]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: perf event change needed for subsequent bpf helpers
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
8e17c1b1 143#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
de8f3a83
DB
180static bool type_is_pkt_pointer(enum bpf_reg_type type)
181{
182 return type == PTR_TO_PACKET ||
183 type == PTR_TO_PACKET_META;
184}
185
17a52670
AS
186/* string representation of 'enum bpf_reg_type' */
187static const char * const reg_type_str[] = {
188 [NOT_INIT] = "?",
f1174f77 189 [SCALAR_VALUE] = "inv",
17a52670
AS
190 [PTR_TO_CTX] = "ctx",
191 [CONST_PTR_TO_MAP] = "map_ptr",
192 [PTR_TO_MAP_VALUE] = "map_value",
193 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 194 [PTR_TO_STACK] = "fp",
969bf05e 195 [PTR_TO_PACKET] = "pkt",
de8f3a83 196 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 197 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
198};
199
ebb676da
TG
200#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
201static const char * const func_id_str[] = {
202 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
203};
204#undef __BPF_FUNC_STR_FN
205
206static const char *func_id_name(int id)
207{
208 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
209
210 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
211 return func_id_str[id];
212 else
213 return "unknown";
214}
215
58e2af8b 216static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 217{
58e2af8b 218 struct bpf_reg_state *reg;
17a52670
AS
219 enum bpf_reg_type t;
220 int i;
221
222 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
223 reg = &state->regs[i];
224 t = reg->type;
17a52670
AS
225 if (t == NOT_INIT)
226 continue;
227 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
228 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
229 tnum_is_const(reg->var_off)) {
230 /* reg->off should be 0 for SCALAR_VALUE */
231 verbose("%lld", reg->var_off.value + reg->off);
232 } else {
233 verbose("(id=%d", reg->id);
234 if (t != SCALAR_VALUE)
235 verbose(",off=%d", reg->off);
de8f3a83 236 if (type_is_pkt_pointer(t))
f1174f77
EC
237 verbose(",r=%d", reg->range);
238 else if (t == CONST_PTR_TO_MAP ||
239 t == PTR_TO_MAP_VALUE ||
240 t == PTR_TO_MAP_VALUE_OR_NULL)
241 verbose(",ks=%d,vs=%d",
242 reg->map_ptr->key_size,
243 reg->map_ptr->value_size);
7d1238f2
EC
244 if (tnum_is_const(reg->var_off)) {
245 /* Typically an immediate SCALAR_VALUE, but
246 * could be a pointer whose offset is too big
247 * for reg->off
248 */
249 verbose(",imm=%llx", reg->var_off.value);
250 } else {
251 if (reg->smin_value != reg->umin_value &&
252 reg->smin_value != S64_MIN)
253 verbose(",smin_value=%lld",
254 (long long)reg->smin_value);
255 if (reg->smax_value != reg->umax_value &&
256 reg->smax_value != S64_MAX)
257 verbose(",smax_value=%lld",
258 (long long)reg->smax_value);
259 if (reg->umin_value != 0)
260 verbose(",umin_value=%llu",
261 (unsigned long long)reg->umin_value);
262 if (reg->umax_value != U64_MAX)
263 verbose(",umax_value=%llu",
264 (unsigned long long)reg->umax_value);
265 if (!tnum_is_unknown(reg->var_off)) {
266 char tn_buf[48];
f1174f77 267
7d1238f2
EC
268 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
269 verbose(",var_off=%s", tn_buf);
270 }
f1174f77
EC
271 }
272 verbose(")");
273 }
17a52670 274 }
9c399760 275 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 276 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 277 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 278 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
279 }
280 verbose("\n");
281}
282
cbd35700
AS
283static const char *const bpf_class_string[] = {
284 [BPF_LD] = "ld",
285 [BPF_LDX] = "ldx",
286 [BPF_ST] = "st",
287 [BPF_STX] = "stx",
288 [BPF_ALU] = "alu",
289 [BPF_JMP] = "jmp",
290 [BPF_RET] = "BUG",
291 [BPF_ALU64] = "alu64",
292};
293
687f0715 294static const char *const bpf_alu_string[16] = {
cbd35700
AS
295 [BPF_ADD >> 4] = "+=",
296 [BPF_SUB >> 4] = "-=",
297 [BPF_MUL >> 4] = "*=",
298 [BPF_DIV >> 4] = "/=",
299 [BPF_OR >> 4] = "|=",
300 [BPF_AND >> 4] = "&=",
301 [BPF_LSH >> 4] = "<<=",
302 [BPF_RSH >> 4] = ">>=",
303 [BPF_NEG >> 4] = "neg",
304 [BPF_MOD >> 4] = "%=",
305 [BPF_XOR >> 4] = "^=",
306 [BPF_MOV >> 4] = "=",
307 [BPF_ARSH >> 4] = "s>>=",
308 [BPF_END >> 4] = "endian",
309};
310
311static const char *const bpf_ldst_string[] = {
312 [BPF_W >> 3] = "u32",
313 [BPF_H >> 3] = "u16",
314 [BPF_B >> 3] = "u8",
315 [BPF_DW >> 3] = "u64",
316};
317
687f0715 318static const char *const bpf_jmp_string[16] = {
cbd35700
AS
319 [BPF_JA >> 4] = "jmp",
320 [BPF_JEQ >> 4] = "==",
321 [BPF_JGT >> 4] = ">",
b4e432f1 322 [BPF_JLT >> 4] = "<",
cbd35700 323 [BPF_JGE >> 4] = ">=",
b4e432f1 324 [BPF_JLE >> 4] = "<=",
cbd35700
AS
325 [BPF_JSET >> 4] = "&",
326 [BPF_JNE >> 4] = "!=",
327 [BPF_JSGT >> 4] = "s>",
b4e432f1 328 [BPF_JSLT >> 4] = "s<",
cbd35700 329 [BPF_JSGE >> 4] = "s>=",
b4e432f1 330 [BPF_JSLE >> 4] = "s<=",
cbd35700
AS
331 [BPF_CALL >> 4] = "call",
332 [BPF_EXIT >> 4] = "exit",
333};
334
2b7c6ba9
EC
335static void print_bpf_end_insn(const struct bpf_verifier_env *env,
336 const struct bpf_insn *insn)
337{
338 verbose("(%02x) r%d = %s%d r%d\n", insn->code, insn->dst_reg,
339 BPF_SRC(insn->code) == BPF_TO_BE ? "be" : "le",
340 insn->imm, insn->dst_reg);
341}
342
0d0e5769
DB
343static void print_bpf_insn(const struct bpf_verifier_env *env,
344 const struct bpf_insn *insn)
cbd35700
AS
345{
346 u8 class = BPF_CLASS(insn->code);
347
348 if (class == BPF_ALU || class == BPF_ALU64) {
2b7c6ba9
EC
349 if (BPF_OP(insn->code) == BPF_END) {
350 if (class == BPF_ALU64)
351 verbose("BUG_alu64_%02x\n", insn->code);
352 else
353 print_bpf_end_insn(env, insn);
73c864b3
EC
354 } else if (BPF_OP(insn->code) == BPF_NEG) {
355 verbose("(%02x) r%d = %s-r%d\n",
356 insn->code, insn->dst_reg,
357 class == BPF_ALU ? "(u32) " : "",
358 insn->dst_reg);
2b7c6ba9 359 } else if (BPF_SRC(insn->code) == BPF_X) {
cbd35700
AS
360 verbose("(%02x) %sr%d %s %sr%d\n",
361 insn->code, class == BPF_ALU ? "(u32) " : "",
362 insn->dst_reg,
363 bpf_alu_string[BPF_OP(insn->code) >> 4],
364 class == BPF_ALU ? "(u32) " : "",
365 insn->src_reg);
2b7c6ba9 366 } else {
cbd35700
AS
367 verbose("(%02x) %sr%d %s %s%d\n",
368 insn->code, class == BPF_ALU ? "(u32) " : "",
369 insn->dst_reg,
370 bpf_alu_string[BPF_OP(insn->code) >> 4],
371 class == BPF_ALU ? "(u32) " : "",
372 insn->imm);
2b7c6ba9 373 }
cbd35700
AS
374 } else if (class == BPF_STX) {
375 if (BPF_MODE(insn->code) == BPF_MEM)
376 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
377 insn->code,
378 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
379 insn->dst_reg,
380 insn->off, insn->src_reg);
381 else if (BPF_MODE(insn->code) == BPF_XADD)
382 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
383 insn->code,
384 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
385 insn->dst_reg, insn->off,
386 insn->src_reg);
387 else
388 verbose("BUG_%02x\n", insn->code);
389 } else if (class == BPF_ST) {
390 if (BPF_MODE(insn->code) != BPF_MEM) {
391 verbose("BUG_st_%02x\n", insn->code);
392 return;
393 }
394 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
395 insn->code,
396 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
397 insn->dst_reg,
398 insn->off, insn->imm);
399 } else if (class == BPF_LDX) {
400 if (BPF_MODE(insn->code) != BPF_MEM) {
401 verbose("BUG_ldx_%02x\n", insn->code);
402 return;
403 }
404 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
405 insn->code, insn->dst_reg,
406 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
407 insn->src_reg, insn->off);
408 } else if (class == BPF_LD) {
409 if (BPF_MODE(insn->code) == BPF_ABS) {
410 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
411 insn->code,
412 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
413 insn->imm);
414 } else if (BPF_MODE(insn->code) == BPF_IND) {
415 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
416 insn->code,
417 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
418 insn->src_reg, insn->imm);
0d0e5769
DB
419 } else if (BPF_MODE(insn->code) == BPF_IMM &&
420 BPF_SIZE(insn->code) == BPF_DW) {
421 /* At this point, we already made sure that the second
422 * part of the ldimm64 insn is accessible.
423 */
424 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
425 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
426
427 if (map_ptr && !env->allow_ptr_leaks)
428 imm = 0;
429
430 verbose("(%02x) r%d = 0x%llx\n", insn->code,
431 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
432 } else {
433 verbose("BUG_ld_%02x\n", insn->code);
434 return;
435 }
436 } else if (class == BPF_JMP) {
437 u8 opcode = BPF_OP(insn->code);
438
439 if (opcode == BPF_CALL) {
ebb676da
TG
440 verbose("(%02x) call %s#%d\n", insn->code,
441 func_id_name(insn->imm), insn->imm);
cbd35700
AS
442 } else if (insn->code == (BPF_JMP | BPF_JA)) {
443 verbose("(%02x) goto pc%+d\n",
444 insn->code, insn->off);
445 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
446 verbose("(%02x) exit\n", insn->code);
447 } else if (BPF_SRC(insn->code) == BPF_X) {
448 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
449 insn->code, insn->dst_reg,
450 bpf_jmp_string[BPF_OP(insn->code) >> 4],
451 insn->src_reg, insn->off);
452 } else {
453 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
454 insn->code, insn->dst_reg,
455 bpf_jmp_string[BPF_OP(insn->code) >> 4],
456 insn->imm, insn->off);
457 }
458 } else {
459 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
460 }
461}
462
58e2af8b 463static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 464{
58e2af8b 465 struct bpf_verifier_stack_elem *elem;
17a52670
AS
466 int insn_idx;
467
468 if (env->head == NULL)
469 return -1;
470
471 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
472 insn_idx = env->head->insn_idx;
473 if (prev_insn_idx)
474 *prev_insn_idx = env->head->prev_insn_idx;
475 elem = env->head->next;
476 kfree(env->head);
477 env->head = elem;
478 env->stack_size--;
479 return insn_idx;
480}
481
58e2af8b
JK
482static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
483 int insn_idx, int prev_insn_idx)
17a52670 484{
58e2af8b 485 struct bpf_verifier_stack_elem *elem;
17a52670 486
58e2af8b 487 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
488 if (!elem)
489 goto err;
490
491 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
492 elem->insn_idx = insn_idx;
493 elem->prev_insn_idx = prev_insn_idx;
494 elem->next = env->head;
495 env->head = elem;
496 env->stack_size++;
07016151 497 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
498 verbose("BPF program is too complex\n");
499 goto err;
500 }
501 return &elem->st;
502err:
503 /* pop all elements and return */
504 while (pop_stack(env, NULL) >= 0);
505 return NULL;
506}
507
508#define CALLER_SAVED_REGS 6
509static const int caller_saved[CALLER_SAVED_REGS] = {
510 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
511};
512
f1174f77
EC
513static void __mark_reg_not_init(struct bpf_reg_state *reg);
514
b03c9f9f
EC
515/* Mark the unknown part of a register (variable offset or scalar value) as
516 * known to have the value @imm.
517 */
518static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
519{
520 reg->id = 0;
521 reg->var_off = tnum_const(imm);
522 reg->smin_value = (s64)imm;
523 reg->smax_value = (s64)imm;
524 reg->umin_value = imm;
525 reg->umax_value = imm;
526}
527
f1174f77
EC
528/* Mark the 'variable offset' part of a register as zero. This should be
529 * used only on registers holding a pointer type.
530 */
531static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 532{
b03c9f9f 533 __mark_reg_known(reg, 0);
f1174f77 534}
a9789ef9 535
f1174f77
EC
536static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
537{
538 if (WARN_ON(regno >= MAX_BPF_REG)) {
539 verbose("mark_reg_known_zero(regs, %u)\n", regno);
540 /* Something bad happened, let's kill all regs */
541 for (regno = 0; regno < MAX_BPF_REG; regno++)
542 __mark_reg_not_init(regs + regno);
543 return;
544 }
545 __mark_reg_known_zero(regs + regno);
546}
547
de8f3a83
DB
548static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
549{
550 return type_is_pkt_pointer(reg->type);
551}
552
553static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
554{
555 return reg_is_pkt_pointer(reg) ||
556 reg->type == PTR_TO_PACKET_END;
557}
558
559/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
560static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
561 enum bpf_reg_type which)
562{
563 /* The register can already have a range from prior markings.
564 * This is fine as long as it hasn't been advanced from its
565 * origin.
566 */
567 return reg->type == which &&
568 reg->id == 0 &&
569 reg->off == 0 &&
570 tnum_equals_const(reg->var_off, 0);
571}
572
b03c9f9f
EC
573/* Attempts to improve min/max values based on var_off information */
574static void __update_reg_bounds(struct bpf_reg_state *reg)
575{
576 /* min signed is max(sign bit) | min(other bits) */
577 reg->smin_value = max_t(s64, reg->smin_value,
578 reg->var_off.value | (reg->var_off.mask & S64_MIN));
579 /* max signed is min(sign bit) | max(other bits) */
580 reg->smax_value = min_t(s64, reg->smax_value,
581 reg->var_off.value | (reg->var_off.mask & S64_MAX));
582 reg->umin_value = max(reg->umin_value, reg->var_off.value);
583 reg->umax_value = min(reg->umax_value,
584 reg->var_off.value | reg->var_off.mask);
585}
586
587/* Uses signed min/max values to inform unsigned, and vice-versa */
588static void __reg_deduce_bounds(struct bpf_reg_state *reg)
589{
590 /* Learn sign from signed bounds.
591 * If we cannot cross the sign boundary, then signed and unsigned bounds
592 * are the same, so combine. This works even in the negative case, e.g.
593 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
594 */
595 if (reg->smin_value >= 0 || reg->smax_value < 0) {
596 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
597 reg->umin_value);
598 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
599 reg->umax_value);
600 return;
601 }
602 /* Learn sign from unsigned bounds. Signed bounds cross the sign
603 * boundary, so we must be careful.
604 */
605 if ((s64)reg->umax_value >= 0) {
606 /* Positive. We can't learn anything from the smin, but smax
607 * is positive, hence safe.
608 */
609 reg->smin_value = reg->umin_value;
610 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
611 reg->umax_value);
612 } else if ((s64)reg->umin_value < 0) {
613 /* Negative. We can't learn anything from the smax, but smin
614 * is negative, hence safe.
