]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: Allow LSM programs to use bpf spin locks
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
33ff9823
DB
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
435faee1 233 bool raw_mode;
36bbef52 234 bool pkt_access;
435faee1
DB
235 int regno;
236 int access_size;
457f4436 237 int mem_size;
10060503 238 u64 msize_max_value;
1b986589 239 int ref_obj_id;
d83525ca 240 int func_id;
eaa6bcb7
HL
241 u32 btf_id;
242 u32 ret_btf_id;
33ff9823
DB
243};
244
8580ac94
AS
245struct btf *btf_vmlinux;
246
cbd35700
AS
247static DEFINE_MUTEX(bpf_verifier_lock);
248
d9762e84
MKL
249static const struct bpf_line_info *
250find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251{
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268}
269
77d2e05a
MKL
270void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
cbd35700 272{
a2a7d570 273 unsigned int n;
cbd35700 274
a2a7d570 275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
8580ac94
AS
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
a2a7d570
JK
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
cbd35700 291}
abe08840 292
6f8a57cc
AN
293static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294{
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303}
304
abe08840
JO
305/* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
430e68d1 308 */
abe08840
JO
309__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311{
312 va_list args;
313
77d2e05a
MKL
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
abe08840 317 va_start(args, fmt);
77d2e05a 318 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
319 va_end(args);
320}
321EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
323__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324{
77d2e05a 325 struct bpf_verifier_env *env = private_data;
abe08840
JO
326 va_list args;
327
77d2e05a
MKL
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
abe08840 331 va_start(args, fmt);
77d2e05a 332 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
333 va_end(args);
334}
cbd35700 335
9e15db66
AS
336__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338{
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347}
348
d9762e84
MKL
349static const char *ltrim(const char *s)
350{
351 while (isspace(*s))
352 s++;
353
354 return s;
355}
356
357__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360{
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383}
384
de8f3a83
DB
385static bool type_is_pkt_pointer(enum bpf_reg_type type)
386{
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389}
390
46f8bc92
MKL
391static bool type_is_sk_pointer(enum bpf_reg_type type)
392{
393 return type == PTR_TO_SOCKET ||
655a51e5 394 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
397}
398
cac616db
JF
399static bool reg_type_not_null(enum bpf_reg_type type)
400{
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
01c66c48 404 type == PTR_TO_SOCK_COMMON;
cac616db
JF
405}
406
840b9615
JS
407static bool reg_type_may_be_null(enum bpf_reg_type type)
408{
fd978bf7 409 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 410 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 411 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 412 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 413 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
414 type == PTR_TO_MEM_OR_NULL ||
415 type == PTR_TO_RDONLY_BUF_OR_NULL ||
416 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
417}
418
d83525ca
AS
419static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
420{
421 return reg->type == PTR_TO_MAP_VALUE &&
422 map_value_has_spin_lock(reg->map_ptr);
423}
424
cba368c1
MKL
425static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
426{
427 return type == PTR_TO_SOCKET ||
428 type == PTR_TO_SOCKET_OR_NULL ||
429 type == PTR_TO_TCP_SOCK ||
457f4436
AN
430 type == PTR_TO_TCP_SOCK_OR_NULL ||
431 type == PTR_TO_MEM ||
432 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
433}
434
1b986589 435static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 436{
1b986589 437 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
438}
439
fd1b0d60
LB
440static bool arg_type_may_be_null(enum bpf_arg_type type)
441{
442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
443 type == ARG_PTR_TO_MEM_OR_NULL ||
444 type == ARG_PTR_TO_CTX_OR_NULL ||
445 type == ARG_PTR_TO_SOCKET_OR_NULL ||
446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
447}
448
fd978bf7
JS
449/* Determine whether the function releases some resources allocated by another
450 * function call. The first reference type argument will be assumed to be
451 * released by release_reference().
452 */
453static bool is_release_function(enum bpf_func_id func_id)
454{
457f4436
AN
455 return func_id == BPF_FUNC_sk_release ||
456 func_id == BPF_FUNC_ringbuf_submit ||
457 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
458}
459
64d85290 460static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
461{
462 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 463 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 464 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
465 func_id == BPF_FUNC_map_lookup_elem ||
466 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
467}
468
469static bool is_acquire_function(enum bpf_func_id func_id,
470 const struct bpf_map *map)
471{
472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
473
474 if (func_id == BPF_FUNC_sk_lookup_tcp ||
475 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
476 func_id == BPF_FUNC_skc_lookup_tcp ||
477 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
478 return true;
479
480 if (func_id == BPF_FUNC_map_lookup_elem &&
481 (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 map_type == BPF_MAP_TYPE_SOCKHASH))
483 return true;
484
485 return false;
46f8bc92
MKL
486}
487
1b986589
MKL
488static bool is_ptr_cast_function(enum bpf_func_id func_id)
489{
490 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
491 func_id == BPF_FUNC_sk_fullsock ||
492 func_id == BPF_FUNC_skc_to_tcp_sock ||
493 func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 func_id == BPF_FUNC_skc_to_udp6_sock ||
495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
496 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
497}
498
17a52670
AS
499/* string representation of 'enum bpf_reg_type' */
500static const char * const reg_type_str[] = {
501 [NOT_INIT] = "?",
f1174f77 502 [SCALAR_VALUE] = "inv",
17a52670
AS
503 [PTR_TO_CTX] = "ctx",
504 [CONST_PTR_TO_MAP] = "map_ptr",
505 [PTR_TO_MAP_VALUE] = "map_value",
506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 507 [PTR_TO_STACK] = "fp",
969bf05e 508 [PTR_TO_PACKET] = "pkt",
de8f3a83 509 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 510 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 511 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
512 [PTR_TO_SOCKET] = "sock",
513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
514 [PTR_TO_SOCK_COMMON] = "sock_common",
515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
516 [PTR_TO_TCP_SOCK] = "tcp_sock",
517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 518 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 519 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 520 [PTR_TO_BTF_ID] = "ptr_",
b121b341 521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
523 [PTR_TO_MEM] = "mem",
524 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
525 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
527 [PTR_TO_RDWR_BUF] = "rdwr_buf",
528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
529};
530
8efea21d
EC
531static char slot_type_char[] = {
532 [STACK_INVALID] = '?',
533 [STACK_SPILL] = 'r',
534 [STACK_MISC] = 'm',
535 [STACK_ZERO] = '0',
536};
537
4e92024a
AS
538static void print_liveness(struct bpf_verifier_env *env,
539 enum bpf_reg_liveness live)
540{
9242b5f5 541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
542 verbose(env, "_");
543 if (live & REG_LIVE_READ)
544 verbose(env, "r");
545 if (live & REG_LIVE_WRITTEN)
546 verbose(env, "w");
9242b5f5
AS
547 if (live & REG_LIVE_DONE)
548 verbose(env, "D");
4e92024a
AS
549}
550
f4d7e40a
AS
551static struct bpf_func_state *func(struct bpf_verifier_env *env,
552 const struct bpf_reg_state *reg)
553{
554 struct bpf_verifier_state *cur = env->cur_state;
555
556 return cur->frame[reg->frameno];
557}
558
9e15db66
AS
559const char *kernel_type_name(u32 id)
560{
561 return btf_name_by_offset(btf_vmlinux,
562 btf_type_by_id(btf_vmlinux, id)->name_off);
563}
564
61bd5218 565static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 566 const struct bpf_func_state *state)
17a52670 567{
f4d7e40a 568 const struct bpf_reg_state *reg;
17a52670
AS
569 enum bpf_reg_type t;
570 int i;
571
f4d7e40a
AS
572 if (state->frameno)
573 verbose(env, " frame%d:", state->frameno);
17a52670 574 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
575 reg = &state->regs[i];
576 t = reg->type;
17a52670
AS
577 if (t == NOT_INIT)
578 continue;
4e92024a
AS
579 verbose(env, " R%d", i);
580 print_liveness(env, reg->live);
581 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
582 if (t == SCALAR_VALUE && reg->precise)
583 verbose(env, "P");
f1174f77
EC
584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
585 tnum_is_const(reg->var_off)) {
586 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 587 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 588 } else {
eaa6bcb7
HL
589 if (t == PTR_TO_BTF_ID ||
590 t == PTR_TO_BTF_ID_OR_NULL ||
591 t == PTR_TO_PERCPU_BTF_ID)
9e15db66 592 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
593 verbose(env, "(id=%d", reg->id);
594 if (reg_type_may_be_refcounted_or_null(t))
595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 596 if (t != SCALAR_VALUE)
61bd5218 597 verbose(env, ",off=%d", reg->off);
de8f3a83 598 if (type_is_pkt_pointer(t))
61bd5218 599 verbose(env, ",r=%d", reg->range);
f1174f77
EC
600 else if (t == CONST_PTR_TO_MAP ||
601 t == PTR_TO_MAP_VALUE ||
602 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 603 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
604 reg->map_ptr->key_size,
605 reg->map_ptr->value_size);
7d1238f2
EC
606 if (tnum_is_const(reg->var_off)) {
607 /* Typically an immediate SCALAR_VALUE, but
608 * could be a pointer whose offset is too big
609 * for reg->off
610 */
61bd5218 611 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
612 } else {
613 if (reg->smin_value != reg->umin_value &&
614 reg->smin_value != S64_MIN)
61bd5218 615 verbose(env, ",smin_value=%lld",
7d1238f2
EC
616 (long long)reg->smin_value);
617 if (reg->smax_value != reg->umax_value &&
618 reg->smax_value != S64_MAX)
61bd5218 619 verbose(env, ",smax_value=%lld",
7d1238f2
EC
620 (long long)reg->smax_value);
621 if (reg->umin_value != 0)
61bd5218 622 verbose(env, ",umin_value=%llu",
7d1238f2
EC
623 (unsigned long long)reg->umin_value);
624 if (reg->umax_value != U64_MAX)
61bd5218 625 verbose(env, ",umax_value=%llu",
7d1238f2
EC
626 (unsigned long long)reg->umax_value);
627 if (!tnum_is_unknown(reg->var_off)) {
628 char tn_buf[48];
f1174f77 629
7d1238f2 630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 631 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 632 }
3f50f132
JF
633 if (reg->s32_min_value != reg->smin_value &&
634 reg->s32_min_value != S32_MIN)
635 verbose(env, ",s32_min_value=%d",
636 (int)(reg->s32_min_value));
637 if (reg->s32_max_value != reg->smax_value &&
638 reg->s32_max_value != S32_MAX)
639 verbose(env, ",s32_max_value=%d",
640 (int)(reg->s32_max_value));
641 if (reg->u32_min_value != reg->umin_value &&
642 reg->u32_min_value != U32_MIN)
643 verbose(env, ",u32_min_value=%d",
644 (int)(reg->u32_min_value));
645 if (reg->u32_max_value != reg->umax_value &&
646 reg->u32_max_value != U32_MAX)
647 verbose(env, ",u32_max_value=%d",
648 (int)(reg->u32_max_value));
f1174f77 649 }
61bd5218 650 verbose(env, ")");
f1174f77 651 }
17a52670 652 }
638f5b90 653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
654 char types_buf[BPF_REG_SIZE + 1];
655 bool valid = false;
656 int j;
657
658 for (j = 0; j < BPF_REG_SIZE; j++) {
659 if (state->stack[i].slot_type[j] != STACK_INVALID)
660 valid = true;
661 types_buf[j] = slot_type_char[
662 state->stack[i].slot_type[j]];
663 }
664 types_buf[BPF_REG_SIZE] = 0;
665 if (!valid)
666 continue;
667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
668 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
669 if (state->stack[i].slot_type[0] == STACK_SPILL) {
670 reg = &state->stack[i].spilled_ptr;
671 t = reg->type;
672 verbose(env, "=%s", reg_type_str[t]);
673 if (t == SCALAR_VALUE && reg->precise)
674 verbose(env, "P");
675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
676 verbose(env, "%lld", reg->var_off.value + reg->off);
677 } else {
8efea21d 678 verbose(env, "=%s", types_buf);
b5dc0163 679 }
17a52670 680 }
fd978bf7
JS
681 if (state->acquired_refs && state->refs[0].id) {
682 verbose(env, " refs=%d", state->refs[0].id);
683 for (i = 1; i < state->acquired_refs; i++)
684 if (state->refs[i].id)
685 verbose(env, ",%d", state->refs[i].id);
686 }
61bd5218 687 verbose(env, "\n");
17a52670
AS
688}
689
84dbf350
JS
690#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
691static int copy_##NAME##_state(struct bpf_func_state *dst, \
692 const struct bpf_func_state *src) \
693{ \
694 if (!src->FIELD) \
695 return 0; \
696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
697 /* internal bug, make state invalid to reject the program */ \
698 memset(dst, 0, sizeof(*dst)); \
699 return -EFAULT; \
700 } \
701 memcpy(dst->FIELD, src->FIELD, \
702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
703 return 0; \
638f5b90 704}
fd978bf7
JS
705/* copy_reference_state() */
706COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
707/* copy_stack_state() */
708COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
709#undef COPY_STATE_FN
710
711#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
712static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
713 bool copy_old) \
714{ \
715 u32 old_size = state->COUNT; \
716 struct bpf_##NAME##_state *new_##FIELD; \
717 int slot = size / SIZE; \
718 \
719 if (size <= old_size || !size) { \
720 if (copy_old) \
721 return 0; \
722 state->COUNT = slot * SIZE; \
723 if (!size && old_size) { \
724 kfree(state->FIELD); \
725 state->FIELD = NULL; \
726 } \
727 return 0; \
728 } \
729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
730 GFP_KERNEL); \
731 if (!new_##FIELD) \
732 return -ENOMEM; \
733 if (copy_old) { \
734 if (state->FIELD) \
735 memcpy(new_##FIELD, state->FIELD, \
736 sizeof(*new_##FIELD) * (old_size / SIZE)); \
737 memset(new_##FIELD + old_size / SIZE, 0, \
738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
739 } \
740 state->COUNT = slot * SIZE; \
741 kfree(state->FIELD); \
742 state->FIELD = new_##FIELD; \
743 return 0; \
744}
fd978bf7
JS
745/* realloc_reference_state() */
746REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
747/* realloc_stack_state() */
748REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
749#undef REALLOC_STATE_FN
638f5b90
AS
750
751/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
752 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 753 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
755 * which realloc_stack_state() copies over. It points to previous
756 * bpf_verifier_state which is never reallocated.
638f5b90 757 */
fd978bf7
JS
758static int realloc_func_state(struct bpf_func_state *state, int stack_size,
759 int refs_size, bool copy_old)
638f5b90 760{
fd978bf7
JS
761 int err = realloc_reference_state(state, refs_size, copy_old);
762 if (err)
763 return err;
764 return realloc_stack_state(state, stack_size, copy_old);
765}
766
767/* Acquire a pointer id from the env and update the state->refs to include
768 * this new pointer reference.
769 * On success, returns a valid pointer id to associate with the register
770 * On failure, returns a negative errno.
638f5b90 771 */
fd978bf7 772static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 773{
fd978bf7
JS
774 struct bpf_func_state *state = cur_func(env);
775 int new_ofs = state->acquired_refs;
776 int id, err;
777
778 err = realloc_reference_state(state, state->acquired_refs + 1, true);
779 if (err)
780 return err;
781 id = ++env->id_gen;
782 state->refs[new_ofs].id = id;
783 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 784
fd978bf7
JS
785 return id;
786}
787
788/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 789static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
790{
791 int i, last_idx;
792
fd978bf7
JS
793 last_idx = state->acquired_refs - 1;
794 for (i = 0; i < state->acquired_refs; i++) {
795 if (state->refs[i].id == ptr_id) {
796 if (last_idx && i != last_idx)
797 memcpy(&state->refs[i], &state->refs[last_idx],
798 sizeof(*state->refs));
799 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
800 state->acquired_refs--;
638f5b90 801 return 0;
638f5b90 802 }
638f5b90 803 }
46f8bc92 804 return -EINVAL;
fd978bf7
JS
805}
806
807static int transfer_reference_state(struct bpf_func_state *dst,
808 struct bpf_func_state *src)
809{
810 int err = realloc_reference_state(dst, src->acquired_refs, false);
811 if (err)
812 return err;
813 err = copy_reference_state(dst, src);
814 if (err)
815 return err;
638f5b90
AS
816 return 0;
817}
818
f4d7e40a
AS
819static void free_func_state(struct bpf_func_state *state)
820{
5896351e
AS
821 if (!state)
822 return;
fd978bf7 823 kfree(state->refs);
f4d7e40a
AS
824 kfree(state->stack);
825 kfree(state);
826}
827
b5dc0163
AS
828static void clear_jmp_history(struct bpf_verifier_state *state)
829{
830 kfree(state->jmp_history);
831 state->jmp_history = NULL;
832 state->jmp_history_cnt = 0;
833}
834
1969db47
AS
835static void free_verifier_state(struct bpf_verifier_state *state,
836 bool free_self)
638f5b90 837{
f4d7e40a
AS
838 int i;
839
840 for (i = 0; i <= state->curframe; i++) {
841 free_func_state(state->frame[i]);
842 state->frame[i] = NULL;
843 }
b5dc0163 844 clear_jmp_history(state);
1969db47
AS
845 if (free_self)
846 kfree(state);
638f5b90
AS
847}
848
849/* copy verifier state from src to dst growing dst stack space
850 * when necessary to accommodate larger src stack
851 */
f4d7e40a
AS
852static int copy_func_state(struct bpf_func_state *dst,
853 const struct bpf_func_state *src)
638f5b90
AS
854{
855 int err;
856
fd978bf7
JS
857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
858 false);
859 if (err)
860 return err;
861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
862 err = copy_reference_state(dst, src);
638f5b90
AS
863 if (err)
864 return err;
638f5b90
AS
865 return copy_stack_state(dst, src);
866}
867
f4d7e40a
AS
868static int copy_verifier_state(struct bpf_verifier_state *dst_state,
869 const struct bpf_verifier_state *src)
870{
871 struct bpf_func_state *dst;
b5dc0163 872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
873 int i, err;
874
b5dc0163
AS
875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
876 kfree(dst_state->jmp_history);
877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
878 if (!dst_state->jmp_history)
879 return -ENOMEM;
880 }
881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
882 dst_state->jmp_history_cnt = src->jmp_history_cnt;
883
f4d7e40a
AS
884 /* if dst has more stack frames then src frame, free them */
885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
886 free_func_state(dst_state->frame[i]);
887 dst_state->frame[i] = NULL;
888 }
979d63d5 889 dst_state->speculative = src->speculative;
f4d7e40a 890 dst_state->curframe = src->curframe;
d83525ca 891 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
892 dst_state->branches = src->branches;
893 dst_state->parent = src->parent;
b5dc0163
AS
894 dst_state->first_insn_idx = src->first_insn_idx;
895 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
896 for (i = 0; i <= src->curframe; i++) {
897 dst = dst_state->frame[i];
898 if (!dst) {
899 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
900 if (!dst)
901 return -ENOMEM;
902 dst_state->frame[i] = dst;
903 }
904 err = copy_func_state(dst, src->frame[i]);
905 if (err)
906 return err;
907 }
908 return 0;
909}
910
2589726d
AS
911static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
912{
913 while (st) {
914 u32 br = --st->branches;
915
916 /* WARN_ON(br > 1) technically makes sense here,
917 * but see comment in push_stack(), hence:
918 */
919 WARN_ONCE((int)br < 0,
920 "BUG update_branch_counts:branches_to_explore=%d\n",
921 br);
922 if (br)
923 break;
924 st = st->parent;
925 }
926}
927
638f5b90 928static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 929 int *insn_idx, bool pop_log)
638f5b90
AS
930{
931 struct bpf_verifier_state *cur = env->cur_state;
932 struct bpf_verifier_stack_elem *elem, *head = env->head;
933 int err;
17a52670
AS
934
935 if (env->head == NULL)
638f5b90 936 return -ENOENT;
17a52670 937
638f5b90
AS
938 if (cur) {
939 err = copy_verifier_state(cur, &head->st);
940 if (err)
941 return err;
942 }
6f8a57cc
AN
943 if (pop_log)
944 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
945 if (insn_idx)
946 *insn_idx = head->insn_idx;
17a52670 947 if (prev_insn_idx)
638f5b90
AS
948 *prev_insn_idx = head->prev_insn_idx;
949 elem = head->next;
1969db47 950 free_verifier_state(&head->st, false);
638f5b90 951 kfree(head);
17a52670
AS
952 env->head = elem;
953 env->stack_size--;
638f5b90 954 return 0;
17a52670
AS
955}
956
58e2af8b 957static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
958 int insn_idx, int prev_insn_idx,
959 bool speculative)
17a52670 960{
638f5b90 961 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 962 struct bpf_verifier_stack_elem *elem;
638f5b90 963 int err;
17a52670 964
638f5b90 965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
966 if (!elem)
967 goto err;
968
17a52670
AS
969 elem->insn_idx = insn_idx;
970 elem->prev_insn_idx = prev_insn_idx;
971 elem->next = env->head;
6f8a57cc 972 elem->log_pos = env->log.len_used;
17a52670
AS
973 env->head = elem;
974 env->stack_size++;
1969db47
AS
975 err = copy_verifier_state(&elem->st, cur);
976 if (err)
977 goto err;
979d63d5 978 elem->st.speculative |= speculative;
b285fcb7
AS
979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
980 verbose(env, "The sequence of %d jumps is too complex.\n",
981 env->stack_size);
17a52670
AS
982 goto err;
983 }
2589726d
AS
984 if (elem->st.parent) {
985 ++elem->st.parent->branches;
986 /* WARN_ON(branches > 2) technically makes sense here,
987 * but
988 * 1. speculative states will bump 'branches' for non-branch
989 * instructions
990 * 2. is_state_visited() heuristics may decide not to create
991 * a new state for a sequence of branches and all such current
992 * and cloned states will be pointing to a single parent state
993 * which might have large 'branches' count.
994 */
995 }
17a52670
AS
996 return &elem->st;
997err:
5896351e
AS
998 free_verifier_state(env->cur_state, true);
999 env->cur_state = NULL;
17a52670 1000 /* pop all elements and return */
6f8a57cc 1001 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1002 return NULL;
1003}
1004
1005#define CALLER_SAVED_REGS 6
1006static const int caller_saved[CALLER_SAVED_REGS] = {
1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1008};
1009
f54c7898
DB
1010static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1011 struct bpf_reg_state *reg);
f1174f77 1012
e688c3db
AS
1013/* This helper doesn't clear reg->id */
1014static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1015{
b03c9f9f
EC
1016 reg->var_off = tnum_const(imm);
1017 reg->smin_value = (s64)imm;
1018 reg->smax_value = (s64)imm;
1019 reg->umin_value = imm;
1020 reg->umax_value = imm;
3f50f132
JF
1021
1022 reg->s32_min_value = (s32)imm;
1023 reg->s32_max_value = (s32)imm;
1024 reg->u32_min_value = (u32)imm;
1025 reg->u32_max_value = (u32)imm;
1026}
1027
e688c3db
AS
1028/* Mark the unknown part of a register (variable offset or scalar value) as
1029 * known to have the value @imm.
1030 */
1031static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1032{
1033 /* Clear id, off, and union(map_ptr, range) */
1034 memset(((u8 *)reg) + sizeof(reg->type), 0,
1035 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1036 ___mark_reg_known(reg, imm);
1037}
1038
3f50f132
JF
1039static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1040{
1041 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1042 reg->s32_min_value = (s32)imm;
1043 reg->s32_max_value = (s32)imm;
1044 reg->u32_min_value = (u32)imm;
1045 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1046}
1047
f1174f77
EC
1048/* Mark the 'variable offset' part of a register as zero. This should be
1049 * used only on registers holding a pointer type.
1050 */
1051static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1052{
b03c9f9f 1053 __mark_reg_known(reg, 0);
f1174f77 1054}
a9789ef9 1055
cc2b14d5
AS
1056static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1057{
1058 __mark_reg_known(reg, 0);
cc2b14d5
AS
1059 reg->type = SCALAR_VALUE;
1060}
1061
61bd5218
JK
1062static void mark_reg_known_zero(struct bpf_verifier_env *env,
1063 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1064{
1065 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1066 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1067 /* Something bad happened, let's kill all regs */
1068 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1069 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1070 return;
1071 }
1072 __mark_reg_known_zero(regs + regno);
1073}
1074
de8f3a83
DB
1075static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1076{
1077 return type_is_pkt_pointer(reg->type);
1078}
1079
1080static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1081{
1082 return reg_is_pkt_pointer(reg) ||
1083 reg->type == PTR_TO_PACKET_END;
1084}
1085
1086/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1087static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1088 enum bpf_reg_type which)
1089{
1090 /* The register can already have a range from prior markings.
1091 * This is fine as long as it hasn't been advanced from its
1092 * origin.
1093 */
1094 return reg->type == which &&
1095 reg->id == 0 &&
1096 reg->off == 0 &&
1097 tnum_equals_const(reg->var_off, 0);
1098}
1099
3f50f132
JF
1100/* Reset the min/max bounds of a register */
1101static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1102{
1103 reg->smin_value = S64_MIN;
1104 reg->smax_value = S64_MAX;
1105 reg->umin_value = 0;
1106 reg->umax_value = U64_MAX;
1107
1108 reg->s32_min_value = S32_MIN;
1109 reg->s32_max_value = S32_MAX;
1110 reg->u32_min_value = 0;
1111 reg->u32_max_value = U32_MAX;
1112}
1113
1114static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1115{
1116 reg->smin_value = S64_MIN;
1117 reg->smax_value = S64_MAX;
1118 reg->umin_value = 0;
1119 reg->umax_value = U64_MAX;
1120}
1121
1122static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1123{
1124 reg->s32_min_value = S32_MIN;
1125 reg->s32_max_value = S32_MAX;
1126 reg->u32_min_value = 0;
1127 reg->u32_max_value = U32_MAX;
1128}
1129
1130static void __update_reg32_bounds(struct bpf_reg_state *reg)
1131{
1132 struct tnum var32_off = tnum_subreg(reg->var_off);
1133
1134 /* min signed is max(sign bit) | min(other bits) */
1135 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1136 var32_off.value | (var32_off.mask & S32_MIN));
1137 /* max signed is min(sign bit) | max(other bits) */
1138 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1139 var32_off.value | (var32_off.mask & S32_MAX));
1140 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1141 reg->u32_max_value = min(reg->u32_max_value,
1142 (u32)(var32_off.value | var32_off.mask));
1143}
1144
1145static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1146{
1147 /* min signed is max(sign bit) | min(other bits) */
1148 reg->smin_value = max_t(s64, reg->smin_value,
1149 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1150 /* max signed is min(sign bit) | max(other bits) */
1151 reg->smax_value = min_t(s64, reg->smax_value,
1152 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1153 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1154 reg->umax_value = min(reg->umax_value,
1155 reg->var_off.value | reg->var_off.mask);
1156}
1157
3f50f132
JF
1158static void __update_reg_bounds(struct bpf_reg_state *reg)
1159{
1160 __update_reg32_bounds(reg);
1161 __update_reg64_bounds(reg);
1162}
1163
b03c9f9f 1164/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1165static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1166{
1167 /* Learn sign from signed bounds.
1168 * If we cannot cross the sign boundary, then signed and unsigned bounds
1169 * are the same, so combine. This works even in the negative case, e.g.
1170 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1171 */
1172 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1173 reg->s32_min_value = reg->u32_min_value =
1174 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1175 reg->s32_max_value = reg->u32_max_value =
1176 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1177 return;
1178 }
1179 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1180 * boundary, so we must be careful.
1181 */
1182 if ((s32)reg->u32_max_value >= 0) {
1183 /* Positive. We can't learn anything from the smin, but smax
1184 * is positive, hence safe.
1185 */
1186 reg->s32_min_value = reg->u32_min_value;
1187 reg->s32_max_value = reg->u32_max_value =
1188 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1189 } else if ((s32)reg->u32_min_value < 0) {
1190 /* Negative. We can't learn anything from the smax, but smin
1191 * is negative, hence safe.
1192 */
1193 reg->s32_min_value = reg->u32_min_value =
1194 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1195 reg->s32_max_value = reg->u32_max_value;
1196 }
1197}
1198
1199static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1200{
1201 /* Learn sign from signed bounds.
1202 * If we cannot cross the sign boundary, then signed and unsigned bounds
1203 * are the same, so combine. This works even in the negative case, e.g.
1204 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1205 */
1206 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1207 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1208 reg->umin_value);
1209 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1210 reg->umax_value);
1211 return;
1212 }
1213 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1214 * boundary, so we must be careful.
1215 */
1216 if ((s64)reg->umax_value >= 0) {
1217 /* Positive. We can't learn anything from the smin, but smax
1218 * is positive, hence safe.
1219 */
1220 reg->smin_value = reg->umin_value;
1221 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1222 reg->umax_value);
1223 } else if ((s64)reg->umin_value < 0) {
1224 /* Negative. We can't learn anything from the smax, but smin
1225 * is negative, hence safe.
1226 */
1227 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1228 reg->umin_value);
1229 reg->smax_value = reg->umax_value;
1230 }
1231}
1232
3f50f132
JF
1233static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1234{
1235 __reg32_deduce_bounds(reg);
1236 __reg64_deduce_bounds(reg);
1237}
1238
b03c9f9f
EC
1239/* Attempts to improve var_off based on unsigned min/max information */
1240static void __reg_bound_offset(struct bpf_reg_state *reg)
1241{
3f50f132
JF
1242 struct tnum var64_off = tnum_intersect(reg->var_off,
1243 tnum_range(reg->umin_value,
1244 reg->umax_value));
1245 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1246 tnum_range(reg->u32_min_value,
1247 reg->u32_max_value));
1248
1249 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1250}
1251
3f50f132 1252static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1253{
3f50f132
JF
1254 reg->umin_value = reg->u32_min_value;
1255 reg->umax_value = reg->u32_max_value;
1256 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1257 * but must be positive otherwise set to worse case bounds
1258 * and refine later from tnum.
1259 */
3a71dc36 1260 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1261 reg->smax_value = reg->s32_max_value;
1262 else
1263 reg->smax_value = U32_MAX;
3a71dc36
JF
1264 if (reg->s32_min_value >= 0)
1265 reg->smin_value = reg->s32_min_value;
1266 else
1267 reg->smin_value = 0;
3f50f132
JF
1268}
1269
1270static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1271{
1272 /* special case when 64-bit register has upper 32-bit register
1273 * zeroed. Typically happens after zext or <<32, >>32 sequence
1274 * allowing us to use 32-bit bounds directly,
1275 */
1276 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1277 __reg_assign_32_into_64(reg);
1278 } else {
1279 /* Otherwise the best we can do is push lower 32bit known and
1280 * unknown bits into register (var_off set from jmp logic)
1281 * then learn as much as possible from the 64-bit tnum
1282 * known and unknown bits. The previous smin/smax bounds are
1283 * invalid here because of jmp32 compare so mark them unknown
1284 * so they do not impact tnum bounds calculation.
1285 */
1286 __mark_reg64_unbounded(reg);
1287 __update_reg_bounds(reg);
1288 }
1289
1290 /* Intersecting with the old var_off might have improved our bounds
1291 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1292 * then new var_off is (0; 0x7f...fc) which improves our umax.
1293 */
1294 __reg_deduce_bounds(reg);
1295 __reg_bound_offset(reg);
1296 __update_reg_bounds(reg);
1297}
1298
1299static bool __reg64_bound_s32(s64 a)
1300{
1301 if (a > S32_MIN && a < S32_MAX)
1302 return true;
1303 return false;
1304}
1305
1306static bool __reg64_bound_u32(u64 a)
1307{
1308 if (a > U32_MIN && a < U32_MAX)
1309 return true;
1310 return false;
1311}
1312
1313static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1314{
1315 __mark_reg32_unbounded(reg);
1316
1317 if (__reg64_bound_s32(reg->smin_value))
1318 reg->s32_min_value = (s32)reg->smin_value;
1319 if (__reg64_bound_s32(reg->smax_value))
1320 reg->s32_max_value = (s32)reg->smax_value;
1321 if (__reg64_bound_u32(reg->umin_value))
1322 reg->u32_min_value = (u32)reg->umin_value;
1323 if (__reg64_bound_u32(reg->umax_value))
1324 reg->u32_max_value = (u32)reg->umax_value;
1325
1326 /* Intersecting with the old var_off might have improved our bounds
1327 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1328 * then new var_off is (0; 0x7f...fc) which improves our umax.
1329 */
1330 __reg_deduce_bounds(reg);
1331 __reg_bound_offset(reg);
1332 __update_reg_bounds(reg);
b03c9f9f
EC
1333}
1334
f1174f77 1335/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1336static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1337 struct bpf_reg_state *reg)
f1174f77 1338{
a9c676bc
AS
1339 /*
1340 * Clear type, id, off, and union(map_ptr, range) and
1341 * padding between 'type' and union
1342 */
1343 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1344 reg->type = SCALAR_VALUE;
f1174f77 1345 reg->var_off = tnum_unknown;
f4d7e40a 1346 reg->frameno = 0;
2c78ee89 1347 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1348 __mark_reg_unbounded(reg);
f1174f77
EC
1349}
1350
61bd5218
JK
1351static void mark_reg_unknown(struct bpf_verifier_env *env,
1352 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1353{
1354 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1355 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1356 /* Something bad happened, let's kill all regs except FP */
1357 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1358 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1359 return;
1360 }
f54c7898 1361 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1362}
1363
f54c7898
DB
1364static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1365 struct bpf_reg_state *reg)
f1174f77 1366{
f54c7898 1367 __mark_reg_unknown(env, reg);
f1174f77
EC
1368 reg->type = NOT_INIT;
1369}
1370
61bd5218
JK
1371static void mark_reg_not_init(struct bpf_verifier_env *env,
1372 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1373{
1374 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1375 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1376 /* Something bad happened, let's kill all regs except FP */
1377 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1378 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1379 return;
1380 }
f54c7898 1381 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1382}
1383
41c48f3a
AI
1384static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1385 struct bpf_reg_state *regs, u32 regno,
1386 enum bpf_reg_type reg_type, u32 btf_id)
1387{
1388 if (reg_type == SCALAR_VALUE) {
1389 mark_reg_unknown(env, regs, regno);
1390 return;
1391 }
1392 mark_reg_known_zero(env, regs, regno);
1393 regs[regno].type = PTR_TO_BTF_ID;
1394 regs[regno].btf_id = btf_id;
1395}
1396
5327ed3d 1397#define DEF_NOT_SUBREG (0)
61bd5218 1398static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1399 struct bpf_func_state *state)
17a52670 1400{
f4d7e40a 1401 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1402 int i;
1403
dc503a8a 1404 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1405 mark_reg_not_init(env, regs, i);
dc503a8a 1406 regs[i].live = REG_LIVE_NONE;
679c782d 1407 regs[i].parent = NULL;
5327ed3d 1408 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1409 }
17a52670
AS
1410
1411 /* frame pointer */
f1174f77 1412 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1413 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1414 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1415}
1416
f4d7e40a
AS
1417#define BPF_MAIN_FUNC (-1)
1418static void init_func_state(struct bpf_verifier_env *env,
1419 struct bpf_func_state *state,
1420 int callsite, int frameno, int subprogno)
1421{
1422 state->callsite = callsite;
1423 state->frameno = frameno;
1424 state->subprogno = subprogno;
1425 init_reg_state(env, state);
1426}
1427
17a52670
AS
1428enum reg_arg_type {
1429 SRC_OP, /* register is used as source operand */
1430 DST_OP, /* register is used as destination operand */
1431 DST_OP_NO_MARK /* same as above, check only, don't mark */
1432};
1433
cc8b0b92
AS
1434static int cmp_subprogs(const void *a, const void *b)
1435{
9c8105bd
JW
1436 return ((struct bpf_subprog_info *)a)->start -
1437 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1438}
1439
1440static int find_subprog(struct bpf_verifier_env *env, int off)
1441{
9c8105bd 1442 struct bpf_subprog_info *p;
cc8b0b92 1443
9c8105bd
JW
1444 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1445 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1446 if (!p)
1447 return -ENOENT;
9c8105bd 1448 return p - env->subprog_info;
cc8b0b92
AS
1449
1450}
1451
1452static int add_subprog(struct bpf_verifier_env *env, int off)
1453{
1454 int insn_cnt = env->prog->len;
1455 int ret;
1456
1457 if (off >= insn_cnt || off < 0) {
1458 verbose(env, "call to invalid destination\n");
1459 return -EINVAL;
1460 }
1461 ret = find_subprog(env, off);
1462 if (ret >= 0)
1463 return 0;
4cb3d99c 1464 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1465 verbose(env, "too many subprograms\n");
1466 return -E2BIG;
1467 }
9c8105bd
JW
1468 env->subprog_info[env->subprog_cnt++].start = off;
1469 sort(env->subprog_info, env->subprog_cnt,
1470 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1471 return 0;
1472}
1473
1474static int check_subprogs(struct bpf_verifier_env *env)
1475{
1476 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1477 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1478 struct bpf_insn *insn = env->prog->insnsi;
1479 int insn_cnt = env->prog->len;
1480
f910cefa
JW
1481 /* Add entry function. */
1482 ret = add_subprog(env, 0);
1483 if (ret < 0)
1484 return ret;
1485
cc8b0b92
AS
1486 /* determine subprog starts. The end is one before the next starts */
1487 for (i = 0; i < insn_cnt; i++) {
1488 if (insn[i].code != (BPF_JMP | BPF_CALL))
1489 continue;
1490 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1491 continue;
2c78ee89
AS
1492 if (!env->bpf_capable) {
1493 verbose(env,
1494 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1495 return -EPERM;
1496 }
cc8b0b92
AS
1497 ret = add_subprog(env, i + insn[i].imm + 1);
1498 if (ret < 0)
1499 return ret;
1500 }
1501
4cb3d99c
JW
1502 /* Add a fake 'exit' subprog which could simplify subprog iteration
1503 * logic. 'subprog_cnt' should not be increased.
