]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'bpf-lookup-devmap'
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34
JK
25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26#define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
c93552c4
DB
174#define BPF_MAP_PTR_UNPRIV 1UL
175#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178
179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180{
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182}
183
184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185{
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
187}
188
189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
191{
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196}
fad73a1a 197
33ff9823
DB
198struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
435faee1 200 bool raw_mode;
36bbef52 201 bool pkt_access;
435faee1
DB
202 int regno;
203 int access_size;
849fa506
YS
204 s64 msize_smax_value;
205 u64 msize_umax_value;
1b986589 206 int ref_obj_id;
d83525ca 207 int func_id;
33ff9823
DB
208};
209
cbd35700
AS
210static DEFINE_MUTEX(bpf_verifier_lock);
211
d9762e84
MKL
212static const struct bpf_line_info *
213find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214{
215 const struct bpf_line_info *linfo;
216 const struct bpf_prog *prog;
217 u32 i, nr_linfo;
218
219 prog = env->prog;
220 nr_linfo = prog->aux->nr_linfo;
221
222 if (!nr_linfo || insn_off >= prog->len)
223 return NULL;
224
225 linfo = prog->aux->linfo;
226 for (i = 1; i < nr_linfo; i++)
227 if (insn_off < linfo[i].insn_off)
228 break;
229
230 return &linfo[i - 1];
231}
232
77d2e05a
MKL
233void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 va_list args)
cbd35700 235{
a2a7d570 236 unsigned int n;
cbd35700 237
a2a7d570 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
239
240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 "verifier log line truncated - local buffer too short\n");
242
243 n = min(log->len_total - log->len_used - 1, n);
244 log->kbuf[n] = '\0';
245
246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 log->len_used += n;
248 else
249 log->ubuf = NULL;
cbd35700 250}
abe08840
JO
251
252/* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
430e68d1 255 */
abe08840
JO
256__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 const char *fmt, ...)
258{
259 va_list args;
260
77d2e05a
MKL
261 if (!bpf_verifier_log_needed(&env->log))
262 return;
263
abe08840 264 va_start(args, fmt);
77d2e05a 265 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
266 va_end(args);
267}
268EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269
270__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271{
77d2e05a 272 struct bpf_verifier_env *env = private_data;
abe08840
JO
273 va_list args;
274
77d2e05a
MKL
275 if (!bpf_verifier_log_needed(&env->log))
276 return;
277
abe08840 278 va_start(args, fmt);
77d2e05a 279 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
280 va_end(args);
281}
cbd35700 282
d9762e84
MKL
283static const char *ltrim(const char *s)
284{
285 while (isspace(*s))
286 s++;
287
288 return s;
289}
290
291__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 u32 insn_off,
293 const char *prefix_fmt, ...)
294{
295 const struct bpf_line_info *linfo;
296
297 if (!bpf_verifier_log_needed(&env->log))
298 return;
299
300 linfo = find_linfo(env, insn_off);
301 if (!linfo || linfo == env->prev_linfo)
302 return;
303
304 if (prefix_fmt) {
305 va_list args;
306
307 va_start(args, prefix_fmt);
308 bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 va_end(args);
310 }
311
312 verbose(env, "%s\n",
313 ltrim(btf_name_by_offset(env->prog->aux->btf,
314 linfo->line_off)));
315
316 env->prev_linfo = linfo;
317}
318
de8f3a83
DB
319static bool type_is_pkt_pointer(enum bpf_reg_type type)
320{
321 return type == PTR_TO_PACKET ||
322 type == PTR_TO_PACKET_META;
323}
324
46f8bc92
MKL
325static bool type_is_sk_pointer(enum bpf_reg_type type)
326{
327 return type == PTR_TO_SOCKET ||
655a51e5 328 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
329 type == PTR_TO_TCP_SOCK ||
330 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7 335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 336 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
337 type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
339}
340
d83525ca
AS
341static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342{
343 return reg->type == PTR_TO_MAP_VALUE &&
344 map_value_has_spin_lock(reg->map_ptr);
345}
346
cba368c1
MKL
347static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348{
349 return type == PTR_TO_SOCKET ||
350 type == PTR_TO_SOCKET_OR_NULL ||
351 type == PTR_TO_TCP_SOCK ||
352 type == PTR_TO_TCP_SOCK_OR_NULL;
353}
354
1b986589 355static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 356{
1b986589 357 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
358}
359
360/* Determine whether the function releases some resources allocated by another
361 * function call. The first reference type argument will be assumed to be
362 * released by release_reference().
363 */
364static bool is_release_function(enum bpf_func_id func_id)
365{
6acc9b43 366 return func_id == BPF_FUNC_sk_release;
840b9615
JS
367}
368
46f8bc92
MKL
369static bool is_acquire_function(enum bpf_func_id func_id)
370{
371 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
372 func_id == BPF_FUNC_sk_lookup_udp ||
373 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
374}
375
1b986589
MKL
376static bool is_ptr_cast_function(enum bpf_func_id func_id)
377{
378 return func_id == BPF_FUNC_tcp_sock ||
379 func_id == BPF_FUNC_sk_fullsock;
380}
381
17a52670
AS
382/* string representation of 'enum bpf_reg_type' */
383static const char * const reg_type_str[] = {
384 [NOT_INIT] = "?",
f1174f77 385 [SCALAR_VALUE] = "inv",
17a52670
AS
386 [PTR_TO_CTX] = "ctx",
387 [CONST_PTR_TO_MAP] = "map_ptr",
388 [PTR_TO_MAP_VALUE] = "map_value",
389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 390 [PTR_TO_STACK] = "fp",
969bf05e 391 [PTR_TO_PACKET] = "pkt",
de8f3a83 392 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 393 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 394 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
395 [PTR_TO_SOCKET] = "sock",
396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
397 [PTR_TO_SOCK_COMMON] = "sock_common",
398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
399 [PTR_TO_TCP_SOCK] = "tcp_sock",
400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 401 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 402 [PTR_TO_XDP_SOCK] = "xdp_sock",
17a52670
AS
403};
404
8efea21d
EC
405static char slot_type_char[] = {
406 [STACK_INVALID] = '?',
407 [STACK_SPILL] = 'r',
408 [STACK_MISC] = 'm',
409 [STACK_ZERO] = '0',
410};
411
4e92024a
AS
412static void print_liveness(struct bpf_verifier_env *env,
413 enum bpf_reg_liveness live)
414{
9242b5f5 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
416 verbose(env, "_");
417 if (live & REG_LIVE_READ)
418 verbose(env, "r");
419 if (live & REG_LIVE_WRITTEN)
420 verbose(env, "w");
9242b5f5
AS
421 if (live & REG_LIVE_DONE)
422 verbose(env, "D");
4e92024a
AS
423}
424
f4d7e40a
AS
425static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 const struct bpf_reg_state *reg)
427{
428 struct bpf_verifier_state *cur = env->cur_state;
429
430 return cur->frame[reg->frameno];
431}
432
61bd5218 433static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 434 const struct bpf_func_state *state)
17a52670 435{
f4d7e40a 436 const struct bpf_reg_state *reg;
17a52670
AS
437 enum bpf_reg_type t;
438 int i;
439
f4d7e40a
AS
440 if (state->frameno)
441 verbose(env, " frame%d:", state->frameno);
17a52670 442 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
443 reg = &state->regs[i];
444 t = reg->type;
17a52670
AS
445 if (t == NOT_INIT)
446 continue;
4e92024a
AS
447 verbose(env, " R%d", i);
448 print_liveness(env, reg->live);
449 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
450 if (t == SCALAR_VALUE && reg->precise)
451 verbose(env, "P");
f1174f77
EC
452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 tnum_is_const(reg->var_off)) {
454 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 455 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 456 } else {
cba368c1
MKL
457 verbose(env, "(id=%d", reg->id);
458 if (reg_type_may_be_refcounted_or_null(t))
459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 460 if (t != SCALAR_VALUE)
61bd5218 461 verbose(env, ",off=%d", reg->off);
de8f3a83 462 if (type_is_pkt_pointer(t))
61bd5218 463 verbose(env, ",r=%d", reg->range);
f1174f77
EC
464 else if (t == CONST_PTR_TO_MAP ||
465 t == PTR_TO_MAP_VALUE ||
466 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 467 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
468 reg->map_ptr->key_size,
469 reg->map_ptr->value_size);
7d1238f2
EC
470 if (tnum_is_const(reg->var_off)) {
471 /* Typically an immediate SCALAR_VALUE, but
472 * could be a pointer whose offset is too big
473 * for reg->off
474 */
61bd5218 475 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
476 } else {
477 if (reg->smin_value != reg->umin_value &&
478 reg->smin_value != S64_MIN)
61bd5218 479 verbose(env, ",smin_value=%lld",
7d1238f2
EC
480 (long long)reg->smin_value);
481 if (reg->smax_value != reg->umax_value &&
482 reg->smax_value != S64_MAX)
61bd5218 483 verbose(env, ",smax_value=%lld",
7d1238f2
EC
484 (long long)reg->smax_value);
485 if (reg->umin_value != 0)
61bd5218 486 verbose(env, ",umin_value=%llu",
7d1238f2
EC
487 (unsigned long long)reg->umin_value);
488 if (reg->umax_value != U64_MAX)
61bd5218 489 verbose(env, ",umax_value=%llu",
7d1238f2
EC
490 (unsigned long long)reg->umax_value);
491 if (!tnum_is_unknown(reg->var_off)) {
492 char tn_buf[48];
f1174f77 493
7d1238f2 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 495 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 496 }
f1174f77 497 }
61bd5218 498 verbose(env, ")");
f1174f77 499 }
17a52670 500 }
638f5b90 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
502 char types_buf[BPF_REG_SIZE + 1];
503 bool valid = false;
504 int j;
505
506 for (j = 0; j < BPF_REG_SIZE; j++) {
507 if (state->stack[i].slot_type[j] != STACK_INVALID)
508 valid = true;
509 types_buf[j] = slot_type_char[
510 state->stack[i].slot_type[j]];
511 }
512 types_buf[BPF_REG_SIZE] = 0;
513 if (!valid)
514 continue;
515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
517 if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 reg = &state->stack[i].spilled_ptr;
519 t = reg->type;
520 verbose(env, "=%s", reg_type_str[t]);
521 if (t == SCALAR_VALUE && reg->precise)
522 verbose(env, "P");
523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 verbose(env, "%lld", reg->var_off.value + reg->off);
525 } else {
8efea21d 526 verbose(env, "=%s", types_buf);
b5dc0163 527 }
17a52670 528 }
fd978bf7
JS
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
61bd5218 535 verbose(env, "\n");
17a52670
AS
536}
537
84dbf350
JS
538#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541{ \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
638f5b90 552}
fd978bf7
JS
553/* copy_reference_state() */
554COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
555/* copy_stack_state() */
556COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557#undef COPY_STATE_FN
558
559#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562{ \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592}
fd978bf7
JS
593/* realloc_reference_state() */
594REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
595/* realloc_stack_state() */
596REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597#undef REALLOC_STATE_FN
638f5b90
AS
598
599/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 601 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
638f5b90 605 */
fd978bf7
JS
606static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
638f5b90 608{
fd978bf7
JS
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613}
614
615/* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
638f5b90 619 */
fd978bf7 620static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 621{
fd978bf7
JS
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 632
fd978bf7
JS
633 return id;
634}
635
636/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 637static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
638{
639 int i, last_idx;
640
fd978bf7
JS
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
638f5b90 649 return 0;
638f5b90 650 }
638f5b90 651 }
46f8bc92 652 return -EINVAL;
fd978bf7
JS
653}
654
655static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657{
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
638f5b90
AS
664 return 0;
665}
666
f4d7e40a
AS
667static void free_func_state(struct bpf_func_state *state)
668{
5896351e
AS
669 if (!state)
670 return;
fd978bf7 671 kfree(state->refs);
f4d7e40a
AS
672 kfree(state->stack);
673 kfree(state);
674}
675
b5dc0163
AS
676static void clear_jmp_history(struct bpf_verifier_state *state)
677{
678 kfree(state->jmp_history);
679 state->jmp_history = NULL;
680 state->jmp_history_cnt = 0;
681}
682
1969db47
AS
683static void free_verifier_state(struct bpf_verifier_state *state,
684 bool free_self)
638f5b90 685{
f4d7e40a
AS
686 int i;
687
688 for (i = 0; i <= state->curframe; i++) {
689 free_func_state(state->frame[i]);
690 state->frame[i] = NULL;
691 }
b5dc0163 692 clear_jmp_history(state);
1969db47
AS
693 if (free_self)
694 kfree(state);
638f5b90
AS
695}
696
697/* copy verifier state from src to dst growing dst stack space
698 * when necessary to accommodate larger src stack
699 */
f4d7e40a
AS
700static int copy_func_state(struct bpf_func_state *dst,
701 const struct bpf_func_state *src)
638f5b90
AS
702{
703 int err;
704
fd978bf7
JS
705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 false);
707 if (err)
708 return err;
709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 err = copy_reference_state(dst, src);
638f5b90
AS
711 if (err)
712 return err;
638f5b90
AS
713 return copy_stack_state(dst, src);
714}
715
f4d7e40a
AS
716static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 const struct bpf_verifier_state *src)
718{
719 struct bpf_func_state *dst;
b5dc0163 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
721 int i, err;
722
b5dc0163
AS
723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 kfree(dst_state->jmp_history);
725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 if (!dst_state->jmp_history)
727 return -ENOMEM;
728 }
729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 dst_state->jmp_history_cnt = src->jmp_history_cnt;
731
f4d7e40a
AS
732 /* if dst has more stack frames then src frame, free them */
733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 free_func_state(dst_state->frame[i]);
735 dst_state->frame[i] = NULL;
736 }
979d63d5 737 dst_state->speculative = src->speculative;
f4d7e40a 738 dst_state->curframe = src->curframe;
d83525ca 739 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
740 dst_state->branches = src->branches;
741 dst_state->parent = src->parent;
b5dc0163
AS
742 dst_state->first_insn_idx = src->first_insn_idx;
743 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
744 for (i = 0; i <= src->curframe; i++) {
745 dst = dst_state->frame[i];
746 if (!dst) {
747 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 if (!dst)
749 return -ENOMEM;
750 dst_state->frame[i] = dst;
751 }
752 err = copy_func_state(dst, src->frame[i]);
753 if (err)
754 return err;
755 }
756 return 0;
757}
758
2589726d
AS
759static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760{
761 while (st) {
762 u32 br = --st->branches;
763
764 /* WARN_ON(br > 1) technically makes sense here,
765 * but see comment in push_stack(), hence:
766 */
767 WARN_ONCE((int)br < 0,
768 "BUG update_branch_counts:branches_to_explore=%d\n",
769 br);
770 if (br)
771 break;
772 st = st->parent;
773 }
774}
775
638f5b90
AS
776static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 int *insn_idx)
778{
779 struct bpf_verifier_state *cur = env->cur_state;
780 struct bpf_verifier_stack_elem *elem, *head = env->head;
781 int err;
17a52670
AS
782
783 if (env->head == NULL)
638f5b90 784 return -ENOENT;
17a52670 785
638f5b90
AS
786 if (cur) {
787 err = copy_verifier_state(cur, &head->st);
788 if (err)
789 return err;
790 }
791 if (insn_idx)
792 *insn_idx = head->insn_idx;
17a52670 793 if (prev_insn_idx)
638f5b90
AS
794 *prev_insn_idx = head->prev_insn_idx;
795 elem = head->next;
1969db47 796 free_verifier_state(&head->st, false);
638f5b90 797 kfree(head);
17a52670
AS
798 env->head = elem;
799 env->stack_size--;
638f5b90 800 return 0;
17a52670
AS
801}
802
58e2af8b 803static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
804 int insn_idx, int prev_insn_idx,
805 bool speculative)
17a52670 806{
638f5b90 807 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 808 struct bpf_verifier_stack_elem *elem;
638f5b90 809 int err;
17a52670 810
638f5b90 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
812 if (!elem)
813 goto err;
814
17a52670
AS
815 elem->insn_idx = insn_idx;
816 elem->prev_insn_idx = prev_insn_idx;
817 elem->next = env->head;
818 env->head = elem;
819 env->stack_size++;
1969db47
AS
820 err = copy_verifier_state(&elem->st, cur);
821 if (err)
822 goto err;
979d63d5 823 elem->st.speculative |= speculative;
b285fcb7
AS
824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 verbose(env, "The sequence of %d jumps is too complex.\n",
826 env->stack_size);
17a52670
AS
827 goto err;
828 }
2589726d
AS
829 if (elem->st.parent) {
830 ++elem->st.parent->branches;
831 /* WARN_ON(branches > 2) technically makes sense here,
832 * but
833 * 1. speculative states will bump 'branches' for non-branch
834 * instructions
835 * 2. is_state_visited() heuristics may decide not to create
836 * a new state for a sequence of branches and all such current
837 * and cloned states will be pointing to a single parent state
838 * which might have large 'branches' count.
839 */
840 }
17a52670
AS
841 return &elem->st;
842err:
5896351e
AS
843 free_verifier_state(env->cur_state, true);
844 env->cur_state = NULL;
17a52670 845 /* pop all elements and return */
638f5b90 846 while (!pop_stack(env, NULL, NULL));
17a52670
AS
847 return NULL;
848}
849
850#define CALLER_SAVED_REGS 6
851static const int caller_saved[CALLER_SAVED_REGS] = {
852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853};
854
f1174f77
EC
855static void __mark_reg_not_init(struct bpf_reg_state *reg);
856
b03c9f9f
EC
857/* Mark the unknown part of a register (variable offset or scalar value) as
858 * known to have the value @imm.
859 */
860static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861{
a9c676bc
AS
862 /* Clear id, off, and union(map_ptr, range) */
863 memset(((u8 *)reg) + sizeof(reg->type), 0,
864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
865 reg->var_off = tnum_const(imm);
866 reg->smin_value = (s64)imm;
867 reg->smax_value = (s64)imm;
868 reg->umin_value = imm;
869 reg->umax_value = imm;
870}
871
f1174f77
EC
872/* Mark the 'variable offset' part of a register as zero. This should be
873 * used only on registers holding a pointer type.
874 */
875static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 876{
b03c9f9f 877 __mark_reg_known(reg, 0);
f1174f77 878}
a9789ef9 879
cc2b14d5
AS
880static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881{
882 __mark_reg_known(reg, 0);
cc2b14d5
AS
883 reg->type = SCALAR_VALUE;
884}
885
61bd5218
JK
886static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
888{
889 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
891 /* Something bad happened, let's kill all regs */
892 for (regno = 0; regno < MAX_BPF_REG; regno++)
893 __mark_reg_not_init(regs + regno);
894 return;
895 }
896 __mark_reg_known_zero(regs + regno);
897}
898
de8f3a83
DB
899static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900{
901 return type_is_pkt_pointer(reg->type);
902}
903
904static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905{
906 return reg_is_pkt_pointer(reg) ||
907 reg->type == PTR_TO_PACKET_END;
908}
909
910/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 enum bpf_reg_type which)
913{
914 /* The register can already have a range from prior markings.
915 * This is fine as long as it hasn't been advanced from its
916 * origin.
917 */
918 return reg->type == which &&
919 reg->id == 0 &&
920 reg->off == 0 &&
921 tnum_equals_const(reg->var_off, 0);
922}
923
b03c9f9f
EC
924/* Attempts to improve min/max values based on var_off information */
925static void __update_reg_bounds(struct bpf_reg_state *reg)
926{
927 /* min signed is max(sign bit) | min(other bits) */
928 reg->smin_value = max_t(s64, reg->smin_value,
929 reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 /* max signed is min(sign bit) | max(other bits) */
931 reg->smax_value = min_t(s64, reg->smax_value,
932 reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 reg->umax_value = min(reg->umax_value,
935 reg->var_off.value | reg->var_off.mask);
936}
937
938/* Uses signed min/max values to inform unsigned, and vice-versa */
939static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940{
941 /* Learn sign from signed bounds.
942 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 * are the same, so combine. This works even in the negative case, e.g.
944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 */
946 if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 reg->umin_value);
949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 reg->umax_value);
951 return;
952 }
953 /* Learn sign from unsigned bounds. Signed bounds cross the sign
954 * boundary, so we must be careful.
955 */
956 if ((s64)reg->umax_value >= 0) {
957 /* Positive. We can't learn anything from the smin, but smax
958 * is positive, hence safe.
959 */
960 reg->smin_value = reg->umin_value;
961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 reg->umax_value);
963 } else if ((s64)reg->umin_value < 0) {
964 /* Negative. We can't learn anything from the smax, but smin
965 * is negative, hence safe.
966 */
967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 reg->umin_value);
969 reg->smax_value = reg->umax_value;
970 }
971}
972
973/* Attempts to improve var_off based on unsigned min/max information */
974static void __reg_bound_offset(struct bpf_reg_state *reg)
975{
976 reg->var_off = tnum_intersect(reg->var_off,
977 tnum_range(reg->umin_value,
978 reg->umax_value));
979}
980
981/* Reset the min/max bounds of a register */
982static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983{
984 reg->smin_value = S64_MIN;
985 reg->smax_value = S64_MAX;
986 reg->umin_value = 0;
987 reg->umax_value = U64_MAX;
b5dc0163
AS
988
989 /* constant backtracking is enabled for root only for now */
990 reg->precise = capable(CAP_SYS_ADMIN) ? false : true;
b03c9f9f
EC
991}
992
f1174f77
EC
993/* Mark a register as having a completely unknown (scalar) value. */
994static void __mark_reg_unknown(struct bpf_reg_state *reg)
995{
a9c676bc
AS
996 /*
997 * Clear type, id, off, and union(map_ptr, range) and
998 * padding between 'type' and union
999 */
1000 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1001 reg->type = SCALAR_VALUE;
f1174f77 1002 reg->var_off = tnum_unknown;
f4d7e40a 1003 reg->frameno = 0;
b03c9f9f 1004 __mark_reg_unbounded(reg);
f1174f77
EC
1005}
1006
61bd5218
JK
1007static void mark_reg_unknown(struct bpf_verifier_env *env,
1008 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1009{
1010 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1011 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1012 /* Something bad happened, let's kill all regs except FP */
1013 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1014 __mark_reg_not_init(regs + regno);
1015 return;
1016 }
1017 __mark_reg_unknown(regs + regno);
1018}
1019
1020static void __mark_reg_not_init(struct bpf_reg_state *reg)
1021{
1022 __mark_reg_unknown(reg);
1023 reg->type = NOT_INIT;
1024}
1025
61bd5218
JK
1026static void mark_reg_not_init(struct bpf_verifier_env *env,
1027 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1028{
1029 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1030 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1031 /* Something bad happened, let's kill all regs except FP */
1032 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1033 __mark_reg_not_init(regs + regno);
1034 return;
1035 }
1036 __mark_reg_not_init(regs + regno);
a9789ef9
DB
1037}
1038
5327ed3d 1039#define DEF_NOT_SUBREG (0)
61bd5218 1040static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1041 struct bpf_func_state *state)
17a52670 1042{
f4d7e40a 1043 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1044 int i;
1045
dc503a8a 1046 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1047 mark_reg_not_init(env, regs, i);
dc503a8a 1048 regs[i].live = REG_LIVE_NONE;
679c782d 1049 regs[i].parent = NULL;
5327ed3d 1050 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1051 }
17a52670
AS
1052
1053 /* frame pointer */
f1174f77 1054 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1055 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1056 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1057
1058 /* 1st arg to a function */
1059 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1060 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1061}
1062
f4d7e40a
AS
1063#define BPF_MAIN_FUNC (-1)
1064static void init_func_state(struct bpf_verifier_env *env,
1065 struct bpf_func_state *state,
1066 int callsite, int frameno, int subprogno)
1067{
1068 state->callsite = callsite;
1069 state->frameno = frameno;
1070 state->subprogno = subprogno;
1071 init_reg_state(env, state);
1072}
1073
17a52670
AS
1074enum reg_arg_type {
1075 SRC_OP, /* register is used as source operand */
1076 DST_OP, /* register is used as destination operand */
1077 DST_OP_NO_MARK /* same as above, check only, don't mark */
1078};
1079
cc8b0b92
AS
1080static int cmp_subprogs(const void *a, const void *b)
1081{
9c8105bd
JW
1082 return ((struct bpf_subprog_info *)a)->start -
1083 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1084}
1085
1086static int find_subprog(struct bpf_verifier_env *env, int off)
1087{
9c8105bd 1088 struct bpf_subprog_info *p;
cc8b0b92 1089
9c8105bd
JW
1090 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1091 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1092 if (!p)
1093 return -ENOENT;
9c8105bd 1094 return p - env->subprog_info;
cc8b0b92
AS
1095
1096}
1097
1098static int add_subprog(struct bpf_verifier_env *env, int off)
1099{
1100 int insn_cnt = env->prog->len;
1101 int ret;
1102
1103 if (off >= insn_cnt || off < 0) {
1104 verbose(env, "call to invalid destination\n");
1105 return -EINVAL;
1106 }
1107 ret = find_subprog(env, off);
1108 if (ret >= 0)
1109 return 0;
4cb3d99c 1110 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1111 verbose(env, "too many subprograms\n");
1112 return -E2BIG;
1113 }
9c8105bd
JW
1114 env->subprog_info[env->subprog_cnt++].start = off;
1115 sort(env->subprog_info, env->subprog_cnt,
1116 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1117 return 0;
1118}
1119
1120static int check_subprogs(struct bpf_verifier_env *env)
1121{
1122 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1123 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1124 struct bpf_insn *insn = env->prog->insnsi;
1125 int insn_cnt = env->prog->len;
1126
f910cefa
JW
1127 /* Add entry function. */
1128 ret = add_subprog(env, 0);
1129 if (ret < 0)
1130 return ret;
1131
cc8b0b92
AS
1132 /* determine subprog starts. The end is one before the next starts */
1133 for (i = 0; i < insn_cnt; i++) {
1134 if (insn[i].code != (BPF_JMP | BPF_CALL))
1135 continue;
1136 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1137 continue;
1138 if (!env->allow_ptr_leaks) {
1139 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1140 return -EPERM;
1141 }
cc8b0b92
AS
1142 ret = add_subprog(env, i + insn[i].imm + 1);
1143 if (ret < 0)
1144 return ret;
1145 }
1146
4cb3d99c
JW
1147 /* Add a fake 'exit' subprog which could simplify subprog iteration
1148 * logic. 'subprog_cnt' should not be increased.
1149 */
1150 subprog[env->subprog_cnt].start = insn_cnt;
1151
06ee7115 1152 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1153 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1154 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1155
1156 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1157 subprog_start = subprog[cur_subprog].start;
1158 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1159 for (i = 0; i < insn_cnt; i++) {
1160 u8 code = insn[i].code;
1161
092ed096 1162 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1163 goto next;
1164 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1165 goto next;
1166 off = i + insn[i].off + 1;
1167 if (off < subprog_start || off >= subprog_end) {
1168 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1169 return -EINVAL;
1170 }
1171next:
1172 if (i == subprog_end - 1) {
1173 /* to avoid fall-through from one subprog into another
1174 * the last insn of the subprog should be either exit
1175 * or unconditional jump back
1176 */
1177 if (code != (BPF_JMP | BPF_EXIT) &&
1178 code != (BPF_JMP | BPF_JA)) {
1179 verbose(env, "last insn is not an exit or jmp\n");
1180 return -EINVAL;
1181 }
1182 subprog_start = subprog_end;
4cb3d99c
JW
1183 cur_subprog++;
1184 if (cur_subprog < env->subprog_cnt)
9c8105bd 1185 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1186 }
1187 }
1188 return 0;
1189}
1190
679c782d
EC
1191/* Parentage chain of this register (or stack slot) should take care of all
1192 * issues like callee-saved registers, stack slot allocation time, etc.
1193 */
f4d7e40a 1194static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1195 const struct bpf_reg_state *state,
5327ed3d 1196 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1197{
1198 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1199 int cnt = 0;
dc503a8a
EC
1200
1201 while (parent) {
1202 /* if read wasn't screened by an earlier write ... */
679c782d 1203 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1204 break;
9242b5f5
AS
1205 if (parent->live & REG_LIVE_DONE) {
1206 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1207 reg_type_str[parent->type],
1208 parent->var_off.value, parent->off);
1209 return -EFAULT;
1210 }
5327ed3d
JW
1211 /* The first condition is more likely to be true than the
1212 * second, checked it first.
1213 */
1214 if ((parent->live & REG_LIVE_READ) == flag ||
1215 parent->live & REG_LIVE_READ64)
25af32da
AS
1216 /* The parentage chain never changes and
1217 * this parent was already marked as LIVE_READ.
1218 * There is no need to keep walking the chain again and
1219 * keep re-marking all parents as LIVE_READ.
1220 * This case happens when the same register is read
1221 * multiple times without writes into it in-between.
5327ed3d
JW
1222 * Also, if parent has the stronger REG_LIVE_READ64 set,
1223 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1224 */
1225 break;
dc503a8a 1226 /* ... then we depend on parent's value */
5327ed3d
JW
1227 parent->live |= flag;
1228 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1229 if (flag == REG_LIVE_READ64)
1230 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1231 state = parent;
1232 parent = state->parent;
f4d7e40a 1233 writes = true;
06ee7115 1234 cnt++;
dc503a8a 1235 }
06ee7115
AS
1236
1237 if (env->longest_mark_read_walk < cnt)
1238 env->longest_mark_read_walk = cnt;
f4d7e40a 1239 return 0;
dc503a8a
EC
1240}
1241
5327ed3d
JW
1242/* This function is supposed to be used by the following 32-bit optimization
1243 * code only. It returns TRUE if the source or destination register operates
1244 * on 64-bit, otherwise return FALSE.
1245 */
1246static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1247 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1248{
1249 u8 code, class, op;
1250
1251 code = insn->code;
1252 class = BPF_CLASS(code);
1253 op = BPF_OP(code);
1254 if (class == BPF_JMP) {
1255 /* BPF_EXIT for "main" will reach here. Return TRUE
1256 * conservatively.
1257 */
1258 if (op == BPF_EXIT)
1259 return true;
1260 if (op == BPF_CALL) {
1261 /* BPF to BPF call will reach here because of marking
1262 * caller saved clobber with DST_OP_NO_MARK for which we
1263 * don't care the register def because they are anyway
1264 * marked as NOT_INIT already.
1265 */
1266 if (insn->src_reg == BPF_PSEUDO_CALL)
1267 return false;
1268 /* Helper call will reach here because of arg type
1269 * check, conservatively return TRUE.
1270 */
1271 if (t == SRC_OP)
1272 return true;
1273
1274 return false;
1275 }
1276 }
1277
1278 if (class == BPF_ALU64 || class == BPF_JMP ||
1279 /* BPF_END always use BPF_ALU class. */
1280 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1281 return true;
1282
1283 if (class == BPF_ALU || class == BPF_JMP32)
1284 return false;
1285
1286 if (class == BPF_LDX) {
1287 if (t != SRC_OP)
1288 return BPF_SIZE(code) == BPF_DW;
1289 /* LDX source must be ptr. */
1290 return true;
1291 }
1292
1293 if (class == BPF_STX) {
1294 if (reg->type != SCALAR_VALUE)
1295 return true;
1296 return BPF_SIZE(code) == BPF_DW;
1297 }
1298
1299 if (class == BPF_LD) {
1300 u8 mode = BPF_MODE(code);
1301
1302 /* LD_IMM64 */
1303 if (mode == BPF_IMM)
1304 return true;
1305
1306 /* Both LD_IND and LD_ABS return 32-bit data. */
1307 if (t != SRC_OP)
1308 return false;
1309
1310 /* Implicit ctx ptr. */
1311 if (regno == BPF_REG_6)
1312 return true;
1313
1314 /* Explicit source could be any width. */
1315 return true;
1316 }
1317
1318 if (class == BPF_ST)
1319 /* The only source register for BPF_ST is a ptr. */
1320 return true;
1321
1322 /* Conservatively return true at default. */
1323 return true;
1324}
1325
b325fbca
JW
1326/* Return TRUE if INSN doesn't have explicit value define. */
1327static bool insn_no_def(struct bpf_insn *insn)
1328{
1329 u8 class = BPF_CLASS(insn->code);
1330
1331 return (class == BPF_JMP || class == BPF_JMP32 ||
1332 class == BPF_STX || class == BPF_ST);
1333}
1334
1335/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1336static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1337{
1338 if (insn_no_def(insn))
1339 return false;
1340
1341 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1342}
1343
5327ed3d
JW
1344static void mark_insn_zext(struct bpf_verifier_env *env,
1345 struct bpf_reg_state *reg)
1346{
1347 s32 def_idx = reg->subreg_def;
1348
1349 if (def_idx == DEF_NOT_SUBREG)
1350 return;
1351
1352 env->insn_aux_data[def_idx - 1].zext_dst = true;
1353 /* The dst will be zero extended, so won't be sub-register anymore. */
1354 reg->subreg_def = DEF_NOT_SUBREG;
1355}
1356
dc503a8a 1357static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1358 enum reg_arg_type t)
1359{
f4d7e40a
AS
1360 struct bpf_verifier_state *vstate = env->cur_state;
1361 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1362 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1363 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1364 bool rw64;
dc503a8a 1365
17a52670 1366 if (regno >= MAX_BPF_REG) {
61bd5218 1367 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1368 return -EINVAL;
1369 }
1370
c342dc10 1371 reg = &regs[regno];
5327ed3d 1372 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1373 if (t == SRC_OP) {
1374 /* check whether register used as source operand can be read */
c342dc10 1375 if (reg->type == NOT_INIT) {
61bd5218 1376 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1377 return -EACCES;
1378 }
679c782d 1379 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1380 if (regno == BPF_REG_FP)
1381 return 0;
1382
5327ed3d
JW
1383 if (rw64)
1384 mark_insn_zext(env, reg);
1385
1386 return mark_reg_read(env, reg, reg->parent,
1387 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1388 } else {
1389 /* check whether register used as dest operand can be written to */
1390 if (regno == BPF_REG_FP) {
61bd5218 1391 verbose(env, "frame pointer is read only\n");
17a52670
AS
1392 return -EACCES;
1393 }
c342dc10 1394 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1395 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1396 if (t == DST_OP)
61bd5218 1397 mark_reg_unknown(env, regs, regno);
17a52670
AS
1398 }
1399 return 0;
1400}
1401
b5dc0163
AS
1402/* for any branch, call, exit record the history of jmps in the given state */
1403static int push_jmp_history(struct bpf_verifier_env *env,
1404 struct bpf_verifier_state *cur)
1405{
1406 u32 cnt = cur->jmp_history_cnt;
1407 struct bpf_idx_pair *p;
1408
1409 cnt++;
1410 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1411 if (!p)
1412 return -ENOMEM;
1413 p[cnt - 1].idx = env->insn_idx;
1414 p[cnt - 1].prev_idx = env->prev_insn_idx;
1415 cur->jmp_history = p;
1416 cur->jmp_history_cnt = cnt;
1417 return 0;
1418}
1419
1420/* Backtrack one insn at a time. If idx is not at the top of recorded
1421 * history then previous instruction came from straight line execution.
1422 */
1423static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1424 u32 *history)
1425{
1426 u32 cnt = *history;
1427
1428 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1429 i = st->jmp_history[cnt - 1].prev_idx;
1430 (*history)--;
1431 } else {
1432 i--;
1433 }
1434 return i;
1435}
1436
1437/* For given verifier state backtrack_insn() is called from the last insn to
1438 * the first insn. Its purpose is to compute a bitmask of registers and
1439 * stack slots that needs precision in the parent verifier state.
1440 */
1441static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1442 u32 *reg_mask, u64 *stack_mask)
1443{
1444 const struct bpf_insn_cbs cbs = {
1445 .cb_print = verbose,
1446 .private_data = env,
1447 };
1448 struct bpf_insn *insn = env->prog->insnsi + idx;
1449 u8 class = BPF_CLASS(insn->code);
1450 u8 opcode = BPF_OP(insn->code);
1451 u8 mode = BPF_MODE(insn->code);
1452 u32 dreg = 1u << insn->dst_reg;
1453 u32 sreg = 1u << insn->src_reg;
1454 u32 spi;
1455
1456 if (insn->code == 0)
1457 return 0;
1458 if (env->log.level & BPF_LOG_LEVEL) {
1459 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1460 verbose(env, "%d: ", idx);
1461 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1462 }
1463
1464 if (class == BPF_ALU || class == BPF_ALU64) {
1465 if (!(*reg_mask & dreg))
1466 return 0;
1467 if (opcode == BPF_MOV) {
1468 if (BPF_SRC(insn->code) == BPF_X) {
1469 /* dreg = sreg
1470 * dreg needs precision after this insn
1471 * sreg needs precision before this insn
1472 */
1473 *reg_mask &= ~dreg;
1474 *reg_mask |= sreg;
1475 } else {
1476 /* dreg = K
1477 * dreg needs precision after this insn.
