]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: Support bitfield read access in btf_struct_access
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34 25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 26#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
d2e4c1e6
DB
174#define BPF_MAP_KEY_POISON (1ULL << 63)
175#define BPF_MAP_KEY_SEEN (1ULL << 62)
176
c93552c4
DB
177#define BPF_MAP_PTR_UNPRIV 1UL
178#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
179 POISON_POINTER_DELTA))
180#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181
182static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183{
d2e4c1e6 184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
185}
186
187static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188{
d2e4c1e6 189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
190}
191
192static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 const struct bpf_map *map, bool unpriv)
194{
195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
197 aux->map_ptr_state = (unsigned long)map |
198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199}
200
201static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202{
203 return aux->map_key_state & BPF_MAP_KEY_POISON;
204}
205
206static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207{
208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209}
210
211static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212{
213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214}
215
216static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217{
218 bool poisoned = bpf_map_key_poisoned(aux);
219
220 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 222}
fad73a1a 223
33ff9823
DB
224struct bpf_call_arg_meta {
225 struct bpf_map *map_ptr;
435faee1 226 bool raw_mode;
36bbef52 227 bool pkt_access;
435faee1
DB
228 int regno;
229 int access_size;
849fa506
YS
230 s64 msize_smax_value;
231 u64 msize_umax_value;
1b986589 232 int ref_obj_id;
d83525ca 233 int func_id;
a7658e1a 234 u32 btf_id;
33ff9823
DB
235};
236
8580ac94
AS
237struct btf *btf_vmlinux;
238
cbd35700
AS
239static DEFINE_MUTEX(bpf_verifier_lock);
240
d9762e84
MKL
241static const struct bpf_line_info *
242find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243{
244 const struct bpf_line_info *linfo;
245 const struct bpf_prog *prog;
246 u32 i, nr_linfo;
247
248 prog = env->prog;
249 nr_linfo = prog->aux->nr_linfo;
250
251 if (!nr_linfo || insn_off >= prog->len)
252 return NULL;
253
254 linfo = prog->aux->linfo;
255 for (i = 1; i < nr_linfo; i++)
256 if (insn_off < linfo[i].insn_off)
257 break;
258
259 return &linfo[i - 1];
260}
261
77d2e05a
MKL
262void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 va_list args)
cbd35700 264{
a2a7d570 265 unsigned int n;
cbd35700 266
a2a7d570 267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
268
269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 "verifier log line truncated - local buffer too short\n");
271
272 n = min(log->len_total - log->len_used - 1, n);
273 log->kbuf[n] = '\0';
274
8580ac94
AS
275 if (log->level == BPF_LOG_KERNEL) {
276 pr_err("BPF:%s\n", log->kbuf);
277 return;
278 }
a2a7d570
JK
279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 log->len_used += n;
281 else
282 log->ubuf = NULL;
cbd35700 283}
abe08840
JO
284
285/* log_level controls verbosity level of eBPF verifier.
286 * bpf_verifier_log_write() is used to dump the verification trace to the log,
287 * so the user can figure out what's wrong with the program
430e68d1 288 */
abe08840
JO
289__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 const char *fmt, ...)
291{
292 va_list args;
293
77d2e05a
MKL
294 if (!bpf_verifier_log_needed(&env->log))
295 return;
296
abe08840 297 va_start(args, fmt);
77d2e05a 298 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
299 va_end(args);
300}
301EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302
303__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304{
77d2e05a 305 struct bpf_verifier_env *env = private_data;
abe08840
JO
306 va_list args;
307
77d2e05a
MKL
308 if (!bpf_verifier_log_needed(&env->log))
309 return;
310
abe08840 311 va_start(args, fmt);
77d2e05a 312 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
313 va_end(args);
314}
cbd35700 315
9e15db66
AS
316__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 const char *fmt, ...)
318{
319 va_list args;
320
321 if (!bpf_verifier_log_needed(log))
322 return;
323
324 va_start(args, fmt);
325 bpf_verifier_vlog(log, fmt, args);
326 va_end(args);
327}
328
d9762e84
MKL
329static const char *ltrim(const char *s)
330{
331 while (isspace(*s))
332 s++;
333
334 return s;
335}
336
337__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 u32 insn_off,
339 const char *prefix_fmt, ...)
340{
341 const struct bpf_line_info *linfo;
342
343 if (!bpf_verifier_log_needed(&env->log))
344 return;
345
346 linfo = find_linfo(env, insn_off);
347 if (!linfo || linfo == env->prev_linfo)
348 return;
349
350 if (prefix_fmt) {
351 va_list args;
352
353 va_start(args, prefix_fmt);
354 bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 va_end(args);
356 }
357
358 verbose(env, "%s\n",
359 ltrim(btf_name_by_offset(env->prog->aux->btf,
360 linfo->line_off)));
361
362 env->prev_linfo = linfo;
363}
364
de8f3a83
DB
365static bool type_is_pkt_pointer(enum bpf_reg_type type)
366{
367 return type == PTR_TO_PACKET ||
368 type == PTR_TO_PACKET_META;
369}
370
46f8bc92
MKL
371static bool type_is_sk_pointer(enum bpf_reg_type type)
372{
373 return type == PTR_TO_SOCKET ||
655a51e5 374 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
375 type == PTR_TO_TCP_SOCK ||
376 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
377}
378
840b9615
JS
379static bool reg_type_may_be_null(enum bpf_reg_type type)
380{
fd978bf7 381 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 382 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
383 type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
385}
386
d83525ca
AS
387static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388{
389 return reg->type == PTR_TO_MAP_VALUE &&
390 map_value_has_spin_lock(reg->map_ptr);
391}
392
cba368c1
MKL
393static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394{
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCKET_OR_NULL ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_TCP_SOCK_OR_NULL;
399}
400
1b986589 401static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 402{
1b986589 403 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
404}
405
406/* Determine whether the function releases some resources allocated by another
407 * function call. The first reference type argument will be assumed to be
408 * released by release_reference().
409 */
410static bool is_release_function(enum bpf_func_id func_id)
411{
6acc9b43 412 return func_id == BPF_FUNC_sk_release;
840b9615
JS
413}
414
46f8bc92
MKL
415static bool is_acquire_function(enum bpf_func_id func_id)
416{
417 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
418 func_id == BPF_FUNC_sk_lookup_udp ||
419 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
420}
421
1b986589
MKL
422static bool is_ptr_cast_function(enum bpf_func_id func_id)
423{
424 return func_id == BPF_FUNC_tcp_sock ||
425 func_id == BPF_FUNC_sk_fullsock;
426}
427
17a52670
AS
428/* string representation of 'enum bpf_reg_type' */
429static const char * const reg_type_str[] = {
430 [NOT_INIT] = "?",
f1174f77 431 [SCALAR_VALUE] = "inv",
17a52670
AS
432 [PTR_TO_CTX] = "ctx",
433 [CONST_PTR_TO_MAP] = "map_ptr",
434 [PTR_TO_MAP_VALUE] = "map_value",
435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 436 [PTR_TO_STACK] = "fp",
969bf05e 437 [PTR_TO_PACKET] = "pkt",
de8f3a83 438 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 439 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 440 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
441 [PTR_TO_SOCKET] = "sock",
442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
443 [PTR_TO_SOCK_COMMON] = "sock_common",
444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
445 [PTR_TO_TCP_SOCK] = "tcp_sock",
446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 447 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 448 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 449 [PTR_TO_BTF_ID] = "ptr_",
17a52670
AS
450};
451
8efea21d
EC
452static char slot_type_char[] = {
453 [STACK_INVALID] = '?',
454 [STACK_SPILL] = 'r',
455 [STACK_MISC] = 'm',
456 [STACK_ZERO] = '0',
457};
458
4e92024a
AS
459static void print_liveness(struct bpf_verifier_env *env,
460 enum bpf_reg_liveness live)
461{
9242b5f5 462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
463 verbose(env, "_");
464 if (live & REG_LIVE_READ)
465 verbose(env, "r");
466 if (live & REG_LIVE_WRITTEN)
467 verbose(env, "w");
9242b5f5
AS
468 if (live & REG_LIVE_DONE)
469 verbose(env, "D");
4e92024a
AS
470}
471
f4d7e40a
AS
472static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 const struct bpf_reg_state *reg)
474{
475 struct bpf_verifier_state *cur = env->cur_state;
476
477 return cur->frame[reg->frameno];
478}
479
9e15db66
AS
480const char *kernel_type_name(u32 id)
481{
482 return btf_name_by_offset(btf_vmlinux,
483 btf_type_by_id(btf_vmlinux, id)->name_off);
484}
485
61bd5218 486static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 487 const struct bpf_func_state *state)
17a52670 488{
f4d7e40a 489 const struct bpf_reg_state *reg;
17a52670
AS
490 enum bpf_reg_type t;
491 int i;
492
f4d7e40a
AS
493 if (state->frameno)
494 verbose(env, " frame%d:", state->frameno);
17a52670 495 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
496 reg = &state->regs[i];
497 t = reg->type;
17a52670
AS
498 if (t == NOT_INIT)
499 continue;
4e92024a
AS
500 verbose(env, " R%d", i);
501 print_liveness(env, reg->live);
502 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
503 if (t == SCALAR_VALUE && reg->precise)
504 verbose(env, "P");
f1174f77
EC
505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 tnum_is_const(reg->var_off)) {
507 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 508 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 509 } else {
9e15db66
AS
510 if (t == PTR_TO_BTF_ID)
511 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
512 verbose(env, "(id=%d", reg->id);
513 if (reg_type_may_be_refcounted_or_null(t))
514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 515 if (t != SCALAR_VALUE)
61bd5218 516 verbose(env, ",off=%d", reg->off);
de8f3a83 517 if (type_is_pkt_pointer(t))
61bd5218 518 verbose(env, ",r=%d", reg->range);
f1174f77
EC
519 else if (t == CONST_PTR_TO_MAP ||
520 t == PTR_TO_MAP_VALUE ||
521 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 522 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
523 reg->map_ptr->key_size,
524 reg->map_ptr->value_size);
7d1238f2
EC
525 if (tnum_is_const(reg->var_off)) {
526 /* Typically an immediate SCALAR_VALUE, but
527 * could be a pointer whose offset is too big
528 * for reg->off
529 */
61bd5218 530 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
531 } else {
532 if (reg->smin_value != reg->umin_value &&
533 reg->smin_value != S64_MIN)
61bd5218 534 verbose(env, ",smin_value=%lld",
7d1238f2
EC
535 (long long)reg->smin_value);
536 if (reg->smax_value != reg->umax_value &&
537 reg->smax_value != S64_MAX)
61bd5218 538 verbose(env, ",smax_value=%lld",
7d1238f2
EC
539 (long long)reg->smax_value);
540 if (reg->umin_value != 0)
61bd5218 541 verbose(env, ",umin_value=%llu",
7d1238f2
EC
542 (unsigned long long)reg->umin_value);
543 if (reg->umax_value != U64_MAX)
61bd5218 544 verbose(env, ",umax_value=%llu",
7d1238f2
EC
545 (unsigned long long)reg->umax_value);
546 if (!tnum_is_unknown(reg->var_off)) {
547 char tn_buf[48];
f1174f77 548
7d1238f2 549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 550 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 551 }
f1174f77 552 }
61bd5218 553 verbose(env, ")");
f1174f77 554 }
17a52670 555 }
638f5b90 556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
557 char types_buf[BPF_REG_SIZE + 1];
558 bool valid = false;
559 int j;
560
561 for (j = 0; j < BPF_REG_SIZE; j++) {
562 if (state->stack[i].slot_type[j] != STACK_INVALID)
563 valid = true;
564 types_buf[j] = slot_type_char[
565 state->stack[i].slot_type[j]];
566 }
567 types_buf[BPF_REG_SIZE] = 0;
568 if (!valid)
569 continue;
570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
572 if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 reg = &state->stack[i].spilled_ptr;
574 t = reg->type;
575 verbose(env, "=%s", reg_type_str[t]);
576 if (t == SCALAR_VALUE && reg->precise)
577 verbose(env, "P");
578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 verbose(env, "%lld", reg->var_off.value + reg->off);
580 } else {
8efea21d 581 verbose(env, "=%s", types_buf);
b5dc0163 582 }
17a52670 583 }
fd978bf7
JS
584 if (state->acquired_refs && state->refs[0].id) {
585 verbose(env, " refs=%d", state->refs[0].id);
586 for (i = 1; i < state->acquired_refs; i++)
587 if (state->refs[i].id)
588 verbose(env, ",%d", state->refs[i].id);
589 }
61bd5218 590 verbose(env, "\n");
17a52670
AS
591}
592
84dbf350
JS
593#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
594static int copy_##NAME##_state(struct bpf_func_state *dst, \
595 const struct bpf_func_state *src) \
596{ \
597 if (!src->FIELD) \
598 return 0; \
599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
600 /* internal bug, make state invalid to reject the program */ \
601 memset(dst, 0, sizeof(*dst)); \
602 return -EFAULT; \
603 } \
604 memcpy(dst->FIELD, src->FIELD, \
605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
606 return 0; \
638f5b90 607}
fd978bf7
JS
608/* copy_reference_state() */
609COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
610/* copy_stack_state() */
611COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612#undef COPY_STATE_FN
613
614#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
615static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 bool copy_old) \
617{ \
618 u32 old_size = state->COUNT; \
619 struct bpf_##NAME##_state *new_##FIELD; \
620 int slot = size / SIZE; \
621 \
622 if (size <= old_size || !size) { \
623 if (copy_old) \
624 return 0; \
625 state->COUNT = slot * SIZE; \
626 if (!size && old_size) { \
627 kfree(state->FIELD); \
628 state->FIELD = NULL; \
629 } \
630 return 0; \
631 } \
632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 GFP_KERNEL); \
634 if (!new_##FIELD) \
635 return -ENOMEM; \
636 if (copy_old) { \
637 if (state->FIELD) \
638 memcpy(new_##FIELD, state->FIELD, \
639 sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 memset(new_##FIELD + old_size / SIZE, 0, \
641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 } \
643 state->COUNT = slot * SIZE; \
644 kfree(state->FIELD); \
645 state->FIELD = new_##FIELD; \
646 return 0; \
647}
fd978bf7
JS
648/* realloc_reference_state() */
649REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
650/* realloc_stack_state() */
651REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652#undef REALLOC_STATE_FN
638f5b90
AS
653
654/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 656 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658 * which realloc_stack_state() copies over. It points to previous
659 * bpf_verifier_state which is never reallocated.
638f5b90 660 */
fd978bf7
JS
661static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 int refs_size, bool copy_old)
638f5b90 663{
fd978bf7
JS
664 int err = realloc_reference_state(state, refs_size, copy_old);
665 if (err)
666 return err;
667 return realloc_stack_state(state, stack_size, copy_old);
668}
669
670/* Acquire a pointer id from the env and update the state->refs to include
671 * this new pointer reference.
672 * On success, returns a valid pointer id to associate with the register
673 * On failure, returns a negative errno.
638f5b90 674 */
fd978bf7 675static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 676{
fd978bf7
JS
677 struct bpf_func_state *state = cur_func(env);
678 int new_ofs = state->acquired_refs;
679 int id, err;
680
681 err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 if (err)
683 return err;
684 id = ++env->id_gen;
685 state->refs[new_ofs].id = id;
686 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 687
fd978bf7
JS
688 return id;
689}
690
691/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 692static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
693{
694 int i, last_idx;
695
fd978bf7
JS
696 last_idx = state->acquired_refs - 1;
697 for (i = 0; i < state->acquired_refs; i++) {
698 if (state->refs[i].id == ptr_id) {
699 if (last_idx && i != last_idx)
700 memcpy(&state->refs[i], &state->refs[last_idx],
701 sizeof(*state->refs));
702 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 state->acquired_refs--;
638f5b90 704 return 0;
638f5b90 705 }
638f5b90 706 }
46f8bc92 707 return -EINVAL;
fd978bf7
JS
708}
709
710static int transfer_reference_state(struct bpf_func_state *dst,
711 struct bpf_func_state *src)
712{
713 int err = realloc_reference_state(dst, src->acquired_refs, false);
714 if (err)
715 return err;
716 err = copy_reference_state(dst, src);
717 if (err)
718 return err;
638f5b90
AS
719 return 0;
720}
721
f4d7e40a
AS
722static void free_func_state(struct bpf_func_state *state)
723{
5896351e
AS
724 if (!state)
725 return;
fd978bf7 726 kfree(state->refs);
f4d7e40a
AS
727 kfree(state->stack);
728 kfree(state);
729}
730
b5dc0163
AS
731static void clear_jmp_history(struct bpf_verifier_state *state)
732{
733 kfree(state->jmp_history);
734 state->jmp_history = NULL;
735 state->jmp_history_cnt = 0;
736}
737
1969db47
AS
738static void free_verifier_state(struct bpf_verifier_state *state,
739 bool free_self)
638f5b90 740{
f4d7e40a
AS
741 int i;
742
743 for (i = 0; i <= state->curframe; i++) {
744 free_func_state(state->frame[i]);
745 state->frame[i] = NULL;
746 }
b5dc0163 747 clear_jmp_history(state);
1969db47
AS
748 if (free_self)
749 kfree(state);
638f5b90
AS
750}
751
752/* copy verifier state from src to dst growing dst stack space
753 * when necessary to accommodate larger src stack
754 */
f4d7e40a
AS
755static int copy_func_state(struct bpf_func_state *dst,
756 const struct bpf_func_state *src)
638f5b90
AS
757{
758 int err;
759
fd978bf7
JS
760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 false);
762 if (err)
763 return err;
764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 err = copy_reference_state(dst, src);
638f5b90
AS
766 if (err)
767 return err;
638f5b90
AS
768 return copy_stack_state(dst, src);
769}
770
f4d7e40a
AS
771static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 const struct bpf_verifier_state *src)
773{
774 struct bpf_func_state *dst;
b5dc0163 775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
776 int i, err;
777
b5dc0163
AS
778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 kfree(dst_state->jmp_history);
780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 if (!dst_state->jmp_history)
782 return -ENOMEM;
783 }
784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 dst_state->jmp_history_cnt = src->jmp_history_cnt;
786
f4d7e40a
AS
787 /* if dst has more stack frames then src frame, free them */
788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 free_func_state(dst_state->frame[i]);
790 dst_state->frame[i] = NULL;
791 }
979d63d5 792 dst_state->speculative = src->speculative;
f4d7e40a 793 dst_state->curframe = src->curframe;
d83525ca 794 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
795 dst_state->branches = src->branches;
796 dst_state->parent = src->parent;
b5dc0163
AS
797 dst_state->first_insn_idx = src->first_insn_idx;
798 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
799 for (i = 0; i <= src->curframe; i++) {
800 dst = dst_state->frame[i];
801 if (!dst) {
802 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 if (!dst)
804 return -ENOMEM;
805 dst_state->frame[i] = dst;
806 }
807 err = copy_func_state(dst, src->frame[i]);
808 if (err)
809 return err;
810 }
811 return 0;
812}
813
2589726d
AS
814static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815{
816 while (st) {
817 u32 br = --st->branches;
818
819 /* WARN_ON(br > 1) technically makes sense here,
820 * but see comment in push_stack(), hence:
821 */
822 WARN_ONCE((int)br < 0,
823 "BUG update_branch_counts:branches_to_explore=%d\n",
824 br);
825 if (br)
826 break;
827 st = st->parent;
828 }
829}
830
638f5b90
AS
831static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 int *insn_idx)
833{
834 struct bpf_verifier_state *cur = env->cur_state;
835 struct bpf_verifier_stack_elem *elem, *head = env->head;
836 int err;
17a52670
AS
837
838 if (env->head == NULL)
638f5b90 839 return -ENOENT;
17a52670 840
638f5b90
AS
841 if (cur) {
842 err = copy_verifier_state(cur, &head->st);
843 if (err)
844 return err;
845 }
846 if (insn_idx)
847 *insn_idx = head->insn_idx;
17a52670 848 if (prev_insn_idx)
638f5b90
AS
849 *prev_insn_idx = head->prev_insn_idx;
850 elem = head->next;
1969db47 851 free_verifier_state(&head->st, false);
638f5b90 852 kfree(head);
17a52670
AS
853 env->head = elem;
854 env->stack_size--;
638f5b90 855 return 0;
17a52670
AS
856}
857
58e2af8b 858static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
859 int insn_idx, int prev_insn_idx,
860 bool speculative)
17a52670 861{
638f5b90 862 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 863 struct bpf_verifier_stack_elem *elem;
638f5b90 864 int err;
17a52670 865
638f5b90 866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
867 if (!elem)
868 goto err;
869
17a52670
AS
870 elem->insn_idx = insn_idx;
871 elem->prev_insn_idx = prev_insn_idx;
872 elem->next = env->head;
873 env->head = elem;
874 env->stack_size++;
1969db47
AS
875 err = copy_verifier_state(&elem->st, cur);
876 if (err)
877 goto err;
979d63d5 878 elem->st.speculative |= speculative;
b285fcb7
AS
879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 verbose(env, "The sequence of %d jumps is too complex.\n",
881 env->stack_size);
17a52670
AS
882 goto err;
883 }
2589726d
AS
884 if (elem->st.parent) {
885 ++elem->st.parent->branches;
886 /* WARN_ON(branches > 2) technically makes sense here,
887 * but
888 * 1. speculative states will bump 'branches' for non-branch
889 * instructions
890 * 2. is_state_visited() heuristics may decide not to create
891 * a new state for a sequence of branches and all such current
892 * and cloned states will be pointing to a single parent state
893 * which might have large 'branches' count.
894 */
895 }
17a52670
AS
896 return &elem->st;
897err:
5896351e
AS
898 free_verifier_state(env->cur_state, true);
899 env->cur_state = NULL;
17a52670 900 /* pop all elements and return */
638f5b90 901 while (!pop_stack(env, NULL, NULL));
17a52670
AS
902 return NULL;
903}
904
905#define CALLER_SAVED_REGS 6
906static const int caller_saved[CALLER_SAVED_REGS] = {
907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908};
909
f54c7898
DB
910static void __mark_reg_not_init(const struct bpf_verifier_env *env,
911 struct bpf_reg_state *reg);
f1174f77 912
b03c9f9f
EC
913/* Mark the unknown part of a register (variable offset or scalar value) as
914 * known to have the value @imm.
915 */
916static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
917{
a9c676bc
AS
918 /* Clear id, off, and union(map_ptr, range) */
919 memset(((u8 *)reg) + sizeof(reg->type), 0,
920 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
921 reg->var_off = tnum_const(imm);
922 reg->smin_value = (s64)imm;
923 reg->smax_value = (s64)imm;
924 reg->umin_value = imm;
925 reg->umax_value = imm;
926}
927
f1174f77
EC
928/* Mark the 'variable offset' part of a register as zero. This should be
929 * used only on registers holding a pointer type.
930 */
931static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 932{
b03c9f9f 933 __mark_reg_known(reg, 0);
f1174f77 934}
a9789ef9 935
cc2b14d5
AS
936static void __mark_reg_const_zero(struct bpf_reg_state *reg)
937{
938 __mark_reg_known(reg, 0);
cc2b14d5
AS
939 reg->type = SCALAR_VALUE;
940}
941
61bd5218
JK
942static void mark_reg_known_zero(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
944{
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 946 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
947 /* Something bad happened, let's kill all regs */
948 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 949 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
950 return;
951 }
952 __mark_reg_known_zero(regs + regno);
953}
954
de8f3a83
DB
955static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
956{
957 return type_is_pkt_pointer(reg->type);
958}
959
960static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
961{
962 return reg_is_pkt_pointer(reg) ||
963 reg->type == PTR_TO_PACKET_END;
964}
965
966/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
967static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
968 enum bpf_reg_type which)
969{
970 /* The register can already have a range from prior markings.
971 * This is fine as long as it hasn't been advanced from its
972 * origin.
973 */
974 return reg->type == which &&
975 reg->id == 0 &&
976 reg->off == 0 &&
977 tnum_equals_const(reg->var_off, 0);
978}
979
b03c9f9f
EC
980/* Attempts to improve min/max values based on var_off information */
981static void __update_reg_bounds(struct bpf_reg_state *reg)
982{
983 /* min signed is max(sign bit) | min(other bits) */
984 reg->smin_value = max_t(s64, reg->smin_value,
985 reg->var_off.value | (reg->var_off.mask & S64_MIN));
986 /* max signed is min(sign bit) | max(other bits) */
987 reg->smax_value = min_t(s64, reg->smax_value,
988 reg->var_off.value | (reg->var_off.mask & S64_MAX));
989 reg->umin_value = max(reg->umin_value, reg->var_off.value);
990 reg->umax_value = min(reg->umax_value,
991 reg->var_off.value | reg->var_off.mask);
992}
993
994/* Uses signed min/max values to inform unsigned, and vice-versa */
995static void __reg_deduce_bounds(struct bpf_reg_state *reg)
996{
997 /* Learn sign from signed bounds.
998 * If we cannot cross the sign boundary, then signed and unsigned bounds
999 * are the same, so combine. This works even in the negative case, e.g.
1000 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1001 */
1002 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1003 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1004 reg->umin_value);
1005 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1006 reg->umax_value);
1007 return;
1008 }
1009 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1010 * boundary, so we must be careful.
1011 */
1012 if ((s64)reg->umax_value >= 0) {
1013 /* Positive. We can't learn anything from the smin, but smax
1014 * is positive, hence safe.
1015 */
1016 reg->smin_value = reg->umin_value;
1017 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1018 reg->umax_value);
1019 } else if ((s64)reg->umin_value < 0) {
1020 /* Negative. We can't learn anything from the smax, but smin
1021 * is negative, hence safe.
1022 */
1023 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1024 reg->umin_value);
1025 reg->smax_value = reg->umax_value;
1026 }
1027}
1028
1029/* Attempts to improve var_off based on unsigned min/max information */
1030static void __reg_bound_offset(struct bpf_reg_state *reg)
1031{
1032 reg->var_off = tnum_intersect(reg->var_off,
1033 tnum_range(reg->umin_value,
1034 reg->umax_value));
1035}
1036
581738a6
YS
1037static void __reg_bound_offset32(struct bpf_reg_state *reg)
1038{
1039 u64 mask = 0xffffFFFF;
1040 struct tnum range = tnum_range(reg->umin_value & mask,
1041 reg->umax_value & mask);
1042 struct tnum lo32 = tnum_cast(reg->var_off, 4);
1043 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1044
1045 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1046}
1047
b03c9f9f
EC
1048/* Reset the min/max bounds of a register */
1049static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1050{
1051 reg->smin_value = S64_MIN;
1052 reg->smax_value = S64_MAX;
1053 reg->umin_value = 0;
1054 reg->umax_value = U64_MAX;
1055}
1056
f1174f77 1057/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1058static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1059 struct bpf_reg_state *reg)
f1174f77 1060{
a9c676bc
AS
1061 /*
1062 * Clear type, id, off, and union(map_ptr, range) and
1063 * padding between 'type' and union
1064 */
1065 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1066 reg->type = SCALAR_VALUE;
f1174f77 1067 reg->var_off = tnum_unknown;
f4d7e40a 1068 reg->frameno = 0;
f54c7898
DB
1069 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1070 true : false;
b03c9f9f 1071 __mark_reg_unbounded(reg);
f1174f77
EC
1072}
1073
61bd5218
JK
1074static void mark_reg_unknown(struct bpf_verifier_env *env,
1075 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1076{
1077 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1078 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1079 /* Something bad happened, let's kill all regs except FP */
1080 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1081 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1082 return;
1083 }
f54c7898 1084 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1085}
1086
f54c7898
DB
1087static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1088 struct bpf_reg_state *reg)
f1174f77 1089{
f54c7898 1090 __mark_reg_unknown(env, reg);
f1174f77
EC
1091 reg->type = NOT_INIT;
1092}
1093
61bd5218
JK
1094static void mark_reg_not_init(struct bpf_verifier_env *env,
1095 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1096{
1097 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1098 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1099 /* Something bad happened, let's kill all regs except FP */
1100 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1101 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1102 return;
1103 }
f54c7898 1104 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1105}
1106
5327ed3d 1107#define DEF_NOT_SUBREG (0)
61bd5218 1108static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1109 struct bpf_func_state *state)
17a52670 1110{
f4d7e40a 1111 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1112 int i;
1113
dc503a8a 1114 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1115 mark_reg_not_init(env, regs, i);
dc503a8a 1116 regs[i].live = REG_LIVE_NONE;
679c782d 1117 regs[i].parent = NULL;
5327ed3d 1118 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1119 }
17a52670
AS
1120
1121 /* frame pointer */
f1174f77 1122 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1123 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1124 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1125
1126 /* 1st arg to a function */
1127 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1128 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1129}
1130
f4d7e40a
AS
1131#define BPF_MAIN_FUNC (-1)
1132static void init_func_state(struct bpf_verifier_env *env,
1133 struct bpf_func_state *state,
1134 int callsite, int frameno, int subprogno)
1135{
1136 state->callsite = callsite;
1137 state->frameno = frameno;
1138 state->subprogno = subprogno;
1139 init_reg_state(env, state);
1140}
1141
17a52670
AS
1142enum reg_arg_type {
1143 SRC_OP, /* register is used as source operand */
1144 DST_OP, /* register is used as destination operand */
1145 DST_OP_NO_MARK /* same as above, check only, don't mark */
1146};
1147
cc8b0b92
AS
1148static int cmp_subprogs(const void *a, const void *b)
1149{
9c8105bd
JW
1150 return ((struct bpf_subprog_info *)a)->start -
1151 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1152}
1153
1154static int find_subprog(struct bpf_verifier_env *env, int off)
1155{
9c8105bd 1156 struct bpf_subprog_info *p;
cc8b0b92 1157
9c8105bd
JW
1158 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1159 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1160 if (!p)
1161 return -ENOENT;
9c8105bd 1162 return p - env->subprog_info;
cc8b0b92
AS
1163
1164}
1165
1166static int add_subprog(struct bpf_verifier_env *env, int off)
1167{
1168 int insn_cnt = env->prog->len;
1169 int ret;
1170
1171 if (off >= insn_cnt || off < 0) {
1172 verbose(env, "call to invalid destination\n");
1173 return -EINVAL;
1174 }
1175 ret = find_subprog(env, off);
1176 if (ret >= 0)
1177 return 0;
4cb3d99c 1178 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1179 verbose(env, "too many subprograms\n");
1180 return -E2BIG;
1181 }
9c8105bd
JW
1182 env->subprog_info[env->subprog_cnt++].start = off;
1183 sort(env->subprog_info, env->subprog_cnt,
1184 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1185 return 0;
1186}
1187
1188static int check_subprogs(struct bpf_verifier_env *env)
1189{
1190 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1191 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1192 struct bpf_insn *insn = env->prog->insnsi;
1193 int insn_cnt = env->prog->len;
1194
f910cefa
JW
1195 /* Add entry function. */
1196 ret = add_subprog(env, 0);
1197 if (ret < 0)
1198 return ret;
1199
cc8b0b92
AS
1200 /* determine subprog starts. The end is one before the next starts */
1201 for (i = 0; i < insn_cnt; i++) {
1202 if (insn[i].code != (BPF_JMP | BPF_CALL))
1203 continue;
1204 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1205 continue;
1206 if (!env->allow_ptr_leaks) {
1207 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1208 return -EPERM;
1209 }
cc8b0b92
AS
1210 ret = add_subprog(env, i + insn[i].imm + 1);
1211 if (ret < 0)
1212 return ret;
1213 }
1214
4cb3d99c
JW
1215 /* Add a fake 'exit' subprog which could simplify subprog iteration
1216 * logic. 'subprog_cnt' should not be increased.
1217 */
1218 subprog[env->subprog_cnt].start = insn_cnt;
1219
06ee7115 1220 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1221 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1222 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1223
1224 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1225 subprog_start = subprog[cur_subprog].start;
1226 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1227 for (i = 0; i < insn_cnt; i++) {
1228 u8 code = insn[i].code;
1229
092ed096 1230 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1231 goto next;
1232 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1233 goto next;
1234 off = i + insn[i].off + 1;
1235 if (off < subprog_start || off >= subprog_end) {
1236 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1237 return -EINVAL;
1238 }
1239next:
1240 if (i == subprog_end - 1) {
1241 /* to avoid fall-through from one subprog into another
1242 * the last insn of the subprog should be either exit
1243 * or unconditional jump back
1244 */
1245 if (code != (BPF_JMP | BPF_EXIT) &&
1246 code != (BPF_JMP | BPF_JA)) {
1247 verbose(env, "last insn is not an exit or jmp\n");
1248 return -EINVAL;
1249 }
1250 subprog_start = subprog_end;
4cb3d99c
JW
1251 cur_subprog++;
1252 if (cur_subprog < env->subprog_cnt)
9c8105bd 1253 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1254 }
1255 }
1256 return 0;
1257}
1258
679c782d
EC
1259/* Parentage chain of this register (or stack slot) should take care of all
1260 * issues like callee-saved registers, stack slot allocation time, etc.
1261 */
f4d7e40a 1262static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1263 const struct bpf_reg_state *state,
5327ed3d 1264 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1265{
1266 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1267 int cnt = 0;
dc503a8a
EC
1268
1269 while (parent) {
1270 /* if read wasn't screened by an earlier write ... */
679c782d 1271 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1272 break;
9242b5f5
AS
1273 if (parent->live & REG_LIVE_DONE) {
1274 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1275 reg_type_str[parent->type],
1276 parent->var_off.value, parent->off);
1277 return -EFAULT;
1278 }
5327ed3d
JW
1279 /* The first condition is more likely to be true than the
1280 * second, checked it first.
1281 */
1282 if ((parent->live & REG_LIVE_READ) == flag ||
1283 parent->live & REG_LIVE_READ64)
25af32da
AS
1284 /* The parentage chain never changes and
1285 * this parent was already marked as LIVE_READ.
1286 * There is no need to keep walking the chain again and
1287 * keep re-marking all parents as LIVE_READ.
1288 * This case happens when the same register is read
1289 * multiple times without writes into it in-between.
5327ed3d
JW
1290 * Also, if parent has the stronger REG_LIVE_READ64 set,
1291 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1292 */
1293 break;
dc503a8a 1294 /* ... then we depend on parent's value */
5327ed3d
JW
1295 parent->live |= flag;
1296 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1297 if (flag == REG_LIVE_READ64)
1298 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1299 state = parent;
1300 parent = state->parent;
f4d7e40a 1301 writes = true;
06ee7115 1302 cnt++;
dc503a8a 1303 }
06ee7115
AS
1304
1305 if (env->longest_mark_read_walk < cnt)
1306 env->longest_mark_read_walk = cnt;
f4d7e40a 1307 return 0;
dc503a8a
EC
1308}
1309
5327ed3d
JW
1310/* This function is supposed to be used by the following 32-bit optimization
1311 * code only. It returns TRUE if the source or destination register operates
1312 * on 64-bit, otherwise return FALSE.
1313 */
1314static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1315 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1316{
1317 u8 code, class, op;
1318
1319 code = insn->code;
1320 class = BPF_CLASS(code);
1321 op = BPF_OP(code);
1322 if (class == BPF_JMP) {
1323 /* BPF_EXIT for "main" will reach here. Return TRUE
1324 * conservatively.
1325 */
1326 if (op == BPF_EXIT)
1327 return true;
1328 if (op == BPF_CALL) {
1329 /* BPF to BPF call will reach here because of marking
1330 * caller saved clobber with DST_OP_NO_MARK for which we
1331 * don't care the register def because they are anyway
1332 * marked as NOT_INIT already.
1333 */
1334 if (insn->src_reg == BPF_PSEUDO_CALL)
1335 return false;
1336 /* Helper call will reach here because of arg type
1337 * check, conservatively return TRUE.
1338 */
1339 if (t == SRC_OP)
1340 return true;
1341
1342 return false;
1343 }
1344 }
1345
1346 if (class == BPF_ALU64 || class == BPF_JMP ||
1347 /* BPF_END always use BPF_ALU class. */
1348 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1349 return true;
1350
1351 if (class == BPF_ALU || class == BPF_JMP32)
1352 return false;
1353
1354 if (class == BPF_LDX) {
1355 if (t != SRC_OP)
1356 return BPF_SIZE(code) == BPF_DW;
1357 /* LDX source must be ptr. */
1358 return true;
1359 }
1360
1361 if (class == BPF_STX) {
1362 if (reg->type != SCALAR_VALUE)
1363 return true;
1364 return BPF_SIZE(code) == BPF_DW;
1365 }
1366
1367 if (class == BPF_LD) {
1368 u8 mode = BPF_MODE(code);
1369
1370 /* LD_IMM64 */
1371 if (mode == BPF_IMM)
1372 return true;
1373
1374 /* Both LD_IND and LD_ABS return 32-bit data. */
1375 if (t != SRC_OP)
1376 return false;
1377
1378 /* Implicit ctx ptr. */
1379 if (regno == BPF_REG_6)
1380 return true;
1381
1382 /* Explicit source could be any width. */
1383 return true;
1384 }
1385
1386 if (class == BPF_ST)
1387 /* The only source register for BPF_ST is a ptr. */
1388 return true;
1389
1390 /* Conservatively return true at default. */
1391 return true;
1392}
1393
b325fbca
JW
1394/* Return TRUE if INSN doesn't have explicit value define. */
1395static bool insn_no_def(struct bpf_insn *insn)
1396{
1397 u8 class = BPF_CLASS(insn->code);
1398
1399 return (class == BPF_JMP || class == BPF_JMP32 ||
1400 class == BPF_STX || class == BPF_ST);
1401}
1402
1403/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1404static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1405{
1406 if (insn_no_def(insn))
1407 return false;
1408
1409 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1410}
1411
5327ed3d
JW
1412static void mark_insn_zext(struct bpf_verifier_env *env,
1413 struct bpf_reg_state *reg)
1414{
1415 s32 def_idx = reg->subreg_def;
1416
1417 if (def_idx == DEF_NOT_SUBREG)
1418 return;
1419
1420 env->insn_aux_data[def_idx - 1].zext_dst = true;
1421 /* The dst will be zero extended, so won't be sub-register anymore. */
1422 reg->subreg_def = DEF_NOT_SUBREG;
1423}
1424
dc503a8a 1425static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1426 enum reg_arg_type t)
1427{
f4d7e40a
AS
1428 struct bpf_verifier_state *vstate = env->cur_state;
1429 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1430 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1431 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1432 bool rw64;
dc503a8a 1433
17a52670 1434 if (regno >= MAX_BPF_REG) {
61bd5218 1435 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1436 return -EINVAL;
1437 }
1438
c342dc10 1439 reg = &regs[regno];
5327ed3d 1440 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1441 if (t == SRC_OP) {
1442 /* check whether register used as source operand can be read */
c342dc10 1443 if (reg->type == NOT_INIT) {
61bd5218 1444 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1445 return -EACCES;
1446 }
679c782d 1447 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1448 if (regno == BPF_REG_FP)
1449 return 0;
1450
5327ed3d
JW
1451 if (rw64)
1452 mark_insn_zext(env, reg);
1453
1454 return mark_reg_read(env, reg, reg->parent,
1455 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1456 } else {
1457 /* check whether register used as dest operand can be written to */
1458 if (regno == BPF_REG_FP) {
61bd5218 1459 verbose(env, "frame pointer is read only\n");
17a52670
AS
1460 return -EACCES;
1461 }
c342dc10 1462 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1463 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1464 if (t == DST_OP)
61bd5218 1465 mark_reg_unknown(env, regs, regno);
17a52670
AS
1466 }
1467 return 0;
1468}
1469
b5dc0163
AS
1470/* for any branch, call, exit record the history of jmps in the given state */
1471static int push_jmp_history(struct bpf_verifier_env *env,
1472 struct bpf_verifier_state *cur)
1473{
1474 u32 cnt = cur->jmp_history_cnt;
1475 struct bpf_idx_pair *p;
1476
1477 cnt++;
1478 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1479 if (!p)
1480 return -ENOMEM;
1481 p[cnt - 1].idx = env->insn_idx;
1482 p[cnt - 1].prev_idx = env->prev_insn_idx;
1483 cur->jmp_history = p;
1484 cur->jmp_history_cnt = cnt;
1485 return 0;
1486}
1487
1488/* Backtrack one insn at a time. If idx is not at the top of recorded
1489 * history then previous instruction came from straight line execution.
