range = 0;
43188702 1939 }
f1174f77
EC
1940 break;
1941 case BPF_AND:
1942 case BPF_OR:
1943 case BPF_XOR:
1944 /* bitwise ops on pointers are troublesome, prohibit for now.
1945 * (However, in principle we could allow some cases, e.g.
1946 * ptr &= ~3 which would reduce min_value by 3.)
1947 */
1948 if (!env->allow_ptr_leaks)
1949 verbose("R%d bitwise operator %s on pointer prohibited\n",
1950 dst, bpf_alu_string[opcode >> 4]);
1951 return -EACCES;
1952 default:
1953 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1954 if (!env->allow_ptr_leaks)
1955 verbose("R%d pointer arithmetic with %s operator prohibited\n",
1956 dst, bpf_alu_string[opcode >> 4]);
1957 return -EACCES;
43188702
JF
1958 }
1959
b03c9f9f
EC
1960 __update_reg_bounds(dst_reg);
1961 __reg_deduce_bounds(dst_reg);
1962 __reg_bound_offset(dst_reg);
43188702
JF
1963 return 0;
1964}
1965
f1174f77
EC
1966static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1967 struct bpf_insn *insn,
1968 struct bpf_reg_state *dst_reg,
1969 struct bpf_reg_state src_reg)
969bf05e 1970{
58e2af8b 1971 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1972 u8 opcode = BPF_OP(insn->code);
f1174f77 1973 bool src_known, dst_known;
b03c9f9f
EC
1974 s64 smin_val, smax_val;
1975 u64 umin_val, umax_val;
48461135 1976
f1174f77
EC
1977 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1978 /* 32-bit ALU ops are (32,32)->64 */
1979 coerce_reg_to_32(dst_reg);
1980 coerce_reg_to_32(&src_reg);
9305706c 1981 }
b03c9f9f
EC
1982 smin_val = src_reg.smin_value;
1983 smax_val = src_reg.smax_value;
1984 umin_val = src_reg.umin_value;
1985 umax_val = src_reg.umax_value;
f1174f77
EC
1986 src_known = tnum_is_const(src_reg.var_off);
1987 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1988
48461135
JB
1989 switch (opcode) {
1990 case BPF_ADD:
b03c9f9f
EC
1991 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1992 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1993 dst_reg->smin_value = S64_MIN;
1994 dst_reg->smax_value = S64_MAX;
1995 } else {
1996 dst_reg->smin_value += smin_val;
1997 dst_reg->smax_value += smax_val;
1998 }
1999 if (dst_reg->umin_value + umin_val < umin_val ||
2000 dst_reg->umax_value + umax_val < umax_val) {
2001 dst_reg->umin_value = 0;
2002 dst_reg->umax_value = U64_MAX;
2003 } else {
2004 dst_reg->umin_value += umin_val;
2005 dst_reg->umax_value += umax_val;
2006 }
f1174f77 2007 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2008 break;
2009 case BPF_SUB:
b03c9f9f
EC
2010 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2011 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2012 /* Overflow possible, we know nothing */
2013 dst_reg->smin_value = S64_MIN;
2014 dst_reg->smax_value = S64_MAX;
2015 } else {
2016 dst_reg->smin_value -= smax_val;
2017 dst_reg->smax_value -= smin_val;
2018 }
2019 if (dst_reg->umin_value < umax_val) {
2020 /* Overflow possible, we know nothing */
2021 dst_reg->umin_value = 0;
2022 dst_reg->umax_value = U64_MAX;
2023 } else {
2024 /* Cannot overflow (as long as bounds are consistent) */
2025 dst_reg->umin_value -= umax_val;
2026 dst_reg->umax_value -= umin_val;
2027 }
f1174f77 2028 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2029 break;
2030 case BPF_MUL:
b03c9f9f
EC
2031 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2032 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2033 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2034 __mark_reg_unbounded(dst_reg);
2035 __update_reg_bounds(dst_reg);
f1174f77
EC
2036 break;
2037 }
b03c9f9f
EC
2038 /* Both values are positive, so we can work with unsigned and
2039 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2040 */
b03c9f9f
EC
2041 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2042 /* Potential overflow, we know nothing */
2043 __mark_reg_unbounded(dst_reg);
2044 /* (except what we can learn from the var_off) */
2045 __update_reg_bounds(dst_reg);
2046 break;
2047 }
2048 dst_reg->umin_value *= umin_val;
2049 dst_reg->umax_value *= umax_val;
2050 if (dst_reg->umax_value > S64_MAX) {
2051 /* Overflow possible, we know nothing */
2052 dst_reg->smin_value = S64_MIN;
2053 dst_reg->smax_value = S64_MAX;
2054 } else {
2055 dst_reg->smin_value = dst_reg->umin_value;
2056 dst_reg->smax_value = dst_reg->umax_value;
2057 }
48461135
JB
2058 break;
2059 case BPF_AND:
f1174f77 2060 if (src_known && dst_known) {
b03c9f9f
EC
2061 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2062 src_reg.var_off.value);
f1174f77
EC
2063 break;
2064 }
b03c9f9f
EC
2065 /* We get our minimum from the var_off, since that's inherently
2066 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2067 */
f1174f77 2068 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2069 dst_reg->umin_value = dst_reg->var_off.value;
2070 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2071 if (dst_reg->smin_value < 0 || smin_val < 0) {
2072 /* Lose signed bounds when ANDing negative numbers,
2073 * ain't nobody got time for that.
2074 */
2075 dst_reg->smin_value = S64_MIN;
2076 dst_reg->smax_value = S64_MAX;
2077 } else {
2078 /* ANDing two positives gives a positive, so safe to
2079 * cast result into s64.
2080 */
2081 dst_reg->smin_value = dst_reg->umin_value;
2082 dst_reg->smax_value = dst_reg->umax_value;
2083 }
2084 /* We may learn something more from the var_off */
2085 __update_reg_bounds(dst_reg);
f1174f77
EC
2086 break;
2087 case BPF_OR:
2088 if (src_known && dst_known) {
b03c9f9f
EC
2089 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2090 src_reg.var_off.value);
f1174f77
EC
2091 break;
2092 }
b03c9f9f
EC
2093 /* We get our maximum from the var_off, and our minimum is the
2094 * maximum of the operands' minima
f1174f77
EC
2095 */
2096 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2097 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2098 dst_reg->umax_value = dst_reg->var_off.value |
2099 dst_reg->var_off.mask;
2100 if (dst_reg->smin_value < 0 || smin_val < 0) {
2101 /* Lose signed bounds when ORing negative numbers,
2102 * ain't nobody got time for that.
2103 */
2104 dst_reg->smin_value = S64_MIN;
2105 dst_reg->smax_value = S64_MAX;
f1174f77 2106 } else {
b03c9f9f
EC
2107 /* ORing two positives gives a positive, so safe to
2108 * cast result into s64.
2109 */
2110 dst_reg->smin_value = dst_reg->umin_value;
2111 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2112 }
b03c9f9f
EC
2113 /* We may learn something more from the var_off */
2114 __update_reg_bounds(dst_reg);
48461135
JB
2115 break;
2116 case BPF_LSH:
b03c9f9f
EC
2117 if (umax_val > 63) {
2118 /* Shifts greater than 63 are undefined. This includes
2119 * shifts by a negative number.
2120 */
f1174f77
EC
2121 mark_reg_unknown(regs, insn->dst_reg);
2122 break;
2123 }
b03c9f9f
EC
2124 /* We lose all sign bit information (except what we can pick
2125 * up from var_off)
48461135 2126 */
b03c9f9f
EC
2127 dst_reg->smin_value = S64_MIN;
2128 dst_reg->smax_value = S64_MAX;
2129 /* If we might shift our top bit out, then we know nothing */
2130 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2131 dst_reg->umin_value = 0;
2132 dst_reg->umax_value = U64_MAX;
d1174416 2133 } else {
b03c9f9f
EC
2134 dst_reg->umin_value <<= umin_val;
2135 dst_reg->umax_value <<= umax_val;
d1174416 2136 }
b03c9f9f
EC
2137 if (src_known)
2138 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2139 else
2140 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2141 /* We may learn something more from the var_off */
2142 __update_reg_bounds(dst_reg);
48461135
JB
2143 break;
2144 case BPF_RSH:
b03c9f9f
EC
2145 if (umax_val > 63) {
2146 /* Shifts greater than 63 are undefined. This includes
2147 * shifts by a negative number.
2148 */
f1174f77
EC
2149 mark_reg_unknown(regs, insn->dst_reg);
2150 break;
2151 }
2152 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2153 if (dst_reg->smin_value < 0) {
2154 if (umin_val) {
f1174f77 2155 /* Sign bit will be cleared */
b03c9f9f
EC
2156 dst_reg->smin_value = 0;
2157 } else {
2158 /* Lost sign bit information */
2159 dst_reg->smin_value = S64_MIN;
2160 dst_reg->smax_value = S64_MAX;
2161 }
d1174416 2162 } else {
b03c9f9f
EC
2163 dst_reg->smin_value =
2164 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2165 }
f1174f77 2166 if (src_known)
b03c9f9f
EC
2167 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2168 umin_val);
f1174f77 2169 else
b03c9f9f
EC
2170 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2171 dst_reg->umin_value >>= umax_val;
2172 dst_reg->umax_value >>= umin_val;
2173 /* We may learn something more from the var_off */
2174 __update_reg_bounds(dst_reg);
48461135
JB
2175 break;
2176 default:
f1174f77 2177 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2178 break;
2179 }
2180
b03c9f9f
EC
2181 __reg_deduce_bounds(dst_reg);
2182 __reg_bound_offset(dst_reg);
f1174f77
EC
2183 return 0;
2184}
2185
2186/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2187 * and var_off.
2188 */
2189static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2190 struct bpf_insn *insn)
2191{
2192 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2193 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2194 u8 opcode = BPF_OP(insn->code);
2195 int rc;
2196
2197 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2198 src_reg = NULL;
2199 if (dst_reg->type != SCALAR_VALUE)
2200 ptr_reg = dst_reg;
2201 if (BPF_SRC(insn->code) == BPF_X) {
2202 src_reg = &regs[insn->src_reg];
f1174f77
EC
2203 if (src_reg->type != SCALAR_VALUE) {
2204 if (dst_reg->type != SCALAR_VALUE) {
2205 /* Combining two pointers by any ALU op yields
2206 * an arbitrary scalar.