1478 * Corresponding register is already marked
1479 * as precise=true in this verifier state.
1480 * No further markings in parent are necessary
1481 */
1482 *reg_mask &= ~dreg;
1483 }
1484 } else {
1485 if (BPF_SRC(insn->code) == BPF_X) {
1486 /* dreg += sreg
1487 * both dreg and sreg need precision
1488 * before this insn
1489 */
1490 *reg_mask |= sreg;
1491 } /* else dreg += K
1492 * dreg still needs precision before this insn
1493 */
1494 }
1495 } else if (class == BPF_LDX) {
1496 if (!(*reg_mask & dreg))
1497 return 0;
1498 *reg_mask &= ~dreg;
1499
1500 /* scalars can only be spilled into stack w/o losing precision.
1501 * Load from any other memory can be zero extended.
1502 * The desire to keep that precision is already indicated
1503 * by 'precise' mark in corresponding register of this state.
1504 * No further tracking necessary.
1505 */
1506 if (insn->src_reg != BPF_REG_FP)
1507 return 0;
1508 if (BPF_SIZE(insn->code) != BPF_DW)
1509 return 0;
1510
1511 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1512 * that [fp - off] slot contains scalar that needs to be
1513 * tracked with precision
1514 */
1515 spi = (-insn->off - 1) / BPF_REG_SIZE;
1516 if (spi >= 64) {
1517 verbose(env, "BUG spi %d\n", spi);
1518 WARN_ONCE(1, "verifier backtracking bug");
1519 return -EFAULT;
1520 }
1521 *stack_mask |= 1ull << spi;
1522 } else if (class == BPF_STX) {
1523 if (*reg_mask & dreg)
1524 /* stx shouldn't be using _scalar_ dst_reg
1525 * to access memory. It means backtracking
1526 * encountered a case of pointer subtraction.
1527 */
1528 return -ENOTSUPP;
1529 /* scalars can only be spilled into stack */
1530 if (insn->dst_reg != BPF_REG_FP)
1531 return 0;
1532 if (BPF_SIZE(insn->code) != BPF_DW)
1533 return 0;
1534 spi = (-insn->off - 1) / BPF_REG_SIZE;
1535 if (spi >= 64) {
1536 verbose(env, "BUG spi %d\n", spi);
1537 WARN_ONCE(1, "verifier backtracking bug");
1538 return -EFAULT;
1539 }
1540 if (!(*stack_mask & (1ull << spi)))
1541 return 0;
1542 *stack_mask &= ~(1ull << spi);
1543 *reg_mask |= sreg;
1544 } else if (class == BPF_JMP || class == BPF_JMP32) {
1545 if (opcode == BPF_CALL) {
1546 if (insn->src_reg == BPF_PSEUDO_CALL)
1547 return -ENOTSUPP;
1548 /* regular helper call sets R0 */
1549 *reg_mask &= ~1;
1550 if (*reg_mask & 0x3f) {
1551 /* if backtracing was looking for registers R1-R5
1552 * they should have been found already.
1553 */
1554 verbose(env, "BUG regs %x\n", *reg_mask);
1555 WARN_ONCE(1, "verifier backtracking bug");
1556 return -EFAULT;
1557 }
1558 } else if (opcode == BPF_EXIT) {
1559 return -ENOTSUPP;
1560 }
1561 } else if (class == BPF_LD) {
1562 if (!(*reg_mask & dreg))
1563 return 0;
1564 *reg_mask &= ~dreg;
1565 /* It's ld_imm64 or ld_abs or ld_ind.
1566 * For ld_imm64 no further tracking of precision
1567 * into parent is necessary
1568 */
1569 if (mode == BPF_IND || mode == BPF_ABS)
1570 /* to be analyzed */
1571 return -ENOTSUPP;
1572 } else if (class == BPF_ST) {
1573 if (*reg_mask & dreg)
1574 /* likely pointer subtraction */
1575 return -ENOTSUPP;
1576 }
1577 return 0;
1578}
1579
1580/* the scalar precision tracking algorithm:
1581 * . at the start all registers have precise=false.
1582 * . scalar ranges are tracked as normal through alu and jmp insns.
1583 * . once precise value of the scalar register is used in:
1584 * . ptr + scalar alu
1585 * . if (scalar cond K|scalar)
1586 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1587 * backtrack through the verifier states and mark all registers and
1588 * stack slots with spilled constants that these scalar regisers
1589 * should be precise.
1590 * . during state pruning two registers (or spilled stack slots)
1591 * are equivalent if both are not precise.
1592 *
1593 * Note the verifier cannot simply walk register parentage chain,
1594 * since many different registers and stack slots could have been
1595 * used to compute single precise scalar.
1596 *
1597 * The approach of starting with precise=true for all registers and then
1598 * backtrack to mark a register as not precise when the verifier detects
1599 * that program doesn't care about specific value (e.g., when helper
1600 * takes register as ARG_ANYTHING parameter) is not safe.
1601 *
1602 * It's ok to walk single parentage chain of the verifier states.
1603 * It's possible that this backtracking will go all the way till 1st insn.
1604 * All other branches will be explored for needing precision later.
1605 *
1606 * The backtracking needs to deal with cases like:
1607 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1608 * r9 -= r8
1609 * r5 = r9
1610 * if r5 > 0x79f goto pc+7
1611 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1612 * r5 += 1
1613 * ...
1614 * call bpf_perf_event_output#25
1615 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1616 *
1617 * and this case:
1618 * r6 = 1
1619 * call foo // uses callee's r6 inside to compute r0
1620 * r0 += r6
1621 * if r0 == 0 goto
1622 *
1623 * to track above reg_mask/stack_mask needs to be independent for each frame.
1624 *
1625 * Also if parent's curframe > frame where backtracking started,
1626 * the verifier need to mark registers in both frames, otherwise callees
1627 * may incorrectly prune callers. This is similar to
1628 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1629 *
1630 * For now backtracking falls back into conservative marking.
1631 */
1632static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1633 struct bpf_verifier_state *st)
1634{
1635 struct bpf_func_state *func;
1636 struct bpf_reg_state *reg;
1637 int i, j;
1638
1639 /* big hammer: mark all scalars precise in this path.
1640 * pop_stack may still get !precise scalars.
1641 */
1642 for (; st; st = st->parent)
1643 for (i = 0; i <= st->curframe; i++) {
1644 func = st->frame[i];
1645 for (j = 0; j < BPF_REG_FP; j++) {
1646 reg = &func->regs[j];
1647 if (reg->type != SCALAR_VALUE)
1648 continue;
1649 reg->precise = true;
1650 }
1651 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1652 if (func->stack[j].slot_type[0] != STACK_SPILL)
1653 continue;
1654 reg = &func->stack[j].spilled_ptr;
1655 if (reg->type != SCALAR_VALUE)
1656 continue;
1657 reg->precise = true;
1658 }
1659 }
1660}
1661
1662static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1663{
1664 struct bpf_verifier_state *st = env->cur_state;
1665 int first_idx = st->first_insn_idx;
1666 int last_idx = env->insn_idx;
1667 struct bpf_func_state *func;
1668 struct bpf_reg_state *reg;
1669 u32 reg_mask = 1u << regno;
1670 u64 stack_mask = 0;
1671 bool skip_first = true;
1672 int i, err;
1673
1674 if (!env->allow_ptr_leaks)
1675 /* backtracking is root only for now */
1676 return 0;
1677
1678 func = st->frame[st->curframe];
1679 reg = &func->regs[regno];
1680 if (reg->type != SCALAR_VALUE) {
1681 WARN_ONCE(1, "backtracing misuse");
1682 return -EFAULT;
1683 }
1684 if (reg->precise)
1685 return 0;
1686 func->regs[regno].precise = true;
1687
1688 for (;;) {
1689 DECLARE_BITMAP(mask, 64);
1690 bool new_marks = false;
1691 u32 history = st->jmp_history_cnt;
1692
1693 if (env->log.level & BPF_LOG_LEVEL)
1694 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1695 for (i = last_idx;;) {
1696 if (skip_first) {
1697 err = 0;
1698 skip_first = false;
1699 } else {
1700 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1701 }
1702 if (err == -ENOTSUPP) {
1703 mark_all_scalars_precise(env, st);
1704 return 0;
1705 } else if (err) {
1706 return err;
1707 }
1708 if (!reg_mask && !stack_mask)
1709 /* Found assignment(s) into tracked register in this state.
1710 * Since this state is already marked, just return.
1711 * Nothing to be tracked further in the parent state.
1712 */
1713 return 0;
1714 if (i == first_idx)
1715 break;
1716 i = get_prev_insn_idx(st, i, &history);
1717 if (i >= env->prog->len) {
1718 /* This can happen if backtracking reached insn 0
1719 * and there are still reg_mask or stack_mask
1720 * to backtrack.
1721 * It means the backtracking missed the spot where
1722 * particular register was initialized with a constant.
1723 */
1724 verbose(env, "BUG backtracking idx %d\n", i);
1725 WARN_ONCE(1, "verifier backtracking bug");
1726 return -EFAULT;
1727 }
1728 }
1729 st = st->parent;
1730 if (!st)
1731 break;
1732
1733 func = st->frame[st->curframe];
1734 bitmap_from_u64(mask, reg_mask);
1735 for_each_set_bit(i, mask, 32) {
1736 reg = &func->regs[i];
1737 if (reg->type != SCALAR_VALUE)
1738 continue;
1739 if (!reg->precise)
1740 new_marks = true;
1741 reg->precise = true;
1742 }
1743
1744 bitmap_from_u64(mask, stack_mask);
1745 for_each_set_bit(i, mask, 64) {
1746 if (i >= func->allocated_stack / BPF_REG_SIZE) {
1747 /* This can happen if backtracking
1748 * is propagating stack precision where
1749 * caller has larger stack frame
1750 * than callee, but backtrack_insn() should
1751 * have returned -ENOTSUPP.
1752 */
1753 verbose(env, "BUG spi %d stack_size %d\n",
1754 i, func->allocated_stack);
1755 WARN_ONCE(1, "verifier backtracking bug");
1756 return -EFAULT;
1757 }
1758
1759 if (func->stack[i].slot_type[0] != STACK_SPILL)
1760 continue;
1761 reg = &func->stack[i].spilled_ptr;
1762 if (reg->type != SCALAR_VALUE)
1763 continue;
1764 if (!reg->precise)
1765 new_marks = true;
1766 reg->precise = true;
1767 }
1768 if (env->log.level & BPF_LOG_LEVEL) {
1769 print_verifier_state(env, func);
1770 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1771 new_marks ? "didn't have" : "already had",
1772 reg_mask, stack_mask);
1773 }
1774
1775 if (!new_marks)
1776 break;
1777
1778 last_idx = st->last_insn_idx;
1779 first_idx = st->first_insn_idx;
1780 }
1781 return 0;
1782}
1783
1784
1be7f75d
AS
1785static bool is_spillable_regtype(enum bpf_reg_type type)
1786{
1787 switch (type) {
1788 case PTR_TO_MAP_VALUE:
1789 case PTR_TO_MAP_VALUE_OR_NULL:
1790 case PTR_TO_STACK:
1791 case PTR_TO_CTX:
969bf05e 1792 case PTR_TO_PACKET:
de8f3a83 1793 case PTR_TO_PACKET_META:
969bf05e 1794 case PTR_TO_PACKET_END:
d58e468b 1795 case PTR_TO_FLOW_KEYS:
1be7f75d 1796 case CONST_PTR_TO_MAP:
c64b7983
JS
1797 case PTR_TO_SOCKET:
1798 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1799 case PTR_TO_SOCK_COMMON:
1800 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1801 case PTR_TO_TCP_SOCK:
1802 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1803 case PTR_TO_XDP_SOCK:
1be7f75d
AS
1804 return true;
1805 default:
1806 return false;
1807 }
1808}
1809
cc2b14d5
AS
1810/* Does this register contain a constant zero? */
1811static bool register_is_null(struct bpf_reg_state *reg)
1812{
1813 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1814}
1815
f7cf25b2
AS
1816static bool register_is_const(struct bpf_reg_state *reg)
1817{
1818 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1819}
1820
1821static void save_register_state(struct bpf_func_state *state,
1822 int spi, struct bpf_reg_state *reg)
1823{
1824 int i;
1825
1826 state->stack[spi].spilled_ptr = *reg;
1827 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1828
1829 for (i = 0; i < BPF_REG_SIZE; i++)
1830 state->stack[spi].slot_type[i] = STACK_SPILL;
1831}
1832
17a52670
AS
1833/* check_stack_read/write functions track spill/fill of registers,
1834 * stack boundary and alignment are checked in check_mem_access()
1835 */
61bd5218 1836static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1837 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1838 int off, int size, int value_regno, int insn_idx)
17a52670 1839{
f4d7e40a 1840 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1841 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1842 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1843 struct bpf_reg_state *reg = NULL;
638f5b90 1844
f4d7e40a 1845 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1846 state->acquired_refs, true);
638f5b90
AS
1847 if (err)
1848 return err;
9c399760
AS
1849 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1850 * so it's aligned access and [off, off + size) are within stack limits
1851 */
638f5b90
AS
1852 if (!env->allow_ptr_leaks &&
1853 state->stack[spi].slot_type[0] == STACK_SPILL &&
1854 size != BPF_REG_SIZE) {
1855 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1856 return -EACCES;
1857 }
17a52670 1858
f4d7e40a 1859 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1860 if (value_regno >= 0)
1861 reg = &cur->regs[value_regno];
17a52670 1862
f7cf25b2
AS
1863 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1864 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1865 if (dst_reg != BPF_REG_FP) {
1866 /* The backtracking logic can only recognize explicit
1867 * stack slot address like [fp - 8]. Other spill of
1868 * scalar via different register has to be conervative.
1869 * Backtrack from here and mark all registers as precise
1870 * that contributed into 'reg' being a constant.
1871 */
1872 err = mark_chain_precision(env, value_regno);
1873 if (err)
1874 return err;
1875 }
f7cf25b2
AS
1876 save_register_state(state, spi, reg);
1877 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1878 /* register containing pointer is being spilled into stack */
9c399760 1879 if (size != BPF_REG_SIZE) {
f7cf25b2 1880 verbose_linfo(env, insn_idx, "; ");
61bd5218 1881 verbose(env, "invalid size of register spill\n");
17a52670
AS
1882 return -EACCES;
1883 }
1884
f7cf25b2 1885 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
1886 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1887 return -EINVAL;
1888 }
1889
f7cf25b2
AS
1890 if (!env->allow_ptr_leaks) {
1891 bool sanitize = false;
17a52670 1892
f7cf25b2
AS
1893 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1894 register_is_const(&state->stack[spi].spilled_ptr))
1895 sanitize = true;
1896 for (i = 0; i < BPF_REG_SIZE; i++)
1897 if (state->stack[spi].slot_type[i] == STACK_MISC) {
1898 sanitize = true;
1899 break;
1900 }
1901 if (sanitize) {
af86ca4e
AS
1902 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1903 int soff = (-spi - 1) * BPF_REG_SIZE;
1904
1905 /* detected reuse of integer stack slot with a pointer
1906 * which means either llvm is reusing stack slot or
1907 * an attacker is trying to exploit CVE-2018-3639
1908 * (speculative store bypass)
1909 * Have to sanitize that slot with preemptive
1910 * store of zero.
1911 */
1912 if (*poff && *poff != soff) {
1913 /* disallow programs where single insn stores
1914 * into two different stack slots, since verifier
1915 * cannot sanitize them
1916 */
1917 verbose(env,
1918 "insn %d cannot access two stack slots fp%d and fp%d",
1919 insn_idx, *poff, soff);
1920 return -EINVAL;
1921 }
1922 *poff = soff;
1923 }
af86ca4e 1924 }
f7cf25b2 1925 save_register_state(state, spi, reg);
9c399760 1926 } else {
cc2b14d5
AS
1927 u8 type = STACK_MISC;
1928
679c782d
EC
1929 /* regular write of data into stack destroys any spilled ptr */
1930 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1931 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1932 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1933 for (i = 0; i < BPF_REG_SIZE; i++)
1934 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1935
cc2b14d5
AS
1936 /* only mark the slot as written if all 8 bytes were written
1937 * otherwise read propagation may incorrectly stop too soon
1938 * when stack slots are partially written.
1939 * This heuristic means that read propagation will be
1940 * conservative, since it will add reg_live_read marks
1941 * to stack slots all the way to first state when programs
1942 * writes+reads less than 8 bytes
1943 */
1944 if (size == BPF_REG_SIZE)
1945 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1946
1947 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
1948 if (reg && register_is_null(reg)) {
1949 /* backtracking doesn't work for STACK_ZERO yet. */
1950 err = mark_chain_precision(env, value_regno);
1951 if (err)
1952 return err;
cc2b14d5 1953 type = STACK_ZERO;
b5dc0163 1954 }
cc2b14d5 1955
0bae2d4d 1956 /* Mark slots affected by this stack write. */
9c399760 1957 for (i = 0; i < size; i++)
638f5b90 1958 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1959 type;
17a52670
AS
1960 }
1961 return 0;
1962}
1963
61bd5218 1964static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1965 struct bpf_func_state *reg_state /* func where register points to */,
1966 int off, int size, int value_regno)
17a52670 1967{
f4d7e40a
AS
1968 struct bpf_verifier_state *vstate = env->cur_state;
1969 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 1970 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 1971 struct bpf_reg_state *reg;
638f5b90 1972 u8 *stype;
17a52670 1973
f4d7e40a 1974 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1975 verbose(env, "invalid read from stack off %d+0 size %d\n",
1976 off, size);
1977 return -EACCES;
1978 }
f4d7e40a 1979 stype = reg_state->stack[spi].slot_type;
f7cf25b2 1980 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 1981
638f5b90 1982 if (stype[0] == STACK_SPILL) {
9c399760 1983 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
1984 if (reg->type != SCALAR_VALUE) {
1985 verbose_linfo(env, env->insn_idx, "; ");
1986 verbose(env, "invalid size of register fill\n");
1987 return -EACCES;
1988 }
1989 if (value_regno >= 0) {
1990 mark_reg_unknown(env, state->regs, value_regno);
1991 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1992 }
1993 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
1994 return 0;
17a52670 1995 }
9c399760 1996 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1997 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1998 verbose(env, "corrupted spill memory\n");
17a52670
AS
1999 return -EACCES;
2000 }
2001 }
2002
dc503a8a 2003 if (value_regno >= 0) {
17a52670 2004 /* restore register state from stack */
f7cf25b2 2005 state->regs[value_regno] = *reg;
2f18f62e
AS
2006 /* mark reg as written since spilled pointer state likely
2007 * has its liveness marks cleared by is_state_visited()
2008 * which resets stack/reg liveness for state transitions
2009 */
2010 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2011 }
f7cf25b2 2012 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2013 } else {
cc2b14d5
AS
2014 int zeros = 0;
2015
17a52670 2016 for (i = 0; i < size; i++) {
cc2b14d5
AS
2017 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2018 continue;
2019 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2020 zeros++;
2021 continue;
17a52670 2022 }
cc2b14d5
AS
2023 verbose(env, "invalid read from stack off %d+%d size %d\n",
2024 off, i, size);
2025 return -EACCES;
2026 }
f7cf25b2 2027 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2028 if (value_regno >= 0) {
2029 if (zeros == size) {
2030 /* any size read into register is zero extended,
2031 * so the whole register == const_zero
2032 */
2033 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2034 /* backtracking doesn't support STACK_ZERO yet,
2035 * so mark it precise here, so that later
2036 * backtracking can stop here.
2037 * Backtracking may not need this if this register
2038 * doesn't participate in pointer adjustment.
2039 * Forward propagation of precise flag is not
2040 * necessary either. This mark is only to stop
2041 * backtracking. Any register that contributed
2042 * to const 0 was marked precise before spill.
2043 */
2044 state->regs[value_regno].precise = true;
cc2b14d5
AS
2045 } else {
2046 /* have read misc data from the stack */
2047 mark_reg_unknown(env, state->regs, value_regno);
2048 }
2049 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2050 }
17a52670 2051 }
f7cf25b2 2052 return 0;
17a52670
AS
2053}
2054
e4298d25
DB
2055static int check_stack_access(struct bpf_verifier_env *env,
2056 const struct bpf_reg_state *reg,
2057 int off, int size)
2058{
2059 /* Stack accesses must be at a fixed offset, so that we
2060 * can determine what type of data were returned. See
2061 * check_stack_read().
2062 */
2063 if (!tnum_is_const(reg->var_off)) {
2064 char tn_buf[48];
2065
2066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2067 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2068 tn_buf, off, size);
2069 return -EACCES;
2070 }
2071
2072 if (off >= 0 || off < -MAX_BPF_STACK) {
2073 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2074 return -EACCES;
2075 }
2076
2077 return 0;
2078}
2079
591fe988
DB
2080static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2081 int off, int size, enum bpf_access_type type)
2082{
2083 struct bpf_reg_state *regs = cur_regs(env);
2084 struct bpf_map *map = regs[regno].map_ptr;
2085 u32 cap = bpf_map_flags_to_cap(map);
2086
2087 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2088 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2089 map->value_size, off, size);
2090 return -EACCES;
2091 }
2092
2093 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2094 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2095 map->value_size, off, size);
2096 return -EACCES;
2097 }
2098
2099 return 0;
2100}
2101
17a52670 2102/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2103static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2104 int size, bool zero_size_allowed)
17a52670 2105{
638f5b90
AS
2106 struct bpf_reg_state *regs = cur_regs(env);
2107 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2108
9fd29c08
YS
2109 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2110 off + size > map->value_size) {
61bd5218 2111 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2112 map->value_size, off, size);
2113 return -EACCES;
2114 }
2115 return 0;
2116}
2117
f1174f77
EC
2118/* check read/write into a map element with possible variable offset */
2119static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2120 int off, int size, bool zero_size_allowed)
dbcfe5f7 2121{
f4d7e40a
AS
2122 struct bpf_verifier_state *vstate = env->cur_state;
2123 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2124 struct bpf_reg_state *reg = &state->regs[regno];
2125 int err;
2126
f1174f77
EC
2127 /* We may have adjusted the register to this map value, so we
2128 * need to try adding each of min_value and max_value to off
2129 * to make sure our theoretical access will be safe.
dbcfe5f7 2130 */
06ee7115 2131 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2132 print_verifier_state(env, state);
b7137c4e 2133
dbcfe5f7
GB
2134 /* The minimum value is only important with signed
2135 * comparisons where we can't assume the floor of a
2136 * value is 0. If we are using signed variables for our
2137 * index'es we need to make sure that whatever we use
2138 * will have a set floor within our range.
2139 */
b7137c4e
DB
2140 if (reg->smin_value < 0 &&
2141 (reg->smin_value == S64_MIN ||
2142 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2143 reg->smin_value + off < 0)) {
61bd5218 2144 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2145 regno);
2146 return -EACCES;
2147 }
9fd29c08
YS
2148 err = __check_map_access(env, regno, reg->smin_value + off, size,
2149 zero_size_allowed);
dbcfe5f7 2150 if (err) {
61bd5218
JK
2151 verbose(env, "R%d min value is outside of the array range\n",
2152 regno);
dbcfe5f7
GB
2153 return err;
2154 }
2155
b03c9f9f
EC
2156 /* If we haven't set a max value then we need to bail since we can't be
2157 * sure we won't do bad things.
2158 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2159 */
b03c9f9f 2160 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2161 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2162 regno);
2163 return -EACCES;
2164 }
9fd29c08
YS
2165 err = __check_map_access(env, regno, reg->umax_value + off, size,
2166 zero_size_allowed);
f1174f77 2167 if (err)
61bd5218
JK
2168 verbose(env, "R%d max value is outside of the array range\n",
2169 regno);
d83525ca
AS
2170
2171 if (map_value_has_spin_lock(reg->map_ptr)) {
2172 u32 lock = reg->map_ptr->spin_lock_off;
2173
2174 /* if any part of struct bpf_spin_lock can be touched by
2175 * load/store reject this program.
2176 * To check that [x1, x2) overlaps with [y1, y2)
2177 * it is sufficient to check x1 < y2 && y1 < x2.
2178 */
2179 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2180 lock < reg->umax_value + off + size) {
2181 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2182 return -EACCES;
2183 }
2184 }
f1174f77 2185 return err;
dbcfe5f7
GB
2186}
2187
969bf05e
AS
2188#define MAX_PACKET_OFF 0xffff
2189
58e2af8b 2190static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2191 const struct bpf_call_arg_meta *meta,
2192 enum bpf_access_type t)
4acf6c0b 2193{
36bbef52 2194 switch (env->prog->type) {
5d66fa7d 2195 /* Program types only with direct read access go here! */
3a0af8fd
TG
2196 case BPF_PROG_TYPE_LWT_IN:
2197 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2198 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2199 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2200 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2201 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2202 if (t == BPF_WRITE)
2203 return false;
7e57fbb2 2204 /* fallthrough */
5d66fa7d
DB
2205
2206 /* Program types with direct read + write access go here! */
36bbef52
DB
2207 case BPF_PROG_TYPE_SCHED_CLS:
2208 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2209 case BPF_PROG_TYPE_XDP:
3a0af8fd 2210 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2211 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2212 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2213 if (meta)
2214 return meta->pkt_access;
2215
2216 env->seen_direct_write = true;
4acf6c0b 2217 return true;
0d01da6a
SF
2218
2219 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2220 if (t == BPF_WRITE)
2221 env->seen_direct_write = true;
2222
2223 return true;
2224
4acf6c0b
BB
2225 default:
2226 return false;
2227 }
2228}
2229
f1174f77 2230static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2231 int off, int size, bool zero_size_allowed)
969bf05e 2232{
638f5b90 2233 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2234 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2235
9fd29c08
YS
2236 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2237 (u64)off + size > reg->range) {
61bd5218 2238 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2239 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2240 return -EACCES;
2241 }
2242 return 0;
2243}
2244
f1174f77 2245static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2246 int size, bool zero_size_allowed)
f1174f77 2247{
638f5b90 2248 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2249 struct bpf_reg_state *reg = &regs[regno];
2250 int err;
2251
2252 /* We may have added a variable offset to the packet pointer; but any
2253 * reg->range we have comes after that. We are only checking the fixed
2254 * offset.
2255 */
2256
2257 /* We don't allow negative numbers, because we aren't tracking enough
2258 * detail to prove they're safe.
2259 */
b03c9f9f 2260 if (reg->smin_value < 0) {
61bd5218 2261 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2262 regno);
2263 return -EACCES;
2264 }
9fd29c08 2265 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2266 if (err) {
61bd5218 2267 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2268 return err;
2269 }
e647815a
JW
2270
2271 /* __check_packet_access has made sure "off + size - 1" is within u16.
2272 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2273 * otherwise find_good_pkt_pointers would have refused to set range info
2274 * that __check_packet_access would have rejected this pkt access.
2275 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2276 */
2277 env->prog->aux->max_pkt_offset =
2278 max_t(u32, env->prog->aux->max_pkt_offset,
2279 off + reg->umax_value + size - 1);
2280
f1174f77
EC
2281 return err;
2282}
2283
2284/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2285static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 2286 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 2287{
f96da094
DB
2288 struct bpf_insn_access_aux info = {
2289 .reg_type = *reg_type,
2290 };
31fd8581 2291
4f9218aa 2292 if (env->ops->is_valid_access &&
5e43f899 2293 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2294 /* A non zero info.ctx_field_size indicates that this field is a
2295 * candidate for later verifier transformation to load the whole
2296 * field and then apply a mask when accessed with a narrower
2297 * access than actual ctx access size. A zero info.ctx_field_size
2298 * will only allow for whole field access and rejects any other
2299 * type of narrower access.
31fd8581 2300 */
23994631 2301 *reg_type = info.reg_type;
31fd8581 2302
4f9218aa 2303 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2304 /* remember the offset of last byte accessed in ctx */
2305 if (env->prog->aux->max_ctx_offset < off + size)
2306 env->prog->aux->max_ctx_offset = off + size;
17a52670 2307 return 0;
32bbe007 2308 }
17a52670 2309
61bd5218 2310 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2311 return -EACCES;
2312}
2313
d58e468b
PP
2314static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2315 int size)
2316{
2317 if (size < 0 || off < 0 ||
2318 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2319 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2320 off, size);
2321 return -EACCES;
2322 }
2323 return 0;
2324}
2325
5f456649
MKL
2326static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2327 u32 regno, int off, int size,
2328 enum bpf_access_type t)
c64b7983
JS
2329{
2330 struct bpf_reg_state *regs = cur_regs(env);
2331 struct bpf_reg_state *reg = &regs[regno];
5f456649 2332 struct bpf_insn_access_aux info = {};
46f8bc92 2333 bool valid;
c64b7983
JS
2334
2335 if (reg->smin_value < 0) {
2336 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2337 regno);
2338 return -EACCES;
2339 }
2340
46f8bc92
MKL
2341 switch (reg->type) {
2342 case PTR_TO_SOCK_COMMON:
2343 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2344 break;
2345 case PTR_TO_SOCKET:
2346 valid = bpf_sock_is_valid_access(off, size, t, &info);
2347 break;
655a51e5
MKL
2348 case PTR_TO_TCP_SOCK:
2349 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2350 break;
fada7fdc
JL
2351 case PTR_TO_XDP_SOCK:
2352 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2353 break;
46f8bc92
MKL
2354 default:
2355 valid = false;
c64b7983
JS
2356 }
2357
5f456649 2358
46f8bc92
MKL
2359 if (valid) {
2360 env->insn_aux_data[insn_idx].ctx_field_size =
2361 info.ctx_field_size;
2362 return 0;
2363 }
2364
2365 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2366 regno, reg_type_str[reg->type], off, size);
2367
2368 return -EACCES;
c64b7983
JS
2369}
2370
4cabc5b1
DB
2371static bool __is_pointer_value(bool allow_ptr_leaks,
2372 const struct bpf_reg_state *reg)
1be7f75d 2373{
4cabc5b1 2374 if (allow_ptr_leaks)
1be7f75d
AS
2375 return false;
2376
f1174f77 2377 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2378}
2379
2a159c6f
DB
2380static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2381{
2382 return cur_regs(env) + regno;
2383}
2384
4cabc5b1
DB
2385static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2386{
2a159c6f 2387 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2388}
2389
f37a8cb8
DB
2390static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2391{
2a159c6f 2392 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2393
46f8bc92
MKL
2394 return reg->type == PTR_TO_CTX;
2395}
2396
2397static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2398{
2399 const struct bpf_reg_state *reg = reg_state(env, regno);
2400
2401 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2402}
2403
ca369602
DB
2404static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2405{
2a159c6f 2406 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2407
2408 return type_is_pkt_pointer(reg->type);
2409}
2410
4b5defde
DB
2411static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2412{
2413 const struct bpf_reg_state *reg = reg_state(env, regno);
2414
2415 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2416 return reg->type == PTR_TO_FLOW_KEYS;
2417}
2418
61bd5218
JK
2419static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2420 const struct bpf_reg_state *reg,
d1174416 2421 int off, int size, bool strict)
969bf05e 2422{
f1174f77 2423 struct tnum reg_off;
e07b98d9 2424 int ip_align;
d1174416
DM
2425
2426 /* Byte size accesses are always allowed. */
2427 if (!strict || size == 1)
2428 return 0;
2429
e4eda884
DM
2430 /* For platforms that do not have a Kconfig enabling
2431 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2432 * NET_IP_ALIGN is universally set to '2'. And on platforms
2433 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2434 * to this code only in strict mode where we want to emulate
2435 * the NET_IP_ALIGN==2 checking. Therefore use an
2436 * unconditional IP align value of '2'.
e07b98d9 2437 */
e4eda884 2438 ip_align = 2;
f1174f77
EC
2439
2440 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2441 if (!tnum_is_aligned(reg_off, size)) {
2442 char tn_buf[48];
2443
2444 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2445 verbose(env,
2446 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2447 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2448 return -EACCES;
2449 }
79adffcd 2450
969bf05e
AS
2451 return 0;
2452}
2453
61bd5218
JK
2454static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2455 const struct bpf_reg_state *reg,
f1174f77
EC
2456 const char *pointer_desc,
2457 int off, int size, bool strict)
79adffcd 2458{
f1174f77
EC
2459 struct tnum reg_off;
2460
2461 /* Byte size accesses are always allowed. */
2462 if (!strict || size == 1)
2463 return 0;
2464
2465 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2466 if (!tnum_is_aligned(reg_off, size)) {
2467 char tn_buf[48];
2468
2469 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2470 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2471 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2472 return -EACCES;
2473 }
2474
969bf05e
AS
2475 return 0;
2476}
2477
e07b98d9 2478static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2479 const struct bpf_reg_state *reg, int off,
2480 int size, bool strict_alignment_once)
79adffcd 2481{
ca369602 2482 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2483 const char *pointer_desc = "";
d1174416 2484
79adffcd
DB
2485 switch (reg->type) {
2486 case PTR_TO_PACKET:
de8f3a83
DB
2487 case PTR_TO_PACKET_META:
2488 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2489 * right in front, treat it the very same way.
2490 */
61bd5218 2491 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2492 case PTR_TO_FLOW_KEYS:
2493 pointer_desc = "flow keys ";
2494 break;
f1174f77
EC
2495 case PTR_TO_MAP_VALUE:
2496 pointer_desc = "value ";
2497 break;
2498 case PTR_TO_CTX:
2499 pointer_desc = "context ";
2500 break;
2501 case PTR_TO_STACK:
2502 pointer_desc = "stack ";
a5ec6ae1
JH
2503 /* The stack spill tracking logic in check_stack_write()
2504 * and check_stack_read() relies on stack accesses being
2505 * aligned.
2506 */
2507 strict = true;
f1174f77 2508 break;
c64b7983
JS
2509 case PTR_TO_SOCKET:
2510 pointer_desc = "sock ";
2511 break;
46f8bc92
MKL
2512 case PTR_TO_SOCK_COMMON:
2513 pointer_desc = "sock_common ";
2514 break;
655a51e5
MKL
2515 case PTR_TO_TCP_SOCK:
2516 pointer_desc = "tcp_sock ";
2517 break;
fada7fdc
JL
2518 case PTR_TO_XDP_SOCK:
2519 pointer_desc = "xdp_sock ";
2520 break;
79adffcd 2521 default:
f1174f77 2522 break;
79adffcd 2523 }
61bd5218
JK
2524 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2525 strict);
79adffcd
DB
2526}
2527
f4d7e40a
AS
2528static int update_stack_depth(struct bpf_verifier_env *env,
2529 const struct bpf_func_state *func,
2530 int off)
2531{
9c8105bd 2532 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2533
2534 if (stack >= -off)
2535 return 0;
2536
2537 /* update known max for given subprogram */
9c8105bd 2538 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2539 return 0;
2540}
f4d7e40a 2541
70a87ffe
AS
2542/* starting from main bpf function walk all instructions of the function
2543 * and recursively walk all callees that given function can call.
2544 * Ignore jump and exit insns.
