]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
bpf: Rename BPF_XADD and prepare to encode other atomics in .imm
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
33ff9823
DB
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
435faee1 233 bool raw_mode;
36bbef52 234 bool pkt_access;
435faee1
DB
235 int regno;
236 int access_size;
457f4436 237 int mem_size;
10060503 238 u64 msize_max_value;
1b986589 239 int ref_obj_id;
d83525ca 240 int func_id;
22dc4a0f 241 struct btf *btf;
eaa6bcb7 242 u32 btf_id;
22dc4a0f 243 struct btf *ret_btf;
eaa6bcb7 244 u32 ret_btf_id;
33ff9823
DB
245};
246
8580ac94
AS
247struct btf *btf_vmlinux;
248
cbd35700
AS
249static DEFINE_MUTEX(bpf_verifier_lock);
250
d9762e84
MKL
251static const struct bpf_line_info *
252find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253{
254 const struct bpf_line_info *linfo;
255 const struct bpf_prog *prog;
256 u32 i, nr_linfo;
257
258 prog = env->prog;
259 nr_linfo = prog->aux->nr_linfo;
260
261 if (!nr_linfo || insn_off >= prog->len)
262 return NULL;
263
264 linfo = prog->aux->linfo;
265 for (i = 1; i < nr_linfo; i++)
266 if (insn_off < linfo[i].insn_off)
267 break;
268
269 return &linfo[i - 1];
270}
271
77d2e05a
MKL
272void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 va_list args)
cbd35700 274{
a2a7d570 275 unsigned int n;
cbd35700 276
a2a7d570 277 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
278
279 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 "verifier log line truncated - local buffer too short\n");
281
282 n = min(log->len_total - log->len_used - 1, n);
283 log->kbuf[n] = '\0';
284
8580ac94
AS
285 if (log->level == BPF_LOG_KERNEL) {
286 pr_err("BPF:%s\n", log->kbuf);
287 return;
288 }
a2a7d570
JK
289 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 log->len_used += n;
291 else
292 log->ubuf = NULL;
cbd35700 293}
abe08840 294
6f8a57cc
AN
295static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296{
297 char zero = 0;
298
299 if (!bpf_verifier_log_needed(log))
300 return;
301
302 log->len_used = new_pos;
303 if (put_user(zero, log->ubuf + new_pos))
304 log->ubuf = NULL;
305}
306
abe08840
JO
307/* log_level controls verbosity level of eBPF verifier.
308 * bpf_verifier_log_write() is used to dump the verification trace to the log,
309 * so the user can figure out what's wrong with the program
430e68d1 310 */
abe08840
JO
311__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 const char *fmt, ...)
313{
314 va_list args;
315
77d2e05a
MKL
316 if (!bpf_verifier_log_needed(&env->log))
317 return;
318
abe08840 319 va_start(args, fmt);
77d2e05a 320 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
321 va_end(args);
322}
323EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324
325__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326{
77d2e05a 327 struct bpf_verifier_env *env = private_data;
abe08840
JO
328 va_list args;
329
77d2e05a
MKL
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
abe08840 333 va_start(args, fmt);
77d2e05a 334 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
335 va_end(args);
336}
cbd35700 337
9e15db66
AS
338__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 const char *fmt, ...)
340{
341 va_list args;
342
343 if (!bpf_verifier_log_needed(log))
344 return;
345
346 va_start(args, fmt);
347 bpf_verifier_vlog(log, fmt, args);
348 va_end(args);
349}
350
d9762e84
MKL
351static const char *ltrim(const char *s)
352{
353 while (isspace(*s))
354 s++;
355
356 return s;
357}
358
359__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 u32 insn_off,
361 const char *prefix_fmt, ...)
362{
363 const struct bpf_line_info *linfo;
364
365 if (!bpf_verifier_log_needed(&env->log))
366 return;
367
368 linfo = find_linfo(env, insn_off);
369 if (!linfo || linfo == env->prev_linfo)
370 return;
371
372 if (prefix_fmt) {
373 va_list args;
374
375 va_start(args, prefix_fmt);
376 bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 va_end(args);
378 }
379
380 verbose(env, "%s\n",
381 ltrim(btf_name_by_offset(env->prog->aux->btf,
382 linfo->line_off)));
383
384 env->prev_linfo = linfo;
385}
386
de8f3a83
DB
387static bool type_is_pkt_pointer(enum bpf_reg_type type)
388{
389 return type == PTR_TO_PACKET ||
390 type == PTR_TO_PACKET_META;
391}
392
46f8bc92
MKL
393static bool type_is_sk_pointer(enum bpf_reg_type type)
394{
395 return type == PTR_TO_SOCKET ||
655a51e5 396 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
399}
400
cac616db
JF
401static bool reg_type_not_null(enum bpf_reg_type type)
402{
403 return type == PTR_TO_SOCKET ||
404 type == PTR_TO_TCP_SOCK ||
405 type == PTR_TO_MAP_VALUE ||
01c66c48 406 type == PTR_TO_SOCK_COMMON;
cac616db
JF
407}
408
840b9615
JS
409static bool reg_type_may_be_null(enum bpf_reg_type type)
410{
fd978bf7 411 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 412 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 413 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 414 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 415 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
416 type == PTR_TO_MEM_OR_NULL ||
417 type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
419}
420
d83525ca
AS
421static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422{
423 return reg->type == PTR_TO_MAP_VALUE &&
424 map_value_has_spin_lock(reg->map_ptr);
425}
426
cba368c1
MKL
427static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428{
429 return type == PTR_TO_SOCKET ||
430 type == PTR_TO_SOCKET_OR_NULL ||
431 type == PTR_TO_TCP_SOCK ||
457f4436
AN
432 type == PTR_TO_TCP_SOCK_OR_NULL ||
433 type == PTR_TO_MEM ||
434 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
435}
436
1b986589 437static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 438{
1b986589 439 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
440}
441
fd1b0d60
LB
442static bool arg_type_may_be_null(enum bpf_arg_type type)
443{
444 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 type == ARG_PTR_TO_MEM_OR_NULL ||
446 type == ARG_PTR_TO_CTX_OR_NULL ||
447 type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449}
450
fd978bf7
JS
451/* Determine whether the function releases some resources allocated by another
452 * function call. The first reference type argument will be assumed to be
453 * released by release_reference().
454 */
455static bool is_release_function(enum bpf_func_id func_id)
456{
457f4436
AN
457 return func_id == BPF_FUNC_sk_release ||
458 func_id == BPF_FUNC_ringbuf_submit ||
459 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
460}
461
64d85290 462static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
463{
464 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 465 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 466 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
467 func_id == BPF_FUNC_map_lookup_elem ||
468 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
469}
470
471static bool is_acquire_function(enum bpf_func_id func_id,
472 const struct bpf_map *map)
473{
474 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475
476 if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
478 func_id == BPF_FUNC_skc_lookup_tcp ||
479 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
480 return true;
481
482 if (func_id == BPF_FUNC_map_lookup_elem &&
483 (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 map_type == BPF_MAP_TYPE_SOCKHASH))
485 return true;
486
487 return false;
46f8bc92
MKL
488}
489
1b986589
MKL
490static bool is_ptr_cast_function(enum bpf_func_id func_id)
491{
492 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
493 func_id == BPF_FUNC_sk_fullsock ||
494 func_id == BPF_FUNC_skc_to_tcp_sock ||
495 func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 func_id == BPF_FUNC_skc_to_udp6_sock ||
497 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
499}
500
17a52670
AS
501/* string representation of 'enum bpf_reg_type' */
502static const char * const reg_type_str[] = {
503 [NOT_INIT] = "?",
f1174f77 504 [SCALAR_VALUE] = "inv",
17a52670
AS
505 [PTR_TO_CTX] = "ctx",
506 [CONST_PTR_TO_MAP] = "map_ptr",
507 [PTR_TO_MAP_VALUE] = "map_value",
508 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 509 [PTR_TO_STACK] = "fp",
969bf05e 510 [PTR_TO_PACKET] = "pkt",
de8f3a83 511 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 512 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 513 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
514 [PTR_TO_SOCKET] = "sock",
515 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
516 [PTR_TO_SOCK_COMMON] = "sock_common",
517 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
518 [PTR_TO_TCP_SOCK] = "tcp_sock",
519 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 520 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 521 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 522 [PTR_TO_BTF_ID] = "ptr_",
b121b341 523 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 524 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
525 [PTR_TO_MEM] = "mem",
526 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
527 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
528 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 [PTR_TO_RDWR_BUF] = "rdwr_buf",
530 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
531};
532
8efea21d
EC
533static char slot_type_char[] = {
534 [STACK_INVALID] = '?',
535 [STACK_SPILL] = 'r',
536 [STACK_MISC] = 'm',
537 [STACK_ZERO] = '0',
538};
539
4e92024a
AS
540static void print_liveness(struct bpf_verifier_env *env,
541 enum bpf_reg_liveness live)
542{
9242b5f5 543 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
544 verbose(env, "_");
545 if (live & REG_LIVE_READ)
546 verbose(env, "r");
547 if (live & REG_LIVE_WRITTEN)
548 verbose(env, "w");
9242b5f5
AS
549 if (live & REG_LIVE_DONE)
550 verbose(env, "D");
4e92024a
AS
551}
552
f4d7e40a
AS
553static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 const struct bpf_reg_state *reg)
555{
556 struct bpf_verifier_state *cur = env->cur_state;
557
558 return cur->frame[reg->frameno];
559}
560
22dc4a0f 561static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 562{
22dc4a0f 563 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
564}
565
61bd5218 566static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 567 const struct bpf_func_state *state)
17a52670 568{
f4d7e40a 569 const struct bpf_reg_state *reg;
17a52670
AS
570 enum bpf_reg_type t;
571 int i;
572
f4d7e40a
AS
573 if (state->frameno)
574 verbose(env, " frame%d:", state->frameno);
17a52670 575 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
576 reg = &state->regs[i];
577 t = reg->type;
17a52670
AS
578 if (t == NOT_INIT)
579 continue;
4e92024a
AS
580 verbose(env, " R%d", i);
581 print_liveness(env, reg->live);
582 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
583 if (t == SCALAR_VALUE && reg->precise)
584 verbose(env, "P");
f1174f77
EC
585 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 tnum_is_const(reg->var_off)) {
587 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 588 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 589 } else {
eaa6bcb7
HL
590 if (t == PTR_TO_BTF_ID ||
591 t == PTR_TO_BTF_ID_OR_NULL ||
592 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 593 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
594 verbose(env, "(id=%d", reg->id);
595 if (reg_type_may_be_refcounted_or_null(t))
596 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 597 if (t != SCALAR_VALUE)
61bd5218 598 verbose(env, ",off=%d", reg->off);
de8f3a83 599 if (type_is_pkt_pointer(t))
61bd5218 600 verbose(env, ",r=%d", reg->range);
f1174f77
EC
601 else if (t == CONST_PTR_TO_MAP ||
602 t == PTR_TO_MAP_VALUE ||
603 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 604 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
605 reg->map_ptr->key_size,
606 reg->map_ptr->value_size);
7d1238f2
EC
607 if (tnum_is_const(reg->var_off)) {
608 /* Typically an immediate SCALAR_VALUE, but
609 * could be a pointer whose offset is too big
610 * for reg->off
611 */
61bd5218 612 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
613 } else {
614 if (reg->smin_value != reg->umin_value &&
615 reg->smin_value != S64_MIN)
61bd5218 616 verbose(env, ",smin_value=%lld",
7d1238f2
EC
617 (long long)reg->smin_value);
618 if (reg->smax_value != reg->umax_value &&
619 reg->smax_value != S64_MAX)
61bd5218 620 verbose(env, ",smax_value=%lld",
7d1238f2
EC
621 (long long)reg->smax_value);
622 if (reg->umin_value != 0)
61bd5218 623 verbose(env, ",umin_value=%llu",
7d1238f2
EC
624 (unsigned long long)reg->umin_value);
625 if (reg->umax_value != U64_MAX)
61bd5218 626 verbose(env, ",umax_value=%llu",
7d1238f2
EC
627 (unsigned long long)reg->umax_value);
628 if (!tnum_is_unknown(reg->var_off)) {
629 char tn_buf[48];
f1174f77 630
7d1238f2 631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 632 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 633 }
3f50f132
JF
634 if (reg->s32_min_value != reg->smin_value &&
635 reg->s32_min_value != S32_MIN)
636 verbose(env, ",s32_min_value=%d",
637 (int)(reg->s32_min_value));
638 if (reg->s32_max_value != reg->smax_value &&
639 reg->s32_max_value != S32_MAX)
640 verbose(env, ",s32_max_value=%d",
641 (int)(reg->s32_max_value));
642 if (reg->u32_min_value != reg->umin_value &&
643 reg->u32_min_value != U32_MIN)
644 verbose(env, ",u32_min_value=%d",
645 (int)(reg->u32_min_value));
646 if (reg->u32_max_value != reg->umax_value &&
647 reg->u32_max_value != U32_MAX)
648 verbose(env, ",u32_max_value=%d",
649 (int)(reg->u32_max_value));
f1174f77 650 }
61bd5218 651 verbose(env, ")");
f1174f77 652 }
17a52670 653 }
638f5b90 654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
655 char types_buf[BPF_REG_SIZE + 1];
656 bool valid = false;
657 int j;
658
659 for (j = 0; j < BPF_REG_SIZE; j++) {
660 if (state->stack[i].slot_type[j] != STACK_INVALID)
661 valid = true;
662 types_buf[j] = slot_type_char[
663 state->stack[i].slot_type[j]];
664 }
665 types_buf[BPF_REG_SIZE] = 0;
666 if (!valid)
667 continue;
668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
670 if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 reg = &state->stack[i].spilled_ptr;
672 t = reg->type;
673 verbose(env, "=%s", reg_type_str[t]);
674 if (t == SCALAR_VALUE && reg->precise)
675 verbose(env, "P");
676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 verbose(env, "%lld", reg->var_off.value + reg->off);
678 } else {
8efea21d 679 verbose(env, "=%s", types_buf);
b5dc0163 680 }
17a52670 681 }
fd978bf7
JS
682 if (state->acquired_refs && state->refs[0].id) {
683 verbose(env, " refs=%d", state->refs[0].id);
684 for (i = 1; i < state->acquired_refs; i++)
685 if (state->refs[i].id)
686 verbose(env, ",%d", state->refs[i].id);
687 }
61bd5218 688 verbose(env, "\n");
17a52670
AS
689}
690
84dbf350
JS
691#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
692static int copy_##NAME##_state(struct bpf_func_state *dst, \
693 const struct bpf_func_state *src) \
694{ \
695 if (!src->FIELD) \
696 return 0; \
697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
698 /* internal bug, make state invalid to reject the program */ \
699 memset(dst, 0, sizeof(*dst)); \
700 return -EFAULT; \
701 } \
702 memcpy(dst->FIELD, src->FIELD, \
703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
704 return 0; \
638f5b90 705}
fd978bf7
JS
706/* copy_reference_state() */
707COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
708/* copy_stack_state() */
709COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710#undef COPY_STATE_FN
711
712#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
713static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 bool copy_old) \
715{ \
716 u32 old_size = state->COUNT; \
717 struct bpf_##NAME##_state *new_##FIELD; \
718 int slot = size / SIZE; \
719 \
720 if (size <= old_size || !size) { \
721 if (copy_old) \
722 return 0; \
723 state->COUNT = slot * SIZE; \
724 if (!size && old_size) { \
725 kfree(state->FIELD); \
726 state->FIELD = NULL; \
727 } \
728 return 0; \
729 } \
730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 GFP_KERNEL); \
732 if (!new_##FIELD) \
733 return -ENOMEM; \
734 if (copy_old) { \
735 if (state->FIELD) \
736 memcpy(new_##FIELD, state->FIELD, \
737 sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 memset(new_##FIELD + old_size / SIZE, 0, \
739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 } \
741 state->COUNT = slot * SIZE; \
742 kfree(state->FIELD); \
743 state->FIELD = new_##FIELD; \
744 return 0; \
745}
fd978bf7
JS
746/* realloc_reference_state() */
747REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
748/* realloc_stack_state() */
749REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750#undef REALLOC_STATE_FN
638f5b90
AS
751
752/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 754 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756 * which realloc_stack_state() copies over. It points to previous
757 * bpf_verifier_state which is never reallocated.
638f5b90 758 */
fd978bf7
JS
759static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 int refs_size, bool copy_old)
638f5b90 761{
fd978bf7
JS
762 int err = realloc_reference_state(state, refs_size, copy_old);
763 if (err)
764 return err;
765 return realloc_stack_state(state, stack_size, copy_old);
766}
767
768/* Acquire a pointer id from the env and update the state->refs to include
769 * this new pointer reference.
770 * On success, returns a valid pointer id to associate with the register
771 * On failure, returns a negative errno.
638f5b90 772 */
fd978bf7 773static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 774{
fd978bf7
JS
775 struct bpf_func_state *state = cur_func(env);
776 int new_ofs = state->acquired_refs;
777 int id, err;
778
779 err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 if (err)
781 return err;
782 id = ++env->id_gen;
783 state->refs[new_ofs].id = id;
784 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 785
fd978bf7
JS
786 return id;
787}
788
789/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 790static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
791{
792 int i, last_idx;
793
fd978bf7
JS
794 last_idx = state->acquired_refs - 1;
795 for (i = 0; i < state->acquired_refs; i++) {
796 if (state->refs[i].id == ptr_id) {
797 if (last_idx && i != last_idx)
798 memcpy(&state->refs[i], &state->refs[last_idx],
799 sizeof(*state->refs));
800 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 state->acquired_refs--;
638f5b90 802 return 0;
638f5b90 803 }
638f5b90 804 }
46f8bc92 805 return -EINVAL;
fd978bf7
JS
806}
807
808static int transfer_reference_state(struct bpf_func_state *dst,
809 struct bpf_func_state *src)
810{
811 int err = realloc_reference_state(dst, src->acquired_refs, false);
812 if (err)
813 return err;
814 err = copy_reference_state(dst, src);
815 if (err)
816 return err;
638f5b90
AS
817 return 0;
818}
819
f4d7e40a
AS
820static void free_func_state(struct bpf_func_state *state)
821{
5896351e
AS
822 if (!state)
823 return;
fd978bf7 824 kfree(state->refs);
f4d7e40a
AS
825 kfree(state->stack);
826 kfree(state);
827}
828
b5dc0163
AS
829static void clear_jmp_history(struct bpf_verifier_state *state)
830{
831 kfree(state->jmp_history);
832 state->jmp_history = NULL;
833 state->jmp_history_cnt = 0;
834}
835
1969db47
AS
836static void free_verifier_state(struct bpf_verifier_state *state,
837 bool free_self)
638f5b90 838{
f4d7e40a
AS
839 int i;
840
841 for (i = 0; i <= state->curframe; i++) {
842 free_func_state(state->frame[i]);
843 state->frame[i] = NULL;
844 }
b5dc0163 845 clear_jmp_history(state);
1969db47
AS
846 if (free_self)
847 kfree(state);
638f5b90
AS
848}
849
850/* copy verifier state from src to dst growing dst stack space
851 * when necessary to accommodate larger src stack
852 */
f4d7e40a
AS
853static int copy_func_state(struct bpf_func_state *dst,
854 const struct bpf_func_state *src)
638f5b90
AS
855{
856 int err;
857
fd978bf7
JS
858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 false);
860 if (err)
861 return err;
862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 err = copy_reference_state(dst, src);
638f5b90
AS
864 if (err)
865 return err;
638f5b90
AS
866 return copy_stack_state(dst, src);
867}
868
f4d7e40a
AS
869static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 const struct bpf_verifier_state *src)
871{
872 struct bpf_func_state *dst;
b5dc0163 873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
874 int i, err;
875
b5dc0163
AS
876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 kfree(dst_state->jmp_history);
878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 if (!dst_state->jmp_history)
880 return -ENOMEM;
881 }
882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 dst_state->jmp_history_cnt = src->jmp_history_cnt;
884
f4d7e40a
AS
885 /* if dst has more stack frames then src frame, free them */
886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 free_func_state(dst_state->frame[i]);
888 dst_state->frame[i] = NULL;
889 }
979d63d5 890 dst_state->speculative = src->speculative;
f4d7e40a 891 dst_state->curframe = src->curframe;
d83525ca 892 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
893 dst_state->branches = src->branches;
894 dst_state->parent = src->parent;
b5dc0163
AS
895 dst_state->first_insn_idx = src->first_insn_idx;
896 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
897 for (i = 0; i <= src->curframe; i++) {
898 dst = dst_state->frame[i];
899 if (!dst) {
900 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 if (!dst)
902 return -ENOMEM;
903 dst_state->frame[i] = dst;
904 }
905 err = copy_func_state(dst, src->frame[i]);
906 if (err)
907 return err;
908 }
909 return 0;
910}
911
2589726d
AS
912static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913{
914 while (st) {
915 u32 br = --st->branches;
916
917 /* WARN_ON(br > 1) technically makes sense here,
918 * but see comment in push_stack(), hence:
919 */
920 WARN_ONCE((int)br < 0,
921 "BUG update_branch_counts:branches_to_explore=%d\n",
922 br);
923 if (br)
924 break;
925 st = st->parent;
926 }
927}
928
638f5b90 929static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 930 int *insn_idx, bool pop_log)
638f5b90
AS
931{
932 struct bpf_verifier_state *cur = env->cur_state;
933 struct bpf_verifier_stack_elem *elem, *head = env->head;
934 int err;
17a52670
AS
935
936 if (env->head == NULL)
638f5b90 937 return -ENOENT;
17a52670 938
638f5b90
AS
939 if (cur) {
940 err = copy_verifier_state(cur, &head->st);
941 if (err)
942 return err;
943 }
6f8a57cc
AN
944 if (pop_log)
945 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
946 if (insn_idx)
947 *insn_idx = head->insn_idx;
17a52670 948 if (prev_insn_idx)
638f5b90
AS
949 *prev_insn_idx = head->prev_insn_idx;
950 elem = head->next;
1969db47 951 free_verifier_state(&head->st, false);
638f5b90 952 kfree(head);
17a52670
AS
953 env->head = elem;
954 env->stack_size--;
638f5b90 955 return 0;
17a52670
AS
956}
957
58e2af8b 958static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
959 int insn_idx, int prev_insn_idx,
960 bool speculative)
17a52670 961{
638f5b90 962 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 963 struct bpf_verifier_stack_elem *elem;
638f5b90 964 int err;
17a52670 965
638f5b90 966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
967 if (!elem)
968 goto err;
969
17a52670
AS
970 elem->insn_idx = insn_idx;
971 elem->prev_insn_idx = prev_insn_idx;
972 elem->next = env->head;
6f8a57cc 973 elem->log_pos = env->log.len_used;
17a52670
AS
974 env->head = elem;
975 env->stack_size++;
1969db47
AS
976 err = copy_verifier_state(&elem->st, cur);
977 if (err)
978 goto err;
979d63d5 979 elem->st.speculative |= speculative;
b285fcb7
AS
980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 verbose(env, "The sequence of %d jumps is too complex.\n",
982 env->stack_size);
17a52670
AS
983 goto err;
984 }
2589726d
AS
985 if (elem->st.parent) {
986 ++elem->st.parent->branches;
987 /* WARN_ON(branches > 2) technically makes sense here,
988 * but
989 * 1. speculative states will bump 'branches' for non-branch
990 * instructions
991 * 2. is_state_visited() heuristics may decide not to create
992 * a new state for a sequence of branches and all such current
993 * and cloned states will be pointing to a single parent state
994 * which might have large 'branches' count.
995 */
996 }
17a52670
AS
997 return &elem->st;
998err:
5896351e
AS
999 free_verifier_state(env->cur_state, true);
1000 env->cur_state = NULL;
17a52670 1001 /* pop all elements and return */
6f8a57cc 1002 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1003 return NULL;
1004}
1005
1006#define CALLER_SAVED_REGS 6
1007static const int caller_saved[CALLER_SAVED_REGS] = {
1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009};
1010
f54c7898
DB
1011static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 struct bpf_reg_state *reg);
f1174f77 1013
e688c3db
AS
1014/* This helper doesn't clear reg->id */
1015static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1016{
b03c9f9f
EC
1017 reg->var_off = tnum_const(imm);
1018 reg->smin_value = (s64)imm;
1019 reg->smax_value = (s64)imm;
1020 reg->umin_value = imm;
1021 reg->umax_value = imm;
3f50f132
JF
1022
1023 reg->s32_min_value = (s32)imm;
1024 reg->s32_max_value = (s32)imm;
1025 reg->u32_min_value = (u32)imm;
1026 reg->u32_max_value = (u32)imm;
1027}
1028
e688c3db
AS
1029/* Mark the unknown part of a register (variable offset or scalar value) as
1030 * known to have the value @imm.
1031 */
1032static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033{
1034 /* Clear id, off, and union(map_ptr, range) */
1035 memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 ___mark_reg_known(reg, imm);
1038}
1039
3f50f132
JF
1040static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041{
1042 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 reg->s32_min_value = (s32)imm;
1044 reg->s32_max_value = (s32)imm;
1045 reg->u32_min_value = (u32)imm;
1046 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1047}
1048
f1174f77
EC
1049/* Mark the 'variable offset' part of a register as zero. This should be
1050 * used only on registers holding a pointer type.
1051 */
1052static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1053{
b03c9f9f 1054 __mark_reg_known(reg, 0);
f1174f77 1055}
a9789ef9 1056
cc2b14d5
AS
1057static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058{
1059 __mark_reg_known(reg, 0);
cc2b14d5
AS
1060 reg->type = SCALAR_VALUE;
1061}
1062
61bd5218
JK
1063static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1065{
1066 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1068 /* Something bad happened, let's kill all regs */
1069 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1070 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1071 return;
1072 }
1073 __mark_reg_known_zero(regs + regno);
1074}
1075
de8f3a83
DB
1076static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077{
1078 return type_is_pkt_pointer(reg->type);
1079}
1080
1081static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082{
1083 return reg_is_pkt_pointer(reg) ||
1084 reg->type == PTR_TO_PACKET_END;
1085}
1086
1087/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 enum bpf_reg_type which)
1090{
1091 /* The register can already have a range from prior markings.
1092 * This is fine as long as it hasn't been advanced from its
1093 * origin.
1094 */
1095 return reg->type == which &&
1096 reg->id == 0 &&
1097 reg->off == 0 &&
1098 tnum_equals_const(reg->var_off, 0);
1099}
1100
3f50f132
JF
1101/* Reset the min/max bounds of a register */
1102static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103{
1104 reg->smin_value = S64_MIN;
1105 reg->smax_value = S64_MAX;
1106 reg->umin_value = 0;
1107 reg->umax_value = U64_MAX;
1108
1109 reg->s32_min_value = S32_MIN;
1110 reg->s32_max_value = S32_MAX;
1111 reg->u32_min_value = 0;
1112 reg->u32_max_value = U32_MAX;
1113}
1114
1115static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116{
1117 reg->smin_value = S64_MIN;
1118 reg->smax_value = S64_MAX;
1119 reg->umin_value = 0;
1120 reg->umax_value = U64_MAX;
1121}
1122
1123static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124{
1125 reg->s32_min_value = S32_MIN;
1126 reg->s32_max_value = S32_MAX;
1127 reg->u32_min_value = 0;
1128 reg->u32_max_value = U32_MAX;
1129}
1130
1131static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132{
1133 struct tnum var32_off = tnum_subreg(reg->var_off);
1134
1135 /* min signed is max(sign bit) | min(other bits) */
1136 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 var32_off.value | (var32_off.mask & S32_MIN));
1138 /* max signed is min(sign bit) | max(other bits) */
1139 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 var32_off.value | (var32_off.mask & S32_MAX));
1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 reg->u32_max_value = min(reg->u32_max_value,
1143 (u32)(var32_off.value | var32_off.mask));
1144}
1145
1146static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1147{
1148 /* min signed is max(sign bit) | min(other bits) */
1149 reg->smin_value = max_t(s64, reg->smin_value,
1150 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 /* max signed is min(sign bit) | max(other bits) */
1152 reg->smax_value = min_t(s64, reg->smax_value,
1153 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 reg->umax_value = min(reg->umax_value,
1156 reg->var_off.value | reg->var_off.mask);
1157}
1158
3f50f132
JF
1159static void __update_reg_bounds(struct bpf_reg_state *reg)
1160{
1161 __update_reg32_bounds(reg);
1162 __update_reg64_bounds(reg);
1163}
1164
b03c9f9f 1165/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1166static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167{
1168 /* Learn sign from signed bounds.
1169 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 * are the same, so combine. This works even in the negative case, e.g.
1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 */
1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 reg->s32_min_value = reg->u32_min_value =
1175 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 return;
1179 }
1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1181 * boundary, so we must be careful.
1182 */
1183 if ((s32)reg->u32_max_value >= 0) {
1184 /* Positive. We can't learn anything from the smin, but smax
1185 * is positive, hence safe.
1186 */
1187 reg->s32_min_value = reg->u32_min_value;
1188 reg->s32_max_value = reg->u32_max_value =
1189 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 } else if ((s32)reg->u32_min_value < 0) {
1191 /* Negative. We can't learn anything from the smax, but smin
1192 * is negative, hence safe.
1193 */
1194 reg->s32_min_value = reg->u32_min_value =
1195 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 reg->s32_max_value = reg->u32_max_value;
1197 }
1198}
1199
1200static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1201{
1202 /* Learn sign from signed bounds.
1203 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 * are the same, so combine. This works even in the negative case, e.g.
1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 */
1207 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 reg->umin_value);
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 return;
1213 }
1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1215 * boundary, so we must be careful.
1216 */
1217 if ((s64)reg->umax_value >= 0) {
1218 /* Positive. We can't learn anything from the smin, but smax
1219 * is positive, hence safe.
1220 */
1221 reg->smin_value = reg->umin_value;
1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 reg->umax_value);
1224 } else if ((s64)reg->umin_value < 0) {
1225 /* Negative. We can't learn anything from the smax, but smin
1226 * is negative, hence safe.
1227 */
1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 reg->umin_value);
1230 reg->smax_value = reg->umax_value;
1231 }
1232}
1233
3f50f132
JF
1234static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235{
1236 __reg32_deduce_bounds(reg);
1237 __reg64_deduce_bounds(reg);
1238}
1239
b03c9f9f
EC
1240/* Attempts to improve var_off based on unsigned min/max information */
1241static void __reg_bound_offset(struct bpf_reg_state *reg)
1242{
3f50f132
JF
1243 struct tnum var64_off = tnum_intersect(reg->var_off,
1244 tnum_range(reg->umin_value,
1245 reg->umax_value));
1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 tnum_range(reg->u32_min_value,
1248 reg->u32_max_value));
1249
1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1251}
1252
3f50f132 1253static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1254{
3f50f132
JF
1255 reg->umin_value = reg->u32_min_value;
1256 reg->umax_value = reg->u32_max_value;
1257 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 * but must be positive otherwise set to worse case bounds
1259 * and refine later from tnum.
1260 */
3a71dc36 1261 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1262 reg->smax_value = reg->s32_max_value;
1263 else
1264 reg->smax_value = U32_MAX;
3a71dc36
JF
1265 if (reg->s32_min_value >= 0)
1266 reg->smin_value = reg->s32_min_value;
1267 else
1268 reg->smin_value = 0;
3f50f132
JF
1269}
1270
1271static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272{
1273 /* special case when 64-bit register has upper 32-bit register
1274 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 * allowing us to use 32-bit bounds directly,
1276 */
1277 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 __reg_assign_32_into_64(reg);
1279 } else {
1280 /* Otherwise the best we can do is push lower 32bit known and
1281 * unknown bits into register (var_off set from jmp logic)
1282 * then learn as much as possible from the 64-bit tnum
1283 * known and unknown bits. The previous smin/smax bounds are
1284 * invalid here because of jmp32 compare so mark them unknown
1285 * so they do not impact tnum bounds calculation.
1286 */
1287 __mark_reg64_unbounded(reg);
1288 __update_reg_bounds(reg);
1289 }
1290
1291 /* Intersecting with the old var_off might have improved our bounds
1292 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 */
1295 __reg_deduce_bounds(reg);
1296 __reg_bound_offset(reg);
1297 __update_reg_bounds(reg);
1298}
1299
1300static bool __reg64_bound_s32(s64 a)
1301{
b0270958 1302 return a > S32_MIN && a < S32_MAX;
3f50f132
JF
1303}
1304
1305static bool __reg64_bound_u32(u64 a)
1306{
1307 if (a > U32_MIN && a < U32_MAX)
1308 return true;
1309 return false;
1310}
1311
1312static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1313{
1314 __mark_reg32_unbounded(reg);
1315
b0270958 1316 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1317 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1318 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1319 }
3f50f132
JF
1320 if (__reg64_bound_u32(reg->umin_value))
1321 reg->u32_min_value = (u32)reg->umin_value;
1322 if (__reg64_bound_u32(reg->umax_value))
1323 reg->u32_max_value = (u32)reg->umax_value;
1324
1325 /* Intersecting with the old var_off might have improved our bounds
1326 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 * then new var_off is (0; 0x7f...fc) which improves our umax.
1328 */
1329 __reg_deduce_bounds(reg);
1330 __reg_bound_offset(reg);
1331 __update_reg_bounds(reg);
b03c9f9f
EC
1332}
1333
f1174f77 1334/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1335static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 struct bpf_reg_state *reg)
f1174f77 1337{
a9c676bc
AS
1338 /*
1339 * Clear type, id, off, and union(map_ptr, range) and
1340 * padding between 'type' and union
1341 */
1342 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1343 reg->type = SCALAR_VALUE;
f1174f77 1344 reg->var_off = tnum_unknown;
f4d7e40a 1345 reg->frameno = 0;
2c78ee89 1346 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1347 __mark_reg_unbounded(reg);
f1174f77
EC
1348}
1349
61bd5218
JK
1350static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1352{
1353 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1354 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1355 /* Something bad happened, let's kill all regs except FP */
1356 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1357 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1358 return;
1359 }
f54c7898 1360 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1361}
1362
f54c7898
DB
1363static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 struct bpf_reg_state *reg)
f1174f77 1365{
f54c7898 1366 __mark_reg_unknown(env, reg);
f1174f77
EC
1367 reg->type = NOT_INIT;
1368}
1369
61bd5218
JK
1370static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1372{
1373 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1374 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1375 /* Something bad happened, let's kill all regs except FP */
1376 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1377 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1378 return;
1379 }
f54c7898 1380 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1381}
1382
41c48f3a
AI
1383static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1385 enum bpf_reg_type reg_type,
1386 struct btf *btf, u32 btf_id)
41c48f3a
AI
1387{
1388 if (reg_type == SCALAR_VALUE) {
1389 mark_reg_unknown(env, regs, regno);
1390 return;
1391 }
1392 mark_reg_known_zero(env, regs, regno);
1393 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1394 regs[regno].btf = btf;
41c48f3a
AI
1395 regs[regno].btf_id = btf_id;
1396}
1397
5327ed3d 1398#define DEF_NOT_SUBREG (0)
61bd5218 1399static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1400 struct bpf_func_state *state)
17a52670 1401{
f4d7e40a 1402 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1403 int i;
1404
dc503a8a 1405 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1406 mark_reg_not_init(env, regs, i);
dc503a8a 1407 regs[i].live = REG_LIVE_NONE;
679c782d 1408 regs[i].parent = NULL;
5327ed3d 1409 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1410 }
17a52670
AS
1411
1412 /* frame pointer */
f1174f77 1413 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1414 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1415 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1416}
1417
f4d7e40a
AS
1418#define BPF_MAIN_FUNC (-1)
1419static void init_func_state(struct bpf_verifier_env *env,
1420 struct bpf_func_state *state,
1421 int callsite, int frameno, int subprogno)
1422{
1423 state->callsite = callsite;
1424 state->frameno = frameno;
1425 state->subprogno = subprogno;
1426 init_reg_state(env, state);
1427}
1428
17a52670
AS
1429enum reg_arg_type {
1430 SRC_OP, /* register is used as source operand */
1431 DST_OP, /* register is used as destination operand */
1432 DST_OP_NO_MARK /* same as above, check only, don't mark */
1433};
1434
cc8b0b92
AS
1435static int cmp_subprogs(const void *a, const void *b)
1436{
9c8105bd
JW
1437 return ((struct bpf_subprog_info *)a)->start -
1438 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1439}
1440
1441static int find_subprog(struct bpf_verifier_env *env, int off)
1442{
9c8105bd 1443 struct bpf_subprog_info *p;
cc8b0b92 1444
9c8105bd
JW
1445 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1447 if (!p)
1448 return -ENOENT;
9c8105bd 1449 return p - env->subprog_info;
cc8b0b92
AS
1450
1451}
1452
1453static int add_subprog(struct bpf_verifier_env *env, int off)
1454{
1455 int insn_cnt = env->prog->len;
1456 int ret;
1457
1458 if (off >= insn_cnt || off < 0) {
1459 verbose(env, "call to invalid destination\n");
1460 return -EINVAL;
1461 }
1462 ret = find_subprog(env, off);
1463 if (ret >= 0)
1464 return 0;
4cb3d99c 1465 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1466 verbose(env, "too many subprograms\n");
1467 return -E2BIG;
1468 }
9c8105bd
JW
1469 env->subprog_info[env->subprog_cnt++].start = off;
1470 sort(env->subprog_info, env->subprog_cnt,
1471 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1472 return 0;
1473}
1474
1475static int check_subprogs(struct bpf_verifier_env *env)
1476{
1477 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1478 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1479 struct bpf_insn *insn = env->prog->insnsi;
1480 int insn_cnt = env->prog->len;
1481
f910cefa
JW
1482 /* Add entry function. */
1483 ret = add_subprog(env, 0);
1484 if (ret < 0)
1485 return ret;
1486
cc8b0b92
AS
1487 /* determine subprog starts. The end is one before the next starts */
1488 for (i = 0; i < insn_cnt; i++) {
1489 if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 continue;
1491 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 continue;
2c78ee89
AS
1493 if (!env->bpf_capable) {
1494 verbose(env,
1495 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1496 return -EPERM;
1497 }
cc8b0b92
AS
1498 ret = add_subprog(env, i + insn[i].imm + 1);
1499 if (ret < 0)
1500 return ret;
1501 }
1502
4cb3d99c
JW
1503 /* Add a fake 'exit' subprog which could simplify subprog iteration
1504 * logic. 'subprog_cnt' should not be increased.
1505 */
1506 subprog[env->subprog_cnt].start = insn_cnt;
1507
06ee7115 1508 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1509 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1510 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1511
1512 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1513 subprog_start = subprog[cur_subprog].start;
1514 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1515 for (i = 0; i < insn_cnt; i++) {
1516 u8 code = insn[i].code;
1517
7f6e4312
MF
1518 if (code == (BPF_JMP | BPF_CALL) &&
1519 insn[i].imm == BPF_FUNC_tail_call &&
1520 insn[i].src_reg != BPF_PSEUDO_CALL)
1521 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1522 if (BPF_CLASS(code) == BPF_LD &&
1523 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 subprog[cur_subprog].has_ld_abs = true;
092ed096 1525 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1526 goto next;
1527 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 goto next;
1529 off = i + insn[i].off + 1;
1530 if (off < subprog_start || off >= subprog_end) {
1531 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 return -EINVAL;
1533 }
1534next:
1535 if (i == subprog_end - 1) {
1536 /* to avoid fall-through from one subprog into another
1537 * the last insn of the subprog should be either exit
1538 * or unconditional jump back
1539 */
1540 if (code != (BPF_JMP | BPF_EXIT) &&
1541 code != (BPF_JMP | BPF_JA)) {
1542 verbose(env, "last insn is not an exit or jmp\n");
1543 return -EINVAL;
1544 }
1545 subprog_start = subprog_end;
4cb3d99c
JW
1546 cur_subprog++;
1547 if (cur_subprog < env->subprog_cnt)
9c8105bd 1548 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1549 }
1550 }
1551 return 0;
1552}
1553
679c782d
EC
1554/* Parentage chain of this register (or stack slot) should take care of all
1555 * issues like callee-saved registers, stack slot allocation time, etc.
1556 */
f4d7e40a 1557static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1558 const struct bpf_reg_state *state,
5327ed3d 1559 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1560{
1561 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1562 int cnt = 0;
dc503a8a
EC
1563
1564 while (parent) {
1565 /* if read wasn't screened by an earlier write ... */
679c782d 1566 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1567 break;
9242b5f5
AS
1568 if (parent->live & REG_LIVE_DONE) {
1569 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 reg_type_str[parent->type],
1571 parent->var_off.value, parent->off);
1572 return -EFAULT;
1573 }
5327ed3d
JW
1574 /* The first condition is more likely to be true than the
1575 * second, checked it first.
1576 */
1577 if ((parent->live & REG_LIVE_READ) == flag ||
1578 parent->live & REG_LIVE_READ64)
25af32da
AS
1579 /* The parentage chain never changes and
1580 * this parent was already marked as LIVE_READ.
1581 * There is no need to keep walking the chain again and
1582 * keep re-marking all parents as LIVE_READ.
1583 * This case happens when the same register is read
1584 * multiple times without writes into it in-between.
5327ed3d
JW
1585 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1587 */
1588 break;
dc503a8a 1589 /* ... then we depend on parent's value */
5327ed3d
JW
1590 parent->live |= flag;
1591 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 if (flag == REG_LIVE_READ64)
1593 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1594 state = parent;
1595 parent = state->parent;
f4d7e40a 1596 writes = true;
06ee7115 1597 cnt++;
dc503a8a 1598 }
06ee7115
AS
1599
1600 if (env->longest_mark_read_walk < cnt)
1601 env->longest_mark_read_walk = cnt;
f4d7e40a 1602 return 0;
dc503a8a
EC
1603}
1604
5327ed3d
JW
1605/* This function is supposed to be used by the following 32-bit optimization
1606 * code only. It returns TRUE if the source or destination register operates
1607 * on 64-bit, otherwise return FALSE.
1608 */
1609static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1611{
1612 u8 code, class, op;
1613
1614 code = insn->code;
1615 class = BPF_CLASS(code);
1616 op = BPF_OP(code);
1617 if (class == BPF_JMP) {
1618 /* BPF_EXIT for "main" will reach here. Return TRUE
1619 * conservatively.
1620 */
1621 if (op == BPF_EXIT)
1622 return true;
1623 if (op == BPF_CALL) {
1624 /* BPF to BPF call will reach here because of marking
1625 * caller saved clobber with DST_OP_NO_MARK for which we
1626 * don't care the register def because they are anyway
1627 * marked as NOT_INIT already.
1628 */
1629 if (insn->src_reg == BPF_PSEUDO_CALL)
1630 return false;
1631 /* Helper call will reach here because of arg type
1632 * check, conservatively return TRUE.
1633 */
1634 if (t == SRC_OP)
1635 return true;
1636
1637 return false;
1638 }
1639 }
1640
1641 if (class == BPF_ALU64 || class == BPF_JMP ||
1642 /* BPF_END always use BPF_ALU class. */
1643 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 return true;
1645
1646 if (class == BPF_ALU || class == BPF_JMP32)
1647 return false;
1648
1649 if (class == BPF_LDX) {
1650 if (t != SRC_OP)
1651 return BPF_SIZE(code) == BPF_DW;
1652 /* LDX source must be ptr. */
1653 return true;
1654 }
1655
1656 if (class == BPF_STX) {
1657 if (reg->type != SCALAR_VALUE)
1658 return true;
1659 return BPF_SIZE(code) == BPF_DW;
1660 }
1661
1662 if (class == BPF_LD) {
1663 u8 mode = BPF_MODE(code);
1664
1665 /* LD_IMM64 */
1666 if (mode == BPF_IMM)
1667 return true;
1668
1669 /* Both LD_IND and LD_ABS return 32-bit data. */
1670 if (t != SRC_OP)
1671 return false;
1672
1673 /* Implicit ctx ptr. */
1674 if (regno == BPF_REG_6)
1675 return true;
1676
1677 /* Explicit source could be any width. */
1678 return true;
1679 }
1680
1681 if (class == BPF_ST)
1682 /* The only source register for BPF_ST is a ptr. */
1683 return true;
1684
1685 /* Conservatively return true at default. */
1686 return true;
1687}
1688
b325fbca
JW
1689/* Return TRUE if INSN doesn't have explicit value define. */
1690static bool insn_no_def(struct bpf_insn *insn)
1691{
1692 u8 class = BPF_CLASS(insn->code);
1693
1694 return (class == BPF_JMP || class == BPF_JMP32 ||
1695 class == BPF_STX || class == BPF_ST);
1696}
1697
1698/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1700{
1701 if (insn_no_def(insn))
1702 return false;
1703
1704 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1705}
1706
5327ed3d
JW
1707static void mark_insn_zext(struct bpf_verifier_env *env,
1708 struct bpf_reg_state *reg)
1709{
1710 s32 def_idx = reg->subreg_def;
1711
1712 if (def_idx == DEF_NOT_SUBREG)
1713 return;
1714
1715 env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 /* The dst will be zero extended, so won't be sub-register anymore. */
1717 reg->subreg_def = DEF_NOT_SUBREG;
1718}
1719
dc503a8a 1720static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1721 enum reg_arg_type t)
1722{
f4d7e40a
AS
1723 struct bpf_verifier_state *vstate = env->cur_state;
1724 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1725 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1726 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1727 bool rw64;
dc503a8a 1728
17a52670 1729 if (regno >= MAX_BPF_REG) {
61bd5218 1730 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1731 return -EINVAL;
1732 }
1733
c342dc10 1734 reg = &regs[regno];
5327ed3d 1735 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1736 if (t == SRC_OP) {
1737 /* check whether register used as source operand can be read */
c342dc10 1738 if (reg->type == NOT_INIT) {
61bd5218 1739 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1740 return -EACCES;
1741 }
679c782d 1742 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1743 if (regno == BPF_REG_FP)
1744 return 0;
1745
5327ed3d
JW
1746 if (rw64)
1747 mark_insn_zext(env, reg);
1748
1749 return mark_reg_read(env, reg, reg->parent,
1750 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1751 } else {
1752 /* check whether register used as dest operand can be written to */
1753 if (regno == BPF_REG_FP) {
61bd5218 1754 verbose(env, "frame pointer is read only\n");
17a52670
AS
1755 return -EACCES;
1756 }
c342dc10 1757 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1758 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1759 if (t == DST_OP)
61bd5218 1760 mark_reg_unknown(env, regs, regno);
17a52670
AS
1761 }
1762 return 0;
1763}
1764
b5dc0163
AS
1765/* for any branch, call, exit record the history of jmps in the given state */
1766static int push_jmp_history(struct bpf_verifier_env *env,
1767 struct bpf_verifier_state *cur)
1768{
1769 u32 cnt = cur->jmp_history_cnt;
1770 struct bpf_idx_pair *p;
1771
1772 cnt++;
1773 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 if (!p)
1775 return -ENOMEM;
1776 p[cnt - 1].idx = env->insn_idx;
1777 p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 cur->jmp_history = p;
1779 cur->jmp_history_cnt = cnt;
1780 return 0;
1781}
1782
1783/* Backtrack one insn at a time. If idx is not at the top of recorded
1784 * history then previous instruction came from straight line execution.
1785 */
1786static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 u32 *history)
1788{
1789 u32 cnt = *history;
1790
1791 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 i = st->jmp_history[cnt - 1].prev_idx;
1793 (*history)--;
1794 } else {
1795 i--;
1796 }
1797 return i;
1798}
1799
1800/* For given verifier state backtrack_insn() is called from the last insn to
1801 * the first insn. Its purpose is to compute a bitmask of registers and
1802 * stack slots that needs precision in the parent verifier state.