615 */
616 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
617 reg->umin_value);
618 reg->smax_value = reg->umax_value;
619 }
620}
621
622/* Attempts to improve var_off based on unsigned min/max information */
623static void __reg_bound_offset(struct bpf_reg_state *reg)
624{
625 reg->var_off = tnum_intersect(reg->var_off,
626 tnum_range(reg->umin_value,
627 reg->umax_value));
628}
629
630/* Reset the min/max bounds of a register */
631static void __mark_reg_unbounded(struct bpf_reg_state *reg)
632{
633 reg->smin_value = S64_MIN;
634 reg->smax_value = S64_MAX;
635 reg->umin_value = 0;
636 reg->umax_value = U64_MAX;
637}
638
f1174f77
EC
639/* Mark a register as having a completely unknown (scalar) value. */
640static void __mark_reg_unknown(struct bpf_reg_state *reg)
641{
642 reg->type = SCALAR_VALUE;
643 reg->id = 0;
644 reg->off = 0;
645 reg->var_off = tnum_unknown;
b03c9f9f 646 __mark_reg_unbounded(reg);
f1174f77
EC
647}
648
649static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
650{
651 if (WARN_ON(regno >= MAX_BPF_REG)) {
652 verbose("mark_reg_unknown(regs, %u)\n", regno);
653 /* Something bad happened, let's kill all regs */
654 for (regno = 0; regno < MAX_BPF_REG; regno++)
655 __mark_reg_not_init(regs + regno);
656 return;
657 }
658 __mark_reg_unknown(regs + regno);
659}
660
661static void __mark_reg_not_init(struct bpf_reg_state *reg)
662{
663 __mark_reg_unknown(reg);
664 reg->type = NOT_INIT;
665}
666
667static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
668{
669 if (WARN_ON(regno >= MAX_BPF_REG)) {
670 verbose("mark_reg_not_init(regs, %u)\n", regno);
671 /* Something bad happened, let's kill all regs */
672 for (regno = 0; regno < MAX_BPF_REG; regno++)
673 __mark_reg_not_init(regs + regno);
674 return;
675 }
676 __mark_reg_not_init(regs + regno);
a9789ef9
DB
677}
678
58e2af8b 679static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
680{
681 int i;
682
dc503a8a 683 for (i = 0; i < MAX_BPF_REG; i++) {
a9789ef9 684 mark_reg_not_init(regs, i);
dc503a8a
EC
685 regs[i].live = REG_LIVE_NONE;
686 }
17a52670
AS
687
688 /* frame pointer */
f1174f77
EC
689 regs[BPF_REG_FP].type = PTR_TO_STACK;
690 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
691
692 /* 1st arg to a function */
693 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 694 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
695}
696
17a52670
AS
697enum reg_arg_type {
698 SRC_OP, /* register is used as source operand */
699 DST_OP, /* register is used as destination operand */
700 DST_OP_NO_MARK /* same as above, check only, don't mark */
701};
702
dc503a8a
EC
703static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
704{
705 struct bpf_verifier_state *parent = state->parent;
706
707 while (parent) {
708 /* if read wasn't screened by an earlier write ... */
709 if (state->regs[regno].live & REG_LIVE_WRITTEN)
710 break;
711 /* ... then we depend on parent's value */
712 parent->regs[regno].live |= REG_LIVE_READ;
713 state = parent;
714 parent = state->parent;
715 }
716}
717
718static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
719 enum reg_arg_type t)
720{
dc503a8a
EC
721 struct bpf_reg_state *regs = env->cur_state.regs;
722
17a52670
AS
723 if (regno >= MAX_BPF_REG) {
724 verbose("R%d is invalid\n", regno);
725 return -EINVAL;
726 }
727
728 if (t == SRC_OP) {
729 /* check whether register used as source operand can be read */
730 if (regs[regno].type == NOT_INIT) {
731 verbose("R%d !read_ok\n", regno);
732 return -EACCES;
733 }
dc503a8a 734 mark_reg_read(&env->cur_state, regno);
17a52670
AS
735 } else {
736 /* check whether register used as dest operand can be written to */
737 if (regno == BPF_REG_FP) {
738 verbose("frame pointer is read only\n");
739 return -EACCES;
740 }
dc503a8a 741 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 742 if (t == DST_OP)
f1174f77 743 mark_reg_unknown(regs, regno);
17a52670
AS
744 }
745 return 0;
746}
747
1be7f75d
AS
748static bool is_spillable_regtype(enum bpf_reg_type type)
749{
750 switch (type) {
751 case PTR_TO_MAP_VALUE:
752 case PTR_TO_MAP_VALUE_OR_NULL:
753 case PTR_TO_STACK:
754 case PTR_TO_CTX:
969bf05e 755 case PTR_TO_PACKET:
de8f3a83 756 case PTR_TO_PACKET_META:
969bf05e 757 case PTR_TO_PACKET_END:
1be7f75d
AS
758 case CONST_PTR_TO_MAP:
759 return true;
760 default:
761 return false;
762 }
763}
764
17a52670
AS
765/* check_stack_read/write functions track spill/fill of registers,
766 * stack boundary and alignment are checked in check_mem_access()
767 */
58e2af8b
JK
768static int check_stack_write(struct bpf_verifier_state *state, int off,
769 int size, int value_regno)
17a52670 770{
dc503a8a 771 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
772 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
773 * so it's aligned access and [off, off + size) are within stack limits
774 */
17a52670
AS
775
776 if (value_regno >= 0 &&
1be7f75d 777 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
778
779 /* register containing pointer is being spilled into stack */
9c399760 780 if (size != BPF_REG_SIZE) {
17a52670
AS
781 verbose("invalid size of register spill\n");
782 return -EACCES;
783 }
784
17a52670 785 /* save register state */
dc503a8a
EC
786 state->spilled_regs[spi] = state->regs[value_regno];
787 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 788
9c399760
AS
789 for (i = 0; i < BPF_REG_SIZE; i++)
790 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
791 } else {
17a52670 792 /* regular write of data into stack */
dc503a8a 793 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
794
795 for (i = 0; i < size; i++)
796 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
797 }
798 return 0;
799}
800
dc503a8a
EC
801static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
802{
803 struct bpf_verifier_state *parent = state->parent;
804
805 while (parent) {
806 /* if read wasn't screened by an earlier write ... */
807 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
808 break;
809 /* ... then we depend on parent's value */
810 parent->spilled_regs[slot].live |= REG_LIVE_READ;
811 state = parent;
812 parent = state->parent;
813 }
814}
815
58e2af8b 816static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
817 int value_regno)
818{
9c399760 819 u8 *slot_type;
dc503a8a 820 int i, spi;
17a52670 821
9c399760 822 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 823
9c399760
AS
824 if (slot_type[0] == STACK_SPILL) {
825 if (size != BPF_REG_SIZE) {
17a52670
AS
826 verbose("invalid size of register spill\n");
827 return -EACCES;
828 }
9c399760
AS
829 for (i = 1; i < BPF_REG_SIZE; i++) {
830 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
831 verbose("corrupted spill memory\n");
832 return -EACCES;
833 }
834 }
835
dc503a8a
EC
836 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
837
838 if (value_regno >= 0) {
17a52670 839 /* restore register state from stack */
dc503a8a
EC
840 state->regs[value_regno] = state->spilled_regs[spi];
841 mark_stack_slot_read(state, spi);
842 }
17a52670
AS
843 return 0;
844 } else {
845 for (i = 0; i < size; i++) {
9c399760 846 if (slot_type[i] != STACK_MISC) {
17a52670
AS
847 verbose("invalid read from stack off %d+%d size %d\n",
848 off, i, size);
849 return -EACCES;
850 }
851 }
852 if (value_regno >= 0)
853 /* have read misc data from the stack */
f1174f77 854 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
855 return 0;
856 }
857}
858
859/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 860static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
861 int size)
862{
863 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
864
5722569b 865 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
866 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
867 map->value_size, off, size);
868 return -EACCES;
869 }
870 return 0;
871}
872
f1174f77
EC
873/* check read/write into a map element with possible variable offset */
874static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
875 int off, int size)
876{
877 struct bpf_verifier_state *state = &env->cur_state;
878 struct bpf_reg_state *reg = &state->regs[regno];
879 int err;
880
f1174f77
EC
881 /* We may have adjusted the register to this map value, so we
882 * need to try adding each of min_value and max_value to off
883 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
884 */
885 if (log_level)
886 print_verifier_state(state);
dbcfe5f7
GB
887 /* The minimum value is only important with signed
888 * comparisons where we can't assume the floor of a
889 * value is 0. If we are using signed variables for our
890 * index'es we need to make sure that whatever we use
891 * will have a set floor within our range.
892 */
b03c9f9f 893 if (reg->smin_value < 0) {
dbcfe5f7
GB
894 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
895 regno);
896 return -EACCES;
897 }
b03c9f9f 898 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 899 if (err) {
f1174f77 900 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
901 return err;
902 }
903
b03c9f9f
EC
904 /* If we haven't set a max value then we need to bail since we can't be
905 * sure we won't do bad things.
906 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 907 */
b03c9f9f 908 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
909 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
910 regno);
911 return -EACCES;
912 }
b03c9f9f 913 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
914 if (err)
915 verbose("R%d max value is outside of the array range\n", regno);
916 return err;
dbcfe5f7
GB
917}
918
969bf05e
AS
919#define MAX_PACKET_OFF 0xffff
920
58e2af8b 921static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
922 const struct bpf_call_arg_meta *meta,
923 enum bpf_access_type t)
4acf6c0b 924{
36bbef52 925 switch (env->prog->type) {
3a0af8fd
TG
926 case BPF_PROG_TYPE_LWT_IN:
927 case BPF_PROG_TYPE_LWT_OUT:
928 /* dst_input() and dst_output() can't write for now */
929 if (t == BPF_WRITE)
930 return false;
7e57fbb2 931 /* fallthrough */
36bbef52
DB
932 case BPF_PROG_TYPE_SCHED_CLS:
933 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 934 case BPF_PROG_TYPE_XDP:
3a0af8fd 935 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 936 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
937 if (meta)
938 return meta->pkt_access;
939
940 env->seen_direct_write = true;
4acf6c0b
BB
941 return true;
942 default:
943 return false;
944 }
945}
946
f1174f77
EC
947static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
948 int off, int size)
969bf05e 949{
58e2af8b
JK
950 struct bpf_reg_state *regs = env->cur_state.regs;
951 struct bpf_reg_state *reg = &regs[regno];
969bf05e 952
f1174f77 953 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
954 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
955 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
956 return -EACCES;
957 }
958 return 0;
959}
960
f1174f77
EC
961static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
962 int size)
963{
964 struct bpf_reg_state *regs = env->cur_state.regs;
965 struct bpf_reg_state *reg = &regs[regno];
966 int err;
967
968 /* We may have added a variable offset to the packet pointer; but any
969 * reg->range we have comes after that. We are only checking the fixed
970 * offset.
971 */
972
973 /* We don't allow negative numbers, because we aren't tracking enough
974 * detail to prove they're safe.
975 */
b03c9f9f 976 if (reg->smin_value < 0) {
f1174f77
EC
977 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
978 regno);
979 return -EACCES;
980 }
981 err = __check_packet_access(env, regno, off, size);
982 if (err) {
983 verbose("R%d offset is outside of the packet\n", regno);
984 return err;
985 }
986 return err;
987}
988
989/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 990static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 991 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 992{
f96da094
DB
993 struct bpf_insn_access_aux info = {
994 .reg_type = *reg_type,
995 };
31fd8581 996
13a27dfc
JK
997 /* for analyzer ctx accesses are already validated and converted */
998 if (env->analyzer_ops)
999 return 0;
1000
17a52670 1001 if (env->prog->aux->ops->is_valid_access &&
23994631 1002 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
1003 /* A non zero info.ctx_field_size indicates that this field is a
1004 * candidate for later verifier transformation to load the whole
1005 * field and then apply a mask when accessed with a narrower
1006 * access than actual ctx access size. A zero info.ctx_field_size
1007 * will only allow for whole field access and rejects any other
1008 * type of narrower access.
31fd8581 1009 */
f96da094 1010 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 1011 *reg_type = info.reg_type;
31fd8581 1012
32bbe007
AS
1013 /* remember the offset of last byte accessed in ctx */
1014 if (env->prog->aux->max_ctx_offset < off + size)
1015 env->prog->aux->max_ctx_offset = off + size;
17a52670 1016 return 0;
32bbe007 1017 }
17a52670
AS
1018
1019 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
1020 return -EACCES;
1021}
1022
4cabc5b1
DB
1023static bool __is_pointer_value(bool allow_ptr_leaks,
1024 const struct bpf_reg_state *reg)
1be7f75d 1025{
4cabc5b1 1026 if (allow_ptr_leaks)
1be7f75d
AS
1027 return false;
1028
f1174f77 1029 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1030}
1031
4cabc5b1
DB
1032static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1033{
1034 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
1035}
1036
79adffcd 1037static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 1038 int off, int size, bool strict)
969bf05e 1039{
f1174f77 1040 struct tnum reg_off;
e07b98d9 1041 int ip_align;
d1174416
DM
1042
1043 /* Byte size accesses are always allowed. */
1044 if (!strict || size == 1)
1045 return 0;
1046
e4eda884
DM
1047 /* For platforms that do not have a Kconfig enabling
1048 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1049 * NET_IP_ALIGN is universally set to '2'. And on platforms
1050 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1051 * to this code only in strict mode where we want to emulate
1052 * the NET_IP_ALIGN==2 checking. Therefore use an
1053 * unconditional IP align value of '2'.
e07b98d9 1054 */
e4eda884 1055 ip_align = 2;
f1174f77
EC
1056
1057 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1058 if (!tnum_is_aligned(reg_off, size)) {
1059 char tn_buf[48];
1060
1061 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1062 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1063 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1064 return -EACCES;
1065 }
79adffcd 1066
969bf05e
AS
1067 return 0;
1068}
1069
f1174f77
EC
1070static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1071 const char *pointer_desc,
1072 int off, int size, bool strict)
79adffcd 1073{
f1174f77
EC
1074 struct tnum reg_off;
1075
1076 /* Byte size accesses are always allowed. */
1077 if (!strict || size == 1)
1078 return 0;
1079
1080 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1081 if (!tnum_is_aligned(reg_off, size)) {
1082 char tn_buf[48];
1083
1084 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1085 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1086 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1087 return -EACCES;
1088 }
1089
969bf05e
AS
1090 return 0;
1091}
1092
e07b98d9
DM
1093static int check_ptr_alignment(struct bpf_verifier_env *env,
1094 const struct bpf_reg_state *reg,
79adffcd
DB
1095 int off, int size)
1096{
e07b98d9 1097 bool strict = env->strict_alignment;
f1174f77 1098 const char *pointer_desc = "";
d1174416 1099
79adffcd
DB
1100 switch (reg->type) {
1101 case PTR_TO_PACKET:
de8f3a83
DB
1102 case PTR_TO_PACKET_META:
1103 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1104 * right in front, treat it the very same way.
1105 */
d1174416 1106 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1107 case PTR_TO_MAP_VALUE:
1108 pointer_desc = "value ";
1109 break;
1110 case PTR_TO_CTX:
1111 pointer_desc = "context ";
1112 break;
1113 case PTR_TO_STACK:
1114 pointer_desc = "stack ";
1115 break;
79adffcd 1116 default:
f1174f77 1117 break;
79adffcd 1118 }
f1174f77 1119 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1120}
1121
17a52670
AS
1122/* check whether memory at (regno + off) is accessible for t = (read | write)
1123 * if t==write, value_regno is a register which value is stored into memory
1124 * if t==read, value_regno is a register which will receive the value from memory
1125 * if t==write && value_regno==-1, some unknown value is stored into memory
1126 * if t==read && value_regno==-1, don't care what we read from memory
1127 */
31fd8581 1128static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1129 int bpf_size, enum bpf_access_type t,
1130 int value_regno)
1131{
58e2af8b
JK
1132 struct bpf_verifier_state *state = &env->cur_state;
1133 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1134 int size, err = 0;
1135
1136 size = bpf_size_to_bytes(bpf_size);
1137 if (size < 0)
1138 return size;
1139
f1174f77 1140 /* alignment checks will add in reg->off themselves */
e07b98d9 1141 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1142 if (err)
1143 return err;
17a52670 1144
f1174f77
EC
1145 /* for access checks, reg->off is just part of off */
1146 off += reg->off;
1147
1148 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1149 if (t == BPF_WRITE && value_regno >= 0 &&
1150 is_pointer_value(env, value_regno)) {
1151 verbose("R%d leaks addr into map\n", value_regno);
1152 return -EACCES;
1153 }
48461135 1154
f1174f77 1155 err = check_map_access(env, regno, off, size);
17a52670 1156 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1157 mark_reg_unknown(state->regs, value_regno);
17a52670 1158
1a0dc1ac 1159 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1160 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1161
1be7f75d
AS
1162 if (t == BPF_WRITE && value_regno >= 0 &&
1163 is_pointer_value(env, value_regno)) {
1164 verbose("R%d leaks addr into ctx\n", value_regno);
1165 return -EACCES;
1166 }
f1174f77
EC
1167 /* ctx accesses must be at a fixed offset, so that we can
1168 * determine what type of data were returned.
1169 */
1170 if (!tnum_is_const(reg->var_off)) {
1171 char tn_buf[48];
1172
1173 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1174 verbose("variable ctx access var_off=%s off=%d size=%d",
1175 tn_buf, off, size);
1176 return -EACCES;
1177 }
1178 off += reg->var_off.value;
31fd8581 1179 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1180 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1181 /* ctx access returns either a scalar, or a
de8f3a83
DB
1182 * PTR_TO_PACKET[_META,_END]. In the latter
1183 * case, we know the offset is zero.
f1174f77
EC
1184 */
1185 if (reg_type == SCALAR_VALUE)
1186 mark_reg_unknown(state->regs, value_regno);
1187 else
1188 mark_reg_known_zero(state->regs, value_regno);
1189 state->regs[value_regno].id = 0;
1190 state->regs[value_regno].off = 0;
1191 state->regs[value_regno].range = 0;
1955351d 1192 state->regs[value_regno].type = reg_type;
969bf05e 1193 }
17a52670 1194
f1174f77
EC
1195 } else if (reg->type == PTR_TO_STACK) {
1196 /* stack accesses must be at a fixed offset, so that we can
1197 * determine what type of data were returned.
1198 * See check_stack_read().
1199 */
1200 if (!tnum_is_const(reg->var_off)) {
1201 char tn_buf[48];
1202
1203 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1204 verbose("variable stack access var_off=%s off=%d size=%d",
1205 tn_buf, off, size);
1206 return -EACCES;
1207 }
1208 off += reg->var_off.value;
17a52670
AS
1209 if (off >= 0 || off < -MAX_BPF_STACK) {
1210 verbose("invalid stack off=%d size=%d\n", off, size);
1211 return -EACCES;
1212 }
8726679a
AS
1213
1214 if (env->prog->aux->stack_depth < -off)
1215 env->prog->aux->stack_depth = -off;
1216
1be7f75d
AS
1217 if (t == BPF_WRITE) {
1218 if (!env->allow_ptr_leaks &&
1219 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1220 size != BPF_REG_SIZE) {
1221 verbose("attempt to corrupt spilled pointer on stack\n");
1222 return -EACCES;
1223 }
17a52670 1224 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1225 } else {
17a52670 1226 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1227 }
de8f3a83 1228 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1229 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1230 verbose("cannot write into packet\n");
1231 return -EACCES;
1232 }
4acf6c0b
BB
1233 if (t == BPF_WRITE && value_regno >= 0 &&
1234 is_pointer_value(env, value_regno)) {
1235 verbose("R%d leaks addr into packet\n", value_regno);
1236 return -EACCES;
1237 }
969bf05e
AS
1238 err = check_packet_access(env, regno, off, size);
1239 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1240 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1241 } else {
1242 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1243 regno, reg_type_str[reg->type]);
17a52670
AS
1244 return -EACCES;
1245 }
969bf05e 1246
f1174f77
EC
1247 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1248 state->regs[value_regno].type == SCALAR_VALUE) {
1249 /* b/h/w load zero-extends, mark upper bits as known 0 */
1250 state->regs[value_regno].var_off = tnum_cast(
1251 state->regs[value_regno].var_off, size);
b03c9f9f 1252 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1253 }
17a52670
AS
1254 return err;
1255}
1256
31fd8581 1257static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1258{
17a52670
AS
1259 int err;
1260
1261 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1262 insn->imm != 0) {
1263 verbose("BPF_XADD uses reserved fields\n");
1264 return -EINVAL;
1265 }
1266
1267 /* check src1 operand */
dc503a8a 1268 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1269 if (err)
1270 return err;
1271
1272 /* check src2 operand */
dc503a8a 1273 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1274 if (err)
1275 return err;
1276
6bdf6abc
DB
1277 if (is_pointer_value(env, insn->src_reg)) {
1278 verbose("R%d leaks addr into mem\n", insn->src_reg);
1279 return -EACCES;
1280 }
1281
17a52670 1282 /* check whether atomic_add can read the memory */
31fd8581 1283 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1284 BPF_SIZE(insn->code), BPF_READ, -1);
1285 if (err)
1286 return err;
1287
1288 /* check whether atomic_add can write into the same memory */
31fd8581 1289 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1290 BPF_SIZE(insn->code), BPF_WRITE, -1);
1291}
1292
f1174f77
EC
1293/* Does this register contain a constant zero? */
1294static bool register_is_null(struct bpf_reg_state reg)
1295{
1296 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1297}
1298
17a52670
AS
1299/* when register 'regno' is passed into function that will read 'access_size'
1300 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1301 * and all elements of stack are initialized.