2545 * Since recursion is prevented by check_cfg() this algorithm
2546 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2547 */
2548static int check_max_stack_depth(struct bpf_verifier_env *env)
2549{
9c8105bd
JW
2550 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2551 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2552 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2553 int ret_insn[MAX_CALL_FRAMES];
2554 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2555
70a87ffe
AS
2556process_func:
2557 /* round up to 32-bytes, since this is granularity
2558 * of interpreter stack size
2559 */
9c8105bd 2560 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2561 if (depth > MAX_BPF_STACK) {
f4d7e40a 2562 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2563 frame + 1, depth);
f4d7e40a
AS
2564 return -EACCES;
2565 }
70a87ffe 2566continue_func:
4cb3d99c 2567 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2568 for (; i < subprog_end; i++) {
2569 if (insn[i].code != (BPF_JMP | BPF_CALL))
2570 continue;
2571 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2572 continue;
2573 /* remember insn and function to return to */
2574 ret_insn[frame] = i + 1;
9c8105bd 2575 ret_prog[frame] = idx;
70a87ffe
AS
2576
2577 /* find the callee */
2578 i = i + insn[i].imm + 1;
9c8105bd
JW
2579 idx = find_subprog(env, i);
2580 if (idx < 0) {
70a87ffe
AS
2581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2582 i);
2583 return -EFAULT;
2584 }
70a87ffe
AS
2585 frame++;
2586 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2587 verbose(env, "the call stack of %d frames is too deep !\n",
2588 frame);
2589 return -E2BIG;
70a87ffe
AS
2590 }
2591 goto process_func;
2592 }
2593 /* end of for() loop means the last insn of the 'subprog'
2594 * was reached. Doesn't matter whether it was JA or EXIT
2595 */
2596 if (frame == 0)
2597 return 0;
9c8105bd 2598 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2599 frame--;
2600 i = ret_insn[frame];
9c8105bd 2601 idx = ret_prog[frame];
70a87ffe 2602 goto continue_func;
f4d7e40a
AS
2603}
2604
19d28fbd 2605#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2606static int get_callee_stack_depth(struct bpf_verifier_env *env,
2607 const struct bpf_insn *insn, int idx)
2608{
2609 int start = idx + insn->imm + 1, subprog;
2610
2611 subprog = find_subprog(env, start);
2612 if (subprog < 0) {
2613 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2614 start);
2615 return -EFAULT;
2616 }
9c8105bd 2617 return env->subprog_info[subprog].stack_depth;
1ea47e01 2618}
19d28fbd 2619#endif
1ea47e01 2620
58990d1f
DB
2621static int check_ctx_reg(struct bpf_verifier_env *env,
2622 const struct bpf_reg_state *reg, int regno)
2623{
2624 /* Access to ctx or passing it to a helper is only allowed in
2625 * its original, unmodified form.
2626 */
2627
2628 if (reg->off) {
2629 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2630 regno, reg->off);
2631 return -EACCES;
2632 }
2633
2634 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2635 char tn_buf[48];
2636
2637 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2638 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2639 return -EACCES;
2640 }
2641
2642 return 0;
2643}
2644
9df1c28b
MM
2645static int check_tp_buffer_access(struct bpf_verifier_env *env,
2646 const struct bpf_reg_state *reg,
2647 int regno, int off, int size)
2648{
2649 if (off < 0) {
2650 verbose(env,
2651 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2652 regno, off, size);
2653 return -EACCES;
2654 }
2655 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2656 char tn_buf[48];
2657
2658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2659 verbose(env,
2660 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2661 regno, off, tn_buf);
2662 return -EACCES;
2663 }
2664 if (off + size > env->prog->aux->max_tp_access)
2665 env->prog->aux->max_tp_access = off + size;
2666
2667 return 0;
2668}
2669
2670
0c17d1d2
JH
2671/* truncate register to smaller size (in bytes)
2672 * must be called with size < BPF_REG_SIZE
2673 */
2674static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2675{
2676 u64 mask;
2677
2678 /* clear high bits in bit representation */
2679 reg->var_off = tnum_cast(reg->var_off, size);
2680
2681 /* fix arithmetic bounds */
2682 mask = ((u64)1 << (size * 8)) - 1;
2683 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2684 reg->umin_value &= mask;
2685 reg->umax_value &= mask;
2686 } else {
2687 reg->umin_value = 0;
2688 reg->umax_value = mask;
2689 }
2690 reg->smin_value = reg->umin_value;
2691 reg->smax_value = reg->umax_value;
2692}
2693
17a52670
AS
2694/* check whether memory at (regno + off) is accessible for t = (read | write)
2695 * if t==write, value_regno is a register which value is stored into memory
2696 * if t==read, value_regno is a register which will receive the value from memory
2697 * if t==write && value_regno==-1, some unknown value is stored into memory
2698 * if t==read && value_regno==-1, don't care what we read from memory
2699 */
ca369602
DB
2700static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2701 int off, int bpf_size, enum bpf_access_type t,
2702 int value_regno, bool strict_alignment_once)
17a52670 2703{
638f5b90
AS
2704 struct bpf_reg_state *regs = cur_regs(env);
2705 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2706 struct bpf_func_state *state;
17a52670
AS
2707 int size, err = 0;
2708
2709 size = bpf_size_to_bytes(bpf_size);
2710 if (size < 0)
2711 return size;
2712
f1174f77 2713 /* alignment checks will add in reg->off themselves */
ca369602 2714 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2715 if (err)
2716 return err;
17a52670 2717
f1174f77
EC
2718 /* for access checks, reg->off is just part of off */
2719 off += reg->off;
2720
2721 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2722 if (t == BPF_WRITE && value_regno >= 0 &&
2723 is_pointer_value(env, value_regno)) {
61bd5218 2724 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2725 return -EACCES;
2726 }
591fe988
DB
2727 err = check_map_access_type(env, regno, off, size, t);
2728 if (err)
2729 return err;
9fd29c08 2730 err = check_map_access(env, regno, off, size, false);
17a52670 2731 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2732 mark_reg_unknown(env, regs, value_regno);
17a52670 2733
1a0dc1ac 2734 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2735 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2736
1be7f75d
AS
2737 if (t == BPF_WRITE && value_regno >= 0 &&
2738 is_pointer_value(env, value_regno)) {
61bd5218 2739 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2740 return -EACCES;
2741 }
f1174f77 2742
58990d1f
DB
2743 err = check_ctx_reg(env, reg, regno);
2744 if (err < 0)
2745 return err;
2746
31fd8581 2747 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2748 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2749 /* ctx access returns either a scalar, or a
de8f3a83
DB
2750 * PTR_TO_PACKET[_META,_END]. In the latter
2751 * case, we know the offset is zero.
f1174f77 2752 */
46f8bc92 2753 if (reg_type == SCALAR_VALUE) {
638f5b90 2754 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2755 } else {
638f5b90 2756 mark_reg_known_zero(env, regs,
61bd5218 2757 value_regno);
46f8bc92
MKL
2758 if (reg_type_may_be_null(reg_type))
2759 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2760 /* A load of ctx field could have different
2761 * actual load size with the one encoded in the
2762 * insn. When the dst is PTR, it is for sure not
2763 * a sub-register.
2764 */
2765 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
46f8bc92 2766 }
638f5b90 2767 regs[value_regno].type = reg_type;
969bf05e 2768 }
17a52670 2769
f1174f77 2770 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2771 off += reg->var_off.value;
e4298d25
DB
2772 err = check_stack_access(env, reg, off, size);
2773 if (err)
2774 return err;
8726679a 2775
f4d7e40a
AS
2776 state = func(env, reg);
2777 err = update_stack_depth(env, state, off);
2778 if (err)
2779 return err;
8726679a 2780
638f5b90 2781 if (t == BPF_WRITE)
61bd5218 2782 err = check_stack_write(env, state, off, size,
af86ca4e 2783 value_regno, insn_idx);
638f5b90 2784 else
61bd5218
JK
2785 err = check_stack_read(env, state, off, size,
2786 value_regno);
de8f3a83 2787 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2788 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2789 verbose(env, "cannot write into packet\n");
969bf05e
AS
2790 return -EACCES;
2791 }
4acf6c0b
BB
2792 if (t == BPF_WRITE && value_regno >= 0 &&
2793 is_pointer_value(env, value_regno)) {
61bd5218
JK
2794 verbose(env, "R%d leaks addr into packet\n",
2795 value_regno);
4acf6c0b
BB
2796 return -EACCES;
2797 }
9fd29c08 2798 err = check_packet_access(env, regno, off, size, false);
969bf05e 2799 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2800 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2801 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2802 if (t == BPF_WRITE && value_regno >= 0 &&
2803 is_pointer_value(env, value_regno)) {
2804 verbose(env, "R%d leaks addr into flow keys\n",
2805 value_regno);
2806 return -EACCES;
2807 }
2808
2809 err = check_flow_keys_access(env, off, size);
2810 if (!err && t == BPF_READ && value_regno >= 0)
2811 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2812 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2813 if (t == BPF_WRITE) {
46f8bc92
MKL
2814 verbose(env, "R%d cannot write into %s\n",
2815 regno, reg_type_str[reg->type]);
c64b7983
JS
2816 return -EACCES;
2817 }
5f456649 2818 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2819 if (!err && value_regno >= 0)
2820 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
2821 } else if (reg->type == PTR_TO_TP_BUFFER) {
2822 err = check_tp_buffer_access(env, reg, regno, off, size);
2823 if (!err && t == BPF_READ && value_regno >= 0)
2824 mark_reg_unknown(env, regs, value_regno);
17a52670 2825 } else {
61bd5218
JK
2826 verbose(env, "R%d invalid mem access '%s'\n", regno,
2827 reg_type_str[reg->type]);
17a52670
AS
2828 return -EACCES;
2829 }
969bf05e 2830
f1174f77 2831 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2832 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2833 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2834 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2835 }
17a52670
AS
2836 return err;
2837}
2838
31fd8581 2839static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2840{
17a52670
AS
2841 int err;
2842
2843 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2844 insn->imm != 0) {
61bd5218 2845 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2846 return -EINVAL;
2847 }
2848
2849 /* check src1 operand */
dc503a8a 2850 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2851 if (err)
2852 return err;
2853
2854 /* check src2 operand */
dc503a8a 2855 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2856 if (err)
2857 return err;
2858
6bdf6abc 2859 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2860 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2861 return -EACCES;
2862 }
2863
ca369602 2864 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2865 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2866 is_flow_key_reg(env, insn->dst_reg) ||
2867 is_sk_reg(env, insn->dst_reg)) {
ca369602 2868 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2869 insn->dst_reg,
2870 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2871 return -EACCES;
2872 }
2873
17a52670 2874 /* check whether atomic_add can read the memory */
31fd8581 2875 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2876 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2877 if (err)
2878 return err;
2879
2880 /* check whether atomic_add can write into the same memory */
31fd8581 2881 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2882 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2883}
2884
2011fccf
AI
2885static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2886 int off, int access_size,
2887 bool zero_size_allowed)
2888{
2889 struct bpf_reg_state *reg = reg_state(env, regno);
2890
2891 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2892 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2893 if (tnum_is_const(reg->var_off)) {
2894 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2895 regno, off, access_size);
2896 } else {
2897 char tn_buf[48];
2898
2899 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2900 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2901 regno, tn_buf, access_size);
2902 }
2903 return -EACCES;
2904 }
2905 return 0;
2906}
2907
17a52670
AS
2908/* when register 'regno' is passed into function that will read 'access_size'
2909 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2910 * and all elements of stack are initialized.
2911 * Unlike most pointer bounds-checking functions, this one doesn't take an
2912 * 'off' argument, so it has to add in reg->off itself.
17a52670 2913 */
58e2af8b 2914static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2915 int access_size, bool zero_size_allowed,
2916 struct bpf_call_arg_meta *meta)
17a52670 2917{
2a159c6f 2918 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2919 struct bpf_func_state *state = func(env, reg);
f7cf25b2 2920 int err, min_off, max_off, i, j, slot, spi;
17a52670 2921
914cb781 2922 if (reg->type != PTR_TO_STACK) {
f1174f77 2923 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2924 if (zero_size_allowed && access_size == 0 &&
914cb781 2925 register_is_null(reg))
8e2fe1d9
DB
2926 return 0;
2927
61bd5218 2928 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2929 reg_type_str[reg->type],
8e2fe1d9 2930 reg_type_str[PTR_TO_STACK]);
17a52670 2931 return -EACCES;
8e2fe1d9 2932 }
17a52670 2933
2011fccf
AI
2934 if (tnum_is_const(reg->var_off)) {
2935 min_off = max_off = reg->var_off.value + reg->off;
2936 err = __check_stack_boundary(env, regno, min_off, access_size,
2937 zero_size_allowed);
2938 if (err)
2939 return err;
2940 } else {
088ec26d
AI
2941 /* Variable offset is prohibited for unprivileged mode for
2942 * simplicity since it requires corresponding support in
2943 * Spectre masking for stack ALU.
2944 * See also retrieve_ptr_limit().
2945 */
2946 if (!env->allow_ptr_leaks) {
2947 char tn_buf[48];
f1174f77 2948
088ec26d
AI
2949 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2950 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2951 regno, tn_buf);
2952 return -EACCES;
2953 }
f2bcd05e
AI
2954 /* Only initialized buffer on stack is allowed to be accessed
2955 * with variable offset. With uninitialized buffer it's hard to
2956 * guarantee that whole memory is marked as initialized on
2957 * helper return since specific bounds are unknown what may
2958 * cause uninitialized stack leaking.
2959 */
2960 if (meta && meta->raw_mode)
2961 meta = NULL;
2962
107c26a7
AI
2963 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2964 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2965 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2966 regno);
2967 return -EACCES;
2968 }
2011fccf 2969 min_off = reg->smin_value + reg->off;
107c26a7 2970 max_off = reg->smax_value + reg->off;
2011fccf
AI
2971 err = __check_stack_boundary(env, regno, min_off, access_size,
2972 zero_size_allowed);
107c26a7
AI
2973 if (err) {
2974 verbose(env, "R%d min value is outside of stack bound\n",
2975 regno);
2011fccf 2976 return err;
107c26a7 2977 }
2011fccf
AI
2978 err = __check_stack_boundary(env, regno, max_off, access_size,
2979 zero_size_allowed);
107c26a7
AI
2980 if (err) {
2981 verbose(env, "R%d max value is outside of stack bound\n",
2982 regno);
2011fccf 2983 return err;
107c26a7 2984 }
17a52670
AS
2985 }
2986
435faee1
DB
2987 if (meta && meta->raw_mode) {
2988 meta->access_size = access_size;
2989 meta->regno = regno;
2990 return 0;
2991 }
2992
2011fccf 2993 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
2994 u8 *stype;
2995
2011fccf 2996 slot = -i - 1;
638f5b90 2997 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2998 if (state->allocated_stack <= slot)
2999 goto err;
3000 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3001 if (*stype == STACK_MISC)
3002 goto mark;
3003 if (*stype == STACK_ZERO) {
3004 /* helper can write anything into the stack */
3005 *stype = STACK_MISC;
3006 goto mark;
17a52670 3007 }
f7cf25b2
AS
3008 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3009 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3010 __mark_reg_unknown(&state->stack[spi].spilled_ptr);
3011 for (j = 0; j < BPF_REG_SIZE; j++)
3012 state->stack[spi].slot_type[j] = STACK_MISC;
3013 goto mark;
3014 }
3015
cc2b14d5 3016err:
2011fccf
AI
3017 if (tnum_is_const(reg->var_off)) {
3018 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3019 min_off, i - min_off, access_size);
3020 } else {
3021 char tn_buf[48];
3022
3023 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3024 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3025 tn_buf, i - min_off, access_size);
3026 }
cc2b14d5
AS
3027 return -EACCES;
3028mark:
3029 /* reading any byte out of 8-byte 'spill_slot' will cause
3030 * the whole slot to be marked as 'read'
3031 */
679c782d 3032 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3033 state->stack[spi].spilled_ptr.parent,
3034 REG_LIVE_READ64);
17a52670 3035 }
2011fccf 3036 return update_stack_depth(env, state, min_off);
17a52670
AS
3037}
3038
06c1c049
GB
3039static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3040 int access_size, bool zero_size_allowed,
3041 struct bpf_call_arg_meta *meta)
3042{
638f5b90 3043 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3044
f1174f77 3045 switch (reg->type) {
06c1c049 3046 case PTR_TO_PACKET:
de8f3a83 3047 case PTR_TO_PACKET_META:
9fd29c08
YS
3048 return check_packet_access(env, regno, reg->off, access_size,
3049 zero_size_allowed);
06c1c049 3050 case PTR_TO_MAP_VALUE:
591fe988
DB
3051 if (check_map_access_type(env, regno, reg->off, access_size,
3052 meta && meta->raw_mode ? BPF_WRITE :
3053 BPF_READ))
3054 return -EACCES;
9fd29c08
YS
3055 return check_map_access(env, regno, reg->off, access_size,
3056 zero_size_allowed);
f1174f77 3057 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3058 return check_stack_boundary(env, regno, access_size,
3059 zero_size_allowed, meta);
3060 }
3061}
3062
d83525ca
AS
3063/* Implementation details:
3064 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3065 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3066 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3067 * value_or_null->value transition, since the verifier only cares about
3068 * the range of access to valid map value pointer and doesn't care about actual
3069 * address of the map element.
3070 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3071 * reg->id > 0 after value_or_null->value transition. By doing so
3072 * two bpf_map_lookups will be considered two different pointers that
3073 * point to different bpf_spin_locks.
3074 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3075 * dead-locks.
3076 * Since only one bpf_spin_lock is allowed the checks are simpler than
3077 * reg_is_refcounted() logic. The verifier needs to remember only
3078 * one spin_lock instead of array of acquired_refs.
3079 * cur_state->active_spin_lock remembers which map value element got locked
3080 * and clears it after bpf_spin_unlock.
3081 */
3082static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3083 bool is_lock)
3084{
3085 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3086 struct bpf_verifier_state *cur = env->cur_state;
3087 bool is_const = tnum_is_const(reg->var_off);
3088 struct bpf_map *map = reg->map_ptr;
3089 u64 val = reg->var_off.value;
3090
3091 if (reg->type != PTR_TO_MAP_VALUE) {
3092 verbose(env, "R%d is not a pointer to map_value\n", regno);
3093 return -EINVAL;
3094 }
3095 if (!is_const) {
3096 verbose(env,
3097 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3098 regno);
3099 return -EINVAL;
3100 }
3101 if (!map->btf) {
3102 verbose(env,
3103 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3104 map->name);
3105 return -EINVAL;
3106 }
3107 if (!map_value_has_spin_lock(map)) {
3108 if (map->spin_lock_off == -E2BIG)
3109 verbose(env,
3110 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3111 map->name);
3112 else if (map->spin_lock_off == -ENOENT)
3113 verbose(env,
3114 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3115 map->name);
3116 else
3117 verbose(env,
3118 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3119 map->name);
3120 return -EINVAL;
3121 }
3122 if (map->spin_lock_off != val + reg->off) {
3123 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3124 val + reg->off);
3125 return -EINVAL;
3126 }
3127 if (is_lock) {
3128 if (cur->active_spin_lock) {
3129 verbose(env,
3130 "Locking two bpf_spin_locks are not allowed\n");
3131 return -EINVAL;
3132 }
3133 cur->active_spin_lock = reg->id;
3134 } else {
3135 if (!cur->active_spin_lock) {
3136 verbose(env, "bpf_spin_unlock without taking a lock\n");
3137 return -EINVAL;
3138 }
3139 if (cur->active_spin_lock != reg->id) {
3140 verbose(env, "bpf_spin_unlock of different lock\n");
3141 return -EINVAL;
3142 }
3143 cur->active_spin_lock = 0;
3144 }
3145 return 0;
3146}
3147
90133415
DB
3148static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3149{
3150 return type == ARG_PTR_TO_MEM ||
3151 type == ARG_PTR_TO_MEM_OR_NULL ||
3152 type == ARG_PTR_TO_UNINIT_MEM;
3153}
3154
3155static bool arg_type_is_mem_size(enum bpf_arg_type type)
3156{
3157 return type == ARG_CONST_SIZE ||
3158 type == ARG_CONST_SIZE_OR_ZERO;
3159}
3160
57c3bb72
AI
3161static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3162{
3163 return type == ARG_PTR_TO_INT ||
3164 type == ARG_PTR_TO_LONG;
3165}
3166
3167static int int_ptr_type_to_size(enum bpf_arg_type type)
3168{
3169 if (type == ARG_PTR_TO_INT)
3170 return sizeof(u32);
3171 else if (type == ARG_PTR_TO_LONG)
3172 return sizeof(u64);
3173
3174 return -EINVAL;
3175}
3176
58e2af8b 3177static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3178 enum bpf_arg_type arg_type,
3179 struct bpf_call_arg_meta *meta)
17a52670 3180{
638f5b90 3181 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3182 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3183 int err = 0;
3184
80f1d68c 3185 if (arg_type == ARG_DONTCARE)
17a52670
AS
3186 return 0;
3187
dc503a8a
EC
3188 err = check_reg_arg(env, regno, SRC_OP);
3189 if (err)
3190 return err;
17a52670 3191
1be7f75d
AS
3192 if (arg_type == ARG_ANYTHING) {
3193 if (is_pointer_value(env, regno)) {
61bd5218
JK
3194 verbose(env, "R%d leaks addr into helper function\n",
3195 regno);
1be7f75d
AS
3196 return -EACCES;
3197 }
80f1d68c 3198 return 0;
1be7f75d 3199 }
80f1d68c 3200
de8f3a83 3201 if (type_is_pkt_pointer(type) &&
3a0af8fd 3202 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3203 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3204 return -EACCES;
3205 }
3206
8e2fe1d9 3207 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3208 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3209 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3210 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3211 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3212 if (register_is_null(reg) &&
3213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3214 /* final test in check_stack_boundary() */;
3215 else if (!type_is_pkt_pointer(type) &&
3216 type != PTR_TO_MAP_VALUE &&
3217 type != expected_type)
6841de8b 3218 goto err_type;
39f19ebb
AS
3219 } else if (arg_type == ARG_CONST_SIZE ||
3220 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3221 expected_type = SCALAR_VALUE;
3222 if (type != expected_type)
6841de8b 3223 goto err_type;
17a52670
AS
3224 } else if (arg_type == ARG_CONST_MAP_PTR) {
3225 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3226 if (type != expected_type)
3227 goto err_type;
608cd71a
AS
3228 } else if (arg_type == ARG_PTR_TO_CTX) {
3229 expected_type = PTR_TO_CTX;
6841de8b
AS
3230 if (type != expected_type)
3231 goto err_type;
58990d1f
DB
3232 err = check_ctx_reg(env, reg, regno);
3233 if (err < 0)
3234 return err;
46f8bc92
MKL
3235 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3236 expected_type = PTR_TO_SOCK_COMMON;
3237 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3238 if (!type_is_sk_pointer(type))
3239 goto err_type;
1b986589
MKL
3240 if (reg->ref_obj_id) {
3241 if (meta->ref_obj_id) {
3242 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3243 regno, reg->ref_obj_id,
3244 meta->ref_obj_id);
3245 return -EFAULT;
3246 }
3247 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3248 }
6ac99e8f
MKL
3249 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3250 expected_type = PTR_TO_SOCKET;
3251 if (type != expected_type)
3252 goto err_type;
d83525ca
AS
3253 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3254 if (meta->func_id == BPF_FUNC_spin_lock) {
3255 if (process_spin_lock(env, regno, true))
3256 return -EACCES;
3257 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3258 if (process_spin_lock(env, regno, false))
3259 return -EACCES;
3260 } else {
3261 verbose(env, "verifier internal error\n");
3262 return -EFAULT;
3263 }
90133415 3264 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3265 expected_type = PTR_TO_STACK;
3266 /* One exception here. In case function allows for NULL to be
f1174f77 3267 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3268 * happens during stack boundary checking.
3269 */
914cb781 3270 if (register_is_null(reg) &&
db1ac496 3271 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3272 /* final test in check_stack_boundary() */;
de8f3a83
DB
3273 else if (!type_is_pkt_pointer(type) &&
3274 type != PTR_TO_MAP_VALUE &&
f1174f77 3275 type != expected_type)
6841de8b 3276 goto err_type;
39f19ebb 3277 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3278 } else if (arg_type_is_int_ptr(arg_type)) {
3279 expected_type = PTR_TO_STACK;
3280 if (!type_is_pkt_pointer(type) &&
3281 type != PTR_TO_MAP_VALUE &&
3282 type != expected_type)
3283 goto err_type;
17a52670 3284 } else {
61bd5218 3285 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3286 return -EFAULT;
3287 }
3288
17a52670
AS
3289 if (arg_type == ARG_CONST_MAP_PTR) {
3290 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3291 meta->map_ptr = reg->map_ptr;
17a52670
AS
3292 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3293 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3294 * check that [key, key + map->key_size) are within
3295 * stack limits and initialized
3296 */
33ff9823 3297 if (!meta->map_ptr) {
17a52670
AS
3298 /* in function declaration map_ptr must come before
3299 * map_key, so that it's verified and known before
3300 * we have to check map_key here. Otherwise it means
3301 * that kernel subsystem misconfigured verifier
3302 */
61bd5218 3303 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3304 return -EACCES;
3305 }
d71962f3
PC
3306 err = check_helper_mem_access(env, regno,
3307 meta->map_ptr->key_size, false,
3308 NULL);
2ea864c5 3309 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3310 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3311 !register_is_null(reg)) ||
2ea864c5 3312 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3313 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3314 * check [value, value + map->value_size) validity
3315 */
33ff9823 3316 if (!meta->map_ptr) {
17a52670 3317 /* kernel subsystem misconfigured verifier */
61bd5218 3318 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3319 return -EACCES;
3320 }
2ea864c5 3321 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3322 err = check_helper_mem_access(env, regno,
3323 meta->map_ptr->value_size, false,
2ea864c5 3324 meta);
90133415 3325 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3326 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3327
849fa506
YS
3328 /* remember the mem_size which may be used later
3329 * to refine return values.
3330 */
3331 meta->msize_smax_value = reg->smax_value;
3332 meta->msize_umax_value = reg->umax_value;
3333
f1174f77
EC
3334 /* The register is SCALAR_VALUE; the access check
3335 * happens using its boundaries.
06c1c049 3336 */
f1174f77 3337 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3338 /* For unprivileged variable accesses, disable raw
3339 * mode so that the program is required to
3340 * initialize all the memory that the helper could
3341 * just partially fill up.
3342 */
3343 meta = NULL;
3344
b03c9f9f 3345 if (reg->smin_value < 0) {
61bd5218 3346 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3347 regno);
3348 return -EACCES;
3349 }
06c1c049 3350
b03c9f9f 3351 if (reg->umin_value == 0) {
f1174f77
EC
3352 err = check_helper_mem_access(env, regno - 1, 0,
3353 zero_size_allowed,
3354 meta);
06c1c049
GB
3355 if (err)
3356 return err;
06c1c049 3357 }
f1174f77 3358
b03c9f9f 3359 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3360 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3361 regno);
3362 return -EACCES;
3363 }
3364 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3365 reg->umax_value,
f1174f77 3366 zero_size_allowed, meta);
b5dc0163
AS
3367 if (!err)
3368 err = mark_chain_precision(env, regno);
57c3bb72
AI
3369 } else if (arg_type_is_int_ptr(arg_type)) {
3370 int size = int_ptr_type_to_size(arg_type);
3371
3372 err = check_helper_mem_access(env, regno, size, false, meta);
3373 if (err)
3374 return err;
3375 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3376 }
3377
3378 return err;
6841de8b 3379err_type:
61bd5218 3380 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3381 reg_type_str[type], reg_type_str[expected_type]);
3382 return -EACCES;
17a52670
AS
3383}
3384
61bd5218
JK
3385static int check_map_func_compatibility(struct bpf_verifier_env *env,
3386 struct bpf_map *map, int func_id)
35578d79 3387{
35578d79
KX
3388 if (!map)
3389 return 0;
3390
6aff67c8
AS
3391 /* We need a two way check, first is from map perspective ... */
3392 switch (map->map_type) {
3393 case BPF_MAP_TYPE_PROG_ARRAY:
3394 if (func_id != BPF_FUNC_tail_call)
3395 goto error;
3396 break;
3397 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3398 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
3399 func_id != BPF_FUNC_perf_event_output &&
3400 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3401 goto error;
3402 break;
3403 case BPF_MAP_TYPE_STACK_TRACE:
3404 if (func_id != BPF_FUNC_get_stackid)
3405 goto error;
3406 break;
4ed8ec52 3407 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3408 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3409 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3410 goto error;
3411 break;
cd339431 3412 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3413 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3414 if (func_id != BPF_FUNC_get_local_storage)
3415 goto error;
3416 break;
546ac1ff 3417 case BPF_MAP_TYPE_DEVMAP:
0cdbb4b0
THJ
3418 if (func_id != BPF_FUNC_redirect_map &&
3419 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3420 goto error;
3421 break;
fbfc504a
BT
3422 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3423 * appear.
3424 */
6710e112
JDB
3425 case BPF_MAP_TYPE_CPUMAP:
3426 if (func_id != BPF_FUNC_redirect_map)
3427 goto error;
3428 break;
fada7fdc
JL
3429 case BPF_MAP_TYPE_XSKMAP:
3430 if (func_id != BPF_FUNC_redirect_map &&
3431 func_id != BPF_FUNC_map_lookup_elem)
3432 goto error;
3433 break;
56f668df 3434 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3435 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3436 if (func_id != BPF_FUNC_map_lookup_elem)
3437 goto error;
16a43625 3438 break;
174a79ff
JF
3439 case BPF_MAP_TYPE_SOCKMAP:
3440 if (func_id != BPF_FUNC_sk_redirect_map &&
3441 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3442 func_id != BPF_FUNC_map_delete_elem &&
3443 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3444 goto error;
3445 break;
81110384
JF
3446 case BPF_MAP_TYPE_SOCKHASH:
3447 if (func_id != BPF_FUNC_sk_redirect_hash &&
3448 func_id != BPF_FUNC_sock_hash_update &&
3449 func_id != BPF_FUNC_map_delete_elem &&
3450 func_id != BPF_FUNC_msg_redirect_hash)
3451 goto error;
3452 break;
2dbb9b9e
MKL
3453 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3454 if (func_id != BPF_FUNC_sk_select_reuseport)
3455 goto error;
3456 break;
f1a2e44a
MV
3457 case BPF_MAP_TYPE_QUEUE:
3458 case BPF_MAP_TYPE_STACK:
3459 if (func_id != BPF_FUNC_map_peek_elem &&
3460 func_id != BPF_FUNC_map_pop_elem &&
3461 func_id != BPF_FUNC_map_push_elem)
3462 goto error;
3463 break;
6ac99e8f
MKL
3464 case BPF_MAP_TYPE_SK_STORAGE:
3465 if (func_id != BPF_FUNC_sk_storage_get &&
3466 func_id != BPF_FUNC_sk_storage_delete)
3467 goto error;
3468 break;
6aff67c8
AS
3469 default:
3470 break;
3471 }
3472
3473 /* ... and second from the function itself. */
3474 switch (func_id) {
3475 case BPF_FUNC_tail_call:
3476 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3477 goto error;
f910cefa 3478 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3479 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3480 return -EINVAL;
3481 }
6aff67c8
AS
3482 break;
3483 case BPF_FUNC_perf_event_read:
3484 case BPF_FUNC_perf_event_output:
908432ca 3485 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
3486 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3487 goto error;
3488 break;
3489 case BPF_FUNC_get_stackid:
3490 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3491 goto error;
3492 break;
60d20f91 3493 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3494 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3495 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3496 goto error;
3497 break;
97f91a7c 3498 case BPF_FUNC_redirect_map:
9c270af3 3499 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
3500 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3501 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3502 goto error;
3503 break;
174a79ff 3504 case BPF_FUNC_sk_redirect_map:
4f738adb 3505 case BPF_FUNC_msg_redirect_map:
81110384 3506 case BPF_FUNC_sock_map_update:
174a79ff
JF
3507 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3508 goto error;
3509 break;
81110384
JF
3510 case BPF_FUNC_sk_redirect_hash:
3511 case BPF_FUNC_msg_redirect_hash:
3512 case BPF_FUNC_sock_hash_update:
3513 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3514 goto error;
3515 break;
cd339431 3516 case BPF_FUNC_get_local_storage:
b741f163
RG
3517 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3518 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3519 goto error;
3520 break;
2dbb9b9e
MKL
3521 case BPF_FUNC_sk_select_reuseport:
3522 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3523 goto error;
3524 break;
f1a2e44a
MV
3525 case BPF_FUNC_map_peek_elem:
3526 case BPF_FUNC_map_pop_elem:
3527 case BPF_FUNC_map_push_elem:
3528 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3529 map->map_type != BPF_MAP_TYPE_STACK)
3530 goto error;
3531 break;
6ac99e8f
MKL
3532 case BPF_FUNC_sk_storage_get:
3533 case BPF_FUNC_sk_storage_delete:
3534 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3535 goto error;
3536 break;
6aff67c8
AS
3537 default:
3538 break;
35578d79
KX
3539 }
3540
3541 return 0;
6aff67c8 3542error:
61bd5218 3543 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3544 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3545 return -EINVAL;
35578d79
KX
3546}
3547
90133415 3548static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3549{
3550 int count = 0;
3551
39f19ebb 3552 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3553 count++;
39f19ebb 3554 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3555 count++;
39f19ebb 3556 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3557 count++;
39f19ebb 3558 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3559 count++;
39f19ebb 3560 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3561 count++;
3562
90133415
DB
3563 /* We only support one arg being in raw mode at the moment,
3564 * which is sufficient for the helper functions we have
3565 * right now.
3566 */
3567 return count <= 1;
3568}
3569
3570static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3571 enum bpf_arg_type arg_next)
3572{
3573 return (arg_type_is_mem_ptr(arg_curr) &&
3574 !arg_type_is_mem_size(arg_next)) ||
3575 (!arg_type_is_mem_ptr(arg_curr) &&
3576 arg_type_is_mem_size(arg_next));
3577}
3578
3579static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3580{
3581 /* bpf_xxx(..., buf, len) call will access 'len'
3582 * bytes from memory 'buf'. Both arg types need
3583 * to be paired, so make sure there's no buggy
3584 * helper function specification.
3585 */
3586 if (arg_type_is_mem_size(fn->arg1_type) ||
3587 arg_type_is_mem_ptr(fn->arg5_type) ||
3588 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3589 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3590 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3591 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3592 return false;
3593
3594 return true;
3595}
3596
1b986589 3597static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3598{
3599 int count = 0;
3600
1b986589 3601 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3602 count++;
1b986589 3603 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3604 count++;
1b986589 3605 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3606 count++;
1b986589 3607 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3608 count++;
1b986589 3609 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3610 count++;
3611
1b986589
MKL
3612 /* A reference acquiring function cannot acquire
3613 * another refcounted ptr.
3614 */
3615 if (is_acquire_function(func_id) && count)
3616 return false;
3617
fd978bf7
JS
3618 /* We only support one arg being unreferenced at the moment,
3619 * which is sufficient for the helper functions we have right now.
3620 */
3621 return count <= 1;
3622}
3623
1b986589 3624static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3625{
3626 return check_raw_mode_ok(fn) &&
fd978bf7 3627 check_arg_pair_ok(fn) &&
1b986589 3628 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3629}
3630
de8f3a83
DB
3631/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3632 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3633 */
f4d7e40a
AS
3634static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3635 struct bpf_func_state *state)
969bf05e 3636{
58e2af8b 3637 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3638 int i;
3639
3640 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3641 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3642 mark_reg_unknown(env, regs, i);
969bf05e 3643
f3709f69
JS
3644 bpf_for_each_spilled_reg(i, state, reg) {
3645 if (!reg)
969bf05e 3646 continue;
de8f3a83
DB
3647 if (reg_is_pkt_pointer_any(reg))
3648 __mark_reg_unknown(reg);
969bf05e
AS
3649 }
3650}
3651
f4d7e40a
AS
3652static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3653{
3654 struct bpf_verifier_state *vstate = env->cur_state;
3655 int i;
3656
3657 for (i = 0; i <= vstate->curframe; i++)
3658 __clear_all_pkt_pointers(env, vstate->frame[i]);
3659}
3660
fd978bf7 3661static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3662 struct bpf_func_state *state,
3663 int ref_obj_id)
fd978bf7
JS
3664{
3665 struct bpf_reg_state *regs = state->regs, *reg;
3666 int i;
3667
3668 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3669 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3670 mark_reg_unknown(env, regs, i);
3671
3672 bpf_for_each_spilled_reg(i, state, reg) {
3673 if (!reg)
3674 continue;
1b986589 3675 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
3676 __mark_reg_unknown(reg);
3677 }
3678}
3679
3680/* The pointer with the specified id has released its reference to kernel
3681 * resources. Identify all copies of the same pointer and clear the reference.