1504 */
1505 subprog[env->subprog_cnt].start = insn_cnt;
1506
06ee7115 1507 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1508 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1509 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1510
1511 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1512 subprog_start = subprog[cur_subprog].start;
1513 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1514 for (i = 0; i < insn_cnt; i++) {
1515 u8 code = insn[i].code;
1516
7f6e4312
MF
1517 if (code == (BPF_JMP | BPF_CALL) &&
1518 insn[i].imm == BPF_FUNC_tail_call &&
1519 insn[i].src_reg != BPF_PSEUDO_CALL)
1520 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1521 if (BPF_CLASS(code) == BPF_LD &&
1522 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1523 subprog[cur_subprog].has_ld_abs = true;
092ed096 1524 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1525 goto next;
1526 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1527 goto next;
1528 off = i + insn[i].off + 1;
1529 if (off < subprog_start || off >= subprog_end) {
1530 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1531 return -EINVAL;
1532 }
1533next:
1534 if (i == subprog_end - 1) {
1535 /* to avoid fall-through from one subprog into another
1536 * the last insn of the subprog should be either exit
1537 * or unconditional jump back
1538 */
1539 if (code != (BPF_JMP | BPF_EXIT) &&
1540 code != (BPF_JMP | BPF_JA)) {
1541 verbose(env, "last insn is not an exit or jmp\n");
1542 return -EINVAL;
1543 }
1544 subprog_start = subprog_end;
4cb3d99c
JW
1545 cur_subprog++;
1546 if (cur_subprog < env->subprog_cnt)
9c8105bd 1547 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1548 }
1549 }
1550 return 0;
1551}
1552
679c782d
EC
1553/* Parentage chain of this register (or stack slot) should take care of all
1554 * issues like callee-saved registers, stack slot allocation time, etc.
1555 */
f4d7e40a 1556static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1557 const struct bpf_reg_state *state,
5327ed3d 1558 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1559{
1560 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1561 int cnt = 0;
dc503a8a
EC
1562
1563 while (parent) {
1564 /* if read wasn't screened by an earlier write ... */
679c782d 1565 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1566 break;
9242b5f5
AS
1567 if (parent->live & REG_LIVE_DONE) {
1568 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1569 reg_type_str[parent->type],
1570 parent->var_off.value, parent->off);
1571 return -EFAULT;
1572 }
5327ed3d
JW
1573 /* The first condition is more likely to be true than the
1574 * second, checked it first.
1575 */
1576 if ((parent->live & REG_LIVE_READ) == flag ||
1577 parent->live & REG_LIVE_READ64)
25af32da
AS
1578 /* The parentage chain never changes and
1579 * this parent was already marked as LIVE_READ.
1580 * There is no need to keep walking the chain again and
1581 * keep re-marking all parents as LIVE_READ.
1582 * This case happens when the same register is read
1583 * multiple times without writes into it in-between.
5327ed3d
JW
1584 * Also, if parent has the stronger REG_LIVE_READ64 set,
1585 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1586 */
1587 break;
dc503a8a 1588 /* ... then we depend on parent's value */
5327ed3d
JW
1589 parent->live |= flag;
1590 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1591 if (flag == REG_LIVE_READ64)
1592 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1593 state = parent;
1594 parent = state->parent;
f4d7e40a 1595 writes = true;
06ee7115 1596 cnt++;
dc503a8a 1597 }
06ee7115
AS
1598
1599 if (env->longest_mark_read_walk < cnt)
1600 env->longest_mark_read_walk = cnt;
f4d7e40a 1601 return 0;
dc503a8a
EC
1602}
1603
5327ed3d
JW
1604/* This function is supposed to be used by the following 32-bit optimization
1605 * code only. It returns TRUE if the source or destination register operates
1606 * on 64-bit, otherwise return FALSE.
1607 */
1608static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1609 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1610{
1611 u8 code, class, op;
1612
1613 code = insn->code;
1614 class = BPF_CLASS(code);
1615 op = BPF_OP(code);
1616 if (class == BPF_JMP) {
1617 /* BPF_EXIT for "main" will reach here. Return TRUE
1618 * conservatively.
1619 */
1620 if (op == BPF_EXIT)
1621 return true;
1622 if (op == BPF_CALL) {
1623 /* BPF to BPF call will reach here because of marking
1624 * caller saved clobber with DST_OP_NO_MARK for which we
1625 * don't care the register def because they are anyway
1626 * marked as NOT_INIT already.
1627 */
1628 if (insn->src_reg == BPF_PSEUDO_CALL)
1629 return false;
1630 /* Helper call will reach here because of arg type
1631 * check, conservatively return TRUE.
1632 */
1633 if (t == SRC_OP)
1634 return true;
1635
1636 return false;
1637 }
1638 }
1639
1640 if (class == BPF_ALU64 || class == BPF_JMP ||
1641 /* BPF_END always use BPF_ALU class. */
1642 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1643 return true;
1644
1645 if (class == BPF_ALU || class == BPF_JMP32)
1646 return false;
1647
1648 if (class == BPF_LDX) {
1649 if (t != SRC_OP)
1650 return BPF_SIZE(code) == BPF_DW;
1651 /* LDX source must be ptr. */
1652 return true;
1653 }
1654
1655 if (class == BPF_STX) {
1656 if (reg->type != SCALAR_VALUE)
1657 return true;
1658 return BPF_SIZE(code) == BPF_DW;
1659 }
1660
1661 if (class == BPF_LD) {
1662 u8 mode = BPF_MODE(code);
1663
1664 /* LD_IMM64 */
1665 if (mode == BPF_IMM)
1666 return true;
1667
1668 /* Both LD_IND and LD_ABS return 32-bit data. */
1669 if (t != SRC_OP)
1670 return false;
1671
1672 /* Implicit ctx ptr. */
1673 if (regno == BPF_REG_6)
1674 return true;
1675
1676 /* Explicit source could be any width. */
1677 return true;
1678 }
1679
1680 if (class == BPF_ST)
1681 /* The only source register for BPF_ST is a ptr. */
1682 return true;
1683
1684 /* Conservatively return true at default. */
1685 return true;
1686}
1687
b325fbca
JW
1688/* Return TRUE if INSN doesn't have explicit value define. */
1689static bool insn_no_def(struct bpf_insn *insn)
1690{
1691 u8 class = BPF_CLASS(insn->code);
1692
1693 return (class == BPF_JMP || class == BPF_JMP32 ||
1694 class == BPF_STX || class == BPF_ST);
1695}
1696
1697/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1698static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1699{
1700 if (insn_no_def(insn))
1701 return false;
1702
1703 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1704}
1705
5327ed3d
JW
1706static void mark_insn_zext(struct bpf_verifier_env *env,
1707 struct bpf_reg_state *reg)
1708{
1709 s32 def_idx = reg->subreg_def;
1710
1711 if (def_idx == DEF_NOT_SUBREG)
1712 return;
1713
1714 env->insn_aux_data[def_idx - 1].zext_dst = true;
1715 /* The dst will be zero extended, so won't be sub-register anymore. */
1716 reg->subreg_def = DEF_NOT_SUBREG;
1717}
1718
dc503a8a 1719static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1720 enum reg_arg_type t)
1721{
f4d7e40a
AS
1722 struct bpf_verifier_state *vstate = env->cur_state;
1723 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1724 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1725 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1726 bool rw64;
dc503a8a 1727
17a52670 1728 if (regno >= MAX_BPF_REG) {
61bd5218 1729 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1730 return -EINVAL;
1731 }
1732
c342dc10 1733 reg = &regs[regno];
5327ed3d 1734 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1735 if (t == SRC_OP) {
1736 /* check whether register used as source operand can be read */
c342dc10 1737 if (reg->type == NOT_INIT) {
61bd5218 1738 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1739 return -EACCES;
1740 }
679c782d 1741 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1742 if (regno == BPF_REG_FP)
1743 return 0;
1744
5327ed3d
JW
1745 if (rw64)
1746 mark_insn_zext(env, reg);
1747
1748 return mark_reg_read(env, reg, reg->parent,
1749 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1750 } else {
1751 /* check whether register used as dest operand can be written to */
1752 if (regno == BPF_REG_FP) {
61bd5218 1753 verbose(env, "frame pointer is read only\n");
17a52670
AS
1754 return -EACCES;
1755 }
c342dc10 1756 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1757 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1758 if (t == DST_OP)
61bd5218 1759 mark_reg_unknown(env, regs, regno);
17a52670
AS
1760 }
1761 return 0;
1762}
1763
b5dc0163
AS
1764/* for any branch, call, exit record the history of jmps in the given state */
1765static int push_jmp_history(struct bpf_verifier_env *env,
1766 struct bpf_verifier_state *cur)
1767{
1768 u32 cnt = cur->jmp_history_cnt;
1769 struct bpf_idx_pair *p;
1770
1771 cnt++;
1772 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1773 if (!p)
1774 return -ENOMEM;
1775 p[cnt - 1].idx = env->insn_idx;
1776 p[cnt - 1].prev_idx = env->prev_insn_idx;
1777 cur->jmp_history = p;
1778 cur->jmp_history_cnt = cnt;
1779 return 0;
1780}
1781
1782/* Backtrack one insn at a time. If idx is not at the top of recorded
1783 * history then previous instruction came from straight line execution.
1784 */
1785static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1786 u32 *history)
1787{
1788 u32 cnt = *history;
1789
1790 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1791 i = st->jmp_history[cnt - 1].prev_idx;
1792 (*history)--;
1793 } else {
1794 i--;
1795 }
1796 return i;
1797}
1798
1799/* For given verifier state backtrack_insn() is called from the last insn to
1800 * the first insn. Its purpose is to compute a bitmask of registers and
1801 * stack slots that needs precision in the parent verifier state.
1802 */
1803static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1804 u32 *reg_mask, u64 *stack_mask)
1805{
1806 const struct bpf_insn_cbs cbs = {
1807 .cb_print = verbose,
1808 .private_data = env,
1809 };
1810 struct bpf_insn *insn = env->prog->insnsi + idx;
1811 u8 class = BPF_CLASS(insn->code);
1812 u8 opcode = BPF_OP(insn->code);
1813 u8 mode = BPF_MODE(insn->code);
1814 u32 dreg = 1u << insn->dst_reg;
1815 u32 sreg = 1u << insn->src_reg;
1816 u32 spi;
1817
1818 if (insn->code == 0)
1819 return 0;
1820 if (env->log.level & BPF_LOG_LEVEL) {
1821 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1822 verbose(env, "%d: ", idx);
1823 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1824 }
1825
1826 if (class == BPF_ALU || class == BPF_ALU64) {
1827 if (!(*reg_mask & dreg))
1828 return 0;
1829 if (opcode == BPF_MOV) {
1830 if (BPF_SRC(insn->code) == BPF_X) {
1831 /* dreg = sreg
1832 * dreg needs precision after this insn
1833 * sreg needs precision before this insn
1834 */
1835 *reg_mask &= ~dreg;
1836 *reg_mask |= sreg;
1837 } else {
1838 /* dreg = K
1839 * dreg needs precision after this insn.
1840 * Corresponding register is already marked
1841 * as precise=true in this verifier state.
1842 * No further markings in parent are necessary
1843 */
1844 *reg_mask &= ~dreg;
1845 }
1846 } else {
1847 if (BPF_SRC(insn->code) == BPF_X) {
1848 /* dreg += sreg
1849 * both dreg and sreg need precision
1850 * before this insn
1851 */
1852 *reg_mask |= sreg;
1853 } /* else dreg += K
1854 * dreg still needs precision before this insn
1855 */
1856 }
1857 } else if (class == BPF_LDX) {
1858 if (!(*reg_mask & dreg))
1859 return 0;
1860 *reg_mask &= ~dreg;
1861
1862 /* scalars can only be spilled into stack w/o losing precision.
1863 * Load from any other memory can be zero extended.
1864 * The desire to keep that precision is already indicated
1865 * by 'precise' mark in corresponding register of this state.
1866 * No further tracking necessary.
1867 */
1868 if (insn->src_reg != BPF_REG_FP)
1869 return 0;
1870 if (BPF_SIZE(insn->code) != BPF_DW)
1871 return 0;
1872
1873 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1874 * that [fp - off] slot contains scalar that needs to be
1875 * tracked with precision
1876 */
1877 spi = (-insn->off - 1) / BPF_REG_SIZE;
1878 if (spi >= 64) {
1879 verbose(env, "BUG spi %d\n", spi);
1880 WARN_ONCE(1, "verifier backtracking bug");
1881 return -EFAULT;
1882 }
1883 *stack_mask |= 1ull << spi;
b3b50f05 1884 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1885 if (*reg_mask & dreg)
b3b50f05 1886 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1887 * to access memory. It means backtracking
1888 * encountered a case of pointer subtraction.
1889 */
1890 return -ENOTSUPP;
1891 /* scalars can only be spilled into stack */
1892 if (insn->dst_reg != BPF_REG_FP)
1893 return 0;
1894 if (BPF_SIZE(insn->code) != BPF_DW)
1895 return 0;
1896 spi = (-insn->off - 1) / BPF_REG_SIZE;
1897 if (spi >= 64) {
1898 verbose(env, "BUG spi %d\n", spi);
1899 WARN_ONCE(1, "verifier backtracking bug");
1900 return -EFAULT;
1901 }
1902 if (!(*stack_mask & (1ull << spi)))
1903 return 0;
1904 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1905 if (class == BPF_STX)
1906 *reg_mask |= sreg;
b5dc0163
AS
1907 } else if (class == BPF_JMP || class == BPF_JMP32) {
1908 if (opcode == BPF_CALL) {
1909 if (insn->src_reg == BPF_PSEUDO_CALL)
1910 return -ENOTSUPP;
1911 /* regular helper call sets R0 */
1912 *reg_mask &= ~1;
1913 if (*reg_mask & 0x3f) {
1914 /* if backtracing was looking for registers R1-R5
1915 * they should have been found already.
1916 */
1917 verbose(env, "BUG regs %x\n", *reg_mask);
1918 WARN_ONCE(1, "verifier backtracking bug");
1919 return -EFAULT;
1920 }
1921 } else if (opcode == BPF_EXIT) {
1922 return -ENOTSUPP;
1923 }
1924 } else if (class == BPF_LD) {
1925 if (!(*reg_mask & dreg))
1926 return 0;
1927 *reg_mask &= ~dreg;
1928 /* It's ld_imm64 or ld_abs or ld_ind.
1929 * For ld_imm64 no further tracking of precision
1930 * into parent is necessary
1931 */
1932 if (mode == BPF_IND || mode == BPF_ABS)
1933 /* to be analyzed */
1934 return -ENOTSUPP;
b5dc0163
AS
1935 }
1936 return 0;
1937}
1938
1939/* the scalar precision tracking algorithm:
1940 * . at the start all registers have precise=false.
1941 * . scalar ranges are tracked as normal through alu and jmp insns.
1942 * . once precise value of the scalar register is used in:
1943 * . ptr + scalar alu
1944 * . if (scalar cond K|scalar)
1945 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1946 * backtrack through the verifier states and mark all registers and
1947 * stack slots with spilled constants that these scalar regisers
1948 * should be precise.
1949 * . during state pruning two registers (or spilled stack slots)
1950 * are equivalent if both are not precise.
1951 *
1952 * Note the verifier cannot simply walk register parentage chain,
1953 * since many different registers and stack slots could have been
1954 * used to compute single precise scalar.
1955 *
1956 * The approach of starting with precise=true for all registers and then
1957 * backtrack to mark a register as not precise when the verifier detects
1958 * that program doesn't care about specific value (e.g., when helper
1959 * takes register as ARG_ANYTHING parameter) is not safe.
1960 *
1961 * It's ok to walk single parentage chain of the verifier states.
1962 * It's possible that this backtracking will go all the way till 1st insn.
1963 * All other branches will be explored for needing precision later.
1964 *
1965 * The backtracking needs to deal with cases like:
1966 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1967 * r9 -= r8
1968 * r5 = r9
1969 * if r5 > 0x79f goto pc+7
1970 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1971 * r5 += 1
1972 * ...
1973 * call bpf_perf_event_output#25
1974 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1975 *
1976 * and this case:
1977 * r6 = 1
1978 * call foo // uses callee's r6 inside to compute r0
1979 * r0 += r6
1980 * if r0 == 0 goto
1981 *
1982 * to track above reg_mask/stack_mask needs to be independent for each frame.
1983 *
1984 * Also if parent's curframe > frame where backtracking started,
1985 * the verifier need to mark registers in both frames, otherwise callees
1986 * may incorrectly prune callers. This is similar to
1987 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1988 *
1989 * For now backtracking falls back into conservative marking.
1990 */
1991static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1992 struct bpf_verifier_state *st)
1993{
1994 struct bpf_func_state *func;
1995 struct bpf_reg_state *reg;
1996 int i, j;
1997
1998 /* big hammer: mark all scalars precise in this path.
1999 * pop_stack may still get !precise scalars.
2000 */
2001 for (; st; st = st->parent)
2002 for (i = 0; i <= st->curframe; i++) {
2003 func = st->frame[i];
2004 for (j = 0; j < BPF_REG_FP; j++) {
2005 reg = &func->regs[j];
2006 if (reg->type != SCALAR_VALUE)
2007 continue;
2008 reg->precise = true;
2009 }
2010 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2011 if (func->stack[j].slot_type[0] != STACK_SPILL)
2012 continue;
2013 reg = &func->stack[j].spilled_ptr;
2014 if (reg->type != SCALAR_VALUE)
2015 continue;
2016 reg->precise = true;
2017 }
2018 }
2019}
2020
a3ce685d
AS
2021static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2022 int spi)
b5dc0163
AS
2023{
2024 struct bpf_verifier_state *st = env->cur_state;
2025 int first_idx = st->first_insn_idx;
2026 int last_idx = env->insn_idx;
2027 struct bpf_func_state *func;
2028 struct bpf_reg_state *reg;
a3ce685d
AS
2029 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2030 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2031 bool skip_first = true;
a3ce685d 2032 bool new_marks = false;
b5dc0163
AS
2033 int i, err;
2034
2c78ee89 2035 if (!env->bpf_capable)
b5dc0163
AS
2036 return 0;
2037
2038 func = st->frame[st->curframe];
a3ce685d
AS
2039 if (regno >= 0) {
2040 reg = &func->regs[regno];
2041 if (reg->type != SCALAR_VALUE) {
2042 WARN_ONCE(1, "backtracing misuse");
2043 return -EFAULT;
2044 }
2045 if (!reg->precise)
2046 new_marks = true;
2047 else
2048 reg_mask = 0;
2049 reg->precise = true;
b5dc0163 2050 }
b5dc0163 2051
a3ce685d
AS
2052 while (spi >= 0) {
2053 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2054 stack_mask = 0;
2055 break;
2056 }
2057 reg = &func->stack[spi].spilled_ptr;
2058 if (reg->type != SCALAR_VALUE) {
2059 stack_mask = 0;
2060 break;
2061 }
2062 if (!reg->precise)
2063 new_marks = true;
2064 else
2065 stack_mask = 0;
2066 reg->precise = true;
2067 break;
2068 }
2069
2070 if (!new_marks)
2071 return 0;
2072 if (!reg_mask && !stack_mask)
2073 return 0;
b5dc0163
AS
2074 for (;;) {
2075 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2076 u32 history = st->jmp_history_cnt;
2077
2078 if (env->log.level & BPF_LOG_LEVEL)
2079 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2080 for (i = last_idx;;) {
2081 if (skip_first) {
2082 err = 0;
2083 skip_first = false;
2084 } else {
2085 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2086 }
2087 if (err == -ENOTSUPP) {
2088 mark_all_scalars_precise(env, st);
2089 return 0;
2090 } else if (err) {
2091 return err;
2092 }
2093 if (!reg_mask && !stack_mask)
2094 /* Found assignment(s) into tracked register in this state.
2095 * Since this state is already marked, just return.
2096 * Nothing to be tracked further in the parent state.
2097 */
2098 return 0;
2099 if (i == first_idx)
2100 break;
2101 i = get_prev_insn_idx(st, i, &history);
2102 if (i >= env->prog->len) {
2103 /* This can happen if backtracking reached insn 0
2104 * and there are still reg_mask or stack_mask
2105 * to backtrack.
2106 * It means the backtracking missed the spot where
2107 * particular register was initialized with a constant.
2108 */
2109 verbose(env, "BUG backtracking idx %d\n", i);
2110 WARN_ONCE(1, "verifier backtracking bug");
2111 return -EFAULT;
2112 }
2113 }
2114 st = st->parent;
2115 if (!st)
2116 break;
2117
a3ce685d 2118 new_marks = false;
b5dc0163
AS
2119 func = st->frame[st->curframe];
2120 bitmap_from_u64(mask, reg_mask);
2121 for_each_set_bit(i, mask, 32) {
2122 reg = &func->regs[i];
a3ce685d
AS
2123 if (reg->type != SCALAR_VALUE) {
2124 reg_mask &= ~(1u << i);
b5dc0163 2125 continue;
a3ce685d 2126 }
b5dc0163
AS
2127 if (!reg->precise)
2128 new_marks = true;
2129 reg->precise = true;
2130 }
2131
2132 bitmap_from_u64(mask, stack_mask);
2133 for_each_set_bit(i, mask, 64) {
2134 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2135 /* the sequence of instructions:
2136 * 2: (bf) r3 = r10
2137 * 3: (7b) *(u64 *)(r3 -8) = r0
2138 * 4: (79) r4 = *(u64 *)(r10 -8)
2139 * doesn't contain jmps. It's backtracked
2140 * as a single block.
2141 * During backtracking insn 3 is not recognized as
2142 * stack access, so at the end of backtracking
2143 * stack slot fp-8 is still marked in stack_mask.
2144 * However the parent state may not have accessed
2145 * fp-8 and it's "unallocated" stack space.
2146 * In such case fallback to conservative.
b5dc0163 2147 */
2339cd6c
AS
2148 mark_all_scalars_precise(env, st);
2149 return 0;
b5dc0163
AS
2150 }
2151
a3ce685d
AS
2152 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2153 stack_mask &= ~(1ull << i);
b5dc0163 2154 continue;
a3ce685d 2155 }
b5dc0163 2156 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2157 if (reg->type != SCALAR_VALUE) {
2158 stack_mask &= ~(1ull << i);
b5dc0163 2159 continue;
a3ce685d 2160 }
b5dc0163
AS
2161 if (!reg->precise)
2162 new_marks = true;
2163 reg->precise = true;
2164 }
2165 if (env->log.level & BPF_LOG_LEVEL) {
2166 print_verifier_state(env, func);
2167 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2168 new_marks ? "didn't have" : "already had",
2169 reg_mask, stack_mask);
2170 }
2171
a3ce685d
AS
2172 if (!reg_mask && !stack_mask)
2173 break;
b5dc0163
AS
2174 if (!new_marks)
2175 break;
2176
2177 last_idx = st->last_insn_idx;
2178 first_idx = st->first_insn_idx;
2179 }
2180 return 0;
2181}
2182
a3ce685d
AS
2183static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2184{
2185 return __mark_chain_precision(env, regno, -1);
2186}
2187
2188static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2189{
2190 return __mark_chain_precision(env, -1, spi);
2191}
b5dc0163 2192
1be7f75d
AS
2193static bool is_spillable_regtype(enum bpf_reg_type type)
2194{
2195 switch (type) {
2196 case PTR_TO_MAP_VALUE:
2197 case PTR_TO_MAP_VALUE_OR_NULL:
2198 case PTR_TO_STACK:
2199 case PTR_TO_CTX:
969bf05e 2200 case PTR_TO_PACKET:
de8f3a83 2201 case PTR_TO_PACKET_META:
969bf05e 2202 case PTR_TO_PACKET_END:
d58e468b 2203 case PTR_TO_FLOW_KEYS:
1be7f75d 2204 case CONST_PTR_TO_MAP:
c64b7983
JS
2205 case PTR_TO_SOCKET:
2206 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2207 case PTR_TO_SOCK_COMMON:
2208 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2209 case PTR_TO_TCP_SOCK:
2210 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2211 case PTR_TO_XDP_SOCK:
65726b5b 2212 case PTR_TO_BTF_ID:
b121b341 2213 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2214 case PTR_TO_RDONLY_BUF:
2215 case PTR_TO_RDONLY_BUF_OR_NULL:
2216 case PTR_TO_RDWR_BUF:
2217 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2218 case PTR_TO_PERCPU_BTF_ID:
1be7f75d
AS
2219 return true;
2220 default:
2221 return false;
2222 }
2223}
2224
cc2b14d5
AS
2225/* Does this register contain a constant zero? */
2226static bool register_is_null(struct bpf_reg_state *reg)
2227{
2228 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2229}
2230
f7cf25b2
AS
2231static bool register_is_const(struct bpf_reg_state *reg)
2232{
2233 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2234}
2235
5689d49b
YS
2236static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2237{
2238 return tnum_is_unknown(reg->var_off) &&
2239 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2240 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2241 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2242 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2243}
2244
2245static bool register_is_bounded(struct bpf_reg_state *reg)
2246{
2247 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2248}
2249
6e7e63cb
JH
2250static bool __is_pointer_value(bool allow_ptr_leaks,
2251 const struct bpf_reg_state *reg)
2252{
2253 if (allow_ptr_leaks)
2254 return false;
2255
2256 return reg->type != SCALAR_VALUE;
2257}
2258
f7cf25b2
AS
2259static void save_register_state(struct bpf_func_state *state,
2260 int spi, struct bpf_reg_state *reg)
2261{
2262 int i;
2263
2264 state->stack[spi].spilled_ptr = *reg;
2265 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2266
2267 for (i = 0; i < BPF_REG_SIZE; i++)
2268 state->stack[spi].slot_type[i] = STACK_SPILL;
2269}
2270
17a52670
AS
2271/* check_stack_read/write functions track spill/fill of registers,
2272 * stack boundary and alignment are checked in check_mem_access()
2273 */
61bd5218 2274static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2275 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2276 int off, int size, int value_regno, int insn_idx)
17a52670 2277{
f4d7e40a 2278 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2279 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2280 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2281 struct bpf_reg_state *reg = NULL;
638f5b90 2282
f4d7e40a 2283 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2284 state->acquired_refs, true);
638f5b90
AS
2285 if (err)
2286 return err;
9c399760
AS
2287 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2288 * so it's aligned access and [off, off + size) are within stack limits
2289 */
638f5b90
AS
2290 if (!env->allow_ptr_leaks &&
2291 state->stack[spi].slot_type[0] == STACK_SPILL &&
2292 size != BPF_REG_SIZE) {
2293 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2294 return -EACCES;
2295 }
17a52670 2296
f4d7e40a 2297 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2298 if (value_regno >= 0)
2299 reg = &cur->regs[value_regno];
17a52670 2300
5689d49b 2301 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2c78ee89 2302 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2303 if (dst_reg != BPF_REG_FP) {
2304 /* The backtracking logic can only recognize explicit
2305 * stack slot address like [fp - 8]. Other spill of
2306 * scalar via different register has to be conervative.
2307 * Backtrack from here and mark all registers as precise
2308 * that contributed into 'reg' being a constant.
2309 */
2310 err = mark_chain_precision(env, value_regno);
2311 if (err)
2312 return err;
2313 }
f7cf25b2
AS
2314 save_register_state(state, spi, reg);
2315 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2316 /* register containing pointer is being spilled into stack */
9c399760 2317 if (size != BPF_REG_SIZE) {
f7cf25b2 2318 verbose_linfo(env, insn_idx, "; ");
61bd5218 2319 verbose(env, "invalid size of register spill\n");
17a52670
AS
2320 return -EACCES;
2321 }
2322
f7cf25b2 2323 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2324 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2325 return -EINVAL;
2326 }
2327
2c78ee89 2328 if (!env->bypass_spec_v4) {
f7cf25b2 2329 bool sanitize = false;
17a52670 2330
f7cf25b2
AS
2331 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2332 register_is_const(&state->stack[spi].spilled_ptr))
2333 sanitize = true;
2334 for (i = 0; i < BPF_REG_SIZE; i++)
2335 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2336 sanitize = true;
2337 break;
2338 }
2339 if (sanitize) {
af86ca4e
AS
2340 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2341 int soff = (-spi - 1) * BPF_REG_SIZE;
2342
2343 /* detected reuse of integer stack slot with a pointer
2344 * which means either llvm is reusing stack slot or
2345 * an attacker is trying to exploit CVE-2018-3639
2346 * (speculative store bypass)
2347 * Have to sanitize that slot with preemptive
2348 * store of zero.
2349 */
2350 if (*poff && *poff != soff) {
2351 /* disallow programs where single insn stores
2352 * into two different stack slots, since verifier
2353 * cannot sanitize them
2354 */
2355 verbose(env,
2356 "insn %d cannot access two stack slots fp%d and fp%d",
2357 insn_idx, *poff, soff);
2358 return -EINVAL;
2359 }
2360 *poff = soff;
2361 }
af86ca4e 2362 }
f7cf25b2 2363 save_register_state(state, spi, reg);
9c399760 2364 } else {
cc2b14d5
AS
2365 u8 type = STACK_MISC;
2366
679c782d
EC
2367 /* regular write of data into stack destroys any spilled ptr */
2368 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2369 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2370 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2371 for (i = 0; i < BPF_REG_SIZE; i++)
2372 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2373
cc2b14d5
AS
2374 /* only mark the slot as written if all 8 bytes were written
2375 * otherwise read propagation may incorrectly stop too soon
2376 * when stack slots are partially written.
2377 * This heuristic means that read propagation will be
2378 * conservative, since it will add reg_live_read marks
2379 * to stack slots all the way to first state when programs
2380 * writes+reads less than 8 bytes
2381 */
2382 if (size == BPF_REG_SIZE)
2383 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2384
2385 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2386 if (reg && register_is_null(reg)) {
2387 /* backtracking doesn't work for STACK_ZERO yet. */
2388 err = mark_chain_precision(env, value_regno);
2389 if (err)
2390 return err;
cc2b14d5 2391 type = STACK_ZERO;
b5dc0163 2392 }
cc2b14d5 2393
0bae2d4d 2394 /* Mark slots affected by this stack write. */
9c399760 2395 for (i = 0; i < size; i++)
638f5b90 2396 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2397 type;
17a52670
AS
2398 }
2399 return 0;
2400}
2401
61bd5218 2402static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2403 struct bpf_func_state *reg_state /* func where register points to */,
2404 int off, int size, int value_regno)
17a52670 2405{
f4d7e40a
AS
2406 struct bpf_verifier_state *vstate = env->cur_state;
2407 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2408 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2409 struct bpf_reg_state *reg;
638f5b90 2410 u8 *stype;
17a52670 2411
f4d7e40a 2412 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2413 verbose(env, "invalid read from stack off %d+0 size %d\n",
2414 off, size);
2415 return -EACCES;
2416 }
f4d7e40a 2417 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2418 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2419
638f5b90 2420 if (stype[0] == STACK_SPILL) {
9c399760 2421 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2422 if (reg->type != SCALAR_VALUE) {
2423 verbose_linfo(env, env->insn_idx, "; ");
2424 verbose(env, "invalid size of register fill\n");
2425 return -EACCES;
2426 }
2427 if (value_regno >= 0) {
2428 mark_reg_unknown(env, state->regs, value_regno);
2429 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2430 }
2431 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2432 return 0;
17a52670 2433 }
9c399760 2434 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2435 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2436 verbose(env, "corrupted spill memory\n");
17a52670
AS
2437 return -EACCES;
2438 }
2439 }
2440
dc503a8a 2441 if (value_regno >= 0) {
17a52670 2442 /* restore register state from stack */
f7cf25b2 2443 state->regs[value_regno] = *reg;
2f18f62e
AS
2444 /* mark reg as written since spilled pointer state likely
2445 * has its liveness marks cleared by is_state_visited()
2446 * which resets stack/reg liveness for state transitions
2447 */
2448 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2449 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2450 /* If value_regno==-1, the caller is asking us whether
2451 * it is acceptable to use this value as a SCALAR_VALUE
2452 * (e.g. for XADD).
2453 * We must not allow unprivileged callers to do that
2454 * with spilled pointers.
2455 */
2456 verbose(env, "leaking pointer from stack off %d\n",
2457 off);
2458 return -EACCES;
dc503a8a 2459 }
f7cf25b2 2460 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2461 } else {
cc2b14d5
AS
2462 int zeros = 0;
2463
17a52670 2464 for (i = 0; i < size; i++) {
cc2b14d5
AS
2465 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2466 continue;
2467 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2468 zeros++;
2469 continue;
17a52670 2470 }
cc2b14d5
AS
2471 verbose(env, "invalid read from stack off %d+%d size %d\n",
2472 off, i, size);
2473 return -EACCES;
2474 }
f7cf25b2 2475 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2476 if (value_regno >= 0) {
2477 if (zeros == size) {
2478 /* any size read into register is zero extended,
2479 * so the whole register == const_zero
2480 */
2481 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2482 /* backtracking doesn't support STACK_ZERO yet,
2483 * so mark it precise here, so that later
2484 * backtracking can stop here.
2485 * Backtracking may not need this if this register
2486 * doesn't participate in pointer adjustment.
2487 * Forward propagation of precise flag is not
2488 * necessary either. This mark is only to stop
2489 * backtracking. Any register that contributed
2490 * to const 0 was marked precise before spill.
2491 */
2492 state->regs[value_regno].precise = true;
cc2b14d5
AS
2493 } else {
2494 /* have read misc data from the stack */
2495 mark_reg_unknown(env, state->regs, value_regno);
2496 }
2497 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2498 }
17a52670 2499 }
f7cf25b2 2500 return 0;
17a52670
AS
2501}
2502
e4298d25
DB
2503static int check_stack_access(struct bpf_verifier_env *env,
2504 const struct bpf_reg_state *reg,
2505 int off, int size)
2506{
2507 /* Stack accesses must be at a fixed offset, so that we
2508 * can determine what type of data were returned. See
2509 * check_stack_read().
2510 */
2511 if (!tnum_is_const(reg->var_off)) {
2512 char tn_buf[48];
2513
2514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2515 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2516 tn_buf, off, size);
2517 return -EACCES;
2518 }
2519
2520 if (off >= 0 || off < -MAX_BPF_STACK) {
2521 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2522 return -EACCES;
2523 }
2524
2525 return 0;
2526}
2527
591fe988
DB
2528static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2529 int off, int size, enum bpf_access_type type)
2530{
2531 struct bpf_reg_state *regs = cur_regs(env);
2532 struct bpf_map *map = regs[regno].map_ptr;
2533 u32 cap = bpf_map_flags_to_cap(map);
2534
2535 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2536 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2537 map->value_size, off, size);
2538 return -EACCES;
2539 }
2540
2541 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2542 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2543 map->value_size, off, size);
2544 return -EACCES;
2545 }
2546
2547 return 0;
2548}
2549
457f4436
AN
2550/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2551static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2552 int off, int size, u32 mem_size,
2553 bool zero_size_allowed)
17a52670 2554{
457f4436
AN
2555 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2556 struct bpf_reg_state *reg;
2557
2558 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2559 return 0;
17a52670 2560
457f4436
AN
2561 reg = &cur_regs(env)[regno];
2562 switch (reg->type) {
2563 case PTR_TO_MAP_VALUE:
61bd5218 2564 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2565 mem_size, off, size);
2566 break;
2567 case PTR_TO_PACKET:
2568 case PTR_TO_PACKET_META:
2569 case PTR_TO_PACKET_END:
2570 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2571 off, size, regno, reg->id, off, mem_size);
2572 break;
2573 case PTR_TO_MEM:
2574 default:
2575 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2576 mem_size, off, size);
17a52670 2577 }
457f4436
AN
2578
2579 return -EACCES;
17a52670
AS
2580}
2581
457f4436
AN
2582/* check read/write into a memory region with possible variable offset */
2583static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2584 int off, int size, u32 mem_size,
2585 bool zero_size_allowed)
dbcfe5f7 2586{
f4d7e40a
AS
2587 struct bpf_verifier_state *vstate = env->cur_state;
2588 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2589 struct bpf_reg_state *reg = &state->regs[regno];
2590 int err;
2591
457f4436 2592 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2593 * need to try adding each of min_value and max_value to off
2594 * to make sure our theoretical access will be safe.
dbcfe5f7 2595 */
06ee7115 2596 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2597 print_verifier_state(env, state);
b7137c4e 2598
dbcfe5f7
GB
2599 /* The minimum value is only important with signed
2600 * comparisons where we can't assume the floor of a
2601 * value is 0. If we are using signed variables for our
2602 * index'es we need to make sure that whatever we use
2603 * will have a set floor within our range.
2604 */
b7137c4e
DB
2605 if (reg->smin_value < 0 &&
2606 (reg->smin_value == S64_MIN ||
2607 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2608 reg->smin_value + off < 0)) {
61bd5218 2609 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2610 regno);
2611 return -EACCES;
2612 }
457f4436
AN
2613 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2614 mem_size, zero_size_allowed);
dbcfe5f7 2615 if (err) {
457f4436 2616 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2617 regno);
dbcfe5f7
GB
2618 return err;
2619 }
2620
b03c9f9f
EC
2621 /* If we haven't set a max value then we need to bail since we can't be
2622 * sure we won't do bad things.
2623 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2624 */
b03c9f9f 2625 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2626 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2627 regno);
2628 return -EACCES;
2629 }
457f4436
AN
2630 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2631 mem_size, zero_size_allowed);
2632 if (err) {
2633 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2634 regno);
457f4436
AN
2635 return err;
2636 }
2637
2638 return 0;
2639}
d83525ca 2640
457f4436
AN
2641/* check read/write into a map element with possible variable offset */
2642static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2643 int off, int size, bool zero_size_allowed)
2644{
2645 struct bpf_verifier_state *vstate = env->cur_state;
2646 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2647 struct bpf_reg_state *reg = &state->regs[regno];
2648 struct bpf_map *map = reg->map_ptr;
2649 int err;
2650
2651 err = check_mem_region_access(env, regno, off, size, map->value_size,
2652 zero_size_allowed);
2653 if (err)
2654 return err;
2655
2656 if (map_value_has_spin_lock(map)) {
2657 u32 lock = map->spin_lock_off;
d83525ca
AS
2658
2659 /* if any part of struct bpf_spin_lock can be touched by
2660 * load/store reject this program.