2207 */
2208 if (!env->allow_ptr_leaks) {
2209 verbose("R%d pointer %s pointer prohibited\n",
2210 insn->dst_reg,
2211 bpf_alu_string[opcode >> 4]);
2212 return -EACCES;
2213 }
2214 mark_reg_unknown(regs, insn->dst_reg);
2215 return 0;
2216 } else {
2217 /* scalar += pointer
2218 * This is legal, but we have to reverse our
2219 * src/dest handling in computing the range
2220 */
2221 rc = adjust_ptr_min_max_vals(env, insn,
2222 src_reg, dst_reg);
2223 if (rc == -EACCES && env->allow_ptr_leaks) {
2224 /* scalar += unknown scalar */
2225 __mark_reg_unknown(&off_reg);
2226 return adjust_scalar_min_max_vals(
2227 env, insn,
2228 dst_reg, off_reg);
2229 }
2230 return rc;
2231 }
2232 } else if (ptr_reg) {
2233 /* pointer += scalar */
2234 rc = adjust_ptr_min_max_vals(env, insn,
2235 dst_reg, src_reg);
2236 if (rc == -EACCES && env->allow_ptr_leaks) {
2237 /* unknown scalar += scalar */
2238 __mark_reg_unknown(dst_reg);
2239 return adjust_scalar_min_max_vals(
2240 env, insn, dst_reg, *src_reg);
2241 }
2242 return rc;
2243 }
2244 } else {
2245 /* Pretend the src is a reg with a known value, since we only
2246 * need to be able to read from this state.
2247 */
2248 off_reg.type = SCALAR_VALUE;
b03c9f9f 2249 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2250 src_reg = &off_reg;
f1174f77
EC
2251 if (ptr_reg) { /* pointer += K */
2252 rc = adjust_ptr_min_max_vals(env, insn,
2253 ptr_reg, src_reg);
2254 if (rc == -EACCES && env->allow_ptr_leaks) {
2255 /* unknown scalar += K */
2256 __mark_reg_unknown(dst_reg);
2257 return adjust_scalar_min_max_vals(
2258 env, insn, dst_reg, off_reg);
2259 }
2260 return rc;
2261 }
2262 }
2263
2264 /* Got here implies adding two SCALAR_VALUEs */
2265 if (WARN_ON_ONCE(ptr_reg)) {
2266 print_verifier_state(&env->cur_state);
2267 verbose("verifier internal error: unexpected ptr_reg\n");
2268 return -EINVAL;
2269 }
2270 if (WARN_ON(!src_reg)) {
2271 print_verifier_state(&env->cur_state);
2272 verbose("verifier internal error: no src_reg\n");
2273 return -EINVAL;
2274 }
2275 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2276}
2277
17a52670 2278/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2279static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2280{
f1174f77 2281 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2282 u8 opcode = BPF_OP(insn->code);
2283 int err;
2284
2285 if (opcode == BPF_END || opcode == BPF_NEG) {
2286 if (opcode == BPF_NEG) {
2287 if (BPF_SRC(insn->code) != 0 ||
2288 insn->src_reg != BPF_REG_0 ||
2289 insn->off != 0 || insn->imm != 0) {
2290 verbose("BPF_NEG uses reserved fields\n");
2291 return -EINVAL;
2292 }
2293 } else {
2294 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2295 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
2296 verbose("BPF_END uses reserved fields\n");
2297 return -EINVAL;
2298 }
2299 }
2300
2301 /* check src operand */
dc503a8a 2302 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2303 if (err)
2304 return err;
2305
1be7f75d
AS
2306 if (is_pointer_value(env, insn->dst_reg)) {
2307 verbose("R%d pointer arithmetic prohibited\n",
2308 insn->dst_reg);
2309 return -EACCES;
2310 }
2311
17a52670 2312 /* check dest operand */
dc503a8a 2313 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2314 if (err)
2315 return err;
2316
2317 } else if (opcode == BPF_MOV) {
2318
2319 if (BPF_SRC(insn->code) == BPF_X) {
2320 if (insn->imm != 0 || insn->off != 0) {
2321 verbose("BPF_MOV uses reserved fields\n");
2322 return -EINVAL;
2323 }
2324
2325 /* check src operand */
dc503a8a 2326 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2327 if (err)
2328 return err;
2329 } else {
2330 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2331 verbose("BPF_MOV uses reserved fields\n");
2332 return -EINVAL;
2333 }
2334 }
2335
2336 /* check dest operand */
dc503a8a 2337 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2338 if (err)
2339 return err;
2340
2341 if (BPF_SRC(insn->code) == BPF_X) {
2342 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2343 /* case: R1 = R2
2344 * copy register state to dest reg
2345 */
2346 regs[insn->dst_reg] = regs[insn->src_reg];
2347 } else {
f1174f77 2348 /* R1 = (u32) R2 */
1be7f75d
AS
2349 if (is_pointer_value(env, insn->src_reg)) {
2350 verbose("R%d partial copy of pointer\n",
2351 insn->src_reg);
2352 return -EACCES;
2353 }
f1174f77 2354 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2355 /* high 32 bits are known zero. */
f1174f77
EC
2356 regs[insn->dst_reg].var_off = tnum_cast(
2357 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2358 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2359 }
2360 } else {
2361 /* case: R = imm
2362 * remember the value we stored into this reg
2363 */
f1174f77 2364 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2365 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2366 }
2367
2368 } else if (opcode > BPF_END) {
2369 verbose("invalid BPF_ALU opcode %x\n", opcode);
2370 return -EINVAL;
2371
2372 } else { /* all other ALU ops: and, sub, xor, add, ... */
2373
17a52670
AS
2374 if (BPF_SRC(insn->code) == BPF_X) {
2375 if (insn->imm != 0 || insn->off != 0) {
2376 verbose("BPF_ALU uses reserved fields\n");
2377 return -EINVAL;
2378 }
2379 /* check src1 operand */
dc503a8a 2380 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2381 if (err)
2382 return err;
2383 } else {
2384 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2385 verbose("BPF_ALU uses reserved fields\n");
2386 return -EINVAL;
2387 }
2388 }
2389
2390 /* check src2 operand */
dc503a8a 2391 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2392 if (err)
2393 return err;
2394
2395 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2396 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2397 verbose("div by zero\n");
2398 return -EINVAL;
2399 }
2400
229394e8
RV
2401 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2402 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2403 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2404
2405 if (insn->imm < 0 || insn->imm >= size) {
2406 verbose("invalid shift %d\n", insn->imm);
2407 return -EINVAL;
2408 }
2409 }
2410
1a0dc1ac 2411 /* check dest operand */
dc503a8a 2412 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2413 if (err)
2414 return err;
2415
f1174f77 2416 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2417 }
2418
2419 return 0;
2420}
2421
58e2af8b
JK
2422static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2423 struct bpf_reg_state *dst_reg)
969bf05e 2424{
58e2af8b 2425 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2426 int i;
2d2be8ca 2427
f1174f77
EC
2428 if (dst_reg->off < 0)
2429 /* This doesn't give us any range */
2430 return;
2431
b03c9f9f
EC
2432 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2433 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2434 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2435 * than pkt_end, but that's because it's also less than pkt.
2436 */
2437 return;
2438
b4e432f1 2439 /* LLVM can generate four kind of checks:
2d2be8ca 2440 *
b4e432f1 2441 * Type 1/2:
2d2be8ca
DB
2442 *
2443 * r2 = r3;
2444 * r2 += 8;
2445 * if (r2 > pkt_end) goto <handle exception>
2446 * <access okay>
2447 *
b4e432f1
DB
2448 * r2 = r3;
2449 * r2 += 8;
2450 * if (r2 < pkt_end) goto <access okay>
2451 * <handle exception>
2452 *
2d2be8ca
DB
2453 * Where:
2454 * r2 == dst_reg, pkt_end == src_reg
2455 * r2=pkt(id=n,off=8,r=0)
2456 * r3=pkt(id=n,off=0,r=0)
2457 *
b4e432f1 2458 * Type 3/4:
2d2be8ca
DB
2459 *
2460 * r2 = r3;
2461 * r2 += 8;
2462 * if (pkt_end >= r2) goto <access okay>
2463 * <handle exception>
2464 *
b4e432f1
DB
2465 * r2 = r3;
2466 * r2 += 8;
2467 * if (pkt_end <= r2) goto <handle exception>
2468 * <access okay>
2469 *
2d2be8ca
DB
2470 * Where:
2471 * pkt_end == dst_reg, r2 == src_reg
2472 * r2=pkt(id=n,off=8,r=0)
2473 * r3=pkt(id=n,off=0,r=0)
2474 *
2475 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2476 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2477 */
2d2be8ca 2478
f1174f77
EC
2479 /* If our ids match, then we must have the same max_value. And we
2480 * don't care about the other reg's fixed offset, since if it's too big
2481 * the range won't allow anything.
2482 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2483 */
969bf05e
AS
2484 for (i = 0; i < MAX_BPF_REG; i++)
2485 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682 2486 /* keep the maximum range already checked */
f1174f77 2487 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2488
2489 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2490 if (state->stack_slot_type[i] != STACK_SPILL)
2491 continue;
2492 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2493 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
f1174f77 2494 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2495 }
2496}
2497
48461135
JB
2498/* Adjusts the register min/max values in the case that the dst_reg is the
2499 * variable register that we are working on, and src_reg is a constant or we're
2500 * simply doing a BPF_K check.
f1174f77 2501 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2502 */
2503static void reg_set_min_max(struct bpf_reg_state *true_reg,
2504 struct bpf_reg_state *false_reg, u64 val,
2505 u8 opcode)
2506{
f1174f77
EC
2507 /* If the dst_reg is a pointer, we can't learn anything about its
2508 * variable offset from the compare (unless src_reg were a pointer into
2509 * the same object, but we don't bother with that.
2510 * Since false_reg and true_reg have the same type by construction, we
2511 * only need to check one of them for pointerness.
2512 */
2513 if (__is_pointer_value(false, false_reg))
2514 return;
4cabc5b1 2515
48461135
JB
2516 switch (opcode) {
2517 case BPF_JEQ:
2518 /* If this is false then we know nothing Jon Snow, but if it is
2519 * true then we know for sure.