1803 */
1804static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 u32 *reg_mask, u64 *stack_mask)
1806{
1807 const struct bpf_insn_cbs cbs = {
1808 .cb_print = verbose,
1809 .private_data = env,
1810 };
1811 struct bpf_insn *insn = env->prog->insnsi + idx;
1812 u8 class = BPF_CLASS(insn->code);
1813 u8 opcode = BPF_OP(insn->code);
1814 u8 mode = BPF_MODE(insn->code);
1815 u32 dreg = 1u << insn->dst_reg;
1816 u32 sreg = 1u << insn->src_reg;
1817 u32 spi;
1818
1819 if (insn->code == 0)
1820 return 0;
1821 if (env->log.level & BPF_LOG_LEVEL) {
1822 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 verbose(env, "%d: ", idx);
1824 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1825 }
1826
1827 if (class == BPF_ALU || class == BPF_ALU64) {
1828 if (!(*reg_mask & dreg))
1829 return 0;
1830 if (opcode == BPF_MOV) {
1831 if (BPF_SRC(insn->code) == BPF_X) {
1832 /* dreg = sreg
1833 * dreg needs precision after this insn
1834 * sreg needs precision before this insn
1835 */
1836 *reg_mask &= ~dreg;
1837 *reg_mask |= sreg;
1838 } else {
1839 /* dreg = K
1840 * dreg needs precision after this insn.
1841 * Corresponding register is already marked
1842 * as precise=true in this verifier state.
1843 * No further markings in parent are necessary
1844 */
1845 *reg_mask &= ~dreg;
1846 }
1847 } else {
1848 if (BPF_SRC(insn->code) == BPF_X) {
1849 /* dreg += sreg
1850 * both dreg and sreg need precision
1851 * before this insn
1852 */
1853 *reg_mask |= sreg;
1854 } /* else dreg += K
1855 * dreg still needs precision before this insn
1856 */
1857 }
1858 } else if (class == BPF_LDX) {
1859 if (!(*reg_mask & dreg))
1860 return 0;
1861 *reg_mask &= ~dreg;
1862
1863 /* scalars can only be spilled into stack w/o losing precision.
1864 * Load from any other memory can be zero extended.
1865 * The desire to keep that precision is already indicated
1866 * by 'precise' mark in corresponding register of this state.
1867 * No further tracking necessary.
1868 */
1869 if (insn->src_reg != BPF_REG_FP)
1870 return 0;
1871 if (BPF_SIZE(insn->code) != BPF_DW)
1872 return 0;
1873
1874 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 * that [fp - off] slot contains scalar that needs to be
1876 * tracked with precision
1877 */
1878 spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 if (spi >= 64) {
1880 verbose(env, "BUG spi %d\n", spi);
1881 WARN_ONCE(1, "verifier backtracking bug");
1882 return -EFAULT;
1883 }
1884 *stack_mask |= 1ull << spi;
b3b50f05 1885 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1886 if (*reg_mask & dreg)
b3b50f05 1887 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1888 * to access memory. It means backtracking
1889 * encountered a case of pointer subtraction.
1890 */
1891 return -ENOTSUPP;
1892 /* scalars can only be spilled into stack */
1893 if (insn->dst_reg != BPF_REG_FP)
1894 return 0;
1895 if (BPF_SIZE(insn->code) != BPF_DW)
1896 return 0;
1897 spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 if (spi >= 64) {
1899 verbose(env, "BUG spi %d\n", spi);
1900 WARN_ONCE(1, "verifier backtracking bug");
1901 return -EFAULT;
1902 }
1903 if (!(*stack_mask & (1ull << spi)))
1904 return 0;
1905 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1906 if (class == BPF_STX)
1907 *reg_mask |= sreg;
b5dc0163
AS
1908 } else if (class == BPF_JMP || class == BPF_JMP32) {
1909 if (opcode == BPF_CALL) {
1910 if (insn->src_reg == BPF_PSEUDO_CALL)
1911 return -ENOTSUPP;
1912 /* regular helper call sets R0 */
1913 *reg_mask &= ~1;
1914 if (*reg_mask & 0x3f) {
1915 /* if backtracing was looking for registers R1-R5
1916 * they should have been found already.
1917 */
1918 verbose(env, "BUG regs %x\n", *reg_mask);
1919 WARN_ONCE(1, "verifier backtracking bug");
1920 return -EFAULT;
1921 }
1922 } else if (opcode == BPF_EXIT) {
1923 return -ENOTSUPP;
1924 }
1925 } else if (class == BPF_LD) {
1926 if (!(*reg_mask & dreg))
1927 return 0;
1928 *reg_mask &= ~dreg;
1929 /* It's ld_imm64 or ld_abs or ld_ind.
1930 * For ld_imm64 no further tracking of precision
1931 * into parent is necessary
1932 */
1933 if (mode == BPF_IND || mode == BPF_ABS)
1934 /* to be analyzed */
1935 return -ENOTSUPP;
b5dc0163
AS
1936 }
1937 return 0;
1938}
1939
1940/* the scalar precision tracking algorithm:
1941 * . at the start all registers have precise=false.
1942 * . scalar ranges are tracked as normal through alu and jmp insns.
1943 * . once precise value of the scalar register is used in:
1944 * . ptr + scalar alu
1945 * . if (scalar cond K|scalar)
1946 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1947 * backtrack through the verifier states and mark all registers and
1948 * stack slots with spilled constants that these scalar regisers
1949 * should be precise.
1950 * . during state pruning two registers (or spilled stack slots)
1951 * are equivalent if both are not precise.
1952 *
1953 * Note the verifier cannot simply walk register parentage chain,
1954 * since many different registers and stack slots could have been
1955 * used to compute single precise scalar.
1956 *
1957 * The approach of starting with precise=true for all registers and then
1958 * backtrack to mark a register as not precise when the verifier detects
1959 * that program doesn't care about specific value (e.g., when helper
1960 * takes register as ARG_ANYTHING parameter) is not safe.
1961 *
1962 * It's ok to walk single parentage chain of the verifier states.
1963 * It's possible that this backtracking will go all the way till 1st insn.
1964 * All other branches will be explored for needing precision later.
1965 *
1966 * The backtracking needs to deal with cases like:
1967 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968 * r9 -= r8
1969 * r5 = r9
1970 * if r5 > 0x79f goto pc+7
1971 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972 * r5 += 1
1973 * ...
1974 * call bpf_perf_event_output#25
1975 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1976 *
1977 * and this case:
1978 * r6 = 1
1979 * call foo // uses callee's r6 inside to compute r0
1980 * r0 += r6
1981 * if r0 == 0 goto
1982 *
1983 * to track above reg_mask/stack_mask needs to be independent for each frame.
1984 *
1985 * Also if parent's curframe > frame where backtracking started,
1986 * the verifier need to mark registers in both frames, otherwise callees
1987 * may incorrectly prune callers. This is similar to
1988 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1989 *
1990 * For now backtracking falls back into conservative marking.
1991 */
1992static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 struct bpf_verifier_state *st)
1994{
1995 struct bpf_func_state *func;
1996 struct bpf_reg_state *reg;
1997 int i, j;
1998
1999 /* big hammer: mark all scalars precise in this path.
2000 * pop_stack may still get !precise scalars.
2001 */
2002 for (; st; st = st->parent)
2003 for (i = 0; i <= st->curframe; i++) {
2004 func = st->frame[i];
2005 for (j = 0; j < BPF_REG_FP; j++) {
2006 reg = &func->regs[j];
2007 if (reg->type != SCALAR_VALUE)
2008 continue;
2009 reg->precise = true;
2010 }
2011 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 continue;
2014 reg = &func->stack[j].spilled_ptr;
2015 if (reg->type != SCALAR_VALUE)
2016 continue;
2017 reg->precise = true;
2018 }
2019 }
2020}
2021
a3ce685d
AS
2022static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 int spi)
b5dc0163
AS
2024{
2025 struct bpf_verifier_state *st = env->cur_state;
2026 int first_idx = st->first_insn_idx;
2027 int last_idx = env->insn_idx;
2028 struct bpf_func_state *func;
2029 struct bpf_reg_state *reg;
a3ce685d
AS
2030 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2032 bool skip_first = true;
a3ce685d 2033 bool new_marks = false;
b5dc0163
AS
2034 int i, err;
2035
2c78ee89 2036 if (!env->bpf_capable)
b5dc0163
AS
2037 return 0;
2038
2039 func = st->frame[st->curframe];
a3ce685d
AS
2040 if (regno >= 0) {
2041 reg = &func->regs[regno];
2042 if (reg->type != SCALAR_VALUE) {
2043 WARN_ONCE(1, "backtracing misuse");
2044 return -EFAULT;
2045 }
2046 if (!reg->precise)
2047 new_marks = true;
2048 else
2049 reg_mask = 0;
2050 reg->precise = true;
b5dc0163 2051 }
b5dc0163 2052
a3ce685d
AS
2053 while (spi >= 0) {
2054 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 stack_mask = 0;
2056 break;
2057 }
2058 reg = &func->stack[spi].spilled_ptr;
2059 if (reg->type != SCALAR_VALUE) {
2060 stack_mask = 0;
2061 break;
2062 }
2063 if (!reg->precise)
2064 new_marks = true;
2065 else
2066 stack_mask = 0;
2067 reg->precise = true;
2068 break;
2069 }
2070
2071 if (!new_marks)
2072 return 0;
2073 if (!reg_mask && !stack_mask)
2074 return 0;
b5dc0163
AS
2075 for (;;) {
2076 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2077 u32 history = st->jmp_history_cnt;
2078
2079 if (env->log.level & BPF_LOG_LEVEL)
2080 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 for (i = last_idx;;) {
2082 if (skip_first) {
2083 err = 0;
2084 skip_first = false;
2085 } else {
2086 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2087 }
2088 if (err == -ENOTSUPP) {
2089 mark_all_scalars_precise(env, st);
2090 return 0;
2091 } else if (err) {
2092 return err;
2093 }
2094 if (!reg_mask && !stack_mask)
2095 /* Found assignment(s) into tracked register in this state.
2096 * Since this state is already marked, just return.
2097 * Nothing to be tracked further in the parent state.
2098 */
2099 return 0;
2100 if (i == first_idx)
2101 break;
2102 i = get_prev_insn_idx(st, i, &history);
2103 if (i >= env->prog->len) {
2104 /* This can happen if backtracking reached insn 0
2105 * and there are still reg_mask or stack_mask
2106 * to backtrack.
2107 * It means the backtracking missed the spot where
2108 * particular register was initialized with a constant.
2109 */
2110 verbose(env, "BUG backtracking idx %d\n", i);
2111 WARN_ONCE(1, "verifier backtracking bug");
2112 return -EFAULT;
2113 }
2114 }
2115 st = st->parent;
2116 if (!st)
2117 break;
2118
a3ce685d 2119 new_marks = false;
b5dc0163
AS
2120 func = st->frame[st->curframe];
2121 bitmap_from_u64(mask, reg_mask);
2122 for_each_set_bit(i, mask, 32) {
2123 reg = &func->regs[i];
a3ce685d
AS
2124 if (reg->type != SCALAR_VALUE) {
2125 reg_mask &= ~(1u << i);
b5dc0163 2126 continue;
a3ce685d 2127 }
b5dc0163
AS
2128 if (!reg->precise)
2129 new_marks = true;
2130 reg->precise = true;
2131 }
2132
2133 bitmap_from_u64(mask, stack_mask);
2134 for_each_set_bit(i, mask, 64) {
2135 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2136 /* the sequence of instructions:
2137 * 2: (bf) r3 = r10
2138 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 * doesn't contain jmps. It's backtracked
2141 * as a single block.
2142 * During backtracking insn 3 is not recognized as
2143 * stack access, so at the end of backtracking
2144 * stack slot fp-8 is still marked in stack_mask.
2145 * However the parent state may not have accessed
2146 * fp-8 and it's "unallocated" stack space.
2147 * In such case fallback to conservative.
b5dc0163 2148 */
2339cd6c
AS
2149 mark_all_scalars_precise(env, st);
2150 return 0;
b5dc0163
AS
2151 }
2152
a3ce685d
AS
2153 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 stack_mask &= ~(1ull << i);
b5dc0163 2155 continue;
a3ce685d 2156 }
b5dc0163 2157 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2158 if (reg->type != SCALAR_VALUE) {
2159 stack_mask &= ~(1ull << i);
b5dc0163 2160 continue;
a3ce685d 2161 }
b5dc0163
AS
2162 if (!reg->precise)
2163 new_marks = true;
2164 reg->precise = true;
2165 }
2166 if (env->log.level & BPF_LOG_LEVEL) {
2167 print_verifier_state(env, func);
2168 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 new_marks ? "didn't have" : "already had",
2170 reg_mask, stack_mask);
2171 }
2172
a3ce685d
AS
2173 if (!reg_mask && !stack_mask)
2174 break;
b5dc0163
AS
2175 if (!new_marks)
2176 break;
2177
2178 last_idx = st->last_insn_idx;
2179 first_idx = st->first_insn_idx;
2180 }
2181 return 0;
2182}
2183
a3ce685d
AS
2184static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2185{
2186 return __mark_chain_precision(env, regno, -1);
2187}
2188
2189static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2190{
2191 return __mark_chain_precision(env, -1, spi);
2192}
b5dc0163 2193
1be7f75d
AS
2194static bool is_spillable_regtype(enum bpf_reg_type type)
2195{
2196 switch (type) {
2197 case PTR_TO_MAP_VALUE:
2198 case PTR_TO_MAP_VALUE_OR_NULL:
2199 case PTR_TO_STACK:
2200 case PTR_TO_CTX:
969bf05e 2201 case PTR_TO_PACKET:
de8f3a83 2202 case PTR_TO_PACKET_META:
969bf05e 2203 case PTR_TO_PACKET_END:
d58e468b 2204 case PTR_TO_FLOW_KEYS:
1be7f75d 2205 case CONST_PTR_TO_MAP:
c64b7983
JS
2206 case PTR_TO_SOCKET:
2207 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2208 case PTR_TO_SOCK_COMMON:
2209 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2210 case PTR_TO_TCP_SOCK:
2211 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2212 case PTR_TO_XDP_SOCK:
65726b5b 2213 case PTR_TO_BTF_ID:
b121b341 2214 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2215 case PTR_TO_RDONLY_BUF:
2216 case PTR_TO_RDONLY_BUF_OR_NULL:
2217 case PTR_TO_RDWR_BUF:
2218 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2219 case PTR_TO_PERCPU_BTF_ID:
1be7f75d
AS
2220 return true;
2221 default:
2222 return false;
2223 }
2224}
2225
cc2b14d5
AS
2226/* Does this register contain a constant zero? */
2227static bool register_is_null(struct bpf_reg_state *reg)
2228{
2229 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2230}
2231
f7cf25b2
AS
2232static bool register_is_const(struct bpf_reg_state *reg)
2233{
2234 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2235}
2236
5689d49b
YS
2237static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2238{
2239 return tnum_is_unknown(reg->var_off) &&
2240 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2241 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2242 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2243 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2244}
2245
2246static bool register_is_bounded(struct bpf_reg_state *reg)
2247{
2248 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2249}
2250
6e7e63cb
JH
2251static bool __is_pointer_value(bool allow_ptr_leaks,
2252 const struct bpf_reg_state *reg)
2253{
2254 if (allow_ptr_leaks)
2255 return false;
2256
2257 return reg->type != SCALAR_VALUE;
2258}
2259
f7cf25b2
AS
2260static void save_register_state(struct bpf_func_state *state,
2261 int spi, struct bpf_reg_state *reg)
2262{
2263 int i;
2264
2265 state->stack[spi].spilled_ptr = *reg;
2266 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2267
2268 for (i = 0; i < BPF_REG_SIZE; i++)
2269 state->stack[spi].slot_type[i] = STACK_SPILL;
2270}
2271
17a52670
AS
2272/* check_stack_read/write functions track spill/fill of registers,
2273 * stack boundary and alignment are checked in check_mem_access()
2274 */
61bd5218 2275static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2276 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2277 int off, int size, int value_regno, int insn_idx)
17a52670 2278{
f4d7e40a 2279 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2280 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2281 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2282 struct bpf_reg_state *reg = NULL;
638f5b90 2283
f4d7e40a 2284 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2285 state->acquired_refs, true);
638f5b90
AS
2286 if (err)
2287 return err;
9c399760
AS
2288 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2289 * so it's aligned access and [off, off + size) are within stack limits
2290 */
638f5b90
AS
2291 if (!env->allow_ptr_leaks &&
2292 state->stack[spi].slot_type[0] == STACK_SPILL &&
2293 size != BPF_REG_SIZE) {
2294 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2295 return -EACCES;
2296 }
17a52670 2297
f4d7e40a 2298 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2299 if (value_regno >= 0)
2300 reg = &cur->regs[value_regno];
17a52670 2301
5689d49b 2302 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2c78ee89 2303 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2304 if (dst_reg != BPF_REG_FP) {
2305 /* The backtracking logic can only recognize explicit
2306 * stack slot address like [fp - 8]. Other spill of
2307 * scalar via different register has to be conervative.
2308 * Backtrack from here and mark all registers as precise
2309 * that contributed into 'reg' being a constant.
2310 */
2311 err = mark_chain_precision(env, value_regno);
2312 if (err)
2313 return err;
2314 }
f7cf25b2
AS
2315 save_register_state(state, spi, reg);
2316 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2317 /* register containing pointer is being spilled into stack */
9c399760 2318 if (size != BPF_REG_SIZE) {
f7cf25b2 2319 verbose_linfo(env, insn_idx, "; ");
61bd5218 2320 verbose(env, "invalid size of register spill\n");
17a52670
AS
2321 return -EACCES;
2322 }
2323
f7cf25b2 2324 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2325 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2326 return -EINVAL;
2327 }
2328
2c78ee89 2329 if (!env->bypass_spec_v4) {
f7cf25b2 2330 bool sanitize = false;
17a52670 2331
f7cf25b2
AS
2332 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2333 register_is_const(&state->stack[spi].spilled_ptr))
2334 sanitize = true;
2335 for (i = 0; i < BPF_REG_SIZE; i++)
2336 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2337 sanitize = true;
2338 break;
2339 }
2340 if (sanitize) {
af86ca4e
AS
2341 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2342 int soff = (-spi - 1) * BPF_REG_SIZE;
2343
2344 /* detected reuse of integer stack slot with a pointer
2345 * which means either llvm is reusing stack slot or
2346 * an attacker is trying to exploit CVE-2018-3639
2347 * (speculative store bypass)
2348 * Have to sanitize that slot with preemptive
2349 * store of zero.
2350 */
2351 if (*poff && *poff != soff) {
2352 /* disallow programs where single insn stores
2353 * into two different stack slots, since verifier
2354 * cannot sanitize them
2355 */
2356 verbose(env,
2357 "insn %d cannot access two stack slots fp%d and fp%d",
2358 insn_idx, *poff, soff);
2359 return -EINVAL;
2360 }
2361 *poff = soff;
2362 }
af86ca4e 2363 }
f7cf25b2 2364 save_register_state(state, spi, reg);
9c399760 2365 } else {
cc2b14d5
AS
2366 u8 type = STACK_MISC;
2367
679c782d
EC
2368 /* regular write of data into stack destroys any spilled ptr */
2369 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2370 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2371 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2372 for (i = 0; i < BPF_REG_SIZE; i++)
2373 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2374
cc2b14d5
AS
2375 /* only mark the slot as written if all 8 bytes were written
2376 * otherwise read propagation may incorrectly stop too soon
2377 * when stack slots are partially written.
2378 * This heuristic means that read propagation will be
2379 * conservative, since it will add reg_live_read marks
2380 * to stack slots all the way to first state when programs
2381 * writes+reads less than 8 bytes
2382 */
2383 if (size == BPF_REG_SIZE)
2384 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2385
2386 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2387 if (reg && register_is_null(reg)) {
2388 /* backtracking doesn't work for STACK_ZERO yet. */
2389 err = mark_chain_precision(env, value_regno);
2390 if (err)
2391 return err;
cc2b14d5 2392 type = STACK_ZERO;
b5dc0163 2393 }
cc2b14d5 2394
0bae2d4d 2395 /* Mark slots affected by this stack write. */
9c399760 2396 for (i = 0; i < size; i++)
638f5b90 2397 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2398 type;
17a52670
AS
2399 }
2400 return 0;
2401}
2402
61bd5218 2403static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2404 struct bpf_func_state *reg_state /* func where register points to */,
2405 int off, int size, int value_regno)
17a52670 2406{
f4d7e40a
AS
2407 struct bpf_verifier_state *vstate = env->cur_state;
2408 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2409 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2410 struct bpf_reg_state *reg;
638f5b90 2411 u8 *stype;
17a52670 2412
f4d7e40a 2413 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2414 verbose(env, "invalid read from stack off %d+0 size %d\n",
2415 off, size);
2416 return -EACCES;
2417 }
f4d7e40a 2418 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2419 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2420
638f5b90 2421 if (stype[0] == STACK_SPILL) {
9c399760 2422 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2423 if (reg->type != SCALAR_VALUE) {
2424 verbose_linfo(env, env->insn_idx, "; ");
2425 verbose(env, "invalid size of register fill\n");
2426 return -EACCES;
2427 }
2428 if (value_regno >= 0) {
2429 mark_reg_unknown(env, state->regs, value_regno);
2430 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2431 }
2432 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2433 return 0;
17a52670 2434 }
9c399760 2435 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2436 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2437 verbose(env, "corrupted spill memory\n");
17a52670
AS
2438 return -EACCES;
2439 }
2440 }
2441
dc503a8a 2442 if (value_regno >= 0) {
17a52670 2443 /* restore register state from stack */
f7cf25b2 2444 state->regs[value_regno] = *reg;
2f18f62e
AS
2445 /* mark reg as written since spilled pointer state likely
2446 * has its liveness marks cleared by is_state_visited()
2447 * which resets stack/reg liveness for state transitions
2448 */
2449 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2450 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2451 /* If value_regno==-1, the caller is asking us whether
2452 * it is acceptable to use this value as a SCALAR_VALUE
2453 * (e.g. for XADD).
2454 * We must not allow unprivileged callers to do that
2455 * with spilled pointers.
2456 */
2457 verbose(env, "leaking pointer from stack off %d\n",
2458 off);
2459 return -EACCES;
dc503a8a 2460 }
f7cf25b2 2461 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2462 } else {
cc2b14d5
AS
2463 int zeros = 0;
2464
17a52670 2465 for (i = 0; i < size; i++) {
cc2b14d5
AS
2466 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2467 continue;
2468 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2469 zeros++;
2470 continue;
17a52670 2471 }
cc2b14d5
AS
2472 verbose(env, "invalid read from stack off %d+%d size %d\n",
2473 off, i, size);
2474 return -EACCES;
2475 }
f7cf25b2 2476 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2477 if (value_regno >= 0) {
2478 if (zeros == size) {
2479 /* any size read into register is zero extended,
2480 * so the whole register == const_zero
2481 */
2482 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2483 /* backtracking doesn't support STACK_ZERO yet,
2484 * so mark it precise here, so that later
2485 * backtracking can stop here.
2486 * Backtracking may not need this if this register
2487 * doesn't participate in pointer adjustment.
2488 * Forward propagation of precise flag is not
2489 * necessary either. This mark is only to stop
2490 * backtracking. Any register that contributed
2491 * to const 0 was marked precise before spill.
2492 */
2493 state->regs[value_regno].precise = true;
cc2b14d5
AS
2494 } else {
2495 /* have read misc data from the stack */
2496 mark_reg_unknown(env, state->regs, value_regno);
2497 }
2498 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2499 }
17a52670 2500 }
f7cf25b2 2501 return 0;
17a52670
AS
2502}
2503
e4298d25
DB
2504static int check_stack_access(struct bpf_verifier_env *env,
2505 const struct bpf_reg_state *reg,
2506 int off, int size)
2507{
2508 /* Stack accesses must be at a fixed offset, so that we
2509 * can determine what type of data were returned. See
2510 * check_stack_read().
2511 */
2512 if (!tnum_is_const(reg->var_off)) {
2513 char tn_buf[48];
2514
2515 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2516 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2517 tn_buf, off, size);
2518 return -EACCES;
2519 }
2520
2521 if (off >= 0 || off < -MAX_BPF_STACK) {
2522 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2523 return -EACCES;
2524 }
2525
2526 return 0;
2527}
2528
591fe988
DB
2529static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2530 int off, int size, enum bpf_access_type type)
2531{
2532 struct bpf_reg_state *regs = cur_regs(env);
2533 struct bpf_map *map = regs[regno].map_ptr;
2534 u32 cap = bpf_map_flags_to_cap(map);
2535
2536 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2537 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2538 map->value_size, off, size);
2539 return -EACCES;
2540 }
2541
2542 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2543 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2544 map->value_size, off, size);
2545 return -EACCES;
2546 }
2547
2548 return 0;
2549}
2550
457f4436
AN
2551/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2552static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2553 int off, int size, u32 mem_size,
2554 bool zero_size_allowed)
17a52670 2555{
457f4436
AN
2556 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2557 struct bpf_reg_state *reg;
2558
2559 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2560 return 0;
17a52670 2561
457f4436
AN
2562 reg = &cur_regs(env)[regno];
2563 switch (reg->type) {
2564 case PTR_TO_MAP_VALUE:
61bd5218 2565 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2566 mem_size, off, size);
2567 break;
2568 case PTR_TO_PACKET:
2569 case PTR_TO_PACKET_META:
2570 case PTR_TO_PACKET_END:
2571 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2572 off, size, regno, reg->id, off, mem_size);
2573 break;
2574 case PTR_TO_MEM:
2575 default:
2576 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2577 mem_size, off, size);
17a52670 2578 }
457f4436
AN
2579
2580 return -EACCES;
17a52670
AS
2581}
2582
457f4436
AN
2583/* check read/write into a memory region with possible variable offset */
2584static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2585 int off, int size, u32 mem_size,
2586 bool zero_size_allowed)
dbcfe5f7 2587{
f4d7e40a
AS
2588 struct bpf_verifier_state *vstate = env->cur_state;
2589 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2590 struct bpf_reg_state *reg = &state->regs[regno];
2591 int err;
2592
457f4436 2593 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2594 * need to try adding each of min_value and max_value to off
2595 * to make sure our theoretical access will be safe.
dbcfe5f7 2596 */
06ee7115 2597 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2598 print_verifier_state(env, state);
b7137c4e 2599
dbcfe5f7
GB
2600 /* The minimum value is only important with signed
2601 * comparisons where we can't assume the floor of a
2602 * value is 0. If we are using signed variables for our
2603 * index'es we need to make sure that whatever we use
2604 * will have a set floor within our range.
2605 */
b7137c4e
DB
2606 if (reg->smin_value < 0 &&
2607 (reg->smin_value == S64_MIN ||
2608 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2609 reg->smin_value + off < 0)) {
61bd5218 2610 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2611 regno);
2612 return -EACCES;
2613 }
457f4436
AN
2614 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2615 mem_size, zero_size_allowed);
dbcfe5f7 2616 if (err) {
457f4436 2617 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2618 regno);
dbcfe5f7
GB
2619 return err;
2620 }
2621
b03c9f9f
EC
2622 /* If we haven't set a max value then we need to bail since we can't be
2623 * sure we won't do bad things.
2624 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2625 */
b03c9f9f 2626 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2627 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2628 regno);
2629 return -EACCES;
2630 }
457f4436
AN
2631 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2632 mem_size, zero_size_allowed);
2633 if (err) {
2634 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2635 regno);
457f4436
AN
2636 return err;
2637 }
2638
2639 return 0;
2640}
d83525ca 2641
457f4436
AN
2642/* check read/write into a map element with possible variable offset */
2643static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2644 int off, int size, bool zero_size_allowed)
2645{
2646 struct bpf_verifier_state *vstate = env->cur_state;
2647 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2648 struct bpf_reg_state *reg = &state->regs[regno];
2649 struct bpf_map *map = reg->map_ptr;
2650 int err;
2651
2652 err = check_mem_region_access(env, regno, off, size, map->value_size,
2653 zero_size_allowed);
2654 if (err)
2655 return err;
2656
2657 if (map_value_has_spin_lock(map)) {
2658 u32 lock = map->spin_lock_off;
d83525ca
AS
2659
2660 /* if any part of struct bpf_spin_lock can be touched by
2661 * load/store reject this program.
2662 * To check that [x1, x2) overlaps with [y1, y2)
2663 * it is sufficient to check x1 < y2 && y1 < x2.
2664 */
2665 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2666 lock < reg->umax_value + off + size) {
2667 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2668 return -EACCES;
2669 }
2670 }
f1174f77 2671 return err;
dbcfe5f7
GB
2672}
2673
969bf05e
AS
2674#define MAX_PACKET_OFF 0xffff
2675
7e40781c
UP
2676static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2677{
3aac1ead 2678 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
2679}
2680
58e2af8b 2681static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2682 const struct bpf_call_arg_meta *meta,
2683 enum bpf_access_type t)
4acf6c0b 2684{
7e40781c
UP
2685 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2686
2687 switch (prog_type) {
5d66fa7d 2688 /* Program types only with direct read access go here! */
3a0af8fd
TG
2689 case BPF_PROG_TYPE_LWT_IN:
2690 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2691 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2692 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2693 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2694 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2695 if (t == BPF_WRITE)
2696 return false;
8731745e 2697 fallthrough;
5d66fa7d
DB
2698
2699 /* Program types with direct read + write access go here! */
36bbef52
DB
2700 case BPF_PROG_TYPE_SCHED_CLS:
2701 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2702 case BPF_PROG_TYPE_XDP:
3a0af8fd 2703 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2704 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2705 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2706 if (meta)
2707 return meta->pkt_access;
2708
2709 env->seen_direct_write = true;
4acf6c0b 2710 return true;
0d01da6a
SF
2711
2712 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2713 if (t == BPF_WRITE)
2714 env->seen_direct_write = true;
2715
2716 return true;
2717
4acf6c0b
BB
2718 default:
2719 return false;
2720 }
2721}
2722
f1174f77 2723static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2724 int size, bool zero_size_allowed)
f1174f77 2725{
638f5b90 2726 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2727 struct bpf_reg_state *reg = &regs[regno];
2728 int err;
2729
2730 /* We may have added a variable offset to the packet pointer; but any
2731 * reg->range we have comes after that. We are only checking the fixed
2732 * offset.
2733 */
2734
2735 /* We don't allow negative numbers, because we aren't tracking enough
2736 * detail to prove they're safe.
2737 */
b03c9f9f 2738 if (reg->smin_value < 0) {
61bd5218 2739 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2740 regno);
2741 return -EACCES;
2742 }
6d94e741
AS
2743
2744 err = reg->range < 0 ? -EINVAL :
2745 __check_mem_access(env, regno, off, size, reg->range,
457f4436 2746 zero_size_allowed);
f1174f77 2747 if (err) {
61bd5218 2748 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2749 return err;
2750 }
e647815a 2751
457f4436 2752 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2753 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2754 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2755 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2756 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2757 */
2758 env->prog->aux->max_pkt_offset =
2759 max_t(u32, env->prog->aux->max_pkt_offset,
2760 off + reg->umax_value + size - 1);
2761
f1174f77
EC
2762 return err;
2763}
2764
2765/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2766static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 2767 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 2768 struct btf **btf, u32 *btf_id)
17a52670 2769{
f96da094
DB
2770 struct bpf_insn_access_aux info = {
2771 .reg_type = *reg_type,
9e15db66 2772 .log = &env->log,
f96da094 2773 };
31fd8581 2774
4f9218aa 2775 if (env->ops->is_valid_access &&
5e43f899 2776 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2777 /* A non zero info.ctx_field_size indicates that this field is a
2778 * candidate for later verifier transformation to load the whole
2779 * field and then apply a mask when accessed with a narrower
2780 * access than actual ctx access size. A zero info.ctx_field_size
2781 * will only allow for whole field access and rejects any other
2782 * type of narrower access.
31fd8581 2783 */
23994631 2784 *reg_type = info.reg_type;
31fd8581 2785
22dc4a0f
AN
2786 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2787 *btf = info.btf;
9e15db66 2788 *btf_id = info.btf_id;
22dc4a0f 2789 } else {
9e15db66 2790 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 2791 }
32bbe007
AS
2792 /* remember the offset of last byte accessed in ctx */
2793 if (env->prog->aux->max_ctx_offset < off + size)
2794 env->prog->aux->max_ctx_offset = off + size;
17a52670 2795 return 0;
32bbe007 2796 }
17a52670 2797
61bd5218 2798 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2799 return -EACCES;
2800}
2801
d58e468b
PP
2802static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2803 int size)
2804{
2805 if (size < 0 || off < 0 ||
2806 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2807 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2808 off, size);
2809 return -EACCES;
2810 }
2811 return 0;
2812}
2813
5f456649
MKL
2814static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2815 u32 regno, int off, int size,
2816 enum bpf_access_type t)
c64b7983
JS
2817{
2818 struct bpf_reg_state *regs = cur_regs(env);
2819 struct bpf_reg_state *reg = &regs[regno];
5f456649 2820 struct bpf_insn_access_aux info = {};
46f8bc92 2821 bool valid;
c64b7983
JS
2822
2823 if (reg->smin_value < 0) {
2824 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2825 regno);
2826 return -EACCES;
2827 }
2828
46f8bc92
MKL
2829 switch (reg->type) {
2830 case PTR_TO_SOCK_COMMON:
2831 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2832 break;
2833 case PTR_TO_SOCKET:
2834 valid = bpf_sock_is_valid_access(off, size, t, &info);
2835 break;
655a51e5
MKL
2836 case PTR_TO_TCP_SOCK:
2837 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2838 break;
fada7fdc
JL
2839 case PTR_TO_XDP_SOCK:
2840 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2841 break;
46f8bc92
MKL
2842 default:
2843 valid = false;
c64b7983
JS
2844 }
2845
5f456649 2846
46f8bc92
MKL
2847 if (valid) {
2848 env->insn_aux_data[insn_idx].ctx_field_size =
2849 info.ctx_field_size;
2850 return 0;
2851 }
2852
2853 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2854 regno, reg_type_str[reg->type], off, size);
2855
2856 return -EACCES;
c64b7983
JS
2857}
2858
2a159c6f
DB
2859static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2860{
2861 return cur_regs(env) + regno;
2862}
2863
4cabc5b1
DB
2864static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2865{
2a159c6f 2866 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2867}
2868
f37a8cb8
DB
2869static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2870{
2a159c6f 2871 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2872
46f8bc92
MKL
2873 return reg->type == PTR_TO_CTX;
2874}
2875
2876static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2877{
2878 const struct bpf_reg_state *reg = reg_state(env, regno);
2879
2880 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2881}
2882
ca369602
DB
2883static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2884{
2a159c6f 2885 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2886
2887 return type_is_pkt_pointer(reg->type);
2888}
2889
4b5defde
DB
2890static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2891{
2892 const struct bpf_reg_state *reg = reg_state(env, regno);
2893
2894 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2895 return reg->type == PTR_TO_FLOW_KEYS;
2896}
2897
61bd5218
JK
2898static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2899 const struct bpf_reg_state *reg,
d1174416 2900 int off, int size, bool strict)
969bf05e 2901{
f1174f77 2902 struct tnum reg_off;
e07b98d9 2903 int ip_align;
d1174416
DM
2904
2905 /* Byte size accesses are always allowed. */
2906 if (!strict || size == 1)
2907 return 0;
2908
e4eda884
DM
2909 /* For platforms that do not have a Kconfig enabling
2910 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2911 * NET_IP_ALIGN is universally set to '2'. And on platforms
2912 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2913 * to this code only in strict mode where we want to emulate
2914 * the NET_IP_ALIGN==2 checking. Therefore use an
2915 * unconditional IP align value of '2'.
e07b98d9 2916 */
e4eda884 2917 ip_align = 2;
f1174f77
EC
2918
2919 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2920 if (!tnum_is_aligned(reg_off, size)) {
2921 char tn_buf[48];
2922
2923 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2924 verbose(env,
2925 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2926 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2927 return -EACCES;
2928 }
79adffcd 2929
969bf05e
AS
2930 return 0;
2931}
2932
61bd5218
JK
2933static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2934 const struct bpf_reg_state *reg,
f1174f77
EC
2935 const char *pointer_desc,
2936 int off, int size, bool strict)
79adffcd 2937{
f1174f77
EC
2938 struct tnum reg_off;
2939
2940 /* Byte size accesses are always allowed. */
2941 if (!strict || size == 1)
2942 return 0;
2943
2944 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2945 if (!tnum_is_aligned(reg_off, size)) {
2946 char tn_buf[48];
2947
2948 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2949 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2950 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2951 return -EACCES;
2952 }
2953
969bf05e
AS
2954 return 0;
2955}
2956
e07b98d9 2957static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2958 const struct bpf_reg_state *reg, int off,
2959 int size, bool strict_alignment_once)
79adffcd 2960{
ca369602 2961 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2962 const char *pointer_desc = "";
d1174416 2963
79adffcd
DB
2964 switch (reg->type) {
2965 case PTR_TO_PACKET:
de8f3a83
DB
2966 case PTR_TO_PACKET_META:
2967 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2968 * right in front, treat it the very same way.
2969 */
61bd5218 2970 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2971 case PTR_TO_FLOW_KEYS:
2972 pointer_desc = "flow keys ";
2973 break;
f1174f77
EC
2974 case PTR_TO_MAP_VALUE:
2975 pointer_desc = "value ";
2976 break;
2977 case PTR_TO_CTX:
2978 pointer_desc = "context ";
2979 break;
2980 case PTR_TO_STACK:
2981 pointer_desc = "stack ";
a5ec6ae1
JH
2982 /* The stack spill tracking logic in check_stack_write()
2983 * and check_stack_read() relies on stack accesses being
2984 * aligned.
2985 */
2986 strict = true;
f1174f77 2987 break;
c64b7983
JS
2988 case PTR_TO_SOCKET:
2989 pointer_desc = "sock ";
2990 break;
46f8bc92
MKL
2991 case PTR_TO_SOCK_COMMON:
2992 pointer_desc = "sock_common ";
2993 break;
655a51e5
MKL
2994 case PTR_TO_TCP_SOCK:
2995 pointer_desc = "tcp_sock ";
2996 break;
fada7fdc
JL
2997 case PTR_TO_XDP_SOCK:
2998 pointer_desc = "xdp_sock ";
2999 break;
79adffcd 3000 default:
f1174f77 3001 break;
79adffcd 3002 }
61bd5218
JK
3003 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3004 strict);
79adffcd
DB
3005}
3006
f4d7e40a
AS
3007static int update_stack_depth(struct bpf_verifier_env *env,
3008 const struct bpf_func_state *func,
3009 int off)
3010{
9c8105bd 3011 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3012
3013 if (stack >= -off)
3014 return 0;
3015
3016 /* update known max for given subprogram */
9c8105bd 3017 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3018 return 0;
3019}
f4d7e40a 3020
70a87ffe
AS
3021/* starting from main bpf function walk all instructions of the function
3022 * and recursively walk all callees that given function can call.
3023 * Ignore jump and exit insns.
3024 * Since recursion is prevented by check_cfg() this algorithm
3025 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3026 */
3027static int check_max_stack_depth(struct bpf_verifier_env *env)
3028{
9c8105bd
JW
3029 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3030 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3031 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3032 bool tail_call_reachable = false;
70a87ffe
AS
3033 int ret_insn[MAX_CALL_FRAMES];
3034 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3035 int j;
f4d7e40a 3036
70a87ffe 3037process_func:
7f6e4312
MF
3038 /* protect against potential stack overflow that might happen when
3039 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3040 * depth for such case down to 256 so that the worst case scenario
3041 * would result in 8k stack size (32 which is tailcall limit * 256 =
3042 * 8k).
3043 *
3044 * To get the idea what might happen, see an example:
3045 * func1 -> sub rsp, 128
3046 * subfunc1 -> sub rsp, 256
3047 * tailcall1 -> add rsp, 256
3048 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3049 * subfunc2 -> sub rsp, 64
3050 * subfunc22 -> sub rsp, 128
3051 * tailcall2 -> add rsp, 128
3052 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3053 *
3054 * tailcall will unwind the current stack frame but it will not get rid
3055 * of caller's stack as shown on the example above.
3056 */
3057 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3058 verbose(env,
3059 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3060 depth);
3061 return -EACCES;
3062 }
70a87ffe
AS
3063 /* round up to 32-bytes, since this is granularity
3064 * of interpreter stack size
3065 */
9c8105bd 3066 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3067 if (depth > MAX_BPF_STACK) {
f4d7e40a 3068 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3069 frame + 1, depth);
f4d7e40a
AS
3070 return -EACCES;
3071 }
70a87ffe 3072continue_func:
4cb3d99c 3073 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
3074 for (; i < subprog_end; i++) {
3075 if (insn[i].code != (BPF_JMP | BPF_CALL))
3076 continue;
3077 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3078 continue;
3079 /* remember insn and function to return to */
3080 ret_insn[frame] = i + 1;
9c8105bd 3081 ret_prog[frame] = idx;
70a87ffe
AS
3082
3083 /* find the callee */
3084 i = i + insn[i].imm + 1;
9c8105bd
JW
3085 idx = find_subprog(env, i);
3086 if (idx < 0) {
70a87ffe
AS
3087 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3088 i);
3089 return -EFAULT;
3090 }
ebf7d1f5
MF
3091
3092 if (subprog[idx].has_tail_call)
3093 tail_call_reachable = true;
3094
70a87ffe
AS
3095 frame++;
3096 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3097 verbose(env, "the call stack of %d frames is too deep !\n",
3098 frame);
3099 return -E2BIG;
70a87ffe
AS
3100 }
3101 goto process_func;
3102 }
ebf7d1f5
MF
3103 /* if tail call got detected across bpf2bpf calls then mark each of the
3104 * currently present subprog frames as tail call reachable subprogs;
3105 * this info will be utilized by JIT so that we will be preserving the
3106 * tail call counter throughout bpf2bpf calls combined with tailcalls
3107 */
3108 if (tail_call_reachable)
3109 for (j = 0; j < frame; j++)
3110 subprog[ret_prog[j]].tail_call_reachable = true;
3111
70a87ffe
AS
3112 /* end of for() loop means the last insn of the 'subprog'
3113 * was reached. Doesn't matter whether it was JA or EXIT
3114 */
3115 if (frame == 0)
3116 return 0;
9c8105bd 3117 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3118 frame--;
3119 i = ret_insn[frame];
9c8105bd 3120 idx = ret_prog[frame];
70a87ffe 3121 goto continue_func;
f4d7e40a
AS
3122}
3123
19d28fbd 3124#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3125static int get_callee_stack_depth(struct bpf_verifier_env *env,
3126 const struct bpf_insn *insn, int idx)
3127{
3128 int start = idx + insn->imm + 1, subprog;
3129
3130 subprog = find_subprog(env, start);
3131 if (subprog < 0) {
3132 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3133 start);
3134 return -EFAULT;
3135 }
9c8105bd 3136 return env->subprog_info[subprog].stack_depth;
1ea47e01 3137}
19d28fbd 3138#endif
1ea47e01 3139
51c39bb1
AS
3140int check_ctx_reg(struct bpf_verifier_env *env,
3141 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3142{
3143 /* Access to ctx or passing it to a helper is only allowed in
3144 * its original, unmodified form.
3145 */
3146
3147 if (reg->off) {
3148 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3149 regno, reg->off);
3150 return -EACCES;
3151 }
3152
3153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3154 char tn_buf[48];
3155
3156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3157 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3158 return -EACCES;
3159 }
3160
3161 return 0;
3162}
3163
afbf21dc
YS
3164static int __check_buffer_access(struct bpf_verifier_env *env,
3165 const char *buf_info,
3166 const struct bpf_reg_state *reg,
3167 int regno, int off, int size)
9df1c28b
MM
3168{
3169 if (off < 0) {
3170 verbose(env,
4fc00b79 3171 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3172 regno, buf_info, off, size);
9df1c28b
MM
3173 return -EACCES;
3174 }
3175 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3176 char tn_buf[48];
3177
3178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3179 verbose(env,
4fc00b79 3180 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3181 regno, off, tn_buf);
3182 return -EACCES;
3183 }
afbf21dc
YS
3184
3185 return 0;
3186}
3187
3188static int check_tp_buffer_access(struct bpf_verifier_env *env,
3189 const struct bpf_reg_state *reg,
3190 int regno, int off, int size)
3191{
3192 int err;
3193
3194 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3195 if (err)
3196 return err;
3197
9df1c28b
MM
3198 if (off + size > env->prog->aux->max_tp_access)
3199 env->prog->aux->max_tp_access = off + size;
3200
3201 return 0;
3202}
3203
afbf21dc
YS
3204static int check_buffer_access(struct bpf_verifier_env *env,
3205 const struct bpf_reg_state *reg,
3206 int regno, int off, int size,
3207 bool zero_size_allowed,
3208 const char *buf_info,
3209 u32 *max_access)
3210{
3211 int err;
3212
3213 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3214 if (err)
3215 return err;
3216
3217 if (off + size > *max_access)
3218 *max_access = off + size;
3219
3220 return 0;
3221}
3222
3f50f132
JF
3223/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3224static void zext_32_to_64(struct bpf_reg_state *reg)
3225{
3226 reg->var_off = tnum_subreg(reg->var_off);
3227 __reg_assign_32_into_64(reg);
3228}
9df1c28b 3229
0c17d1d2
JH
3230/* truncate register to smaller size (in bytes)
3231 * must be called with size < BPF_REG_SIZE
3232 */
3233static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3234{
3235 u64 mask;
3236
3237 /* clear high bits in bit representation */
3238 reg->var_off = tnum_cast(reg->var_off, size);
3239
3240 /* fix arithmetic bounds */
3241 mask = ((u64)1 << (size * 8)) - 1;
3242 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3243 reg->umin_value &= mask;
3244 reg->umax_value &= mask;
3245 } else {
3246 reg->umin_value = 0;
3247 reg->umax_value = mask;
3248 }
3249 reg->smin_value = reg->umin_value;
3250 reg->smax_value = reg->umax_value;
3f50f132
JF
3251
3252 /* If size is smaller than 32bit register the 32bit register
3253 * values are also truncated so we push 64-bit bounds into
3254 * 32-bit bounds. Above were truncated < 32-bits already.