1490 */
1491static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1492 u32 *history)
1493{
1494 u32 cnt = *history;
1495
1496 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1497 i = st->jmp_history[cnt - 1].prev_idx;
1498 (*history)--;
1499 } else {
1500 i--;
1501 }
1502 return i;
1503}
1504
1505/* For given verifier state backtrack_insn() is called from the last insn to
1506 * the first insn. Its purpose is to compute a bitmask of registers and
1507 * stack slots that needs precision in the parent verifier state.
1508 */
1509static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1510 u32 *reg_mask, u64 *stack_mask)
1511{
1512 const struct bpf_insn_cbs cbs = {
1513 .cb_print = verbose,
1514 .private_data = env,
1515 };
1516 struct bpf_insn *insn = env->prog->insnsi + idx;
1517 u8 class = BPF_CLASS(insn->code);
1518 u8 opcode = BPF_OP(insn->code);
1519 u8 mode = BPF_MODE(insn->code);
1520 u32 dreg = 1u << insn->dst_reg;
1521 u32 sreg = 1u << insn->src_reg;
1522 u32 spi;
1523
1524 if (insn->code == 0)
1525 return 0;
1526 if (env->log.level & BPF_LOG_LEVEL) {
1527 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1528 verbose(env, "%d: ", idx);
1529 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1530 }
1531
1532 if (class == BPF_ALU || class == BPF_ALU64) {
1533 if (!(*reg_mask & dreg))
1534 return 0;
1535 if (opcode == BPF_MOV) {
1536 if (BPF_SRC(insn->code) == BPF_X) {
1537 /* dreg = sreg
1538 * dreg needs precision after this insn
1539 * sreg needs precision before this insn
1540 */
1541 *reg_mask &= ~dreg;
1542 *reg_mask |= sreg;
1543 } else {
1544 /* dreg = K
1545 * dreg needs precision after this insn.
1546 * Corresponding register is already marked
1547 * as precise=true in this verifier state.
1548 * No further markings in parent are necessary
1549 */
1550 *reg_mask &= ~dreg;
1551 }
1552 } else {
1553 if (BPF_SRC(insn->code) == BPF_X) {
1554 /* dreg += sreg
1555 * both dreg and sreg need precision
1556 * before this insn
1557 */
1558 *reg_mask |= sreg;
1559 } /* else dreg += K
1560 * dreg still needs precision before this insn
1561 */
1562 }
1563 } else if (class == BPF_LDX) {
1564 if (!(*reg_mask & dreg))
1565 return 0;
1566 *reg_mask &= ~dreg;
1567
1568 /* scalars can only be spilled into stack w/o losing precision.
1569 * Load from any other memory can be zero extended.
1570 * The desire to keep that precision is already indicated
1571 * by 'precise' mark in corresponding register of this state.
1572 * No further tracking necessary.
1573 */
1574 if (insn->src_reg != BPF_REG_FP)
1575 return 0;
1576 if (BPF_SIZE(insn->code) != BPF_DW)
1577 return 0;
1578
1579 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1580 * that [fp - off] slot contains scalar that needs to be
1581 * tracked with precision
1582 */
1583 spi = (-insn->off - 1) / BPF_REG_SIZE;
1584 if (spi >= 64) {
1585 verbose(env, "BUG spi %d\n", spi);
1586 WARN_ONCE(1, "verifier backtracking bug");
1587 return -EFAULT;
1588 }
1589 *stack_mask |= 1ull << spi;
b3b50f05 1590 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1591 if (*reg_mask & dreg)
b3b50f05 1592 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1593 * to access memory. It means backtracking
1594 * encountered a case of pointer subtraction.
1595 */
1596 return -ENOTSUPP;
1597 /* scalars can only be spilled into stack */
1598 if (insn->dst_reg != BPF_REG_FP)
1599 return 0;
1600 if (BPF_SIZE(insn->code) != BPF_DW)
1601 return 0;
1602 spi = (-insn->off - 1) / BPF_REG_SIZE;
1603 if (spi >= 64) {
1604 verbose(env, "BUG spi %d\n", spi);
1605 WARN_ONCE(1, "verifier backtracking bug");
1606 return -EFAULT;
1607 }
1608 if (!(*stack_mask & (1ull << spi)))
1609 return 0;
1610 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1611 if (class == BPF_STX)
1612 *reg_mask |= sreg;
b5dc0163
AS
1613 } else if (class == BPF_JMP || class == BPF_JMP32) {
1614 if (opcode == BPF_CALL) {
1615 if (insn->src_reg == BPF_PSEUDO_CALL)
1616 return -ENOTSUPP;
1617 /* regular helper call sets R0 */
1618 *reg_mask &= ~1;
1619 if (*reg_mask & 0x3f) {
1620 /* if backtracing was looking for registers R1-R5
1621 * they should have been found already.
1622 */
1623 verbose(env, "BUG regs %x\n", *reg_mask);
1624 WARN_ONCE(1, "verifier backtracking bug");
1625 return -EFAULT;
1626 }
1627 } else if (opcode == BPF_EXIT) {
1628 return -ENOTSUPP;
1629 }
1630 } else if (class == BPF_LD) {
1631 if (!(*reg_mask & dreg))
1632 return 0;
1633 *reg_mask &= ~dreg;
1634 /* It's ld_imm64 or ld_abs or ld_ind.
1635 * For ld_imm64 no further tracking of precision
1636 * into parent is necessary
1637 */
1638 if (mode == BPF_IND || mode == BPF_ABS)
1639 /* to be analyzed */
1640 return -ENOTSUPP;
b5dc0163
AS
1641 }
1642 return 0;
1643}
1644
1645/* the scalar precision tracking algorithm:
1646 * . at the start all registers have precise=false.
1647 * . scalar ranges are tracked as normal through alu and jmp insns.
1648 * . once precise value of the scalar register is used in:
1649 * . ptr + scalar alu
1650 * . if (scalar cond K|scalar)
1651 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1652 * backtrack through the verifier states and mark all registers and
1653 * stack slots with spilled constants that these scalar regisers
1654 * should be precise.
1655 * . during state pruning two registers (or spilled stack slots)
1656 * are equivalent if both are not precise.
1657 *
1658 * Note the verifier cannot simply walk register parentage chain,
1659 * since many different registers and stack slots could have been
1660 * used to compute single precise scalar.
1661 *
1662 * The approach of starting with precise=true for all registers and then
1663 * backtrack to mark a register as not precise when the verifier detects
1664 * that program doesn't care about specific value (e.g., when helper
1665 * takes register as ARG_ANYTHING parameter) is not safe.
1666 *
1667 * It's ok to walk single parentage chain of the verifier states.
1668 * It's possible that this backtracking will go all the way till 1st insn.
1669 * All other branches will be explored for needing precision later.
1670 *
1671 * The backtracking needs to deal with cases like:
1672 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1673 * r9 -= r8
1674 * r5 = r9
1675 * if r5 > 0x79f goto pc+7
1676 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1677 * r5 += 1
1678 * ...
1679 * call bpf_perf_event_output#25
1680 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1681 *
1682 * and this case:
1683 * r6 = 1
1684 * call foo // uses callee's r6 inside to compute r0
1685 * r0 += r6
1686 * if r0 == 0 goto
1687 *
1688 * to track above reg_mask/stack_mask needs to be independent for each frame.
1689 *
1690 * Also if parent's curframe > frame where backtracking started,
1691 * the verifier need to mark registers in both frames, otherwise callees
1692 * may incorrectly prune callers. This is similar to
1693 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1694 *
1695 * For now backtracking falls back into conservative marking.
1696 */
1697static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1698 struct bpf_verifier_state *st)
1699{
1700 struct bpf_func_state *func;
1701 struct bpf_reg_state *reg;
1702 int i, j;
1703
1704 /* big hammer: mark all scalars precise in this path.
1705 * pop_stack may still get !precise scalars.
1706 */
1707 for (; st; st = st->parent)
1708 for (i = 0; i <= st->curframe; i++) {
1709 func = st->frame[i];
1710 for (j = 0; j < BPF_REG_FP; j++) {
1711 reg = &func->regs[j];
1712 if (reg->type != SCALAR_VALUE)
1713 continue;
1714 reg->precise = true;
1715 }
1716 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1717 if (func->stack[j].slot_type[0] != STACK_SPILL)
1718 continue;
1719 reg = &func->stack[j].spilled_ptr;
1720 if (reg->type != SCALAR_VALUE)
1721 continue;
1722 reg->precise = true;
1723 }
1724 }
1725}
1726
a3ce685d
AS
1727static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1728 int spi)
b5dc0163
AS
1729{
1730 struct bpf_verifier_state *st = env->cur_state;
1731 int first_idx = st->first_insn_idx;
1732 int last_idx = env->insn_idx;
1733 struct bpf_func_state *func;
1734 struct bpf_reg_state *reg;
a3ce685d
AS
1735 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1736 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1737 bool skip_first = true;
a3ce685d 1738 bool new_marks = false;
b5dc0163
AS
1739 int i, err;
1740
1741 if (!env->allow_ptr_leaks)
1742 /* backtracking is root only for now */
1743 return 0;
1744
1745 func = st->frame[st->curframe];
a3ce685d
AS
1746 if (regno >= 0) {
1747 reg = &func->regs[regno];
1748 if (reg->type != SCALAR_VALUE) {
1749 WARN_ONCE(1, "backtracing misuse");
1750 return -EFAULT;
1751 }
1752 if (!reg->precise)
1753 new_marks = true;
1754 else
1755 reg_mask = 0;
1756 reg->precise = true;
b5dc0163 1757 }
b5dc0163 1758
a3ce685d
AS
1759 while (spi >= 0) {
1760 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1761 stack_mask = 0;
1762 break;
1763 }
1764 reg = &func->stack[spi].spilled_ptr;
1765 if (reg->type != SCALAR_VALUE) {
1766 stack_mask = 0;
1767 break;
1768 }
1769 if (!reg->precise)
1770 new_marks = true;
1771 else
1772 stack_mask = 0;
1773 reg->precise = true;
1774 break;
1775 }
1776
1777 if (!new_marks)
1778 return 0;
1779 if (!reg_mask && !stack_mask)
1780 return 0;
b5dc0163
AS
1781 for (;;) {
1782 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
1783 u32 history = st->jmp_history_cnt;
1784
1785 if (env->log.level & BPF_LOG_LEVEL)
1786 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1787 for (i = last_idx;;) {
1788 if (skip_first) {
1789 err = 0;
1790 skip_first = false;
1791 } else {
1792 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1793 }
1794 if (err == -ENOTSUPP) {
1795 mark_all_scalars_precise(env, st);
1796 return 0;
1797 } else if (err) {
1798 return err;
1799 }
1800 if (!reg_mask && !stack_mask)
1801 /* Found assignment(s) into tracked register in this state.
1802 * Since this state is already marked, just return.
1803 * Nothing to be tracked further in the parent state.
1804 */
1805 return 0;
1806 if (i == first_idx)
1807 break;
1808 i = get_prev_insn_idx(st, i, &history);
1809 if (i >= env->prog->len) {
1810 /* This can happen if backtracking reached insn 0
1811 * and there are still reg_mask or stack_mask
1812 * to backtrack.
1813 * It means the backtracking missed the spot where
1814 * particular register was initialized with a constant.
1815 */
1816 verbose(env, "BUG backtracking idx %d\n", i);
1817 WARN_ONCE(1, "verifier backtracking bug");
1818 return -EFAULT;
1819 }
1820 }
1821 st = st->parent;
1822 if (!st)
1823 break;
1824
a3ce685d 1825 new_marks = false;
b5dc0163
AS
1826 func = st->frame[st->curframe];
1827 bitmap_from_u64(mask, reg_mask);
1828 for_each_set_bit(i, mask, 32) {
1829 reg = &func->regs[i];
a3ce685d
AS
1830 if (reg->type != SCALAR_VALUE) {
1831 reg_mask &= ~(1u << i);
b5dc0163 1832 continue;
a3ce685d 1833 }
b5dc0163
AS
1834 if (!reg->precise)
1835 new_marks = true;
1836 reg->precise = true;
1837 }
1838
1839 bitmap_from_u64(mask, stack_mask);
1840 for_each_set_bit(i, mask, 64) {
1841 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
1842 /* the sequence of instructions:
1843 * 2: (bf) r3 = r10
1844 * 3: (7b) *(u64 *)(r3 -8) = r0
1845 * 4: (79) r4 = *(u64 *)(r10 -8)
1846 * doesn't contain jmps. It's backtracked
1847 * as a single block.
1848 * During backtracking insn 3 is not recognized as
1849 * stack access, so at the end of backtracking
1850 * stack slot fp-8 is still marked in stack_mask.
1851 * However the parent state may not have accessed
1852 * fp-8 and it's "unallocated" stack space.
1853 * In such case fallback to conservative.
b5dc0163 1854 */
2339cd6c
AS
1855 mark_all_scalars_precise(env, st);
1856 return 0;
b5dc0163
AS
1857 }
1858
a3ce685d
AS
1859 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1860 stack_mask &= ~(1ull << i);
b5dc0163 1861 continue;
a3ce685d 1862 }
b5dc0163 1863 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
1864 if (reg->type != SCALAR_VALUE) {
1865 stack_mask &= ~(1ull << i);
b5dc0163 1866 continue;
a3ce685d 1867 }
b5dc0163
AS
1868 if (!reg->precise)
1869 new_marks = true;
1870 reg->precise = true;
1871 }
1872 if (env->log.level & BPF_LOG_LEVEL) {
1873 print_verifier_state(env, func);
1874 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1875 new_marks ? "didn't have" : "already had",
1876 reg_mask, stack_mask);
1877 }
1878
a3ce685d
AS
1879 if (!reg_mask && !stack_mask)
1880 break;
b5dc0163
AS
1881 if (!new_marks)
1882 break;
1883
1884 last_idx = st->last_insn_idx;
1885 first_idx = st->first_insn_idx;
1886 }
1887 return 0;
1888}
1889
a3ce685d
AS
1890static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1891{
1892 return __mark_chain_precision(env, regno, -1);
1893}
1894
1895static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1896{
1897 return __mark_chain_precision(env, -1, spi);
1898}
b5dc0163 1899
1be7f75d
AS
1900static bool is_spillable_regtype(enum bpf_reg_type type)
1901{
1902 switch (type) {
1903 case PTR_TO_MAP_VALUE:
1904 case PTR_TO_MAP_VALUE_OR_NULL:
1905 case PTR_TO_STACK:
1906 case PTR_TO_CTX:
969bf05e 1907 case PTR_TO_PACKET:
de8f3a83 1908 case PTR_TO_PACKET_META:
969bf05e 1909 case PTR_TO_PACKET_END:
d58e468b 1910 case PTR_TO_FLOW_KEYS:
1be7f75d 1911 case CONST_PTR_TO_MAP:
c64b7983
JS
1912 case PTR_TO_SOCKET:
1913 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1914 case PTR_TO_SOCK_COMMON:
1915 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1916 case PTR_TO_TCP_SOCK:
1917 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1918 case PTR_TO_XDP_SOCK:
65726b5b 1919 case PTR_TO_BTF_ID:
1be7f75d
AS
1920 return true;
1921 default:
1922 return false;
1923 }
1924}
1925
cc2b14d5
AS
1926/* Does this register contain a constant zero? */
1927static bool register_is_null(struct bpf_reg_state *reg)
1928{
1929 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1930}
1931
f7cf25b2
AS
1932static bool register_is_const(struct bpf_reg_state *reg)
1933{
1934 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1935}
1936
1937static void save_register_state(struct bpf_func_state *state,
1938 int spi, struct bpf_reg_state *reg)
1939{
1940 int i;
1941
1942 state->stack[spi].spilled_ptr = *reg;
1943 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1944
1945 for (i = 0; i < BPF_REG_SIZE; i++)
1946 state->stack[spi].slot_type[i] = STACK_SPILL;
1947}
1948
17a52670
AS
1949/* check_stack_read/write functions track spill/fill of registers,
1950 * stack boundary and alignment are checked in check_mem_access()
1951 */
61bd5218 1952static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1953 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1954 int off, int size, int value_regno, int insn_idx)
17a52670 1955{
f4d7e40a 1956 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1957 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1958 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1959 struct bpf_reg_state *reg = NULL;
638f5b90 1960
f4d7e40a 1961 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1962 state->acquired_refs, true);
638f5b90
AS
1963 if (err)
1964 return err;
9c399760
AS
1965 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1966 * so it's aligned access and [off, off + size) are within stack limits
1967 */
638f5b90
AS
1968 if (!env->allow_ptr_leaks &&
1969 state->stack[spi].slot_type[0] == STACK_SPILL &&
1970 size != BPF_REG_SIZE) {
1971 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1972 return -EACCES;
1973 }
17a52670 1974
f4d7e40a 1975 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1976 if (value_regno >= 0)
1977 reg = &cur->regs[value_regno];
17a52670 1978
f7cf25b2
AS
1979 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1980 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1981 if (dst_reg != BPF_REG_FP) {
1982 /* The backtracking logic can only recognize explicit
1983 * stack slot address like [fp - 8]. Other spill of
1984 * scalar via different register has to be conervative.
1985 * Backtrack from here and mark all registers as precise
1986 * that contributed into 'reg' being a constant.
1987 */
1988 err = mark_chain_precision(env, value_regno);
1989 if (err)
1990 return err;
1991 }
f7cf25b2
AS
1992 save_register_state(state, spi, reg);
1993 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1994 /* register containing pointer is being spilled into stack */
9c399760 1995 if (size != BPF_REG_SIZE) {
f7cf25b2 1996 verbose_linfo(env, insn_idx, "; ");
61bd5218 1997 verbose(env, "invalid size of register spill\n");
17a52670
AS
1998 return -EACCES;
1999 }
2000
f7cf25b2 2001 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2002 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2003 return -EINVAL;
2004 }
2005
f7cf25b2
AS
2006 if (!env->allow_ptr_leaks) {
2007 bool sanitize = false;
17a52670 2008
f7cf25b2
AS
2009 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2010 register_is_const(&state->stack[spi].spilled_ptr))
2011 sanitize = true;
2012 for (i = 0; i < BPF_REG_SIZE; i++)
2013 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2014 sanitize = true;
2015 break;
2016 }
2017 if (sanitize) {
af86ca4e
AS
2018 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2019 int soff = (-spi - 1) * BPF_REG_SIZE;
2020
2021 /* detected reuse of integer stack slot with a pointer
2022 * which means either llvm is reusing stack slot or
2023 * an attacker is trying to exploit CVE-2018-3639
2024 * (speculative store bypass)
2025 * Have to sanitize that slot with preemptive
2026 * store of zero.
2027 */
2028 if (*poff && *poff != soff) {
2029 /* disallow programs where single insn stores
2030 * into two different stack slots, since verifier
2031 * cannot sanitize them
2032 */
2033 verbose(env,
2034 "insn %d cannot access two stack slots fp%d and fp%d",
2035 insn_idx, *poff, soff);
2036 return -EINVAL;
2037 }
2038 *poff = soff;
2039 }
af86ca4e 2040 }
f7cf25b2 2041 save_register_state(state, spi, reg);
9c399760 2042 } else {
cc2b14d5
AS
2043 u8 type = STACK_MISC;
2044
679c782d
EC
2045 /* regular write of data into stack destroys any spilled ptr */
2046 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2047 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2048 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2049 for (i = 0; i < BPF_REG_SIZE; i++)
2050 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2051
cc2b14d5
AS
2052 /* only mark the slot as written if all 8 bytes were written
2053 * otherwise read propagation may incorrectly stop too soon
2054 * when stack slots are partially written.
2055 * This heuristic means that read propagation will be
2056 * conservative, since it will add reg_live_read marks
2057 * to stack slots all the way to first state when programs
2058 * writes+reads less than 8 bytes
2059 */
2060 if (size == BPF_REG_SIZE)
2061 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2062
2063 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2064 if (reg && register_is_null(reg)) {
2065 /* backtracking doesn't work for STACK_ZERO yet. */
2066 err = mark_chain_precision(env, value_regno);
2067 if (err)
2068 return err;
cc2b14d5 2069 type = STACK_ZERO;
b5dc0163 2070 }
cc2b14d5 2071
0bae2d4d 2072 /* Mark slots affected by this stack write. */
9c399760 2073 for (i = 0; i < size; i++)
638f5b90 2074 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2075 type;
17a52670
AS
2076 }
2077 return 0;
2078}
2079
61bd5218 2080static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2081 struct bpf_func_state *reg_state /* func where register points to */,
2082 int off, int size, int value_regno)
17a52670 2083{
f4d7e40a
AS
2084 struct bpf_verifier_state *vstate = env->cur_state;
2085 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2086 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2087 struct bpf_reg_state *reg;
638f5b90 2088 u8 *stype;
17a52670 2089
f4d7e40a 2090 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2091 verbose(env, "invalid read from stack off %d+0 size %d\n",
2092 off, size);
2093 return -EACCES;
2094 }
f4d7e40a 2095 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2096 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2097
638f5b90 2098 if (stype[0] == STACK_SPILL) {
9c399760 2099 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2100 if (reg->type != SCALAR_VALUE) {
2101 verbose_linfo(env, env->insn_idx, "; ");
2102 verbose(env, "invalid size of register fill\n");
2103 return -EACCES;
2104 }
2105 if (value_regno >= 0) {
2106 mark_reg_unknown(env, state->regs, value_regno);
2107 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2108 }
2109 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2110 return 0;
17a52670 2111 }
9c399760 2112 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2113 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2114 verbose(env, "corrupted spill memory\n");
17a52670
AS
2115 return -EACCES;
2116 }
2117 }
2118
dc503a8a 2119 if (value_regno >= 0) {
17a52670 2120 /* restore register state from stack */
f7cf25b2 2121 state->regs[value_regno] = *reg;
2f18f62e
AS
2122 /* mark reg as written since spilled pointer state likely
2123 * has its liveness marks cleared by is_state_visited()
2124 * which resets stack/reg liveness for state transitions
2125 */
2126 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2127 }
f7cf25b2 2128 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2129 } else {
cc2b14d5
AS
2130 int zeros = 0;
2131
17a52670 2132 for (i = 0; i < size; i++) {
cc2b14d5
AS
2133 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2134 continue;
2135 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2136 zeros++;
2137 continue;
17a52670 2138 }
cc2b14d5
AS
2139 verbose(env, "invalid read from stack off %d+%d size %d\n",
2140 off, i, size);
2141 return -EACCES;
2142 }
f7cf25b2 2143 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2144 if (value_regno >= 0) {
2145 if (zeros == size) {
2146 /* any size read into register is zero extended,
2147 * so the whole register == const_zero
2148 */
2149 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2150 /* backtracking doesn't support STACK_ZERO yet,
2151 * so mark it precise here, so that later
2152 * backtracking can stop here.
2153 * Backtracking may not need this if this register
2154 * doesn't participate in pointer adjustment.
2155 * Forward propagation of precise flag is not
2156 * necessary either. This mark is only to stop
2157 * backtracking. Any register that contributed
2158 * to const 0 was marked precise before spill.
2159 */
2160 state->regs[value_regno].precise = true;
cc2b14d5
AS
2161 } else {
2162 /* have read misc data from the stack */
2163 mark_reg_unknown(env, state->regs, value_regno);
2164 }
2165 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2166 }
17a52670 2167 }
f7cf25b2 2168 return 0;
17a52670
AS
2169}
2170
e4298d25
DB
2171static int check_stack_access(struct bpf_verifier_env *env,
2172 const struct bpf_reg_state *reg,
2173 int off, int size)
2174{
2175 /* Stack accesses must be at a fixed offset, so that we
2176 * can determine what type of data were returned. See
2177 * check_stack_read().
2178 */
2179 if (!tnum_is_const(reg->var_off)) {
2180 char tn_buf[48];
2181
2182 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2183 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2184 tn_buf, off, size);
2185 return -EACCES;
2186 }
2187
2188 if (off >= 0 || off < -MAX_BPF_STACK) {
2189 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2190 return -EACCES;
2191 }
2192
2193 return 0;
2194}
2195
591fe988
DB
2196static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2197 int off, int size, enum bpf_access_type type)
2198{
2199 struct bpf_reg_state *regs = cur_regs(env);
2200 struct bpf_map *map = regs[regno].map_ptr;
2201 u32 cap = bpf_map_flags_to_cap(map);
2202
2203 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2204 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2205 map->value_size, off, size);
2206 return -EACCES;
2207 }
2208
2209 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2210 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2211 map->value_size, off, size);
2212 return -EACCES;
2213 }
2214
2215 return 0;
2216}
2217
17a52670 2218/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2219static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2220 int size, bool zero_size_allowed)
17a52670 2221{
638f5b90
AS
2222 struct bpf_reg_state *regs = cur_regs(env);
2223 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2224
9fd29c08
YS
2225 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2226 off + size > map->value_size) {
61bd5218 2227 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2228 map->value_size, off, size);
2229 return -EACCES;
2230 }
2231 return 0;
2232}
2233
f1174f77
EC
2234/* check read/write into a map element with possible variable offset */
2235static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2236 int off, int size, bool zero_size_allowed)
dbcfe5f7 2237{
f4d7e40a
AS
2238 struct bpf_verifier_state *vstate = env->cur_state;
2239 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2240 struct bpf_reg_state *reg = &state->regs[regno];
2241 int err;
2242
f1174f77
EC
2243 /* We may have adjusted the register to this map value, so we
2244 * need to try adding each of min_value and max_value to off
2245 * to make sure our theoretical access will be safe.
dbcfe5f7 2246 */
06ee7115 2247 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2248 print_verifier_state(env, state);
b7137c4e 2249
dbcfe5f7
GB
2250 /* The minimum value is only important with signed
2251 * comparisons where we can't assume the floor of a
2252 * value is 0. If we are using signed variables for our
2253 * index'es we need to make sure that whatever we use
2254 * will have a set floor within our range.
2255 */
b7137c4e
DB
2256 if (reg->smin_value < 0 &&
2257 (reg->smin_value == S64_MIN ||
2258 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2259 reg->smin_value + off < 0)) {
61bd5218 2260 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2261 regno);
2262 return -EACCES;
2263 }
9fd29c08
YS
2264 err = __check_map_access(env, regno, reg->smin_value + off, size,
2265 zero_size_allowed);
dbcfe5f7 2266 if (err) {
61bd5218
JK
2267 verbose(env, "R%d min value is outside of the array range\n",
2268 regno);
dbcfe5f7
GB
2269 return err;
2270 }
2271
b03c9f9f
EC
2272 /* If we haven't set a max value then we need to bail since we can't be
2273 * sure we won't do bad things.
2274 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2275 */
b03c9f9f 2276 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2277 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2278 regno);
2279 return -EACCES;
2280 }
9fd29c08
YS
2281 err = __check_map_access(env, regno, reg->umax_value + off, size,
2282 zero_size_allowed);
f1174f77 2283 if (err)
61bd5218
JK
2284 verbose(env, "R%d max value is outside of the array range\n",
2285 regno);
d83525ca
AS
2286
2287 if (map_value_has_spin_lock(reg->map_ptr)) {
2288 u32 lock = reg->map_ptr->spin_lock_off;
2289
2290 /* if any part of struct bpf_spin_lock can be touched by
2291 * load/store reject this program.
2292 * To check that [x1, x2) overlaps with [y1, y2)
2293 * it is sufficient to check x1 < y2 && y1 < x2.
2294 */
2295 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2296 lock < reg->umax_value + off + size) {
2297 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2298 return -EACCES;
2299 }
2300 }
f1174f77 2301 return err;
dbcfe5f7
GB
2302}
2303
969bf05e
AS
2304#define MAX_PACKET_OFF 0xffff
2305
58e2af8b 2306static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2307 const struct bpf_call_arg_meta *meta,
2308 enum bpf_access_type t)
4acf6c0b 2309{
36bbef52 2310 switch (env->prog->type) {
5d66fa7d 2311 /* Program types only with direct read access go here! */
3a0af8fd
TG
2312 case BPF_PROG_TYPE_LWT_IN:
2313 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2314 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2315 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2316 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2317 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2318 if (t == BPF_WRITE)
2319 return false;
7e57fbb2 2320 /* fallthrough */
5d66fa7d
DB
2321
2322 /* Program types with direct read + write access go here! */
36bbef52
DB
2323 case BPF_PROG_TYPE_SCHED_CLS:
2324 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2325 case BPF_PROG_TYPE_XDP:
3a0af8fd 2326 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2327 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2328 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2329 if (meta)
2330 return meta->pkt_access;
2331
2332 env->seen_direct_write = true;
4acf6c0b 2333 return true;
0d01da6a
SF
2334
2335 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2336 if (t == BPF_WRITE)
2337 env->seen_direct_write = true;
2338
2339 return true;
2340
4acf6c0b
BB
2341 default:
2342 return false;
2343 }
2344}
2345
f1174f77 2346static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2347 int off, int size, bool zero_size_allowed)
969bf05e 2348{
638f5b90 2349 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2350 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2351
9fd29c08
YS
2352 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2353 (u64)off + size > reg->range) {
61bd5218 2354 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2355 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2356 return -EACCES;
2357 }
2358 return 0;
2359}
2360
f1174f77 2361static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2362 int size, bool zero_size_allowed)
f1174f77 2363{
638f5b90 2364 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2365 struct bpf_reg_state *reg = &regs[regno];
2366 int err;
2367
2368 /* We may have added a variable offset to the packet pointer; but any
2369 * reg->range we have comes after that. We are only checking the fixed
2370 * offset.
2371 */
2372
2373 /* We don't allow negative numbers, because we aren't tracking enough
2374 * detail to prove they're safe.
2375 */
b03c9f9f 2376 if (reg->smin_value < 0) {
61bd5218 2377 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2378 regno);
2379 return -EACCES;
2380 }
9fd29c08 2381 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2382 if (err) {
61bd5218 2383 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2384 return err;
2385 }
e647815a
JW
2386
2387 /* __check_packet_access has made sure "off + size - 1" is within u16.
2388 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2389 * otherwise find_good_pkt_pointers would have refused to set range info
2390 * that __check_packet_access would have rejected this pkt access.
2391 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2392 */
2393 env->prog->aux->max_pkt_offset =
2394 max_t(u32, env->prog->aux->max_pkt_offset,
2395 off + reg->umax_value + size - 1);
2396
f1174f77
EC
2397 return err;
2398}
2399
2400/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2401static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2402 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2403 u32 *btf_id)
17a52670 2404{
f96da094
DB
2405 struct bpf_insn_access_aux info = {
2406 .reg_type = *reg_type,
9e15db66 2407 .log = &env->log,
f96da094 2408 };
31fd8581 2409
4f9218aa 2410 if (env->ops->is_valid_access &&
5e43f899 2411 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2412 /* A non zero info.ctx_field_size indicates that this field is a
2413 * candidate for later verifier transformation to load the whole
2414 * field and then apply a mask when accessed with a narrower
2415 * access than actual ctx access size. A zero info.ctx_field_size
2416 * will only allow for whole field access and rejects any other
2417 * type of narrower access.
31fd8581 2418 */
23994631 2419 *reg_type = info.reg_type;
31fd8581 2420
9e15db66
AS
2421 if (*reg_type == PTR_TO_BTF_ID)
2422 *btf_id = info.btf_id;
2423 else
2424 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2425 /* remember the offset of last byte accessed in ctx */
2426 if (env->prog->aux->max_ctx_offset < off + size)
2427 env->prog->aux->max_ctx_offset = off + size;
17a52670 2428 return 0;
32bbe007 2429 }
17a52670 2430
61bd5218 2431 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2432 return -EACCES;
2433}
2434
d58e468b
PP
2435static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2436 int size)
2437{
2438 if (size < 0 || off < 0 ||
2439 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2440 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2441 off, size);
2442 return -EACCES;
2443 }
2444 return 0;
2445}
2446
5f456649
MKL
2447static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2448 u32 regno, int off, int size,
2449 enum bpf_access_type t)
c64b7983
JS
2450{
2451 struct bpf_reg_state *regs = cur_regs(env);
2452 struct bpf_reg_state *reg = &regs[regno];
5f456649 2453 struct bpf_insn_access_aux info = {};
46f8bc92 2454 bool valid;
c64b7983
JS
2455
2456 if (reg->smin_value < 0) {
2457 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2458 regno);
2459 return -EACCES;
2460 }
2461
46f8bc92
MKL
2462 switch (reg->type) {
2463 case PTR_TO_SOCK_COMMON:
2464 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2465 break;
2466 case PTR_TO_SOCKET:
2467 valid = bpf_sock_is_valid_access(off, size, t, &info);
2468 break;
655a51e5
MKL
2469 case PTR_TO_TCP_SOCK:
2470 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2471 break;
fada7fdc
JL
2472 case PTR_TO_XDP_SOCK:
2473 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2474 break;
46f8bc92
MKL
2475 default:
2476 valid = false;
c64b7983
JS
2477 }
2478
5f456649 2479
46f8bc92
MKL
2480 if (valid) {
2481 env->insn_aux_data[insn_idx].ctx_field_size =
2482 info.ctx_field_size;
2483 return 0;
2484 }
2485
2486 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2487 regno, reg_type_str[reg->type], off, size);
2488
2489 return -EACCES;
c64b7983
JS
2490}
2491
4cabc5b1
DB
2492static bool __is_pointer_value(bool allow_ptr_leaks,
2493 const struct bpf_reg_state *reg)
1be7f75d 2494{
4cabc5b1 2495 if (allow_ptr_leaks)
1be7f75d
AS
2496 return false;
2497
f1174f77 2498 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2499}
2500
2a159c6f
DB
2501static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2502{
2503 return cur_regs(env) + regno;
2504}
2505
4cabc5b1
DB
2506static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2507{
2a159c6f 2508 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2509}
2510
f37a8cb8
DB
2511static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2512{
2a159c6f 2513 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2514
46f8bc92
MKL
2515 return reg->type == PTR_TO_CTX;
2516}
2517
2518static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2519{
2520 const struct bpf_reg_state *reg = reg_state(env, regno);
2521
2522 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2523}
2524
ca369602
DB
2525static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2526{
2a159c6f 2527 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2528
2529 return type_is_pkt_pointer(reg->type);
2530}
2531
4b5defde
DB
2532static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2533{
2534 const struct bpf_reg_state *reg = reg_state(env, regno);
2535
2536 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2537 return reg->type == PTR_TO_FLOW_KEYS;
2538}
2539
61bd5218
JK
2540static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2541 const struct bpf_reg_state *reg,
d1174416 2542 int off, int size, bool strict)
969bf05e 2543{
f1174f77 2544 struct tnum reg_off;
e07b98d9 2545 int ip_align;
d1174416
DM
2546
2547 /* Byte size accesses are always allowed. */
2548 if (!strict || size == 1)
2549 return 0;
2550
e4eda884
DM
2551 /* For platforms that do not have a Kconfig enabling
2552 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2553 * NET_IP_ALIGN is universally set to '2'. And on platforms
2554 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2555 * to this code only in strict mode where we want to emulate
2556 * the NET_IP_ALIGN==2 checking. Therefore use an
2557 * unconditional IP align value of '2'.
e07b98d9 2558 */
e4eda884 2559 ip_align = 2;
f1174f77
EC
2560
2561 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2562 if (!tnum_is_aligned(reg_off, size)) {
2563 char tn_buf[48];
2564
2565 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2566 verbose(env,
2567 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2568 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2569 return -EACCES;
2570 }
79adffcd 2571
969bf05e
AS
2572 return 0;
2573}
2574
61bd5218
JK
2575static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2576 const struct bpf_reg_state *reg,
f1174f77
EC
2577 const char *pointer_desc,
2578 int off, int size, bool strict)
79adffcd 2579{
f1174f77
EC
2580 struct tnum reg_off;
2581
2582 /* Byte size accesses are always allowed. */
2583 if (!strict || size == 1)
2584 return 0;
2585
2586 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2587 if (!tnum_is_aligned(reg_off, size)) {
2588 char tn_buf[48];
2589
2590 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2591 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2592 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2593 return -EACCES;
2594 }
2595
969bf05e
AS
2596 return 0;
2597}
2598
e07b98d9 2599static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2600 const struct bpf_reg_state *reg, int off,
2601 int size, bool strict_alignment_once)
79adffcd 2602{
ca369602 2603 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2604 const char *pointer_desc = "";
d1174416 2605
79adffcd
DB
2606 switch (reg->type) {
2607 case PTR_TO_PACKET:
de8f3a83
DB
2608 case PTR_TO_PACKET_META:
2609 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2610 * right in front, treat it the very same way.
2611 */
61bd5218 2612 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2613 case PTR_TO_FLOW_KEYS:
2614 pointer_desc = "flow keys ";
2615 break;
f1174f77
EC
2616 case PTR_TO_MAP_VALUE:
2617 pointer_desc = "value ";
2618 break;
2619 case PTR_TO_CTX:
2620 pointer_desc = "context ";
2621 break;
2622 case PTR_TO_STACK:
2623 pointer_desc = "stack ";
a5ec6ae1
JH
2624 /* The stack spill tracking logic in check_stack_write()
2625 * and check_stack_read() relies on stack accesses being
2626 * aligned.
2627 */
2628 strict = true;
f1174f77 2629 break;
c64b7983
JS
2630 case PTR_TO_SOCKET:
2631 pointer_desc = "sock ";
2632 break;
46f8bc92
MKL
2633 case PTR_TO_SOCK_COMMON:
2634 pointer_desc = "sock_common ";
2635 break;
655a51e5
MKL
2636 case PTR_TO_TCP_SOCK:
2637 pointer_desc = "tcp_sock ";
2638 break;
fada7fdc
JL
2639 case PTR_TO_XDP_SOCK:
2640 pointer_desc = "xdp_sock ";
2641 break;
79adffcd 2642 default:
f1174f77 2643 break;
79adffcd 2644 }
61bd5218
JK
2645 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2646 strict);
79adffcd
DB
2647}
2648
f4d7e40a
AS
2649static int update_stack_depth(struct bpf_verifier_env *env,
2650 const struct bpf_func_state *func,
2651 int off)
2652{
9c8105bd 2653 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2654
2655 if (stack >= -off)
2656 return 0;
2657
2658 /* update known max for given subprogram */
9c8105bd 2659 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2660 return 0;
2661}
f4d7e40a 2662
70a87ffe
AS
2663/* starting from main bpf function walk all instructions of the function
2664 * and recursively walk all callees that given function can call.
2665 * Ignore jump and exit insns.