2520 */
b03c9f9f 2521 __mark_reg_known(true_reg, val);
48461135
JB
2522 break;
2523 case BPF_JNE:
2524 /* If this is true we know nothing Jon Snow, but if it is false
2525 * we know the value for sure;
2526 */
b03c9f9f 2527 __mark_reg_known(false_reg, val);
48461135
JB
2528 break;
2529 case BPF_JGT:
b03c9f9f
EC
2530 false_reg->umax_value = min(false_reg->umax_value, val);
2531 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2532 break;
48461135 2533 case BPF_JSGT:
b03c9f9f
EC
2534 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2535 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2536 break;
b4e432f1
DB
2537 case BPF_JLT:
2538 false_reg->umin_value = max(false_reg->umin_value, val);
2539 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2540 break;
2541 case BPF_JSLT:
2542 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2543 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2544 break;
48461135 2545 case BPF_JGE:
b03c9f9f
EC
2546 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2547 true_reg->umin_value = max(true_reg->umin_value, val);
2548 break;
48461135 2549 case BPF_JSGE:
b03c9f9f
EC
2550 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2551 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2552 break;
b4e432f1
DB
2553 case BPF_JLE:
2554 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2555 true_reg->umax_value = min(true_reg->umax_value, val);
2556 break;
2557 case BPF_JSLE:
2558 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2559 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2560 break;
48461135
JB
2561 default:
2562 break;
2563 }
2564
b03c9f9f
EC
2565 __reg_deduce_bounds(false_reg);
2566 __reg_deduce_bounds(true_reg);
2567 /* We might have learned some bits from the bounds. */
2568 __reg_bound_offset(false_reg);
2569 __reg_bound_offset(true_reg);
2570 /* Intersecting with the old var_off might have improved our bounds
2571 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2572 * then new var_off is (0; 0x7f...fc) which improves our umax.
2573 */
2574 __update_reg_bounds(false_reg);
2575 __update_reg_bounds(true_reg);
48461135
JB
2576}
2577
f1174f77
EC
2578/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2579 * the variable reg.
48461135
JB
2580 */
2581static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2582 struct bpf_reg_state *false_reg, u64 val,
2583 u8 opcode)
2584{
f1174f77
EC
2585 if (__is_pointer_value(false, false_reg))
2586 return;
4cabc5b1 2587
48461135
JB
2588 switch (opcode) {
2589 case BPF_JEQ:
2590 /* If this is false then we know nothing Jon Snow, but if it is
2591 * true then we know for sure.
2592 */
b03c9f9f 2593 __mark_reg_known(true_reg, val);
48461135
JB
2594 break;
2595 case BPF_JNE:
2596 /* If this is true we know nothing Jon Snow, but if it is false
2597 * we know the value for sure;
2598 */
b03c9f9f 2599 __mark_reg_known(false_reg, val);
48461135
JB
2600 break;
2601 case BPF_JGT:
b03c9f9f
EC
2602 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2603 false_reg->umin_value = max(false_reg->umin_value, val);
2604 break;
48461135 2605 case BPF_JSGT:
b03c9f9f
EC
2606 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2607 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2608 break;
b4e432f1
DB
2609 case BPF_JLT:
2610 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2611 false_reg->umax_value = min(false_reg->umax_value, val);
2612 break;
2613 case BPF_JSLT:
2614 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2615 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2616 break;
48461135 2617 case BPF_JGE:
b03c9f9f
EC
2618 true_reg->umax_value = min(true_reg->umax_value, val);
2619 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2620 break;
48461135 2621 case BPF_JSGE:
b03c9f9f
EC
2622 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2623 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2624 break;
b4e432f1
DB
2625 case BPF_JLE:
2626 true_reg->umin_value = max(true_reg->umin_value, val);
2627 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2628 break;
2629 case BPF_JSLE:
2630 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2631 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2632 break;
48461135
JB
2633 default:
2634 break;
2635 }
2636
b03c9f9f
EC
2637 __reg_deduce_bounds(false_reg);
2638 __reg_deduce_bounds(true_reg);
2639 /* We might have learned some bits from the bounds. */
2640 __reg_bound_offset(false_reg);
2641 __reg_bound_offset(true_reg);
2642 /* Intersecting with the old var_off might have improved our bounds
2643 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2644 * then new var_off is (0; 0x7f...fc) which improves our umax.
2645 */
2646 __update_reg_bounds(false_reg);
2647 __update_reg_bounds(true_reg);
f1174f77
EC
2648}
2649
2650/* Regs are known to be equal, so intersect their min/max/var_off */
2651static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2652 struct bpf_reg_state *dst_reg)
2653{
b03c9f9f
EC
2654 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2655 dst_reg->umin_value);
2656 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2657 dst_reg->umax_value);
2658 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2659 dst_reg->smin_value);
2660 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2661 dst_reg->smax_value);
f1174f77
EC
2662 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2663 dst_reg->var_off);
b03c9f9f
EC
2664 /* We might have learned new bounds from the var_off. */
2665 __update_reg_bounds(src_reg);
2666 __update_reg_bounds(dst_reg);
2667 /* We might have learned something about the sign bit. */
2668 __reg_deduce_bounds(src_reg);
2669 __reg_deduce_bounds(dst_reg);
2670 /* We might have learned some bits from the bounds. */
2671 __reg_bound_offset(src_reg);
2672 __reg_bound_offset(dst_reg);
2673 /* Intersecting with the old var_off might have improved our bounds
2674 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2675 * then new var_off is (0; 0x7f...fc) which improves our umax.
2676 */
2677 __update_reg_bounds(src_reg);
2678 __update_reg_bounds(dst_reg);
f1174f77
EC
2679}
2680
2681static void reg_combine_min_max(struct bpf_reg_state *true_src,
2682 struct bpf_reg_state *true_dst,
2683 struct bpf_reg_state *false_src,
2684 struct bpf_reg_state *false_dst,
2685 u8 opcode)
2686{
2687 switch (opcode) {
2688 case BPF_JEQ:
2689 __reg_combine_min_max(true_src, true_dst);
2690 break;
2691 case BPF_JNE:
2692 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2693 break;
4cabc5b1 2694 }
48461135
JB
2695}
2696
57a09bf0 2697static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2698 bool is_null)
57a09bf0
TG
2699{
2700 struct bpf_reg_state *reg = &regs[regno];
2701
2702 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2703 /* Old offset (both fixed and variable parts) should
2704 * have been known-zero, because we don't allow pointer
2705 * arithmetic on pointers that might be NULL.
2706 */
b03c9f9f
EC
2707 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2708 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2709 reg->off)) {
b03c9f9f
EC
2710 __mark_reg_known_zero(reg);
2711 reg->off = 0;
f1174f77
EC
2712 }
2713 if (is_null) {
2714 reg->type = SCALAR_VALUE;
56f668df
MKL
2715 } else if (reg->map_ptr->inner_map_meta) {
2716 reg->type = CONST_PTR_TO_MAP;
2717 reg->map_ptr = reg->map_ptr->inner_map_meta;
2718 } else {
f1174f77 2719 reg->type = PTR_TO_MAP_VALUE;
56f668df 2720 }
a08dd0da
DB
2721 /* We don't need id from this point onwards anymore, thus we
2722 * should better reset it, so that state pruning has chances
2723 * to take effect.
2724 */
2725 reg->id = 0;
57a09bf0
TG
2726 }
2727}
2728
2729/* The logic is similar to find_good_pkt_pointers(), both could eventually
2730 * be folded together at some point.
2731 */
2732static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2733 bool is_null)
57a09bf0
TG
2734{
2735 struct bpf_reg_state *regs = state->regs;
a08dd0da 2736 u32 id = regs[regno].id;
57a09bf0
TG
2737 int i;
2738
2739 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2740 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2741
2742 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2743 if (state->stack_slot_type[i] != STACK_SPILL)
2744 continue;
f1174f77 2745 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2746 }
2747}
2748
58e2af8b 2749static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2750 struct bpf_insn *insn, int *insn_idx)
2751{
58e2af8b
JK
2752 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2753 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2754 u8 opcode = BPF_OP(insn->code);
2755 int err;
2756
b4e432f1 2757 if (opcode > BPF_JSLE) {
17a52670
AS
2758 verbose("invalid BPF_JMP opcode %x\n", opcode);
2759 return -EINVAL;
2760 }
2761
2762 if (BPF_SRC(insn->code) == BPF_X) {
2763 if (insn->imm != 0) {
2764 verbose("BPF_JMP uses reserved fields\n");
2765 return -EINVAL;
2766 }
2767
2768 /* check src1 operand */
dc503a8a 2769 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2770 if (err)
2771 return err;
1be7f75d
AS
2772
2773 if (is_pointer_value(env, insn->src_reg)) {
2774 verbose("R%d pointer comparison prohibited\n",
2775 insn->src_reg);
2776 return -EACCES;
2777 }
17a52670
AS
2778 } else {
2779 if (insn->src_reg != BPF_REG_0) {
2780 verbose("BPF_JMP uses reserved fields\n");
2781 return -EINVAL;
2782 }
2783 }
2784
2785 /* check src2 operand */
dc503a8a 2786 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2787 if (err)
2788 return err;
2789
1a0dc1ac
AS
2790 dst_reg = &regs[insn->dst_reg];
2791
17a52670
AS
2792 /* detect if R == 0 where R was initialized to zero earlier */
2793 if (BPF_SRC(insn->code) == BPF_K &&
2794 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2795 dst_reg->type == SCALAR_VALUE &&
2796 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2797 if (opcode == BPF_JEQ) {
2798 /* if (imm == imm) goto pc+off;
2799 * only follow the goto, ignore fall-through
2800 */
2801 *insn_idx += insn->off;
2802 return 0;
2803 } else {
2804 /* if (imm != imm) goto pc+off;
2805 * only follow fall-through branch, since
2806 * that's where the program will go
2807 */
2808 return 0;
2809 }
2810 }
2811
2812 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2813 if (!other_branch)
2814 return -EFAULT;
2815
48461135
JB
2816 /* detect if we are comparing against a constant value so we can adjust
2817 * our min/max values for our dst register.
f1174f77
EC
2818 * this is only legit if both are scalars (or pointers to the same
2819 * object, I suppose, but we don't support that right now), because
2820 * otherwise the different base pointers mean the offsets aren't
2821 * comparable.