3682 */
3683static int release_reference(struct bpf_verifier_env *env,
1b986589 3684 int ref_obj_id)
fd978bf7
JS
3685{
3686 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3687 int err;
fd978bf7
JS
3688 int i;
3689
1b986589
MKL
3690 err = release_reference_state(cur_func(env), ref_obj_id);
3691 if (err)
3692 return err;
3693
fd978bf7 3694 for (i = 0; i <= vstate->curframe; i++)
1b986589 3695 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3696
1b986589 3697 return 0;
fd978bf7
JS
3698}
3699
f4d7e40a
AS
3700static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3701 int *insn_idx)
3702{
3703 struct bpf_verifier_state *state = env->cur_state;
3704 struct bpf_func_state *caller, *callee;
fd978bf7 3705 int i, err, subprog, target_insn;
f4d7e40a 3706
aada9ce6 3707 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3708 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3709 state->curframe + 2);
f4d7e40a
AS
3710 return -E2BIG;
3711 }
3712
3713 target_insn = *insn_idx + insn->imm;
3714 subprog = find_subprog(env, target_insn + 1);
3715 if (subprog < 0) {
3716 verbose(env, "verifier bug. No program starts at insn %d\n",
3717 target_insn + 1);
3718 return -EFAULT;
3719 }
3720
3721 caller = state->frame[state->curframe];
3722 if (state->frame[state->curframe + 1]) {
3723 verbose(env, "verifier bug. Frame %d already allocated\n",
3724 state->curframe + 1);
3725 return -EFAULT;
3726 }
3727
3728 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3729 if (!callee)
3730 return -ENOMEM;
3731 state->frame[state->curframe + 1] = callee;
3732
3733 /* callee cannot access r0, r6 - r9 for reading and has to write
3734 * into its own stack before reading from it.
3735 * callee can read/write into caller's stack
3736 */
3737 init_func_state(env, callee,
3738 /* remember the callsite, it will be used by bpf_exit */
3739 *insn_idx /* callsite */,
3740 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3741 subprog /* subprog number within this prog */);
f4d7e40a 3742
fd978bf7
JS
3743 /* Transfer references to the callee */
3744 err = transfer_reference_state(callee, caller);
3745 if (err)
3746 return err;
3747
679c782d
EC
3748 /* copy r1 - r5 args that callee can access. The copy includes parent
3749 * pointers, which connects us up to the liveness chain
3750 */
f4d7e40a
AS
3751 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3752 callee->regs[i] = caller->regs[i];
3753
679c782d 3754 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
3755 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3756 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3757 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3758 }
3759
3760 /* only increment it after check_reg_arg() finished */
3761 state->curframe++;
3762
3763 /* and go analyze first insn of the callee */
3764 *insn_idx = target_insn;
3765
06ee7115 3766 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3767 verbose(env, "caller:\n");
3768 print_verifier_state(env, caller);
3769 verbose(env, "callee:\n");
3770 print_verifier_state(env, callee);
3771 }
3772 return 0;
3773}
3774
3775static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3776{
3777 struct bpf_verifier_state *state = env->cur_state;
3778 struct bpf_func_state *caller, *callee;
3779 struct bpf_reg_state *r0;
fd978bf7 3780 int err;
f4d7e40a
AS
3781
3782 callee = state->frame[state->curframe];
3783 r0 = &callee->regs[BPF_REG_0];
3784 if (r0->type == PTR_TO_STACK) {
3785 /* technically it's ok to return caller's stack pointer
3786 * (or caller's caller's pointer) back to the caller,
3787 * since these pointers are valid. Only current stack
3788 * pointer will be invalid as soon as function exits,
3789 * but let's be conservative
3790 */
3791 verbose(env, "cannot return stack pointer to the caller\n");
3792 return -EINVAL;
3793 }
3794
3795 state->curframe--;
3796 caller = state->frame[state->curframe];
3797 /* return to the caller whatever r0 had in the callee */
3798 caller->regs[BPF_REG_0] = *r0;
3799
fd978bf7
JS
3800 /* Transfer references to the caller */
3801 err = transfer_reference_state(caller, callee);
3802 if (err)
3803 return err;
3804
f4d7e40a 3805 *insn_idx = callee->callsite + 1;
06ee7115 3806 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3807 verbose(env, "returning from callee:\n");
3808 print_verifier_state(env, callee);
3809 verbose(env, "to caller at %d:\n", *insn_idx);
3810 print_verifier_state(env, caller);
3811 }
3812 /* clear everything in the callee */
3813 free_func_state(callee);
3814 state->frame[state->curframe + 1] = NULL;
3815 return 0;
3816}
3817
849fa506
YS
3818static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3819 int func_id,
3820 struct bpf_call_arg_meta *meta)
3821{
3822 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3823
3824 if (ret_type != RET_INTEGER ||
3825 (func_id != BPF_FUNC_get_stack &&
3826 func_id != BPF_FUNC_probe_read_str))
3827 return;
3828
3829 ret_reg->smax_value = meta->msize_smax_value;
3830 ret_reg->umax_value = meta->msize_umax_value;
3831 __reg_deduce_bounds(ret_reg);
3832 __reg_bound_offset(ret_reg);
3833}
3834
c93552c4
DB
3835static int
3836record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3837 int func_id, int insn_idx)
3838{
3839 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 3840 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
3841
3842 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3843 func_id != BPF_FUNC_map_lookup_elem &&
3844 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3845 func_id != BPF_FUNC_map_delete_elem &&
3846 func_id != BPF_FUNC_map_push_elem &&
3847 func_id != BPF_FUNC_map_pop_elem &&
3848 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3849 return 0;
09772d92 3850
591fe988 3851 if (map == NULL) {
c93552c4
DB
3852 verbose(env, "kernel subsystem misconfigured verifier\n");
3853 return -EINVAL;
3854 }
3855
591fe988
DB
3856 /* In case of read-only, some additional restrictions
3857 * need to be applied in order to prevent altering the
3858 * state of the map from program side.
3859 */
3860 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3861 (func_id == BPF_FUNC_map_delete_elem ||
3862 func_id == BPF_FUNC_map_update_elem ||
3863 func_id == BPF_FUNC_map_push_elem ||
3864 func_id == BPF_FUNC_map_pop_elem)) {
3865 verbose(env, "write into map forbidden\n");
3866 return -EACCES;
3867 }
3868
c93552c4
DB
3869 if (!BPF_MAP_PTR(aux->map_state))
3870 bpf_map_ptr_store(aux, meta->map_ptr,
3871 meta->map_ptr->unpriv_array);
3872 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3873 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3874 meta->map_ptr->unpriv_array);
3875 return 0;
3876}
3877
fd978bf7
JS
3878static int check_reference_leak(struct bpf_verifier_env *env)
3879{
3880 struct bpf_func_state *state = cur_func(env);
3881 int i;
3882
3883 for (i = 0; i < state->acquired_refs; i++) {
3884 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3885 state->refs[i].id, state->refs[i].insn_idx);
3886 }
3887 return state->acquired_refs ? -EINVAL : 0;
3888}
3889
f4d7e40a 3890static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3891{
17a52670 3892 const struct bpf_func_proto *fn = NULL;
638f5b90 3893 struct bpf_reg_state *regs;
33ff9823 3894 struct bpf_call_arg_meta meta;
969bf05e 3895 bool changes_data;
17a52670
AS
3896 int i, err;
3897
3898 /* find function prototype */
3899 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3900 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3901 func_id);
17a52670
AS
3902 return -EINVAL;
3903 }
3904
00176a34 3905 if (env->ops->get_func_proto)
5e43f899 3906 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3907 if (!fn) {
61bd5218
JK
3908 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3909 func_id);
17a52670
AS
3910 return -EINVAL;
3911 }
3912
3913 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3914 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3915 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3916 return -EINVAL;
3917 }
3918
04514d13 3919 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3920 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3921 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3922 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3923 func_id_name(func_id), func_id);
3924 return -EINVAL;
3925 }
969bf05e 3926
33ff9823 3927 memset(&meta, 0, sizeof(meta));
36bbef52 3928 meta.pkt_access = fn->pkt_access;
33ff9823 3929
1b986589 3930 err = check_func_proto(fn, func_id);
435faee1 3931 if (err) {
61bd5218 3932 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3933 func_id_name(func_id), func_id);
435faee1
DB
3934 return err;
3935 }
3936
d83525ca 3937 meta.func_id = func_id;
17a52670 3938 /* check args */
33ff9823 3939 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3940 if (err)
3941 return err;
33ff9823 3942 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3943 if (err)
3944 return err;
33ff9823 3945 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3946 if (err)
3947 return err;
33ff9823 3948 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3949 if (err)
3950 return err;
33ff9823 3951 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3952 if (err)
3953 return err;
3954
c93552c4
DB
3955 err = record_func_map(env, &meta, func_id, insn_idx);
3956 if (err)
3957 return err;
3958
435faee1
DB
3959 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3960 * is inferred from register state.
3961 */
3962 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
3963 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3964 BPF_WRITE, -1, false);
435faee1
DB
3965 if (err)
3966 return err;
3967 }
3968
fd978bf7
JS
3969 if (func_id == BPF_FUNC_tail_call) {
3970 err = check_reference_leak(env);
3971 if (err) {
3972 verbose(env, "tail_call would lead to reference leak\n");
3973 return err;
3974 }
3975 } else if (is_release_function(func_id)) {
1b986589 3976 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
3977 if (err) {
3978 verbose(env, "func %s#%d reference has not been acquired before\n",
3979 func_id_name(func_id), func_id);
fd978bf7 3980 return err;
46f8bc92 3981 }
fd978bf7
JS
3982 }
3983
638f5b90 3984 regs = cur_regs(env);
cd339431
RG
3985
3986 /* check that flags argument in get_local_storage(map, flags) is 0,
3987 * this is required because get_local_storage() can't return an error.
3988 */
3989 if (func_id == BPF_FUNC_get_local_storage &&
3990 !register_is_null(&regs[BPF_REG_2])) {
3991 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3992 return -EINVAL;
3993 }
3994
17a52670 3995 /* reset caller saved regs */
dc503a8a 3996 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3997 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3998 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3999 }
17a52670 4000
5327ed3d
JW
4001 /* helper call returns 64-bit value. */
4002 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4003
dc503a8a 4004 /* update return register (already marked as written above) */
17a52670 4005 if (fn->ret_type == RET_INTEGER) {
f1174f77 4006 /* sets type to SCALAR_VALUE */
61bd5218 4007 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4008 } else if (fn->ret_type == RET_VOID) {
4009 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4010 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4011 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4012 /* There is no offset yet applied, variable or fixed */
61bd5218 4013 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4014 /* remember map_ptr, so that check_map_access()
4015 * can check 'value_size' boundary of memory access
4016 * to map element returned from bpf_map_lookup_elem()
4017 */
33ff9823 4018 if (meta.map_ptr == NULL) {
61bd5218
JK
4019 verbose(env,
4020 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4021 return -EINVAL;
4022 }
33ff9823 4023 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4024 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4025 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4026 if (map_value_has_spin_lock(meta.map_ptr))
4027 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4028 } else {
4029 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4030 regs[BPF_REG_0].id = ++env->id_gen;
4031 }
c64b7983
JS
4032 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4033 mark_reg_known_zero(env, regs, BPF_REG_0);
4034 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4035 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4036 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4037 mark_reg_known_zero(env, regs, BPF_REG_0);
4038 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4039 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4040 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4041 mark_reg_known_zero(env, regs, BPF_REG_0);
4042 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4043 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4044 } else {
61bd5218 4045 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4046 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4047 return -EINVAL;
4048 }
04fd61ab 4049
0f3adc28 4050 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4051 /* For release_reference() */
4052 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4053 } else if (is_acquire_function(func_id)) {
4054 int id = acquire_reference_state(env, insn_idx);
4055
4056 if (id < 0)
4057 return id;
4058 /* For mark_ptr_or_null_reg() */
4059 regs[BPF_REG_0].id = id;
4060 /* For release_reference() */
4061 regs[BPF_REG_0].ref_obj_id = id;
4062 }
1b986589 4063
849fa506
YS
4064 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4065
61bd5218 4066 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4067 if (err)
4068 return err;
04fd61ab 4069
c195651e
YS
4070 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4071 const char *err_str;
4072
4073#ifdef CONFIG_PERF_EVENTS
4074 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4075 err_str = "cannot get callchain buffer for func %s#%d\n";
4076#else
4077 err = -ENOTSUPP;
4078 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4079#endif
4080 if (err) {
4081 verbose(env, err_str, func_id_name(func_id), func_id);
4082 return err;
4083 }
4084
4085 env->prog->has_callchain_buf = true;
4086 }
4087
969bf05e
AS
4088 if (changes_data)
4089 clear_all_pkt_pointers(env);
4090 return 0;
4091}
4092
b03c9f9f
EC
4093static bool signed_add_overflows(s64 a, s64 b)
4094{
4095 /* Do the add in u64, where overflow is well-defined */
4096 s64 res = (s64)((u64)a + (u64)b);
4097
4098 if (b < 0)
4099 return res > a;
4100 return res < a;
4101}
4102
4103static bool signed_sub_overflows(s64 a, s64 b)
4104{
4105 /* Do the sub in u64, where overflow is well-defined */
4106 s64 res = (s64)((u64)a - (u64)b);
4107
4108 if (b < 0)
4109 return res < a;
4110 return res > a;
969bf05e
AS
4111}
4112
bb7f0f98
AS
4113static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4114 const struct bpf_reg_state *reg,
4115 enum bpf_reg_type type)
4116{
4117 bool known = tnum_is_const(reg->var_off);
4118 s64 val = reg->var_off.value;
4119 s64 smin = reg->smin_value;
4120
4121 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4122 verbose(env, "math between %s pointer and %lld is not allowed\n",
4123 reg_type_str[type], val);
4124 return false;
4125 }
4126
4127 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4128 verbose(env, "%s pointer offset %d is not allowed\n",
4129 reg_type_str[type], reg->off);
4130 return false;
4131 }
4132
4133 if (smin == S64_MIN) {
4134 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4135 reg_type_str[type]);
4136 return false;
4137 }
4138
4139 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4140 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4141 smin, reg_type_str[type]);
4142 return false;
4143 }
4144
4145 return true;
4146}
4147
979d63d5
DB
4148static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4149{
4150 return &env->insn_aux_data[env->insn_idx];
4151}
4152
4153static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4154 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4155{
4156 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4157 (opcode == BPF_SUB && !off_is_neg);
4158 u32 off;
4159
4160 switch (ptr_reg->type) {
4161 case PTR_TO_STACK:
088ec26d
AI
4162 /* Indirect variable offset stack access is prohibited in
4163 * unprivileged mode so it's not handled here.
4164 */
979d63d5
DB
4165 off = ptr_reg->off + ptr_reg->var_off.value;
4166 if (mask_to_left)
4167 *ptr_limit = MAX_BPF_STACK + off;
4168 else
4169 *ptr_limit = -off;
4170 return 0;
4171 case PTR_TO_MAP_VALUE:
4172 if (mask_to_left) {
4173 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4174 } else {
4175 off = ptr_reg->smin_value + ptr_reg->off;
4176 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4177 }
4178 return 0;
4179 default:
4180 return -EINVAL;
4181 }
4182}
4183
d3bd7413
DB
4184static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4185 const struct bpf_insn *insn)
4186{
4187 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4188}
4189
4190static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4191 u32 alu_state, u32 alu_limit)
4192{
4193 /* If we arrived here from different branches with different
4194 * state or limits to sanitize, then this won't work.
4195 */
4196 if (aux->alu_state &&
4197 (aux->alu_state != alu_state ||
4198 aux->alu_limit != alu_limit))
4199 return -EACCES;
4200
4201 /* Corresponding fixup done in fixup_bpf_calls(). */
4202 aux->alu_state = alu_state;
4203 aux->alu_limit = alu_limit;
4204 return 0;
4205}
4206
4207static int sanitize_val_alu(struct bpf_verifier_env *env,
4208 struct bpf_insn *insn)
4209{
4210 struct bpf_insn_aux_data *aux = cur_aux(env);
4211
4212 if (can_skip_alu_sanitation(env, insn))
4213 return 0;
4214
4215 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4216}
4217
979d63d5
DB
4218static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4219 struct bpf_insn *insn,
4220 const struct bpf_reg_state *ptr_reg,
4221 struct bpf_reg_state *dst_reg,
4222 bool off_is_neg)
4223{
4224 struct bpf_verifier_state *vstate = env->cur_state;
4225 struct bpf_insn_aux_data *aux = cur_aux(env);
4226 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4227 u8 opcode = BPF_OP(insn->code);
4228 u32 alu_state, alu_limit;
4229 struct bpf_reg_state tmp;
4230 bool ret;
4231
d3bd7413 4232 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4233 return 0;
4234
4235 /* We already marked aux for masking from non-speculative
4236 * paths, thus we got here in the first place. We only care
4237 * to explore bad access from here.
4238 */
4239 if (vstate->speculative)
4240 goto do_sim;
4241
4242 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4243 alu_state |= ptr_is_dst_reg ?
4244 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4245
4246 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4247 return 0;
d3bd7413 4248 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4249 return -EACCES;
979d63d5
DB
4250do_sim:
4251 /* Simulate and find potential out-of-bounds access under
4252 * speculative execution from truncation as a result of
4253 * masking when off was not within expected range. If off
4254 * sits in dst, then we temporarily need to move ptr there
4255 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4256 * for cases where we use K-based arithmetic in one direction
4257 * and truncated reg-based in the other in order to explore
4258 * bad access.
4259 */
4260 if (!ptr_is_dst_reg) {
4261 tmp = *dst_reg;
4262 *dst_reg = *ptr_reg;
4263 }
4264 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4265 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4266 *dst_reg = tmp;
4267 return !ret ? -EFAULT : 0;
4268}
4269
f1174f77 4270/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4271 * Caller should also handle BPF_MOV case separately.
4272 * If we return -EACCES, caller may want to try again treating pointer as a
4273 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4274 */
4275static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4276 struct bpf_insn *insn,
4277 const struct bpf_reg_state *ptr_reg,
4278 const struct bpf_reg_state *off_reg)
969bf05e 4279{
f4d7e40a
AS
4280 struct bpf_verifier_state *vstate = env->cur_state;
4281 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4282 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4283 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4284 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4285 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4286 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4287 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4288 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4289 u8 opcode = BPF_OP(insn->code);
979d63d5 4290 int ret;
969bf05e 4291
f1174f77 4292 dst_reg = &regs[dst];
969bf05e 4293
6f16101e
DB
4294 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4295 smin_val > smax_val || umin_val > umax_val) {
4296 /* Taint dst register if offset had invalid bounds derived from
4297 * e.g. dead branches.
4298 */
4299 __mark_reg_unknown(dst_reg);
4300 return 0;
f1174f77
EC
4301 }
4302
4303 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4304 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4305 verbose(env,
4306 "R%d 32-bit pointer arithmetic prohibited\n",
4307 dst);
f1174f77 4308 return -EACCES;
969bf05e
AS
4309 }
4310
aad2eeaf
JS
4311 switch (ptr_reg->type) {
4312 case PTR_TO_MAP_VALUE_OR_NULL:
4313 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4314 dst, reg_type_str[ptr_reg->type]);
f1174f77 4315 return -EACCES;
aad2eeaf
JS
4316 case CONST_PTR_TO_MAP:
4317 case PTR_TO_PACKET_END:
c64b7983
JS
4318 case PTR_TO_SOCKET:
4319 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4320 case PTR_TO_SOCK_COMMON:
4321 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4322 case PTR_TO_TCP_SOCK:
4323 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4324 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4325 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4326 dst, reg_type_str[ptr_reg->type]);
f1174f77 4327 return -EACCES;
9d7eceed
DB
4328 case PTR_TO_MAP_VALUE:
4329 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4330 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4331 off_reg == dst_reg ? dst : src);
4332 return -EACCES;
4333 }
4334 /* fall-through */
aad2eeaf
JS
4335 default:
4336 break;
f1174f77
EC
4337 }
4338
4339 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4340 * The id may be overwritten later if we create a new variable offset.
969bf05e 4341 */
f1174f77
EC
4342 dst_reg->type = ptr_reg->type;
4343 dst_reg->id = ptr_reg->id;
969bf05e 4344
bb7f0f98
AS
4345 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4346 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4347 return -EINVAL;
4348
f1174f77
EC
4349 switch (opcode) {
4350 case BPF_ADD:
979d63d5
DB
4351 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4352 if (ret < 0) {
4353 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4354 return ret;
4355 }
f1174f77
EC
4356 /* We can take a fixed offset as long as it doesn't overflow
4357 * the s32 'off' field
969bf05e 4358 */
b03c9f9f
EC
4359 if (known && (ptr_reg->off + smin_val ==
4360 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4361 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4362 dst_reg->smin_value = smin_ptr;
4363 dst_reg->smax_value = smax_ptr;
4364 dst_reg->umin_value = umin_ptr;
4365 dst_reg->umax_value = umax_ptr;
f1174f77 4366 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4367 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4368 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4369 break;
4370 }
f1174f77
EC
4371 /* A new variable offset is created. Note that off_reg->off
4372 * == 0, since it's a scalar.
4373 * dst_reg gets the pointer type and since some positive
4374 * integer value was added to the pointer, give it a new 'id'
4375 * if it's a PTR_TO_PACKET.
4376 * this creates a new 'base' pointer, off_reg (variable) gets
4377 * added into the variable offset, and we copy the fixed offset
4378 * from ptr_reg.
969bf05e 4379 */
b03c9f9f
EC
4380 if (signed_add_overflows(smin_ptr, smin_val) ||
4381 signed_add_overflows(smax_ptr, smax_val)) {
4382 dst_reg->smin_value = S64_MIN;
4383 dst_reg->smax_value = S64_MAX;
4384 } else {
4385 dst_reg->smin_value = smin_ptr + smin_val;
4386 dst_reg->smax_value = smax_ptr + smax_val;
4387 }
4388 if (umin_ptr + umin_val < umin_ptr ||
4389 umax_ptr + umax_val < umax_ptr) {
4390 dst_reg->umin_value = 0;
4391 dst_reg->umax_value = U64_MAX;
4392 } else {
4393 dst_reg->umin_value = umin_ptr + umin_val;
4394 dst_reg->umax_value = umax_ptr + umax_val;
4395 }
f1174f77
EC
4396 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4397 dst_reg->off = ptr_reg->off;
0962590e 4398 dst_reg->raw = ptr_reg->raw;
de8f3a83 4399 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4400 dst_reg->id = ++env->id_gen;
4401 /* something was added to pkt_ptr, set range to zero */
0962590e 4402 dst_reg->raw = 0;
f1174f77
EC
4403 }
4404 break;
4405 case BPF_SUB:
979d63d5
DB
4406 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4407 if (ret < 0) {
4408 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4409 return ret;
4410 }
f1174f77
EC
4411 if (dst_reg == off_reg) {
4412 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4413 verbose(env, "R%d tried to subtract pointer from scalar\n",
4414 dst);
f1174f77
EC
4415 return -EACCES;
4416 }
4417 /* We don't allow subtraction from FP, because (according to
4418 * test_verifier.c test "invalid fp arithmetic", JITs might not
4419 * be able to deal with it.
969bf05e 4420 */
f1174f77 4421 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4422 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4423 dst);
f1174f77
EC
4424 return -EACCES;
4425 }
b03c9f9f
EC
4426 if (known && (ptr_reg->off - smin_val ==
4427 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4428 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4429 dst_reg->smin_value = smin_ptr;
4430 dst_reg->smax_value = smax_ptr;
4431 dst_reg->umin_value = umin_ptr;
4432 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4433 dst_reg->var_off = ptr_reg->var_off;
4434 dst_reg->id = ptr_reg->id;
b03c9f9f 4435 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4436 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4437 break;
4438 }
f1174f77
EC
4439 /* A new variable offset is created. If the subtrahend is known
4440 * nonnegative, then any reg->range we had before is still good.
969bf05e 4441 */
b03c9f9f
EC
4442 if (signed_sub_overflows(smin_ptr, smax_val) ||
4443 signed_sub_overflows(smax_ptr, smin_val)) {
4444 /* Overflow possible, we know nothing */
4445 dst_reg->smin_value = S64_MIN;
4446 dst_reg->smax_value = S64_MAX;
4447 } else {
4448 dst_reg->smin_value = smin_ptr - smax_val;
4449 dst_reg->smax_value = smax_ptr - smin_val;
4450 }
4451 if (umin_ptr < umax_val) {
4452 /* Overflow possible, we know nothing */
4453 dst_reg->umin_value = 0;
4454 dst_reg->umax_value = U64_MAX;
4455 } else {
4456 /* Cannot overflow (as long as bounds are consistent) */
4457 dst_reg->umin_value = umin_ptr - umax_val;
4458 dst_reg->umax_value = umax_ptr - umin_val;
4459 }
f1174f77
EC
4460 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4461 dst_reg->off = ptr_reg->off;
0962590e 4462 dst_reg->raw = ptr_reg->raw;
de8f3a83 4463 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4464 dst_reg->id = ++env->id_gen;
4465 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4466 if (smin_val < 0)
0962590e 4467 dst_reg->raw = 0;
43188702 4468 }
f1174f77
EC
4469 break;
4470 case BPF_AND:
4471 case BPF_OR:
4472 case BPF_XOR:
82abbf8d
AS
4473 /* bitwise ops on pointers are troublesome, prohibit. */
4474 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4475 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4476 return -EACCES;
4477 default:
4478 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4479 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4480 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4481 return -EACCES;
43188702
JF
4482 }
4483
bb7f0f98
AS
4484 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4485 return -EINVAL;
4486
b03c9f9f
EC
4487 __update_reg_bounds(dst_reg);
4488 __reg_deduce_bounds(dst_reg);
4489 __reg_bound_offset(dst_reg);
0d6303db
DB
4490
4491 /* For unprivileged we require that resulting offset must be in bounds
4492 * in order to be able to sanitize access later on.
4493 */
e4298d25
DB
4494 if (!env->allow_ptr_leaks) {
4495 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4496 check_map_access(env, dst, dst_reg->off, 1, false)) {
4497 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4498 "prohibited for !root\n", dst);
4499 return -EACCES;
4500 } else if (dst_reg->type == PTR_TO_STACK &&
4501 check_stack_access(env, dst_reg, dst_reg->off +
4502 dst_reg->var_off.value, 1)) {
4503 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4504 "prohibited for !root\n", dst);
4505 return -EACCES;
4506 }
0d6303db
DB
4507 }
4508
43188702
JF
4509 return 0;
4510}
4511
468f6eaf
JH
4512/* WARNING: This function does calculations on 64-bit values, but the actual
4513 * execution may occur on 32-bit values. Therefore, things like bitshifts
4514 * need extra checks in the 32-bit case.
4515 */
f1174f77
EC
4516static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4517 struct bpf_insn *insn,
4518 struct bpf_reg_state *dst_reg,
4519 struct bpf_reg_state src_reg)
969bf05e 4520{
638f5b90 4521 struct bpf_reg_state *regs = cur_regs(env);
48461135 4522 u8 opcode = BPF_OP(insn->code);
f1174f77 4523 bool src_known, dst_known;
b03c9f9f
EC
4524 s64 smin_val, smax_val;
4525 u64 umin_val, umax_val;
468f6eaf 4526 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4527 u32 dst = insn->dst_reg;
4528 int ret;
48461135 4529
b799207e
JH
4530 if (insn_bitness == 32) {
4531 /* Relevant for 32-bit RSH: Information can propagate towards
4532 * LSB, so it isn't sufficient to only truncate the output to
4533 * 32 bits.
4534 */
4535 coerce_reg_to_size(dst_reg, 4);
4536 coerce_reg_to_size(&src_reg, 4);
4537 }
4538
b03c9f9f
EC
4539 smin_val = src_reg.smin_value;
4540 smax_val = src_reg.smax_value;
4541 umin_val = src_reg.umin_value;
4542 umax_val = src_reg.umax_value;
f1174f77
EC
4543 src_known = tnum_is_const(src_reg.var_off);
4544 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4545
6f16101e
DB
4546 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4547 smin_val > smax_val || umin_val > umax_val) {
4548 /* Taint dst register if offset had invalid bounds derived from
4549 * e.g. dead branches.
4550 */
4551 __mark_reg_unknown(dst_reg);
4552 return 0;
4553 }
4554
bb7f0f98
AS
4555 if (!src_known &&
4556 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4557 __mark_reg_unknown(dst_reg);
4558 return 0;
4559 }
4560
48461135
JB
4561 switch (opcode) {
4562 case BPF_ADD:
d3bd7413
DB
4563 ret = sanitize_val_alu(env, insn);
4564 if (ret < 0) {
4565 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4566 return ret;
4567 }
b03c9f9f
EC
4568 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4569 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4570 dst_reg->smin_value = S64_MIN;
4571 dst_reg->smax_value = S64_MAX;
4572 } else {
4573 dst_reg->smin_value += smin_val;
4574 dst_reg->smax_value += smax_val;
4575 }
4576 if (dst_reg->umin_value + umin_val < umin_val ||
4577 dst_reg->umax_value + umax_val < umax_val) {
4578 dst_reg->umin_value = 0;
4579 dst_reg->umax_value = U64_MAX;
4580 } else {
4581 dst_reg->umin_value += umin_val;
4582 dst_reg->umax_value += umax_val;
4583 }
f1174f77 4584 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4585 break;
4586 case BPF_SUB:
d3bd7413
DB
4587 ret = sanitize_val_alu(env, insn);
4588 if (ret < 0) {
4589 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4590 return ret;
4591 }
b03c9f9f
EC
4592 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4593 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4594 /* Overflow possible, we know nothing */
4595 dst_reg->smin_value = S64_MIN;
4596 dst_reg->smax_value = S64_MAX;
4597 } else {
4598 dst_reg->smin_value -= smax_val;
4599 dst_reg->smax_value -= smin_val;
4600 }
4601 if (dst_reg->umin_value < umax_val) {
4602 /* Overflow possible, we know nothing */
4603 dst_reg->umin_value = 0;
4604 dst_reg->umax_value = U64_MAX;
4605 } else {
4606 /* Cannot overflow (as long as bounds are consistent) */
4607 dst_reg->umin_value -= umax_val;
4608 dst_reg->umax_value -= umin_val;
4609 }
f1174f77 4610 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4611 break;
4612 case BPF_MUL:
b03c9f9f
EC
4613 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4614 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4615 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4616 __mark_reg_unbounded(dst_reg);
4617 __update_reg_bounds(dst_reg);
f1174f77
EC
4618 break;
4619 }
b03c9f9f
EC
4620 /* Both values are positive, so we can work with unsigned and
4621 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4622 */
b03c9f9f
EC
4623 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4624 /* Potential overflow, we know nothing */
4625 __mark_reg_unbounded(dst_reg);
4626 /* (except what we can learn from the var_off) */
4627 __update_reg_bounds(dst_reg);
4628 break;
4629 }
4630 dst_reg->umin_value *= umin_val;
4631 dst_reg->umax_value *= umax_val;
4632 if (dst_reg->umax_value > S64_MAX) {
4633 /* Overflow possible, we know nothing */
4634 dst_reg->smin_value = S64_MIN;
4635 dst_reg->smax_value = S64_MAX;
4636 } else {
4637 dst_reg->smin_value = dst_reg->umin_value;
4638 dst_reg->smax_value = dst_reg->umax_value;
4639 }
48461135
JB
4640 break;
4641 case BPF_AND:
f1174f77 4642 if (src_known && dst_known) {
b03c9f9f
EC
4643 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4644 src_reg.var_off.value);
f1174f77
EC
4645 break;
4646 }
b03c9f9f
EC
4647 /* We get our minimum from the var_off, since that's inherently
4648 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4649 */
f1174f77 4650 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4651 dst_reg->umin_value = dst_reg->var_off.value;
4652 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4653 if (dst_reg->smin_value < 0 || smin_val < 0) {
4654 /* Lose signed bounds when ANDing negative numbers,
4655 * ain't nobody got time for that.
4656 */
4657 dst_reg->smin_value = S64_MIN;
4658 dst_reg->smax_value = S64_MAX;
4659 } else {
4660 /* ANDing two positives gives a positive, so safe to
4661 * cast result into s64.
4662 */
4663 dst_reg->smin_value = dst_reg->umin_value;
4664 dst_reg->smax_value = dst_reg->umax_value;
4665 }
4666 /* We may learn something more from the var_off */
4667 __update_reg_bounds(dst_reg);
f1174f77
EC
4668 break;
4669 case BPF_OR:
4670 if (src_known && dst_known) {
b03c9f9f
EC
4671 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4672 src_reg.var_off.value);
f1174f77
EC
4673 break;
4674 }
b03c9f9f
EC
4675 /* We get our maximum from the var_off, and our minimum is the
4676 * maximum of the operands' minima
f1174f77
EC
4677 */
4678 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4679 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4680 dst_reg->umax_value = dst_reg->var_off.value |
4681 dst_reg->var_off.mask;
4682 if (dst_reg->smin_value < 0 || smin_val < 0) {
4683 /* Lose signed bounds when ORing negative numbers,
4684 * ain't nobody got time for that.
4685 */
4686 dst_reg->smin_value = S64_MIN;
4687 dst_reg->smax_value = S64_MAX;
f1174f77 4688 } else {
b03c9f9f
EC
4689 /* ORing two positives gives a positive, so safe to
4690 * cast result into s64.
4691 */
4692 dst_reg->smin_value = dst_reg->umin_value;
4693 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4694 }
b03c9f9f
EC
4695 /* We may learn something more from the var_off */
4696 __update_reg_bounds(dst_reg);
48461135
JB
4697 break;
4698 case BPF_LSH:
468f6eaf
JH
4699 if (umax_val >= insn_bitness) {
4700 /* Shifts greater than 31 or 63 are undefined.
4701 * This includes shifts by a negative number.
b03c9f9f 4702 */
61bd5218 4703 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4704 break;
4705 }
b03c9f9f
EC
4706 /* We lose all sign bit information (except what we can pick
4707 * up from var_off)
48461135 4708 */
b03c9f9f
EC
4709 dst_reg->smin_value = S64_MIN;
4710 dst_reg->smax_value = S64_MAX;
4711 /* If we might shift our top bit out, then we know nothing */
4712 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4713 dst_reg->umin_value = 0;
4714 dst_reg->umax_value = U64_MAX;
d1174416 4715 } else {
b03c9f9f
EC
4716 dst_reg->umin_value <<= umin_val;
4717 dst_reg->umax_value <<= umax_val;
d1174416 4718 }
afbe1a5b 4719 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4720 /* We may learn something more from the var_off */
4721 __update_reg_bounds(dst_reg);
48461135
JB
4722 break;
4723 case BPF_RSH:
468f6eaf
JH
4724 if (umax_val >= insn_bitness) {
4725 /* Shifts greater than 31 or 63 are undefined.
4726 * This includes shifts by a negative number.
b03c9f9f 4727 */
61bd5218 4728 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4729 break;
4730 }
4374f256
EC
4731 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4732 * be negative, then either:
4733 * 1) src_reg might be zero, so the sign bit of the result is
4734 * unknown, so we lose our signed bounds
4735 * 2) it's known negative, thus the unsigned bounds capture the
4736 * signed bounds
4737 * 3) the signed bounds cross zero, so they tell us nothing
4738 * about the result
4739 * If the value in dst_reg is known nonnegative, then again the
4740 * unsigned bounts capture the signed bounds.
4741 * Thus, in all cases it suffices to blow away our signed bounds
4742 * and rely on inferring new ones from the unsigned bounds and
4743 * var_off of the result.
4744 */
4745 dst_reg->smin_value = S64_MIN;
4746 dst_reg->smax_value = S64_MAX;
afbe1a5b 4747 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4748 dst_reg->umin_value >>= umax_val;
4749 dst_reg->umax_value >>= umin_val;
4750 /* We may learn something more from the var_off */
4751 __update_reg_bounds(dst_reg);
48461135 4752 break;
9cbe1f5a
YS
4753 case BPF_ARSH:
4754 if (umax_val >= insn_bitness) {
4755 /* Shifts greater than 31 or 63 are undefined.
4756 * This includes shifts by a negative number.
4757 */
4758 mark_reg_unknown(env, regs, insn->dst_reg);
4759 break;
4760 }
4761
4762 /* Upon reaching here, src_known is true and
4763 * umax_val is equal to umin_val.
4764 */
4765 dst_reg->smin_value >>= umin_val;
4766 dst_reg->smax_value >>= umin_val;
4767 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4768
4769 /* blow away the dst_reg umin_value/umax_value and rely on
4770 * dst_reg var_off to refine the result.
4771 */
4772 dst_reg->umin_value = 0;
4773 dst_reg->umax_value = U64_MAX;
4774 __update_reg_bounds(dst_reg);
4775 break;
48461135 4776 default:
61bd5218 4777 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
4778 break;
4779 }
4780
468f6eaf
JH
4781 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4782 /* 32-bit ALU ops are (32,32)->32 */
4783 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
4784 }
4785
b03c9f9f
EC
4786 __reg_deduce_bounds(dst_reg);
4787 __reg_bound_offset(dst_reg);
f1174f77
EC
4788 return 0;
4789}
4790
4791/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4792 * and var_off.