1302 * Unlike most pointer bounds-checking functions, this one doesn't take an
1303 * 'off' argument, so it has to add in reg->off itself.
17a52670 1304 */
58e2af8b 1305static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1306 int access_size, bool zero_size_allowed,
1307 struct bpf_call_arg_meta *meta)
17a52670 1308{
58e2af8b
JK
1309 struct bpf_verifier_state *state = &env->cur_state;
1310 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1311 int off, i;
1312
8e2fe1d9 1313 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1314 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1315 if (zero_size_allowed && access_size == 0 &&
f1174f77 1316 register_is_null(regs[regno]))
8e2fe1d9
DB
1317 return 0;
1318
1319 verbose("R%d type=%s expected=%s\n", regno,
1320 reg_type_str[regs[regno].type],
1321 reg_type_str[PTR_TO_STACK]);
17a52670 1322 return -EACCES;
8e2fe1d9 1323 }
17a52670 1324
f1174f77
EC
1325 /* Only allow fixed-offset stack reads */
1326 if (!tnum_is_const(regs[regno].var_off)) {
1327 char tn_buf[48];
1328
1329 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1330 verbose("invalid variable stack read R%d var_off=%s\n",
1331 regno, tn_buf);
1332 }
1333 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1334 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1335 access_size <= 0) {
1336 verbose("invalid stack type R%d off=%d access_size=%d\n",
1337 regno, off, access_size);
1338 return -EACCES;
1339 }
1340
8726679a
AS
1341 if (env->prog->aux->stack_depth < -off)
1342 env->prog->aux->stack_depth = -off;
1343
435faee1
DB
1344 if (meta && meta->raw_mode) {
1345 meta->access_size = access_size;
1346 meta->regno = regno;
1347 return 0;
1348 }
1349
17a52670 1350 for (i = 0; i < access_size; i++) {
9c399760 1351 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1352 verbose("invalid indirect read from stack off %d+%d size %d\n",
1353 off, i, access_size);
1354 return -EACCES;
1355 }
1356 }
1357 return 0;
1358}
1359
06c1c049
GB
1360static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1361 int access_size, bool zero_size_allowed,
1362 struct bpf_call_arg_meta *meta)
1363{
f1174f77 1364 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1365
f1174f77 1366 switch (reg->type) {
06c1c049 1367 case PTR_TO_PACKET:
de8f3a83 1368 case PTR_TO_PACKET_META:
f1174f77 1369 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1370 case PTR_TO_MAP_VALUE:
f1174f77
EC
1371 return check_map_access(env, regno, reg->off, access_size);
1372 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1373 return check_stack_boundary(env, regno, access_size,
1374 zero_size_allowed, meta);
1375 }
1376}
1377
58e2af8b 1378static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1379 enum bpf_arg_type arg_type,
1380 struct bpf_call_arg_meta *meta)
17a52670 1381{
58e2af8b 1382 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1383 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1384 int err = 0;
1385
80f1d68c 1386 if (arg_type == ARG_DONTCARE)
17a52670
AS
1387 return 0;
1388
dc503a8a
EC
1389 err = check_reg_arg(env, regno, SRC_OP);
1390 if (err)
1391 return err;
17a52670 1392
1be7f75d
AS
1393 if (arg_type == ARG_ANYTHING) {
1394 if (is_pointer_value(env, regno)) {
1395 verbose("R%d leaks addr into helper function\n", regno);
1396 return -EACCES;
1397 }
80f1d68c 1398 return 0;
1be7f75d 1399 }
80f1d68c 1400
de8f3a83 1401 if (type_is_pkt_pointer(type) &&
3a0af8fd 1402 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1403 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1404 return -EACCES;
1405 }
1406
8e2fe1d9 1407 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1408 arg_type == ARG_PTR_TO_MAP_VALUE) {
1409 expected_type = PTR_TO_STACK;
de8f3a83
DB
1410 if (!type_is_pkt_pointer(type) &&
1411 type != expected_type)
6841de8b 1412 goto err_type;
39f19ebb
AS
1413 } else if (arg_type == ARG_CONST_SIZE ||
1414 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1415 expected_type = SCALAR_VALUE;
1416 if (type != expected_type)
6841de8b 1417 goto err_type;
17a52670
AS
1418 } else if (arg_type == ARG_CONST_MAP_PTR) {
1419 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1420 if (type != expected_type)
1421 goto err_type;
608cd71a
AS
1422 } else if (arg_type == ARG_PTR_TO_CTX) {
1423 expected_type = PTR_TO_CTX;
6841de8b
AS
1424 if (type != expected_type)
1425 goto err_type;
39f19ebb
AS
1426 } else if (arg_type == ARG_PTR_TO_MEM ||
1427 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1428 expected_type = PTR_TO_STACK;
1429 /* One exception here. In case function allows for NULL to be
f1174f77 1430 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1431 * happens during stack boundary checking.
1432 */
f1174f77 1433 if (register_is_null(*reg))
6841de8b 1434 /* final test in check_stack_boundary() */;
de8f3a83
DB
1435 else if (!type_is_pkt_pointer(type) &&
1436 type != PTR_TO_MAP_VALUE &&
f1174f77 1437 type != expected_type)
6841de8b 1438 goto err_type;
39f19ebb 1439 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1440 } else {
1441 verbose("unsupported arg_type %d\n", arg_type);
1442 return -EFAULT;
1443 }
1444
17a52670
AS
1445 if (arg_type == ARG_CONST_MAP_PTR) {
1446 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1447 meta->map_ptr = reg->map_ptr;
17a52670
AS
1448 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1449 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1450 * check that [key, key + map->key_size) are within
1451 * stack limits and initialized
1452 */
33ff9823 1453 if (!meta->map_ptr) {
17a52670
AS
1454 /* in function declaration map_ptr must come before
1455 * map_key, so that it's verified and known before
1456 * we have to check map_key here. Otherwise it means
1457 * that kernel subsystem misconfigured verifier
1458 */
1459 verbose("invalid map_ptr to access map->key\n");
1460 return -EACCES;
1461 }
de8f3a83 1462 if (type_is_pkt_pointer(type))
f1174f77 1463 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1464 meta->map_ptr->key_size);
1465 else
1466 err = check_stack_boundary(env, regno,
1467 meta->map_ptr->key_size,
1468 false, NULL);
17a52670
AS
1469 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1470 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1471 * check [value, value + map->value_size) validity
1472 */
33ff9823 1473 if (!meta->map_ptr) {
17a52670
AS
1474 /* kernel subsystem misconfigured verifier */
1475 verbose("invalid map_ptr to access map->value\n");
1476 return -EACCES;
1477 }
de8f3a83 1478 if (type_is_pkt_pointer(type))
f1174f77 1479 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1480 meta->map_ptr->value_size);
1481 else
1482 err = check_stack_boundary(env, regno,
1483 meta->map_ptr->value_size,
1484 false, NULL);
39f19ebb
AS
1485 } else if (arg_type == ARG_CONST_SIZE ||
1486 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1487 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1488
17a52670
AS
1489 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1490 * from stack pointer 'buf'. Check it
1491 * note: regno == len, regno - 1 == buf
1492 */
1493 if (regno == 0) {
1494 /* kernel subsystem misconfigured verifier */
39f19ebb 1495 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1496 return -EACCES;
1497 }
06c1c049 1498
f1174f77
EC
1499 /* The register is SCALAR_VALUE; the access check
1500 * happens using its boundaries.
06c1c049 1501 */
f1174f77
EC
1502
1503 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1504 /* For unprivileged variable accesses, disable raw
1505 * mode so that the program is required to
1506 * initialize all the memory that the helper could
1507 * just partially fill up.
1508 */
1509 meta = NULL;
1510
b03c9f9f 1511 if (reg->smin_value < 0) {
f1174f77
EC
1512 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1513 regno);
1514 return -EACCES;
1515 }
06c1c049 1516
b03c9f9f 1517 if (reg->umin_value == 0) {
f1174f77
EC
1518 err = check_helper_mem_access(env, regno - 1, 0,
1519 zero_size_allowed,
1520 meta);
06c1c049
GB
1521 if (err)
1522 return err;
06c1c049 1523 }
f1174f77 1524
b03c9f9f 1525 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1526 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1527 regno);
1528 return -EACCES;
1529 }
1530 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1531 reg->umax_value,
f1174f77 1532 zero_size_allowed, meta);
17a52670
AS
1533 }
1534
1535 return err;
6841de8b
AS
1536err_type:
1537 verbose("R%d type=%s expected=%s\n", regno,
1538 reg_type_str[type], reg_type_str[expected_type]);
1539 return -EACCES;
17a52670
AS
1540}
1541
35578d79
KX
1542static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1543{
35578d79
KX
1544 if (!map)
1545 return 0;
1546
6aff67c8
AS
1547 /* We need a two way check, first is from map perspective ... */
1548 switch (map->map_type) {
1549 case BPF_MAP_TYPE_PROG_ARRAY:
1550 if (func_id != BPF_FUNC_tail_call)
1551 goto error;
1552 break;
1553 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1554 if (func_id != BPF_FUNC_perf_event_read &&
1555 func_id != BPF_FUNC_perf_event_output)
1556 goto error;
1557 break;
1558 case BPF_MAP_TYPE_STACK_TRACE:
1559 if (func_id != BPF_FUNC_get_stackid)
1560 goto error;
1561 break;
4ed8ec52 1562 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1563 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1564 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1565 goto error;
1566 break;
546ac1ff
JF
1567 /* devmap returns a pointer to a live net_device ifindex that we cannot
1568 * allow to be modified from bpf side. So do not allow lookup elements
1569 * for now.
1570 */
1571 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1572 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1573 goto error;
1574 break;
56f668df 1575 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1576 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1577 if (func_id != BPF_FUNC_map_lookup_elem)
1578 goto error;
16a43625 1579 break;
174a79ff
JF
1580 case BPF_MAP_TYPE_SOCKMAP:
1581 if (func_id != BPF_FUNC_sk_redirect_map &&
1582 func_id != BPF_FUNC_sock_map_update &&
1583 func_id != BPF_FUNC_map_delete_elem)
1584 goto error;
1585 break;
6aff67c8
AS
1586 default:
1587 break;
1588 }
1589
1590 /* ... and second from the function itself. */
1591 switch (func_id) {
1592 case BPF_FUNC_tail_call:
1593 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1594 goto error;
1595 break;
1596 case BPF_FUNC_perf_event_read:
1597 case BPF_FUNC_perf_event_output:
1598 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1599 goto error;
1600 break;
1601 case BPF_FUNC_get_stackid:
1602 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1603 goto error;
1604 break;
60d20f91 1605 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1606 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1607 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1608 goto error;
1609 break;
97f91a7c
JF
1610 case BPF_FUNC_redirect_map:
1611 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1612 goto error;
1613 break;
174a79ff
JF
1614 case BPF_FUNC_sk_redirect_map:
1615 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1616 goto error;
1617 break;
1618 case BPF_FUNC_sock_map_update:
1619 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1620 goto error;
1621 break;
6aff67c8
AS
1622 default:
1623 break;
35578d79
KX
1624 }
1625
1626 return 0;
6aff67c8 1627error:
ebb676da
TG
1628 verbose("cannot pass map_type %d into func %s#%d\n",
1629 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1630 return -EINVAL;
35578d79
KX
1631}
1632
435faee1
DB
1633static int check_raw_mode(const struct bpf_func_proto *fn)
1634{
1635 int count = 0;
1636
39f19ebb 1637 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1638 count++;
39f19ebb 1639 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1640 count++;
39f19ebb 1641 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1642 count++;
39f19ebb 1643 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1644 count++;
39f19ebb 1645 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1646 count++;
1647
1648 return count > 1 ? -EINVAL : 0;
1649}
1650
de8f3a83
DB
1651/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1652 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1653 */
58e2af8b 1654static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1655{
58e2af8b
JK
1656 struct bpf_verifier_state *state = &env->cur_state;
1657 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1658 int i;
1659
1660 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1661 if (reg_is_pkt_pointer_any(&regs[i]))
f1174f77 1662 mark_reg_unknown(regs, i);
969bf05e
AS
1663
1664 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1665 if (state->stack_slot_type[i] != STACK_SPILL)
1666 continue;
1667 reg = &state->spilled_regs[i / BPF_REG_SIZE];
de8f3a83
DB
1668 if (reg_is_pkt_pointer_any(reg))
1669 __mark_reg_unknown(reg);
969bf05e
AS
1670 }
1671}
1672
81ed18ab 1673static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1674{
58e2af8b 1675 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1676 const struct bpf_func_proto *fn = NULL;
58e2af8b 1677 struct bpf_reg_state *regs = state->regs;
33ff9823 1678 struct bpf_call_arg_meta meta;
969bf05e 1679 bool changes_data;
17a52670
AS
1680 int i, err;
1681
1682 /* find function prototype */
1683 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1684 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1685 return -EINVAL;
1686 }
1687
1688 if (env->prog->aux->ops->get_func_proto)
1689 fn = env->prog->aux->ops->get_func_proto(func_id);
1690
1691 if (!fn) {
ebb676da 1692 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1693 return -EINVAL;
1694 }
1695
1696 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1697 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1698 verbose("cannot call GPL only function from proprietary program\n");
1699 return -EINVAL;
1700 }
1701
17bedab2 1702 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1703
33ff9823 1704 memset(&meta, 0, sizeof(meta));
36bbef52 1705 meta.pkt_access = fn->pkt_access;
33ff9823 1706
435faee1
DB
1707 /* We only support one arg being in raw mode at the moment, which
1708 * is sufficient for the helper functions we have right now.
1709 */
1710 err = check_raw_mode(fn);
1711 if (err) {
ebb676da
TG
1712 verbose("kernel subsystem misconfigured func %s#%d\n",
1713 func_id_name(func_id), func_id);
435faee1
DB
1714 return err;
1715 }
1716
17a52670 1717 /* check args */
33ff9823 1718 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1719 if (err)
1720 return err;
33ff9823 1721 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1722 if (err)
1723 return err;
33ff9823 1724 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1725 if (err)
1726 return err;
33ff9823 1727 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1728 if (err)
1729 return err;
33ff9823 1730 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1731 if (err)
1732 return err;
1733
435faee1
DB
1734 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1735 * is inferred from register state.
1736 */
1737 for (i = 0; i < meta.access_size; i++) {
31fd8581 1738 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1739 if (err)
1740 return err;
1741 }
1742
17a52670 1743 /* reset caller saved regs */
dc503a8a 1744 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 1745 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
1746 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1747 }
17a52670 1748
dc503a8a 1749 /* update return register (already marked as written above) */
17a52670 1750 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1751 /* sets type to SCALAR_VALUE */
1752 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1753 } else if (fn->ret_type == RET_VOID) {
1754 regs[BPF_REG_0].type = NOT_INIT;
1755 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1756 struct bpf_insn_aux_data *insn_aux;
1757
17a52670 1758 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1759 /* There is no offset yet applied, variable or fixed */
1760 mark_reg_known_zero(regs, BPF_REG_0);
1761 regs[BPF_REG_0].off = 0;
17a52670
AS
1762 /* remember map_ptr, so that check_map_access()
1763 * can check 'value_size' boundary of memory access
1764 * to map element returned from bpf_map_lookup_elem()
1765 */
33ff9823 1766 if (meta.map_ptr == NULL) {
17a52670
AS
1767 verbose("kernel subsystem misconfigured verifier\n");
1768 return -EINVAL;
1769 }
33ff9823 1770 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1771 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1772 insn_aux = &env->insn_aux_data[insn_idx];
1773 if (!insn_aux->map_ptr)
1774 insn_aux->map_ptr = meta.map_ptr;
1775 else if (insn_aux->map_ptr != meta.map_ptr)
1776 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1777 } else {
ebb676da
TG
1778 verbose("unknown return type %d of func %s#%d\n",
1779 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1780 return -EINVAL;
1781 }
04fd61ab 1782
33ff9823 1783 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1784 if (err)
1785 return err;
04fd61ab 1786
969bf05e
AS
1787 if (changes_data)
1788 clear_all_pkt_pointers(env);
1789 return 0;
1790}
1791
f1174f77
EC
1792static void coerce_reg_to_32(struct bpf_reg_state *reg)
1793{
f1174f77
EC
1794 /* clear high 32 bits */
1795 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1796 /* Update bounds */
1797 __update_reg_bounds(reg);
1798}
1799
1800static bool signed_add_overflows(s64 a, s64 b)
1801{
1802 /* Do the add in u64, where overflow is well-defined */
1803 s64 res = (s64)((u64)a + (u64)b);
1804
1805 if (b < 0)
1806 return res > a;
1807 return res < a;
1808}
1809
1810static bool signed_sub_overflows(s64 a, s64 b)
1811{
1812 /* Do the sub in u64, where overflow is well-defined */
1813 s64 res = (s64)((u64)a - (u64)b);
1814
1815 if (b < 0)
1816 return res < a;
1817 return res > a;
969bf05e
AS
1818}
1819
f1174f77 1820/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1821 * Caller should also handle BPF_MOV case separately.