48461135
JB
2822 */
2823 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2824 if (dst_reg->type == SCALAR_VALUE &&
2825 regs[insn->src_reg].type == SCALAR_VALUE) {
2826 if (tnum_is_const(regs[insn->src_reg].var_off))
2827 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2828 dst_reg, regs[insn->src_reg].var_off.value,
2829 opcode);
2830 else if (tnum_is_const(dst_reg->var_off))
2831 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2832 &regs[insn->src_reg],
2833 dst_reg->var_off.value, opcode);
2834 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2835 /* Comparing for equality, we can combine knowledge */
2836 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2837 &other_branch->regs[insn->dst_reg],
2838 &regs[insn->src_reg],
2839 &regs[insn->dst_reg], opcode);
2840 }
2841 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2842 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2843 dst_reg, insn->imm, opcode);
2844 }
2845
58e2af8b 2846 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2847 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2848 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2849 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2850 /* Mark all identical map registers in each branch as either
2851 * safe or unknown depending R == 0 or R != 0 conditional.
2852 */
f1174f77
EC
2853 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2854 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2855 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2856 dst_reg->type == PTR_TO_PACKET &&
2857 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca 2858 find_good_pkt_pointers(this_branch, dst_reg);
b4e432f1
DB
2859 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2860 dst_reg->type == PTR_TO_PACKET &&
2861 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2862 find_good_pkt_pointers(other_branch, dst_reg);
2d2be8ca
DB
2863 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2864 dst_reg->type == PTR_TO_PACKET_END &&
2865 regs[insn->src_reg].type == PTR_TO_PACKET) {
2866 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
b4e432f1
DB
2867 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2868 dst_reg->type == PTR_TO_PACKET_END &&
2869 regs[insn->src_reg].type == PTR_TO_PACKET) {
2870 find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
1be7f75d
AS
2871 } else if (is_pointer_value(env, insn->dst_reg)) {
2872 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2873 return -EACCES;
17a52670
AS
2874 }
2875 if (log_level)
2d2be8ca 2876 print_verifier_state(this_branch);
17a52670
AS
2877 return 0;
2878}
2879
0246e64d
AS
2880/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2881static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2882{
2883 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2884
2885 return (struct bpf_map *) (unsigned long) imm64;
2886}
2887
17a52670 2888/* verify BPF_LD_IMM64 instruction */
58e2af8b 2889static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2890{
58e2af8b 2891 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2892 int err;
2893
2894 if (BPF_SIZE(insn->code) != BPF_DW) {
2895 verbose("invalid BPF_LD_IMM insn\n");
2896 return -EINVAL;
2897 }
2898 if (insn->off != 0) {
2899 verbose("BPF_LD_IMM64 uses reserved fields\n");
2900 return -EINVAL;
2901 }
2902
dc503a8a 2903 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2904 if (err)
2905 return err;
2906
6b173873 2907 if (insn->src_reg == 0) {
6b173873
JK
2908 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2909
f1174f77 2910 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2911 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2912 return 0;
6b173873 2913 }
17a52670
AS
2914
2915 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2916 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2917
2918 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2919 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2920 return 0;
2921}
2922
96be4325
DB
2923static bool may_access_skb(enum bpf_prog_type type)
2924{
2925 switch (type) {
2926 case BPF_PROG_TYPE_SOCKET_FILTER:
2927 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2928 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2929 return true;
2930 default:
2931 return false;
2932 }
2933}
2934
ddd872bc
AS
2935/* verify safety of LD_ABS|LD_IND instructions:
2936 * - they can only appear in the programs where ctx == skb
2937 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2938 * preserve R6-R9, and store return value into R0
2939 *
2940 * Implicit input:
2941 * ctx == skb == R6 == CTX
2942 *
2943 * Explicit input:
2944 * SRC == any register
2945 * IMM == 32-bit immediate
2946 *
2947 * Output:
2948 * R0 - 8/16/32-bit skb data converted to cpu endianness
2949 */
58e2af8b 2950static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2951{
58e2af8b 2952 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2953 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2954 int i, err;
2955
24701ece 2956 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2957 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2958 return -EINVAL;
2959 }
2960
2961 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2962 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2963 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2964 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2965 return -EINVAL;
2966 }
2967
2968 /* check whether implicit source operand (register R6) is readable */
dc503a8a 2969 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
2970 if (err)
2971 return err;
2972
2973 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2974 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2975 return -EINVAL;
2976 }
2977
2978 if (mode == BPF_IND) {
2979 /* check explicit source operand */
dc503a8a 2980 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
2981 if (err)
2982 return err;
2983 }
2984
2985 /* reset caller saved regs to unreadable */
dc503a8a 2986 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 2987 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
2988 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2989 }
ddd872bc
AS
2990
2991 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
2992 * the value fetched from the packet.
2993 * Already marked as written above.
ddd872bc 2994 */
f1174f77 2995 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
2996 return 0;
2997}
2998
475fb78f
AS
2999/* non-recursive DFS pseudo code
3000 * 1 procedure DFS-iterative(G,v):
3001 * 2 label v as discovered
3002 * 3 let S be a stack
3003 * 4 S.push(v)
3004 * 5 while S is not empty
3005 * 6 t <- S.pop()
3006 * 7 if t is what we're looking for:
3007 * 8 return t
3008 * 9 for all edges e in G.adjacentEdges(t) do
3009 * 10 if edge e is already labelled
3010 * 11 continue with the next edge
3011 * 12 w <- G.adjacentVertex(t,e)
3012 * 13 if vertex w is not discovered and not explored
3013 * 14 label e as tree-edge
3014 * 15 label w as discovered
3015 * 16 S.push(w)
3016 * 17 continue at 5
3017 * 18 else if vertex w is discovered
3018 * 19 label e as back-edge
3019 * 20 else
3020 * 21 // vertex w is explored
3021 * 22 label e as forward- or cross-edge
3022 * 23 label t as explored
3023 * 24 S.pop()
3024 *
3025 * convention:
3026 * 0x10 - discovered
3027 * 0x11 - discovered and fall-through edge labelled
3028 * 0x12 - discovered and fall-through and branch edges labelled
3029 * 0x20 - explored
3030 */
3031
3032enum {
3033 DISCOVERED = 0x10,
3034 EXPLORED = 0x20,
3035 FALLTHROUGH = 1,
3036 BRANCH = 2,
3037};
3038
58e2af8b 3039#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3040
475fb78f
AS
3041static int *insn_stack; /* stack of insns to process */
3042static int cur_stack; /* current stack index */
3043static int *insn_state;
3044
3045/* t, w, e - match pseudo-code above:
3046 * t - index of current instruction
3047 * w - next instruction
3048 * e - edge
3049 */
58e2af8b 3050static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3051{
3052 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3053 return 0;
3054
3055 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3056 return 0;
3057
3058 if (w < 0 || w >= env->prog->len) {
3059 verbose("jump out of range from insn %d to %d\n", t, w);
3060 return -EINVAL;
3061 }
3062
f1bca824
AS
3063 if (e == BRANCH)
3064 /* mark branch target for state pruning */
3065 env->explored_states[w] = STATE_LIST_MARK;
3066
475fb78f
AS
3067 if (insn_state[w] == 0) {
3068 /* tree-edge */
3069 insn_state[t] = DISCOVERED | e;
3070 insn_state[w] = DISCOVERED;
3071 if (cur_stack >= env->prog->len)
3072 return -E2BIG;
3073 insn_stack[cur_stack++] = w;
3074 return 1;
3075 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3076 verbose("back-edge from insn %d to %d\n", t, w);
3077 return -EINVAL;
3078 } else if (insn_state[w] == EXPLORED) {
3079 /* forward- or cross-edge */
3080 insn_state[t] = DISCOVERED | e;
3081 } else {
3082 verbose("insn state internal bug\n");
3083 return -EFAULT;
3084 }
3085 return 0;
3086}
3087
3088/* non-recursive depth-first-search to detect loops in BPF program
3089 * loop == back-edge in directed graph
3090 */
58e2af8b 3091static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3092{
3093 struct bpf_insn *insns = env->prog->insnsi;
3094 int insn_cnt = env->prog->len;
3095 int ret = 0;
3096 int i, t;
3097
3098 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3099 if (!insn_state)
3100 return -ENOMEM;
3101
3102 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3103 if (!insn_stack) {
3104 kfree(insn_state);
3105 return -ENOMEM;
3106 }
3107
3108 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3109 insn_stack[0] = 0; /* 0 is the first instruction */
3110 cur_stack = 1;
3111
3112peek_stack:
3113 if (cur_stack == 0)
3114 goto check_state;
3115 t = insn_stack[cur_stack - 1];
3116
3117 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3118 u8 opcode = BPF_OP(insns[t].code);
3119
3120 if (opcode == BPF_EXIT) {
3121 goto mark_explored;
3122 } else if (opcode == BPF_CALL) {
3123 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3124 if (ret == 1)
3125 goto peek_stack;
3126 else if (ret < 0)
3127 goto err_free;
07016151
DB
3128 if (t + 1 < insn_cnt)
3129 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3130 } else if (opcode == BPF_JA) {
3131 if (BPF_SRC(insns[t].code) != BPF_K) {
3132 ret = -EINVAL;
3133 goto err_free;
3134 }
3135 /* unconditional jump with single edge */
3136 ret = push_insn(t, t + insns[t].off + 1,
3137 FALLTHROUGH, env);
3138 if (ret == 1)
3139 goto peek_stack;
3140 else if (ret < 0)
3141 goto err_free;
f1bca824
AS
3142 /* tell verifier to check for equivalent states
3143 * after every call and jump
3144 */
c3de6317
AS
3145 if (t + 1 < insn_cnt)
3146 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3147 } else {
3148 /* conditional jump with two edges */
3c2ce60b 3149 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3150 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3151 if (ret == 1)
3152 goto peek_stack;
3153 else if (ret < 0)
3154 goto err_free;
3155
3156 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3157 if (ret == 1)
3158 goto peek_stack;
3159 else if (ret < 0)
3160 goto err_free;
3161 }
3162 } else {
3163 /* all other non-branch instructions with single
3164 * fall-through edge
3165 */
3166 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3167 if (ret == 1)
3168 goto peek_stack;
3169 else if (ret < 0)
3170 goto err_free;
3171 }
3172
3173mark_explored:
3174 insn_state[t] = EXPLORED;
3175 if (cur_stack-- <= 0) {
3176 verbose("pop stack internal bug\n");
3177 ret = -EFAULT;
3178 goto err_free;
3179 }
3180 goto peek_stack;
3181
3182check_state:
3183 for (i = 0; i < insn_cnt; i++) {
3184 if (insn_state[i] != EXPLORED) {
3185 verbose("unreachable insn %d\n", i);
3186 ret = -EINVAL;
3187 goto err_free;
3188 }
3189 }
3190 ret = 0; /* cfg looks good */
3191
3192err_free:
3193 kfree(insn_state);
3194 kfree(insn_stack);
3195 return ret;
3196}
3197
f1174f77
EC
3198/* check %cur's range satisfies %old's */
3199static bool range_within(struct bpf_reg_state *old,
3200 struct bpf_reg_state *cur)
3201{
b03c9f9f
EC
3202 return old->umin_value <= cur->umin_value &&
3203 old->umax_value >= cur->umax_value &&
3204 old->smin_value <= cur->smin_value &&
3205 old->smax_value >= cur->smax_value;
f1174f77
EC
3206}
3207
3208/* Maximum number of register states that can exist at once */
3209#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3210struct idpair {
3211 u32 old;
3212 u32 cur;
3213};
3214
3215/* If in the old state two registers had the same id, then they need to have
3216 * the same id in the new state as well. But that id could be different from
3217 * the old state, so we need to track the mapping from old to new ids.