2666 * Since recursion is prevented by check_cfg() this algorithm
2667 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2668 */
2669static int check_max_stack_depth(struct bpf_verifier_env *env)
2670{
9c8105bd
JW
2671 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2672 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2673 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2674 int ret_insn[MAX_CALL_FRAMES];
2675 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2676
70a87ffe
AS
2677process_func:
2678 /* round up to 32-bytes, since this is granularity
2679 * of interpreter stack size
2680 */
9c8105bd 2681 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2682 if (depth > MAX_BPF_STACK) {
f4d7e40a 2683 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2684 frame + 1, depth);
f4d7e40a
AS
2685 return -EACCES;
2686 }
70a87ffe 2687continue_func:
4cb3d99c 2688 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2689 for (; i < subprog_end; i++) {
2690 if (insn[i].code != (BPF_JMP | BPF_CALL))
2691 continue;
2692 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2693 continue;
2694 /* remember insn and function to return to */
2695 ret_insn[frame] = i + 1;
9c8105bd 2696 ret_prog[frame] = idx;
70a87ffe
AS
2697
2698 /* find the callee */
2699 i = i + insn[i].imm + 1;
9c8105bd
JW
2700 idx = find_subprog(env, i);
2701 if (idx < 0) {
70a87ffe
AS
2702 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2703 i);
2704 return -EFAULT;
2705 }
70a87ffe
AS
2706 frame++;
2707 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2708 verbose(env, "the call stack of %d frames is too deep !\n",
2709 frame);
2710 return -E2BIG;
70a87ffe
AS
2711 }
2712 goto process_func;
2713 }
2714 /* end of for() loop means the last insn of the 'subprog'
2715 * was reached. Doesn't matter whether it was JA or EXIT
2716 */
2717 if (frame == 0)
2718 return 0;
9c8105bd 2719 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2720 frame--;
2721 i = ret_insn[frame];
9c8105bd 2722 idx = ret_prog[frame];
70a87ffe 2723 goto continue_func;
f4d7e40a
AS
2724}
2725
19d28fbd 2726#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2727static int get_callee_stack_depth(struct bpf_verifier_env *env,
2728 const struct bpf_insn *insn, int idx)
2729{
2730 int start = idx + insn->imm + 1, subprog;
2731
2732 subprog = find_subprog(env, start);
2733 if (subprog < 0) {
2734 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2735 start);
2736 return -EFAULT;
2737 }
9c8105bd 2738 return env->subprog_info[subprog].stack_depth;
1ea47e01 2739}
19d28fbd 2740#endif
1ea47e01 2741
58990d1f
DB
2742static int check_ctx_reg(struct bpf_verifier_env *env,
2743 const struct bpf_reg_state *reg, int regno)
2744{
2745 /* Access to ctx or passing it to a helper is only allowed in
2746 * its original, unmodified form.
2747 */
2748
2749 if (reg->off) {
2750 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2751 regno, reg->off);
2752 return -EACCES;
2753 }
2754
2755 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2756 char tn_buf[48];
2757
2758 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2759 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2760 return -EACCES;
2761 }
2762
2763 return 0;
2764}
2765
9df1c28b
MM
2766static int check_tp_buffer_access(struct bpf_verifier_env *env,
2767 const struct bpf_reg_state *reg,
2768 int regno, int off, int size)
2769{
2770 if (off < 0) {
2771 verbose(env,
2772 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2773 regno, off, size);
2774 return -EACCES;
2775 }
2776 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2777 char tn_buf[48];
2778
2779 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2780 verbose(env,
2781 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2782 regno, off, tn_buf);
2783 return -EACCES;
2784 }
2785 if (off + size > env->prog->aux->max_tp_access)
2786 env->prog->aux->max_tp_access = off + size;
2787
2788 return 0;
2789}
2790
2791
0c17d1d2
JH
2792/* truncate register to smaller size (in bytes)
2793 * must be called with size < BPF_REG_SIZE
2794 */
2795static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2796{
2797 u64 mask;
2798
2799 /* clear high bits in bit representation */
2800 reg->var_off = tnum_cast(reg->var_off, size);
2801
2802 /* fix arithmetic bounds */
2803 mask = ((u64)1 << (size * 8)) - 1;
2804 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2805 reg->umin_value &= mask;
2806 reg->umax_value &= mask;
2807 } else {
2808 reg->umin_value = 0;
2809 reg->umax_value = mask;
2810 }
2811 reg->smin_value = reg->umin_value;
2812 reg->smax_value = reg->umax_value;
2813}
2814
a23740ec
AN
2815static bool bpf_map_is_rdonly(const struct bpf_map *map)
2816{
2817 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2818}
2819
2820static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2821{
2822 void *ptr;
2823 u64 addr;
2824 int err;
2825
2826 err = map->ops->map_direct_value_addr(map, &addr, off);
2827 if (err)
2828 return err;
2dedd7d2 2829 ptr = (void *)(long)addr + off;
a23740ec
AN
2830
2831 switch (size) {
2832 case sizeof(u8):
2833 *val = (u64)*(u8 *)ptr;
2834 break;
2835 case sizeof(u16):
2836 *val = (u64)*(u16 *)ptr;
2837 break;
2838 case sizeof(u32):
2839 *val = (u64)*(u32 *)ptr;
2840 break;
2841 case sizeof(u64):
2842 *val = *(u64 *)ptr;
2843 break;
2844 default:
2845 return -EINVAL;
2846 }
2847 return 0;
2848}
2849
9e15db66
AS
2850static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2851 struct bpf_reg_state *regs,
2852 int regno, int off, int size,
2853 enum bpf_access_type atype,
2854 int value_regno)
2855{
2856 struct bpf_reg_state *reg = regs + regno;
2857 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2858 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2859 u32 btf_id;
2860 int ret;
2861
2862 if (atype != BPF_READ) {
2863 verbose(env, "only read is supported\n");
2864 return -EACCES;
2865 }
2866
2867 if (off < 0) {
2868 verbose(env,
2869 "R%d is ptr_%s invalid negative access: off=%d\n",
2870 regno, tname, off);
2871 return -EACCES;
2872 }
2873 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2874 char tn_buf[48];
2875
2876 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2877 verbose(env,
2878 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2879 regno, tname, off, tn_buf);
2880 return -EACCES;
2881 }
2882
2883 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
2884 if (ret < 0)
2885 return ret;
2886
2887 if (ret == SCALAR_VALUE) {
2888 mark_reg_unknown(env, regs, value_regno);
2889 return 0;
2890 }
2891 mark_reg_known_zero(env, regs, value_regno);
2892 regs[value_regno].type = PTR_TO_BTF_ID;
2893 regs[value_regno].btf_id = btf_id;
2894 return 0;
2895}
2896
17a52670
AS
2897/* check whether memory at (regno + off) is accessible for t = (read | write)
2898 * if t==write, value_regno is a register which value is stored into memory
2899 * if t==read, value_regno is a register which will receive the value from memory
2900 * if t==write && value_regno==-1, some unknown value is stored into memory
2901 * if t==read && value_regno==-1, don't care what we read from memory
2902 */
ca369602
DB
2903static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2904 int off, int bpf_size, enum bpf_access_type t,
2905 int value_regno, bool strict_alignment_once)
17a52670 2906{
638f5b90
AS
2907 struct bpf_reg_state *regs = cur_regs(env);
2908 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2909 struct bpf_func_state *state;
17a52670
AS
2910 int size, err = 0;
2911
2912 size = bpf_size_to_bytes(bpf_size);
2913 if (size < 0)
2914 return size;
2915
f1174f77 2916 /* alignment checks will add in reg->off themselves */
ca369602 2917 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2918 if (err)
2919 return err;
17a52670 2920
f1174f77
EC
2921 /* for access checks, reg->off is just part of off */
2922 off += reg->off;
2923
2924 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2925 if (t == BPF_WRITE && value_regno >= 0 &&
2926 is_pointer_value(env, value_regno)) {
61bd5218 2927 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2928 return -EACCES;
2929 }
591fe988
DB
2930 err = check_map_access_type(env, regno, off, size, t);
2931 if (err)
2932 return err;
9fd29c08 2933 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
2934 if (!err && t == BPF_READ && value_regno >= 0) {
2935 struct bpf_map *map = reg->map_ptr;
2936
2937 /* if map is read-only, track its contents as scalars */
2938 if (tnum_is_const(reg->var_off) &&
2939 bpf_map_is_rdonly(map) &&
2940 map->ops->map_direct_value_addr) {
2941 int map_off = off + reg->var_off.value;
2942 u64 val = 0;
2943
2944 err = bpf_map_direct_read(map, map_off, size,
2945 &val);
2946 if (err)
2947 return err;
2948
2949 regs[value_regno].type = SCALAR_VALUE;
2950 __mark_reg_known(&regs[value_regno], val);
2951 } else {
2952 mark_reg_unknown(env, regs, value_regno);
2953 }
2954 }
1a0dc1ac 2955 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2956 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 2957 u32 btf_id = 0;
19de99f7 2958
1be7f75d
AS
2959 if (t == BPF_WRITE && value_regno >= 0 &&
2960 is_pointer_value(env, value_regno)) {
61bd5218 2961 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2962 return -EACCES;
2963 }
f1174f77 2964
58990d1f
DB
2965 err = check_ctx_reg(env, reg, regno);
2966 if (err < 0)
2967 return err;
2968
9e15db66
AS
2969 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2970 if (err)
2971 verbose_linfo(env, insn_idx, "; ");
969bf05e 2972 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2973 /* ctx access returns either a scalar, or a
de8f3a83
DB
2974 * PTR_TO_PACKET[_META,_END]. In the latter
2975 * case, we know the offset is zero.
f1174f77 2976 */
46f8bc92 2977 if (reg_type == SCALAR_VALUE) {
638f5b90 2978 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2979 } else {
638f5b90 2980 mark_reg_known_zero(env, regs,
61bd5218 2981 value_regno);
46f8bc92
MKL
2982 if (reg_type_may_be_null(reg_type))
2983 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2984 /* A load of ctx field could have different
2985 * actual load size with the one encoded in the
2986 * insn. When the dst is PTR, it is for sure not
2987 * a sub-register.
2988 */
2989 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
9e15db66
AS
2990 if (reg_type == PTR_TO_BTF_ID)
2991 regs[value_regno].btf_id = btf_id;
46f8bc92 2992 }
638f5b90 2993 regs[value_regno].type = reg_type;
969bf05e 2994 }
17a52670 2995
f1174f77 2996 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2997 off += reg->var_off.value;
e4298d25
DB
2998 err = check_stack_access(env, reg, off, size);
2999 if (err)
3000 return err;
8726679a 3001
f4d7e40a
AS
3002 state = func(env, reg);
3003 err = update_stack_depth(env, state, off);
3004 if (err)
3005 return err;
8726679a 3006
638f5b90 3007 if (t == BPF_WRITE)
61bd5218 3008 err = check_stack_write(env, state, off, size,
af86ca4e 3009 value_regno, insn_idx);
638f5b90 3010 else
61bd5218
JK
3011 err = check_stack_read(env, state, off, size,
3012 value_regno);
de8f3a83 3013 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3014 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3015 verbose(env, "cannot write into packet\n");
969bf05e
AS
3016 return -EACCES;
3017 }
4acf6c0b
BB
3018 if (t == BPF_WRITE && value_regno >= 0 &&
3019 is_pointer_value(env, value_regno)) {
61bd5218
JK
3020 verbose(env, "R%d leaks addr into packet\n",
3021 value_regno);
4acf6c0b
BB
3022 return -EACCES;
3023 }
9fd29c08 3024 err = check_packet_access(env, regno, off, size, false);
969bf05e 3025 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3026 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3027 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3028 if (t == BPF_WRITE && value_regno >= 0 &&
3029 is_pointer_value(env, value_regno)) {
3030 verbose(env, "R%d leaks addr into flow keys\n",
3031 value_regno);
3032 return -EACCES;
3033 }
3034
3035 err = check_flow_keys_access(env, off, size);
3036 if (!err && t == BPF_READ && value_regno >= 0)
3037 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3038 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3039 if (t == BPF_WRITE) {
46f8bc92
MKL
3040 verbose(env, "R%d cannot write into %s\n",
3041 regno, reg_type_str[reg->type]);
c64b7983
JS
3042 return -EACCES;
3043 }
5f456649 3044 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3045 if (!err && value_regno >= 0)
3046 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3047 } else if (reg->type == PTR_TO_TP_BUFFER) {
3048 err = check_tp_buffer_access(env, reg, regno, off, size);
3049 if (!err && t == BPF_READ && value_regno >= 0)
3050 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3051 } else if (reg->type == PTR_TO_BTF_ID) {
3052 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3053 value_regno);
17a52670 3054 } else {
61bd5218
JK
3055 verbose(env, "R%d invalid mem access '%s'\n", regno,
3056 reg_type_str[reg->type]);
17a52670
AS
3057 return -EACCES;
3058 }
969bf05e 3059
f1174f77 3060 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3061 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3062 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3063 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3064 }
17a52670
AS
3065 return err;
3066}
3067
31fd8581 3068static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3069{
17a52670
AS
3070 int err;
3071
3072 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3073 insn->imm != 0) {
61bd5218 3074 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3075 return -EINVAL;
3076 }
3077
3078 /* check src1 operand */
dc503a8a 3079 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3080 if (err)
3081 return err;
3082
3083 /* check src2 operand */
dc503a8a 3084 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3085 if (err)
3086 return err;
3087
6bdf6abc 3088 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3089 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3090 return -EACCES;
3091 }
3092
ca369602 3093 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3094 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3095 is_flow_key_reg(env, insn->dst_reg) ||
3096 is_sk_reg(env, insn->dst_reg)) {
ca369602 3097 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3098 insn->dst_reg,
3099 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3100 return -EACCES;
3101 }
3102
17a52670 3103 /* check whether atomic_add can read the memory */
31fd8581 3104 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3105 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3106 if (err)
3107 return err;
3108
3109 /* check whether atomic_add can write into the same memory */
31fd8581 3110 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3111 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3112}
3113
2011fccf
AI
3114static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3115 int off, int access_size,
3116 bool zero_size_allowed)
3117{
3118 struct bpf_reg_state *reg = reg_state(env, regno);
3119
3120 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3121 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3122 if (tnum_is_const(reg->var_off)) {
3123 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3124 regno, off, access_size);
3125 } else {
3126 char tn_buf[48];
3127
3128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3129 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3130 regno, tn_buf, access_size);
3131 }
3132 return -EACCES;
3133 }
3134 return 0;
3135}
3136
17a52670
AS
3137/* when register 'regno' is passed into function that will read 'access_size'
3138 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3139 * and all elements of stack are initialized.
3140 * Unlike most pointer bounds-checking functions, this one doesn't take an
3141 * 'off' argument, so it has to add in reg->off itself.
17a52670 3142 */
58e2af8b 3143static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3144 int access_size, bool zero_size_allowed,
3145 struct bpf_call_arg_meta *meta)
17a52670 3146{
2a159c6f 3147 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3148 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3149 int err, min_off, max_off, i, j, slot, spi;
17a52670 3150
914cb781 3151 if (reg->type != PTR_TO_STACK) {
f1174f77 3152 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3153 if (zero_size_allowed && access_size == 0 &&
914cb781 3154 register_is_null(reg))
8e2fe1d9
DB
3155 return 0;
3156
61bd5218 3157 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3158 reg_type_str[reg->type],
8e2fe1d9 3159 reg_type_str[PTR_TO_STACK]);
17a52670 3160 return -EACCES;
8e2fe1d9 3161 }
17a52670 3162
2011fccf
AI
3163 if (tnum_is_const(reg->var_off)) {
3164 min_off = max_off = reg->var_off.value + reg->off;
3165 err = __check_stack_boundary(env, regno, min_off, access_size,
3166 zero_size_allowed);
3167 if (err)
3168 return err;
3169 } else {
088ec26d
AI
3170 /* Variable offset is prohibited for unprivileged mode for
3171 * simplicity since it requires corresponding support in
3172 * Spectre masking for stack ALU.
3173 * See also retrieve_ptr_limit().
3174 */
3175 if (!env->allow_ptr_leaks) {
3176 char tn_buf[48];
f1174f77 3177
088ec26d
AI
3178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3179 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3180 regno, tn_buf);
3181 return -EACCES;
3182 }
f2bcd05e
AI
3183 /* Only initialized buffer on stack is allowed to be accessed
3184 * with variable offset. With uninitialized buffer it's hard to
3185 * guarantee that whole memory is marked as initialized on
3186 * helper return since specific bounds are unknown what may
3187 * cause uninitialized stack leaking.
3188 */
3189 if (meta && meta->raw_mode)
3190 meta = NULL;
3191
107c26a7
AI
3192 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3193 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3194 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3195 regno);
3196 return -EACCES;
3197 }
2011fccf 3198 min_off = reg->smin_value + reg->off;
107c26a7 3199 max_off = reg->smax_value + reg->off;
2011fccf
AI
3200 err = __check_stack_boundary(env, regno, min_off, access_size,
3201 zero_size_allowed);
107c26a7
AI
3202 if (err) {
3203 verbose(env, "R%d min value is outside of stack bound\n",
3204 regno);
2011fccf 3205 return err;
107c26a7 3206 }
2011fccf
AI
3207 err = __check_stack_boundary(env, regno, max_off, access_size,
3208 zero_size_allowed);
107c26a7
AI
3209 if (err) {
3210 verbose(env, "R%d max value is outside of stack bound\n",
3211 regno);
2011fccf 3212 return err;
107c26a7 3213 }
17a52670
AS
3214 }
3215
435faee1
DB
3216 if (meta && meta->raw_mode) {
3217 meta->access_size = access_size;
3218 meta->regno = regno;
3219 return 0;
3220 }
3221
2011fccf 3222 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3223 u8 *stype;
3224
2011fccf 3225 slot = -i - 1;
638f5b90 3226 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3227 if (state->allocated_stack <= slot)
3228 goto err;
3229 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3230 if (*stype == STACK_MISC)
3231 goto mark;
3232 if (*stype == STACK_ZERO) {
3233 /* helper can write anything into the stack */
3234 *stype = STACK_MISC;
3235 goto mark;
17a52670 3236 }
f7cf25b2
AS
3237 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3238 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3239 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3240 for (j = 0; j < BPF_REG_SIZE; j++)
3241 state->stack[spi].slot_type[j] = STACK_MISC;
3242 goto mark;
3243 }
3244
cc2b14d5 3245err:
2011fccf
AI
3246 if (tnum_is_const(reg->var_off)) {
3247 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3248 min_off, i - min_off, access_size);
3249 } else {
3250 char tn_buf[48];
3251
3252 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3253 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3254 tn_buf, i - min_off, access_size);
3255 }
cc2b14d5
AS
3256 return -EACCES;
3257mark:
3258 /* reading any byte out of 8-byte 'spill_slot' will cause
3259 * the whole slot to be marked as 'read'
3260 */
679c782d 3261 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3262 state->stack[spi].spilled_ptr.parent,
3263 REG_LIVE_READ64);
17a52670 3264 }
2011fccf 3265 return update_stack_depth(env, state, min_off);
17a52670
AS
3266}
3267
06c1c049
GB
3268static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3269 int access_size, bool zero_size_allowed,
3270 struct bpf_call_arg_meta *meta)
3271{
638f5b90 3272 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3273
f1174f77 3274 switch (reg->type) {
06c1c049 3275 case PTR_TO_PACKET:
de8f3a83 3276 case PTR_TO_PACKET_META:
9fd29c08
YS
3277 return check_packet_access(env, regno, reg->off, access_size,
3278 zero_size_allowed);
06c1c049 3279 case PTR_TO_MAP_VALUE:
591fe988
DB
3280 if (check_map_access_type(env, regno, reg->off, access_size,
3281 meta && meta->raw_mode ? BPF_WRITE :
3282 BPF_READ))
3283 return -EACCES;
9fd29c08
YS
3284 return check_map_access(env, regno, reg->off, access_size,
3285 zero_size_allowed);
f1174f77 3286 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3287 return check_stack_boundary(env, regno, access_size,
3288 zero_size_allowed, meta);
3289 }
3290}
3291
d83525ca
AS
3292/* Implementation details:
3293 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3294 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3295 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3296 * value_or_null->value transition, since the verifier only cares about
3297 * the range of access to valid map value pointer and doesn't care about actual
3298 * address of the map element.
3299 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3300 * reg->id > 0 after value_or_null->value transition. By doing so
3301 * two bpf_map_lookups will be considered two different pointers that
3302 * point to different bpf_spin_locks.
3303 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3304 * dead-locks.
3305 * Since only one bpf_spin_lock is allowed the checks are simpler than
3306 * reg_is_refcounted() logic. The verifier needs to remember only
3307 * one spin_lock instead of array of acquired_refs.
3308 * cur_state->active_spin_lock remembers which map value element got locked
3309 * and clears it after bpf_spin_unlock.
3310 */
3311static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3312 bool is_lock)
3313{
3314 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3315 struct bpf_verifier_state *cur = env->cur_state;
3316 bool is_const = tnum_is_const(reg->var_off);
3317 struct bpf_map *map = reg->map_ptr;
3318 u64 val = reg->var_off.value;
3319
3320 if (reg->type != PTR_TO_MAP_VALUE) {
3321 verbose(env, "R%d is not a pointer to map_value\n", regno);
3322 return -EINVAL;
3323 }
3324 if (!is_const) {
3325 verbose(env,
3326 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3327 regno);
3328 return -EINVAL;
3329 }
3330 if (!map->btf) {
3331 verbose(env,
3332 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3333 map->name);
3334 return -EINVAL;
3335 }
3336 if (!map_value_has_spin_lock(map)) {
3337 if (map->spin_lock_off == -E2BIG)
3338 verbose(env,
3339 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3340 map->name);
3341 else if (map->spin_lock_off == -ENOENT)
3342 verbose(env,
3343 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3344 map->name);
3345 else
3346 verbose(env,
3347 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3348 map->name);
3349 return -EINVAL;
3350 }
3351 if (map->spin_lock_off != val + reg->off) {
3352 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3353 val + reg->off);
3354 return -EINVAL;
3355 }
3356 if (is_lock) {
3357 if (cur->active_spin_lock) {
3358 verbose(env,
3359 "Locking two bpf_spin_locks are not allowed\n");
3360 return -EINVAL;
3361 }
3362 cur->active_spin_lock = reg->id;
3363 } else {
3364 if (!cur->active_spin_lock) {
3365 verbose(env, "bpf_spin_unlock without taking a lock\n");
3366 return -EINVAL;
3367 }
3368 if (cur->active_spin_lock != reg->id) {
3369 verbose(env, "bpf_spin_unlock of different lock\n");
3370 return -EINVAL;
3371 }
3372 cur->active_spin_lock = 0;
3373 }
3374 return 0;
3375}
3376
90133415
DB
3377static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3378{
3379 return type == ARG_PTR_TO_MEM ||
3380 type == ARG_PTR_TO_MEM_OR_NULL ||
3381 type == ARG_PTR_TO_UNINIT_MEM;
3382}
3383
3384static bool arg_type_is_mem_size(enum bpf_arg_type type)
3385{
3386 return type == ARG_CONST_SIZE ||
3387 type == ARG_CONST_SIZE_OR_ZERO;
3388}
3389
57c3bb72
AI
3390static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3391{
3392 return type == ARG_PTR_TO_INT ||
3393 type == ARG_PTR_TO_LONG;
3394}
3395
3396static int int_ptr_type_to_size(enum bpf_arg_type type)
3397{
3398 if (type == ARG_PTR_TO_INT)
3399 return sizeof(u32);
3400 else if (type == ARG_PTR_TO_LONG)
3401 return sizeof(u64);
3402
3403 return -EINVAL;
3404}
3405
58e2af8b 3406static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3407 enum bpf_arg_type arg_type,
3408 struct bpf_call_arg_meta *meta)
17a52670 3409{
638f5b90 3410 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3411 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3412 int err = 0;
3413
80f1d68c 3414 if (arg_type == ARG_DONTCARE)
17a52670
AS
3415 return 0;
3416
dc503a8a
EC
3417 err = check_reg_arg(env, regno, SRC_OP);
3418 if (err)
3419 return err;
17a52670 3420
1be7f75d
AS
3421 if (arg_type == ARG_ANYTHING) {
3422 if (is_pointer_value(env, regno)) {
61bd5218
JK
3423 verbose(env, "R%d leaks addr into helper function\n",
3424 regno);
1be7f75d
AS
3425 return -EACCES;
3426 }
80f1d68c 3427 return 0;
1be7f75d 3428 }
80f1d68c 3429
de8f3a83 3430 if (type_is_pkt_pointer(type) &&
3a0af8fd 3431 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3432 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3433 return -EACCES;
3434 }
3435
8e2fe1d9 3436 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3437 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3438 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3439 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3440 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3441 if (register_is_null(reg) &&
3442 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3443 /* final test in check_stack_boundary() */;
3444 else if (!type_is_pkt_pointer(type) &&
3445 type != PTR_TO_MAP_VALUE &&
3446 type != expected_type)
6841de8b 3447 goto err_type;
39f19ebb
AS
3448 } else if (arg_type == ARG_CONST_SIZE ||
3449 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3450 expected_type = SCALAR_VALUE;
3451 if (type != expected_type)
6841de8b 3452 goto err_type;
17a52670
AS
3453 } else if (arg_type == ARG_CONST_MAP_PTR) {
3454 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3455 if (type != expected_type)
3456 goto err_type;
608cd71a
AS
3457 } else if (arg_type == ARG_PTR_TO_CTX) {
3458 expected_type = PTR_TO_CTX;
6841de8b
AS
3459 if (type != expected_type)
3460 goto err_type;
58990d1f
DB
3461 err = check_ctx_reg(env, reg, regno);
3462 if (err < 0)
3463 return err;
46f8bc92
MKL
3464 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3465 expected_type = PTR_TO_SOCK_COMMON;
3466 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3467 if (!type_is_sk_pointer(type))
3468 goto err_type;
1b986589
MKL
3469 if (reg->ref_obj_id) {
3470 if (meta->ref_obj_id) {
3471 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3472 regno, reg->ref_obj_id,
3473 meta->ref_obj_id);
3474 return -EFAULT;
3475 }
3476 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3477 }
6ac99e8f
MKL
3478 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3479 expected_type = PTR_TO_SOCKET;
3480 if (type != expected_type)
3481 goto err_type;
a7658e1a
AS
3482 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3483 expected_type = PTR_TO_BTF_ID;
3484 if (type != expected_type)
3485 goto err_type;
3486 if (reg->btf_id != meta->btf_id) {
3487 verbose(env, "Helper has type %s got %s in R%d\n",
3488 kernel_type_name(meta->btf_id),
3489 kernel_type_name(reg->btf_id), regno);
3490
3491 return -EACCES;
3492 }
3493 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3494 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3495 regno);
3496 return -EACCES;
3497 }
d83525ca
AS
3498 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3499 if (meta->func_id == BPF_FUNC_spin_lock) {
3500 if (process_spin_lock(env, regno, true))
3501 return -EACCES;
3502 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3503 if (process_spin_lock(env, regno, false))
3504 return -EACCES;
3505 } else {
3506 verbose(env, "verifier internal error\n");
3507 return -EFAULT;
3508 }
90133415 3509 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3510 expected_type = PTR_TO_STACK;
3511 /* One exception here. In case function allows for NULL to be
f1174f77 3512 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3513 * happens during stack boundary checking.
3514 */
914cb781 3515 if (register_is_null(reg) &&
db1ac496 3516 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3517 /* final test in check_stack_boundary() */;
de8f3a83
DB
3518 else if (!type_is_pkt_pointer(type) &&
3519 type != PTR_TO_MAP_VALUE &&
f1174f77 3520 type != expected_type)
6841de8b 3521 goto err_type;
39f19ebb 3522 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3523 } else if (arg_type_is_int_ptr(arg_type)) {
3524 expected_type = PTR_TO_STACK;
3525 if (!type_is_pkt_pointer(type) &&
3526 type != PTR_TO_MAP_VALUE &&
3527 type != expected_type)
3528 goto err_type;
17a52670 3529 } else {
61bd5218 3530 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3531 return -EFAULT;
3532 }
3533
17a52670
AS
3534 if (arg_type == ARG_CONST_MAP_PTR) {
3535 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3536 meta->map_ptr = reg->map_ptr;
17a52670
AS
3537 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3538 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3539 * check that [key, key + map->key_size) are within
3540 * stack limits and initialized
3541 */
33ff9823 3542 if (!meta->map_ptr) {
17a52670
AS
3543 /* in function declaration map_ptr must come before
3544 * map_key, so that it's verified and known before
3545 * we have to check map_key here. Otherwise it means
3546 * that kernel subsystem misconfigured verifier
3547 */
61bd5218 3548 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3549 return -EACCES;
3550 }
d71962f3
PC
3551 err = check_helper_mem_access(env, regno,
3552 meta->map_ptr->key_size, false,
3553 NULL);
2ea864c5 3554 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3555 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3556 !register_is_null(reg)) ||
2ea864c5 3557 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3558 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3559 * check [value, value + map->value_size) validity
3560 */
33ff9823 3561 if (!meta->map_ptr) {
17a52670 3562 /* kernel subsystem misconfigured verifier */
61bd5218 3563 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3564 return -EACCES;
3565 }
2ea864c5 3566 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3567 err = check_helper_mem_access(env, regno,
3568 meta->map_ptr->value_size, false,
2ea864c5 3569 meta);
90133415 3570 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3571 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3572
849fa506
YS
3573 /* remember the mem_size which may be used later
3574 * to refine return values.
3575 */
3576 meta->msize_smax_value = reg->smax_value;
3577 meta->msize_umax_value = reg->umax_value;
3578
f1174f77
EC
3579 /* The register is SCALAR_VALUE; the access check
3580 * happens using its boundaries.
06c1c049 3581 */
f1174f77 3582 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3583 /* For unprivileged variable accesses, disable raw
3584 * mode so that the program is required to
3585 * initialize all the memory that the helper could
3586 * just partially fill up.
3587 */
3588 meta = NULL;
3589
b03c9f9f 3590 if (reg->smin_value < 0) {
61bd5218 3591 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3592 regno);
3593 return -EACCES;
3594 }
06c1c049 3595
b03c9f9f 3596 if (reg->umin_value == 0) {
f1174f77
EC
3597 err = check_helper_mem_access(env, regno - 1, 0,
3598 zero_size_allowed,
3599 meta);
06c1c049
GB
3600 if (err)
3601 return err;
06c1c049 3602 }
f1174f77 3603
b03c9f9f 3604 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3605 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3606 regno);
3607 return -EACCES;
3608 }
3609 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3610 reg->umax_value,
f1174f77 3611 zero_size_allowed, meta);
b5dc0163
AS
3612 if (!err)
3613 err = mark_chain_precision(env, regno);
57c3bb72
AI
3614 } else if (arg_type_is_int_ptr(arg_type)) {
3615 int size = int_ptr_type_to_size(arg_type);
3616
3617 err = check_helper_mem_access(env, regno, size, false, meta);
3618 if (err)
3619 return err;
3620 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3621 }
3622
3623 return err;
6841de8b 3624err_type:
61bd5218 3625 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3626 reg_type_str[type], reg_type_str[expected_type]);
3627 return -EACCES;
17a52670
AS
3628}
3629
61bd5218
JK
3630static int check_map_func_compatibility(struct bpf_verifier_env *env,
3631 struct bpf_map *map, int func_id)
35578d79 3632{
35578d79
KX
3633 if (!map)
3634 return 0;
3635
6aff67c8
AS
3636 /* We need a two way check, first is from map perspective ... */
3637 switch (map->map_type) {
3638 case BPF_MAP_TYPE_PROG_ARRAY:
3639 if (func_id != BPF_FUNC_tail_call)
3640 goto error;
3641 break;
3642 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3643 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 3644 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 3645 func_id != BPF_FUNC_skb_output &&
908432ca 3646 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3647 goto error;
3648 break;
3649 case BPF_MAP_TYPE_STACK_TRACE:
3650 if (func_id != BPF_FUNC_get_stackid)
3651 goto error;
3652 break;
4ed8ec52 3653 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3654 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3655 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3656 goto error;
3657 break;
cd339431 3658 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3659 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3660 if (func_id != BPF_FUNC_get_local_storage)
3661 goto error;
3662 break;
546ac1ff 3663 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3664 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3665 if (func_id != BPF_FUNC_redirect_map &&
3666 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3667 goto error;
3668 break;
fbfc504a
BT
3669 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3670 * appear.
3671 */
6710e112
JDB
3672 case BPF_MAP_TYPE_CPUMAP:
3673 if (func_id != BPF_FUNC_redirect_map)
3674 goto error;
3675 break;
fada7fdc
JL
3676 case BPF_MAP_TYPE_XSKMAP:
3677 if (func_id != BPF_FUNC_redirect_map &&
3678 func_id != BPF_FUNC_map_lookup_elem)
3679 goto error;
3680 break;
56f668df 3681 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3682 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3683 if (func_id != BPF_FUNC_map_lookup_elem)
3684 goto error;
16a43625 3685 break;
174a79ff
JF
3686 case BPF_MAP_TYPE_SOCKMAP:
3687 if (func_id != BPF_FUNC_sk_redirect_map &&
3688 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3689 func_id != BPF_FUNC_map_delete_elem &&
3690 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3691 goto error;
3692 break;
81110384
JF
3693 case BPF_MAP_TYPE_SOCKHASH:
3694 if (func_id != BPF_FUNC_sk_redirect_hash &&
3695 func_id != BPF_FUNC_sock_hash_update &&
3696 func_id != BPF_FUNC_map_delete_elem &&
3697 func_id != BPF_FUNC_msg_redirect_hash)
3698 goto error;
3699 break;
2dbb9b9e
MKL
3700 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3701 if (func_id != BPF_FUNC_sk_select_reuseport)
3702 goto error;
3703 break;
f1a2e44a
MV
3704 case BPF_MAP_TYPE_QUEUE:
3705 case BPF_MAP_TYPE_STACK:
3706 if (func_id != BPF_FUNC_map_peek_elem &&
3707 func_id != BPF_FUNC_map_pop_elem &&
3708 func_id != BPF_FUNC_map_push_elem)
3709 goto error;
3710 break;
6ac99e8f
MKL
3711 case BPF_MAP_TYPE_SK_STORAGE:
3712 if (func_id != BPF_FUNC_sk_storage_get &&
3713 func_id != BPF_FUNC_sk_storage_delete)
3714 goto error;
3715 break;
6aff67c8
AS
3716 default:
3717 break;
3718 }
3719
3720 /* ... and second from the function itself. */
3721 switch (func_id) {
3722 case BPF_FUNC_tail_call:
3723 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3724 goto error;
f910cefa 3725 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3726 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3727 return -EINVAL;
3728 }
6aff67c8
AS
3729 break;
3730 case BPF_FUNC_perf_event_read:
3731 case BPF_FUNC_perf_event_output:
908432ca 3732 case BPF_FUNC_perf_event_read_value:
a7658e1a 3733 case BPF_FUNC_skb_output:
6aff67c8
AS
3734 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3735 goto error;
3736 break;
3737 case BPF_FUNC_get_stackid:
3738 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3739 goto error;
3740 break;
60d20f91 3741 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3742 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3743 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3744 goto error;
3745 break;
97f91a7c 3746 case BPF_FUNC_redirect_map:
9c270af3 3747 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 3748 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
3749 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3750 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3751 goto error;
3752 break;
174a79ff 3753 case BPF_FUNC_sk_redirect_map:
4f738adb 3754 case BPF_FUNC_msg_redirect_map:
81110384 3755 case BPF_FUNC_sock_map_update:
174a79ff
JF
3756 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3757 goto error;
3758 break;
81110384
JF
3759 case BPF_FUNC_sk_redirect_hash:
3760 case BPF_FUNC_msg_redirect_hash:
3761 case BPF_FUNC_sock_hash_update:
3762 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3763 goto error;
3764 break;
cd339431 3765 case BPF_FUNC_get_local_storage:
b741f163
RG
3766 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3767 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3768 goto error;
3769 break;
2dbb9b9e
MKL
3770 case BPF_FUNC_sk_select_reuseport:
3771 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3772 goto error;
3773 break;
f1a2e44a
MV
3774 case BPF_FUNC_map_peek_elem:
3775 case BPF_FUNC_map_pop_elem:
3776 case BPF_FUNC_map_push_elem:
3777 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3778 map->map_type != BPF_MAP_TYPE_STACK)
3779 goto error;
3780 break;
6ac99e8f
MKL
3781 case BPF_FUNC_sk_storage_get:
3782 case BPF_FUNC_sk_storage_delete:
3783 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3784 goto error;
3785 break;
6aff67c8
AS
3786 default:
3787 break;
35578d79
KX
3788 }
3789
3790 return 0;
6aff67c8 3791error:
61bd5218 3792 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3793 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3794 return -EINVAL;
35578d79
KX
3795}
3796
90133415 3797static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3798{
3799 int count = 0;
3800
39f19ebb 3801 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3802 count++;
39f19ebb 3803 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3804 count++;
39f19ebb 3805 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3806 count++;
39f19ebb 3807 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3808 count++;
39f19ebb 3809 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3810 count++;
3811
90133415
DB
3812 /* We only support one arg being in raw mode at the moment,
3813 * which is sufficient for the helper functions we have
3814 * right now.
3815 */
3816 return count <= 1;
3817}
3818
3819static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3820 enum bpf_arg_type arg_next)
3821{
3822 return (arg_type_is_mem_ptr(arg_curr) &&
3823 !arg_type_is_mem_size(arg_next)) ||
3824 (!arg_type_is_mem_ptr(arg_curr) &&
3825 arg_type_is_mem_size(arg_next));
3826}
3827
3828static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3829{
3830 /* bpf_xxx(..., buf, len) call will access 'len'
3831 * bytes from memory 'buf'. Both arg types need
3832 * to be paired, so make sure there's no buggy
3833 * helper function specification.
3834 */
3835 if (arg_type_is_mem_size(fn->arg1_type) ||
3836 arg_type_is_mem_ptr(fn->arg5_type) ||
3837 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3838 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3839 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3840 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3841 return false;
3842
3843 return true;
3844}
3845
1b986589 3846static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3847{
3848 int count = 0;
3849
1b986589 3850 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3851 count++;
1b986589 3852 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3853 count++;
1b986589 3854 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3855 count++;
1b986589 3856 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3857 count++;
1b986589 3858 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3859 count++;
3860
1b986589
MKL
3861 /* A reference acquiring function cannot acquire
3862 * another refcounted ptr.
3863 */
3864 if (is_acquire_function(func_id) && count)
3865 return false;
3866
fd978bf7
JS
3867 /* We only support one arg being unreferenced at the moment,
3868 * which is sufficient for the helper functions we have right now.