1822 * If we return -EACCES, caller may want to try again treating pointer as a
1823 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1824 */
1825static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1826 struct bpf_insn *insn,
1827 const struct bpf_reg_state *ptr_reg,
1828 const struct bpf_reg_state *off_reg)
969bf05e 1829{
f1174f77
EC
1830 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1831 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1832 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1833 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1834 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1835 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1836 u8 opcode = BPF_OP(insn->code);
f1174f77 1837 u32 dst = insn->dst_reg;
969bf05e 1838
f1174f77 1839 dst_reg = &regs[dst];
969bf05e 1840
b03c9f9f 1841 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1842 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1843 verbose("verifier internal error: known but bad sbounds\n");
1844 return -EINVAL;
1845 }
1846 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1847 print_verifier_state(&env->cur_state);
1848 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1849 return -EINVAL;
1850 }
1851
1852 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1853 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1854 if (!env->allow_ptr_leaks)
1855 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1856 dst);
1857 return -EACCES;
969bf05e
AS
1858 }
1859
f1174f77
EC
1860 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1861 if (!env->allow_ptr_leaks)
1862 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1863 dst);
1864 return -EACCES;
1865 }
1866 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1867 if (!env->allow_ptr_leaks)
1868 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1869 dst);
1870 return -EACCES;
1871 }
1872 if (ptr_reg->type == PTR_TO_PACKET_END) {
1873 if (!env->allow_ptr_leaks)
1874 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1875 dst);
1876 return -EACCES;
1877 }
1878
1879 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1880 * The id may be overwritten later if we create a new variable offset.
969bf05e 1881 */
f1174f77
EC
1882 dst_reg->type = ptr_reg->type;
1883 dst_reg->id = ptr_reg->id;
969bf05e 1884
f1174f77
EC
1885 switch (opcode) {
1886 case BPF_ADD:
1887 /* We can take a fixed offset as long as it doesn't overflow
1888 * the s32 'off' field
969bf05e 1889 */
b03c9f9f
EC
1890 if (known && (ptr_reg->off + smin_val ==
1891 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1892 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1893 dst_reg->smin_value = smin_ptr;
1894 dst_reg->smax_value = smax_ptr;
1895 dst_reg->umin_value = umin_ptr;
1896 dst_reg->umax_value = umax_ptr;
f1174f77 1897 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1898 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1899 dst_reg->range = ptr_reg->range;
1900 break;
1901 }
f1174f77
EC
1902 /* A new variable offset is created. Note that off_reg->off
1903 * == 0, since it's a scalar.
1904 * dst_reg gets the pointer type and since some positive
1905 * integer value was added to the pointer, give it a new 'id'
1906 * if it's a PTR_TO_PACKET.
1907 * this creates a new 'base' pointer, off_reg (variable) gets
1908 * added into the variable offset, and we copy the fixed offset
1909 * from ptr_reg.
969bf05e 1910 */
b03c9f9f
EC
1911 if (signed_add_overflows(smin_ptr, smin_val) ||
1912 signed_add_overflows(smax_ptr, smax_val)) {
1913 dst_reg->smin_value = S64_MIN;
1914 dst_reg->smax_value = S64_MAX;
1915 } else {
1916 dst_reg->smin_value = smin_ptr + smin_val;
1917 dst_reg->smax_value = smax_ptr + smax_val;
1918 }
1919 if (umin_ptr + umin_val < umin_ptr ||
1920 umax_ptr + umax_val < umax_ptr) {
1921 dst_reg->umin_value = 0;
1922 dst_reg->umax_value = U64_MAX;
1923 } else {
1924 dst_reg->umin_value = umin_ptr + umin_val;
1925 dst_reg->umax_value = umax_ptr + umax_val;
1926 }
f1174f77
EC
1927 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1928 dst_reg->off = ptr_reg->off;
de8f3a83 1929 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1930 dst_reg->id = ++env->id_gen;
1931 /* something was added to pkt_ptr, set range to zero */
1932 dst_reg->range = 0;
1933 }
1934 break;
1935 case BPF_SUB:
1936 if (dst_reg == off_reg) {
1937 /* scalar -= pointer. Creates an unknown scalar */
1938 if (!env->allow_ptr_leaks)
1939 verbose("R%d tried to subtract pointer from scalar\n",
1940 dst);
1941 return -EACCES;
1942 }
1943 /* We don't allow subtraction from FP, because (according to
1944 * test_verifier.c test "invalid fp arithmetic", JITs might not
1945 * be able to deal with it.
969bf05e 1946 */
f1174f77
EC
1947 if (ptr_reg->type == PTR_TO_STACK) {
1948 if (!env->allow_ptr_leaks)
1949 verbose("R%d subtraction from stack pointer prohibited\n",
1950 dst);
1951 return -EACCES;
1952 }
b03c9f9f
EC
1953 if (known && (ptr_reg->off - smin_val ==
1954 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1955 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1956 dst_reg->smin_value = smin_ptr;
1957 dst_reg->smax_value = smax_ptr;
1958 dst_reg->umin_value = umin_ptr;
1959 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1960 dst_reg->var_off = ptr_reg->var_off;
1961 dst_reg->id = ptr_reg->id;
b03c9f9f 1962 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1963 dst_reg->range = ptr_reg->range;
1964 break;
1965 }
f1174f77
EC
1966 /* A new variable offset is created. If the subtrahend is known
1967 * nonnegative, then any reg->range we had before is still good.
969bf05e 1968 */
b03c9f9f
EC
1969 if (signed_sub_overflows(smin_ptr, smax_val) ||
1970 signed_sub_overflows(smax_ptr, smin_val)) {
1971 /* Overflow possible, we know nothing */
1972 dst_reg->smin_value = S64_MIN;
1973 dst_reg->smax_value = S64_MAX;
1974 } else {
1975 dst_reg->smin_value = smin_ptr - smax_val;
1976 dst_reg->smax_value = smax_ptr - smin_val;
1977 }
1978 if (umin_ptr < umax_val) {
1979 /* Overflow possible, we know nothing */
1980 dst_reg->umin_value = 0;
1981 dst_reg->umax_value = U64_MAX;
1982 } else {
1983 /* Cannot overflow (as long as bounds are consistent) */
1984 dst_reg->umin_value = umin_ptr - umax_val;
1985 dst_reg->umax_value = umax_ptr - umin_val;
1986 }
f1174f77
EC
1987 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1988 dst_reg->off = ptr_reg->off;
de8f3a83 1989 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1990 dst_reg->id = ++env->id_gen;
1991 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1992 if (smin_val < 0)
f1174f77 1993 dst_reg->range = 0;
43188702 1994 }
f1174f77
EC
1995 break;
1996 case BPF_AND:
1997 case BPF_OR:
1998 case BPF_XOR:
1999 /* bitwise ops on pointers are troublesome, prohibit for now.
2000 * (However, in principle we could allow some cases, e.g.
2001 * ptr &= ~3 which would reduce min_value by 3.)
2002 */
2003 if (!env->allow_ptr_leaks)
2004 verbose("R%d bitwise operator %s on pointer prohibited\n",
2005 dst, bpf_alu_string[opcode >> 4]);
2006 return -EACCES;
2007 default:
2008 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2009 if (!env->allow_ptr_leaks)
2010 verbose("R%d pointer arithmetic with %s operator prohibited\n",
2011 dst, bpf_alu_string[opcode >> 4]);
2012 return -EACCES;
43188702
JF
2013 }
2014
b03c9f9f
EC
2015 __update_reg_bounds(dst_reg);
2016 __reg_deduce_bounds(dst_reg);
2017 __reg_bound_offset(dst_reg);
43188702
JF
2018 return 0;
2019}
2020
f1174f77
EC
2021static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2022 struct bpf_insn *insn,
2023 struct bpf_reg_state *dst_reg,
2024 struct bpf_reg_state src_reg)
969bf05e 2025{
58e2af8b 2026 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 2027 u8 opcode = BPF_OP(insn->code);
f1174f77 2028 bool src_known, dst_known;
b03c9f9f
EC
2029 s64 smin_val, smax_val;
2030 u64 umin_val, umax_val;
48461135 2031
f1174f77
EC
2032 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2033 /* 32-bit ALU ops are (32,32)->64 */
2034 coerce_reg_to_32(dst_reg);
2035 coerce_reg_to_32(&src_reg);
9305706c 2036 }
b03c9f9f
EC
2037 smin_val = src_reg.smin_value;
2038 smax_val = src_reg.smax_value;
2039 umin_val = src_reg.umin_value;
2040 umax_val = src_reg.umax_value;
f1174f77
EC
2041 src_known = tnum_is_const(src_reg.var_off);
2042 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2043
48461135
JB
2044 switch (opcode) {
2045 case BPF_ADD:
b03c9f9f
EC
2046 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2047 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2048 dst_reg->smin_value = S64_MIN;
2049 dst_reg->smax_value = S64_MAX;
2050 } else {
2051 dst_reg->smin_value += smin_val;
2052 dst_reg->smax_value += smax_val;
2053 }
2054 if (dst_reg->umin_value + umin_val < umin_val ||
2055 dst_reg->umax_value + umax_val < umax_val) {
2056 dst_reg->umin_value = 0;
2057 dst_reg->umax_value = U64_MAX;
2058 } else {
2059 dst_reg->umin_value += umin_val;
2060 dst_reg->umax_value += umax_val;
2061 }
f1174f77 2062 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2063 break;
2064 case BPF_SUB:
b03c9f9f
EC
2065 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2066 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2067 /* Overflow possible, we know nothing */
2068 dst_reg->smin_value = S64_MIN;
2069 dst_reg->smax_value = S64_MAX;
2070 } else {
2071 dst_reg->smin_value -= smax_val;
2072 dst_reg->smax_value -= smin_val;
2073 }
2074 if (dst_reg->umin_value < umax_val) {
2075 /* Overflow possible, we know nothing */
2076 dst_reg->umin_value = 0;
2077 dst_reg->umax_value = U64_MAX;
2078 } else {
2079 /* Cannot overflow (as long as bounds are consistent) */
2080 dst_reg->umin_value -= umax_val;
2081 dst_reg->umax_value -= umin_val;
2082 }
f1174f77 2083 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2084 break;
2085 case BPF_MUL:
b03c9f9f
EC
2086 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2087 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2088 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2089 __mark_reg_unbounded(dst_reg);
2090 __update_reg_bounds(dst_reg);
f1174f77
EC
2091 break;
2092 }
b03c9f9f
EC
2093 /* Both values are positive, so we can work with unsigned and
2094 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2095 */
b03c9f9f
EC
2096 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2097 /* Potential overflow, we know nothing */
2098 __mark_reg_unbounded(dst_reg);
2099 /* (except what we can learn from the var_off) */
2100 __update_reg_bounds(dst_reg);
2101 break;
2102 }
2103 dst_reg->umin_value *= umin_val;
2104 dst_reg->umax_value *= umax_val;
2105 if (dst_reg->umax_value > S64_MAX) {
2106 /* Overflow possible, we know nothing */
2107 dst_reg->smin_value = S64_MIN;
2108 dst_reg->smax_value = S64_MAX;
2109 } else {
2110 dst_reg->smin_value = dst_reg->umin_value;
2111 dst_reg->smax_value = dst_reg->umax_value;
2112 }
48461135
JB
2113 break;
2114 case BPF_AND:
f1174f77 2115 if (src_known && dst_known) {
b03c9f9f
EC
2116 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2117 src_reg.var_off.value);
f1174f77
EC
2118 break;
2119 }
b03c9f9f
EC
2120 /* We get our minimum from the var_off, since that's inherently
2121 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2122 */
f1174f77 2123 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2124 dst_reg->umin_value = dst_reg->var_off.value;
2125 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2126 if (dst_reg->smin_value < 0 || smin_val < 0) {
2127 /* Lose signed bounds when ANDing negative numbers,
2128 * ain't nobody got time for that.
2129 */
2130 dst_reg->smin_value = S64_MIN;
2131 dst_reg->smax_value = S64_MAX;
2132 } else {
2133 /* ANDing two positives gives a positive, so safe to
2134 * cast result into s64.
2135 */
2136 dst_reg->smin_value = dst_reg->umin_value;
2137 dst_reg->smax_value = dst_reg->umax_value;
2138 }
2139 /* We may learn something more from the var_off */
2140 __update_reg_bounds(dst_reg);
f1174f77
EC
2141 break;
2142 case BPF_OR:
2143 if (src_known && dst_known) {
b03c9f9f
EC
2144 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2145 src_reg.var_off.value);
f1174f77
EC
2146 break;
2147 }
b03c9f9f
EC
2148 /* We get our maximum from the var_off, and our minimum is the
2149 * maximum of the operands' minima
f1174f77
EC
2150 */
2151 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2152 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2153 dst_reg->umax_value = dst_reg->var_off.value |
2154 dst_reg->var_off.mask;
2155 if (dst_reg->smin_value < 0 || smin_val < 0) {
2156 /* Lose signed bounds when ORing negative numbers,
2157 * ain't nobody got time for that.
2158 */
2159 dst_reg->smin_value = S64_MIN;
2160 dst_reg->smax_value = S64_MAX;
f1174f77 2161 } else {
b03c9f9f
EC
2162 /* ORing two positives gives a positive, so safe to
2163 * cast result into s64.
2164 */
2165 dst_reg->smin_value = dst_reg->umin_value;
2166 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2167 }
b03c9f9f
EC
2168 /* We may learn something more from the var_off */
2169 __update_reg_bounds(dst_reg);
48461135
JB
2170 break;
2171 case BPF_LSH:
b03c9f9f
EC
2172 if (umax_val > 63) {
2173 /* Shifts greater than 63 are undefined. This includes
2174 * shifts by a negative number.
2175 */
f1174f77
EC
2176 mark_reg_unknown(regs, insn->dst_reg);
2177 break;
2178 }
b03c9f9f
EC
2179 /* We lose all sign bit information (except what we can pick
2180 * up from var_off)
48461135 2181 */
b03c9f9f
EC
2182 dst_reg->smin_value = S64_MIN;
2183 dst_reg->smax_value = S64_MAX;
2184 /* If we might shift our top bit out, then we know nothing */
2185 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2186 dst_reg->umin_value = 0;
2187 dst_reg->umax_value = U64_MAX;
d1174416 2188 } else {
b03c9f9f
EC
2189 dst_reg->umin_value <<= umin_val;
2190 dst_reg->umax_value <<= umax_val;
d1174416 2191 }
b03c9f9f
EC
2192 if (src_known)
2193 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2194 else
2195 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2196 /* We may learn something more from the var_off */
2197 __update_reg_bounds(dst_reg);
48461135
JB
2198 break;
2199 case BPF_RSH:
b03c9f9f
EC
2200 if (umax_val > 63) {
2201 /* Shifts greater than 63 are undefined. This includes
2202 * shifts by a negative number.
2203 */
f1174f77
EC
2204 mark_reg_unknown(regs, insn->dst_reg);
2205 break;
2206 }
2207 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2208 if (dst_reg->smin_value < 0) {
2209 if (umin_val) {
f1174f77 2210 /* Sign bit will be cleared */
b03c9f9f
EC
2211 dst_reg->smin_value = 0;
2212 } else {
2213 /* Lost sign bit information */
2214 dst_reg->smin_value = S64_MIN;
2215 dst_reg->smax_value = S64_MAX;
2216 }
d1174416 2217 } else {
b03c9f9f
EC
2218 dst_reg->smin_value =
2219 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2220 }
f1174f77 2221 if (src_known)
b03c9f9f
EC
2222 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2223 umin_val);
f1174f77 2224 else
b03c9f9f
EC
2225 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2226 dst_reg->umin_value >>= umax_val;
2227 dst_reg->umax_value >>= umin_val;
2228 /* We may learn something more from the var_off */
2229 __update_reg_bounds(dst_reg);
48461135
JB
2230 break;
2231 default:
f1174f77 2232 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2233 break;
2234 }
2235
b03c9f9f
EC
2236 __reg_deduce_bounds(dst_reg);
2237 __reg_bound_offset(dst_reg);
f1174f77
EC
2238 return 0;
2239}
2240
2241/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2242 * and var_off.
2243 */
2244static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2245 struct bpf_insn *insn)
2246{
2247 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2248 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2249 u8 opcode = BPF_OP(insn->code);
2250 int rc;
2251
2252 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2253 src_reg = NULL;
2254 if (dst_reg->type != SCALAR_VALUE)
2255 ptr_reg = dst_reg;
2256 if (BPF_SRC(insn->code) == BPF_X) {
2257 src_reg = &regs[insn->src_reg];
f1174f77
EC
2258 if (src_reg->type != SCALAR_VALUE) {
2259 if (dst_reg->type != SCALAR_VALUE) {
2260 /* Combining two pointers by any ALU op yields
2261 * an arbitrary scalar.
2262 */
2263 if (!env->allow_ptr_leaks) {
2264 verbose("R%d pointer %s pointer prohibited\n",
2265 insn->dst_reg,
2266 bpf_alu_string[opcode >> 4]);
2267 return -EACCES;
2268 }
2269 mark_reg_unknown(regs, insn->dst_reg);
2270 return 0;
2271 } else {
2272 /* scalar += pointer
2273 * This is legal, but we have to reverse our
2274 * src/dest handling in computing the range
2275 */
2276 rc = adjust_ptr_min_max_vals(env, insn,
2277 src_reg, dst_reg);
2278 if (rc == -EACCES && env->allow_ptr_leaks) {
2279 /* scalar += unknown scalar */
2280 __mark_reg_unknown(&off_reg);
2281 return adjust_scalar_min_max_vals(
2282 env, insn,
2283 dst_reg, off_reg);
2284 }
2285 return rc;
2286 }
2287 } else if (ptr_reg) {
2288 /* pointer += scalar */
2289 rc = adjust_ptr_min_max_vals(env, insn,
2290 dst_reg, src_reg);
2291 if (rc == -EACCES && env->allow_ptr_leaks) {
2292 /* unknown scalar += scalar */
2293 __mark_reg_unknown(dst_reg);
2294 return adjust_scalar_min_max_vals(
2295 env, insn, dst_reg, *src_reg);
2296 }
2297 return rc;
2298 }
2299 } else {
2300 /* Pretend the src is a reg with a known value, since we only
2301 * need to be able to read from this state.