3218 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3219 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3220 * regs with a different old id could still have new id 9, we don't care about
3221 * that.
3222 * So we look through our idmap to see if this old id has been seen before. If
3223 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3224 */
f1174f77 3225static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3226{
f1174f77 3227 unsigned int i;
969bf05e 3228
f1174f77
EC
3229 for (i = 0; i < ID_MAP_SIZE; i++) {
3230 if (!idmap[i].old) {
3231 /* Reached an empty slot; haven't seen this id before */
3232 idmap[i].old = old_id;
3233 idmap[i].cur = cur_id;
3234 return true;
3235 }
3236 if (idmap[i].old == old_id)
3237 return idmap[i].cur == cur_id;
3238 }
3239 /* We ran out of idmap slots, which should be impossible */
3240 WARN_ON_ONCE(1);
3241 return false;
3242}
3243
3244/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3245static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3246 struct idpair *idmap)
f1174f77 3247{
dc503a8a
EC
3248 if (!(rold->live & REG_LIVE_READ))
3249 /* explored state didn't use this */
3250 return true;
3251
3252 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3253 return true;
3254
f1174f77
EC
3255 if (rold->type == NOT_INIT)
3256 /* explored state can't have used this */
969bf05e 3257 return true;
f1174f77
EC
3258 if (rcur->type == NOT_INIT)
3259 return false;
3260 switch (rold->type) {
3261 case SCALAR_VALUE:
3262 if (rcur->type == SCALAR_VALUE) {
3263 /* new val must satisfy old val knowledge */
3264 return range_within(rold, rcur) &&
3265 tnum_in(rold->var_off, rcur->var_off);
3266 } else {
3267 /* if we knew anything about the old value, we're not
3268 * equal, because we can't know anything about the
3269 * scalar value of the pointer in the new value.
3270 */
b03c9f9f
EC
3271 return rold->umin_value == 0 &&
3272 rold->umax_value == U64_MAX &&
3273 rold->smin_value == S64_MIN &&
3274 rold->smax_value == S64_MAX &&
f1174f77
EC
3275 tnum_is_unknown(rold->var_off);
3276 }
3277 case PTR_TO_MAP_VALUE:
1b688a19
EC
3278 /* If the new min/max/var_off satisfy the old ones and
3279 * everything else matches, we are OK.
3280 * We don't care about the 'id' value, because nothing
3281 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3282 */
3283 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3284 range_within(rold, rcur) &&
3285 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3286 case PTR_TO_MAP_VALUE_OR_NULL:
3287 /* a PTR_TO_MAP_VALUE could be safe to use as a
3288 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3289 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3290 * checked, doing so could have affected others with the same
3291 * id, and we can't check for that because we lost the id when
3292 * we converted to a PTR_TO_MAP_VALUE.
3293 */
3294 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3295 return false;
3296 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3297 return false;
3298 /* Check our ids match any regs they're supposed to */
3299 return check_ids(rold->id, rcur->id, idmap);
3300 case PTR_TO_PACKET:
3301 if (rcur->type != PTR_TO_PACKET)
3302 return false;
3303 /* We must have at least as much range as the old ptr
3304 * did, so that any accesses which were safe before are
3305 * still safe. This is true even if old range < old off,
3306 * since someone could have accessed through (ptr - k), or
3307 * even done ptr -= k in a register, to get a safe access.
3308 */
3309 if (rold->range > rcur->range)
3310 return false;
3311 /* If the offsets don't match, we can't trust our alignment;
3312 * nor can we be sure that we won't fall out of range.
3313 */
3314 if (rold->off != rcur->off)
3315 return false;
3316 /* id relations must be preserved */
3317 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3318 return false;
3319 /* new val must satisfy old val knowledge */
3320 return range_within(rold, rcur) &&
3321 tnum_in(rold->var_off, rcur->var_off);
3322 case PTR_TO_CTX:
3323 case CONST_PTR_TO_MAP:
3324 case PTR_TO_STACK:
3325 case PTR_TO_PACKET_END:
3326 /* Only valid matches are exact, which memcmp() above
3327 * would have accepted
3328 */
3329 default:
3330 /* Don't know what's going on, just say it's not safe */
3331 return false;
3332 }
969bf05e 3333
f1174f77
EC
3334 /* Shouldn't get here; if we do, say it's not safe */
3335 WARN_ON_ONCE(1);
969bf05e
AS
3336 return false;
3337}
3338
f1bca824
AS
3339/* compare two verifier states
3340 *
3341 * all states stored in state_list are known to be valid, since
3342 * verifier reached 'bpf_exit' instruction through them
3343 *
3344 * this function is called when verifier exploring different branches of
3345 * execution popped from the state stack. If it sees an old state that has
3346 * more strict register state and more strict stack state then this execution
3347 * branch doesn't need to be explored further, since verifier already
3348 * concluded that more strict state leads to valid finish.
3349 *
3350 * Therefore two states are equivalent if register state is more conservative
3351 * and explored stack state is more conservative than the current one.
3352 * Example:
3353 * explored current
3354 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3355 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3356 *
3357 * In other words if current stack state (one being explored) has more
3358 * valid slots than old one that already passed validation, it means
3359 * the verifier can stop exploring and conclude that current state is valid too
3360 *
3361 * Similarly with registers. If explored state has register type as invalid
3362 * whereas register type in current state is meaningful, it means that
3363 * the current state will reach 'bpf_exit' instruction safely
3364 */
48461135
JB
3365static bool states_equal(struct bpf_verifier_env *env,
3366 struct bpf_verifier_state *old,
58e2af8b 3367 struct bpf_verifier_state *cur)
f1bca824 3368{
f1174f77
EC
3369 struct idpair *idmap;
3370 bool ret = false;
f1bca824
AS
3371 int i;
3372
f1174f77
EC
3373 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3374 /* If we failed to allocate the idmap, just say it's not safe */
3375 if (!idmap)
1a0dc1ac 3376 return false;
f1174f77
EC
3377
3378 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3379 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3380 goto out_free;
f1bca824
AS
3381 }
3382
3383 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3384 if (old->stack_slot_type[i] == STACK_INVALID)
3385 continue;
3386 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3387 /* Ex: old explored (safe) state has STACK_SPILL in
3388 * this stack slot, but current has has STACK_MISC ->
3389 * this verifier states are not equivalent,
3390 * return false to continue verification of this path
3391 */
f1174f77 3392 goto out_free;
9c399760
AS
3393 if (i % BPF_REG_SIZE)
3394 continue;
d25da6ca
DB
3395 if (old->stack_slot_type[i] != STACK_SPILL)
3396 continue;
f1174f77
EC
3397 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3398 &cur->spilled_regs[i / BPF_REG_SIZE],
1b688a19 3399 idmap))
f1174f77
EC
3400 /* when explored and current stack slot are both storing
3401 * spilled registers, check that stored pointers types
9c399760
AS
3402 * are the same as well.
3403 * Ex: explored safe path could have stored
f1174f77 3404 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3405 * but current path has stored:
f1174f77 3406 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3407 * such verifier states are not equivalent.
3408 * return false to continue verification of this path
3409 */
f1174f77 3410 goto out_free;
9c399760
AS
3411 else
3412 continue;
f1bca824 3413 }
f1174f77
EC
3414 ret = true;
3415out_free:
3416 kfree(idmap);
3417 return ret;
f1bca824
AS
3418}
3419
8e9cd9ce
EC
3420/* A write screens off any subsequent reads; but write marks come from the
3421 * straight-line code between a state and its parent. When we arrive at a
3422 * jump target (in the first iteration of the propagate_liveness() loop),
3423 * we didn't arrive by the straight-line code, so read marks in state must
3424 * propagate to parent regardless of state's write marks.
3425 */
dc503a8a
EC
3426static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3427 struct bpf_verifier_state *parent)
3428{
63f45f84 3429 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3430 bool touched = false; /* any changes made? */
3431 int i;
3432
3433 if (!parent)
3434 return touched;
3435 /* Propagate read liveness of registers... */
3436 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3437 /* We don't need to worry about FP liveness because it's read-only */
3438 for (i = 0; i < BPF_REG_FP; i++) {
3439 if (parent->regs[i].live & REG_LIVE_READ)
3440 continue;
63f45f84
EC
3441 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3442 continue;
3443 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3444 parent->regs[i].live |= REG_LIVE_READ;
3445 touched = true;
3446 }
3447 }
3448 /* ... and stack slots */
3449 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3450 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3451 continue;
3452 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3453 continue;
3454 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3455 continue;
63f45f84
EC
3456 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3457 continue;
3458 if (state->spilled_regs[i].live & REG_LIVE_READ) {
1ab2de2b 3459 parent->spilled_regs[i].live |= REG_LIVE_READ;
dc503a8a
EC
3460 touched = true;
3461 }
3462 }
3463 return touched;
3464}
3465
8e9cd9ce
EC
3466/* "parent" is "a state from which we reach the current state", but initially
3467 * it is not the state->parent (i.e. "the state whose straight-line code leads
3468 * to the current state"), instead it is the state that happened to arrive at
3469 * a (prunable) equivalent of the current state. See comment above
3470 * do_propagate_liveness() for consequences of this.