2661 * To check that [x1, x2) overlaps with [y1, y2)
2662 * it is sufficient to check x1 < y2 && y1 < x2.
2663 */
2664 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2665 lock < reg->umax_value + off + size) {
2666 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2667 return -EACCES;
2668 }
2669 }
f1174f77 2670 return err;
dbcfe5f7
GB
2671}
2672
969bf05e
AS
2673#define MAX_PACKET_OFF 0xffff
2674
7e40781c
UP
2675static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2676{
3aac1ead 2677 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
2678}
2679
58e2af8b 2680static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2681 const struct bpf_call_arg_meta *meta,
2682 enum bpf_access_type t)
4acf6c0b 2683{
7e40781c
UP
2684 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2685
2686 switch (prog_type) {
5d66fa7d 2687 /* Program types only with direct read access go here! */
3a0af8fd
TG
2688 case BPF_PROG_TYPE_LWT_IN:
2689 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2690 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2691 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2692 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2693 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2694 if (t == BPF_WRITE)
2695 return false;
8731745e 2696 fallthrough;
5d66fa7d
DB
2697
2698 /* Program types with direct read + write access go here! */
36bbef52
DB
2699 case BPF_PROG_TYPE_SCHED_CLS:
2700 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2701 case BPF_PROG_TYPE_XDP:
3a0af8fd 2702 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2703 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2704 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2705 if (meta)
2706 return meta->pkt_access;
2707
2708 env->seen_direct_write = true;
4acf6c0b 2709 return true;
0d01da6a
SF
2710
2711 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2712 if (t == BPF_WRITE)
2713 env->seen_direct_write = true;
2714
2715 return true;
2716
4acf6c0b
BB
2717 default:
2718 return false;
2719 }
2720}
2721
f1174f77 2722static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2723 int size, bool zero_size_allowed)
f1174f77 2724{
638f5b90 2725 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2726 struct bpf_reg_state *reg = &regs[regno];
2727 int err;
2728
2729 /* We may have added a variable offset to the packet pointer; but any
2730 * reg->range we have comes after that. We are only checking the fixed
2731 * offset.
2732 */
2733
2734 /* We don't allow negative numbers, because we aren't tracking enough
2735 * detail to prove they're safe.
2736 */
b03c9f9f 2737 if (reg->smin_value < 0) {
61bd5218 2738 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2739 regno);
2740 return -EACCES;
2741 }
457f4436
AN
2742 err = __check_mem_access(env, regno, off, size, reg->range,
2743 zero_size_allowed);
f1174f77 2744 if (err) {
61bd5218 2745 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2746 return err;
2747 }
e647815a 2748
457f4436 2749 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2750 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2751 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2752 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2753 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2754 */
2755 env->prog->aux->max_pkt_offset =
2756 max_t(u32, env->prog->aux->max_pkt_offset,
2757 off + reg->umax_value + size - 1);
2758
f1174f77
EC
2759 return err;
2760}
2761
2762/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2763static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2764 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2765 u32 *btf_id)
17a52670 2766{
f96da094
DB
2767 struct bpf_insn_access_aux info = {
2768 .reg_type = *reg_type,
9e15db66 2769 .log = &env->log,
f96da094 2770 };
31fd8581 2771
4f9218aa 2772 if (env->ops->is_valid_access &&
5e43f899 2773 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2774 /* A non zero info.ctx_field_size indicates that this field is a
2775 * candidate for later verifier transformation to load the whole
2776 * field and then apply a mask when accessed with a narrower
2777 * access than actual ctx access size. A zero info.ctx_field_size
2778 * will only allow for whole field access and rejects any other
2779 * type of narrower access.
31fd8581 2780 */
23994631 2781 *reg_type = info.reg_type;
31fd8581 2782
b121b341 2783 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2784 *btf_id = info.btf_id;
2785 else
2786 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2787 /* remember the offset of last byte accessed in ctx */
2788 if (env->prog->aux->max_ctx_offset < off + size)
2789 env->prog->aux->max_ctx_offset = off + size;
17a52670 2790 return 0;
32bbe007 2791 }
17a52670 2792
61bd5218 2793 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2794 return -EACCES;
2795}
2796
d58e468b
PP
2797static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2798 int size)
2799{
2800 if (size < 0 || off < 0 ||
2801 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2802 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2803 off, size);
2804 return -EACCES;
2805 }
2806 return 0;
2807}
2808
5f456649
MKL
2809static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2810 u32 regno, int off, int size,
2811 enum bpf_access_type t)
c64b7983
JS
2812{
2813 struct bpf_reg_state *regs = cur_regs(env);
2814 struct bpf_reg_state *reg = &regs[regno];
5f456649 2815 struct bpf_insn_access_aux info = {};
46f8bc92 2816 bool valid;
c64b7983
JS
2817
2818 if (reg->smin_value < 0) {
2819 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2820 regno);
2821 return -EACCES;
2822 }
2823
46f8bc92
MKL
2824 switch (reg->type) {
2825 case PTR_TO_SOCK_COMMON:
2826 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2827 break;
2828 case PTR_TO_SOCKET:
2829 valid = bpf_sock_is_valid_access(off, size, t, &info);
2830 break;
655a51e5
MKL
2831 case PTR_TO_TCP_SOCK:
2832 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2833 break;
fada7fdc
JL
2834 case PTR_TO_XDP_SOCK:
2835 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2836 break;
46f8bc92
MKL
2837 default:
2838 valid = false;
c64b7983
JS
2839 }
2840
5f456649 2841
46f8bc92
MKL
2842 if (valid) {
2843 env->insn_aux_data[insn_idx].ctx_field_size =
2844 info.ctx_field_size;
2845 return 0;
2846 }
2847
2848 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2849 regno, reg_type_str[reg->type], off, size);
2850
2851 return -EACCES;
c64b7983
JS
2852}
2853
2a159c6f
DB
2854static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2855{
2856 return cur_regs(env) + regno;
2857}
2858
4cabc5b1
DB
2859static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2860{
2a159c6f 2861 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2862}
2863
f37a8cb8
DB
2864static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2865{
2a159c6f 2866 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2867
46f8bc92
MKL
2868 return reg->type == PTR_TO_CTX;
2869}
2870
2871static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2872{
2873 const struct bpf_reg_state *reg = reg_state(env, regno);
2874
2875 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2876}
2877
ca369602
DB
2878static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2879{
2a159c6f 2880 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2881
2882 return type_is_pkt_pointer(reg->type);
2883}
2884
4b5defde
DB
2885static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2886{
2887 const struct bpf_reg_state *reg = reg_state(env, regno);
2888
2889 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2890 return reg->type == PTR_TO_FLOW_KEYS;
2891}
2892
61bd5218
JK
2893static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2894 const struct bpf_reg_state *reg,
d1174416 2895 int off, int size, bool strict)
969bf05e 2896{
f1174f77 2897 struct tnum reg_off;
e07b98d9 2898 int ip_align;
d1174416
DM
2899
2900 /* Byte size accesses are always allowed. */
2901 if (!strict || size == 1)
2902 return 0;
2903
e4eda884
DM
2904 /* For platforms that do not have a Kconfig enabling
2905 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2906 * NET_IP_ALIGN is universally set to '2'. And on platforms
2907 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2908 * to this code only in strict mode where we want to emulate
2909 * the NET_IP_ALIGN==2 checking. Therefore use an
2910 * unconditional IP align value of '2'.
e07b98d9 2911 */
e4eda884 2912 ip_align = 2;
f1174f77
EC
2913
2914 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2915 if (!tnum_is_aligned(reg_off, size)) {
2916 char tn_buf[48];
2917
2918 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2919 verbose(env,
2920 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2921 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2922 return -EACCES;
2923 }
79adffcd 2924
969bf05e
AS
2925 return 0;
2926}
2927
61bd5218
JK
2928static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2929 const struct bpf_reg_state *reg,
f1174f77
EC
2930 const char *pointer_desc,
2931 int off, int size, bool strict)
79adffcd 2932{
f1174f77
EC
2933 struct tnum reg_off;
2934
2935 /* Byte size accesses are always allowed. */
2936 if (!strict || size == 1)
2937 return 0;
2938
2939 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2940 if (!tnum_is_aligned(reg_off, size)) {
2941 char tn_buf[48];
2942
2943 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2944 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2945 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2946 return -EACCES;
2947 }
2948
969bf05e
AS
2949 return 0;
2950}
2951
e07b98d9 2952static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2953 const struct bpf_reg_state *reg, int off,
2954 int size, bool strict_alignment_once)
79adffcd 2955{
ca369602 2956 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2957 const char *pointer_desc = "";
d1174416 2958
79adffcd
DB
2959 switch (reg->type) {
2960 case PTR_TO_PACKET:
de8f3a83
DB
2961 case PTR_TO_PACKET_META:
2962 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2963 * right in front, treat it the very same way.
2964 */
61bd5218 2965 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2966 case PTR_TO_FLOW_KEYS:
2967 pointer_desc = "flow keys ";
2968 break;
f1174f77
EC
2969 case PTR_TO_MAP_VALUE:
2970 pointer_desc = "value ";
2971 break;
2972 case PTR_TO_CTX:
2973 pointer_desc = "context ";
2974 break;
2975 case PTR_TO_STACK:
2976 pointer_desc = "stack ";
a5ec6ae1
JH
2977 /* The stack spill tracking logic in check_stack_write()
2978 * and check_stack_read() relies on stack accesses being
2979 * aligned.
2980 */
2981 strict = true;
f1174f77 2982 break;
c64b7983
JS
2983 case PTR_TO_SOCKET:
2984 pointer_desc = "sock ";
2985 break;
46f8bc92
MKL
2986 case PTR_TO_SOCK_COMMON:
2987 pointer_desc = "sock_common ";
2988 break;
655a51e5
MKL
2989 case PTR_TO_TCP_SOCK:
2990 pointer_desc = "tcp_sock ";
2991 break;
fada7fdc
JL
2992 case PTR_TO_XDP_SOCK:
2993 pointer_desc = "xdp_sock ";
2994 break;
79adffcd 2995 default:
f1174f77 2996 break;
79adffcd 2997 }
61bd5218
JK
2998 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2999 strict);
79adffcd
DB
3000}
3001
f4d7e40a
AS
3002static int update_stack_depth(struct bpf_verifier_env *env,
3003 const struct bpf_func_state *func,
3004 int off)
3005{
9c8105bd 3006 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3007
3008 if (stack >= -off)
3009 return 0;
3010
3011 /* update known max for given subprogram */
9c8105bd 3012 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3013 return 0;
3014}
f4d7e40a 3015
70a87ffe
AS
3016/* starting from main bpf function walk all instructions of the function
3017 * and recursively walk all callees that given function can call.
3018 * Ignore jump and exit insns.
3019 * Since recursion is prevented by check_cfg() this algorithm
3020 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3021 */
3022static int check_max_stack_depth(struct bpf_verifier_env *env)
3023{
9c8105bd
JW
3024 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3025 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3026 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3027 bool tail_call_reachable = false;
70a87ffe
AS
3028 int ret_insn[MAX_CALL_FRAMES];
3029 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3030 int j;
f4d7e40a 3031
70a87ffe 3032process_func:
7f6e4312
MF
3033 /* protect against potential stack overflow that might happen when
3034 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3035 * depth for such case down to 256 so that the worst case scenario
3036 * would result in 8k stack size (32 which is tailcall limit * 256 =
3037 * 8k).
3038 *
3039 * To get the idea what might happen, see an example:
3040 * func1 -> sub rsp, 128
3041 * subfunc1 -> sub rsp, 256
3042 * tailcall1 -> add rsp, 256
3043 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3044 * subfunc2 -> sub rsp, 64
3045 * subfunc22 -> sub rsp, 128
3046 * tailcall2 -> add rsp, 128
3047 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3048 *
3049 * tailcall will unwind the current stack frame but it will not get rid
3050 * of caller's stack as shown on the example above.
3051 */
3052 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3053 verbose(env,
3054 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3055 depth);
3056 return -EACCES;
3057 }
70a87ffe
AS
3058 /* round up to 32-bytes, since this is granularity
3059 * of interpreter stack size
3060 */
9c8105bd 3061 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3062 if (depth > MAX_BPF_STACK) {
f4d7e40a 3063 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3064 frame + 1, depth);
f4d7e40a
AS
3065 return -EACCES;
3066 }
70a87ffe 3067continue_func:
4cb3d99c 3068 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
3069 for (; i < subprog_end; i++) {
3070 if (insn[i].code != (BPF_JMP | BPF_CALL))
3071 continue;
3072 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3073 continue;
3074 /* remember insn and function to return to */
3075 ret_insn[frame] = i + 1;
9c8105bd 3076 ret_prog[frame] = idx;
70a87ffe
AS
3077
3078 /* find the callee */
3079 i = i + insn[i].imm + 1;
9c8105bd
JW
3080 idx = find_subprog(env, i);
3081 if (idx < 0) {
70a87ffe
AS
3082 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3083 i);
3084 return -EFAULT;
3085 }
ebf7d1f5
MF
3086
3087 if (subprog[idx].has_tail_call)
3088 tail_call_reachable = true;
3089
70a87ffe
AS
3090 frame++;
3091 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3092 verbose(env, "the call stack of %d frames is too deep !\n",
3093 frame);
3094 return -E2BIG;
70a87ffe
AS
3095 }
3096 goto process_func;
3097 }
ebf7d1f5
MF
3098 /* if tail call got detected across bpf2bpf calls then mark each of the
3099 * currently present subprog frames as tail call reachable subprogs;
3100 * this info will be utilized by JIT so that we will be preserving the
3101 * tail call counter throughout bpf2bpf calls combined with tailcalls
3102 */
3103 if (tail_call_reachable)
3104 for (j = 0; j < frame; j++)
3105 subprog[ret_prog[j]].tail_call_reachable = true;
3106
70a87ffe
AS
3107 /* end of for() loop means the last insn of the 'subprog'
3108 * was reached. Doesn't matter whether it was JA or EXIT
3109 */
3110 if (frame == 0)
3111 return 0;
9c8105bd 3112 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3113 frame--;
3114 i = ret_insn[frame];
9c8105bd 3115 idx = ret_prog[frame];
70a87ffe 3116 goto continue_func;
f4d7e40a
AS
3117}
3118
19d28fbd 3119#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3120static int get_callee_stack_depth(struct bpf_verifier_env *env,
3121 const struct bpf_insn *insn, int idx)
3122{
3123 int start = idx + insn->imm + 1, subprog;
3124
3125 subprog = find_subprog(env, start);
3126 if (subprog < 0) {
3127 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3128 start);
3129 return -EFAULT;
3130 }
9c8105bd 3131 return env->subprog_info[subprog].stack_depth;
1ea47e01 3132}
19d28fbd 3133#endif
1ea47e01 3134
51c39bb1
AS
3135int check_ctx_reg(struct bpf_verifier_env *env,
3136 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3137{
3138 /* Access to ctx or passing it to a helper is only allowed in
3139 * its original, unmodified form.
3140 */
3141
3142 if (reg->off) {
3143 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3144 regno, reg->off);
3145 return -EACCES;
3146 }
3147
3148 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3149 char tn_buf[48];
3150
3151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3152 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3153 return -EACCES;
3154 }
3155
3156 return 0;
3157}
3158
afbf21dc
YS
3159static int __check_buffer_access(struct bpf_verifier_env *env,
3160 const char *buf_info,
3161 const struct bpf_reg_state *reg,
3162 int regno, int off, int size)
9df1c28b
MM
3163{
3164 if (off < 0) {
3165 verbose(env,
4fc00b79 3166 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3167 regno, buf_info, off, size);
9df1c28b
MM
3168 return -EACCES;
3169 }
3170 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3171 char tn_buf[48];
3172
3173 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3174 verbose(env,
4fc00b79 3175 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3176 regno, off, tn_buf);
3177 return -EACCES;
3178 }
afbf21dc
YS
3179
3180 return 0;
3181}
3182
3183static int check_tp_buffer_access(struct bpf_verifier_env *env,
3184 const struct bpf_reg_state *reg,
3185 int regno, int off, int size)
3186{
3187 int err;
3188
3189 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3190 if (err)
3191 return err;
3192
9df1c28b
MM
3193 if (off + size > env->prog->aux->max_tp_access)
3194 env->prog->aux->max_tp_access = off + size;
3195
3196 return 0;
3197}
3198
afbf21dc
YS
3199static int check_buffer_access(struct bpf_verifier_env *env,
3200 const struct bpf_reg_state *reg,
3201 int regno, int off, int size,
3202 bool zero_size_allowed,
3203 const char *buf_info,
3204 u32 *max_access)
3205{
3206 int err;
3207
3208 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3209 if (err)
3210 return err;
3211
3212 if (off + size > *max_access)
3213 *max_access = off + size;
3214
3215 return 0;
3216}
3217
3f50f132
JF
3218/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3219static void zext_32_to_64(struct bpf_reg_state *reg)
3220{
3221 reg->var_off = tnum_subreg(reg->var_off);
3222 __reg_assign_32_into_64(reg);
3223}
9df1c28b 3224
0c17d1d2
JH
3225/* truncate register to smaller size (in bytes)
3226 * must be called with size < BPF_REG_SIZE
3227 */
3228static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3229{
3230 u64 mask;
3231
3232 /* clear high bits in bit representation */
3233 reg->var_off = tnum_cast(reg->var_off, size);
3234
3235 /* fix arithmetic bounds */
3236 mask = ((u64)1 << (size * 8)) - 1;
3237 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3238 reg->umin_value &= mask;
3239 reg->umax_value &= mask;
3240 } else {
3241 reg->umin_value = 0;
3242 reg->umax_value = mask;
3243 }
3244 reg->smin_value = reg->umin_value;
3245 reg->smax_value = reg->umax_value;
3f50f132
JF
3246
3247 /* If size is smaller than 32bit register the 32bit register
3248 * values are also truncated so we push 64-bit bounds into
3249 * 32-bit bounds. Above were truncated < 32-bits already.
3250 */
3251 if (size >= 4)
3252 return;
3253 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3254}
3255
a23740ec
AN
3256static bool bpf_map_is_rdonly(const struct bpf_map *map)
3257{
3258 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3259}
3260
3261static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3262{
3263 void *ptr;
3264 u64 addr;
3265 int err;
3266
3267 err = map->ops->map_direct_value_addr(map, &addr, off);
3268 if (err)
3269 return err;
2dedd7d2 3270 ptr = (void *)(long)addr + off;
a23740ec
AN
3271
3272 switch (size) {
3273 case sizeof(u8):
3274 *val = (u64)*(u8 *)ptr;
3275 break;
3276 case sizeof(u16):
3277 *val = (u64)*(u16 *)ptr;
3278 break;
3279 case sizeof(u32):
3280 *val = (u64)*(u32 *)ptr;
3281 break;
3282 case sizeof(u64):
3283 *val = *(u64 *)ptr;
3284 break;
3285 default:
3286 return -EINVAL;
3287 }
3288 return 0;
3289}
3290
9e15db66
AS
3291static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3292 struct bpf_reg_state *regs,
3293 int regno, int off, int size,
3294 enum bpf_access_type atype,
3295 int value_regno)
3296{
3297 struct bpf_reg_state *reg = regs + regno;
3298 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3299 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3300 u32 btf_id;
3301 int ret;
3302
9e15db66
AS
3303 if (off < 0) {
3304 verbose(env,
3305 "R%d is ptr_%s invalid negative access: off=%d\n",
3306 regno, tname, off);
3307 return -EACCES;
3308 }
3309 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3310 char tn_buf[48];
3311
3312 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3313 verbose(env,
3314 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3315 regno, tname, off, tn_buf);
3316 return -EACCES;
3317 }
3318
27ae7997
MKL
3319 if (env->ops->btf_struct_access) {
3320 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3321 atype, &btf_id);
3322 } else {
3323 if (atype != BPF_READ) {
3324 verbose(env, "only read is supported\n");
3325 return -EACCES;
3326 }
3327
3328 ret = btf_struct_access(&env->log, t, off, size, atype,
3329 &btf_id);
3330 }
3331
9e15db66
AS
3332 if (ret < 0)
3333 return ret;
3334
41c48f3a
AI
3335 if (atype == BPF_READ && value_regno >= 0)
3336 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3337
3338 return 0;
3339}
3340
3341static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3342 struct bpf_reg_state *regs,
3343 int regno, int off, int size,
3344 enum bpf_access_type atype,
3345 int value_regno)
3346{
3347 struct bpf_reg_state *reg = regs + regno;
3348 struct bpf_map *map = reg->map_ptr;
3349 const struct btf_type *t;
3350 const char *tname;
3351 u32 btf_id;
3352 int ret;
3353
3354 if (!btf_vmlinux) {
3355 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3356 return -ENOTSUPP;
3357 }
3358
3359 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3360 verbose(env, "map_ptr access not supported for map type %d\n",
3361 map->map_type);
3362 return -ENOTSUPP;
3363 }
3364
3365 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3366 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3367
3368 if (!env->allow_ptr_to_map_access) {
3369 verbose(env,
3370 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3371 tname);
3372 return -EPERM;
9e15db66 3373 }
27ae7997 3374
41c48f3a
AI
3375 if (off < 0) {
3376 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3377 regno, tname, off);
3378 return -EACCES;
3379 }
3380
3381 if (atype != BPF_READ) {
3382 verbose(env, "only read from %s is supported\n", tname);
3383 return -EACCES;
3384 }
3385
3386 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3387 if (ret < 0)
3388 return ret;
3389
3390 if (value_regno >= 0)
3391 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3392
9e15db66
AS
3393 return 0;
3394}
3395
41c48f3a 3396
17a52670
AS
3397/* check whether memory at (regno + off) is accessible for t = (read | write)
3398 * if t==write, value_regno is a register which value is stored into memory
3399 * if t==read, value_regno is a register which will receive the value from memory
3400 * if t==write && value_regno==-1, some unknown value is stored into memory
3401 * if t==read && value_regno==-1, don't care what we read from memory
3402 */
ca369602
DB
3403static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3404 int off, int bpf_size, enum bpf_access_type t,
3405 int value_regno, bool strict_alignment_once)
17a52670 3406{
638f5b90
AS
3407 struct bpf_reg_state *regs = cur_regs(env);
3408 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3409 struct bpf_func_state *state;
17a52670
AS
3410 int size, err = 0;
3411
3412 size = bpf_size_to_bytes(bpf_size);
3413 if (size < 0)
3414 return size;
3415
f1174f77 3416 /* alignment checks will add in reg->off themselves */
ca369602 3417 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3418 if (err)
3419 return err;
17a52670 3420
f1174f77
EC
3421 /* for access checks, reg->off is just part of off */
3422 off += reg->off;
3423
3424 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3425 if (t == BPF_WRITE && value_regno >= 0 &&
3426 is_pointer_value(env, value_regno)) {
61bd5218 3427 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3428 return -EACCES;
3429 }
591fe988
DB
3430 err = check_map_access_type(env, regno, off, size, t);
3431 if (err)
3432 return err;
9fd29c08 3433 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3434 if (!err && t == BPF_READ && value_regno >= 0) {
3435 struct bpf_map *map = reg->map_ptr;
3436
3437 /* if map is read-only, track its contents as scalars */
3438 if (tnum_is_const(reg->var_off) &&
3439 bpf_map_is_rdonly(map) &&
3440 map->ops->map_direct_value_addr) {
3441 int map_off = off + reg->var_off.value;
3442 u64 val = 0;
3443
3444 err = bpf_map_direct_read(map, map_off, size,
3445 &val);
3446 if (err)
3447 return err;
3448
3449 regs[value_regno].type = SCALAR_VALUE;
3450 __mark_reg_known(&regs[value_regno], val);
3451 } else {
3452 mark_reg_unknown(env, regs, value_regno);
3453 }
3454 }
457f4436
AN
3455 } else if (reg->type == PTR_TO_MEM) {
3456 if (t == BPF_WRITE && value_regno >= 0 &&
3457 is_pointer_value(env, value_regno)) {
3458 verbose(env, "R%d leaks addr into mem\n", value_regno);
3459 return -EACCES;
3460 }
3461 err = check_mem_region_access(env, regno, off, size,
3462 reg->mem_size, false);
3463 if (!err && t == BPF_READ && value_regno >= 0)
3464 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3465 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3466 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3467 u32 btf_id = 0;
19de99f7 3468
1be7f75d
AS
3469 if (t == BPF_WRITE && value_regno >= 0 &&
3470 is_pointer_value(env, value_regno)) {
61bd5218 3471 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3472 return -EACCES;
3473 }
f1174f77 3474
58990d1f
DB
3475 err = check_ctx_reg(env, reg, regno);
3476 if (err < 0)
3477 return err;
3478
9e15db66
AS
3479 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3480 if (err)
3481 verbose_linfo(env, insn_idx, "; ");
969bf05e 3482 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3483 /* ctx access returns either a scalar, or a
de8f3a83
DB
3484 * PTR_TO_PACKET[_META,_END]. In the latter
3485 * case, we know the offset is zero.
f1174f77 3486 */
46f8bc92 3487 if (reg_type == SCALAR_VALUE) {
638f5b90 3488 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3489 } else {
638f5b90 3490 mark_reg_known_zero(env, regs,
61bd5218 3491 value_regno);
46f8bc92
MKL
3492 if (reg_type_may_be_null(reg_type))
3493 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3494 /* A load of ctx field could have different
3495 * actual load size with the one encoded in the
3496 * insn. When the dst is PTR, it is for sure not
3497 * a sub-register.
3498 */
3499 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3500 if (reg_type == PTR_TO_BTF_ID ||
3501 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3502 regs[value_regno].btf_id = btf_id;
46f8bc92 3503 }
638f5b90 3504 regs[value_regno].type = reg_type;
969bf05e 3505 }
17a52670 3506
f1174f77 3507 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3508 off += reg->var_off.value;
e4298d25
DB
3509 err = check_stack_access(env, reg, off, size);
3510 if (err)
3511 return err;
8726679a 3512
f4d7e40a
AS
3513 state = func(env, reg);
3514 err = update_stack_depth(env, state, off);
3515 if (err)
3516 return err;
8726679a 3517
638f5b90 3518 if (t == BPF_WRITE)
61bd5218 3519 err = check_stack_write(env, state, off, size,
af86ca4e 3520 value_regno, insn_idx);
638f5b90 3521 else
61bd5218
JK
3522 err = check_stack_read(env, state, off, size,
3523 value_regno);
de8f3a83 3524 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3525 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3526 verbose(env, "cannot write into packet\n");
969bf05e
AS
3527 return -EACCES;
3528 }
4acf6c0b
BB
3529 if (t == BPF_WRITE && value_regno >= 0 &&
3530 is_pointer_value(env, value_regno)) {
61bd5218
JK
3531 verbose(env, "R%d leaks addr into packet\n",
3532 value_regno);
4acf6c0b
BB
3533 return -EACCES;
3534 }
9fd29c08 3535 err = check_packet_access(env, regno, off, size, false);
969bf05e 3536 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3537 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3538 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3539 if (t == BPF_WRITE && value_regno >= 0 &&
3540 is_pointer_value(env, value_regno)) {
3541 verbose(env, "R%d leaks addr into flow keys\n",
3542 value_regno);
3543 return -EACCES;
3544 }
3545
3546 err = check_flow_keys_access(env, off, size);
3547 if (!err && t == BPF_READ && value_regno >= 0)
3548 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3549 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3550 if (t == BPF_WRITE) {
46f8bc92
MKL
3551 verbose(env, "R%d cannot write into %s\n",
3552 regno, reg_type_str[reg->type]);
c64b7983
JS
3553 return -EACCES;
3554 }
5f456649 3555 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3556 if (!err && value_regno >= 0)
3557 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3558 } else if (reg->type == PTR_TO_TP_BUFFER) {
3559 err = check_tp_buffer_access(env, reg, regno, off, size);
3560 if (!err && t == BPF_READ && value_regno >= 0)
3561 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3562 } else if (reg->type == PTR_TO_BTF_ID) {
3563 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3564 value_regno);
41c48f3a
AI
3565 } else if (reg->type == CONST_PTR_TO_MAP) {
3566 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3567 value_regno);
afbf21dc
YS
3568 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3569 if (t == BPF_WRITE) {
3570 verbose(env, "R%d cannot write into %s\n",
3571 regno, reg_type_str[reg->type]);
3572 return -EACCES;
3573 }
f6dfbe31
CIK
3574 err = check_buffer_access(env, reg, regno, off, size, false,
3575 "rdonly",
afbf21dc
YS
3576 &env->prog->aux->max_rdonly_access);
3577 if (!err && value_regno >= 0)
3578 mark_reg_unknown(env, regs, value_regno);
3579 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3580 err = check_buffer_access(env, reg, regno, off, size, false,
3581 "rdwr",
afbf21dc
YS
3582 &env->prog->aux->max_rdwr_access);
3583 if (!err && t == BPF_READ && value_regno >= 0)
3584 mark_reg_unknown(env, regs, value_regno);
17a52670 3585 } else {
61bd5218
JK
3586 verbose(env, "R%d invalid mem access '%s'\n", regno,
3587 reg_type_str[reg->type]);
17a52670
AS
3588 return -EACCES;
3589 }
969bf05e 3590
f1174f77 3591 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3592 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3593 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3594 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3595 }
17a52670
AS
3596 return err;
3597}
3598
31fd8581 3599static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3600{
17a52670
AS
3601 int err;
3602
3603 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3604 insn->imm != 0) {
61bd5218 3605 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3606 return -EINVAL;
3607 }
3608
3609 /* check src1 operand */
dc503a8a 3610 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3611 if (err)
3612 return err;
3613
3614 /* check src2 operand */
dc503a8a 3615 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3616 if (err)
3617 return err;
3618
6bdf6abc 3619 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3620 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3621 return -EACCES;
3622 }
3623
ca369602 3624 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3625 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3626 is_flow_key_reg(env, insn->dst_reg) ||
3627 is_sk_reg(env, insn->dst_reg)) {
ca369602 3628 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3629 insn->dst_reg,
3630 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3631 return -EACCES;
3632 }
3633
17a52670 3634 /* check whether atomic_add can read the memory */
31fd8581 3635 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3636 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3637 if (err)
3638 return err;
3639
3640 /* check whether atomic_add can write into the same memory */
31fd8581 3641 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3642 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3643}
3644
2011fccf
AI
3645static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3646 int off, int access_size,
3647 bool zero_size_allowed)
3648{
3649 struct bpf_reg_state *reg = reg_state(env, regno);
3650
3651 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3652 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3653 if (tnum_is_const(reg->var_off)) {
3654 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3655 regno, off, access_size);
3656 } else {
3657 char tn_buf[48];
3658
3659 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3660 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3661 regno, tn_buf, access_size);
3662 }
3663 return -EACCES;
3664 }
3665 return 0;
3666}
3667
17a52670
AS
3668/* when register 'regno' is passed into function that will read 'access_size'
3669 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3670 * and all elements of stack are initialized.
3671 * Unlike most pointer bounds-checking functions, this one doesn't take an
3672 * 'off' argument, so it has to add in reg->off itself.
17a52670 3673 */
58e2af8b 3674static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3675 int access_size, bool zero_size_allowed,
3676 struct bpf_call_arg_meta *meta)
17a52670 3677{
2a159c6f 3678 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3679 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3680 int err, min_off, max_off, i, j, slot, spi;
17a52670 3681
2011fccf
AI
3682 if (tnum_is_const(reg->var_off)) {
3683 min_off = max_off = reg->var_off.value + reg->off;
3684 err = __check_stack_boundary(env, regno, min_off, access_size,
3685 zero_size_allowed);
3686 if (err)
3687 return err;
3688 } else {
088ec26d
AI
3689 /* Variable offset is prohibited for unprivileged mode for
3690 * simplicity since it requires corresponding support in
3691 * Spectre masking for stack ALU.
3692 * See also retrieve_ptr_limit().
3693 */
2c78ee89 3694 if (!env->bypass_spec_v1) {
088ec26d 3695 char tn_buf[48];
f1174f77 3696
088ec26d
AI
3697 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3698 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3699 regno, tn_buf);
3700 return -EACCES;
3701 }
f2bcd05e
AI
3702 /* Only initialized buffer on stack is allowed to be accessed
3703 * with variable offset. With uninitialized buffer it's hard to
3704 * guarantee that whole memory is marked as initialized on
3705 * helper return since specific bounds are unknown what may
3706 * cause uninitialized stack leaking.
3707 */
3708 if (meta && meta->raw_mode)
3709 meta = NULL;
3710
107c26a7
AI
3711 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3712 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3713 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3714 regno);
3715 return -EACCES;
3716 }
2011fccf 3717 min_off = reg->smin_value + reg->off;
107c26a7 3718 max_off = reg->smax_value + reg->off;
2011fccf
AI
3719 err = __check_stack_boundary(env, regno, min_off, access_size,
3720 zero_size_allowed);
107c26a7
AI
3721 if (err) {
3722 verbose(env, "R%d min value is outside of stack bound\n",
3723 regno);
2011fccf 3724 return err;
107c26a7 3725 }
2011fccf
AI
3726 err = __check_stack_boundary(env, regno, max_off, access_size,
3727 zero_size_allowed);
107c26a7
AI
3728 if (err) {
3729 verbose(env, "R%d max value is outside of stack bound\n",
3730 regno);
2011fccf 3731 return err;
107c26a7 3732 }
17a52670
AS
3733 }
3734
435faee1
DB
3735 if (meta && meta->raw_mode) {
3736 meta->access_size = access_size;
3737 meta->regno = regno;
3738 return 0;
3739 }
3740
2011fccf 3741 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3742 u8 *stype;
3743
2011fccf 3744 slot = -i - 1;
638f5b90 3745 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3746 if (state->allocated_stack <= slot)
3747 goto err;
3748 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3749 if (*stype == STACK_MISC)
3750 goto mark;
3751 if (*stype == STACK_ZERO) {
3752 /* helper can write anything into the stack */
3753 *stype = STACK_MISC;
3754 goto mark;
17a52670 3755 }
1d68f22b
YS
3756
3757 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3758 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3759 goto mark;
3760
f7cf25b2
AS
3761 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3762 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3763 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3764 for (j = 0; j < BPF_REG_SIZE; j++)
3765 state->stack[spi].slot_type[j] = STACK_MISC;
3766 goto mark;
3767 }
3768
cc2b14d5 3769err:
2011fccf
AI
3770 if (tnum_is_const(reg->var_off)) {
3771 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3772 min_off, i - min_off, access_size);
3773 } else {
3774 char tn_buf[48];
3775
3776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3777 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3778 tn_buf, i - min_off, access_size);
3779 }
cc2b14d5
AS
3780 return -EACCES;
3781mark:
3782 /* reading any byte out of 8-byte 'spill_slot' will cause
3783 * the whole slot to be marked as 'read'
3784 */
679c782d 3785 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3786 state->stack[spi].spilled_ptr.parent,
3787 REG_LIVE_READ64);
17a52670 3788 }
2011fccf 3789 return update_stack_depth(env, state, min_off);
17a52670
AS
3790}
3791
06c1c049
GB
3792static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3793 int access_size, bool zero_size_allowed,
3794 struct bpf_call_arg_meta *meta)
3795{
638f5b90 3796 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3797
f1174f77 3798 switch (reg->type) {
06c1c049 3799 case PTR_TO_PACKET:
de8f3a83 3800 case PTR_TO_PACKET_META:
9fd29c08
YS
3801 return check_packet_access(env, regno, reg->off, access_size,
3802 zero_size_allowed);
06c1c049 3803 case PTR_TO_MAP_VALUE:
591fe988
DB
3804 if (check_map_access_type(env, regno, reg->off, access_size,
3805 meta && meta->raw_mode ? BPF_WRITE :
3806 BPF_READ))
3807 return -EACCES;
9fd29c08
YS
3808 return check_map_access(env, regno, reg->off, access_size,
3809 zero_size_allowed);
457f4436
AN
3810 case PTR_TO_MEM:
3811 return check_mem_region_access(env, regno, reg->off,
3812 access_size, reg->mem_size,
3813 zero_size_allowed);
afbf21dc
YS
3814 case PTR_TO_RDONLY_BUF:
3815 if (meta && meta->raw_mode)
3816 return -EACCES;
3817 return check_buffer_access(env, reg, regno, reg->off,
3818 access_size, zero_size_allowed,
3819 "rdonly",
3820 &env->prog->aux->max_rdonly_access);
3821 case PTR_TO_RDWR_BUF:
3822 return check_buffer_access(env, reg, regno, reg->off,
3823 access_size, zero_size_allowed,
3824 "rdwr",
3825 &env->prog->aux->max_rdwr_access);
0d004c02 3826 case PTR_TO_STACK:
06c1c049
GB
3827 return check_stack_boundary(env, regno, access_size,
3828 zero_size_allowed, meta);
0d004c02
LB
3829 default: /* scalar_value or invalid ptr */
3830 /* Allow zero-byte read from NULL, regardless of pointer type */
3831 if (zero_size_allowed && access_size == 0 &&
3832 register_is_null(reg))
3833 return 0;
3834
3835 verbose(env, "R%d type=%s expected=%s\n", regno,
3836 reg_type_str[reg->type],
3837 reg_type_str[PTR_TO_STACK]);
3838 return -EACCES;
06c1c049
GB
3839 }
3840}
3841
d83525ca
AS
3842/* Implementation details:
3843 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3844 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3845 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3846 * value_or_null->value transition, since the verifier only cares about
3847 * the range of access to valid map value pointer and doesn't care about actual
3848 * address of the map element.
3849 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3850 * reg->id > 0 after value_or_null->value transition. By doing so
3851 * two bpf_map_lookups will be considered two different pointers that
3852 * point to different bpf_spin_locks.
3853 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3854 * dead-locks.