2302 */
2303 off_reg.type = SCALAR_VALUE;
b03c9f9f 2304 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2305 src_reg = &off_reg;
f1174f77
EC
2306 if (ptr_reg) { /* pointer += K */
2307 rc = adjust_ptr_min_max_vals(env, insn,
2308 ptr_reg, src_reg);
2309 if (rc == -EACCES && env->allow_ptr_leaks) {
2310 /* unknown scalar += K */
2311 __mark_reg_unknown(dst_reg);
2312 return adjust_scalar_min_max_vals(
2313 env, insn, dst_reg, off_reg);
2314 }
2315 return rc;
2316 }
2317 }
2318
2319 /* Got here implies adding two SCALAR_VALUEs */
2320 if (WARN_ON_ONCE(ptr_reg)) {
2321 print_verifier_state(&env->cur_state);
2322 verbose("verifier internal error: unexpected ptr_reg\n");
2323 return -EINVAL;
2324 }
2325 if (WARN_ON(!src_reg)) {
2326 print_verifier_state(&env->cur_state);
2327 verbose("verifier internal error: no src_reg\n");
2328 return -EINVAL;
2329 }
2330 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2331}
2332
17a52670 2333/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2334static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2335{
f1174f77 2336 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2337 u8 opcode = BPF_OP(insn->code);
2338 int err;
2339
2340 if (opcode == BPF_END || opcode == BPF_NEG) {
2341 if (opcode == BPF_NEG) {
2342 if (BPF_SRC(insn->code) != 0 ||
2343 insn->src_reg != BPF_REG_0 ||
2344 insn->off != 0 || insn->imm != 0) {
2345 verbose("BPF_NEG uses reserved fields\n");
2346 return -EINVAL;
2347 }
2348 } else {
2349 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2350 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2351 BPF_CLASS(insn->code) == BPF_ALU64) {
17a52670
AS
2352 verbose("BPF_END uses reserved fields\n");
2353 return -EINVAL;
2354 }
2355 }
2356
2357 /* check src operand */
dc503a8a 2358 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2359 if (err)
2360 return err;
2361
1be7f75d
AS
2362 if (is_pointer_value(env, insn->dst_reg)) {
2363 verbose("R%d pointer arithmetic prohibited\n",
2364 insn->dst_reg);
2365 return -EACCES;
2366 }
2367
17a52670 2368 /* check dest operand */
dc503a8a 2369 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2370 if (err)
2371 return err;
2372
2373 } else if (opcode == BPF_MOV) {
2374
2375 if (BPF_SRC(insn->code) == BPF_X) {
2376 if (insn->imm != 0 || insn->off != 0) {
2377 verbose("BPF_MOV uses reserved fields\n");
2378 return -EINVAL;
2379 }
2380
2381 /* check src operand */
dc503a8a 2382 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2383 if (err)
2384 return err;
2385 } else {
2386 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2387 verbose("BPF_MOV uses reserved fields\n");
2388 return -EINVAL;
2389 }
2390 }
2391
2392 /* check dest operand */
dc503a8a 2393 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2394 if (err)
2395 return err;
2396
2397 if (BPF_SRC(insn->code) == BPF_X) {
2398 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2399 /* case: R1 = R2
2400 * copy register state to dest reg
2401 */
2402 regs[insn->dst_reg] = regs[insn->src_reg];
2403 } else {
f1174f77 2404 /* R1 = (u32) R2 */
1be7f75d
AS
2405 if (is_pointer_value(env, insn->src_reg)) {
2406 verbose("R%d partial copy of pointer\n",
2407 insn->src_reg);
2408 return -EACCES;
2409 }
f1174f77 2410 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2411 /* high 32 bits are known zero. */
f1174f77
EC
2412 regs[insn->dst_reg].var_off = tnum_cast(
2413 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2414 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2415 }
2416 } else {
2417 /* case: R = imm
2418 * remember the value we stored into this reg
2419 */
f1174f77 2420 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2421 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2422 }
2423
2424 } else if (opcode > BPF_END) {
2425 verbose("invalid BPF_ALU opcode %x\n", opcode);
2426 return -EINVAL;
2427
2428 } else { /* all other ALU ops: and, sub, xor, add, ... */
2429
17a52670
AS
2430 if (BPF_SRC(insn->code) == BPF_X) {
2431 if (insn->imm != 0 || insn->off != 0) {
2432 verbose("BPF_ALU uses reserved fields\n");
2433 return -EINVAL;
2434 }
2435 /* check src1 operand */
dc503a8a 2436 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2437 if (err)
2438 return err;
2439 } else {
2440 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2441 verbose("BPF_ALU uses reserved fields\n");
2442 return -EINVAL;
2443 }
2444 }
2445
2446 /* check src2 operand */
dc503a8a 2447 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2448 if (err)
2449 return err;
2450
2451 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2452 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2453 verbose("div by zero\n");
2454 return -EINVAL;
2455 }
2456
229394e8
RV
2457 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2458 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2459 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2460
2461 if (insn->imm < 0 || insn->imm >= size) {
2462 verbose("invalid shift %d\n", insn->imm);
2463 return -EINVAL;
2464 }
2465 }
2466
1a0dc1ac 2467 /* check dest operand */
dc503a8a 2468 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2469 if (err)
2470 return err;
2471
f1174f77 2472 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2473 }
2474
2475 return 0;
2476}
2477
58e2af8b 2478static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83
DB
2479 struct bpf_reg_state *dst_reg,
2480 enum bpf_reg_type type)
969bf05e 2481{
58e2af8b 2482 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2483 int i;
2d2be8ca 2484
f1174f77
EC
2485 if (dst_reg->off < 0)
2486 /* This doesn't give us any range */
2487 return;
2488
b03c9f9f
EC
2489 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2490 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2491 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2492 * than pkt_end, but that's because it's also less than pkt.
2493 */
2494 return;
2495
b4e432f1 2496 /* LLVM can generate four kind of checks:
2d2be8ca 2497 *
b4e432f1 2498 * Type 1/2:
2d2be8ca
DB
2499 *
2500 * r2 = r3;
2501 * r2 += 8;
2502 * if (r2 > pkt_end) goto <handle exception>
2503 * <access okay>
2504 *
b4e432f1
DB
2505 * r2 = r3;
2506 * r2 += 8;
2507 * if (r2 < pkt_end) goto <access okay>
2508 * <handle exception>
2509 *
2d2be8ca
DB
2510 * Where:
2511 * r2 == dst_reg, pkt_end == src_reg
2512 * r2=pkt(id=n,off=8,r=0)
2513 * r3=pkt(id=n,off=0,r=0)
2514 *
b4e432f1 2515 * Type 3/4:
2d2be8ca
DB
2516 *
2517 * r2 = r3;
2518 * r2 += 8;
2519 * if (pkt_end >= r2) goto <access okay>
2520 * <handle exception>
2521 *
b4e432f1
DB
2522 * r2 = r3;
2523 * r2 += 8;
2524 * if (pkt_end <= r2) goto <handle exception>
2525 * <access okay>
2526 *
2d2be8ca
DB
2527 * Where:
2528 * pkt_end == dst_reg, r2 == src_reg
2529 * r2=pkt(id=n,off=8,r=0)
2530 * r3=pkt(id=n,off=0,r=0)
2531 *
2532 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2533 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2534 */
2d2be8ca 2535
f1174f77
EC
2536 /* If our ids match, then we must have the same max_value. And we
2537 * don't care about the other reg's fixed offset, since if it's too big
2538 * the range won't allow anything.
2539 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2540 */
969bf05e 2541 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2542 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2543 /* keep the maximum range already checked */
f1174f77 2544 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2545
2546 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2547 if (state->stack_slot_type[i] != STACK_SPILL)
2548 continue;
2549 reg = &state->spilled_regs[i / BPF_REG_SIZE];
de8f3a83 2550 if (reg->type == type && reg->id == dst_reg->id)
f1174f77 2551 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2552 }
2553}
2554
48461135
JB
2555/* Adjusts the register min/max values in the case that the dst_reg is the
2556 * variable register that we are working on, and src_reg is a constant or we're
2557 * simply doing a BPF_K check.
f1174f77 2558 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2559 */
2560static void reg_set_min_max(struct bpf_reg_state *true_reg,
2561 struct bpf_reg_state *false_reg, u64 val,
2562 u8 opcode)
2563{
f1174f77
EC
2564 /* If the dst_reg is a pointer, we can't learn anything about its
2565 * variable offset from the compare (unless src_reg were a pointer into
2566 * the same object, but we don't bother with that.
2567 * Since false_reg and true_reg have the same type by construction, we
2568 * only need to check one of them for pointerness.
2569 */
2570 if (__is_pointer_value(false, false_reg))
2571 return;
4cabc5b1 2572
48461135
JB
2573 switch (opcode) {
2574 case BPF_JEQ:
2575 /* If this is false then we know nothing Jon Snow, but if it is
2576 * true then we know for sure.
2577 */
b03c9f9f 2578 __mark_reg_known(true_reg, val);
48461135
JB
2579 break;
2580 case BPF_JNE:
2581 /* If this is true we know nothing Jon Snow, but if it is false
2582 * we know the value for sure;
2583 */
b03c9f9f 2584 __mark_reg_known(false_reg, val);
48461135
JB
2585 break;
2586 case BPF_JGT:
b03c9f9f
EC
2587 false_reg->umax_value = min(false_reg->umax_value, val);
2588 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2589 break;
48461135 2590 case BPF_JSGT:
b03c9f9f
EC
2591 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2592 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2593 break;
b4e432f1
DB
2594 case BPF_JLT:
2595 false_reg->umin_value = max(false_reg->umin_value, val);
2596 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2597 break;
2598 case BPF_JSLT:
2599 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2600 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2601 break;
48461135 2602 case BPF_JGE:
b03c9f9f
EC
2603 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2604 true_reg->umin_value = max(true_reg->umin_value, val);
2605 break;
48461135 2606 case BPF_JSGE:
b03c9f9f
EC
2607 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2608 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2609 break;
b4e432f1
DB
2610 case BPF_JLE:
2611 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2612 true_reg->umax_value = min(true_reg->umax_value, val);
2613 break;
2614 case BPF_JSLE:
2615 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2616 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2617 break;
48461135
JB
2618 default:
2619 break;
2620 }
2621
b03c9f9f
EC
2622 __reg_deduce_bounds(false_reg);
2623 __reg_deduce_bounds(true_reg);
2624 /* We might have learned some bits from the bounds. */
2625 __reg_bound_offset(false_reg);
2626 __reg_bound_offset(true_reg);
2627 /* Intersecting with the old var_off might have improved our bounds
2628 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2629 * then new var_off is (0; 0x7f...fc) which improves our umax.
2630 */
2631 __update_reg_bounds(false_reg);
2632 __update_reg_bounds(true_reg);
48461135
JB
2633}
2634
f1174f77
EC
2635/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2636 * the variable reg.
48461135
JB
2637 */
2638static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2639 struct bpf_reg_state *false_reg, u64 val,
2640 u8 opcode)
2641{
f1174f77
EC
2642 if (__is_pointer_value(false, false_reg))
2643 return;
4cabc5b1 2644
48461135
JB
2645 switch (opcode) {
2646 case BPF_JEQ:
2647 /* If this is false then we know nothing Jon Snow, but if it is
2648 * true then we know for sure.
2649 */
b03c9f9f 2650 __mark_reg_known(true_reg, val);
48461135
JB
2651 break;
2652 case BPF_JNE:
2653 /* If this is true we know nothing Jon Snow, but if it is false
2654 * we know the value for sure;
2655 */
b03c9f9f 2656 __mark_reg_known(false_reg, val);
48461135
JB
2657 break;
2658 case BPF_JGT:
b03c9f9f
EC
2659 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2660 false_reg->umin_value = max(false_reg->umin_value, val);
2661 break;
48461135 2662 case BPF_JSGT:
b03c9f9f
EC
2663 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2664 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2665 break;
b4e432f1
DB
2666 case BPF_JLT:
2667 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2668 false_reg->umax_value = min(false_reg->umax_value, val);
2669 break;
2670 case BPF_JSLT:
2671 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2672 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2673 break;
48461135 2674 case BPF_JGE:
b03c9f9f
EC
2675 true_reg->umax_value = min(true_reg->umax_value, val);
2676 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2677 break;
48461135 2678 case BPF_JSGE:
b03c9f9f
EC
2679 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2680 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2681 break;
b4e432f1
DB
2682 case BPF_JLE:
2683 true_reg->umin_value = max(true_reg->umin_value, val);
2684 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2685 break;
2686 case BPF_JSLE:
2687 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2688 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2689 break;
48461135
JB
2690 default:
2691 break;
2692 }
2693
b03c9f9f
EC
2694 __reg_deduce_bounds(false_reg);
2695 __reg_deduce_bounds(true_reg);
2696 /* We might have learned some bits from the bounds. */
2697 __reg_bound_offset(false_reg);
2698 __reg_bound_offset(true_reg);
2699 /* Intersecting with the old var_off might have improved our bounds
2700 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2701 * then new var_off is (0; 0x7f...fc) which improves our umax.
2702 */
2703 __update_reg_bounds(false_reg);
2704 __update_reg_bounds(true_reg);
f1174f77
EC
2705}
2706
2707/* Regs are known to be equal, so intersect their min/max/var_off */
2708static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2709 struct bpf_reg_state *dst_reg)
2710{
b03c9f9f
EC
2711 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2712 dst_reg->umin_value);
2713 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2714 dst_reg->umax_value);
2715 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2716 dst_reg->smin_value);
2717 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2718 dst_reg->smax_value);
f1174f77
EC
2719 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2720 dst_reg->var_off);
b03c9f9f
EC
2721 /* We might have learned new bounds from the var_off. */
2722 __update_reg_bounds(src_reg);
2723 __update_reg_bounds(dst_reg);
2724 /* We might have learned something about the sign bit. */
2725 __reg_deduce_bounds(src_reg);
2726 __reg_deduce_bounds(dst_reg);
2727 /* We might have learned some bits from the bounds. */
2728 __reg_bound_offset(src_reg);
2729 __reg_bound_offset(dst_reg);
2730 /* Intersecting with the old var_off might have improved our bounds
2731 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2732 * then new var_off is (0; 0x7f...fc) which improves our umax.
2733 */
2734 __update_reg_bounds(src_reg);
2735 __update_reg_bounds(dst_reg);
f1174f77
EC
2736}
2737
2738static void reg_combine_min_max(struct bpf_reg_state *true_src,
2739 struct bpf_reg_state *true_dst,
2740 struct bpf_reg_state *false_src,
2741 struct bpf_reg_state *false_dst,
2742 u8 opcode)
2743{
2744 switch (opcode) {
2745 case BPF_JEQ:
2746 __reg_combine_min_max(true_src, true_dst);
2747 break;
2748 case BPF_JNE:
2749 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2750 break;
4cabc5b1 2751 }
48461135
JB
2752}
2753
57a09bf0 2754static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2755 bool is_null)
57a09bf0
TG
2756{
2757 struct bpf_reg_state *reg = &regs[regno];
2758
2759 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2760 /* Old offset (both fixed and variable parts) should
2761 * have been known-zero, because we don't allow pointer
2762 * arithmetic on pointers that might be NULL.
2763 */
b03c9f9f
EC
2764 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2765 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2766 reg->off)) {
b03c9f9f
EC
2767 __mark_reg_known_zero(reg);
2768 reg->off = 0;
f1174f77
EC
2769 }
2770 if (is_null) {
2771 reg->type = SCALAR_VALUE;
56f668df
MKL
2772 } else if (reg->map_ptr->inner_map_meta) {
2773 reg->type = CONST_PTR_TO_MAP;
2774 reg->map_ptr = reg->map_ptr->inner_map_meta;
2775 } else {
f1174f77 2776 reg->type = PTR_TO_MAP_VALUE;
56f668df 2777 }
a08dd0da
DB
2778 /* We don't need id from this point onwards anymore, thus we
2779 * should better reset it, so that state pruning has chances
2780 * to take effect.
2781 */
2782 reg->id = 0;
57a09bf0
TG
2783 }
2784}
2785
2786/* The logic is similar to find_good_pkt_pointers(), both could eventually
2787 * be folded together at some point.
2788 */
2789static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2790 bool is_null)
57a09bf0
TG
2791{
2792 struct bpf_reg_state *regs = state->regs;
a08dd0da 2793 u32 id = regs[regno].id;
57a09bf0
TG
2794 int i;
2795
2796 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2797 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2798
2799 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2800 if (state->stack_slot_type[i] != STACK_SPILL)
2801 continue;
f1174f77 2802 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2803 }
2804}
2805
58e2af8b 2806static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2807 struct bpf_insn *insn, int *insn_idx)
2808{
58e2af8b
JK
2809 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2810 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2811 u8 opcode = BPF_OP(insn->code);
2812 int err;
2813
b4e432f1 2814 if (opcode > BPF_JSLE) {
17a52670
AS
2815 verbose("invalid BPF_JMP opcode %x\n", opcode);
2816 return -EINVAL;
2817 }
2818
2819 if (BPF_SRC(insn->code) == BPF_X) {
2820 if (insn->imm != 0) {
2821 verbose("BPF_JMP uses reserved fields\n");
2822 return -EINVAL;
2823 }
2824
2825 /* check src1 operand */
dc503a8a 2826 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2827 if (err)
2828 return err;
1be7f75d
AS
2829
2830 if (is_pointer_value(env, insn->src_reg)) {
2831 verbose("R%d pointer comparison prohibited\n",
2832 insn->src_reg);
2833 return -EACCES;
2834 }
17a52670
AS
2835 } else {
2836 if (insn->src_reg != BPF_REG_0) {
2837 verbose("BPF_JMP uses reserved fields\n");
2838 return -EINVAL;
2839 }
2840 }
2841
2842 /* check src2 operand */
dc503a8a 2843 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2844 if (err)
2845 return err;
2846
1a0dc1ac
AS
2847 dst_reg = &regs[insn->dst_reg];
2848
17a52670
AS
2849 /* detect if R == 0 where R was initialized to zero earlier */
2850 if (BPF_SRC(insn->code) == BPF_K &&
2851 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2852 dst_reg->type == SCALAR_VALUE &&
2853 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2854 if (opcode == BPF_JEQ) {
2855 /* if (imm == imm) goto pc+off;
2856 * only follow the goto, ignore fall-through
2857 */
2858 *insn_idx += insn->off;
2859 return 0;
2860 } else {
2861 /* if (imm != imm) goto pc+off;
2862 * only follow fall-through branch, since
2863 * that's where the program will go
2864 */
2865 return 0;
2866 }
2867 }
2868
2869 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2870 if (!other_branch)
2871 return -EFAULT;
2872
48461135
JB
2873 /* detect if we are comparing against a constant value so we can adjust
2874 * our min/max values for our dst register.
f1174f77
EC
2875 * this is only legit if both are scalars (or pointers to the same
2876 * object, I suppose, but we don't support that right now), because
2877 * otherwise the different base pointers mean the offsets aren't
2878 * comparable.