3471 * This function is just a more efficient way of calling mark_reg_read() or
3472 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3473 * though it requires that parent != state->parent in the call arguments.
3474 */
dc503a8a
EC
3475static void propagate_liveness(const struct bpf_verifier_state *state,
3476 struct bpf_verifier_state *parent)
3477{
3478 while (do_propagate_liveness(state, parent)) {
3479 /* Something changed, so we need to feed those changes onward */
3480 state = parent;
3481 parent = state->parent;
3482 }
3483}
3484
58e2af8b 3485static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3486{
58e2af8b
JK
3487 struct bpf_verifier_state_list *new_sl;
3488 struct bpf_verifier_state_list *sl;
dc503a8a 3489 int i;
f1bca824
AS
3490
3491 sl = env->explored_states[insn_idx];
3492 if (!sl)
3493 /* this 'insn_idx' instruction wasn't marked, so we will not
3494 * be doing state search here
3495 */
3496 return 0;
3497
3498 while (sl != STATE_LIST_MARK) {
dc503a8a 3499 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3500 /* reached equivalent register/stack state,
dc503a8a
EC
3501 * prune the search.
3502 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3503 * If we have any write marks in env->cur_state, they
3504 * will prevent corresponding reads in the continuation
3505 * from reaching our parent (an explored_state). Our
3506 * own state will get the read marks recorded, but
3507 * they'll be immediately forgotten as we're pruning
3508 * this state and will pop a new one.
f1bca824 3509 */
dc503a8a 3510 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3511 return 1;
dc503a8a 3512 }
f1bca824
AS
3513 sl = sl->next;
3514 }
3515
3516 /* there were no equivalent states, remember current one.
3517 * technically the current state is not proven to be safe yet,
3518 * but it will either reach bpf_exit (which means it's safe) or
3519 * it will be rejected. Since there are no loops, we won't be
3520 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3521 */
58e2af8b 3522 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3523 if (!new_sl)
3524 return -ENOMEM;
3525
3526 /* add new state to the head of linked list */
3527 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3528 new_sl->next = env->explored_states[insn_idx];
3529 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3530 /* connect new state to parentage chain */
3531 env->cur_state.parent = &new_sl->state;
8e9cd9ce
EC
3532 /* clear write marks in current state: the writes we did are not writes
3533 * our child did, so they don't screen off its reads from us.
3534 * (There are no read marks in current state, because reads always mark
3535 * their parent and current state never has children yet. Only
3536 * explored_states can get read marks.)
3537 */
dc503a8a
EC
3538 for (i = 0; i < BPF_REG_FP; i++)
3539 env->cur_state.regs[i].live = REG_LIVE_NONE;
3540 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3541 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3542 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3543 return 0;
3544}
3545
13a27dfc
JK
3546static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3547 int insn_idx, int prev_insn_idx)
3548{
3549 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3550 return 0;
3551
3552 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3553}
3554
58e2af8b 3555static int do_check(struct bpf_verifier_env *env)
17a52670 3556{
58e2af8b 3557 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3558 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3559 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3560 int insn_cnt = env->prog->len;
3561 int insn_idx, prev_insn_idx = 0;
3562 int insn_processed = 0;
3563 bool do_print_state = false;
3564
3565 init_reg_state(regs);
dc503a8a 3566 state->parent = NULL;
17a52670
AS
3567 insn_idx = 0;
3568 for (;;) {
3569 struct bpf_insn *insn;
3570 u8 class;
3571 int err;
3572
3573 if (insn_idx >= insn_cnt) {
3574 verbose("invalid insn idx %d insn_cnt %d\n",
3575 insn_idx, insn_cnt);
3576 return -EFAULT;
3577 }
3578
3579 insn = &insns[insn_idx];
3580 class = BPF_CLASS(insn->code);
3581
07016151 3582 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3583 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3584 insn_processed);
3585 return -E2BIG;
3586 }
3587
f1bca824
AS
3588 err = is_state_visited(env, insn_idx);
3589 if (err < 0)
3590 return err;
3591 if (err == 1) {
3592 /* found equivalent state, can prune the search */
3593 if (log_level) {
3594 if (do_print_state)
3595 verbose("\nfrom %d to %d: safe\n",
3596 prev_insn_idx, insn_idx);
3597 else
3598 verbose("%d: safe\n", insn_idx);
3599 }
3600 goto process_bpf_exit;
3601 }
3602
3c2ce60b
DB
3603 if (need_resched())
3604 cond_resched();
3605
c5fc9692
DM
3606 if (log_level > 1 || (log_level && do_print_state)) {
3607 if (log_level > 1)
3608 verbose("%d:", insn_idx);
3609 else
3610 verbose("\nfrom %d to %d:",
3611 prev_insn_idx, insn_idx);
1a0dc1ac 3612 print_verifier_state(&env->cur_state);
17a52670
AS
3613 do_print_state = false;
3614 }
3615
3616 if (log_level) {
3617 verbose("%d: ", insn_idx);
0d0e5769 3618 print_bpf_insn(env, insn);
17a52670
AS
3619 }
3620
13a27dfc
JK
3621 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3622 if (err)
3623 return err;
3624
17a52670 3625 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3626 err = check_alu_op(env, insn);
17a52670
AS
3627 if (err)
3628 return err;
3629
3630 } else if (class == BPF_LDX) {
3df126f3 3631 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3632
3633 /* check for reserved fields is already done */
3634
17a52670 3635 /* check src operand */
dc503a8a 3636 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3637 if (err)
3638 return err;
3639
dc503a8a 3640 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3641 if (err)
3642 return err;
3643
725f9dcd
AS
3644 src_reg_type = regs[insn->src_reg].type;
3645
17a52670
AS
3646 /* check that memory (src_reg + off) is readable,
3647 * the state of dst_reg will be updated by this func
3648 */
31fd8581 3649 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3650 BPF_SIZE(insn->code), BPF_READ,
3651 insn->dst_reg);
3652 if (err)
3653 return err;
3654
3df126f3
JK
3655 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3656
3657 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3658 /* saw a valid insn
3659 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3660 * save type to validate intersecting paths
9bac3d6d 3661 */
3df126f3 3662 *prev_src_type = src_reg_type;
9bac3d6d 3663
3df126f3 3664 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3665 (src_reg_type == PTR_TO_CTX ||
3df126f3 3666 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3667 /* ABuser program is trying to use the same insn
3668 * dst_reg = *(u32*) (src_reg + off)
3669 * with different pointer types:
3670 * src_reg == ctx in one branch and
3671 * src_reg == stack|map in some other branch.
3672 * Reject it.
3673 */
3674 verbose("same insn cannot be used with different pointers\n");
3675 return -EINVAL;
3676 }
3677
17a52670 3678 } else if (class == BPF_STX) {
3df126f3 3679 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3680
17a52670 3681 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3682 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3683 if (err)
3684 return err;
3685 insn_idx++;
3686 continue;
3687 }
3688
17a52670 3689 /* check src1 operand */
dc503a8a 3690 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3691 if (err)
3692 return err;
3693 /* check src2 operand */
dc503a8a 3694 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3695 if (err)
3696 return err;
3697
d691f9e8
AS
3698 dst_reg_type = regs[insn->dst_reg].type;
3699
17a52670 3700 /* check that memory (dst_reg + off) is writeable */
31fd8581 3701 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3702 BPF_SIZE(insn->code), BPF_WRITE,
3703 insn->src_reg);
3704 if (err)
3705 return err;
3706
3df126f3
JK
3707 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3708
3709 if (*prev_dst_type == NOT_INIT) {
3710 *prev_dst_type = dst_reg_type;
3711 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3712 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3713 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3714 verbose("same insn cannot be used with different pointers\n");
3715 return -EINVAL;
3716 }
3717
17a52670
AS
3718 } else if (class == BPF_ST) {
3719 if (BPF_MODE(insn->code) != BPF_MEM ||
3720 insn->src_reg != BPF_REG_0) {
3721 verbose("BPF_ST uses reserved fields\n");
3722 return -EINVAL;
3723 }
3724 /* check src operand */
dc503a8a 3725 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3726 if (err)
3727 return err;
3728
3729 /* check that memory (dst_reg + off) is writeable */
31fd8581 3730 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3731 BPF_SIZE(insn->code), BPF_WRITE,
3732 -1);
3733 if (err)
3734 return err;
3735
3736 } else if (class == BPF_JMP) {
3737 u8 opcode = BPF_OP(insn->code);
3738
3739 if (opcode == BPF_CALL) {
3740 if (BPF_SRC(insn->code) != BPF_K ||
3741 insn->off != 0 ||
3742 insn->src_reg != BPF_REG_0 ||
3743 insn->dst_reg != BPF_REG_0) {
3744 verbose("BPF_CALL uses reserved fields\n");
3745 return -EINVAL;
3746 }
3747
81ed18ab 3748 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3749 if (err)
3750 return err;
3751
3752 } else if (opcode == BPF_JA) {
3753 if (BPF_SRC(insn->code) != BPF_K ||
3754 insn->imm != 0 ||
3755 insn->src_reg != BPF_REG_0 ||
3756 insn->dst_reg != BPF_REG_0) {
3757 verbose("BPF_JA uses reserved fields\n");
3758 return -EINVAL;
3759 }
3760
3761 insn_idx += insn->off + 1;
3762 continue;
3763
3764 } else if (opcode == BPF_EXIT) {
3765 if (BPF_SRC(insn->code) != BPF_K ||
3766 insn->imm != 0 ||
3767 insn->src_reg != BPF_REG_0 ||
3768 insn->dst_reg != BPF_REG_0) {
3769 verbose("BPF_EXIT uses reserved fields\n");
3770 return -EINVAL;
3771 }
3772
3773 /* eBPF calling convetion is such that R0 is used
3774 * to return the value from eBPF program.