3255 */
3256 if (size >= 4)
3257 return;
3258 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3259}
3260
a23740ec
AN
3261static bool bpf_map_is_rdonly(const struct bpf_map *map)
3262{
3263 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3264}
3265
3266static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3267{
3268 void *ptr;
3269 u64 addr;
3270 int err;
3271
3272 err = map->ops->map_direct_value_addr(map, &addr, off);
3273 if (err)
3274 return err;
2dedd7d2 3275 ptr = (void *)(long)addr + off;
a23740ec
AN
3276
3277 switch (size) {
3278 case sizeof(u8):
3279 *val = (u64)*(u8 *)ptr;
3280 break;
3281 case sizeof(u16):
3282 *val = (u64)*(u16 *)ptr;
3283 break;
3284 case sizeof(u32):
3285 *val = (u64)*(u32 *)ptr;
3286 break;
3287 case sizeof(u64):
3288 *val = *(u64 *)ptr;
3289 break;
3290 default:
3291 return -EINVAL;
3292 }
3293 return 0;
3294}
3295
9e15db66
AS
3296static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3297 struct bpf_reg_state *regs,
3298 int regno, int off, int size,
3299 enum bpf_access_type atype,
3300 int value_regno)
3301{
3302 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
3303 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3304 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
3305 u32 btf_id;
3306 int ret;
3307
9e15db66
AS
3308 if (off < 0) {
3309 verbose(env,
3310 "R%d is ptr_%s invalid negative access: off=%d\n",
3311 regno, tname, off);
3312 return -EACCES;
3313 }
3314 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3315 char tn_buf[48];
3316
3317 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3318 verbose(env,
3319 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3320 regno, tname, off, tn_buf);
3321 return -EACCES;
3322 }
3323
27ae7997 3324 if (env->ops->btf_struct_access) {
22dc4a0f
AN
3325 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3326 off, size, atype, &btf_id);
27ae7997
MKL
3327 } else {
3328 if (atype != BPF_READ) {
3329 verbose(env, "only read is supported\n");
3330 return -EACCES;
3331 }
3332
22dc4a0f
AN
3333 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3334 atype, &btf_id);
27ae7997
MKL
3335 }
3336
9e15db66
AS
3337 if (ret < 0)
3338 return ret;
3339
41c48f3a 3340 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 3341 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
3342
3343 return 0;
3344}
3345
3346static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3347 struct bpf_reg_state *regs,
3348 int regno, int off, int size,
3349 enum bpf_access_type atype,
3350 int value_regno)
3351{
3352 struct bpf_reg_state *reg = regs + regno;
3353 struct bpf_map *map = reg->map_ptr;
3354 const struct btf_type *t;
3355 const char *tname;
3356 u32 btf_id;
3357 int ret;
3358
3359 if (!btf_vmlinux) {
3360 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3361 return -ENOTSUPP;
3362 }
3363
3364 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3365 verbose(env, "map_ptr access not supported for map type %d\n",
3366 map->map_type);
3367 return -ENOTSUPP;
3368 }
3369
3370 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3371 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3372
3373 if (!env->allow_ptr_to_map_access) {
3374 verbose(env,
3375 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3376 tname);
3377 return -EPERM;
9e15db66 3378 }
27ae7997 3379
41c48f3a
AI
3380 if (off < 0) {
3381 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3382 regno, tname, off);
3383 return -EACCES;
3384 }
3385
3386 if (atype != BPF_READ) {
3387 verbose(env, "only read from %s is supported\n", tname);
3388 return -EACCES;
3389 }
3390
22dc4a0f 3391 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
3392 if (ret < 0)
3393 return ret;
3394
3395 if (value_regno >= 0)
22dc4a0f 3396 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 3397
9e15db66
AS
3398 return 0;
3399}
3400
41c48f3a 3401
17a52670
AS
3402/* check whether memory at (regno + off) is accessible for t = (read | write)
3403 * if t==write, value_regno is a register which value is stored into memory
3404 * if t==read, value_regno is a register which will receive the value from memory
3405 * if t==write && value_regno==-1, some unknown value is stored into memory
3406 * if t==read && value_regno==-1, don't care what we read from memory
3407 */
ca369602
DB
3408static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3409 int off, int bpf_size, enum bpf_access_type t,
3410 int value_regno, bool strict_alignment_once)
17a52670 3411{
638f5b90
AS
3412 struct bpf_reg_state *regs = cur_regs(env);
3413 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3414 struct bpf_func_state *state;
17a52670
AS
3415 int size, err = 0;
3416
3417 size = bpf_size_to_bytes(bpf_size);
3418 if (size < 0)
3419 return size;
3420
f1174f77 3421 /* alignment checks will add in reg->off themselves */
ca369602 3422 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3423 if (err)
3424 return err;
17a52670 3425
f1174f77
EC
3426 /* for access checks, reg->off is just part of off */
3427 off += reg->off;
3428
3429 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3430 if (t == BPF_WRITE && value_regno >= 0 &&
3431 is_pointer_value(env, value_regno)) {
61bd5218 3432 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3433 return -EACCES;
3434 }
591fe988
DB
3435 err = check_map_access_type(env, regno, off, size, t);
3436 if (err)
3437 return err;
9fd29c08 3438 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3439 if (!err && t == BPF_READ && value_regno >= 0) {
3440 struct bpf_map *map = reg->map_ptr;
3441
3442 /* if map is read-only, track its contents as scalars */
3443 if (tnum_is_const(reg->var_off) &&
3444 bpf_map_is_rdonly(map) &&
3445 map->ops->map_direct_value_addr) {
3446 int map_off = off + reg->var_off.value;
3447 u64 val = 0;
3448
3449 err = bpf_map_direct_read(map, map_off, size,
3450 &val);
3451 if (err)
3452 return err;
3453
3454 regs[value_regno].type = SCALAR_VALUE;
3455 __mark_reg_known(&regs[value_regno], val);
3456 } else {
3457 mark_reg_unknown(env, regs, value_regno);
3458 }
3459 }
457f4436
AN
3460 } else if (reg->type == PTR_TO_MEM) {
3461 if (t == BPF_WRITE && value_regno >= 0 &&
3462 is_pointer_value(env, value_regno)) {
3463 verbose(env, "R%d leaks addr into mem\n", value_regno);
3464 return -EACCES;
3465 }
3466 err = check_mem_region_access(env, regno, off, size,
3467 reg->mem_size, false);
3468 if (!err && t == BPF_READ && value_regno >= 0)
3469 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3470 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3471 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 3472 struct btf *btf = NULL;
9e15db66 3473 u32 btf_id = 0;
19de99f7 3474
1be7f75d
AS
3475 if (t == BPF_WRITE && value_regno >= 0 &&
3476 is_pointer_value(env, value_regno)) {
61bd5218 3477 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3478 return -EACCES;
3479 }
f1174f77 3480
58990d1f
DB
3481 err = check_ctx_reg(env, reg, regno);
3482 if (err < 0)
3483 return err;
3484
22dc4a0f 3485 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
3486 if (err)
3487 verbose_linfo(env, insn_idx, "; ");
969bf05e 3488 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3489 /* ctx access returns either a scalar, or a
de8f3a83
DB
3490 * PTR_TO_PACKET[_META,_END]. In the latter
3491 * case, we know the offset is zero.
f1174f77 3492 */
46f8bc92 3493 if (reg_type == SCALAR_VALUE) {
638f5b90 3494 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3495 } else {
638f5b90 3496 mark_reg_known_zero(env, regs,
61bd5218 3497 value_regno);
46f8bc92
MKL
3498 if (reg_type_may_be_null(reg_type))
3499 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3500 /* A load of ctx field could have different
3501 * actual load size with the one encoded in the
3502 * insn. When the dst is PTR, it is for sure not
3503 * a sub-register.
3504 */
3505 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 3506 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
3507 reg_type == PTR_TO_BTF_ID_OR_NULL) {
3508 regs[value_regno].btf = btf;
9e15db66 3509 regs[value_regno].btf_id = btf_id;
22dc4a0f 3510 }
46f8bc92 3511 }
638f5b90 3512 regs[value_regno].type = reg_type;
969bf05e 3513 }
17a52670 3514
f1174f77 3515 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3516 off += reg->var_off.value;
e4298d25
DB
3517 err = check_stack_access(env, reg, off, size);
3518 if (err)
3519 return err;
8726679a 3520
f4d7e40a
AS
3521 state = func(env, reg);
3522 err = update_stack_depth(env, state, off);
3523 if (err)
3524 return err;
8726679a 3525
638f5b90 3526 if (t == BPF_WRITE)
61bd5218 3527 err = check_stack_write(env, state, off, size,
af86ca4e 3528 value_regno, insn_idx);
638f5b90 3529 else
61bd5218
JK
3530 err = check_stack_read(env, state, off, size,
3531 value_regno);
de8f3a83 3532 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3533 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3534 verbose(env, "cannot write into packet\n");
969bf05e
AS
3535 return -EACCES;
3536 }
4acf6c0b
BB
3537 if (t == BPF_WRITE && value_regno >= 0 &&
3538 is_pointer_value(env, value_regno)) {
61bd5218
JK
3539 verbose(env, "R%d leaks addr into packet\n",
3540 value_regno);
4acf6c0b
BB
3541 return -EACCES;
3542 }
9fd29c08 3543 err = check_packet_access(env, regno, off, size, false);
969bf05e 3544 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3545 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3546 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3547 if (t == BPF_WRITE && value_regno >= 0 &&
3548 is_pointer_value(env, value_regno)) {
3549 verbose(env, "R%d leaks addr into flow keys\n",
3550 value_regno);
3551 return -EACCES;
3552 }
3553
3554 err = check_flow_keys_access(env, off, size);
3555 if (!err && t == BPF_READ && value_regno >= 0)
3556 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3557 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3558 if (t == BPF_WRITE) {
46f8bc92
MKL
3559 verbose(env, "R%d cannot write into %s\n",
3560 regno, reg_type_str[reg->type]);
c64b7983
JS
3561 return -EACCES;
3562 }
5f456649 3563 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3564 if (!err && value_regno >= 0)
3565 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3566 } else if (reg->type == PTR_TO_TP_BUFFER) {
3567 err = check_tp_buffer_access(env, reg, regno, off, size);
3568 if (!err && t == BPF_READ && value_regno >= 0)
3569 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3570 } else if (reg->type == PTR_TO_BTF_ID) {
3571 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3572 value_regno);
41c48f3a
AI
3573 } else if (reg->type == CONST_PTR_TO_MAP) {
3574 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3575 value_regno);
afbf21dc
YS
3576 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3577 if (t == BPF_WRITE) {
3578 verbose(env, "R%d cannot write into %s\n",
3579 regno, reg_type_str[reg->type]);
3580 return -EACCES;
3581 }
f6dfbe31
CIK
3582 err = check_buffer_access(env, reg, regno, off, size, false,
3583 "rdonly",
afbf21dc
YS
3584 &env->prog->aux->max_rdonly_access);
3585 if (!err && value_regno >= 0)
3586 mark_reg_unknown(env, regs, value_regno);
3587 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3588 err = check_buffer_access(env, reg, regno, off, size, false,
3589 "rdwr",
afbf21dc
YS
3590 &env->prog->aux->max_rdwr_access);
3591 if (!err && t == BPF_READ && value_regno >= 0)
3592 mark_reg_unknown(env, regs, value_regno);
17a52670 3593 } else {
61bd5218
JK
3594 verbose(env, "R%d invalid mem access '%s'\n", regno,
3595 reg_type_str[reg->type]);
17a52670
AS
3596 return -EACCES;
3597 }
969bf05e 3598
f1174f77 3599 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3600 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3601 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3602 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3603 }
17a52670
AS
3604 return err;
3605}
3606
91c960b0 3607static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3608{
17a52670
AS
3609 int err;
3610
91c960b0
BJ
3611 if (insn->imm != BPF_ADD) {
3612 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
3613 return -EINVAL;
3614 }
3615
3616 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
3617 verbose(env, "invalid atomic operand size\n");
17a52670
AS
3618 return -EINVAL;
3619 }
3620
3621 /* check src1 operand */
dc503a8a 3622 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3623 if (err)
3624 return err;
3625
3626 /* check src2 operand */
dc503a8a 3627 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3628 if (err)
3629 return err;
3630
6bdf6abc 3631 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3632 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3633 return -EACCES;
3634 }
3635
ca369602 3636 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3637 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3638 is_flow_key_reg(env, insn->dst_reg) ||
3639 is_sk_reg(env, insn->dst_reg)) {
91c960b0 3640 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
3641 insn->dst_reg,
3642 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3643 return -EACCES;
3644 }
3645
91c960b0 3646 /* check whether we can read the memory */
31fd8581 3647 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3648 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3649 if (err)
3650 return err;
3651
91c960b0 3652 /* check whether we can write into the same memory */
31fd8581 3653 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3654 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3655}
3656
2011fccf
AI
3657static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3658 int off, int access_size,
3659 bool zero_size_allowed)
3660{
3661 struct bpf_reg_state *reg = reg_state(env, regno);
3662
3663 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3664 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3665 if (tnum_is_const(reg->var_off)) {
3666 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3667 regno, off, access_size);
3668 } else {
3669 char tn_buf[48];
3670
3671 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3672 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3673 regno, tn_buf, access_size);
3674 }
3675 return -EACCES;
3676 }
3677 return 0;
3678}
3679
17a52670
AS
3680/* when register 'regno' is passed into function that will read 'access_size'
3681 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3682 * and all elements of stack are initialized.
3683 * Unlike most pointer bounds-checking functions, this one doesn't take an
3684 * 'off' argument, so it has to add in reg->off itself.
17a52670 3685 */
58e2af8b 3686static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3687 int access_size, bool zero_size_allowed,
3688 struct bpf_call_arg_meta *meta)
17a52670 3689{
2a159c6f 3690 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3691 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3692 int err, min_off, max_off, i, j, slot, spi;
17a52670 3693
2011fccf
AI
3694 if (tnum_is_const(reg->var_off)) {
3695 min_off = max_off = reg->var_off.value + reg->off;
3696 err = __check_stack_boundary(env, regno, min_off, access_size,
3697 zero_size_allowed);
3698 if (err)
3699 return err;
3700 } else {
088ec26d
AI
3701 /* Variable offset is prohibited for unprivileged mode for
3702 * simplicity since it requires corresponding support in
3703 * Spectre masking for stack ALU.
3704 * See also retrieve_ptr_limit().
3705 */
2c78ee89 3706 if (!env->bypass_spec_v1) {
088ec26d 3707 char tn_buf[48];
f1174f77 3708
088ec26d
AI
3709 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3710 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3711 regno, tn_buf);
3712 return -EACCES;
3713 }
f2bcd05e
AI
3714 /* Only initialized buffer on stack is allowed to be accessed
3715 * with variable offset. With uninitialized buffer it's hard to
3716 * guarantee that whole memory is marked as initialized on
3717 * helper return since specific bounds are unknown what may
3718 * cause uninitialized stack leaking.
3719 */
3720 if (meta && meta->raw_mode)
3721 meta = NULL;
3722
107c26a7
AI
3723 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3724 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3725 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3726 regno);
3727 return -EACCES;
3728 }
2011fccf 3729 min_off = reg->smin_value + reg->off;
107c26a7 3730 max_off = reg->smax_value + reg->off;
2011fccf
AI
3731 err = __check_stack_boundary(env, regno, min_off, access_size,
3732 zero_size_allowed);
107c26a7
AI
3733 if (err) {
3734 verbose(env, "R%d min value is outside of stack bound\n",
3735 regno);
2011fccf 3736 return err;
107c26a7 3737 }
2011fccf
AI
3738 err = __check_stack_boundary(env, regno, max_off, access_size,
3739 zero_size_allowed);
107c26a7
AI
3740 if (err) {
3741 verbose(env, "R%d max value is outside of stack bound\n",
3742 regno);
2011fccf 3743 return err;
107c26a7 3744 }
17a52670
AS
3745 }
3746
435faee1
DB
3747 if (meta && meta->raw_mode) {
3748 meta->access_size = access_size;
3749 meta->regno = regno;
3750 return 0;
3751 }
3752
2011fccf 3753 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3754 u8 *stype;
3755
2011fccf 3756 slot = -i - 1;
638f5b90 3757 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3758 if (state->allocated_stack <= slot)
3759 goto err;
3760 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3761 if (*stype == STACK_MISC)
3762 goto mark;
3763 if (*stype == STACK_ZERO) {
3764 /* helper can write anything into the stack */
3765 *stype = STACK_MISC;
3766 goto mark;
17a52670 3767 }
1d68f22b
YS
3768
3769 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3770 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3771 goto mark;
3772
f7cf25b2 3773 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
cd17d38f
YS
3774 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3775 env->allow_ptr_leaks)) {
f54c7898 3776 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3777 for (j = 0; j < BPF_REG_SIZE; j++)
3778 state->stack[spi].slot_type[j] = STACK_MISC;
3779 goto mark;
3780 }
3781
cc2b14d5 3782err:
2011fccf
AI
3783 if (tnum_is_const(reg->var_off)) {
3784 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3785 min_off, i - min_off, access_size);
3786 } else {
3787 char tn_buf[48];
3788
3789 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3790 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3791 tn_buf, i - min_off, access_size);
3792 }
cc2b14d5
AS
3793 return -EACCES;
3794mark:
3795 /* reading any byte out of 8-byte 'spill_slot' will cause
3796 * the whole slot to be marked as 'read'
3797 */
679c782d 3798 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3799 state->stack[spi].spilled_ptr.parent,
3800 REG_LIVE_READ64);
17a52670 3801 }
2011fccf 3802 return update_stack_depth(env, state, min_off);
17a52670
AS
3803}
3804
06c1c049
GB
3805static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3806 int access_size, bool zero_size_allowed,
3807 struct bpf_call_arg_meta *meta)
3808{
638f5b90 3809 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3810
f1174f77 3811 switch (reg->type) {
06c1c049 3812 case PTR_TO_PACKET:
de8f3a83 3813 case PTR_TO_PACKET_META:
9fd29c08
YS
3814 return check_packet_access(env, regno, reg->off, access_size,
3815 zero_size_allowed);
06c1c049 3816 case PTR_TO_MAP_VALUE:
591fe988
DB
3817 if (check_map_access_type(env, regno, reg->off, access_size,
3818 meta && meta->raw_mode ? BPF_WRITE :
3819 BPF_READ))
3820 return -EACCES;
9fd29c08
YS
3821 return check_map_access(env, regno, reg->off, access_size,
3822 zero_size_allowed);
457f4436
AN
3823 case PTR_TO_MEM:
3824 return check_mem_region_access(env, regno, reg->off,
3825 access_size, reg->mem_size,
3826 zero_size_allowed);
afbf21dc
YS
3827 case PTR_TO_RDONLY_BUF:
3828 if (meta && meta->raw_mode)
3829 return -EACCES;
3830 return check_buffer_access(env, reg, regno, reg->off,
3831 access_size, zero_size_allowed,
3832 "rdonly",
3833 &env->prog->aux->max_rdonly_access);
3834 case PTR_TO_RDWR_BUF:
3835 return check_buffer_access(env, reg, regno, reg->off,
3836 access_size, zero_size_allowed,
3837 "rdwr",
3838 &env->prog->aux->max_rdwr_access);
0d004c02 3839 case PTR_TO_STACK:
06c1c049
GB
3840 return check_stack_boundary(env, regno, access_size,
3841 zero_size_allowed, meta);
0d004c02
LB
3842 default: /* scalar_value or invalid ptr */
3843 /* Allow zero-byte read from NULL, regardless of pointer type */
3844 if (zero_size_allowed && access_size == 0 &&
3845 register_is_null(reg))
3846 return 0;
3847
3848 verbose(env, "R%d type=%s expected=%s\n", regno,
3849 reg_type_str[reg->type],
3850 reg_type_str[PTR_TO_STACK]);
3851 return -EACCES;
06c1c049
GB
3852 }
3853}
3854
d83525ca
AS
3855/* Implementation details:
3856 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3857 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3858 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3859 * value_or_null->value transition, since the verifier only cares about
3860 * the range of access to valid map value pointer and doesn't care about actual
3861 * address of the map element.
3862 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3863 * reg->id > 0 after value_or_null->value transition. By doing so
3864 * two bpf_map_lookups will be considered two different pointers that
3865 * point to different bpf_spin_locks.
3866 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3867 * dead-locks.
3868 * Since only one bpf_spin_lock is allowed the checks are simpler than
3869 * reg_is_refcounted() logic. The verifier needs to remember only
3870 * one spin_lock instead of array of acquired_refs.
3871 * cur_state->active_spin_lock remembers which map value element got locked
3872 * and clears it after bpf_spin_unlock.
3873 */
3874static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3875 bool is_lock)
3876{
3877 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3878 struct bpf_verifier_state *cur = env->cur_state;
3879 bool is_const = tnum_is_const(reg->var_off);
3880 struct bpf_map *map = reg->map_ptr;
3881 u64 val = reg->var_off.value;
3882
d83525ca
AS
3883 if (!is_const) {
3884 verbose(env,
3885 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3886 regno);
3887 return -EINVAL;
3888 }
3889 if (!map->btf) {
3890 verbose(env,
3891 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3892 map->name);
3893 return -EINVAL;
3894 }
3895 if (!map_value_has_spin_lock(map)) {
3896 if (map->spin_lock_off == -E2BIG)
3897 verbose(env,
3898 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3899 map->name);
3900 else if (map->spin_lock_off == -ENOENT)
3901 verbose(env,
3902 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3903 map->name);
3904 else
3905 verbose(env,
3906 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3907 map->name);
3908 return -EINVAL;
3909 }
3910 if (map->spin_lock_off != val + reg->off) {
3911 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3912 val + reg->off);
3913 return -EINVAL;
3914 }
3915 if (is_lock) {
3916 if (cur->active_spin_lock) {
3917 verbose(env,
3918 "Locking two bpf_spin_locks are not allowed\n");
3919 return -EINVAL;
3920 }
3921 cur->active_spin_lock = reg->id;
3922 } else {
3923 if (!cur->active_spin_lock) {
3924 verbose(env, "bpf_spin_unlock without taking a lock\n");
3925 return -EINVAL;
3926 }
3927 if (cur->active_spin_lock != reg->id) {
3928 verbose(env, "bpf_spin_unlock of different lock\n");
3929 return -EINVAL;
3930 }
3931 cur->active_spin_lock = 0;
3932 }
3933 return 0;
3934}
3935
90133415
DB
3936static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3937{
3938 return type == ARG_PTR_TO_MEM ||
3939 type == ARG_PTR_TO_MEM_OR_NULL ||
3940 type == ARG_PTR_TO_UNINIT_MEM;
3941}
3942
3943static bool arg_type_is_mem_size(enum bpf_arg_type type)
3944{
3945 return type == ARG_CONST_SIZE ||
3946 type == ARG_CONST_SIZE_OR_ZERO;
3947}
3948
457f4436
AN
3949static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3950{
3951 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3952}
3953
57c3bb72
AI
3954static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3955{
3956 return type == ARG_PTR_TO_INT ||
3957 type == ARG_PTR_TO_LONG;
3958}
3959
3960static int int_ptr_type_to_size(enum bpf_arg_type type)
3961{
3962 if (type == ARG_PTR_TO_INT)
3963 return sizeof(u32);
3964 else if (type == ARG_PTR_TO_LONG)
3965 return sizeof(u64);
3966
3967 return -EINVAL;
3968}
3969
912f442c
LB
3970static int resolve_map_arg_type(struct bpf_verifier_env *env,
3971 const struct bpf_call_arg_meta *meta,
3972 enum bpf_arg_type *arg_type)
3973{
3974 if (!meta->map_ptr) {
3975 /* kernel subsystem misconfigured verifier */
3976 verbose(env, "invalid map_ptr to access map->type\n");
3977 return -EACCES;
3978 }
3979
3980 switch (meta->map_ptr->map_type) {
3981 case BPF_MAP_TYPE_SOCKMAP:
3982 case BPF_MAP_TYPE_SOCKHASH:
3983 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 3984 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
3985 } else {
3986 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3987 return -EINVAL;
3988 }
3989 break;
3990
3991 default:
3992 break;
3993 }
3994 return 0;
3995}
3996
f79e7ea5
LB
3997struct bpf_reg_types {
3998 const enum bpf_reg_type types[10];
1df8f55a 3999 u32 *btf_id;
f79e7ea5
LB
4000};
4001
4002static const struct bpf_reg_types map_key_value_types = {
4003 .types = {
4004 PTR_TO_STACK,
4005 PTR_TO_PACKET,
4006 PTR_TO_PACKET_META,
4007 PTR_TO_MAP_VALUE,
4008 },
4009};
4010
4011static const struct bpf_reg_types sock_types = {
4012 .types = {
4013 PTR_TO_SOCK_COMMON,
4014 PTR_TO_SOCKET,
4015 PTR_TO_TCP_SOCK,
4016 PTR_TO_XDP_SOCK,
4017 },
4018};
4019
49a2a4d4 4020#ifdef CONFIG_NET
1df8f55a
MKL
4021static const struct bpf_reg_types btf_id_sock_common_types = {
4022 .types = {
4023 PTR_TO_SOCK_COMMON,
4024 PTR_TO_SOCKET,
4025 PTR_TO_TCP_SOCK,
4026 PTR_TO_XDP_SOCK,
4027 PTR_TO_BTF_ID,
4028 },
4029 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4030};
49a2a4d4 4031#endif
1df8f55a 4032
f79e7ea5
LB
4033static const struct bpf_reg_types mem_types = {
4034 .types = {
4035 PTR_TO_STACK,
4036 PTR_TO_PACKET,
4037 PTR_TO_PACKET_META,
4038 PTR_TO_MAP_VALUE,
4039 PTR_TO_MEM,
4040 PTR_TO_RDONLY_BUF,
4041 PTR_TO_RDWR_BUF,
4042 },
4043};
4044
4045static const struct bpf_reg_types int_ptr_types = {
4046 .types = {
4047 PTR_TO_STACK,
4048 PTR_TO_PACKET,
4049 PTR_TO_PACKET_META,
4050 PTR_TO_MAP_VALUE,
4051 },
4052};
4053
4054static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4055static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4056static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4057static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4058static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4059static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4060static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 4061static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
f79e7ea5 4062
0789e13b 4063static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4064 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4065 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4066 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4067 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4068 [ARG_CONST_SIZE] = &scalar_types,
4069 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4070 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4071 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4072 [ARG_PTR_TO_CTX] = &context_types,
4073 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4074 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 4075#ifdef CONFIG_NET
1df8f55a 4076 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 4077#endif
f79e7ea5
LB
4078 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4079 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4080 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4081 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4082 [ARG_PTR_TO_MEM] = &mem_types,
4083 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4084 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4085 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4086 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4087 [ARG_PTR_TO_INT] = &int_ptr_types,
4088 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 4089 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
f79e7ea5
LB
4090};
4091
4092static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4093 enum bpf_arg_type arg_type,
4094 const u32 *arg_btf_id)
f79e7ea5
LB
4095{
4096 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4097 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4098 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4099 int i, j;
4100
a968d5e2
MKL
4101 compatible = compatible_reg_types[arg_type];
4102 if (!compatible) {
4103 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4104 return -EFAULT;
4105 }
4106
f79e7ea5
LB
4107 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4108 expected = compatible->types[i];
4109 if (expected == NOT_INIT)
4110 break;
4111
4112 if (type == expected)
a968d5e2 4113 goto found;
f79e7ea5
LB
4114 }
4115
4116 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4117 for (j = 0; j + 1 < i; j++)
4118 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4119 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4120 return -EACCES;
a968d5e2
MKL
4121
4122found:
4123 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4124 if (!arg_btf_id) {
4125 if (!compatible->btf_id) {
4126 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4127 return -EFAULT;
4128 }
4129 arg_btf_id = compatible->btf_id;
4130 }
4131
22dc4a0f
AN
4132 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4133 btf_vmlinux, *arg_btf_id)) {
a968d5e2 4134 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
4135 regno, kernel_type_name(reg->btf, reg->btf_id),
4136 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
4137 return -EACCES;
4138 }
4139
4140 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4141 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4142 regno);
4143 return -EACCES;
4144 }
4145 }
4146
4147 return 0;
f79e7ea5
LB
4148}
4149
af7ec138
YS
4150static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4151 struct bpf_call_arg_meta *meta,
4152 const struct bpf_func_proto *fn)
17a52670 4153{
af7ec138 4154 u32 regno = BPF_REG_1 + arg;
638f5b90 4155 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4156 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4157 enum bpf_reg_type type = reg->type;
17a52670
AS
4158 int err = 0;
4159
80f1d68c 4160 if (arg_type == ARG_DONTCARE)
17a52670
AS
4161 return 0;
4162
dc503a8a
EC
4163 err = check_reg_arg(env, regno, SRC_OP);
4164 if (err)
4165 return err;
17a52670 4166
1be7f75d
AS
4167 if (arg_type == ARG_ANYTHING) {
4168 if (is_pointer_value(env, regno)) {
61bd5218
JK
4169 verbose(env, "R%d leaks addr into helper function\n",
4170 regno);
1be7f75d
AS
4171 return -EACCES;
4172 }
80f1d68c 4173 return 0;
1be7f75d 4174 }
80f1d68c 4175
de8f3a83 4176 if (type_is_pkt_pointer(type) &&
3a0af8fd 4177 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4178 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4179 return -EACCES;
4180 }
4181
912f442c
LB
4182 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4183 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4184 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4185 err = resolve_map_arg_type(env, meta, &arg_type);
4186 if (err)
4187 return err;
4188 }
4189
fd1b0d60
LB
4190 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4191 /* A NULL register has a SCALAR_VALUE type, so skip
4192 * type checking.
4193 */
4194 goto skip_type_check;
4195
a968d5e2 4196 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4197 if (err)
4198 return err;
4199
a968d5e2 4200 if (type == PTR_TO_CTX) {
feec7040
LB
4201 err = check_ctx_reg(env, reg, regno);
4202 if (err < 0)
4203 return err;
d7b9454a
LB
4204 }
4205
fd1b0d60 4206skip_type_check:
02f7c958 4207 if (reg->ref_obj_id) {
457f4436
AN
4208 if (meta->ref_obj_id) {
4209 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4210 regno, reg->ref_obj_id,
4211 meta->ref_obj_id);
4212 return -EFAULT;
4213 }
4214 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4215 }
4216
17a52670
AS
4217 if (arg_type == ARG_CONST_MAP_PTR) {
4218 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4219 meta->map_ptr = reg->map_ptr;
17a52670
AS
4220 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4221 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4222 * check that [key, key + map->key_size) are within
4223 * stack limits and initialized
4224 */
33ff9823 4225 if (!meta->map_ptr) {
17a52670
AS
4226 /* in function declaration map_ptr must come before
4227 * map_key, so that it's verified and known before
4228 * we have to check map_key here. Otherwise it means
4229 * that kernel subsystem misconfigured verifier
4230 */
61bd5218 4231 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4232 return -EACCES;
4233 }
d71962f3
PC
4234 err = check_helper_mem_access(env, regno,
4235 meta->map_ptr->key_size, false,
4236 NULL);
2ea864c5 4237 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4238 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4239 !register_is_null(reg)) ||
2ea864c5 4240 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4241 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4242 * check [value, value + map->value_size) validity
4243 */
33ff9823 4244 if (!meta->map_ptr) {
17a52670 4245 /* kernel subsystem misconfigured verifier */
61bd5218 4246 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4247 return -EACCES;
4248 }
2ea864c5 4249 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4250 err = check_helper_mem_access(env, regno,
4251 meta->map_ptr->value_size, false,
2ea864c5 4252 meta);
eaa6bcb7
HL
4253 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4254 if (!reg->btf_id) {
4255 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4256 return -EACCES;
4257 }
22dc4a0f 4258 meta->ret_btf = reg->btf;
eaa6bcb7 4259 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
4260 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4261 if (meta->func_id == BPF_FUNC_spin_lock) {
4262 if (process_spin_lock(env, regno, true))
4263 return -EACCES;
4264 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4265 if (process_spin_lock(env, regno, false))
4266 return -EACCES;
4267 } else {
4268 verbose(env, "verifier internal error\n");
4269 return -EFAULT;
4270 }
a2bbe7cc
LB
4271 } else if (arg_type_is_mem_ptr(arg_type)) {
4272 /* The access to this pointer is only checked when we hit the
4273 * next is_mem_size argument below.
4274 */
4275 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 4276 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4277 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4278
10060503
JF
4279 /* This is used to refine r0 return value bounds for helpers
4280 * that enforce this value as an upper bound on return values.
4281 * See do_refine_retval_range() for helpers that can refine
4282 * the return value. C type of helper is u32 so we pull register
4283 * bound from umax_value however, if negative verifier errors
4284 * out. Only upper bounds can be learned because retval is an
4285 * int type and negative retvals are allowed.
849fa506 4286 */
10060503 4287 meta->msize_max_value = reg->umax_value;
849fa506 4288
f1174f77
EC
4289 /* The register is SCALAR_VALUE; the access check
4290 * happens using its boundaries.
06c1c049 4291 */
f1174f77 4292 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4293 /* For unprivileged variable accesses, disable raw
4294 * mode so that the program is required to
4295 * initialize all the memory that the helper could
4296 * just partially fill up.
4297 */
4298 meta = NULL;
4299
b03c9f9f 4300 if (reg->smin_value < 0) {
61bd5218 4301 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4302 regno);
4303 return -EACCES;
4304 }
06c1c049 4305
b03c9f9f 4306 if (reg->umin_value == 0) {
f1174f77
EC
4307 err = check_helper_mem_access(env, regno - 1, 0,
4308 zero_size_allowed,
4309 meta);
06c1c049
GB
4310 if (err)
4311 return err;
06c1c049 4312 }
f1174f77 4313
b03c9f9f 4314 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4315 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4316 regno);
4317 return -EACCES;
4318 }
4319 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4320 reg->umax_value,
f1174f77 4321 zero_size_allowed, meta);
b5dc0163
AS
4322 if (!err)
4323 err = mark_chain_precision(env, regno);
457f4436
AN
4324 } else if (arg_type_is_alloc_size(arg_type)) {
4325 if (!tnum_is_const(reg->var_off)) {
28a8add6 4326 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
4327 regno);
4328 return -EACCES;
4329 }
4330 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4331 } else if (arg_type_is_int_ptr(arg_type)) {
4332 int size = int_ptr_type_to_size(arg_type);
4333
4334 err = check_helper_mem_access(env, regno, size, false, meta);
4335 if (err)
4336 return err;
4337 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4338 }
4339
4340 return err;
4341}
4342
0126240f
LB
4343static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4344{
4345 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4346 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4347
4348 if (func_id != BPF_FUNC_map_update_elem)
4349 return false;
4350
4351 /* It's not possible to get access to a locked struct sock in these
4352 * contexts, so updating is safe.
4353 */
4354 switch (type) {
4355 case BPF_PROG_TYPE_TRACING:
4356 if (eatype == BPF_TRACE_ITER)
4357 return true;
4358 break;
4359 case BPF_PROG_TYPE_SOCKET_FILTER:
4360 case BPF_PROG_TYPE_SCHED_CLS:
4361 case BPF_PROG_TYPE_SCHED_ACT:
4362 case BPF_PROG_TYPE_XDP:
4363 case BPF_PROG_TYPE_SK_REUSEPORT:
4364 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4365 case BPF_PROG_TYPE_SK_LOOKUP:
4366 return true;
4367 default:
4368 break;
4369 }
4370
4371 verbose(env, "cannot update sockmap in this context\n");
4372 return false;
4373}
4374
e411901c
MF
4375static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4376{
4377 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4378}
4379
61bd5218
JK
4380static int check_map_func_compatibility(struct bpf_verifier_env *env,
4381 struct bpf_map *map, int func_id)
35578d79 4382{
35578d79
KX
4383 if (!map)
4384 return 0;
4385
6aff67c8
AS
4386 /* We need a two way check, first is from map perspective ... */
4387 switch (map->map_type) {
4388 case BPF_MAP_TYPE_PROG_ARRAY:
4389 if (func_id != BPF_FUNC_tail_call)
4390 goto error;
4391 break;
4392 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4393 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4394 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4395 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4396 func_id != BPF_FUNC_perf_event_read_value &&
4397 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4398 goto error;
4399 break;
457f4436
AN
4400 case BPF_MAP_TYPE_RINGBUF:
4401 if (func_id != BPF_FUNC_ringbuf_output &&
4402 func_id != BPF_FUNC_ringbuf_reserve &&
4403 func_id != BPF_FUNC_ringbuf_submit &&
4404 func_id != BPF_FUNC_ringbuf_discard &&
4405 func_id != BPF_FUNC_ringbuf_query)
4406 goto error;
4407 break;
6aff67c8
AS
4408 case BPF_MAP_TYPE_STACK_TRACE:
4409 if (func_id != BPF_FUNC_get_stackid)
4410 goto error;
4411 break;
4ed8ec52 4412 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4413 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4414 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4415 goto error;
4416 break;
cd339431 4417 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4418 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4419 if (func_id != BPF_FUNC_get_local_storage)
4420 goto error;
4421 break;
546ac1ff 4422 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4423 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4424 if (func_id != BPF_FUNC_redirect_map &&
4425 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4426 goto error;
4427 break;
fbfc504a
BT
4428 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4429 * appear.
4430 */
6710e112
JDB
4431 case BPF_MAP_TYPE_CPUMAP:
4432 if (func_id != BPF_FUNC_redirect_map)
4433 goto error;
4434 break;
fada7fdc
JL
4435 case BPF_MAP_TYPE_XSKMAP:
4436 if (func_id != BPF_FUNC_redirect_map &&
4437 func_id != BPF_FUNC_map_lookup_elem)
4438 goto error;
4439 break;
56f668df 4440 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4441 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4442 if (func_id != BPF_FUNC_map_lookup_elem)
4443 goto error;
16a43625 4444 break;
174a79ff
JF
4445 case BPF_MAP_TYPE_SOCKMAP:
4446 if (func_id != BPF_FUNC_sk_redirect_map &&
4447 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4448 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4449 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4450 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4451 func_id != BPF_FUNC_map_lookup_elem &&
4452 !may_update_sockmap(env, func_id))
174a79ff
JF
4453 goto error;
4454 break;
81110384
JF
4455 case BPF_MAP_TYPE_SOCKHASH:
4456 if (func_id != BPF_FUNC_sk_redirect_hash &&
4457 func_id != BPF_FUNC_sock_hash_update &&
4458 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4459 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4460 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4461 func_id != BPF_FUNC_map_lookup_elem &&
4462 !may_update_sockmap(env, func_id))
81110384
JF
4463 goto error;
4464 break;
2dbb9b9e
MKL
4465 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4466 if (func_id != BPF_FUNC_sk_select_reuseport)
4467 goto error;
4468 break;
f1a2e44a
MV
4469 case BPF_MAP_TYPE_QUEUE:
4470 case BPF_MAP_TYPE_STACK:
4471 if (func_id != BPF_FUNC_map_peek_elem &&
4472 func_id != BPF_FUNC_map_pop_elem &&
4473 func_id != BPF_FUNC_map_push_elem)
4474 goto error;
4475 break;
6ac99e8f
MKL
4476 case BPF_MAP_TYPE_SK_STORAGE:
4477 if (func_id != BPF_FUNC_sk_storage_get &&
4478 func_id != BPF_FUNC_sk_storage_delete)
4479 goto error;
4480 break;
8ea63684
KS
4481 case BPF_MAP_TYPE_INODE_STORAGE:
4482 if (func_id != BPF_FUNC_inode_storage_get &&
4483 func_id != BPF_FUNC_inode_storage_delete)
4484 goto error;
4485 break;
4cf1bc1f
KS
4486 case BPF_MAP_TYPE_TASK_STORAGE:
4487 if (func_id != BPF_FUNC_task_storage_get &&
4488 func_id != BPF_FUNC_task_storage_delete)
4489 goto error;
4490 break;
6aff67c8
AS
4491 default:
4492 break;
4493 }
4494
4495 /* ... and second from the function itself. */
4496 switch (func_id) {
4497 case BPF_FUNC_tail_call:
4498 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4499 goto error;
e411901c
MF
4500 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4501 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
4502 return -EINVAL;
4503 }
6aff67c8
AS
4504 break;
4505 case BPF_FUNC_perf_event_read:
4506 case BPF_FUNC_perf_event_output:
908432ca 4507 case BPF_FUNC_perf_event_read_value:
a7658e1a 4508 case BPF_FUNC_skb_output:
d831ee84 4509 case BPF_FUNC_xdp_output:
6aff67c8
AS
4510 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4511 goto error;
4512 break;
4513 case BPF_FUNC_get_stackid:
4514 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4515 goto error;
4516 break;
60d20f91 4517 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4518 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4519 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4520 goto error;
4521 break;
97f91a7c 4522 case BPF_FUNC_redirect_map:
9c270af3 4523 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4524 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4525 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4526 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4527 goto error;
4528 break;
174a79ff 4529 case BPF_FUNC_sk_redirect_map:
4f738adb 4530 case BPF_FUNC_msg_redirect_map:
81110384 4531 case BPF_FUNC_sock_map_update:
174a79ff
JF
4532 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4533 goto error;
4534 break;
81110384
JF
4535 case BPF_FUNC_sk_redirect_hash:
4536 case BPF_FUNC_msg_redirect_hash:
4537 case BPF_FUNC_sock_hash_update:
4538 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4539 goto error;
4540 break;
cd339431 4541 case BPF_FUNC_get_local_storage:
b741f163
RG
4542 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4543 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4544 goto error;
4545 break;
2dbb9b9e 4546 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4547 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4548 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4549 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4550 goto error;
4551 break;
f1a2e44a
MV
4552 case BPF_FUNC_map_peek_elem:
4553 case BPF_FUNC_map_pop_elem:
4554 case BPF_FUNC_map_push_elem:
4555 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4556 map->map_type != BPF_MAP_TYPE_STACK)
4557 goto error;
4558 break;
6ac99e8f
MKL
4559 case BPF_FUNC_sk_storage_get:
4560 case BPF_FUNC_sk_storage_delete:
4561 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4562 goto error;
4563 break;
8ea63684
KS
4564 case BPF_FUNC_inode_storage_get:
4565 case BPF_FUNC_inode_storage_delete:
4566 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4567 goto error;
4568 break;
4cf1bc1f
KS
4569 case BPF_FUNC_task_storage_get:
4570 case BPF_FUNC_task_storage_delete:
4571 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4572 goto error;
4573 break;
6aff67c8
AS
4574 default:
4575 break;
35578d79
KX
4576 }
4577
4578 return 0;
6aff67c8 4579error:
61bd5218 4580 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4581 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4582 return -EINVAL;
35578d79
KX
4583}
4584
90133415 4585static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4586{
4587 int count = 0;
4588
39f19ebb 4589 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4590 count++;
39f19ebb 4591 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4592 count++;
39f19ebb 4593 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4594 count++;
39f19ebb 4595 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4596 count++;
39f19ebb 4597 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4598 count++;
4599
90133415
DB
4600 /* We only support one arg being in raw mode at the moment,
4601 * which is sufficient for the helper functions we have
4602 * right now.
4603 */
4604 return count <= 1;
4605}
4606
4607static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4608 enum bpf_arg_type arg_next)
4609{
4610 return (arg_type_is_mem_ptr(arg_curr) &&
4611 !arg_type_is_mem_size(arg_next)) ||
4612 (!arg_type_is_mem_ptr(arg_curr) &&
4613 arg_type_is_mem_size(arg_next));
4614}
4615
4616static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4617{
4618 /* bpf_xxx(..., buf, len) call will access 'len'
4619 * bytes from memory 'buf'. Both arg types need
4620 * to be paired, so make sure there's no buggy
4621 * helper function specification.
4622 */
4623 if (arg_type_is_mem_size(fn->arg1_type) ||
4624 arg_type_is_mem_ptr(fn->arg5_type) ||
4625 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4626 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4627 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4628 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4629 return false;
4630
4631 return true;
4632}
4633
1b986589 4634static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4635{
4636 int count = 0;
4637
1b986589 4638 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4639 count++;
1b986589 4640 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4641 count++;
1b986589 4642 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4643 count++;
1b986589 4644 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4645 count++;
1b986589 4646 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4647 count++;
4648
1b986589
MKL
4649 /* A reference acquiring function cannot acquire
4650 * another refcounted ptr.
4651 */
64d85290 4652 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4653 return false;
4654
fd978bf7
JS
4655 /* We only support one arg being unreferenced at the moment,
4656 * which is sufficient for the helper functions we have right now.
4657 */
4658 return count <= 1;
4659}
4660
9436ef6e
LB
4661static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4662{
4663 int i;
4664
1df8f55a 4665 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
4666 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4667 return false;
4668
1df8f55a
MKL
4669 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4670 return false;
4671 }
4672
9436ef6e
LB
4673 return true;
4674}
4675
1b986589 4676static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4677{
4678 return check_raw_mode_ok(fn) &&
fd978bf7 4679 check_arg_pair_ok(fn) &&
9436ef6e 4680 check_btf_id_ok(fn) &&
1b986589 4681 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4682}
4683
de8f3a83
DB
4684/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4685 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4686 */
f4d7e40a
AS
4687static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4688 struct bpf_func_state *state)
969bf05e 4689{
58e2af8b 4690 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4691 int i;
4692
4693 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4694 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4695 mark_reg_unknown(env, regs, i);
969bf05e 4696
f3709f69
JS
4697 bpf_for_each_spilled_reg(i, state, reg) {
4698 if (!reg)
969bf05e 4699 continue;
de8f3a83 4700 if (reg_is_pkt_pointer_any(reg))
f54c7898 4701 __mark_reg_unknown(env, reg);
969bf05e
AS
4702 }
4703}
4704
f4d7e40a
AS
4705static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4706{
4707 struct bpf_verifier_state *vstate = env->cur_state;
4708 int i;
4709
4710 for (i = 0; i <= vstate->curframe; i++)
4711 __clear_all_pkt_pointers(env, vstate->frame[i]);
4712}
4713
6d94e741
AS
4714enum {
4715 AT_PKT_END = -1,
4716 BEYOND_PKT_END = -2,
4717};
4718
4719static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4720{
4721 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4722 struct bpf_reg_state *reg = &state->regs[regn];
4723
4724 if (reg->type != PTR_TO_PACKET)
4725 /* PTR_TO_PACKET_META is not supported yet */
4726 return;
4727
4728 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4729 * How far beyond pkt_end it goes is unknown.
4730 * if (!range_open) it's the case of pkt >= pkt_end
4731 * if (range_open) it's the case of pkt > pkt_end
4732 * hence this pointer is at least 1 byte bigger than pkt_end
4733 */
4734 if (range_open)
4735 reg->range = BEYOND_PKT_END;
4736 else
4737 reg->range = AT_PKT_END;
4738}
4739
fd978bf7 4740static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4741 struct bpf_func_state *state,
4742 int ref_obj_id)
fd978bf7
JS
4743{
4744 struct bpf_reg_state *regs = state->regs, *reg;
4745 int i;
4746
4747 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4748 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4749 mark_reg_unknown(env, regs, i);
4750
4751 bpf_for_each_spilled_reg(i, state, reg) {
4752 if (!reg)
4753 continue;
1b986589 4754 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4755 __mark_reg_unknown(env, reg);
fd978bf7
JS
4756 }
4757}
4758
4759/* The pointer with the specified id has released its reference to kernel
4760 * resources. Identify all copies of the same pointer and clear the reference.
4761 */
4762static int release_reference(struct bpf_verifier_env *env,
1b986589 4763 int ref_obj_id)
fd978bf7
JS
4764{
4765 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4766 int err;
fd978bf7
JS
4767 int i;
4768
1b986589
MKL
4769 err = release_reference_state(cur_func(env), ref_obj_id);
4770 if (err)
4771 return err;
4772
fd978bf7 4773 for (i = 0; i <= vstate->curframe; i++)
1b986589 4774 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4775
1b986589 4776 return 0;
fd978bf7
JS
4777}
4778
51c39bb1
AS
4779static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4780 struct bpf_reg_state *regs)
4781{
4782 int i;
4783
4784 /* after the call registers r0 - r5 were scratched */
4785 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4786 mark_reg_not_init(env, regs, caller_saved[i]);
4787 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4788 }
4789}
4790
f4d7e40a
AS
4791static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4792 int *insn_idx)
4793{
4794 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4795 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4796 struct bpf_func_state *caller, *callee;
fd978bf7 4797 int i, err, subprog, target_insn;
51c39bb1 4798 bool is_global = false;
f4d7e40a 4799
aada9ce6 4800 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4801 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4802 state->curframe + 2);
f4d7e40a
AS
4803 return -E2BIG;
4804 }
4805
4806 target_insn = *insn_idx + insn->imm;
4807 subprog = find_subprog(env, target_insn + 1);
4808 if (subprog < 0) {
4809 verbose(env, "verifier bug. No program starts at insn %d\n",
4810 target_insn + 1);
4811 return -EFAULT;
4812 }
4813
4814 caller = state->frame[state->curframe];
4815 if (state->frame[state->curframe + 1]) {
4816 verbose(env, "verifier bug. Frame %d already allocated\n",
4817 state->curframe + 1);
4818 return -EFAULT;
4819 }
4820
51c39bb1
AS
4821 func_info_aux = env->prog->aux->func_info_aux;
4822 if (func_info_aux)
4823 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4824 err = btf_check_func_arg_match(env, subprog, caller->regs);
4825 if (err == -EFAULT)
4826 return err;
4827 if (is_global) {
4828 if (err) {
4829 verbose(env, "Caller passes invalid args into func#%d\n",
4830 subprog);
4831 return err;
4832 } else {
4833 if (env->log.level & BPF_LOG_LEVEL)
4834 verbose(env,
4835 "Func#%d is global and valid. Skipping.\n",
4836 subprog);
4837 clear_caller_saved_regs(env, caller->regs);
4838
4839 /* All global functions return SCALAR_VALUE */
4840 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4841
4842 /* continue with next insn after call */
4843 return 0;
4844 }
4845 }
4846
f4d7e40a
AS
4847 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4848 if (!callee)
4849 return -ENOMEM;
4850 state->frame[state->curframe + 1] = callee;
4851
4852 /* callee cannot access r0, r6 - r9 for reading and has to write
4853 * into its own stack before reading from it.