3855 * Since only one bpf_spin_lock is allowed the checks are simpler than
3856 * reg_is_refcounted() logic. The verifier needs to remember only
3857 * one spin_lock instead of array of acquired_refs.
3858 * cur_state->active_spin_lock remembers which map value element got locked
3859 * and clears it after bpf_spin_unlock.
3860 */
3861static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3862 bool is_lock)
3863{
3864 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3865 struct bpf_verifier_state *cur = env->cur_state;
3866 bool is_const = tnum_is_const(reg->var_off);
3867 struct bpf_map *map = reg->map_ptr;
3868 u64 val = reg->var_off.value;
3869
d83525ca
AS
3870 if (!is_const) {
3871 verbose(env,
3872 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3873 regno);
3874 return -EINVAL;
3875 }
3876 if (!map->btf) {
3877 verbose(env,
3878 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3879 map->name);
3880 return -EINVAL;
3881 }
3882 if (!map_value_has_spin_lock(map)) {
3883 if (map->spin_lock_off == -E2BIG)
3884 verbose(env,
3885 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3886 map->name);
3887 else if (map->spin_lock_off == -ENOENT)
3888 verbose(env,
3889 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3890 map->name);
3891 else
3892 verbose(env,
3893 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3894 map->name);
3895 return -EINVAL;
3896 }
3897 if (map->spin_lock_off != val + reg->off) {
3898 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3899 val + reg->off);
3900 return -EINVAL;
3901 }
3902 if (is_lock) {
3903 if (cur->active_spin_lock) {
3904 verbose(env,
3905 "Locking two bpf_spin_locks are not allowed\n");
3906 return -EINVAL;
3907 }
3908 cur->active_spin_lock = reg->id;
3909 } else {
3910 if (!cur->active_spin_lock) {
3911 verbose(env, "bpf_spin_unlock without taking a lock\n");
3912 return -EINVAL;
3913 }
3914 if (cur->active_spin_lock != reg->id) {
3915 verbose(env, "bpf_spin_unlock of different lock\n");
3916 return -EINVAL;
3917 }
3918 cur->active_spin_lock = 0;
3919 }
3920 return 0;
3921}
3922
90133415
DB
3923static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3924{
3925 return type == ARG_PTR_TO_MEM ||
3926 type == ARG_PTR_TO_MEM_OR_NULL ||
3927 type == ARG_PTR_TO_UNINIT_MEM;
3928}
3929
3930static bool arg_type_is_mem_size(enum bpf_arg_type type)
3931{
3932 return type == ARG_CONST_SIZE ||
3933 type == ARG_CONST_SIZE_OR_ZERO;
3934}
3935
457f4436
AN
3936static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3937{
3938 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3939}
3940
57c3bb72
AI
3941static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3942{
3943 return type == ARG_PTR_TO_INT ||
3944 type == ARG_PTR_TO_LONG;
3945}
3946
3947static int int_ptr_type_to_size(enum bpf_arg_type type)
3948{
3949 if (type == ARG_PTR_TO_INT)
3950 return sizeof(u32);
3951 else if (type == ARG_PTR_TO_LONG)
3952 return sizeof(u64);
3953
3954 return -EINVAL;
3955}
3956
912f442c
LB
3957static int resolve_map_arg_type(struct bpf_verifier_env *env,
3958 const struct bpf_call_arg_meta *meta,
3959 enum bpf_arg_type *arg_type)
3960{
3961 if (!meta->map_ptr) {
3962 /* kernel subsystem misconfigured verifier */
3963 verbose(env, "invalid map_ptr to access map->type\n");
3964 return -EACCES;
3965 }
3966
3967 switch (meta->map_ptr->map_type) {
3968 case BPF_MAP_TYPE_SOCKMAP:
3969 case BPF_MAP_TYPE_SOCKHASH:
3970 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 3971 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
3972 } else {
3973 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3974 return -EINVAL;
3975 }
3976 break;
3977
3978 default:
3979 break;
3980 }
3981 return 0;
3982}
3983
f79e7ea5
LB
3984struct bpf_reg_types {
3985 const enum bpf_reg_type types[10];
1df8f55a 3986 u32 *btf_id;
f79e7ea5
LB
3987};
3988
3989static const struct bpf_reg_types map_key_value_types = {
3990 .types = {
3991 PTR_TO_STACK,
3992 PTR_TO_PACKET,
3993 PTR_TO_PACKET_META,
3994 PTR_TO_MAP_VALUE,
3995 },
3996};
3997
3998static const struct bpf_reg_types sock_types = {
3999 .types = {
4000 PTR_TO_SOCK_COMMON,
4001 PTR_TO_SOCKET,
4002 PTR_TO_TCP_SOCK,
4003 PTR_TO_XDP_SOCK,
4004 },
4005};
4006
49a2a4d4 4007#ifdef CONFIG_NET
1df8f55a
MKL
4008static const struct bpf_reg_types btf_id_sock_common_types = {
4009 .types = {
4010 PTR_TO_SOCK_COMMON,
4011 PTR_TO_SOCKET,
4012 PTR_TO_TCP_SOCK,
4013 PTR_TO_XDP_SOCK,
4014 PTR_TO_BTF_ID,
4015 },
4016 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4017};
49a2a4d4 4018#endif
1df8f55a 4019
f79e7ea5
LB
4020static const struct bpf_reg_types mem_types = {
4021 .types = {
4022 PTR_TO_STACK,
4023 PTR_TO_PACKET,
4024 PTR_TO_PACKET_META,
4025 PTR_TO_MAP_VALUE,
4026 PTR_TO_MEM,
4027 PTR_TO_RDONLY_BUF,
4028 PTR_TO_RDWR_BUF,
4029 },
4030};
4031
4032static const struct bpf_reg_types int_ptr_types = {
4033 .types = {
4034 PTR_TO_STACK,
4035 PTR_TO_PACKET,
4036 PTR_TO_PACKET_META,
4037 PTR_TO_MAP_VALUE,
4038 },
4039};
4040
4041static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4042static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4043static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4044static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4045static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4046static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4047static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 4048static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
f79e7ea5 4049
0789e13b 4050static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4051 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4052 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4053 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4054 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4055 [ARG_CONST_SIZE] = &scalar_types,
4056 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4057 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4058 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4059 [ARG_PTR_TO_CTX] = &context_types,
4060 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4061 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 4062#ifdef CONFIG_NET
1df8f55a 4063 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 4064#endif
f79e7ea5
LB
4065 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4066 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4067 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4068 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4069 [ARG_PTR_TO_MEM] = &mem_types,
4070 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4071 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4072 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4073 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4074 [ARG_PTR_TO_INT] = &int_ptr_types,
4075 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 4076 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
f79e7ea5
LB
4077};
4078
4079static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4080 enum bpf_arg_type arg_type,
4081 const u32 *arg_btf_id)
f79e7ea5
LB
4082{
4083 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4084 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4085 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4086 int i, j;
4087
a968d5e2
MKL
4088 compatible = compatible_reg_types[arg_type];
4089 if (!compatible) {
4090 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4091 return -EFAULT;
4092 }
4093
f79e7ea5
LB
4094 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4095 expected = compatible->types[i];
4096 if (expected == NOT_INIT)
4097 break;
4098
4099 if (type == expected)
a968d5e2 4100 goto found;
f79e7ea5
LB
4101 }
4102
4103 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4104 for (j = 0; j + 1 < i; j++)
4105 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4106 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4107 return -EACCES;
a968d5e2
MKL
4108
4109found:
4110 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4111 if (!arg_btf_id) {
4112 if (!compatible->btf_id) {
4113 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4114 return -EFAULT;
4115 }
4116 arg_btf_id = compatible->btf_id;
4117 }
4118
a968d5e2
MKL
4119 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4120 *arg_btf_id)) {
4121 verbose(env, "R%d is of type %s but %s is expected\n",
4122 regno, kernel_type_name(reg->btf_id),
4123 kernel_type_name(*arg_btf_id));
4124 return -EACCES;
4125 }
4126
4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4128 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4129 regno);
4130 return -EACCES;
4131 }
4132 }
4133
4134 return 0;
f79e7ea5
LB
4135}
4136
af7ec138
YS
4137static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4138 struct bpf_call_arg_meta *meta,
4139 const struct bpf_func_proto *fn)
17a52670 4140{
af7ec138 4141 u32 regno = BPF_REG_1 + arg;
638f5b90 4142 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4143 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4144 enum bpf_reg_type type = reg->type;
17a52670
AS
4145 int err = 0;
4146
80f1d68c 4147 if (arg_type == ARG_DONTCARE)
17a52670
AS
4148 return 0;
4149
dc503a8a
EC
4150 err = check_reg_arg(env, regno, SRC_OP);
4151 if (err)
4152 return err;
17a52670 4153
1be7f75d
AS
4154 if (arg_type == ARG_ANYTHING) {
4155 if (is_pointer_value(env, regno)) {
61bd5218
JK
4156 verbose(env, "R%d leaks addr into helper function\n",
4157 regno);
1be7f75d
AS
4158 return -EACCES;
4159 }
80f1d68c 4160 return 0;
1be7f75d 4161 }
80f1d68c 4162
de8f3a83 4163 if (type_is_pkt_pointer(type) &&
3a0af8fd 4164 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4165 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4166 return -EACCES;
4167 }
4168
912f442c
LB
4169 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4170 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4171 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4172 err = resolve_map_arg_type(env, meta, &arg_type);
4173 if (err)
4174 return err;
4175 }
4176
fd1b0d60
LB
4177 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4178 /* A NULL register has a SCALAR_VALUE type, so skip
4179 * type checking.
4180 */
4181 goto skip_type_check;
4182
a968d5e2 4183 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4184 if (err)
4185 return err;
4186
a968d5e2 4187 if (type == PTR_TO_CTX) {
feec7040
LB
4188 err = check_ctx_reg(env, reg, regno);
4189 if (err < 0)
4190 return err;
d7b9454a
LB
4191 }
4192
fd1b0d60 4193skip_type_check:
02f7c958 4194 if (reg->ref_obj_id) {
457f4436
AN
4195 if (meta->ref_obj_id) {
4196 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4197 regno, reg->ref_obj_id,
4198 meta->ref_obj_id);
4199 return -EFAULT;
4200 }
4201 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4202 }
4203
17a52670
AS
4204 if (arg_type == ARG_CONST_MAP_PTR) {
4205 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4206 meta->map_ptr = reg->map_ptr;
17a52670
AS
4207 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4208 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4209 * check that [key, key + map->key_size) are within
4210 * stack limits and initialized
4211 */
33ff9823 4212 if (!meta->map_ptr) {
17a52670
AS
4213 /* in function declaration map_ptr must come before
4214 * map_key, so that it's verified and known before
4215 * we have to check map_key here. Otherwise it means
4216 * that kernel subsystem misconfigured verifier
4217 */
61bd5218 4218 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4219 return -EACCES;
4220 }
d71962f3
PC
4221 err = check_helper_mem_access(env, regno,
4222 meta->map_ptr->key_size, false,
4223 NULL);
2ea864c5 4224 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4225 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4226 !register_is_null(reg)) ||
2ea864c5 4227 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4228 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4229 * check [value, value + map->value_size) validity
4230 */
33ff9823 4231 if (!meta->map_ptr) {
17a52670 4232 /* kernel subsystem misconfigured verifier */
61bd5218 4233 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4234 return -EACCES;
4235 }
2ea864c5 4236 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4237 err = check_helper_mem_access(env, regno,
4238 meta->map_ptr->value_size, false,
2ea864c5 4239 meta);
eaa6bcb7
HL
4240 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4241 if (!reg->btf_id) {
4242 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4243 return -EACCES;
4244 }
4245 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
4246 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4247 if (meta->func_id == BPF_FUNC_spin_lock) {
4248 if (process_spin_lock(env, regno, true))
4249 return -EACCES;
4250 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4251 if (process_spin_lock(env, regno, false))
4252 return -EACCES;
4253 } else {
4254 verbose(env, "verifier internal error\n");
4255 return -EFAULT;
4256 }
a2bbe7cc
LB
4257 } else if (arg_type_is_mem_ptr(arg_type)) {
4258 /* The access to this pointer is only checked when we hit the
4259 * next is_mem_size argument below.
4260 */
4261 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 4262 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4263 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4264
10060503
JF
4265 /* This is used to refine r0 return value bounds for helpers
4266 * that enforce this value as an upper bound on return values.
4267 * See do_refine_retval_range() for helpers that can refine
4268 * the return value. C type of helper is u32 so we pull register
4269 * bound from umax_value however, if negative verifier errors
4270 * out. Only upper bounds can be learned because retval is an
4271 * int type and negative retvals are allowed.
849fa506 4272 */
10060503 4273 meta->msize_max_value = reg->umax_value;
849fa506 4274
f1174f77
EC
4275 /* The register is SCALAR_VALUE; the access check
4276 * happens using its boundaries.
06c1c049 4277 */
f1174f77 4278 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4279 /* For unprivileged variable accesses, disable raw
4280 * mode so that the program is required to
4281 * initialize all the memory that the helper could
4282 * just partially fill up.
4283 */
4284 meta = NULL;
4285
b03c9f9f 4286 if (reg->smin_value < 0) {
61bd5218 4287 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4288 regno);
4289 return -EACCES;
4290 }
06c1c049 4291
b03c9f9f 4292 if (reg->umin_value == 0) {
f1174f77
EC
4293 err = check_helper_mem_access(env, regno - 1, 0,
4294 zero_size_allowed,
4295 meta);
06c1c049
GB
4296 if (err)
4297 return err;
06c1c049 4298 }
f1174f77 4299
b03c9f9f 4300 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4301 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4302 regno);
4303 return -EACCES;
4304 }
4305 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4306 reg->umax_value,
f1174f77 4307 zero_size_allowed, meta);
b5dc0163
AS
4308 if (!err)
4309 err = mark_chain_precision(env, regno);
457f4436
AN
4310 } else if (arg_type_is_alloc_size(arg_type)) {
4311 if (!tnum_is_const(reg->var_off)) {
4312 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4313 regno);
4314 return -EACCES;
4315 }
4316 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4317 } else if (arg_type_is_int_ptr(arg_type)) {
4318 int size = int_ptr_type_to_size(arg_type);
4319
4320 err = check_helper_mem_access(env, regno, size, false, meta);
4321 if (err)
4322 return err;
4323 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4324 }
4325
4326 return err;
4327}
4328
0126240f
LB
4329static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4330{
4331 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4332 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4333
4334 if (func_id != BPF_FUNC_map_update_elem)
4335 return false;
4336
4337 /* It's not possible to get access to a locked struct sock in these
4338 * contexts, so updating is safe.
4339 */
4340 switch (type) {
4341 case BPF_PROG_TYPE_TRACING:
4342 if (eatype == BPF_TRACE_ITER)
4343 return true;
4344 break;
4345 case BPF_PROG_TYPE_SOCKET_FILTER:
4346 case BPF_PROG_TYPE_SCHED_CLS:
4347 case BPF_PROG_TYPE_SCHED_ACT:
4348 case BPF_PROG_TYPE_XDP:
4349 case BPF_PROG_TYPE_SK_REUSEPORT:
4350 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4351 case BPF_PROG_TYPE_SK_LOOKUP:
4352 return true;
4353 default:
4354 break;
4355 }
4356
4357 verbose(env, "cannot update sockmap in this context\n");
4358 return false;
4359}
4360
e411901c
MF
4361static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4362{
4363 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4364}
4365
61bd5218
JK
4366static int check_map_func_compatibility(struct bpf_verifier_env *env,
4367 struct bpf_map *map, int func_id)
35578d79 4368{
35578d79
KX
4369 if (!map)
4370 return 0;
4371
6aff67c8
AS
4372 /* We need a two way check, first is from map perspective ... */
4373 switch (map->map_type) {
4374 case BPF_MAP_TYPE_PROG_ARRAY:
4375 if (func_id != BPF_FUNC_tail_call)
4376 goto error;
4377 break;
4378 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4379 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4380 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4381 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4382 func_id != BPF_FUNC_perf_event_read_value &&
4383 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4384 goto error;
4385 break;
457f4436
AN
4386 case BPF_MAP_TYPE_RINGBUF:
4387 if (func_id != BPF_FUNC_ringbuf_output &&
4388 func_id != BPF_FUNC_ringbuf_reserve &&
4389 func_id != BPF_FUNC_ringbuf_submit &&
4390 func_id != BPF_FUNC_ringbuf_discard &&
4391 func_id != BPF_FUNC_ringbuf_query)
4392 goto error;
4393 break;
6aff67c8
AS
4394 case BPF_MAP_TYPE_STACK_TRACE:
4395 if (func_id != BPF_FUNC_get_stackid)
4396 goto error;
4397 break;
4ed8ec52 4398 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4399 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4400 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4401 goto error;
4402 break;
cd339431 4403 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4404 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4405 if (func_id != BPF_FUNC_get_local_storage)
4406 goto error;
4407 break;
546ac1ff 4408 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4409 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4410 if (func_id != BPF_FUNC_redirect_map &&
4411 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4412 goto error;
4413 break;
fbfc504a
BT
4414 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4415 * appear.
4416 */
6710e112
JDB
4417 case BPF_MAP_TYPE_CPUMAP:
4418 if (func_id != BPF_FUNC_redirect_map)
4419 goto error;
4420 break;
fada7fdc
JL
4421 case BPF_MAP_TYPE_XSKMAP:
4422 if (func_id != BPF_FUNC_redirect_map &&
4423 func_id != BPF_FUNC_map_lookup_elem)
4424 goto error;
4425 break;
56f668df 4426 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4427 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4428 if (func_id != BPF_FUNC_map_lookup_elem)
4429 goto error;
16a43625 4430 break;
174a79ff
JF
4431 case BPF_MAP_TYPE_SOCKMAP:
4432 if (func_id != BPF_FUNC_sk_redirect_map &&
4433 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4434 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4435 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4436 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4437 func_id != BPF_FUNC_map_lookup_elem &&
4438 !may_update_sockmap(env, func_id))
174a79ff
JF
4439 goto error;
4440 break;
81110384
JF
4441 case BPF_MAP_TYPE_SOCKHASH:
4442 if (func_id != BPF_FUNC_sk_redirect_hash &&
4443 func_id != BPF_FUNC_sock_hash_update &&
4444 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4445 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4446 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4447 func_id != BPF_FUNC_map_lookup_elem &&
4448 !may_update_sockmap(env, func_id))
81110384
JF
4449 goto error;
4450 break;
2dbb9b9e
MKL
4451 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4452 if (func_id != BPF_FUNC_sk_select_reuseport)
4453 goto error;
4454 break;
f1a2e44a
MV
4455 case BPF_MAP_TYPE_QUEUE:
4456 case BPF_MAP_TYPE_STACK:
4457 if (func_id != BPF_FUNC_map_peek_elem &&
4458 func_id != BPF_FUNC_map_pop_elem &&
4459 func_id != BPF_FUNC_map_push_elem)
4460 goto error;
4461 break;
6ac99e8f
MKL
4462 case BPF_MAP_TYPE_SK_STORAGE:
4463 if (func_id != BPF_FUNC_sk_storage_get &&
4464 func_id != BPF_FUNC_sk_storage_delete)
4465 goto error;
4466 break;
8ea63684
KS
4467 case BPF_MAP_TYPE_INODE_STORAGE:
4468 if (func_id != BPF_FUNC_inode_storage_get &&
4469 func_id != BPF_FUNC_inode_storage_delete)
4470 goto error;
4471 break;
6aff67c8
AS
4472 default:
4473 break;
4474 }
4475
4476 /* ... and second from the function itself. */
4477 switch (func_id) {
4478 case BPF_FUNC_tail_call:
4479 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4480 goto error;
e411901c
MF
4481 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4482 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
4483 return -EINVAL;
4484 }
6aff67c8
AS
4485 break;
4486 case BPF_FUNC_perf_event_read:
4487 case BPF_FUNC_perf_event_output:
908432ca 4488 case BPF_FUNC_perf_event_read_value:
a7658e1a 4489 case BPF_FUNC_skb_output:
d831ee84 4490 case BPF_FUNC_xdp_output:
6aff67c8
AS
4491 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4492 goto error;
4493 break;
4494 case BPF_FUNC_get_stackid:
4495 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4496 goto error;
4497 break;
60d20f91 4498 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4499 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4500 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4501 goto error;
4502 break;
97f91a7c 4503 case BPF_FUNC_redirect_map:
9c270af3 4504 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4505 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4506 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4507 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4508 goto error;
4509 break;
174a79ff 4510 case BPF_FUNC_sk_redirect_map:
4f738adb 4511 case BPF_FUNC_msg_redirect_map:
81110384 4512 case BPF_FUNC_sock_map_update:
174a79ff
JF
4513 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4514 goto error;
4515 break;
81110384
JF
4516 case BPF_FUNC_sk_redirect_hash:
4517 case BPF_FUNC_msg_redirect_hash:
4518 case BPF_FUNC_sock_hash_update:
4519 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4520 goto error;
4521 break;
cd339431 4522 case BPF_FUNC_get_local_storage:
b741f163
RG
4523 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4524 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4525 goto error;
4526 break;
2dbb9b9e 4527 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4528 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4529 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4530 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4531 goto error;
4532 break;
f1a2e44a
MV
4533 case BPF_FUNC_map_peek_elem:
4534 case BPF_FUNC_map_pop_elem:
4535 case BPF_FUNC_map_push_elem:
4536 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4537 map->map_type != BPF_MAP_TYPE_STACK)
4538 goto error;
4539 break;
6ac99e8f
MKL
4540 case BPF_FUNC_sk_storage_get:
4541 case BPF_FUNC_sk_storage_delete:
4542 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4543 goto error;
4544 break;
8ea63684
KS
4545 case BPF_FUNC_inode_storage_get:
4546 case BPF_FUNC_inode_storage_delete:
4547 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4548 goto error;
4549 break;
6aff67c8
AS
4550 default:
4551 break;
35578d79
KX
4552 }
4553
4554 return 0;
6aff67c8 4555error:
61bd5218 4556 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4557 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4558 return -EINVAL;
35578d79
KX
4559}
4560
90133415 4561static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4562{
4563 int count = 0;
4564
39f19ebb 4565 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4566 count++;
39f19ebb 4567 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4568 count++;
39f19ebb 4569 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4570 count++;
39f19ebb 4571 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4572 count++;
39f19ebb 4573 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4574 count++;
4575
90133415
DB
4576 /* We only support one arg being in raw mode at the moment,
4577 * which is sufficient for the helper functions we have
4578 * right now.
4579 */
4580 return count <= 1;
4581}
4582
4583static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4584 enum bpf_arg_type arg_next)
4585{
4586 return (arg_type_is_mem_ptr(arg_curr) &&
4587 !arg_type_is_mem_size(arg_next)) ||
4588 (!arg_type_is_mem_ptr(arg_curr) &&
4589 arg_type_is_mem_size(arg_next));
4590}
4591
4592static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4593{
4594 /* bpf_xxx(..., buf, len) call will access 'len'
4595 * bytes from memory 'buf'. Both arg types need
4596 * to be paired, so make sure there's no buggy
4597 * helper function specification.
4598 */
4599 if (arg_type_is_mem_size(fn->arg1_type) ||
4600 arg_type_is_mem_ptr(fn->arg5_type) ||
4601 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4602 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4603 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4604 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4605 return false;
4606
4607 return true;
4608}
4609
1b986589 4610static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4611{
4612 int count = 0;
4613
1b986589 4614 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4615 count++;
1b986589 4616 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4617 count++;
1b986589 4618 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4619 count++;
1b986589 4620 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4621 count++;
1b986589 4622 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4623 count++;
4624
1b986589
MKL
4625 /* A reference acquiring function cannot acquire
4626 * another refcounted ptr.
4627 */
64d85290 4628 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4629 return false;
4630
fd978bf7
JS
4631 /* We only support one arg being unreferenced at the moment,
4632 * which is sufficient for the helper functions we have right now.
4633 */
4634 return count <= 1;
4635}
4636
9436ef6e
LB
4637static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4638{
4639 int i;
4640
1df8f55a 4641 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
4642 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4643 return false;
4644
1df8f55a
MKL
4645 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4646 return false;
4647 }
4648
9436ef6e
LB
4649 return true;
4650}
4651
1b986589 4652static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4653{
4654 return check_raw_mode_ok(fn) &&
fd978bf7 4655 check_arg_pair_ok(fn) &&
9436ef6e 4656 check_btf_id_ok(fn) &&
1b986589 4657 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4658}
4659
de8f3a83
DB
4660/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4661 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4662 */
f4d7e40a
AS
4663static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4664 struct bpf_func_state *state)
969bf05e 4665{
58e2af8b 4666 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4667 int i;
4668
4669 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4670 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4671 mark_reg_unknown(env, regs, i);
969bf05e 4672
f3709f69
JS
4673 bpf_for_each_spilled_reg(i, state, reg) {
4674 if (!reg)
969bf05e 4675 continue;
de8f3a83 4676 if (reg_is_pkt_pointer_any(reg))
f54c7898 4677 __mark_reg_unknown(env, reg);
969bf05e
AS
4678 }
4679}
4680
f4d7e40a
AS
4681static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4682{
4683 struct bpf_verifier_state *vstate = env->cur_state;
4684 int i;
4685
4686 for (i = 0; i <= vstate->curframe; i++)
4687 __clear_all_pkt_pointers(env, vstate->frame[i]);
4688}
4689
fd978bf7 4690static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4691 struct bpf_func_state *state,
4692 int ref_obj_id)
fd978bf7
JS
4693{
4694 struct bpf_reg_state *regs = state->regs, *reg;
4695 int i;
4696
4697 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4698 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4699 mark_reg_unknown(env, regs, i);
4700
4701 bpf_for_each_spilled_reg(i, state, reg) {
4702 if (!reg)
4703 continue;
1b986589 4704 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4705 __mark_reg_unknown(env, reg);
fd978bf7
JS
4706 }
4707}
4708
4709/* The pointer with the specified id has released its reference to kernel
4710 * resources. Identify all copies of the same pointer and clear the reference.
4711 */
4712static int release_reference(struct bpf_verifier_env *env,
1b986589 4713 int ref_obj_id)
fd978bf7
JS
4714{
4715 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4716 int err;
fd978bf7
JS
4717 int i;
4718
1b986589
MKL
4719 err = release_reference_state(cur_func(env), ref_obj_id);
4720 if (err)
4721 return err;
4722
fd978bf7 4723 for (i = 0; i <= vstate->curframe; i++)
1b986589 4724 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4725
1b986589 4726 return 0;
fd978bf7
JS
4727}
4728
51c39bb1
AS
4729static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4730 struct bpf_reg_state *regs)
4731{
4732 int i;
4733
4734 /* after the call registers r0 - r5 were scratched */
4735 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4736 mark_reg_not_init(env, regs, caller_saved[i]);
4737 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4738 }
4739}
4740
f4d7e40a
AS
4741static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4742 int *insn_idx)
4743{
4744 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4745 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4746 struct bpf_func_state *caller, *callee;
fd978bf7 4747 int i, err, subprog, target_insn;
51c39bb1 4748 bool is_global = false;
f4d7e40a 4749
aada9ce6 4750 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4751 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4752 state->curframe + 2);
f4d7e40a
AS
4753 return -E2BIG;
4754 }
4755
4756 target_insn = *insn_idx + insn->imm;
4757 subprog = find_subprog(env, target_insn + 1);
4758 if (subprog < 0) {
4759 verbose(env, "verifier bug. No program starts at insn %d\n",
4760 target_insn + 1);
4761 return -EFAULT;
4762 }
4763
4764 caller = state->frame[state->curframe];
4765 if (state->frame[state->curframe + 1]) {
4766 verbose(env, "verifier bug. Frame %d already allocated\n",
4767 state->curframe + 1);
4768 return -EFAULT;
4769 }
4770
51c39bb1
AS
4771 func_info_aux = env->prog->aux->func_info_aux;
4772 if (func_info_aux)
4773 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4774 err = btf_check_func_arg_match(env, subprog, caller->regs);
4775 if (err == -EFAULT)
4776 return err;
4777 if (is_global) {
4778 if (err) {
4779 verbose(env, "Caller passes invalid args into func#%d\n",
4780 subprog);
4781 return err;
4782 } else {
4783 if (env->log.level & BPF_LOG_LEVEL)
4784 verbose(env,
4785 "Func#%d is global and valid. Skipping.\n",
4786 subprog);
4787 clear_caller_saved_regs(env, caller->regs);
4788
4789 /* All global functions return SCALAR_VALUE */
4790 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4791
4792 /* continue with next insn after call */
4793 return 0;
4794 }
4795 }
4796
f4d7e40a
AS
4797 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4798 if (!callee)
4799 return -ENOMEM;
4800 state->frame[state->curframe + 1] = callee;
4801
4802 /* callee cannot access r0, r6 - r9 for reading and has to write
4803 * into its own stack before reading from it.
4804 * callee can read/write into caller's stack
4805 */
4806 init_func_state(env, callee,
4807 /* remember the callsite, it will be used by bpf_exit */
4808 *insn_idx /* callsite */,
4809 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4810 subprog /* subprog number within this prog */);
f4d7e40a 4811
fd978bf7
JS
4812 /* Transfer references to the callee */
4813 err = transfer_reference_state(callee, caller);
4814 if (err)
4815 return err;
4816
679c782d
EC
4817 /* copy r1 - r5 args that callee can access. The copy includes parent
4818 * pointers, which connects us up to the liveness chain
4819 */
f4d7e40a
AS
4820 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4821 callee->regs[i] = caller->regs[i];
4822
51c39bb1 4823 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4824
4825 /* only increment it after check_reg_arg() finished */
4826 state->curframe++;
4827
4828 /* and go analyze first insn of the callee */
4829 *insn_idx = target_insn;
4830
06ee7115 4831 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4832 verbose(env, "caller:\n");
4833 print_verifier_state(env, caller);
4834 verbose(env, "callee:\n");
4835 print_verifier_state(env, callee);
4836 }
4837 return 0;
4838}
4839
4840static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4841{
4842 struct bpf_verifier_state *state = env->cur_state;
4843 struct bpf_func_state *caller, *callee;
4844 struct bpf_reg_state *r0;
fd978bf7 4845 int err;
f4d7e40a
AS
4846
4847 callee = state->frame[state->curframe];
4848 r0 = &callee->regs[BPF_REG_0];
4849 if (r0->type == PTR_TO_STACK) {
4850 /* technically it's ok to return caller's stack pointer
4851 * (or caller's caller's pointer) back to the caller,
4852 * since these pointers are valid. Only current stack
4853 * pointer will be invalid as soon as function exits,
4854 * but let's be conservative
4855 */
4856 verbose(env, "cannot return stack pointer to the caller\n");
4857 return -EINVAL;
4858 }
4859
4860 state->curframe--;
4861 caller = state->frame[state->curframe];
4862 /* return to the caller whatever r0 had in the callee */
4863 caller->regs[BPF_REG_0] = *r0;
4864
fd978bf7
JS
4865 /* Transfer references to the caller */
4866 err = transfer_reference_state(caller, callee);
4867 if (err)
4868 return err;
4869
f4d7e40a 4870 *insn_idx = callee->callsite + 1;
06ee7115 4871 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4872 verbose(env, "returning from callee:\n");
4873 print_verifier_state(env, callee);
4874 verbose(env, "to caller at %d:\n", *insn_idx);
4875 print_verifier_state(env, caller);
4876 }
4877 /* clear everything in the callee */
4878 free_func_state(callee);
4879 state->frame[state->curframe + 1] = NULL;
4880 return 0;
4881}
4882
849fa506
YS
4883static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4884 int func_id,
4885 struct bpf_call_arg_meta *meta)
4886{
4887 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4888
4889 if (ret_type != RET_INTEGER ||
4890 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4891 func_id != BPF_FUNC_probe_read_str &&
4892 func_id != BPF_FUNC_probe_read_kernel_str &&
4893 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4894 return;
4895
10060503 4896 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4897 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4898 __reg_deduce_bounds(ret_reg);
4899 __reg_bound_offset(ret_reg);
10060503 4900 __update_reg_bounds(ret_reg);
849fa506
YS
4901}
4902
c93552c4
DB
4903static int
4904record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4905 int func_id, int insn_idx)
4906{
4907 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4908 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4909
4910 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4911 func_id != BPF_FUNC_map_lookup_elem &&
4912 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4913 func_id != BPF_FUNC_map_delete_elem &&
4914 func_id != BPF_FUNC_map_push_elem &&
4915 func_id != BPF_FUNC_map_pop_elem &&
4916 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4917 return 0;
09772d92 4918
591fe988 4919 if (map == NULL) {
c93552c4
DB
4920 verbose(env, "kernel subsystem misconfigured verifier\n");
4921 return -EINVAL;
4922 }
4923
591fe988
DB
4924 /* In case of read-only, some additional restrictions
4925 * need to be applied in order to prevent altering the
4926 * state of the map from program side.
4927 */
4928 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4929 (func_id == BPF_FUNC_map_delete_elem ||
4930 func_id == BPF_FUNC_map_update_elem ||
4931 func_id == BPF_FUNC_map_push_elem ||
4932 func_id == BPF_FUNC_map_pop_elem)) {
4933 verbose(env, "write into map forbidden\n");
4934 return -EACCES;
4935 }
4936
d2e4c1e6 4937 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4938 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4939 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4940 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4941 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4942 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4943 return 0;
4944}
4945
d2e4c1e6
DB
4946static int
4947record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4948 int func_id, int insn_idx)
4949{
4950 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4951 struct bpf_reg_state *regs = cur_regs(env), *reg;
4952 struct bpf_map *map = meta->map_ptr;
4953 struct tnum range;
4954 u64 val;
cc52d914 4955 int err;
d2e4c1e6
DB
4956
4957 if (func_id != BPF_FUNC_tail_call)
4958 return 0;
4959 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4960 verbose(env, "kernel subsystem misconfigured verifier\n");
4961 return -EINVAL;
4962 }
4963
4964 range = tnum_range(0, map->max_entries - 1);
4965 reg = &regs[BPF_REG_3];
4966
4967 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4968 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4969 return 0;
4970 }
4971
cc52d914
DB
4972 err = mark_chain_precision(env, BPF_REG_3);
4973 if (err)
4974 return err;
4975
d2e4c1e6
DB
4976 val = reg->var_off.value;
4977 if (bpf_map_key_unseen(aux))
4978 bpf_map_key_store(aux, val);
4979 else if (!bpf_map_key_poisoned(aux) &&
4980 bpf_map_key_immediate(aux) != val)
4981 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4982 return 0;
4983}
4984
fd978bf7
JS
4985static int check_reference_leak(struct bpf_verifier_env *env)
4986{
4987 struct bpf_func_state *state = cur_func(env);
4988 int i;
4989
4990 for (i = 0; i < state->acquired_refs; i++) {
4991 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4992 state->refs[i].id, state->refs[i].insn_idx);
4993 }
4994 return state->acquired_refs ? -EINVAL : 0;
4995}
4996
f4d7e40a 4997static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4998{
17a52670 4999 const struct bpf_func_proto *fn = NULL;
638f5b90 5000 struct bpf_reg_state *regs;
33ff9823 5001 struct bpf_call_arg_meta meta;
969bf05e 5002 bool changes_data;
17a52670
AS
5003 int i, err;
5004
5005 /* find function prototype */
5006 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
5007 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5008 func_id);
17a52670
AS
5009 return -EINVAL;
5010 }
5011
00176a34 5012 if (env->ops->get_func_proto)
5e43f899 5013 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 5014 if (!fn) {
61bd5218
JK
5015 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5016 func_id);
17a52670
AS
5017 return -EINVAL;
5018 }
5019
5020 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 5021 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 5022 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
5023 return -EINVAL;
5024 }
5025
eae2e83e
JO
5026 if (fn->allowed && !fn->allowed(env->prog)) {
5027 verbose(env, "helper call is not allowed in probe\n");
5028 return -EINVAL;
5029 }
5030
04514d13 5031 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 5032 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
5033 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5034 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5035 func_id_name(func_id), func_id);
5036 return -EINVAL;
5037 }
969bf05e 5038
33ff9823 5039 memset(&meta, 0, sizeof(meta));
36bbef52 5040 meta.pkt_access = fn->pkt_access;
33ff9823 5041
1b986589 5042 err = check_func_proto(fn, func_id);
435faee1 5043 if (err) {
61bd5218 5044 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 5045 func_id_name(func_id), func_id);
435faee1
DB
5046 return err;
5047 }
5048
d83525ca 5049 meta.func_id = func_id;
17a52670 5050 /* check args */
a7658e1a 5051 for (i = 0; i < 5; i++) {
af7ec138 5052 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
5053 if (err)
5054 return err;
5055 }
17a52670 5056
c93552c4
DB
5057 err = record_func_map(env, &meta, func_id, insn_idx);
5058 if (err)
5059 return err;
5060
d2e4c1e6
DB
5061 err = record_func_key(env, &meta, func_id, insn_idx);
5062 if (err)
5063 return err;
5064
435faee1
DB
5065 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5066 * is inferred from register state.
5067 */
5068 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
5069 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5070 BPF_WRITE, -1, false);
435faee1
DB
5071 if (err)
5072 return err;
5073 }
5074
fd978bf7
JS
5075 if (func_id == BPF_FUNC_tail_call) {
5076 err = check_reference_leak(env);
5077 if (err) {
5078 verbose(env, "tail_call would lead to reference leak\n");
5079 return err;
5080 }
5081 } else if (is_release_function(func_id)) {
1b986589 5082 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
5083 if (err) {
5084 verbose(env, "func %s#%d reference has not been acquired before\n",
5085 func_id_name(func_id), func_id);
fd978bf7 5086 return err;
46f8bc92 5087 }
fd978bf7
JS
5088 }
5089
638f5b90 5090 regs = cur_regs(env);
cd339431
RG
5091
5092 /* check that flags argument in get_local_storage(map, flags) is 0,
5093 * this is required because get_local_storage() can't return an error.