3869 */
3870 return count <= 1;
3871}
3872
1b986589 3873static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3874{
3875 return check_raw_mode_ok(fn) &&
fd978bf7 3876 check_arg_pair_ok(fn) &&
1b986589 3877 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3878}
3879
de8f3a83
DB
3880/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3881 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3882 */
f4d7e40a
AS
3883static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3884 struct bpf_func_state *state)
969bf05e 3885{
58e2af8b 3886 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3887 int i;
3888
3889 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3890 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3891 mark_reg_unknown(env, regs, i);
969bf05e 3892
f3709f69
JS
3893 bpf_for_each_spilled_reg(i, state, reg) {
3894 if (!reg)
969bf05e 3895 continue;
de8f3a83 3896 if (reg_is_pkt_pointer_any(reg))
f54c7898 3897 __mark_reg_unknown(env, reg);
969bf05e
AS
3898 }
3899}
3900
f4d7e40a
AS
3901static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3902{
3903 struct bpf_verifier_state *vstate = env->cur_state;
3904 int i;
3905
3906 for (i = 0; i <= vstate->curframe; i++)
3907 __clear_all_pkt_pointers(env, vstate->frame[i]);
3908}
3909
fd978bf7 3910static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3911 struct bpf_func_state *state,
3912 int ref_obj_id)
fd978bf7
JS
3913{
3914 struct bpf_reg_state *regs = state->regs, *reg;
3915 int i;
3916
3917 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3918 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3919 mark_reg_unknown(env, regs, i);
3920
3921 bpf_for_each_spilled_reg(i, state, reg) {
3922 if (!reg)
3923 continue;
1b986589 3924 if (reg->ref_obj_id == ref_obj_id)
f54c7898 3925 __mark_reg_unknown(env, reg);
fd978bf7
JS
3926 }
3927}
3928
3929/* The pointer with the specified id has released its reference to kernel
3930 * resources. Identify all copies of the same pointer and clear the reference.
3931 */
3932static int release_reference(struct bpf_verifier_env *env,
1b986589 3933 int ref_obj_id)
fd978bf7
JS
3934{
3935 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3936 int err;
fd978bf7
JS
3937 int i;
3938
1b986589
MKL
3939 err = release_reference_state(cur_func(env), ref_obj_id);
3940 if (err)
3941 return err;
3942
fd978bf7 3943 for (i = 0; i <= vstate->curframe; i++)
1b986589 3944 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3945
1b986589 3946 return 0;
fd978bf7
JS
3947}
3948
f4d7e40a
AS
3949static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3950 int *insn_idx)
3951{
3952 struct bpf_verifier_state *state = env->cur_state;
3953 struct bpf_func_state *caller, *callee;
fd978bf7 3954 int i, err, subprog, target_insn;
f4d7e40a 3955
aada9ce6 3956 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3957 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3958 state->curframe + 2);
f4d7e40a
AS
3959 return -E2BIG;
3960 }
3961
3962 target_insn = *insn_idx + insn->imm;
3963 subprog = find_subprog(env, target_insn + 1);
3964 if (subprog < 0) {
3965 verbose(env, "verifier bug. No program starts at insn %d\n",
3966 target_insn + 1);
3967 return -EFAULT;
3968 }
3969
3970 caller = state->frame[state->curframe];
3971 if (state->frame[state->curframe + 1]) {
3972 verbose(env, "verifier bug. Frame %d already allocated\n",
3973 state->curframe + 1);
3974 return -EFAULT;
3975 }
3976
3977 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3978 if (!callee)
3979 return -ENOMEM;
3980 state->frame[state->curframe + 1] = callee;
3981
3982 /* callee cannot access r0, r6 - r9 for reading and has to write
3983 * into its own stack before reading from it.
3984 * callee can read/write into caller's stack
3985 */
3986 init_func_state(env, callee,
3987 /* remember the callsite, it will be used by bpf_exit */
3988 *insn_idx /* callsite */,
3989 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3990 subprog /* subprog number within this prog */);
f4d7e40a 3991
fd978bf7
JS
3992 /* Transfer references to the callee */
3993 err = transfer_reference_state(callee, caller);
3994 if (err)
3995 return err;
3996
679c782d
EC
3997 /* copy r1 - r5 args that callee can access. The copy includes parent
3998 * pointers, which connects us up to the liveness chain
3999 */
f4d7e40a
AS
4000 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4001 callee->regs[i] = caller->regs[i];
4002
679c782d 4003 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
4004 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4005 mark_reg_not_init(env, caller->regs, caller_saved[i]);
4006 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4007 }
4008
4009 /* only increment it after check_reg_arg() finished */
4010 state->curframe++;
4011
8c1b6e69
AS
4012 if (btf_check_func_arg_match(env, subprog))
4013 return -EINVAL;
4014
f4d7e40a
AS
4015 /* and go analyze first insn of the callee */
4016 *insn_idx = target_insn;
4017
06ee7115 4018 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4019 verbose(env, "caller:\n");
4020 print_verifier_state(env, caller);
4021 verbose(env, "callee:\n");
4022 print_verifier_state(env, callee);
4023 }
4024 return 0;
4025}
4026
4027static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4028{
4029 struct bpf_verifier_state *state = env->cur_state;
4030 struct bpf_func_state *caller, *callee;
4031 struct bpf_reg_state *r0;
fd978bf7 4032 int err;
f4d7e40a
AS
4033
4034 callee = state->frame[state->curframe];
4035 r0 = &callee->regs[BPF_REG_0];
4036 if (r0->type == PTR_TO_STACK) {
4037 /* technically it's ok to return caller's stack pointer
4038 * (or caller's caller's pointer) back to the caller,
4039 * since these pointers are valid. Only current stack
4040 * pointer will be invalid as soon as function exits,
4041 * but let's be conservative
4042 */
4043 verbose(env, "cannot return stack pointer to the caller\n");
4044 return -EINVAL;
4045 }
4046
4047 state->curframe--;
4048 caller = state->frame[state->curframe];
4049 /* return to the caller whatever r0 had in the callee */
4050 caller->regs[BPF_REG_0] = *r0;
4051
fd978bf7
JS
4052 /* Transfer references to the caller */
4053 err = transfer_reference_state(caller, callee);
4054 if (err)
4055 return err;
4056
f4d7e40a 4057 *insn_idx = callee->callsite + 1;
06ee7115 4058 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4059 verbose(env, "returning from callee:\n");
4060 print_verifier_state(env, callee);
4061 verbose(env, "to caller at %d:\n", *insn_idx);
4062 print_verifier_state(env, caller);
4063 }
4064 /* clear everything in the callee */
4065 free_func_state(callee);
4066 state->frame[state->curframe + 1] = NULL;
4067 return 0;
4068}
4069
849fa506
YS
4070static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4071 int func_id,
4072 struct bpf_call_arg_meta *meta)
4073{
4074 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4075
4076 if (ret_type != RET_INTEGER ||
4077 (func_id != BPF_FUNC_get_stack &&
4078 func_id != BPF_FUNC_probe_read_str))
4079 return;
4080
4081 ret_reg->smax_value = meta->msize_smax_value;
4082 ret_reg->umax_value = meta->msize_umax_value;
4083 __reg_deduce_bounds(ret_reg);
4084 __reg_bound_offset(ret_reg);
4085}
4086
c93552c4
DB
4087static int
4088record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4089 int func_id, int insn_idx)
4090{
4091 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4092 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4093
4094 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4095 func_id != BPF_FUNC_map_lookup_elem &&
4096 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4097 func_id != BPF_FUNC_map_delete_elem &&
4098 func_id != BPF_FUNC_map_push_elem &&
4099 func_id != BPF_FUNC_map_pop_elem &&
4100 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4101 return 0;
09772d92 4102
591fe988 4103 if (map == NULL) {
c93552c4
DB
4104 verbose(env, "kernel subsystem misconfigured verifier\n");
4105 return -EINVAL;
4106 }
4107
591fe988
DB
4108 /* In case of read-only, some additional restrictions
4109 * need to be applied in order to prevent altering the
4110 * state of the map from program side.
4111 */
4112 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4113 (func_id == BPF_FUNC_map_delete_elem ||
4114 func_id == BPF_FUNC_map_update_elem ||
4115 func_id == BPF_FUNC_map_push_elem ||
4116 func_id == BPF_FUNC_map_pop_elem)) {
4117 verbose(env, "write into map forbidden\n");
4118 return -EACCES;
4119 }
4120
d2e4c1e6 4121 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4
DB
4122 bpf_map_ptr_store(aux, meta->map_ptr,
4123 meta->map_ptr->unpriv_array);
d2e4c1e6 4124 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4
DB
4125 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4126 meta->map_ptr->unpriv_array);
4127 return 0;
4128}
4129
d2e4c1e6
DB
4130static int
4131record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4132 int func_id, int insn_idx)
4133{
4134 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4135 struct bpf_reg_state *regs = cur_regs(env), *reg;
4136 struct bpf_map *map = meta->map_ptr;
4137 struct tnum range;
4138 u64 val;
cc52d914 4139 int err;
d2e4c1e6
DB
4140
4141 if (func_id != BPF_FUNC_tail_call)
4142 return 0;
4143 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4144 verbose(env, "kernel subsystem misconfigured verifier\n");
4145 return -EINVAL;
4146 }
4147
4148 range = tnum_range(0, map->max_entries - 1);
4149 reg = &regs[BPF_REG_3];
4150
4151 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4152 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4153 return 0;
4154 }
4155
cc52d914
DB
4156 err = mark_chain_precision(env, BPF_REG_3);
4157 if (err)
4158 return err;
4159
d2e4c1e6
DB
4160 val = reg->var_off.value;
4161 if (bpf_map_key_unseen(aux))
4162 bpf_map_key_store(aux, val);
4163 else if (!bpf_map_key_poisoned(aux) &&
4164 bpf_map_key_immediate(aux) != val)
4165 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4166 return 0;
4167}
4168
fd978bf7
JS
4169static int check_reference_leak(struct bpf_verifier_env *env)
4170{
4171 struct bpf_func_state *state = cur_func(env);
4172 int i;
4173
4174 for (i = 0; i < state->acquired_refs; i++) {
4175 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4176 state->refs[i].id, state->refs[i].insn_idx);
4177 }
4178 return state->acquired_refs ? -EINVAL : 0;
4179}
4180
f4d7e40a 4181static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4182{
17a52670 4183 const struct bpf_func_proto *fn = NULL;
638f5b90 4184 struct bpf_reg_state *regs;
33ff9823 4185 struct bpf_call_arg_meta meta;
969bf05e 4186 bool changes_data;
17a52670
AS
4187 int i, err;
4188
4189 /* find function prototype */
4190 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4191 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4192 func_id);
17a52670
AS
4193 return -EINVAL;
4194 }
4195
00176a34 4196 if (env->ops->get_func_proto)
5e43f899 4197 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4198 if (!fn) {
61bd5218
JK
4199 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4200 func_id);
17a52670
AS
4201 return -EINVAL;
4202 }
4203
4204 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4205 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4206 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4207 return -EINVAL;
4208 }
4209
04514d13 4210 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4211 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4212 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4213 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4214 func_id_name(func_id), func_id);
4215 return -EINVAL;
4216 }
969bf05e 4217
33ff9823 4218 memset(&meta, 0, sizeof(meta));
36bbef52 4219 meta.pkt_access = fn->pkt_access;
33ff9823 4220
1b986589 4221 err = check_func_proto(fn, func_id);
435faee1 4222 if (err) {
61bd5218 4223 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4224 func_id_name(func_id), func_id);
435faee1
DB
4225 return err;
4226 }
4227
d83525ca 4228 meta.func_id = func_id;
17a52670 4229 /* check args */
a7658e1a 4230 for (i = 0; i < 5; i++) {
9cc31b3a
AS
4231 err = btf_resolve_helper_id(&env->log, fn, i);
4232 if (err > 0)
4233 meta.btf_id = err;
a7658e1a
AS
4234 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4235 if (err)
4236 return err;
4237 }
17a52670 4238
c93552c4
DB
4239 err = record_func_map(env, &meta, func_id, insn_idx);
4240 if (err)
4241 return err;
4242
d2e4c1e6
DB
4243 err = record_func_key(env, &meta, func_id, insn_idx);
4244 if (err)
4245 return err;
4246
435faee1
DB
4247 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4248 * is inferred from register state.
4249 */
4250 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4251 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4252 BPF_WRITE, -1, false);
435faee1
DB
4253 if (err)
4254 return err;
4255 }
4256
fd978bf7
JS
4257 if (func_id == BPF_FUNC_tail_call) {
4258 err = check_reference_leak(env);
4259 if (err) {
4260 verbose(env, "tail_call would lead to reference leak\n");
4261 return err;
4262 }
4263 } else if (is_release_function(func_id)) {
1b986589 4264 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4265 if (err) {
4266 verbose(env, "func %s#%d reference has not been acquired before\n",
4267 func_id_name(func_id), func_id);
fd978bf7 4268 return err;
46f8bc92 4269 }
fd978bf7
JS
4270 }
4271
638f5b90 4272 regs = cur_regs(env);
cd339431
RG
4273
4274 /* check that flags argument in get_local_storage(map, flags) is 0,
4275 * this is required because get_local_storage() can't return an error.
4276 */
4277 if (func_id == BPF_FUNC_get_local_storage &&
4278 !register_is_null(&regs[BPF_REG_2])) {
4279 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4280 return -EINVAL;
4281 }
4282
17a52670 4283 /* reset caller saved regs */
dc503a8a 4284 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4285 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4286 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4287 }
17a52670 4288
5327ed3d
JW
4289 /* helper call returns 64-bit value. */
4290 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4291
dc503a8a 4292 /* update return register (already marked as written above) */
17a52670 4293 if (fn->ret_type == RET_INTEGER) {
f1174f77 4294 /* sets type to SCALAR_VALUE */
61bd5218 4295 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4296 } else if (fn->ret_type == RET_VOID) {
4297 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4298 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4299 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4300 /* There is no offset yet applied, variable or fixed */
61bd5218 4301 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4302 /* remember map_ptr, so that check_map_access()
4303 * can check 'value_size' boundary of memory access
4304 * to map element returned from bpf_map_lookup_elem()
4305 */
33ff9823 4306 if (meta.map_ptr == NULL) {
61bd5218
JK
4307 verbose(env,
4308 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4309 return -EINVAL;
4310 }
33ff9823 4311 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4312 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4313 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4314 if (map_value_has_spin_lock(meta.map_ptr))
4315 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4316 } else {
4317 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4318 regs[BPF_REG_0].id = ++env->id_gen;
4319 }
c64b7983
JS
4320 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4321 mark_reg_known_zero(env, regs, BPF_REG_0);
4322 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4323 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4324 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4325 mark_reg_known_zero(env, regs, BPF_REG_0);
4326 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4327 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4328 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4329 mark_reg_known_zero(env, regs, BPF_REG_0);
4330 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4331 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4332 } else {
61bd5218 4333 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4334 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4335 return -EINVAL;
4336 }
04fd61ab 4337
0f3adc28 4338 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4339 /* For release_reference() */
4340 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4341 } else if (is_acquire_function(func_id)) {
4342 int id = acquire_reference_state(env, insn_idx);
4343
4344 if (id < 0)
4345 return id;
4346 /* For mark_ptr_or_null_reg() */
4347 regs[BPF_REG_0].id = id;
4348 /* For release_reference() */
4349 regs[BPF_REG_0].ref_obj_id = id;
4350 }
1b986589 4351
849fa506
YS
4352 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4353
61bd5218 4354 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4355 if (err)
4356 return err;
04fd61ab 4357
c195651e
YS
4358 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4359 const char *err_str;
4360
4361#ifdef CONFIG_PERF_EVENTS
4362 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4363 err_str = "cannot get callchain buffer for func %s#%d\n";
4364#else
4365 err = -ENOTSUPP;
4366 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4367#endif
4368 if (err) {
4369 verbose(env, err_str, func_id_name(func_id), func_id);
4370 return err;
4371 }
4372
4373 env->prog->has_callchain_buf = true;
4374 }
4375
969bf05e
AS
4376 if (changes_data)
4377 clear_all_pkt_pointers(env);
4378 return 0;
4379}
4380
b03c9f9f
EC
4381static bool signed_add_overflows(s64 a, s64 b)
4382{
4383 /* Do the add in u64, where overflow is well-defined */
4384 s64 res = (s64)((u64)a + (u64)b);
4385
4386 if (b < 0)
4387 return res > a;
4388 return res < a;
4389}
4390
4391static bool signed_sub_overflows(s64 a, s64 b)
4392{
4393 /* Do the sub in u64, where overflow is well-defined */
4394 s64 res = (s64)((u64)a - (u64)b);
4395
4396 if (b < 0)
4397 return res < a;
4398 return res > a;
969bf05e
AS
4399}
4400
bb7f0f98
AS
4401static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4402 const struct bpf_reg_state *reg,
4403 enum bpf_reg_type type)
4404{
4405 bool known = tnum_is_const(reg->var_off);
4406 s64 val = reg->var_off.value;
4407 s64 smin = reg->smin_value;
4408
4409 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4410 verbose(env, "math between %s pointer and %lld is not allowed\n",
4411 reg_type_str[type], val);
4412 return false;
4413 }
4414
4415 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4416 verbose(env, "%s pointer offset %d is not allowed\n",
4417 reg_type_str[type], reg->off);
4418 return false;
4419 }
4420
4421 if (smin == S64_MIN) {
4422 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4423 reg_type_str[type]);
4424 return false;
4425 }
4426
4427 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4428 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4429 smin, reg_type_str[type]);
4430 return false;
4431 }
4432
4433 return true;
4434}
4435
979d63d5
DB
4436static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4437{
4438 return &env->insn_aux_data[env->insn_idx];
4439}
4440
4441static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4442 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4443{
4444 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4445 (opcode == BPF_SUB && !off_is_neg);
4446 u32 off;
4447
4448 switch (ptr_reg->type) {
4449 case PTR_TO_STACK:
088ec26d
AI
4450 /* Indirect variable offset stack access is prohibited in
4451 * unprivileged mode so it's not handled here.
4452 */
979d63d5
DB
4453 off = ptr_reg->off + ptr_reg->var_off.value;
4454 if (mask_to_left)
4455 *ptr_limit = MAX_BPF_STACK + off;
4456 else
4457 *ptr_limit = -off;
4458 return 0;
4459 case PTR_TO_MAP_VALUE:
4460 if (mask_to_left) {
4461 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4462 } else {
4463 off = ptr_reg->smin_value + ptr_reg->off;
4464 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4465 }
4466 return 0;
4467 default:
4468 return -EINVAL;
4469 }
4470}
4471
d3bd7413
DB
4472static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4473 const struct bpf_insn *insn)
4474{
4475 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4476}
4477
4478static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4479 u32 alu_state, u32 alu_limit)
4480{
4481 /* If we arrived here from different branches with different
4482 * state or limits to sanitize, then this won't work.
4483 */
4484 if (aux->alu_state &&
4485 (aux->alu_state != alu_state ||
4486 aux->alu_limit != alu_limit))
4487 return -EACCES;
4488
4489 /* Corresponding fixup done in fixup_bpf_calls(). */
4490 aux->alu_state = alu_state;
4491 aux->alu_limit = alu_limit;
4492 return 0;
4493}
4494
4495static int sanitize_val_alu(struct bpf_verifier_env *env,
4496 struct bpf_insn *insn)
4497{
4498 struct bpf_insn_aux_data *aux = cur_aux(env);
4499
4500 if (can_skip_alu_sanitation(env, insn))
4501 return 0;
4502
4503 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4504}
4505
979d63d5
DB
4506static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4507 struct bpf_insn *insn,
4508 const struct bpf_reg_state *ptr_reg,
4509 struct bpf_reg_state *dst_reg,
4510 bool off_is_neg)
4511{
4512 struct bpf_verifier_state *vstate = env->cur_state;
4513 struct bpf_insn_aux_data *aux = cur_aux(env);
4514 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4515 u8 opcode = BPF_OP(insn->code);
4516 u32 alu_state, alu_limit;
4517 struct bpf_reg_state tmp;
4518 bool ret;
4519
d3bd7413 4520 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4521 return 0;
4522
4523 /* We already marked aux for masking from non-speculative
4524 * paths, thus we got here in the first place. We only care
4525 * to explore bad access from here.
4526 */
4527 if (vstate->speculative)
4528 goto do_sim;
4529
4530 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4531 alu_state |= ptr_is_dst_reg ?
4532 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4533
4534 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4535 return 0;
d3bd7413 4536 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4537 return -EACCES;
979d63d5
DB
4538do_sim:
4539 /* Simulate and find potential out-of-bounds access under
4540 * speculative execution from truncation as a result of
4541 * masking when off was not within expected range. If off
4542 * sits in dst, then we temporarily need to move ptr there
4543 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4544 * for cases where we use K-based arithmetic in one direction
4545 * and truncated reg-based in the other in order to explore
4546 * bad access.
4547 */
4548 if (!ptr_is_dst_reg) {
4549 tmp = *dst_reg;
4550 *dst_reg = *ptr_reg;
4551 }
4552 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4553 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4554 *dst_reg = tmp;
4555 return !ret ? -EFAULT : 0;
4556}
4557
f1174f77 4558/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4559 * Caller should also handle BPF_MOV case separately.
4560 * If we return -EACCES, caller may want to try again treating pointer as a
4561 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4562 */
4563static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4564 struct bpf_insn *insn,
4565 const struct bpf_reg_state *ptr_reg,
4566 const struct bpf_reg_state *off_reg)
969bf05e 4567{
f4d7e40a
AS
4568 struct bpf_verifier_state *vstate = env->cur_state;
4569 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4570 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4571 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4572 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4573 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4574 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4575 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4576 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4577 u8 opcode = BPF_OP(insn->code);
979d63d5 4578 int ret;
969bf05e 4579
f1174f77 4580 dst_reg = &regs[dst];
969bf05e 4581
6f16101e
DB
4582 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4583 smin_val > smax_val || umin_val > umax_val) {
4584 /* Taint dst register if offset had invalid bounds derived from
4585 * e.g. dead branches.
4586 */
f54c7898 4587 __mark_reg_unknown(env, dst_reg);
6f16101e 4588 return 0;
f1174f77
EC
4589 }
4590
4591 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4592 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4593 verbose(env,
4594 "R%d 32-bit pointer arithmetic prohibited\n",
4595 dst);
f1174f77 4596 return -EACCES;
969bf05e
AS
4597 }
4598
aad2eeaf
JS
4599 switch (ptr_reg->type) {
4600 case PTR_TO_MAP_VALUE_OR_NULL:
4601 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4602 dst, reg_type_str[ptr_reg->type]);
f1174f77 4603 return -EACCES;
aad2eeaf
JS
4604 case CONST_PTR_TO_MAP:
4605 case PTR_TO_PACKET_END:
c64b7983
JS
4606 case PTR_TO_SOCKET:
4607 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4608 case PTR_TO_SOCK_COMMON:
4609 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4610 case PTR_TO_TCP_SOCK:
4611 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4612 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4613 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4614 dst, reg_type_str[ptr_reg->type]);
f1174f77 4615 return -EACCES;
9d7eceed
DB
4616 case PTR_TO_MAP_VALUE:
4617 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4618 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4619 off_reg == dst_reg ? dst : src);
4620 return -EACCES;
4621 }
4622 /* fall-through */
aad2eeaf
JS
4623 default:
4624 break;
f1174f77
EC
4625 }
4626
4627 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4628 * The id may be overwritten later if we create a new variable offset.
969bf05e 4629 */
f1174f77
EC
4630 dst_reg->type = ptr_reg->type;
4631 dst_reg->id = ptr_reg->id;
969bf05e 4632
bb7f0f98
AS
4633 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4634 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4635 return -EINVAL;
4636
f1174f77
EC
4637 switch (opcode) {
4638 case BPF_ADD:
979d63d5
DB
4639 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4640 if (ret < 0) {
4641 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4642 return ret;
4643 }
f1174f77
EC
4644 /* We can take a fixed offset as long as it doesn't overflow
4645 * the s32 'off' field
969bf05e 4646 */
b03c9f9f
EC
4647 if (known && (ptr_reg->off + smin_val ==
4648 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4649 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4650 dst_reg->smin_value = smin_ptr;
4651 dst_reg->smax_value = smax_ptr;
4652 dst_reg->umin_value = umin_ptr;
4653 dst_reg->umax_value = umax_ptr;
f1174f77 4654 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4655 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4656 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4657 break;
4658 }
f1174f77
EC
4659 /* A new variable offset is created. Note that off_reg->off
4660 * == 0, since it's a scalar.
4661 * dst_reg gets the pointer type and since some positive
4662 * integer value was added to the pointer, give it a new 'id'
4663 * if it's a PTR_TO_PACKET.
4664 * this creates a new 'base' pointer, off_reg (variable) gets
4665 * added into the variable offset, and we copy the fixed offset
4666 * from ptr_reg.
969bf05e 4667 */
b03c9f9f
EC
4668 if (signed_add_overflows(smin_ptr, smin_val) ||
4669 signed_add_overflows(smax_ptr, smax_val)) {
4670 dst_reg->smin_value = S64_MIN;
4671 dst_reg->smax_value = S64_MAX;
4672 } else {
4673 dst_reg->smin_value = smin_ptr + smin_val;
4674 dst_reg->smax_value = smax_ptr + smax_val;
4675 }
4676 if (umin_ptr + umin_val < umin_ptr ||
4677 umax_ptr + umax_val < umax_ptr) {
4678 dst_reg->umin_value = 0;
4679 dst_reg->umax_value = U64_MAX;
4680 } else {
4681 dst_reg->umin_value = umin_ptr + umin_val;
4682 dst_reg->umax_value = umax_ptr + umax_val;
4683 }
f1174f77
EC
4684 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4685 dst_reg->off = ptr_reg->off;
0962590e 4686 dst_reg->raw = ptr_reg->raw;
de8f3a83 4687 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4688 dst_reg->id = ++env->id_gen;
4689 /* something was added to pkt_ptr, set range to zero */
0962590e 4690 dst_reg->raw = 0;
f1174f77
EC
4691 }
4692 break;
4693 case BPF_SUB:
979d63d5
DB
4694 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4695 if (ret < 0) {
4696 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4697 return ret;
4698 }
f1174f77
EC
4699 if (dst_reg == off_reg) {
4700 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4701 verbose(env, "R%d tried to subtract pointer from scalar\n",
4702 dst);
f1174f77
EC
4703 return -EACCES;
4704 }
4705 /* We don't allow subtraction from FP, because (according to
4706 * test_verifier.c test "invalid fp arithmetic", JITs might not
4707 * be able to deal with it.
969bf05e 4708 */
f1174f77 4709 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4710 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4711 dst);
f1174f77
EC
4712 return -EACCES;
4713 }
b03c9f9f
EC
4714 if (known && (ptr_reg->off - smin_val ==
4715 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4716 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4717 dst_reg->smin_value = smin_ptr;
4718 dst_reg->smax_value = smax_ptr;
4719 dst_reg->umin_value = umin_ptr;
4720 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4721 dst_reg->var_off = ptr_reg->var_off;
4722 dst_reg->id = ptr_reg->id;
b03c9f9f 4723 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4724 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4725 break;
4726 }
f1174f77
EC
4727 /* A new variable offset is created. If the subtrahend is known
4728 * nonnegative, then any reg->range we had before is still good.
969bf05e 4729 */
b03c9f9f
EC
4730 if (signed_sub_overflows(smin_ptr, smax_val) ||
4731 signed_sub_overflows(smax_ptr, smin_val)) {
4732 /* Overflow possible, we know nothing */
4733 dst_reg->smin_value = S64_MIN;
4734 dst_reg->smax_value = S64_MAX;
4735 } else {
4736 dst_reg->smin_value = smin_ptr - smax_val;
4737 dst_reg->smax_value = smax_ptr - smin_val;
4738 }
4739 if (umin_ptr < umax_val) {
4740 /* Overflow possible, we know nothing */
4741 dst_reg->umin_value = 0;
4742 dst_reg->umax_value = U64_MAX;
4743 } else {
4744 /* Cannot overflow (as long as bounds are consistent) */
4745 dst_reg->umin_value = umin_ptr - umax_val;
4746 dst_reg->umax_value = umax_ptr - umin_val;
4747 }
f1174f77
EC
4748 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4749 dst_reg->off = ptr_reg->off;
0962590e 4750 dst_reg->raw = ptr_reg->raw;
de8f3a83 4751 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4752 dst_reg->id = ++env->id_gen;
4753 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4754 if (smin_val < 0)
0962590e 4755 dst_reg->raw = 0;
43188702 4756 }
f1174f77
EC
4757 break;
4758 case BPF_AND:
4759 case BPF_OR:
4760 case BPF_XOR:
82abbf8d
AS
4761 /* bitwise ops on pointers are troublesome, prohibit. */
4762 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4763 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4764 return -EACCES;
4765 default:
4766 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4767 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4768 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4769 return -EACCES;
43188702
JF
4770 }
4771
bb7f0f98
AS
4772 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4773 return -EINVAL;
4774
b03c9f9f
EC
4775 __update_reg_bounds(dst_reg);
4776 __reg_deduce_bounds(dst_reg);
4777 __reg_bound_offset(dst_reg);
0d6303db
DB
4778
4779 /* For unprivileged we require that resulting offset must be in bounds
4780 * in order to be able to sanitize access later on.
4781 */
e4298d25
DB
4782 if (!env->allow_ptr_leaks) {
4783 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4784 check_map_access(env, dst, dst_reg->off, 1, false)) {
4785 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4786 "prohibited for !root\n", dst);
4787 return -EACCES;
4788 } else if (dst_reg->type == PTR_TO_STACK &&
4789 check_stack_access(env, dst_reg, dst_reg->off +
4790 dst_reg->var_off.value, 1)) {
4791 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4792 "prohibited for !root\n", dst);
4793 return -EACCES;
4794 }
0d6303db
DB
4795 }
4796
43188702
JF
4797 return 0;
4798}
4799
468f6eaf
JH
4800/* WARNING: This function does calculations on 64-bit values, but the actual
4801 * execution may occur on 32-bit values. Therefore, things like bitshifts
4802 * need extra checks in the 32-bit case.
4803 */
f1174f77
EC
4804static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4805 struct bpf_insn *insn,
4806 struct bpf_reg_state *dst_reg,
4807 struct bpf_reg_state src_reg)
969bf05e 4808{
638f5b90 4809 struct bpf_reg_state *regs = cur_regs(env);
48461135 4810 u8 opcode = BPF_OP(insn->code);
f1174f77 4811 bool src_known, dst_known;
b03c9f9f
EC
4812 s64 smin_val, smax_val;
4813 u64 umin_val, umax_val;
468f6eaf 4814 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4815 u32 dst = insn->dst_reg;
4816 int ret;
48461135 4817
b799207e
JH
4818 if (insn_bitness == 32) {
4819 /* Relevant for 32-bit RSH: Information can propagate towards
4820 * LSB, so it isn't sufficient to only truncate the output to
4821 * 32 bits.
4822 */
4823 coerce_reg_to_size(dst_reg, 4);
4824 coerce_reg_to_size(&src_reg, 4);
4825 }
4826
b03c9f9f
EC
4827 smin_val = src_reg.smin_value;
4828 smax_val = src_reg.smax_value;
4829 umin_val = src_reg.umin_value;
4830 umax_val = src_reg.umax_value;
f1174f77
EC
4831 src_known = tnum_is_const(src_reg.var_off);
4832 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4833
6f16101e
DB
4834 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4835 smin_val > smax_val || umin_val > umax_val) {
4836 /* Taint dst register if offset had invalid bounds derived from
4837 * e.g. dead branches.
4838 */
f54c7898 4839 __mark_reg_unknown(env, dst_reg);
6f16101e
DB
4840 return 0;
4841 }
4842
bb7f0f98
AS
4843 if (!src_known &&
4844 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 4845 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
4846 return 0;
4847 }
4848
48461135
JB
4849 switch (opcode) {
4850 case BPF_ADD:
d3bd7413
DB
4851 ret = sanitize_val_alu(env, insn);
4852 if (ret < 0) {
4853 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4854 return ret;
4855 }
b03c9f9f
EC
4856 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4857 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4858 dst_reg->smin_value = S64_MIN;
4859 dst_reg->smax_value = S64_MAX;
4860 } else {
4861 dst_reg->smin_value += smin_val;
4862 dst_reg->smax_value += smax_val;
4863 }
4864 if (dst_reg->umin_value + umin_val < umin_val ||
4865 dst_reg->umax_value + umax_val < umax_val) {
4866 dst_reg->umin_value = 0;
4867 dst_reg->umax_value = U64_MAX;
4868 } else {
4869 dst_reg->umin_value += umin_val;
4870 dst_reg->umax_value += umax_val;
4871 }
f1174f77 4872 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4873 break;
4874 case BPF_SUB:
d3bd7413
DB
4875 ret = sanitize_val_alu(env, insn);
4876 if (ret < 0) {
4877 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4878 return ret;
4879 }
b03c9f9f
EC
4880 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4881 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4882 /* Overflow possible, we know nothing */
4883 dst_reg->smin_value = S64_MIN;
4884 dst_reg->smax_value = S64_MAX;
4885 } else {
4886 dst_reg->smin_value -= smax_val;
4887 dst_reg->smax_value -= smin_val;
4888 }
4889 if (dst_reg->umin_value < umax_val) {
4890 /* Overflow possible, we know nothing */
4891 dst_reg->umin_value = 0;
4892 dst_reg->umax_value = U64_MAX;
4893 } else {
4894 /* Cannot overflow (as long as bounds are consistent) */
4895 dst_reg->umin_value -= umax_val;
4896 dst_reg->umax_value -= umin_val;
4897 }
f1174f77 4898 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4899 break;
4900 case BPF_MUL:
b03c9f9f
EC
4901 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4902 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4903 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4904 __mark_reg_unbounded(dst_reg);
4905 __update_reg_bounds(dst_reg);
f1174f77
EC
4906 break;
4907 }
b03c9f9f
EC
4908 /* Both values are positive, so we can work with unsigned and
4909 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4910 */
b03c9f9f
EC
4911 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4912 /* Potential overflow, we know nothing */
4913 __mark_reg_unbounded(dst_reg);
4914 /* (except what we can learn from the var_off) */
4915 __update_reg_bounds(dst_reg);
4916 break;
4917 }
4918 dst_reg->umin_value *= umin_val;
4919 dst_reg->umax_value *= umax_val;
4920 if (dst_reg->umax_value > S64_MAX) {
4921 /* Overflow possible, we know nothing */
4922 dst_reg->smin_value = S64_MIN;
4923 dst_reg->smax_value = S64_MAX;
4924 } else {
4925 dst_reg->smin_value = dst_reg->umin_value;
4926 dst_reg->smax_value = dst_reg->umax_value;
4927 }
48461135
JB
4928 break;
4929 case BPF_AND:
f1174f77 4930 if (src_known && dst_known) {
b03c9f9f
EC
4931 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4932 src_reg.var_off.value);
f1174f77
EC
4933 break;
4934 }
b03c9f9f
EC
4935 /* We get our minimum from the var_off, since that's inherently
4936 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4937 */
f1174f77 4938 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4939 dst_reg->umin_value = dst_reg->var_off.value;
4940 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4941 if (dst_reg->smin_value < 0 || smin_val < 0) {
4942 /* Lose signed bounds when ANDing negative numbers,
4943 * ain't nobody got time for that.
4944 */
4945 dst_reg->smin_value = S64_MIN;
4946 dst_reg->smax_value = S64_MAX;
4947 } else {
4948 /* ANDing two positives gives a positive, so safe to
4949 * cast result into s64.
4950 */
4951 dst_reg->smin_value = dst_reg->umin_value;
4952 dst_reg->smax_value = dst_reg->umax_value;
4953 }
4954 /* We may learn something more from the var_off */
4955 __update_reg_bounds(dst_reg);
f1174f77
EC
4956 break;
4957 case BPF_OR:
4958 if (src_known && dst_known) {
b03c9f9f
EC
4959 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4960 src_reg.var_off.value);
f1174f77
EC
4961 break;
4962 }
b03c9f9f
EC
4963 /* We get our maximum from the var_off, and our minimum is the
4964 * maximum of the operands' minima
f1174f77
EC
4965 */
4966 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4967 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4968 dst_reg->umax_value = dst_reg->var_off.value |
4969 dst_reg->var_off.mask;
4970 if (dst_reg->smin_value < 0 || smin_val < 0) {
4971 /* Lose signed bounds when ORing negative numbers,
4972 * ain't nobody got time for that.
4973 */
4974 dst_reg->smin_value = S64_MIN;
4975 dst_reg->smax_value = S64_MAX;
f1174f77 4976 } else {
b03c9f9f
EC
4977 /* ORing two positives gives a positive, so safe to
4978 * cast result into s64.
4979 */
4980 dst_reg->smin_value = dst_reg->umin_value;
4981 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4982 }
b03c9f9f
EC
4983 /* We may learn something more from the var_off */
4984 __update_reg_bounds(dst_reg);
48461135
JB
4985 break;
4986 case BPF_LSH:
468f6eaf
JH
4987 if (umax_val >= insn_bitness) {
4988 /* Shifts greater than 31 or 63 are undefined.
4989 * This includes shifts by a negative number.
b03c9f9f 4990 */
61bd5218 4991 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4992 break;
4993 }
b03c9f9f
EC
4994 /* We lose all sign bit information (except what we can pick
4995 * up from var_off)
48461135 4996 */
b03c9f9f
EC
4997 dst_reg->smin_value = S64_MIN;
4998 dst_reg->smax_value = S64_MAX;
4999 /* If we might shift our top bit out, then we know nothing */
5000 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5001 dst_reg->umin_value = 0;
5002 dst_reg->umax_value = U64_MAX;
d1174416 5003 } else {
b03c9f9f
EC
5004 dst_reg->umin_value <<= umin_val;
5005 dst_reg->umax_value <<= umax_val;
d1174416 5006 }
afbe1a5b 5007 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
5008 /* We may learn something more from the var_off */
5009 __update_reg_bounds(dst_reg);
48461135
JB
5010 break;
5011 case BPF_RSH:
468f6eaf
JH
5012 if (umax_val >= insn_bitness) {
5013 /* Shifts greater than 31 or 63 are undefined.
5014 * This includes shifts by a negative number.
b03c9f9f 5015 */
61bd5218 5016 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5017 break;
5018 }
4374f256
EC
5019 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5020 * be negative, then either:
5021 * 1) src_reg might be zero, so the sign bit of the result is
5022 * unknown, so we lose our signed bounds
5023 * 2) it's known negative, thus the unsigned bounds capture the
5024 * signed bounds
5025 * 3) the signed bounds cross zero, so they tell us nothing
5026 * about the result
5027 * If the value in dst_reg is known nonnegative, then again the
5028 * unsigned bounts capture the signed bounds.
5029 * Thus, in all cases it suffices to blow away our signed bounds
5030 * and rely on inferring new ones from the unsigned bounds and
5031 * var_off of the result.
5032 */
5033 dst_reg->smin_value = S64_MIN;
5034 dst_reg->smax_value = S64_MAX;
afbe1a5b 5035 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
5036 dst_reg->umin_value >>= umax_val;
5037 dst_reg->umax_value >>= umin_val;
5038 /* We may learn something more from the var_off */
5039 __update_reg_bounds(dst_reg);
48461135 5040 break;
9cbe1f5a
YS
5041 case BPF_ARSH:
5042 if (umax_val >= insn_bitness) {
5043 /* Shifts greater than 31 or 63 are undefined.
5044 * This includes shifts by a negative number.
5045 */
5046 mark_reg_unknown(env, regs, insn->dst_reg);
5047 break;
5048 }
5049
5050 /* Upon reaching here, src_known is true and
5051 * umax_val is equal to umin_val.
5052 */
5053 dst_reg->smin_value >>= umin_val;
5054 dst_reg->smax_value >>= umin_val;
5055 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
5056
5057 /* blow away the dst_reg umin_value/umax_value and rely on
5058 * dst_reg var_off to refine the result.