4854 * callee can read/write into caller's stack
4855 */
4856 init_func_state(env, callee,
4857 /* remember the callsite, it will be used by bpf_exit */
4858 *insn_idx /* callsite */,
4859 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4860 subprog /* subprog number within this prog */);
f4d7e40a 4861
fd978bf7
JS
4862 /* Transfer references to the callee */
4863 err = transfer_reference_state(callee, caller);
4864 if (err)
4865 return err;
4866
679c782d
EC
4867 /* copy r1 - r5 args that callee can access. The copy includes parent
4868 * pointers, which connects us up to the liveness chain
4869 */
f4d7e40a
AS
4870 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4871 callee->regs[i] = caller->regs[i];
4872
51c39bb1 4873 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4874
4875 /* only increment it after check_reg_arg() finished */
4876 state->curframe++;
4877
4878 /* and go analyze first insn of the callee */
4879 *insn_idx = target_insn;
4880
06ee7115 4881 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4882 verbose(env, "caller:\n");
4883 print_verifier_state(env, caller);
4884 verbose(env, "callee:\n");
4885 print_verifier_state(env, callee);
4886 }
4887 return 0;
4888}
4889
4890static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4891{
4892 struct bpf_verifier_state *state = env->cur_state;
4893 struct bpf_func_state *caller, *callee;
4894 struct bpf_reg_state *r0;
fd978bf7 4895 int err;
f4d7e40a
AS
4896
4897 callee = state->frame[state->curframe];
4898 r0 = &callee->regs[BPF_REG_0];
4899 if (r0->type == PTR_TO_STACK) {
4900 /* technically it's ok to return caller's stack pointer
4901 * (or caller's caller's pointer) back to the caller,
4902 * since these pointers are valid. Only current stack
4903 * pointer will be invalid as soon as function exits,
4904 * but let's be conservative
4905 */
4906 verbose(env, "cannot return stack pointer to the caller\n");
4907 return -EINVAL;
4908 }
4909
4910 state->curframe--;
4911 caller = state->frame[state->curframe];
4912 /* return to the caller whatever r0 had in the callee */
4913 caller->regs[BPF_REG_0] = *r0;
4914
fd978bf7
JS
4915 /* Transfer references to the caller */
4916 err = transfer_reference_state(caller, callee);
4917 if (err)
4918 return err;
4919
f4d7e40a 4920 *insn_idx = callee->callsite + 1;
06ee7115 4921 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4922 verbose(env, "returning from callee:\n");
4923 print_verifier_state(env, callee);
4924 verbose(env, "to caller at %d:\n", *insn_idx);
4925 print_verifier_state(env, caller);
4926 }
4927 /* clear everything in the callee */
4928 free_func_state(callee);
4929 state->frame[state->curframe + 1] = NULL;
4930 return 0;
4931}
4932
849fa506
YS
4933static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4934 int func_id,
4935 struct bpf_call_arg_meta *meta)
4936{
4937 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4938
4939 if (ret_type != RET_INTEGER ||
4940 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4941 func_id != BPF_FUNC_probe_read_str &&
4942 func_id != BPF_FUNC_probe_read_kernel_str &&
4943 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4944 return;
4945
10060503 4946 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4947 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
4948 ret_reg->smin_value = -MAX_ERRNO;
4949 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
4950 __reg_deduce_bounds(ret_reg);
4951 __reg_bound_offset(ret_reg);
10060503 4952 __update_reg_bounds(ret_reg);
849fa506
YS
4953}
4954
c93552c4
DB
4955static int
4956record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4957 int func_id, int insn_idx)
4958{
4959 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4960 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4961
4962 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4963 func_id != BPF_FUNC_map_lookup_elem &&
4964 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4965 func_id != BPF_FUNC_map_delete_elem &&
4966 func_id != BPF_FUNC_map_push_elem &&
4967 func_id != BPF_FUNC_map_pop_elem &&
4968 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4969 return 0;
09772d92 4970
591fe988 4971 if (map == NULL) {
c93552c4
DB
4972 verbose(env, "kernel subsystem misconfigured verifier\n");
4973 return -EINVAL;
4974 }
4975
591fe988
DB
4976 /* In case of read-only, some additional restrictions
4977 * need to be applied in order to prevent altering the
4978 * state of the map from program side.
4979 */
4980 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4981 (func_id == BPF_FUNC_map_delete_elem ||
4982 func_id == BPF_FUNC_map_update_elem ||
4983 func_id == BPF_FUNC_map_push_elem ||
4984 func_id == BPF_FUNC_map_pop_elem)) {
4985 verbose(env, "write into map forbidden\n");
4986 return -EACCES;
4987 }
4988
d2e4c1e6 4989 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4990 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4991 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4992 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4993 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4994 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4995 return 0;
4996}
4997
d2e4c1e6
DB
4998static int
4999record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5000 int func_id, int insn_idx)
5001{
5002 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5003 struct bpf_reg_state *regs = cur_regs(env), *reg;
5004 struct bpf_map *map = meta->map_ptr;
5005 struct tnum range;
5006 u64 val;
cc52d914 5007 int err;
d2e4c1e6
DB
5008
5009 if (func_id != BPF_FUNC_tail_call)
5010 return 0;
5011 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5012 verbose(env, "kernel subsystem misconfigured verifier\n");
5013 return -EINVAL;
5014 }
5015
5016 range = tnum_range(0, map->max_entries - 1);
5017 reg = &regs[BPF_REG_3];
5018
5019 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5020 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5021 return 0;
5022 }
5023
cc52d914
DB
5024 err = mark_chain_precision(env, BPF_REG_3);
5025 if (err)
5026 return err;
5027
d2e4c1e6
DB
5028 val = reg->var_off.value;
5029 if (bpf_map_key_unseen(aux))
5030 bpf_map_key_store(aux, val);
5031 else if (!bpf_map_key_poisoned(aux) &&
5032 bpf_map_key_immediate(aux) != val)
5033 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5034 return 0;
5035}
5036
fd978bf7
JS
5037static int check_reference_leak(struct bpf_verifier_env *env)
5038{
5039 struct bpf_func_state *state = cur_func(env);
5040 int i;
5041
5042 for (i = 0; i < state->acquired_refs; i++) {
5043 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5044 state->refs[i].id, state->refs[i].insn_idx);
5045 }
5046 return state->acquired_refs ? -EINVAL : 0;
5047}
5048
f4d7e40a 5049static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 5050{
17a52670 5051 const struct bpf_func_proto *fn = NULL;
638f5b90 5052 struct bpf_reg_state *regs;
33ff9823 5053 struct bpf_call_arg_meta meta;
969bf05e 5054 bool changes_data;
17a52670
AS
5055 int i, err;
5056
5057 /* find function prototype */
5058 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
5059 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5060 func_id);
17a52670
AS
5061 return -EINVAL;
5062 }
5063
00176a34 5064 if (env->ops->get_func_proto)
5e43f899 5065 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 5066 if (!fn) {
61bd5218
JK
5067 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5068 func_id);
17a52670
AS
5069 return -EINVAL;
5070 }
5071
5072 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 5073 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 5074 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
5075 return -EINVAL;
5076 }
5077
eae2e83e
JO
5078 if (fn->allowed && !fn->allowed(env->prog)) {
5079 verbose(env, "helper call is not allowed in probe\n");
5080 return -EINVAL;
5081 }
5082
04514d13 5083 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 5084 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
5085 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5086 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5087 func_id_name(func_id), func_id);
5088 return -EINVAL;
5089 }
969bf05e 5090
33ff9823 5091 memset(&meta, 0, sizeof(meta));
36bbef52 5092 meta.pkt_access = fn->pkt_access;
33ff9823 5093
1b986589 5094 err = check_func_proto(fn, func_id);
435faee1 5095 if (err) {
61bd5218 5096 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 5097 func_id_name(func_id), func_id);
435faee1
DB
5098 return err;
5099 }
5100
d83525ca 5101 meta.func_id = func_id;
17a52670 5102 /* check args */
a7658e1a 5103 for (i = 0; i < 5; i++) {
af7ec138 5104 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
5105 if (err)
5106 return err;
5107 }
17a52670 5108
c93552c4
DB
5109 err = record_func_map(env, &meta, func_id, insn_idx);
5110 if (err)
5111 return err;
5112
d2e4c1e6
DB
5113 err = record_func_key(env, &meta, func_id, insn_idx);
5114 if (err)
5115 return err;
5116
435faee1
DB
5117 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5118 * is inferred from register state.
5119 */
5120 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
5121 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5122 BPF_WRITE, -1, false);
435faee1
DB
5123 if (err)
5124 return err;
5125 }
5126
fd978bf7
JS
5127 if (func_id == BPF_FUNC_tail_call) {
5128 err = check_reference_leak(env);
5129 if (err) {
5130 verbose(env, "tail_call would lead to reference leak\n");
5131 return err;
5132 }
5133 } else if (is_release_function(func_id)) {
1b986589 5134 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
5135 if (err) {
5136 verbose(env, "func %s#%d reference has not been acquired before\n",
5137 func_id_name(func_id), func_id);
fd978bf7 5138 return err;
46f8bc92 5139 }
fd978bf7
JS
5140 }
5141
638f5b90 5142 regs = cur_regs(env);
cd339431
RG
5143
5144 /* check that flags argument in get_local_storage(map, flags) is 0,
5145 * this is required because get_local_storage() can't return an error.
5146 */
5147 if (func_id == BPF_FUNC_get_local_storage &&
5148 !register_is_null(&regs[BPF_REG_2])) {
5149 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5150 return -EINVAL;
5151 }
5152
17a52670 5153 /* reset caller saved regs */
dc503a8a 5154 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5155 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5156 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5157 }
17a52670 5158
5327ed3d
JW
5159 /* helper call returns 64-bit value. */
5160 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5161
dc503a8a 5162 /* update return register (already marked as written above) */
17a52670 5163 if (fn->ret_type == RET_INTEGER) {
f1174f77 5164 /* sets type to SCALAR_VALUE */
61bd5218 5165 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
5166 } else if (fn->ret_type == RET_VOID) {
5167 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
5168 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5169 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 5170 /* There is no offset yet applied, variable or fixed */
61bd5218 5171 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
5172 /* remember map_ptr, so that check_map_access()
5173 * can check 'value_size' boundary of memory access
5174 * to map element returned from bpf_map_lookup_elem()
5175 */
33ff9823 5176 if (meta.map_ptr == NULL) {
61bd5218
JK
5177 verbose(env,
5178 "kernel subsystem misconfigured verifier\n");
17a52670
AS
5179 return -EINVAL;
5180 }
33ff9823 5181 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
5182 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5183 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
5184 if (map_value_has_spin_lock(meta.map_ptr))
5185 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
5186 } else {
5187 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 5188 }
c64b7983
JS
5189 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5190 mark_reg_known_zero(env, regs, BPF_REG_0);
5191 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
5192 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5193 mark_reg_known_zero(env, regs, BPF_REG_0);
5194 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
5195 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5196 mark_reg_known_zero(env, regs, BPF_REG_0);
5197 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
5198 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5199 mark_reg_known_zero(env, regs, BPF_REG_0);
5200 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 5201 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
5202 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5203 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
5204 const struct btf_type *t;
5205
5206 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 5207 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
5208 if (!btf_type_is_struct(t)) {
5209 u32 tsize;
5210 const struct btf_type *ret;
5211 const char *tname;
5212
5213 /* resolve the type size of ksym. */
22dc4a0f 5214 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 5215 if (IS_ERR(ret)) {
22dc4a0f 5216 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
5217 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5218 tname, PTR_ERR(ret));
5219 return -EINVAL;
5220 }
63d9b80d
HL
5221 regs[BPF_REG_0].type =
5222 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5223 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
5224 regs[BPF_REG_0].mem_size = tsize;
5225 } else {
63d9b80d
HL
5226 regs[BPF_REG_0].type =
5227 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5228 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 5229 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
5230 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5231 }
3ca1032a
KS
5232 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5233 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
5234 int ret_btf_id;
5235
5236 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
5237 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5238 PTR_TO_BTF_ID :
5239 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
5240 ret_btf_id = *fn->ret_btf_id;
5241 if (ret_btf_id == 0) {
5242 verbose(env, "invalid return type %d of func %s#%d\n",
5243 fn->ret_type, func_id_name(func_id), func_id);
5244 return -EINVAL;
5245 }
22dc4a0f
AN
5246 /* current BPF helper definitions are only coming from
5247 * built-in code with type IDs from vmlinux BTF
5248 */
5249 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 5250 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5251 } else {
61bd5218 5252 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5253 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5254 return -EINVAL;
5255 }
04fd61ab 5256
93c230e3
MKL
5257 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5258 regs[BPF_REG_0].id = ++env->id_gen;
5259
0f3adc28 5260 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5261 /* For release_reference() */
5262 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5263 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5264 int id = acquire_reference_state(env, insn_idx);
5265
5266 if (id < 0)
5267 return id;
5268 /* For mark_ptr_or_null_reg() */
5269 regs[BPF_REG_0].id = id;
5270 /* For release_reference() */
5271 regs[BPF_REG_0].ref_obj_id = id;
5272 }
1b986589 5273
849fa506
YS
5274 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5275
61bd5218 5276 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5277 if (err)
5278 return err;
04fd61ab 5279
fa28dcb8
SL
5280 if ((func_id == BPF_FUNC_get_stack ||
5281 func_id == BPF_FUNC_get_task_stack) &&
5282 !env->prog->has_callchain_buf) {
c195651e
YS
5283 const char *err_str;
5284
5285#ifdef CONFIG_PERF_EVENTS
5286 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5287 err_str = "cannot get callchain buffer for func %s#%d\n";
5288#else
5289 err = -ENOTSUPP;
5290 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5291#endif
5292 if (err) {
5293 verbose(env, err_str, func_id_name(func_id), func_id);
5294 return err;
5295 }
5296
5297 env->prog->has_callchain_buf = true;
5298 }
5299
5d99cb2c
SL
5300 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5301 env->prog->call_get_stack = true;
5302
969bf05e
AS
5303 if (changes_data)
5304 clear_all_pkt_pointers(env);
5305 return 0;
5306}
5307
b03c9f9f
EC
5308static bool signed_add_overflows(s64 a, s64 b)
5309{
5310 /* Do the add in u64, where overflow is well-defined */
5311 s64 res = (s64)((u64)a + (u64)b);
5312
5313 if (b < 0)
5314 return res > a;
5315 return res < a;
5316}
5317
3f50f132
JF
5318static bool signed_add32_overflows(s64 a, s64 b)
5319{
5320 /* Do the add in u32, where overflow is well-defined */
5321 s32 res = (s32)((u32)a + (u32)b);
5322
5323 if (b < 0)
5324 return res > a;
5325 return res < a;
5326}
5327
5328static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
5329{
5330 /* Do the sub in u64, where overflow is well-defined */
5331 s64 res = (s64)((u64)a - (u64)b);
5332
5333 if (b < 0)
5334 return res < a;
5335 return res > a;
969bf05e
AS
5336}
5337
3f50f132
JF
5338static bool signed_sub32_overflows(s32 a, s32 b)
5339{
5340 /* Do the sub in u64, where overflow is well-defined */
5341 s32 res = (s32)((u32)a - (u32)b);
5342
5343 if (b < 0)
5344 return res < a;
5345 return res > a;
5346}
5347
bb7f0f98
AS
5348static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5349 const struct bpf_reg_state *reg,
5350 enum bpf_reg_type type)
5351{
5352 bool known = tnum_is_const(reg->var_off);
5353 s64 val = reg->var_off.value;
5354 s64 smin = reg->smin_value;
5355
5356 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5357 verbose(env, "math between %s pointer and %lld is not allowed\n",
5358 reg_type_str[type], val);
5359 return false;
5360 }
5361
5362 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5363 verbose(env, "%s pointer offset %d is not allowed\n",
5364 reg_type_str[type], reg->off);
5365 return false;
5366 }
5367
5368 if (smin == S64_MIN) {
5369 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5370 reg_type_str[type]);
5371 return false;
5372 }
5373
5374 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5375 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5376 smin, reg_type_str[type]);
5377 return false;
5378 }
5379
5380 return true;
5381}
5382
979d63d5
DB
5383static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5384{
5385 return &env->insn_aux_data[env->insn_idx];
5386}
5387
5388static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5389 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5390{
5391 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5392 (opcode == BPF_SUB && !off_is_neg);
5393 u32 off;
5394
5395 switch (ptr_reg->type) {
5396 case PTR_TO_STACK:
088ec26d
AI
5397 /* Indirect variable offset stack access is prohibited in
5398 * unprivileged mode so it's not handled here.
5399 */
979d63d5
DB
5400 off = ptr_reg->off + ptr_reg->var_off.value;
5401 if (mask_to_left)
5402 *ptr_limit = MAX_BPF_STACK + off;
5403 else
5404 *ptr_limit = -off;
5405 return 0;
5406 case PTR_TO_MAP_VALUE:
5407 if (mask_to_left) {
5408 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5409 } else {
5410 off = ptr_reg->smin_value + ptr_reg->off;
5411 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5412 }
5413 return 0;
5414 default:
5415 return -EINVAL;
5416 }
5417}
5418
d3bd7413
DB
5419static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5420 const struct bpf_insn *insn)
5421{
2c78ee89 5422 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5423}
5424
5425static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5426 u32 alu_state, u32 alu_limit)
5427{
5428 /* If we arrived here from different branches with different
5429 * state or limits to sanitize, then this won't work.
5430 */
5431 if (aux->alu_state &&
5432 (aux->alu_state != alu_state ||
5433 aux->alu_limit != alu_limit))
5434 return -EACCES;
5435
5436 /* Corresponding fixup done in fixup_bpf_calls(). */
5437 aux->alu_state = alu_state;
5438 aux->alu_limit = alu_limit;
5439 return 0;
5440}
5441
5442static int sanitize_val_alu(struct bpf_verifier_env *env,
5443 struct bpf_insn *insn)
5444{
5445 struct bpf_insn_aux_data *aux = cur_aux(env);
5446
5447 if (can_skip_alu_sanitation(env, insn))
5448 return 0;
5449
5450 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5451}
5452
979d63d5
DB
5453static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5454 struct bpf_insn *insn,
5455 const struct bpf_reg_state *ptr_reg,
5456 struct bpf_reg_state *dst_reg,
5457 bool off_is_neg)
5458{
5459 struct bpf_verifier_state *vstate = env->cur_state;
5460 struct bpf_insn_aux_data *aux = cur_aux(env);
5461 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5462 u8 opcode = BPF_OP(insn->code);
5463 u32 alu_state, alu_limit;
5464 struct bpf_reg_state tmp;
5465 bool ret;
5466
d3bd7413 5467 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5468 return 0;
5469
5470 /* We already marked aux for masking from non-speculative
5471 * paths, thus we got here in the first place. We only care
5472 * to explore bad access from here.
5473 */
5474 if (vstate->speculative)
5475 goto do_sim;
5476
5477 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5478 alu_state |= ptr_is_dst_reg ?
5479 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5480
5481 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5482 return 0;
d3bd7413 5483 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5484 return -EACCES;
979d63d5
DB
5485do_sim:
5486 /* Simulate and find potential out-of-bounds access under
5487 * speculative execution from truncation as a result of
5488 * masking when off was not within expected range. If off
5489 * sits in dst, then we temporarily need to move ptr there
5490 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5491 * for cases where we use K-based arithmetic in one direction
5492 * and truncated reg-based in the other in order to explore
5493 * bad access.
5494 */
5495 if (!ptr_is_dst_reg) {
5496 tmp = *dst_reg;
5497 *dst_reg = *ptr_reg;
5498 }
5499 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5500 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5501 *dst_reg = tmp;
5502 return !ret ? -EFAULT : 0;
5503}
5504
f1174f77 5505/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5506 * Caller should also handle BPF_MOV case separately.
5507 * If we return -EACCES, caller may want to try again treating pointer as a
5508 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5509 */
5510static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5511 struct bpf_insn *insn,
5512 const struct bpf_reg_state *ptr_reg,
5513 const struct bpf_reg_state *off_reg)
969bf05e 5514{
f4d7e40a
AS
5515 struct bpf_verifier_state *vstate = env->cur_state;
5516 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5517 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5518 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5519 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5520 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5521 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5522 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5523 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5524 u8 opcode = BPF_OP(insn->code);
979d63d5 5525 int ret;
969bf05e 5526
f1174f77 5527 dst_reg = &regs[dst];
969bf05e 5528
6f16101e
DB
5529 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5530 smin_val > smax_val || umin_val > umax_val) {
5531 /* Taint dst register if offset had invalid bounds derived from
5532 * e.g. dead branches.
5533 */
f54c7898 5534 __mark_reg_unknown(env, dst_reg);
6f16101e 5535 return 0;
f1174f77
EC
5536 }
5537
5538 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5539 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5540 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5541 __mark_reg_unknown(env, dst_reg);
5542 return 0;
5543 }
5544
82abbf8d
AS
5545 verbose(env,
5546 "R%d 32-bit pointer arithmetic prohibited\n",
5547 dst);
f1174f77 5548 return -EACCES;
969bf05e
AS
5549 }
5550
aad2eeaf
JS
5551 switch (ptr_reg->type) {
5552 case PTR_TO_MAP_VALUE_OR_NULL:
5553 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5554 dst, reg_type_str[ptr_reg->type]);
f1174f77 5555 return -EACCES;
aad2eeaf 5556 case CONST_PTR_TO_MAP:
7c696732
YS
5557 /* smin_val represents the known value */
5558 if (known && smin_val == 0 && opcode == BPF_ADD)
5559 break;
8731745e 5560 fallthrough;
aad2eeaf 5561 case PTR_TO_PACKET_END:
c64b7983
JS
5562 case PTR_TO_SOCKET:
5563 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5564 case PTR_TO_SOCK_COMMON:
5565 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5566 case PTR_TO_TCP_SOCK:
5567 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5568 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5569 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5570 dst, reg_type_str[ptr_reg->type]);
f1174f77 5571 return -EACCES;
9d7eceed
DB
5572 case PTR_TO_MAP_VALUE:
5573 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5574 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5575 off_reg == dst_reg ? dst : src);
5576 return -EACCES;
5577 }
df561f66 5578 fallthrough;
aad2eeaf
JS
5579 default:
5580 break;
f1174f77
EC
5581 }
5582
5583 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5584 * The id may be overwritten later if we create a new variable offset.
969bf05e 5585 */
f1174f77
EC
5586 dst_reg->type = ptr_reg->type;
5587 dst_reg->id = ptr_reg->id;
969bf05e 5588
bb7f0f98
AS
5589 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5590 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5591 return -EINVAL;
5592
3f50f132
JF
5593 /* pointer types do not carry 32-bit bounds at the moment. */
5594 __mark_reg32_unbounded(dst_reg);
5595
f1174f77
EC
5596 switch (opcode) {
5597 case BPF_ADD:
979d63d5
DB
5598 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5599 if (ret < 0) {
5600 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5601 return ret;
5602 }
f1174f77
EC
5603 /* We can take a fixed offset as long as it doesn't overflow
5604 * the s32 'off' field
969bf05e 5605 */
b03c9f9f
EC
5606 if (known && (ptr_reg->off + smin_val ==
5607 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5608 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5609 dst_reg->smin_value = smin_ptr;
5610 dst_reg->smax_value = smax_ptr;
5611 dst_reg->umin_value = umin_ptr;
5612 dst_reg->umax_value = umax_ptr;
f1174f77 5613 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5614 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5615 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5616 break;
5617 }
f1174f77
EC
5618 /* A new variable offset is created. Note that off_reg->off
5619 * == 0, since it's a scalar.
5620 * dst_reg gets the pointer type and since some positive
5621 * integer value was added to the pointer, give it a new 'id'
5622 * if it's a PTR_TO_PACKET.
5623 * this creates a new 'base' pointer, off_reg (variable) gets
5624 * added into the variable offset, and we copy the fixed offset
5625 * from ptr_reg.
969bf05e 5626 */
b03c9f9f
EC
5627 if (signed_add_overflows(smin_ptr, smin_val) ||
5628 signed_add_overflows(smax_ptr, smax_val)) {
5629 dst_reg->smin_value = S64_MIN;
5630 dst_reg->smax_value = S64_MAX;
5631 } else {
5632 dst_reg->smin_value = smin_ptr + smin_val;
5633 dst_reg->smax_value = smax_ptr + smax_val;
5634 }
5635 if (umin_ptr + umin_val < umin_ptr ||
5636 umax_ptr + umax_val < umax_ptr) {
5637 dst_reg->umin_value = 0;
5638 dst_reg->umax_value = U64_MAX;
5639 } else {
5640 dst_reg->umin_value = umin_ptr + umin_val;
5641 dst_reg->umax_value = umax_ptr + umax_val;
5642 }
f1174f77
EC
5643 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5644 dst_reg->off = ptr_reg->off;
0962590e 5645 dst_reg->raw = ptr_reg->raw;
de8f3a83 5646 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5647 dst_reg->id = ++env->id_gen;
5648 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 5649 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
5650 }
5651 break;
5652 case BPF_SUB:
979d63d5
DB
5653 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5654 if (ret < 0) {
5655 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5656 return ret;
5657 }
f1174f77
EC
5658 if (dst_reg == off_reg) {
5659 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5660 verbose(env, "R%d tried to subtract pointer from scalar\n",
5661 dst);
f1174f77
EC
5662 return -EACCES;
5663 }
5664 /* We don't allow subtraction from FP, because (according to
5665 * test_verifier.c test "invalid fp arithmetic", JITs might not
5666 * be able to deal with it.
969bf05e 5667 */
f1174f77 5668 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5669 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5670 dst);
f1174f77
EC
5671 return -EACCES;
5672 }
b03c9f9f
EC
5673 if (known && (ptr_reg->off - smin_val ==
5674 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5675 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5676 dst_reg->smin_value = smin_ptr;
5677 dst_reg->smax_value = smax_ptr;
5678 dst_reg->umin_value = umin_ptr;
5679 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5680 dst_reg->var_off = ptr_reg->var_off;
5681 dst_reg->id = ptr_reg->id;
b03c9f9f 5682 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5683 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5684 break;
5685 }
f1174f77
EC
5686 /* A new variable offset is created. If the subtrahend is known
5687 * nonnegative, then any reg->range we had before is still good.
969bf05e 5688 */
b03c9f9f
EC
5689 if (signed_sub_overflows(smin_ptr, smax_val) ||
5690 signed_sub_overflows(smax_ptr, smin_val)) {
5691 /* Overflow possible, we know nothing */
5692 dst_reg->smin_value = S64_MIN;
5693 dst_reg->smax_value = S64_MAX;
5694 } else {
5695 dst_reg->smin_value = smin_ptr - smax_val;
5696 dst_reg->smax_value = smax_ptr - smin_val;
5697 }
5698 if (umin_ptr < umax_val) {
5699 /* Overflow possible, we know nothing */
5700 dst_reg->umin_value = 0;
5701 dst_reg->umax_value = U64_MAX;
5702 } else {
5703 /* Cannot overflow (as long as bounds are consistent) */
5704 dst_reg->umin_value = umin_ptr - umax_val;
5705 dst_reg->umax_value = umax_ptr - umin_val;
5706 }
f1174f77
EC
5707 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5708 dst_reg->off = ptr_reg->off;
0962590e 5709 dst_reg->raw = ptr_reg->raw;
de8f3a83 5710 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5711 dst_reg->id = ++env->id_gen;
5712 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5713 if (smin_val < 0)
22dc4a0f 5714 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 5715 }
f1174f77
EC
5716 break;
5717 case BPF_AND:
5718 case BPF_OR:
5719 case BPF_XOR:
82abbf8d
AS
5720 /* bitwise ops on pointers are troublesome, prohibit. */
5721 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5722 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5723 return -EACCES;
5724 default:
5725 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5726 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5727 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5728 return -EACCES;
43188702
JF
5729 }
5730
bb7f0f98
AS
5731 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5732 return -EINVAL;
5733
b03c9f9f
EC
5734 __update_reg_bounds(dst_reg);
5735 __reg_deduce_bounds(dst_reg);
5736 __reg_bound_offset(dst_reg);
0d6303db
DB
5737
5738 /* For unprivileged we require that resulting offset must be in bounds
5739 * in order to be able to sanitize access later on.
5740 */
2c78ee89 5741 if (!env->bypass_spec_v1) {
e4298d25
DB
5742 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5743 check_map_access(env, dst, dst_reg->off, 1, false)) {
5744 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5745 "prohibited for !root\n", dst);
5746 return -EACCES;
5747 } else if (dst_reg->type == PTR_TO_STACK &&
5748 check_stack_access(env, dst_reg, dst_reg->off +
5749 dst_reg->var_off.value, 1)) {
5750 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5751 "prohibited for !root\n", dst);
5752 return -EACCES;
5753 }
0d6303db
DB
5754 }
5755
43188702
JF
5756 return 0;
5757}
5758
3f50f132
JF
5759static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5760 struct bpf_reg_state *src_reg)
5761{
5762 s32 smin_val = src_reg->s32_min_value;
5763 s32 smax_val = src_reg->s32_max_value;
5764 u32 umin_val = src_reg->u32_min_value;
5765 u32 umax_val = src_reg->u32_max_value;
5766
5767 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5768 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5769 dst_reg->s32_min_value = S32_MIN;
5770 dst_reg->s32_max_value = S32_MAX;
5771 } else {
5772 dst_reg->s32_min_value += smin_val;
5773 dst_reg->s32_max_value += smax_val;
5774 }
5775 if (dst_reg->u32_min_value + umin_val < umin_val ||
5776 dst_reg->u32_max_value + umax_val < umax_val) {
5777 dst_reg->u32_min_value = 0;
5778 dst_reg->u32_max_value = U32_MAX;
5779 } else {
5780 dst_reg->u32_min_value += umin_val;
5781 dst_reg->u32_max_value += umax_val;
5782 }
5783}
5784
07cd2631
JF
5785static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5786 struct bpf_reg_state *src_reg)
5787{
5788 s64 smin_val = src_reg->smin_value;
5789 s64 smax_val = src_reg->smax_value;
5790 u64 umin_val = src_reg->umin_value;
5791 u64 umax_val = src_reg->umax_value;
5792
5793 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5794 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5795 dst_reg->smin_value = S64_MIN;
5796 dst_reg->smax_value = S64_MAX;
5797 } else {
5798 dst_reg->smin_value += smin_val;
5799 dst_reg->smax_value += smax_val;
5800 }
5801 if (dst_reg->umin_value + umin_val < umin_val ||
5802 dst_reg->umax_value + umax_val < umax_val) {
5803 dst_reg->umin_value = 0;
5804 dst_reg->umax_value = U64_MAX;
5805 } else {
5806 dst_reg->umin_value += umin_val;
5807 dst_reg->umax_value += umax_val;
5808 }
3f50f132
JF
5809}
5810
5811static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5812 struct bpf_reg_state *src_reg)
5813{
5814 s32 smin_val = src_reg->s32_min_value;
5815 s32 smax_val = src_reg->s32_max_value;
5816 u32 umin_val = src_reg->u32_min_value;
5817 u32 umax_val = src_reg->u32_max_value;
5818
5819 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5820 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5821 /* Overflow possible, we know nothing */
5822 dst_reg->s32_min_value = S32_MIN;
5823 dst_reg->s32_max_value = S32_MAX;
5824 } else {
5825 dst_reg->s32_min_value -= smax_val;
5826 dst_reg->s32_max_value -= smin_val;
5827 }
5828 if (dst_reg->u32_min_value < umax_val) {
5829 /* Overflow possible, we know nothing */
5830 dst_reg->u32_min_value = 0;
5831 dst_reg->u32_max_value = U32_MAX;
5832 } else {
5833 /* Cannot overflow (as long as bounds are consistent) */
5834 dst_reg->u32_min_value -= umax_val;
5835 dst_reg->u32_max_value -= umin_val;
5836 }
07cd2631
JF
5837}
5838
5839static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5840 struct bpf_reg_state *src_reg)
5841{
5842 s64 smin_val = src_reg->smin_value;
5843 s64 smax_val = src_reg->smax_value;
5844 u64 umin_val = src_reg->umin_value;
5845 u64 umax_val = src_reg->umax_value;
5846
5847 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5848 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5849 /* Overflow possible, we know nothing */
5850 dst_reg->smin_value = S64_MIN;
5851 dst_reg->smax_value = S64_MAX;
5852 } else {
5853 dst_reg->smin_value -= smax_val;
5854 dst_reg->smax_value -= smin_val;
5855 }
5856 if (dst_reg->umin_value < umax_val) {
5857 /* Overflow possible, we know nothing */
5858 dst_reg->umin_value = 0;
5859 dst_reg->umax_value = U64_MAX;
5860 } else {
5861 /* Cannot overflow (as long as bounds are consistent) */
5862 dst_reg->umin_value -= umax_val;
5863 dst_reg->umax_value -= umin_val;
5864 }
3f50f132
JF
5865}
5866
5867static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5868 struct bpf_reg_state *src_reg)
5869{
5870 s32 smin_val = src_reg->s32_min_value;
5871 u32 umin_val = src_reg->u32_min_value;
5872 u32 umax_val = src_reg->u32_max_value;
5873
5874 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5875 /* Ain't nobody got time to multiply that sign */
5876 __mark_reg32_unbounded(dst_reg);
5877 return;
5878 }
5879 /* Both values are positive, so we can work with unsigned and
5880 * copy the result to signed (unless it exceeds S32_MAX).
5881 */
5882 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5883 /* Potential overflow, we know nothing */
5884 __mark_reg32_unbounded(dst_reg);
5885 return;
5886 }
5887 dst_reg->u32_min_value *= umin_val;
5888 dst_reg->u32_max_value *= umax_val;
5889 if (dst_reg->u32_max_value > S32_MAX) {
5890 /* Overflow possible, we know nothing */
5891 dst_reg->s32_min_value = S32_MIN;
5892 dst_reg->s32_max_value = S32_MAX;
5893 } else {
5894 dst_reg->s32_min_value = dst_reg->u32_min_value;
5895 dst_reg->s32_max_value = dst_reg->u32_max_value;
5896 }
07cd2631
JF
5897}
5898
5899static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5900 struct bpf_reg_state *src_reg)
5901{
5902 s64 smin_val = src_reg->smin_value;
5903 u64 umin_val = src_reg->umin_value;
5904 u64 umax_val = src_reg->umax_value;
5905
07cd2631
JF
5906 if (smin_val < 0 || dst_reg->smin_value < 0) {
5907 /* Ain't nobody got time to multiply that sign */
3f50f132 5908 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5909 return;
5910 }
5911 /* Both values are positive, so we can work with unsigned and
5912 * copy the result to signed (unless it exceeds S64_MAX).
5913 */
5914 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5915 /* Potential overflow, we know nothing */
3f50f132 5916 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5917 return;
5918 }
5919 dst_reg->umin_value *= umin_val;
5920 dst_reg->umax_value *= umax_val;
5921 if (dst_reg->umax_value > S64_MAX) {
5922 /* Overflow possible, we know nothing */
5923 dst_reg->smin_value = S64_MIN;
5924 dst_reg->smax_value = S64_MAX;
5925 } else {
5926 dst_reg->smin_value = dst_reg->umin_value;
5927 dst_reg->smax_value = dst_reg->umax_value;
5928 }
5929}
5930
3f50f132
JF
5931static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5932 struct bpf_reg_state *src_reg)
5933{
5934 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5935 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5936 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5937 s32 smin_val = src_reg->s32_min_value;
5938 u32 umax_val = src_reg->u32_max_value;
5939
5940 /* Assuming scalar64_min_max_and will be called so its safe
5941 * to skip updating register for known 32-bit case.
5942 */
5943 if (src_known && dst_known)
5944 return;
5945
5946 /* We get our minimum from the var_off, since that's inherently
5947 * bitwise. Our maximum is the minimum of the operands' maxima.
5948 */
5949 dst_reg->u32_min_value = var32_off.value;
5950 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5951 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5952 /* Lose signed bounds when ANDing negative numbers,
5953 * ain't nobody got time for that.
5954 */
5955 dst_reg->s32_min_value = S32_MIN;
5956 dst_reg->s32_max_value = S32_MAX;
5957 } else {
5958 /* ANDing two positives gives a positive, so safe to
5959 * cast result into s64.
5960 */
5961 dst_reg->s32_min_value = dst_reg->u32_min_value;
5962 dst_reg->s32_max_value = dst_reg->u32_max_value;
5963 }
5964
5965}
5966
07cd2631
JF
5967static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5968 struct bpf_reg_state *src_reg)
5969{
3f50f132
JF
5970 bool src_known = tnum_is_const(src_reg->var_off);
5971 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5972 s64 smin_val = src_reg->smin_value;
5973 u64 umax_val = src_reg->umax_value;
5974
3f50f132 5975 if (src_known && dst_known) {
4fbb38a3 5976 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5977 return;
5978 }
5979
07cd2631
JF
5980 /* We get our minimum from the var_off, since that's inherently
5981 * bitwise. Our maximum is the minimum of the operands' maxima.
5982 */
07cd2631
JF
5983 dst_reg->umin_value = dst_reg->var_off.value;
5984 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5985 if (dst_reg->smin_value < 0 || smin_val < 0) {
5986 /* Lose signed bounds when ANDing negative numbers,
5987 * ain't nobody got time for that.
5988 */
5989 dst_reg->smin_value = S64_MIN;
5990 dst_reg->smax_value = S64_MAX;
5991 } else {
5992 /* ANDing two positives gives a positive, so safe to
5993 * cast result into s64.
5994 */
5995 dst_reg->smin_value = dst_reg->umin_value;
5996 dst_reg->smax_value = dst_reg->umax_value;
5997 }
5998 /* We may learn something more from the var_off */
5999 __update_reg_bounds(dst_reg);
6000}
6001
3f50f132
JF
6002static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6003 struct bpf_reg_state *src_reg)
6004{
6005 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6006 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6007 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
6008 s32 smin_val = src_reg->s32_min_value;
6009 u32 umin_val = src_reg->u32_min_value;
3f50f132
JF
6010
6011 /* Assuming scalar64_min_max_or will be called so it is safe
6012 * to skip updating register for known case.
6013 */
6014 if (src_known && dst_known)
6015 return;
6016
6017 /* We get our maximum from the var_off, and our minimum is the
6018 * maximum of the operands' minima
6019 */
6020 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6021 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6022 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6023 /* Lose signed bounds when ORing negative numbers,
6024 * ain't nobody got time for that.
6025 */
6026 dst_reg->s32_min_value = S32_MIN;
6027 dst_reg->s32_max_value = S32_MAX;
6028 } else {
6029 /* ORing two positives gives a positive, so safe to
6030 * cast result into s64.
6031 */
5b9fbeb7
DB
6032 dst_reg->s32_min_value = dst_reg->u32_min_value;
6033 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
6034 }
6035}
6036
07cd2631
JF
6037static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6038 struct bpf_reg_state *src_reg)
6039{
3f50f132
JF
6040 bool src_known = tnum_is_const(src_reg->var_off);
6041 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
6042 s64 smin_val = src_reg->smin_value;
6043 u64 umin_val = src_reg->umin_value;
6044
3f50f132 6045 if (src_known && dst_known) {
4fbb38a3 6046 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
6047 return;
6048 }
6049
07cd2631
JF
6050 /* We get our maximum from the var_off, and our minimum is the
6051 * maximum of the operands' minima
6052 */
07cd2631
JF
6053 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6054 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6055 if (dst_reg->smin_value < 0 || smin_val < 0) {
6056 /* Lose signed bounds when ORing negative numbers,
6057 * ain't nobody got time for that.
6058 */
6059 dst_reg->smin_value = S64_MIN;
6060 dst_reg->smax_value = S64_MAX;
6061 } else {
6062 /* ORing two positives gives a positive, so safe to
6063 * cast result into s64.
6064 */
6065 dst_reg->smin_value = dst_reg->umin_value;
6066 dst_reg->smax_value = dst_reg->umax_value;
6067 }
6068 /* We may learn something more from the var_off */
6069 __update_reg_bounds(dst_reg);
6070}
6071
2921c90d
YS
6072static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6073 struct bpf_reg_state *src_reg)
6074{
6075 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6076 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6077 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6078 s32 smin_val = src_reg->s32_min_value;
6079
6080 /* Assuming scalar64_min_max_xor will be called so it is safe
6081 * to skip updating register for known case.
6082 */
6083 if (src_known && dst_known)
6084 return;
6085
6086 /* We get both minimum and maximum from the var32_off. */
6087 dst_reg->u32_min_value = var32_off.value;
6088 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6089
6090 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6091 /* XORing two positive sign numbers gives a positive,
6092 * so safe to cast u32 result into s32.
6093 */
6094 dst_reg->s32_min_value = dst_reg->u32_min_value;
6095 dst_reg->s32_max_value = dst_reg->u32_max_value;
6096 } else {
6097 dst_reg->s32_min_value = S32_MIN;
6098 dst_reg->s32_max_value = S32_MAX;
6099 }
6100}
6101
6102static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6103 struct bpf_reg_state *src_reg)
6104{
6105 bool src_known = tnum_is_const(src_reg->var_off);
6106 bool dst_known = tnum_is_const(dst_reg->var_off);
6107 s64 smin_val = src_reg->smin_value;
6108
6109 if (src_known && dst_known) {
6110 /* dst_reg->var_off.value has been updated earlier */
6111 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6112 return;
6113 }
6114
6115 /* We get both minimum and maximum from the var_off. */
6116 dst_reg->umin_value = dst_reg->var_off.value;
6117 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6118
6119 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6120 /* XORing two positive sign numbers gives a positive,
6121 * so safe to cast u64 result into s64.
6122 */
6123 dst_reg->smin_value = dst_reg->umin_value;
6124 dst_reg->smax_value = dst_reg->umax_value;
6125 } else {
6126 dst_reg->smin_value = S64_MIN;
6127 dst_reg->smax_value = S64_MAX;
6128 }
6129
6130 __update_reg_bounds(dst_reg);
6131}
6132
3f50f132
JF
6133static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6134 u64 umin_val, u64 umax_val)
07cd2631 6135{
07cd2631
JF
6136 /* We lose all sign bit information (except what we can pick
6137 * up from var_off)
6138 */
3f50f132
JF
6139 dst_reg->s32_min_value = S32_MIN;
6140 dst_reg->s32_max_value = S32_MAX;
6141 /* If we might shift our top bit out, then we know nothing */
6142 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6143 dst_reg->u32_min_value = 0;
6144 dst_reg->u32_max_value = U32_MAX;
6145 } else {
6146 dst_reg->u32_min_value <<= umin_val;
6147 dst_reg->u32_max_value <<= umax_val;
6148 }
6149}
6150
6151static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6152 struct bpf_reg_state *src_reg)
6153{
6154 u32 umax_val = src_reg->u32_max_value;
6155 u32 umin_val = src_reg->u32_min_value;
6156 /* u32 alu operation will zext upper bits */
6157 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6158
6159 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6160 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6161 /* Not required but being careful mark reg64 bounds as unknown so
6162 * that we are forced to pick them up from tnum and zext later and
6163 * if some path skips this step we are still safe.
6164 */
6165 __mark_reg64_unbounded(dst_reg);
6166 __update_reg32_bounds(dst_reg);
6167}
6168
6169static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6170 u64 umin_val, u64 umax_val)
6171{
6172 /* Special case <<32 because it is a common compiler pattern to sign
6173 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6174 * positive we know this shift will also be positive so we can track
6175 * bounds correctly. Otherwise we lose all sign bit information except
6176 * what we can pick up from var_off. Perhaps we can generalize this
6177 * later to shifts of any length.
6178 */
6179 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6180 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6181 else
6182 dst_reg->smax_value = S64_MAX;
6183
6184 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6185 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6186 else
6187 dst_reg->smin_value = S64_MIN;
6188
07cd2631
JF
6189 /* If we might shift our top bit out, then we know nothing */
6190 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6191 dst_reg->umin_value = 0;
6192 dst_reg->umax_value = U64_MAX;
6193 } else {
6194 dst_reg->umin_value <<= umin_val;
6195 dst_reg->umax_value <<= umax_val;
6196 }
3f50f132
JF
6197}
6198
6199static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6200 struct bpf_reg_state *src_reg)
6201{
6202 u64 umax_val = src_reg->umax_value;
6203 u64 umin_val = src_reg->umin_value;
6204
6205 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6206 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6207 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6208
07cd2631
JF
6209 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6210 /* We may learn something more from the var_off */
6211 __update_reg_bounds(dst_reg);
6212}
6213
3f50f132
JF
6214static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6215 struct bpf_reg_state *src_reg)
6216{
6217 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6218 u32 umax_val = src_reg->u32_max_value;
6219 u32 umin_val = src_reg->u32_min_value;
6220
6221 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6222 * be negative, then either:
6223 * 1) src_reg might be zero, so the sign bit of the result is
6224 * unknown, so we lose our signed bounds
6225 * 2) it's known negative, thus the unsigned bounds capture the
6226 * signed bounds
6227 * 3) the signed bounds cross zero, so they tell us nothing
6228 * about the result
6229 * If the value in dst_reg is known nonnegative, then again the
6230 * unsigned bounts capture the signed bounds.
6231 * Thus, in all cases it suffices to blow away our signed bounds
6232 * and rely on inferring new ones from the unsigned bounds and
6233 * var_off of the result.
6234 */
6235 dst_reg->s32_min_value = S32_MIN;
6236 dst_reg->s32_max_value = S32_MAX;
6237
6238 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6239 dst_reg->u32_min_value >>= umax_val;
6240 dst_reg->u32_max_value >>= umin_val;
6241
6242 __mark_reg64_unbounded(dst_reg);
6243 __update_reg32_bounds(dst_reg);
6244}
6245
07cd2631
JF
6246static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6247 struct bpf_reg_state *src_reg)
6248{
6249 u64 umax_val = src_reg->umax_value;
6250 u64 umin_val = src_reg->umin_value;
6251
6252 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6253 * be negative, then either:
6254 * 1) src_reg might be zero, so the sign bit of the result is
6255 * unknown, so we lose our signed bounds
6256 * 2) it's known negative, thus the unsigned bounds capture the
6257 * signed bounds
6258 * 3) the signed bounds cross zero, so they tell us nothing
6259 * about the result
6260 * If the value in dst_reg is known nonnegative, then again the
6261 * unsigned bounts capture the signed bounds.
6262 * Thus, in all cases it suffices to blow away our signed bounds
6263 * and rely on inferring new ones from the unsigned bounds and
6264 * var_off of the result.
6265 */
6266 dst_reg->smin_value = S64_MIN;
6267 dst_reg->smax_value = S64_MAX;
6268 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6269 dst_reg->umin_value >>= umax_val;
6270 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6271
6272 /* Its not easy to operate on alu32 bounds here because it depends
6273 * on bits being shifted in. Take easy way out and mark unbounded
6274 * so we can recalculate later from tnum.
6275 */
6276 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6277 __update_reg_bounds(dst_reg);
6278}
6279
3f50f132
JF
6280static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6281 struct bpf_reg_state *src_reg)
07cd2631 6282{
3f50f132 6283 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6284
6285 /* Upon reaching here, src_known is true and
6286 * umax_val is equal to umin_val.
6287 */
3f50f132
JF
6288 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6289 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6290
3f50f132
JF
6291 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6292
6293 /* blow away the dst_reg umin_value/umax_value and rely on
6294 * dst_reg var_off to refine the result.
6295 */
6296 dst_reg->u32_min_value = 0;
6297 dst_reg->u32_max_value = U32_MAX;
6298
6299 __mark_reg64_unbounded(dst_reg);
6300 __update_reg32_bounds(dst_reg);
6301}
6302
6303static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6304 struct bpf_reg_state *src_reg)
6305{
6306 u64 umin_val = src_reg->umin_value;
6307
6308 /* Upon reaching here, src_known is true and umax_val is equal
6309 * to umin_val.
6310 */
6311 dst_reg->smin_value >>= umin_val;
6312 dst_reg->smax_value >>= umin_val;
6313
6314 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6315
6316 /* blow away the dst_reg umin_value/umax_value and rely on
6317 * dst_reg var_off to refine the result.
6318 */
6319 dst_reg->umin_value = 0;
6320 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6321
6322 /* Its not easy to operate on alu32 bounds here because it depends
6323 * on bits being shifted in from upper 32-bits. Take easy way out
6324 * and mark unbounded so we can recalculate later from tnum.