5094 */
5095 if (func_id == BPF_FUNC_get_local_storage &&
5096 !register_is_null(&regs[BPF_REG_2])) {
5097 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5098 return -EINVAL;
5099 }
5100
17a52670 5101 /* reset caller saved regs */
dc503a8a 5102 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5103 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5104 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5105 }
17a52670 5106
5327ed3d
JW
5107 /* helper call returns 64-bit value. */
5108 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5109
dc503a8a 5110 /* update return register (already marked as written above) */
17a52670 5111 if (fn->ret_type == RET_INTEGER) {
f1174f77 5112 /* sets type to SCALAR_VALUE */
61bd5218 5113 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
5114 } else if (fn->ret_type == RET_VOID) {
5115 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
5116 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5117 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 5118 /* There is no offset yet applied, variable or fixed */
61bd5218 5119 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
5120 /* remember map_ptr, so that check_map_access()
5121 * can check 'value_size' boundary of memory access
5122 * to map element returned from bpf_map_lookup_elem()
5123 */
33ff9823 5124 if (meta.map_ptr == NULL) {
61bd5218
JK
5125 verbose(env,
5126 "kernel subsystem misconfigured verifier\n");
17a52670
AS
5127 return -EINVAL;
5128 }
33ff9823 5129 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
5130 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5131 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
5132 if (map_value_has_spin_lock(meta.map_ptr))
5133 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
5134 } else {
5135 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 5136 }
c64b7983
JS
5137 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5138 mark_reg_known_zero(env, regs, BPF_REG_0);
5139 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
5140 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5141 mark_reg_known_zero(env, regs, BPF_REG_0);
5142 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
5143 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5144 mark_reg_known_zero(env, regs, BPF_REG_0);
5145 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
5146 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5147 mark_reg_known_zero(env, regs, BPF_REG_0);
5148 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 5149 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
5150 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5151 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
5152 const struct btf_type *t;
5153
5154 mark_reg_known_zero(env, regs, BPF_REG_0);
5155 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5156 if (!btf_type_is_struct(t)) {
5157 u32 tsize;
5158 const struct btf_type *ret;
5159 const char *tname;
5160
5161 /* resolve the type size of ksym. */
5162 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5163 if (IS_ERR(ret)) {
5164 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5165 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5166 tname, PTR_ERR(ret));
5167 return -EINVAL;
5168 }
63d9b80d
HL
5169 regs[BPF_REG_0].type =
5170 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5171 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
5172 regs[BPF_REG_0].mem_size = tsize;
5173 } else {
63d9b80d
HL
5174 regs[BPF_REG_0].type =
5175 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5176 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
eaa6bcb7
HL
5177 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5178 }
af7ec138
YS
5179 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5180 int ret_btf_id;
5181
5182 mark_reg_known_zero(env, regs, BPF_REG_0);
5183 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5184 ret_btf_id = *fn->ret_btf_id;
5185 if (ret_btf_id == 0) {
5186 verbose(env, "invalid return type %d of func %s#%d\n",
5187 fn->ret_type, func_id_name(func_id), func_id);
5188 return -EINVAL;
5189 }
5190 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5191 } else {
61bd5218 5192 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5193 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5194 return -EINVAL;
5195 }
04fd61ab 5196
93c230e3
MKL
5197 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5198 regs[BPF_REG_0].id = ++env->id_gen;
5199
0f3adc28 5200 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5201 /* For release_reference() */
5202 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5203 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5204 int id = acquire_reference_state(env, insn_idx);
5205
5206 if (id < 0)
5207 return id;
5208 /* For mark_ptr_or_null_reg() */
5209 regs[BPF_REG_0].id = id;
5210 /* For release_reference() */
5211 regs[BPF_REG_0].ref_obj_id = id;
5212 }
1b986589 5213
849fa506
YS
5214 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5215
61bd5218 5216 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5217 if (err)
5218 return err;
04fd61ab 5219
fa28dcb8
SL
5220 if ((func_id == BPF_FUNC_get_stack ||
5221 func_id == BPF_FUNC_get_task_stack) &&
5222 !env->prog->has_callchain_buf) {
c195651e
YS
5223 const char *err_str;
5224
5225#ifdef CONFIG_PERF_EVENTS
5226 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5227 err_str = "cannot get callchain buffer for func %s#%d\n";
5228#else
5229 err = -ENOTSUPP;
5230 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5231#endif
5232 if (err) {
5233 verbose(env, err_str, func_id_name(func_id), func_id);
5234 return err;
5235 }
5236
5237 env->prog->has_callchain_buf = true;
5238 }
5239
5d99cb2c
SL
5240 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5241 env->prog->call_get_stack = true;
5242
969bf05e
AS
5243 if (changes_data)
5244 clear_all_pkt_pointers(env);
5245 return 0;
5246}
5247
b03c9f9f
EC
5248static bool signed_add_overflows(s64 a, s64 b)
5249{
5250 /* Do the add in u64, where overflow is well-defined */
5251 s64 res = (s64)((u64)a + (u64)b);
5252
5253 if (b < 0)
5254 return res > a;
5255 return res < a;
5256}
5257
3f50f132
JF
5258static bool signed_add32_overflows(s64 a, s64 b)
5259{
5260 /* Do the add in u32, where overflow is well-defined */
5261 s32 res = (s32)((u32)a + (u32)b);
5262
5263 if (b < 0)
5264 return res > a;
5265 return res < a;
5266}
5267
5268static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
5269{
5270 /* Do the sub in u64, where overflow is well-defined */
5271 s64 res = (s64)((u64)a - (u64)b);
5272
5273 if (b < 0)
5274 return res < a;
5275 return res > a;
969bf05e
AS
5276}
5277
3f50f132
JF
5278static bool signed_sub32_overflows(s32 a, s32 b)
5279{
5280 /* Do the sub in u64, where overflow is well-defined */
5281 s32 res = (s32)((u32)a - (u32)b);
5282
5283 if (b < 0)
5284 return res < a;
5285 return res > a;
5286}
5287
bb7f0f98
AS
5288static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5289 const struct bpf_reg_state *reg,
5290 enum bpf_reg_type type)
5291{
5292 bool known = tnum_is_const(reg->var_off);
5293 s64 val = reg->var_off.value;
5294 s64 smin = reg->smin_value;
5295
5296 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5297 verbose(env, "math between %s pointer and %lld is not allowed\n",
5298 reg_type_str[type], val);
5299 return false;
5300 }
5301
5302 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5303 verbose(env, "%s pointer offset %d is not allowed\n",
5304 reg_type_str[type], reg->off);
5305 return false;
5306 }
5307
5308 if (smin == S64_MIN) {
5309 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5310 reg_type_str[type]);
5311 return false;
5312 }
5313
5314 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5315 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5316 smin, reg_type_str[type]);
5317 return false;
5318 }
5319
5320 return true;
5321}
5322
979d63d5
DB
5323static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5324{
5325 return &env->insn_aux_data[env->insn_idx];
5326}
5327
5328static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5329 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5330{
5331 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5332 (opcode == BPF_SUB && !off_is_neg);
5333 u32 off;
5334
5335 switch (ptr_reg->type) {
5336 case PTR_TO_STACK:
088ec26d
AI
5337 /* Indirect variable offset stack access is prohibited in
5338 * unprivileged mode so it's not handled here.
5339 */
979d63d5
DB
5340 off = ptr_reg->off + ptr_reg->var_off.value;
5341 if (mask_to_left)
5342 *ptr_limit = MAX_BPF_STACK + off;
5343 else
5344 *ptr_limit = -off;
5345 return 0;
5346 case PTR_TO_MAP_VALUE:
5347 if (mask_to_left) {
5348 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5349 } else {
5350 off = ptr_reg->smin_value + ptr_reg->off;
5351 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5352 }
5353 return 0;
5354 default:
5355 return -EINVAL;
5356 }
5357}
5358
d3bd7413
DB
5359static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5360 const struct bpf_insn *insn)
5361{
2c78ee89 5362 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5363}
5364
5365static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5366 u32 alu_state, u32 alu_limit)
5367{
5368 /* If we arrived here from different branches with different
5369 * state or limits to sanitize, then this won't work.
5370 */
5371 if (aux->alu_state &&
5372 (aux->alu_state != alu_state ||
5373 aux->alu_limit != alu_limit))
5374 return -EACCES;
5375
5376 /* Corresponding fixup done in fixup_bpf_calls(). */
5377 aux->alu_state = alu_state;
5378 aux->alu_limit = alu_limit;
5379 return 0;
5380}
5381
5382static int sanitize_val_alu(struct bpf_verifier_env *env,
5383 struct bpf_insn *insn)
5384{
5385 struct bpf_insn_aux_data *aux = cur_aux(env);
5386
5387 if (can_skip_alu_sanitation(env, insn))
5388 return 0;
5389
5390 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5391}
5392
979d63d5
DB
5393static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5394 struct bpf_insn *insn,
5395 const struct bpf_reg_state *ptr_reg,
5396 struct bpf_reg_state *dst_reg,
5397 bool off_is_neg)
5398{
5399 struct bpf_verifier_state *vstate = env->cur_state;
5400 struct bpf_insn_aux_data *aux = cur_aux(env);
5401 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5402 u8 opcode = BPF_OP(insn->code);
5403 u32 alu_state, alu_limit;
5404 struct bpf_reg_state tmp;
5405 bool ret;
5406
d3bd7413 5407 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5408 return 0;
5409
5410 /* We already marked aux for masking from non-speculative
5411 * paths, thus we got here in the first place. We only care
5412 * to explore bad access from here.
5413 */
5414 if (vstate->speculative)
5415 goto do_sim;
5416
5417 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5418 alu_state |= ptr_is_dst_reg ?
5419 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5420
5421 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5422 return 0;
d3bd7413 5423 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5424 return -EACCES;
979d63d5
DB
5425do_sim:
5426 /* Simulate and find potential out-of-bounds access under
5427 * speculative execution from truncation as a result of
5428 * masking when off was not within expected range. If off
5429 * sits in dst, then we temporarily need to move ptr there
5430 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5431 * for cases where we use K-based arithmetic in one direction
5432 * and truncated reg-based in the other in order to explore
5433 * bad access.
5434 */
5435 if (!ptr_is_dst_reg) {
5436 tmp = *dst_reg;
5437 *dst_reg = *ptr_reg;
5438 }
5439 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5440 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5441 *dst_reg = tmp;
5442 return !ret ? -EFAULT : 0;
5443}
5444
f1174f77 5445/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5446 * Caller should also handle BPF_MOV case separately.
5447 * If we return -EACCES, caller may want to try again treating pointer as a
5448 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5449 */
5450static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5451 struct bpf_insn *insn,
5452 const struct bpf_reg_state *ptr_reg,
5453 const struct bpf_reg_state *off_reg)
969bf05e 5454{
f4d7e40a
AS
5455 struct bpf_verifier_state *vstate = env->cur_state;
5456 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5457 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5458 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5459 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5460 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5461 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5462 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5463 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5464 u8 opcode = BPF_OP(insn->code);
979d63d5 5465 int ret;
969bf05e 5466
f1174f77 5467 dst_reg = &regs[dst];
969bf05e 5468
6f16101e
DB
5469 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5470 smin_val > smax_val || umin_val > umax_val) {
5471 /* Taint dst register if offset had invalid bounds derived from
5472 * e.g. dead branches.
5473 */
f54c7898 5474 __mark_reg_unknown(env, dst_reg);
6f16101e 5475 return 0;
f1174f77
EC
5476 }
5477
5478 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5479 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5480 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5481 __mark_reg_unknown(env, dst_reg);
5482 return 0;
5483 }
5484
82abbf8d
AS
5485 verbose(env,
5486 "R%d 32-bit pointer arithmetic prohibited\n",
5487 dst);
f1174f77 5488 return -EACCES;
969bf05e
AS
5489 }
5490
aad2eeaf
JS
5491 switch (ptr_reg->type) {
5492 case PTR_TO_MAP_VALUE_OR_NULL:
5493 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5494 dst, reg_type_str[ptr_reg->type]);
f1174f77 5495 return -EACCES;
aad2eeaf 5496 case CONST_PTR_TO_MAP:
7c696732
YS
5497 /* smin_val represents the known value */
5498 if (known && smin_val == 0 && opcode == BPF_ADD)
5499 break;
8731745e 5500 fallthrough;
aad2eeaf 5501 case PTR_TO_PACKET_END:
c64b7983
JS
5502 case PTR_TO_SOCKET:
5503 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5504 case PTR_TO_SOCK_COMMON:
5505 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5506 case PTR_TO_TCP_SOCK:
5507 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5508 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5509 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5510 dst, reg_type_str[ptr_reg->type]);
f1174f77 5511 return -EACCES;
9d7eceed
DB
5512 case PTR_TO_MAP_VALUE:
5513 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5514 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5515 off_reg == dst_reg ? dst : src);
5516 return -EACCES;
5517 }
df561f66 5518 fallthrough;
aad2eeaf
JS
5519 default:
5520 break;
f1174f77
EC
5521 }
5522
5523 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5524 * The id may be overwritten later if we create a new variable offset.
969bf05e 5525 */
f1174f77
EC
5526 dst_reg->type = ptr_reg->type;
5527 dst_reg->id = ptr_reg->id;
969bf05e 5528
bb7f0f98
AS
5529 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5530 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5531 return -EINVAL;
5532
3f50f132
JF
5533 /* pointer types do not carry 32-bit bounds at the moment. */
5534 __mark_reg32_unbounded(dst_reg);
5535
f1174f77
EC
5536 switch (opcode) {
5537 case BPF_ADD:
979d63d5
DB
5538 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5539 if (ret < 0) {
5540 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5541 return ret;
5542 }
f1174f77
EC
5543 /* We can take a fixed offset as long as it doesn't overflow
5544 * the s32 'off' field
969bf05e 5545 */
b03c9f9f
EC
5546 if (known && (ptr_reg->off + smin_val ==
5547 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5548 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5549 dst_reg->smin_value = smin_ptr;
5550 dst_reg->smax_value = smax_ptr;
5551 dst_reg->umin_value = umin_ptr;
5552 dst_reg->umax_value = umax_ptr;
f1174f77 5553 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5554 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5555 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5556 break;
5557 }
f1174f77
EC
5558 /* A new variable offset is created. Note that off_reg->off
5559 * == 0, since it's a scalar.
5560 * dst_reg gets the pointer type and since some positive
5561 * integer value was added to the pointer, give it a new 'id'
5562 * if it's a PTR_TO_PACKET.
5563 * this creates a new 'base' pointer, off_reg (variable) gets
5564 * added into the variable offset, and we copy the fixed offset
5565 * from ptr_reg.
969bf05e 5566 */
b03c9f9f
EC
5567 if (signed_add_overflows(smin_ptr, smin_val) ||
5568 signed_add_overflows(smax_ptr, smax_val)) {
5569 dst_reg->smin_value = S64_MIN;
5570 dst_reg->smax_value = S64_MAX;
5571 } else {
5572 dst_reg->smin_value = smin_ptr + smin_val;
5573 dst_reg->smax_value = smax_ptr + smax_val;
5574 }
5575 if (umin_ptr + umin_val < umin_ptr ||
5576 umax_ptr + umax_val < umax_ptr) {
5577 dst_reg->umin_value = 0;
5578 dst_reg->umax_value = U64_MAX;
5579 } else {
5580 dst_reg->umin_value = umin_ptr + umin_val;
5581 dst_reg->umax_value = umax_ptr + umax_val;
5582 }
f1174f77
EC
5583 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5584 dst_reg->off = ptr_reg->off;
0962590e 5585 dst_reg->raw = ptr_reg->raw;
de8f3a83 5586 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5587 dst_reg->id = ++env->id_gen;
5588 /* something was added to pkt_ptr, set range to zero */
0962590e 5589 dst_reg->raw = 0;
f1174f77
EC
5590 }
5591 break;
5592 case BPF_SUB:
979d63d5
DB
5593 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5594 if (ret < 0) {
5595 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5596 return ret;
5597 }
f1174f77
EC
5598 if (dst_reg == off_reg) {
5599 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5600 verbose(env, "R%d tried to subtract pointer from scalar\n",
5601 dst);
f1174f77
EC
5602 return -EACCES;
5603 }
5604 /* We don't allow subtraction from FP, because (according to
5605 * test_verifier.c test "invalid fp arithmetic", JITs might not
5606 * be able to deal with it.
969bf05e 5607 */
f1174f77 5608 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5609 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5610 dst);
f1174f77
EC
5611 return -EACCES;
5612 }
b03c9f9f
EC
5613 if (known && (ptr_reg->off - smin_val ==
5614 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5615 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5616 dst_reg->smin_value = smin_ptr;
5617 dst_reg->smax_value = smax_ptr;
5618 dst_reg->umin_value = umin_ptr;
5619 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5620 dst_reg->var_off = ptr_reg->var_off;
5621 dst_reg->id = ptr_reg->id;
b03c9f9f 5622 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5623 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5624 break;
5625 }
f1174f77
EC
5626 /* A new variable offset is created. If the subtrahend is known
5627 * nonnegative, then any reg->range we had before is still good.
969bf05e 5628 */
b03c9f9f
EC
5629 if (signed_sub_overflows(smin_ptr, smax_val) ||
5630 signed_sub_overflows(smax_ptr, smin_val)) {
5631 /* Overflow possible, we know nothing */
5632 dst_reg->smin_value = S64_MIN;
5633 dst_reg->smax_value = S64_MAX;
5634 } else {
5635 dst_reg->smin_value = smin_ptr - smax_val;
5636 dst_reg->smax_value = smax_ptr - smin_val;
5637 }
5638 if (umin_ptr < umax_val) {
5639 /* Overflow possible, we know nothing */
5640 dst_reg->umin_value = 0;
5641 dst_reg->umax_value = U64_MAX;
5642 } else {
5643 /* Cannot overflow (as long as bounds are consistent) */
5644 dst_reg->umin_value = umin_ptr - umax_val;
5645 dst_reg->umax_value = umax_ptr - umin_val;
5646 }
f1174f77
EC
5647 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5648 dst_reg->off = ptr_reg->off;
0962590e 5649 dst_reg->raw = ptr_reg->raw;
de8f3a83 5650 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5651 dst_reg->id = ++env->id_gen;
5652 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5653 if (smin_val < 0)
0962590e 5654 dst_reg->raw = 0;
43188702 5655 }
f1174f77
EC
5656 break;
5657 case BPF_AND:
5658 case BPF_OR:
5659 case BPF_XOR:
82abbf8d
AS
5660 /* bitwise ops on pointers are troublesome, prohibit. */
5661 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5662 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5663 return -EACCES;
5664 default:
5665 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5666 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5667 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5668 return -EACCES;
43188702
JF
5669 }
5670
bb7f0f98
AS
5671 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5672 return -EINVAL;
5673
b03c9f9f
EC
5674 __update_reg_bounds(dst_reg);
5675 __reg_deduce_bounds(dst_reg);
5676 __reg_bound_offset(dst_reg);
0d6303db
DB
5677
5678 /* For unprivileged we require that resulting offset must be in bounds
5679 * in order to be able to sanitize access later on.
5680 */
2c78ee89 5681 if (!env->bypass_spec_v1) {
e4298d25
DB
5682 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5683 check_map_access(env, dst, dst_reg->off, 1, false)) {
5684 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5685 "prohibited for !root\n", dst);
5686 return -EACCES;
5687 } else if (dst_reg->type == PTR_TO_STACK &&
5688 check_stack_access(env, dst_reg, dst_reg->off +
5689 dst_reg->var_off.value, 1)) {
5690 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5691 "prohibited for !root\n", dst);
5692 return -EACCES;
5693 }
0d6303db
DB
5694 }
5695
43188702
JF
5696 return 0;
5697}
5698
3f50f132
JF
5699static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5700 struct bpf_reg_state *src_reg)
5701{
5702 s32 smin_val = src_reg->s32_min_value;
5703 s32 smax_val = src_reg->s32_max_value;
5704 u32 umin_val = src_reg->u32_min_value;
5705 u32 umax_val = src_reg->u32_max_value;
5706
5707 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5708 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5709 dst_reg->s32_min_value = S32_MIN;
5710 dst_reg->s32_max_value = S32_MAX;
5711 } else {
5712 dst_reg->s32_min_value += smin_val;
5713 dst_reg->s32_max_value += smax_val;
5714 }
5715 if (dst_reg->u32_min_value + umin_val < umin_val ||
5716 dst_reg->u32_max_value + umax_val < umax_val) {
5717 dst_reg->u32_min_value = 0;
5718 dst_reg->u32_max_value = U32_MAX;
5719 } else {
5720 dst_reg->u32_min_value += umin_val;
5721 dst_reg->u32_max_value += umax_val;
5722 }
5723}
5724
07cd2631
JF
5725static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5726 struct bpf_reg_state *src_reg)
5727{
5728 s64 smin_val = src_reg->smin_value;
5729 s64 smax_val = src_reg->smax_value;
5730 u64 umin_val = src_reg->umin_value;
5731 u64 umax_val = src_reg->umax_value;
5732
5733 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5734 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5735 dst_reg->smin_value = S64_MIN;
5736 dst_reg->smax_value = S64_MAX;
5737 } else {
5738 dst_reg->smin_value += smin_val;
5739 dst_reg->smax_value += smax_val;
5740 }
5741 if (dst_reg->umin_value + umin_val < umin_val ||
5742 dst_reg->umax_value + umax_val < umax_val) {
5743 dst_reg->umin_value = 0;
5744 dst_reg->umax_value = U64_MAX;
5745 } else {
5746 dst_reg->umin_value += umin_val;
5747 dst_reg->umax_value += umax_val;
5748 }
3f50f132
JF
5749}
5750
5751static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5752 struct bpf_reg_state *src_reg)
5753{
5754 s32 smin_val = src_reg->s32_min_value;
5755 s32 smax_val = src_reg->s32_max_value;
5756 u32 umin_val = src_reg->u32_min_value;
5757 u32 umax_val = src_reg->u32_max_value;
5758
5759 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5760 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5761 /* Overflow possible, we know nothing */
5762 dst_reg->s32_min_value = S32_MIN;
5763 dst_reg->s32_max_value = S32_MAX;
5764 } else {
5765 dst_reg->s32_min_value -= smax_val;
5766 dst_reg->s32_max_value -= smin_val;
5767 }
5768 if (dst_reg->u32_min_value < umax_val) {
5769 /* Overflow possible, we know nothing */
5770 dst_reg->u32_min_value = 0;
5771 dst_reg->u32_max_value = U32_MAX;
5772 } else {
5773 /* Cannot overflow (as long as bounds are consistent) */
5774 dst_reg->u32_min_value -= umax_val;
5775 dst_reg->u32_max_value -= umin_val;
5776 }
07cd2631
JF
5777}
5778
5779static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5780 struct bpf_reg_state *src_reg)
5781{
5782 s64 smin_val = src_reg->smin_value;
5783 s64 smax_val = src_reg->smax_value;
5784 u64 umin_val = src_reg->umin_value;
5785 u64 umax_val = src_reg->umax_value;
5786
5787 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5788 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5789 /* Overflow possible, we know nothing */
5790 dst_reg->smin_value = S64_MIN;
5791 dst_reg->smax_value = S64_MAX;
5792 } else {
5793 dst_reg->smin_value -= smax_val;
5794 dst_reg->smax_value -= smin_val;
5795 }
5796 if (dst_reg->umin_value < umax_val) {
5797 /* Overflow possible, we know nothing */
5798 dst_reg->umin_value = 0;
5799 dst_reg->umax_value = U64_MAX;
5800 } else {
5801 /* Cannot overflow (as long as bounds are consistent) */
5802 dst_reg->umin_value -= umax_val;
5803 dst_reg->umax_value -= umin_val;
5804 }
3f50f132
JF
5805}
5806
5807static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5808 struct bpf_reg_state *src_reg)
5809{
5810 s32 smin_val = src_reg->s32_min_value;
5811 u32 umin_val = src_reg->u32_min_value;
5812 u32 umax_val = src_reg->u32_max_value;
5813
5814 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5815 /* Ain't nobody got time to multiply that sign */
5816 __mark_reg32_unbounded(dst_reg);
5817 return;
5818 }
5819 /* Both values are positive, so we can work with unsigned and
5820 * copy the result to signed (unless it exceeds S32_MAX).
5821 */
5822 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5823 /* Potential overflow, we know nothing */
5824 __mark_reg32_unbounded(dst_reg);
5825 return;
5826 }
5827 dst_reg->u32_min_value *= umin_val;
5828 dst_reg->u32_max_value *= umax_val;
5829 if (dst_reg->u32_max_value > S32_MAX) {
5830 /* Overflow possible, we know nothing */
5831 dst_reg->s32_min_value = S32_MIN;
5832 dst_reg->s32_max_value = S32_MAX;
5833 } else {
5834 dst_reg->s32_min_value = dst_reg->u32_min_value;
5835 dst_reg->s32_max_value = dst_reg->u32_max_value;
5836 }
07cd2631
JF
5837}
5838
5839static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5840 struct bpf_reg_state *src_reg)
5841{
5842 s64 smin_val = src_reg->smin_value;
5843 u64 umin_val = src_reg->umin_value;
5844 u64 umax_val = src_reg->umax_value;
5845
07cd2631
JF
5846 if (smin_val < 0 || dst_reg->smin_value < 0) {
5847 /* Ain't nobody got time to multiply that sign */
3f50f132 5848 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5849 return;
5850 }
5851 /* Both values are positive, so we can work with unsigned and
5852 * copy the result to signed (unless it exceeds S64_MAX).
5853 */
5854 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5855 /* Potential overflow, we know nothing */
3f50f132 5856 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5857 return;
5858 }
5859 dst_reg->umin_value *= umin_val;
5860 dst_reg->umax_value *= umax_val;
5861 if (dst_reg->umax_value > S64_MAX) {
5862 /* Overflow possible, we know nothing */
5863 dst_reg->smin_value = S64_MIN;
5864 dst_reg->smax_value = S64_MAX;
5865 } else {
5866 dst_reg->smin_value = dst_reg->umin_value;
5867 dst_reg->smax_value = dst_reg->umax_value;
5868 }
5869}
5870
3f50f132
JF
5871static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5872 struct bpf_reg_state *src_reg)
5873{
5874 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5875 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5876 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5877 s32 smin_val = src_reg->s32_min_value;
5878 u32 umax_val = src_reg->u32_max_value;
5879
5880 /* Assuming scalar64_min_max_and will be called so its safe
5881 * to skip updating register for known 32-bit case.
5882 */
5883 if (src_known && dst_known)
5884 return;
5885
5886 /* We get our minimum from the var_off, since that's inherently
5887 * bitwise. Our maximum is the minimum of the operands' maxima.
5888 */
5889 dst_reg->u32_min_value = var32_off.value;
5890 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5891 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5892 /* Lose signed bounds when ANDing negative numbers,
5893 * ain't nobody got time for that.
5894 */
5895 dst_reg->s32_min_value = S32_MIN;
5896 dst_reg->s32_max_value = S32_MAX;
5897 } else {
5898 /* ANDing two positives gives a positive, so safe to
5899 * cast result into s64.
5900 */
5901 dst_reg->s32_min_value = dst_reg->u32_min_value;
5902 dst_reg->s32_max_value = dst_reg->u32_max_value;
5903 }
5904
5905}
5906
07cd2631
JF
5907static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5908 struct bpf_reg_state *src_reg)
5909{
3f50f132
JF
5910 bool src_known = tnum_is_const(src_reg->var_off);
5911 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5912 s64 smin_val = src_reg->smin_value;
5913 u64 umax_val = src_reg->umax_value;
5914
3f50f132 5915 if (src_known && dst_known) {
4fbb38a3 5916 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5917 return;
5918 }
5919
07cd2631
JF
5920 /* We get our minimum from the var_off, since that's inherently
5921 * bitwise. Our maximum is the minimum of the operands' maxima.
5922 */
07cd2631
JF
5923 dst_reg->umin_value = dst_reg->var_off.value;
5924 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5925 if (dst_reg->smin_value < 0 || smin_val < 0) {
5926 /* Lose signed bounds when ANDing negative numbers,
5927 * ain't nobody got time for that.
5928 */
5929 dst_reg->smin_value = S64_MIN;
5930 dst_reg->smax_value = S64_MAX;
5931 } else {
5932 /* ANDing two positives gives a positive, so safe to
5933 * cast result into s64.
5934 */
5935 dst_reg->smin_value = dst_reg->umin_value;
5936 dst_reg->smax_value = dst_reg->umax_value;
5937 }
5938 /* We may learn something more from the var_off */
5939 __update_reg_bounds(dst_reg);
5940}
5941
3f50f132
JF
5942static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5943 struct bpf_reg_state *src_reg)
5944{
5945 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5946 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5947 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
5948 s32 smin_val = src_reg->s32_min_value;
5949 u32 umin_val = src_reg->u32_min_value;
3f50f132
JF
5950
5951 /* Assuming scalar64_min_max_or will be called so it is safe
5952 * to skip updating register for known case.
5953 */
5954 if (src_known && dst_known)
5955 return;
5956
5957 /* We get our maximum from the var_off, and our minimum is the
5958 * maximum of the operands' minima
5959 */
5960 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5961 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5962 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5963 /* Lose signed bounds when ORing negative numbers,
5964 * ain't nobody got time for that.
5965 */
5966 dst_reg->s32_min_value = S32_MIN;
5967 dst_reg->s32_max_value = S32_MAX;
5968 } else {
5969 /* ORing two positives gives a positive, so safe to
5970 * cast result into s64.
5971 */
5b9fbeb7
DB
5972 dst_reg->s32_min_value = dst_reg->u32_min_value;
5973 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
5974 }
5975}
5976
07cd2631
JF
5977static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5978 struct bpf_reg_state *src_reg)
5979{
3f50f132
JF
5980 bool src_known = tnum_is_const(src_reg->var_off);
5981 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5982 s64 smin_val = src_reg->smin_value;
5983 u64 umin_val = src_reg->umin_value;
5984
3f50f132 5985 if (src_known && dst_known) {
4fbb38a3 5986 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5987 return;
5988 }
5989
07cd2631
JF
5990 /* We get our maximum from the var_off, and our minimum is the
5991 * maximum of the operands' minima
5992 */
07cd2631
JF
5993 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5994 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5995 if (dst_reg->smin_value < 0 || smin_val < 0) {
5996 /* Lose signed bounds when ORing negative numbers,
5997 * ain't nobody got time for that.
5998 */
5999 dst_reg->smin_value = S64_MIN;
6000 dst_reg->smax_value = S64_MAX;
6001 } else {
6002 /* ORing two positives gives a positive, so safe to
6003 * cast result into s64.
6004 */
6005 dst_reg->smin_value = dst_reg->umin_value;
6006 dst_reg->smax_value = dst_reg->umax_value;
6007 }
6008 /* We may learn something more from the var_off */
6009 __update_reg_bounds(dst_reg);
6010}
6011
2921c90d
YS
6012static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6013 struct bpf_reg_state *src_reg)
6014{
6015 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6016 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6017 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6018 s32 smin_val = src_reg->s32_min_value;
6019
6020 /* Assuming scalar64_min_max_xor will be called so it is safe
6021 * to skip updating register for known case.
6022 */
6023 if (src_known && dst_known)
6024 return;
6025
6026 /* We get both minimum and maximum from the var32_off. */
6027 dst_reg->u32_min_value = var32_off.value;
6028 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6029
6030 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6031 /* XORing two positive sign numbers gives a positive,
6032 * so safe to cast u32 result into s32.
6033 */
6034 dst_reg->s32_min_value = dst_reg->u32_min_value;
6035 dst_reg->s32_max_value = dst_reg->u32_max_value;
6036 } else {
6037 dst_reg->s32_min_value = S32_MIN;
6038 dst_reg->s32_max_value = S32_MAX;
6039 }
6040}
6041
6042static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6043 struct bpf_reg_state *src_reg)
6044{
6045 bool src_known = tnum_is_const(src_reg->var_off);
6046 bool dst_known = tnum_is_const(dst_reg->var_off);
6047 s64 smin_val = src_reg->smin_value;
6048
6049 if (src_known && dst_known) {
6050 /* dst_reg->var_off.value has been updated earlier */
6051 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6052 return;
6053 }
6054
6055 /* We get both minimum and maximum from the var_off. */
6056 dst_reg->umin_value = dst_reg->var_off.value;
6057 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6058
6059 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6060 /* XORing two positive sign numbers gives a positive,
6061 * so safe to cast u64 result into s64.
6062 */
6063 dst_reg->smin_value = dst_reg->umin_value;
6064 dst_reg->smax_value = dst_reg->umax_value;
6065 } else {
6066 dst_reg->smin_value = S64_MIN;
6067 dst_reg->smax_value = S64_MAX;
6068 }
6069
6070 __update_reg_bounds(dst_reg);
6071}
6072
3f50f132
JF
6073static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6074 u64 umin_val, u64 umax_val)
07cd2631 6075{
07cd2631
JF
6076 /* We lose all sign bit information (except what we can pick
6077 * up from var_off)
6078 */
3f50f132
JF
6079 dst_reg->s32_min_value = S32_MIN;
6080 dst_reg->s32_max_value = S32_MAX;
6081 /* If we might shift our top bit out, then we know nothing */
6082 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6083 dst_reg->u32_min_value = 0;
6084 dst_reg->u32_max_value = U32_MAX;
6085 } else {
6086 dst_reg->u32_min_value <<= umin_val;
6087 dst_reg->u32_max_value <<= umax_val;
6088 }
6089}
6090
6091static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6092 struct bpf_reg_state *src_reg)
6093{
6094 u32 umax_val = src_reg->u32_max_value;
6095 u32 umin_val = src_reg->u32_min_value;
6096 /* u32 alu operation will zext upper bits */
6097 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6098
6099 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6100 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6101 /* Not required but being careful mark reg64 bounds as unknown so
6102 * that we are forced to pick them up from tnum and zext later and
6103 * if some path skips this step we are still safe.
6104 */
6105 __mark_reg64_unbounded(dst_reg);
6106 __update_reg32_bounds(dst_reg);
6107}
6108
6109static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6110 u64 umin_val, u64 umax_val)
6111{
6112 /* Special case <<32 because it is a common compiler pattern to sign
6113 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6114 * positive we know this shift will also be positive so we can track
6115 * bounds correctly. Otherwise we lose all sign bit information except
6116 * what we can pick up from var_off. Perhaps we can generalize this
6117 * later to shifts of any length.
6118 */
6119 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6120 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6121 else
6122 dst_reg->smax_value = S64_MAX;
6123
6124 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6125 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6126 else
6127 dst_reg->smin_value = S64_MIN;
6128
07cd2631
JF
6129 /* If we might shift our top bit out, then we know nothing */
6130 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6131 dst_reg->umin_value = 0;
6132 dst_reg->umax_value = U64_MAX;
6133 } else {
6134 dst_reg->umin_value <<= umin_val;
6135 dst_reg->umax_value <<= umax_val;
6136 }
3f50f132
JF
6137}
6138
6139static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6140 struct bpf_reg_state *src_reg)
6141{
6142 u64 umax_val = src_reg->umax_value;
6143 u64 umin_val = src_reg->umin_value;
6144
6145 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6146 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6147 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6148
07cd2631
JF
6149 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6150 /* We may learn something more from the var_off */
6151 __update_reg_bounds(dst_reg);
6152}
6153
3f50f132
JF
6154static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6155 struct bpf_reg_state *src_reg)
6156{
6157 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6158 u32 umax_val = src_reg->u32_max_value;
6159 u32 umin_val = src_reg->u32_min_value;
6160
6161 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6162 * be negative, then either:
6163 * 1) src_reg might be zero, so the sign bit of the result is
6164 * unknown, so we lose our signed bounds
6165 * 2) it's known negative, thus the unsigned bounds capture the
6166 * signed bounds
6167 * 3) the signed bounds cross zero, so they tell us nothing
6168 * about the result
6169 * If the value in dst_reg is known nonnegative, then again the
6170 * unsigned bounts capture the signed bounds.
6171 * Thus, in all cases it suffices to blow away our signed bounds
6172 * and rely on inferring new ones from the unsigned bounds and
6173 * var_off of the result.
6174 */
6175 dst_reg->s32_min_value = S32_MIN;
6176 dst_reg->s32_max_value = S32_MAX;
6177
6178 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6179 dst_reg->u32_min_value >>= umax_val;
6180 dst_reg->u32_max_value >>= umin_val;
6181
6182 __mark_reg64_unbounded(dst_reg);
6183 __update_reg32_bounds(dst_reg);
6184}
6185
07cd2631
JF
6186static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6187 struct bpf_reg_state *src_reg)
6188{
6189 u64 umax_val = src_reg->umax_value;
6190 u64 umin_val = src_reg->umin_value;
6191
6192 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6193 * be negative, then either:
6194 * 1) src_reg might be zero, so the sign bit of the result is
6195 * unknown, so we lose our signed bounds
6196 * 2) it's known negative, thus the unsigned bounds capture the
6197 * signed bounds
6198 * 3) the signed bounds cross zero, so they tell us nothing
6199 * about the result
6200 * If the value in dst_reg is known nonnegative, then again the
6201 * unsigned bounts capture the signed bounds.
6202 * Thus, in all cases it suffices to blow away our signed bounds
6203 * and rely on inferring new ones from the unsigned bounds and
6204 * var_off of the result.
6205 */
6206 dst_reg->smin_value = S64_MIN;
6207 dst_reg->smax_value = S64_MAX;
6208 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6209 dst_reg->umin_value >>= umax_val;
6210 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6211
6212 /* Its not easy to operate on alu32 bounds here because it depends
6213 * on bits being shifted in. Take easy way out and mark unbounded
6214 * so we can recalculate later from tnum.
6215 */
6216 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6217 __update_reg_bounds(dst_reg);
6218}
6219
3f50f132
JF
6220static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6221 struct bpf_reg_state *src_reg)
07cd2631 6222{
3f50f132 6223 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6224
6225 /* Upon reaching here, src_known is true and
6226 * umax_val is equal to umin_val.