5059 */
5060 dst_reg->umin_value = 0;
5061 dst_reg->umax_value = U64_MAX;
5062 __update_reg_bounds(dst_reg);
5063 break;
48461135 5064 default:
61bd5218 5065 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
5066 break;
5067 }
5068
468f6eaf
JH
5069 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5070 /* 32-bit ALU ops are (32,32)->32 */
5071 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
5072 }
5073
b03c9f9f
EC
5074 __reg_deduce_bounds(dst_reg);
5075 __reg_bound_offset(dst_reg);
f1174f77
EC
5076 return 0;
5077}
5078
5079/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5080 * and var_off.
5081 */
5082static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5083 struct bpf_insn *insn)
5084{
f4d7e40a
AS
5085 struct bpf_verifier_state *vstate = env->cur_state;
5086 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5087 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
5088 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5089 u8 opcode = BPF_OP(insn->code);
b5dc0163 5090 int err;
f1174f77
EC
5091
5092 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
5093 src_reg = NULL;
5094 if (dst_reg->type != SCALAR_VALUE)
5095 ptr_reg = dst_reg;
5096 if (BPF_SRC(insn->code) == BPF_X) {
5097 src_reg = &regs[insn->src_reg];
f1174f77
EC
5098 if (src_reg->type != SCALAR_VALUE) {
5099 if (dst_reg->type != SCALAR_VALUE) {
5100 /* Combining two pointers by any ALU op yields
82abbf8d
AS
5101 * an arbitrary scalar. Disallow all math except
5102 * pointer subtraction
f1174f77 5103 */
dd066823 5104 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
5105 mark_reg_unknown(env, regs, insn->dst_reg);
5106 return 0;
f1174f77 5107 }
82abbf8d
AS
5108 verbose(env, "R%d pointer %s pointer prohibited\n",
5109 insn->dst_reg,
5110 bpf_alu_string[opcode >> 4]);
5111 return -EACCES;
f1174f77
EC
5112 } else {
5113 /* scalar += pointer
5114 * This is legal, but we have to reverse our
5115 * src/dest handling in computing the range
5116 */
b5dc0163
AS
5117 err = mark_chain_precision(env, insn->dst_reg);
5118 if (err)
5119 return err;
82abbf8d
AS
5120 return adjust_ptr_min_max_vals(env, insn,
5121 src_reg, dst_reg);
f1174f77
EC
5122 }
5123 } else if (ptr_reg) {
5124 /* pointer += scalar */
b5dc0163
AS
5125 err = mark_chain_precision(env, insn->src_reg);
5126 if (err)
5127 return err;
82abbf8d
AS
5128 return adjust_ptr_min_max_vals(env, insn,
5129 dst_reg, src_reg);
f1174f77
EC
5130 }
5131 } else {
5132 /* Pretend the src is a reg with a known value, since we only
5133 * need to be able to read from this state.
5134 */
5135 off_reg.type = SCALAR_VALUE;
b03c9f9f 5136 __mark_reg_known(&off_reg, insn->imm);
f1174f77 5137 src_reg = &off_reg;
82abbf8d
AS
5138 if (ptr_reg) /* pointer += K */
5139 return adjust_ptr_min_max_vals(env, insn,
5140 ptr_reg, src_reg);
f1174f77
EC
5141 }
5142
5143 /* Got here implies adding two SCALAR_VALUEs */
5144 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 5145 print_verifier_state(env, state);
61bd5218 5146 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
5147 return -EINVAL;
5148 }
5149 if (WARN_ON(!src_reg)) {
f4d7e40a 5150 print_verifier_state(env, state);
61bd5218 5151 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
5152 return -EINVAL;
5153 }
5154 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
5155}
5156
17a52670 5157/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 5158static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5159{
638f5b90 5160 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
5161 u8 opcode = BPF_OP(insn->code);
5162 int err;
5163
5164 if (opcode == BPF_END || opcode == BPF_NEG) {
5165 if (opcode == BPF_NEG) {
5166 if (BPF_SRC(insn->code) != 0 ||
5167 insn->src_reg != BPF_REG_0 ||
5168 insn->off != 0 || insn->imm != 0) {
61bd5218 5169 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
5170 return -EINVAL;
5171 }
5172 } else {
5173 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
5174 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5175 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 5176 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
5177 return -EINVAL;
5178 }
5179 }
5180
5181 /* check src operand */
dc503a8a 5182 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5183 if (err)
5184 return err;
5185
1be7f75d 5186 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 5187 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
5188 insn->dst_reg);
5189 return -EACCES;
5190 }
5191
17a52670 5192 /* check dest operand */
dc503a8a 5193 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5194 if (err)
5195 return err;
5196
5197 } else if (opcode == BPF_MOV) {
5198
5199 if (BPF_SRC(insn->code) == BPF_X) {
5200 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5201 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5202 return -EINVAL;
5203 }
5204
5205 /* check src operand */
dc503a8a 5206 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5207 if (err)
5208 return err;
5209 } else {
5210 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5211 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5212 return -EINVAL;
5213 }
5214 }
5215
fbeb1603
AF
5216 /* check dest operand, mark as required later */
5217 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5218 if (err)
5219 return err;
5220
5221 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
5222 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5223 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5224
17a52670
AS
5225 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5226 /* case: R1 = R2
5227 * copy register state to dest reg
5228 */
e434b8cd
JW
5229 *dst_reg = *src_reg;
5230 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5231 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 5232 } else {
f1174f77 5233 /* R1 = (u32) R2 */
1be7f75d 5234 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
5235 verbose(env,
5236 "R%d partial copy of pointer\n",
1be7f75d
AS
5237 insn->src_reg);
5238 return -EACCES;
e434b8cd
JW
5239 } else if (src_reg->type == SCALAR_VALUE) {
5240 *dst_reg = *src_reg;
5241 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5242 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
5243 } else {
5244 mark_reg_unknown(env, regs,
5245 insn->dst_reg);
1be7f75d 5246 }
e434b8cd 5247 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
5248 }
5249 } else {
5250 /* case: R = imm
5251 * remember the value we stored into this reg
5252 */
fbeb1603
AF
5253 /* clear any state __mark_reg_known doesn't set */
5254 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5255 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5256 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5257 __mark_reg_known(regs + insn->dst_reg,
5258 insn->imm);
5259 } else {
5260 __mark_reg_known(regs + insn->dst_reg,
5261 (u32)insn->imm);
5262 }
17a52670
AS
5263 }
5264
5265 } else if (opcode > BPF_END) {
61bd5218 5266 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
5267 return -EINVAL;
5268
5269 } else { /* all other ALU ops: and, sub, xor, add, ... */
5270
17a52670
AS
5271 if (BPF_SRC(insn->code) == BPF_X) {
5272 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5273 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5274 return -EINVAL;
5275 }
5276 /* check src1 operand */
dc503a8a 5277 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5278 if (err)
5279 return err;
5280 } else {
5281 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5282 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5283 return -EINVAL;
5284 }
5285 }
5286
5287 /* check src2 operand */
dc503a8a 5288 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5289 if (err)
5290 return err;
5291
5292 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5293 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5294 verbose(env, "div by zero\n");
17a52670
AS
5295 return -EINVAL;
5296 }
5297
229394e8
RV
5298 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5299 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5300 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5301
5302 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5303 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5304 return -EINVAL;
5305 }
5306 }
5307
1a0dc1ac 5308 /* check dest operand */
dc503a8a 5309 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5310 if (err)
5311 return err;
5312
f1174f77 5313 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5314 }
5315
5316 return 0;
5317}
5318
c6a9efa1
PC
5319static void __find_good_pkt_pointers(struct bpf_func_state *state,
5320 struct bpf_reg_state *dst_reg,
5321 enum bpf_reg_type type, u16 new_range)
5322{
5323 struct bpf_reg_state *reg;
5324 int i;
5325
5326 for (i = 0; i < MAX_BPF_REG; i++) {
5327 reg = &state->regs[i];
5328 if (reg->type == type && reg->id == dst_reg->id)
5329 /* keep the maximum range already checked */
5330 reg->range = max(reg->range, new_range);
5331 }
5332
5333 bpf_for_each_spilled_reg(i, state, reg) {
5334 if (!reg)
5335 continue;
5336 if (reg->type == type && reg->id == dst_reg->id)
5337 reg->range = max(reg->range, new_range);
5338 }
5339}
5340
f4d7e40a 5341static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5342 struct bpf_reg_state *dst_reg,
f8ddadc4 5343 enum bpf_reg_type type,
fb2a311a 5344 bool range_right_open)
969bf05e 5345{
fb2a311a 5346 u16 new_range;
c6a9efa1 5347 int i;
2d2be8ca 5348
fb2a311a
DB
5349 if (dst_reg->off < 0 ||
5350 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5351 /* This doesn't give us any range */
5352 return;
5353
b03c9f9f
EC
5354 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5355 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5356 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5357 * than pkt_end, but that's because it's also less than pkt.
5358 */
5359 return;
5360
fb2a311a
DB
5361 new_range = dst_reg->off;
5362 if (range_right_open)
5363 new_range--;
5364
5365 /* Examples for register markings:
2d2be8ca 5366 *
fb2a311a 5367 * pkt_data in dst register:
2d2be8ca
DB
5368 *
5369 * r2 = r3;
5370 * r2 += 8;
5371 * if (r2 > pkt_end) goto <handle exception>
5372 * <access okay>
5373 *
b4e432f1
DB
5374 * r2 = r3;
5375 * r2 += 8;
5376 * if (r2 < pkt_end) goto <access okay>
5377 * <handle exception>
5378 *
2d2be8ca
DB
5379 * Where:
5380 * r2 == dst_reg, pkt_end == src_reg
5381 * r2=pkt(id=n,off=8,r=0)
5382 * r3=pkt(id=n,off=0,r=0)
5383 *
fb2a311a 5384 * pkt_data in src register:
2d2be8ca
DB
5385 *
5386 * r2 = r3;
5387 * r2 += 8;
5388 * if (pkt_end >= r2) goto <access okay>
5389 * <handle exception>
5390 *
b4e432f1
DB
5391 * r2 = r3;
5392 * r2 += 8;
5393 * if (pkt_end <= r2) goto <handle exception>
5394 * <access okay>
5395 *
2d2be8ca
DB
5396 * Where:
5397 * pkt_end == dst_reg, r2 == src_reg
5398 * r2=pkt(id=n,off=8,r=0)
5399 * r3=pkt(id=n,off=0,r=0)
5400 *
5401 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5402 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5403 * and [r3, r3 + 8-1) respectively is safe to access depending on
5404 * the check.
969bf05e 5405 */
2d2be8ca 5406
f1174f77
EC
5407 /* If our ids match, then we must have the same max_value. And we
5408 * don't care about the other reg's fixed offset, since if it's too big
5409 * the range won't allow anything.
5410 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5411 */
c6a9efa1
PC
5412 for (i = 0; i <= vstate->curframe; i++)
5413 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5414 new_range);
969bf05e
AS
5415}
5416
4f7b3e82
AS
5417/* compute branch direction of the expression "if (reg opcode val) goto target;"
5418 * and return:
5419 * 1 - branch will be taken and "goto target" will be executed
5420 * 0 - branch will not be taken and fall-through to next insn
5421 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5422 */
092ed096
JW
5423static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5424 bool is_jmp32)
4f7b3e82 5425{
092ed096 5426 struct bpf_reg_state reg_lo;
a72dafaf
JW
5427 s64 sval;
5428
4f7b3e82
AS
5429 if (__is_pointer_value(false, reg))
5430 return -1;
5431
092ed096
JW
5432 if (is_jmp32) {
5433 reg_lo = *reg;
5434 reg = &reg_lo;
5435 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5436 * could truncate high bits and update umin/umax according to
5437 * information of low bits.
5438 */
5439 coerce_reg_to_size(reg, 4);
5440 /* smin/smax need special handling. For example, after coerce,
5441 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5442 * used as operand to JMP32. It is a negative number from s32's
5443 * point of view, while it is a positive number when seen as
5444 * s64. The smin/smax are kept as s64, therefore, when used with
5445 * JMP32, they need to be transformed into s32, then sign
5446 * extended back to s64.
5447 *
5448 * Also, smin/smax were copied from umin/umax. If umin/umax has
5449 * different sign bit, then min/max relationship doesn't
5450 * maintain after casting into s32, for this case, set smin/smax
5451 * to safest range.
5452 */
5453 if ((reg->umax_value ^ reg->umin_value) &
5454 (1ULL << 31)) {
5455 reg->smin_value = S32_MIN;
5456 reg->smax_value = S32_MAX;
5457 }
5458 reg->smin_value = (s64)(s32)reg->smin_value;
5459 reg->smax_value = (s64)(s32)reg->smax_value;
5460
5461 val = (u32)val;
5462 sval = (s64)(s32)val;
5463 } else {
5464 sval = (s64)val;
5465 }
a72dafaf 5466
4f7b3e82
AS
5467 switch (opcode) {
5468 case BPF_JEQ:
5469 if (tnum_is_const(reg->var_off))
5470 return !!tnum_equals_const(reg->var_off, val);
5471 break;
5472 case BPF_JNE:
5473 if (tnum_is_const(reg->var_off))
5474 return !tnum_equals_const(reg->var_off, val);
5475 break;
960ea056
JK
5476 case BPF_JSET:
5477 if ((~reg->var_off.mask & reg->var_off.value) & val)
5478 return 1;
5479 if (!((reg->var_off.mask | reg->var_off.value) & val))
5480 return 0;
5481 break;
4f7b3e82
AS
5482 case BPF_JGT:
5483 if (reg->umin_value > val)
5484 return 1;
5485 else if (reg->umax_value <= val)
5486 return 0;
5487 break;
5488 case BPF_JSGT:
a72dafaf 5489 if (reg->smin_value > sval)
4f7b3e82 5490 return 1;
a72dafaf 5491 else if (reg->smax_value < sval)
4f7b3e82
AS
5492 return 0;
5493 break;
5494 case BPF_JLT:
5495 if (reg->umax_value < val)
5496 return 1;
5497 else if (reg->umin_value >= val)
5498 return 0;
5499 break;
5500 case BPF_JSLT:
a72dafaf 5501 if (reg->smax_value < sval)
4f7b3e82 5502 return 1;
a72dafaf 5503 else if (reg->smin_value >= sval)
4f7b3e82
AS
5504 return 0;
5505 break;
5506 case BPF_JGE:
5507 if (reg->umin_value >= val)
5508 return 1;
5509 else if (reg->umax_value < val)
5510 return 0;
5511 break;
5512 case BPF_JSGE:
a72dafaf 5513 if (reg->smin_value >= sval)
4f7b3e82 5514 return 1;
a72dafaf 5515 else if (reg->smax_value < sval)
4f7b3e82
AS
5516 return 0;
5517 break;
5518 case BPF_JLE:
5519 if (reg->umax_value <= val)
5520 return 1;
5521 else if (reg->umin_value > val)
5522 return 0;
5523 break;
5524 case BPF_JSLE:
a72dafaf 5525 if (reg->smax_value <= sval)
4f7b3e82 5526 return 1;
a72dafaf 5527 else if (reg->smin_value > sval)
4f7b3e82
AS
5528 return 0;
5529 break;
5530 }
5531
5532 return -1;
5533}
5534
092ed096
JW
5535/* Generate min value of the high 32-bit from TNUM info. */
5536static u64 gen_hi_min(struct tnum var)
5537{
5538 return var.value & ~0xffffffffULL;
5539}
5540
5541/* Generate max value of the high 32-bit from TNUM info. */
5542static u64 gen_hi_max(struct tnum var)
5543{
5544 return (var.value | var.mask) & ~0xffffffffULL;
5545}
5546
5547/* Return true if VAL is compared with a s64 sign extended from s32, and they
5548 * are with the same signedness.
5549 */
5550static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5551{
5552 return ((s32)sval >= 0 &&
5553 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5554 ((s32)sval < 0 &&
5555 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5556}
5557
48461135
JB
5558/* Adjusts the register min/max values in the case that the dst_reg is the
5559 * variable register that we are working on, and src_reg is a constant or we're
5560 * simply doing a BPF_K check.
f1174f77 5561 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5562 */
5563static void reg_set_min_max(struct bpf_reg_state *true_reg,
5564 struct bpf_reg_state *false_reg, u64 val,
092ed096 5565 u8 opcode, bool is_jmp32)
48461135 5566{
a72dafaf
JW
5567 s64 sval;
5568
f1174f77
EC
5569 /* If the dst_reg is a pointer, we can't learn anything about its
5570 * variable offset from the compare (unless src_reg were a pointer into
5571 * the same object, but we don't bother with that.
5572 * Since false_reg and true_reg have the same type by construction, we
5573 * only need to check one of them for pointerness.
5574 */
5575 if (__is_pointer_value(false, false_reg))
5576 return;
4cabc5b1 5577
092ed096
JW
5578 val = is_jmp32 ? (u32)val : val;
5579 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5580
48461135
JB
5581 switch (opcode) {
5582 case BPF_JEQ:
48461135 5583 case BPF_JNE:
a72dafaf
JW
5584 {
5585 struct bpf_reg_state *reg =
5586 opcode == BPF_JEQ ? true_reg : false_reg;
5587
5588 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5589 * if it is true we know the value for sure. Likewise for
5590 * BPF_JNE.
48461135 5591 */
092ed096
JW
5592 if (is_jmp32) {
5593 u64 old_v = reg->var_off.value;
5594 u64 hi_mask = ~0xffffffffULL;
5595
5596 reg->var_off.value = (old_v & hi_mask) | val;
5597 reg->var_off.mask &= hi_mask;
5598 } else {
5599 __mark_reg_known(reg, val);
5600 }
48461135 5601 break;
a72dafaf 5602 }
960ea056
JK
5603 case BPF_JSET:
5604 false_reg->var_off = tnum_and(false_reg->var_off,
5605 tnum_const(~val));
5606 if (is_power_of_2(val))
5607 true_reg->var_off = tnum_or(true_reg->var_off,
5608 tnum_const(val));
5609 break;
48461135 5610 case BPF_JGE:
a72dafaf
JW
5611 case BPF_JGT:
5612 {
5613 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5614 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5615
092ed096
JW
5616 if (is_jmp32) {
5617 false_umax += gen_hi_max(false_reg->var_off);
5618 true_umin += gen_hi_min(true_reg->var_off);
5619 }
a72dafaf
JW
5620 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5621 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5622 break;
a72dafaf 5623 }
48461135 5624 case BPF_JSGE:
a72dafaf
JW
5625 case BPF_JSGT:
5626 {
5627 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5628 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5629
092ed096
JW
5630 /* If the full s64 was not sign-extended from s32 then don't
5631 * deduct further info.
5632 */
5633 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5634 break;
a72dafaf
JW
5635 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5636 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5637 break;
a72dafaf 5638 }
b4e432f1 5639 case BPF_JLE:
a72dafaf
JW
5640 case BPF_JLT:
5641 {
5642 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5643 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5644
092ed096
JW
5645 if (is_jmp32) {
5646 false_umin += gen_hi_min(false_reg->var_off);
5647 true_umax += gen_hi_max(true_reg->var_off);
5648 }
a72dafaf
JW
5649 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5650 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5651 break;
a72dafaf 5652 }
b4e432f1 5653 case BPF_JSLE:
a72dafaf
JW
5654 case BPF_JSLT:
5655 {
5656 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5657 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5658
092ed096
JW
5659 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5660 break;
a72dafaf
JW
5661 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5662 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5663 break;
a72dafaf 5664 }
48461135
JB
5665 default:
5666 break;
5667 }
5668
b03c9f9f
EC
5669 __reg_deduce_bounds(false_reg);
5670 __reg_deduce_bounds(true_reg);
5671 /* We might have learned some bits from the bounds. */
5672 __reg_bound_offset(false_reg);
5673 __reg_bound_offset(true_reg);
581738a6
YS
5674 if (is_jmp32) {
5675 __reg_bound_offset32(false_reg);
5676 __reg_bound_offset32(true_reg);
5677 }
b03c9f9f
EC
5678 /* Intersecting with the old var_off might have improved our bounds
5679 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5680 * then new var_off is (0; 0x7f...fc) which improves our umax.
5681 */
5682 __update_reg_bounds(false_reg);
5683 __update_reg_bounds(true_reg);
48461135
JB
5684}
5685
f1174f77
EC
5686/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5687 * the variable reg.
48461135
JB
5688 */
5689static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5690 struct bpf_reg_state *false_reg, u64 val,
092ed096 5691 u8 opcode, bool is_jmp32)
48461135 5692{
a72dafaf
JW
5693 s64 sval;
5694
f1174f77
EC
5695 if (__is_pointer_value(false, false_reg))
5696 return;
4cabc5b1 5697
092ed096
JW
5698 val = is_jmp32 ? (u32)val : val;
5699 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5700
48461135
JB
5701 switch (opcode) {
5702 case BPF_JEQ:
48461135 5703 case BPF_JNE:
a72dafaf
JW
5704 {
5705 struct bpf_reg_state *reg =
5706 opcode == BPF_JEQ ? true_reg : false_reg;
5707
092ed096
JW
5708 if (is_jmp32) {
5709 u64 old_v = reg->var_off.value;
5710 u64 hi_mask = ~0xffffffffULL;
5711
5712 reg->var_off.value = (old_v & hi_mask) | val;
5713 reg->var_off.mask &= hi_mask;
5714 } else {
5715 __mark_reg_known(reg, val);
5716 }
48461135 5717 break;
a72dafaf 5718 }
960ea056
JK
5719 case BPF_JSET:
5720 false_reg->var_off = tnum_and(false_reg->var_off,
5721 tnum_const(~val));
5722 if (is_power_of_2(val))
5723 true_reg->var_off = tnum_or(true_reg->var_off,
5724 tnum_const(val));
5725 break;
48461135 5726 case BPF_JGE:
a72dafaf
JW
5727 case BPF_JGT:
5728 {
5729 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5730 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5731
092ed096
JW
5732 if (is_jmp32) {
5733 false_umin += gen_hi_min(false_reg->var_off);
5734 true_umax += gen_hi_max(true_reg->var_off);
5735 }
a72dafaf
JW
5736 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5737 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5738 break;
a72dafaf 5739 }
48461135 5740 case BPF_JSGE:
a72dafaf
JW
5741 case BPF_JSGT:
5742 {
5743 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5744 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5745
092ed096
JW
5746 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5747 break;
a72dafaf
JW
5748 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5749 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5750 break;
a72dafaf 5751 }
b4e432f1 5752 case BPF_JLE:
a72dafaf
JW
5753 case BPF_JLT:
5754 {
5755 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5756 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5757
092ed096
JW
5758 if (is_jmp32) {
5759 false_umax += gen_hi_max(false_reg->var_off);
5760 true_umin += gen_hi_min(true_reg->var_off);
5761 }
a72dafaf
JW
5762 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5763 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5764 break;
a72dafaf 5765 }
b4e432f1 5766 case BPF_JSLE:
a72dafaf
JW
5767 case BPF_JSLT:
5768 {
5769 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5770 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5771
092ed096
JW
5772 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5773 break;
a72dafaf
JW
5774 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5775 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5776 break;
a72dafaf 5777 }
48461135
JB
5778 default:
5779 break;
5780 }
5781
b03c9f9f
EC
5782 __reg_deduce_bounds(false_reg);
5783 __reg_deduce_bounds(true_reg);
5784 /* We might have learned some bits from the bounds. */
5785 __reg_bound_offset(false_reg);
5786 __reg_bound_offset(true_reg);
581738a6
YS
5787 if (is_jmp32) {
5788 __reg_bound_offset32(false_reg);
5789 __reg_bound_offset32(true_reg);
5790 }
b03c9f9f
EC
5791 /* Intersecting with the old var_off might have improved our bounds
5792 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5793 * then new var_off is (0; 0x7f...fc) which improves our umax.
5794 */
5795 __update_reg_bounds(false_reg);
5796 __update_reg_bounds(true_reg);
f1174f77
EC
5797}
5798
5799/* Regs are known to be equal, so intersect their min/max/var_off */
5800static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5801 struct bpf_reg_state *dst_reg)
5802{
b03c9f9f
EC
5803 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5804 dst_reg->umin_value);
5805 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5806 dst_reg->umax_value);
5807 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5808 dst_reg->smin_value);
5809 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5810 dst_reg->smax_value);
f1174f77
EC
5811 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5812 dst_reg->var_off);
b03c9f9f
EC
5813 /* We might have learned new bounds from the var_off. */
5814 __update_reg_bounds(src_reg);
5815 __update_reg_bounds(dst_reg);
5816 /* We might have learned something about the sign bit. */
5817 __reg_deduce_bounds(src_reg);
5818 __reg_deduce_bounds(dst_reg);
5819 /* We might have learned some bits from the bounds. */
5820 __reg_bound_offset(src_reg);
5821 __reg_bound_offset(dst_reg);
5822 /* Intersecting with the old var_off might have improved our bounds
5823 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5824 * then new var_off is (0; 0x7f...fc) which improves our umax.
5825 */
5826 __update_reg_bounds(src_reg);
5827 __update_reg_bounds(dst_reg);
f1174f77
EC
5828}
5829
5830static void reg_combine_min_max(struct bpf_reg_state *true_src,
5831 struct bpf_reg_state *true_dst,
5832 struct bpf_reg_state *false_src,
5833 struct bpf_reg_state *false_dst,
5834 u8 opcode)
5835{
5836 switch (opcode) {
5837 case BPF_JEQ:
5838 __reg_combine_min_max(true_src, true_dst);
5839 break;
5840 case BPF_JNE:
5841 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5842 break;
4cabc5b1 5843 }
48461135
JB
5844}
5845
fd978bf7
JS
5846static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5847 struct bpf_reg_state *reg, u32 id,
840b9615 5848 bool is_null)
57a09bf0 5849{
840b9615 5850 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5851 /* Old offset (both fixed and variable parts) should
5852 * have been known-zero, because we don't allow pointer
5853 * arithmetic on pointers that might be NULL.
5854 */
b03c9f9f
EC
5855 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5856 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5857 reg->off)) {
b03c9f9f
EC
5858 __mark_reg_known_zero(reg);
5859 reg->off = 0;
f1174f77
EC
5860 }
5861 if (is_null) {
5862 reg->type = SCALAR_VALUE;
840b9615
JS
5863 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5864 if (reg->map_ptr->inner_map_meta) {
5865 reg->type = CONST_PTR_TO_MAP;
5866 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5867 } else if (reg->map_ptr->map_type ==
5868 BPF_MAP_TYPE_XSKMAP) {
5869 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5870 } else {
5871 reg->type = PTR_TO_MAP_VALUE;
5872 }
c64b7983
JS
5873 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5874 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5875 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5876 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5877 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5878 reg->type = PTR_TO_TCP_SOCK;
56f668df 5879 }
1b986589
MKL
5880 if (is_null) {
5881 /* We don't need id and ref_obj_id from this point
5882 * onwards anymore, thus we should better reset it,
5883 * so that state pruning has chances to take effect.
5884 */
5885 reg->id = 0;
5886 reg->ref_obj_id = 0;
5887 } else if (!reg_may_point_to_spin_lock(reg)) {
5888 /* For not-NULL ptr, reg->ref_obj_id will be reset
5889 * in release_reg_references().
5890 *
5891 * reg->id is still used by spin_lock ptr. Other
5892 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5893 */
5894 reg->id = 0;
56f668df 5895 }
57a09bf0
TG
5896 }
5897}
5898
c6a9efa1
PC
5899static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5900 bool is_null)
5901{
5902 struct bpf_reg_state *reg;
5903 int i;
5904
5905 for (i = 0; i < MAX_BPF_REG; i++)
5906 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5907
5908 bpf_for_each_spilled_reg(i, state, reg) {
5909 if (!reg)
5910 continue;
5911 mark_ptr_or_null_reg(state, reg, id, is_null);
5912 }
5913}
5914
57a09bf0
TG
5915/* The logic is similar to find_good_pkt_pointers(), both could eventually
5916 * be folded together at some point.
5917 */
840b9615
JS
5918static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5919 bool is_null)
57a09bf0 5920{
f4d7e40a 5921 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5922 struct bpf_reg_state *regs = state->regs;
1b986589 5923 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5924 u32 id = regs[regno].id;
c6a9efa1 5925 int i;
57a09bf0 5926
1b986589
MKL
5927 if (ref_obj_id && ref_obj_id == id && is_null)
5928 /* regs[regno] is in the " == NULL" branch.
5929 * No one could have freed the reference state before
5930 * doing the NULL check.
5931 */
5932 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5933
c6a9efa1
PC
5934 for (i = 0; i <= vstate->curframe; i++)
5935 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5936}
5937
5beca081
DB
5938static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5939 struct bpf_reg_state *dst_reg,
5940 struct bpf_reg_state *src_reg,
5941 struct bpf_verifier_state *this_branch,
5942 struct bpf_verifier_state *other_branch)
5943{
5944 if (BPF_SRC(insn->code) != BPF_X)
5945 return false;
5946
092ed096
JW
5947 /* Pointers are always 64-bit. */
5948 if (BPF_CLASS(insn->code) == BPF_JMP32)
5949 return false;
5950
5beca081
DB
5951 switch (BPF_OP(insn->code)) {
5952 case BPF_JGT:
5953 if ((dst_reg->type == PTR_TO_PACKET &&
5954 src_reg->type == PTR_TO_PACKET_END) ||
5955 (dst_reg->type == PTR_TO_PACKET_META &&
5956 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5957 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5958 find_good_pkt_pointers(this_branch, dst_reg,
5959 dst_reg->type, false);
5960 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5961 src_reg->type == PTR_TO_PACKET) ||
5962 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5963 src_reg->type == PTR_TO_PACKET_META)) {
5964 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5965 find_good_pkt_pointers(other_branch, src_reg,
5966 src_reg->type, true);
5967 } else {
5968 return false;
5969 }
5970 break;
5971 case BPF_JLT:
5972 if ((dst_reg->type == PTR_TO_PACKET &&
5973 src_reg->type == PTR_TO_PACKET_END) ||
5974 (dst_reg->type == PTR_TO_PACKET_META &&
5975 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5976 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5977 find_good_pkt_pointers(other_branch, dst_reg,
5978 dst_reg->type, true);
5979 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5980 src_reg->type == PTR_TO_PACKET) ||
5981 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5982 src_reg->type == PTR_TO_PACKET_META)) {
5983 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5984 find_good_pkt_pointers(this_branch, src_reg,
5985 src_reg->type, false);
5986 } else {
5987 return false;
5988 }
5989 break;
5990 case BPF_JGE:
5991 if ((dst_reg->type == PTR_TO_PACKET &&
5992 src_reg->type == PTR_TO_PACKET_END) ||
5993 (dst_reg->type == PTR_TO_PACKET_META &&
5994 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5995 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5996 find_good_pkt_pointers(this_branch, dst_reg,
5997 dst_reg->type, true);
5998 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5999 src_reg->type == PTR_TO_PACKET) ||
6000 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6001 src_reg->type == PTR_TO_PACKET_META)) {
6002 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6003 find_good_pkt_pointers(other_branch, src_reg,
6004 src_reg->type, false);
6005 } else {
6006 return false;
6007 }
6008 break;
6009 case BPF_JLE:
6010 if ((dst_reg->type == PTR_TO_PACKET &&
6011 src_reg->type == PTR_TO_PACKET_END) ||
6012 (dst_reg->type == PTR_TO_PACKET_META &&
6013 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6014 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6015 find_good_pkt_pointers(other_branch, dst_reg,
6016 dst_reg->type, false);
6017 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6018 src_reg->type == PTR_TO_PACKET) ||
6019 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6020 src_reg->type == PTR_TO_PACKET_META)) {
6021 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6022 find_good_pkt_pointers(this_branch, src_reg,
6023 src_reg->type, true);
6024 } else {
6025 return false;
6026 }
6027 break;
6028 default:
6029 return false;
6030 }
6031
6032 return true;
6033}
6034
58e2af8b 6035static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
6036 struct bpf_insn *insn, int *insn_idx)
6037{
f4d7e40a
AS
6038 struct bpf_verifier_state *this_branch = env->cur_state;
6039 struct bpf_verifier_state *other_branch;
6040 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 6041 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 6042 u8 opcode = BPF_OP(insn->code);
092ed096 6043 bool is_jmp32;
fb8d251e 6044 int pred = -1;
17a52670
AS
6045 int err;
6046
092ed096
JW
6047 /* Only conditional jumps are expected to reach here. */
6048 if (opcode == BPF_JA || opcode > BPF_JSLE) {
6049 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
6050 return -EINVAL;
6051 }
6052
6053 if (BPF_SRC(insn->code) == BPF_X) {
6054 if (insn->imm != 0) {
092ed096 6055 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6056 return -EINVAL;
6057 }
6058
6059 /* check src1 operand */
dc503a8a 6060 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6061 if (err)
6062 return err;
1be7f75d
AS
6063
6064 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6065 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
6066 insn->src_reg);
6067 return -EACCES;
6068 }
fb8d251e 6069 src_reg = &regs[insn->src_reg];
17a52670
AS
6070 } else {
6071 if (insn->src_reg != BPF_REG_0) {
092ed096 6072 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6073 return -EINVAL;
6074 }
6075 }
6076
6077 /* check src2 operand */
dc503a8a 6078 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6079 if (err)
6080 return err;
6081
1a0dc1ac 6082 dst_reg = &regs[insn->dst_reg];
092ed096 6083 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 6084
fb8d251e
AS
6085 if (BPF_SRC(insn->code) == BPF_K)
6086 pred = is_branch_taken(dst_reg, insn->imm,
6087 opcode, is_jmp32);
6088 else if (src_reg->type == SCALAR_VALUE &&
6089 tnum_is_const(src_reg->var_off))
6090 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6091 opcode, is_jmp32);
b5dc0163
AS
6092 if (pred >= 0) {
6093 err = mark_chain_precision(env, insn->dst_reg);
6094 if (BPF_SRC(insn->code) == BPF_X && !err)
6095 err = mark_chain_precision(env, insn->src_reg);
6096 if (err)
6097 return err;
6098 }
fb8d251e
AS
6099 if (pred == 1) {
6100 /* only follow the goto, ignore fall-through */
6101 *insn_idx += insn->off;
6102 return 0;
6103 } else if (pred == 0) {
6104 /* only follow fall-through branch, since
6105 * that's where the program will go
6106 */
6107 return 0;
17a52670
AS
6108 }
6109
979d63d5
DB
6110 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6111 false);
17a52670
AS
6112 if (!other_branch)
6113 return -EFAULT;
f4d7e40a 6114 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 6115
48461135
JB
6116 /* detect if we are comparing against a constant value so we can adjust
6117 * our min/max values for our dst register.
f1174f77
EC
6118 * this is only legit if both are scalars (or pointers to the same
6119 * object, I suppose, but we don't support that right now), because
6120 * otherwise the different base pointers mean the offsets aren't
6121 * comparable.
48461135
JB
6122 */
6123 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
6124 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6125 struct bpf_reg_state lo_reg0 = *dst_reg;
6126 struct bpf_reg_state lo_reg1 = *src_reg;
6127 struct bpf_reg_state *src_lo, *dst_lo;
6128
6129 dst_lo = &lo_reg0;
6130 src_lo = &lo_reg1;
6131 coerce_reg_to_size(dst_lo, 4);
6132 coerce_reg_to_size(src_lo, 4);
6133
f1174f77 6134 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
6135 src_reg->type == SCALAR_VALUE) {
6136 if (tnum_is_const(src_reg->var_off) ||
6137 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 6138 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
6139 dst_reg,
6140 is_jmp32
6141 ? src_lo->var_off.value
6142 : src_reg->var_off.value,
6143 opcode, is_jmp32);
6144 else if (tnum_is_const(dst_reg->var_off) ||
6145 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 6146 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
6147 src_reg,
6148 is_jmp32
6149 ? dst_lo->var_off.value
6150 : dst_reg->var_off.value,
6151 opcode, is_jmp32);
6152 else if (!is_jmp32 &&
6153 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 6154 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
6155 reg_combine_min_max(&other_branch_regs[insn->src_reg],
6156 &other_branch_regs[insn->dst_reg],
092ed096 6157 src_reg, dst_reg, opcode);
f1174f77
EC
6158 }
6159 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 6160 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 6161 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
6162 }
6163
092ed096
JW
6164 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6165 * NOTE: these optimizations below are related with pointer comparison
6166 * which will never be JMP32.
6167 */
6168 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 6169 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
6170 reg_type_may_be_null(dst_reg->type)) {
6171 /* Mark all identical registers in each branch as either
57a09bf0
TG
6172 * safe or unknown depending R == 0 or R != 0 conditional.
6173 */
840b9615
JS
6174 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6175 opcode == BPF_JNE);
6176 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6177 opcode == BPF_JEQ);
5beca081
DB
6178 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6179 this_branch, other_branch) &&
6180 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
6181 verbose(env, "R%d pointer comparison prohibited\n",
6182 insn->dst_reg);
1be7f75d 6183 return -EACCES;
17a52670 6184 }
06ee7115 6185 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 6186 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
6187 return 0;
6188}
6189
17a52670 6190/* verify BPF_LD_IMM64 instruction */
58e2af8b 6191static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6192{
d8eca5bb 6193 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 6194 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 6195 struct bpf_map *map;
17a52670
AS
6196 int err;
6197
6198 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 6199 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
6200 return -EINVAL;
6201 }
6202 if (insn->off != 0) {
61bd5218 6203 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
6204 return -EINVAL;
6205 }
6206
dc503a8a 6207 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6208 if (err)
6209 return err;
6210
6b173873 6211 if (insn->src_reg == 0) {
6b173873
JK
6212 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6213
f1174f77 6214 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 6215 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 6216 return 0;
6b173873 6217 }
17a52670 6218
d8eca5bb
DB
6219 map = env->used_maps[aux->map_index];
6220 mark_reg_known_zero(env, regs, insn->dst_reg);
6221 regs[insn->dst_reg].map_ptr = map;
6222
6223 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6224 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6225 regs[insn->dst_reg].off = aux->map_off;
6226 if (map_value_has_spin_lock(map))
6227 regs[insn->dst_reg].id = ++env->id_gen;
6228 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6229 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6230 } else {
6231 verbose(env, "bpf verifier is misconfigured\n");
6232 return -EINVAL;
6233 }
17a52670 6234
17a52670
AS
6235 return 0;
6236}
6237
96be4325
DB
6238static bool may_access_skb(enum bpf_prog_type type)
6239{
6240 switch (type) {
6241 case BPF_PROG_TYPE_SOCKET_FILTER:
6242 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 6243 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
6244 return true;
6245 default:
6246 return false;
6247 }
6248}
6249
ddd872bc
AS
6250/* verify safety of LD_ABS|LD_IND instructions:
6251 * - they can only appear in the programs where ctx == skb
6252 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6253 * preserve R6-R9, and store return value into R0
6254 *
6255 * Implicit input:
6256 * ctx == skb == R6 == CTX
6257 *
6258 * Explicit input:
6259 * SRC == any register
6260 * IMM == 32-bit immediate
6261 *
6262 * Output:
6263 * R0 - 8/16/32-bit skb data converted to cpu endianness
6264 */
58e2af8b 6265static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6266{
638f5b90 6267 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 6268 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6269 int i, err;
6270
24701ece 6271 if (!may_access_skb(env->prog->type)) {
61bd5218 6272 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6273 return -EINVAL;
6274 }
6275
e0cea7ce
DB
6276 if (!env->ops->gen_ld_abs) {
6277 verbose(env, "bpf verifier is misconfigured\n");
6278 return -EINVAL;
6279 }
6280
f910cefa 6281 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6282 /* when program has LD_ABS insn JITs and interpreter assume
6283 * that r1 == ctx == skb which is not the case for callees
6284 * that can have arbitrary arguments. It's problematic
6285 * for main prog as well since JITs would need to analyze
6286 * all functions in order to make proper register save/restore
6287 * decisions in the main prog. Hence disallow LD_ABS with calls
6288 */
6289 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6290 return -EINVAL;
6291 }
6292
ddd872bc 6293 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6294 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6295 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6296 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6297 return -EINVAL;
6298 }
6299
6300 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6301 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6302 if (err)
6303 return err;
6304
fd978bf7
JS
6305 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6306 * gen_ld_abs() may terminate the program at runtime, leading to
6307 * reference leak.