6325 */
6326 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6327 __update_reg_bounds(dst_reg);
6328}
6329
468f6eaf
JH
6330/* WARNING: This function does calculations on 64-bit values, but the actual
6331 * execution may occur on 32-bit values. Therefore, things like bitshifts
6332 * need extra checks in the 32-bit case.
6333 */
f1174f77
EC
6334static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6335 struct bpf_insn *insn,
6336 struct bpf_reg_state *dst_reg,
6337 struct bpf_reg_state src_reg)
969bf05e 6338{
638f5b90 6339 struct bpf_reg_state *regs = cur_regs(env);
48461135 6340 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6341 bool src_known;
b03c9f9f
EC
6342 s64 smin_val, smax_val;
6343 u64 umin_val, umax_val;
3f50f132
JF
6344 s32 s32_min_val, s32_max_val;
6345 u32 u32_min_val, u32_max_val;
468f6eaf 6346 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6347 u32 dst = insn->dst_reg;
6348 int ret;
3f50f132 6349 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6350
b03c9f9f
EC
6351 smin_val = src_reg.smin_value;
6352 smax_val = src_reg.smax_value;
6353 umin_val = src_reg.umin_value;
6354 umax_val = src_reg.umax_value;
f23cc643 6355
3f50f132
JF
6356 s32_min_val = src_reg.s32_min_value;
6357 s32_max_val = src_reg.s32_max_value;
6358 u32_min_val = src_reg.u32_min_value;
6359 u32_max_val = src_reg.u32_max_value;
6360
6361 if (alu32) {
6362 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6363 if ((src_known &&
6364 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6365 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6366 /* Taint dst register if offset had invalid bounds
6367 * derived from e.g. dead branches.
6368 */
6369 __mark_reg_unknown(env, dst_reg);
6370 return 0;
6371 }
6372 } else {
6373 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6374 if ((src_known &&
6375 (smin_val != smax_val || umin_val != umax_val)) ||
6376 smin_val > smax_val || umin_val > umax_val) {
6377 /* Taint dst register if offset had invalid bounds
6378 * derived from e.g. dead branches.
6379 */
6380 __mark_reg_unknown(env, dst_reg);
6381 return 0;
6382 }
6f16101e
DB
6383 }
6384
bb7f0f98
AS
6385 if (!src_known &&
6386 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6387 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6388 return 0;
6389 }
6390
3f50f132
JF
6391 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6392 * There are two classes of instructions: The first class we track both
6393 * alu32 and alu64 sign/unsigned bounds independently this provides the
6394 * greatest amount of precision when alu operations are mixed with jmp32
6395 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6396 * and BPF_OR. This is possible because these ops have fairly easy to
6397 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6398 * See alu32 verifier tests for examples. The second class of
6399 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6400 * with regards to tracking sign/unsigned bounds because the bits may
6401 * cross subreg boundaries in the alu64 case. When this happens we mark
6402 * the reg unbounded in the subreg bound space and use the resulting
6403 * tnum to calculate an approximation of the sign/unsigned bounds.
6404 */
48461135
JB
6405 switch (opcode) {
6406 case BPF_ADD:
d3bd7413
DB
6407 ret = sanitize_val_alu(env, insn);
6408 if (ret < 0) {
6409 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6410 return ret;
6411 }
3f50f132 6412 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6413 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6414 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6415 break;
6416 case BPF_SUB:
d3bd7413
DB
6417 ret = sanitize_val_alu(env, insn);
6418 if (ret < 0) {
6419 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6420 return ret;
6421 }
3f50f132 6422 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6423 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6424 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6425 break;
6426 case BPF_MUL:
3f50f132
JF
6427 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6428 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6429 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6430 break;
6431 case BPF_AND:
3f50f132
JF
6432 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6433 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6434 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6435 break;
6436 case BPF_OR:
3f50f132
JF
6437 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6438 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6439 scalar_min_max_or(dst_reg, &src_reg);
48461135 6440 break;
2921c90d
YS
6441 case BPF_XOR:
6442 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6443 scalar32_min_max_xor(dst_reg, &src_reg);
6444 scalar_min_max_xor(dst_reg, &src_reg);
6445 break;
48461135 6446 case BPF_LSH:
468f6eaf
JH
6447 if (umax_val >= insn_bitness) {
6448 /* Shifts greater than 31 or 63 are undefined.
6449 * This includes shifts by a negative number.
b03c9f9f 6450 */
61bd5218 6451 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6452 break;
6453 }
3f50f132
JF
6454 if (alu32)
6455 scalar32_min_max_lsh(dst_reg, &src_reg);
6456 else
6457 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6458 break;
6459 case BPF_RSH:
468f6eaf
JH
6460 if (umax_val >= insn_bitness) {
6461 /* Shifts greater than 31 or 63 are undefined.
6462 * This includes shifts by a negative number.
b03c9f9f 6463 */
61bd5218 6464 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6465 break;
6466 }
3f50f132
JF
6467 if (alu32)
6468 scalar32_min_max_rsh(dst_reg, &src_reg);
6469 else
6470 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6471 break;
9cbe1f5a
YS
6472 case BPF_ARSH:
6473 if (umax_val >= insn_bitness) {
6474 /* Shifts greater than 31 or 63 are undefined.
6475 * This includes shifts by a negative number.
6476 */
6477 mark_reg_unknown(env, regs, insn->dst_reg);
6478 break;
6479 }
3f50f132
JF
6480 if (alu32)
6481 scalar32_min_max_arsh(dst_reg, &src_reg);
6482 else
6483 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6484 break;
48461135 6485 default:
61bd5218 6486 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6487 break;
6488 }
6489
3f50f132
JF
6490 /* ALU32 ops are zero extended into 64bit register */
6491 if (alu32)
6492 zext_32_to_64(dst_reg);
468f6eaf 6493
294f2fc6 6494 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6495 __reg_deduce_bounds(dst_reg);
6496 __reg_bound_offset(dst_reg);
f1174f77
EC
6497 return 0;
6498}
6499
6500/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6501 * and var_off.
6502 */
6503static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6504 struct bpf_insn *insn)
6505{
f4d7e40a
AS
6506 struct bpf_verifier_state *vstate = env->cur_state;
6507 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6508 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6509 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6510 u8 opcode = BPF_OP(insn->code);
b5dc0163 6511 int err;
f1174f77
EC
6512
6513 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6514 src_reg = NULL;
6515 if (dst_reg->type != SCALAR_VALUE)
6516 ptr_reg = dst_reg;
75748837
AS
6517 else
6518 /* Make sure ID is cleared otherwise dst_reg min/max could be
6519 * incorrectly propagated into other registers by find_equal_scalars()
6520 */
6521 dst_reg->id = 0;
f1174f77
EC
6522 if (BPF_SRC(insn->code) == BPF_X) {
6523 src_reg = &regs[insn->src_reg];
f1174f77
EC
6524 if (src_reg->type != SCALAR_VALUE) {
6525 if (dst_reg->type != SCALAR_VALUE) {
6526 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6527 * an arbitrary scalar. Disallow all math except
6528 * pointer subtraction
f1174f77 6529 */
dd066823 6530 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6531 mark_reg_unknown(env, regs, insn->dst_reg);
6532 return 0;
f1174f77 6533 }
82abbf8d
AS
6534 verbose(env, "R%d pointer %s pointer prohibited\n",
6535 insn->dst_reg,
6536 bpf_alu_string[opcode >> 4]);
6537 return -EACCES;
f1174f77
EC
6538 } else {
6539 /* scalar += pointer
6540 * This is legal, but we have to reverse our
6541 * src/dest handling in computing the range
6542 */
b5dc0163
AS
6543 err = mark_chain_precision(env, insn->dst_reg);
6544 if (err)
6545 return err;
82abbf8d
AS
6546 return adjust_ptr_min_max_vals(env, insn,
6547 src_reg, dst_reg);
f1174f77
EC
6548 }
6549 } else if (ptr_reg) {
6550 /* pointer += scalar */
b5dc0163
AS
6551 err = mark_chain_precision(env, insn->src_reg);
6552 if (err)
6553 return err;
82abbf8d
AS
6554 return adjust_ptr_min_max_vals(env, insn,
6555 dst_reg, src_reg);
f1174f77
EC
6556 }
6557 } else {
6558 /* Pretend the src is a reg with a known value, since we only
6559 * need to be able to read from this state.
6560 */
6561 off_reg.type = SCALAR_VALUE;
b03c9f9f 6562 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6563 src_reg = &off_reg;
82abbf8d
AS
6564 if (ptr_reg) /* pointer += K */
6565 return adjust_ptr_min_max_vals(env, insn,
6566 ptr_reg, src_reg);
f1174f77
EC
6567 }
6568
6569 /* Got here implies adding two SCALAR_VALUEs */
6570 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6571 print_verifier_state(env, state);
61bd5218 6572 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6573 return -EINVAL;
6574 }
6575 if (WARN_ON(!src_reg)) {
f4d7e40a 6576 print_verifier_state(env, state);
61bd5218 6577 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6578 return -EINVAL;
6579 }
6580 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6581}
6582
17a52670 6583/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6584static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6585{
638f5b90 6586 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6587 u8 opcode = BPF_OP(insn->code);
6588 int err;
6589
6590 if (opcode == BPF_END || opcode == BPF_NEG) {
6591 if (opcode == BPF_NEG) {
6592 if (BPF_SRC(insn->code) != 0 ||
6593 insn->src_reg != BPF_REG_0 ||
6594 insn->off != 0 || insn->imm != 0) {
61bd5218 6595 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6596 return -EINVAL;
6597 }
6598 } else {
6599 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6600 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6601 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6602 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6603 return -EINVAL;
6604 }
6605 }
6606
6607 /* check src operand */
dc503a8a 6608 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6609 if (err)
6610 return err;
6611
1be7f75d 6612 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6613 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6614 insn->dst_reg);
6615 return -EACCES;
6616 }
6617
17a52670 6618 /* check dest operand */
dc503a8a 6619 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6620 if (err)
6621 return err;
6622
6623 } else if (opcode == BPF_MOV) {
6624
6625 if (BPF_SRC(insn->code) == BPF_X) {
6626 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6627 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6628 return -EINVAL;
6629 }
6630
6631 /* check src operand */
dc503a8a 6632 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6633 if (err)
6634 return err;
6635 } else {
6636 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6637 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6638 return -EINVAL;
6639 }
6640 }
6641
fbeb1603
AF
6642 /* check dest operand, mark as required later */
6643 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6644 if (err)
6645 return err;
6646
6647 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6648 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6649 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6650
17a52670
AS
6651 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6652 /* case: R1 = R2
6653 * copy register state to dest reg
6654 */
75748837
AS
6655 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6656 /* Assign src and dst registers the same ID
6657 * that will be used by find_equal_scalars()
6658 * to propagate min/max range.
6659 */
6660 src_reg->id = ++env->id_gen;
e434b8cd
JW
6661 *dst_reg = *src_reg;
6662 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6663 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6664 } else {
f1174f77 6665 /* R1 = (u32) R2 */
1be7f75d 6666 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6667 verbose(env,
6668 "R%d partial copy of pointer\n",
1be7f75d
AS
6669 insn->src_reg);
6670 return -EACCES;
e434b8cd
JW
6671 } else if (src_reg->type == SCALAR_VALUE) {
6672 *dst_reg = *src_reg;
75748837
AS
6673 /* Make sure ID is cleared otherwise
6674 * dst_reg min/max could be incorrectly
6675 * propagated into src_reg by find_equal_scalars()
6676 */
6677 dst_reg->id = 0;
e434b8cd 6678 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6679 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6680 } else {
6681 mark_reg_unknown(env, regs,
6682 insn->dst_reg);
1be7f75d 6683 }
3f50f132 6684 zext_32_to_64(dst_reg);
17a52670
AS
6685 }
6686 } else {
6687 /* case: R = imm
6688 * remember the value we stored into this reg
6689 */
fbeb1603
AF
6690 /* clear any state __mark_reg_known doesn't set */
6691 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6692 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6693 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6694 __mark_reg_known(regs + insn->dst_reg,
6695 insn->imm);
6696 } else {
6697 __mark_reg_known(regs + insn->dst_reg,
6698 (u32)insn->imm);
6699 }
17a52670
AS
6700 }
6701
6702 } else if (opcode > BPF_END) {
61bd5218 6703 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6704 return -EINVAL;
6705
6706 } else { /* all other ALU ops: and, sub, xor, add, ... */
6707
17a52670
AS
6708 if (BPF_SRC(insn->code) == BPF_X) {
6709 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6710 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6711 return -EINVAL;
6712 }
6713 /* check src1 operand */
dc503a8a 6714 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6715 if (err)
6716 return err;
6717 } else {
6718 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6719 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6720 return -EINVAL;
6721 }
6722 }
6723
6724 /* check src2 operand */
dc503a8a 6725 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6726 if (err)
6727 return err;
6728
6729 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6730 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6731 verbose(env, "div by zero\n");
17a52670
AS
6732 return -EINVAL;
6733 }
6734
229394e8
RV
6735 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6736 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6737 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6738
6739 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6740 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6741 return -EINVAL;
6742 }
6743 }
6744
1a0dc1ac 6745 /* check dest operand */
dc503a8a 6746 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6747 if (err)
6748 return err;
6749
f1174f77 6750 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6751 }
6752
6753 return 0;
6754}
6755
c6a9efa1
PC
6756static void __find_good_pkt_pointers(struct bpf_func_state *state,
6757 struct bpf_reg_state *dst_reg,
6d94e741 6758 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
6759{
6760 struct bpf_reg_state *reg;
6761 int i;
6762
6763 for (i = 0; i < MAX_BPF_REG; i++) {
6764 reg = &state->regs[i];
6765 if (reg->type == type && reg->id == dst_reg->id)
6766 /* keep the maximum range already checked */
6767 reg->range = max(reg->range, new_range);
6768 }
6769
6770 bpf_for_each_spilled_reg(i, state, reg) {
6771 if (!reg)
6772 continue;
6773 if (reg->type == type && reg->id == dst_reg->id)
6774 reg->range = max(reg->range, new_range);
6775 }
6776}
6777
f4d7e40a 6778static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6779 struct bpf_reg_state *dst_reg,
f8ddadc4 6780 enum bpf_reg_type type,
fb2a311a 6781 bool range_right_open)
969bf05e 6782{
6d94e741 6783 int new_range, i;
2d2be8ca 6784
fb2a311a
DB
6785 if (dst_reg->off < 0 ||
6786 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6787 /* This doesn't give us any range */
6788 return;
6789
b03c9f9f
EC
6790 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6791 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6792 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6793 * than pkt_end, but that's because it's also less than pkt.
6794 */
6795 return;
6796
fb2a311a
DB
6797 new_range = dst_reg->off;
6798 if (range_right_open)
6799 new_range--;
6800
6801 /* Examples for register markings:
2d2be8ca 6802 *
fb2a311a 6803 * pkt_data in dst register:
2d2be8ca
DB
6804 *
6805 * r2 = r3;
6806 * r2 += 8;
6807 * if (r2 > pkt_end) goto <handle exception>
6808 * <access okay>
6809 *
b4e432f1
DB
6810 * r2 = r3;
6811 * r2 += 8;
6812 * if (r2 < pkt_end) goto <access okay>
6813 * <handle exception>
6814 *
2d2be8ca
DB
6815 * Where:
6816 * r2 == dst_reg, pkt_end == src_reg
6817 * r2=pkt(id=n,off=8,r=0)
6818 * r3=pkt(id=n,off=0,r=0)
6819 *
fb2a311a 6820 * pkt_data in src register:
2d2be8ca
DB
6821 *
6822 * r2 = r3;
6823 * r2 += 8;
6824 * if (pkt_end >= r2) goto <access okay>
6825 * <handle exception>
6826 *
b4e432f1
DB
6827 * r2 = r3;
6828 * r2 += 8;
6829 * if (pkt_end <= r2) goto <handle exception>
6830 * <access okay>
6831 *
2d2be8ca
DB
6832 * Where:
6833 * pkt_end == dst_reg, r2 == src_reg
6834 * r2=pkt(id=n,off=8,r=0)
6835 * r3=pkt(id=n,off=0,r=0)
6836 *
6837 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6838 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6839 * and [r3, r3 + 8-1) respectively is safe to access depending on
6840 * the check.
969bf05e 6841 */
2d2be8ca 6842
f1174f77
EC
6843 /* If our ids match, then we must have the same max_value. And we
6844 * don't care about the other reg's fixed offset, since if it's too big
6845 * the range won't allow anything.
6846 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6847 */
c6a9efa1
PC
6848 for (i = 0; i <= vstate->curframe; i++)
6849 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6850 new_range);
969bf05e
AS
6851}
6852
3f50f132 6853static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6854{
3f50f132
JF
6855 struct tnum subreg = tnum_subreg(reg->var_off);
6856 s32 sval = (s32)val;
a72dafaf 6857
3f50f132
JF
6858 switch (opcode) {
6859 case BPF_JEQ:
6860 if (tnum_is_const(subreg))
6861 return !!tnum_equals_const(subreg, val);
6862 break;
6863 case BPF_JNE:
6864 if (tnum_is_const(subreg))
6865 return !tnum_equals_const(subreg, val);
6866 break;
6867 case BPF_JSET:
6868 if ((~subreg.mask & subreg.value) & val)
6869 return 1;
6870 if (!((subreg.mask | subreg.value) & val))
6871 return 0;
6872 break;
6873 case BPF_JGT:
6874 if (reg->u32_min_value > val)
6875 return 1;
6876 else if (reg->u32_max_value <= val)
6877 return 0;
6878 break;
6879 case BPF_JSGT:
6880 if (reg->s32_min_value > sval)
6881 return 1;
6882 else if (reg->s32_max_value < sval)
6883 return 0;
6884 break;
6885 case BPF_JLT:
6886 if (reg->u32_max_value < val)
6887 return 1;
6888 else if (reg->u32_min_value >= val)
6889 return 0;
6890 break;
6891 case BPF_JSLT:
6892 if (reg->s32_max_value < sval)
6893 return 1;
6894 else if (reg->s32_min_value >= sval)
6895 return 0;
6896 break;
6897 case BPF_JGE:
6898 if (reg->u32_min_value >= val)
6899 return 1;
6900 else if (reg->u32_max_value < val)
6901 return 0;
6902 break;
6903 case BPF_JSGE:
6904 if (reg->s32_min_value >= sval)
6905 return 1;
6906 else if (reg->s32_max_value < sval)
6907 return 0;
6908 break;
6909 case BPF_JLE:
6910 if (reg->u32_max_value <= val)
6911 return 1;
6912 else if (reg->u32_min_value > val)
6913 return 0;
6914 break;
6915 case BPF_JSLE:
6916 if (reg->s32_max_value <= sval)
6917 return 1;
6918 else if (reg->s32_min_value > sval)
6919 return 0;
6920 break;
6921 }
4f7b3e82 6922
3f50f132
JF
6923 return -1;
6924}
092ed096 6925
3f50f132
JF
6926
6927static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6928{
6929 s64 sval = (s64)val;
a72dafaf 6930
4f7b3e82
AS
6931 switch (opcode) {
6932 case BPF_JEQ:
6933 if (tnum_is_const(reg->var_off))
6934 return !!tnum_equals_const(reg->var_off, val);
6935 break;
6936 case BPF_JNE:
6937 if (tnum_is_const(reg->var_off))
6938 return !tnum_equals_const(reg->var_off, val);
6939 break;
960ea056
JK
6940 case BPF_JSET:
6941 if ((~reg->var_off.mask & reg->var_off.value) & val)
6942 return 1;
6943 if (!((reg->var_off.mask | reg->var_off.value) & val))
6944 return 0;
6945 break;
4f7b3e82
AS
6946 case BPF_JGT:
6947 if (reg->umin_value > val)
6948 return 1;
6949 else if (reg->umax_value <= val)
6950 return 0;
6951 break;
6952 case BPF_JSGT:
a72dafaf 6953 if (reg->smin_value > sval)
4f7b3e82 6954 return 1;
a72dafaf 6955 else if (reg->smax_value < sval)
4f7b3e82
AS
6956 return 0;
6957 break;
6958 case BPF_JLT:
6959 if (reg->umax_value < val)
6960 return 1;
6961 else if (reg->umin_value >= val)
6962 return 0;
6963 break;
6964 case BPF_JSLT:
a72dafaf 6965 if (reg->smax_value < sval)
4f7b3e82 6966 return 1;
a72dafaf 6967 else if (reg->smin_value >= sval)
4f7b3e82
AS
6968 return 0;
6969 break;
6970 case BPF_JGE:
6971 if (reg->umin_value >= val)
6972 return 1;
6973 else if (reg->umax_value < val)
6974 return 0;
6975 break;
6976 case BPF_JSGE:
a72dafaf 6977 if (reg->smin_value >= sval)
4f7b3e82 6978 return 1;
a72dafaf 6979 else if (reg->smax_value < sval)
4f7b3e82
AS
6980 return 0;
6981 break;
6982 case BPF_JLE:
6983 if (reg->umax_value <= val)
6984 return 1;
6985 else if (reg->umin_value > val)
6986 return 0;
6987 break;
6988 case BPF_JSLE:
a72dafaf 6989 if (reg->smax_value <= sval)
4f7b3e82 6990 return 1;
a72dafaf 6991 else if (reg->smin_value > sval)
4f7b3e82
AS
6992 return 0;
6993 break;
6994 }
6995
6996 return -1;
6997}
6998
3f50f132
JF
6999/* compute branch direction of the expression "if (reg opcode val) goto target;"
7000 * and return:
7001 * 1 - branch will be taken and "goto target" will be executed
7002 * 0 - branch will not be taken and fall-through to next insn
7003 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7004 * range [0,10]
604dca5e 7005 */
3f50f132
JF
7006static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7007 bool is_jmp32)
604dca5e 7008{
cac616db
JF
7009 if (__is_pointer_value(false, reg)) {
7010 if (!reg_type_not_null(reg->type))
7011 return -1;
7012
7013 /* If pointer is valid tests against zero will fail so we can
7014 * use this to direct branch taken.
7015 */
7016 if (val != 0)
7017 return -1;
7018
7019 switch (opcode) {
7020 case BPF_JEQ:
7021 return 0;
7022 case BPF_JNE:
7023 return 1;
7024 default:
7025 return -1;
7026 }
7027 }
604dca5e 7028
3f50f132
JF
7029 if (is_jmp32)
7030 return is_branch32_taken(reg, val, opcode);
7031 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
7032}
7033
6d94e741
AS
7034static int flip_opcode(u32 opcode)
7035{
7036 /* How can we transform "a <op> b" into "b <op> a"? */
7037 static const u8 opcode_flip[16] = {
7038 /* these stay the same */
7039 [BPF_JEQ >> 4] = BPF_JEQ,
7040 [BPF_JNE >> 4] = BPF_JNE,
7041 [BPF_JSET >> 4] = BPF_JSET,
7042 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7043 [BPF_JGE >> 4] = BPF_JLE,
7044 [BPF_JGT >> 4] = BPF_JLT,
7045 [BPF_JLE >> 4] = BPF_JGE,
7046 [BPF_JLT >> 4] = BPF_JGT,
7047 [BPF_JSGE >> 4] = BPF_JSLE,
7048 [BPF_JSGT >> 4] = BPF_JSLT,
7049 [BPF_JSLE >> 4] = BPF_JSGE,
7050 [BPF_JSLT >> 4] = BPF_JSGT
7051 };
7052 return opcode_flip[opcode >> 4];
7053}
7054
7055static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7056 struct bpf_reg_state *src_reg,
7057 u8 opcode)
7058{
7059 struct bpf_reg_state *pkt;
7060
7061 if (src_reg->type == PTR_TO_PACKET_END) {
7062 pkt = dst_reg;
7063 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7064 pkt = src_reg;
7065 opcode = flip_opcode(opcode);
7066 } else {
7067 return -1;
7068 }
7069
7070 if (pkt->range >= 0)
7071 return -1;
7072
7073 switch (opcode) {
7074 case BPF_JLE:
7075 /* pkt <= pkt_end */
7076 fallthrough;
7077 case BPF_JGT:
7078 /* pkt > pkt_end */
7079 if (pkt->range == BEYOND_PKT_END)
7080 /* pkt has at last one extra byte beyond pkt_end */
7081 return opcode == BPF_JGT;
7082 break;
7083 case BPF_JLT:
7084 /* pkt < pkt_end */
7085 fallthrough;
7086 case BPF_JGE:
7087 /* pkt >= pkt_end */
7088 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7089 return opcode == BPF_JGE;
7090 break;
7091 }
7092 return -1;
7093}
7094
48461135
JB
7095/* Adjusts the register min/max values in the case that the dst_reg is the
7096 * variable register that we are working on, and src_reg is a constant or we're
7097 * simply doing a BPF_K check.
f1174f77 7098 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
7099 */
7100static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
7101 struct bpf_reg_state *false_reg,
7102 u64 val, u32 val32,
092ed096 7103 u8 opcode, bool is_jmp32)
48461135 7104{
3f50f132
JF
7105 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7106 struct tnum false_64off = false_reg->var_off;
7107 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7108 struct tnum true_64off = true_reg->var_off;
7109 s64 sval = (s64)val;
7110 s32 sval32 = (s32)val32;
a72dafaf 7111
f1174f77
EC
7112 /* If the dst_reg is a pointer, we can't learn anything about its
7113 * variable offset from the compare (unless src_reg were a pointer into
7114 * the same object, but we don't bother with that.
7115 * Since false_reg and true_reg have the same type by construction, we
7116 * only need to check one of them for pointerness.
7117 */
7118 if (__is_pointer_value(false, false_reg))
7119 return;
4cabc5b1 7120
48461135
JB
7121 switch (opcode) {
7122 case BPF_JEQ:
48461135 7123 case BPF_JNE:
a72dafaf
JW
7124 {
7125 struct bpf_reg_state *reg =
7126 opcode == BPF_JEQ ? true_reg : false_reg;
7127
e688c3db
AS
7128 /* JEQ/JNE comparison doesn't change the register equivalence.
7129 * r1 = r2;
7130 * if (r1 == 42) goto label;
7131 * ...
7132 * label: // here both r1 and r2 are known to be 42.
7133 *
7134 * Hence when marking register as known preserve it's ID.
48461135 7135 */
3f50f132
JF
7136 if (is_jmp32)
7137 __mark_reg32_known(reg, val32);
7138 else
e688c3db 7139 ___mark_reg_known(reg, val);
48461135 7140 break;
a72dafaf 7141 }
960ea056 7142 case BPF_JSET:
3f50f132
JF
7143 if (is_jmp32) {
7144 false_32off = tnum_and(false_32off, tnum_const(~val32));
7145 if (is_power_of_2(val32))
7146 true_32off = tnum_or(true_32off,
7147 tnum_const(val32));
7148 } else {
7149 false_64off = tnum_and(false_64off, tnum_const(~val));
7150 if (is_power_of_2(val))
7151 true_64off = tnum_or(true_64off,
7152 tnum_const(val));
7153 }
960ea056 7154 break;
48461135 7155 case BPF_JGE:
a72dafaf
JW
7156 case BPF_JGT:
7157 {
3f50f132
JF
7158 if (is_jmp32) {
7159 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7160 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7161
7162 false_reg->u32_max_value = min(false_reg->u32_max_value,
7163 false_umax);
7164 true_reg->u32_min_value = max(true_reg->u32_min_value,
7165 true_umin);
7166 } else {
7167 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7168 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7169
7170 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7171 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7172 }
b03c9f9f 7173 break;
a72dafaf 7174 }
48461135 7175 case BPF_JSGE:
a72dafaf
JW
7176 case BPF_JSGT:
7177 {
3f50f132
JF
7178 if (is_jmp32) {
7179 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7180 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 7181
3f50f132
JF
7182 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7183 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7184 } else {
7185 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7186 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7187
7188 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7189 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7190 }
48461135 7191 break;
a72dafaf 7192 }
b4e432f1 7193 case BPF_JLE:
a72dafaf
JW
7194 case BPF_JLT:
7195 {
3f50f132
JF
7196 if (is_jmp32) {
7197 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7198 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7199
7200 false_reg->u32_min_value = max(false_reg->u32_min_value,
7201 false_umin);
7202 true_reg->u32_max_value = min(true_reg->u32_max_value,
7203 true_umax);
7204 } else {
7205 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7206 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7207
7208 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7209 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7210 }
b4e432f1 7211 break;
a72dafaf 7212 }
b4e432f1 7213 case BPF_JSLE:
a72dafaf
JW
7214 case BPF_JSLT:
7215 {
3f50f132
JF
7216 if (is_jmp32) {
7217 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7218 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 7219
3f50f132
JF
7220 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7221 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7222 } else {
7223 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7224 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7225
7226 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7227 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7228 }
b4e432f1 7229 break;
a72dafaf 7230 }
48461135 7231 default:
0fc31b10 7232 return;
48461135
JB
7233 }
7234
3f50f132
JF
7235 if (is_jmp32) {
7236 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7237 tnum_subreg(false_32off));
7238 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7239 tnum_subreg(true_32off));
7240 __reg_combine_32_into_64(false_reg);
7241 __reg_combine_32_into_64(true_reg);
7242 } else {
7243 false_reg->var_off = false_64off;
7244 true_reg->var_off = true_64off;
7245 __reg_combine_64_into_32(false_reg);
7246 __reg_combine_64_into_32(true_reg);
7247 }
48461135
JB
7248}
7249
f1174f77
EC
7250/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7251 * the variable reg.
48461135
JB
7252 */
7253static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
7254 struct bpf_reg_state *false_reg,
7255 u64 val, u32 val32,
092ed096 7256 u8 opcode, bool is_jmp32)
48461135 7257{
6d94e741 7258 opcode = flip_opcode(opcode);
0fc31b10
JH
7259 /* This uses zero as "not present in table"; luckily the zero opcode,
7260 * BPF_JA, can't get here.
b03c9f9f 7261 */
0fc31b10 7262 if (opcode)
3f50f132 7263 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
7264}
7265
7266/* Regs are known to be equal, so intersect their min/max/var_off */
7267static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7268 struct bpf_reg_state *dst_reg)
7269{
b03c9f9f
EC
7270 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7271 dst_reg->umin_value);
7272 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7273 dst_reg->umax_value);
7274 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7275 dst_reg->smin_value);
7276 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7277 dst_reg->smax_value);
f1174f77
EC
7278 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7279 dst_reg->var_off);
b03c9f9f
EC
7280 /* We might have learned new bounds from the var_off. */
7281 __update_reg_bounds(src_reg);
7282 __update_reg_bounds(dst_reg);
7283 /* We might have learned something about the sign bit. */
7284 __reg_deduce_bounds(src_reg);
7285 __reg_deduce_bounds(dst_reg);
7286 /* We might have learned some bits from the bounds. */
7287 __reg_bound_offset(src_reg);
7288 __reg_bound_offset(dst_reg);
7289 /* Intersecting with the old var_off might have improved our bounds
7290 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7291 * then new var_off is (0; 0x7f...fc) which improves our umax.
7292 */
7293 __update_reg_bounds(src_reg);
7294 __update_reg_bounds(dst_reg);
f1174f77
EC
7295}
7296
7297static void reg_combine_min_max(struct bpf_reg_state *true_src,
7298 struct bpf_reg_state *true_dst,
7299 struct bpf_reg_state *false_src,
7300 struct bpf_reg_state *false_dst,
7301 u8 opcode)
7302{
7303 switch (opcode) {
7304 case BPF_JEQ:
7305 __reg_combine_min_max(true_src, true_dst);
7306 break;
7307 case BPF_JNE:
7308 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7309 break;
4cabc5b1 7310 }
48461135
JB
7311}
7312
fd978bf7
JS
7313static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7314 struct bpf_reg_state *reg, u32 id,
840b9615 7315 bool is_null)
57a09bf0 7316{
93c230e3
MKL
7317 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7318 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
7319 /* Old offset (both fixed and variable parts) should
7320 * have been known-zero, because we don't allow pointer
7321 * arithmetic on pointers that might be NULL.
7322 */
b03c9f9f
EC
7323 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7324 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7325 reg->off)) {
b03c9f9f
EC
7326 __mark_reg_known_zero(reg);
7327 reg->off = 0;
f1174f77
EC
7328 }
7329 if (is_null) {
7330 reg->type = SCALAR_VALUE;
840b9615 7331 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7332 const struct bpf_map *map = reg->map_ptr;
7333
7334 if (map->inner_map_meta) {
840b9615 7335 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7336 reg->map_ptr = map->inner_map_meta;
7337 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7338 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7339 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7340 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7341 reg->type = PTR_TO_SOCKET;
840b9615
JS
7342 } else {
7343 reg->type = PTR_TO_MAP_VALUE;
7344 }
c64b7983
JS
7345 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7346 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7347 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7348 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7349 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7350 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7351 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7352 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7353 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7354 reg->type = PTR_TO_MEM;
afbf21dc
YS
7355 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7356 reg->type = PTR_TO_RDONLY_BUF;
7357 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7358 reg->type = PTR_TO_RDWR_BUF;
56f668df 7359 }
1b986589
MKL
7360 if (is_null) {
7361 /* We don't need id and ref_obj_id from this point
7362 * onwards anymore, thus we should better reset it,
7363 * so that state pruning has chances to take effect.
7364 */
7365 reg->id = 0;
7366 reg->ref_obj_id = 0;
7367 } else if (!reg_may_point_to_spin_lock(reg)) {
7368 /* For not-NULL ptr, reg->ref_obj_id will be reset
7369 * in release_reg_references().
7370 *
7371 * reg->id is still used by spin_lock ptr. Other
7372 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7373 */
7374 reg->id = 0;
56f668df 7375 }
57a09bf0
TG
7376 }
7377}
7378
c6a9efa1
PC
7379static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7380 bool is_null)
7381{
7382 struct bpf_reg_state *reg;
7383 int i;
7384
7385 for (i = 0; i < MAX_BPF_REG; i++)
7386 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7387
7388 bpf_for_each_spilled_reg(i, state, reg) {
7389 if (!reg)
7390 continue;
7391 mark_ptr_or_null_reg(state, reg, id, is_null);
7392 }
7393}
7394
57a09bf0
TG
7395/* The logic is similar to find_good_pkt_pointers(), both could eventually
7396 * be folded together at some point.
7397 */
840b9615
JS
7398static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7399 bool is_null)
57a09bf0 7400{
f4d7e40a 7401 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7402 struct bpf_reg_state *regs = state->regs;
1b986589 7403 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7404 u32 id = regs[regno].id;
c6a9efa1 7405 int i;
57a09bf0 7406
1b986589
MKL
7407 if (ref_obj_id && ref_obj_id == id && is_null)
7408 /* regs[regno] is in the " == NULL" branch.
7409 * No one could have freed the reference state before
7410 * doing the NULL check.
7411 */
7412 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7413
c6a9efa1
PC
7414 for (i = 0; i <= vstate->curframe; i++)
7415 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7416}
7417
5beca081
DB
7418static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7419 struct bpf_reg_state *dst_reg,
7420 struct bpf_reg_state *src_reg,
7421 struct bpf_verifier_state *this_branch,
7422 struct bpf_verifier_state *other_branch)
7423{
7424 if (BPF_SRC(insn->code) != BPF_X)
7425 return false;
7426
092ed096
JW
7427 /* Pointers are always 64-bit. */
7428 if (BPF_CLASS(insn->code) == BPF_JMP32)
7429 return false;
7430
5beca081
DB
7431 switch (BPF_OP(insn->code)) {
7432 case BPF_JGT:
7433 if ((dst_reg->type == PTR_TO_PACKET &&
7434 src_reg->type == PTR_TO_PACKET_END) ||
7435 (dst_reg->type == PTR_TO_PACKET_META &&
7436 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7437 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7438 find_good_pkt_pointers(this_branch, dst_reg,
7439 dst_reg->type, false);
6d94e741 7440 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
7441 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7442 src_reg->type == PTR_TO_PACKET) ||
7443 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7444 src_reg->type == PTR_TO_PACKET_META)) {
7445 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7446 find_good_pkt_pointers(other_branch, src_reg,
7447 src_reg->type, true);
6d94e741 7448 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
7449 } else {
7450 return false;
7451 }
7452 break;
7453 case BPF_JLT:
7454 if ((dst_reg->type == PTR_TO_PACKET &&
7455 src_reg->type == PTR_TO_PACKET_END) ||
7456 (dst_reg->type == PTR_TO_PACKET_META &&
7457 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7458 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7459 find_good_pkt_pointers(other_branch, dst_reg,
7460 dst_reg->type, true);
6d94e741 7461 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
7462 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7463 src_reg->type == PTR_TO_PACKET) ||
7464 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7465 src_reg->type == PTR_TO_PACKET_META)) {
7466 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7467 find_good_pkt_pointers(this_branch, src_reg,
7468 src_reg->type, false);
6d94e741 7469 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
7470 } else {
7471 return false;
7472 }
7473 break;
7474 case BPF_JGE:
7475 if ((dst_reg->type == PTR_TO_PACKET &&
7476 src_reg->type == PTR_TO_PACKET_END) ||
7477 (dst_reg->type == PTR_TO_PACKET_META &&
7478 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7479 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7480 find_good_pkt_pointers(this_branch, dst_reg,
7481 dst_reg->type, true);
6d94e741 7482 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
7483 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7484 src_reg->type == PTR_TO_PACKET) ||
7485 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7486 src_reg->type == PTR_TO_PACKET_META)) {
7487 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7488 find_good_pkt_pointers(other_branch, src_reg,
7489 src_reg->type, false);
6d94e741 7490 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
7491 } else {
7492 return false;
7493 }
7494 break;
7495 case BPF_JLE:
7496 if ((dst_reg->type == PTR_TO_PACKET &&
7497 src_reg->type == PTR_TO_PACKET_END) ||
7498 (dst_reg->type == PTR_TO_PACKET_META &&
7499 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7500 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7501 find_good_pkt_pointers(other_branch, dst_reg,
7502 dst_reg->type, false);
6d94e741 7503 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
7504 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7505 src_reg->type == PTR_TO_PACKET) ||
7506 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7507 src_reg->type == PTR_TO_PACKET_META)) {
7508 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7509 find_good_pkt_pointers(this_branch, src_reg,
7510 src_reg->type, true);
6d94e741 7511 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
7512 } else {
7513 return false;
7514 }
7515 break;
7516 default:
7517 return false;
7518 }
7519
7520 return true;
7521}
7522
75748837
AS
7523static void find_equal_scalars(struct bpf_verifier_state *vstate,
7524 struct bpf_reg_state *known_reg)
7525{
7526 struct bpf_func_state *state;
7527 struct bpf_reg_state *reg;
7528 int i, j;
7529
7530 for (i = 0; i <= vstate->curframe; i++) {
7531 state = vstate->frame[i];
7532 for (j = 0; j < MAX_BPF_REG; j++) {
7533 reg = &state->regs[j];
7534 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7535 *reg = *known_reg;
7536 }
7537
7538 bpf_for_each_spilled_reg(j, state, reg) {
7539 if (!reg)
7540 continue;
7541 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7542 *reg = *known_reg;
7543 }
7544 }
7545}
7546
58e2af8b 7547static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7548 struct bpf_insn *insn, int *insn_idx)
7549{
f4d7e40a
AS
7550 struct bpf_verifier_state *this_branch = env->cur_state;
7551 struct bpf_verifier_state *other_branch;
7552 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7553 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7554 u8 opcode = BPF_OP(insn->code);
092ed096 7555 bool is_jmp32;
fb8d251e 7556 int pred = -1;
17a52670
AS
7557 int err;
7558
092ed096
JW
7559 /* Only conditional jumps are expected to reach here. */
7560 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7561 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7562 return -EINVAL;
7563 }
7564
7565 if (BPF_SRC(insn->code) == BPF_X) {
7566 if (insn->imm != 0) {
092ed096 7567 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7568 return -EINVAL;
7569 }
7570
7571 /* check src1 operand */
dc503a8a 7572 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7573 if (err)
7574 return err;
1be7f75d
AS
7575
7576 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7577 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7578 insn->src_reg);
7579 return -EACCES;
7580 }
fb8d251e 7581 src_reg = &regs[insn->src_reg];
17a52670
AS
7582 } else {
7583 if (insn->src_reg != BPF_REG_0) {
092ed096 7584 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7585 return -EINVAL;
7586 }
7587 }
7588
7589 /* check src2 operand */
dc503a8a 7590 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7591 if (err)
7592 return err;
7593
1a0dc1ac 7594 dst_reg = &regs[insn->dst_reg];
092ed096 7595 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7596
3f50f132
JF
7597 if (BPF_SRC(insn->code) == BPF_K) {
7598 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7599 } else if (src_reg->type == SCALAR_VALUE &&
7600 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7601 pred = is_branch_taken(dst_reg,
7602 tnum_subreg(src_reg->var_off).value,
7603 opcode,
7604 is_jmp32);
7605 } else if (src_reg->type == SCALAR_VALUE &&
7606 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7607 pred = is_branch_taken(dst_reg,
7608 src_reg->var_off.value,
7609 opcode,
7610 is_jmp32);
6d94e741
AS
7611 } else if (reg_is_pkt_pointer_any(dst_reg) &&
7612 reg_is_pkt_pointer_any(src_reg) &&
7613 !is_jmp32) {
7614 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
7615 }
7616
b5dc0163 7617 if (pred >= 0) {
cac616db
JF
7618 /* If we get here with a dst_reg pointer type it is because
7619 * above is_branch_taken() special cased the 0 comparison.
7620 */
7621 if (!__is_pointer_value(false, dst_reg))
7622 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
7623 if (BPF_SRC(insn->code) == BPF_X && !err &&
7624 !__is_pointer_value(false, src_reg))
b5dc0163
AS
7625 err = mark_chain_precision(env, insn->src_reg);
7626 if (err)
7627 return err;
7628 }
fb8d251e
AS
7629 if (pred == 1) {
7630 /* only follow the goto, ignore fall-through */
7631 *insn_idx += insn->off;
7632 return 0;
7633 } else if (pred == 0) {
7634 /* only follow fall-through branch, since
7635 * that's where the program will go
7636 */
7637 return 0;
17a52670
AS
7638 }
7639
979d63d5
DB
7640 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7641 false);
17a52670
AS
7642 if (!other_branch)
7643 return -EFAULT;
f4d7e40a 7644 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7645
48461135
JB
7646 /* detect if we are comparing against a constant value so we can adjust
7647 * our min/max values for our dst register.
f1174f77
EC
7648 * this is only legit if both are scalars (or pointers to the same
7649 * object, I suppose, but we don't support that right now), because
7650 * otherwise the different base pointers mean the offsets aren't
7651 * comparable.
48461135
JB
7652 */
7653 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7654 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7655
f1174f77 7656 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7657 src_reg->type == SCALAR_VALUE) {
7658 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7659 (is_jmp32 &&
7660 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7661 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7662 dst_reg,
3f50f132
JF
7663 src_reg->var_off.value,
7664 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7665 opcode, is_jmp32);
7666 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7667 (is_jmp32 &&
7668 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7669 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7670 src_reg,
3f50f132
JF
7671 dst_reg->var_off.value,
7672 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7673 opcode, is_jmp32);
7674 else if (!is_jmp32 &&
7675 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7676 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7677 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7678 &other_branch_regs[insn->dst_reg],
092ed096 7679 src_reg, dst_reg, opcode);
e688c3db
AS
7680 if (src_reg->id &&
7681 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
7682 find_equal_scalars(this_branch, src_reg);
7683 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7684 }
7685
f1174f77
EC
7686 }
7687 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7688 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7689 dst_reg, insn->imm, (u32)insn->imm,
7690 opcode, is_jmp32);
48461135
JB
7691 }
7692
e688c3db
AS
7693 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7694 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
7695 find_equal_scalars(this_branch, dst_reg);
7696 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7697 }
7698
092ed096
JW
7699 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7700 * NOTE: these optimizations below are related with pointer comparison
7701 * which will never be JMP32.
7702 */
7703 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7704 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7705 reg_type_may_be_null(dst_reg->type)) {
7706 /* Mark all identical registers in each branch as either
57a09bf0
TG
7707 * safe or unknown depending R == 0 or R != 0 conditional.
7708 */
840b9615
JS
7709 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7710 opcode == BPF_JNE);
7711 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7712 opcode == BPF_JEQ);
5beca081
DB
7713 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7714 this_branch, other_branch) &&
7715 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7716 verbose(env, "R%d pointer comparison prohibited\n",
7717 insn->dst_reg);
1be7f75d 7718 return -EACCES;
17a52670 7719 }
06ee7115 7720 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7721 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7722 return 0;
7723}
7724
17a52670 7725/* verify BPF_LD_IMM64 instruction */
58e2af8b 7726static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7727{
d8eca5bb 7728 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7729 struct bpf_reg_state *regs = cur_regs(env);
4976b718 7730 struct bpf_reg_state *dst_reg;
d8eca5bb 7731 struct bpf_map *map;
17a52670
AS
7732 int err;
7733
7734 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7735 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7736 return -EINVAL;
7737 }
7738 if (insn->off != 0) {
61bd5218 7739 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7740 return -EINVAL;
7741 }
7742
dc503a8a 7743 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7744 if (err)
7745 return err;
7746
4976b718 7747 dst_reg = &regs[insn->dst_reg];
6b173873 7748 if (insn->src_reg == 0) {
6b173873
JK
7749 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7750
4976b718 7751 dst_reg->type = SCALAR_VALUE;
b03c9f9f 7752 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7753 return 0;
6b173873 7754 }
17a52670 7755
4976b718
HL
7756 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7757 mark_reg_known_zero(env, regs, insn->dst_reg);
7758
7759 dst_reg->type = aux->btf_var.reg_type;
7760 switch (dst_reg->type) {
7761 case PTR_TO_MEM:
7762 dst_reg->mem_size = aux->btf_var.mem_size;
7763 break;
7764 case PTR_TO_BTF_ID:
eaa6bcb7 7765 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 7766 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
7767 dst_reg->btf_id = aux->btf_var.btf_id;
7768 break;
7769 default:
7770 verbose(env, "bpf verifier is misconfigured\n");
7771 return -EFAULT;
7772 }
7773 return 0;
7774 }
7775
d8eca5bb
DB
7776 map = env->used_maps[aux->map_index];
7777 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 7778 dst_reg->map_ptr = map;
d8eca5bb
DB
7779
7780 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
4976b718
HL
7781 dst_reg->type = PTR_TO_MAP_VALUE;
7782 dst_reg->off = aux->map_off;
d8eca5bb 7783 if (map_value_has_spin_lock(map))
4976b718 7784 dst_reg->id = ++env->id_gen;
d8eca5bb 7785 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
4976b718 7786 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
7787 } else {
7788 verbose(env, "bpf verifier is misconfigured\n");
7789 return -EINVAL;
7790 }
17a52670 7791
17a52670
AS
7792 return 0;
7793}
7794
96be4325
DB
7795static bool may_access_skb(enum bpf_prog_type type)
7796{
7797 switch (type) {
7798 case BPF_PROG_TYPE_SOCKET_FILTER:
7799 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7800 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7801 return true;
7802 default:
7803 return false;
7804 }
7805}
7806
ddd872bc
AS
7807/* verify safety of LD_ABS|LD_IND instructions:
7808 * - they can only appear in the programs where ctx == skb
7809 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7810 * preserve R6-R9, and store return value into R0
7811 *
7812 * Implicit input:
7813 * ctx == skb == R6 == CTX
7814 *
7815 * Explicit input:
7816 * SRC == any register
7817 * IMM == 32-bit immediate
7818 *
7819 * Output:
7820 * R0 - 8/16/32-bit skb data converted to cpu endianness
7821 */
58e2af8b 7822static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7823{
638f5b90 7824 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7825 static const int ctx_reg = BPF_REG_6;
ddd872bc 7826 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7827 int i, err;
7828
7e40781c 7829 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7830 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7831 return -EINVAL;
7832 }
7833
e0cea7ce
DB
7834 if (!env->ops->gen_ld_abs) {
7835 verbose(env, "bpf verifier is misconfigured\n");
7836 return -EINVAL;
7837 }
7838
ddd872bc 7839 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7840 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7841 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7842 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7843 return -EINVAL;
7844 }
7845
7846 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7847 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7848 if (err)
7849 return err;
7850
fd978bf7
JS
7851 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7852 * gen_ld_abs() may terminate the program at runtime, leading to
7853 * reference leak.