6227 */
3f50f132
JF
6228 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6229 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6230
3f50f132
JF
6231 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6232
6233 /* blow away the dst_reg umin_value/umax_value and rely on
6234 * dst_reg var_off to refine the result.
6235 */
6236 dst_reg->u32_min_value = 0;
6237 dst_reg->u32_max_value = U32_MAX;
6238
6239 __mark_reg64_unbounded(dst_reg);
6240 __update_reg32_bounds(dst_reg);
6241}
6242
6243static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6244 struct bpf_reg_state *src_reg)
6245{
6246 u64 umin_val = src_reg->umin_value;
6247
6248 /* Upon reaching here, src_known is true and umax_val is equal
6249 * to umin_val.
6250 */
6251 dst_reg->smin_value >>= umin_val;
6252 dst_reg->smax_value >>= umin_val;
6253
6254 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6255
6256 /* blow away the dst_reg umin_value/umax_value and rely on
6257 * dst_reg var_off to refine the result.
6258 */
6259 dst_reg->umin_value = 0;
6260 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6261
6262 /* Its not easy to operate on alu32 bounds here because it depends
6263 * on bits being shifted in from upper 32-bits. Take easy way out
6264 * and mark unbounded so we can recalculate later from tnum.
6265 */
6266 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6267 __update_reg_bounds(dst_reg);
6268}
6269
468f6eaf
JH
6270/* WARNING: This function does calculations on 64-bit values, but the actual
6271 * execution may occur on 32-bit values. Therefore, things like bitshifts
6272 * need extra checks in the 32-bit case.
6273 */
f1174f77
EC
6274static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6275 struct bpf_insn *insn,
6276 struct bpf_reg_state *dst_reg,
6277 struct bpf_reg_state src_reg)
969bf05e 6278{
638f5b90 6279 struct bpf_reg_state *regs = cur_regs(env);
48461135 6280 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6281 bool src_known;
b03c9f9f
EC
6282 s64 smin_val, smax_val;
6283 u64 umin_val, umax_val;
3f50f132
JF
6284 s32 s32_min_val, s32_max_val;
6285 u32 u32_min_val, u32_max_val;
468f6eaf 6286 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6287 u32 dst = insn->dst_reg;
6288 int ret;
3f50f132 6289 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6290
b03c9f9f
EC
6291 smin_val = src_reg.smin_value;
6292 smax_val = src_reg.smax_value;
6293 umin_val = src_reg.umin_value;
6294 umax_val = src_reg.umax_value;
f23cc643 6295
3f50f132
JF
6296 s32_min_val = src_reg.s32_min_value;
6297 s32_max_val = src_reg.s32_max_value;
6298 u32_min_val = src_reg.u32_min_value;
6299 u32_max_val = src_reg.u32_max_value;
6300
6301 if (alu32) {
6302 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6303 if ((src_known &&
6304 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6305 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6306 /* Taint dst register if offset had invalid bounds
6307 * derived from e.g. dead branches.
6308 */
6309 __mark_reg_unknown(env, dst_reg);
6310 return 0;
6311 }
6312 } else {
6313 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6314 if ((src_known &&
6315 (smin_val != smax_val || umin_val != umax_val)) ||
6316 smin_val > smax_val || umin_val > umax_val) {
6317 /* Taint dst register if offset had invalid bounds
6318 * derived from e.g. dead branches.
6319 */
6320 __mark_reg_unknown(env, dst_reg);
6321 return 0;
6322 }
6f16101e
DB
6323 }
6324
bb7f0f98
AS
6325 if (!src_known &&
6326 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6327 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6328 return 0;
6329 }
6330
3f50f132
JF
6331 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6332 * There are two classes of instructions: The first class we track both
6333 * alu32 and alu64 sign/unsigned bounds independently this provides the
6334 * greatest amount of precision when alu operations are mixed with jmp32
6335 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6336 * and BPF_OR. This is possible because these ops have fairly easy to
6337 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6338 * See alu32 verifier tests for examples. The second class of
6339 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6340 * with regards to tracking sign/unsigned bounds because the bits may
6341 * cross subreg boundaries in the alu64 case. When this happens we mark
6342 * the reg unbounded in the subreg bound space and use the resulting
6343 * tnum to calculate an approximation of the sign/unsigned bounds.
6344 */
48461135
JB
6345 switch (opcode) {
6346 case BPF_ADD:
d3bd7413
DB
6347 ret = sanitize_val_alu(env, insn);
6348 if (ret < 0) {
6349 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6350 return ret;
6351 }
3f50f132 6352 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6353 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6354 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6355 break;
6356 case BPF_SUB:
d3bd7413
DB
6357 ret = sanitize_val_alu(env, insn);
6358 if (ret < 0) {
6359 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6360 return ret;
6361 }
3f50f132 6362 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6363 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6364 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6365 break;
6366 case BPF_MUL:
3f50f132
JF
6367 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6368 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6369 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6370 break;
6371 case BPF_AND:
3f50f132
JF
6372 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6373 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6374 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6375 break;
6376 case BPF_OR:
3f50f132
JF
6377 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6378 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6379 scalar_min_max_or(dst_reg, &src_reg);
48461135 6380 break;
2921c90d
YS
6381 case BPF_XOR:
6382 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6383 scalar32_min_max_xor(dst_reg, &src_reg);
6384 scalar_min_max_xor(dst_reg, &src_reg);
6385 break;
48461135 6386 case BPF_LSH:
468f6eaf
JH
6387 if (umax_val >= insn_bitness) {
6388 /* Shifts greater than 31 or 63 are undefined.
6389 * This includes shifts by a negative number.
b03c9f9f 6390 */
61bd5218 6391 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6392 break;
6393 }
3f50f132
JF
6394 if (alu32)
6395 scalar32_min_max_lsh(dst_reg, &src_reg);
6396 else
6397 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6398 break;
6399 case BPF_RSH:
468f6eaf
JH
6400 if (umax_val >= insn_bitness) {
6401 /* Shifts greater than 31 or 63 are undefined.
6402 * This includes shifts by a negative number.
b03c9f9f 6403 */
61bd5218 6404 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6405 break;
6406 }
3f50f132
JF
6407 if (alu32)
6408 scalar32_min_max_rsh(dst_reg, &src_reg);
6409 else
6410 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6411 break;
9cbe1f5a
YS
6412 case BPF_ARSH:
6413 if (umax_val >= insn_bitness) {
6414 /* Shifts greater than 31 or 63 are undefined.
6415 * This includes shifts by a negative number.
6416 */
6417 mark_reg_unknown(env, regs, insn->dst_reg);
6418 break;
6419 }
3f50f132
JF
6420 if (alu32)
6421 scalar32_min_max_arsh(dst_reg, &src_reg);
6422 else
6423 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6424 break;
48461135 6425 default:
61bd5218 6426 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6427 break;
6428 }
6429
3f50f132
JF
6430 /* ALU32 ops are zero extended into 64bit register */
6431 if (alu32)
6432 zext_32_to_64(dst_reg);
468f6eaf 6433
294f2fc6 6434 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6435 __reg_deduce_bounds(dst_reg);
6436 __reg_bound_offset(dst_reg);
f1174f77
EC
6437 return 0;
6438}
6439
6440/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6441 * and var_off.
6442 */
6443static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6444 struct bpf_insn *insn)
6445{
f4d7e40a
AS
6446 struct bpf_verifier_state *vstate = env->cur_state;
6447 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6448 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6449 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6450 u8 opcode = BPF_OP(insn->code);
b5dc0163 6451 int err;
f1174f77
EC
6452
6453 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6454 src_reg = NULL;
6455 if (dst_reg->type != SCALAR_VALUE)
6456 ptr_reg = dst_reg;
75748837
AS
6457 else
6458 /* Make sure ID is cleared otherwise dst_reg min/max could be
6459 * incorrectly propagated into other registers by find_equal_scalars()
6460 */
6461 dst_reg->id = 0;
f1174f77
EC
6462 if (BPF_SRC(insn->code) == BPF_X) {
6463 src_reg = &regs[insn->src_reg];
f1174f77
EC
6464 if (src_reg->type != SCALAR_VALUE) {
6465 if (dst_reg->type != SCALAR_VALUE) {
6466 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6467 * an arbitrary scalar. Disallow all math except
6468 * pointer subtraction
f1174f77 6469 */
dd066823 6470 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6471 mark_reg_unknown(env, regs, insn->dst_reg);
6472 return 0;
f1174f77 6473 }
82abbf8d
AS
6474 verbose(env, "R%d pointer %s pointer prohibited\n",
6475 insn->dst_reg,
6476 bpf_alu_string[opcode >> 4]);
6477 return -EACCES;
f1174f77
EC
6478 } else {
6479 /* scalar += pointer
6480 * This is legal, but we have to reverse our
6481 * src/dest handling in computing the range
6482 */
b5dc0163
AS
6483 err = mark_chain_precision(env, insn->dst_reg);
6484 if (err)
6485 return err;
82abbf8d
AS
6486 return adjust_ptr_min_max_vals(env, insn,
6487 src_reg, dst_reg);
f1174f77
EC
6488 }
6489 } else if (ptr_reg) {
6490 /* pointer += scalar */
b5dc0163
AS
6491 err = mark_chain_precision(env, insn->src_reg);
6492 if (err)
6493 return err;
82abbf8d
AS
6494 return adjust_ptr_min_max_vals(env, insn,
6495 dst_reg, src_reg);
f1174f77
EC
6496 }
6497 } else {
6498 /* Pretend the src is a reg with a known value, since we only
6499 * need to be able to read from this state.
6500 */
6501 off_reg.type = SCALAR_VALUE;
b03c9f9f 6502 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6503 src_reg = &off_reg;
82abbf8d
AS
6504 if (ptr_reg) /* pointer += K */
6505 return adjust_ptr_min_max_vals(env, insn,
6506 ptr_reg, src_reg);
f1174f77
EC
6507 }
6508
6509 /* Got here implies adding two SCALAR_VALUEs */
6510 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6511 print_verifier_state(env, state);
61bd5218 6512 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6513 return -EINVAL;
6514 }
6515 if (WARN_ON(!src_reg)) {
f4d7e40a 6516 print_verifier_state(env, state);
61bd5218 6517 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6518 return -EINVAL;
6519 }
6520 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6521}
6522
17a52670 6523/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6524static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6525{
638f5b90 6526 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6527 u8 opcode = BPF_OP(insn->code);
6528 int err;
6529
6530 if (opcode == BPF_END || opcode == BPF_NEG) {
6531 if (opcode == BPF_NEG) {
6532 if (BPF_SRC(insn->code) != 0 ||
6533 insn->src_reg != BPF_REG_0 ||
6534 insn->off != 0 || insn->imm != 0) {
61bd5218 6535 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6536 return -EINVAL;
6537 }
6538 } else {
6539 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6540 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6541 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6542 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6543 return -EINVAL;
6544 }
6545 }
6546
6547 /* check src operand */
dc503a8a 6548 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6549 if (err)
6550 return err;
6551
1be7f75d 6552 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6553 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6554 insn->dst_reg);
6555 return -EACCES;
6556 }
6557
17a52670 6558 /* check dest operand */
dc503a8a 6559 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6560 if (err)
6561 return err;
6562
6563 } else if (opcode == BPF_MOV) {
6564
6565 if (BPF_SRC(insn->code) == BPF_X) {
6566 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6567 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6568 return -EINVAL;
6569 }
6570
6571 /* check src operand */
dc503a8a 6572 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6573 if (err)
6574 return err;
6575 } else {
6576 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6577 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6578 return -EINVAL;
6579 }
6580 }
6581
fbeb1603
AF
6582 /* check dest operand, mark as required later */
6583 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6584 if (err)
6585 return err;
6586
6587 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6588 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6589 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6590
17a52670
AS
6591 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6592 /* case: R1 = R2
6593 * copy register state to dest reg
6594 */
75748837
AS
6595 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6596 /* Assign src and dst registers the same ID
6597 * that will be used by find_equal_scalars()
6598 * to propagate min/max range.
6599 */
6600 src_reg->id = ++env->id_gen;
e434b8cd
JW
6601 *dst_reg = *src_reg;
6602 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6603 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6604 } else {
f1174f77 6605 /* R1 = (u32) R2 */
1be7f75d 6606 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6607 verbose(env,
6608 "R%d partial copy of pointer\n",
1be7f75d
AS
6609 insn->src_reg);
6610 return -EACCES;
e434b8cd
JW
6611 } else if (src_reg->type == SCALAR_VALUE) {
6612 *dst_reg = *src_reg;
75748837
AS
6613 /* Make sure ID is cleared otherwise
6614 * dst_reg min/max could be incorrectly
6615 * propagated into src_reg by find_equal_scalars()
6616 */
6617 dst_reg->id = 0;
e434b8cd 6618 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6619 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6620 } else {
6621 mark_reg_unknown(env, regs,
6622 insn->dst_reg);
1be7f75d 6623 }
3f50f132 6624 zext_32_to_64(dst_reg);
17a52670
AS
6625 }
6626 } else {
6627 /* case: R = imm
6628 * remember the value we stored into this reg
6629 */
fbeb1603
AF
6630 /* clear any state __mark_reg_known doesn't set */
6631 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6632 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6633 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6634 __mark_reg_known(regs + insn->dst_reg,
6635 insn->imm);
6636 } else {
6637 __mark_reg_known(regs + insn->dst_reg,
6638 (u32)insn->imm);
6639 }
17a52670
AS
6640 }
6641
6642 } else if (opcode > BPF_END) {
61bd5218 6643 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6644 return -EINVAL;
6645
6646 } else { /* all other ALU ops: and, sub, xor, add, ... */
6647
17a52670
AS
6648 if (BPF_SRC(insn->code) == BPF_X) {
6649 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6650 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6651 return -EINVAL;
6652 }
6653 /* check src1 operand */
dc503a8a 6654 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6655 if (err)
6656 return err;
6657 } else {
6658 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6659 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6660 return -EINVAL;
6661 }
6662 }
6663
6664 /* check src2 operand */
dc503a8a 6665 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6666 if (err)
6667 return err;
6668
6669 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6670 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6671 verbose(env, "div by zero\n");
17a52670
AS
6672 return -EINVAL;
6673 }
6674
229394e8
RV
6675 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6676 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6677 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6678
6679 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6680 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6681 return -EINVAL;
6682 }
6683 }
6684
1a0dc1ac 6685 /* check dest operand */
dc503a8a 6686 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6687 if (err)
6688 return err;
6689
f1174f77 6690 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6691 }
6692
6693 return 0;
6694}
6695
c6a9efa1
PC
6696static void __find_good_pkt_pointers(struct bpf_func_state *state,
6697 struct bpf_reg_state *dst_reg,
6698 enum bpf_reg_type type, u16 new_range)
6699{
6700 struct bpf_reg_state *reg;
6701 int i;
6702
6703 for (i = 0; i < MAX_BPF_REG; i++) {
6704 reg = &state->regs[i];
6705 if (reg->type == type && reg->id == dst_reg->id)
6706 /* keep the maximum range already checked */
6707 reg->range = max(reg->range, new_range);
6708 }
6709
6710 bpf_for_each_spilled_reg(i, state, reg) {
6711 if (!reg)
6712 continue;
6713 if (reg->type == type && reg->id == dst_reg->id)
6714 reg->range = max(reg->range, new_range);
6715 }
6716}
6717
f4d7e40a 6718static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6719 struct bpf_reg_state *dst_reg,
f8ddadc4 6720 enum bpf_reg_type type,
fb2a311a 6721 bool range_right_open)
969bf05e 6722{
fb2a311a 6723 u16 new_range;
c6a9efa1 6724 int i;
2d2be8ca 6725
fb2a311a
DB
6726 if (dst_reg->off < 0 ||
6727 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6728 /* This doesn't give us any range */
6729 return;
6730
b03c9f9f
EC
6731 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6732 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6733 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6734 * than pkt_end, but that's because it's also less than pkt.
6735 */
6736 return;
6737
fb2a311a
DB
6738 new_range = dst_reg->off;
6739 if (range_right_open)
6740 new_range--;
6741
6742 /* Examples for register markings:
2d2be8ca 6743 *
fb2a311a 6744 * pkt_data in dst register:
2d2be8ca
DB
6745 *
6746 * r2 = r3;
6747 * r2 += 8;
6748 * if (r2 > pkt_end) goto <handle exception>
6749 * <access okay>
6750 *
b4e432f1
DB
6751 * r2 = r3;
6752 * r2 += 8;
6753 * if (r2 < pkt_end) goto <access okay>
6754 * <handle exception>
6755 *
2d2be8ca
DB
6756 * Where:
6757 * r2 == dst_reg, pkt_end == src_reg
6758 * r2=pkt(id=n,off=8,r=0)
6759 * r3=pkt(id=n,off=0,r=0)
6760 *
fb2a311a 6761 * pkt_data in src register:
2d2be8ca
DB
6762 *
6763 * r2 = r3;
6764 * r2 += 8;
6765 * if (pkt_end >= r2) goto <access okay>
6766 * <handle exception>
6767 *
b4e432f1
DB
6768 * r2 = r3;
6769 * r2 += 8;
6770 * if (pkt_end <= r2) goto <handle exception>
6771 * <access okay>
6772 *
2d2be8ca
DB
6773 * Where:
6774 * pkt_end == dst_reg, r2 == src_reg
6775 * r2=pkt(id=n,off=8,r=0)
6776 * r3=pkt(id=n,off=0,r=0)
6777 *
6778 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6779 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6780 * and [r3, r3 + 8-1) respectively is safe to access depending on
6781 * the check.
969bf05e 6782 */
2d2be8ca 6783
f1174f77
EC
6784 /* If our ids match, then we must have the same max_value. And we
6785 * don't care about the other reg's fixed offset, since if it's too big
6786 * the range won't allow anything.
6787 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6788 */
c6a9efa1
PC
6789 for (i = 0; i <= vstate->curframe; i++)
6790 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6791 new_range);
969bf05e
AS
6792}
6793
3f50f132 6794static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6795{
3f50f132
JF
6796 struct tnum subreg = tnum_subreg(reg->var_off);
6797 s32 sval = (s32)val;
a72dafaf 6798
3f50f132
JF
6799 switch (opcode) {
6800 case BPF_JEQ:
6801 if (tnum_is_const(subreg))
6802 return !!tnum_equals_const(subreg, val);
6803 break;
6804 case BPF_JNE:
6805 if (tnum_is_const(subreg))
6806 return !tnum_equals_const(subreg, val);
6807 break;
6808 case BPF_JSET:
6809 if ((~subreg.mask & subreg.value) & val)
6810 return 1;
6811 if (!((subreg.mask | subreg.value) & val))
6812 return 0;
6813 break;
6814 case BPF_JGT:
6815 if (reg->u32_min_value > val)
6816 return 1;
6817 else if (reg->u32_max_value <= val)
6818 return 0;
6819 break;
6820 case BPF_JSGT:
6821 if (reg->s32_min_value > sval)
6822 return 1;
6823 else if (reg->s32_max_value < sval)
6824 return 0;
6825 break;
6826 case BPF_JLT:
6827 if (reg->u32_max_value < val)
6828 return 1;
6829 else if (reg->u32_min_value >= val)
6830 return 0;
6831 break;
6832 case BPF_JSLT:
6833 if (reg->s32_max_value < sval)
6834 return 1;
6835 else if (reg->s32_min_value >= sval)
6836 return 0;
6837 break;
6838 case BPF_JGE:
6839 if (reg->u32_min_value >= val)
6840 return 1;
6841 else if (reg->u32_max_value < val)
6842 return 0;
6843 break;
6844 case BPF_JSGE:
6845 if (reg->s32_min_value >= sval)
6846 return 1;
6847 else if (reg->s32_max_value < sval)
6848 return 0;
6849 break;
6850 case BPF_JLE:
6851 if (reg->u32_max_value <= val)
6852 return 1;
6853 else if (reg->u32_min_value > val)
6854 return 0;
6855 break;
6856 case BPF_JSLE:
6857 if (reg->s32_max_value <= sval)
6858 return 1;
6859 else if (reg->s32_min_value > sval)
6860 return 0;
6861 break;
6862 }
4f7b3e82 6863
3f50f132
JF
6864 return -1;
6865}
092ed096 6866
3f50f132
JF
6867
6868static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6869{
6870 s64 sval = (s64)val;
a72dafaf 6871
4f7b3e82
AS
6872 switch (opcode) {
6873 case BPF_JEQ:
6874 if (tnum_is_const(reg->var_off))
6875 return !!tnum_equals_const(reg->var_off, val);
6876 break;
6877 case BPF_JNE:
6878 if (tnum_is_const(reg->var_off))
6879 return !tnum_equals_const(reg->var_off, val);
6880 break;
960ea056
JK
6881 case BPF_JSET:
6882 if ((~reg->var_off.mask & reg->var_off.value) & val)
6883 return 1;
6884 if (!((reg->var_off.mask | reg->var_off.value) & val))
6885 return 0;
6886 break;
4f7b3e82
AS
6887 case BPF_JGT:
6888 if (reg->umin_value > val)
6889 return 1;
6890 else if (reg->umax_value <= val)
6891 return 0;
6892 break;
6893 case BPF_JSGT:
a72dafaf 6894 if (reg->smin_value > sval)
4f7b3e82 6895 return 1;
a72dafaf 6896 else if (reg->smax_value < sval)
4f7b3e82
AS
6897 return 0;
6898 break;
6899 case BPF_JLT:
6900 if (reg->umax_value < val)
6901 return 1;
6902 else if (reg->umin_value >= val)
6903 return 0;
6904 break;
6905 case BPF_JSLT:
a72dafaf 6906 if (reg->smax_value < sval)
4f7b3e82 6907 return 1;
a72dafaf 6908 else if (reg->smin_value >= sval)
4f7b3e82
AS
6909 return 0;
6910 break;
6911 case BPF_JGE:
6912 if (reg->umin_value >= val)
6913 return 1;
6914 else if (reg->umax_value < val)
6915 return 0;
6916 break;
6917 case BPF_JSGE:
a72dafaf 6918 if (reg->smin_value >= sval)
4f7b3e82 6919 return 1;
a72dafaf 6920 else if (reg->smax_value < sval)
4f7b3e82
AS
6921 return 0;
6922 break;
6923 case BPF_JLE:
6924 if (reg->umax_value <= val)
6925 return 1;
6926 else if (reg->umin_value > val)
6927 return 0;
6928 break;
6929 case BPF_JSLE:
a72dafaf 6930 if (reg->smax_value <= sval)
4f7b3e82 6931 return 1;
a72dafaf 6932 else if (reg->smin_value > sval)
4f7b3e82
AS
6933 return 0;
6934 break;
6935 }
6936
6937 return -1;
6938}
6939
3f50f132
JF
6940/* compute branch direction of the expression "if (reg opcode val) goto target;"
6941 * and return:
6942 * 1 - branch will be taken and "goto target" will be executed
6943 * 0 - branch will not be taken and fall-through to next insn
6944 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6945 * range [0,10]
604dca5e 6946 */
3f50f132
JF
6947static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6948 bool is_jmp32)
604dca5e 6949{
cac616db
JF
6950 if (__is_pointer_value(false, reg)) {
6951 if (!reg_type_not_null(reg->type))
6952 return -1;
6953
6954 /* If pointer is valid tests against zero will fail so we can
6955 * use this to direct branch taken.
6956 */
6957 if (val != 0)
6958 return -1;
6959
6960 switch (opcode) {
6961 case BPF_JEQ:
6962 return 0;
6963 case BPF_JNE:
6964 return 1;
6965 default:
6966 return -1;
6967 }
6968 }
604dca5e 6969
3f50f132
JF
6970 if (is_jmp32)
6971 return is_branch32_taken(reg, val, opcode);
6972 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6973}
6974
48461135
JB
6975/* Adjusts the register min/max values in the case that the dst_reg is the
6976 * variable register that we are working on, and src_reg is a constant or we're
6977 * simply doing a BPF_K check.
f1174f77 6978 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6979 */
6980static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6981 struct bpf_reg_state *false_reg,
6982 u64 val, u32 val32,
092ed096 6983 u8 opcode, bool is_jmp32)
48461135 6984{
3f50f132
JF
6985 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6986 struct tnum false_64off = false_reg->var_off;
6987 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6988 struct tnum true_64off = true_reg->var_off;
6989 s64 sval = (s64)val;
6990 s32 sval32 = (s32)val32;
a72dafaf 6991
f1174f77
EC
6992 /* If the dst_reg is a pointer, we can't learn anything about its
6993 * variable offset from the compare (unless src_reg were a pointer into
6994 * the same object, but we don't bother with that.
6995 * Since false_reg and true_reg have the same type by construction, we
6996 * only need to check one of them for pointerness.
6997 */
6998 if (__is_pointer_value(false, false_reg))
6999 return;
4cabc5b1 7000
48461135
JB
7001 switch (opcode) {
7002 case BPF_JEQ:
48461135 7003 case BPF_JNE:
a72dafaf
JW
7004 {
7005 struct bpf_reg_state *reg =
7006 opcode == BPF_JEQ ? true_reg : false_reg;
7007
e688c3db
AS
7008 /* JEQ/JNE comparison doesn't change the register equivalence.
7009 * r1 = r2;
7010 * if (r1 == 42) goto label;
7011 * ...
7012 * label: // here both r1 and r2 are known to be 42.
7013 *
7014 * Hence when marking register as known preserve it's ID.
48461135 7015 */
3f50f132
JF
7016 if (is_jmp32)
7017 __mark_reg32_known(reg, val32);
7018 else
e688c3db 7019 ___mark_reg_known(reg, val);
48461135 7020 break;
a72dafaf 7021 }
960ea056 7022 case BPF_JSET:
3f50f132
JF
7023 if (is_jmp32) {
7024 false_32off = tnum_and(false_32off, tnum_const(~val32));
7025 if (is_power_of_2(val32))
7026 true_32off = tnum_or(true_32off,
7027 tnum_const(val32));
7028 } else {
7029 false_64off = tnum_and(false_64off, tnum_const(~val));
7030 if (is_power_of_2(val))
7031 true_64off = tnum_or(true_64off,
7032 tnum_const(val));
7033 }
960ea056 7034 break;
48461135 7035 case BPF_JGE:
a72dafaf
JW
7036 case BPF_JGT:
7037 {
3f50f132
JF
7038 if (is_jmp32) {
7039 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7040 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7041
7042 false_reg->u32_max_value = min(false_reg->u32_max_value,
7043 false_umax);
7044 true_reg->u32_min_value = max(true_reg->u32_min_value,
7045 true_umin);
7046 } else {
7047 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7048 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7049
7050 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7051 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7052 }
b03c9f9f 7053 break;
a72dafaf 7054 }
48461135 7055 case BPF_JSGE:
a72dafaf
JW
7056 case BPF_JSGT:
7057 {
3f50f132
JF
7058 if (is_jmp32) {
7059 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7060 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 7061
3f50f132
JF
7062 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7063 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7064 } else {
7065 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7066 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7067
7068 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7069 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7070 }
48461135 7071 break;
a72dafaf 7072 }
b4e432f1 7073 case BPF_JLE:
a72dafaf
JW
7074 case BPF_JLT:
7075 {
3f50f132
JF
7076 if (is_jmp32) {
7077 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7078 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7079
7080 false_reg->u32_min_value = max(false_reg->u32_min_value,
7081 false_umin);
7082 true_reg->u32_max_value = min(true_reg->u32_max_value,
7083 true_umax);
7084 } else {
7085 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7086 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7087
7088 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7089 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7090 }
b4e432f1 7091 break;
a72dafaf 7092 }
b4e432f1 7093 case BPF_JSLE:
a72dafaf
JW
7094 case BPF_JSLT:
7095 {
3f50f132
JF
7096 if (is_jmp32) {
7097 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7098 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 7099
3f50f132
JF
7100 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7101 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7102 } else {
7103 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7104 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7105
7106 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7107 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7108 }
b4e432f1 7109 break;
a72dafaf 7110 }
48461135 7111 default:
0fc31b10 7112 return;
48461135
JB
7113 }
7114
3f50f132
JF
7115 if (is_jmp32) {
7116 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7117 tnum_subreg(false_32off));
7118 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7119 tnum_subreg(true_32off));
7120 __reg_combine_32_into_64(false_reg);
7121 __reg_combine_32_into_64(true_reg);
7122 } else {
7123 false_reg->var_off = false_64off;
7124 true_reg->var_off = true_64off;
7125 __reg_combine_64_into_32(false_reg);
7126 __reg_combine_64_into_32(true_reg);
7127 }
48461135
JB
7128}
7129
f1174f77
EC
7130/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7131 * the variable reg.
48461135
JB
7132 */
7133static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
7134 struct bpf_reg_state *false_reg,
7135 u64 val, u32 val32,
092ed096 7136 u8 opcode, bool is_jmp32)
48461135 7137{
0fc31b10
JH
7138 /* How can we transform "a <op> b" into "b <op> a"? */
7139 static const u8 opcode_flip[16] = {
7140 /* these stay the same */
7141 [BPF_JEQ >> 4] = BPF_JEQ,
7142 [BPF_JNE >> 4] = BPF_JNE,
7143 [BPF_JSET >> 4] = BPF_JSET,
7144 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7145 [BPF_JGE >> 4] = BPF_JLE,
7146 [BPF_JGT >> 4] = BPF_JLT,
7147 [BPF_JLE >> 4] = BPF_JGE,
7148 [BPF_JLT >> 4] = BPF_JGT,
7149 [BPF_JSGE >> 4] = BPF_JSLE,
7150 [BPF_JSGT >> 4] = BPF_JSLT,
7151 [BPF_JSLE >> 4] = BPF_JSGE,
7152 [BPF_JSLT >> 4] = BPF_JSGT
7153 };
7154 opcode = opcode_flip[opcode >> 4];
7155 /* This uses zero as "not present in table"; luckily the zero opcode,
7156 * BPF_JA, can't get here.
b03c9f9f 7157 */
0fc31b10 7158 if (opcode)
3f50f132 7159 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
7160}
7161
7162/* Regs are known to be equal, so intersect their min/max/var_off */
7163static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7164 struct bpf_reg_state *dst_reg)
7165{
b03c9f9f
EC
7166 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7167 dst_reg->umin_value);
7168 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7169 dst_reg->umax_value);
7170 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7171 dst_reg->smin_value);
7172 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7173 dst_reg->smax_value);
f1174f77
EC
7174 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7175 dst_reg->var_off);
b03c9f9f
EC
7176 /* We might have learned new bounds from the var_off. */
7177 __update_reg_bounds(src_reg);
7178 __update_reg_bounds(dst_reg);
7179 /* We might have learned something about the sign bit. */
7180 __reg_deduce_bounds(src_reg);
7181 __reg_deduce_bounds(dst_reg);
7182 /* We might have learned some bits from the bounds. */
7183 __reg_bound_offset(src_reg);
7184 __reg_bound_offset(dst_reg);
7185 /* Intersecting with the old var_off might have improved our bounds
7186 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7187 * then new var_off is (0; 0x7f...fc) which improves our umax.
7188 */
7189 __update_reg_bounds(src_reg);
7190 __update_reg_bounds(dst_reg);
f1174f77
EC
7191}
7192
7193static void reg_combine_min_max(struct bpf_reg_state *true_src,
7194 struct bpf_reg_state *true_dst,
7195 struct bpf_reg_state *false_src,
7196 struct bpf_reg_state *false_dst,
7197 u8 opcode)
7198{
7199 switch (opcode) {
7200 case BPF_JEQ:
7201 __reg_combine_min_max(true_src, true_dst);
7202 break;
7203 case BPF_JNE:
7204 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7205 break;
4cabc5b1 7206 }
48461135
JB
7207}
7208
fd978bf7
JS
7209static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7210 struct bpf_reg_state *reg, u32 id,
840b9615 7211 bool is_null)
57a09bf0 7212{
93c230e3
MKL
7213 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7214 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
7215 /* Old offset (both fixed and variable parts) should
7216 * have been known-zero, because we don't allow pointer
7217 * arithmetic on pointers that might be NULL.
7218 */
b03c9f9f
EC
7219 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7220 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7221 reg->off)) {
b03c9f9f
EC
7222 __mark_reg_known_zero(reg);
7223 reg->off = 0;
f1174f77
EC
7224 }
7225 if (is_null) {
7226 reg->type = SCALAR_VALUE;
840b9615 7227 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7228 const struct bpf_map *map = reg->map_ptr;
7229
7230 if (map->inner_map_meta) {
840b9615 7231 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7232 reg->map_ptr = map->inner_map_meta;
7233 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7234 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7235 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7236 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7237 reg->type = PTR_TO_SOCKET;
840b9615
JS
7238 } else {
7239 reg->type = PTR_TO_MAP_VALUE;
7240 }
c64b7983
JS
7241 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7242 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7243 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7244 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7245 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7246 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7247 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7248 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7249 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7250 reg->type = PTR_TO_MEM;
afbf21dc
YS
7251 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7252 reg->type = PTR_TO_RDONLY_BUF;
7253 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7254 reg->type = PTR_TO_RDWR_BUF;
56f668df 7255 }
1b986589
MKL
7256 if (is_null) {
7257 /* We don't need id and ref_obj_id from this point
7258 * onwards anymore, thus we should better reset it,
7259 * so that state pruning has chances to take effect.
7260 */
7261 reg->id = 0;
7262 reg->ref_obj_id = 0;
7263 } else if (!reg_may_point_to_spin_lock(reg)) {
7264 /* For not-NULL ptr, reg->ref_obj_id will be reset
7265 * in release_reg_references().
7266 *
7267 * reg->id is still used by spin_lock ptr. Other
7268 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7269 */
7270 reg->id = 0;
56f668df 7271 }
57a09bf0
TG
7272 }
7273}
7274
c6a9efa1
PC
7275static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7276 bool is_null)
7277{
7278 struct bpf_reg_state *reg;
7279 int i;
7280
7281 for (i = 0; i < MAX_BPF_REG; i++)
7282 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7283
7284 bpf_for_each_spilled_reg(i, state, reg) {
7285 if (!reg)
7286 continue;
7287 mark_ptr_or_null_reg(state, reg, id, is_null);
7288 }
7289}
7290
57a09bf0
TG
7291/* The logic is similar to find_good_pkt_pointers(), both could eventually
7292 * be folded together at some point.
7293 */
840b9615
JS
7294static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7295 bool is_null)
57a09bf0 7296{
f4d7e40a 7297 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7298 struct bpf_reg_state *regs = state->regs;
1b986589 7299 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7300 u32 id = regs[regno].id;
c6a9efa1 7301 int i;
57a09bf0 7302
1b986589
MKL
7303 if (ref_obj_id && ref_obj_id == id && is_null)
7304 /* regs[regno] is in the " == NULL" branch.
7305 * No one could have freed the reference state before
7306 * doing the NULL check.
7307 */
7308 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7309
c6a9efa1
PC
7310 for (i = 0; i <= vstate->curframe; i++)
7311 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7312}
7313
5beca081
DB
7314static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7315 struct bpf_reg_state *dst_reg,
7316 struct bpf_reg_state *src_reg,
7317 struct bpf_verifier_state *this_branch,
7318 struct bpf_verifier_state *other_branch)
7319{
7320 if (BPF_SRC(insn->code) != BPF_X)
7321 return false;
7322
092ed096
JW
7323 /* Pointers are always 64-bit. */
7324 if (BPF_CLASS(insn->code) == BPF_JMP32)
7325 return false;
7326
5beca081
DB
7327 switch (BPF_OP(insn->code)) {
7328 case BPF_JGT:
7329 if ((dst_reg->type == PTR_TO_PACKET &&
7330 src_reg->type == PTR_TO_PACKET_END) ||
7331 (dst_reg->type == PTR_TO_PACKET_META &&
7332 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7333 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7334 find_good_pkt_pointers(this_branch, dst_reg,
7335 dst_reg->type, false);
7336 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7337 src_reg->type == PTR_TO_PACKET) ||
7338 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7339 src_reg->type == PTR_TO_PACKET_META)) {
7340 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7341 find_good_pkt_pointers(other_branch, src_reg,
7342 src_reg->type, true);
7343 } else {
7344 return false;
7345 }
7346 break;
7347 case BPF_JLT:
7348 if ((dst_reg->type == PTR_TO_PACKET &&
7349 src_reg->type == PTR_TO_PACKET_END) ||
7350 (dst_reg->type == PTR_TO_PACKET_META &&
7351 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7352 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7353 find_good_pkt_pointers(other_branch, dst_reg,
7354 dst_reg->type, true);
7355 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7356 src_reg->type == PTR_TO_PACKET) ||
7357 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7358 src_reg->type == PTR_TO_PACKET_META)) {
7359 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7360 find_good_pkt_pointers(this_branch, src_reg,
7361 src_reg->type, false);
7362 } else {
7363 return false;
7364 }
7365 break;
7366 case BPF_JGE:
7367 if ((dst_reg->type == PTR_TO_PACKET &&
7368 src_reg->type == PTR_TO_PACKET_END) ||
7369 (dst_reg->type == PTR_TO_PACKET_META &&
7370 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7371 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7372 find_good_pkt_pointers(this_branch, dst_reg,
7373 dst_reg->type, true);
7374 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7375 src_reg->type == PTR_TO_PACKET) ||
7376 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7377 src_reg->type == PTR_TO_PACKET_META)) {
7378 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7379 find_good_pkt_pointers(other_branch, src_reg,
7380 src_reg->type, false);
7381 } else {
7382 return false;
7383 }
7384 break;
7385 case BPF_JLE:
7386 if ((dst_reg->type == PTR_TO_PACKET &&
7387 src_reg->type == PTR_TO_PACKET_END) ||
7388 (dst_reg->type == PTR_TO_PACKET_META &&
7389 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7390 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7391 find_good_pkt_pointers(other_branch, dst_reg,
7392 dst_reg->type, false);
7393 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7394 src_reg->type == PTR_TO_PACKET) ||
7395 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7396 src_reg->type == PTR_TO_PACKET_META)) {
7397 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7398 find_good_pkt_pointers(this_branch, src_reg,
7399 src_reg->type, true);
7400 } else {
7401 return false;
7402 }
7403 break;
7404 default:
7405 return false;
7406 }
7407
7408 return true;
7409}
7410
75748837
AS
7411static void find_equal_scalars(struct bpf_verifier_state *vstate,
7412 struct bpf_reg_state *known_reg)
7413{
7414 struct bpf_func_state *state;
7415 struct bpf_reg_state *reg;
7416 int i, j;
7417
7418 for (i = 0; i <= vstate->curframe; i++) {
7419 state = vstate->frame[i];
7420 for (j = 0; j < MAX_BPF_REG; j++) {
7421 reg = &state->regs[j];
7422 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7423 *reg = *known_reg;
7424 }
7425
7426 bpf_for_each_spilled_reg(j, state, reg) {
7427 if (!reg)
7428 continue;
7429 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7430 *reg = *known_reg;
7431 }
7432 }
7433}
7434
58e2af8b 7435static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7436 struct bpf_insn *insn, int *insn_idx)
7437{
f4d7e40a
AS
7438 struct bpf_verifier_state *this_branch = env->cur_state;
7439 struct bpf_verifier_state *other_branch;
7440 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7441 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7442 u8 opcode = BPF_OP(insn->code);
092ed096 7443 bool is_jmp32;
fb8d251e 7444 int pred = -1;
17a52670
AS
7445 int err;
7446
092ed096
JW
7447 /* Only conditional jumps are expected to reach here. */
7448 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7449 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7450 return -EINVAL;
7451 }
7452
7453 if (BPF_SRC(insn->code) == BPF_X) {
7454 if (insn->imm != 0) {
092ed096 7455 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7456 return -EINVAL;
7457 }
7458
7459 /* check src1 operand */
dc503a8a 7460 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7461 if (err)
7462 return err;
1be7f75d
AS
7463
7464 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7465 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7466 insn->src_reg);
7467 return -EACCES;
7468 }
fb8d251e 7469 src_reg = &regs[insn->src_reg];
17a52670
AS
7470 } else {
7471 if (insn->src_reg != BPF_REG_0) {
092ed096 7472 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7473 return -EINVAL;
7474 }
7475 }
7476
7477 /* check src2 operand */
dc503a8a 7478 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7479 if (err)
7480 return err;
7481
1a0dc1ac 7482 dst_reg = &regs[insn->dst_reg];
092ed096 7483 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7484
3f50f132
JF
7485 if (BPF_SRC(insn->code) == BPF_K) {
7486 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7487 } else if (src_reg->type == SCALAR_VALUE &&
7488 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7489 pred = is_branch_taken(dst_reg,
7490 tnum_subreg(src_reg->var_off).value,
7491 opcode,
7492 is_jmp32);
7493 } else if (src_reg->type == SCALAR_VALUE &&
7494 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7495 pred = is_branch_taken(dst_reg,
7496 src_reg->var_off.value,
7497 opcode,
7498 is_jmp32);
7499 }
7500
b5dc0163 7501 if (pred >= 0) {
cac616db
JF
7502 /* If we get here with a dst_reg pointer type it is because
7503 * above is_branch_taken() special cased the 0 comparison.