6308 */
6309 err = check_reference_leak(env);
6310 if (err) {
6311 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6312 return err;
6313 }
6314
d83525ca
AS
6315 if (env->cur_state->active_spin_lock) {
6316 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6317 return -EINVAL;
6318 }
6319
ddd872bc 6320 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6321 verbose(env,
6322 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6323 return -EINVAL;
6324 }
6325
6326 if (mode == BPF_IND) {
6327 /* check explicit source operand */
dc503a8a 6328 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6329 if (err)
6330 return err;
6331 }
6332
6333 /* reset caller saved regs to unreadable */
dc503a8a 6334 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6335 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6336 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6337 }
ddd872bc
AS
6338
6339 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6340 * the value fetched from the packet.
6341 * Already marked as written above.
ddd872bc 6342 */
61bd5218 6343 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6344 /* ld_abs load up to 32-bit skb data. */
6345 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6346 return 0;
6347}
6348
390ee7e2
AS
6349static int check_return_code(struct bpf_verifier_env *env)
6350{
5cf1e914 6351 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
6352 struct bpf_reg_state *reg;
6353 struct tnum range = tnum_range(0, 1);
6354
6355 switch (env->prog->type) {
983695fa
DB
6356 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6357 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6358 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6359 range = tnum_range(1, 1);
ed4ed404 6360 break;
390ee7e2 6361 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6362 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6363 range = tnum_range(0, 3);
6364 enforce_attach_type_range = tnum_range(2, 3);
6365 }
ed4ed404 6366 break;
390ee7e2
AS
6367 case BPF_PROG_TYPE_CGROUP_SOCK:
6368 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6369 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6370 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6371 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 6372 break;
15ab09bd
AS
6373 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6374 if (!env->prog->aux->attach_btf_id)
6375 return 0;
6376 range = tnum_const(0);
6377 break;
390ee7e2
AS
6378 default:
6379 return 0;
6380 }
6381
638f5b90 6382 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6383 if (reg->type != SCALAR_VALUE) {
61bd5218 6384 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6385 reg_type_str[reg->type]);
6386 return -EINVAL;
6387 }
6388
6389 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6390 char tn_buf[48];
6391
61bd5218 6392 verbose(env, "At program exit the register R0 ");
390ee7e2 6393 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6394 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6395 verbose(env, "has value %s", tn_buf);
390ee7e2 6396 } else {
61bd5218 6397 verbose(env, "has unknown scalar value");
390ee7e2 6398 }
5cf1e914 6399 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6400 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6401 return -EINVAL;
6402 }
5cf1e914 6403
6404 if (!tnum_is_unknown(enforce_attach_type_range) &&
6405 tnum_in(enforce_attach_type_range, reg->var_off))
6406 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6407 return 0;
6408}
6409
475fb78f
AS
6410/* non-recursive DFS pseudo code
6411 * 1 procedure DFS-iterative(G,v):
6412 * 2 label v as discovered
6413 * 3 let S be a stack
6414 * 4 S.push(v)
6415 * 5 while S is not empty
6416 * 6 t <- S.pop()
6417 * 7 if t is what we're looking for:
6418 * 8 return t
6419 * 9 for all edges e in G.adjacentEdges(t) do
6420 * 10 if edge e is already labelled
6421 * 11 continue with the next edge
6422 * 12 w <- G.adjacentVertex(t,e)
6423 * 13 if vertex w is not discovered and not explored
6424 * 14 label e as tree-edge
6425 * 15 label w as discovered
6426 * 16 S.push(w)
6427 * 17 continue at 5
6428 * 18 else if vertex w is discovered
6429 * 19 label e as back-edge
6430 * 20 else
6431 * 21 // vertex w is explored
6432 * 22 label e as forward- or cross-edge
6433 * 23 label t as explored
6434 * 24 S.pop()
6435 *
6436 * convention:
6437 * 0x10 - discovered
6438 * 0x11 - discovered and fall-through edge labelled
6439 * 0x12 - discovered and fall-through and branch edges labelled
6440 * 0x20 - explored
6441 */
6442
6443enum {
6444 DISCOVERED = 0x10,
6445 EXPLORED = 0x20,
6446 FALLTHROUGH = 1,
6447 BRANCH = 2,
6448};
6449
dc2a4ebc
AS
6450static u32 state_htab_size(struct bpf_verifier_env *env)
6451{
6452 return env->prog->len;
6453}
6454
5d839021
AS
6455static struct bpf_verifier_state_list **explored_state(
6456 struct bpf_verifier_env *env,
6457 int idx)
6458{
dc2a4ebc
AS
6459 struct bpf_verifier_state *cur = env->cur_state;
6460 struct bpf_func_state *state = cur->frame[cur->curframe];
6461
6462 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6463}
6464
6465static void init_explored_state(struct bpf_verifier_env *env, int idx)
6466{
a8f500af 6467 env->insn_aux_data[idx].prune_point = true;
5d839021 6468}
f1bca824 6469
475fb78f
AS
6470/* t, w, e - match pseudo-code above:
6471 * t - index of current instruction
6472 * w - next instruction
6473 * e - edge
6474 */
2589726d
AS
6475static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6476 bool loop_ok)
475fb78f 6477{
7df737e9
AS
6478 int *insn_stack = env->cfg.insn_stack;
6479 int *insn_state = env->cfg.insn_state;
6480
475fb78f
AS
6481 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6482 return 0;
6483
6484 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6485 return 0;
6486
6487 if (w < 0 || w >= env->prog->len) {
d9762e84 6488 verbose_linfo(env, t, "%d: ", t);
61bd5218 6489 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6490 return -EINVAL;
6491 }
6492
f1bca824
AS
6493 if (e == BRANCH)
6494 /* mark branch target for state pruning */
5d839021 6495 init_explored_state(env, w);
f1bca824 6496
475fb78f
AS
6497 if (insn_state[w] == 0) {
6498 /* tree-edge */
6499 insn_state[t] = DISCOVERED | e;
6500 insn_state[w] = DISCOVERED;
7df737e9 6501 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6502 return -E2BIG;
7df737e9 6503 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6504 return 1;
6505 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6506 if (loop_ok && env->allow_ptr_leaks)
6507 return 0;
d9762e84
MKL
6508 verbose_linfo(env, t, "%d: ", t);
6509 verbose_linfo(env, w, "%d: ", w);
61bd5218 6510 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6511 return -EINVAL;
6512 } else if (insn_state[w] == EXPLORED) {
6513 /* forward- or cross-edge */
6514 insn_state[t] = DISCOVERED | e;
6515 } else {
61bd5218 6516 verbose(env, "insn state internal bug\n");
475fb78f
AS
6517 return -EFAULT;
6518 }
6519 return 0;
6520}
6521
6522/* non-recursive depth-first-search to detect loops in BPF program
6523 * loop == back-edge in directed graph
6524 */
58e2af8b 6525static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6526{
6527 struct bpf_insn *insns = env->prog->insnsi;
6528 int insn_cnt = env->prog->len;
7df737e9 6529 int *insn_stack, *insn_state;
475fb78f
AS
6530 int ret = 0;
6531 int i, t;
6532
7df737e9 6533 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6534 if (!insn_state)
6535 return -ENOMEM;
6536
7df737e9 6537 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6538 if (!insn_stack) {
71dde681 6539 kvfree(insn_state);
475fb78f
AS
6540 return -ENOMEM;
6541 }
6542
6543 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6544 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6545 env->cfg.cur_stack = 1;
475fb78f
AS
6546
6547peek_stack:
7df737e9 6548 if (env->cfg.cur_stack == 0)
475fb78f 6549 goto check_state;
7df737e9 6550 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6551
092ed096
JW
6552 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6553 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6554 u8 opcode = BPF_OP(insns[t].code);
6555
6556 if (opcode == BPF_EXIT) {
6557 goto mark_explored;
6558 } else if (opcode == BPF_CALL) {
2589726d 6559 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6560 if (ret == 1)
6561 goto peek_stack;
6562 else if (ret < 0)
6563 goto err_free;
07016151 6564 if (t + 1 < insn_cnt)
5d839021 6565 init_explored_state(env, t + 1);
cc8b0b92 6566 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6567 init_explored_state(env, t);
2589726d
AS
6568 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6569 env, false);
cc8b0b92
AS
6570 if (ret == 1)
6571 goto peek_stack;
6572 else if (ret < 0)
6573 goto err_free;
6574 }
475fb78f
AS
6575 } else if (opcode == BPF_JA) {
6576 if (BPF_SRC(insns[t].code) != BPF_K) {
6577 ret = -EINVAL;
6578 goto err_free;
6579 }
6580 /* unconditional jump with single edge */
6581 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6582 FALLTHROUGH, env, true);
475fb78f
AS
6583 if (ret == 1)
6584 goto peek_stack;
6585 else if (ret < 0)
6586 goto err_free;
b5dc0163
AS
6587 /* unconditional jmp is not a good pruning point,
6588 * but it's marked, since backtracking needs
6589 * to record jmp history in is_state_visited().
6590 */
6591 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6592 /* tell verifier to check for equivalent states
6593 * after every call and jump
6594 */
c3de6317 6595 if (t + 1 < insn_cnt)
5d839021 6596 init_explored_state(env, t + 1);
475fb78f
AS
6597 } else {
6598 /* conditional jump with two edges */
5d839021 6599 init_explored_state(env, t);
2589726d 6600 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6601 if (ret == 1)
6602 goto peek_stack;
6603 else if (ret < 0)
6604 goto err_free;
6605
2589726d 6606 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6607 if (ret == 1)
6608 goto peek_stack;
6609 else if (ret < 0)
6610 goto err_free;
6611 }
6612 } else {
6613 /* all other non-branch instructions with single
6614 * fall-through edge
6615 */
2589726d 6616 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6617 if (ret == 1)
6618 goto peek_stack;
6619 else if (ret < 0)
6620 goto err_free;
6621 }
6622
6623mark_explored:
6624 insn_state[t] = EXPLORED;
7df737e9 6625 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6626 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6627 ret = -EFAULT;
6628 goto err_free;
6629 }
6630 goto peek_stack;
6631
6632check_state:
6633 for (i = 0; i < insn_cnt; i++) {
6634 if (insn_state[i] != EXPLORED) {
61bd5218 6635 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6636 ret = -EINVAL;
6637 goto err_free;
6638 }
6639 }
6640 ret = 0; /* cfg looks good */
6641
6642err_free:
71dde681
AS
6643 kvfree(insn_state);
6644 kvfree(insn_stack);
7df737e9 6645 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6646 return ret;
6647}
6648
838e9690
YS
6649/* The minimum supported BTF func info size */
6650#define MIN_BPF_FUNCINFO_SIZE 8
6651#define MAX_FUNCINFO_REC_SIZE 252
6652
c454a46b
MKL
6653static int check_btf_func(struct bpf_verifier_env *env,
6654 const union bpf_attr *attr,
6655 union bpf_attr __user *uattr)
838e9690 6656{
d0b2818e 6657 u32 i, nfuncs, urec_size, min_size;
838e9690 6658 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6659 struct bpf_func_info *krecord;
8c1b6e69 6660 struct bpf_func_info_aux *info_aux = NULL;
838e9690 6661 const struct btf_type *type;
c454a46b
MKL
6662 struct bpf_prog *prog;
6663 const struct btf *btf;
838e9690 6664 void __user *urecord;
d0b2818e 6665 u32 prev_offset = 0;
838e9690
YS
6666 int ret = 0;
6667
6668 nfuncs = attr->func_info_cnt;
6669 if (!nfuncs)
6670 return 0;
6671
6672 if (nfuncs != env->subprog_cnt) {
6673 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6674 return -EINVAL;
6675 }
6676
6677 urec_size = attr->func_info_rec_size;
6678 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6679 urec_size > MAX_FUNCINFO_REC_SIZE ||
6680 urec_size % sizeof(u32)) {
6681 verbose(env, "invalid func info rec size %u\n", urec_size);
6682 return -EINVAL;
6683 }
6684
c454a46b
MKL
6685 prog = env->prog;
6686 btf = prog->aux->btf;
838e9690
YS
6687
6688 urecord = u64_to_user_ptr(attr->func_info);
6689 min_size = min_t(u32, krec_size, urec_size);
6690
ba64e7d8 6691 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6692 if (!krecord)
6693 return -ENOMEM;
8c1b6e69
AS
6694 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6695 if (!info_aux)
6696 goto err_free;
ba64e7d8 6697
838e9690
YS
6698 for (i = 0; i < nfuncs; i++) {
6699 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6700 if (ret) {
6701 if (ret == -E2BIG) {
6702 verbose(env, "nonzero tailing record in func info");
6703 /* set the size kernel expects so loader can zero
6704 * out the rest of the record.
6705 */
6706 if (put_user(min_size, &uattr->func_info_rec_size))
6707 ret = -EFAULT;
6708 }
c454a46b 6709 goto err_free;
838e9690
YS
6710 }
6711
ba64e7d8 6712 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6713 ret = -EFAULT;
c454a46b 6714 goto err_free;
838e9690
YS
6715 }
6716
d30d42e0 6717 /* check insn_off */
838e9690 6718 if (i == 0) {
d30d42e0 6719 if (krecord[i].insn_off) {
838e9690 6720 verbose(env,
d30d42e0
MKL
6721 "nonzero insn_off %u for the first func info record",
6722 krecord[i].insn_off);
838e9690 6723 ret = -EINVAL;
c454a46b 6724 goto err_free;
838e9690 6725 }
d30d42e0 6726 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6727 verbose(env,
6728 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6729 krecord[i].insn_off, prev_offset);
838e9690 6730 ret = -EINVAL;
c454a46b 6731 goto err_free;
838e9690
YS
6732 }
6733
d30d42e0 6734 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6735 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6736 ret = -EINVAL;
c454a46b 6737 goto err_free;
838e9690
YS
6738 }
6739
6740 /* check type_id */
ba64e7d8 6741 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6742 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6743 verbose(env, "invalid type id %d in func info",
ba64e7d8 6744 krecord[i].type_id);
838e9690 6745 ret = -EINVAL;
c454a46b 6746 goto err_free;
838e9690 6747 }
d30d42e0 6748 prev_offset = krecord[i].insn_off;
838e9690
YS
6749 urecord += urec_size;
6750 }
6751
ba64e7d8
YS
6752 prog->aux->func_info = krecord;
6753 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 6754 prog->aux->func_info_aux = info_aux;
838e9690
YS
6755 return 0;
6756
c454a46b 6757err_free:
ba64e7d8 6758 kvfree(krecord);
8c1b6e69 6759 kfree(info_aux);
838e9690
YS
6760 return ret;
6761}
6762
ba64e7d8
YS
6763static void adjust_btf_func(struct bpf_verifier_env *env)
6764{
8c1b6e69 6765 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
6766 int i;
6767
8c1b6e69 6768 if (!aux->func_info)
ba64e7d8
YS
6769 return;
6770
6771 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 6772 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6773}
6774
c454a46b
MKL
6775#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6776 sizeof(((struct bpf_line_info *)(0))->line_col))
6777#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6778
6779static int check_btf_line(struct bpf_verifier_env *env,
6780 const union bpf_attr *attr,
6781 union bpf_attr __user *uattr)
6782{
6783 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6784 struct bpf_subprog_info *sub;
6785 struct bpf_line_info *linfo;
6786 struct bpf_prog *prog;
6787 const struct btf *btf;
6788 void __user *ulinfo;
6789 int err;
6790
6791 nr_linfo = attr->line_info_cnt;
6792 if (!nr_linfo)
6793 return 0;
6794
6795 rec_size = attr->line_info_rec_size;
6796 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6797 rec_size > MAX_LINEINFO_REC_SIZE ||
6798 rec_size & (sizeof(u32) - 1))
6799 return -EINVAL;
6800
6801 /* Need to zero it in case the userspace may
6802 * pass in a smaller bpf_line_info object.
6803 */
6804 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6805 GFP_KERNEL | __GFP_NOWARN);
6806 if (!linfo)
6807 return -ENOMEM;
6808
6809 prog = env->prog;
6810 btf = prog->aux->btf;
6811
6812 s = 0;
6813 sub = env->subprog_info;
6814 ulinfo = u64_to_user_ptr(attr->line_info);
6815 expected_size = sizeof(struct bpf_line_info);
6816 ncopy = min_t(u32, expected_size, rec_size);
6817 for (i = 0; i < nr_linfo; i++) {
6818 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6819 if (err) {
6820 if (err == -E2BIG) {
6821 verbose(env, "nonzero tailing record in line_info");
6822 if (put_user(expected_size,
6823 &uattr->line_info_rec_size))
6824 err = -EFAULT;
6825 }
6826 goto err_free;
6827 }
6828
6829 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6830 err = -EFAULT;
6831 goto err_free;
6832 }
6833
6834 /*
6835 * Check insn_off to ensure
6836 * 1) strictly increasing AND
6837 * 2) bounded by prog->len
6838 *
6839 * The linfo[0].insn_off == 0 check logically falls into
6840 * the later "missing bpf_line_info for func..." case
6841 * because the first linfo[0].insn_off must be the
6842 * first sub also and the first sub must have
6843 * subprog_info[0].start == 0.
6844 */
6845 if ((i && linfo[i].insn_off <= prev_offset) ||
6846 linfo[i].insn_off >= prog->len) {
6847 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6848 i, linfo[i].insn_off, prev_offset,
6849 prog->len);
6850 err = -EINVAL;
6851 goto err_free;
6852 }
6853
fdbaa0be
MKL
6854 if (!prog->insnsi[linfo[i].insn_off].code) {
6855 verbose(env,
6856 "Invalid insn code at line_info[%u].insn_off\n",
6857 i);
6858 err = -EINVAL;
6859 goto err_free;
6860 }
6861
23127b33
MKL
6862 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6863 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6864 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6865 err = -EINVAL;
6866 goto err_free;
6867 }
6868
6869 if (s != env->subprog_cnt) {
6870 if (linfo[i].insn_off == sub[s].start) {
6871 sub[s].linfo_idx = i;
6872 s++;
6873 } else if (sub[s].start < linfo[i].insn_off) {
6874 verbose(env, "missing bpf_line_info for func#%u\n", s);
6875 err = -EINVAL;
6876 goto err_free;
6877 }
6878 }
6879
6880 prev_offset = linfo[i].insn_off;
6881 ulinfo += rec_size;
6882 }
6883
6884 if (s != env->subprog_cnt) {
6885 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6886 env->subprog_cnt - s, s);
6887 err = -EINVAL;
6888 goto err_free;
6889 }
6890
6891 prog->aux->linfo = linfo;
6892 prog->aux->nr_linfo = nr_linfo;
6893
6894 return 0;
6895
6896err_free:
6897 kvfree(linfo);
6898 return err;
6899}
6900
6901static int check_btf_info(struct bpf_verifier_env *env,
6902 const union bpf_attr *attr,
6903 union bpf_attr __user *uattr)
6904{
6905 struct btf *btf;
6906 int err;
6907
6908 if (!attr->func_info_cnt && !attr->line_info_cnt)
6909 return 0;
6910
6911 btf = btf_get_by_fd(attr->prog_btf_fd);
6912 if (IS_ERR(btf))
6913 return PTR_ERR(btf);
6914 env->prog->aux->btf = btf;
6915
6916 err = check_btf_func(env, attr, uattr);
6917 if (err)
6918 return err;
6919
6920 err = check_btf_line(env, attr, uattr);
6921 if (err)
6922 return err;
6923
6924 return 0;
ba64e7d8
YS
6925}
6926
f1174f77
EC
6927/* check %cur's range satisfies %old's */
6928static bool range_within(struct bpf_reg_state *old,
6929 struct bpf_reg_state *cur)
6930{
b03c9f9f
EC
6931 return old->umin_value <= cur->umin_value &&
6932 old->umax_value >= cur->umax_value &&
6933 old->smin_value <= cur->smin_value &&
6934 old->smax_value >= cur->smax_value;
f1174f77
EC
6935}
6936
6937/* Maximum number of register states that can exist at once */
6938#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6939struct idpair {
6940 u32 old;
6941 u32 cur;
6942};
6943
6944/* If in the old state two registers had the same id, then they need to have
6945 * the same id in the new state as well. But that id could be different from
6946 * the old state, so we need to track the mapping from old to new ids.
6947 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6948 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6949 * regs with a different old id could still have new id 9, we don't care about
6950 * that.
6951 * So we look through our idmap to see if this old id has been seen before. If
6952 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6953 */
f1174f77 6954static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6955{
f1174f77 6956 unsigned int i;
969bf05e 6957
f1174f77
EC
6958 for (i = 0; i < ID_MAP_SIZE; i++) {
6959 if (!idmap[i].old) {
6960 /* Reached an empty slot; haven't seen this id before */
6961 idmap[i].old = old_id;
6962 idmap[i].cur = cur_id;
6963 return true;
6964 }
6965 if (idmap[i].old == old_id)
6966 return idmap[i].cur == cur_id;
6967 }
6968 /* We ran out of idmap slots, which should be impossible */
6969 WARN_ON_ONCE(1);
6970 return false;
6971}
6972
9242b5f5
AS
6973static void clean_func_state(struct bpf_verifier_env *env,
6974 struct bpf_func_state *st)
6975{
6976 enum bpf_reg_liveness live;
6977 int i, j;
6978
6979 for (i = 0; i < BPF_REG_FP; i++) {
6980 live = st->regs[i].live;
6981 /* liveness must not touch this register anymore */
6982 st->regs[i].live |= REG_LIVE_DONE;
6983 if (!(live & REG_LIVE_READ))
6984 /* since the register is unused, clear its state
6985 * to make further comparison simpler
6986 */
f54c7898 6987 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
6988 }
6989
6990 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6991 live = st->stack[i].spilled_ptr.live;
6992 /* liveness must not touch this stack slot anymore */
6993 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6994 if (!(live & REG_LIVE_READ)) {
f54c7898 6995 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
6996 for (j = 0; j < BPF_REG_SIZE; j++)
6997 st->stack[i].slot_type[j] = STACK_INVALID;
6998 }
6999 }
7000}
7001
7002static void clean_verifier_state(struct bpf_verifier_env *env,
7003 struct bpf_verifier_state *st)
7004{
7005 int i;
7006
7007 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7008 /* all regs in this state in all frames were already marked */
7009 return;
7010
7011 for (i = 0; i <= st->curframe; i++)
7012 clean_func_state(env, st->frame[i]);
7013}
7014
7015/* the parentage chains form a tree.
7016 * the verifier states are added to state lists at given insn and
7017 * pushed into state stack for future exploration.
7018 * when the verifier reaches bpf_exit insn some of the verifer states
7019 * stored in the state lists have their final liveness state already,
7020 * but a lot of states will get revised from liveness point of view when
7021 * the verifier explores other branches.
7022 * Example:
7023 * 1: r0 = 1
7024 * 2: if r1 == 100 goto pc+1
7025 * 3: r0 = 2
7026 * 4: exit
7027 * when the verifier reaches exit insn the register r0 in the state list of
7028 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7029 * of insn 2 and goes exploring further. At the insn 4 it will walk the
7030 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7031 *
7032 * Since the verifier pushes the branch states as it sees them while exploring
7033 * the program the condition of walking the branch instruction for the second
7034 * time means that all states below this branch were already explored and
7035 * their final liveness markes are already propagated.
7036 * Hence when the verifier completes the search of state list in is_state_visited()
7037 * we can call this clean_live_states() function to mark all liveness states
7038 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7039 * will not be used.
7040 * This function also clears the registers and stack for states that !READ
7041 * to simplify state merging.
7042 *
7043 * Important note here that walking the same branch instruction in the callee
7044 * doesn't meant that the states are DONE. The verifier has to compare
7045 * the callsites
7046 */
7047static void clean_live_states(struct bpf_verifier_env *env, int insn,
7048 struct bpf_verifier_state *cur)
7049{
7050 struct bpf_verifier_state_list *sl;
7051 int i;
7052
5d839021 7053 sl = *explored_state(env, insn);
a8f500af 7054 while (sl) {
2589726d
AS
7055 if (sl->state.branches)
7056 goto next;
dc2a4ebc
AS
7057 if (sl->state.insn_idx != insn ||
7058 sl->state.curframe != cur->curframe)
9242b5f5
AS
7059 goto next;
7060 for (i = 0; i <= cur->curframe; i++)
7061 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7062 goto next;
7063 clean_verifier_state(env, &sl->state);
7064next:
7065 sl = sl->next;
7066 }
7067}
7068
f1174f77 7069/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
7070static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7071 struct idpair *idmap)
f1174f77 7072{
f4d7e40a
AS
7073 bool equal;
7074
dc503a8a
EC
7075 if (!(rold->live & REG_LIVE_READ))
7076 /* explored state didn't use this */
7077 return true;
7078
679c782d 7079 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
7080
7081 if (rold->type == PTR_TO_STACK)
7082 /* two stack pointers are equal only if they're pointing to
7083 * the same stack frame, since fp-8 in foo != fp-8 in bar
7084 */
7085 return equal && rold->frameno == rcur->frameno;
7086
7087 if (equal)
969bf05e
AS
7088 return true;
7089
f1174f77
EC
7090 if (rold->type == NOT_INIT)
7091 /* explored state can't have used this */
969bf05e 7092 return true;
f1174f77
EC
7093 if (rcur->type == NOT_INIT)
7094 return false;
7095 switch (rold->type) {
7096 case SCALAR_VALUE:
7097 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
7098 if (!rold->precise && !rcur->precise)
7099 return true;
f1174f77
EC
7100 /* new val must satisfy old val knowledge */
7101 return range_within(rold, rcur) &&
7102 tnum_in(rold->var_off, rcur->var_off);
7103 } else {
179d1c56
JH
7104 /* We're trying to use a pointer in place of a scalar.
7105 * Even if the scalar was unbounded, this could lead to
7106 * pointer leaks because scalars are allowed to leak
7107 * while pointers are not. We could make this safe in
7108 * special cases if root is calling us, but it's
7109 * probably not worth the hassle.
f1174f77 7110 */
179d1c56 7111 return false;
f1174f77
EC
7112 }
7113 case PTR_TO_MAP_VALUE:
1b688a19
EC
7114 /* If the new min/max/var_off satisfy the old ones and
7115 * everything else matches, we are OK.
d83525ca
AS
7116 * 'id' is not compared, since it's only used for maps with
7117 * bpf_spin_lock inside map element and in such cases if
7118 * the rest of the prog is valid for one map element then
7119 * it's valid for all map elements regardless of the key
7120 * used in bpf_map_lookup()
1b688a19
EC
7121 */
7122 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7123 range_within(rold, rcur) &&
7124 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
7125 case PTR_TO_MAP_VALUE_OR_NULL:
7126 /* a PTR_TO_MAP_VALUE could be safe to use as a
7127 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7128 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7129 * checked, doing so could have affected others with the same
7130 * id, and we can't check for that because we lost the id when
7131 * we converted to a PTR_TO_MAP_VALUE.
7132 */
7133 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7134 return false;
7135 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7136 return false;
7137 /* Check our ids match any regs they're supposed to */
7138 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 7139 case PTR_TO_PACKET_META:
f1174f77 7140 case PTR_TO_PACKET:
de8f3a83 7141 if (rcur->type != rold->type)
f1174f77
EC
7142 return false;
7143 /* We must have at least as much range as the old ptr
7144 * did, so that any accesses which were safe before are
7145 * still safe. This is true even if old range < old off,
7146 * since someone could have accessed through (ptr - k), or
7147 * even done ptr -= k in a register, to get a safe access.
7148 */
7149 if (rold->range > rcur->range)
7150 return false;
7151 /* If the offsets don't match, we can't trust our alignment;
7152 * nor can we be sure that we won't fall out of range.
7153 */
7154 if (rold->off != rcur->off)
7155 return false;
7156 /* id relations must be preserved */
7157 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7158 return false;
7159 /* new val must satisfy old val knowledge */
7160 return range_within(rold, rcur) &&
7161 tnum_in(rold->var_off, rcur->var_off);
7162 case PTR_TO_CTX:
7163 case CONST_PTR_TO_MAP:
f1174f77 7164 case PTR_TO_PACKET_END:
d58e468b 7165 case PTR_TO_FLOW_KEYS:
c64b7983
JS
7166 case PTR_TO_SOCKET:
7167 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7168 case PTR_TO_SOCK_COMMON:
7169 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7170 case PTR_TO_TCP_SOCK:
7171 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7172 case PTR_TO_XDP_SOCK:
f1174f77
EC
7173 /* Only valid matches are exact, which memcmp() above
7174 * would have accepted
7175 */
7176 default:
7177 /* Don't know what's going on, just say it's not safe */
7178 return false;
7179 }
969bf05e 7180
f1174f77
EC
7181 /* Shouldn't get here; if we do, say it's not safe */
7182 WARN_ON_ONCE(1);
969bf05e
AS
7183 return false;
7184}
7185
f4d7e40a
AS
7186static bool stacksafe(struct bpf_func_state *old,
7187 struct bpf_func_state *cur,
638f5b90
AS
7188 struct idpair *idmap)
7189{
7190 int i, spi;
7191
638f5b90
AS
7192 /* walk slots of the explored stack and ignore any additional
7193 * slots in the current stack, since explored(safe) state
7194 * didn't use them
7195 */
7196 for (i = 0; i < old->allocated_stack; i++) {
7197 spi = i / BPF_REG_SIZE;
7198
b233920c
AS
7199 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7200 i += BPF_REG_SIZE - 1;
cc2b14d5 7201 /* explored state didn't use this */
fd05e57b 7202 continue;
b233920c 7203 }
cc2b14d5 7204
638f5b90
AS
7205 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7206 continue;
19e2dbb7
AS
7207
7208 /* explored stack has more populated slots than current stack
7209 * and these slots were used
7210 */
7211 if (i >= cur->allocated_stack)
7212 return false;
7213
cc2b14d5
AS
7214 /* if old state was safe with misc data in the stack
7215 * it will be safe with zero-initialized stack.
7216 * The opposite is not true
7217 */
7218 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7219 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7220 continue;
638f5b90
AS
7221 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7222 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7223 /* Ex: old explored (safe) state has STACK_SPILL in
7224 * this stack slot, but current has has STACK_MISC ->
7225 * this verifier states are not equivalent,
7226 * return false to continue verification of this path
7227 */
7228 return false;
7229 if (i % BPF_REG_SIZE)
7230 continue;
7231 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7232 continue;
7233 if (!regsafe(&old->stack[spi].spilled_ptr,
7234 &cur->stack[spi].spilled_ptr,
7235 idmap))
7236 /* when explored and current stack slot are both storing
7237 * spilled registers, check that stored pointers types
7238 * are the same as well.
7239 * Ex: explored safe path could have stored
7240 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7241 * but current path has stored:
7242 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7243 * such verifier states are not equivalent.
7244 * return false to continue verification of this path
7245 */
7246 return false;
7247 }
7248 return true;
7249}
7250
fd978bf7
JS
7251static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7252{
7253 if (old->acquired_refs != cur->acquired_refs)
7254 return false;
7255 return !memcmp(old->refs, cur->refs,
7256 sizeof(*old->refs) * old->acquired_refs);
7257}
7258
f1bca824
AS
7259/* compare two verifier states
7260 *
7261 * all states stored in state_list are known to be valid, since
7262 * verifier reached 'bpf_exit' instruction through them
7263 *
7264 * this function is called when verifier exploring different branches of
7265 * execution popped from the state stack. If it sees an old state that has
7266 * more strict register state and more strict stack state then this execution
7267 * branch doesn't need to be explored further, since verifier already
7268 * concluded that more strict state leads to valid finish.
7269 *
7270 * Therefore two states are equivalent if register state is more conservative
7271 * and explored stack state is more conservative than the current one.
7272 * Example:
7273 * explored current
7274 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7275 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7276 *
7277 * In other words if current stack state (one being explored) has more
7278 * valid slots than old one that already passed validation, it means
7279 * the verifier can stop exploring and conclude that current state is valid too
7280 *
7281 * Similarly with registers. If explored state has register type as invalid
7282 * whereas register type in current state is meaningful, it means that
7283 * the current state will reach 'bpf_exit' instruction safely
7284 */
f4d7e40a
AS
7285static bool func_states_equal(struct bpf_func_state *old,
7286 struct bpf_func_state *cur)
f1bca824 7287{
f1174f77
EC
7288 struct idpair *idmap;
7289 bool ret = false;
f1bca824
AS
7290 int i;
7291
f1174f77
EC
7292 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7293 /* If we failed to allocate the idmap, just say it's not safe */
7294 if (!idmap)
1a0dc1ac 7295 return false;
f1174f77
EC
7296
7297 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 7298 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 7299 goto out_free;
f1bca824
AS
7300 }
7301
638f5b90
AS
7302 if (!stacksafe(old, cur, idmap))
7303 goto out_free;
fd978bf7
JS
7304
7305 if (!refsafe(old, cur))
7306 goto out_free;
f1174f77
EC
7307 ret = true;
7308out_free:
7309 kfree(idmap);
7310 return ret;
f1bca824
AS
7311}
7312
f4d7e40a
AS
7313static bool states_equal(struct bpf_verifier_env *env,
7314 struct bpf_verifier_state *old,
7315 struct bpf_verifier_state *cur)
7316{
7317 int i;
7318
7319 if (old->curframe != cur->curframe)
7320 return false;
7321
979d63d5
DB
7322 /* Verification state from speculative execution simulation
7323 * must never prune a non-speculative execution one.
7324 */
7325 if (old->speculative && !cur->speculative)
7326 return false;
7327
d83525ca
AS
7328 if (old->active_spin_lock != cur->active_spin_lock)
7329 return false;
7330
f4d7e40a
AS
7331 /* for states to be equal callsites have to be the same
7332 * and all frame states need to be equivalent
7333 */
7334 for (i = 0; i <= old->curframe; i++) {
7335 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7336 return false;
7337 if (!func_states_equal(old->frame[i], cur->frame[i]))
7338 return false;
7339 }
7340 return true;
7341}
7342
5327ed3d
JW
7343/* Return 0 if no propagation happened. Return negative error code if error
7344 * happened. Otherwise, return the propagated bit.
7345 */
55e7f3b5
JW
7346static int propagate_liveness_reg(struct bpf_verifier_env *env,
7347 struct bpf_reg_state *reg,
7348 struct bpf_reg_state *parent_reg)
7349{
5327ed3d
JW
7350 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7351 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7352 int err;
7353
5327ed3d
JW
7354 /* When comes here, read flags of PARENT_REG or REG could be any of
7355 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7356 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7357 */
7358 if (parent_flag == REG_LIVE_READ64 ||
7359 /* Or if there is no read flag from REG. */
7360 !flag ||
7361 /* Or if the read flag from REG is the same as PARENT_REG. */
7362 parent_flag == flag)
55e7f3b5
JW
7363 return 0;
7364
5327ed3d 7365 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7366 if (err)
7367 return err;
7368
5327ed3d 7369 return flag;
55e7f3b5
JW
7370}
7371
8e9cd9ce 7372/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7373 * straight-line code between a state and its parent. When we arrive at an
7374 * equivalent state (jump target or such) we didn't arrive by the straight-line
7375 * code, so read marks in the state must propagate to the parent regardless
7376 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7377 * in mark_reg_read() is for.
8e9cd9ce 7378 */
f4d7e40a
AS
7379static int propagate_liveness(struct bpf_verifier_env *env,
7380 const struct bpf_verifier_state *vstate,
7381 struct bpf_verifier_state *vparent)
dc503a8a 7382{
3f8cafa4 7383 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7384 struct bpf_func_state *state, *parent;
3f8cafa4 7385 int i, frame, err = 0;
dc503a8a 7386
f4d7e40a
AS
7387 if (vparent->curframe != vstate->curframe) {
7388 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7389 vparent->curframe, vstate->curframe);
7390 return -EFAULT;
7391 }
dc503a8a
EC
7392 /* Propagate read liveness of registers... */
7393 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7394 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7395 parent = vparent->frame[frame];
7396 state = vstate->frame[frame];
7397 parent_reg = parent->regs;
7398 state_reg = state->regs;
83d16312
JK
7399 /* We don't need to worry about FP liveness, it's read-only */
7400 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7401 err = propagate_liveness_reg(env, &state_reg[i],
7402 &parent_reg[i]);
5327ed3d 7403 if (err < 0)
3f8cafa4 7404 return err;
5327ed3d
JW
7405 if (err == REG_LIVE_READ64)
7406 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7407 }
f4d7e40a 7408
1b04aee7 7409 /* Propagate stack slots. */
f4d7e40a
AS
7410 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7411 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7412 parent_reg = &parent->stack[i].spilled_ptr;
7413 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7414 err = propagate_liveness_reg(env, state_reg,
7415 parent_reg);
5327ed3d 7416 if (err < 0)
3f8cafa4 7417 return err;
dc503a8a
EC
7418 }
7419 }
5327ed3d 7420 return 0;
dc503a8a
EC
7421}
7422
a3ce685d
AS
7423/* find precise scalars in the previous equivalent state and
7424 * propagate them into the current state
7425 */
7426static int propagate_precision(struct bpf_verifier_env *env,
7427 const struct bpf_verifier_state *old)
7428{
7429 struct bpf_reg_state *state_reg;
7430 struct bpf_func_state *state;
7431 int i, err = 0;
7432
7433 state = old->frame[old->curframe];
7434 state_reg = state->regs;
7435 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7436 if (state_reg->type != SCALAR_VALUE ||
7437 !state_reg->precise)
7438 continue;
7439 if (env->log.level & BPF_LOG_LEVEL2)
7440 verbose(env, "propagating r%d\n", i);
7441 err = mark_chain_precision(env, i);
7442 if (err < 0)
7443 return err;
7444 }
7445
7446 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7447 if (state->stack[i].slot_type[0] != STACK_SPILL)
7448 continue;
7449 state_reg = &state->stack[i].spilled_ptr;
7450 if (state_reg->type != SCALAR_VALUE ||
7451 !state_reg->precise)
7452 continue;
7453 if (env->log.level & BPF_LOG_LEVEL2)
7454 verbose(env, "propagating fp%d\n",
7455 (-i - 1) * BPF_REG_SIZE);
7456 err = mark_chain_precision_stack(env, i);
7457 if (err < 0)
7458 return err;
7459 }
7460 return 0;
7461}
7462
2589726d
AS
7463static bool states_maybe_looping(struct bpf_verifier_state *old,
7464 struct bpf_verifier_state *cur)
7465{
7466 struct bpf_func_state *fold, *fcur;
7467 int i, fr = cur->curframe;
7468
7469 if (old->curframe != fr)
7470 return false;
7471
7472 fold = old->frame[fr];
7473 fcur = cur->frame[fr];
7474 for (i = 0; i < MAX_BPF_REG; i++)
7475 if (memcmp(&fold->regs[i], &fcur->regs[i],
7476 offsetof(struct bpf_reg_state, parent)))
7477 return false;
7478 return true;
7479}
7480
7481
58e2af8b 7482static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7483{
58e2af8b 7484 struct bpf_verifier_state_list *new_sl;
9f4686c4 7485 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7486 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7487 int i, j, err, states_cnt = 0;
10d274e8 7488 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 7489
b5dc0163 7490 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7491 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7492 /* this 'insn_idx' instruction wasn't marked, so we will not
7493 * be doing state search here
7494 */
7495 return 0;
7496
2589726d
AS
7497 /* bpf progs typically have pruning point every 4 instructions
7498 * http://vger.kernel.org/bpfconf2019.html#session-1
7499 * Do not add new state for future pruning if the verifier hasn't seen
7500 * at least 2 jumps and at least 8 instructions.