48461135
JB
2879 */
2880 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2881 if (dst_reg->type == SCALAR_VALUE &&
2882 regs[insn->src_reg].type == SCALAR_VALUE) {
2883 if (tnum_is_const(regs[insn->src_reg].var_off))
2884 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2885 dst_reg, regs[insn->src_reg].var_off.value,
2886 opcode);
2887 else if (tnum_is_const(dst_reg->var_off))
2888 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2889 &regs[insn->src_reg],
2890 dst_reg->var_off.value, opcode);
2891 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2892 /* Comparing for equality, we can combine knowledge */
2893 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2894 &other_branch->regs[insn->dst_reg],
2895 &regs[insn->src_reg],
2896 &regs[insn->dst_reg], opcode);
2897 }
2898 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2899 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2900 dst_reg, insn->imm, opcode);
2901 }
2902
58e2af8b 2903 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2904 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2905 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2906 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2907 /* Mark all identical map registers in each branch as either
2908 * safe or unknown depending R == 0 or R != 0 conditional.
2909 */
f1174f77
EC
2910 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2911 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2912 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2913 dst_reg->type == PTR_TO_PACKET &&
2914 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
de8f3a83 2915 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
b4e432f1
DB
2916 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2917 dst_reg->type == PTR_TO_PACKET &&
2918 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
de8f3a83 2919 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2d2be8ca
DB
2920 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2921 dst_reg->type == PTR_TO_PACKET_END &&
2922 regs[insn->src_reg].type == PTR_TO_PACKET) {
de8f3a83
DB
2923 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2924 PTR_TO_PACKET);
b4e432f1
DB
2925 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2926 dst_reg->type == PTR_TO_PACKET_END &&
2927 regs[insn->src_reg].type == PTR_TO_PACKET) {
de8f3a83
DB
2928 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2929 PTR_TO_PACKET);
2930 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2931 dst_reg->type == PTR_TO_PACKET_META &&
2932 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2933 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
2934 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2935 dst_reg->type == PTR_TO_PACKET_META &&
2936 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2937 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
2938 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2939 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2940 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2941 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2942 PTR_TO_PACKET_META);
2943 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2944 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2945 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2946 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2947 PTR_TO_PACKET_META);
1be7f75d
AS
2948 } else if (is_pointer_value(env, insn->dst_reg)) {
2949 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2950 return -EACCES;
17a52670
AS
2951 }
2952 if (log_level)
2d2be8ca 2953 print_verifier_state(this_branch);
17a52670
AS
2954 return 0;
2955}
2956
0246e64d
AS
2957/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2958static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2959{
2960 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2961
2962 return (struct bpf_map *) (unsigned long) imm64;
2963}
2964
17a52670 2965/* verify BPF_LD_IMM64 instruction */
58e2af8b 2966static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2967{
58e2af8b 2968 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2969 int err;
2970
2971 if (BPF_SIZE(insn->code) != BPF_DW) {
2972 verbose("invalid BPF_LD_IMM insn\n");
2973 return -EINVAL;
2974 }
2975 if (insn->off != 0) {
2976 verbose("BPF_LD_IMM64 uses reserved fields\n");
2977 return -EINVAL;
2978 }
2979
dc503a8a 2980 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2981 if (err)
2982 return err;
2983
6b173873 2984 if (insn->src_reg == 0) {
6b173873
JK
2985 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2986
f1174f77 2987 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2988 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2989 return 0;
6b173873 2990 }
17a52670
AS
2991
2992 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2993 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2994
2995 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2996 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2997 return 0;
2998}
2999
96be4325
DB
3000static bool may_access_skb(enum bpf_prog_type type)
3001{
3002 switch (type) {
3003 case BPF_PROG_TYPE_SOCKET_FILTER:
3004 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3005 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3006 return true;
3007 default:
3008 return false;
3009 }
3010}
3011
ddd872bc
AS
3012/* verify safety of LD_ABS|LD_IND instructions:
3013 * - they can only appear in the programs where ctx == skb
3014 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3015 * preserve R6-R9, and store return value into R0
3016 *
3017 * Implicit input:
3018 * ctx == skb == R6 == CTX
3019 *
3020 * Explicit input:
3021 * SRC == any register
3022 * IMM == 32-bit immediate
3023 *
3024 * Output:
3025 * R0 - 8/16/32-bit skb data converted to cpu endianness
3026 */
58e2af8b 3027static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3028{
58e2af8b 3029 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 3030 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3031 int i, err;
3032
24701ece 3033 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 3034 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3035 return -EINVAL;
3036 }
3037
3038 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3039 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3040 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 3041 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3042 return -EINVAL;
3043 }
3044
3045 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3046 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3047 if (err)
3048 return err;
3049
3050 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3051 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3052 return -EINVAL;
3053 }
3054
3055 if (mode == BPF_IND) {
3056 /* check explicit source operand */
dc503a8a 3057 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3058 if (err)
3059 return err;
3060 }
3061
3062 /* reset caller saved regs to unreadable */
dc503a8a 3063 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 3064 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
3065 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3066 }
ddd872bc
AS
3067
3068 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3069 * the value fetched from the packet.
3070 * Already marked as written above.
ddd872bc 3071 */
f1174f77 3072 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
3073 return 0;
3074}
3075
390ee7e2
AS
3076static int check_return_code(struct bpf_verifier_env *env)
3077{
3078 struct bpf_reg_state *reg;
3079 struct tnum range = tnum_range(0, 1);
3080
3081 switch (env->prog->type) {
3082 case BPF_PROG_TYPE_CGROUP_SKB:
3083 case BPF_PROG_TYPE_CGROUP_SOCK:
3084 case BPF_PROG_TYPE_SOCK_OPS:
3085 break;
3086 default:
3087 return 0;
3088 }
3089
3090 reg = &env->cur_state.regs[BPF_REG_0];
3091 if (reg->type != SCALAR_VALUE) {
3092 verbose("At program exit the register R0 is not a known value (%s)\n",
3093 reg_type_str[reg->type]);
3094 return -EINVAL;
3095 }
3096
3097 if (!tnum_in(range, reg->var_off)) {
3098 verbose("At program exit the register R0 ");
3099 if (!tnum_is_unknown(reg->var_off)) {
3100 char tn_buf[48];
3101
3102 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3103 verbose("has value %s", tn_buf);
3104 } else {
3105 verbose("has unknown scalar value");
3106 }
3107 verbose(" should have been 0 or 1\n");
3108 return -EINVAL;
3109 }
3110 return 0;
3111}
3112
475fb78f
AS
3113/* non-recursive DFS pseudo code
3114 * 1 procedure DFS-iterative(G,v):
3115 * 2 label v as discovered
3116 * 3 let S be a stack
3117 * 4 S.push(v)
3118 * 5 while S is not empty
3119 * 6 t <- S.pop()
3120 * 7 if t is what we're looking for:
3121 * 8 return t
3122 * 9 for all edges e in G.adjacentEdges(t) do
3123 * 10 if edge e is already labelled
3124 * 11 continue with the next edge
3125 * 12 w <- G.adjacentVertex(t,e)
3126 * 13 if vertex w is not discovered and not explored
3127 * 14 label e as tree-edge
3128 * 15 label w as discovered
3129 * 16 S.push(w)
3130 * 17 continue at 5
3131 * 18 else if vertex w is discovered
3132 * 19 label e as back-edge
3133 * 20 else
3134 * 21 // vertex w is explored
3135 * 22 label e as forward- or cross-edge
3136 * 23 label t as explored
3137 * 24 S.pop()
3138 *
3139 * convention:
3140 * 0x10 - discovered
3141 * 0x11 - discovered and fall-through edge labelled
3142 * 0x12 - discovered and fall-through and branch edges labelled
3143 * 0x20 - explored
3144 */
3145
3146enum {
3147 DISCOVERED = 0x10,
3148 EXPLORED = 0x20,
3149 FALLTHROUGH = 1,
3150 BRANCH = 2,
3151};
3152
58e2af8b 3153#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3154
475fb78f
AS
3155static int *insn_stack; /* stack of insns to process */
3156static int cur_stack; /* current stack index */
3157static int *insn_state;
3158
3159/* t, w, e - match pseudo-code above:
3160 * t - index of current instruction
3161 * w - next instruction
3162 * e - edge
3163 */
58e2af8b 3164static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3165{
3166 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3167 return 0;
3168
3169 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3170 return 0;
3171
3172 if (w < 0 || w >= env->prog->len) {
3173 verbose("jump out of range from insn %d to %d\n", t, w);
3174 return -EINVAL;
3175 }
3176
f1bca824
AS
3177 if (e == BRANCH)
3178 /* mark branch target for state pruning */
3179 env->explored_states[w] = STATE_LIST_MARK;
3180
475fb78f
AS
3181 if (insn_state[w] == 0) {
3182 /* tree-edge */
3183 insn_state[t] = DISCOVERED | e;
3184 insn_state[w] = DISCOVERED;
3185 if (cur_stack >= env->prog->len)
3186 return -E2BIG;
3187 insn_stack[cur_stack++] = w;
3188 return 1;
3189 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3190 verbose("back-edge from insn %d to %d\n", t, w);
3191 return -EINVAL;
3192 } else if (insn_state[w] == EXPLORED) {
3193 /* forward- or cross-edge */
3194 insn_state[t] = DISCOVERED | e;
3195 } else {
3196 verbose("insn state internal bug\n");
3197 return -EFAULT;
3198 }
3199 return 0;
3200}
3201
3202/* non-recursive depth-first-search to detect loops in BPF program
3203 * loop == back-edge in directed graph
3204 */
58e2af8b 3205static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3206{
3207 struct bpf_insn *insns = env->prog->insnsi;
3208 int insn_cnt = env->prog->len;
3209 int ret = 0;
3210 int i, t;
3211
3212 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3213 if (!insn_state)
3214 return -ENOMEM;
3215
3216 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3217 if (!insn_stack) {
3218 kfree(insn_state);
3219 return -ENOMEM;
3220 }
3221
3222 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3223 insn_stack[0] = 0; /* 0 is the first instruction */
3224 cur_stack = 1;
3225
3226peek_stack:
3227 if (cur_stack == 0)
3228 goto check_state;
3229 t = insn_stack[cur_stack - 1];
3230
3231 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3232 u8 opcode = BPF_OP(insns[t].code);
3233
3234 if (opcode == BPF_EXIT) {
3235 goto mark_explored;
3236 } else if (opcode == BPF_CALL) {
3237 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3238 if (ret == 1)
3239 goto peek_stack;
3240 else if (ret < 0)
3241 goto err_free;
07016151
DB
3242 if (t + 1 < insn_cnt)
3243 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3244 } else if (opcode == BPF_JA) {
3245 if (BPF_SRC(insns[t].code) != BPF_K) {
3246 ret = -EINVAL;
3247 goto err_free;
3248 }
3249 /* unconditional jump with single edge */
3250 ret = push_insn(t, t + insns[t].off + 1,
3251 FALLTHROUGH, env);
3252 if (ret == 1)
3253 goto peek_stack;
3254 else if (ret < 0)
3255 goto err_free;
f1bca824
AS
3256 /* tell verifier to check for equivalent states
3257 * after every call and jump
3258 */
c3de6317
AS
3259 if (t + 1 < insn_cnt)
3260 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3261 } else {
3262 /* conditional jump with two edges */
3c2ce60b 3263 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3264 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3265 if (ret == 1)
3266 goto peek_stack;
3267 else if (ret < 0)
3268 goto err_free;
3269
3270 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3271 if (ret == 1)
3272 goto peek_stack;
3273 else if (ret < 0)
3274 goto err_free;
3275 }
3276 } else {
3277 /* all other non-branch instructions with single
3278 * fall-through edge
3279 */
3280 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3281 if (ret == 1)
3282 goto peek_stack;
3283 else if (ret < 0)
3284 goto err_free;
3285 }
3286
3287mark_explored:
3288 insn_state[t] = EXPLORED;
3289 if (cur_stack-- <= 0) {
3290 verbose("pop stack internal bug\n");
3291 ret = -EFAULT;
3292 goto err_free;
3293 }
3294 goto peek_stack;
3295
3296check_state:
3297 for (i = 0; i < insn_cnt; i++) {
3298 if (insn_state[i] != EXPLORED) {
3299 verbose("unreachable insn %d\n", i);
3300 ret = -EINVAL;
3301 goto err_free;
3302 }
3303 }
3304 ret = 0; /* cfg looks good */
3305
3306err_free:
3307 kfree(insn_state);
3308 kfree(insn_stack);
3309 return ret;
3310}
3311
f1174f77
EC
3312/* check %cur's range satisfies %old's */
3313static bool range_within(struct bpf_reg_state *old,
3314 struct bpf_reg_state *cur)
3315{
b03c9f9f
EC
3316 return old->umin_value <= cur->umin_value &&
3317 old->umax_value >= cur->umax_value &&
3318 old->smin_value <= cur->smin_value &&
3319 old->smax_value >= cur->smax_value;
f1174f77
EC
3320}
3321
3322/* Maximum number of register states that can exist at once */
3323#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3324struct idpair {
3325 u32 old;
3326 u32 cur;
3327};
3328
3329/* If in the old state two registers had the same id, then they need to have
3330 * the same id in the new state as well. But that id could be different from
3331 * the old state, so we need to track the mapping from old to new ids.
3332 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3333 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3334 * regs with a different old id could still have new id 9, we don't care about
3335 * that.
3336 * So we look through our idmap to see if this old id has been seen before. If
3337 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3338 */
f1174f77 3339static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3340{
f1174f77 3341 unsigned int i;
969bf05e 3342
f1174f77
EC
3343 for (i = 0; i < ID_MAP_SIZE; i++) {
3344 if (!idmap[i].old) {
3345 /* Reached an empty slot; haven't seen this id before */
3346 idmap[i].old = old_id;
3347 idmap[i].cur = cur_id;
3348 return true;
3349 }
3350 if (idmap[i].old == old_id)
3351 return idmap[i].cur == cur_id;
3352 }
3353 /* We ran out of idmap slots, which should be impossible */
3354 WARN_ON_ONCE(1);
3355 return false;
3356}
3357
3358/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3359static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3360 struct idpair *idmap)
f1174f77 3361{
dc503a8a
EC
3362 if (!(rold->live & REG_LIVE_READ))
3363 /* explored state didn't use this */
3364 return true;
3365
3366 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3367 return true;
3368
f1174f77
EC
3369 if (rold->type == NOT_INIT)
3370 /* explored state can't have used this */
969bf05e 3371 return true;
f1174f77
EC
3372 if (rcur->type == NOT_INIT)
3373 return false;
3374 switch (rold->type) {
3375 case SCALAR_VALUE:
3376 if (rcur->type == SCALAR_VALUE) {
3377 /* new val must satisfy old val knowledge */
3378 return range_within(rold, rcur) &&
3379 tnum_in(rold->var_off, rcur->var_off);
3380 } else {
3381 /* if we knew anything about the old value, we're not
3382 * equal, because we can't know anything about the
3383 * scalar value of the pointer in the new value.
3384 */
b03c9f9f
EC
3385 return rold->umin_value == 0 &&
3386 rold->umax_value == U64_MAX &&
3387 rold->smin_value == S64_MIN &&
3388 rold->smax_value == S64_MAX &&
f1174f77
EC
3389 tnum_is_unknown(rold->var_off);
3390 }
3391 case PTR_TO_MAP_VALUE:
1b688a19
EC
3392 /* If the new min/max/var_off satisfy the old ones and
3393 * everything else matches, we are OK.
3394 * We don't care about the 'id' value, because nothing
3395 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3396 */
3397 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3398 range_within(rold, rcur) &&
3399 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3400 case PTR_TO_MAP_VALUE_OR_NULL:
3401 /* a PTR_TO_MAP_VALUE could be safe to use as a
3402 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3403 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3404 * checked, doing so could have affected others with the same
3405 * id, and we can't check for that because we lost the id when
3406 * we converted to a PTR_TO_MAP_VALUE.
3407 */
3408 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3409 return false;
3410 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3411 return false;
3412 /* Check our ids match any regs they're supposed to */
3413 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3414 case PTR_TO_PACKET_META:
f1174f77 3415 case PTR_TO_PACKET:
de8f3a83 3416 if (rcur->type != rold->type)
f1174f77
EC
3417 return false;
3418 /* We must have at least as much range as the old ptr
3419 * did, so that any accesses which were safe before are
3420 * still safe. This is true even if old range < old off,
3421 * since someone could have accessed through (ptr - k), or
3422 * even done ptr -= k in a register, to get a safe access.
3423 */
3424 if (rold->range > rcur->range)
3425 return false;
3426 /* If the offsets don't match, we can't trust our alignment;
3427 * nor can we be sure that we won't fall out of range.