7854 */
7855 err = check_reference_leak(env);
7856 if (err) {
7857 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7858 return err;
7859 }
7860
d83525ca
AS
7861 if (env->cur_state->active_spin_lock) {
7862 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7863 return -EINVAL;
7864 }
7865
6d4f151a 7866 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7867 verbose(env,
7868 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7869 return -EINVAL;
7870 }
7871
7872 if (mode == BPF_IND) {
7873 /* check explicit source operand */
dc503a8a 7874 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7875 if (err)
7876 return err;
7877 }
7878
6d4f151a
DB
7879 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7880 if (err < 0)
7881 return err;
7882
ddd872bc 7883 /* reset caller saved regs to unreadable */
dc503a8a 7884 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7885 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7886 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7887 }
ddd872bc
AS
7888
7889 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7890 * the value fetched from the packet.
7891 * Already marked as written above.
ddd872bc 7892 */
61bd5218 7893 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7894 /* ld_abs load up to 32-bit skb data. */
7895 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7896 return 0;
7897}
7898
390ee7e2
AS
7899static int check_return_code(struct bpf_verifier_env *env)
7900{
5cf1e914 7901 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7902 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7903 struct bpf_reg_state *reg;
7904 struct tnum range = tnum_range(0, 1);
7e40781c 7905 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 7906 int err;
f782e2c3 7907 const bool is_subprog = env->cur_state->frame[0]->subprogno;
27ae7997 7908
9e4e01df 7909 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
7910 if (!is_subprog &&
7911 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 7912 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7913 !prog->aux->attach_func_proto->type)
7914 return 0;
7915
7916 /* eBPF calling convetion is such that R0 is used
7917 * to return the value from eBPF program.
7918 * Make sure that it's readable at this time
7919 * of bpf_exit, which means that program wrote
7920 * something into it earlier
7921 */
7922 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7923 if (err)
7924 return err;
7925
7926 if (is_pointer_value(env, BPF_REG_0)) {
7927 verbose(env, "R0 leaks addr as return value\n");
7928 return -EACCES;
7929 }
390ee7e2 7930
f782e2c3
DB
7931 reg = cur_regs(env) + BPF_REG_0;
7932 if (is_subprog) {
7933 if (reg->type != SCALAR_VALUE) {
7934 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7935 reg_type_str[reg->type]);
7936 return -EINVAL;
7937 }
7938 return 0;
7939 }
7940
7e40781c 7941 switch (prog_type) {
983695fa
DB
7942 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7943 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7944 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7945 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7946 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7947 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7948 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7949 range = tnum_range(1, 1);
ed4ed404 7950 break;
390ee7e2 7951 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7952 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7953 range = tnum_range(0, 3);
7954 enforce_attach_type_range = tnum_range(2, 3);
7955 }
ed4ed404 7956 break;
390ee7e2
AS
7957 case BPF_PROG_TYPE_CGROUP_SOCK:
7958 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7959 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7960 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7961 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7962 break;
15ab09bd
AS
7963 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7964 if (!env->prog->aux->attach_btf_id)
7965 return 0;
7966 range = tnum_const(0);
7967 break;
15d83c4d 7968 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7969 switch (env->prog->expected_attach_type) {
7970 case BPF_TRACE_FENTRY:
7971 case BPF_TRACE_FEXIT:
7972 range = tnum_const(0);
7973 break;
7974 case BPF_TRACE_RAW_TP:
7975 case BPF_MODIFY_RETURN:
15d83c4d 7976 return 0;
2ec0616e
DB
7977 case BPF_TRACE_ITER:
7978 break;
e92888c7
YS
7979 default:
7980 return -ENOTSUPP;
7981 }
15d83c4d 7982 break;
e9ddbb77
JS
7983 case BPF_PROG_TYPE_SK_LOOKUP:
7984 range = tnum_range(SK_DROP, SK_PASS);
7985 break;
e92888c7
YS
7986 case BPF_PROG_TYPE_EXT:
7987 /* freplace program can return anything as its return value
7988 * depends on the to-be-replaced kernel func or bpf program.
7989 */
390ee7e2
AS
7990 default:
7991 return 0;
7992 }
7993
390ee7e2 7994 if (reg->type != SCALAR_VALUE) {
61bd5218 7995 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7996 reg_type_str[reg->type]);
7997 return -EINVAL;
7998 }
7999
8000 if (!tnum_in(range, reg->var_off)) {
5cf1e914 8001 char tn_buf[48];
8002
61bd5218 8003 verbose(env, "At program exit the register R0 ");
390ee7e2 8004 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 8005 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 8006 verbose(env, "has value %s", tn_buf);
390ee7e2 8007 } else {
61bd5218 8008 verbose(env, "has unknown scalar value");
390ee7e2 8009 }
5cf1e914 8010 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 8011 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
8012 return -EINVAL;
8013 }
5cf1e914 8014
8015 if (!tnum_is_unknown(enforce_attach_type_range) &&
8016 tnum_in(enforce_attach_type_range, reg->var_off))
8017 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
8018 return 0;
8019}
8020
475fb78f
AS
8021/* non-recursive DFS pseudo code
8022 * 1 procedure DFS-iterative(G,v):
8023 * 2 label v as discovered
8024 * 3 let S be a stack
8025 * 4 S.push(v)
8026 * 5 while S is not empty
8027 * 6 t <- S.pop()
8028 * 7 if t is what we're looking for:
8029 * 8 return t
8030 * 9 for all edges e in G.adjacentEdges(t) do
8031 * 10 if edge e is already labelled
8032 * 11 continue with the next edge
8033 * 12 w <- G.adjacentVertex(t,e)
8034 * 13 if vertex w is not discovered and not explored
8035 * 14 label e as tree-edge
8036 * 15 label w as discovered
8037 * 16 S.push(w)
8038 * 17 continue at 5
8039 * 18 else if vertex w is discovered
8040 * 19 label e as back-edge
8041 * 20 else
8042 * 21 // vertex w is explored
8043 * 22 label e as forward- or cross-edge
8044 * 23 label t as explored
8045 * 24 S.pop()
8046 *
8047 * convention:
8048 * 0x10 - discovered
8049 * 0x11 - discovered and fall-through edge labelled
8050 * 0x12 - discovered and fall-through and branch edges labelled
8051 * 0x20 - explored
8052 */
8053
8054enum {
8055 DISCOVERED = 0x10,
8056 EXPLORED = 0x20,
8057 FALLTHROUGH = 1,
8058 BRANCH = 2,
8059};
8060
dc2a4ebc
AS
8061static u32 state_htab_size(struct bpf_verifier_env *env)
8062{
8063 return env->prog->len;
8064}
8065
5d839021
AS
8066static struct bpf_verifier_state_list **explored_state(
8067 struct bpf_verifier_env *env,
8068 int idx)
8069{
dc2a4ebc
AS
8070 struct bpf_verifier_state *cur = env->cur_state;
8071 struct bpf_func_state *state = cur->frame[cur->curframe];
8072
8073 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
8074}
8075
8076static void init_explored_state(struct bpf_verifier_env *env, int idx)
8077{
a8f500af 8078 env->insn_aux_data[idx].prune_point = true;
5d839021 8079}
f1bca824 8080
59e2e27d
WAF
8081enum {
8082 DONE_EXPLORING = 0,
8083 KEEP_EXPLORING = 1,
8084};
8085
475fb78f
AS
8086/* t, w, e - match pseudo-code above:
8087 * t - index of current instruction
8088 * w - next instruction
8089 * e - edge
8090 */
2589726d
AS
8091static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8092 bool loop_ok)
475fb78f 8093{
7df737e9
AS
8094 int *insn_stack = env->cfg.insn_stack;
8095 int *insn_state = env->cfg.insn_state;
8096
475fb78f 8097 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 8098 return DONE_EXPLORING;
475fb78f
AS
8099
8100 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 8101 return DONE_EXPLORING;
475fb78f
AS
8102
8103 if (w < 0 || w >= env->prog->len) {
d9762e84 8104 verbose_linfo(env, t, "%d: ", t);
61bd5218 8105 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
8106 return -EINVAL;
8107 }
8108
f1bca824
AS
8109 if (e == BRANCH)
8110 /* mark branch target for state pruning */
5d839021 8111 init_explored_state(env, w);
f1bca824 8112
475fb78f
AS
8113 if (insn_state[w] == 0) {
8114 /* tree-edge */
8115 insn_state[t] = DISCOVERED | e;
8116 insn_state[w] = DISCOVERED;
7df737e9 8117 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 8118 return -E2BIG;
7df737e9 8119 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 8120 return KEEP_EXPLORING;
475fb78f 8121 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 8122 if (loop_ok && env->bpf_capable)
59e2e27d 8123 return DONE_EXPLORING;
d9762e84
MKL
8124 verbose_linfo(env, t, "%d: ", t);
8125 verbose_linfo(env, w, "%d: ", w);
61bd5218 8126 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
8127 return -EINVAL;
8128 } else if (insn_state[w] == EXPLORED) {
8129 /* forward- or cross-edge */
8130 insn_state[t] = DISCOVERED | e;
8131 } else {
61bd5218 8132 verbose(env, "insn state internal bug\n");
475fb78f
AS
8133 return -EFAULT;
8134 }
59e2e27d
WAF
8135 return DONE_EXPLORING;
8136}
8137
8138/* Visits the instruction at index t and returns one of the following:
8139 * < 0 - an error occurred
8140 * DONE_EXPLORING - the instruction was fully explored
8141 * KEEP_EXPLORING - there is still work to be done before it is fully explored
8142 */
8143static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8144{
8145 struct bpf_insn *insns = env->prog->insnsi;
8146 int ret;
8147
8148 /* All non-branch instructions have a single fall-through edge. */
8149 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8150 BPF_CLASS(insns[t].code) != BPF_JMP32)
8151 return push_insn(t, t + 1, FALLTHROUGH, env, false);
8152
8153 switch (BPF_OP(insns[t].code)) {
8154 case BPF_EXIT:
8155 return DONE_EXPLORING;
8156
8157 case BPF_CALL:
8158 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8159 if (ret)
8160 return ret;
8161
8162 if (t + 1 < insn_cnt)
8163 init_explored_state(env, t + 1);
8164 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8165 init_explored_state(env, t);
8166 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8167 env, false);
8168 }
8169 return ret;
8170
8171 case BPF_JA:
8172 if (BPF_SRC(insns[t].code) != BPF_K)
8173 return -EINVAL;
8174
8175 /* unconditional jump with single edge */
8176 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8177 true);
8178 if (ret)
8179 return ret;
8180
8181 /* unconditional jmp is not a good pruning point,
8182 * but it's marked, since backtracking needs
8183 * to record jmp history in is_state_visited().
8184 */
8185 init_explored_state(env, t + insns[t].off + 1);
8186 /* tell verifier to check for equivalent states
8187 * after every call and jump
8188 */
8189 if (t + 1 < insn_cnt)
8190 init_explored_state(env, t + 1);
8191
8192 return ret;
8193
8194 default:
8195 /* conditional jump with two edges */
8196 init_explored_state(env, t);
8197 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8198 if (ret)
8199 return ret;
8200
8201 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8202 }
475fb78f
AS
8203}
8204
8205/* non-recursive depth-first-search to detect loops in BPF program
8206 * loop == back-edge in directed graph
8207 */
58e2af8b 8208static int check_cfg(struct bpf_verifier_env *env)
475fb78f 8209{
475fb78f 8210 int insn_cnt = env->prog->len;
7df737e9 8211 int *insn_stack, *insn_state;
475fb78f 8212 int ret = 0;
59e2e27d 8213 int i;
475fb78f 8214
7df737e9 8215 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
8216 if (!insn_state)
8217 return -ENOMEM;
8218
7df737e9 8219 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 8220 if (!insn_stack) {
71dde681 8221 kvfree(insn_state);
475fb78f
AS
8222 return -ENOMEM;
8223 }
8224
8225 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8226 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 8227 env->cfg.cur_stack = 1;
475fb78f 8228
59e2e27d
WAF
8229 while (env->cfg.cur_stack > 0) {
8230 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 8231
59e2e27d
WAF
8232 ret = visit_insn(t, insn_cnt, env);
8233 switch (ret) {
8234 case DONE_EXPLORING:
8235 insn_state[t] = EXPLORED;
8236 env->cfg.cur_stack--;
8237 break;
8238 case KEEP_EXPLORING:
8239 break;
8240 default:
8241 if (ret > 0) {
8242 verbose(env, "visit_insn internal bug\n");
8243 ret = -EFAULT;
475fb78f 8244 }
475fb78f 8245 goto err_free;
59e2e27d 8246 }
475fb78f
AS
8247 }
8248
59e2e27d 8249 if (env->cfg.cur_stack < 0) {
61bd5218 8250 verbose(env, "pop stack internal bug\n");
475fb78f
AS
8251 ret = -EFAULT;
8252 goto err_free;
8253 }
475fb78f 8254
475fb78f
AS
8255 for (i = 0; i < insn_cnt; i++) {
8256 if (insn_state[i] != EXPLORED) {
61bd5218 8257 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
8258 ret = -EINVAL;
8259 goto err_free;
8260 }
8261 }
8262 ret = 0; /* cfg looks good */
8263
8264err_free:
71dde681
AS
8265 kvfree(insn_state);
8266 kvfree(insn_stack);
7df737e9 8267 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
8268 return ret;
8269}
8270
09b28d76
AS
8271static int check_abnormal_return(struct bpf_verifier_env *env)
8272{
8273 int i;
8274
8275 for (i = 1; i < env->subprog_cnt; i++) {
8276 if (env->subprog_info[i].has_ld_abs) {
8277 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8278 return -EINVAL;
8279 }
8280 if (env->subprog_info[i].has_tail_call) {
8281 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8282 return -EINVAL;
8283 }
8284 }
8285 return 0;
8286}
8287
838e9690
YS
8288/* The minimum supported BTF func info size */
8289#define MIN_BPF_FUNCINFO_SIZE 8
8290#define MAX_FUNCINFO_REC_SIZE 252
8291
c454a46b
MKL
8292static int check_btf_func(struct bpf_verifier_env *env,
8293 const union bpf_attr *attr,
8294 union bpf_attr __user *uattr)
838e9690 8295{
09b28d76 8296 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 8297 u32 i, nfuncs, urec_size, min_size;
838e9690 8298 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 8299 struct bpf_func_info *krecord;
8c1b6e69 8300 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
8301 struct bpf_prog *prog;
8302 const struct btf *btf;
838e9690 8303 void __user *urecord;
d0b2818e 8304 u32 prev_offset = 0;
09b28d76 8305 bool scalar_return;
e7ed83d6 8306 int ret = -ENOMEM;
838e9690
YS
8307
8308 nfuncs = attr->func_info_cnt;
09b28d76
AS
8309 if (!nfuncs) {
8310 if (check_abnormal_return(env))
8311 return -EINVAL;
838e9690 8312 return 0;
09b28d76 8313 }
838e9690
YS
8314
8315 if (nfuncs != env->subprog_cnt) {
8316 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8317 return -EINVAL;
8318 }
8319
8320 urec_size = attr->func_info_rec_size;
8321 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8322 urec_size > MAX_FUNCINFO_REC_SIZE ||
8323 urec_size % sizeof(u32)) {
8324 verbose(env, "invalid func info rec size %u\n", urec_size);
8325 return -EINVAL;
8326 }
8327
c454a46b
MKL
8328 prog = env->prog;
8329 btf = prog->aux->btf;
838e9690
YS
8330
8331 urecord = u64_to_user_ptr(attr->func_info);
8332 min_size = min_t(u32, krec_size, urec_size);
8333
ba64e7d8 8334 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
8335 if (!krecord)
8336 return -ENOMEM;
8c1b6e69
AS
8337 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8338 if (!info_aux)
8339 goto err_free;
ba64e7d8 8340
838e9690
YS
8341 for (i = 0; i < nfuncs; i++) {
8342 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8343 if (ret) {
8344 if (ret == -E2BIG) {
8345 verbose(env, "nonzero tailing record in func info");
8346 /* set the size kernel expects so loader can zero
8347 * out the rest of the record.
8348 */
8349 if (put_user(min_size, &uattr->func_info_rec_size))
8350 ret = -EFAULT;
8351 }
c454a46b 8352 goto err_free;
838e9690
YS
8353 }
8354
ba64e7d8 8355 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 8356 ret = -EFAULT;
c454a46b 8357 goto err_free;
838e9690
YS
8358 }
8359
d30d42e0 8360 /* check insn_off */
09b28d76 8361 ret = -EINVAL;
838e9690 8362 if (i == 0) {
d30d42e0 8363 if (krecord[i].insn_off) {
838e9690 8364 verbose(env,
d30d42e0
MKL
8365 "nonzero insn_off %u for the first func info record",
8366 krecord[i].insn_off);
c454a46b 8367 goto err_free;
838e9690 8368 }
d30d42e0 8369 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
8370 verbose(env,
8371 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 8372 krecord[i].insn_off, prev_offset);
c454a46b 8373 goto err_free;
838e9690
YS
8374 }
8375
d30d42e0 8376 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 8377 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 8378 goto err_free;
838e9690
YS
8379 }
8380
8381 /* check type_id */
ba64e7d8 8382 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 8383 if (!type || !btf_type_is_func(type)) {
838e9690 8384 verbose(env, "invalid type id %d in func info",
ba64e7d8 8385 krecord[i].type_id);
c454a46b 8386 goto err_free;
838e9690 8387 }
51c39bb1 8388 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
8389
8390 func_proto = btf_type_by_id(btf, type->type);
8391 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8392 /* btf_func_check() already verified it during BTF load */
8393 goto err_free;
8394 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8395 scalar_return =
8396 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8397 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8398 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8399 goto err_free;
8400 }
8401 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8402 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8403 goto err_free;
8404 }
8405
d30d42e0 8406 prev_offset = krecord[i].insn_off;
838e9690
YS
8407 urecord += urec_size;
8408 }
8409
ba64e7d8
YS
8410 prog->aux->func_info = krecord;
8411 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 8412 prog->aux->func_info_aux = info_aux;
838e9690
YS
8413 return 0;
8414
c454a46b 8415err_free:
ba64e7d8 8416 kvfree(krecord);
8c1b6e69 8417 kfree(info_aux);
838e9690
YS
8418 return ret;
8419}
8420
ba64e7d8
YS
8421static void adjust_btf_func(struct bpf_verifier_env *env)
8422{
8c1b6e69 8423 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8424 int i;
8425
8c1b6e69 8426 if (!aux->func_info)
ba64e7d8
YS
8427 return;
8428
8429 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8430 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8431}
8432
c454a46b
MKL
8433#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8434 sizeof(((struct bpf_line_info *)(0))->line_col))
8435#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8436
8437static int check_btf_line(struct bpf_verifier_env *env,
8438 const union bpf_attr *attr,
8439 union bpf_attr __user *uattr)
8440{
8441 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8442 struct bpf_subprog_info *sub;
8443 struct bpf_line_info *linfo;
8444 struct bpf_prog *prog;
8445 const struct btf *btf;
8446 void __user *ulinfo;
8447 int err;
8448
8449 nr_linfo = attr->line_info_cnt;
8450 if (!nr_linfo)
8451 return 0;
8452
8453 rec_size = attr->line_info_rec_size;
8454 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8455 rec_size > MAX_LINEINFO_REC_SIZE ||
8456 rec_size & (sizeof(u32) - 1))
8457 return -EINVAL;
8458
8459 /* Need to zero it in case the userspace may
8460 * pass in a smaller bpf_line_info object.
8461 */
8462 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8463 GFP_KERNEL | __GFP_NOWARN);
8464 if (!linfo)
8465 return -ENOMEM;
8466
8467 prog = env->prog;
8468 btf = prog->aux->btf;
8469
8470 s = 0;
8471 sub = env->subprog_info;
8472 ulinfo = u64_to_user_ptr(attr->line_info);
8473 expected_size = sizeof(struct bpf_line_info);
8474 ncopy = min_t(u32, expected_size, rec_size);
8475 for (i = 0; i < nr_linfo; i++) {
8476 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8477 if (err) {
8478 if (err == -E2BIG) {
8479 verbose(env, "nonzero tailing record in line_info");
8480 if (put_user(expected_size,
8481 &uattr->line_info_rec_size))
8482 err = -EFAULT;
8483 }
8484 goto err_free;
8485 }
8486
8487 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8488 err = -EFAULT;
8489 goto err_free;
8490 }
8491
8492 /*
8493 * Check insn_off to ensure
8494 * 1) strictly increasing AND
8495 * 2) bounded by prog->len
8496 *
8497 * The linfo[0].insn_off == 0 check logically falls into
8498 * the later "missing bpf_line_info for func..." case
8499 * because the first linfo[0].insn_off must be the
8500 * first sub also and the first sub must have
8501 * subprog_info[0].start == 0.
8502 */
8503 if ((i && linfo[i].insn_off <= prev_offset) ||
8504 linfo[i].insn_off >= prog->len) {
8505 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8506 i, linfo[i].insn_off, prev_offset,
8507 prog->len);
8508 err = -EINVAL;
8509 goto err_free;
8510 }
8511
fdbaa0be
MKL
8512 if (!prog->insnsi[linfo[i].insn_off].code) {
8513 verbose(env,
8514 "Invalid insn code at line_info[%u].insn_off\n",
8515 i);
8516 err = -EINVAL;
8517 goto err_free;
8518 }
8519
23127b33
MKL
8520 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8521 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8522 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8523 err = -EINVAL;
8524 goto err_free;
8525 }
8526
8527 if (s != env->subprog_cnt) {
8528 if (linfo[i].insn_off == sub[s].start) {
8529 sub[s].linfo_idx = i;
8530 s++;
8531 } else if (sub[s].start < linfo[i].insn_off) {
8532 verbose(env, "missing bpf_line_info for func#%u\n", s);
8533 err = -EINVAL;
8534 goto err_free;
8535 }
8536 }
8537
8538 prev_offset = linfo[i].insn_off;
8539 ulinfo += rec_size;
8540 }
8541
8542 if (s != env->subprog_cnt) {
8543 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8544 env->subprog_cnt - s, s);
8545 err = -EINVAL;
8546 goto err_free;
8547 }
8548
8549 prog->aux->linfo = linfo;
8550 prog->aux->nr_linfo = nr_linfo;
8551
8552 return 0;
8553
8554err_free:
8555 kvfree(linfo);
8556 return err;
8557}
8558
8559static int check_btf_info(struct bpf_verifier_env *env,
8560 const union bpf_attr *attr,
8561 union bpf_attr __user *uattr)
8562{
8563 struct btf *btf;
8564 int err;
8565
09b28d76
AS
8566 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8567 if (check_abnormal_return(env))
8568 return -EINVAL;
c454a46b 8569 return 0;
09b28d76 8570 }
c454a46b
MKL
8571
8572 btf = btf_get_by_fd(attr->prog_btf_fd);
8573 if (IS_ERR(btf))
8574 return PTR_ERR(btf);
8575 env->prog->aux->btf = btf;
8576
8577 err = check_btf_func(env, attr, uattr);
8578 if (err)
8579 return err;
8580
8581 err = check_btf_line(env, attr, uattr);
8582 if (err)
8583 return err;
8584
8585 return 0;
ba64e7d8
YS
8586}
8587
f1174f77
EC
8588/* check %cur's range satisfies %old's */
8589static bool range_within(struct bpf_reg_state *old,
8590 struct bpf_reg_state *cur)
8591{
b03c9f9f
EC
8592 return old->umin_value <= cur->umin_value &&
8593 old->umax_value >= cur->umax_value &&
8594 old->smin_value <= cur->smin_value &&
8595 old->smax_value >= cur->smax_value;
f1174f77
EC
8596}
8597
8598/* Maximum number of register states that can exist at once */
8599#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8600struct idpair {
8601 u32 old;
8602 u32 cur;
8603};
8604
8605/* If in the old state two registers had the same id, then they need to have
8606 * the same id in the new state as well. But that id could be different from
8607 * the old state, so we need to track the mapping from old to new ids.
8608 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8609 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8610 * regs with a different old id could still have new id 9, we don't care about
8611 * that.
8612 * So we look through our idmap to see if this old id has been seen before. If
8613 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8614 */
f1174f77 8615static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8616{
f1174f77 8617 unsigned int i;
969bf05e 8618
f1174f77
EC
8619 for (i = 0; i < ID_MAP_SIZE; i++) {
8620 if (!idmap[i].old) {
8621 /* Reached an empty slot; haven't seen this id before */
8622 idmap[i].old = old_id;
8623 idmap[i].cur = cur_id;
8624 return true;
8625 }
8626 if (idmap[i].old == old_id)
8627 return idmap[i].cur == cur_id;
8628 }
8629 /* We ran out of idmap slots, which should be impossible */
8630 WARN_ON_ONCE(1);
8631 return false;
8632}
8633
9242b5f5
AS
8634static void clean_func_state(struct bpf_verifier_env *env,
8635 struct bpf_func_state *st)
8636{
8637 enum bpf_reg_liveness live;
8638 int i, j;
8639
8640 for (i = 0; i < BPF_REG_FP; i++) {
8641 live = st->regs[i].live;
8642 /* liveness must not touch this register anymore */
8643 st->regs[i].live |= REG_LIVE_DONE;
8644 if (!(live & REG_LIVE_READ))
8645 /* since the register is unused, clear its state
8646 * to make further comparison simpler
8647 */
f54c7898 8648 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8649 }
8650
8651 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8652 live = st->stack[i].spilled_ptr.live;
8653 /* liveness must not touch this stack slot anymore */
8654 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8655 if (!(live & REG_LIVE_READ)) {
f54c7898 8656 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8657 for (j = 0; j < BPF_REG_SIZE; j++)
8658 st->stack[i].slot_type[j] = STACK_INVALID;
8659 }
8660 }
8661}
8662
8663static void clean_verifier_state(struct bpf_verifier_env *env,
8664 struct bpf_verifier_state *st)
8665{
8666 int i;
8667
8668 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8669 /* all regs in this state in all frames were already marked */
8670 return;
8671
8672 for (i = 0; i <= st->curframe; i++)
8673 clean_func_state(env, st->frame[i]);
8674}
8675
8676/* the parentage chains form a tree.
8677 * the verifier states are added to state lists at given insn and
8678 * pushed into state stack for future exploration.
8679 * when the verifier reaches bpf_exit insn some of the verifer states
8680 * stored in the state lists have their final liveness state already,
8681 * but a lot of states will get revised from liveness point of view when
8682 * the verifier explores other branches.
8683 * Example:
8684 * 1: r0 = 1
8685 * 2: if r1 == 100 goto pc+1
8686 * 3: r0 = 2
8687 * 4: exit
8688 * when the verifier reaches exit insn the register r0 in the state list of
8689 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8690 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8691 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8692 *
8693 * Since the verifier pushes the branch states as it sees them while exploring
8694 * the program the condition of walking the branch instruction for the second
8695 * time means that all states below this branch were already explored and
8696 * their final liveness markes are already propagated.
8697 * Hence when the verifier completes the search of state list in is_state_visited()
8698 * we can call this clean_live_states() function to mark all liveness states
8699 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8700 * will not be used.
8701 * This function also clears the registers and stack for states that !READ
8702 * to simplify state merging.
8703 *
8704 * Important note here that walking the same branch instruction in the callee
8705 * doesn't meant that the states are DONE. The verifier has to compare
8706 * the callsites
8707 */
8708static void clean_live_states(struct bpf_verifier_env *env, int insn,
8709 struct bpf_verifier_state *cur)
8710{
8711 struct bpf_verifier_state_list *sl;
8712 int i;
8713
5d839021 8714 sl = *explored_state(env, insn);
a8f500af 8715 while (sl) {
2589726d
AS
8716 if (sl->state.branches)
8717 goto next;
dc2a4ebc
AS
8718 if (sl->state.insn_idx != insn ||
8719 sl->state.curframe != cur->curframe)
9242b5f5
AS
8720 goto next;
8721 for (i = 0; i <= cur->curframe; i++)
8722 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8723 goto next;
8724 clean_verifier_state(env, &sl->state);
8725next:
8726 sl = sl->next;
8727 }
8728}
8729
f1174f77 8730/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8731static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8732 struct idpair *idmap)
f1174f77 8733{
f4d7e40a
AS
8734 bool equal;
8735
dc503a8a
EC
8736 if (!(rold->live & REG_LIVE_READ))
8737 /* explored state didn't use this */
8738 return true;
8739
679c782d 8740 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8741
8742 if (rold->type == PTR_TO_STACK)
8743 /* two stack pointers are equal only if they're pointing to
8744 * the same stack frame, since fp-8 in foo != fp-8 in bar
8745 */
8746 return equal && rold->frameno == rcur->frameno;
8747
8748 if (equal)
969bf05e
AS
8749 return true;
8750
f1174f77
EC
8751 if (rold->type == NOT_INIT)
8752 /* explored state can't have used this */
969bf05e 8753 return true;
f1174f77
EC
8754 if (rcur->type == NOT_INIT)
8755 return false;
8756 switch (rold->type) {
8757 case SCALAR_VALUE:
8758 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8759 if (!rold->precise && !rcur->precise)
8760 return true;
f1174f77
EC
8761 /* new val must satisfy old val knowledge */
8762 return range_within(rold, rcur) &&
8763 tnum_in(rold->var_off, rcur->var_off);
8764 } else {
179d1c56
JH
8765 /* We're trying to use a pointer in place of a scalar.
8766 * Even if the scalar was unbounded, this could lead to
8767 * pointer leaks because scalars are allowed to leak
8768 * while pointers are not. We could make this safe in
8769 * special cases if root is calling us, but it's
8770 * probably not worth the hassle.
f1174f77 8771 */
179d1c56 8772 return false;
f1174f77
EC
8773 }
8774 case PTR_TO_MAP_VALUE:
1b688a19
EC
8775 /* If the new min/max/var_off satisfy the old ones and
8776 * everything else matches, we are OK.
d83525ca
AS
8777 * 'id' is not compared, since it's only used for maps with
8778 * bpf_spin_lock inside map element and in such cases if
8779 * the rest of the prog is valid for one map element then
8780 * it's valid for all map elements regardless of the key
8781 * used in bpf_map_lookup()
1b688a19
EC
8782 */
8783 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8784 range_within(rold, rcur) &&
8785 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8786 case PTR_TO_MAP_VALUE_OR_NULL:
8787 /* a PTR_TO_MAP_VALUE could be safe to use as a
8788 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8789 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8790 * checked, doing so could have affected others with the same
8791 * id, and we can't check for that because we lost the id when
8792 * we converted to a PTR_TO_MAP_VALUE.
8793 */
8794 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8795 return false;
8796 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8797 return false;
8798 /* Check our ids match any regs they're supposed to */
8799 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8800 case PTR_TO_PACKET_META:
f1174f77 8801 case PTR_TO_PACKET:
de8f3a83 8802 if (rcur->type != rold->type)
f1174f77
EC
8803 return false;
8804 /* We must have at least as much range as the old ptr
8805 * did, so that any accesses which were safe before are
8806 * still safe. This is true even if old range < old off,
8807 * since someone could have accessed through (ptr - k), or
8808 * even done ptr -= k in a register, to get a safe access.
8809 */
8810 if (rold->range > rcur->range)
8811 return false;
8812 /* If the offsets don't match, we can't trust our alignment;
8813 * nor can we be sure that we won't fall out of range.
8814 */
8815 if (rold->off != rcur->off)
8816 return false;
8817 /* id relations must be preserved */
8818 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8819 return false;
8820 /* new val must satisfy old val knowledge */
8821 return range_within(rold, rcur) &&
8822 tnum_in(rold->var_off, rcur->var_off);
8823 case PTR_TO_CTX:
8824 case CONST_PTR_TO_MAP:
f1174f77 8825 case PTR_TO_PACKET_END:
d58e468b 8826 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8827 case PTR_TO_SOCKET:
8828 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8829 case PTR_TO_SOCK_COMMON:
8830 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8831 case PTR_TO_TCP_SOCK:
8832 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8833 case PTR_TO_XDP_SOCK:
f1174f77
EC
8834 /* Only valid matches are exact, which memcmp() above
8835 * would have accepted
8836 */
8837 default:
8838 /* Don't know what's going on, just say it's not safe */
8839 return false;
8840 }
969bf05e 8841
f1174f77
EC
8842 /* Shouldn't get here; if we do, say it's not safe */
8843 WARN_ON_ONCE(1);
969bf05e
AS
8844 return false;
8845}
8846
f4d7e40a
AS
8847static bool stacksafe(struct bpf_func_state *old,
8848 struct bpf_func_state *cur,
638f5b90
AS
8849 struct idpair *idmap)
8850{
8851 int i, spi;
8852
638f5b90
AS
8853 /* walk slots of the explored stack and ignore any additional
8854 * slots in the current stack, since explored(safe) state
8855 * didn't use them
8856 */
8857 for (i = 0; i < old->allocated_stack; i++) {
8858 spi = i / BPF_REG_SIZE;
8859
b233920c
AS
8860 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8861 i += BPF_REG_SIZE - 1;
cc2b14d5 8862 /* explored state didn't use this */
fd05e57b 8863 continue;
b233920c 8864 }
cc2b14d5 8865
638f5b90
AS
8866 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8867 continue;
19e2dbb7
AS
8868
8869 /* explored stack has more populated slots than current stack
8870 * and these slots were used
8871 */
8872 if (i >= cur->allocated_stack)
8873 return false;
8874
cc2b14d5
AS
8875 /* if old state was safe with misc data in the stack
8876 * it will be safe with zero-initialized stack.
8877 * The opposite is not true
8878 */
8879 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8880 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8881 continue;
638f5b90
AS
8882 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8883 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8884 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8885 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8886 * this verifier states are not equivalent,
8887 * return false to continue verification of this path
8888 */
8889 return false;
8890 if (i % BPF_REG_SIZE)
8891 continue;
8892 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8893 continue;
8894 if (!regsafe(&old->stack[spi].spilled_ptr,
8895 &cur->stack[spi].spilled_ptr,
8896 idmap))
8897 /* when explored and current stack slot are both storing
8898 * spilled registers, check that stored pointers types
8899 * are the same as well.
8900 * Ex: explored safe path could have stored
8901 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8902 * but current path has stored:
8903 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8904 * such verifier states are not equivalent.
8905 * return false to continue verification of this path
8906 */
8907 return false;
8908 }
8909 return true;
8910}
8911
fd978bf7
JS
8912static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8913{
8914 if (old->acquired_refs != cur->acquired_refs)
8915 return false;
8916 return !memcmp(old->refs, cur->refs,
8917 sizeof(*old->refs) * old->acquired_refs);
8918}
8919
f1bca824
AS
8920/* compare two verifier states
8921 *
8922 * all states stored in state_list are known to be valid, since
8923 * verifier reached 'bpf_exit' instruction through them
8924 *
8925 * this function is called when verifier exploring different branches of
8926 * execution popped from the state stack. If it sees an old state that has
8927 * more strict register state and more strict stack state then this execution
8928 * branch doesn't need to be explored further, since verifier already
8929 * concluded that more strict state leads to valid finish.
8930 *
8931 * Therefore two states are equivalent if register state is more conservative
8932 * and explored stack state is more conservative than the current one.
8933 * Example:
8934 * explored current
8935 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8936 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8937 *
8938 * In other words if current stack state (one being explored) has more
8939 * valid slots than old one that already passed validation, it means
8940 * the verifier can stop exploring and conclude that current state is valid too
8941 *
8942 * Similarly with registers. If explored state has register type as invalid
8943 * whereas register type in current state is meaningful, it means that
8944 * the current state will reach 'bpf_exit' instruction safely
8945 */
f4d7e40a
AS
8946static bool func_states_equal(struct bpf_func_state *old,
8947 struct bpf_func_state *cur)
f1bca824 8948{
f1174f77
EC
8949 struct idpair *idmap;
8950 bool ret = false;
f1bca824
AS
8951 int i;
8952
f1174f77
EC
8953 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8954 /* If we failed to allocate the idmap, just say it's not safe */
8955 if (!idmap)
1a0dc1ac 8956 return false;
f1174f77
EC
8957
8958 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8959 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8960 goto out_free;
f1bca824
AS
8961 }
8962
638f5b90
AS
8963 if (!stacksafe(old, cur, idmap))
8964 goto out_free;
fd978bf7
JS
8965
8966 if (!refsafe(old, cur))
8967 goto out_free;
f1174f77
EC
8968 ret = true;
8969out_free:
8970 kfree(idmap);
8971 return ret;
f1bca824
AS
8972}
8973
f4d7e40a
AS
8974static bool states_equal(struct bpf_verifier_env *env,
8975 struct bpf_verifier_state *old,
8976 struct bpf_verifier_state *cur)
8977{
8978 int i;
8979
8980 if (old->curframe != cur->curframe)
8981 return false;
8982
979d63d5
DB
8983 /* Verification state from speculative execution simulation
8984 * must never prune a non-speculative execution one.
8985 */
8986 if (old->speculative && !cur->speculative)
8987 return false;
8988
d83525ca
AS
8989 if (old->active_spin_lock != cur->active_spin_lock)
8990 return false;
8991
f4d7e40a
AS
8992 /* for states to be equal callsites have to be the same
8993 * and all frame states need to be equivalent
8994 */
8995 for (i = 0; i <= old->curframe; i++) {
8996 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8997 return false;
8998 if (!func_states_equal(old->frame[i], cur->frame[i]))
8999 return false;
9000 }
9001 return true;
9002}
9003
5327ed3d
JW
9004/* Return 0 if no propagation happened. Return negative error code if error
9005 * happened. Otherwise, return the propagated bit.
9006 */
55e7f3b5
JW
9007static int propagate_liveness_reg(struct bpf_verifier_env *env,
9008 struct bpf_reg_state *reg,
9009 struct bpf_reg_state *parent_reg)
9010{
5327ed3d
JW
9011 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9012 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
9013 int err;
9014
5327ed3d
JW
9015 /* When comes here, read flags of PARENT_REG or REG could be any of
9016 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9017 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9018 */
9019 if (parent_flag == REG_LIVE_READ64 ||
9020 /* Or if there is no read flag from REG. */
9021 !flag ||
9022 /* Or if the read flag from REG is the same as PARENT_REG. */
9023 parent_flag == flag)
55e7f3b5
JW
9024 return 0;
9025
5327ed3d 9026 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
9027 if (err)
9028 return err;
9029
5327ed3d 9030 return flag;
55e7f3b5
JW
9031}
9032
8e9cd9ce 9033/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
9034 * straight-line code between a state and its parent. When we arrive at an
9035 * equivalent state (jump target or such) we didn't arrive by the straight-line
9036 * code, so read marks in the state must propagate to the parent regardless
9037 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 9038 * in mark_reg_read() is for.
8e9cd9ce 9039 */
f4d7e40a
AS
9040static int propagate_liveness(struct bpf_verifier_env *env,
9041 const struct bpf_verifier_state *vstate,
9042 struct bpf_verifier_state *vparent)
dc503a8a 9043{
3f8cafa4 9044 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 9045 struct bpf_func_state *state, *parent;
3f8cafa4 9046 int i, frame, err = 0;
dc503a8a 9047
f4d7e40a
AS
9048 if (vparent->curframe != vstate->curframe) {
9049 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9050 vparent->curframe, vstate->curframe);
9051 return -EFAULT;
9052 }
dc503a8a
EC
9053 /* Propagate read liveness of registers... */
9054 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 9055 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
9056 parent = vparent->frame[frame];
9057 state = vstate->frame[frame];
9058 parent_reg = parent->regs;
9059 state_reg = state->regs;
83d16312
JK
9060 /* We don't need to worry about FP liveness, it's read-only */
9061 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
9062 err = propagate_liveness_reg(env, &state_reg[i],
9063 &parent_reg[i]);
5327ed3d 9064 if (err < 0)
3f8cafa4 9065 return err;
5327ed3d
JW
9066 if (err == REG_LIVE_READ64)
9067 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 9068 }
f4d7e40a 9069
1b04aee7 9070 /* Propagate stack slots. */
f4d7e40a
AS
9071 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9072 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
9073 parent_reg = &parent->stack[i].spilled_ptr;
9074 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
9075 err = propagate_liveness_reg(env, state_reg,
9076 parent_reg);
5327ed3d 9077 if (err < 0)
3f8cafa4 9078 return err;
dc503a8a
EC
9079 }
9080 }
5327ed3d 9081 return 0;
dc503a8a
EC
9082}
9083
a3ce685d
AS
9084/* find precise scalars in the previous equivalent state and
9085 * propagate them into the current state
9086 */
9087static int propagate_precision(struct bpf_verifier_env *env,
9088 const struct bpf_verifier_state *old)
9089{
9090 struct bpf_reg_state *state_reg;
9091 struct bpf_func_state *state;
9092 int i, err = 0;
9093
9094 state = old->frame[old->curframe];
9095 state_reg = state->regs;
9096 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9097 if (state_reg->type != SCALAR_VALUE ||
9098 !state_reg->precise)
9099 continue;
9100 if (env->log.level & BPF_LOG_LEVEL2)
9101 verbose(env, "propagating r%d\n", i);
9102 err = mark_chain_precision(env, i);
9103 if (err < 0)
9104 return err;
9105 }
9106
9107 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9108 if (state->stack[i].slot_type[0] != STACK_SPILL)
9109 continue;
9110 state_reg = &state->stack[i].spilled_ptr;
9111 if (state_reg->type != SCALAR_VALUE ||
9112 !state_reg->precise)
9113 continue;
9114 if (env->log.level & BPF_LOG_LEVEL2)
9115 verbose(env, "propagating fp%d\n",
9116 (-i - 1) * BPF_REG_SIZE);
9117 err = mark_chain_precision_stack(env, i);
9118 if (err < 0)
9119 return err;
9120 }
9121 return 0;
9122}
9123
2589726d
AS
9124static bool states_maybe_looping(struct bpf_verifier_state *old,
9125 struct bpf_verifier_state *cur)
9126{
9127 struct bpf_func_state *fold, *fcur;
9128 int i, fr = cur->curframe;
9129
9130 if (old->curframe != fr)
9131 return false;
9132
9133 fold = old->frame[fr];
9134 fcur = cur->frame[fr];
9135 for (i = 0; i < MAX_BPF_REG; i++)
9136 if (memcmp(&fold->regs[i], &fcur->regs[i],
9137 offsetof(struct bpf_reg_state, parent)))
9138 return false;
9139 return true;
9140}
9141
9142
58e2af8b 9143static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 9144{
58e2af8b 9145 struct bpf_verifier_state_list *new_sl;
9f4686c4 9146 struct bpf_verifier_state_list *sl, **pprev;
679c782d 9147 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 9148 int i, j, err, states_cnt = 0;
10d274e8 9149 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 9150
b5dc0163 9151 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 9152 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
9153 /* this 'insn_idx' instruction wasn't marked, so we will not
9154 * be doing state search here
9155 */
9156 return 0;
9157
2589726d
AS
9158 /* bpf progs typically have pruning point every 4 instructions
9159 * http://vger.kernel.org/bpfconf2019.html#session-1
9160 * Do not add new state for future pruning if the verifier hasn't seen
9161 * at least 2 jumps and at least 8 instructions.
9162 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9163 * In tests that amounts to up to 50% reduction into total verifier
9164 * memory consumption and 20% verifier time speedup.
9165 */
9166 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9167 env->insn_processed - env->prev_insn_processed >= 8)
9168 add_new_state = true;
9169
a8f500af
AS
9170 pprev = explored_state(env, insn_idx);
9171 sl = *pprev;
9172
9242b5f5
AS
9173 clean_live_states(env, insn_idx, cur);
9174
a8f500af 9175 while (sl) {
dc2a4ebc
AS
9176 states_cnt++;
9177 if (sl->state.insn_idx != insn_idx)
9178 goto next;
2589726d
AS
9179 if (sl->state.branches) {
9180 if (states_maybe_looping(&sl->state, cur) &&
9181 states_equal(env, &sl->state, cur)) {
9182 verbose_linfo(env, insn_idx, "; ");
9183 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9184 return -EINVAL;
9185 }
9186 /* if the verifier is processing a loop, avoid adding new state
9187 * too often, since different loop iterations have distinct
9188 * states and may not help future pruning.
9189 * This threshold shouldn't be too low to make sure that
9190 * a loop with large bound will be rejected quickly.
9191 * The most abusive loop will be:
9192 * r1 += 1
9193 * if r1 < 1000000 goto pc-2
9194 * 1M insn_procssed limit / 100 == 10k peak states.
9195 * This threshold shouldn't be too high either, since states
9196 * at the end of the loop are likely to be useful in pruning.
9197 */
9198 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9199 env->insn_processed - env->prev_insn_processed < 100)
9200 add_new_state = false;
9201 goto miss;
9202 }
638f5b90 9203 if (states_equal(env, &sl->state, cur)) {
9f4686c4 9204 sl->hit_cnt++;
f1bca824 9205 /* reached equivalent register/stack state,
dc503a8a
EC
9206 * prune the search.
9207 * Registers read by the continuation are read by us.
8e9cd9ce
EC
9208 * If we have any write marks in env->cur_state, they
9209 * will prevent corresponding reads in the continuation
9210 * from reaching our parent (an explored_state). Our
9211 * own state will get the read marks recorded, but
9212 * they'll be immediately forgotten as we're pruning
9213 * this state and will pop a new one.
f1bca824 9214 */
f4d7e40a 9215 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
9216
9217 /* if previous state reached the exit with precision and
9218 * current state is equivalent to it (except precsion marks)
9219 * the precision needs to be propagated back in
9220 * the current state.
9221 */
9222 err = err ? : push_jmp_history(env, cur);
9223 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
9224 if (err)
9225 return err;
f1bca824 9226 return 1;
dc503a8a 9227 }
2589726d
AS
9228miss:
9229 /* when new state is not going to be added do not increase miss count.
9230 * Otherwise several loop iterations will remove the state
9231 * recorded earlier. The goal of these heuristics is to have
9232 * states from some iterations of the loop (some in the beginning
9233 * and some at the end) to help pruning.
9234 */
9235 if (add_new_state)
9236 sl->miss_cnt++;
9f4686c4
AS
9237 /* heuristic to determine whether this state is beneficial
9238 * to keep checking from state equivalence point of view.
9239 * Higher numbers increase max_states_per_insn and verification time,
9240 * but do not meaningfully decrease insn_processed.
9241 */
9242 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9243 /* the state is unlikely to be useful. Remove it to
9244 * speed up verification
9245 */
9246 *pprev = sl->next;
9247 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
9248 u32 br = sl->state.branches;
9249
9250 WARN_ONCE(br,
9251 "BUG live_done but branches_to_explore %d\n",
9252 br);
9f4686c4
AS
9253 free_verifier_state(&sl->state, false);
9254 kfree(sl);
9255 env->peak_states--;
9256 } else {
9257 /* cannot free this state, since parentage chain may
9258 * walk it later. Add it for free_list instead to
9259 * be freed at the end of verification
9260 */
9261 sl->next = env->free_list;
9262 env->free_list = sl;
9263 }
9264 sl = *pprev;
9265 continue;
9266 }
dc2a4ebc 9267next:
9f4686c4
AS
9268 pprev = &sl->next;
9269 sl = *pprev;
f1bca824
AS
9270 }
9271
06ee7115
AS
9272 if (env->max_states_per_insn < states_cnt)
9273 env->max_states_per_insn = states_cnt;
9274
2c78ee89 9275 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 9276 return push_jmp_history(env, cur);
ceefbc96 9277
2589726d 9278 if (!add_new_state)
b5dc0163 9279 return push_jmp_history(env, cur);
ceefbc96 9280
2589726d
AS
9281 /* There were no equivalent states, remember the current one.
9282 * Technically the current state is not proven to be safe yet,
f4d7e40a 9283 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 9284 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 9285 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
9286 * again on the way to bpf_exit.