7504 */
7505 if (!__is_pointer_value(false, dst_reg))
7506 err = mark_chain_precision(env, insn->dst_reg);
b5dc0163
AS
7507 if (BPF_SRC(insn->code) == BPF_X && !err)
7508 err = mark_chain_precision(env, insn->src_reg);
7509 if (err)
7510 return err;
7511 }
fb8d251e
AS
7512 if (pred == 1) {
7513 /* only follow the goto, ignore fall-through */
7514 *insn_idx += insn->off;
7515 return 0;
7516 } else if (pred == 0) {
7517 /* only follow fall-through branch, since
7518 * that's where the program will go
7519 */
7520 return 0;
17a52670
AS
7521 }
7522
979d63d5
DB
7523 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7524 false);
17a52670
AS
7525 if (!other_branch)
7526 return -EFAULT;
f4d7e40a 7527 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7528
48461135
JB
7529 /* detect if we are comparing against a constant value so we can adjust
7530 * our min/max values for our dst register.
f1174f77
EC
7531 * this is only legit if both are scalars (or pointers to the same
7532 * object, I suppose, but we don't support that right now), because
7533 * otherwise the different base pointers mean the offsets aren't
7534 * comparable.
48461135
JB
7535 */
7536 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7537 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7538
f1174f77 7539 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7540 src_reg->type == SCALAR_VALUE) {
7541 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7542 (is_jmp32 &&
7543 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7544 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7545 dst_reg,
3f50f132
JF
7546 src_reg->var_off.value,
7547 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7548 opcode, is_jmp32);
7549 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7550 (is_jmp32 &&
7551 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7552 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7553 src_reg,
3f50f132
JF
7554 dst_reg->var_off.value,
7555 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7556 opcode, is_jmp32);
7557 else if (!is_jmp32 &&
7558 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7559 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7560 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7561 &other_branch_regs[insn->dst_reg],
092ed096 7562 src_reg, dst_reg, opcode);
e688c3db
AS
7563 if (src_reg->id &&
7564 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
7565 find_equal_scalars(this_branch, src_reg);
7566 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7567 }
7568
f1174f77
EC
7569 }
7570 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7571 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7572 dst_reg, insn->imm, (u32)insn->imm,
7573 opcode, is_jmp32);
48461135
JB
7574 }
7575
e688c3db
AS
7576 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7577 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
7578 find_equal_scalars(this_branch, dst_reg);
7579 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7580 }
7581
092ed096
JW
7582 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7583 * NOTE: these optimizations below are related with pointer comparison
7584 * which will never be JMP32.
7585 */
7586 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7587 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7588 reg_type_may_be_null(dst_reg->type)) {
7589 /* Mark all identical registers in each branch as either
57a09bf0
TG
7590 * safe or unknown depending R == 0 or R != 0 conditional.
7591 */
840b9615
JS
7592 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7593 opcode == BPF_JNE);
7594 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7595 opcode == BPF_JEQ);
5beca081
DB
7596 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7597 this_branch, other_branch) &&
7598 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7599 verbose(env, "R%d pointer comparison prohibited\n",
7600 insn->dst_reg);
1be7f75d 7601 return -EACCES;
17a52670 7602 }
06ee7115 7603 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7604 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7605 return 0;
7606}
7607
17a52670 7608/* verify BPF_LD_IMM64 instruction */
58e2af8b 7609static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7610{
d8eca5bb 7611 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7612 struct bpf_reg_state *regs = cur_regs(env);
4976b718 7613 struct bpf_reg_state *dst_reg;
d8eca5bb 7614 struct bpf_map *map;
17a52670
AS
7615 int err;
7616
7617 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7618 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7619 return -EINVAL;
7620 }
7621 if (insn->off != 0) {
61bd5218 7622 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7623 return -EINVAL;
7624 }
7625
dc503a8a 7626 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7627 if (err)
7628 return err;
7629
4976b718 7630 dst_reg = &regs[insn->dst_reg];
6b173873 7631 if (insn->src_reg == 0) {
6b173873
JK
7632 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7633
4976b718 7634 dst_reg->type = SCALAR_VALUE;
b03c9f9f 7635 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7636 return 0;
6b173873 7637 }
17a52670 7638
4976b718
HL
7639 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7640 mark_reg_known_zero(env, regs, insn->dst_reg);
7641
7642 dst_reg->type = aux->btf_var.reg_type;
7643 switch (dst_reg->type) {
7644 case PTR_TO_MEM:
7645 dst_reg->mem_size = aux->btf_var.mem_size;
7646 break;
7647 case PTR_TO_BTF_ID:
eaa6bcb7 7648 case PTR_TO_PERCPU_BTF_ID:
4976b718
HL
7649 dst_reg->btf_id = aux->btf_var.btf_id;
7650 break;
7651 default:
7652 verbose(env, "bpf verifier is misconfigured\n");
7653 return -EFAULT;
7654 }
7655 return 0;
7656 }
7657
d8eca5bb
DB
7658 map = env->used_maps[aux->map_index];
7659 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 7660 dst_reg->map_ptr = map;
d8eca5bb
DB
7661
7662 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
4976b718
HL
7663 dst_reg->type = PTR_TO_MAP_VALUE;
7664 dst_reg->off = aux->map_off;
d8eca5bb 7665 if (map_value_has_spin_lock(map))
4976b718 7666 dst_reg->id = ++env->id_gen;
d8eca5bb 7667 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
4976b718 7668 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
7669 } else {
7670 verbose(env, "bpf verifier is misconfigured\n");
7671 return -EINVAL;
7672 }
17a52670 7673
17a52670
AS
7674 return 0;
7675}
7676
96be4325
DB
7677static bool may_access_skb(enum bpf_prog_type type)
7678{
7679 switch (type) {
7680 case BPF_PROG_TYPE_SOCKET_FILTER:
7681 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7682 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7683 return true;
7684 default:
7685 return false;
7686 }
7687}
7688
ddd872bc
AS
7689/* verify safety of LD_ABS|LD_IND instructions:
7690 * - they can only appear in the programs where ctx == skb
7691 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7692 * preserve R6-R9, and store return value into R0
7693 *
7694 * Implicit input:
7695 * ctx == skb == R6 == CTX
7696 *
7697 * Explicit input:
7698 * SRC == any register
7699 * IMM == 32-bit immediate
7700 *
7701 * Output:
7702 * R0 - 8/16/32-bit skb data converted to cpu endianness
7703 */
58e2af8b 7704static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7705{
638f5b90 7706 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7707 static const int ctx_reg = BPF_REG_6;
ddd872bc 7708 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7709 int i, err;
7710
7e40781c 7711 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7712 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7713 return -EINVAL;
7714 }
7715
e0cea7ce
DB
7716 if (!env->ops->gen_ld_abs) {
7717 verbose(env, "bpf verifier is misconfigured\n");
7718 return -EINVAL;
7719 }
7720
ddd872bc 7721 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7722 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7723 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7724 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7725 return -EINVAL;
7726 }
7727
7728 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7729 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7730 if (err)
7731 return err;
7732
fd978bf7
JS
7733 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7734 * gen_ld_abs() may terminate the program at runtime, leading to
7735 * reference leak.
7736 */
7737 err = check_reference_leak(env);
7738 if (err) {
7739 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7740 return err;
7741 }
7742
d83525ca
AS
7743 if (env->cur_state->active_spin_lock) {
7744 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7745 return -EINVAL;
7746 }
7747
6d4f151a 7748 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7749 verbose(env,
7750 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7751 return -EINVAL;
7752 }
7753
7754 if (mode == BPF_IND) {
7755 /* check explicit source operand */
dc503a8a 7756 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7757 if (err)
7758 return err;
7759 }
7760
6d4f151a
DB
7761 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7762 if (err < 0)
7763 return err;
7764
ddd872bc 7765 /* reset caller saved regs to unreadable */
dc503a8a 7766 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7767 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7768 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7769 }
ddd872bc
AS
7770
7771 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7772 * the value fetched from the packet.
7773 * Already marked as written above.
ddd872bc 7774 */
61bd5218 7775 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7776 /* ld_abs load up to 32-bit skb data. */
7777 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7778 return 0;
7779}
7780
390ee7e2
AS
7781static int check_return_code(struct bpf_verifier_env *env)
7782{
5cf1e914 7783 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7784 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7785 struct bpf_reg_state *reg;
7786 struct tnum range = tnum_range(0, 1);
7e40781c 7787 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997
MKL
7788 int err;
7789
9e4e01df 7790 /* LSM and struct_ops func-ptr's return type could be "void" */
7e40781c
UP
7791 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7792 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7793 !prog->aux->attach_func_proto->type)
7794 return 0;
7795
7796 /* eBPF calling convetion is such that R0 is used
7797 * to return the value from eBPF program.
7798 * Make sure that it's readable at this time
7799 * of bpf_exit, which means that program wrote
7800 * something into it earlier
7801 */
7802 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7803 if (err)
7804 return err;
7805
7806 if (is_pointer_value(env, BPF_REG_0)) {
7807 verbose(env, "R0 leaks addr as return value\n");
7808 return -EACCES;
7809 }
390ee7e2 7810
7e40781c 7811 switch (prog_type) {
983695fa
DB
7812 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7813 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7814 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7815 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7816 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7817 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7818 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7819 range = tnum_range(1, 1);
ed4ed404 7820 break;
390ee7e2 7821 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7822 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7823 range = tnum_range(0, 3);
7824 enforce_attach_type_range = tnum_range(2, 3);
7825 }
ed4ed404 7826 break;
390ee7e2
AS
7827 case BPF_PROG_TYPE_CGROUP_SOCK:
7828 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7829 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7830 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7831 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7832 break;
15ab09bd
AS
7833 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7834 if (!env->prog->aux->attach_btf_id)
7835 return 0;
7836 range = tnum_const(0);
7837 break;
15d83c4d 7838 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7839 switch (env->prog->expected_attach_type) {
7840 case BPF_TRACE_FENTRY:
7841 case BPF_TRACE_FEXIT:
7842 range = tnum_const(0);
7843 break;
7844 case BPF_TRACE_RAW_TP:
7845 case BPF_MODIFY_RETURN:
15d83c4d 7846 return 0;
2ec0616e
DB
7847 case BPF_TRACE_ITER:
7848 break;
e92888c7
YS
7849 default:
7850 return -ENOTSUPP;
7851 }
15d83c4d 7852 break;
e9ddbb77
JS
7853 case BPF_PROG_TYPE_SK_LOOKUP:
7854 range = tnum_range(SK_DROP, SK_PASS);
7855 break;
e92888c7
YS
7856 case BPF_PROG_TYPE_EXT:
7857 /* freplace program can return anything as its return value
7858 * depends on the to-be-replaced kernel func or bpf program.
7859 */
390ee7e2
AS
7860 default:
7861 return 0;
7862 }
7863
638f5b90 7864 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7865 if (reg->type != SCALAR_VALUE) {
61bd5218 7866 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7867 reg_type_str[reg->type]);
7868 return -EINVAL;
7869 }
7870
7871 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7872 char tn_buf[48];
7873
61bd5218 7874 verbose(env, "At program exit the register R0 ");
390ee7e2 7875 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7876 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7877 verbose(env, "has value %s", tn_buf);
390ee7e2 7878 } else {
61bd5218 7879 verbose(env, "has unknown scalar value");
390ee7e2 7880 }
5cf1e914 7881 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7882 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7883 return -EINVAL;
7884 }
5cf1e914 7885
7886 if (!tnum_is_unknown(enforce_attach_type_range) &&
7887 tnum_in(enforce_attach_type_range, reg->var_off))
7888 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7889 return 0;
7890}
7891
475fb78f
AS
7892/* non-recursive DFS pseudo code
7893 * 1 procedure DFS-iterative(G,v):
7894 * 2 label v as discovered
7895 * 3 let S be a stack
7896 * 4 S.push(v)
7897 * 5 while S is not empty
7898 * 6 t <- S.pop()
7899 * 7 if t is what we're looking for:
7900 * 8 return t
7901 * 9 for all edges e in G.adjacentEdges(t) do
7902 * 10 if edge e is already labelled
7903 * 11 continue with the next edge
7904 * 12 w <- G.adjacentVertex(t,e)
7905 * 13 if vertex w is not discovered and not explored
7906 * 14 label e as tree-edge
7907 * 15 label w as discovered
7908 * 16 S.push(w)
7909 * 17 continue at 5
7910 * 18 else if vertex w is discovered
7911 * 19 label e as back-edge
7912 * 20 else
7913 * 21 // vertex w is explored
7914 * 22 label e as forward- or cross-edge
7915 * 23 label t as explored
7916 * 24 S.pop()
7917 *
7918 * convention:
7919 * 0x10 - discovered
7920 * 0x11 - discovered and fall-through edge labelled
7921 * 0x12 - discovered and fall-through and branch edges labelled
7922 * 0x20 - explored
7923 */
7924
7925enum {
7926 DISCOVERED = 0x10,
7927 EXPLORED = 0x20,
7928 FALLTHROUGH = 1,
7929 BRANCH = 2,
7930};
7931
dc2a4ebc
AS
7932static u32 state_htab_size(struct bpf_verifier_env *env)
7933{
7934 return env->prog->len;
7935}
7936
5d839021
AS
7937static struct bpf_verifier_state_list **explored_state(
7938 struct bpf_verifier_env *env,
7939 int idx)
7940{
dc2a4ebc
AS
7941 struct bpf_verifier_state *cur = env->cur_state;
7942 struct bpf_func_state *state = cur->frame[cur->curframe];
7943
7944 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7945}
7946
7947static void init_explored_state(struct bpf_verifier_env *env, int idx)
7948{
a8f500af 7949 env->insn_aux_data[idx].prune_point = true;
5d839021 7950}
f1bca824 7951
475fb78f
AS
7952/* t, w, e - match pseudo-code above:
7953 * t - index of current instruction
7954 * w - next instruction
7955 * e - edge
7956 */
2589726d
AS
7957static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7958 bool loop_ok)
475fb78f 7959{
7df737e9
AS
7960 int *insn_stack = env->cfg.insn_stack;
7961 int *insn_state = env->cfg.insn_state;
7962
475fb78f
AS
7963 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7964 return 0;
7965
7966 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7967 return 0;
7968
7969 if (w < 0 || w >= env->prog->len) {
d9762e84 7970 verbose_linfo(env, t, "%d: ", t);
61bd5218 7971 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7972 return -EINVAL;
7973 }
7974
f1bca824
AS
7975 if (e == BRANCH)
7976 /* mark branch target for state pruning */
5d839021 7977 init_explored_state(env, w);
f1bca824 7978
475fb78f
AS
7979 if (insn_state[w] == 0) {
7980 /* tree-edge */
7981 insn_state[t] = DISCOVERED | e;
7982 insn_state[w] = DISCOVERED;
7df737e9 7983 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7984 return -E2BIG;
7df737e9 7985 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7986 return 1;
7987 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7988 if (loop_ok && env->bpf_capable)
2589726d 7989 return 0;
d9762e84
MKL
7990 verbose_linfo(env, t, "%d: ", t);
7991 verbose_linfo(env, w, "%d: ", w);
61bd5218 7992 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7993 return -EINVAL;
7994 } else if (insn_state[w] == EXPLORED) {
7995 /* forward- or cross-edge */
7996 insn_state[t] = DISCOVERED | e;
7997 } else {
61bd5218 7998 verbose(env, "insn state internal bug\n");
475fb78f
AS
7999 return -EFAULT;
8000 }
8001 return 0;
8002}
8003
8004/* non-recursive depth-first-search to detect loops in BPF program
8005 * loop == back-edge in directed graph
8006 */
58e2af8b 8007static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
8008{
8009 struct bpf_insn *insns = env->prog->insnsi;
8010 int insn_cnt = env->prog->len;
7df737e9 8011 int *insn_stack, *insn_state;
475fb78f
AS
8012 int ret = 0;
8013 int i, t;
8014
7df737e9 8015 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
8016 if (!insn_state)
8017 return -ENOMEM;
8018
7df737e9 8019 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 8020 if (!insn_stack) {
71dde681 8021 kvfree(insn_state);
475fb78f
AS
8022 return -ENOMEM;
8023 }
8024
8025 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8026 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 8027 env->cfg.cur_stack = 1;
475fb78f
AS
8028
8029peek_stack:
7df737e9 8030 if (env->cfg.cur_stack == 0)
475fb78f 8031 goto check_state;
7df737e9 8032 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 8033
092ed096
JW
8034 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8035 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
8036 u8 opcode = BPF_OP(insns[t].code);
8037
8038 if (opcode == BPF_EXIT) {
8039 goto mark_explored;
8040 } else if (opcode == BPF_CALL) {
2589726d 8041 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
8042 if (ret == 1)
8043 goto peek_stack;
8044 else if (ret < 0)
8045 goto err_free;
07016151 8046 if (t + 1 < insn_cnt)
5d839021 8047 init_explored_state(env, t + 1);
cc8b0b92 8048 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 8049 init_explored_state(env, t);
2589726d
AS
8050 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8051 env, false);
cc8b0b92
AS
8052 if (ret == 1)
8053 goto peek_stack;
8054 else if (ret < 0)
8055 goto err_free;
8056 }
475fb78f
AS
8057 } else if (opcode == BPF_JA) {
8058 if (BPF_SRC(insns[t].code) != BPF_K) {
8059 ret = -EINVAL;
8060 goto err_free;
8061 }
8062 /* unconditional jump with single edge */
8063 ret = push_insn(t, t + insns[t].off + 1,
2589726d 8064 FALLTHROUGH, env, true);
475fb78f
AS
8065 if (ret == 1)
8066 goto peek_stack;
8067 else if (ret < 0)
8068 goto err_free;
b5dc0163
AS
8069 /* unconditional jmp is not a good pruning point,
8070 * but it's marked, since backtracking needs
8071 * to record jmp history in is_state_visited().
8072 */
8073 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
8074 /* tell verifier to check for equivalent states
8075 * after every call and jump
8076 */
c3de6317 8077 if (t + 1 < insn_cnt)
5d839021 8078 init_explored_state(env, t + 1);
475fb78f
AS
8079 } else {
8080 /* conditional jump with two edges */
5d839021 8081 init_explored_state(env, t);
2589726d 8082 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
8083 if (ret == 1)
8084 goto peek_stack;
8085 else if (ret < 0)
8086 goto err_free;
8087
2589726d 8088 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
8089 if (ret == 1)
8090 goto peek_stack;
8091 else if (ret < 0)
8092 goto err_free;
8093 }
8094 } else {
8095 /* all other non-branch instructions with single
8096 * fall-through edge
8097 */
2589726d 8098 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
8099 if (ret == 1)
8100 goto peek_stack;
8101 else if (ret < 0)
8102 goto err_free;
8103 }
8104
8105mark_explored:
8106 insn_state[t] = EXPLORED;
7df737e9 8107 if (env->cfg.cur_stack-- <= 0) {
61bd5218 8108 verbose(env, "pop stack internal bug\n");
475fb78f
AS
8109 ret = -EFAULT;
8110 goto err_free;
8111 }
8112 goto peek_stack;
8113
8114check_state:
8115 for (i = 0; i < insn_cnt; i++) {
8116 if (insn_state[i] != EXPLORED) {
61bd5218 8117 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
8118 ret = -EINVAL;
8119 goto err_free;
8120 }
8121 }
8122 ret = 0; /* cfg looks good */
8123
8124err_free:
71dde681
AS
8125 kvfree(insn_state);
8126 kvfree(insn_stack);
7df737e9 8127 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
8128 return ret;
8129}
8130
09b28d76
AS
8131static int check_abnormal_return(struct bpf_verifier_env *env)
8132{
8133 int i;
8134
8135 for (i = 1; i < env->subprog_cnt; i++) {
8136 if (env->subprog_info[i].has_ld_abs) {
8137 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8138 return -EINVAL;
8139 }
8140 if (env->subprog_info[i].has_tail_call) {
8141 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8142 return -EINVAL;
8143 }
8144 }
8145 return 0;
8146}
8147
838e9690
YS
8148/* The minimum supported BTF func info size */
8149#define MIN_BPF_FUNCINFO_SIZE 8
8150#define MAX_FUNCINFO_REC_SIZE 252
8151
c454a46b
MKL
8152static int check_btf_func(struct bpf_verifier_env *env,
8153 const union bpf_attr *attr,
8154 union bpf_attr __user *uattr)
838e9690 8155{
09b28d76 8156 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 8157 u32 i, nfuncs, urec_size, min_size;
838e9690 8158 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 8159 struct bpf_func_info *krecord;
8c1b6e69 8160 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
8161 struct bpf_prog *prog;
8162 const struct btf *btf;
838e9690 8163 void __user *urecord;
d0b2818e 8164 u32 prev_offset = 0;
09b28d76 8165 bool scalar_return;
e7ed83d6 8166 int ret = -ENOMEM;
838e9690
YS
8167
8168 nfuncs = attr->func_info_cnt;
09b28d76
AS
8169 if (!nfuncs) {
8170 if (check_abnormal_return(env))
8171 return -EINVAL;
838e9690 8172 return 0;
09b28d76 8173 }
838e9690
YS
8174
8175 if (nfuncs != env->subprog_cnt) {
8176 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8177 return -EINVAL;
8178 }
8179
8180 urec_size = attr->func_info_rec_size;
8181 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8182 urec_size > MAX_FUNCINFO_REC_SIZE ||
8183 urec_size % sizeof(u32)) {
8184 verbose(env, "invalid func info rec size %u\n", urec_size);
8185 return -EINVAL;
8186 }
8187
c454a46b
MKL
8188 prog = env->prog;
8189 btf = prog->aux->btf;
838e9690
YS
8190
8191 urecord = u64_to_user_ptr(attr->func_info);
8192 min_size = min_t(u32, krec_size, urec_size);
8193
ba64e7d8 8194 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
8195 if (!krecord)
8196 return -ENOMEM;
8c1b6e69
AS
8197 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8198 if (!info_aux)
8199 goto err_free;
ba64e7d8 8200
838e9690
YS
8201 for (i = 0; i < nfuncs; i++) {
8202 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8203 if (ret) {
8204 if (ret == -E2BIG) {
8205 verbose(env, "nonzero tailing record in func info");
8206 /* set the size kernel expects so loader can zero
8207 * out the rest of the record.
8208 */
8209 if (put_user(min_size, &uattr->func_info_rec_size))
8210 ret = -EFAULT;
8211 }
c454a46b 8212 goto err_free;
838e9690
YS
8213 }
8214
ba64e7d8 8215 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 8216 ret = -EFAULT;
c454a46b 8217 goto err_free;
838e9690
YS
8218 }
8219
d30d42e0 8220 /* check insn_off */
09b28d76 8221 ret = -EINVAL;
838e9690 8222 if (i == 0) {
d30d42e0 8223 if (krecord[i].insn_off) {
838e9690 8224 verbose(env,
d30d42e0
MKL
8225 "nonzero insn_off %u for the first func info record",
8226 krecord[i].insn_off);
c454a46b 8227 goto err_free;
838e9690 8228 }
d30d42e0 8229 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
8230 verbose(env,
8231 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 8232 krecord[i].insn_off, prev_offset);
c454a46b 8233 goto err_free;
838e9690
YS
8234 }
8235
d30d42e0 8236 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 8237 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 8238 goto err_free;
838e9690
YS
8239 }
8240
8241 /* check type_id */
ba64e7d8 8242 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 8243 if (!type || !btf_type_is_func(type)) {
838e9690 8244 verbose(env, "invalid type id %d in func info",
ba64e7d8 8245 krecord[i].type_id);
c454a46b 8246 goto err_free;
838e9690 8247 }
51c39bb1 8248 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
8249
8250 func_proto = btf_type_by_id(btf, type->type);
8251 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8252 /* btf_func_check() already verified it during BTF load */
8253 goto err_free;
8254 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8255 scalar_return =
8256 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8257 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8258 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8259 goto err_free;
8260 }
8261 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8262 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8263 goto err_free;
8264 }
8265
d30d42e0 8266 prev_offset = krecord[i].insn_off;
838e9690
YS
8267 urecord += urec_size;
8268 }
8269
ba64e7d8
YS
8270 prog->aux->func_info = krecord;
8271 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 8272 prog->aux->func_info_aux = info_aux;
838e9690
YS
8273 return 0;
8274
c454a46b 8275err_free:
ba64e7d8 8276 kvfree(krecord);
8c1b6e69 8277 kfree(info_aux);
838e9690
YS
8278 return ret;
8279}
8280
ba64e7d8
YS
8281static void adjust_btf_func(struct bpf_verifier_env *env)
8282{
8c1b6e69 8283 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8284 int i;
8285
8c1b6e69 8286 if (!aux->func_info)
ba64e7d8
YS
8287 return;
8288
8289 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8290 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8291}
8292
c454a46b
MKL
8293#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8294 sizeof(((struct bpf_line_info *)(0))->line_col))
8295#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8296
8297static int check_btf_line(struct bpf_verifier_env *env,
8298 const union bpf_attr *attr,
8299 union bpf_attr __user *uattr)
8300{
8301 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8302 struct bpf_subprog_info *sub;
8303 struct bpf_line_info *linfo;
8304 struct bpf_prog *prog;
8305 const struct btf *btf;
8306 void __user *ulinfo;
8307 int err;
8308
8309 nr_linfo = attr->line_info_cnt;
8310 if (!nr_linfo)
8311 return 0;
8312
8313 rec_size = attr->line_info_rec_size;
8314 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8315 rec_size > MAX_LINEINFO_REC_SIZE ||
8316 rec_size & (sizeof(u32) - 1))
8317 return -EINVAL;
8318
8319 /* Need to zero it in case the userspace may
8320 * pass in a smaller bpf_line_info object.
8321 */
8322 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8323 GFP_KERNEL | __GFP_NOWARN);
8324 if (!linfo)
8325 return -ENOMEM;
8326
8327 prog = env->prog;
8328 btf = prog->aux->btf;
8329
8330 s = 0;
8331 sub = env->subprog_info;
8332 ulinfo = u64_to_user_ptr(attr->line_info);
8333 expected_size = sizeof(struct bpf_line_info);
8334 ncopy = min_t(u32, expected_size, rec_size);
8335 for (i = 0; i < nr_linfo; i++) {
8336 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8337 if (err) {
8338 if (err == -E2BIG) {
8339 verbose(env, "nonzero tailing record in line_info");
8340 if (put_user(expected_size,
8341 &uattr->line_info_rec_size))
8342 err = -EFAULT;
8343 }
8344 goto err_free;
8345 }
8346
8347 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8348 err = -EFAULT;
8349 goto err_free;
8350 }
8351
8352 /*
8353 * Check insn_off to ensure
8354 * 1) strictly increasing AND
8355 * 2) bounded by prog->len
8356 *
8357 * The linfo[0].insn_off == 0 check logically falls into
8358 * the later "missing bpf_line_info for func..." case
8359 * because the first linfo[0].insn_off must be the
8360 * first sub also and the first sub must have
8361 * subprog_info[0].start == 0.
8362 */
8363 if ((i && linfo[i].insn_off <= prev_offset) ||
8364 linfo[i].insn_off >= prog->len) {
8365 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8366 i, linfo[i].insn_off, prev_offset,
8367 prog->len);
8368 err = -EINVAL;
8369 goto err_free;
8370 }
8371
fdbaa0be
MKL
8372 if (!prog->insnsi[linfo[i].insn_off].code) {
8373 verbose(env,
8374 "Invalid insn code at line_info[%u].insn_off\n",
8375 i);
8376 err = -EINVAL;
8377 goto err_free;
8378 }
8379
23127b33
MKL
8380 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8381 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8382 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8383 err = -EINVAL;
8384 goto err_free;
8385 }
8386
8387 if (s != env->subprog_cnt) {
8388 if (linfo[i].insn_off == sub[s].start) {
8389 sub[s].linfo_idx = i;
8390 s++;
8391 } else if (sub[s].start < linfo[i].insn_off) {
8392 verbose(env, "missing bpf_line_info for func#%u\n", s);
8393 err = -EINVAL;
8394 goto err_free;
8395 }
8396 }
8397
8398 prev_offset = linfo[i].insn_off;
8399 ulinfo += rec_size;
8400 }
8401
8402 if (s != env->subprog_cnt) {
8403 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8404 env->subprog_cnt - s, s);
8405 err = -EINVAL;
8406 goto err_free;
8407 }
8408
8409 prog->aux->linfo = linfo;
8410 prog->aux->nr_linfo = nr_linfo;
8411
8412 return 0;
8413
8414err_free:
8415 kvfree(linfo);
8416 return err;
8417}
8418
8419static int check_btf_info(struct bpf_verifier_env *env,
8420 const union bpf_attr *attr,
8421 union bpf_attr __user *uattr)
8422{
8423 struct btf *btf;
8424 int err;
8425
09b28d76
AS
8426 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8427 if (check_abnormal_return(env))
8428 return -EINVAL;
c454a46b 8429 return 0;
09b28d76 8430 }
c454a46b
MKL
8431
8432 btf = btf_get_by_fd(attr->prog_btf_fd);
8433 if (IS_ERR(btf))
8434 return PTR_ERR(btf);
8435 env->prog->aux->btf = btf;
8436
8437 err = check_btf_func(env, attr, uattr);
8438 if (err)
8439 return err;
8440
8441 err = check_btf_line(env, attr, uattr);
8442 if (err)
8443 return err;
8444
8445 return 0;
ba64e7d8
YS
8446}
8447
f1174f77
EC
8448/* check %cur's range satisfies %old's */
8449static bool range_within(struct bpf_reg_state *old,
8450 struct bpf_reg_state *cur)
8451{
b03c9f9f
EC
8452 return old->umin_value <= cur->umin_value &&
8453 old->umax_value >= cur->umax_value &&
8454 old->smin_value <= cur->smin_value &&
8455 old->smax_value >= cur->smax_value;
f1174f77
EC
8456}
8457
8458/* Maximum number of register states that can exist at once */
8459#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8460struct idpair {
8461 u32 old;
8462 u32 cur;
8463};
8464
8465/* If in the old state two registers had the same id, then they need to have
8466 * the same id in the new state as well. But that id could be different from
8467 * the old state, so we need to track the mapping from old to new ids.
8468 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8469 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8470 * regs with a different old id could still have new id 9, we don't care about
8471 * that.
8472 * So we look through our idmap to see if this old id has been seen before. If
8473 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8474 */
f1174f77 8475static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8476{
f1174f77 8477 unsigned int i;
969bf05e 8478
f1174f77
EC
8479 for (i = 0; i < ID_MAP_SIZE; i++) {
8480 if (!idmap[i].old) {
8481 /* Reached an empty slot; haven't seen this id before */
8482 idmap[i].old = old_id;
8483 idmap[i].cur = cur_id;
8484 return true;
8485 }
8486 if (idmap[i].old == old_id)
8487 return idmap[i].cur == cur_id;
8488 }
8489 /* We ran out of idmap slots, which should be impossible */
8490 WARN_ON_ONCE(1);
8491 return false;
8492}
8493
9242b5f5
AS
8494static void clean_func_state(struct bpf_verifier_env *env,
8495 struct bpf_func_state *st)
8496{
8497 enum bpf_reg_liveness live;
8498 int i, j;
8499
8500 for (i = 0; i < BPF_REG_FP; i++) {
8501 live = st->regs[i].live;
8502 /* liveness must not touch this register anymore */
8503 st->regs[i].live |= REG_LIVE_DONE;
8504 if (!(live & REG_LIVE_READ))
8505 /* since the register is unused, clear its state
8506 * to make further comparison simpler
8507 */
f54c7898 8508 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8509 }
8510
8511 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8512 live = st->stack[i].spilled_ptr.live;
8513 /* liveness must not touch this stack slot anymore */
8514 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8515 if (!(live & REG_LIVE_READ)) {
f54c7898 8516 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8517 for (j = 0; j < BPF_REG_SIZE; j++)
8518 st->stack[i].slot_type[j] = STACK_INVALID;
8519 }
8520 }
8521}
8522
8523static void clean_verifier_state(struct bpf_verifier_env *env,
8524 struct bpf_verifier_state *st)
8525{
8526 int i;
8527
8528 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8529 /* all regs in this state in all frames were already marked */
8530 return;
8531
8532 for (i = 0; i <= st->curframe; i++)
8533 clean_func_state(env, st->frame[i]);
8534}
8535
8536/* the parentage chains form a tree.
8537 * the verifier states are added to state lists at given insn and
8538 * pushed into state stack for future exploration.
8539 * when the verifier reaches bpf_exit insn some of the verifer states
8540 * stored in the state lists have their final liveness state already,
8541 * but a lot of states will get revised from liveness point of view when
8542 * the verifier explores other branches.
8543 * Example:
8544 * 1: r0 = 1
8545 * 2: if r1 == 100 goto pc+1
8546 * 3: r0 = 2
8547 * 4: exit
8548 * when the verifier reaches exit insn the register r0 in the state list of
8549 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8550 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8551 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8552 *
8553 * Since the verifier pushes the branch states as it sees them while exploring
8554 * the program the condition of walking the branch instruction for the second
8555 * time means that all states below this branch were already explored and
8556 * their final liveness markes are already propagated.
8557 * Hence when the verifier completes the search of state list in is_state_visited()
8558 * we can call this clean_live_states() function to mark all liveness states
8559 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8560 * will not be used.
8561 * This function also clears the registers and stack for states that !READ
8562 * to simplify state merging.
8563 *
8564 * Important note here that walking the same branch instruction in the callee
8565 * doesn't meant that the states are DONE. The verifier has to compare
8566 * the callsites
8567 */
8568static void clean_live_states(struct bpf_verifier_env *env, int insn,
8569 struct bpf_verifier_state *cur)
8570{
8571 struct bpf_verifier_state_list *sl;
8572 int i;
8573
5d839021 8574 sl = *explored_state(env, insn);
a8f500af 8575 while (sl) {
2589726d
AS
8576 if (sl->state.branches)
8577 goto next;
dc2a4ebc
AS
8578 if (sl->state.insn_idx != insn ||
8579 sl->state.curframe != cur->curframe)
9242b5f5
AS
8580 goto next;
8581 for (i = 0; i <= cur->curframe; i++)
8582 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8583 goto next;
8584 clean_verifier_state(env, &sl->state);
8585next:
8586 sl = sl->next;
8587 }
8588}
8589
f1174f77 8590/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8591static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8592 struct idpair *idmap)
f1174f77 8593{
f4d7e40a
AS
8594 bool equal;
8595
dc503a8a
EC
8596 if (!(rold->live & REG_LIVE_READ))
8597 /* explored state didn't use this */
8598 return true;
8599
679c782d 8600 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8601
8602 if (rold->type == PTR_TO_STACK)
8603 /* two stack pointers are equal only if they're pointing to
8604 * the same stack frame, since fp-8 in foo != fp-8 in bar
8605 */
8606 return equal && rold->frameno == rcur->frameno;
8607
8608 if (equal)
969bf05e
AS
8609 return true;
8610
f1174f77
EC
8611 if (rold->type == NOT_INIT)
8612 /* explored state can't have used this */
969bf05e 8613 return true;
f1174f77
EC
8614 if (rcur->type == NOT_INIT)
8615 return false;
8616 switch (rold->type) {
8617 case SCALAR_VALUE:
8618 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8619 if (!rold->precise && !rcur->precise)
8620 return true;
f1174f77
EC
8621 /* new val must satisfy old val knowledge */
8622 return range_within(rold, rcur) &&
8623 tnum_in(rold->var_off, rcur->var_off);
8624 } else {
179d1c56
JH
8625 /* We're trying to use a pointer in place of a scalar.