3775 * Make sure that it's readable at this time
3776 * of bpf_exit, which means that program wrote
3777 * something into it earlier
3778 */
dc503a8a 3779 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3780 if (err)
3781 return err;
3782
1be7f75d
AS
3783 if (is_pointer_value(env, BPF_REG_0)) {
3784 verbose("R0 leaks addr as return value\n");
3785 return -EACCES;
3786 }
3787
f1bca824 3788process_bpf_exit:
17a52670
AS
3789 insn_idx = pop_stack(env, &prev_insn_idx);
3790 if (insn_idx < 0) {
3791 break;
3792 } else {
3793 do_print_state = true;
3794 continue;
3795 }
3796 } else {
3797 err = check_cond_jmp_op(env, insn, &insn_idx);
3798 if (err)
3799 return err;
3800 }
3801 } else if (class == BPF_LD) {
3802 u8 mode = BPF_MODE(insn->code);
3803
3804 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3805 err = check_ld_abs(env, insn);
3806 if (err)
3807 return err;
3808
17a52670
AS
3809 } else if (mode == BPF_IMM) {
3810 err = check_ld_imm(env, insn);
3811 if (err)
3812 return err;
3813
3814 insn_idx++;
3815 } else {
3816 verbose("invalid BPF_LD mode\n");
3817 return -EINVAL;
3818 }
3819 } else {
3820 verbose("unknown insn class %d\n", class);
3821 return -EINVAL;
3822 }
3823
3824 insn_idx++;
3825 }
3826
8726679a
AS
3827 verbose("processed %d insns, stack depth %d\n",
3828 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3829 return 0;
3830}
3831
56f668df
MKL
3832static int check_map_prealloc(struct bpf_map *map)
3833{
3834 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3835 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3836 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3837 !(map->map_flags & BPF_F_NO_PREALLOC);
3838}
3839
fdc15d38
AS
3840static int check_map_prog_compatibility(struct bpf_map *map,
3841 struct bpf_prog *prog)
3842
3843{
56f668df
MKL
3844 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3845 * preallocated hash maps, since doing memory allocation
3846 * in overflow_handler can crash depending on where nmi got
3847 * triggered.
3848 */
3849 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3850 if (!check_map_prealloc(map)) {
3851 verbose("perf_event programs can only use preallocated hash map\n");
3852 return -EINVAL;
3853 }
3854 if (map->inner_map_meta &&
3855 !check_map_prealloc(map->inner_map_meta)) {
3856 verbose("perf_event programs can only use preallocated inner hash map\n");
3857 return -EINVAL;
3858 }
fdc15d38
AS
3859 }
3860 return 0;
3861}
3862
0246e64d
AS
3863/* look for pseudo eBPF instructions that access map FDs and
3864 * replace them with actual map pointers
3865 */
58e2af8b 3866static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3867{
3868 struct bpf_insn *insn = env->prog->insnsi;
3869 int insn_cnt = env->prog->len;
fdc15d38 3870 int i, j, err;
0246e64d 3871
f1f7714e 3872 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3873 if (err)
3874 return err;
3875
0246e64d 3876 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3877 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3878 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3879 verbose("BPF_LDX uses reserved fields\n");
3880 return -EINVAL;
3881 }
3882
d691f9e8
AS
3883 if (BPF_CLASS(insn->code) == BPF_STX &&
3884 ((BPF_MODE(insn->code) != BPF_MEM &&
3885 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3886 verbose("BPF_STX uses reserved fields\n");
3887 return -EINVAL;
3888 }
3889
0246e64d
AS
3890 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3891 struct bpf_map *map;
3892 struct fd f;
3893
3894 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3895 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3896 insn[1].off != 0) {
3897 verbose("invalid bpf_ld_imm64 insn\n");
3898 return -EINVAL;
3899 }
3900
3901 if (insn->src_reg == 0)
3902 /* valid generic load 64-bit imm */
3903 goto next_insn;
3904
3905 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3906 verbose("unrecognized bpf_ld_imm64 insn\n");
3907 return -EINVAL;
3908 }
3909
3910 f = fdget(insn->imm);
c2101297 3911 map = __bpf_map_get(f);
0246e64d
AS
3912 if (IS_ERR(map)) {
3913 verbose("fd %d is not pointing to valid bpf_map\n",
3914 insn->imm);
0246e64d
AS
3915 return PTR_ERR(map);
3916 }
3917
fdc15d38
AS
3918 err = check_map_prog_compatibility(map, env->prog);
3919 if (err) {
3920 fdput(f);
3921 return err;
3922 }
3923
0246e64d
AS
3924 /* store map pointer inside BPF_LD_IMM64 instruction */
3925 insn[0].imm = (u32) (unsigned long) map;
3926 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3927
3928 /* check whether we recorded this map already */
3929 for (j = 0; j < env->used_map_cnt; j++)
3930 if (env->used_maps[j] == map) {
3931 fdput(f);
3932 goto next_insn;
3933 }
3934
3935 if (env->used_map_cnt >= MAX_USED_MAPS) {
3936 fdput(f);
3937 return -E2BIG;
3938 }
3939
0246e64d
AS
3940 /* hold the map. If the program is rejected by verifier,
3941 * the map will be released by release_maps() or it
3942 * will be used by the valid program until it's unloaded
3943 * and all maps are released in free_bpf_prog_info()
3944 */
92117d84
AS
3945 map = bpf_map_inc(map, false);
3946 if (IS_ERR(map)) {
3947 fdput(f);
3948 return PTR_ERR(map);
3949 }
3950 env->used_maps[env->used_map_cnt++] = map;
3951
0246e64d
AS
3952 fdput(f);
3953next_insn:
3954 insn++;
3955 i++;
3956 }
3957 }
3958
3959 /* now all pseudo BPF_LD_IMM64 instructions load valid
3960 * 'struct bpf_map *' into a register instead of user map_fd.
3961 * These pointers will be used later by verifier to validate map access.
3962 */
3963 return 0;
3964}
3965
3966/* drop refcnt of maps used by the rejected program */
58e2af8b 3967static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3968{
3969 int i;
3970
3971 for (i = 0; i < env->used_map_cnt; i++)
3972 bpf_map_put(env->used_maps[i]);
3973}
3974
3975/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3976static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3977{
3978 struct bpf_insn *insn = env->prog->insnsi;
3979 int insn_cnt = env->prog->len;
3980 int i;
3981
3982 for (i = 0; i < insn_cnt; i++, insn++)
3983 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3984 insn->src_reg = 0;
3985}
3986
8041902d
AS
3987/* single env->prog->insni[off] instruction was replaced with the range
3988 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3989 * [0, off) and [off, end) to new locations, so the patched range stays zero
3990 */
3991static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3992 u32 off, u32 cnt)
3993{
3994 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3995
3996 if (cnt == 1)
3997 return 0;
3998 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3999 if (!new_data)
4000 return -ENOMEM;
4001 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4002 memcpy(new_data + off + cnt - 1, old_data + off,
4003 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4004 env->insn_aux_data = new_data;
4005 vfree(old_data);
4006 return 0;
4007}
4008
4009static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4010 const struct bpf_insn *patch, u32 len)
4011{
4012 struct bpf_prog *new_prog;
4013
4014 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4015 if (!new_prog)
4016 return NULL;
4017 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4018 return NULL;
4019 return new_prog;
4020}
4021
9bac3d6d
AS
4022/* convert load instructions that access fields of 'struct __sk_buff'
4023 * into sequence of instructions that access fields of 'struct sk_buff'
4024 */
58e2af8b 4025static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4026{
36bbef52 4027 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 4028 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4029 const int insn_cnt = env->prog->len;
36bbef52 4030 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4031 struct bpf_prog *new_prog;
d691f9e8 4032 enum bpf_access_type type;
f96da094
DB
4033 bool is_narrower_load;
4034 u32 target_size;
9bac3d6d 4035
36bbef52
DB
4036 if (ops->gen_prologue) {
4037 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4038 env->prog);
4039 if (cnt >= ARRAY_SIZE(insn_buf)) {
4040 verbose("bpf verifier is misconfigured\n");
4041 return -EINVAL;
4042 } else if (cnt) {
8041902d 4043 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4044 if (!new_prog)
4045 return -ENOMEM;
8041902d 4046
36bbef52 4047 env->prog = new_prog;
3df126f3 4048 delta += cnt - 1;
36bbef52
DB
4049 }
4050 }
4051
4052 if (!ops->convert_ctx_access)
9bac3d6d
AS
4053 return 0;
4054
3df126f3 4055 insn = env->prog->insnsi + delta;
36bbef52 4056
9bac3d6d 4057 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4058 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4059 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4060 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4061 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4062 type = BPF_READ;
62c7989b
DB
4063 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4064 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4065 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4066 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4067 type = BPF_WRITE;
4068 else
9bac3d6d
AS
4069 continue;
4070
8041902d 4071 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4072 continue;
9bac3d6d 4073
31fd8581 4074 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4075 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4076
4077 /* If the read access is a narrower load of the field,
4078 * convert to a 4/8-byte load, to minimum program type specific
4079 * convert_ctx_access changes. If conversion is successful,
4080 * we will apply proper mask to the result.
4081 */
f96da094 4082 is_narrower_load = size < ctx_field_size;
31fd8581 4083 if (is_narrower_load) {
f96da094
DB
4084 u32 off = insn->off;
4085 u8 size_code;
4086
4087 if (type == BPF_WRITE) {
4088 verbose("bpf verifier narrow ctx access misconfigured\n");
4089 return -EINVAL;
4090 }
31fd8581 4091
f96da094 4092 size_code = BPF_H;
31fd8581
YS
4093 if (ctx_field_size == 4)
4094 size_code = BPF_W;
4095 else if (ctx_field_size == 8)
4096 size_code = BPF_DW;
f96da094 4097
31fd8581
YS
4098 insn->off = off & ~(ctx_field_size - 1);
4099 insn->code = BPF_LDX | BPF_MEM | size_code;
4100 }
f96da094
DB
4101
4102 target_size = 0;
4103 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4104 &target_size);
4105 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4106 (ctx_field_size && !target_size)) {
9bac3d6d
AS
4107 verbose("bpf verifier is misconfigured\n");
4108 return -EINVAL;
4109 }
f96da094
DB
4110
4111 if (is_narrower_load && size < target_size) {
31fd8581
YS
4112 if (ctx_field_size <= 4)
4113 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4114 (1 << size * 8) - 1);
31fd8581
YS
4115 else
4116 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4117 (1 << size * 8) - 1);
31fd8581 4118 }
9bac3d6d 4119
8041902d 4120 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4121 if (!new_prog)
4122 return -ENOMEM;
4123
3df126f3 4124 delta += cnt - 1;
9bac3d6d
AS
4125
4126 /* keep walking new program and skip insns we just inserted */
4127 env->prog = new_prog;
3df126f3 4128 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4129 }
4130
4131 return 0;
4132}
4133
79741b3b 4134/* fixup insn->imm field of bpf_call instructions
81ed18ab 4135 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4136 *
4137 * this function is called after eBPF program passed verification
4138 */
79741b3b 4139static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4140{
79741b3b
AS
4141 struct bpf_prog *prog = env->prog;
4142 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4143 const struct bpf_func_proto *fn;
79741b3b 4144 const int insn_cnt = prog->len;
81ed18ab
AS
4145 struct bpf_insn insn_buf[16];
4146 struct bpf_prog *new_prog;
4147 struct bpf_map *map_ptr;
4148 int i, cnt, delta = 0;
e245c5c6 4149
79741b3b
AS
4150 for (i = 0; i < insn_cnt; i++, insn++) {
4151 if (insn->code != (BPF_JMP | BPF_CALL))
4152 continue;
e245c5c6 4153
79741b3b
AS
4154 if (insn->imm == BPF_FUNC_get_route_realm)
4155 prog->dst_needed = 1;
4156 if (insn->imm == BPF_FUNC_get_prandom_u32)
4157 bpf_user_rnd_init_once();
79741b3b 4158 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4159 /* If we tail call into other programs, we
4160 * cannot make any assumptions since they can
4161 * be replaced dynamically during runtime in
4162 * the program array.