9287 * When looping the sl->state.branches will be > 0 and this state
9288 * will not be considered for equivalence until branches == 0.
f1bca824 9289 */
638f5b90 9290 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
9291 if (!new_sl)
9292 return -ENOMEM;
06ee7115
AS
9293 env->total_states++;
9294 env->peak_states++;
2589726d
AS
9295 env->prev_jmps_processed = env->jmps_processed;
9296 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
9297
9298 /* add new state to the head of linked list */
679c782d
EC
9299 new = &new_sl->state;
9300 err = copy_verifier_state(new, cur);
1969db47 9301 if (err) {
679c782d 9302 free_verifier_state(new, false);
1969db47
AS
9303 kfree(new_sl);
9304 return err;
9305 }
dc2a4ebc 9306 new->insn_idx = insn_idx;
2589726d
AS
9307 WARN_ONCE(new->branches != 1,
9308 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 9309
2589726d 9310 cur->parent = new;
b5dc0163
AS
9311 cur->first_insn_idx = insn_idx;
9312 clear_jmp_history(cur);
5d839021
AS
9313 new_sl->next = *explored_state(env, insn_idx);
9314 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
9315 /* connect new state to parentage chain. Current frame needs all
9316 * registers connected. Only r6 - r9 of the callers are alive (pushed
9317 * to the stack implicitly by JITs) so in callers' frames connect just
9318 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9319 * the state of the call instruction (with WRITTEN set), and r0 comes
9320 * from callee with its full parentage chain, anyway.
9321 */
8e9cd9ce
EC
9322 /* clear write marks in current state: the writes we did are not writes
9323 * our child did, so they don't screen off its reads from us.
9324 * (There are no read marks in current state, because reads always mark
9325 * their parent and current state never has children yet. Only
9326 * explored_states can get read marks.)
9327 */
eea1c227
AS
9328 for (j = 0; j <= cur->curframe; j++) {
9329 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9330 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9331 for (i = 0; i < BPF_REG_FP; i++)
9332 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9333 }
f4d7e40a
AS
9334
9335 /* all stack frames are accessible from callee, clear them all */
9336 for (j = 0; j <= cur->curframe; j++) {
9337 struct bpf_func_state *frame = cur->frame[j];
679c782d 9338 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 9339
679c782d 9340 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 9341 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
9342 frame->stack[i].spilled_ptr.parent =
9343 &newframe->stack[i].spilled_ptr;
9344 }
f4d7e40a 9345 }
f1bca824
AS
9346 return 0;
9347}
9348
c64b7983
JS
9349/* Return true if it's OK to have the same insn return a different type. */
9350static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9351{
9352 switch (type) {
9353 case PTR_TO_CTX:
9354 case PTR_TO_SOCKET:
9355 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9356 case PTR_TO_SOCK_COMMON:
9357 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9358 case PTR_TO_TCP_SOCK:
9359 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9360 case PTR_TO_XDP_SOCK:
2a02759e 9361 case PTR_TO_BTF_ID:
b121b341 9362 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
9363 return false;
9364 default:
9365 return true;
9366 }
9367}
9368
9369/* If an instruction was previously used with particular pointer types, then we
9370 * need to be careful to avoid cases such as the below, where it may be ok
9371 * for one branch accessing the pointer, but not ok for the other branch:
9372 *
9373 * R1 = sock_ptr
9374 * goto X;
9375 * ...
9376 * R1 = some_other_valid_ptr;
9377 * goto X;
9378 * ...
9379 * R2 = *(u32 *)(R1 + 0);
9380 */
9381static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9382{
9383 return src != prev && (!reg_type_mismatch_ok(src) ||
9384 !reg_type_mismatch_ok(prev));
9385}
9386
58e2af8b 9387static int do_check(struct bpf_verifier_env *env)
17a52670 9388{
6f8a57cc 9389 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 9390 struct bpf_verifier_state *state = env->cur_state;
17a52670 9391 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 9392 struct bpf_reg_state *regs;
06ee7115 9393 int insn_cnt = env->prog->len;
17a52670 9394 bool do_print_state = false;
b5dc0163 9395 int prev_insn_idx = -1;
17a52670 9396
17a52670
AS
9397 for (;;) {
9398 struct bpf_insn *insn;
9399 u8 class;
9400 int err;
9401
b5dc0163 9402 env->prev_insn_idx = prev_insn_idx;
c08435ec 9403 if (env->insn_idx >= insn_cnt) {
61bd5218 9404 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 9405 env->insn_idx, insn_cnt);
17a52670
AS
9406 return -EFAULT;
9407 }
9408
c08435ec 9409 insn = &insns[env->insn_idx];
17a52670
AS
9410 class = BPF_CLASS(insn->code);
9411
06ee7115 9412 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
9413 verbose(env,
9414 "BPF program is too large. Processed %d insn\n",
06ee7115 9415 env->insn_processed);
17a52670
AS
9416 return -E2BIG;
9417 }
9418
c08435ec 9419 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
9420 if (err < 0)
9421 return err;
9422 if (err == 1) {
9423 /* found equivalent state, can prune the search */
06ee7115 9424 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9425 if (do_print_state)
979d63d5
DB
9426 verbose(env, "\nfrom %d to %d%s: safe\n",
9427 env->prev_insn_idx, env->insn_idx,
9428 env->cur_state->speculative ?
9429 " (speculative execution)" : "");
f1bca824 9430 else
c08435ec 9431 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9432 }
9433 goto process_bpf_exit;
9434 }
9435
c3494801
AS
9436 if (signal_pending(current))
9437 return -EAGAIN;
9438
3c2ce60b
DB
9439 if (need_resched())
9440 cond_resched();
9441
06ee7115
AS
9442 if (env->log.level & BPF_LOG_LEVEL2 ||
9443 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9444 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9445 verbose(env, "%d:", env->insn_idx);
c5fc9692 9446 else
979d63d5
DB
9447 verbose(env, "\nfrom %d to %d%s:",
9448 env->prev_insn_idx, env->insn_idx,
9449 env->cur_state->speculative ?
9450 " (speculative execution)" : "");
f4d7e40a 9451 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9452 do_print_state = false;
9453 }
9454
06ee7115 9455 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9456 const struct bpf_insn_cbs cbs = {
9457 .cb_print = verbose,
abe08840 9458 .private_data = env,
7105e828
DB
9459 };
9460
c08435ec
DB
9461 verbose_linfo(env, env->insn_idx, "; ");
9462 verbose(env, "%d: ", env->insn_idx);
abe08840 9463 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9464 }
9465
cae1927c 9466 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9467 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9468 env->prev_insn_idx);
cae1927c
JK
9469 if (err)
9470 return err;
9471 }
13a27dfc 9472
638f5b90 9473 regs = cur_regs(env);
51c39bb1 9474 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9475 prev_insn_idx = env->insn_idx;
fd978bf7 9476
17a52670 9477 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9478 err = check_alu_op(env, insn);
17a52670
AS
9479 if (err)
9480 return err;
9481
9482 } else if (class == BPF_LDX) {
3df126f3 9483 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9484
9485 /* check for reserved fields is already done */
9486
17a52670 9487 /* check src operand */
dc503a8a 9488 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9489 if (err)
9490 return err;
9491
dc503a8a 9492 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9493 if (err)
9494 return err;
9495
725f9dcd
AS
9496 src_reg_type = regs[insn->src_reg].type;
9497
17a52670
AS
9498 /* check that memory (src_reg + off) is readable,
9499 * the state of dst_reg will be updated by this func
9500 */
c08435ec
DB
9501 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9502 insn->off, BPF_SIZE(insn->code),
9503 BPF_READ, insn->dst_reg, false);
17a52670
AS
9504 if (err)
9505 return err;
9506
c08435ec 9507 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9508
9509 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9510 /* saw a valid insn
9511 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9512 * save type to validate intersecting paths
9bac3d6d 9513 */
3df126f3 9514 *prev_src_type = src_reg_type;
9bac3d6d 9515
c64b7983 9516 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9517 /* ABuser program is trying to use the same insn
9518 * dst_reg = *(u32*) (src_reg + off)
9519 * with different pointer types:
9520 * src_reg == ctx in one branch and
9521 * src_reg == stack|map in some other branch.
9522 * Reject it.
9523 */
61bd5218 9524 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9525 return -EINVAL;
9526 }
9527
17a52670 9528 } else if (class == BPF_STX) {
3df126f3 9529 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9530
91c960b0
BJ
9531 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
9532 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
9533 if (err)
9534 return err;
c08435ec 9535 env->insn_idx++;
17a52670
AS
9536 continue;
9537 }
9538
17a52670 9539 /* check src1 operand */
dc503a8a 9540 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9541 if (err)
9542 return err;
9543 /* check src2 operand */
dc503a8a 9544 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9545 if (err)
9546 return err;
9547
d691f9e8
AS
9548 dst_reg_type = regs[insn->dst_reg].type;
9549
17a52670 9550 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9551 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9552 insn->off, BPF_SIZE(insn->code),
9553 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9554 if (err)
9555 return err;
9556
c08435ec 9557 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9558
9559 if (*prev_dst_type == NOT_INIT) {
9560 *prev_dst_type = dst_reg_type;
c64b7983 9561 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9562 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9563 return -EINVAL;
9564 }
9565
17a52670
AS
9566 } else if (class == BPF_ST) {
9567 if (BPF_MODE(insn->code) != BPF_MEM ||
9568 insn->src_reg != BPF_REG_0) {
61bd5218 9569 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9570 return -EINVAL;
9571 }
9572 /* check src operand */
dc503a8a 9573 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9574 if (err)
9575 return err;
9576
f37a8cb8 9577 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9578 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9579 insn->dst_reg,
9580 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9581 return -EACCES;
9582 }
9583
17a52670 9584 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9585 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9586 insn->off, BPF_SIZE(insn->code),
9587 BPF_WRITE, -1, false);
17a52670
AS
9588 if (err)
9589 return err;
9590
092ed096 9591 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9592 u8 opcode = BPF_OP(insn->code);
9593
2589726d 9594 env->jmps_processed++;
17a52670
AS
9595 if (opcode == BPF_CALL) {
9596 if (BPF_SRC(insn->code) != BPF_K ||
9597 insn->off != 0 ||
f4d7e40a
AS
9598 (insn->src_reg != BPF_REG_0 &&
9599 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9600 insn->dst_reg != BPF_REG_0 ||
9601 class == BPF_JMP32) {
61bd5218 9602 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9603 return -EINVAL;
9604 }
9605
d83525ca
AS
9606 if (env->cur_state->active_spin_lock &&
9607 (insn->src_reg == BPF_PSEUDO_CALL ||
9608 insn->imm != BPF_FUNC_spin_unlock)) {
9609 verbose(env, "function calls are not allowed while holding a lock\n");
9610 return -EINVAL;
9611 }
f4d7e40a 9612 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9613 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9614 else
c08435ec 9615 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9616 if (err)
9617 return err;
9618
9619 } else if (opcode == BPF_JA) {
9620 if (BPF_SRC(insn->code) != BPF_K ||
9621 insn->imm != 0 ||
9622 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9623 insn->dst_reg != BPF_REG_0 ||
9624 class == BPF_JMP32) {
61bd5218 9625 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9626 return -EINVAL;
9627 }
9628
c08435ec 9629 env->insn_idx += insn->off + 1;
17a52670
AS
9630 continue;
9631
9632 } else if (opcode == BPF_EXIT) {
9633 if (BPF_SRC(insn->code) != BPF_K ||
9634 insn->imm != 0 ||
9635 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9636 insn->dst_reg != BPF_REG_0 ||
9637 class == BPF_JMP32) {
61bd5218 9638 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9639 return -EINVAL;
9640 }
9641
d83525ca
AS
9642 if (env->cur_state->active_spin_lock) {
9643 verbose(env, "bpf_spin_unlock is missing\n");
9644 return -EINVAL;
9645 }
9646
f4d7e40a
AS
9647 if (state->curframe) {
9648 /* exit from nested function */
c08435ec 9649 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9650 if (err)
9651 return err;
9652 do_print_state = true;
9653 continue;
9654 }
9655
fd978bf7
JS
9656 err = check_reference_leak(env);
9657 if (err)
9658 return err;
9659
390ee7e2
AS
9660 err = check_return_code(env);
9661 if (err)
9662 return err;
f1bca824 9663process_bpf_exit:
2589726d 9664 update_branch_counts(env, env->cur_state);
b5dc0163 9665 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9666 &env->insn_idx, pop_log);
638f5b90
AS
9667 if (err < 0) {
9668 if (err != -ENOENT)
9669 return err;
17a52670
AS
9670 break;
9671 } else {
9672 do_print_state = true;
9673 continue;
9674 }
9675 } else {
c08435ec 9676 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9677 if (err)
9678 return err;
9679 }
9680 } else if (class == BPF_LD) {
9681 u8 mode = BPF_MODE(insn->code);
9682
9683 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9684 err = check_ld_abs(env, insn);
9685 if (err)
9686 return err;
9687
17a52670
AS
9688 } else if (mode == BPF_IMM) {
9689 err = check_ld_imm(env, insn);
9690 if (err)
9691 return err;
9692
c08435ec 9693 env->insn_idx++;
51c39bb1 9694 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9695 } else {
61bd5218 9696 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9697 return -EINVAL;
9698 }
9699 } else {
61bd5218 9700 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9701 return -EINVAL;
9702 }
9703
c08435ec 9704 env->insn_idx++;
17a52670
AS
9705 }
9706
9707 return 0;
9708}
9709
541c3bad
AN
9710static int find_btf_percpu_datasec(struct btf *btf)
9711{
9712 const struct btf_type *t;
9713 const char *tname;
9714 int i, n;
9715
9716 /*
9717 * Both vmlinux and module each have their own ".data..percpu"
9718 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
9719 * types to look at only module's own BTF types.
9720 */
9721 n = btf_nr_types(btf);
9722 if (btf_is_module(btf))
9723 i = btf_nr_types(btf_vmlinux);
9724 else
9725 i = 1;
9726
9727 for(; i < n; i++) {
9728 t = btf_type_by_id(btf, i);
9729 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
9730 continue;
9731
9732 tname = btf_name_by_offset(btf, t->name_off);
9733 if (!strcmp(tname, ".data..percpu"))
9734 return i;
9735 }
9736
9737 return -ENOENT;
9738}
9739
4976b718
HL
9740/* replace pseudo btf_id with kernel symbol address */
9741static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9742 struct bpf_insn *insn,
9743 struct bpf_insn_aux_data *aux)
9744{
eaa6bcb7
HL
9745 const struct btf_var_secinfo *vsi;
9746 const struct btf_type *datasec;
541c3bad 9747 struct btf_mod_pair *btf_mod;
4976b718
HL
9748 const struct btf_type *t;
9749 const char *sym_name;
eaa6bcb7 9750 bool percpu = false;
f16e6313 9751 u32 type, id = insn->imm;
541c3bad 9752 struct btf *btf;
f16e6313 9753 s32 datasec_id;
4976b718 9754 u64 addr;
541c3bad 9755 int i, btf_fd, err;
4976b718 9756
541c3bad
AN
9757 btf_fd = insn[1].imm;
9758 if (btf_fd) {
9759 btf = btf_get_by_fd(btf_fd);
9760 if (IS_ERR(btf)) {
9761 verbose(env, "invalid module BTF object FD specified.\n");
9762 return -EINVAL;
9763 }
9764 } else {
9765 if (!btf_vmlinux) {
9766 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9767 return -EINVAL;
9768 }
9769 btf = btf_vmlinux;
9770 btf_get(btf);
4976b718
HL
9771 }
9772
541c3bad 9773 t = btf_type_by_id(btf, id);
4976b718
HL
9774 if (!t) {
9775 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
9776 err = -ENOENT;
9777 goto err_put;
4976b718
HL
9778 }
9779
9780 if (!btf_type_is_var(t)) {
541c3bad
AN
9781 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
9782 err = -EINVAL;
9783 goto err_put;
4976b718
HL
9784 }
9785
541c3bad 9786 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
9787 addr = kallsyms_lookup_name(sym_name);
9788 if (!addr) {
9789 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9790 sym_name);
541c3bad
AN
9791 err = -ENOENT;
9792 goto err_put;
4976b718
HL
9793 }
9794
541c3bad 9795 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 9796 if (datasec_id > 0) {
541c3bad 9797 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
9798 for_each_vsi(i, datasec, vsi) {
9799 if (vsi->type == id) {
9800 percpu = true;
9801 break;
9802 }
9803 }
9804 }
9805
4976b718
HL
9806 insn[0].imm = (u32)addr;
9807 insn[1].imm = addr >> 32;
9808
9809 type = t->type;
541c3bad 9810 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
9811 if (percpu) {
9812 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 9813 aux->btf_var.btf = btf;
eaa6bcb7
HL
9814 aux->btf_var.btf_id = type;
9815 } else if (!btf_type_is_struct(t)) {
4976b718
HL
9816 const struct btf_type *ret;
9817 const char *tname;
9818 u32 tsize;
9819
9820 /* resolve the type size of ksym. */
541c3bad 9821 ret = btf_resolve_size(btf, t, &tsize);
4976b718 9822 if (IS_ERR(ret)) {
541c3bad 9823 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
9824 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9825 tname, PTR_ERR(ret));
541c3bad
AN
9826 err = -EINVAL;
9827 goto err_put;
4976b718
HL
9828 }
9829 aux->btf_var.reg_type = PTR_TO_MEM;
9830 aux->btf_var.mem_size = tsize;
9831 } else {
9832 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 9833 aux->btf_var.btf = btf;
4976b718
HL
9834 aux->btf_var.btf_id = type;
9835 }
541c3bad
AN
9836
9837 /* check whether we recorded this BTF (and maybe module) already */
9838 for (i = 0; i < env->used_btf_cnt; i++) {
9839 if (env->used_btfs[i].btf == btf) {
9840 btf_put(btf);
9841 return 0;
9842 }
9843 }
9844
9845 if (env->used_btf_cnt >= MAX_USED_BTFS) {
9846 err = -E2BIG;
9847 goto err_put;
9848 }
9849
9850 btf_mod = &env->used_btfs[env->used_btf_cnt];
9851 btf_mod->btf = btf;
9852 btf_mod->module = NULL;
9853
9854 /* if we reference variables from kernel module, bump its refcount */
9855 if (btf_is_module(btf)) {
9856 btf_mod->module = btf_try_get_module(btf);
9857 if (!btf_mod->module) {
9858 err = -ENXIO;
9859 goto err_put;
9860 }
9861 }
9862
9863 env->used_btf_cnt++;
9864
4976b718 9865 return 0;
541c3bad
AN
9866err_put:
9867 btf_put(btf);
9868 return err;
4976b718
HL
9869}
9870
56f668df
MKL
9871static int check_map_prealloc(struct bpf_map *map)
9872{
9873 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9874 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9875 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9876 !(map->map_flags & BPF_F_NO_PREALLOC);
9877}
9878
d83525ca
AS
9879static bool is_tracing_prog_type(enum bpf_prog_type type)
9880{
9881 switch (type) {
9882 case BPF_PROG_TYPE_KPROBE:
9883 case BPF_PROG_TYPE_TRACEPOINT:
9884 case BPF_PROG_TYPE_PERF_EVENT:
9885 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9886 return true;
9887 default:
9888 return false;
9889 }
9890}
9891
94dacdbd
TG
9892static bool is_preallocated_map(struct bpf_map *map)
9893{
9894 if (!check_map_prealloc(map))
9895 return false;
9896 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9897 return false;
9898 return true;
9899}
9900
61bd5218
JK
9901static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9902 struct bpf_map *map,
fdc15d38
AS
9903 struct bpf_prog *prog)
9904
9905{
7e40781c 9906 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9907 /*
9908 * Validate that trace type programs use preallocated hash maps.
9909 *
9910 * For programs attached to PERF events this is mandatory as the
9911 * perf NMI can hit any arbitrary code sequence.
9912 *
9913 * All other trace types using preallocated hash maps are unsafe as
9914 * well because tracepoint or kprobes can be inside locked regions
9915 * of the memory allocator or at a place where a recursion into the
9916 * memory allocator would see inconsistent state.
9917 *
2ed905c5
TG
9918 * On RT enabled kernels run-time allocation of all trace type
9919 * programs is strictly prohibited due to lock type constraints. On
9920 * !RT kernels it is allowed for backwards compatibility reasons for
9921 * now, but warnings are emitted so developers are made aware of
9922 * the unsafety and can fix their programs before this is enforced.
56f668df 9923 */
7e40781c
UP
9924 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9925 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9926 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9927 return -EINVAL;
9928 }
2ed905c5
TG
9929 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9930 verbose(env, "trace type programs can only use preallocated hash map\n");
9931 return -EINVAL;
9932 }
94dacdbd
TG
9933 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9934 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9935 }
a3884572 9936
9e7a4d98
KS
9937 if (map_value_has_spin_lock(map)) {
9938 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9939 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9940 return -EINVAL;
9941 }
9942
9943 if (is_tracing_prog_type(prog_type)) {
9944 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9945 return -EINVAL;
9946 }
9947
9948 if (prog->aux->sleepable) {
9949 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9950 return -EINVAL;
9951 }
d83525ca
AS
9952 }
9953
a3884572 9954 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9955 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9956 verbose(env, "offload device mismatch between prog and map\n");
9957 return -EINVAL;
9958 }
9959
85d33df3
MKL
9960 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9961 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9962 return -EINVAL;
9963 }
9964
1e6c62a8
AS
9965 if (prog->aux->sleepable)
9966 switch (map->map_type) {
9967 case BPF_MAP_TYPE_HASH:
9968 case BPF_MAP_TYPE_LRU_HASH:
9969 case BPF_MAP_TYPE_ARRAY:
9970 if (!is_preallocated_map(map)) {
9971 verbose(env,
9972 "Sleepable programs can only use preallocated hash maps\n");
9973 return -EINVAL;
9974 }
9975 break;
9976 default:
9977 verbose(env,
9978 "Sleepable programs can only use array and hash maps\n");
9979 return -EINVAL;
9980 }
9981
fdc15d38
AS
9982 return 0;
9983}
9984
b741f163
RG
9985static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9986{
9987 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9988 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9989}
9990
4976b718
HL
9991/* find and rewrite pseudo imm in ld_imm64 instructions:
9992 *
9993 * 1. if it accesses map FD, replace it with actual map pointer.
9994 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9995 *
9996 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 9997 */
4976b718 9998static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
9999{
10000 struct bpf_insn *insn = env->prog->insnsi;
10001 int insn_cnt = env->prog->len;
fdc15d38 10002 int i, j, err;
0246e64d 10003
f1f7714e 10004 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
10005 if (err)
10006 return err;
10007
0246e64d 10008 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 10009 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 10010 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 10011 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
10012 return -EINVAL;
10013 }
10014
d691f9e8
AS
10015 if (BPF_CLASS(insn->code) == BPF_STX &&
10016 ((BPF_MODE(insn->code) != BPF_MEM &&
91c960b0 10017 BPF_MODE(insn->code) != BPF_ATOMIC) || insn->imm != 0)) {
61bd5218 10018 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
10019 return -EINVAL;
10020 }
10021
0246e64d 10022 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 10023 struct bpf_insn_aux_data *aux;
0246e64d
AS
10024 struct bpf_map *map;
10025 struct fd f;
d8eca5bb 10026 u64 addr;
0246e64d
AS
10027
10028 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10029 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10030 insn[1].off != 0) {
61bd5218 10031 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
10032 return -EINVAL;
10033 }
10034
d8eca5bb 10035 if (insn[0].src_reg == 0)
0246e64d
AS
10036 /* valid generic load 64-bit imm */
10037 goto next_insn;
10038
4976b718
HL
10039 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10040 aux = &env->insn_aux_data[i];
10041 err = check_pseudo_btf_id(env, insn, aux);
10042 if (err)
10043 return err;
10044 goto next_insn;
10045 }
10046
d8eca5bb
DB
10047 /* In final convert_pseudo_ld_imm64() step, this is
10048 * converted into regular 64-bit imm load insn.
10049 */
10050 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10051 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10052 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10053 insn[1].imm != 0)) {
10054 verbose(env,
10055 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
10056 return -EINVAL;
10057 }
10058
20182390 10059 f = fdget(insn[0].imm);
c2101297 10060 map = __bpf_map_get(f);
0246e64d 10061 if (IS_ERR(map)) {
61bd5218 10062 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 10063 insn[0].imm);
0246e64d
AS
10064 return PTR_ERR(map);
10065 }
10066
61bd5218 10067 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
10068 if (err) {
10069 fdput(f);
10070 return err;
10071 }
10072
d8eca5bb
DB
10073 aux = &env->insn_aux_data[i];
10074 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10075 addr = (unsigned long)map;
10076 } else {
10077 u32 off = insn[1].imm;
10078
10079 if (off >= BPF_MAX_VAR_OFF) {
10080 verbose(env, "direct value offset of %u is not allowed\n", off);
10081 fdput(f);
10082 return -EINVAL;
10083 }
10084
10085 if (!map->ops->map_direct_value_addr) {
10086 verbose(env, "no direct value access support for this map type\n");
10087 fdput(f);
10088 return -EINVAL;
10089 }
10090
10091 err = map->ops->map_direct_value_addr(map, &addr, off);
10092 if (err) {
10093 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10094 map->value_size, off);
10095 fdput(f);
10096 return err;
10097 }
10098
10099 aux->map_off = off;
10100 addr += off;
10101 }
10102
10103 insn[0].imm = (u32)addr;
10104 insn[1].imm = addr >> 32;
0246e64d
AS
10105
10106 /* check whether we recorded this map already */
d8eca5bb 10107 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 10108 if (env->used_maps[j] == map) {
d8eca5bb 10109 aux->map_index = j;
0246e64d
AS
10110 fdput(f);
10111 goto next_insn;
10112 }
d8eca5bb 10113 }
0246e64d
AS
10114
10115 if (env->used_map_cnt >= MAX_USED_MAPS) {
10116 fdput(f);
10117 return -E2BIG;
10118 }
10119
0246e64d
AS
10120 /* hold the map. If the program is rejected by verifier,
10121 * the map will be released by release_maps() or it
10122 * will be used by the valid program until it's unloaded
ab7f5bf0 10123 * and all maps are released in free_used_maps()
0246e64d 10124 */
1e0bd5a0 10125 bpf_map_inc(map);
d8eca5bb
DB
10126
10127 aux->map_index = env->used_map_cnt;
92117d84
AS
10128 env->used_maps[env->used_map_cnt++] = map;
10129
b741f163 10130 if (bpf_map_is_cgroup_storage(map) &&
e4730423 10131 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 10132 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
10133 fdput(f);
10134 return -EBUSY;
10135 }
10136
0246e64d
AS
10137 fdput(f);
10138next_insn:
10139 insn++;
10140 i++;
5e581dad
DB
10141 continue;
10142 }
10143
10144 /* Basic sanity check before we invest more work here. */
10145 if (!bpf_opcode_in_insntable(insn->code)) {
10146 verbose(env, "unknown opcode %02x\n", insn->code);
10147 return -EINVAL;
0246e64d
AS
10148 }
10149 }
10150
10151 /* now all pseudo BPF_LD_IMM64 instructions load valid
10152 * 'struct bpf_map *' into a register instead of user map_fd.
10153 * These pointers will be used later by verifier to validate map access.
10154 */
10155 return 0;
10156}
10157
10158/* drop refcnt of maps used by the rejected program */
58e2af8b 10159static void release_maps(struct bpf_verifier_env *env)
0246e64d 10160{
a2ea0746
DB
10161 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10162 env->used_map_cnt);
0246e64d
AS
10163}
10164
541c3bad
AN
10165/* drop refcnt of maps used by the rejected program */
10166static void release_btfs(struct bpf_verifier_env *env)
10167{
10168 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10169 env->used_btf_cnt);
10170}
10171
0246e64d 10172/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 10173static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
10174{
10175 struct bpf_insn *insn = env->prog->insnsi;
10176 int insn_cnt = env->prog->len;
10177 int i;
10178
10179 for (i = 0; i < insn_cnt; i++, insn++)
10180 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10181 insn->src_reg = 0;
10182}
10183
8041902d
AS
10184/* single env->prog->insni[off] instruction was replaced with the range
10185 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10186 * [0, off) and [off, end) to new locations, so the patched range stays zero
10187 */
b325fbca
JW
10188static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10189 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
10190{
10191 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
10192 struct bpf_insn *insn = new_prog->insnsi;
10193 u32 prog_len;
c131187d 10194 int i;
8041902d 10195
b325fbca
JW
10196 /* aux info at OFF always needs adjustment, no matter fast path
10197 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10198 * original insn at old prog.
10199 */
10200 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10201
8041902d
AS
10202 if (cnt == 1)
10203 return 0;
b325fbca 10204 prog_len = new_prog->len;
fad953ce
KC
10205 new_data = vzalloc(array_size(prog_len,
10206 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
10207 if (!new_data)
10208 return -ENOMEM;
10209 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10210 memcpy(new_data + off + cnt - 1, old_data + off,
10211 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 10212 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 10213 new_data[i].seen = env->pass_cnt;
b325fbca
JW
10214 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10215 }
8041902d
AS
10216 env->insn_aux_data = new_data;
10217 vfree(old_data);
10218 return 0;
10219}
10220
cc8b0b92
AS
10221static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10222{
10223 int i;
10224
10225 if (len == 1)
10226 return;
4cb3d99c
JW
10227 /* NOTE: fake 'exit' subprog should be updated as well. */
10228 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 10229 if (env->subprog_info[i].start <= off)
cc8b0b92 10230 continue;
9c8105bd 10231 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
10232 }
10233}
10234
a748c697
MF
10235static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10236{
10237 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10238 int i, sz = prog->aux->size_poke_tab;
10239 struct bpf_jit_poke_descriptor *desc;
10240
10241 for (i = 0; i < sz; i++) {
10242 desc = &tab[i];
10243 desc->insn_idx += len - 1;
10244 }
10245}
10246
8041902d
AS
10247static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10248 const struct bpf_insn *patch, u32 len)
10249{
10250 struct bpf_prog *new_prog;
10251
10252 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
10253 if (IS_ERR(new_prog)) {
10254 if (PTR_ERR(new_prog) == -ERANGE)
10255 verbose(env,
10256 "insn %d cannot be patched due to 16-bit range\n",
10257 env->insn_aux_data[off].orig_idx);
8041902d 10258 return NULL;
4f73379e 10259 }
b325fbca 10260 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 10261 return NULL;
cc8b0b92 10262 adjust_subprog_starts(env, off, len);
a748c697 10263 adjust_poke_descs(new_prog, len);
8041902d
AS
10264 return new_prog;
10265}
10266
52875a04
JK
10267static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10268 u32 off, u32 cnt)
10269{
10270 int i, j;
10271
10272 /* find first prog starting at or after off (first to remove) */
10273 for (i = 0; i < env->subprog_cnt; i++)
10274 if (env->subprog_info[i].start >= off)
10275 break;
10276 /* find first prog starting at or after off + cnt (first to stay) */
10277 for (j = i; j < env->subprog_cnt; j++)
10278 if (env->subprog_info[j].start >= off + cnt)
10279 break;
10280 /* if j doesn't start exactly at off + cnt, we are just removing
10281 * the front of previous prog
10282 */
10283 if (env->subprog_info[j].start != off + cnt)
10284 j--;
10285
10286 if (j > i) {
10287 struct bpf_prog_aux *aux = env->prog->aux;
10288 int move;
10289
10290 /* move fake 'exit' subprog as well */
10291 move = env->subprog_cnt + 1 - j;
10292
10293 memmove(env->subprog_info + i,
10294 env->subprog_info + j,
10295 sizeof(*env->subprog_info) * move);
10296 env->subprog_cnt -= j - i;
10297
10298 /* remove func_info */
10299 if (aux->func_info) {
10300 move = aux->func_info_cnt - j;
10301
10302 memmove(aux->func_info + i,
10303 aux->func_info + j,
10304 sizeof(*aux->func_info) * move);
10305 aux->func_info_cnt -= j - i;
10306 /* func_info->insn_off is set after all code rewrites,
10307 * in adjust_btf_func() - no need to adjust
10308 */
10309 }
10310 } else {
10311 /* convert i from "first prog to remove" to "first to adjust" */
10312 if (env->subprog_info[i].start == off)
10313 i++;
10314 }
10315
10316 /* update fake 'exit' subprog as well */
10317 for (; i <= env->subprog_cnt; i++)
10318 env->subprog_info[i].start -= cnt;
10319
10320 return 0;
10321}
10322
10323static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10324 u32 cnt)
10325{
10326 struct bpf_prog *prog = env->prog;
10327 u32 i, l_off, l_cnt, nr_linfo;
10328 struct bpf_line_info *linfo;
10329
10330 nr_linfo = prog->aux->nr_linfo;
10331 if (!nr_linfo)
10332 return 0;
10333
10334 linfo = prog->aux->linfo;
10335
10336 /* find first line info to remove, count lines to be removed */
10337 for (i = 0; i < nr_linfo; i++)
10338 if (linfo[i].insn_off >= off)
10339 break;
10340
10341 l_off = i;
10342 l_cnt = 0;
10343 for (; i < nr_linfo; i++)
10344 if (linfo[i].insn_off < off + cnt)
10345 l_cnt++;
10346 else
10347 break;
10348
10349 /* First live insn doesn't match first live linfo, it needs to "inherit"
10350 * last removed linfo. prog is already modified, so prog->len == off
10351 * means no live instructions after (tail of the program was removed).
10352 */
10353 if (prog->len != off && l_cnt &&
10354 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10355 l_cnt--;
10356 linfo[--i].insn_off = off + cnt;
10357 }
10358
10359 /* remove the line info which refer to the removed instructions */
10360 if (l_cnt) {
10361 memmove(linfo + l_off, linfo + i,
10362 sizeof(*linfo) * (nr_linfo - i));
10363
10364 prog->aux->nr_linfo -= l_cnt;
10365 nr_linfo = prog->aux->nr_linfo;
10366 }
10367
10368 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10369 for (i = l_off; i < nr_linfo; i++)
10370 linfo[i].insn_off -= cnt;
10371
10372 /* fix up all subprogs (incl. 'exit') which start >= off */
10373 for (i = 0; i <= env->subprog_cnt; i++)
10374 if (env->subprog_info[i].linfo_idx > l_off) {
10375 /* program may have started in the removed region but
10376 * may not be fully removed
10377 */
10378 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10379 env->subprog_info[i].linfo_idx -= l_cnt;
10380 else
10381 env->subprog_info[i].linfo_idx = l_off;
10382 }
10383
10384 return 0;
10385}
10386
10387static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10388{
10389 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10390 unsigned int orig_prog_len = env->prog->len;
10391 int err;
10392
08ca90af
JK
10393 if (bpf_prog_is_dev_bound(env->prog->aux))
10394 bpf_prog_offload_remove_insns(env, off, cnt);
10395
52875a04
JK
10396 err = bpf_remove_insns(env->prog, off, cnt);
10397 if (err)
10398 return err;
10399
10400 err = adjust_subprog_starts_after_remove(env, off, cnt);
10401 if (err)
10402 return err;
10403
10404 err = bpf_adj_linfo_after_remove(env, off, cnt);
10405 if (err)
10406 return err;
10407
10408 memmove(aux_data + off, aux_data + off + cnt,
10409 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10410
10411 return 0;
10412}
10413
2a5418a1
DB
10414/* The verifier does more data flow analysis than llvm and will not
10415 * explore branches that are dead at run time. Malicious programs can
10416 * have dead code too. Therefore replace all dead at-run-time code
10417 * with 'ja -1'.
10418 *
10419 * Just nops are not optimal, e.g. if they would sit at the end of the
10420 * program and through another bug we would manage to jump there, then
10421 * we'd execute beyond program memory otherwise. Returning exception
10422 * code also wouldn't work since we can have subprogs where the dead
10423 * code could be located.
c131187d
AS
10424 */
10425static void sanitize_dead_code(struct bpf_verifier_env *env)
10426{
10427 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 10428 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
10429 struct bpf_insn *insn = env->prog->insnsi;
10430 const int insn_cnt = env->prog->len;
10431 int i;
10432
10433 for (i = 0; i < insn_cnt; i++) {
10434 if (aux_data[i].seen)
10435 continue;
2a5418a1 10436 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
10437 }
10438}
10439
e2ae4ca2
JK
10440static bool insn_is_cond_jump(u8 code)
10441{
10442 u8 op;
10443
092ed096
JW
10444 if (BPF_CLASS(code) == BPF_JMP32)
10445 return true;
10446
e2ae4ca2
JK
10447 if (BPF_CLASS(code) != BPF_JMP)
10448 return false;
10449
10450 op = BPF_OP(code);
10451 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10452}
10453
10454static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10455{
10456 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10457 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10458 struct bpf_insn *insn = env->prog->insnsi;
10459 const int insn_cnt = env->prog->len;
10460 int i;
10461
10462 for (i = 0; i < insn_cnt; i++, insn++) {
10463 if (!insn_is_cond_jump(insn->code))
10464 continue;
10465
10466 if (!aux_data[i + 1].seen)
10467 ja.off = insn->off;
10468 else if (!aux_data[i + 1 + insn->off].seen)
10469 ja.off = 0;
10470 else
10471 continue;
10472
08ca90af
JK
10473 if (bpf_prog_is_dev_bound(env->prog->aux))
10474 bpf_prog_offload_replace_insn(env, i, &ja);
10475
e2ae4ca2
JK
10476 memcpy(insn, &ja, sizeof(ja));
10477 }
10478}
10479
52875a04
JK
10480static int opt_remove_dead_code(struct bpf_verifier_env *env)
10481{
10482 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10483 int insn_cnt = env->prog->len;
10484 int i, err;
10485
10486 for (i = 0; i < insn_cnt; i++) {
10487 int j;
10488
10489 j = 0;
10490 while (i + j < insn_cnt && !aux_data[i + j].seen)
10491 j++;
10492 if (!j)
10493 continue;
10494
10495 err = verifier_remove_insns(env, i, j);
10496 if (err)
10497 return err;
10498 insn_cnt = env->prog->len;
10499 }
10500
10501 return 0;
10502}
10503
a1b14abc
JK
10504static int opt_remove_nops(struct bpf_verifier_env *env)
10505{
10506 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10507 struct bpf_insn *insn = env->prog->insnsi;
10508 int insn_cnt = env->prog->len;
10509 int i, err;
10510
10511 for (i = 0; i < insn_cnt; i++) {
10512 if (memcmp(&insn[i], &ja, sizeof(ja)))
10513 continue;
10514
10515 err = verifier_remove_insns(env, i, 1);
10516 if (err)
10517 return err;
10518 insn_cnt--;
10519 i--;
10520 }
10521
10522 return 0;
10523}
10524
d6c2308c
JW
10525static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10526 const union bpf_attr *attr)
a4b1d3c1 10527{
d6c2308c 10528 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 10529 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 10530 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 10531 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 10532 struct bpf_prog *new_prog;
d6c2308c 10533 bool rnd_hi32;
a4b1d3c1 10534
d6c2308c 10535 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 10536 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
10537 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10538 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10539 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
10540 for (i = 0; i < len; i++) {
10541 int adj_idx = i + delta;
10542 struct bpf_insn insn;
10543
d6c2308c
JW
10544 insn = insns[adj_idx];
10545 if (!aux[adj_idx].zext_dst) {
10546 u8 code, class;
10547 u32 imm_rnd;
10548
10549 if (!rnd_hi32)
10550 continue;
10551
10552 code = insn.code;
10553 class = BPF_CLASS(code);
10554 if (insn_no_def(&insn))
10555 continue;
10556
10557 /* NOTE: arg "reg" (the fourth one) is only used for
10558 * BPF_STX which has been ruled out in above
10559 * check, it is safe to pass NULL here.
10560 */
10561 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10562 if (class == BPF_LD &&
10563 BPF_MODE(code) == BPF_IMM)
10564 i++;
10565 continue;
10566 }
10567
10568 /* ctx load could be transformed into wider load. */
10569 if (class == BPF_LDX &&
10570 aux[adj_idx].ptr_type == PTR_TO_CTX)
10571 continue;
10572
10573 imm_rnd = get_random_int();
10574 rnd_hi32_patch[0] = insn;
10575 rnd_hi32_patch[1].imm = imm_rnd;
10576 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10577 patch = rnd_hi32_patch;
10578 patch_len = 4;
10579 goto apply_patch_buffer;
10580 }
10581
10582 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
10583 continue;
10584
a4b1d3c1
JW
10585 zext_patch[0] = insn;
10586 zext_patch[1].dst_reg = insn.dst_reg;
10587 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
10588 patch = zext_patch;
10589 patch_len = 2;
10590apply_patch_buffer:
10591 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
10592 if (!new_prog)
10593 return -ENOMEM;
10594 env->prog = new_prog;
10595 insns = new_prog->insnsi;
10596 aux = env->insn_aux_data;
d6c2308c 10597 delta += patch_len - 1;
a4b1d3c1
JW
10598 }
10599
10600 return 0;
10601}
10602
c64b7983
JS
10603/* convert load instructions that access fields of a context type into a
10604 * sequence of instructions that access fields of the underlying structure:
10605 * struct __sk_buff -> struct sk_buff
10606 * struct bpf_sock_ops -> struct sock
9bac3d6d 10607 */
58e2af8b 10608static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 10609{
00176a34 10610 const struct bpf_verifier_ops *ops = env->ops;
f96da094 10611 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 10612 const int insn_cnt = env->prog->len;
36bbef52 10613 struct bpf_insn insn_buf[16], *insn;
46f53a65 10614 u32 target_size, size_default, off;
9bac3d6d 10615 struct bpf_prog *new_prog;
d691f9e8 10616 enum bpf_access_type type;
f96da094 10617 bool is_narrower_load;
9bac3d6d 10618
b09928b9
DB
10619 if (ops->gen_prologue || env->seen_direct_write) {
10620 if (!ops->gen_prologue) {
10621 verbose(env, "bpf verifier is misconfigured\n");
10622 return -EINVAL;
10623 }
36bbef52
DB
10624 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10625 env->prog);
10626 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 10627 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
10628 return -EINVAL;
10629 } else if (cnt) {
8041902d 10630 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
10631 if (!new_prog)
10632 return -ENOMEM;
8041902d 10633
36bbef52 10634 env->prog = new_prog;
3df126f3 10635 delta += cnt - 1;
36bbef52
DB
10636 }
10637 }
10638
c64b7983 10639 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
10640 return 0;
10641
3df126f3 10642 insn = env->prog->insnsi + delta;
36bbef52 10643
9bac3d6d 10644 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10645 bpf_convert_ctx_access_t convert_ctx_access;
10646
62c7989b
DB
10647 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10648 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10649 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10650 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10651 type = BPF_READ;
62c7989b
DB
10652 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10653 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10654 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10655 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10656 type = BPF_WRITE;
10657 else
9bac3d6d
AS
10658 continue;
10659
af86ca4e
AS
10660 if (type == BPF_WRITE &&
10661 env->insn_aux_data[i + delta].sanitize_stack_off) {
10662 struct bpf_insn patch[] = {
10663 /* Sanitize suspicious stack slot with zero.
10664 * There are no memory dependencies for this store,
10665 * since it's only using frame pointer and immediate
10666 * constant of zero
10667 */
10668 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10669 env->insn_aux_data[i + delta].sanitize_stack_off,
10670 0),
10671 /* the original STX instruction will immediately
10672 * overwrite the same stack slot with appropriate value
10673 */
10674 *insn,
10675 };
10676
10677 cnt = ARRAY_SIZE(patch);
10678 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10679 if (!new_prog)
10680 return -ENOMEM;
10681
10682 delta += cnt - 1;
10683 env->prog = new_prog;
10684 insn = new_prog->insnsi + i + delta;
10685 continue;
10686 }
10687
c64b7983
JS
10688 switch (env->insn_aux_data[i + delta].ptr_type) {
10689 case PTR_TO_CTX:
10690 if (!ops->convert_ctx_access)
10691 continue;
10692 convert_ctx_access = ops->convert_ctx_access;
10693 break;
10694 case PTR_TO_SOCKET:
46f8bc92 10695 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10696 convert_ctx_access = bpf_sock_convert_ctx_access;
10697 break;
655a51e5
MKL
10698 case PTR_TO_TCP_SOCK:
10699 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10700 break;
fada7fdc
JL
10701 case PTR_TO_XDP_SOCK:
10702 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10703 break;
2a02759e 10704 case PTR_TO_BTF_ID:
27ae7997
MKL
10705 if (type == BPF_READ) {
10706 insn->code = BPF_LDX | BPF_PROBE_MEM |
10707 BPF_SIZE((insn)->code);
10708 env->prog->aux->num_exentries++;
7e40781c 10709 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10710 verbose(env, "Writes through BTF pointers are not allowed\n");
10711 return -EINVAL;
10712 }
2a02759e 10713 continue;
c64b7983 10714 default:
9bac3d6d 10715 continue;
c64b7983 10716 }
9bac3d6d 10717
31fd8581 10718 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10719 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10720
10721 /* If the read access is a narrower load of the field,
10722 * convert to a 4/8-byte load, to minimum program type specific
10723 * convert_ctx_access changes. If conversion is successful,
10724 * we will apply proper mask to the result.
10725 */
f96da094 10726 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10727 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10728 off = insn->off;
31fd8581 10729 if (is_narrower_load) {
f96da094
DB
10730 u8 size_code;
10731
10732 if (type == BPF_WRITE) {
61bd5218 10733 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10734 return -EINVAL;
10735 }
31fd8581 10736
f96da094 10737 size_code = BPF_H;
31fd8581
YS
10738 if (ctx_field_size == 4)
10739 size_code = BPF_W;
10740 else if (ctx_field_size == 8)
10741 size_code = BPF_DW;
f96da094 10742
bc23105c 10743 insn->off = off & ~(size_default - 1);
31fd8581
YS
10744 insn->code = BPF_LDX | BPF_MEM | size_code;
10745 }
f96da094
DB
10746
10747 target_size = 0;
c64b7983
JS
10748 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10749 &target_size);
f96da094
DB
10750 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10751 (ctx_field_size && !target_size)) {
61bd5218 10752 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10753 return -EINVAL;
10754 }
f96da094
DB
10755
10756 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10757 u8 shift = bpf_ctx_narrow_access_offset(
10758 off, size, size_default) * 8;
46f53a65
AI
10759 if (ctx_field_size <= 4) {
10760 if (shift)
10761 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10762 insn->dst_reg,
10763 shift);
31fd8581 10764 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10765 (1 << size * 8) - 1);
46f53a65
AI
10766 } else {
10767 if (shift)
10768 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10769 insn->dst_reg,
10770 shift);
31fd8581 10771 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10772 (1ULL << size * 8) - 1);
46f53a65 10773 }
31fd8581 10774 }
9bac3d6d 10775
8041902d 10776 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10777 if (!new_prog)
10778 return -ENOMEM;
10779
3df126f3 10780 delta += cnt - 1;
9bac3d6d
AS
10781
10782 /* keep walking new program and skip insns we just inserted */
10783 env->prog = new_prog;
3df126f3 10784 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10785 }
10786
10787 return 0;
10788}
10789
1c2a088a
AS
10790static int jit_subprogs(struct bpf_verifier_env *env)
10791{
10792 struct bpf_prog *prog = env->prog, **func, *tmp;
10793 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 10794 struct bpf_map *map_ptr;
7105e828 10795 struct bpf_insn *insn;
1c2a088a 10796 void *old_bpf_func;
c4c0bdc0 10797 int err, num_exentries;
1c2a088a 10798
f910cefa 10799 if (env->subprog_cnt <= 1)
1c2a088a
AS
10800 return 0;
10801
7105e828 10802 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10803 if (insn->code != (BPF_JMP | BPF_CALL) ||
10804 insn->src_reg != BPF_PSEUDO_CALL)
10805 continue;
c7a89784
DB
10806 /* Upon error here we cannot fall back to interpreter but
10807 * need a hard reject of the program. Thus -EFAULT is
10808 * propagated in any case.