3428 */
3429 if (rold->off != rcur->off)
3430 return false;
3431 /* id relations must be preserved */
3432 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3433 return false;
3434 /* new val must satisfy old val knowledge */
3435 return range_within(rold, rcur) &&
3436 tnum_in(rold->var_off, rcur->var_off);
3437 case PTR_TO_CTX:
3438 case CONST_PTR_TO_MAP:
3439 case PTR_TO_STACK:
3440 case PTR_TO_PACKET_END:
3441 /* Only valid matches are exact, which memcmp() above
3442 * would have accepted
3443 */
3444 default:
3445 /* Don't know what's going on, just say it's not safe */
3446 return false;
3447 }
969bf05e 3448
f1174f77
EC
3449 /* Shouldn't get here; if we do, say it's not safe */
3450 WARN_ON_ONCE(1);
969bf05e
AS
3451 return false;
3452}
3453
f1bca824
AS
3454/* compare two verifier states
3455 *
3456 * all states stored in state_list are known to be valid, since
3457 * verifier reached 'bpf_exit' instruction through them
3458 *
3459 * this function is called when verifier exploring different branches of
3460 * execution popped from the state stack. If it sees an old state that has
3461 * more strict register state and more strict stack state then this execution
3462 * branch doesn't need to be explored further, since verifier already
3463 * concluded that more strict state leads to valid finish.
3464 *
3465 * Therefore two states are equivalent if register state is more conservative
3466 * and explored stack state is more conservative than the current one.
3467 * Example:
3468 * explored current
3469 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3470 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3471 *
3472 * In other words if current stack state (one being explored) has more
3473 * valid slots than old one that already passed validation, it means
3474 * the verifier can stop exploring and conclude that current state is valid too
3475 *
3476 * Similarly with registers. If explored state has register type as invalid
3477 * whereas register type in current state is meaningful, it means that
3478 * the current state will reach 'bpf_exit' instruction safely
3479 */
48461135
JB
3480static bool states_equal(struct bpf_verifier_env *env,
3481 struct bpf_verifier_state *old,
58e2af8b 3482 struct bpf_verifier_state *cur)
f1bca824 3483{
f1174f77
EC
3484 struct idpair *idmap;
3485 bool ret = false;
f1bca824
AS
3486 int i;
3487
f1174f77
EC
3488 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3489 /* If we failed to allocate the idmap, just say it's not safe */
3490 if (!idmap)
1a0dc1ac 3491 return false;
f1174f77
EC
3492
3493 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3494 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3495 goto out_free;
f1bca824
AS
3496 }
3497
3498 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3499 if (old->stack_slot_type[i] == STACK_INVALID)
3500 continue;
3501 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3502 /* Ex: old explored (safe) state has STACK_SPILL in
3503 * this stack slot, but current has has STACK_MISC ->
3504 * this verifier states are not equivalent,
3505 * return false to continue verification of this path
3506 */
f1174f77 3507 goto out_free;
9c399760
AS
3508 if (i % BPF_REG_SIZE)
3509 continue;
d25da6ca
DB
3510 if (old->stack_slot_type[i] != STACK_SPILL)
3511 continue;
f1174f77
EC
3512 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3513 &cur->spilled_regs[i / BPF_REG_SIZE],
1b688a19 3514 idmap))
f1174f77
EC
3515 /* when explored and current stack slot are both storing
3516 * spilled registers, check that stored pointers types
9c399760
AS
3517 * are the same as well.
3518 * Ex: explored safe path could have stored
f1174f77 3519 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3520 * but current path has stored:
f1174f77 3521 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3522 * such verifier states are not equivalent.
3523 * return false to continue verification of this path
3524 */
f1174f77 3525 goto out_free;
9c399760
AS
3526 else
3527 continue;
f1bca824 3528 }
f1174f77
EC
3529 ret = true;
3530out_free:
3531 kfree(idmap);
3532 return ret;
f1bca824
AS
3533}
3534
8e9cd9ce
EC
3535/* A write screens off any subsequent reads; but write marks come from the
3536 * straight-line code between a state and its parent. When we arrive at a
3537 * jump target (in the first iteration of the propagate_liveness() loop),
3538 * we didn't arrive by the straight-line code, so read marks in state must
3539 * propagate to parent regardless of state's write marks.
3540 */
dc503a8a
EC
3541static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3542 struct bpf_verifier_state *parent)
3543{
63f45f84 3544 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3545 bool touched = false; /* any changes made? */
3546 int i;
3547
3548 if (!parent)
3549 return touched;
3550 /* Propagate read liveness of registers... */
3551 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3552 /* We don't need to worry about FP liveness because it's read-only */
3553 for (i = 0; i < BPF_REG_FP; i++) {
3554 if (parent->regs[i].live & REG_LIVE_READ)
3555 continue;
63f45f84
EC
3556 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3557 continue;
3558 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3559 parent->regs[i].live |= REG_LIVE_READ;
3560 touched = true;
3561 }
3562 }
3563 /* ... and stack slots */
3564 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3565 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3566 continue;
3567 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3568 continue;
3569 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3570 continue;
63f45f84
EC
3571 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3572 continue;
3573 if (state->spilled_regs[i].live & REG_LIVE_READ) {
1ab2de2b 3574 parent->spilled_regs[i].live |= REG_LIVE_READ;
dc503a8a
EC
3575 touched = true;
3576 }
3577 }
3578 return touched;
3579}
3580
8e9cd9ce
EC
3581/* "parent" is "a state from which we reach the current state", but initially
3582 * it is not the state->parent (i.e. "the state whose straight-line code leads
3583 * to the current state"), instead it is the state that happened to arrive at
3584 * a (prunable) equivalent of the current state. See comment above
3585 * do_propagate_liveness() for consequences of this.
3586 * This function is just a more efficient way of calling mark_reg_read() or
3587 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3588 * though it requires that parent != state->parent in the call arguments.
3589 */
dc503a8a
EC
3590static void propagate_liveness(const struct bpf_verifier_state *state,
3591 struct bpf_verifier_state *parent)
3592{
3593 while (do_propagate_liveness(state, parent)) {
3594 /* Something changed, so we need to feed those changes onward */
3595 state = parent;
3596 parent = state->parent;
3597 }
3598}
3599
58e2af8b 3600static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3601{
58e2af8b
JK
3602 struct bpf_verifier_state_list *new_sl;
3603 struct bpf_verifier_state_list *sl;
dc503a8a 3604 int i;
f1bca824
AS
3605
3606 sl = env->explored_states[insn_idx];
3607 if (!sl)
3608 /* this 'insn_idx' instruction wasn't marked, so we will not
3609 * be doing state search here
3610 */
3611 return 0;
3612
3613 while (sl != STATE_LIST_MARK) {
dc503a8a 3614 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3615 /* reached equivalent register/stack state,
dc503a8a
EC
3616 * prune the search.
3617 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3618 * If we have any write marks in env->cur_state, they
3619 * will prevent corresponding reads in the continuation
3620 * from reaching our parent (an explored_state). Our
3621 * own state will get the read marks recorded, but
3622 * they'll be immediately forgotten as we're pruning
3623 * this state and will pop a new one.
f1bca824 3624 */
dc503a8a 3625 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3626 return 1;
dc503a8a 3627 }
f1bca824
AS
3628 sl = sl->next;
3629 }
3630
3631 /* there were no equivalent states, remember current one.
3632 * technically the current state is not proven to be safe yet,
3633 * but it will either reach bpf_exit (which means it's safe) or
3634 * it will be rejected. Since there are no loops, we won't be
3635 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3636 */
58e2af8b 3637 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3638 if (!new_sl)
3639 return -ENOMEM;
3640
3641 /* add new state to the head of linked list */
3642 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3643 new_sl->next = env->explored_states[insn_idx];
3644 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3645 /* connect new state to parentage chain */
3646 env->cur_state.parent = &new_sl->state;
8e9cd9ce
EC
3647 /* clear write marks in current state: the writes we did are not writes
3648 * our child did, so they don't screen off its reads from us.
3649 * (There are no read marks in current state, because reads always mark
3650 * their parent and current state never has children yet. Only
3651 * explored_states can get read marks.)
3652 */
dc503a8a
EC
3653 for (i = 0; i < BPF_REG_FP; i++)
3654 env->cur_state.regs[i].live = REG_LIVE_NONE;
3655 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3656 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3657 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3658 return 0;
3659}
3660
13a27dfc
JK
3661static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3662 int insn_idx, int prev_insn_idx)
3663{
3664 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3665 return 0;
3666
3667 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3668}
3669
58e2af8b 3670static int do_check(struct bpf_verifier_env *env)
17a52670 3671{
58e2af8b 3672 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3673 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3674 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3675 int insn_cnt = env->prog->len;
3676 int insn_idx, prev_insn_idx = 0;
3677 int insn_processed = 0;
3678 bool do_print_state = false;
3679
3680 init_reg_state(regs);
dc503a8a 3681 state->parent = NULL;
17a52670
AS
3682 insn_idx = 0;
3683 for (;;) {
3684 struct bpf_insn *insn;
3685 u8 class;
3686 int err;
3687
3688 if (insn_idx >= insn_cnt) {
3689 verbose("invalid insn idx %d insn_cnt %d\n",
3690 insn_idx, insn_cnt);
3691 return -EFAULT;
3692 }
3693
3694 insn = &insns[insn_idx];
3695 class = BPF_CLASS(insn->code);
3696
07016151 3697 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3698 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3699 insn_processed);
3700 return -E2BIG;
3701 }
3702
f1bca824
AS
3703 err = is_state_visited(env, insn_idx);
3704 if (err < 0)
3705 return err;
3706 if (err == 1) {
3707 /* found equivalent state, can prune the search */
3708 if (log_level) {
3709 if (do_print_state)
3710 verbose("\nfrom %d to %d: safe\n",
3711 prev_insn_idx, insn_idx);
3712 else
3713 verbose("%d: safe\n", insn_idx);
3714 }
3715 goto process_bpf_exit;
3716 }
3717
3c2ce60b
DB
3718 if (need_resched())
3719 cond_resched();
3720
c5fc9692
DM
3721 if (log_level > 1 || (log_level && do_print_state)) {
3722 if (log_level > 1)
3723 verbose("%d:", insn_idx);
3724 else
3725 verbose("\nfrom %d to %d:",
3726 prev_insn_idx, insn_idx);
1a0dc1ac 3727 print_verifier_state(&env->cur_state);
17a52670
AS
3728 do_print_state = false;
3729 }
3730
3731 if (log_level) {
3732 verbose("%d: ", insn_idx);
0d0e5769 3733 print_bpf_insn(env, insn);
17a52670
AS
3734 }
3735
13a27dfc
JK
3736 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3737 if (err)
3738 return err;
3739
17a52670 3740 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3741 err = check_alu_op(env, insn);
17a52670
AS
3742 if (err)
3743 return err;
3744
3745 } else if (class == BPF_LDX) {
3df126f3 3746 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3747
3748 /* check for reserved fields is already done */
3749
17a52670 3750 /* check src operand */
dc503a8a 3751 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3752 if (err)
3753 return err;
3754
dc503a8a 3755 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3756 if (err)
3757 return err;
3758
725f9dcd
AS
3759 src_reg_type = regs[insn->src_reg].type;
3760
17a52670
AS
3761 /* check that memory (src_reg + off) is readable,
3762 * the state of dst_reg will be updated by this func
3763 */
31fd8581 3764 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3765 BPF_SIZE(insn->code), BPF_READ,
3766 insn->dst_reg);
3767 if (err)
3768 return err;
3769
3df126f3
JK
3770 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3771
3772 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3773 /* saw a valid insn
3774 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3775 * save type to validate intersecting paths
9bac3d6d 3776 */
3df126f3 3777 *prev_src_type = src_reg_type;
9bac3d6d 3778
3df126f3 3779 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3780 (src_reg_type == PTR_TO_CTX ||
3df126f3 3781 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3782 /* ABuser program is trying to use the same insn
3783 * dst_reg = *(u32*) (src_reg + off)
3784 * with different pointer types:
3785 * src_reg == ctx in one branch and
3786 * src_reg == stack|map in some other branch.
3787 * Reject it.
3788 */
3789 verbose("same insn cannot be used with different pointers\n");
3790 return -EINVAL;
3791 }
3792
17a52670 3793 } else if (class == BPF_STX) {
3df126f3 3794 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3795
17a52670 3796 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3797 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3798 if (err)
3799 return err;
3800 insn_idx++;
3801 continue;
3802 }
3803
17a52670 3804 /* check src1 operand */
dc503a8a 3805 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3806 if (err)
3807 return err;
3808 /* check src2 operand */
dc503a8a 3809 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3810 if (err)
3811 return err;
3812
d691f9e8
AS
3813 dst_reg_type = regs[insn->dst_reg].type;
3814
17a52670 3815 /* check that memory (dst_reg + off) is writeable */
31fd8581 3816 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3817 BPF_SIZE(insn->code), BPF_WRITE,
3818 insn->src_reg);
3819 if (err)
3820 return err;
3821
3df126f3
JK
3822 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3823
3824 if (*prev_dst_type == NOT_INIT) {
3825 *prev_dst_type = dst_reg_type;
3826 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3827 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3828 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3829 verbose("same insn cannot be used with different pointers\n");
3830 return -EINVAL;
3831 }
3832
17a52670
AS
3833 } else if (class == BPF_ST) {
3834 if (BPF_MODE(insn->code) != BPF_MEM ||
3835 insn->src_reg != BPF_REG_0) {
3836 verbose("BPF_ST uses reserved fields\n");
3837 return -EINVAL;
3838 }
3839 /* check src operand */
dc503a8a 3840 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3841 if (err)
3842 return err;
3843
3844 /* check that memory (dst_reg + off) is writeable */
31fd8581 3845 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3846 BPF_SIZE(insn->code), BPF_WRITE,
3847 -1);
3848 if (err)
3849 return err;
3850
3851 } else if (class == BPF_JMP) {
3852 u8 opcode = BPF_OP(insn->code);
3853
3854 if (opcode == BPF_CALL) {
3855 if (BPF_SRC(insn->code) != BPF_K ||
3856 insn->off != 0 ||
3857 insn->src_reg != BPF_REG_0 ||
3858 insn->dst_reg != BPF_REG_0) {
3859 verbose("BPF_CALL uses reserved fields\n");
3860 return -EINVAL;
3861 }
3862
81ed18ab 3863 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3864 if (err)
3865 return err;
3866
3867 } else if (opcode == BPF_JA) {
3868 if (BPF_SRC(insn->code) != BPF_K ||
3869 insn->imm != 0 ||
3870 insn->src_reg != BPF_REG_0 ||
3871 insn->dst_reg != BPF_REG_0) {
3872 verbose("BPF_JA uses reserved fields\n");
3873 return -EINVAL;
3874 }
3875
3876 insn_idx += insn->off + 1;
3877 continue;
3878
3879 } else if (opcode == BPF_EXIT) {
3880 if (BPF_SRC(insn->code) != BPF_K ||
3881 insn->imm != 0 ||
3882 insn->src_reg != BPF_REG_0 ||
3883 insn->dst_reg != BPF_REG_0) {
3884 verbose("BPF_EXIT uses reserved fields\n");
3885 return -EINVAL;
3886 }
3887
3888 /* eBPF calling convetion is such that R0 is used
3889 * to return the value from eBPF program.
3890 * Make sure that it's readable at this time
3891 * of bpf_exit, which means that program wrote
3892 * something into it earlier
3893 */
dc503a8a 3894 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3895 if (err)
3896 return err;
3897
1be7f75d
AS
3898 if (is_pointer_value(env, BPF_REG_0)) {
3899 verbose("R0 leaks addr as return value\n");
3900 return -EACCES;
3901 }
3902
390ee7e2
AS
3903 err = check_return_code(env);
3904 if (err)
3905 return err;
f1bca824 3906process_bpf_exit:
17a52670
AS
3907 insn_idx = pop_stack(env, &prev_insn_idx);
3908 if (insn_idx < 0) {
3909 break;
3910 } else {
3911 do_print_state = true;
3912 continue;
3913 }
3914 } else {
3915 err = check_cond_jmp_op(env, insn, &insn_idx);
3916 if (err)
3917 return err;
3918 }
3919 } else if (class == BPF_LD) {
3920 u8 mode = BPF_MODE(insn->code);
3921
3922 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3923 err = check_ld_abs(env, insn);
3924 if (err)
3925 return err;
3926
17a52670
AS
3927 } else if (mode == BPF_IMM) {
3928 err = check_ld_imm(env, insn);
3929 if (err)
3930 return err;
3931
3932 insn_idx++;
3933 } else {
3934 verbose("invalid BPF_LD mode\n");
3935 return -EINVAL;
3936 }
3937 } else {
3938 verbose("unknown insn class %d\n", class);
3939 return -EINVAL;
3940 }
3941
3942 insn_idx++;
3943 }
3944
8726679a
AS
3945 verbose("processed %d insns, stack depth %d\n",
3946 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3947 return 0;
3948}
3949
56f668df
MKL
3950static int check_map_prealloc(struct bpf_map *map)
3951{
3952 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3953 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3954 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3955 !(map->map_flags & BPF_F_NO_PREALLOC);
3956}
3957
fdc15d38
AS
3958static int check_map_prog_compatibility(struct bpf_map *map,
3959 struct bpf_prog *prog)
3960
3961{
56f668df
MKL
3962 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3963 * preallocated hash maps, since doing memory allocation
3964 * in overflow_handler can crash depending on where nmi got
3965 * triggered.