7501 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7502 * In tests that amounts to up to 50% reduction into total verifier
7503 * memory consumption and 20% verifier time speedup.
7504 */
7505 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7506 env->insn_processed - env->prev_insn_processed >= 8)
7507 add_new_state = true;
7508
a8f500af
AS
7509 pprev = explored_state(env, insn_idx);
7510 sl = *pprev;
7511
9242b5f5
AS
7512 clean_live_states(env, insn_idx, cur);
7513
a8f500af 7514 while (sl) {
dc2a4ebc
AS
7515 states_cnt++;
7516 if (sl->state.insn_idx != insn_idx)
7517 goto next;
2589726d
AS
7518 if (sl->state.branches) {
7519 if (states_maybe_looping(&sl->state, cur) &&
7520 states_equal(env, &sl->state, cur)) {
7521 verbose_linfo(env, insn_idx, "; ");
7522 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7523 return -EINVAL;
7524 }
7525 /* if the verifier is processing a loop, avoid adding new state
7526 * too often, since different loop iterations have distinct
7527 * states and may not help future pruning.
7528 * This threshold shouldn't be too low to make sure that
7529 * a loop with large bound will be rejected quickly.
7530 * The most abusive loop will be:
7531 * r1 += 1
7532 * if r1 < 1000000 goto pc-2
7533 * 1M insn_procssed limit / 100 == 10k peak states.
7534 * This threshold shouldn't be too high either, since states
7535 * at the end of the loop are likely to be useful in pruning.
7536 */
7537 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7538 env->insn_processed - env->prev_insn_processed < 100)
7539 add_new_state = false;
7540 goto miss;
7541 }
638f5b90 7542 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7543 sl->hit_cnt++;
f1bca824 7544 /* reached equivalent register/stack state,
dc503a8a
EC
7545 * prune the search.
7546 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7547 * If we have any write marks in env->cur_state, they
7548 * will prevent corresponding reads in the continuation
7549 * from reaching our parent (an explored_state). Our
7550 * own state will get the read marks recorded, but
7551 * they'll be immediately forgotten as we're pruning
7552 * this state and will pop a new one.
f1bca824 7553 */
f4d7e40a 7554 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
7555
7556 /* if previous state reached the exit with precision and
7557 * current state is equivalent to it (except precsion marks)
7558 * the precision needs to be propagated back in
7559 * the current state.
7560 */
7561 err = err ? : push_jmp_history(env, cur);
7562 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
7563 if (err)
7564 return err;
f1bca824 7565 return 1;
dc503a8a 7566 }
2589726d
AS
7567miss:
7568 /* when new state is not going to be added do not increase miss count.
7569 * Otherwise several loop iterations will remove the state
7570 * recorded earlier. The goal of these heuristics is to have
7571 * states from some iterations of the loop (some in the beginning
7572 * and some at the end) to help pruning.
7573 */
7574 if (add_new_state)
7575 sl->miss_cnt++;
9f4686c4
AS
7576 /* heuristic to determine whether this state is beneficial
7577 * to keep checking from state equivalence point of view.
7578 * Higher numbers increase max_states_per_insn and verification time,
7579 * but do not meaningfully decrease insn_processed.
7580 */
7581 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7582 /* the state is unlikely to be useful. Remove it to
7583 * speed up verification
7584 */
7585 *pprev = sl->next;
7586 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7587 u32 br = sl->state.branches;
7588
7589 WARN_ONCE(br,
7590 "BUG live_done but branches_to_explore %d\n",
7591 br);
9f4686c4
AS
7592 free_verifier_state(&sl->state, false);
7593 kfree(sl);
7594 env->peak_states--;
7595 } else {
7596 /* cannot free this state, since parentage chain may
7597 * walk it later. Add it for free_list instead to
7598 * be freed at the end of verification
7599 */
7600 sl->next = env->free_list;
7601 env->free_list = sl;
7602 }
7603 sl = *pprev;
7604 continue;
7605 }
dc2a4ebc 7606next:
9f4686c4
AS
7607 pprev = &sl->next;
7608 sl = *pprev;
f1bca824
AS
7609 }
7610
06ee7115
AS
7611 if (env->max_states_per_insn < states_cnt)
7612 env->max_states_per_insn = states_cnt;
7613
ceefbc96 7614 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7615 return push_jmp_history(env, cur);
ceefbc96 7616
2589726d 7617 if (!add_new_state)
b5dc0163 7618 return push_jmp_history(env, cur);
ceefbc96 7619
2589726d
AS
7620 /* There were no equivalent states, remember the current one.
7621 * Technically the current state is not proven to be safe yet,
f4d7e40a 7622 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7623 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7624 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7625 * again on the way to bpf_exit.
7626 * When looping the sl->state.branches will be > 0 and this state
7627 * will not be considered for equivalence until branches == 0.
f1bca824 7628 */
638f5b90 7629 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7630 if (!new_sl)
7631 return -ENOMEM;
06ee7115
AS
7632 env->total_states++;
7633 env->peak_states++;
2589726d
AS
7634 env->prev_jmps_processed = env->jmps_processed;
7635 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7636
7637 /* add new state to the head of linked list */
679c782d
EC
7638 new = &new_sl->state;
7639 err = copy_verifier_state(new, cur);
1969db47 7640 if (err) {
679c782d 7641 free_verifier_state(new, false);
1969db47
AS
7642 kfree(new_sl);
7643 return err;
7644 }
dc2a4ebc 7645 new->insn_idx = insn_idx;
2589726d
AS
7646 WARN_ONCE(new->branches != 1,
7647 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7648
2589726d 7649 cur->parent = new;
b5dc0163
AS
7650 cur->first_insn_idx = insn_idx;
7651 clear_jmp_history(cur);
5d839021
AS
7652 new_sl->next = *explored_state(env, insn_idx);
7653 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7654 /* connect new state to parentage chain. Current frame needs all
7655 * registers connected. Only r6 - r9 of the callers are alive (pushed
7656 * to the stack implicitly by JITs) so in callers' frames connect just
7657 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7658 * the state of the call instruction (with WRITTEN set), and r0 comes
7659 * from callee with its full parentage chain, anyway.
7660 */
8e9cd9ce
EC
7661 /* clear write marks in current state: the writes we did are not writes
7662 * our child did, so they don't screen off its reads from us.
7663 * (There are no read marks in current state, because reads always mark
7664 * their parent and current state never has children yet. Only
7665 * explored_states can get read marks.)
7666 */
eea1c227
AS
7667 for (j = 0; j <= cur->curframe; j++) {
7668 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7669 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7670 for (i = 0; i < BPF_REG_FP; i++)
7671 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7672 }
f4d7e40a
AS
7673
7674 /* all stack frames are accessible from callee, clear them all */
7675 for (j = 0; j <= cur->curframe; j++) {
7676 struct bpf_func_state *frame = cur->frame[j];
679c782d 7677 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7678
679c782d 7679 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7680 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7681 frame->stack[i].spilled_ptr.parent =
7682 &newframe->stack[i].spilled_ptr;
7683 }
f4d7e40a 7684 }
f1bca824
AS
7685 return 0;
7686}
7687
c64b7983
JS
7688/* Return true if it's OK to have the same insn return a different type. */
7689static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7690{
7691 switch (type) {
7692 case PTR_TO_CTX:
7693 case PTR_TO_SOCKET:
7694 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7695 case PTR_TO_SOCK_COMMON:
7696 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7697 case PTR_TO_TCP_SOCK:
7698 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7699 case PTR_TO_XDP_SOCK:
2a02759e 7700 case PTR_TO_BTF_ID:
c64b7983
JS
7701 return false;
7702 default:
7703 return true;
7704 }
7705}
7706
7707/* If an instruction was previously used with particular pointer types, then we
7708 * need to be careful to avoid cases such as the below, where it may be ok
7709 * for one branch accessing the pointer, but not ok for the other branch:
7710 *
7711 * R1 = sock_ptr
7712 * goto X;
7713 * ...
7714 * R1 = some_other_valid_ptr;
7715 * goto X;
7716 * ...
7717 * R2 = *(u32 *)(R1 + 0);
7718 */
7719static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7720{
7721 return src != prev && (!reg_type_mismatch_ok(src) ||
7722 !reg_type_mismatch_ok(prev));
7723}
7724
58e2af8b 7725static int do_check(struct bpf_verifier_env *env)
17a52670 7726{
638f5b90 7727 struct bpf_verifier_state *state;
17a52670 7728 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7729 struct bpf_reg_state *regs;
06ee7115 7730 int insn_cnt = env->prog->len;
17a52670 7731 bool do_print_state = false;
b5dc0163 7732 int prev_insn_idx = -1;
17a52670 7733
d9762e84
MKL
7734 env->prev_linfo = NULL;
7735
638f5b90
AS
7736 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7737 if (!state)
7738 return -ENOMEM;
f4d7e40a 7739 state->curframe = 0;
979d63d5 7740 state->speculative = false;
2589726d 7741 state->branches = 1;
f4d7e40a
AS
7742 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7743 if (!state->frame[0]) {
7744 kfree(state);
7745 return -ENOMEM;
7746 }
7747 env->cur_state = state;
7748 init_func_state(env, state->frame[0],
7749 BPF_MAIN_FUNC /* callsite */,
7750 0 /* frameno */,
7751 0 /* subprogno, zero == main subprog */);
c08435ec 7752
8c1b6e69
AS
7753 if (btf_check_func_arg_match(env, 0))
7754 return -EINVAL;
7755
17a52670
AS
7756 for (;;) {
7757 struct bpf_insn *insn;
7758 u8 class;
7759 int err;
7760
b5dc0163 7761 env->prev_insn_idx = prev_insn_idx;
c08435ec 7762 if (env->insn_idx >= insn_cnt) {
61bd5218 7763 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7764 env->insn_idx, insn_cnt);
17a52670
AS
7765 return -EFAULT;
7766 }
7767
c08435ec 7768 insn = &insns[env->insn_idx];
17a52670
AS
7769 class = BPF_CLASS(insn->code);
7770
06ee7115 7771 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7772 verbose(env,
7773 "BPF program is too large. Processed %d insn\n",
06ee7115 7774 env->insn_processed);
17a52670
AS
7775 return -E2BIG;
7776 }
7777
c08435ec 7778 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7779 if (err < 0)
7780 return err;
7781 if (err == 1) {
7782 /* found equivalent state, can prune the search */
06ee7115 7783 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7784 if (do_print_state)
979d63d5
DB
7785 verbose(env, "\nfrom %d to %d%s: safe\n",
7786 env->prev_insn_idx, env->insn_idx,
7787 env->cur_state->speculative ?
7788 " (speculative execution)" : "");
f1bca824 7789 else
c08435ec 7790 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7791 }
7792 goto process_bpf_exit;
7793 }
7794
c3494801
AS
7795 if (signal_pending(current))
7796 return -EAGAIN;
7797
3c2ce60b
DB
7798 if (need_resched())
7799 cond_resched();
7800
06ee7115
AS
7801 if (env->log.level & BPF_LOG_LEVEL2 ||
7802 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7803 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7804 verbose(env, "%d:", env->insn_idx);
c5fc9692 7805 else
979d63d5
DB
7806 verbose(env, "\nfrom %d to %d%s:",
7807 env->prev_insn_idx, env->insn_idx,
7808 env->cur_state->speculative ?
7809 " (speculative execution)" : "");
f4d7e40a 7810 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7811 do_print_state = false;
7812 }
7813
06ee7115 7814 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7815 const struct bpf_insn_cbs cbs = {
7816 .cb_print = verbose,
abe08840 7817 .private_data = env,
7105e828
DB
7818 };
7819
c08435ec
DB
7820 verbose_linfo(env, env->insn_idx, "; ");
7821 verbose(env, "%d: ", env->insn_idx);
abe08840 7822 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7823 }
7824
cae1927c 7825 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7826 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7827 env->prev_insn_idx);
cae1927c
JK
7828 if (err)
7829 return err;
7830 }
13a27dfc 7831
638f5b90 7832 regs = cur_regs(env);
c08435ec 7833 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7834 prev_insn_idx = env->insn_idx;
fd978bf7 7835
17a52670 7836 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7837 err = check_alu_op(env, insn);
17a52670
AS
7838 if (err)
7839 return err;
7840
7841 } else if (class == BPF_LDX) {
3df126f3 7842 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7843
7844 /* check for reserved fields is already done */
7845
17a52670 7846 /* check src operand */
dc503a8a 7847 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7848 if (err)
7849 return err;
7850
dc503a8a 7851 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7852 if (err)
7853 return err;
7854
725f9dcd
AS
7855 src_reg_type = regs[insn->src_reg].type;
7856
17a52670
AS
7857 /* check that memory (src_reg + off) is readable,
7858 * the state of dst_reg will be updated by this func
7859 */
c08435ec
DB
7860 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7861 insn->off, BPF_SIZE(insn->code),
7862 BPF_READ, insn->dst_reg, false);
17a52670
AS
7863 if (err)
7864 return err;
7865
c08435ec 7866 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7867
7868 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7869 /* saw a valid insn
7870 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7871 * save type to validate intersecting paths
9bac3d6d 7872 */
3df126f3 7873 *prev_src_type = src_reg_type;
9bac3d6d 7874
c64b7983 7875 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7876 /* ABuser program is trying to use the same insn
7877 * dst_reg = *(u32*) (src_reg + off)
7878 * with different pointer types:
7879 * src_reg == ctx in one branch and
7880 * src_reg == stack|map in some other branch.
7881 * Reject it.
7882 */
61bd5218 7883 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7884 return -EINVAL;
7885 }
7886
17a52670 7887 } else if (class == BPF_STX) {
3df126f3 7888 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7889
17a52670 7890 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7891 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7892 if (err)
7893 return err;
c08435ec 7894 env->insn_idx++;
17a52670
AS
7895 continue;
7896 }
7897
17a52670 7898 /* check src1 operand */
dc503a8a 7899 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7900 if (err)
7901 return err;
7902 /* check src2 operand */
dc503a8a 7903 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7904 if (err)
7905 return err;
7906
d691f9e8
AS
7907 dst_reg_type = regs[insn->dst_reg].type;
7908
17a52670 7909 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7910 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7911 insn->off, BPF_SIZE(insn->code),
7912 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7913 if (err)
7914 return err;
7915
c08435ec 7916 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7917
7918 if (*prev_dst_type == NOT_INIT) {
7919 *prev_dst_type = dst_reg_type;
c64b7983 7920 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7921 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7922 return -EINVAL;
7923 }
7924
17a52670
AS
7925 } else if (class == BPF_ST) {
7926 if (BPF_MODE(insn->code) != BPF_MEM ||
7927 insn->src_reg != BPF_REG_0) {
61bd5218 7928 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7929 return -EINVAL;
7930 }
7931 /* check src operand */
dc503a8a 7932 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7933 if (err)
7934 return err;
7935
f37a8cb8 7936 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7937 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7938 insn->dst_reg,
7939 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7940 return -EACCES;
7941 }
7942
17a52670 7943 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7944 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7945 insn->off, BPF_SIZE(insn->code),
7946 BPF_WRITE, -1, false);
17a52670
AS
7947 if (err)
7948 return err;
7949
092ed096 7950 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7951 u8 opcode = BPF_OP(insn->code);
7952
2589726d 7953 env->jmps_processed++;
17a52670
AS
7954 if (opcode == BPF_CALL) {
7955 if (BPF_SRC(insn->code) != BPF_K ||
7956 insn->off != 0 ||
f4d7e40a
AS
7957 (insn->src_reg != BPF_REG_0 &&
7958 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7959 insn->dst_reg != BPF_REG_0 ||
7960 class == BPF_JMP32) {
61bd5218 7961 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7962 return -EINVAL;
7963 }
7964
d83525ca
AS
7965 if (env->cur_state->active_spin_lock &&
7966 (insn->src_reg == BPF_PSEUDO_CALL ||
7967 insn->imm != BPF_FUNC_spin_unlock)) {
7968 verbose(env, "function calls are not allowed while holding a lock\n");
7969 return -EINVAL;
7970 }
f4d7e40a 7971 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 7972 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 7973 else
c08435ec 7974 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
7975 if (err)
7976 return err;
7977
7978 } else if (opcode == BPF_JA) {
7979 if (BPF_SRC(insn->code) != BPF_K ||
7980 insn->imm != 0 ||
7981 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7982 insn->dst_reg != BPF_REG_0 ||
7983 class == BPF_JMP32) {
61bd5218 7984 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
7985 return -EINVAL;
7986 }
7987
c08435ec 7988 env->insn_idx += insn->off + 1;
17a52670
AS
7989 continue;
7990
7991 } else if (opcode == BPF_EXIT) {
7992 if (BPF_SRC(insn->code) != BPF_K ||
7993 insn->imm != 0 ||
7994 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7995 insn->dst_reg != BPF_REG_0 ||
7996 class == BPF_JMP32) {
61bd5218 7997 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
7998 return -EINVAL;
7999 }
8000
d83525ca
AS
8001 if (env->cur_state->active_spin_lock) {
8002 verbose(env, "bpf_spin_unlock is missing\n");
8003 return -EINVAL;
8004 }
8005
f4d7e40a
AS
8006 if (state->curframe) {
8007 /* exit from nested function */
c08435ec 8008 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
8009 if (err)
8010 return err;
8011 do_print_state = true;
8012 continue;
8013 }
8014
fd978bf7
JS
8015 err = check_reference_leak(env);
8016 if (err)
8017 return err;
8018
17a52670
AS
8019 /* eBPF calling convetion is such that R0 is used
8020 * to return the value from eBPF program.
8021 * Make sure that it's readable at this time
8022 * of bpf_exit, which means that program wrote
8023 * something into it earlier
8024 */
dc503a8a 8025 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
8026 if (err)
8027 return err;
8028
1be7f75d 8029 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 8030 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
8031 return -EACCES;
8032 }
8033
390ee7e2
AS
8034 err = check_return_code(env);
8035 if (err)
8036 return err;
f1bca824 8037process_bpf_exit:
2589726d 8038 update_branch_counts(env, env->cur_state);
b5dc0163 8039 err = pop_stack(env, &prev_insn_idx,
c08435ec 8040 &env->insn_idx);
638f5b90
AS
8041 if (err < 0) {
8042 if (err != -ENOENT)
8043 return err;
17a52670
AS
8044 break;
8045 } else {
8046 do_print_state = true;
8047 continue;
8048 }
8049 } else {
c08435ec 8050 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
8051 if (err)
8052 return err;
8053 }
8054 } else if (class == BPF_LD) {
8055 u8 mode = BPF_MODE(insn->code);
8056
8057 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
8058 err = check_ld_abs(env, insn);
8059 if (err)
8060 return err;
8061
17a52670
AS
8062 } else if (mode == BPF_IMM) {
8063 err = check_ld_imm(env, insn);
8064 if (err)
8065 return err;
8066
c08435ec
DB
8067 env->insn_idx++;
8068 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 8069 } else {
61bd5218 8070 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
8071 return -EINVAL;
8072 }
8073 } else {
61bd5218 8074 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
8075 return -EINVAL;
8076 }
8077
c08435ec 8078 env->insn_idx++;
17a52670
AS
8079 }
8080
9c8105bd 8081 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
8082 return 0;
8083}
8084
56f668df
MKL
8085static int check_map_prealloc(struct bpf_map *map)
8086{
8087 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
8088 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8089 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
8090 !(map->map_flags & BPF_F_NO_PREALLOC);
8091}
8092
d83525ca
AS
8093static bool is_tracing_prog_type(enum bpf_prog_type type)
8094{
8095 switch (type) {
8096 case BPF_PROG_TYPE_KPROBE:
8097 case BPF_PROG_TYPE_TRACEPOINT:
8098 case BPF_PROG_TYPE_PERF_EVENT:
8099 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8100 return true;
8101 default:
8102 return false;
8103 }
8104}
8105
61bd5218
JK
8106static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8107 struct bpf_map *map,
fdc15d38
AS
8108 struct bpf_prog *prog)
8109
8110{
56f668df
MKL
8111 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8112 * preallocated hash maps, since doing memory allocation
8113 * in overflow_handler can crash depending on where nmi got
8114 * triggered.
8115 */
8116 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8117 if (!check_map_prealloc(map)) {
61bd5218 8118 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
8119 return -EINVAL;
8120 }
8121 if (map->inner_map_meta &&
8122 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 8123 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
8124 return -EINVAL;
8125 }
fdc15d38 8126 }
a3884572 8127
d83525ca
AS
8128 if ((is_tracing_prog_type(prog->type) ||
8129 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8130 map_value_has_spin_lock(map)) {
8131 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8132 return -EINVAL;
8133 }
8134
a3884572 8135 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 8136 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
8137 verbose(env, "offload device mismatch between prog and map\n");
8138 return -EINVAL;
8139 }
8140
fdc15d38
AS
8141 return 0;
8142}
8143
b741f163
RG
8144static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8145{
8146 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8147 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8148}
8149
0246e64d
AS
8150/* look for pseudo eBPF instructions that access map FDs and
8151 * replace them with actual map pointers
8152 */
58e2af8b 8153static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
8154{
8155 struct bpf_insn *insn = env->prog->insnsi;
8156 int insn_cnt = env->prog->len;
fdc15d38 8157 int i, j, err;
0246e64d 8158
f1f7714e 8159 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
8160 if (err)
8161 return err;
8162
0246e64d 8163 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 8164 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 8165 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 8166 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
8167 return -EINVAL;
8168 }
8169
d691f9e8
AS
8170 if (BPF_CLASS(insn->code) == BPF_STX &&
8171 ((BPF_MODE(insn->code) != BPF_MEM &&
8172 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 8173 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
8174 return -EINVAL;
8175 }
8176
0246e64d 8177 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 8178 struct bpf_insn_aux_data *aux;
0246e64d
AS
8179 struct bpf_map *map;
8180 struct fd f;
d8eca5bb 8181 u64 addr;
0246e64d
AS
8182
8183 if (i == insn_cnt - 1 || insn[1].code != 0 ||
8184 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8185 insn[1].off != 0) {
61bd5218 8186 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
8187 return -EINVAL;
8188 }
8189
d8eca5bb 8190 if (insn[0].src_reg == 0)
0246e64d
AS
8191 /* valid generic load 64-bit imm */
8192 goto next_insn;
8193
d8eca5bb
DB
8194 /* In final convert_pseudo_ld_imm64() step, this is
8195 * converted into regular 64-bit imm load insn.
8196 */
8197 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8198 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8199 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8200 insn[1].imm != 0)) {
8201 verbose(env,
8202 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
8203 return -EINVAL;
8204 }
8205
20182390 8206 f = fdget(insn[0].imm);
c2101297 8207 map = __bpf_map_get(f);
0246e64d 8208 if (IS_ERR(map)) {
61bd5218 8209 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 8210 insn[0].imm);
0246e64d
AS
8211 return PTR_ERR(map);
8212 }
8213
61bd5218 8214 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
8215 if (err) {
8216 fdput(f);
8217 return err;
8218 }
8219
d8eca5bb
DB
8220 aux = &env->insn_aux_data[i];
8221 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8222 addr = (unsigned long)map;
8223 } else {
8224 u32 off = insn[1].imm;
8225
8226 if (off >= BPF_MAX_VAR_OFF) {
8227 verbose(env, "direct value offset of %u is not allowed\n", off);
8228 fdput(f);
8229 return -EINVAL;
8230 }
8231
8232 if (!map->ops->map_direct_value_addr) {
8233 verbose(env, "no direct value access support for this map type\n");
8234 fdput(f);
8235 return -EINVAL;
8236 }
8237
8238 err = map->ops->map_direct_value_addr(map, &addr, off);
8239 if (err) {
8240 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8241 map->value_size, off);
8242 fdput(f);
8243 return err;
8244 }
8245
8246 aux->map_off = off;
8247 addr += off;
8248 }
8249
8250 insn[0].imm = (u32)addr;
8251 insn[1].imm = addr >> 32;
0246e64d
AS
8252
8253 /* check whether we recorded this map already */
d8eca5bb 8254 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 8255 if (env->used_maps[j] == map) {
d8eca5bb 8256 aux->map_index = j;
0246e64d
AS
8257 fdput(f);
8258 goto next_insn;
8259 }
d8eca5bb 8260 }
0246e64d
AS
8261
8262 if (env->used_map_cnt >= MAX_USED_MAPS) {
8263 fdput(f);
8264 return -E2BIG;
8265 }
8266
0246e64d
AS
8267 /* hold the map. If the program is rejected by verifier,
8268 * the map will be released by release_maps() or it
8269 * will be used by the valid program until it's unloaded
ab7f5bf0 8270 * and all maps are released in free_used_maps()
0246e64d 8271 */
1e0bd5a0 8272 bpf_map_inc(map);
d8eca5bb
DB
8273
8274 aux->map_index = env->used_map_cnt;
92117d84
AS
8275 env->used_maps[env->used_map_cnt++] = map;
8276
b741f163 8277 if (bpf_map_is_cgroup_storage(map) &&
e4730423 8278 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 8279 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
8280 fdput(f);
8281 return -EBUSY;
8282 }
8283
0246e64d
AS
8284 fdput(f);
8285next_insn:
8286 insn++;
8287 i++;
5e581dad
DB
8288 continue;
8289 }
8290
8291 /* Basic sanity check before we invest more work here. */
8292 if (!bpf_opcode_in_insntable(insn->code)) {
8293 verbose(env, "unknown opcode %02x\n", insn->code);
8294 return -EINVAL;
0246e64d
AS
8295 }
8296 }
8297
8298 /* now all pseudo BPF_LD_IMM64 instructions load valid
8299 * 'struct bpf_map *' into a register instead of user map_fd.
8300 * These pointers will be used later by verifier to validate map access.
8301 */
8302 return 0;
8303}
8304
8305/* drop refcnt of maps used by the rejected program */
58e2af8b 8306static void release_maps(struct bpf_verifier_env *env)
0246e64d 8307{
a2ea0746
DB
8308 __bpf_free_used_maps(env->prog->aux, env->used_maps,
8309 env->used_map_cnt);
0246e64d
AS
8310}
8311
8312/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 8313static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
8314{
8315 struct bpf_insn *insn = env->prog->insnsi;
8316 int insn_cnt = env->prog->len;
8317 int i;
8318
8319 for (i = 0; i < insn_cnt; i++, insn++)
8320 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8321 insn->src_reg = 0;
8322}
8323
8041902d
AS
8324/* single env->prog->insni[off] instruction was replaced with the range
8325 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8326 * [0, off) and [off, end) to new locations, so the patched range stays zero
8327 */
b325fbca
JW
8328static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8329 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
8330{
8331 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
8332 struct bpf_insn *insn = new_prog->insnsi;
8333 u32 prog_len;
c131187d 8334 int i;
8041902d 8335
b325fbca
JW
8336 /* aux info at OFF always needs adjustment, no matter fast path
8337 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8338 * original insn at old prog.
8339 */
8340 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8341
8041902d
AS
8342 if (cnt == 1)
8343 return 0;
b325fbca 8344 prog_len = new_prog->len;
fad953ce
KC
8345 new_data = vzalloc(array_size(prog_len,
8346 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8347 if (!new_data)
8348 return -ENOMEM;
8349 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8350 memcpy(new_data + off + cnt - 1, old_data + off,
8351 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8352 for (i = off; i < off + cnt - 1; i++) {
c131187d 8353 new_data[i].seen = true;
b325fbca
JW
8354 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8355 }
8041902d
AS
8356 env->insn_aux_data = new_data;
8357 vfree(old_data);
8358 return 0;
8359}
8360
cc8b0b92
AS
8361static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8362{
8363 int i;
8364
8365 if (len == 1)
8366 return;
4cb3d99c
JW
8367 /* NOTE: fake 'exit' subprog should be updated as well. */
8368 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8369 if (env->subprog_info[i].start <= off)
cc8b0b92 8370 continue;
9c8105bd 8371 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8372 }
8373}
8374
8041902d
AS
8375static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8376 const struct bpf_insn *patch, u32 len)
8377{
8378 struct bpf_prog *new_prog;
8379
8380 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8381 if (IS_ERR(new_prog)) {
8382 if (PTR_ERR(new_prog) == -ERANGE)
8383 verbose(env,
8384 "insn %d cannot be patched due to 16-bit range\n",
8385 env->insn_aux_data[off].orig_idx);
8041902d 8386 return NULL;
4f73379e 8387 }
b325fbca 8388 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8389 return NULL;
cc8b0b92 8390 adjust_subprog_starts(env, off, len);
8041902d
AS
8391 return new_prog;
8392}
8393
52875a04
JK
8394static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8395 u32 off, u32 cnt)
8396{
8397 int i, j;
8398
8399 /* find first prog starting at or after off (first to remove) */
8400 for (i = 0; i < env->subprog_cnt; i++)
8401 if (env->subprog_info[i].start >= off)
8402 break;
8403 /* find first prog starting at or after off + cnt (first to stay) */
8404 for (j = i; j < env->subprog_cnt; j++)
8405 if (env->subprog_info[j].start >= off + cnt)
8406 break;
8407 /* if j doesn't start exactly at off + cnt, we are just removing
8408 * the front of previous prog
8409 */
8410 if (env->subprog_info[j].start != off + cnt)
8411 j--;
8412
8413 if (j > i) {
8414 struct bpf_prog_aux *aux = env->prog->aux;
8415 int move;
8416
8417 /* move fake 'exit' subprog as well */
8418 move = env->subprog_cnt + 1 - j;
8419
8420 memmove(env->subprog_info + i,
8421 env->subprog_info + j,
8422 sizeof(*env->subprog_info) * move);
8423 env->subprog_cnt -= j - i;
8424
8425 /* remove func_info */
8426 if (aux->func_info) {
8427 move = aux->func_info_cnt - j;
8428
8429 memmove(aux->func_info + i,
8430 aux->func_info + j,
8431 sizeof(*aux->func_info) * move);
8432 aux->func_info_cnt -= j - i;
8433 /* func_info->insn_off is set after all code rewrites,
8434 * in adjust_btf_func() - no need to adjust
8435 */
8436 }
8437 } else {
8438 /* convert i from "first prog to remove" to "first to adjust" */
8439 if (env->subprog_info[i].start == off)
8440 i++;
8441 }
8442
8443 /* update fake 'exit' subprog as well */
8444 for (; i <= env->subprog_cnt; i++)
8445 env->subprog_info[i].start -= cnt;
8446
8447 return 0;
8448}
8449
8450static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8451 u32 cnt)
8452{
8453 struct bpf_prog *prog = env->prog;
8454 u32 i, l_off, l_cnt, nr_linfo;
8455 struct bpf_line_info *linfo;
8456
8457 nr_linfo = prog->aux->nr_linfo;
8458 if (!nr_linfo)
8459 return 0;
8460
8461 linfo = prog->aux->linfo;
8462
8463 /* find first line info to remove, count lines to be removed */
8464 for (i = 0; i < nr_linfo; i++)
8465 if (linfo[i].insn_off >= off)
8466 break;
8467
8468 l_off = i;
8469 l_cnt = 0;
8470 for (; i < nr_linfo; i++)
8471 if (linfo[i].insn_off < off + cnt)
8472 l_cnt++;
8473 else
8474 break;
8475
8476 /* First live insn doesn't match first live linfo, it needs to "inherit"
8477 * last removed linfo. prog is already modified, so prog->len == off
8478 * means no live instructions after (tail of the program was removed).
8479 */
8480 if (prog->len != off && l_cnt &&
8481 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8482 l_cnt--;
8483 linfo[--i].insn_off = off + cnt;
8484 }
8485
8486 /* remove the line info which refer to the removed instructions */
8487 if (l_cnt) {
8488 memmove(linfo + l_off, linfo + i,
8489 sizeof(*linfo) * (nr_linfo - i));
8490
8491 prog->aux->nr_linfo -= l_cnt;
8492 nr_linfo = prog->aux->nr_linfo;
8493 }
8494
8495 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8496 for (i = l_off; i < nr_linfo; i++)
8497 linfo[i].insn_off -= cnt;
8498
8499 /* fix up all subprogs (incl. 'exit') which start >= off */
8500 for (i = 0; i <= env->subprog_cnt; i++)
8501 if (env->subprog_info[i].linfo_idx > l_off) {
8502 /* program may have started in the removed region but
8503 * may not be fully removed
8504 */
8505 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8506 env->subprog_info[i].linfo_idx -= l_cnt;
8507 else
8508 env->subprog_info[i].linfo_idx = l_off;
8509 }
8510
8511 return 0;
8512}
8513
8514static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8515{
8516 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8517 unsigned int orig_prog_len = env->prog->len;
8518 int err;
8519
08ca90af
JK
8520 if (bpf_prog_is_dev_bound(env->prog->aux))
8521 bpf_prog_offload_remove_insns(env, off, cnt);
8522
52875a04
JK
8523 err = bpf_remove_insns(env->prog, off, cnt);
8524 if (err)
8525 return err;
8526
8527 err = adjust_subprog_starts_after_remove(env, off, cnt);
8528 if (err)
8529 return err;
8530
8531 err = bpf_adj_linfo_after_remove(env, off, cnt);
8532 if (err)
8533 return err;
8534
8535 memmove(aux_data + off, aux_data + off + cnt,
8536 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8537
8538 return 0;
8539}
8540
2a5418a1
DB
8541/* The verifier does more data flow analysis than llvm and will not
8542 * explore branches that are dead at run time. Malicious programs can
8543 * have dead code too. Therefore replace all dead at-run-time code
8544 * with 'ja -1'.
8545 *
8546 * Just nops are not optimal, e.g. if they would sit at the end of the
8547 * program and through another bug we would manage to jump there, then
8548 * we'd execute beyond program memory otherwise. Returning exception
8549 * code also wouldn't work since we can have subprogs where the dead
8550 * code could be located.
c131187d
AS
8551 */
8552static void sanitize_dead_code(struct bpf_verifier_env *env)
8553{
8554 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8555 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8556 struct bpf_insn *insn = env->prog->insnsi;
8557 const int insn_cnt = env->prog->len;
8558 int i;
8559
8560 for (i = 0; i < insn_cnt; i++) {
8561 if (aux_data[i].seen)
8562 continue;
2a5418a1 8563 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8564 }
8565}
8566
e2ae4ca2
JK
8567static bool insn_is_cond_jump(u8 code)
8568{
8569 u8 op;
8570
092ed096
JW
8571 if (BPF_CLASS(code) == BPF_JMP32)
8572 return true;
8573
e2ae4ca2
JK
8574 if (BPF_CLASS(code) != BPF_JMP)
8575 return false;
8576
8577 op = BPF_OP(code);
8578 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8579}
8580
8581static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8582{
8583 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8584 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8585 struct bpf_insn *insn = env->prog->insnsi;
8586 const int insn_cnt = env->prog->len;
8587 int i;
8588
8589 for (i = 0; i < insn_cnt; i++, insn++) {
8590 if (!insn_is_cond_jump(insn->code))
8591 continue;
8592
8593 if (!aux_data[i + 1].seen)
8594 ja.off = insn->off;
8595 else if (!aux_data[i + 1 + insn->off].seen)
8596 ja.off = 0;
8597 else
8598 continue;
8599
08ca90af
JK
8600 if (bpf_prog_is_dev_bound(env->prog->aux))
8601 bpf_prog_offload_replace_insn(env, i, &ja);
8602
e2ae4ca2
JK
8603 memcpy(insn, &ja, sizeof(ja));
8604 }
8605}
8606
52875a04
JK
8607static int opt_remove_dead_code(struct bpf_verifier_env *env)
8608{
8609 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8610 int insn_cnt = env->prog->len;
8611 int i, err;
8612
8613 for (i = 0; i < insn_cnt; i++) {
8614 int j;
8615
8616 j = 0;
8617 while (i + j < insn_cnt && !aux_data[i + j].seen)
8618 j++;
8619 if (!j)
8620 continue;
8621
8622 err = verifier_remove_insns(env, i, j);
8623 if (err)
8624 return err;
8625 insn_cnt = env->prog->len;
8626 }
8627
8628 return 0;
8629}
8630
a1b14abc
JK
8631static int opt_remove_nops(struct bpf_verifier_env *env)
8632{
8633 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8634 struct bpf_insn *insn = env->prog->insnsi;
8635 int insn_cnt = env->prog->len;
8636 int i, err;
8637
8638 for (i = 0; i < insn_cnt; i++) {
8639 if (memcmp(&insn[i], &ja, sizeof(ja)))
8640 continue;
8641
8642 err = verifier_remove_insns(env, i, 1);
8643 if (err)
8644 return err;
8645 insn_cnt--;
8646 i--;
8647 }
8648
8649 return 0;
8650}
8651
d6c2308c
JW
8652static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8653 const union bpf_attr *attr)
a4b1d3c1 8654{
d6c2308c 8655 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8656 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8657 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8658 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8659 struct bpf_prog *new_prog;
d6c2308c 8660 bool rnd_hi32;
a4b1d3c1 8661
d6c2308c 8662 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8663 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8664 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8665 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8666 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8667 for (i = 0; i < len; i++) {
8668 int adj_idx = i + delta;
8669 struct bpf_insn insn;
8670
d6c2308c
JW
8671 insn = insns[adj_idx];
8672 if (!aux[adj_idx].zext_dst) {
8673 u8 code, class;
8674 u32 imm_rnd;
8675
8676 if (!rnd_hi32)
8677 continue;
8678
8679 code = insn.code;
8680 class = BPF_CLASS(code);
8681 if (insn_no_def(&insn))
8682 continue;
8683
8684 /* NOTE: arg "reg" (the fourth one) is only used for
8685 * BPF_STX which has been ruled out in above
8686 * check, it is safe to pass NULL here.