10809 */
1c2a088a
AS
10810 subprog = find_subprog(env, i + insn->imm + 1);
10811 if (subprog < 0) {
10812 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10813 i + insn->imm + 1);
10814 return -EFAULT;
10815 }
10816 /* temporarily remember subprog id inside insn instead of
10817 * aux_data, since next loop will split up all insns into funcs
10818 */
f910cefa 10819 insn->off = subprog;
1c2a088a
AS
10820 /* remember original imm in case JIT fails and fallback
10821 * to interpreter will be needed
10822 */
10823 env->insn_aux_data[i].call_imm = insn->imm;
10824 /* point imm to __bpf_call_base+1 from JITs point of view */
10825 insn->imm = 1;
10826 }
10827
c454a46b
MKL
10828 err = bpf_prog_alloc_jited_linfo(prog);
10829 if (err)
10830 goto out_undo_insn;
10831
10832 err = -ENOMEM;
6396bb22 10833 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10834 if (!func)
c7a89784 10835 goto out_undo_insn;
1c2a088a 10836
f910cefa 10837 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10838 subprog_start = subprog_end;
4cb3d99c 10839 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10840
10841 len = subprog_end - subprog_start;
492ecee8
AS
10842 /* BPF_PROG_RUN doesn't call subprogs directly,
10843 * hence main prog stats include the runtime of subprogs.
10844 * subprogs don't have IDs and not reachable via prog_get_next_id
10845 * func[i]->aux->stats will never be accessed and stays NULL
10846 */
10847 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10848 if (!func[i])
10849 goto out_free;
10850 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10851 len * sizeof(struct bpf_insn));
4f74d809 10852 func[i]->type = prog->type;
1c2a088a 10853 func[i]->len = len;
4f74d809
DB
10854 if (bpf_prog_calc_tag(func[i]))
10855 goto out_free;
1c2a088a 10856 func[i]->is_func = 1;
ba64e7d8
YS
10857 func[i]->aux->func_idx = i;
10858 /* the btf and func_info will be freed only at prog->aux */
10859 func[i]->aux->btf = prog->aux->btf;
10860 func[i]->aux->func_info = prog->aux->func_info;
10861
a748c697
MF
10862 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10863 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10864 int ret;
10865
10866 if (!(insn_idx >= subprog_start &&
10867 insn_idx <= subprog_end))
10868 continue;
10869
10870 ret = bpf_jit_add_poke_descriptor(func[i],
10871 &prog->aux->poke_tab[j]);
10872 if (ret < 0) {
10873 verbose(env, "adding tail call poke descriptor failed\n");
10874 goto out_free;
10875 }
10876
10877 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10878
10879 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10880 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10881 if (ret < 0) {
10882 verbose(env, "tracking tail call prog failed\n");
10883 goto out_free;
10884 }
10885 }
10886
1c2a088a
AS
10887 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10888 * Long term would need debug info to populate names
10889 */
10890 func[i]->aux->name[0] = 'F';
9c8105bd 10891 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10892 func[i]->jit_requested = 1;
c454a46b
MKL
10893 func[i]->aux->linfo = prog->aux->linfo;
10894 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10895 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10896 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10897 num_exentries = 0;
10898 insn = func[i]->insnsi;
10899 for (j = 0; j < func[i]->len; j++, insn++) {
10900 if (BPF_CLASS(insn->code) == BPF_LDX &&
10901 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10902 num_exentries++;
10903 }
10904 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 10905 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
10906 func[i] = bpf_int_jit_compile(func[i]);
10907 if (!func[i]->jited) {
10908 err = -ENOTSUPP;
10909 goto out_free;
10910 }
10911 cond_resched();
10912 }
a748c697
MF
10913
10914 /* Untrack main program's aux structs so that during map_poke_run()
10915 * we will not stumble upon the unfilled poke descriptors; each
10916 * of the main program's poke descs got distributed across subprogs
10917 * and got tracked onto map, so we are sure that none of them will
10918 * be missed after the operation below
10919 */
10920 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10921 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10922
10923 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10924 }
10925
1c2a088a
AS
10926 /* at this point all bpf functions were successfully JITed
10927 * now populate all bpf_calls with correct addresses and
10928 * run last pass of JIT
10929 */
f910cefa 10930 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10931 insn = func[i]->insnsi;
10932 for (j = 0; j < func[i]->len; j++, insn++) {
10933 if (insn->code != (BPF_JMP | BPF_CALL) ||
10934 insn->src_reg != BPF_PSEUDO_CALL)
10935 continue;
10936 subprog = insn->off;
0d306c31
PB
10937 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10938 __bpf_call_base;
1c2a088a 10939 }
2162fed4
SD
10940
10941 /* we use the aux data to keep a list of the start addresses
10942 * of the JITed images for each function in the program
10943 *
10944 * for some architectures, such as powerpc64, the imm field
10945 * might not be large enough to hold the offset of the start
10946 * address of the callee's JITed image from __bpf_call_base
10947 *
10948 * in such cases, we can lookup the start address of a callee
10949 * by using its subprog id, available from the off field of
10950 * the call instruction, as an index for this list
10951 */
10952 func[i]->aux->func = func;
10953 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10954 }
f910cefa 10955 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10956 old_bpf_func = func[i]->bpf_func;
10957 tmp = bpf_int_jit_compile(func[i]);
10958 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10959 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10960 err = -ENOTSUPP;
1c2a088a
AS
10961 goto out_free;
10962 }
10963 cond_resched();
10964 }
10965
10966 /* finally lock prog and jit images for all functions and
10967 * populate kallsysm
10968 */
f910cefa 10969 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10970 bpf_prog_lock_ro(func[i]);
10971 bpf_prog_kallsyms_add(func[i]);
10972 }
7105e828
DB
10973
10974 /* Last step: make now unused interpreter insns from main
10975 * prog consistent for later dump requests, so they can
10976 * later look the same as if they were interpreted only.
10977 */
10978 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10979 if (insn->code != (BPF_JMP | BPF_CALL) ||
10980 insn->src_reg != BPF_PSEUDO_CALL)
10981 continue;
10982 insn->off = env->insn_aux_data[i].call_imm;
10983 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10984 insn->imm = subprog;
7105e828
DB
10985 }
10986
1c2a088a
AS
10987 prog->jited = 1;
10988 prog->bpf_func = func[0]->bpf_func;
10989 prog->aux->func = func;
f910cefa 10990 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10991 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10992 return 0;
10993out_free:
a748c697
MF
10994 for (i = 0; i < env->subprog_cnt; i++) {
10995 if (!func[i])
10996 continue;
10997
10998 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10999 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11000 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11001 }
11002 bpf_jit_free(func[i]);
11003 }
1c2a088a 11004 kfree(func);
c7a89784 11005out_undo_insn:
1c2a088a
AS
11006 /* cleanup main prog to be interpreted */
11007 prog->jit_requested = 0;
11008 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11009 if (insn->code != (BPF_JMP | BPF_CALL) ||
11010 insn->src_reg != BPF_PSEUDO_CALL)
11011 continue;
11012 insn->off = 0;
11013 insn->imm = env->insn_aux_data[i].call_imm;
11014 }
c454a46b 11015 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
11016 return err;
11017}
11018
1ea47e01
AS
11019static int fixup_call_args(struct bpf_verifier_env *env)
11020{
19d28fbd 11021#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
11022 struct bpf_prog *prog = env->prog;
11023 struct bpf_insn *insn = prog->insnsi;
11024 int i, depth;
19d28fbd 11025#endif
e4052d06 11026 int err = 0;
1ea47e01 11027
e4052d06
QM
11028 if (env->prog->jit_requested &&
11029 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
11030 err = jit_subprogs(env);
11031 if (err == 0)
1c2a088a 11032 return 0;
c7a89784
DB
11033 if (err == -EFAULT)
11034 return err;
19d28fbd
DM
11035 }
11036#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e411901c
MF
11037 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11038 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11039 * have to be rejected, since interpreter doesn't support them yet.
11040 */
11041 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11042 return -EINVAL;
11043 }
1ea47e01
AS
11044 for (i = 0; i < prog->len; i++, insn++) {
11045 if (insn->code != (BPF_JMP | BPF_CALL) ||
11046 insn->src_reg != BPF_PSEUDO_CALL)
11047 continue;
11048 depth = get_callee_stack_depth(env, insn, i);
11049 if (depth < 0)
11050 return depth;
11051 bpf_patch_call_args(insn, depth);
11052 }
19d28fbd
DM
11053 err = 0;
11054#endif
11055 return err;
1ea47e01
AS
11056}
11057
79741b3b 11058/* fixup insn->imm field of bpf_call instructions
81ed18ab 11059 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
11060 *
11061 * this function is called after eBPF program passed verification
11062 */
79741b3b 11063static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 11064{
79741b3b 11065 struct bpf_prog *prog = env->prog;
d2e4c1e6 11066 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 11067 struct bpf_insn *insn = prog->insnsi;
e245c5c6 11068 const struct bpf_func_proto *fn;
79741b3b 11069 const int insn_cnt = prog->len;
09772d92 11070 const struct bpf_map_ops *ops;
c93552c4 11071 struct bpf_insn_aux_data *aux;
81ed18ab
AS
11072 struct bpf_insn insn_buf[16];
11073 struct bpf_prog *new_prog;
11074 struct bpf_map *map_ptr;
d2e4c1e6 11075 int i, ret, cnt, delta = 0;
e245c5c6 11076
79741b3b 11077 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
11078 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11079 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11080 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 11081 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
11082 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11083 struct bpf_insn mask_and_div[] = {
11084 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11085 /* Rx div 0 -> 0 */
11086 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
11087 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11088 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11089 *insn,
11090 };
11091 struct bpf_insn mask_and_mod[] = {
11092 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11093 /* Rx mod 0 -> Rx */
11094 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
11095 *insn,
11096 };
11097 struct bpf_insn *patchlet;
11098
11099 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11100 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11101 patchlet = mask_and_div + (is64 ? 1 : 0);
11102 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
11103 } else {
11104 patchlet = mask_and_mod + (is64 ? 1 : 0);
11105 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
11106 }
11107
11108 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
11109 if (!new_prog)
11110 return -ENOMEM;
11111
11112 delta += cnt - 1;
11113 env->prog = prog = new_prog;
11114 insn = new_prog->insnsi + i + delta;
11115 continue;
11116 }
11117
e0cea7ce
DB
11118 if (BPF_CLASS(insn->code) == BPF_LD &&
11119 (BPF_MODE(insn->code) == BPF_ABS ||
11120 BPF_MODE(insn->code) == BPF_IND)) {
11121 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11122 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11123 verbose(env, "bpf verifier is misconfigured\n");
11124 return -EINVAL;
11125 }
11126
11127 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11128 if (!new_prog)
11129 return -ENOMEM;
11130
11131 delta += cnt - 1;
11132 env->prog = prog = new_prog;
11133 insn = new_prog->insnsi + i + delta;
11134 continue;
11135 }
11136
979d63d5
DB
11137 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11138 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11139 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11140 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11141 struct bpf_insn insn_buf[16];
11142 struct bpf_insn *patch = &insn_buf[0];
11143 bool issrc, isneg;
11144 u32 off_reg;
11145
11146 aux = &env->insn_aux_data[i + delta];
3612af78
DB
11147 if (!aux->alu_state ||
11148 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
11149 continue;
11150
11151 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11152 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11153 BPF_ALU_SANITIZE_SRC;
11154
11155 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11156 if (isneg)
11157 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11158 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11159 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11160 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11161 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11162 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11163 if (issrc) {
11164 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11165 off_reg);
11166 insn->src_reg = BPF_REG_AX;
11167 } else {
11168 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11169 BPF_REG_AX);
11170 }
11171 if (isneg)
11172 insn->code = insn->code == code_add ?
11173 code_sub : code_add;
11174 *patch++ = *insn;
11175 if (issrc && isneg)
11176 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11177 cnt = patch - insn_buf;
11178
11179 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11180 if (!new_prog)
11181 return -ENOMEM;
11182
11183 delta += cnt - 1;
11184 env->prog = prog = new_prog;
11185 insn = new_prog->insnsi + i + delta;
11186 continue;
11187 }
11188
79741b3b
AS
11189 if (insn->code != (BPF_JMP | BPF_CALL))
11190 continue;
cc8b0b92
AS
11191 if (insn->src_reg == BPF_PSEUDO_CALL)
11192 continue;
e245c5c6 11193
79741b3b
AS
11194 if (insn->imm == BPF_FUNC_get_route_realm)
11195 prog->dst_needed = 1;
11196 if (insn->imm == BPF_FUNC_get_prandom_u32)
11197 bpf_user_rnd_init_once();
9802d865
JB
11198 if (insn->imm == BPF_FUNC_override_return)
11199 prog->kprobe_override = 1;
79741b3b 11200 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
11201 /* If we tail call into other programs, we
11202 * cannot make any assumptions since they can
11203 * be replaced dynamically during runtime in
11204 * the program array.
11205 */
11206 prog->cb_access = 1;
e411901c
MF
11207 if (!allow_tail_call_in_subprogs(env))
11208 prog->aux->stack_depth = MAX_BPF_STACK;
11209 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 11210
79741b3b
AS
11211 /* mark bpf_tail_call as different opcode to avoid
11212 * conditional branch in the interpeter for every normal
11213 * call and to prevent accidental JITing by JIT compiler
11214 * that doesn't support bpf_tail_call yet
e245c5c6 11215 */
79741b3b 11216 insn->imm = 0;
71189fa9 11217 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 11218
c93552c4 11219 aux = &env->insn_aux_data[i + delta];
2c78ee89 11220 if (env->bpf_capable && !expect_blinding &&
cc52d914 11221 prog->jit_requested &&
d2e4c1e6
DB
11222 !bpf_map_key_poisoned(aux) &&
11223 !bpf_map_ptr_poisoned(aux) &&
11224 !bpf_map_ptr_unpriv(aux)) {
11225 struct bpf_jit_poke_descriptor desc = {
11226 .reason = BPF_POKE_REASON_TAIL_CALL,
11227 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11228 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 11229 .insn_idx = i + delta,
d2e4c1e6
DB
11230 };
11231
11232 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11233 if (ret < 0) {
11234 verbose(env, "adding tail call poke descriptor failed\n");
11235 return ret;
11236 }
11237
11238 insn->imm = ret + 1;
11239 continue;
11240 }
11241
c93552c4
DB
11242 if (!bpf_map_ptr_unpriv(aux))
11243 continue;
11244
b2157399
AS
11245 /* instead of changing every JIT dealing with tail_call
11246 * emit two extra insns:
11247 * if (index >= max_entries) goto out;
11248 * index &= array->index_mask;
11249 * to avoid out-of-bounds cpu speculation
11250 */
c93552c4 11251 if (bpf_map_ptr_poisoned(aux)) {
40950343 11252 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
11253 return -EINVAL;
11254 }
c93552c4 11255
d2e4c1e6 11256 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
11257 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11258 map_ptr->max_entries, 2);
11259 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11260 container_of(map_ptr,
11261 struct bpf_array,
11262 map)->index_mask);
11263 insn_buf[2] = *insn;
11264 cnt = 3;
11265 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11266 if (!new_prog)
11267 return -ENOMEM;
11268
11269 delta += cnt - 1;
11270 env->prog = prog = new_prog;
11271 insn = new_prog->insnsi + i + delta;
79741b3b
AS
11272 continue;
11273 }
e245c5c6 11274
89c63074 11275 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
11276 * and other inlining handlers are currently limited to 64 bit
11277 * only.
89c63074 11278 */
60b58afc 11279 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
11280 (insn->imm == BPF_FUNC_map_lookup_elem ||
11281 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
11282 insn->imm == BPF_FUNC_map_delete_elem ||
11283 insn->imm == BPF_FUNC_map_push_elem ||
11284 insn->imm == BPF_FUNC_map_pop_elem ||
11285 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
11286 aux = &env->insn_aux_data[i + delta];
11287 if (bpf_map_ptr_poisoned(aux))
11288 goto patch_call_imm;
11289
d2e4c1e6 11290 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
11291 ops = map_ptr->ops;
11292 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11293 ops->map_gen_lookup) {
11294 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
11295 if (cnt == -EOPNOTSUPP)
11296 goto patch_map_ops_generic;
11297 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
11298 verbose(env, "bpf verifier is misconfigured\n");
11299 return -EINVAL;
11300 }
81ed18ab 11301
09772d92
DB
11302 new_prog = bpf_patch_insn_data(env, i + delta,
11303 insn_buf, cnt);
11304 if (!new_prog)
11305 return -ENOMEM;
81ed18ab 11306
09772d92
DB
11307 delta += cnt - 1;
11308 env->prog = prog = new_prog;
11309 insn = new_prog->insnsi + i + delta;
11310 continue;
11311 }
81ed18ab 11312
09772d92
DB
11313 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11314 (void *(*)(struct bpf_map *map, void *key))NULL));
11315 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11316 (int (*)(struct bpf_map *map, void *key))NULL));
11317 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11318 (int (*)(struct bpf_map *map, void *key, void *value,
11319 u64 flags))NULL));
84430d42
DB
11320 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11321 (int (*)(struct bpf_map *map, void *value,
11322 u64 flags))NULL));
11323 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11324 (int (*)(struct bpf_map *map, void *value))NULL));
11325 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11326 (int (*)(struct bpf_map *map, void *value))NULL));
4a8f87e6 11327patch_map_ops_generic:
09772d92
DB
11328 switch (insn->imm) {
11329 case BPF_FUNC_map_lookup_elem:
11330 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11331 __bpf_call_base;
11332 continue;
11333 case BPF_FUNC_map_update_elem:
11334 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11335 __bpf_call_base;
11336 continue;
11337 case BPF_FUNC_map_delete_elem:
11338 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11339 __bpf_call_base;
11340 continue;
84430d42
DB
11341 case BPF_FUNC_map_push_elem:
11342 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11343 __bpf_call_base;
11344 continue;
11345 case BPF_FUNC_map_pop_elem:
11346 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11347 __bpf_call_base;
11348 continue;
11349 case BPF_FUNC_map_peek_elem:
11350 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11351 __bpf_call_base;
11352 continue;
09772d92 11353 }
81ed18ab 11354
09772d92 11355 goto patch_call_imm;
81ed18ab
AS
11356 }
11357
5576b991
MKL
11358 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11359 insn->imm == BPF_FUNC_jiffies64) {
11360 struct bpf_insn ld_jiffies_addr[2] = {
11361 BPF_LD_IMM64(BPF_REG_0,
11362 (unsigned long)&jiffies),
11363 };
11364
11365 insn_buf[0] = ld_jiffies_addr[0];
11366 insn_buf[1] = ld_jiffies_addr[1];
11367 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11368 BPF_REG_0, 0);
11369 cnt = 3;
11370
11371 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11372 cnt);
11373 if (!new_prog)
11374 return -ENOMEM;
11375
11376 delta += cnt - 1;
11377 env->prog = prog = new_prog;
11378 insn = new_prog->insnsi + i + delta;
11379 continue;
11380 }
11381
81ed18ab 11382patch_call_imm:
5e43f899 11383 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
11384 /* all functions that have prototype and verifier allowed
11385 * programs to call them, must be real in-kernel functions
11386 */
11387 if (!fn->func) {
61bd5218
JK
11388 verbose(env,
11389 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
11390 func_id_name(insn->imm), insn->imm);
11391 return -EFAULT;
e245c5c6 11392 }
79741b3b 11393 insn->imm = fn->func - __bpf_call_base;
e245c5c6 11394 }
e245c5c6 11395
d2e4c1e6
DB
11396 /* Since poke tab is now finalized, publish aux to tracker. */
11397 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11398 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11399 if (!map_ptr->ops->map_poke_track ||
11400 !map_ptr->ops->map_poke_untrack ||
11401 !map_ptr->ops->map_poke_run) {
11402 verbose(env, "bpf verifier is misconfigured\n");
11403 return -EINVAL;
11404 }
11405
11406 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11407 if (ret < 0) {
11408 verbose(env, "tracking tail call prog failed\n");
11409 return ret;
11410 }
11411 }
11412
79741b3b
AS
11413 return 0;
11414}
e245c5c6 11415
58e2af8b 11416static void free_states(struct bpf_verifier_env *env)
f1bca824 11417{
58e2af8b 11418 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
11419 int i;
11420
9f4686c4
AS
11421 sl = env->free_list;
11422 while (sl) {
11423 sln = sl->next;
11424 free_verifier_state(&sl->state, false);
11425 kfree(sl);
11426 sl = sln;
11427 }
51c39bb1 11428 env->free_list = NULL;
9f4686c4 11429
f1bca824
AS
11430 if (!env->explored_states)
11431 return;
11432
dc2a4ebc 11433 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
11434 sl = env->explored_states[i];
11435
a8f500af
AS
11436 while (sl) {
11437 sln = sl->next;
11438 free_verifier_state(&sl->state, false);
11439 kfree(sl);
11440 sl = sln;
11441 }
51c39bb1 11442 env->explored_states[i] = NULL;
f1bca824 11443 }
51c39bb1 11444}
f1bca824 11445
51c39bb1
AS
11446/* The verifier is using insn_aux_data[] to store temporary data during
11447 * verification and to store information for passes that run after the
11448 * verification like dead code sanitization. do_check_common() for subprogram N
11449 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11450 * temporary data after do_check_common() finds that subprogram N cannot be
11451 * verified independently. pass_cnt counts the number of times
11452 * do_check_common() was run and insn->aux->seen tells the pass number
11453 * insn_aux_data was touched. These variables are compared to clear temporary
11454 * data from failed pass. For testing and experiments do_check_common() can be
11455 * run multiple times even when prior attempt to verify is unsuccessful.
11456 */
11457static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11458{
11459 struct bpf_insn *insn = env->prog->insnsi;
11460 struct bpf_insn_aux_data *aux;
11461 int i, class;
11462
11463 for (i = 0; i < env->prog->len; i++) {
11464 class = BPF_CLASS(insn[i].code);
11465 if (class != BPF_LDX && class != BPF_STX)
11466 continue;
11467 aux = &env->insn_aux_data[i];
11468 if (aux->seen != env->pass_cnt)
11469 continue;
11470 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11471 }
f1bca824
AS
11472}
11473
51c39bb1
AS
11474static int do_check_common(struct bpf_verifier_env *env, int subprog)
11475{
6f8a57cc 11476 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
11477 struct bpf_verifier_state *state;
11478 struct bpf_reg_state *regs;
11479 int ret, i;
11480
11481 env->prev_linfo = NULL;
11482 env->pass_cnt++;
11483
11484 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11485 if (!state)
11486 return -ENOMEM;
11487 state->curframe = 0;
11488 state->speculative = false;
11489 state->branches = 1;
11490 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11491 if (!state->frame[0]) {
11492 kfree(state);
11493 return -ENOMEM;
11494 }
11495 env->cur_state = state;
11496 init_func_state(env, state->frame[0],
11497 BPF_MAIN_FUNC /* callsite */,
11498 0 /* frameno */,
11499 subprog);
11500
11501 regs = state->frame[state->curframe]->regs;
be8704ff 11502 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
11503 ret = btf_prepare_func_args(env, subprog, regs);
11504 if (ret)
11505 goto out;
11506 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11507 if (regs[i].type == PTR_TO_CTX)
11508 mark_reg_known_zero(env, regs, i);
11509 else if (regs[i].type == SCALAR_VALUE)
11510 mark_reg_unknown(env, regs, i);
11511 }
11512 } else {
11513 /* 1st arg to a function */
11514 regs[BPF_REG_1].type = PTR_TO_CTX;
11515 mark_reg_known_zero(env, regs, BPF_REG_1);
11516 ret = btf_check_func_arg_match(env, subprog, regs);
11517 if (ret == -EFAULT)
11518 /* unlikely verifier bug. abort.
11519 * ret == 0 and ret < 0 are sadly acceptable for
11520 * main() function due to backward compatibility.
11521 * Like socket filter program may be written as:
11522 * int bpf_prog(struct pt_regs *ctx)
11523 * and never dereference that ctx in the program.
11524 * 'struct pt_regs' is a type mismatch for socket
11525 * filter that should be using 'struct __sk_buff'.
11526 */
11527 goto out;
11528 }
11529
11530 ret = do_check(env);
11531out:
f59bbfc2
AS
11532 /* check for NULL is necessary, since cur_state can be freed inside
11533 * do_check() under memory pressure.
11534 */
11535 if (env->cur_state) {
11536 free_verifier_state(env->cur_state, true);
11537 env->cur_state = NULL;
11538 }
6f8a57cc
AN
11539 while (!pop_stack(env, NULL, NULL, false));
11540 if (!ret && pop_log)
11541 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
11542 free_states(env);
11543 if (ret)
11544 /* clean aux data in case subprog was rejected */
11545 sanitize_insn_aux_data(env);
11546 return ret;
11547}
11548
11549/* Verify all global functions in a BPF program one by one based on their BTF.
11550 * All global functions must pass verification. Otherwise the whole program is rejected.
11551 * Consider:
11552 * int bar(int);
11553 * int foo(int f)
11554 * {
11555 * return bar(f);
11556 * }
11557 * int bar(int b)
11558 * {
11559 * ...
11560 * }
11561 * foo() will be verified first for R1=any_scalar_value. During verification it
11562 * will be assumed that bar() already verified successfully and call to bar()
11563 * from foo() will be checked for type match only. Later bar() will be verified
11564 * independently to check that it's safe for R1=any_scalar_value.
11565 */
11566static int do_check_subprogs(struct bpf_verifier_env *env)
11567{
11568 struct bpf_prog_aux *aux = env->prog->aux;
11569 int i, ret;
11570
11571 if (!aux->func_info)
11572 return 0;
11573
11574 for (i = 1; i < env->subprog_cnt; i++) {
11575 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11576 continue;
11577 env->insn_idx = env->subprog_info[i].start;
11578 WARN_ON_ONCE(env->insn_idx == 0);
11579 ret = do_check_common(env, i);
11580 if (ret) {
11581 return ret;
11582 } else if (env->log.level & BPF_LOG_LEVEL) {
11583 verbose(env,
11584 "Func#%d is safe for any args that match its prototype\n",
11585 i);
11586 }
11587 }
11588 return 0;
11589}
11590
11591static int do_check_main(struct bpf_verifier_env *env)
11592{
11593 int ret;
11594
11595 env->insn_idx = 0;
11596 ret = do_check_common(env, 0);
11597 if (!ret)
11598 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11599 return ret;
11600}
11601
11602
06ee7115
AS
11603static void print_verification_stats(struct bpf_verifier_env *env)
11604{
11605 int i;
11606
11607 if (env->log.level & BPF_LOG_STATS) {
11608 verbose(env, "verification time %lld usec\n",
11609 div_u64(env->verification_time, 1000));
11610 verbose(env, "stack depth ");
11611 for (i = 0; i < env->subprog_cnt; i++) {
11612 u32 depth = env->subprog_info[i].stack_depth;
11613
11614 verbose(env, "%d", depth);
11615 if (i + 1 < env->subprog_cnt)
11616 verbose(env, "+");
11617 }
11618 verbose(env, "\n");
11619 }
11620 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11621 "total_states %d peak_states %d mark_read %d\n",
11622 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11623 env->max_states_per_insn, env->total_states,
11624 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
11625}
11626
27ae7997
MKL
11627static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11628{
11629 const struct btf_type *t, *func_proto;
11630 const struct bpf_struct_ops *st_ops;
11631 const struct btf_member *member;
11632 struct bpf_prog *prog = env->prog;
11633 u32 btf_id, member_idx;
11634 const char *mname;
11635
11636 btf_id = prog->aux->attach_btf_id;
11637 st_ops = bpf_struct_ops_find(btf_id);
11638 if (!st_ops) {
11639 verbose(env, "attach_btf_id %u is not a supported struct\n",
11640 btf_id);
11641 return -ENOTSUPP;
11642 }
11643
11644 t = st_ops->type;
11645 member_idx = prog->expected_attach_type;
11646 if (member_idx >= btf_type_vlen(t)) {
11647 verbose(env, "attach to invalid member idx %u of struct %s\n",
11648 member_idx, st_ops->name);
11649 return -EINVAL;
11650 }
11651
11652 member = &btf_type_member(t)[member_idx];
11653 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11654 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11655 NULL);
11656 if (!func_proto) {
11657 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11658 mname, member_idx, st_ops->name);
11659 return -EINVAL;
11660 }
11661
11662 if (st_ops->check_member) {
11663 int err = st_ops->check_member(t, member);
11664
11665 if (err) {
11666 verbose(env, "attach to unsupported member %s of struct %s\n",
11667 mname, st_ops->name);
11668 return err;
11669 }
11670 }
11671
11672 prog->aux->attach_func_proto = func_proto;
11673 prog->aux->attach_func_name = mname;
11674 env->ops = st_ops->verifier_ops;
11675
11676 return 0;
11677}
6ba43b76
KS
11678#define SECURITY_PREFIX "security_"
11679
f7b12b6f 11680static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 11681{
69191754 11682 if (within_error_injection_list(addr) ||
f7b12b6f 11683 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 11684 return 0;
6ba43b76 11685
6ba43b76
KS
11686 return -EINVAL;
11687}
27ae7997 11688
1e6c62a8
AS
11689/* list of non-sleepable functions that are otherwise on
11690 * ALLOW_ERROR_INJECTION list
11691 */
11692BTF_SET_START(btf_non_sleepable_error_inject)
11693/* Three functions below can be called from sleepable and non-sleepable context.
11694 * Assume non-sleepable from bpf safety point of view.
11695 */
11696BTF_ID(func, __add_to_page_cache_locked)
11697BTF_ID(func, should_fail_alloc_page)
11698BTF_ID(func, should_failslab)
11699BTF_SET_END(btf_non_sleepable_error_inject)
11700
11701static int check_non_sleepable_error_inject(u32 btf_id)
11702{
11703 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11704}
11705
f7b12b6f
THJ
11706int bpf_check_attach_target(struct bpf_verifier_log *log,
11707 const struct bpf_prog *prog,
11708 const struct bpf_prog *tgt_prog,
11709 u32 btf_id,
11710 struct bpf_attach_target_info *tgt_info)
38207291 11711{
be8704ff 11712 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 11713 const char prefix[] = "btf_trace_";
5b92a28a 11714 int ret = 0, subprog = -1, i;
38207291 11715 const struct btf_type *t;
5b92a28a 11716 bool conservative = true;
38207291 11717 const char *tname;
5b92a28a 11718 struct btf *btf;
f7b12b6f 11719 long addr = 0;
38207291 11720
f1b9509c 11721 if (!btf_id) {
efc68158 11722 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
11723 return -EINVAL;
11724 }
22dc4a0f 11725 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 11726 if (!btf) {
efc68158 11727 bpf_log(log,
5b92a28a
AS
11728 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11729 return -EINVAL;
11730 }
11731 t = btf_type_by_id(btf, btf_id);
f1b9509c 11732 if (!t) {
efc68158 11733 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
11734 return -EINVAL;
11735 }
5b92a28a 11736 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 11737 if (!tname) {
efc68158 11738 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
11739 return -EINVAL;
11740 }
5b92a28a
AS
11741 if (tgt_prog) {
11742 struct bpf_prog_aux *aux = tgt_prog->aux;
11743
11744 for (i = 0; i < aux->func_info_cnt; i++)
11745 if (aux->func_info[i].type_id == btf_id) {
11746 subprog = i;
11747 break;
11748 }
11749 if (subprog == -1) {
efc68158 11750 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
11751 return -EINVAL;
11752 }
11753 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11754 if (prog_extension) {
11755 if (conservative) {
efc68158 11756 bpf_log(log,
be8704ff
AS
11757 "Cannot replace static functions\n");
11758 return -EINVAL;
11759 }
11760 if (!prog->jit_requested) {
efc68158 11761 bpf_log(log,
be8704ff
AS
11762 "Extension programs should be JITed\n");
11763 return -EINVAL;
11764 }
be8704ff
AS
11765 }
11766 if (!tgt_prog->jited) {
efc68158 11767 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
11768 return -EINVAL;
11769 }
11770 if (tgt_prog->type == prog->type) {
11771 /* Cannot fentry/fexit another fentry/fexit program.
11772 * Cannot attach program extension to another extension.
11773 * It's ok to attach fentry/fexit to extension program.
11774 */
efc68158 11775 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
11776 return -EINVAL;
11777 }
11778 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11779 prog_extension &&
11780 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11781 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11782 /* Program extensions can extend all program types
11783 * except fentry/fexit. The reason is the following.
11784 * The fentry/fexit programs are used for performance
11785 * analysis, stats and can be attached to any program
11786 * type except themselves. When extension program is
11787 * replacing XDP function it is necessary to allow
11788 * performance analysis of all functions. Both original
11789 * XDP program and its program extension. Hence
11790 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11791 * allowed. If extending of fentry/fexit was allowed it
11792 * would be possible to create long call chain
11793 * fentry->extension->fentry->extension beyond
11794 * reasonable stack size. Hence extending fentry is not
11795 * allowed.
11796 */
efc68158 11797 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
11798 return -EINVAL;
11799 }
5b92a28a 11800 } else {
be8704ff 11801 if (prog_extension) {
efc68158 11802 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
11803 return -EINVAL;
11804 }
5b92a28a 11805 }
f1b9509c
AS
11806
11807 switch (prog->expected_attach_type) {
11808 case BPF_TRACE_RAW_TP:
5b92a28a 11809 if (tgt_prog) {
efc68158 11810 bpf_log(log,
5b92a28a
AS
11811 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11812 return -EINVAL;
11813 }
38207291 11814 if (!btf_type_is_typedef(t)) {
efc68158 11815 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
11816 btf_id);
11817 return -EINVAL;
11818 }
f1b9509c 11819 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 11820 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
11821 btf_id, tname);
11822 return -EINVAL;
11823 }
11824 tname += sizeof(prefix) - 1;
5b92a28a 11825 t = btf_type_by_id(btf, t->type);
38207291
MKL
11826 if (!btf_type_is_ptr(t))
11827 /* should never happen in valid vmlinux build */
11828 return -EINVAL;
5b92a28a 11829 t = btf_type_by_id(btf, t->type);
38207291
MKL
11830 if (!btf_type_is_func_proto(t))
11831 /* should never happen in valid vmlinux build */
11832 return -EINVAL;
11833
f7b12b6f 11834 break;
15d83c4d
YS
11835 case BPF_TRACE_ITER:
11836 if (!btf_type_is_func(t)) {
efc68158 11837 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
11838 btf_id);
11839 return -EINVAL;
11840 }
11841 t = btf_type_by_id(btf, t->type);
11842 if (!btf_type_is_func_proto(t))
11843 return -EINVAL;
f7b12b6f
THJ
11844 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11845 if (ret)
11846 return ret;
11847 break;
be8704ff
AS
11848 default:
11849 if (!prog_extension)
11850 return -EINVAL;
df561f66 11851 fallthrough;
ae240823 11852 case BPF_MODIFY_RETURN:
9e4e01df 11853 case BPF_LSM_MAC:
fec56f58
AS
11854 case BPF_TRACE_FENTRY:
11855 case BPF_TRACE_FEXIT:
11856 if (!btf_type_is_func(t)) {
efc68158 11857 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
11858 btf_id);
11859 return -EINVAL;
11860 }
be8704ff 11861 if (prog_extension &&
efc68158 11862 btf_check_type_match(log, prog, btf, t))
be8704ff 11863 return -EINVAL;
5b92a28a 11864 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11865 if (!btf_type_is_func_proto(t))
11866 return -EINVAL;
f7b12b6f 11867
4a1e7c0c
THJ
11868 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11869 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11870 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11871 return -EINVAL;
11872
f7b12b6f 11873 if (tgt_prog && conservative)
5b92a28a 11874 t = NULL;
f7b12b6f
THJ
11875
11876 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 11877 if (ret < 0)
f7b12b6f
THJ
11878 return ret;
11879
5b92a28a 11880 if (tgt_prog) {
e9eeec58
YS
11881 if (subprog == 0)
11882 addr = (long) tgt_prog->bpf_func;
11883 else
11884 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11885 } else {
11886 addr = kallsyms_lookup_name(tname);
11887 if (!addr) {
efc68158 11888 bpf_log(log,
5b92a28a
AS
11889 "The address of function %s cannot be found\n",
11890 tname);
f7b12b6f 11891 return -ENOENT;
5b92a28a 11892 }
fec56f58 11893 }
18644cec 11894
1e6c62a8
AS
11895 if (prog->aux->sleepable) {
11896 ret = -EINVAL;
11897 switch (prog->type) {
11898 case BPF_PROG_TYPE_TRACING:
11899 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11900 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11901 */
11902 if (!check_non_sleepable_error_inject(btf_id) &&
11903 within_error_injection_list(addr))
11904 ret = 0;
11905 break;
11906 case BPF_PROG_TYPE_LSM:
11907 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11908 * Only some of them are sleepable.
11909 */
423f1610 11910 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
11911 ret = 0;
11912 break;
11913 default:
11914 break;
11915 }
f7b12b6f
THJ
11916 if (ret) {
11917 bpf_log(log, "%s is not sleepable\n", tname);
11918 return ret;
11919 }
1e6c62a8 11920 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 11921 if (tgt_prog) {
efc68158 11922 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
11923 return -EINVAL;
11924 }
11925 ret = check_attach_modify_return(addr, tname);
11926 if (ret) {
11927 bpf_log(log, "%s() is not modifiable\n", tname);
11928 return ret;
1af9270e 11929 }
18644cec 11930 }
f7b12b6f
THJ
11931
11932 break;
11933 }
11934 tgt_info->tgt_addr = addr;
11935 tgt_info->tgt_name = tname;
11936 tgt_info->tgt_type = t;
11937 return 0;
11938}
11939
11940static int check_attach_btf_id(struct bpf_verifier_env *env)
11941{
11942 struct bpf_prog *prog = env->prog;
3aac1ead 11943 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
11944 struct bpf_attach_target_info tgt_info = {};
11945 u32 btf_id = prog->aux->attach_btf_id;
11946 struct bpf_trampoline *tr;
11947 int ret;
11948 u64 key;
11949
11950 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11951 prog->type != BPF_PROG_TYPE_LSM) {
11952 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11953 return -EINVAL;
11954 }
11955
11956 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11957 return check_struct_ops_btf_id(env);
11958
11959 if (prog->type != BPF_PROG_TYPE_TRACING &&
11960 prog->type != BPF_PROG_TYPE_LSM &&
11961 prog->type != BPF_PROG_TYPE_EXT)
11962 return 0;
11963
11964 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11965 if (ret)
fec56f58 11966 return ret;
f7b12b6f
THJ
11967
11968 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
11969 /* to make freplace equivalent to their targets, they need to
11970 * inherit env->ops and expected_attach_type for the rest of the
11971 * verification
11972 */
f7b12b6f
THJ
11973 env->ops = bpf_verifier_ops[tgt_prog->type];
11974 prog->expected_attach_type = tgt_prog->expected_attach_type;
11975 }
11976
11977 /* store info about the attachment target that will be used later */
11978 prog->aux->attach_func_proto = tgt_info.tgt_type;
11979 prog->aux->attach_func_name = tgt_info.tgt_name;
11980
4a1e7c0c
THJ
11981 if (tgt_prog) {
11982 prog->aux->saved_dst_prog_type = tgt_prog->type;
11983 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11984 }
11985
f7b12b6f
THJ
11986 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11987 prog->aux->attach_btf_trace = true;
11988 return 0;
11989 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11990 if (!bpf_iter_prog_supported(prog))
11991 return -EINVAL;
11992 return 0;
11993 }
11994
11995 if (prog->type == BPF_PROG_TYPE_LSM) {
11996 ret = bpf_lsm_verify_prog(&env->log, prog);
11997 if (ret < 0)
11998 return ret;
38207291 11999 }
f7b12b6f 12000
22dc4a0f 12001 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
12002 tr = bpf_trampoline_get(key, &tgt_info);
12003 if (!tr)
12004 return -ENOMEM;
12005
3aac1ead 12006 prog->aux->dst_trampoline = tr;
f7b12b6f 12007 return 0;
38207291
MKL
12008}
12009
76654e67
AM
12010struct btf *bpf_get_btf_vmlinux(void)
12011{
12012 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12013 mutex_lock(&bpf_verifier_lock);
12014 if (!btf_vmlinux)
12015 btf_vmlinux = btf_parse_vmlinux();
12016 mutex_unlock(&bpf_verifier_lock);
12017 }
12018 return btf_vmlinux;
12019}
12020
838e9690
YS
12021int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12022 union bpf_attr __user *uattr)
51580e79 12023{
06ee7115 12024 u64 start_time = ktime_get_ns();
58e2af8b 12025 struct bpf_verifier_env *env;
b9193c1b 12026 struct bpf_verifier_log *log;
9e4c24e7 12027 int i, len, ret = -EINVAL;
e2ae4ca2 12028 bool is_priv;
51580e79 12029
eba0c929
AB
12030 /* no program is valid */
12031 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12032 return -EINVAL;
12033
58e2af8b 12034 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
12035 * allocate/free it every time bpf_check() is called
12036 */
58e2af8b 12037 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
12038 if (!env)
12039 return -ENOMEM;
61bd5218 12040 log = &env->log;
cbd35700 12041
9e4c24e7 12042 len = (*prog)->len;
fad953ce 12043 env->insn_aux_data =
9e4c24e7 12044 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
12045 ret = -ENOMEM;
12046 if (!env->insn_aux_data)
12047 goto err_free_env;
9e4c24e7
JK
12048 for (i = 0; i < len; i++)
12049 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 12050 env->prog = *prog;
00176a34 12051 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 12052 is_priv = bpf_capable();
0246e64d 12053
76654e67 12054 bpf_get_btf_vmlinux();
8580ac94 12055
cbd35700 12056 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
12057 if (!is_priv)
12058 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
12059
12060 if (attr->log_level || attr->log_buf || attr->log_size) {
12061 /* user requested verbose verifier output
12062 * and supplied buffer to store the verification trace
12063 */
e7bf8249
JK
12064 log->level = attr->log_level;
12065 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12066 log->len_total = attr->log_size;
cbd35700
AS
12067
12068 ret = -EINVAL;
e7bf8249 12069 /* log attributes have to be sane */
7a9f5c65 12070 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 12071 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 12072 goto err_unlock;
cbd35700 12073 }
1ad2f583 12074
8580ac94
AS
12075 if (IS_ERR(btf_vmlinux)) {
12076 /* Either gcc or pahole or kernel are broken. */
12077 verbose(env, "in-kernel BTF is malformed\n");
12078 ret = PTR_ERR(btf_vmlinux);
38207291 12079 goto skip_full_check;
8580ac94
AS
12080 }
12081
1ad2f583
DB
12082 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12083 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 12084 env->strict_alignment = true;
e9ee9efc
DM
12085 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12086 env->strict_alignment = false;
cbd35700 12087
2c78ee89 12088 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 12089 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
12090 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12091 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12092 env->bpf_capable = bpf_capable();
e2ae4ca2 12093
10d274e8
AS
12094 if (is_priv)
12095 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12096
cae1927c 12097 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 12098 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 12099 if (ret)
f4e3ec0d 12100 goto skip_full_check;
ab3f0063
JK
12101 }
12102
dc2a4ebc 12103 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 12104 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
12105 GFP_USER);
12106 ret = -ENOMEM;
12107 if (!env->explored_states)
12108 goto skip_full_check;
12109
d9762e84 12110 ret = check_subprogs(env);
475fb78f
AS
12111 if (ret < 0)
12112 goto skip_full_check;
12113
c454a46b 12114 ret = check_btf_info(env, attr, uattr);
838e9690
YS
12115 if (ret < 0)
12116 goto skip_full_check;
12117
be8704ff
AS
12118 ret = check_attach_btf_id(env);
12119 if (ret)
12120 goto skip_full_check;
12121
4976b718
HL
12122 ret = resolve_pseudo_ldimm64(env);
12123 if (ret < 0)
12124 goto skip_full_check;
12125
d9762e84
MKL
12126 ret = check_cfg(env);
12127 if (ret < 0)
12128 goto skip_full_check;
12129
51c39bb1
AS
12130 ret = do_check_subprogs(env);
12131 ret = ret ?: do_check_main(env);
cbd35700 12132
c941ce9c
QM
12133 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12134 ret = bpf_prog_offload_finalize(env);
12135
0246e64d 12136skip_full_check:
51c39bb1 12137 kvfree(env->explored_states);
0246e64d 12138
c131187d 12139 if (ret == 0)
9b38c405 12140 ret = check_max_stack_depth(env);
c131187d 12141
9b38c405 12142 /* instruction rewrites happen after this point */
e2ae4ca2
JK
12143 if (is_priv) {
12144 if (ret == 0)
12145 opt_hard_wire_dead_code_branches(env);
52875a04
JK
12146 if (ret == 0)
12147 ret = opt_remove_dead_code(env);
a1b14abc
JK
12148 if (ret == 0)
12149 ret = opt_remove_nops(env);
52875a04
JK
12150 } else {
12151 if (ret == 0)
12152 sanitize_dead_code(env);
e2ae4ca2
JK
12153 }
12154
9bac3d6d
AS
12155 if (ret == 0)
12156 /* program is valid, convert *(u32*)(ctx + off) accesses */
12157 ret = convert_ctx_accesses(env);
12158
e245c5c6 12159 if (ret == 0)
79741b3b 12160 ret = fixup_bpf_calls(env);
e245c5c6 12161
a4b1d3c1
JW
12162 /* do 32-bit optimization after insn patching has done so those patched
12163 * insns could be handled correctly.
12164 */
d6c2308c
JW
12165 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12166 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12167 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12168 : false;
a4b1d3c1
JW
12169 }
12170
1ea47e01
AS
12171 if (ret == 0)
12172 ret = fixup_call_args(env);
12173
06ee7115
AS
12174 env->verification_time = ktime_get_ns() - start_time;
12175 print_verification_stats(env);
12176
a2a7d570 12177 if (log->level && bpf_verifier_log_full(log))
cbd35700 12178 ret = -ENOSPC;
a2a7d570 12179 if (log->level && !log->ubuf) {
cbd35700 12180 ret = -EFAULT;
a2a7d570 12181 goto err_release_maps;
cbd35700
AS
12182 }
12183
541c3bad
AN
12184 if (ret)
12185 goto err_release_maps;
12186
12187 if (env->used_map_cnt) {
0246e64d 12188 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
12189 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12190 sizeof(env->used_maps[0]),
12191 GFP_KERNEL);
0246e64d 12192
9bac3d6d 12193 if (!env->prog->aux->used_maps) {
0246e64d 12194 ret = -ENOMEM;
a2a7d570 12195 goto err_release_maps;
0246e64d
AS
12196 }
12197
9bac3d6d 12198 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 12199 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 12200 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
12201 }
12202 if (env->used_btf_cnt) {
12203 /* if program passed verifier, update used_btfs in bpf_prog_aux */
12204 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12205 sizeof(env->used_btfs[0]),
12206 GFP_KERNEL);
12207 if (!env->prog->aux->used_btfs) {
12208 ret = -ENOMEM;
12209 goto err_release_maps;
12210 }
0246e64d 12211
541c3bad
AN
12212 memcpy(env->prog->aux->used_btfs, env->used_btfs,
12213 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12214 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12215 }
12216 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
12217 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12218 * bpf_ld_imm64 instructions
12219 */
12220 convert_pseudo_ld_imm64(env);
12221 }
cbd35700 12222
541c3bad 12223 adjust_btf_func(env);
ba64e7d8 12224
a2a7d570 12225err_release_maps:
9bac3d6d 12226 if (!env->prog->aux->used_maps)
0246e64d 12227 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 12228 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
12229 */
12230 release_maps(env);
541c3bad
AN
12231 if (!env->prog->aux->used_btfs)
12232 release_btfs(env);
03f87c0b
THJ
12233
12234 /* extension progs temporarily inherit the attach_type of their targets
12235 for verification purposes, so set it back to zero before returning
12236 */
12237 if (env->prog->type == BPF_PROG_TYPE_EXT)
12238 env->prog->expected_attach_type = 0;
12239
9bac3d6d 12240 *prog = env->prog;
3df126f3 12241err_unlock:
45a73c17
AS
12242 if (!is_priv)
12243 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
12244 vfree(env->insn_aux_data);
12245err_free_env:
12246 kfree(env);
51580e79
AS
12247 return ret;
12248}