4163 */
4164 prog->cb_access = 1;
80a58d02 4165 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4166
79741b3b
AS
4167 /* mark bpf_tail_call as different opcode to avoid
4168 * conditional branch in the interpeter for every normal
4169 * call and to prevent accidental JITing by JIT compiler
4170 * that doesn't support bpf_tail_call yet
e245c5c6 4171 */
79741b3b 4172 insn->imm = 0;
71189fa9 4173 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4174 continue;
4175 }
e245c5c6 4176
89c63074
DB
4177 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4178 * handlers are currently limited to 64 bit only.
4179 */
4180 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4181 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4182 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4183 if (map_ptr == BPF_MAP_PTR_POISON ||
4184 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4185 goto patch_call_imm;
4186
4187 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4188 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4189 verbose("bpf verifier is misconfigured\n");
4190 return -EINVAL;
4191 }
4192
4193 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4194 cnt);
4195 if (!new_prog)
4196 return -ENOMEM;
4197
4198 delta += cnt - 1;
4199
4200 /* keep walking new program and skip insns we just inserted */
4201 env->prog = prog = new_prog;
4202 insn = new_prog->insnsi + i + delta;
4203 continue;
4204 }
4205
109980b8
DB
4206 if (insn->imm == BPF_FUNC_redirect_map) {
4207 u64 addr = (unsigned long)prog;
4208 struct bpf_insn r4_ld[] = {
4209 BPF_LD_IMM64(BPF_REG_4, addr),
4210 *insn,
4211 };
4212 cnt = ARRAY_SIZE(r4_ld);
4213
4214 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4215 if (!new_prog)
4216 return -ENOMEM;
4217
4218 delta += cnt - 1;
4219 env->prog = prog = new_prog;
4220 insn = new_prog->insnsi + i + delta;
4221 }
81ed18ab 4222patch_call_imm:
79741b3b
AS
4223 fn = prog->aux->ops->get_func_proto(insn->imm);
4224 /* all functions that have prototype and verifier allowed
4225 * programs to call them, must be real in-kernel functions
4226 */
4227 if (!fn->func) {
4228 verbose("kernel subsystem misconfigured func %s#%d\n",
4229 func_id_name(insn->imm), insn->imm);
4230 return -EFAULT;
e245c5c6 4231 }
79741b3b 4232 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4233 }
e245c5c6 4234
79741b3b
AS
4235 return 0;
4236}
e245c5c6 4237
58e2af8b 4238static void free_states(struct bpf_verifier_env *env)
f1bca824 4239{
58e2af8b 4240 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4241 int i;
4242
4243 if (!env->explored_states)
4244 return;
4245
4246 for (i = 0; i < env->prog->len; i++) {
4247 sl = env->explored_states[i];
4248
4249 if (sl)
4250 while (sl != STATE_LIST_MARK) {
4251 sln = sl->next;
4252 kfree(sl);
4253 sl = sln;
4254 }
4255 }
4256
4257 kfree(env->explored_states);
4258}
4259
9bac3d6d 4260int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4261{
cbd35700 4262 char __user *log_ubuf = NULL;
58e2af8b 4263 struct bpf_verifier_env *env;
51580e79
AS
4264 int ret = -EINVAL;
4265
58e2af8b 4266 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4267 * allocate/free it every time bpf_check() is called
4268 */
58e2af8b 4269 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4270 if (!env)
4271 return -ENOMEM;
4272
3df126f3
JK
4273 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4274 (*prog)->len);
4275 ret = -ENOMEM;
4276 if (!env->insn_aux_data)
4277 goto err_free_env;
9bac3d6d 4278 env->prog = *prog;
0246e64d 4279
cbd35700
AS
4280 /* grab the mutex to protect few globals used by verifier */
4281 mutex_lock(&bpf_verifier_lock);
4282
4283 if (attr->log_level || attr->log_buf || attr->log_size) {
4284 /* user requested verbose verifier output
4285 * and supplied buffer to store the verification trace
4286 */
4287 log_level = attr->log_level;
4288 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4289 log_size = attr->log_size;
4290 log_len = 0;
4291
4292 ret = -EINVAL;
4293 /* log_* values have to be sane */
4294 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4295 log_level == 0 || log_ubuf == NULL)
3df126f3 4296 goto err_unlock;
cbd35700
AS
4297
4298 ret = -ENOMEM;
4299 log_buf = vmalloc(log_size);
4300 if (!log_buf)
3df126f3 4301 goto err_unlock;
cbd35700
AS
4302 } else {
4303 log_level = 0;
4304 }
1ad2f583
DB
4305
4306 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4307 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4308 env->strict_alignment = true;
cbd35700 4309
0246e64d
AS
4310 ret = replace_map_fd_with_map_ptr(env);
4311 if (ret < 0)
4312 goto skip_full_check;
4313
9bac3d6d 4314 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4315 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4316 GFP_USER);
4317 ret = -ENOMEM;
4318 if (!env->explored_states)
4319 goto skip_full_check;
4320
475fb78f
AS
4321 ret = check_cfg(env);
4322 if (ret < 0)
4323 goto skip_full_check;
4324
1be7f75d
AS
4325 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4326
17a52670 4327 ret = do_check(env);
cbd35700 4328
0246e64d 4329skip_full_check:
17a52670 4330 while (pop_stack(env, NULL) >= 0);
f1bca824 4331 free_states(env);
0246e64d 4332
9bac3d6d
AS
4333 if (ret == 0)
4334 /* program is valid, convert *(u32*)(ctx + off) accesses */
4335 ret = convert_ctx_accesses(env);
4336
e245c5c6 4337 if (ret == 0)
79741b3b 4338 ret = fixup_bpf_calls(env);
e245c5c6 4339
cbd35700
AS
4340 if (log_level && log_len >= log_size - 1) {
4341 BUG_ON(log_len >= log_size);
4342 /* verifier log exceeded user supplied buffer */
4343 ret = -ENOSPC;
4344 /* fall through to return what was recorded */
4345 }
4346
4347 /* copy verifier log back to user space including trailing zero */
4348 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4349 ret = -EFAULT;
4350 goto free_log_buf;
4351 }
4352
0246e64d
AS
4353 if (ret == 0 && env->used_map_cnt) {
4354 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4355 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4356 sizeof(env->used_maps[0]),
4357 GFP_KERNEL);
0246e64d 4358
9bac3d6d 4359 if (!env->prog->aux->used_maps) {
0246e64d
AS
4360 ret = -ENOMEM;
4361 goto free_log_buf;
4362 }
4363
9bac3d6d 4364 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4365 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4366 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4367
4368 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4369 * bpf_ld_imm64 instructions
4370 */
4371 convert_pseudo_ld_imm64(env);
4372 }
cbd35700
AS
4373
4374free_log_buf:
4375 if (log_level)
4376 vfree(log_buf);
9bac3d6d 4377 if (!env->prog->aux->used_maps)
0246e64d
AS
4378 /* if we didn't copy map pointers into bpf_prog_info, release
4379 * them now. Otherwise free_bpf_prog_info() will release them.
4380 */
4381 release_maps(env);
9bac3d6d 4382 *prog = env->prog;
3df126f3 4383err_unlock:
cbd35700 4384 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4385 vfree(env->insn_aux_data);
4386err_free_env:
4387 kfree(env);
51580e79
AS
4388 return ret;
4389}
13a27dfc
JK
4390
4391int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4392 void *priv)
4393{
4394 struct bpf_verifier_env *env;
4395 int ret;
4396
4397 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4398 if (!env)
4399 return -ENOMEM;
4400
4401 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4402 prog->len);
4403 ret = -ENOMEM;
4404 if (!env->insn_aux_data)
4405 goto err_free_env;
4406 env->prog = prog;
4407 env->analyzer_ops = ops;
4408 env->analyzer_priv = priv;
4409
4410 /* grab the mutex to protect few globals used by verifier */
4411 mutex_lock(&bpf_verifier_lock);
4412
4413 log_level = 0;
1ad2f583 4414
e07b98d9 4415 env->strict_alignment = false;
1ad2f583
DB
4416 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4417 env->strict_alignment = true;
13a27dfc
JK
4418
4419 env->explored_states = kcalloc(env->prog->len,
4420 sizeof(struct bpf_verifier_state_list *),
4421 GFP_KERNEL);
4422 ret = -ENOMEM;
4423 if (!env->explored_states)
4424 goto skip_full_check;
4425
4426 ret = check_cfg(env);
4427 if (ret < 0)
4428 goto skip_full_check;
4429
4430 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4431
4432 ret = do_check(env);
4433
4434skip_full_check:
4435 while (pop_stack(env, NULL) >= 0);
4436 free_states(env);
4437
4438 mutex_unlock(&bpf_verifier_lock);
4439 vfree(env->insn_aux_data);
4440err_free_env:
4441 kfree(env);
4442 return ret;
4443}
4444EXPORT_SYMBOL_GPL(bpf_analyzer);