8687 */
8688 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8689 if (class == BPF_LD &&
8690 BPF_MODE(code) == BPF_IMM)
8691 i++;
8692 continue;
8693 }
8694
8695 /* ctx load could be transformed into wider load. */
8696 if (class == BPF_LDX &&
8697 aux[adj_idx].ptr_type == PTR_TO_CTX)
8698 continue;
8699
8700 imm_rnd = get_random_int();
8701 rnd_hi32_patch[0] = insn;
8702 rnd_hi32_patch[1].imm = imm_rnd;
8703 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8704 patch = rnd_hi32_patch;
8705 patch_len = 4;
8706 goto apply_patch_buffer;
8707 }
8708
8709 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8710 continue;
8711
a4b1d3c1
JW
8712 zext_patch[0] = insn;
8713 zext_patch[1].dst_reg = insn.dst_reg;
8714 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8715 patch = zext_patch;
8716 patch_len = 2;
8717apply_patch_buffer:
8718 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8719 if (!new_prog)
8720 return -ENOMEM;
8721 env->prog = new_prog;
8722 insns = new_prog->insnsi;
8723 aux = env->insn_aux_data;
d6c2308c 8724 delta += patch_len - 1;
a4b1d3c1
JW
8725 }
8726
8727 return 0;
8728}
8729
c64b7983
JS
8730/* convert load instructions that access fields of a context type into a
8731 * sequence of instructions that access fields of the underlying structure:
8732 * struct __sk_buff -> struct sk_buff
8733 * struct bpf_sock_ops -> struct sock
9bac3d6d 8734 */
58e2af8b 8735static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8736{
00176a34 8737 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8738 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8739 const int insn_cnt = env->prog->len;
36bbef52 8740 struct bpf_insn insn_buf[16], *insn;
46f53a65 8741 u32 target_size, size_default, off;
9bac3d6d 8742 struct bpf_prog *new_prog;
d691f9e8 8743 enum bpf_access_type type;
f96da094 8744 bool is_narrower_load;
9bac3d6d 8745
b09928b9
DB
8746 if (ops->gen_prologue || env->seen_direct_write) {
8747 if (!ops->gen_prologue) {
8748 verbose(env, "bpf verifier is misconfigured\n");
8749 return -EINVAL;
8750 }
36bbef52
DB
8751 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8752 env->prog);
8753 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8754 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8755 return -EINVAL;
8756 } else if (cnt) {
8041902d 8757 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8758 if (!new_prog)
8759 return -ENOMEM;
8041902d 8760
36bbef52 8761 env->prog = new_prog;
3df126f3 8762 delta += cnt - 1;
36bbef52
DB
8763 }
8764 }
8765
c64b7983 8766 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8767 return 0;
8768
3df126f3 8769 insn = env->prog->insnsi + delta;
36bbef52 8770
9bac3d6d 8771 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8772 bpf_convert_ctx_access_t convert_ctx_access;
8773
62c7989b
DB
8774 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8775 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8776 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8777 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8778 type = BPF_READ;
62c7989b
DB
8779 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8780 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8781 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8782 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8783 type = BPF_WRITE;
8784 else
9bac3d6d
AS
8785 continue;
8786
af86ca4e
AS
8787 if (type == BPF_WRITE &&
8788 env->insn_aux_data[i + delta].sanitize_stack_off) {
8789 struct bpf_insn patch[] = {
8790 /* Sanitize suspicious stack slot with zero.
8791 * There are no memory dependencies for this store,
8792 * since it's only using frame pointer and immediate
8793 * constant of zero
8794 */
8795 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8796 env->insn_aux_data[i + delta].sanitize_stack_off,
8797 0),
8798 /* the original STX instruction will immediately
8799 * overwrite the same stack slot with appropriate value
8800 */
8801 *insn,
8802 };
8803
8804 cnt = ARRAY_SIZE(patch);
8805 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8806 if (!new_prog)
8807 return -ENOMEM;
8808
8809 delta += cnt - 1;
8810 env->prog = new_prog;
8811 insn = new_prog->insnsi + i + delta;
8812 continue;
8813 }
8814
c64b7983
JS
8815 switch (env->insn_aux_data[i + delta].ptr_type) {
8816 case PTR_TO_CTX:
8817 if (!ops->convert_ctx_access)
8818 continue;
8819 convert_ctx_access = ops->convert_ctx_access;
8820 break;
8821 case PTR_TO_SOCKET:
46f8bc92 8822 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8823 convert_ctx_access = bpf_sock_convert_ctx_access;
8824 break;
655a51e5
MKL
8825 case PTR_TO_TCP_SOCK:
8826 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8827 break;
fada7fdc
JL
8828 case PTR_TO_XDP_SOCK:
8829 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8830 break;
2a02759e
AS
8831 case PTR_TO_BTF_ID:
8832 if (type == BPF_WRITE) {
8833 verbose(env, "Writes through BTF pointers are not allowed\n");
8834 return -EINVAL;
8835 }
8836 insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code);
3dec541b 8837 env->prog->aux->num_exentries++;
2a02759e 8838 continue;
c64b7983 8839 default:
9bac3d6d 8840 continue;
c64b7983 8841 }
9bac3d6d 8842
31fd8581 8843 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8844 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8845
8846 /* If the read access is a narrower load of the field,
8847 * convert to a 4/8-byte load, to minimum program type specific
8848 * convert_ctx_access changes. If conversion is successful,
8849 * we will apply proper mask to the result.
8850 */
f96da094 8851 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8852 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8853 off = insn->off;
31fd8581 8854 if (is_narrower_load) {
f96da094
DB
8855 u8 size_code;
8856
8857 if (type == BPF_WRITE) {
61bd5218 8858 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8859 return -EINVAL;
8860 }
31fd8581 8861
f96da094 8862 size_code = BPF_H;
31fd8581
YS
8863 if (ctx_field_size == 4)
8864 size_code = BPF_W;
8865 else if (ctx_field_size == 8)
8866 size_code = BPF_DW;
f96da094 8867
bc23105c 8868 insn->off = off & ~(size_default - 1);
31fd8581
YS
8869 insn->code = BPF_LDX | BPF_MEM | size_code;
8870 }
f96da094
DB
8871
8872 target_size = 0;
c64b7983
JS
8873 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8874 &target_size);
f96da094
DB
8875 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8876 (ctx_field_size && !target_size)) {
61bd5218 8877 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8878 return -EINVAL;
8879 }
f96da094
DB
8880
8881 if (is_narrower_load && size < target_size) {
d895a0f1
IL
8882 u8 shift = bpf_ctx_narrow_access_offset(
8883 off, size, size_default) * 8;
46f53a65
AI
8884 if (ctx_field_size <= 4) {
8885 if (shift)
8886 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8887 insn->dst_reg,
8888 shift);
31fd8581 8889 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8890 (1 << size * 8) - 1);
46f53a65
AI
8891 } else {
8892 if (shift)
8893 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8894 insn->dst_reg,
8895 shift);
31fd8581 8896 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8897 (1ULL << size * 8) - 1);
46f53a65 8898 }
31fd8581 8899 }
9bac3d6d 8900
8041902d 8901 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8902 if (!new_prog)
8903 return -ENOMEM;
8904
3df126f3 8905 delta += cnt - 1;
9bac3d6d
AS
8906
8907 /* keep walking new program and skip insns we just inserted */
8908 env->prog = new_prog;
3df126f3 8909 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8910 }
8911
8912 return 0;
8913}
8914
1c2a088a
AS
8915static int jit_subprogs(struct bpf_verifier_env *env)
8916{
8917 struct bpf_prog *prog = env->prog, **func, *tmp;
8918 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8919 struct bpf_insn *insn;
1c2a088a 8920 void *old_bpf_func;
c454a46b 8921 int err;
1c2a088a 8922
f910cefa 8923 if (env->subprog_cnt <= 1)
1c2a088a
AS
8924 return 0;
8925
7105e828 8926 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8927 if (insn->code != (BPF_JMP | BPF_CALL) ||
8928 insn->src_reg != BPF_PSEUDO_CALL)
8929 continue;
c7a89784
DB
8930 /* Upon error here we cannot fall back to interpreter but
8931 * need a hard reject of the program. Thus -EFAULT is
8932 * propagated in any case.
8933 */
1c2a088a
AS
8934 subprog = find_subprog(env, i + insn->imm + 1);
8935 if (subprog < 0) {
8936 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8937 i + insn->imm + 1);
8938 return -EFAULT;
8939 }
8940 /* temporarily remember subprog id inside insn instead of
8941 * aux_data, since next loop will split up all insns into funcs
8942 */
f910cefa 8943 insn->off = subprog;
1c2a088a
AS
8944 /* remember original imm in case JIT fails and fallback
8945 * to interpreter will be needed
8946 */
8947 env->insn_aux_data[i].call_imm = insn->imm;
8948 /* point imm to __bpf_call_base+1 from JITs point of view */
8949 insn->imm = 1;
8950 }
8951
c454a46b
MKL
8952 err = bpf_prog_alloc_jited_linfo(prog);
8953 if (err)
8954 goto out_undo_insn;
8955
8956 err = -ENOMEM;
6396bb22 8957 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8958 if (!func)
c7a89784 8959 goto out_undo_insn;
1c2a088a 8960
f910cefa 8961 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8962 subprog_start = subprog_end;
4cb3d99c 8963 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8964
8965 len = subprog_end - subprog_start;
492ecee8
AS
8966 /* BPF_PROG_RUN doesn't call subprogs directly,
8967 * hence main prog stats include the runtime of subprogs.
8968 * subprogs don't have IDs and not reachable via prog_get_next_id
8969 * func[i]->aux->stats will never be accessed and stays NULL
8970 */
8971 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8972 if (!func[i])
8973 goto out_free;
8974 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8975 len * sizeof(struct bpf_insn));
4f74d809 8976 func[i]->type = prog->type;
1c2a088a 8977 func[i]->len = len;
4f74d809
DB
8978 if (bpf_prog_calc_tag(func[i]))
8979 goto out_free;
1c2a088a 8980 func[i]->is_func = 1;
ba64e7d8
YS
8981 func[i]->aux->func_idx = i;
8982 /* the btf and func_info will be freed only at prog->aux */
8983 func[i]->aux->btf = prog->aux->btf;
8984 func[i]->aux->func_info = prog->aux->func_info;
8985
1c2a088a
AS
8986 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8987 * Long term would need debug info to populate names
8988 */
8989 func[i]->aux->name[0] = 'F';
9c8105bd 8990 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 8991 func[i]->jit_requested = 1;
c454a46b
MKL
8992 func[i]->aux->linfo = prog->aux->linfo;
8993 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8994 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8995 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
8996 func[i] = bpf_int_jit_compile(func[i]);
8997 if (!func[i]->jited) {
8998 err = -ENOTSUPP;
8999 goto out_free;
9000 }
9001 cond_resched();
9002 }
9003 /* at this point all bpf functions were successfully JITed
9004 * now populate all bpf_calls with correct addresses and
9005 * run last pass of JIT
9006 */
f910cefa 9007 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9008 insn = func[i]->insnsi;
9009 for (j = 0; j < func[i]->len; j++, insn++) {
9010 if (insn->code != (BPF_JMP | BPF_CALL) ||
9011 insn->src_reg != BPF_PSEUDO_CALL)
9012 continue;
9013 subprog = insn->off;
0d306c31
PB
9014 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9015 __bpf_call_base;
1c2a088a 9016 }
2162fed4
SD
9017
9018 /* we use the aux data to keep a list of the start addresses
9019 * of the JITed images for each function in the program
9020 *
9021 * for some architectures, such as powerpc64, the imm field
9022 * might not be large enough to hold the offset of the start
9023 * address of the callee's JITed image from __bpf_call_base
9024 *
9025 * in such cases, we can lookup the start address of a callee
9026 * by using its subprog id, available from the off field of
9027 * the call instruction, as an index for this list
9028 */
9029 func[i]->aux->func = func;
9030 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 9031 }
f910cefa 9032 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9033 old_bpf_func = func[i]->bpf_func;
9034 tmp = bpf_int_jit_compile(func[i]);
9035 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9036 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 9037 err = -ENOTSUPP;
1c2a088a
AS
9038 goto out_free;
9039 }
9040 cond_resched();
9041 }
9042
9043 /* finally lock prog and jit images for all functions and
9044 * populate kallsysm
9045 */
f910cefa 9046 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9047 bpf_prog_lock_ro(func[i]);
9048 bpf_prog_kallsyms_add(func[i]);
9049 }
7105e828
DB
9050
9051 /* Last step: make now unused interpreter insns from main
9052 * prog consistent for later dump requests, so they can
9053 * later look the same as if they were interpreted only.
9054 */
9055 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
9056 if (insn->code != (BPF_JMP | BPF_CALL) ||
9057 insn->src_reg != BPF_PSEUDO_CALL)
9058 continue;
9059 insn->off = env->insn_aux_data[i].call_imm;
9060 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 9061 insn->imm = subprog;
7105e828
DB
9062 }
9063
1c2a088a
AS
9064 prog->jited = 1;
9065 prog->bpf_func = func[0]->bpf_func;
9066 prog->aux->func = func;
f910cefa 9067 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 9068 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
9069 return 0;
9070out_free:
f910cefa 9071 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
9072 if (func[i])
9073 bpf_jit_free(func[i]);
9074 kfree(func);
c7a89784 9075out_undo_insn:
1c2a088a
AS
9076 /* cleanup main prog to be interpreted */
9077 prog->jit_requested = 0;
9078 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9079 if (insn->code != (BPF_JMP | BPF_CALL) ||
9080 insn->src_reg != BPF_PSEUDO_CALL)
9081 continue;
9082 insn->off = 0;
9083 insn->imm = env->insn_aux_data[i].call_imm;
9084 }
c454a46b 9085 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
9086 return err;
9087}
9088
1ea47e01
AS
9089static int fixup_call_args(struct bpf_verifier_env *env)
9090{
19d28fbd 9091#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9092 struct bpf_prog *prog = env->prog;
9093 struct bpf_insn *insn = prog->insnsi;
9094 int i, depth;
19d28fbd 9095#endif
e4052d06 9096 int err = 0;
1ea47e01 9097
e4052d06
QM
9098 if (env->prog->jit_requested &&
9099 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
9100 err = jit_subprogs(env);
9101 if (err == 0)
1c2a088a 9102 return 0;
c7a89784
DB
9103 if (err == -EFAULT)
9104 return err;
19d28fbd
DM
9105 }
9106#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9107 for (i = 0; i < prog->len; i++, insn++) {
9108 if (insn->code != (BPF_JMP | BPF_CALL) ||
9109 insn->src_reg != BPF_PSEUDO_CALL)
9110 continue;
9111 depth = get_callee_stack_depth(env, insn, i);
9112 if (depth < 0)
9113 return depth;
9114 bpf_patch_call_args(insn, depth);
9115 }
19d28fbd
DM
9116 err = 0;
9117#endif
9118 return err;
1ea47e01
AS
9119}
9120
79741b3b 9121/* fixup insn->imm field of bpf_call instructions
81ed18ab 9122 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
9123 *
9124 * this function is called after eBPF program passed verification
9125 */
79741b3b 9126static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 9127{
79741b3b 9128 struct bpf_prog *prog = env->prog;
d2e4c1e6 9129 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 9130 struct bpf_insn *insn = prog->insnsi;
e245c5c6 9131 const struct bpf_func_proto *fn;
79741b3b 9132 const int insn_cnt = prog->len;
09772d92 9133 const struct bpf_map_ops *ops;
c93552c4 9134 struct bpf_insn_aux_data *aux;
81ed18ab
AS
9135 struct bpf_insn insn_buf[16];
9136 struct bpf_prog *new_prog;
9137 struct bpf_map *map_ptr;
d2e4c1e6 9138 int i, ret, cnt, delta = 0;
e245c5c6 9139
79741b3b 9140 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
9141 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9142 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9143 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 9144 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
9145 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9146 struct bpf_insn mask_and_div[] = {
9147 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9148 /* Rx div 0 -> 0 */
9149 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9150 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9151 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9152 *insn,
9153 };
9154 struct bpf_insn mask_and_mod[] = {
9155 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9156 /* Rx mod 0 -> Rx */
9157 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9158 *insn,
9159 };
9160 struct bpf_insn *patchlet;
9161
9162 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9163 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9164 patchlet = mask_and_div + (is64 ? 1 : 0);
9165 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9166 } else {
9167 patchlet = mask_and_mod + (is64 ? 1 : 0);
9168 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9169 }
9170
9171 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
9172 if (!new_prog)
9173 return -ENOMEM;
9174
9175 delta += cnt - 1;
9176 env->prog = prog = new_prog;
9177 insn = new_prog->insnsi + i + delta;
9178 continue;
9179 }
9180
e0cea7ce
DB
9181 if (BPF_CLASS(insn->code) == BPF_LD &&
9182 (BPF_MODE(insn->code) == BPF_ABS ||
9183 BPF_MODE(insn->code) == BPF_IND)) {
9184 cnt = env->ops->gen_ld_abs(insn, insn_buf);
9185 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9186 verbose(env, "bpf verifier is misconfigured\n");
9187 return -EINVAL;
9188 }
9189
9190 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9191 if (!new_prog)
9192 return -ENOMEM;
9193
9194 delta += cnt - 1;
9195 env->prog = prog = new_prog;
9196 insn = new_prog->insnsi + i + delta;
9197 continue;
9198 }
9199
979d63d5
DB
9200 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9201 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9202 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9203 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9204 struct bpf_insn insn_buf[16];
9205 struct bpf_insn *patch = &insn_buf[0];
9206 bool issrc, isneg;
9207 u32 off_reg;
9208
9209 aux = &env->insn_aux_data[i + delta];
3612af78
DB
9210 if (!aux->alu_state ||
9211 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
9212 continue;
9213
9214 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9215 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9216 BPF_ALU_SANITIZE_SRC;
9217
9218 off_reg = issrc ? insn->src_reg : insn->dst_reg;
9219 if (isneg)
9220 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9221 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9222 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9223 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9224 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9225 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9226 if (issrc) {
9227 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9228 off_reg);
9229 insn->src_reg = BPF_REG_AX;
9230 } else {
9231 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9232 BPF_REG_AX);
9233 }
9234 if (isneg)
9235 insn->code = insn->code == code_add ?
9236 code_sub : code_add;
9237 *patch++ = *insn;
9238 if (issrc && isneg)
9239 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9240 cnt = patch - insn_buf;
9241
9242 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9243 if (!new_prog)
9244 return -ENOMEM;
9245
9246 delta += cnt - 1;
9247 env->prog = prog = new_prog;
9248 insn = new_prog->insnsi + i + delta;
9249 continue;
9250 }
9251
79741b3b
AS
9252 if (insn->code != (BPF_JMP | BPF_CALL))
9253 continue;
cc8b0b92
AS
9254 if (insn->src_reg == BPF_PSEUDO_CALL)
9255 continue;
e245c5c6 9256
79741b3b
AS
9257 if (insn->imm == BPF_FUNC_get_route_realm)
9258 prog->dst_needed = 1;
9259 if (insn->imm == BPF_FUNC_get_prandom_u32)
9260 bpf_user_rnd_init_once();
9802d865
JB
9261 if (insn->imm == BPF_FUNC_override_return)
9262 prog->kprobe_override = 1;
79741b3b 9263 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
9264 /* If we tail call into other programs, we
9265 * cannot make any assumptions since they can
9266 * be replaced dynamically during runtime in
9267 * the program array.
9268 */
9269 prog->cb_access = 1;
80a58d02 9270 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 9271 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 9272
79741b3b
AS
9273 /* mark bpf_tail_call as different opcode to avoid
9274 * conditional branch in the interpeter for every normal
9275 * call and to prevent accidental JITing by JIT compiler
9276 * that doesn't support bpf_tail_call yet
e245c5c6 9277 */
79741b3b 9278 insn->imm = 0;
71189fa9 9279 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 9280
c93552c4 9281 aux = &env->insn_aux_data[i + delta];
cc52d914
DB
9282 if (env->allow_ptr_leaks && !expect_blinding &&
9283 prog->jit_requested &&
d2e4c1e6
DB
9284 !bpf_map_key_poisoned(aux) &&
9285 !bpf_map_ptr_poisoned(aux) &&
9286 !bpf_map_ptr_unpriv(aux)) {
9287 struct bpf_jit_poke_descriptor desc = {
9288 .reason = BPF_POKE_REASON_TAIL_CALL,
9289 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9290 .tail_call.key = bpf_map_key_immediate(aux),
9291 };
9292
9293 ret = bpf_jit_add_poke_descriptor(prog, &desc);
9294 if (ret < 0) {
9295 verbose(env, "adding tail call poke descriptor failed\n");
9296 return ret;
9297 }
9298
9299 insn->imm = ret + 1;
9300 continue;
9301 }
9302
c93552c4
DB
9303 if (!bpf_map_ptr_unpriv(aux))
9304 continue;
9305
b2157399
AS
9306 /* instead of changing every JIT dealing with tail_call
9307 * emit two extra insns:
9308 * if (index >= max_entries) goto out;
9309 * index &= array->index_mask;
9310 * to avoid out-of-bounds cpu speculation
9311 */
c93552c4 9312 if (bpf_map_ptr_poisoned(aux)) {
40950343 9313 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
9314 return -EINVAL;
9315 }
c93552c4 9316
d2e4c1e6 9317 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
9318 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9319 map_ptr->max_entries, 2);
9320 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9321 container_of(map_ptr,
9322 struct bpf_array,
9323 map)->index_mask);
9324 insn_buf[2] = *insn;
9325 cnt = 3;
9326 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9327 if (!new_prog)
9328 return -ENOMEM;
9329
9330 delta += cnt - 1;
9331 env->prog = prog = new_prog;
9332 insn = new_prog->insnsi + i + delta;
79741b3b
AS
9333 continue;
9334 }
e245c5c6 9335
89c63074 9336 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
9337 * and other inlining handlers are currently limited to 64 bit
9338 * only.
89c63074 9339 */
60b58afc 9340 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
9341 (insn->imm == BPF_FUNC_map_lookup_elem ||
9342 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
9343 insn->imm == BPF_FUNC_map_delete_elem ||
9344 insn->imm == BPF_FUNC_map_push_elem ||
9345 insn->imm == BPF_FUNC_map_pop_elem ||
9346 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
9347 aux = &env->insn_aux_data[i + delta];
9348 if (bpf_map_ptr_poisoned(aux))
9349 goto patch_call_imm;
9350
d2e4c1e6 9351 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
9352 ops = map_ptr->ops;
9353 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9354 ops->map_gen_lookup) {
9355 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9356 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9357 verbose(env, "bpf verifier is misconfigured\n");
9358 return -EINVAL;
9359 }
81ed18ab 9360
09772d92
DB
9361 new_prog = bpf_patch_insn_data(env, i + delta,
9362 insn_buf, cnt);
9363 if (!new_prog)
9364 return -ENOMEM;
81ed18ab 9365
09772d92
DB
9366 delta += cnt - 1;
9367 env->prog = prog = new_prog;
9368 insn = new_prog->insnsi + i + delta;
9369 continue;
9370 }
81ed18ab 9371
09772d92
DB
9372 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9373 (void *(*)(struct bpf_map *map, void *key))NULL));
9374 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9375 (int (*)(struct bpf_map *map, void *key))NULL));
9376 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9377 (int (*)(struct bpf_map *map, void *key, void *value,
9378 u64 flags))NULL));
84430d42
DB
9379 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9380 (int (*)(struct bpf_map *map, void *value,
9381 u64 flags))NULL));
9382 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9383 (int (*)(struct bpf_map *map, void *value))NULL));
9384 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9385 (int (*)(struct bpf_map *map, void *value))NULL));
9386
09772d92
DB
9387 switch (insn->imm) {
9388 case BPF_FUNC_map_lookup_elem:
9389 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9390 __bpf_call_base;
9391 continue;
9392 case BPF_FUNC_map_update_elem:
9393 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9394 __bpf_call_base;
9395 continue;
9396 case BPF_FUNC_map_delete_elem:
9397 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9398 __bpf_call_base;
9399 continue;
84430d42
DB
9400 case BPF_FUNC_map_push_elem:
9401 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9402 __bpf_call_base;
9403 continue;
9404 case BPF_FUNC_map_pop_elem:
9405 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9406 __bpf_call_base;
9407 continue;
9408 case BPF_FUNC_map_peek_elem:
9409 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9410 __bpf_call_base;
9411 continue;
09772d92 9412 }
81ed18ab 9413
09772d92 9414 goto patch_call_imm;
81ed18ab
AS
9415 }
9416
9417patch_call_imm:
5e43f899 9418 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9419 /* all functions that have prototype and verifier allowed
9420 * programs to call them, must be real in-kernel functions
9421 */
9422 if (!fn->func) {
61bd5218
JK
9423 verbose(env,
9424 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9425 func_id_name(insn->imm), insn->imm);
9426 return -EFAULT;
e245c5c6 9427 }
79741b3b 9428 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9429 }
e245c5c6 9430
d2e4c1e6
DB
9431 /* Since poke tab is now finalized, publish aux to tracker. */
9432 for (i = 0; i < prog->aux->size_poke_tab; i++) {
9433 map_ptr = prog->aux->poke_tab[i].tail_call.map;
9434 if (!map_ptr->ops->map_poke_track ||
9435 !map_ptr->ops->map_poke_untrack ||
9436 !map_ptr->ops->map_poke_run) {
9437 verbose(env, "bpf verifier is misconfigured\n");
9438 return -EINVAL;
9439 }
9440
9441 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9442 if (ret < 0) {
9443 verbose(env, "tracking tail call prog failed\n");
9444 return ret;
9445 }
9446 }
9447
79741b3b
AS
9448 return 0;
9449}
e245c5c6 9450
58e2af8b 9451static void free_states(struct bpf_verifier_env *env)
f1bca824 9452{
58e2af8b 9453 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9454 int i;
9455
9f4686c4
AS
9456 sl = env->free_list;
9457 while (sl) {
9458 sln = sl->next;
9459 free_verifier_state(&sl->state, false);
9460 kfree(sl);
9461 sl = sln;
9462 }
9463
f1bca824
AS
9464 if (!env->explored_states)
9465 return;
9466
dc2a4ebc 9467 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9468 sl = env->explored_states[i];
9469
a8f500af
AS
9470 while (sl) {
9471 sln = sl->next;
9472 free_verifier_state(&sl->state, false);
9473 kfree(sl);
9474 sl = sln;
9475 }
f1bca824
AS
9476 }
9477
71dde681 9478 kvfree(env->explored_states);
f1bca824
AS
9479}
9480
06ee7115
AS
9481static void print_verification_stats(struct bpf_verifier_env *env)
9482{
9483 int i;
9484
9485 if (env->log.level & BPF_LOG_STATS) {
9486 verbose(env, "verification time %lld usec\n",
9487 div_u64(env->verification_time, 1000));
9488 verbose(env, "stack depth ");
9489 for (i = 0; i < env->subprog_cnt; i++) {
9490 u32 depth = env->subprog_info[i].stack_depth;
9491
9492 verbose(env, "%d", depth);
9493 if (i + 1 < env->subprog_cnt)
9494 verbose(env, "+");
9495 }
9496 verbose(env, "\n");
9497 }
9498 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9499 "total_states %d peak_states %d mark_read %d\n",
9500 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9501 env->max_states_per_insn, env->total_states,
9502 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9503}
9504
38207291
MKL
9505static int check_attach_btf_id(struct bpf_verifier_env *env)
9506{
9507 struct bpf_prog *prog = env->prog;
5b92a28a 9508 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 9509 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 9510 const char prefix[] = "btf_trace_";
5b92a28a 9511 int ret = 0, subprog = -1, i;
fec56f58 9512 struct bpf_trampoline *tr;
38207291 9513 const struct btf_type *t;
5b92a28a 9514 bool conservative = true;
38207291 9515 const char *tname;
5b92a28a 9516 struct btf *btf;
fec56f58 9517 long addr;
5b92a28a 9518 u64 key;
38207291 9519
f1b9509c
AS
9520 if (prog->type != BPF_PROG_TYPE_TRACING)
9521 return 0;
38207291 9522
f1b9509c
AS
9523 if (!btf_id) {
9524 verbose(env, "Tracing programs must provide btf_id\n");
9525 return -EINVAL;
9526 }
5b92a28a
AS
9527 btf = bpf_prog_get_target_btf(prog);
9528 if (!btf) {
9529 verbose(env,
9530 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9531 return -EINVAL;
9532 }
9533 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
9534 if (!t) {
9535 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9536 return -EINVAL;
9537 }
5b92a28a 9538 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
9539 if (!tname) {
9540 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9541 return -EINVAL;
9542 }
5b92a28a
AS
9543 if (tgt_prog) {
9544 struct bpf_prog_aux *aux = tgt_prog->aux;
9545
9546 for (i = 0; i < aux->func_info_cnt; i++)
9547 if (aux->func_info[i].type_id == btf_id) {
9548 subprog = i;
9549 break;
9550 }
9551 if (subprog == -1) {
9552 verbose(env, "Subprog %s doesn't exist\n", tname);
9553 return -EINVAL;
9554 }
9555 conservative = aux->func_info_aux[subprog].unreliable;
9556 key = ((u64)aux->id) << 32 | btf_id;
9557 } else {
9558 key = btf_id;
9559 }
f1b9509c
AS
9560
9561 switch (prog->expected_attach_type) {
9562 case BPF_TRACE_RAW_TP:
5b92a28a
AS
9563 if (tgt_prog) {
9564 verbose(env,
9565 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9566 return -EINVAL;
9567 }
38207291
MKL
9568 if (!btf_type_is_typedef(t)) {
9569 verbose(env, "attach_btf_id %u is not a typedef\n",
9570 btf_id);
9571 return -EINVAL;
9572 }
f1b9509c 9573 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
9574 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9575 btf_id, tname);
9576 return -EINVAL;
9577 }
9578 tname += sizeof(prefix) - 1;
5b92a28a 9579 t = btf_type_by_id(btf, t->type);
38207291
MKL
9580 if (!btf_type_is_ptr(t))
9581 /* should never happen in valid vmlinux build */
9582 return -EINVAL;
5b92a28a 9583 t = btf_type_by_id(btf, t->type);
38207291
MKL
9584 if (!btf_type_is_func_proto(t))
9585 /* should never happen in valid vmlinux build */
9586 return -EINVAL;
9587
9588 /* remember two read only pointers that are valid for
9589 * the life time of the kernel
9590 */
9591 prog->aux->attach_func_name = tname;
9592 prog->aux->attach_func_proto = t;
9593 prog->aux->attach_btf_trace = true;
f1b9509c 9594 return 0;
fec56f58
AS
9595 case BPF_TRACE_FENTRY:
9596 case BPF_TRACE_FEXIT:
9597 if (!btf_type_is_func(t)) {
9598 verbose(env, "attach_btf_id %u is not a function\n",
9599 btf_id);
9600 return -EINVAL;
9601 }
5b92a28a 9602 t = btf_type_by_id(btf, t->type);
fec56f58
AS
9603 if (!btf_type_is_func_proto(t))
9604 return -EINVAL;
5b92a28a 9605 tr = bpf_trampoline_lookup(key);
fec56f58
AS
9606 if (!tr)
9607 return -ENOMEM;
9608 prog->aux->attach_func_name = tname;
5b92a28a 9609 /* t is either vmlinux type or another program's type */
fec56f58
AS
9610 prog->aux->attach_func_proto = t;
9611 mutex_lock(&tr->mutex);
9612 if (tr->func.addr) {
9613 prog->aux->trampoline = tr;
9614 goto out;
9615 }
5b92a28a
AS
9616 if (tgt_prog && conservative) {
9617 prog->aux->attach_func_proto = NULL;
9618 t = NULL;
9619 }
9620 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
9621 tname, &tr->func.model);
9622 if (ret < 0)
9623 goto out;
5b92a28a
AS
9624 if (tgt_prog) {
9625 if (!tgt_prog->jited) {
9626 /* for now */
9627 verbose(env, "Can trace only JITed BPF progs\n");
9628 ret = -EINVAL;
9629 goto out;
9630 }
9631 if (tgt_prog->type == BPF_PROG_TYPE_TRACING) {
9632 /* prevent cycles */
9633 verbose(env, "Cannot recursively attach\n");
9634 ret = -EINVAL;
9635 goto out;
9636 }
e9eeec58
YS
9637 if (subprog == 0)
9638 addr = (long) tgt_prog->bpf_func;
9639 else
9640 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
9641 } else {
9642 addr = kallsyms_lookup_name(tname);
9643 if (!addr) {
9644 verbose(env,
9645 "The address of function %s cannot be found\n",
9646 tname);
9647 ret = -ENOENT;
9648 goto out;
9649 }
fec56f58
AS
9650 }
9651 tr->func.addr = (void *)addr;
9652 prog->aux->trampoline = tr;
9653out:
9654 mutex_unlock(&tr->mutex);
9655 if (ret)
9656 bpf_trampoline_put(tr);
9657 return ret;
f1b9509c
AS
9658 default:
9659 return -EINVAL;
38207291 9660 }
38207291
MKL
9661}
9662
838e9690
YS
9663int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9664 union bpf_attr __user *uattr)
51580e79 9665{
06ee7115 9666 u64 start_time = ktime_get_ns();
58e2af8b 9667 struct bpf_verifier_env *env;
b9193c1b 9668 struct bpf_verifier_log *log;
9e4c24e7 9669 int i, len, ret = -EINVAL;
e2ae4ca2 9670 bool is_priv;
51580e79 9671
eba0c929
AB
9672 /* no program is valid */
9673 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9674 return -EINVAL;
9675
58e2af8b 9676 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9677 * allocate/free it every time bpf_check() is called
9678 */
58e2af8b 9679 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9680 if (!env)
9681 return -ENOMEM;
61bd5218 9682 log = &env->log;
cbd35700 9683
9e4c24e7 9684 len = (*prog)->len;
fad953ce 9685 env->insn_aux_data =
9e4c24e7 9686 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9687 ret = -ENOMEM;
9688 if (!env->insn_aux_data)
9689 goto err_free_env;
9e4c24e7
JK
9690 for (i = 0; i < len; i++)
9691 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9692 env->prog = *prog;
00176a34 9693 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9694 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9695
8580ac94
AS
9696 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
9697 mutex_lock(&bpf_verifier_lock);
9698 if (!btf_vmlinux)
9699 btf_vmlinux = btf_parse_vmlinux();
9700 mutex_unlock(&bpf_verifier_lock);
9701 }
9702
cbd35700 9703 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9704 if (!is_priv)
9705 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9706
9707 if (attr->log_level || attr->log_buf || attr->log_size) {
9708 /* user requested verbose verifier output
9709 * and supplied buffer to store the verification trace
9710 */
e7bf8249
JK
9711 log->level = attr->log_level;
9712 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9713 log->len_total = attr->log_size;
cbd35700
AS
9714
9715 ret = -EINVAL;
e7bf8249 9716 /* log attributes have to be sane */
7a9f5c65 9717 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9718 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9719 goto err_unlock;
cbd35700 9720 }
1ad2f583 9721
8580ac94
AS
9722 if (IS_ERR(btf_vmlinux)) {
9723 /* Either gcc or pahole or kernel are broken. */
9724 verbose(env, "in-kernel BTF is malformed\n");
9725 ret = PTR_ERR(btf_vmlinux);
38207291 9726 goto skip_full_check;
8580ac94
AS
9727 }
9728
38207291
MKL
9729 ret = check_attach_btf_id(env);
9730 if (ret)
9731 goto skip_full_check;
9732
1ad2f583
DB
9733 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9734 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9735 env->strict_alignment = true;
e9ee9efc
DM
9736 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9737 env->strict_alignment = false;
cbd35700 9738
e2ae4ca2
JK
9739 env->allow_ptr_leaks = is_priv;
9740
10d274e8
AS
9741 if (is_priv)
9742 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9743
f4e3ec0d
JK
9744 ret = replace_map_fd_with_map_ptr(env);
9745 if (ret < 0)
9746 goto skip_full_check;
9747
cae1927c 9748 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9749 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9750 if (ret)
f4e3ec0d 9751 goto skip_full_check;
ab3f0063
JK
9752 }
9753
dc2a4ebc 9754 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9755 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9756 GFP_USER);
9757 ret = -ENOMEM;
9758 if (!env->explored_states)
9759 goto skip_full_check;
9760
d9762e84 9761 ret = check_subprogs(env);
475fb78f
AS
9762 if (ret < 0)
9763 goto skip_full_check;
9764
c454a46b 9765 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9766 if (ret < 0)
9767 goto skip_full_check;
9768
d9762e84
MKL
9769 ret = check_cfg(env);
9770 if (ret < 0)
9771 goto skip_full_check;
9772
17a52670 9773 ret = do_check(env);
8c01c4f8
CG
9774 if (env->cur_state) {
9775 free_verifier_state(env->cur_state, true);
9776 env->cur_state = NULL;
9777 }
cbd35700 9778
c941ce9c
QM
9779 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9780 ret = bpf_prog_offload_finalize(env);
9781
0246e64d 9782skip_full_check:
638f5b90 9783 while (!pop_stack(env, NULL, NULL));
f1bca824 9784 free_states(env);
0246e64d 9785
c131187d 9786 if (ret == 0)
9b38c405 9787 ret = check_max_stack_depth(env);
c131187d 9788
9b38c405 9789 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9790 if (is_priv) {
9791 if (ret == 0)
9792 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9793 if (ret == 0)
9794 ret = opt_remove_dead_code(env);
a1b14abc
JK
9795 if (ret == 0)
9796 ret = opt_remove_nops(env);
52875a04
JK
9797 } else {
9798 if (ret == 0)
9799 sanitize_dead_code(env);
e2ae4ca2
JK
9800 }
9801
9bac3d6d
AS
9802 if (ret == 0)
9803 /* program is valid, convert *(u32*)(ctx + off) accesses */
9804 ret = convert_ctx_accesses(env);
9805
e245c5c6 9806 if (ret == 0)
79741b3b 9807 ret = fixup_bpf_calls(env);
e245c5c6 9808
a4b1d3c1
JW
9809 /* do 32-bit optimization after insn patching has done so those patched
9810 * insns could be handled correctly.
9811 */
d6c2308c
JW
9812 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9813 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9814 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9815 : false;
a4b1d3c1
JW
9816 }
9817
1ea47e01
AS
9818 if (ret == 0)
9819 ret = fixup_call_args(env);
9820
06ee7115
AS
9821 env->verification_time = ktime_get_ns() - start_time;
9822 print_verification_stats(env);
9823
a2a7d570 9824 if (log->level && bpf_verifier_log_full(log))
cbd35700 9825 ret = -ENOSPC;
a2a7d570 9826 if (log->level && !log->ubuf) {
cbd35700 9827 ret = -EFAULT;
a2a7d570 9828 goto err_release_maps;
cbd35700
AS
9829 }
9830
0246e64d
AS
9831 if (ret == 0 && env->used_map_cnt) {
9832 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9833 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9834 sizeof(env->used_maps[0]),
9835 GFP_KERNEL);
0246e64d 9836
9bac3d6d 9837 if (!env->prog->aux->used_maps) {
0246e64d 9838 ret = -ENOMEM;
a2a7d570 9839 goto err_release_maps;
0246e64d
AS
9840 }
9841
9bac3d6d 9842 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9843 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9844 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9845
9846 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9847 * bpf_ld_imm64 instructions
9848 */
9849 convert_pseudo_ld_imm64(env);
9850 }
cbd35700 9851
ba64e7d8
YS
9852 if (ret == 0)
9853 adjust_btf_func(env);
9854
a2a7d570 9855err_release_maps:
9bac3d6d 9856 if (!env->prog->aux->used_maps)
0246e64d 9857 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9858 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9859 */
9860 release_maps(env);
9bac3d6d 9861 *prog = env->prog;
3df126f3 9862err_unlock:
45a73c17
AS
9863 if (!is_priv)
9864 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9865 vfree(env->insn_aux_data);
9866err_free_env:
9867 kfree(env);
51580e79
AS
9868 return ret;
9869}