4793 */
4794static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4795 struct bpf_insn *insn)
4796{
f4d7e40a
AS
4797 struct bpf_verifier_state *vstate = env->cur_state;
4798 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4799 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4800 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4801 u8 opcode = BPF_OP(insn->code);
b5dc0163 4802 int err;
f1174f77
EC
4803
4804 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4805 src_reg = NULL;
4806 if (dst_reg->type != SCALAR_VALUE)
4807 ptr_reg = dst_reg;
4808 if (BPF_SRC(insn->code) == BPF_X) {
4809 src_reg = &regs[insn->src_reg];
f1174f77
EC
4810 if (src_reg->type != SCALAR_VALUE) {
4811 if (dst_reg->type != SCALAR_VALUE) {
4812 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4813 * an arbitrary scalar. Disallow all math except
4814 * pointer subtraction
f1174f77 4815 */
dd066823 4816 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4817 mark_reg_unknown(env, regs, insn->dst_reg);
4818 return 0;
f1174f77 4819 }
82abbf8d
AS
4820 verbose(env, "R%d pointer %s pointer prohibited\n",
4821 insn->dst_reg,
4822 bpf_alu_string[opcode >> 4]);
4823 return -EACCES;
f1174f77
EC
4824 } else {
4825 /* scalar += pointer
4826 * This is legal, but we have to reverse our
4827 * src/dest handling in computing the range
4828 */
b5dc0163
AS
4829 err = mark_chain_precision(env, insn->dst_reg);
4830 if (err)
4831 return err;
82abbf8d
AS
4832 return adjust_ptr_min_max_vals(env, insn,
4833 src_reg, dst_reg);
f1174f77
EC
4834 }
4835 } else if (ptr_reg) {
4836 /* pointer += scalar */
b5dc0163
AS
4837 err = mark_chain_precision(env, insn->src_reg);
4838 if (err)
4839 return err;
82abbf8d
AS
4840 return adjust_ptr_min_max_vals(env, insn,
4841 dst_reg, src_reg);
f1174f77
EC
4842 }
4843 } else {
4844 /* Pretend the src is a reg with a known value, since we only
4845 * need to be able to read from this state.
4846 */
4847 off_reg.type = SCALAR_VALUE;
b03c9f9f 4848 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4849 src_reg = &off_reg;
82abbf8d
AS
4850 if (ptr_reg) /* pointer += K */
4851 return adjust_ptr_min_max_vals(env, insn,
4852 ptr_reg, src_reg);
f1174f77
EC
4853 }
4854
4855 /* Got here implies adding two SCALAR_VALUEs */
4856 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4857 print_verifier_state(env, state);
61bd5218 4858 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4859 return -EINVAL;
4860 }
4861 if (WARN_ON(!src_reg)) {
f4d7e40a 4862 print_verifier_state(env, state);
61bd5218 4863 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4864 return -EINVAL;
4865 }
4866 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4867}
4868
17a52670 4869/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4870static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4871{
638f5b90 4872 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4873 u8 opcode = BPF_OP(insn->code);
4874 int err;
4875
4876 if (opcode == BPF_END || opcode == BPF_NEG) {
4877 if (opcode == BPF_NEG) {
4878 if (BPF_SRC(insn->code) != 0 ||
4879 insn->src_reg != BPF_REG_0 ||
4880 insn->off != 0 || insn->imm != 0) {
61bd5218 4881 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4882 return -EINVAL;
4883 }
4884 } else {
4885 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4886 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4887 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4888 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4889 return -EINVAL;
4890 }
4891 }
4892
4893 /* check src operand */
dc503a8a 4894 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4895 if (err)
4896 return err;
4897
1be7f75d 4898 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 4899 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4900 insn->dst_reg);
4901 return -EACCES;
4902 }
4903
17a52670 4904 /* check dest operand */
dc503a8a 4905 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4906 if (err)
4907 return err;
4908
4909 } else if (opcode == BPF_MOV) {
4910
4911 if (BPF_SRC(insn->code) == BPF_X) {
4912 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4913 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4914 return -EINVAL;
4915 }
4916
4917 /* check src operand */
dc503a8a 4918 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4919 if (err)
4920 return err;
4921 } else {
4922 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4923 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4924 return -EINVAL;
4925 }
4926 }
4927
fbeb1603
AF
4928 /* check dest operand, mark as required later */
4929 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4930 if (err)
4931 return err;
4932
4933 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4934 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4935 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4936
17a52670
AS
4937 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4938 /* case: R1 = R2
4939 * copy register state to dest reg
4940 */
e434b8cd
JW
4941 *dst_reg = *src_reg;
4942 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4943 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 4944 } else {
f1174f77 4945 /* R1 = (u32) R2 */
1be7f75d 4946 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4947 verbose(env,
4948 "R%d partial copy of pointer\n",
1be7f75d
AS
4949 insn->src_reg);
4950 return -EACCES;
e434b8cd
JW
4951 } else if (src_reg->type == SCALAR_VALUE) {
4952 *dst_reg = *src_reg;
4953 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4954 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
4955 } else {
4956 mark_reg_unknown(env, regs,
4957 insn->dst_reg);
1be7f75d 4958 }
e434b8cd 4959 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
4960 }
4961 } else {
4962 /* case: R = imm
4963 * remember the value we stored into this reg
4964 */
fbeb1603
AF
4965 /* clear any state __mark_reg_known doesn't set */
4966 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 4967 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
4968 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4969 __mark_reg_known(regs + insn->dst_reg,
4970 insn->imm);
4971 } else {
4972 __mark_reg_known(regs + insn->dst_reg,
4973 (u32)insn->imm);
4974 }
17a52670
AS
4975 }
4976
4977 } else if (opcode > BPF_END) {
61bd5218 4978 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
4979 return -EINVAL;
4980
4981 } else { /* all other ALU ops: and, sub, xor, add, ... */
4982
17a52670
AS
4983 if (BPF_SRC(insn->code) == BPF_X) {
4984 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4985 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4986 return -EINVAL;
4987 }
4988 /* check src1 operand */
dc503a8a 4989 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4990 if (err)
4991 return err;
4992 } else {
4993 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4994 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4995 return -EINVAL;
4996 }
4997 }
4998
4999 /* check src2 operand */
dc503a8a 5000 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5001 if (err)
5002 return err;
5003
5004 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5005 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5006 verbose(env, "div by zero\n");
17a52670
AS
5007 return -EINVAL;
5008 }
5009
229394e8
RV
5010 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5011 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5012 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5013
5014 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5015 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5016 return -EINVAL;
5017 }
5018 }
5019
1a0dc1ac 5020 /* check dest operand */
dc503a8a 5021 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5022 if (err)
5023 return err;
5024
f1174f77 5025 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5026 }
5027
5028 return 0;
5029}
5030
c6a9efa1
PC
5031static void __find_good_pkt_pointers(struct bpf_func_state *state,
5032 struct bpf_reg_state *dst_reg,
5033 enum bpf_reg_type type, u16 new_range)
5034{
5035 struct bpf_reg_state *reg;
5036 int i;
5037
5038 for (i = 0; i < MAX_BPF_REG; i++) {
5039 reg = &state->regs[i];
5040 if (reg->type == type && reg->id == dst_reg->id)
5041 /* keep the maximum range already checked */
5042 reg->range = max(reg->range, new_range);
5043 }
5044
5045 bpf_for_each_spilled_reg(i, state, reg) {
5046 if (!reg)
5047 continue;
5048 if (reg->type == type && reg->id == dst_reg->id)
5049 reg->range = max(reg->range, new_range);
5050 }
5051}
5052
f4d7e40a 5053static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5054 struct bpf_reg_state *dst_reg,
f8ddadc4 5055 enum bpf_reg_type type,
fb2a311a 5056 bool range_right_open)
969bf05e 5057{
fb2a311a 5058 u16 new_range;
c6a9efa1 5059 int i;
2d2be8ca 5060
fb2a311a
DB
5061 if (dst_reg->off < 0 ||
5062 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5063 /* This doesn't give us any range */
5064 return;
5065
b03c9f9f
EC
5066 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5067 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5068 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5069 * than pkt_end, but that's because it's also less than pkt.
5070 */
5071 return;
5072
fb2a311a
DB
5073 new_range = dst_reg->off;
5074 if (range_right_open)
5075 new_range--;
5076
5077 /* Examples for register markings:
2d2be8ca 5078 *
fb2a311a 5079 * pkt_data in dst register:
2d2be8ca
DB
5080 *
5081 * r2 = r3;
5082 * r2 += 8;
5083 * if (r2 > pkt_end) goto <handle exception>
5084 * <access okay>
5085 *
b4e432f1
DB
5086 * r2 = r3;
5087 * r2 += 8;
5088 * if (r2 < pkt_end) goto <access okay>
5089 * <handle exception>
5090 *
2d2be8ca
DB
5091 * Where:
5092 * r2 == dst_reg, pkt_end == src_reg
5093 * r2=pkt(id=n,off=8,r=0)
5094 * r3=pkt(id=n,off=0,r=0)
5095 *
fb2a311a 5096 * pkt_data in src register:
2d2be8ca
DB
5097 *
5098 * r2 = r3;
5099 * r2 += 8;
5100 * if (pkt_end >= r2) goto <access okay>
5101 * <handle exception>
5102 *
b4e432f1
DB
5103 * r2 = r3;
5104 * r2 += 8;
5105 * if (pkt_end <= r2) goto <handle exception>
5106 * <access okay>
5107 *
2d2be8ca
DB
5108 * Where:
5109 * pkt_end == dst_reg, r2 == src_reg
5110 * r2=pkt(id=n,off=8,r=0)
5111 * r3=pkt(id=n,off=0,r=0)
5112 *
5113 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5114 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5115 * and [r3, r3 + 8-1) respectively is safe to access depending on
5116 * the check.
969bf05e 5117 */
2d2be8ca 5118
f1174f77
EC
5119 /* If our ids match, then we must have the same max_value. And we
5120 * don't care about the other reg's fixed offset, since if it's too big
5121 * the range won't allow anything.
5122 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5123 */
c6a9efa1
PC
5124 for (i = 0; i <= vstate->curframe; i++)
5125 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5126 new_range);
969bf05e
AS
5127}
5128
4f7b3e82
AS
5129/* compute branch direction of the expression "if (reg opcode val) goto target;"
5130 * and return:
5131 * 1 - branch will be taken and "goto target" will be executed
5132 * 0 - branch will not be taken and fall-through to next insn
5133 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5134 */
092ed096
JW
5135static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5136 bool is_jmp32)
4f7b3e82 5137{
092ed096 5138 struct bpf_reg_state reg_lo;
a72dafaf
JW
5139 s64 sval;
5140
4f7b3e82
AS
5141 if (__is_pointer_value(false, reg))
5142 return -1;
5143
092ed096
JW
5144 if (is_jmp32) {
5145 reg_lo = *reg;
5146 reg = &reg_lo;
5147 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5148 * could truncate high bits and update umin/umax according to
5149 * information of low bits.
5150 */
5151 coerce_reg_to_size(reg, 4);
5152 /* smin/smax need special handling. For example, after coerce,
5153 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5154 * used as operand to JMP32. It is a negative number from s32's
5155 * point of view, while it is a positive number when seen as
5156 * s64. The smin/smax are kept as s64, therefore, when used with
5157 * JMP32, they need to be transformed into s32, then sign
5158 * extended back to s64.
5159 *
5160 * Also, smin/smax were copied from umin/umax. If umin/umax has
5161 * different sign bit, then min/max relationship doesn't
5162 * maintain after casting into s32, for this case, set smin/smax
5163 * to safest range.
5164 */
5165 if ((reg->umax_value ^ reg->umin_value) &
5166 (1ULL << 31)) {
5167 reg->smin_value = S32_MIN;
5168 reg->smax_value = S32_MAX;
5169 }
5170 reg->smin_value = (s64)(s32)reg->smin_value;
5171 reg->smax_value = (s64)(s32)reg->smax_value;
5172
5173 val = (u32)val;
5174 sval = (s64)(s32)val;
5175 } else {
5176 sval = (s64)val;
5177 }
a72dafaf 5178
4f7b3e82
AS
5179 switch (opcode) {
5180 case BPF_JEQ:
5181 if (tnum_is_const(reg->var_off))
5182 return !!tnum_equals_const(reg->var_off, val);
5183 break;
5184 case BPF_JNE:
5185 if (tnum_is_const(reg->var_off))
5186 return !tnum_equals_const(reg->var_off, val);
5187 break;
960ea056
JK
5188 case BPF_JSET:
5189 if ((~reg->var_off.mask & reg->var_off.value) & val)
5190 return 1;
5191 if (!((reg->var_off.mask | reg->var_off.value) & val))
5192 return 0;
5193 break;
4f7b3e82
AS
5194 case BPF_JGT:
5195 if (reg->umin_value > val)
5196 return 1;
5197 else if (reg->umax_value <= val)
5198 return 0;
5199 break;
5200 case BPF_JSGT:
a72dafaf 5201 if (reg->smin_value > sval)
4f7b3e82 5202 return 1;
a72dafaf 5203 else if (reg->smax_value < sval)
4f7b3e82
AS
5204 return 0;
5205 break;
5206 case BPF_JLT:
5207 if (reg->umax_value < val)
5208 return 1;
5209 else if (reg->umin_value >= val)
5210 return 0;
5211 break;
5212 case BPF_JSLT:
a72dafaf 5213 if (reg->smax_value < sval)
4f7b3e82 5214 return 1;
a72dafaf 5215 else if (reg->smin_value >= sval)
4f7b3e82
AS
5216 return 0;
5217 break;
5218 case BPF_JGE:
5219 if (reg->umin_value >= val)
5220 return 1;
5221 else if (reg->umax_value < val)
5222 return 0;
5223 break;
5224 case BPF_JSGE:
a72dafaf 5225 if (reg->smin_value >= sval)
4f7b3e82 5226 return 1;
a72dafaf 5227 else if (reg->smax_value < sval)
4f7b3e82
AS
5228 return 0;
5229 break;
5230 case BPF_JLE:
5231 if (reg->umax_value <= val)
5232 return 1;
5233 else if (reg->umin_value > val)
5234 return 0;
5235 break;
5236 case BPF_JSLE:
a72dafaf 5237 if (reg->smax_value <= sval)
4f7b3e82 5238 return 1;
a72dafaf 5239 else if (reg->smin_value > sval)
4f7b3e82
AS
5240 return 0;
5241 break;
5242 }
5243
5244 return -1;
5245}
5246
092ed096
JW
5247/* Generate min value of the high 32-bit from TNUM info. */
5248static u64 gen_hi_min(struct tnum var)
5249{
5250 return var.value & ~0xffffffffULL;
5251}
5252
5253/* Generate max value of the high 32-bit from TNUM info. */
5254static u64 gen_hi_max(struct tnum var)
5255{
5256 return (var.value | var.mask) & ~0xffffffffULL;
5257}
5258
5259/* Return true if VAL is compared with a s64 sign extended from s32, and they
5260 * are with the same signedness.
5261 */
5262static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5263{
5264 return ((s32)sval >= 0 &&
5265 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5266 ((s32)sval < 0 &&
5267 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5268}
5269
48461135
JB
5270/* Adjusts the register min/max values in the case that the dst_reg is the
5271 * variable register that we are working on, and src_reg is a constant or we're
5272 * simply doing a BPF_K check.
f1174f77 5273 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5274 */
5275static void reg_set_min_max(struct bpf_reg_state *true_reg,
5276 struct bpf_reg_state *false_reg, u64 val,
092ed096 5277 u8 opcode, bool is_jmp32)
48461135 5278{
a72dafaf
JW
5279 s64 sval;
5280
f1174f77
EC
5281 /* If the dst_reg is a pointer, we can't learn anything about its
5282 * variable offset from the compare (unless src_reg were a pointer into
5283 * the same object, but we don't bother with that.
5284 * Since false_reg and true_reg have the same type by construction, we
5285 * only need to check one of them for pointerness.
5286 */
5287 if (__is_pointer_value(false, false_reg))
5288 return;
4cabc5b1 5289
092ed096
JW
5290 val = is_jmp32 ? (u32)val : val;
5291 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5292
48461135
JB
5293 switch (opcode) {
5294 case BPF_JEQ:
48461135 5295 case BPF_JNE:
a72dafaf
JW
5296 {
5297 struct bpf_reg_state *reg =
5298 opcode == BPF_JEQ ? true_reg : false_reg;
5299
5300 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5301 * if it is true we know the value for sure. Likewise for
5302 * BPF_JNE.
48461135 5303 */
092ed096
JW
5304 if (is_jmp32) {
5305 u64 old_v = reg->var_off.value;
5306 u64 hi_mask = ~0xffffffffULL;
5307
5308 reg->var_off.value = (old_v & hi_mask) | val;
5309 reg->var_off.mask &= hi_mask;
5310 } else {
5311 __mark_reg_known(reg, val);
5312 }
48461135 5313 break;
a72dafaf 5314 }
960ea056
JK
5315 case BPF_JSET:
5316 false_reg->var_off = tnum_and(false_reg->var_off,
5317 tnum_const(~val));
5318 if (is_power_of_2(val))
5319 true_reg->var_off = tnum_or(true_reg->var_off,
5320 tnum_const(val));
5321 break;
48461135 5322 case BPF_JGE:
a72dafaf
JW
5323 case BPF_JGT:
5324 {
5325 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5326 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5327
092ed096
JW
5328 if (is_jmp32) {
5329 false_umax += gen_hi_max(false_reg->var_off);
5330 true_umin += gen_hi_min(true_reg->var_off);
5331 }
a72dafaf
JW
5332 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5333 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5334 break;
a72dafaf 5335 }
48461135 5336 case BPF_JSGE:
a72dafaf
JW
5337 case BPF_JSGT:
5338 {
5339 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5340 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5341
092ed096
JW
5342 /* If the full s64 was not sign-extended from s32 then don't
5343 * deduct further info.
5344 */
5345 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5346 break;
a72dafaf
JW
5347 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5348 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5349 break;
a72dafaf 5350 }
b4e432f1 5351 case BPF_JLE:
a72dafaf
JW
5352 case BPF_JLT:
5353 {
5354 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5355 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5356
092ed096
JW
5357 if (is_jmp32) {
5358 false_umin += gen_hi_min(false_reg->var_off);
5359 true_umax += gen_hi_max(true_reg->var_off);
5360 }
a72dafaf
JW
5361 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5362 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5363 break;
a72dafaf 5364 }
b4e432f1 5365 case BPF_JSLE:
a72dafaf
JW
5366 case BPF_JSLT:
5367 {
5368 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5369 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5370
092ed096
JW
5371 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5372 break;
a72dafaf
JW
5373 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5374 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5375 break;
a72dafaf 5376 }
48461135
JB
5377 default:
5378 break;
5379 }
5380
b03c9f9f
EC
5381 __reg_deduce_bounds(false_reg);
5382 __reg_deduce_bounds(true_reg);
5383 /* We might have learned some bits from the bounds. */
5384 __reg_bound_offset(false_reg);
5385 __reg_bound_offset(true_reg);
5386 /* Intersecting with the old var_off might have improved our bounds
5387 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5388 * then new var_off is (0; 0x7f...fc) which improves our umax.
5389 */
5390 __update_reg_bounds(false_reg);
5391 __update_reg_bounds(true_reg);
48461135
JB
5392}
5393
f1174f77
EC
5394/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5395 * the variable reg.
48461135
JB
5396 */
5397static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5398 struct bpf_reg_state *false_reg, u64 val,
092ed096 5399 u8 opcode, bool is_jmp32)
48461135 5400{
a72dafaf
JW
5401 s64 sval;
5402
f1174f77
EC
5403 if (__is_pointer_value(false, false_reg))
5404 return;
4cabc5b1 5405
092ed096
JW
5406 val = is_jmp32 ? (u32)val : val;
5407 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5408
48461135
JB
5409 switch (opcode) {
5410 case BPF_JEQ:
48461135 5411 case BPF_JNE:
a72dafaf
JW
5412 {
5413 struct bpf_reg_state *reg =
5414 opcode == BPF_JEQ ? true_reg : false_reg;
5415
092ed096
JW
5416 if (is_jmp32) {
5417 u64 old_v = reg->var_off.value;
5418 u64 hi_mask = ~0xffffffffULL;
5419
5420 reg->var_off.value = (old_v & hi_mask) | val;
5421 reg->var_off.mask &= hi_mask;
5422 } else {
5423 __mark_reg_known(reg, val);
5424 }
48461135 5425 break;
a72dafaf 5426 }
960ea056
JK
5427 case BPF_JSET:
5428 false_reg->var_off = tnum_and(false_reg->var_off,
5429 tnum_const(~val));
5430 if (is_power_of_2(val))
5431 true_reg->var_off = tnum_or(true_reg->var_off,
5432 tnum_const(val));
5433 break;
48461135 5434 case BPF_JGE:
a72dafaf
JW
5435 case BPF_JGT:
5436 {
5437 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5438 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5439
092ed096
JW
5440 if (is_jmp32) {
5441 false_umin += gen_hi_min(false_reg->var_off);
5442 true_umax += gen_hi_max(true_reg->var_off);
5443 }
a72dafaf
JW
5444 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5445 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5446 break;
a72dafaf 5447 }
48461135 5448 case BPF_JSGE:
a72dafaf
JW
5449 case BPF_JSGT:
5450 {
5451 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5452 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5453
092ed096
JW
5454 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5455 break;
a72dafaf
JW
5456 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5457 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5458 break;
a72dafaf 5459 }
b4e432f1 5460 case BPF_JLE:
a72dafaf
JW
5461 case BPF_JLT:
5462 {
5463 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5464 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5465
092ed096
JW
5466 if (is_jmp32) {
5467 false_umax += gen_hi_max(false_reg->var_off);
5468 true_umin += gen_hi_min(true_reg->var_off);
5469 }
a72dafaf
JW
5470 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5471 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5472 break;
a72dafaf 5473 }
b4e432f1 5474 case BPF_JSLE:
a72dafaf
JW
5475 case BPF_JSLT:
5476 {
5477 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5478 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5479
092ed096
JW
5480 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5481 break;
a72dafaf
JW
5482 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5483 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5484 break;
a72dafaf 5485 }
48461135
JB
5486 default:
5487 break;
5488 }
5489
b03c9f9f
EC
5490 __reg_deduce_bounds(false_reg);
5491 __reg_deduce_bounds(true_reg);
5492 /* We might have learned some bits from the bounds. */
5493 __reg_bound_offset(false_reg);
5494 __reg_bound_offset(true_reg);
5495 /* Intersecting with the old var_off might have improved our bounds
5496 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5497 * then new var_off is (0; 0x7f...fc) which improves our umax.
5498 */
5499 __update_reg_bounds(false_reg);
5500 __update_reg_bounds(true_reg);
f1174f77
EC
5501}
5502
5503/* Regs are known to be equal, so intersect their min/max/var_off */
5504static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5505 struct bpf_reg_state *dst_reg)
5506{
b03c9f9f
EC
5507 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5508 dst_reg->umin_value);
5509 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5510 dst_reg->umax_value);
5511 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5512 dst_reg->smin_value);
5513 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5514 dst_reg->smax_value);
f1174f77
EC
5515 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5516 dst_reg->var_off);
b03c9f9f
EC
5517 /* We might have learned new bounds from the var_off. */
5518 __update_reg_bounds(src_reg);
5519 __update_reg_bounds(dst_reg);
5520 /* We might have learned something about the sign bit. */
5521 __reg_deduce_bounds(src_reg);
5522 __reg_deduce_bounds(dst_reg);
5523 /* We might have learned some bits from the bounds. */
5524 __reg_bound_offset(src_reg);
5525 __reg_bound_offset(dst_reg);
5526 /* Intersecting with the old var_off might have improved our bounds
5527 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5528 * then new var_off is (0; 0x7f...fc) which improves our umax.
5529 */
5530 __update_reg_bounds(src_reg);
5531 __update_reg_bounds(dst_reg);
f1174f77
EC
5532}
5533
5534static void reg_combine_min_max(struct bpf_reg_state *true_src,
5535 struct bpf_reg_state *true_dst,
5536 struct bpf_reg_state *false_src,
5537 struct bpf_reg_state *false_dst,
5538 u8 opcode)
5539{
5540 switch (opcode) {
5541 case BPF_JEQ:
5542 __reg_combine_min_max(true_src, true_dst);
5543 break;
5544 case BPF_JNE:
5545 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5546 break;
4cabc5b1 5547 }
48461135
JB
5548}
5549
fd978bf7
JS
5550static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5551 struct bpf_reg_state *reg, u32 id,
840b9615 5552 bool is_null)
57a09bf0 5553{
840b9615 5554 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5555 /* Old offset (both fixed and variable parts) should
5556 * have been known-zero, because we don't allow pointer
5557 * arithmetic on pointers that might be NULL.
5558 */
b03c9f9f
EC
5559 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5560 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5561 reg->off)) {
b03c9f9f
EC
5562 __mark_reg_known_zero(reg);
5563 reg->off = 0;
f1174f77
EC
5564 }
5565 if (is_null) {
5566 reg->type = SCALAR_VALUE;
840b9615
JS
5567 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5568 if (reg->map_ptr->inner_map_meta) {
5569 reg->type = CONST_PTR_TO_MAP;
5570 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5571 } else if (reg->map_ptr->map_type ==
5572 BPF_MAP_TYPE_XSKMAP) {
5573 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5574 } else {
5575 reg->type = PTR_TO_MAP_VALUE;
5576 }
c64b7983
JS
5577 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5578 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5579 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5580 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5581 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5582 reg->type = PTR_TO_TCP_SOCK;
56f668df 5583 }
1b986589
MKL
5584 if (is_null) {
5585 /* We don't need id and ref_obj_id from this point
5586 * onwards anymore, thus we should better reset it,
5587 * so that state pruning has chances to take effect.
5588 */
5589 reg->id = 0;
5590 reg->ref_obj_id = 0;
5591 } else if (!reg_may_point_to_spin_lock(reg)) {
5592 /* For not-NULL ptr, reg->ref_obj_id will be reset
5593 * in release_reg_references().
5594 *
5595 * reg->id is still used by spin_lock ptr. Other
5596 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5597 */
5598 reg->id = 0;
56f668df 5599 }
57a09bf0
TG
5600 }
5601}
5602
c6a9efa1
PC
5603static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5604 bool is_null)
5605{
5606 struct bpf_reg_state *reg;
5607 int i;
5608
5609 for (i = 0; i < MAX_BPF_REG; i++)
5610 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5611
5612 bpf_for_each_spilled_reg(i, state, reg) {
5613 if (!reg)
5614 continue;
5615 mark_ptr_or_null_reg(state, reg, id, is_null);
5616 }
5617}
5618
57a09bf0
TG
5619/* The logic is similar to find_good_pkt_pointers(), both could eventually
5620 * be folded together at some point.
5621 */
840b9615
JS
5622static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5623 bool is_null)
57a09bf0 5624{
f4d7e40a 5625 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5626 struct bpf_reg_state *regs = state->regs;
1b986589 5627 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5628 u32 id = regs[regno].id;
c6a9efa1 5629 int i;
57a09bf0 5630
1b986589
MKL
5631 if (ref_obj_id && ref_obj_id == id && is_null)
5632 /* regs[regno] is in the " == NULL" branch.
5633 * No one could have freed the reference state before
5634 * doing the NULL check.
5635 */
5636 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5637
c6a9efa1
PC
5638 for (i = 0; i <= vstate->curframe; i++)
5639 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5640}
5641
5beca081
DB
5642static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5643 struct bpf_reg_state *dst_reg,
5644 struct bpf_reg_state *src_reg,
5645 struct bpf_verifier_state *this_branch,
5646 struct bpf_verifier_state *other_branch)
5647{
5648 if (BPF_SRC(insn->code) != BPF_X)
5649 return false;
5650
092ed096
JW
5651 /* Pointers are always 64-bit. */
5652 if (BPF_CLASS(insn->code) == BPF_JMP32)
5653 return false;
5654
5beca081
DB
5655 switch (BPF_OP(insn->code)) {
5656 case BPF_JGT:
5657 if ((dst_reg->type == PTR_TO_PACKET &&
5658 src_reg->type == PTR_TO_PACKET_END) ||
5659 (dst_reg->type == PTR_TO_PACKET_META &&
5660 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5661 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5662 find_good_pkt_pointers(this_branch, dst_reg,
5663 dst_reg->type, false);
5664 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5665 src_reg->type == PTR_TO_PACKET) ||
5666 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5667 src_reg->type == PTR_TO_PACKET_META)) {
5668 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5669 find_good_pkt_pointers(other_branch, src_reg,
5670 src_reg->type, true);
5671 } else {
5672 return false;
5673 }
5674 break;
5675 case BPF_JLT:
5676 if ((dst_reg->type == PTR_TO_PACKET &&
5677 src_reg->type == PTR_TO_PACKET_END) ||
5678 (dst_reg->type == PTR_TO_PACKET_META &&
5679 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5680 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5681 find_good_pkt_pointers(other_branch, dst_reg,
5682 dst_reg->type, true);
5683 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5684 src_reg->type == PTR_TO_PACKET) ||
5685 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5686 src_reg->type == PTR_TO_PACKET_META)) {
5687 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5688 find_good_pkt_pointers(this_branch, src_reg,
5689 src_reg->type, false);
5690 } else {
5691 return false;
5692 }
5693 break;
5694 case BPF_JGE:
5695 if ((dst_reg->type == PTR_TO_PACKET &&
5696 src_reg->type == PTR_TO_PACKET_END) ||
5697 (dst_reg->type == PTR_TO_PACKET_META &&
5698 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5699 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5700 find_good_pkt_pointers(this_branch, dst_reg,
5701 dst_reg->type, true);
5702 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5703 src_reg->type == PTR_TO_PACKET) ||
5704 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5705 src_reg->type == PTR_TO_PACKET_META)) {
5706 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5707 find_good_pkt_pointers(other_branch, src_reg,
5708 src_reg->type, false);
5709 } else {
5710 return false;
5711 }
5712 break;
5713 case BPF_JLE:
5714 if ((dst_reg->type == PTR_TO_PACKET &&
5715 src_reg->type == PTR_TO_PACKET_END) ||
5716 (dst_reg->type == PTR_TO_PACKET_META &&
5717 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5718 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5719 find_good_pkt_pointers(other_branch, dst_reg,
5720 dst_reg->type, false);
5721 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5722 src_reg->type == PTR_TO_PACKET) ||
5723 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5724 src_reg->type == PTR_TO_PACKET_META)) {
5725 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5726 find_good_pkt_pointers(this_branch, src_reg,
5727 src_reg->type, true);
5728 } else {
5729 return false;
5730 }
5731 break;
5732 default:
5733 return false;
5734 }
5735
5736 return true;
5737}
5738
58e2af8b 5739static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
5740 struct bpf_insn *insn, int *insn_idx)
5741{
f4d7e40a
AS
5742 struct bpf_verifier_state *this_branch = env->cur_state;
5743 struct bpf_verifier_state *other_branch;
5744 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 5745 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 5746 u8 opcode = BPF_OP(insn->code);
092ed096 5747 bool is_jmp32;
fb8d251e 5748 int pred = -1;
17a52670
AS
5749 int err;
5750
092ed096
JW
5751 /* Only conditional jumps are expected to reach here. */
5752 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5753 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
5754 return -EINVAL;
5755 }
5756
5757 if (BPF_SRC(insn->code) == BPF_X) {
5758 if (insn->imm != 0) {
092ed096 5759 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5760 return -EINVAL;
5761 }
5762
5763 /* check src1 operand */
dc503a8a 5764 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5765 if (err)
5766 return err;
1be7f75d
AS
5767
5768 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5769 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
5770 insn->src_reg);
5771 return -EACCES;
5772 }
fb8d251e 5773 src_reg = &regs[insn->src_reg];
17a52670
AS
5774 } else {
5775 if (insn->src_reg != BPF_REG_0) {
092ed096 5776 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5777 return -EINVAL;
5778 }
5779 }
5780
5781 /* check src2 operand */
dc503a8a 5782 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5783 if (err)
5784 return err;
5785
1a0dc1ac 5786 dst_reg = &regs[insn->dst_reg];
092ed096 5787 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 5788
fb8d251e
AS
5789 if (BPF_SRC(insn->code) == BPF_K)
5790 pred = is_branch_taken(dst_reg, insn->imm,
5791 opcode, is_jmp32);
5792 else if (src_reg->type == SCALAR_VALUE &&
5793 tnum_is_const(src_reg->var_off))
5794 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5795 opcode, is_jmp32);
b5dc0163
AS
5796 if (pred >= 0) {
5797 err = mark_chain_precision(env, insn->dst_reg);
5798 if (BPF_SRC(insn->code) == BPF_X && !err)
5799 err = mark_chain_precision(env, insn->src_reg);
5800 if (err)
5801 return err;
5802 }
fb8d251e
AS
5803 if (pred == 1) {
5804 /* only follow the goto, ignore fall-through */
5805 *insn_idx += insn->off;
5806 return 0;
5807 } else if (pred == 0) {
5808 /* only follow fall-through branch, since
5809 * that's where the program will go
5810 */
5811 return 0;
17a52670
AS
5812 }
5813
979d63d5
DB
5814 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5815 false);
17a52670
AS
5816 if (!other_branch)
5817 return -EFAULT;
f4d7e40a 5818 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 5819
48461135
JB
5820 /* detect if we are comparing against a constant value so we can adjust
5821 * our min/max values for our dst register.
f1174f77
EC
5822 * this is only legit if both are scalars (or pointers to the same
5823 * object, I suppose, but we don't support that right now), because
5824 * otherwise the different base pointers mean the offsets aren't
5825 * comparable.
48461135
JB
5826 */
5827 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
5828 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5829 struct bpf_reg_state lo_reg0 = *dst_reg;
5830 struct bpf_reg_state lo_reg1 = *src_reg;
5831 struct bpf_reg_state *src_lo, *dst_lo;
5832
5833 dst_lo = &lo_reg0;
5834 src_lo = &lo_reg1;
5835 coerce_reg_to_size(dst_lo, 4);
5836 coerce_reg_to_size(src_lo, 4);
5837
f1174f77 5838 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5839 src_reg->type == SCALAR_VALUE) {
5840 if (tnum_is_const(src_reg->var_off) ||
5841 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5842 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5843 dst_reg,
5844 is_jmp32
5845 ? src_lo->var_off.value
5846 : src_reg->var_off.value,
5847 opcode, is_jmp32);
5848 else if (tnum_is_const(dst_reg->var_off) ||
5849 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5850 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5851 src_reg,
5852 is_jmp32
5853 ? dst_lo->var_off.value
5854 : dst_reg->var_off.value,
5855 opcode, is_jmp32);
5856 else if (!is_jmp32 &&
5857 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5858 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5859 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5860 &other_branch_regs[insn->dst_reg],
092ed096 5861 src_reg, dst_reg, opcode);
f1174f77
EC
5862 }
5863 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5864 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5865 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5866 }
5867
092ed096
JW
5868 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5869 * NOTE: these optimizations below are related with pointer comparison
5870 * which will never be JMP32.
5871 */
5872 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5873 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5874 reg_type_may_be_null(dst_reg->type)) {
5875 /* Mark all identical registers in each branch as either
57a09bf0
TG
5876 * safe or unknown depending R == 0 or R != 0 conditional.