3966 */
3967 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3968 if (!check_map_prealloc(map)) {
3969 verbose("perf_event programs can only use preallocated hash map\n");
3970 return -EINVAL;
3971 }
3972 if (map->inner_map_meta &&
3973 !check_map_prealloc(map->inner_map_meta)) {
3974 verbose("perf_event programs can only use preallocated inner hash map\n");
3975 return -EINVAL;
3976 }
fdc15d38
AS
3977 }
3978 return 0;
3979}
3980
0246e64d
AS
3981/* look for pseudo eBPF instructions that access map FDs and
3982 * replace them with actual map pointers
3983 */
58e2af8b 3984static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3985{
3986 struct bpf_insn *insn = env->prog->insnsi;
3987 int insn_cnt = env->prog->len;
fdc15d38 3988 int i, j, err;
0246e64d 3989
f1f7714e 3990 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3991 if (err)
3992 return err;
3993
0246e64d 3994 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3995 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3996 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3997 verbose("BPF_LDX uses reserved fields\n");
3998 return -EINVAL;
3999 }
4000
d691f9e8
AS
4001 if (BPF_CLASS(insn->code) == BPF_STX &&
4002 ((BPF_MODE(insn->code) != BPF_MEM &&
4003 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4004 verbose("BPF_STX uses reserved fields\n");
4005 return -EINVAL;
4006 }
4007
0246e64d
AS
4008 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4009 struct bpf_map *map;
4010 struct fd f;
4011
4012 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4013 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4014 insn[1].off != 0) {
4015 verbose("invalid bpf_ld_imm64 insn\n");
4016 return -EINVAL;
4017 }
4018
4019 if (insn->src_reg == 0)
4020 /* valid generic load 64-bit imm */
4021 goto next_insn;
4022
4023 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4024 verbose("unrecognized bpf_ld_imm64 insn\n");
4025 return -EINVAL;
4026 }
4027
4028 f = fdget(insn->imm);
c2101297 4029 map = __bpf_map_get(f);
0246e64d
AS
4030 if (IS_ERR(map)) {
4031 verbose("fd %d is not pointing to valid bpf_map\n",
4032 insn->imm);
0246e64d
AS
4033 return PTR_ERR(map);
4034 }
4035
fdc15d38
AS
4036 err = check_map_prog_compatibility(map, env->prog);
4037 if (err) {
4038 fdput(f);
4039 return err;
4040 }
4041
0246e64d
AS
4042 /* store map pointer inside BPF_LD_IMM64 instruction */
4043 insn[0].imm = (u32) (unsigned long) map;
4044 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4045
4046 /* check whether we recorded this map already */
4047 for (j = 0; j < env->used_map_cnt; j++)
4048 if (env->used_maps[j] == map) {
4049 fdput(f);
4050 goto next_insn;
4051 }
4052
4053 if (env->used_map_cnt >= MAX_USED_MAPS) {
4054 fdput(f);
4055 return -E2BIG;
4056 }
4057
0246e64d
AS
4058 /* hold the map. If the program is rejected by verifier,
4059 * the map will be released by release_maps() or it
4060 * will be used by the valid program until it's unloaded
4061 * and all maps are released in free_bpf_prog_info()
4062 */
92117d84
AS
4063 map = bpf_map_inc(map, false);
4064 if (IS_ERR(map)) {
4065 fdput(f);
4066 return PTR_ERR(map);
4067 }
4068 env->used_maps[env->used_map_cnt++] = map;
4069
0246e64d
AS
4070 fdput(f);
4071next_insn:
4072 insn++;
4073 i++;
4074 }
4075 }
4076
4077 /* now all pseudo BPF_LD_IMM64 instructions load valid
4078 * 'struct bpf_map *' into a register instead of user map_fd.
4079 * These pointers will be used later by verifier to validate map access.
4080 */
4081 return 0;
4082}
4083
4084/* drop refcnt of maps used by the rejected program */
58e2af8b 4085static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4086{
4087 int i;
4088
4089 for (i = 0; i < env->used_map_cnt; i++)
4090 bpf_map_put(env->used_maps[i]);
4091}
4092
4093/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4094static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4095{
4096 struct bpf_insn *insn = env->prog->insnsi;
4097 int insn_cnt = env->prog->len;
4098 int i;
4099
4100 for (i = 0; i < insn_cnt; i++, insn++)
4101 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4102 insn->src_reg = 0;
4103}
4104
8041902d
AS
4105/* single env->prog->insni[off] instruction was replaced with the range
4106 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4107 * [0, off) and [off, end) to new locations, so the patched range stays zero
4108 */
4109static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4110 u32 off, u32 cnt)
4111{
4112 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4113
4114 if (cnt == 1)
4115 return 0;
4116 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4117 if (!new_data)
4118 return -ENOMEM;
4119 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4120 memcpy(new_data + off + cnt - 1, old_data + off,
4121 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4122 env->insn_aux_data = new_data;
4123 vfree(old_data);
4124 return 0;
4125}
4126
4127static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4128 const struct bpf_insn *patch, u32 len)
4129{
4130 struct bpf_prog *new_prog;
4131
4132 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4133 if (!new_prog)
4134 return NULL;
4135 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4136 return NULL;
4137 return new_prog;
4138}
4139
9bac3d6d
AS
4140/* convert load instructions that access fields of 'struct __sk_buff'
4141 * into sequence of instructions that access fields of 'struct sk_buff'
4142 */
58e2af8b 4143static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4144{
36bbef52 4145 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 4146 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4147 const int insn_cnt = env->prog->len;
36bbef52 4148 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4149 struct bpf_prog *new_prog;
d691f9e8 4150 enum bpf_access_type type;
f96da094
DB
4151 bool is_narrower_load;
4152 u32 target_size;
9bac3d6d 4153
36bbef52
DB
4154 if (ops->gen_prologue) {
4155 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4156 env->prog);
4157 if (cnt >= ARRAY_SIZE(insn_buf)) {
4158 verbose("bpf verifier is misconfigured\n");
4159 return -EINVAL;
4160 } else if (cnt) {
8041902d 4161 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4162 if (!new_prog)
4163 return -ENOMEM;
8041902d 4164
36bbef52 4165 env->prog = new_prog;
3df126f3 4166 delta += cnt - 1;
36bbef52
DB
4167 }
4168 }
4169
4170 if (!ops->convert_ctx_access)
9bac3d6d
AS
4171 return 0;
4172
3df126f3 4173 insn = env->prog->insnsi + delta;
36bbef52 4174
9bac3d6d 4175 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4176 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4177 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4178 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4179 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4180 type = BPF_READ;
62c7989b
DB
4181 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4182 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4183 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4184 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4185 type = BPF_WRITE;
4186 else
9bac3d6d
AS
4187 continue;
4188
8041902d 4189 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4190 continue;
9bac3d6d 4191
31fd8581 4192 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4193 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4194
4195 /* If the read access is a narrower load of the field,
4196 * convert to a 4/8-byte load, to minimum program type specific
4197 * convert_ctx_access changes. If conversion is successful,
4198 * we will apply proper mask to the result.
4199 */
f96da094 4200 is_narrower_load = size < ctx_field_size;
31fd8581 4201 if (is_narrower_load) {
f96da094
DB
4202 u32 off = insn->off;
4203 u8 size_code;
4204
4205 if (type == BPF_WRITE) {
4206 verbose("bpf verifier narrow ctx access misconfigured\n");
4207 return -EINVAL;
4208 }
31fd8581 4209
f96da094 4210 size_code = BPF_H;
31fd8581
YS
4211 if (ctx_field_size == 4)
4212 size_code = BPF_W;
4213 else if (ctx_field_size == 8)
4214 size_code = BPF_DW;
f96da094 4215
31fd8581
YS
4216 insn->off = off & ~(ctx_field_size - 1);
4217 insn->code = BPF_LDX | BPF_MEM | size_code;
4218 }
f96da094
DB
4219
4220 target_size = 0;
4221 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4222 &target_size);
4223 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4224 (ctx_field_size && !target_size)) {
9bac3d6d
AS
4225 verbose("bpf verifier is misconfigured\n");
4226 return -EINVAL;
4227 }
f96da094
DB
4228
4229 if (is_narrower_load && size < target_size) {
31fd8581
YS
4230 if (ctx_field_size <= 4)
4231 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4232 (1 << size * 8) - 1);
31fd8581
YS
4233 else
4234 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4235 (1 << size * 8) - 1);
31fd8581 4236 }
9bac3d6d 4237
8041902d 4238 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4239 if (!new_prog)
4240 return -ENOMEM;
4241
3df126f3 4242 delta += cnt - 1;
9bac3d6d
AS
4243
4244 /* keep walking new program and skip insns we just inserted */
4245 env->prog = new_prog;
3df126f3 4246 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4247 }
4248
4249 return 0;
4250}
4251
79741b3b 4252/* fixup insn->imm field of bpf_call instructions
81ed18ab 4253 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4254 *
4255 * this function is called after eBPF program passed verification
4256 */
79741b3b 4257static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4258{
79741b3b
AS
4259 struct bpf_prog *prog = env->prog;
4260 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4261 const struct bpf_func_proto *fn;
79741b3b 4262 const int insn_cnt = prog->len;
81ed18ab
AS
4263 struct bpf_insn insn_buf[16];
4264 struct bpf_prog *new_prog;
4265 struct bpf_map *map_ptr;
4266 int i, cnt, delta = 0;
e245c5c6 4267
79741b3b
AS
4268 for (i = 0; i < insn_cnt; i++, insn++) {
4269 if (insn->code != (BPF_JMP | BPF_CALL))
4270 continue;
e245c5c6 4271
79741b3b
AS
4272 if (insn->imm == BPF_FUNC_get_route_realm)
4273 prog->dst_needed = 1;
4274 if (insn->imm == BPF_FUNC_get_prandom_u32)
4275 bpf_user_rnd_init_once();
79741b3b 4276 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4277 /* If we tail call into other programs, we
4278 * cannot make any assumptions since they can
4279 * be replaced dynamically during runtime in
4280 * the program array.
4281 */
4282 prog->cb_access = 1;
80a58d02 4283 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4284
79741b3b
AS
4285 /* mark bpf_tail_call as different opcode to avoid
4286 * conditional branch in the interpeter for every normal
4287 * call and to prevent accidental JITing by JIT compiler
4288 * that doesn't support bpf_tail_call yet
e245c5c6 4289 */
79741b3b 4290 insn->imm = 0;
71189fa9 4291 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4292 continue;
4293 }
e245c5c6 4294
89c63074
DB
4295 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4296 * handlers are currently limited to 64 bit only.
4297 */
4298 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4299 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4300 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4301 if (map_ptr == BPF_MAP_PTR_POISON ||
4302 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4303 goto patch_call_imm;
4304
4305 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4306 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4307 verbose("bpf verifier is misconfigured\n");
4308 return -EINVAL;
4309 }
4310
4311 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4312 cnt);
4313 if (!new_prog)
4314 return -ENOMEM;
4315
4316 delta += cnt - 1;
4317
4318 /* keep walking new program and skip insns we just inserted */
4319 env->prog = prog = new_prog;
4320 insn = new_prog->insnsi + i + delta;
4321 continue;
4322 }
4323
109980b8 4324 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4325 /* Note, we cannot use prog directly as imm as subsequent
4326 * rewrites would still change the prog pointer. The only
4327 * stable address we can use is aux, which also works with
4328 * prog clones during blinding.
4329 */
4330 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4331 struct bpf_insn r4_ld[] = {
4332 BPF_LD_IMM64(BPF_REG_4, addr),
4333 *insn,
4334 };
4335 cnt = ARRAY_SIZE(r4_ld);
4336
4337 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4338 if (!new_prog)
4339 return -ENOMEM;
4340
4341 delta += cnt - 1;
4342 env->prog = prog = new_prog;
4343 insn = new_prog->insnsi + i + delta;
4344 }
81ed18ab 4345patch_call_imm:
79741b3b
AS
4346 fn = prog->aux->ops->get_func_proto(insn->imm);
4347 /* all functions that have prototype and verifier allowed
4348 * programs to call them, must be real in-kernel functions
4349 */
4350 if (!fn->func) {
4351 verbose("kernel subsystem misconfigured func %s#%d\n",
4352 func_id_name(insn->imm), insn->imm);
4353 return -EFAULT;
e245c5c6 4354 }
79741b3b 4355 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4356 }
e245c5c6 4357
79741b3b
AS
4358 return 0;
4359}
e245c5c6 4360
58e2af8b 4361static void free_states(struct bpf_verifier_env *env)
f1bca824 4362{
58e2af8b 4363 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4364 int i;
4365
4366 if (!env->explored_states)
4367 return;
4368
4369 for (i = 0; i < env->prog->len; i++) {
4370 sl = env->explored_states[i];
4371
4372 if (sl)
4373 while (sl != STATE_LIST_MARK) {
4374 sln = sl->next;
4375 kfree(sl);
4376 sl = sln;
4377 }
4378 }
4379
4380 kfree(env->explored_states);
4381}
4382
9bac3d6d 4383int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4384{
cbd35700 4385 char __user *log_ubuf = NULL;
58e2af8b 4386 struct bpf_verifier_env *env;
51580e79
AS
4387 int ret = -EINVAL;
4388
58e2af8b 4389 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4390 * allocate/free it every time bpf_check() is called
4391 */
58e2af8b 4392 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4393 if (!env)
4394 return -ENOMEM;
4395
3df126f3
JK
4396 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4397 (*prog)->len);
4398 ret = -ENOMEM;
4399 if (!env->insn_aux_data)
4400 goto err_free_env;
9bac3d6d 4401 env->prog = *prog;
0246e64d 4402
cbd35700
AS
4403 /* grab the mutex to protect few globals used by verifier */
4404 mutex_lock(&bpf_verifier_lock);
4405
4406 if (attr->log_level || attr->log_buf || attr->log_size) {
4407 /* user requested verbose verifier output
4408 * and supplied buffer to store the verification trace
4409 */
4410 log_level = attr->log_level;
4411 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4412 log_size = attr->log_size;
4413 log_len = 0;
4414
4415 ret = -EINVAL;
4416 /* log_* values have to be sane */
4417 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4418 log_level == 0 || log_ubuf == NULL)
3df126f3 4419 goto err_unlock;
cbd35700
AS
4420
4421 ret = -ENOMEM;
4422 log_buf = vmalloc(log_size);
4423 if (!log_buf)
3df126f3 4424 goto err_unlock;
cbd35700
AS
4425 } else {
4426 log_level = 0;
4427 }
1ad2f583
DB
4428
4429 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4430 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4431 env->strict_alignment = true;
cbd35700 4432
0246e64d
AS
4433 ret = replace_map_fd_with_map_ptr(env);
4434 if (ret < 0)
4435 goto skip_full_check;
4436
9bac3d6d 4437 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4438 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4439 GFP_USER);
4440 ret = -ENOMEM;
4441 if (!env->explored_states)
4442 goto skip_full_check;
4443
475fb78f
AS
4444 ret = check_cfg(env);
4445 if (ret < 0)
4446 goto skip_full_check;
4447
1be7f75d
AS
4448 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4449
17a52670 4450 ret = do_check(env);
cbd35700 4451
0246e64d 4452skip_full_check:
17a52670 4453 while (pop_stack(env, NULL) >= 0);
f1bca824 4454 free_states(env);
0246e64d 4455
9bac3d6d
AS
4456 if (ret == 0)
4457 /* program is valid, convert *(u32*)(ctx + off) accesses */
4458 ret = convert_ctx_accesses(env);
4459
e245c5c6 4460 if (ret == 0)
79741b3b 4461 ret = fixup_bpf_calls(env);
e245c5c6 4462
cbd35700
AS
4463 if (log_level && log_len >= log_size - 1) {
4464 BUG_ON(log_len >= log_size);
4465 /* verifier log exceeded user supplied buffer */
4466 ret = -ENOSPC;
4467 /* fall through to return what was recorded */
4468 }
4469
4470 /* copy verifier log back to user space including trailing zero */
4471 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4472 ret = -EFAULT;
4473 goto free_log_buf;
4474 }
4475
0246e64d
AS
4476 if (ret == 0 && env->used_map_cnt) {
4477 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4478 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4479 sizeof(env->used_maps[0]),
4480 GFP_KERNEL);
0246e64d 4481
9bac3d6d 4482 if (!env->prog->aux->used_maps) {
0246e64d
AS
4483 ret = -ENOMEM;
4484 goto free_log_buf;
4485 }
4486
9bac3d6d 4487 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4488 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4489 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4490
4491 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4492 * bpf_ld_imm64 instructions
4493 */
4494 convert_pseudo_ld_imm64(env);
4495 }
cbd35700
AS
4496
4497free_log_buf:
4498 if (log_level)
4499 vfree(log_buf);
9bac3d6d 4500 if (!env->prog->aux->used_maps)
0246e64d
AS
4501 /* if we didn't copy map pointers into bpf_prog_info, release
4502 * them now. Otherwise free_bpf_prog_info() will release them.
4503 */
4504 release_maps(env);
9bac3d6d 4505 *prog = env->prog;
3df126f3 4506err_unlock:
cbd35700 4507 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4508 vfree(env->insn_aux_data);
4509err_free_env:
4510 kfree(env);
51580e79
AS
4511 return ret;
4512}
13a27dfc
JK
4513
4514int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4515 void *priv)
4516{
4517 struct bpf_verifier_env *env;
4518 int ret;
4519
4520 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4521 if (!env)
4522 return -ENOMEM;
4523
4524 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4525 prog->len);
4526 ret = -ENOMEM;
4527 if (!env->insn_aux_data)
4528 goto err_free_env;
4529 env->prog = prog;
4530 env->analyzer_ops = ops;
4531 env->analyzer_priv = priv;
4532
4533 /* grab the mutex to protect few globals used by verifier */
4534 mutex_lock(&bpf_verifier_lock);
4535
4536 log_level = 0;
1ad2f583 4537
e07b98d9 4538 env->strict_alignment = false;
1ad2f583
DB
4539 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4540 env->strict_alignment = true;
13a27dfc
JK
4541
4542 env->explored_states = kcalloc(env->prog->len,
4543 sizeof(struct bpf_verifier_state_list *),
4544 GFP_KERNEL);
4545 ret = -ENOMEM;
4546 if (!env->explored_states)
4547 goto skip_full_check;
4548
4549 ret = check_cfg(env);
4550 if (ret < 0)
4551 goto skip_full_check;
4552
4553 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4554
4555 ret = do_check(env);
4556
4557skip_full_check:
4558 while (pop_stack(env, NULL) >= 0);
4559 free_states(env);
4560
4561 mutex_unlock(&bpf_verifier_lock);
4562 vfree(env->insn_aux_data);
4563err_free_env:
4564 kfree(env);
4565 return ret;
4566}
4567EXPORT_SYMBOL_GPL(bpf_analyzer);