5877 */
840b9615
JS
5878 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5879 opcode == BPF_JNE);
5880 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5881 opcode == BPF_JEQ);
5beca081
DB
5882 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5883 this_branch, other_branch) &&
5884 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5885 verbose(env, "R%d pointer comparison prohibited\n",
5886 insn->dst_reg);
1be7f75d 5887 return -EACCES;
17a52670 5888 }
06ee7115 5889 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5890 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
5891 return 0;
5892}
5893
17a52670 5894/* verify BPF_LD_IMM64 instruction */
58e2af8b 5895static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5896{
d8eca5bb 5897 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 5898 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 5899 struct bpf_map *map;
17a52670
AS
5900 int err;
5901
5902 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 5903 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
5904 return -EINVAL;
5905 }
5906 if (insn->off != 0) {
61bd5218 5907 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
5908 return -EINVAL;
5909 }
5910
dc503a8a 5911 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5912 if (err)
5913 return err;
5914
6b173873 5915 if (insn->src_reg == 0) {
6b173873
JK
5916 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5917
f1174f77 5918 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 5919 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 5920 return 0;
6b173873 5921 }
17a52670 5922
d8eca5bb
DB
5923 map = env->used_maps[aux->map_index];
5924 mark_reg_known_zero(env, regs, insn->dst_reg);
5925 regs[insn->dst_reg].map_ptr = map;
5926
5927 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5928 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5929 regs[insn->dst_reg].off = aux->map_off;
5930 if (map_value_has_spin_lock(map))
5931 regs[insn->dst_reg].id = ++env->id_gen;
5932 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5933 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5934 } else {
5935 verbose(env, "bpf verifier is misconfigured\n");
5936 return -EINVAL;
5937 }
17a52670 5938
17a52670
AS
5939 return 0;
5940}
5941
96be4325
DB
5942static bool may_access_skb(enum bpf_prog_type type)
5943{
5944 switch (type) {
5945 case BPF_PROG_TYPE_SOCKET_FILTER:
5946 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5947 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5948 return true;
5949 default:
5950 return false;
5951 }
5952}
5953
ddd872bc
AS
5954/* verify safety of LD_ABS|LD_IND instructions:
5955 * - they can only appear in the programs where ctx == skb
5956 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5957 * preserve R6-R9, and store return value into R0
5958 *
5959 * Implicit input:
5960 * ctx == skb == R6 == CTX
5961 *
5962 * Explicit input:
5963 * SRC == any register
5964 * IMM == 32-bit immediate
5965 *
5966 * Output:
5967 * R0 - 8/16/32-bit skb data converted to cpu endianness
5968 */
58e2af8b 5969static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 5970{
638f5b90 5971 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 5972 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
5973 int i, err;
5974
24701ece 5975 if (!may_access_skb(env->prog->type)) {
61bd5218 5976 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
5977 return -EINVAL;
5978 }
5979
e0cea7ce
DB
5980 if (!env->ops->gen_ld_abs) {
5981 verbose(env, "bpf verifier is misconfigured\n");
5982 return -EINVAL;
5983 }
5984
f910cefa 5985 if (env->subprog_cnt > 1) {
f4d7e40a
AS
5986 /* when program has LD_ABS insn JITs and interpreter assume
5987 * that r1 == ctx == skb which is not the case for callees
5988 * that can have arbitrary arguments. It's problematic
5989 * for main prog as well since JITs would need to analyze
5990 * all functions in order to make proper register save/restore
5991 * decisions in the main prog. Hence disallow LD_ABS with calls
5992 */
5993 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5994 return -EINVAL;
5995 }
5996
ddd872bc 5997 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 5998 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 5999 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6000 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6001 return -EINVAL;
6002 }
6003
6004 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6005 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6006 if (err)
6007 return err;
6008
fd978bf7
JS
6009 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6010 * gen_ld_abs() may terminate the program at runtime, leading to
6011 * reference leak.
6012 */
6013 err = check_reference_leak(env);
6014 if (err) {
6015 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6016 return err;
6017 }
6018
d83525ca
AS
6019 if (env->cur_state->active_spin_lock) {
6020 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6021 return -EINVAL;
6022 }
6023
ddd872bc 6024 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6025 verbose(env,
6026 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6027 return -EINVAL;
6028 }
6029
6030 if (mode == BPF_IND) {
6031 /* check explicit source operand */
dc503a8a 6032 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6033 if (err)
6034 return err;
6035 }
6036
6037 /* reset caller saved regs to unreadable */
dc503a8a 6038 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6039 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6040 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6041 }
ddd872bc
AS
6042
6043 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6044 * the value fetched from the packet.
6045 * Already marked as written above.
ddd872bc 6046 */
61bd5218 6047 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6048 /* ld_abs load up to 32-bit skb data. */
6049 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6050 return 0;
6051}
6052
390ee7e2
AS
6053static int check_return_code(struct bpf_verifier_env *env)
6054{
5cf1e914 6055 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
6056 struct bpf_reg_state *reg;
6057 struct tnum range = tnum_range(0, 1);
6058
6059 switch (env->prog->type) {
983695fa
DB
6060 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6061 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6062 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6063 range = tnum_range(1, 1);
390ee7e2 6064 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6065 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6066 range = tnum_range(0, 3);
6067 enforce_attach_type_range = tnum_range(2, 3);
6068 }
390ee7e2
AS
6069 case BPF_PROG_TYPE_CGROUP_SOCK:
6070 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6071 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6072 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6073 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2
AS
6074 break;
6075 default:
6076 return 0;
6077 }
6078
638f5b90 6079 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6080 if (reg->type != SCALAR_VALUE) {
61bd5218 6081 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6082 reg_type_str[reg->type]);
6083 return -EINVAL;
6084 }
6085
6086 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6087 char tn_buf[48];
6088
61bd5218 6089 verbose(env, "At program exit the register R0 ");
390ee7e2 6090 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6091 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6092 verbose(env, "has value %s", tn_buf);
390ee7e2 6093 } else {
61bd5218 6094 verbose(env, "has unknown scalar value");
390ee7e2 6095 }
5cf1e914 6096 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6097 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6098 return -EINVAL;
6099 }
5cf1e914 6100
6101 if (!tnum_is_unknown(enforce_attach_type_range) &&
6102 tnum_in(enforce_attach_type_range, reg->var_off))
6103 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6104 return 0;
6105}
6106
475fb78f
AS
6107/* non-recursive DFS pseudo code
6108 * 1 procedure DFS-iterative(G,v):
6109 * 2 label v as discovered
6110 * 3 let S be a stack
6111 * 4 S.push(v)
6112 * 5 while S is not empty
6113 * 6 t <- S.pop()
6114 * 7 if t is what we're looking for:
6115 * 8 return t
6116 * 9 for all edges e in G.adjacentEdges(t) do
6117 * 10 if edge e is already labelled
6118 * 11 continue with the next edge
6119 * 12 w <- G.adjacentVertex(t,e)
6120 * 13 if vertex w is not discovered and not explored
6121 * 14 label e as tree-edge
6122 * 15 label w as discovered
6123 * 16 S.push(w)
6124 * 17 continue at 5
6125 * 18 else if vertex w is discovered
6126 * 19 label e as back-edge
6127 * 20 else
6128 * 21 // vertex w is explored
6129 * 22 label e as forward- or cross-edge
6130 * 23 label t as explored
6131 * 24 S.pop()
6132 *
6133 * convention:
6134 * 0x10 - discovered
6135 * 0x11 - discovered and fall-through edge labelled
6136 * 0x12 - discovered and fall-through and branch edges labelled
6137 * 0x20 - explored
6138 */
6139
6140enum {
6141 DISCOVERED = 0x10,
6142 EXPLORED = 0x20,
6143 FALLTHROUGH = 1,
6144 BRANCH = 2,
6145};
6146
dc2a4ebc
AS
6147static u32 state_htab_size(struct bpf_verifier_env *env)
6148{
6149 return env->prog->len;
6150}
6151
5d839021
AS
6152static struct bpf_verifier_state_list **explored_state(
6153 struct bpf_verifier_env *env,
6154 int idx)
6155{
dc2a4ebc
AS
6156 struct bpf_verifier_state *cur = env->cur_state;
6157 struct bpf_func_state *state = cur->frame[cur->curframe];
6158
6159 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6160}
6161
6162static void init_explored_state(struct bpf_verifier_env *env, int idx)
6163{
a8f500af 6164 env->insn_aux_data[idx].prune_point = true;
5d839021 6165}
f1bca824 6166
475fb78f
AS
6167/* t, w, e - match pseudo-code above:
6168 * t - index of current instruction
6169 * w - next instruction
6170 * e - edge
6171 */
2589726d
AS
6172static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6173 bool loop_ok)
475fb78f 6174{
7df737e9
AS
6175 int *insn_stack = env->cfg.insn_stack;
6176 int *insn_state = env->cfg.insn_state;
6177
475fb78f
AS
6178 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6179 return 0;
6180
6181 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6182 return 0;
6183
6184 if (w < 0 || w >= env->prog->len) {
d9762e84 6185 verbose_linfo(env, t, "%d: ", t);
61bd5218 6186 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6187 return -EINVAL;
6188 }
6189
f1bca824
AS
6190 if (e == BRANCH)
6191 /* mark branch target for state pruning */
5d839021 6192 init_explored_state(env, w);
f1bca824 6193
475fb78f
AS
6194 if (insn_state[w] == 0) {
6195 /* tree-edge */
6196 insn_state[t] = DISCOVERED | e;
6197 insn_state[w] = DISCOVERED;
7df737e9 6198 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6199 return -E2BIG;
7df737e9 6200 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6201 return 1;
6202 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6203 if (loop_ok && env->allow_ptr_leaks)
6204 return 0;
d9762e84
MKL
6205 verbose_linfo(env, t, "%d: ", t);
6206 verbose_linfo(env, w, "%d: ", w);
61bd5218 6207 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6208 return -EINVAL;
6209 } else if (insn_state[w] == EXPLORED) {
6210 /* forward- or cross-edge */
6211 insn_state[t] = DISCOVERED | e;
6212 } else {
61bd5218 6213 verbose(env, "insn state internal bug\n");
475fb78f
AS
6214 return -EFAULT;
6215 }
6216 return 0;
6217}
6218
6219/* non-recursive depth-first-search to detect loops in BPF program
6220 * loop == back-edge in directed graph
6221 */
58e2af8b 6222static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6223{
6224 struct bpf_insn *insns = env->prog->insnsi;
6225 int insn_cnt = env->prog->len;
7df737e9 6226 int *insn_stack, *insn_state;
475fb78f
AS
6227 int ret = 0;
6228 int i, t;
6229
7df737e9 6230 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6231 if (!insn_state)
6232 return -ENOMEM;
6233
7df737e9 6234 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6235 if (!insn_stack) {
71dde681 6236 kvfree(insn_state);
475fb78f
AS
6237 return -ENOMEM;
6238 }
6239
6240 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6241 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6242 env->cfg.cur_stack = 1;
475fb78f
AS
6243
6244peek_stack:
7df737e9 6245 if (env->cfg.cur_stack == 0)
475fb78f 6246 goto check_state;
7df737e9 6247 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6248
092ed096
JW
6249 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6250 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6251 u8 opcode = BPF_OP(insns[t].code);
6252
6253 if (opcode == BPF_EXIT) {
6254 goto mark_explored;
6255 } else if (opcode == BPF_CALL) {
2589726d 6256 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6257 if (ret == 1)
6258 goto peek_stack;
6259 else if (ret < 0)
6260 goto err_free;
07016151 6261 if (t + 1 < insn_cnt)
5d839021 6262 init_explored_state(env, t + 1);
cc8b0b92 6263 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6264 init_explored_state(env, t);
2589726d
AS
6265 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6266 env, false);
cc8b0b92
AS
6267 if (ret == 1)
6268 goto peek_stack;
6269 else if (ret < 0)
6270 goto err_free;
6271 }
475fb78f
AS
6272 } else if (opcode == BPF_JA) {
6273 if (BPF_SRC(insns[t].code) != BPF_K) {
6274 ret = -EINVAL;
6275 goto err_free;
6276 }
6277 /* unconditional jump with single edge */
6278 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6279 FALLTHROUGH, env, true);
475fb78f
AS
6280 if (ret == 1)
6281 goto peek_stack;
6282 else if (ret < 0)
6283 goto err_free;
b5dc0163
AS
6284 /* unconditional jmp is not a good pruning point,
6285 * but it's marked, since backtracking needs
6286 * to record jmp history in is_state_visited().
6287 */
6288 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6289 /* tell verifier to check for equivalent states
6290 * after every call and jump
6291 */
c3de6317 6292 if (t + 1 < insn_cnt)
5d839021 6293 init_explored_state(env, t + 1);
475fb78f
AS
6294 } else {
6295 /* conditional jump with two edges */
5d839021 6296 init_explored_state(env, t);
2589726d 6297 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6298 if (ret == 1)
6299 goto peek_stack;
6300 else if (ret < 0)
6301 goto err_free;
6302
2589726d 6303 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6304 if (ret == 1)
6305 goto peek_stack;
6306 else if (ret < 0)
6307 goto err_free;
6308 }
6309 } else {
6310 /* all other non-branch instructions with single
6311 * fall-through edge
6312 */
2589726d 6313 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6314 if (ret == 1)
6315 goto peek_stack;
6316 else if (ret < 0)
6317 goto err_free;
6318 }
6319
6320mark_explored:
6321 insn_state[t] = EXPLORED;
7df737e9 6322 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6323 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6324 ret = -EFAULT;
6325 goto err_free;
6326 }
6327 goto peek_stack;
6328
6329check_state:
6330 for (i = 0; i < insn_cnt; i++) {
6331 if (insn_state[i] != EXPLORED) {
61bd5218 6332 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6333 ret = -EINVAL;
6334 goto err_free;
6335 }
6336 }
6337 ret = 0; /* cfg looks good */
6338
6339err_free:
71dde681
AS
6340 kvfree(insn_state);
6341 kvfree(insn_stack);
7df737e9 6342 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6343 return ret;
6344}
6345
838e9690
YS
6346/* The minimum supported BTF func info size */
6347#define MIN_BPF_FUNCINFO_SIZE 8
6348#define MAX_FUNCINFO_REC_SIZE 252
6349
c454a46b
MKL
6350static int check_btf_func(struct bpf_verifier_env *env,
6351 const union bpf_attr *attr,
6352 union bpf_attr __user *uattr)
838e9690 6353{
d0b2818e 6354 u32 i, nfuncs, urec_size, min_size;
838e9690 6355 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6356 struct bpf_func_info *krecord;
838e9690 6357 const struct btf_type *type;
c454a46b
MKL
6358 struct bpf_prog *prog;
6359 const struct btf *btf;
838e9690 6360 void __user *urecord;
d0b2818e 6361 u32 prev_offset = 0;
838e9690
YS
6362 int ret = 0;
6363
6364 nfuncs = attr->func_info_cnt;
6365 if (!nfuncs)
6366 return 0;
6367
6368 if (nfuncs != env->subprog_cnt) {
6369 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6370 return -EINVAL;
6371 }
6372
6373 urec_size = attr->func_info_rec_size;
6374 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6375 urec_size > MAX_FUNCINFO_REC_SIZE ||
6376 urec_size % sizeof(u32)) {
6377 verbose(env, "invalid func info rec size %u\n", urec_size);
6378 return -EINVAL;
6379 }
6380
c454a46b
MKL
6381 prog = env->prog;
6382 btf = prog->aux->btf;
838e9690
YS
6383
6384 urecord = u64_to_user_ptr(attr->func_info);
6385 min_size = min_t(u32, krec_size, urec_size);
6386
ba64e7d8 6387 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6388 if (!krecord)
6389 return -ENOMEM;
ba64e7d8 6390
838e9690
YS
6391 for (i = 0; i < nfuncs; i++) {
6392 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6393 if (ret) {
6394 if (ret == -E2BIG) {
6395 verbose(env, "nonzero tailing record in func info");
6396 /* set the size kernel expects so loader can zero
6397 * out the rest of the record.
6398 */
6399 if (put_user(min_size, &uattr->func_info_rec_size))
6400 ret = -EFAULT;
6401 }
c454a46b 6402 goto err_free;
838e9690
YS
6403 }
6404
ba64e7d8 6405 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6406 ret = -EFAULT;
c454a46b 6407 goto err_free;
838e9690
YS
6408 }
6409
d30d42e0 6410 /* check insn_off */
838e9690 6411 if (i == 0) {
d30d42e0 6412 if (krecord[i].insn_off) {
838e9690 6413 verbose(env,
d30d42e0
MKL
6414 "nonzero insn_off %u for the first func info record",
6415 krecord[i].insn_off);
838e9690 6416 ret = -EINVAL;
c454a46b 6417 goto err_free;
838e9690 6418 }
d30d42e0 6419 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6420 verbose(env,
6421 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6422 krecord[i].insn_off, prev_offset);
838e9690 6423 ret = -EINVAL;
c454a46b 6424 goto err_free;
838e9690
YS
6425 }
6426
d30d42e0 6427 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6428 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6429 ret = -EINVAL;
c454a46b 6430 goto err_free;
838e9690
YS
6431 }
6432
6433 /* check type_id */
ba64e7d8 6434 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6435 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6436 verbose(env, "invalid type id %d in func info",
ba64e7d8 6437 krecord[i].type_id);
838e9690 6438 ret = -EINVAL;
c454a46b 6439 goto err_free;
838e9690
YS
6440 }
6441
d30d42e0 6442 prev_offset = krecord[i].insn_off;
838e9690
YS
6443 urecord += urec_size;
6444 }
6445
ba64e7d8
YS
6446 prog->aux->func_info = krecord;
6447 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
6448 return 0;
6449
c454a46b 6450err_free:
ba64e7d8 6451 kvfree(krecord);
838e9690
YS
6452 return ret;
6453}
6454
ba64e7d8
YS
6455static void adjust_btf_func(struct bpf_verifier_env *env)
6456{
6457 int i;
6458
6459 if (!env->prog->aux->func_info)
6460 return;
6461
6462 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 6463 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6464}
6465
c454a46b
MKL
6466#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6467 sizeof(((struct bpf_line_info *)(0))->line_col))
6468#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6469
6470static int check_btf_line(struct bpf_verifier_env *env,
6471 const union bpf_attr *attr,
6472 union bpf_attr __user *uattr)
6473{
6474 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6475 struct bpf_subprog_info *sub;
6476 struct bpf_line_info *linfo;
6477 struct bpf_prog *prog;
6478 const struct btf *btf;
6479 void __user *ulinfo;
6480 int err;
6481
6482 nr_linfo = attr->line_info_cnt;
6483 if (!nr_linfo)
6484 return 0;
6485
6486 rec_size = attr->line_info_rec_size;
6487 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6488 rec_size > MAX_LINEINFO_REC_SIZE ||
6489 rec_size & (sizeof(u32) - 1))
6490 return -EINVAL;
6491
6492 /* Need to zero it in case the userspace may
6493 * pass in a smaller bpf_line_info object.
6494 */
6495 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6496 GFP_KERNEL | __GFP_NOWARN);
6497 if (!linfo)
6498 return -ENOMEM;
6499
6500 prog = env->prog;
6501 btf = prog->aux->btf;
6502
6503 s = 0;
6504 sub = env->subprog_info;
6505 ulinfo = u64_to_user_ptr(attr->line_info);
6506 expected_size = sizeof(struct bpf_line_info);
6507 ncopy = min_t(u32, expected_size, rec_size);
6508 for (i = 0; i < nr_linfo; i++) {
6509 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6510 if (err) {
6511 if (err == -E2BIG) {
6512 verbose(env, "nonzero tailing record in line_info");
6513 if (put_user(expected_size,
6514 &uattr->line_info_rec_size))
6515 err = -EFAULT;
6516 }
6517 goto err_free;
6518 }
6519
6520 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6521 err = -EFAULT;
6522 goto err_free;
6523 }
6524
6525 /*
6526 * Check insn_off to ensure
6527 * 1) strictly increasing AND
6528 * 2) bounded by prog->len
6529 *
6530 * The linfo[0].insn_off == 0 check logically falls into
6531 * the later "missing bpf_line_info for func..." case
6532 * because the first linfo[0].insn_off must be the
6533 * first sub also and the first sub must have
6534 * subprog_info[0].start == 0.
6535 */
6536 if ((i && linfo[i].insn_off <= prev_offset) ||
6537 linfo[i].insn_off >= prog->len) {
6538 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6539 i, linfo[i].insn_off, prev_offset,
6540 prog->len);
6541 err = -EINVAL;
6542 goto err_free;
6543 }
6544
fdbaa0be
MKL
6545 if (!prog->insnsi[linfo[i].insn_off].code) {
6546 verbose(env,
6547 "Invalid insn code at line_info[%u].insn_off\n",
6548 i);
6549 err = -EINVAL;
6550 goto err_free;
6551 }
6552
23127b33
MKL
6553 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6554 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6555 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6556 err = -EINVAL;
6557 goto err_free;
6558 }
6559
6560 if (s != env->subprog_cnt) {
6561 if (linfo[i].insn_off == sub[s].start) {
6562 sub[s].linfo_idx = i;
6563 s++;
6564 } else if (sub[s].start < linfo[i].insn_off) {
6565 verbose(env, "missing bpf_line_info for func#%u\n", s);
6566 err = -EINVAL;
6567 goto err_free;
6568 }
6569 }
6570
6571 prev_offset = linfo[i].insn_off;
6572 ulinfo += rec_size;
6573 }
6574
6575 if (s != env->subprog_cnt) {
6576 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6577 env->subprog_cnt - s, s);
6578 err = -EINVAL;
6579 goto err_free;
6580 }
6581
6582 prog->aux->linfo = linfo;
6583 prog->aux->nr_linfo = nr_linfo;
6584
6585 return 0;
6586
6587err_free:
6588 kvfree(linfo);
6589 return err;
6590}
6591
6592static int check_btf_info(struct bpf_verifier_env *env,
6593 const union bpf_attr *attr,
6594 union bpf_attr __user *uattr)
6595{
6596 struct btf *btf;
6597 int err;
6598
6599 if (!attr->func_info_cnt && !attr->line_info_cnt)
6600 return 0;
6601
6602 btf = btf_get_by_fd(attr->prog_btf_fd);
6603 if (IS_ERR(btf))
6604 return PTR_ERR(btf);
6605 env->prog->aux->btf = btf;
6606
6607 err = check_btf_func(env, attr, uattr);
6608 if (err)
6609 return err;
6610
6611 err = check_btf_line(env, attr, uattr);
6612 if (err)
6613 return err;
6614
6615 return 0;
ba64e7d8
YS
6616}
6617
f1174f77
EC
6618/* check %cur's range satisfies %old's */
6619static bool range_within(struct bpf_reg_state *old,
6620 struct bpf_reg_state *cur)
6621{
b03c9f9f
EC
6622 return old->umin_value <= cur->umin_value &&
6623 old->umax_value >= cur->umax_value &&
6624 old->smin_value <= cur->smin_value &&
6625 old->smax_value >= cur->smax_value;
f1174f77
EC
6626}
6627
6628/* Maximum number of register states that can exist at once */
6629#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6630struct idpair {
6631 u32 old;
6632 u32 cur;
6633};
6634
6635/* If in the old state two registers had the same id, then they need to have
6636 * the same id in the new state as well. But that id could be different from
6637 * the old state, so we need to track the mapping from old to new ids.
6638 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6639 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6640 * regs with a different old id could still have new id 9, we don't care about
6641 * that.
6642 * So we look through our idmap to see if this old id has been seen before. If
6643 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6644 */
f1174f77 6645static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6646{
f1174f77 6647 unsigned int i;
969bf05e 6648
f1174f77
EC
6649 for (i = 0; i < ID_MAP_SIZE; i++) {
6650 if (!idmap[i].old) {
6651 /* Reached an empty slot; haven't seen this id before */
6652 idmap[i].old = old_id;
6653 idmap[i].cur = cur_id;
6654 return true;
6655 }
6656 if (idmap[i].old == old_id)
6657 return idmap[i].cur == cur_id;
6658 }
6659 /* We ran out of idmap slots, which should be impossible */
6660 WARN_ON_ONCE(1);
6661 return false;
6662}
6663
9242b5f5
AS
6664static void clean_func_state(struct bpf_verifier_env *env,
6665 struct bpf_func_state *st)
6666{
6667 enum bpf_reg_liveness live;
6668 int i, j;
6669
6670 for (i = 0; i < BPF_REG_FP; i++) {
6671 live = st->regs[i].live;
6672 /* liveness must not touch this register anymore */
6673 st->regs[i].live |= REG_LIVE_DONE;
6674 if (!(live & REG_LIVE_READ))
6675 /* since the register is unused, clear its state
6676 * to make further comparison simpler
6677 */
6678 __mark_reg_not_init(&st->regs[i]);
6679 }
6680
6681 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6682 live = st->stack[i].spilled_ptr.live;
6683 /* liveness must not touch this stack slot anymore */
6684 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6685 if (!(live & REG_LIVE_READ)) {
6686 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6687 for (j = 0; j < BPF_REG_SIZE; j++)
6688 st->stack[i].slot_type[j] = STACK_INVALID;
6689 }
6690 }
6691}
6692
6693static void clean_verifier_state(struct bpf_verifier_env *env,
6694 struct bpf_verifier_state *st)
6695{
6696 int i;
6697
6698 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6699 /* all regs in this state in all frames were already marked */
6700 return;
6701
6702 for (i = 0; i <= st->curframe; i++)
6703 clean_func_state(env, st->frame[i]);
6704}
6705
6706/* the parentage chains form a tree.
6707 * the verifier states are added to state lists at given insn and
6708 * pushed into state stack for future exploration.
6709 * when the verifier reaches bpf_exit insn some of the verifer states
6710 * stored in the state lists have their final liveness state already,
6711 * but a lot of states will get revised from liveness point of view when
6712 * the verifier explores other branches.
6713 * Example:
6714 * 1: r0 = 1
6715 * 2: if r1 == 100 goto pc+1
6716 * 3: r0 = 2
6717 * 4: exit
6718 * when the verifier reaches exit insn the register r0 in the state list of
6719 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6720 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6721 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6722 *
6723 * Since the verifier pushes the branch states as it sees them while exploring
6724 * the program the condition of walking the branch instruction for the second
6725 * time means that all states below this branch were already explored and
6726 * their final liveness markes are already propagated.
6727 * Hence when the verifier completes the search of state list in is_state_visited()
6728 * we can call this clean_live_states() function to mark all liveness states
6729 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6730 * will not be used.
6731 * This function also clears the registers and stack for states that !READ
6732 * to simplify state merging.
6733 *
6734 * Important note here that walking the same branch instruction in the callee
6735 * doesn't meant that the states are DONE. The verifier has to compare
6736 * the callsites
6737 */
6738static void clean_live_states(struct bpf_verifier_env *env, int insn,
6739 struct bpf_verifier_state *cur)
6740{
6741 struct bpf_verifier_state_list *sl;
6742 int i;
6743
5d839021 6744 sl = *explored_state(env, insn);
a8f500af 6745 while (sl) {
2589726d
AS
6746 if (sl->state.branches)
6747 goto next;
dc2a4ebc
AS
6748 if (sl->state.insn_idx != insn ||
6749 sl->state.curframe != cur->curframe)
9242b5f5
AS
6750 goto next;
6751 for (i = 0; i <= cur->curframe; i++)
6752 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6753 goto next;
6754 clean_verifier_state(env, &sl->state);
6755next:
6756 sl = sl->next;
6757 }
6758}
6759
f1174f77 6760/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
6761static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6762 struct idpair *idmap)
f1174f77 6763{
f4d7e40a
AS
6764 bool equal;
6765
dc503a8a
EC
6766 if (!(rold->live & REG_LIVE_READ))
6767 /* explored state didn't use this */
6768 return true;
6769
679c782d 6770 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
6771
6772 if (rold->type == PTR_TO_STACK)
6773 /* two stack pointers are equal only if they're pointing to
6774 * the same stack frame, since fp-8 in foo != fp-8 in bar
6775 */
6776 return equal && rold->frameno == rcur->frameno;
6777
6778 if (equal)
969bf05e
AS
6779 return true;
6780
f1174f77
EC
6781 if (rold->type == NOT_INIT)
6782 /* explored state can't have used this */
969bf05e 6783 return true;
f1174f77
EC
6784 if (rcur->type == NOT_INIT)
6785 return false;
6786 switch (rold->type) {
6787 case SCALAR_VALUE:
6788 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
6789 if (!rold->precise && !rcur->precise)
6790 return true;
f1174f77
EC
6791 /* new val must satisfy old val knowledge */
6792 return range_within(rold, rcur) &&
6793 tnum_in(rold->var_off, rcur->var_off);
6794 } else {
179d1c56
JH
6795 /* We're trying to use a pointer in place of a scalar.
6796 * Even if the scalar was unbounded, this could lead to
6797 * pointer leaks because scalars are allowed to leak
6798 * while pointers are not. We could make this safe in
6799 * special cases if root is calling us, but it's
6800 * probably not worth the hassle.
f1174f77 6801 */
179d1c56 6802 return false;
f1174f77
EC
6803 }
6804 case PTR_TO_MAP_VALUE:
1b688a19
EC
6805 /* If the new min/max/var_off satisfy the old ones and
6806 * everything else matches, we are OK.
d83525ca
AS
6807 * 'id' is not compared, since it's only used for maps with
6808 * bpf_spin_lock inside map element and in such cases if
6809 * the rest of the prog is valid for one map element then
6810 * it's valid for all map elements regardless of the key
6811 * used in bpf_map_lookup()
1b688a19
EC
6812 */
6813 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6814 range_within(rold, rcur) &&
6815 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
6816 case PTR_TO_MAP_VALUE_OR_NULL:
6817 /* a PTR_TO_MAP_VALUE could be safe to use as a
6818 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6819 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6820 * checked, doing so could have affected others with the same
6821 * id, and we can't check for that because we lost the id when
6822 * we converted to a PTR_TO_MAP_VALUE.
6823 */
6824 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6825 return false;
6826 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6827 return false;
6828 /* Check our ids match any regs they're supposed to */
6829 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 6830 case PTR_TO_PACKET_META:
f1174f77 6831 case PTR_TO_PACKET:
de8f3a83 6832 if (rcur->type != rold->type)
f1174f77
EC
6833 return false;
6834 /* We must have at least as much range as the old ptr
6835 * did, so that any accesses which were safe before are
6836 * still safe. This is true even if old range < old off,
6837 * since someone could have accessed through (ptr - k), or
6838 * even done ptr -= k in a register, to get a safe access.
6839 */
6840 if (rold->range > rcur->range)
6841 return false;
6842 /* If the offsets don't match, we can't trust our alignment;
6843 * nor can we be sure that we won't fall out of range.
6844 */
6845 if (rold->off != rcur->off)
6846 return false;
6847 /* id relations must be preserved */
6848 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6849 return false;
6850 /* new val must satisfy old val knowledge */
6851 return range_within(rold, rcur) &&
6852 tnum_in(rold->var_off, rcur->var_off);
6853 case PTR_TO_CTX:
6854 case CONST_PTR_TO_MAP:
f1174f77 6855 case PTR_TO_PACKET_END:
d58e468b 6856 case PTR_TO_FLOW_KEYS:
c64b7983
JS
6857 case PTR_TO_SOCKET:
6858 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6859 case PTR_TO_SOCK_COMMON:
6860 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6861 case PTR_TO_TCP_SOCK:
6862 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6863 case PTR_TO_XDP_SOCK:
f1174f77
EC
6864 /* Only valid matches are exact, which memcmp() above
6865 * would have accepted
6866 */
6867 default:
6868 /* Don't know what's going on, just say it's not safe */
6869 return false;
6870 }
969bf05e 6871
f1174f77
EC
6872 /* Shouldn't get here; if we do, say it's not safe */
6873 WARN_ON_ONCE(1);
969bf05e
AS
6874 return false;
6875}
6876
f4d7e40a
AS
6877static bool stacksafe(struct bpf_func_state *old,
6878 struct bpf_func_state *cur,
638f5b90
AS
6879 struct idpair *idmap)
6880{
6881 int i, spi;
6882
638f5b90
AS
6883 /* walk slots of the explored stack and ignore any additional
6884 * slots in the current stack, since explored(safe) state
6885 * didn't use them
6886 */
6887 for (i = 0; i < old->allocated_stack; i++) {
6888 spi = i / BPF_REG_SIZE;
6889
b233920c
AS
6890 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6891 i += BPF_REG_SIZE - 1;
cc2b14d5 6892 /* explored state didn't use this */
fd05e57b 6893 continue;
b233920c 6894 }
cc2b14d5 6895
638f5b90
AS
6896 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6897 continue;
19e2dbb7
AS
6898
6899 /* explored stack has more populated slots than current stack
6900 * and these slots were used
6901 */
6902 if (i >= cur->allocated_stack)
6903 return false;
6904
cc2b14d5
AS
6905 /* if old state was safe with misc data in the stack
6906 * it will be safe with zero-initialized stack.
6907 * The opposite is not true
6908 */
6909 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6910 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6911 continue;
638f5b90
AS
6912 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6913 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6914 /* Ex: old explored (safe) state has STACK_SPILL in
6915 * this stack slot, but current has has STACK_MISC ->
6916 * this verifier states are not equivalent,
6917 * return false to continue verification of this path
6918 */
6919 return false;
6920 if (i % BPF_REG_SIZE)
6921 continue;
6922 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6923 continue;
6924 if (!regsafe(&old->stack[spi].spilled_ptr,
6925 &cur->stack[spi].spilled_ptr,
6926 idmap))
6927 /* when explored and current stack slot are both storing
6928 * spilled registers, check that stored pointers types
6929 * are the same as well.
6930 * Ex: explored safe path could have stored
6931 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6932 * but current path has stored:
6933 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6934 * such verifier states are not equivalent.
6935 * return false to continue verification of this path
6936 */
6937 return false;
6938 }
6939 return true;
6940}
6941
fd978bf7
JS
6942static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6943{
6944 if (old->acquired_refs != cur->acquired_refs)
6945 return false;
6946 return !memcmp(old->refs, cur->refs,
6947 sizeof(*old->refs) * old->acquired_refs);
6948}
6949
f1bca824
AS
6950/* compare two verifier states
6951 *
6952 * all states stored in state_list are known to be valid, since
6953 * verifier reached 'bpf_exit' instruction through them
6954 *
6955 * this function is called when verifier exploring different branches of
6956 * execution popped from the state stack. If it sees an old state that has
6957 * more strict register state and more strict stack state then this execution
6958 * branch doesn't need to be explored further, since verifier already
6959 * concluded that more strict state leads to valid finish.
6960 *
6961 * Therefore two states are equivalent if register state is more conservative
6962 * and explored stack state is more conservative than the current one.
6963 * Example:
6964 * explored current
6965 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6966 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6967 *
6968 * In other words if current stack state (one being explored) has more
6969 * valid slots than old one that already passed validation, it means
6970 * the verifier can stop exploring and conclude that current state is valid too
6971 *
6972 * Similarly with registers. If explored state has register type as invalid
6973 * whereas register type in current state is meaningful, it means that
6974 * the current state will reach 'bpf_exit' instruction safely
6975 */
f4d7e40a
AS
6976static bool func_states_equal(struct bpf_func_state *old,
6977 struct bpf_func_state *cur)
f1bca824 6978{
f1174f77
EC
6979 struct idpair *idmap;
6980 bool ret = false;
f1bca824
AS
6981 int i;
6982
f1174f77
EC
6983 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6984 /* If we failed to allocate the idmap, just say it's not safe */
6985 if (!idmap)
1a0dc1ac 6986 return false;
f1174f77
EC
6987
6988 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 6989 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 6990 goto out_free;
f1bca824
AS
6991 }
6992
638f5b90
AS
6993 if (!stacksafe(old, cur, idmap))
6994 goto out_free;
fd978bf7
JS
6995
6996 if (!refsafe(old, cur))
6997 goto out_free;
f1174f77
EC
6998 ret = true;
6999out_free:
7000 kfree(idmap);
7001 return ret;
f1bca824
AS
7002}
7003
f4d7e40a
AS
7004static bool states_equal(struct bpf_verifier_env *env,
7005 struct bpf_verifier_state *old,
7006 struct bpf_verifier_state *cur)
7007{
7008 int i;
7009
7010 if (old->curframe != cur->curframe)
7011 return false;
7012
979d63d5
DB
7013 /* Verification state from speculative execution simulation
7014 * must never prune a non-speculative execution one.
7015 */
7016 if (old->speculative && !cur->speculative)
7017 return false;
7018
d83525ca
AS
7019 if (old->active_spin_lock != cur->active_spin_lock)
7020 return false;
7021
f4d7e40a
AS
7022 /* for states to be equal callsites have to be the same
7023 * and all frame states need to be equivalent
7024 */
7025 for (i = 0; i <= old->curframe; i++) {
7026 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7027 return false;
7028 if (!func_states_equal(old->frame[i], cur->frame[i]))
7029 return false;
7030 }
7031 return true;
7032}
7033
5327ed3d
JW
7034/* Return 0 if no propagation happened. Return negative error code if error
7035 * happened. Otherwise, return the propagated bit.
7036 */
55e7f3b5
JW
7037static int propagate_liveness_reg(struct bpf_verifier_env *env,
7038 struct bpf_reg_state *reg,
7039 struct bpf_reg_state *parent_reg)
7040{
5327ed3d
JW
7041 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7042 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7043 int err;
7044
5327ed3d
JW
7045 /* When comes here, read flags of PARENT_REG or REG could be any of
7046 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7047 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7048 */
7049 if (parent_flag == REG_LIVE_READ64 ||
7050 /* Or if there is no read flag from REG. */
7051 !flag ||
7052 /* Or if the read flag from REG is the same as PARENT_REG. */
7053 parent_flag == flag)
55e7f3b5
JW
7054 return 0;
7055
5327ed3d 7056 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7057 if (err)
7058 return err;
7059
5327ed3d 7060 return flag;
55e7f3b5
JW
7061}
7062
8e9cd9ce 7063/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7064 * straight-line code between a state and its parent. When we arrive at an
7065 * equivalent state (jump target or such) we didn't arrive by the straight-line
7066 * code, so read marks in the state must propagate to the parent regardless
7067 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7068 * in mark_reg_read() is for.
8e9cd9ce 7069 */
f4d7e40a
AS
7070static int propagate_liveness(struct bpf_verifier_env *env,
7071 const struct bpf_verifier_state *vstate,
7072 struct bpf_verifier_state *vparent)
dc503a8a 7073{
3f8cafa4 7074 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7075 struct bpf_func_state *state, *parent;
3f8cafa4 7076 int i, frame, err = 0;
dc503a8a 7077
f4d7e40a
AS
7078 if (vparent->curframe != vstate->curframe) {
7079 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7080 vparent->curframe, vstate->curframe);
7081 return -EFAULT;
7082 }
dc503a8a
EC
7083 /* Propagate read liveness of registers... */
7084 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7085 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7086 parent = vparent->frame[frame];
7087 state = vstate->frame[frame];
7088 parent_reg = parent->regs;
7089 state_reg = state->regs;
83d16312
JK
7090 /* We don't need to worry about FP liveness, it's read-only */
7091 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7092 err = propagate_liveness_reg(env, &state_reg[i],
7093 &parent_reg[i]);
5327ed3d 7094 if (err < 0)
3f8cafa4 7095 return err;
5327ed3d
JW
7096 if (err == REG_LIVE_READ64)
7097 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7098 }
f4d7e40a 7099
1b04aee7 7100 /* Propagate stack slots. */
f4d7e40a
AS
7101 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7102 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7103 parent_reg = &parent->stack[i].spilled_ptr;
7104 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7105 err = propagate_liveness_reg(env, state_reg,
7106 parent_reg);
5327ed3d 7107 if (err < 0)
3f8cafa4 7108 return err;
dc503a8a
EC
7109 }
7110 }
5327ed3d 7111 return 0;
dc503a8a
EC
7112}
7113
2589726d
AS
7114static bool states_maybe_looping(struct bpf_verifier_state *old,
7115 struct bpf_verifier_state *cur)
7116{
7117 struct bpf_func_state *fold, *fcur;
7118 int i, fr = cur->curframe;
7119
7120 if (old->curframe != fr)
7121 return false;
7122
7123 fold = old->frame[fr];
7124 fcur = cur->frame[fr];
7125 for (i = 0; i < MAX_BPF_REG; i++)
7126 if (memcmp(&fold->regs[i], &fcur->regs[i],
7127 offsetof(struct bpf_reg_state, parent)))
7128 return false;
7129 return true;
7130}
7131
7132
58e2af8b 7133static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7134{
58e2af8b 7135 struct bpf_verifier_state_list *new_sl;
9f4686c4 7136 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7137 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7138 int i, j, err, states_cnt = 0;
2589726d 7139 bool add_new_state = false;
f1bca824 7140
b5dc0163 7141 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7142 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7143 /* this 'insn_idx' instruction wasn't marked, so we will not
7144 * be doing state search here
7145 */
7146 return 0;
7147
2589726d
AS
7148 /* bpf progs typically have pruning point every 4 instructions
7149 * http://vger.kernel.org/bpfconf2019.html#session-1
7150 * Do not add new state for future pruning if the verifier hasn't seen
7151 * at least 2 jumps and at least 8 instructions.
7152 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7153 * In tests that amounts to up to 50% reduction into total verifier
7154 * memory consumption and 20% verifier time speedup.
7155 */
7156 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7157 env->insn_processed - env->prev_insn_processed >= 8)
7158 add_new_state = true;
7159
a8f500af
AS
7160 pprev = explored_state(env, insn_idx);
7161 sl = *pprev;
7162
9242b5f5
AS
7163 clean_live_states(env, insn_idx, cur);
7164
a8f500af 7165 while (sl) {
dc2a4ebc
AS
7166 states_cnt++;
7167 if (sl->state.insn_idx != insn_idx)
7168 goto next;
2589726d
AS
7169 if (sl->state.branches) {
7170 if (states_maybe_looping(&sl->state, cur) &&
7171 states_equal(env, &sl->state, cur)) {
7172 verbose_linfo(env, insn_idx, "; ");
7173 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7174 return -EINVAL;
7175 }
7176 /* if the verifier is processing a loop, avoid adding new state
7177 * too often, since different loop iterations have distinct
7178 * states and may not help future pruning.
7179 * This threshold shouldn't be too low to make sure that
7180 * a loop with large bound will be rejected quickly.
7181 * The most abusive loop will be:
7182 * r1 += 1
7183 * if r1 < 1000000 goto pc-2
7184 * 1M insn_procssed limit / 100 == 10k peak states.
7185 * This threshold shouldn't be too high either, since states
7186 * at the end of the loop are likely to be useful in pruning.
7187 */
7188 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7189 env->insn_processed - env->prev_insn_processed < 100)
7190 add_new_state = false;
7191 goto miss;
7192 }
638f5b90 7193 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7194 sl->hit_cnt++;
f1bca824 7195 /* reached equivalent register/stack state,
dc503a8a
EC
7196 * prune the search.
7197 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7198 * If we have any write marks in env->cur_state, they
7199 * will prevent corresponding reads in the continuation
7200 * from reaching our parent (an explored_state). Our
7201 * own state will get the read marks recorded, but
7202 * they'll be immediately forgotten as we're pruning
7203 * this state and will pop a new one.
f1bca824 7204 */
f4d7e40a
AS
7205 err = propagate_liveness(env, &sl->state, cur);
7206 if (err)
7207 return err;
f1bca824 7208 return 1;
dc503a8a 7209 }
2589726d
AS
7210miss:
7211 /* when new state is not going to be added do not increase miss count.
7212 * Otherwise several loop iterations will remove the state
7213 * recorded earlier. The goal of these heuristics is to have
7214 * states from some iterations of the loop (some in the beginning
7215 * and some at the end) to help pruning.
7216 */
7217 if (add_new_state)
7218 sl->miss_cnt++;
9f4686c4
AS
7219 /* heuristic to determine whether this state is beneficial
7220 * to keep checking from state equivalence point of view.
7221 * Higher numbers increase max_states_per_insn and verification time,
7222 * but do not meaningfully decrease insn_processed.
7223 */
7224 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7225 /* the state is unlikely to be useful. Remove it to
7226 * speed up verification
7227 */
7228 *pprev = sl->next;
7229 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7230 u32 br = sl->state.branches;
7231
7232 WARN_ONCE(br,
7233 "BUG live_done but branches_to_explore %d\n",
7234 br);
9f4686c4
AS
7235 free_verifier_state(&sl->state, false);
7236 kfree(sl);
7237 env->peak_states--;
7238 } else {
7239 /* cannot free this state, since parentage chain may
7240 * walk it later. Add it for free_list instead to
7241 * be freed at the end of verification
7242 */
7243 sl->next = env->free_list;
7244 env->free_list = sl;
7245 }
7246 sl = *pprev;
7247 continue;
7248 }
dc2a4ebc 7249next:
9f4686c4
AS
7250 pprev = &sl->next;
7251 sl = *pprev;
f1bca824
AS
7252 }
7253
06ee7115
AS
7254 if (env->max_states_per_insn < states_cnt)
7255 env->max_states_per_insn = states_cnt;
7256
ceefbc96 7257 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7258 return push_jmp_history(env, cur);
ceefbc96 7259
2589726d 7260 if (!add_new_state)
b5dc0163 7261 return push_jmp_history(env, cur);
ceefbc96 7262
2589726d
AS
7263 /* There were no equivalent states, remember the current one.
7264 * Technically the current state is not proven to be safe yet,
f4d7e40a 7265 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7266 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7267 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7268 * again on the way to bpf_exit.
7269 * When looping the sl->state.branches will be > 0 and this state
7270 * will not be considered for equivalence until branches == 0.
f1bca824 7271 */
638f5b90 7272 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7273 if (!new_sl)
7274 return -ENOMEM;
06ee7115
AS
7275 env->total_states++;
7276 env->peak_states++;
2589726d
AS
7277 env->prev_jmps_processed = env->jmps_processed;
7278 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7279
7280 /* add new state to the head of linked list */
679c782d
EC
7281 new = &new_sl->state;
7282 err = copy_verifier_state(new, cur);
1969db47 7283 if (err) {
679c782d 7284 free_verifier_state(new, false);
1969db47
AS
7285 kfree(new_sl);
7286 return err;
7287 }
dc2a4ebc 7288 new->insn_idx = insn_idx;
2589726d
AS
7289 WARN_ONCE(new->branches != 1,
7290 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7291
2589726d 7292 cur->parent = new;
b5dc0163
AS
7293 cur->first_insn_idx = insn_idx;
7294 clear_jmp_history(cur);
5d839021
AS
7295 new_sl->next = *explored_state(env, insn_idx);
7296 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7297 /* connect new state to parentage chain. Current frame needs all
7298 * registers connected. Only r6 - r9 of the callers are alive (pushed
7299 * to the stack implicitly by JITs) so in callers' frames connect just
7300 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7301 * the state of the call instruction (with WRITTEN set), and r0 comes
7302 * from callee with its full parentage chain, anyway.
7303 */
8e9cd9ce
EC
7304 /* clear write marks in current state: the writes we did are not writes
7305 * our child did, so they don't screen off its reads from us.
7306 * (There are no read marks in current state, because reads always mark
7307 * their parent and current state never has children yet. Only
7308 * explored_states can get read marks.)
7309 */
eea1c227
AS
7310 for (j = 0; j <= cur->curframe; j++) {
7311 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7312 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7313 for (i = 0; i < BPF_REG_FP; i++)
7314 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7315 }
f4d7e40a
AS
7316
7317 /* all stack frames are accessible from callee, clear them all */
7318 for (j = 0; j <= cur->curframe; j++) {
7319 struct bpf_func_state *frame = cur->frame[j];
679c782d 7320 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7321
679c782d 7322 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7323 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7324 frame->stack[i].spilled_ptr.parent =
7325 &newframe->stack[i].spilled_ptr;
7326 }
f4d7e40a 7327 }
f1bca824
AS
7328 return 0;
7329}
7330
c64b7983
JS
7331/* Return true if it's OK to have the same insn return a different type. */
7332static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7333{
7334 switch (type) {
7335 case PTR_TO_CTX:
7336 case PTR_TO_SOCKET:
7337 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7338 case PTR_TO_SOCK_COMMON:
7339 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7340 case PTR_TO_TCP_SOCK:
7341 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7342 case PTR_TO_XDP_SOCK:
c64b7983
JS
7343 return false;
7344 default:
7345 return true;
7346 }
7347}
7348
7349/* If an instruction was previously used with particular pointer types, then we
7350 * need to be careful to avoid cases such as the below, where it may be ok
7351 * for one branch accessing the pointer, but not ok for the other branch:
7352 *
7353 * R1 = sock_ptr
7354 * goto X;
7355 * ...
7356 * R1 = some_other_valid_ptr;
7357 * goto X;
7358 * ...
7359 * R2 = *(u32 *)(R1 + 0);
7360 */
7361static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7362{
7363 return src != prev && (!reg_type_mismatch_ok(src) ||
7364 !reg_type_mismatch_ok(prev));
7365}
7366
58e2af8b 7367static int do_check(struct bpf_verifier_env *env)
17a52670 7368{
638f5b90 7369 struct bpf_verifier_state *state;
17a52670 7370 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7371 struct bpf_reg_state *regs;
06ee7115 7372 int insn_cnt = env->prog->len;
17a52670 7373 bool do_print_state = false;
b5dc0163 7374 int prev_insn_idx = -1;
17a52670 7375
d9762e84
MKL
7376 env->prev_linfo = NULL;
7377
638f5b90
AS
7378 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7379 if (!state)
7380 return -ENOMEM;
f4d7e40a 7381 state->curframe = 0;
979d63d5 7382 state->speculative = false;
2589726d 7383 state->branches = 1;
f4d7e40a
AS
7384 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7385 if (!state->frame[0]) {
7386 kfree(state);
7387 return -ENOMEM;
7388 }
7389 env->cur_state = state;
7390 init_func_state(env, state->frame[0],
7391 BPF_MAIN_FUNC /* callsite */,
7392 0 /* frameno */,
7393 0 /* subprogno, zero == main subprog */);
c08435ec 7394
17a52670
AS
7395 for (;;) {
7396 struct bpf_insn *insn;
7397 u8 class;
7398 int err;
7399
b5dc0163 7400 env->prev_insn_idx = prev_insn_idx;
c08435ec 7401 if (env->insn_idx >= insn_cnt) {
61bd5218 7402 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7403 env->insn_idx, insn_cnt);
17a52670
AS
7404 return -EFAULT;
7405 }
7406
c08435ec 7407 insn = &insns[env->insn_idx];
17a52670
AS
7408 class = BPF_CLASS(insn->code);
7409
06ee7115 7410 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7411 verbose(env,
7412 "BPF program is too large. Processed %d insn\n",
06ee7115 7413 env->insn_processed);
17a52670
AS
7414 return -E2BIG;
7415 }
7416
c08435ec 7417 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7418 if (err < 0)
7419 return err;
7420 if (err == 1) {
7421 /* found equivalent state, can prune the search */
06ee7115 7422 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7423 if (do_print_state)
979d63d5
DB
7424 verbose(env, "\nfrom %d to %d%s: safe\n",
7425 env->prev_insn_idx, env->insn_idx,
7426 env->cur_state->speculative ?
7427 " (speculative execution)" : "");
f1bca824 7428 else
c08435ec 7429 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7430 }
7431 goto process_bpf_exit;
7432 }
7433
c3494801
AS
7434 if (signal_pending(current))
7435 return -EAGAIN;
7436
3c2ce60b
DB
7437 if (need_resched())
7438 cond_resched();
7439
06ee7115
AS
7440 if (env->log.level & BPF_LOG_LEVEL2 ||
7441 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7442 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7443 verbose(env, "%d:", env->insn_idx);
c5fc9692 7444 else
979d63d5
DB
7445 verbose(env, "\nfrom %d to %d%s:",
7446 env->prev_insn_idx, env->insn_idx,
7447 env->cur_state->speculative ?
7448 " (speculative execution)" : "");
f4d7e40a 7449 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7450 do_print_state = false;
7451 }
7452
06ee7115 7453 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7454 const struct bpf_insn_cbs cbs = {
7455 .cb_print = verbose,
abe08840 7456 .private_data = env,
7105e828
DB
7457 };
7458
c08435ec
DB
7459 verbose_linfo(env, env->insn_idx, "; ");
7460 verbose(env, "%d: ", env->insn_idx);
abe08840 7461 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7462 }
7463
cae1927c 7464 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7465 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7466 env->prev_insn_idx);
cae1927c
JK
7467 if (err)
7468 return err;
7469 }
13a27dfc 7470
638f5b90 7471 regs = cur_regs(env);
c08435ec 7472 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7473 prev_insn_idx = env->insn_idx;
fd978bf7 7474
17a52670 7475 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7476 err = check_alu_op(env, insn);
17a52670
AS
7477 if (err)
7478 return err;
7479
7480 } else if (class == BPF_LDX) {
3df126f3 7481 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7482
7483 /* check for reserved fields is already done */
7484
17a52670 7485 /* check src operand */
dc503a8a 7486 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7487 if (err)
7488 return err;
7489
dc503a8a 7490 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7491 if (err)
7492 return err;
7493
725f9dcd
AS
7494 src_reg_type = regs[insn->src_reg].type;
7495
17a52670
AS
7496 /* check that memory (src_reg + off) is readable,
7497 * the state of dst_reg will be updated by this func
7498 */
c08435ec
DB
7499 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7500 insn->off, BPF_SIZE(insn->code),
7501 BPF_READ, insn->dst_reg, false);
17a52670
AS
7502 if (err)
7503 return err;
7504
c08435ec 7505 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7506
7507 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7508 /* saw a valid insn
7509 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7510 * save type to validate intersecting paths
9bac3d6d 7511 */
3df126f3 7512 *prev_src_type = src_reg_type;
9bac3d6d 7513
c64b7983 7514 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7515 /* ABuser program is trying to use the same insn
7516 * dst_reg = *(u32*) (src_reg + off)
7517 * with different pointer types:
7518 * src_reg == ctx in one branch and
7519 * src_reg == stack|map in some other branch.
7520 * Reject it.
7521 */
61bd5218 7522 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7523 return -EINVAL;
7524 }
7525
17a52670 7526 } else if (class == BPF_STX) {
3df126f3 7527 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7528
17a52670 7529 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7530 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7531 if (err)
7532 return err;
c08435ec 7533 env->insn_idx++;
17a52670
AS
7534 continue;
7535 }
7536
17a52670 7537 /* check src1 operand */
dc503a8a 7538 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7539 if (err)
7540 return err;
7541 /* check src2 operand */
dc503a8a 7542 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7543 if (err)
7544 return err;
7545
d691f9e8
AS
7546 dst_reg_type = regs[insn->dst_reg].type;
7547
17a52670 7548 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7549 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7550 insn->off, BPF_SIZE(insn->code),
7551 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7552 if (err)
7553 return err;
7554
c08435ec 7555 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7556
7557 if (*prev_dst_type == NOT_INIT) {
7558 *prev_dst_type = dst_reg_type;
c64b7983 7559 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7560 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7561 return -EINVAL;
7562 }
7563
17a52670
AS
7564 } else if (class == BPF_ST) {
7565 if (BPF_MODE(insn->code) != BPF_MEM ||
7566 insn->src_reg != BPF_REG_0) {
61bd5218 7567 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7568 return -EINVAL;
7569 }
7570 /* check src operand */
dc503a8a 7571 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7572 if (err)
7573 return err;
7574
f37a8cb8 7575 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7576 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7577 insn->dst_reg,
7578 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7579 return -EACCES;
7580 }
7581
17a52670 7582 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7583 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7584 insn->off, BPF_SIZE(insn->code),
7585 BPF_WRITE, -1, false);
17a52670
AS
7586 if (err)
7587 return err;
7588
092ed096 7589 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7590 u8 opcode = BPF_OP(insn->code);
7591
2589726d 7592 env->jmps_processed++;
17a52670
AS
7593 if (opcode == BPF_CALL) {
7594 if (BPF_SRC(insn->code) != BPF_K ||
7595 insn->off != 0 ||
f4d7e40a
AS
7596 (insn->src_reg != BPF_REG_0 &&
7597 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7598 insn->dst_reg != BPF_REG_0 ||
7599 class == BPF_JMP32) {
61bd5218 7600 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7601 return -EINVAL;
7602 }
7603
d83525ca
AS
7604 if (env->cur_state->active_spin_lock &&
7605 (insn->src_reg == BPF_PSEUDO_CALL ||
7606 insn->imm != BPF_FUNC_spin_unlock)) {
7607 verbose(env, "function calls are not allowed while holding a lock\n");
7608 return -EINVAL;
7609 }
f4d7e40a 7610 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 7611 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 7612 else
c08435ec 7613 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
7614 if (err)
7615 return err;
7616
7617 } else if (opcode == BPF_JA) {
7618 if (BPF_SRC(insn->code) != BPF_K ||
7619 insn->imm != 0 ||
7620 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7621 insn->dst_reg != BPF_REG_0 ||
7622 class == BPF_JMP32) {
61bd5218 7623 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
7624 return -EINVAL;
7625 }
7626
c08435ec 7627 env->insn_idx += insn->off + 1;
17a52670
AS
7628 continue;
7629
7630 } else if (opcode == BPF_EXIT) {
7631 if (BPF_SRC(insn->code) != BPF_K ||
7632 insn->imm != 0 ||
7633 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7634 insn->dst_reg != BPF_REG_0 ||
7635 class == BPF_JMP32) {
61bd5218 7636 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
7637 return -EINVAL;
7638 }
7639
d83525ca
AS
7640 if (env->cur_state->active_spin_lock) {
7641 verbose(env, "bpf_spin_unlock is missing\n");
7642 return -EINVAL;
7643 }
7644
f4d7e40a
AS
7645 if (state->curframe) {
7646 /* exit from nested function */
c08435ec 7647 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
7648 if (err)
7649 return err;
7650 do_print_state = true;
7651 continue;
7652 }
7653
fd978bf7
JS
7654 err = check_reference_leak(env);
7655 if (err)
7656 return err;
7657
17a52670
AS
7658 /* eBPF calling convetion is such that R0 is used
7659 * to return the value from eBPF program.
7660 * Make sure that it's readable at this time
7661 * of bpf_exit, which means that program wrote
7662 * something into it earlier
7663 */
dc503a8a 7664 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
7665 if (err)
7666 return err;
7667
1be7f75d 7668 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 7669 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
7670 return -EACCES;
7671 }
7672
390ee7e2
AS
7673 err = check_return_code(env);
7674 if (err)
7675 return err;
f1bca824 7676process_bpf_exit:
2589726d 7677 update_branch_counts(env, env->cur_state);
b5dc0163 7678 err = pop_stack(env, &prev_insn_idx,
c08435ec 7679 &env->insn_idx);
638f5b90
AS
7680 if (err < 0) {
7681 if (err != -ENOENT)
7682 return err;
17a52670
AS
7683 break;
7684 } else {
7685 do_print_state = true;
7686 continue;
7687 }
7688 } else {
c08435ec 7689 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
7690 if (err)
7691 return err;
7692 }
7693 } else if (class == BPF_LD) {
7694 u8 mode = BPF_MODE(insn->code);
7695
7696 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
7697 err = check_ld_abs(env, insn);
7698 if (err)
7699 return err;
7700
17a52670
AS
7701 } else if (mode == BPF_IMM) {
7702 err = check_ld_imm(env, insn);
7703 if (err)
7704 return err;
7705
c08435ec
DB
7706 env->insn_idx++;
7707 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 7708 } else {
61bd5218 7709 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
7710 return -EINVAL;
7711 }
7712 } else {
61bd5218 7713 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
7714 return -EINVAL;
7715 }
7716
c08435ec 7717 env->insn_idx++;
17a52670
AS
7718 }
7719
9c8105bd 7720 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
7721 return 0;
7722}
7723
56f668df
MKL
7724static int check_map_prealloc(struct bpf_map *map)
7725{
7726 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
7727 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7728 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
7729 !(map->map_flags & BPF_F_NO_PREALLOC);
7730}
7731
d83525ca
AS
7732static bool is_tracing_prog_type(enum bpf_prog_type type)
7733{
7734 switch (type) {
7735 case BPF_PROG_TYPE_KPROBE:
7736 case BPF_PROG_TYPE_TRACEPOINT:
7737 case BPF_PROG_TYPE_PERF_EVENT:
7738 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7739 return true;
7740 default:
7741 return false;
7742 }
7743}
7744
61bd5218
JK
7745static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7746 struct bpf_map *map,
fdc15d38
AS
7747 struct bpf_prog *prog)
7748
7749{
56f668df
MKL
7750 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7751 * preallocated hash maps, since doing memory allocation
7752 * in overflow_handler can crash depending on where nmi got
7753 * triggered.
7754 */
7755 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7756 if (!check_map_prealloc(map)) {
61bd5218 7757 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
7758 return -EINVAL;
7759 }
7760 if (map->inner_map_meta &&
7761 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 7762 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
7763 return -EINVAL;
7764 }
fdc15d38 7765 }
a3884572 7766
d83525ca
AS
7767 if ((is_tracing_prog_type(prog->type) ||
7768 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7769 map_value_has_spin_lock(map)) {
7770 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7771 return -EINVAL;
7772 }
7773
a3884572 7774 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 7775 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
7776 verbose(env, "offload device mismatch between prog and map\n");
7777 return -EINVAL;
7778 }
7779
fdc15d38
AS
7780 return 0;
7781}
7782
b741f163
RG
7783static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7784{
7785 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7786 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7787}
7788
0246e64d
AS
7789/* look for pseudo eBPF instructions that access map FDs and
7790 * replace them with actual map pointers
7791 */
58e2af8b 7792static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
7793{
7794 struct bpf_insn *insn = env->prog->insnsi;
7795 int insn_cnt = env->prog->len;
fdc15d38 7796 int i, j, err;
0246e64d 7797
f1f7714e 7798 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
7799 if (err)
7800 return err;
7801
0246e64d 7802 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 7803 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 7804 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 7805 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
7806 return -EINVAL;
7807 }
7808
d691f9e8
AS
7809 if (BPF_CLASS(insn->code) == BPF_STX &&
7810 ((BPF_MODE(insn->code) != BPF_MEM &&
7811 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 7812 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
7813 return -EINVAL;
7814 }
7815
0246e64d 7816 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 7817 struct bpf_insn_aux_data *aux;
0246e64d
AS
7818 struct bpf_map *map;
7819 struct fd f;
d8eca5bb 7820 u64 addr;
0246e64d
AS
7821
7822 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7823 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7824 insn[1].off != 0) {
61bd5218 7825 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
7826 return -EINVAL;
7827 }
7828
d8eca5bb 7829 if (insn[0].src_reg == 0)
0246e64d
AS
7830 /* valid generic load 64-bit imm */
7831 goto next_insn;
7832
d8eca5bb
DB
7833 /* In final convert_pseudo_ld_imm64() step, this is
7834 * converted into regular 64-bit imm load insn.
7835 */
7836 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7837 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7838 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7839 insn[1].imm != 0)) {
7840 verbose(env,
7841 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
7842 return -EINVAL;
7843 }
7844
20182390 7845 f = fdget(insn[0].imm);
c2101297 7846 map = __bpf_map_get(f);
0246e64d 7847 if (IS_ERR(map)) {
61bd5218 7848 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 7849 insn[0].imm);
0246e64d
AS
7850 return PTR_ERR(map);
7851 }
7852
61bd5218 7853 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
7854 if (err) {
7855 fdput(f);
7856 return err;
7857 }
7858
d8eca5bb
DB
7859 aux = &env->insn_aux_data[i];
7860 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7861 addr = (unsigned long)map;
7862 } else {
7863 u32 off = insn[1].imm;
7864
7865 if (off >= BPF_MAX_VAR_OFF) {
7866 verbose(env, "direct value offset of %u is not allowed\n", off);
7867 fdput(f);
7868 return -EINVAL;
7869 }
7870
7871 if (!map->ops->map_direct_value_addr) {
7872 verbose(env, "no direct value access support for this map type\n");
7873 fdput(f);
7874 return -EINVAL;
7875 }
7876
7877 err = map->ops->map_direct_value_addr(map, &addr, off);
7878 if (err) {
7879 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7880 map->value_size, off);
7881 fdput(f);
7882 return err;
7883 }
7884
7885 aux->map_off = off;
7886 addr += off;
7887 }
7888
7889 insn[0].imm = (u32)addr;
7890 insn[1].imm = addr >> 32;
0246e64d
AS
7891
7892 /* check whether we recorded this map already */
d8eca5bb 7893 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 7894 if (env->used_maps[j] == map) {
d8eca5bb 7895 aux->map_index = j;
0246e64d
AS
7896 fdput(f);
7897 goto next_insn;
7898 }
d8eca5bb 7899 }
0246e64d
AS
7900
7901 if (env->used_map_cnt >= MAX_USED_MAPS) {
7902 fdput(f);
7903 return -E2BIG;
7904 }
7905
0246e64d
AS
7906 /* hold the map. If the program is rejected by verifier,
7907 * the map will be released by release_maps() or it
7908 * will be used by the valid program until it's unloaded
ab7f5bf0 7909 * and all maps are released in free_used_maps()
0246e64d 7910 */
92117d84
AS
7911 map = bpf_map_inc(map, false);
7912 if (IS_ERR(map)) {
7913 fdput(f);
7914 return PTR_ERR(map);
7915 }
d8eca5bb
DB
7916
7917 aux->map_index = env->used_map_cnt;
92117d84
AS
7918 env->used_maps[env->used_map_cnt++] = map;
7919
b741f163 7920 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 7921 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 7922 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
7923 fdput(f);
7924 return -EBUSY;
7925 }
7926
0246e64d
AS
7927 fdput(f);
7928next_insn:
7929 insn++;
7930 i++;
5e581dad
DB
7931 continue;
7932 }
7933
7934 /* Basic sanity check before we invest more work here. */
7935 if (!bpf_opcode_in_insntable(insn->code)) {
7936 verbose(env, "unknown opcode %02x\n", insn->code);
7937 return -EINVAL;
0246e64d
AS
7938 }
7939 }
7940
7941 /* now all pseudo BPF_LD_IMM64 instructions load valid
7942 * 'struct bpf_map *' into a register instead of user map_fd.
7943 * These pointers will be used later by verifier to validate map access.
7944 */
7945 return 0;
7946}
7947
7948/* drop refcnt of maps used by the rejected program */
58e2af8b 7949static void release_maps(struct bpf_verifier_env *env)
0246e64d 7950{
8bad74f9 7951 enum bpf_cgroup_storage_type stype;
0246e64d
AS
7952 int i;
7953
8bad74f9
RG
7954 for_each_cgroup_storage_type(stype) {
7955 if (!env->prog->aux->cgroup_storage[stype])
7956 continue;
de9cbbaa 7957 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
7958 env->prog->aux->cgroup_storage[stype]);
7959 }
de9cbbaa 7960
0246e64d
AS
7961 for (i = 0; i < env->used_map_cnt; i++)
7962 bpf_map_put(env->used_maps[i]);
7963}
7964
7965/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 7966static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
7967{
7968 struct bpf_insn *insn = env->prog->insnsi;
7969 int insn_cnt = env->prog->len;
7970 int i;
7971
7972 for (i = 0; i < insn_cnt; i++, insn++)
7973 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7974 insn->src_reg = 0;
7975}
7976
8041902d
AS
7977/* single env->prog->insni[off] instruction was replaced with the range
7978 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7979 * [0, off) and [off, end) to new locations, so the patched range stays zero
7980 */
b325fbca
JW
7981static int adjust_insn_aux_data(struct bpf_verifier_env *env,
7982 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
7983{
7984 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
7985 struct bpf_insn *insn = new_prog->insnsi;
7986 u32 prog_len;
c131187d 7987 int i;
8041902d 7988
b325fbca
JW
7989 /* aux info at OFF always needs adjustment, no matter fast path
7990 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
7991 * original insn at old prog.
7992 */
7993 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
7994
8041902d
AS
7995 if (cnt == 1)
7996 return 0;
b325fbca 7997 prog_len = new_prog->len;
fad953ce
KC
7998 new_data = vzalloc(array_size(prog_len,
7999 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8000 if (!new_data)
8001 return -ENOMEM;
8002 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8003 memcpy(new_data + off + cnt - 1, old_data + off,
8004 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8005 for (i = off; i < off + cnt - 1; i++) {
c131187d 8006 new_data[i].seen = true;
b325fbca
JW
8007 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8008 }
8041902d
AS
8009 env->insn_aux_data = new_data;
8010 vfree(old_data);
8011 return 0;
8012}
8013
cc8b0b92
AS
8014static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8015{
8016 int i;
8017
8018 if (len == 1)
8019 return;
4cb3d99c
JW
8020 /* NOTE: fake 'exit' subprog should be updated as well. */
8021 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8022 if (env->subprog_info[i].start <= off)
cc8b0b92 8023 continue;
9c8105bd 8024 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8025 }
8026}
8027
8041902d
AS
8028static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8029 const struct bpf_insn *patch, u32 len)
8030{
8031 struct bpf_prog *new_prog;
8032
8033 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8034 if (IS_ERR(new_prog)) {
8035 if (PTR_ERR(new_prog) == -ERANGE)
8036 verbose(env,
8037 "insn %d cannot be patched due to 16-bit range\n",
8038 env->insn_aux_data[off].orig_idx);
8041902d 8039 return NULL;
4f73379e 8040 }
b325fbca 8041 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8042 return NULL;
cc8b0b92 8043 adjust_subprog_starts(env, off, len);
8041902d
AS
8044 return new_prog;
8045}
8046
52875a04
JK
8047static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8048 u32 off, u32 cnt)
8049{
8050 int i, j;
8051
8052 /* find first prog starting at or after off (first to remove) */
8053 for (i = 0; i < env->subprog_cnt; i++)
8054 if (env->subprog_info[i].start >= off)
8055 break;
8056 /* find first prog starting at or after off + cnt (first to stay) */
8057 for (j = i; j < env->subprog_cnt; j++)
8058 if (env->subprog_info[j].start >= off + cnt)
8059 break;
8060 /* if j doesn't start exactly at off + cnt, we are just removing
8061 * the front of previous prog
8062 */
8063 if (env->subprog_info[j].start != off + cnt)
8064 j--;
8065
8066 if (j > i) {
8067 struct bpf_prog_aux *aux = env->prog->aux;
8068 int move;
8069
8070 /* move fake 'exit' subprog as well */
8071 move = env->subprog_cnt + 1 - j;
8072
8073 memmove(env->subprog_info + i,
8074 env->subprog_info + j,
8075 sizeof(*env->subprog_info) * move);
8076 env->subprog_cnt -= j - i;
8077
8078 /* remove func_info */
8079 if (aux->func_info) {
8080 move = aux->func_info_cnt - j;
8081
8082 memmove(aux->func_info + i,
8083 aux->func_info + j,
8084 sizeof(*aux->func_info) * move);
8085 aux->func_info_cnt -= j - i;
8086 /* func_info->insn_off is set after all code rewrites,
8087 * in adjust_btf_func() - no need to adjust
8088 */
8089 }
8090 } else {
8091 /* convert i from "first prog to remove" to "first to adjust" */
8092 if (env->subprog_info[i].start == off)
8093 i++;
8094 }
8095
8096 /* update fake 'exit' subprog as well */
8097 for (; i <= env->subprog_cnt; i++)
8098 env->subprog_info[i].start -= cnt;
8099
8100 return 0;
8101}
8102
8103static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8104 u32 cnt)
8105{
8106 struct bpf_prog *prog = env->prog;
8107 u32 i, l_off, l_cnt, nr_linfo;
8108 struct bpf_line_info *linfo;
8109
8110 nr_linfo = prog->aux->nr_linfo;
8111 if (!nr_linfo)
8112 return 0;
8113
8114 linfo = prog->aux->linfo;
8115
8116 /* find first line info to remove, count lines to be removed */
8117 for (i = 0; i < nr_linfo; i++)
8118 if (linfo[i].insn_off >= off)
8119 break;
8120
8121 l_off = i;
8122 l_cnt = 0;
8123 for (; i < nr_linfo; i++)
8124 if (linfo[i].insn_off < off + cnt)
8125 l_cnt++;
8126 else
8127 break;
8128
8129 /* First live insn doesn't match first live linfo, it needs to "inherit"
8130 * last removed linfo. prog is already modified, so prog->len == off
8131 * means no live instructions after (tail of the program was removed).
8132 */
8133 if (prog->len != off && l_cnt &&
8134 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8135 l_cnt--;
8136 linfo[--i].insn_off = off + cnt;
8137 }
8138
8139 /* remove the line info which refer to the removed instructions */
8140 if (l_cnt) {
8141 memmove(linfo + l_off, linfo + i,
8142 sizeof(*linfo) * (nr_linfo - i));
8143
8144 prog->aux->nr_linfo -= l_cnt;
8145 nr_linfo = prog->aux->nr_linfo;
8146 }
8147
8148 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8149 for (i = l_off; i < nr_linfo; i++)
8150 linfo[i].insn_off -= cnt;
8151
8152 /* fix up all subprogs (incl. 'exit') which start >= off */
8153 for (i = 0; i <= env->subprog_cnt; i++)
8154 if (env->subprog_info[i].linfo_idx > l_off) {
8155 /* program may have started in the removed region but
8156 * may not be fully removed
8157 */
8158 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8159 env->subprog_info[i].linfo_idx -= l_cnt;
8160 else
8161 env->subprog_info[i].linfo_idx = l_off;
8162 }
8163
8164 return 0;
8165}
8166
8167static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8168{
8169 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8170 unsigned int orig_prog_len = env->prog->len;
8171 int err;
8172
08ca90af
JK
8173 if (bpf_prog_is_dev_bound(env->prog->aux))
8174 bpf_prog_offload_remove_insns(env, off, cnt);
8175
52875a04
JK
8176 err = bpf_remove_insns(env->prog, off, cnt);
8177 if (err)
8178 return err;
8179
8180 err = adjust_subprog_starts_after_remove(env, off, cnt);
8181 if (err)
8182 return err;
8183
8184 err = bpf_adj_linfo_after_remove(env, off, cnt);
8185 if (err)
8186 return err;
8187
8188 memmove(aux_data + off, aux_data + off + cnt,
8189 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8190
8191 return 0;
8192}
8193
2a5418a1
DB
8194/* The verifier does more data flow analysis than llvm and will not
8195 * explore branches that are dead at run time. Malicious programs can
8196 * have dead code too. Therefore replace all dead at-run-time code
8197 * with 'ja -1'.
8198 *
8199 * Just nops are not optimal, e.g. if they would sit at the end of the
8200 * program and through another bug we would manage to jump there, then
8201 * we'd execute beyond program memory otherwise. Returning exception
8202 * code also wouldn't work since we can have subprogs where the dead
8203 * code could be located.
c131187d
AS
8204 */
8205static void sanitize_dead_code(struct bpf_verifier_env *env)
8206{
8207 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8208 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8209 struct bpf_insn *insn = env->prog->insnsi;
8210 const int insn_cnt = env->prog->len;
8211 int i;
8212
8213 for (i = 0; i < insn_cnt; i++) {
8214 if (aux_data[i].seen)
8215 continue;
2a5418a1 8216 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8217 }
8218}
8219
e2ae4ca2
JK
8220static bool insn_is_cond_jump(u8 code)
8221{
8222 u8 op;
8223
092ed096
JW
8224 if (BPF_CLASS(code) == BPF_JMP32)
8225 return true;
8226
e2ae4ca2
JK
8227 if (BPF_CLASS(code) != BPF_JMP)
8228 return false;
8229
8230 op = BPF_OP(code);
8231 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8232}
8233
8234static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8235{
8236 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8237 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8238 struct bpf_insn *insn = env->prog->insnsi;
8239 const int insn_cnt = env->prog->len;
8240 int i;
8241
8242 for (i = 0; i < insn_cnt; i++, insn++) {
8243 if (!insn_is_cond_jump(insn->code))
8244 continue;
8245
8246 if (!aux_data[i + 1].seen)
8247 ja.off = insn->off;
8248 else if (!aux_data[i + 1 + insn->off].seen)
8249 ja.off = 0;
8250 else
8251 continue;
8252
08ca90af
JK
8253 if (bpf_prog_is_dev_bound(env->prog->aux))
8254 bpf_prog_offload_replace_insn(env, i, &ja);
8255
e2ae4ca2
JK
8256 memcpy(insn, &ja, sizeof(ja));
8257 }
8258}
8259
52875a04
JK
8260static int opt_remove_dead_code(struct bpf_verifier_env *env)
8261{
8262 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8263 int insn_cnt = env->prog->len;
8264 int i, err;
8265
8266 for (i = 0; i < insn_cnt; i++) {
8267 int j;
8268
8269 j = 0;
8270 while (i + j < insn_cnt && !aux_data[i + j].seen)
8271 j++;
8272 if (!j)
8273 continue;
8274
8275 err = verifier_remove_insns(env, i, j);
8276 if (err)
8277 return err;
8278 insn_cnt = env->prog->len;
8279 }
8280
8281 return 0;
8282}
8283
a1b14abc
JK
8284static int opt_remove_nops(struct bpf_verifier_env *env)
8285{
8286 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8287 struct bpf_insn *insn = env->prog->insnsi;
8288 int insn_cnt = env->prog->len;
8289 int i, err;
8290
8291 for (i = 0; i < insn_cnt; i++) {
8292 if (memcmp(&insn[i], &ja, sizeof(ja)))
8293 continue;
8294
8295 err = verifier_remove_insns(env, i, 1);
8296 if (err)
8297 return err;
8298 insn_cnt--;
8299 i--;
8300 }
8301
8302 return 0;
8303}
8304
d6c2308c
JW
8305static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8306 const union bpf_attr *attr)
a4b1d3c1 8307{
d6c2308c 8308 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8309 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8310 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8311 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8312 struct bpf_prog *new_prog;
d6c2308c 8313 bool rnd_hi32;
a4b1d3c1 8314
d6c2308c 8315 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8316 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8317 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8318 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8319 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8320 for (i = 0; i < len; i++) {
8321 int adj_idx = i + delta;
8322 struct bpf_insn insn;
8323
d6c2308c
JW
8324 insn = insns[adj_idx];
8325 if (!aux[adj_idx].zext_dst) {
8326 u8 code, class;
8327 u32 imm_rnd;
8328
8329 if (!rnd_hi32)
8330 continue;
8331
8332 code = insn.code;
8333 class = BPF_CLASS(code);
8334 if (insn_no_def(&insn))
8335 continue;
8336
8337 /* NOTE: arg "reg" (the fourth one) is only used for
8338 * BPF_STX which has been ruled out in above
8339 * check, it is safe to pass NULL here.
8340 */
8341 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8342 if (class == BPF_LD &&
8343 BPF_MODE(code) == BPF_IMM)
8344 i++;
8345 continue;
8346 }
8347
8348 /* ctx load could be transformed into wider load. */
8349 if (class == BPF_LDX &&
8350 aux[adj_idx].ptr_type == PTR_TO_CTX)
8351 continue;
8352
8353 imm_rnd = get_random_int();
8354 rnd_hi32_patch[0] = insn;
8355 rnd_hi32_patch[1].imm = imm_rnd;
8356 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8357 patch = rnd_hi32_patch;
8358 patch_len = 4;
8359 goto apply_patch_buffer;
8360 }
8361
8362 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8363 continue;
8364
a4b1d3c1
JW
8365 zext_patch[0] = insn;
8366 zext_patch[1].dst_reg = insn.dst_reg;
8367 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8368 patch = zext_patch;
8369 patch_len = 2;
8370apply_patch_buffer:
8371 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8372 if (!new_prog)
8373 return -ENOMEM;
8374 env->prog = new_prog;
8375 insns = new_prog->insnsi;
8376 aux = env->insn_aux_data;
d6c2308c 8377 delta += patch_len - 1;
a4b1d3c1
JW
8378 }
8379
8380 return 0;
8381}
8382
c64b7983
JS
8383/* convert load instructions that access fields of a context type into a
8384 * sequence of instructions that access fields of the underlying structure:
8385 * struct __sk_buff -> struct sk_buff
8386 * struct bpf_sock_ops -> struct sock
9bac3d6d 8387 */
58e2af8b 8388static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8389{
00176a34 8390 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8391 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8392 const int insn_cnt = env->prog->len;
36bbef52 8393 struct bpf_insn insn_buf[16], *insn;
46f53a65 8394 u32 target_size, size_default, off;
9bac3d6d 8395 struct bpf_prog *new_prog;
d691f9e8 8396 enum bpf_access_type type;
f96da094 8397 bool is_narrower_load;
9bac3d6d 8398
b09928b9
DB
8399 if (ops->gen_prologue || env->seen_direct_write) {
8400 if (!ops->gen_prologue) {
8401 verbose(env, "bpf verifier is misconfigured\n");
8402 return -EINVAL;
8403 }
36bbef52
DB
8404 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8405 env->prog);
8406 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8407 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8408 return -EINVAL;
8409 } else if (cnt) {
8041902d 8410 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8411 if (!new_prog)
8412 return -ENOMEM;
8041902d 8413
36bbef52 8414 env->prog = new_prog;
3df126f3 8415 delta += cnt - 1;
36bbef52
DB
8416 }
8417 }
8418
c64b7983 8419 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8420 return 0;
8421
3df126f3 8422 insn = env->prog->insnsi + delta;
36bbef52 8423
9bac3d6d 8424 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8425 bpf_convert_ctx_access_t convert_ctx_access;
8426
62c7989b
DB
8427 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8428 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8429 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8430 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8431 type = BPF_READ;
62c7989b
DB
8432 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8433 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8434 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8435 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8436 type = BPF_WRITE;
8437 else
9bac3d6d
AS
8438 continue;
8439
af86ca4e
AS
8440 if (type == BPF_WRITE &&
8441 env->insn_aux_data[i + delta].sanitize_stack_off) {
8442 struct bpf_insn patch[] = {
8443 /* Sanitize suspicious stack slot with zero.
8444 * There are no memory dependencies for this store,
8445 * since it's only using frame pointer and immediate
8446 * constant of zero
8447 */
8448 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8449 env->insn_aux_data[i + delta].sanitize_stack_off,
8450 0),
8451 /* the original STX instruction will immediately
8452 * overwrite the same stack slot with appropriate value
8453 */
8454 *insn,
8455 };
8456
8457 cnt = ARRAY_SIZE(patch);
8458 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8459 if (!new_prog)
8460 return -ENOMEM;
8461
8462 delta += cnt - 1;
8463 env->prog = new_prog;
8464 insn = new_prog->insnsi + i + delta;
8465 continue;
8466 }
8467
c64b7983
JS
8468 switch (env->insn_aux_data[i + delta].ptr_type) {
8469 case PTR_TO_CTX:
8470 if (!ops->convert_ctx_access)
8471 continue;
8472 convert_ctx_access = ops->convert_ctx_access;
8473 break;
8474 case PTR_TO_SOCKET:
46f8bc92 8475 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8476 convert_ctx_access = bpf_sock_convert_ctx_access;
8477 break;
655a51e5
MKL
8478 case PTR_TO_TCP_SOCK:
8479 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8480 break;
fada7fdc
JL
8481 case PTR_TO_XDP_SOCK:
8482 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8483 break;
c64b7983 8484 default:
9bac3d6d 8485 continue;
c64b7983 8486 }
9bac3d6d 8487
31fd8581 8488 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8489 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8490
8491 /* If the read access is a narrower load of the field,
8492 * convert to a 4/8-byte load, to minimum program type specific
8493 * convert_ctx_access changes. If conversion is successful,
8494 * we will apply proper mask to the result.
8495 */
f96da094 8496 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8497 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8498 off = insn->off;
31fd8581 8499 if (is_narrower_load) {
f96da094
DB
8500 u8 size_code;
8501
8502 if (type == BPF_WRITE) {
61bd5218 8503 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8504 return -EINVAL;
8505 }
31fd8581 8506
f96da094 8507 size_code = BPF_H;
31fd8581
YS
8508 if (ctx_field_size == 4)
8509 size_code = BPF_W;
8510 else if (ctx_field_size == 8)
8511 size_code = BPF_DW;
f96da094 8512
bc23105c 8513 insn->off = off & ~(size_default - 1);
31fd8581
YS
8514 insn->code = BPF_LDX | BPF_MEM | size_code;
8515 }
f96da094
DB
8516
8517 target_size = 0;
c64b7983
JS
8518 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8519 &target_size);
f96da094
DB
8520 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8521 (ctx_field_size && !target_size)) {
61bd5218 8522 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8523 return -EINVAL;
8524 }
f96da094
DB
8525
8526 if (is_narrower_load && size < target_size) {
46f53a65
AI
8527 u8 shift = (off & (size_default - 1)) * 8;
8528
8529 if (ctx_field_size <= 4) {
8530 if (shift)
8531 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8532 insn->dst_reg,
8533 shift);
31fd8581 8534 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8535 (1 << size * 8) - 1);
46f53a65
AI
8536 } else {
8537 if (shift)
8538 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8539 insn->dst_reg,
8540 shift);
31fd8581 8541 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8542 (1ULL << size * 8) - 1);
46f53a65 8543 }
31fd8581 8544 }
9bac3d6d 8545
8041902d 8546 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8547 if (!new_prog)
8548 return -ENOMEM;
8549
3df126f3 8550 delta += cnt - 1;
9bac3d6d
AS
8551
8552 /* keep walking new program and skip insns we just inserted */
8553 env->prog = new_prog;
3df126f3 8554 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8555 }
8556
8557 return 0;
8558}
8559
1c2a088a
AS
8560static int jit_subprogs(struct bpf_verifier_env *env)
8561{
8562 struct bpf_prog *prog = env->prog, **func, *tmp;
8563 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8564 struct bpf_insn *insn;
1c2a088a 8565 void *old_bpf_func;
c454a46b 8566 int err;
1c2a088a 8567
f910cefa 8568 if (env->subprog_cnt <= 1)
1c2a088a
AS
8569 return 0;
8570
7105e828 8571 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8572 if (insn->code != (BPF_JMP | BPF_CALL) ||
8573 insn->src_reg != BPF_PSEUDO_CALL)
8574 continue;
c7a89784
DB
8575 /* Upon error here we cannot fall back to interpreter but
8576 * need a hard reject of the program. Thus -EFAULT is
8577 * propagated in any case.
8578 */
1c2a088a
AS
8579 subprog = find_subprog(env, i + insn->imm + 1);
8580 if (subprog < 0) {
8581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8582 i + insn->imm + 1);
8583 return -EFAULT;
8584 }
8585 /* temporarily remember subprog id inside insn instead of
8586 * aux_data, since next loop will split up all insns into funcs
8587 */
f910cefa 8588 insn->off = subprog;
1c2a088a
AS
8589 /* remember original imm in case JIT fails and fallback
8590 * to interpreter will be needed
8591 */
8592 env->insn_aux_data[i].call_imm = insn->imm;
8593 /* point imm to __bpf_call_base+1 from JITs point of view */
8594 insn->imm = 1;
8595 }
8596
c454a46b
MKL
8597 err = bpf_prog_alloc_jited_linfo(prog);
8598 if (err)
8599 goto out_undo_insn;
8600
8601 err = -ENOMEM;
6396bb22 8602 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8603 if (!func)
c7a89784 8604 goto out_undo_insn;
1c2a088a 8605
f910cefa 8606 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8607 subprog_start = subprog_end;
4cb3d99c 8608 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8609
8610 len = subprog_end - subprog_start;
492ecee8
AS
8611 /* BPF_PROG_RUN doesn't call subprogs directly,
8612 * hence main prog stats include the runtime of subprogs.
8613 * subprogs don't have IDs and not reachable via prog_get_next_id
8614 * func[i]->aux->stats will never be accessed and stays NULL
8615 */
8616 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8617 if (!func[i])
8618 goto out_free;
8619 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8620 len * sizeof(struct bpf_insn));
4f74d809 8621 func[i]->type = prog->type;
1c2a088a 8622 func[i]->len = len;
4f74d809
DB
8623 if (bpf_prog_calc_tag(func[i]))
8624 goto out_free;
1c2a088a 8625 func[i]->is_func = 1;
ba64e7d8
YS
8626 func[i]->aux->func_idx = i;
8627 /* the btf and func_info will be freed only at prog->aux */
8628 func[i]->aux->btf = prog->aux->btf;
8629 func[i]->aux->func_info = prog->aux->func_info;
8630
1c2a088a
AS
8631 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8632 * Long term would need debug info to populate names
8633 */
8634 func[i]->aux->name[0] = 'F';
9c8105bd 8635 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 8636 func[i]->jit_requested = 1;
c454a46b
MKL
8637 func[i]->aux->linfo = prog->aux->linfo;
8638 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8639 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8640 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
8641 func[i] = bpf_int_jit_compile(func[i]);
8642 if (!func[i]->jited) {
8643 err = -ENOTSUPP;
8644 goto out_free;
8645 }
8646 cond_resched();
8647 }
8648 /* at this point all bpf functions were successfully JITed
8649 * now populate all bpf_calls with correct addresses and
8650 * run last pass of JIT
8651 */
f910cefa 8652 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8653 insn = func[i]->insnsi;
8654 for (j = 0; j < func[i]->len; j++, insn++) {
8655 if (insn->code != (BPF_JMP | BPF_CALL) ||
8656 insn->src_reg != BPF_PSEUDO_CALL)
8657 continue;
8658 subprog = insn->off;
0d306c31
PB
8659 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8660 __bpf_call_base;
1c2a088a 8661 }
2162fed4
SD
8662
8663 /* we use the aux data to keep a list of the start addresses
8664 * of the JITed images for each function in the program
8665 *
8666 * for some architectures, such as powerpc64, the imm field
8667 * might not be large enough to hold the offset of the start
8668 * address of the callee's JITed image from __bpf_call_base
8669 *
8670 * in such cases, we can lookup the start address of a callee
8671 * by using its subprog id, available from the off field of
8672 * the call instruction, as an index for this list
8673 */
8674 func[i]->aux->func = func;
8675 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 8676 }
f910cefa 8677 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8678 old_bpf_func = func[i]->bpf_func;
8679 tmp = bpf_int_jit_compile(func[i]);
8680 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8681 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 8682 err = -ENOTSUPP;
1c2a088a
AS
8683 goto out_free;
8684 }
8685 cond_resched();
8686 }
8687
8688 /* finally lock prog and jit images for all functions and
8689 * populate kallsysm
8690 */
f910cefa 8691 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8692 bpf_prog_lock_ro(func[i]);
8693 bpf_prog_kallsyms_add(func[i]);
8694 }
7105e828
DB
8695
8696 /* Last step: make now unused interpreter insns from main
8697 * prog consistent for later dump requests, so they can
8698 * later look the same as if they were interpreted only.
8699 */
8700 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
8701 if (insn->code != (BPF_JMP | BPF_CALL) ||
8702 insn->src_reg != BPF_PSEUDO_CALL)
8703 continue;
8704 insn->off = env->insn_aux_data[i].call_imm;
8705 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 8706 insn->imm = subprog;
7105e828
DB
8707 }
8708
1c2a088a
AS
8709 prog->jited = 1;
8710 prog->bpf_func = func[0]->bpf_func;
8711 prog->aux->func = func;
f910cefa 8712 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 8713 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
8714 return 0;
8715out_free:
f910cefa 8716 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
8717 if (func[i])
8718 bpf_jit_free(func[i]);
8719 kfree(func);
c7a89784 8720out_undo_insn:
1c2a088a
AS
8721 /* cleanup main prog to be interpreted */
8722 prog->jit_requested = 0;
8723 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8724 if (insn->code != (BPF_JMP | BPF_CALL) ||
8725 insn->src_reg != BPF_PSEUDO_CALL)
8726 continue;
8727 insn->off = 0;
8728 insn->imm = env->insn_aux_data[i].call_imm;
8729 }
c454a46b 8730 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
8731 return err;
8732}
8733
1ea47e01
AS
8734static int fixup_call_args(struct bpf_verifier_env *env)
8735{
19d28fbd 8736#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8737 struct bpf_prog *prog = env->prog;
8738 struct bpf_insn *insn = prog->insnsi;
8739 int i, depth;
19d28fbd 8740#endif
e4052d06 8741 int err = 0;
1ea47e01 8742
e4052d06
QM
8743 if (env->prog->jit_requested &&
8744 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
8745 err = jit_subprogs(env);
8746 if (err == 0)
1c2a088a 8747 return 0;
c7a89784
DB
8748 if (err == -EFAULT)
8749 return err;
19d28fbd
DM
8750 }
8751#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8752 for (i = 0; i < prog->len; i++, insn++) {
8753 if (insn->code != (BPF_JMP | BPF_CALL) ||
8754 insn->src_reg != BPF_PSEUDO_CALL)
8755 continue;
8756 depth = get_callee_stack_depth(env, insn, i);
8757 if (depth < 0)
8758 return depth;
8759 bpf_patch_call_args(insn, depth);
8760 }
19d28fbd
DM
8761 err = 0;
8762#endif
8763 return err;
1ea47e01
AS
8764}
8765
79741b3b 8766/* fixup insn->imm field of bpf_call instructions
81ed18ab 8767 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
8768 *
8769 * this function is called after eBPF program passed verification
8770 */
79741b3b 8771static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 8772{
79741b3b
AS
8773 struct bpf_prog *prog = env->prog;
8774 struct bpf_insn *insn = prog->insnsi;
e245c5c6 8775 const struct bpf_func_proto *fn;
79741b3b 8776 const int insn_cnt = prog->len;
09772d92 8777 const struct bpf_map_ops *ops;
c93552c4 8778 struct bpf_insn_aux_data *aux;
81ed18ab
AS
8779 struct bpf_insn insn_buf[16];
8780 struct bpf_prog *new_prog;
8781 struct bpf_map *map_ptr;
8782 int i, cnt, delta = 0;
e245c5c6 8783
79741b3b 8784 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
8785 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8786 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8787 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 8788 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
8789 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8790 struct bpf_insn mask_and_div[] = {
8791 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8792 /* Rx div 0 -> 0 */
8793 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8794 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8795 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8796 *insn,
8797 };
8798 struct bpf_insn mask_and_mod[] = {
8799 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8800 /* Rx mod 0 -> Rx */
8801 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8802 *insn,
8803 };
8804 struct bpf_insn *patchlet;
8805
8806 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8807 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8808 patchlet = mask_and_div + (is64 ? 1 : 0);
8809 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8810 } else {
8811 patchlet = mask_and_mod + (is64 ? 1 : 0);
8812 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8813 }
8814
8815 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
8816 if (!new_prog)
8817 return -ENOMEM;
8818
8819 delta += cnt - 1;
8820 env->prog = prog = new_prog;
8821 insn = new_prog->insnsi + i + delta;
8822 continue;
8823 }
8824
e0cea7ce
DB
8825 if (BPF_CLASS(insn->code) == BPF_LD &&
8826 (BPF_MODE(insn->code) == BPF_ABS ||
8827 BPF_MODE(insn->code) == BPF_IND)) {
8828 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8829 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8830 verbose(env, "bpf verifier is misconfigured\n");
8831 return -EINVAL;
8832 }
8833
8834 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8835 if (!new_prog)
8836 return -ENOMEM;
8837
8838 delta += cnt - 1;
8839 env->prog = prog = new_prog;
8840 insn = new_prog->insnsi + i + delta;
8841 continue;
8842 }
8843
979d63d5
DB
8844 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8845 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8846 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8847 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8848 struct bpf_insn insn_buf[16];
8849 struct bpf_insn *patch = &insn_buf[0];
8850 bool issrc, isneg;
8851 u32 off_reg;
8852
8853 aux = &env->insn_aux_data[i + delta];
3612af78
DB
8854 if (!aux->alu_state ||
8855 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
8856 continue;
8857
8858 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8859 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8860 BPF_ALU_SANITIZE_SRC;
8861
8862 off_reg = issrc ? insn->src_reg : insn->dst_reg;
8863 if (isneg)
8864 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8865 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8866 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8867 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8868 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8869 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8870 if (issrc) {
8871 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8872 off_reg);
8873 insn->src_reg = BPF_REG_AX;
8874 } else {
8875 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8876 BPF_REG_AX);
8877 }
8878 if (isneg)
8879 insn->code = insn->code == code_add ?
8880 code_sub : code_add;
8881 *patch++ = *insn;
8882 if (issrc && isneg)
8883 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8884 cnt = patch - insn_buf;
8885
8886 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8887 if (!new_prog)
8888 return -ENOMEM;
8889
8890 delta += cnt - 1;
8891 env->prog = prog = new_prog;
8892 insn = new_prog->insnsi + i + delta;
8893 continue;
8894 }
8895
79741b3b
AS
8896 if (insn->code != (BPF_JMP | BPF_CALL))
8897 continue;
cc8b0b92
AS
8898 if (insn->src_reg == BPF_PSEUDO_CALL)
8899 continue;
e245c5c6 8900
79741b3b
AS
8901 if (insn->imm == BPF_FUNC_get_route_realm)
8902 prog->dst_needed = 1;
8903 if (insn->imm == BPF_FUNC_get_prandom_u32)
8904 bpf_user_rnd_init_once();
9802d865
JB
8905 if (insn->imm == BPF_FUNC_override_return)
8906 prog->kprobe_override = 1;
79741b3b 8907 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
8908 /* If we tail call into other programs, we
8909 * cannot make any assumptions since they can
8910 * be replaced dynamically during runtime in
8911 * the program array.
8912 */
8913 prog->cb_access = 1;
80a58d02 8914 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 8915 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 8916
79741b3b
AS
8917 /* mark bpf_tail_call as different opcode to avoid
8918 * conditional branch in the interpeter for every normal
8919 * call and to prevent accidental JITing by JIT compiler
8920 * that doesn't support bpf_tail_call yet
e245c5c6 8921 */
79741b3b 8922 insn->imm = 0;
71189fa9 8923 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 8924
c93552c4
DB
8925 aux = &env->insn_aux_data[i + delta];
8926 if (!bpf_map_ptr_unpriv(aux))
8927 continue;
8928
b2157399
AS
8929 /* instead of changing every JIT dealing with tail_call
8930 * emit two extra insns:
8931 * if (index >= max_entries) goto out;
8932 * index &= array->index_mask;
8933 * to avoid out-of-bounds cpu speculation
8934 */
c93552c4 8935 if (bpf_map_ptr_poisoned(aux)) {
40950343 8936 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
8937 return -EINVAL;
8938 }
c93552c4
DB
8939
8940 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
8941 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8942 map_ptr->max_entries, 2);
8943 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8944 container_of(map_ptr,
8945 struct bpf_array,
8946 map)->index_mask);
8947 insn_buf[2] = *insn;
8948 cnt = 3;
8949 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8950 if (!new_prog)
8951 return -ENOMEM;
8952
8953 delta += cnt - 1;
8954 env->prog = prog = new_prog;
8955 insn = new_prog->insnsi + i + delta;
79741b3b
AS
8956 continue;
8957 }
e245c5c6 8958
89c63074 8959 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
8960 * and other inlining handlers are currently limited to 64 bit
8961 * only.
89c63074 8962 */
60b58afc 8963 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
8964 (insn->imm == BPF_FUNC_map_lookup_elem ||
8965 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
8966 insn->imm == BPF_FUNC_map_delete_elem ||
8967 insn->imm == BPF_FUNC_map_push_elem ||
8968 insn->imm == BPF_FUNC_map_pop_elem ||
8969 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
8970 aux = &env->insn_aux_data[i + delta];
8971 if (bpf_map_ptr_poisoned(aux))
8972 goto patch_call_imm;
8973
8974 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
8975 ops = map_ptr->ops;
8976 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8977 ops->map_gen_lookup) {
8978 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8979 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8980 verbose(env, "bpf verifier is misconfigured\n");
8981 return -EINVAL;
8982 }
81ed18ab 8983
09772d92
DB
8984 new_prog = bpf_patch_insn_data(env, i + delta,
8985 insn_buf, cnt);
8986 if (!new_prog)
8987 return -ENOMEM;
81ed18ab 8988
09772d92
DB
8989 delta += cnt - 1;
8990 env->prog = prog = new_prog;
8991 insn = new_prog->insnsi + i + delta;
8992 continue;
8993 }
81ed18ab 8994
09772d92
DB
8995 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8996 (void *(*)(struct bpf_map *map, void *key))NULL));
8997 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8998 (int (*)(struct bpf_map *map, void *key))NULL));
8999 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9000 (int (*)(struct bpf_map *map, void *key, void *value,
9001 u64 flags))NULL));
84430d42
DB
9002 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9003 (int (*)(struct bpf_map *map, void *value,
9004 u64 flags))NULL));
9005 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9006 (int (*)(struct bpf_map *map, void *value))NULL));
9007 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9008 (int (*)(struct bpf_map *map, void *value))NULL));
9009
09772d92
DB
9010 switch (insn->imm) {
9011 case BPF_FUNC_map_lookup_elem:
9012 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9013 __bpf_call_base;
9014 continue;
9015 case BPF_FUNC_map_update_elem:
9016 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9017 __bpf_call_base;
9018 continue;
9019 case BPF_FUNC_map_delete_elem:
9020 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9021 __bpf_call_base;
9022 continue;
84430d42
DB
9023 case BPF_FUNC_map_push_elem:
9024 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9025 __bpf_call_base;
9026 continue;
9027 case BPF_FUNC_map_pop_elem:
9028 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9029 __bpf_call_base;
9030 continue;
9031 case BPF_FUNC_map_peek_elem:
9032 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9033 __bpf_call_base;
9034 continue;
09772d92 9035 }
81ed18ab 9036
09772d92 9037 goto patch_call_imm;
81ed18ab
AS
9038 }
9039
9040patch_call_imm:
5e43f899 9041 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9042 /* all functions that have prototype and verifier allowed
9043 * programs to call them, must be real in-kernel functions
9044 */
9045 if (!fn->func) {
61bd5218
JK
9046 verbose(env,
9047 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9048 func_id_name(insn->imm), insn->imm);
9049 return -EFAULT;
e245c5c6 9050 }
79741b3b 9051 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9052 }
e245c5c6 9053
79741b3b
AS
9054 return 0;
9055}
e245c5c6 9056
58e2af8b 9057static void free_states(struct bpf_verifier_env *env)
f1bca824 9058{
58e2af8b 9059 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9060 int i;
9061
9f4686c4
AS
9062 sl = env->free_list;
9063 while (sl) {
9064 sln = sl->next;
9065 free_verifier_state(&sl->state, false);
9066 kfree(sl);
9067 sl = sln;
9068 }
9069
f1bca824
AS
9070 if (!env->explored_states)
9071 return;
9072
dc2a4ebc 9073 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9074 sl = env->explored_states[i];
9075
a8f500af
AS
9076 while (sl) {
9077 sln = sl->next;
9078 free_verifier_state(&sl->state, false);
9079 kfree(sl);
9080 sl = sln;
9081 }
f1bca824
AS
9082 }
9083
71dde681 9084 kvfree(env->explored_states);
f1bca824
AS
9085}
9086
06ee7115
AS
9087static void print_verification_stats(struct bpf_verifier_env *env)
9088{
9089 int i;
9090
9091 if (env->log.level & BPF_LOG_STATS) {
9092 verbose(env, "verification time %lld usec\n",
9093 div_u64(env->verification_time, 1000));
9094 verbose(env, "stack depth ");
9095 for (i = 0; i < env->subprog_cnt; i++) {
9096 u32 depth = env->subprog_info[i].stack_depth;
9097
9098 verbose(env, "%d", depth);
9099 if (i + 1 < env->subprog_cnt)
9100 verbose(env, "+");
9101 }
9102 verbose(env, "\n");
9103 }
9104 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9105 "total_states %d peak_states %d mark_read %d\n",
9106 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9107 env->max_states_per_insn, env->total_states,
9108 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9109}
9110
838e9690
YS
9111int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9112 union bpf_attr __user *uattr)
51580e79 9113{
06ee7115 9114 u64 start_time = ktime_get_ns();
58e2af8b 9115 struct bpf_verifier_env *env;
b9193c1b 9116 struct bpf_verifier_log *log;
9e4c24e7 9117 int i, len, ret = -EINVAL;
e2ae4ca2 9118 bool is_priv;
51580e79 9119
eba0c929
AB
9120 /* no program is valid */
9121 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9122 return -EINVAL;
9123
58e2af8b 9124 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9125 * allocate/free it every time bpf_check() is called
9126 */
58e2af8b 9127 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9128 if (!env)
9129 return -ENOMEM;
61bd5218 9130 log = &env->log;
cbd35700 9131
9e4c24e7 9132 len = (*prog)->len;
fad953ce 9133 env->insn_aux_data =
9e4c24e7 9134 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9135 ret = -ENOMEM;
9136 if (!env->insn_aux_data)
9137 goto err_free_env;
9e4c24e7
JK
9138 for (i = 0; i < len; i++)
9139 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9140 env->prog = *prog;
00176a34 9141 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9142 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9143
cbd35700 9144 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9145 if (!is_priv)
9146 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9147
9148 if (attr->log_level || attr->log_buf || attr->log_size) {
9149 /* user requested verbose verifier output
9150 * and supplied buffer to store the verification trace
9151 */
e7bf8249
JK
9152 log->level = attr->log_level;
9153 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9154 log->len_total = attr->log_size;
cbd35700
AS
9155
9156 ret = -EINVAL;
e7bf8249 9157 /* log attributes have to be sane */
7a9f5c65 9158 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9159 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9160 goto err_unlock;
cbd35700 9161 }
1ad2f583
DB
9162
9163 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9164 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9165 env->strict_alignment = true;
e9ee9efc
DM
9166 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9167 env->strict_alignment = false;
cbd35700 9168
e2ae4ca2
JK
9169 env->allow_ptr_leaks = is_priv;
9170
f4e3ec0d
JK
9171 ret = replace_map_fd_with_map_ptr(env);
9172 if (ret < 0)
9173 goto skip_full_check;
9174
cae1927c 9175 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9176 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9177 if (ret)
f4e3ec0d 9178 goto skip_full_check;
ab3f0063
JK
9179 }
9180
dc2a4ebc 9181 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9182 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9183 GFP_USER);
9184 ret = -ENOMEM;
9185 if (!env->explored_states)
9186 goto skip_full_check;
9187
d9762e84 9188 ret = check_subprogs(env);
475fb78f
AS
9189 if (ret < 0)
9190 goto skip_full_check;
9191
c454a46b 9192 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9193 if (ret < 0)
9194 goto skip_full_check;
9195
d9762e84
MKL
9196 ret = check_cfg(env);
9197 if (ret < 0)
9198 goto skip_full_check;
9199
17a52670 9200 ret = do_check(env);
8c01c4f8
CG
9201 if (env->cur_state) {
9202 free_verifier_state(env->cur_state, true);
9203 env->cur_state = NULL;
9204 }
cbd35700 9205
c941ce9c
QM
9206 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9207 ret = bpf_prog_offload_finalize(env);
9208
0246e64d 9209skip_full_check:
638f5b90 9210 while (!pop_stack(env, NULL, NULL));
f1bca824 9211 free_states(env);
0246e64d 9212
c131187d 9213 if (ret == 0)
9b38c405 9214 ret = check_max_stack_depth(env);
c131187d 9215
9b38c405 9216 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9217 if (is_priv) {
9218 if (ret == 0)
9219 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9220 if (ret == 0)
9221 ret = opt_remove_dead_code(env);
a1b14abc
JK
9222 if (ret == 0)
9223 ret = opt_remove_nops(env);
52875a04
JK
9224 } else {
9225 if (ret == 0)
9226 sanitize_dead_code(env);
e2ae4ca2
JK
9227 }
9228
9bac3d6d
AS
9229 if (ret == 0)
9230 /* program is valid, convert *(u32*)(ctx + off) accesses */
9231 ret = convert_ctx_accesses(env);
9232
e245c5c6 9233 if (ret == 0)
79741b3b 9234 ret = fixup_bpf_calls(env);
e245c5c6 9235
a4b1d3c1
JW
9236 /* do 32-bit optimization after insn patching has done so those patched
9237 * insns could be handled correctly.
9238 */
d6c2308c
JW
9239 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9240 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9241 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9242 : false;
a4b1d3c1
JW
9243 }
9244
1ea47e01
AS
9245 if (ret == 0)
9246 ret = fixup_call_args(env);
9247
06ee7115
AS
9248 env->verification_time = ktime_get_ns() - start_time;
9249 print_verification_stats(env);
9250
a2a7d570 9251 if (log->level && bpf_verifier_log_full(log))
cbd35700 9252 ret = -ENOSPC;
a2a7d570 9253 if (log->level && !log->ubuf) {
cbd35700 9254 ret = -EFAULT;
a2a7d570 9255 goto err_release_maps;
cbd35700
AS
9256 }
9257
0246e64d
AS
9258 if (ret == 0 && env->used_map_cnt) {
9259 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9260 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9261 sizeof(env->used_maps[0]),
9262 GFP_KERNEL);
0246e64d 9263
9bac3d6d 9264 if (!env->prog->aux->used_maps) {
0246e64d 9265 ret = -ENOMEM;
a2a7d570 9266 goto err_release_maps;
0246e64d
AS
9267 }
9268
9bac3d6d 9269 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9270 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9271 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9272
9273 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9274 * bpf_ld_imm64 instructions
9275 */
9276 convert_pseudo_ld_imm64(env);
9277 }
cbd35700 9278
ba64e7d8
YS
9279 if (ret == 0)
9280 adjust_btf_func(env);
9281
a2a7d570 9282err_release_maps:
9bac3d6d 9283 if (!env->prog->aux->used_maps)
0246e64d 9284 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9285 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9286 */
9287 release_maps(env);
9bac3d6d 9288 *prog = env->prog;
3df126f3 9289err_unlock:
45a73c17
AS
9290 if (!is_priv)
9291 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9292 vfree(env->insn_aux_data);
9293err_free_env:
9294 kfree(env);
51580e79
AS
9295 return ret;
9296}