8626 * Even if the scalar was unbounded, this could lead to
8627 * pointer leaks because scalars are allowed to leak
8628 * while pointers are not. We could make this safe in
8629 * special cases if root is calling us, but it's
8630 * probably not worth the hassle.
f1174f77 8631 */
179d1c56 8632 return false;
f1174f77
EC
8633 }
8634 case PTR_TO_MAP_VALUE:
1b688a19
EC
8635 /* If the new min/max/var_off satisfy the old ones and
8636 * everything else matches, we are OK.
d83525ca
AS
8637 * 'id' is not compared, since it's only used for maps with
8638 * bpf_spin_lock inside map element and in such cases if
8639 * the rest of the prog is valid for one map element then
8640 * it's valid for all map elements regardless of the key
8641 * used in bpf_map_lookup()
1b688a19
EC
8642 */
8643 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8644 range_within(rold, rcur) &&
8645 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8646 case PTR_TO_MAP_VALUE_OR_NULL:
8647 /* a PTR_TO_MAP_VALUE could be safe to use as a
8648 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8649 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8650 * checked, doing so could have affected others with the same
8651 * id, and we can't check for that because we lost the id when
8652 * we converted to a PTR_TO_MAP_VALUE.
8653 */
8654 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8655 return false;
8656 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8657 return false;
8658 /* Check our ids match any regs they're supposed to */
8659 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8660 case PTR_TO_PACKET_META:
f1174f77 8661 case PTR_TO_PACKET:
de8f3a83 8662 if (rcur->type != rold->type)
f1174f77
EC
8663 return false;
8664 /* We must have at least as much range as the old ptr
8665 * did, so that any accesses which were safe before are
8666 * still safe. This is true even if old range < old off,
8667 * since someone could have accessed through (ptr - k), or
8668 * even done ptr -= k in a register, to get a safe access.
8669 */
8670 if (rold->range > rcur->range)
8671 return false;
8672 /* If the offsets don't match, we can't trust our alignment;
8673 * nor can we be sure that we won't fall out of range.
8674 */
8675 if (rold->off != rcur->off)
8676 return false;
8677 /* id relations must be preserved */
8678 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8679 return false;
8680 /* new val must satisfy old val knowledge */
8681 return range_within(rold, rcur) &&
8682 tnum_in(rold->var_off, rcur->var_off);
8683 case PTR_TO_CTX:
8684 case CONST_PTR_TO_MAP:
f1174f77 8685 case PTR_TO_PACKET_END:
d58e468b 8686 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8687 case PTR_TO_SOCKET:
8688 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8689 case PTR_TO_SOCK_COMMON:
8690 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8691 case PTR_TO_TCP_SOCK:
8692 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8693 case PTR_TO_XDP_SOCK:
f1174f77
EC
8694 /* Only valid matches are exact, which memcmp() above
8695 * would have accepted
8696 */
8697 default:
8698 /* Don't know what's going on, just say it's not safe */
8699 return false;
8700 }
969bf05e 8701
f1174f77
EC
8702 /* Shouldn't get here; if we do, say it's not safe */
8703 WARN_ON_ONCE(1);
969bf05e
AS
8704 return false;
8705}
8706
f4d7e40a
AS
8707static bool stacksafe(struct bpf_func_state *old,
8708 struct bpf_func_state *cur,
638f5b90
AS
8709 struct idpair *idmap)
8710{
8711 int i, spi;
8712
638f5b90
AS
8713 /* walk slots of the explored stack and ignore any additional
8714 * slots in the current stack, since explored(safe) state
8715 * didn't use them
8716 */
8717 for (i = 0; i < old->allocated_stack; i++) {
8718 spi = i / BPF_REG_SIZE;
8719
b233920c
AS
8720 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8721 i += BPF_REG_SIZE - 1;
cc2b14d5 8722 /* explored state didn't use this */
fd05e57b 8723 continue;
b233920c 8724 }
cc2b14d5 8725
638f5b90
AS
8726 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8727 continue;
19e2dbb7
AS
8728
8729 /* explored stack has more populated slots than current stack
8730 * and these slots were used
8731 */
8732 if (i >= cur->allocated_stack)
8733 return false;
8734
cc2b14d5
AS
8735 /* if old state was safe with misc data in the stack
8736 * it will be safe with zero-initialized stack.
8737 * The opposite is not true
8738 */
8739 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8740 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8741 continue;
638f5b90
AS
8742 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8743 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8744 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8745 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8746 * this verifier states are not equivalent,
8747 * return false to continue verification of this path
8748 */
8749 return false;
8750 if (i % BPF_REG_SIZE)
8751 continue;
8752 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8753 continue;
8754 if (!regsafe(&old->stack[spi].spilled_ptr,
8755 &cur->stack[spi].spilled_ptr,
8756 idmap))
8757 /* when explored and current stack slot are both storing
8758 * spilled registers, check that stored pointers types
8759 * are the same as well.
8760 * Ex: explored safe path could have stored
8761 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8762 * but current path has stored:
8763 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8764 * such verifier states are not equivalent.
8765 * return false to continue verification of this path
8766 */
8767 return false;
8768 }
8769 return true;
8770}
8771
fd978bf7
JS
8772static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8773{
8774 if (old->acquired_refs != cur->acquired_refs)
8775 return false;
8776 return !memcmp(old->refs, cur->refs,
8777 sizeof(*old->refs) * old->acquired_refs);
8778}
8779
f1bca824
AS
8780/* compare two verifier states
8781 *
8782 * all states stored in state_list are known to be valid, since
8783 * verifier reached 'bpf_exit' instruction through them
8784 *
8785 * this function is called when verifier exploring different branches of
8786 * execution popped from the state stack. If it sees an old state that has
8787 * more strict register state and more strict stack state then this execution
8788 * branch doesn't need to be explored further, since verifier already
8789 * concluded that more strict state leads to valid finish.
8790 *
8791 * Therefore two states are equivalent if register state is more conservative
8792 * and explored stack state is more conservative than the current one.
8793 * Example:
8794 * explored current
8795 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8796 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8797 *
8798 * In other words if current stack state (one being explored) has more
8799 * valid slots than old one that already passed validation, it means
8800 * the verifier can stop exploring and conclude that current state is valid too
8801 *
8802 * Similarly with registers. If explored state has register type as invalid
8803 * whereas register type in current state is meaningful, it means that
8804 * the current state will reach 'bpf_exit' instruction safely
8805 */
f4d7e40a
AS
8806static bool func_states_equal(struct bpf_func_state *old,
8807 struct bpf_func_state *cur)
f1bca824 8808{
f1174f77
EC
8809 struct idpair *idmap;
8810 bool ret = false;
f1bca824
AS
8811 int i;
8812
f1174f77
EC
8813 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8814 /* If we failed to allocate the idmap, just say it's not safe */
8815 if (!idmap)
1a0dc1ac 8816 return false;
f1174f77
EC
8817
8818 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8819 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8820 goto out_free;
f1bca824
AS
8821 }
8822
638f5b90
AS
8823 if (!stacksafe(old, cur, idmap))
8824 goto out_free;
fd978bf7
JS
8825
8826 if (!refsafe(old, cur))
8827 goto out_free;
f1174f77
EC
8828 ret = true;
8829out_free:
8830 kfree(idmap);
8831 return ret;
f1bca824
AS
8832}
8833
f4d7e40a
AS
8834static bool states_equal(struct bpf_verifier_env *env,
8835 struct bpf_verifier_state *old,
8836 struct bpf_verifier_state *cur)
8837{
8838 int i;
8839
8840 if (old->curframe != cur->curframe)
8841 return false;
8842
979d63d5
DB
8843 /* Verification state from speculative execution simulation
8844 * must never prune a non-speculative execution one.
8845 */
8846 if (old->speculative && !cur->speculative)
8847 return false;
8848
d83525ca
AS
8849 if (old->active_spin_lock != cur->active_spin_lock)
8850 return false;
8851
f4d7e40a
AS
8852 /* for states to be equal callsites have to be the same
8853 * and all frame states need to be equivalent
8854 */
8855 for (i = 0; i <= old->curframe; i++) {
8856 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8857 return false;
8858 if (!func_states_equal(old->frame[i], cur->frame[i]))
8859 return false;
8860 }
8861 return true;
8862}
8863
5327ed3d
JW
8864/* Return 0 if no propagation happened. Return negative error code if error
8865 * happened. Otherwise, return the propagated bit.
8866 */
55e7f3b5
JW
8867static int propagate_liveness_reg(struct bpf_verifier_env *env,
8868 struct bpf_reg_state *reg,
8869 struct bpf_reg_state *parent_reg)
8870{
5327ed3d
JW
8871 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8872 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8873 int err;
8874
5327ed3d
JW
8875 /* When comes here, read flags of PARENT_REG or REG could be any of
8876 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8877 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8878 */
8879 if (parent_flag == REG_LIVE_READ64 ||
8880 /* Or if there is no read flag from REG. */
8881 !flag ||
8882 /* Or if the read flag from REG is the same as PARENT_REG. */
8883 parent_flag == flag)
55e7f3b5
JW
8884 return 0;
8885
5327ed3d 8886 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8887 if (err)
8888 return err;
8889
5327ed3d 8890 return flag;
55e7f3b5
JW
8891}
8892
8e9cd9ce 8893/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8894 * straight-line code between a state and its parent. When we arrive at an
8895 * equivalent state (jump target or such) we didn't arrive by the straight-line
8896 * code, so read marks in the state must propagate to the parent regardless
8897 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8898 * in mark_reg_read() is for.
8e9cd9ce 8899 */
f4d7e40a
AS
8900static int propagate_liveness(struct bpf_verifier_env *env,
8901 const struct bpf_verifier_state *vstate,
8902 struct bpf_verifier_state *vparent)
dc503a8a 8903{
3f8cafa4 8904 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8905 struct bpf_func_state *state, *parent;
3f8cafa4 8906 int i, frame, err = 0;
dc503a8a 8907
f4d7e40a
AS
8908 if (vparent->curframe != vstate->curframe) {
8909 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8910 vparent->curframe, vstate->curframe);
8911 return -EFAULT;
8912 }
dc503a8a
EC
8913 /* Propagate read liveness of registers... */
8914 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8915 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8916 parent = vparent->frame[frame];
8917 state = vstate->frame[frame];
8918 parent_reg = parent->regs;
8919 state_reg = state->regs;
83d16312
JK
8920 /* We don't need to worry about FP liveness, it's read-only */
8921 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8922 err = propagate_liveness_reg(env, &state_reg[i],
8923 &parent_reg[i]);
5327ed3d 8924 if (err < 0)
3f8cafa4 8925 return err;
5327ed3d
JW
8926 if (err == REG_LIVE_READ64)
8927 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8928 }
f4d7e40a 8929
1b04aee7 8930 /* Propagate stack slots. */
f4d7e40a
AS
8931 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8932 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8933 parent_reg = &parent->stack[i].spilled_ptr;
8934 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8935 err = propagate_liveness_reg(env, state_reg,
8936 parent_reg);
5327ed3d 8937 if (err < 0)
3f8cafa4 8938 return err;
dc503a8a
EC
8939 }
8940 }
5327ed3d 8941 return 0;
dc503a8a
EC
8942}
8943
a3ce685d
AS
8944/* find precise scalars in the previous equivalent state and
8945 * propagate them into the current state
8946 */
8947static int propagate_precision(struct bpf_verifier_env *env,
8948 const struct bpf_verifier_state *old)
8949{
8950 struct bpf_reg_state *state_reg;
8951 struct bpf_func_state *state;
8952 int i, err = 0;
8953
8954 state = old->frame[old->curframe];
8955 state_reg = state->regs;
8956 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8957 if (state_reg->type != SCALAR_VALUE ||
8958 !state_reg->precise)
8959 continue;
8960 if (env->log.level & BPF_LOG_LEVEL2)
8961 verbose(env, "propagating r%d\n", i);
8962 err = mark_chain_precision(env, i);
8963 if (err < 0)
8964 return err;
8965 }
8966
8967 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8968 if (state->stack[i].slot_type[0] != STACK_SPILL)
8969 continue;
8970 state_reg = &state->stack[i].spilled_ptr;
8971 if (state_reg->type != SCALAR_VALUE ||
8972 !state_reg->precise)
8973 continue;
8974 if (env->log.level & BPF_LOG_LEVEL2)
8975 verbose(env, "propagating fp%d\n",
8976 (-i - 1) * BPF_REG_SIZE);
8977 err = mark_chain_precision_stack(env, i);
8978 if (err < 0)
8979 return err;
8980 }
8981 return 0;
8982}
8983
2589726d
AS
8984static bool states_maybe_looping(struct bpf_verifier_state *old,
8985 struct bpf_verifier_state *cur)
8986{
8987 struct bpf_func_state *fold, *fcur;
8988 int i, fr = cur->curframe;
8989
8990 if (old->curframe != fr)
8991 return false;
8992
8993 fold = old->frame[fr];
8994 fcur = cur->frame[fr];
8995 for (i = 0; i < MAX_BPF_REG; i++)
8996 if (memcmp(&fold->regs[i], &fcur->regs[i],
8997 offsetof(struct bpf_reg_state, parent)))
8998 return false;
8999 return true;
9000}
9001
9002
58e2af8b 9003static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 9004{
58e2af8b 9005 struct bpf_verifier_state_list *new_sl;
9f4686c4 9006 struct bpf_verifier_state_list *sl, **pprev;
679c782d 9007 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 9008 int i, j, err, states_cnt = 0;
10d274e8 9009 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 9010
b5dc0163 9011 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 9012 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
9013 /* this 'insn_idx' instruction wasn't marked, so we will not
9014 * be doing state search here
9015 */
9016 return 0;
9017
2589726d
AS
9018 /* bpf progs typically have pruning point every 4 instructions
9019 * http://vger.kernel.org/bpfconf2019.html#session-1
9020 * Do not add new state for future pruning if the verifier hasn't seen
9021 * at least 2 jumps and at least 8 instructions.
9022 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9023 * In tests that amounts to up to 50% reduction into total verifier
9024 * memory consumption and 20% verifier time speedup.
9025 */
9026 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9027 env->insn_processed - env->prev_insn_processed >= 8)
9028 add_new_state = true;
9029
a8f500af
AS
9030 pprev = explored_state(env, insn_idx);
9031 sl = *pprev;
9032
9242b5f5
AS
9033 clean_live_states(env, insn_idx, cur);
9034
a8f500af 9035 while (sl) {
dc2a4ebc
AS
9036 states_cnt++;
9037 if (sl->state.insn_idx != insn_idx)
9038 goto next;
2589726d
AS
9039 if (sl->state.branches) {
9040 if (states_maybe_looping(&sl->state, cur) &&
9041 states_equal(env, &sl->state, cur)) {
9042 verbose_linfo(env, insn_idx, "; ");
9043 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9044 return -EINVAL;
9045 }
9046 /* if the verifier is processing a loop, avoid adding new state
9047 * too often, since different loop iterations have distinct
9048 * states and may not help future pruning.
9049 * This threshold shouldn't be too low to make sure that
9050 * a loop with large bound will be rejected quickly.
9051 * The most abusive loop will be:
9052 * r1 += 1
9053 * if r1 < 1000000 goto pc-2
9054 * 1M insn_procssed limit / 100 == 10k peak states.
9055 * This threshold shouldn't be too high either, since states
9056 * at the end of the loop are likely to be useful in pruning.
9057 */
9058 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9059 env->insn_processed - env->prev_insn_processed < 100)
9060 add_new_state = false;
9061 goto miss;
9062 }
638f5b90 9063 if (states_equal(env, &sl->state, cur)) {
9f4686c4 9064 sl->hit_cnt++;
f1bca824 9065 /* reached equivalent register/stack state,
dc503a8a
EC
9066 * prune the search.
9067 * Registers read by the continuation are read by us.
8e9cd9ce
EC
9068 * If we have any write marks in env->cur_state, they
9069 * will prevent corresponding reads in the continuation
9070 * from reaching our parent (an explored_state). Our
9071 * own state will get the read marks recorded, but
9072 * they'll be immediately forgotten as we're pruning
9073 * this state and will pop a new one.
f1bca824 9074 */
f4d7e40a 9075 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
9076
9077 /* if previous state reached the exit with precision and
9078 * current state is equivalent to it (except precsion marks)
9079 * the precision needs to be propagated back in
9080 * the current state.
9081 */
9082 err = err ? : push_jmp_history(env, cur);
9083 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
9084 if (err)
9085 return err;
f1bca824 9086 return 1;
dc503a8a 9087 }
2589726d
AS
9088miss:
9089 /* when new state is not going to be added do not increase miss count.
9090 * Otherwise several loop iterations will remove the state
9091 * recorded earlier. The goal of these heuristics is to have
9092 * states from some iterations of the loop (some in the beginning
9093 * and some at the end) to help pruning.
9094 */
9095 if (add_new_state)
9096 sl->miss_cnt++;
9f4686c4
AS
9097 /* heuristic to determine whether this state is beneficial
9098 * to keep checking from state equivalence point of view.
9099 * Higher numbers increase max_states_per_insn and verification time,
9100 * but do not meaningfully decrease insn_processed.
9101 */
9102 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9103 /* the state is unlikely to be useful. Remove it to
9104 * speed up verification
9105 */
9106 *pprev = sl->next;
9107 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
9108 u32 br = sl->state.branches;
9109
9110 WARN_ONCE(br,
9111 "BUG live_done but branches_to_explore %d\n",
9112 br);
9f4686c4
AS
9113 free_verifier_state(&sl->state, false);
9114 kfree(sl);
9115 env->peak_states--;
9116 } else {
9117 /* cannot free this state, since parentage chain may
9118 * walk it later. Add it for free_list instead to
9119 * be freed at the end of verification
9120 */
9121 sl->next = env->free_list;
9122 env->free_list = sl;
9123 }
9124 sl = *pprev;
9125 continue;
9126 }
dc2a4ebc 9127next:
9f4686c4
AS
9128 pprev = &sl->next;
9129 sl = *pprev;
f1bca824
AS
9130 }
9131
06ee7115
AS
9132 if (env->max_states_per_insn < states_cnt)
9133 env->max_states_per_insn = states_cnt;
9134
2c78ee89 9135 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 9136 return push_jmp_history(env, cur);
ceefbc96 9137
2589726d 9138 if (!add_new_state)
b5dc0163 9139 return push_jmp_history(env, cur);
ceefbc96 9140
2589726d
AS
9141 /* There were no equivalent states, remember the current one.
9142 * Technically the current state is not proven to be safe yet,
f4d7e40a 9143 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 9144 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 9145 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
9146 * again on the way to bpf_exit.
9147 * When looping the sl->state.branches will be > 0 and this state
9148 * will not be considered for equivalence until branches == 0.
f1bca824 9149 */
638f5b90 9150 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
9151 if (!new_sl)
9152 return -ENOMEM;
06ee7115
AS
9153 env->total_states++;
9154 env->peak_states++;
2589726d
AS
9155 env->prev_jmps_processed = env->jmps_processed;
9156 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
9157
9158 /* add new state to the head of linked list */
679c782d
EC
9159 new = &new_sl->state;
9160 err = copy_verifier_state(new, cur);
1969db47 9161 if (err) {
679c782d 9162 free_verifier_state(new, false);
1969db47
AS
9163 kfree(new_sl);
9164 return err;
9165 }
dc2a4ebc 9166 new->insn_idx = insn_idx;
2589726d
AS
9167 WARN_ONCE(new->branches != 1,
9168 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 9169
2589726d 9170 cur->parent = new;
b5dc0163
AS
9171 cur->first_insn_idx = insn_idx;
9172 clear_jmp_history(cur);
5d839021
AS
9173 new_sl->next = *explored_state(env, insn_idx);
9174 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
9175 /* connect new state to parentage chain. Current frame needs all
9176 * registers connected. Only r6 - r9 of the callers are alive (pushed
9177 * to the stack implicitly by JITs) so in callers' frames connect just
9178 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9179 * the state of the call instruction (with WRITTEN set), and r0 comes
9180 * from callee with its full parentage chain, anyway.
9181 */
8e9cd9ce
EC
9182 /* clear write marks in current state: the writes we did are not writes
9183 * our child did, so they don't screen off its reads from us.
9184 * (There are no read marks in current state, because reads always mark
9185 * their parent and current state never has children yet. Only
9186 * explored_states can get read marks.)
9187 */
eea1c227
AS
9188 for (j = 0; j <= cur->curframe; j++) {
9189 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9190 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9191 for (i = 0; i < BPF_REG_FP; i++)
9192 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9193 }
f4d7e40a
AS
9194
9195 /* all stack frames are accessible from callee, clear them all */
9196 for (j = 0; j <= cur->curframe; j++) {
9197 struct bpf_func_state *frame = cur->frame[j];
679c782d 9198 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 9199
679c782d 9200 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 9201 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
9202 frame->stack[i].spilled_ptr.parent =
9203 &newframe->stack[i].spilled_ptr;
9204 }
f4d7e40a 9205 }
f1bca824
AS
9206 return 0;
9207}
9208
c64b7983
JS
9209/* Return true if it's OK to have the same insn return a different type. */
9210static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9211{
9212 switch (type) {
9213 case PTR_TO_CTX:
9214 case PTR_TO_SOCKET:
9215 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9216 case PTR_TO_SOCK_COMMON:
9217 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9218 case PTR_TO_TCP_SOCK:
9219 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9220 case PTR_TO_XDP_SOCK:
2a02759e 9221 case PTR_TO_BTF_ID:
b121b341 9222 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
9223 return false;
9224 default:
9225 return true;
9226 }
9227}
9228
9229/* If an instruction was previously used with particular pointer types, then we
9230 * need to be careful to avoid cases such as the below, where it may be ok
9231 * for one branch accessing the pointer, but not ok for the other branch:
9232 *
9233 * R1 = sock_ptr
9234 * goto X;
9235 * ...
9236 * R1 = some_other_valid_ptr;
9237 * goto X;
9238 * ...
9239 * R2 = *(u32 *)(R1 + 0);
9240 */
9241static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9242{
9243 return src != prev && (!reg_type_mismatch_ok(src) ||
9244 !reg_type_mismatch_ok(prev));
9245}
9246
58e2af8b 9247static int do_check(struct bpf_verifier_env *env)
17a52670 9248{
6f8a57cc 9249 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 9250 struct bpf_verifier_state *state = env->cur_state;
17a52670 9251 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 9252 struct bpf_reg_state *regs;
06ee7115 9253 int insn_cnt = env->prog->len;
17a52670 9254 bool do_print_state = false;
b5dc0163 9255 int prev_insn_idx = -1;
17a52670 9256
17a52670
AS
9257 for (;;) {
9258 struct bpf_insn *insn;
9259 u8 class;
9260 int err;
9261
b5dc0163 9262 env->prev_insn_idx = prev_insn_idx;
c08435ec 9263 if (env->insn_idx >= insn_cnt) {
61bd5218 9264 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 9265 env->insn_idx, insn_cnt);
17a52670
AS
9266 return -EFAULT;
9267 }
9268
c08435ec 9269 insn = &insns[env->insn_idx];
17a52670
AS
9270 class = BPF_CLASS(insn->code);
9271
06ee7115 9272 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
9273 verbose(env,
9274 "BPF program is too large. Processed %d insn\n",
06ee7115 9275 env->insn_processed);
17a52670
AS
9276 return -E2BIG;
9277 }
9278
c08435ec 9279 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
9280 if (err < 0)
9281 return err;
9282 if (err == 1) {
9283 /* found equivalent state, can prune the search */
06ee7115 9284 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9285 if (do_print_state)
979d63d5
DB
9286 verbose(env, "\nfrom %d to %d%s: safe\n",
9287 env->prev_insn_idx, env->insn_idx,
9288 env->cur_state->speculative ?
9289 " (speculative execution)" : "");
f1bca824 9290 else
c08435ec 9291 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9292 }
9293 goto process_bpf_exit;
9294 }
9295
c3494801
AS
9296 if (signal_pending(current))
9297 return -EAGAIN;
9298
3c2ce60b
DB
9299 if (need_resched())
9300 cond_resched();
9301
06ee7115
AS
9302 if (env->log.level & BPF_LOG_LEVEL2 ||
9303 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9304 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9305 verbose(env, "%d:", env->insn_idx);
c5fc9692 9306 else
979d63d5
DB
9307 verbose(env, "\nfrom %d to %d%s:",
9308 env->prev_insn_idx, env->insn_idx,
9309 env->cur_state->speculative ?
9310 " (speculative execution)" : "");
f4d7e40a 9311 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9312 do_print_state = false;
9313 }
9314
06ee7115 9315 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9316 const struct bpf_insn_cbs cbs = {
9317 .cb_print = verbose,
abe08840 9318 .private_data = env,
7105e828
DB
9319 };
9320
c08435ec
DB
9321 verbose_linfo(env, env->insn_idx, "; ");
9322 verbose(env, "%d: ", env->insn_idx);
abe08840 9323 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9324 }
9325
cae1927c 9326 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9327 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9328 env->prev_insn_idx);
cae1927c
JK
9329 if (err)
9330 return err;
9331 }
13a27dfc 9332
638f5b90 9333 regs = cur_regs(env);
51c39bb1 9334 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9335 prev_insn_idx = env->insn_idx;
fd978bf7 9336
17a52670 9337 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9338 err = check_alu_op(env, insn);
17a52670
AS
9339 if (err)
9340 return err;
9341
9342 } else if (class == BPF_LDX) {
3df126f3 9343 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9344
9345 /* check for reserved fields is already done */
9346
17a52670 9347 /* check src operand */
dc503a8a 9348 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9349 if (err)
9350 return err;
9351
dc503a8a 9352 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9353 if (err)
9354 return err;
9355
725f9dcd
AS
9356 src_reg_type = regs[insn->src_reg].type;
9357
17a52670
AS
9358 /* check that memory (src_reg + off) is readable,
9359 * the state of dst_reg will be updated by this func
9360 */
c08435ec
DB
9361 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9362 insn->off, BPF_SIZE(insn->code),
9363 BPF_READ, insn->dst_reg, false);
17a52670
AS
9364 if (err)
9365 return err;
9366
c08435ec 9367 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9368
9369 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9370 /* saw a valid insn
9371 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9372 * save type to validate intersecting paths
9bac3d6d 9373 */
3df126f3 9374 *prev_src_type = src_reg_type;
9bac3d6d 9375
c64b7983 9376 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9377 /* ABuser program is trying to use the same insn
9378 * dst_reg = *(u32*) (src_reg + off)
9379 * with different pointer types:
9380 * src_reg == ctx in one branch and
9381 * src_reg == stack|map in some other branch.
9382 * Reject it.
9383 */
61bd5218 9384 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9385 return -EINVAL;
9386 }
9387
17a52670 9388 } else if (class == BPF_STX) {
3df126f3 9389 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9390
17a52670 9391 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 9392 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
9393 if (err)
9394 return err;
c08435ec 9395 env->insn_idx++;
17a52670
AS
9396 continue;
9397 }
9398
17a52670 9399 /* check src1 operand */
dc503a8a 9400 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9401 if (err)
9402 return err;
9403 /* check src2 operand */
dc503a8a 9404 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9405 if (err)
9406 return err;
9407
d691f9e8
AS
9408 dst_reg_type = regs[insn->dst_reg].type;
9409
17a52670 9410 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9411 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9412 insn->off, BPF_SIZE(insn->code),
9413 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9414 if (err)
9415 return err;
9416
c08435ec 9417 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9418
9419 if (*prev_dst_type == NOT_INIT) {
9420 *prev_dst_type = dst_reg_type;
c64b7983 9421 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9422 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9423 return -EINVAL;
9424 }
9425
17a52670
AS
9426 } else if (class == BPF_ST) {
9427 if (BPF_MODE(insn->code) != BPF_MEM ||
9428 insn->src_reg != BPF_REG_0) {
61bd5218 9429 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9430 return -EINVAL;
9431 }
9432 /* check src operand */
dc503a8a 9433 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9434 if (err)
9435 return err;
9436
f37a8cb8 9437 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9438 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9439 insn->dst_reg,
9440 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9441 return -EACCES;
9442 }
9443
17a52670 9444 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9445 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9446 insn->off, BPF_SIZE(insn->code),
9447 BPF_WRITE, -1, false);
17a52670
AS
9448 if (err)
9449 return err;
9450
092ed096 9451 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9452 u8 opcode = BPF_OP(insn->code);
9453
2589726d 9454 env->jmps_processed++;
17a52670
AS
9455 if (opcode == BPF_CALL) {
9456 if (BPF_SRC(insn->code) != BPF_K ||
9457 insn->off != 0 ||
f4d7e40a
AS
9458 (insn->src_reg != BPF_REG_0 &&
9459 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9460 insn->dst_reg != BPF_REG_0 ||
9461 class == BPF_JMP32) {
61bd5218 9462 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9463 return -EINVAL;
9464 }
9465
d83525ca
AS
9466 if (env->cur_state->active_spin_lock &&
9467 (insn->src_reg == BPF_PSEUDO_CALL ||
9468 insn->imm != BPF_FUNC_spin_unlock)) {
9469 verbose(env, "function calls are not allowed while holding a lock\n");
9470 return -EINVAL;
9471 }
f4d7e40a 9472 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9473 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9474 else
c08435ec 9475 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9476 if (err)
9477 return err;
9478
9479 } else if (opcode == BPF_JA) {
9480 if (BPF_SRC(insn->code) != BPF_K ||
9481 insn->imm != 0 ||
9482 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9483 insn->dst_reg != BPF_REG_0 ||
9484 class == BPF_JMP32) {
61bd5218 9485 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9486 return -EINVAL;
9487 }
9488
c08435ec 9489 env->insn_idx += insn->off + 1;
17a52670
AS
9490 continue;
9491
9492 } else if (opcode == BPF_EXIT) {
9493 if (BPF_SRC(insn->code) != BPF_K ||
9494 insn->imm != 0 ||
9495 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9496 insn->dst_reg != BPF_REG_0 ||
9497 class == BPF_JMP32) {
61bd5218 9498 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9499 return -EINVAL;
9500 }
9501
d83525ca
AS
9502 if (env->cur_state->active_spin_lock) {
9503 verbose(env, "bpf_spin_unlock is missing\n");
9504 return -EINVAL;
9505 }
9506
f4d7e40a
AS
9507 if (state->curframe) {
9508 /* exit from nested function */
c08435ec 9509 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9510 if (err)
9511 return err;
9512 do_print_state = true;
9513 continue;
9514 }
9515
fd978bf7
JS
9516 err = check_reference_leak(env);
9517 if (err)
9518 return err;
9519
390ee7e2
AS
9520 err = check_return_code(env);
9521 if (err)
9522 return err;
f1bca824 9523process_bpf_exit:
2589726d 9524 update_branch_counts(env, env->cur_state);
b5dc0163 9525 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9526 &env->insn_idx, pop_log);
638f5b90
AS
9527 if (err < 0) {
9528 if (err != -ENOENT)
9529 return err;
17a52670
AS
9530 break;
9531 } else {
9532 do_print_state = true;
9533 continue;
9534 }
9535 } else {
c08435ec 9536 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9537 if (err)
9538 return err;
9539 }
9540 } else if (class == BPF_LD) {
9541 u8 mode = BPF_MODE(insn->code);
9542
9543 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9544 err = check_ld_abs(env, insn);
9545 if (err)
9546 return err;
9547
17a52670
AS
9548 } else if (mode == BPF_IMM) {
9549 err = check_ld_imm(env, insn);
9550 if (err)
9551 return err;
9552
c08435ec 9553 env->insn_idx++;
51c39bb1 9554 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9555 } else {
61bd5218 9556 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9557 return -EINVAL;
9558 }
9559 } else {
61bd5218 9560 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9561 return -EINVAL;
9562 }
9563
c08435ec 9564 env->insn_idx++;
17a52670
AS
9565 }
9566
9567 return 0;
9568}
9569
4976b718
HL
9570/* replace pseudo btf_id with kernel symbol address */
9571static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9572 struct bpf_insn *insn,
9573 struct bpf_insn_aux_data *aux)
9574{
eaa6bcb7
HL
9575 u32 datasec_id, type, id = insn->imm;
9576 const struct btf_var_secinfo *vsi;
9577 const struct btf_type *datasec;
4976b718
HL
9578 const struct btf_type *t;
9579 const char *sym_name;
eaa6bcb7 9580 bool percpu = false;
4976b718 9581 u64 addr;
eaa6bcb7 9582 int i;
4976b718
HL
9583
9584 if (!btf_vmlinux) {
9585 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9586 return -EINVAL;
9587 }
9588
9589 if (insn[1].imm != 0) {
9590 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9591 return -EINVAL;
9592 }
9593
9594 t = btf_type_by_id(btf_vmlinux, id);
9595 if (!t) {
9596 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9597 return -ENOENT;
9598 }
9599
9600 if (!btf_type_is_var(t)) {
9601 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9602 id);
9603 return -EINVAL;
9604 }
9605
9606 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9607 addr = kallsyms_lookup_name(sym_name);
9608 if (!addr) {
9609 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9610 sym_name);
9611 return -ENOENT;
9612 }
9613
eaa6bcb7
HL
9614 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9615 BTF_KIND_DATASEC);
9616 if (datasec_id > 0) {
9617 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9618 for_each_vsi(i, datasec, vsi) {
9619 if (vsi->type == id) {
9620 percpu = true;
9621 break;
9622 }
9623 }
9624 }
9625
4976b718
HL
9626 insn[0].imm = (u32)addr;
9627 insn[1].imm = addr >> 32;
9628
9629 type = t->type;
9630 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
eaa6bcb7
HL
9631 if (percpu) {
9632 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9633 aux->btf_var.btf_id = type;
9634 } else if (!btf_type_is_struct(t)) {
4976b718
HL
9635 const struct btf_type *ret;
9636 const char *tname;
9637 u32 tsize;
9638
9639 /* resolve the type size of ksym. */
9640 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9641 if (IS_ERR(ret)) {
9642 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9643 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9644 tname, PTR_ERR(ret));
9645 return -EINVAL;
9646 }
9647 aux->btf_var.reg_type = PTR_TO_MEM;
9648 aux->btf_var.mem_size = tsize;
9649 } else {
9650 aux->btf_var.reg_type = PTR_TO_BTF_ID;
9651 aux->btf_var.btf_id = type;
9652 }
9653 return 0;
9654}
9655
56f668df
MKL
9656static int check_map_prealloc(struct bpf_map *map)
9657{
9658 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9659 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9660 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9661 !(map->map_flags & BPF_F_NO_PREALLOC);
9662}
9663
d83525ca
AS
9664static bool is_tracing_prog_type(enum bpf_prog_type type)
9665{
9666 switch (type) {
9667 case BPF_PROG_TYPE_KPROBE:
9668 case BPF_PROG_TYPE_TRACEPOINT:
9669 case BPF_PROG_TYPE_PERF_EVENT:
9670 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9671 return true;
9672 default:
9673 return false;
9674 }
9675}
9676
94dacdbd
TG
9677static bool is_preallocated_map(struct bpf_map *map)
9678{
9679 if (!check_map_prealloc(map))
9680 return false;
9681 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9682 return false;
9683 return true;
9684}
9685
61bd5218
JK
9686static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9687 struct bpf_map *map,
fdc15d38
AS
9688 struct bpf_prog *prog)
9689
9690{
7e40781c 9691 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9692 /*
9693 * Validate that trace type programs use preallocated hash maps.
9694 *
9695 * For programs attached to PERF events this is mandatory as the
9696 * perf NMI can hit any arbitrary code sequence.
9697 *
9698 * All other trace types using preallocated hash maps are unsafe as
9699 * well because tracepoint or kprobes can be inside locked regions
9700 * of the memory allocator or at a place where a recursion into the
9701 * memory allocator would see inconsistent state.
9702 *
2ed905c5
TG
9703 * On RT enabled kernels run-time allocation of all trace type
9704 * programs is strictly prohibited due to lock type constraints. On
9705 * !RT kernels it is allowed for backwards compatibility reasons for
9706 * now, but warnings are emitted so developers are made aware of
9707 * the unsafety and can fix their programs before this is enforced.
56f668df 9708 */
7e40781c
UP
9709 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9710 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9711 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9712 return -EINVAL;
9713 }
2ed905c5
TG
9714 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9715 verbose(env, "trace type programs can only use preallocated hash map\n");
9716 return -EINVAL;
9717 }
94dacdbd
TG
9718 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9719 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9720 }
a3884572 9721
9e7a4d98
KS
9722 if (map_value_has_spin_lock(map)) {
9723 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9724 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9725 return -EINVAL;
9726 }
9727
9728 if (is_tracing_prog_type(prog_type)) {
9729 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9730 return -EINVAL;
9731 }
9732
9733 if (prog->aux->sleepable) {
9734 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9735 return -EINVAL;
9736 }
d83525ca
AS
9737 }
9738
a3884572 9739 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9740 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9741 verbose(env, "offload device mismatch between prog and map\n");
9742 return -EINVAL;
9743 }
9744
85d33df3
MKL
9745 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9746 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9747 return -EINVAL;
9748 }
9749
1e6c62a8
AS
9750 if (prog->aux->sleepable)
9751 switch (map->map_type) {
9752 case BPF_MAP_TYPE_HASH:
9753 case BPF_MAP_TYPE_LRU_HASH:
9754 case BPF_MAP_TYPE_ARRAY:
9755 if (!is_preallocated_map(map)) {
9756 verbose(env,
9757 "Sleepable programs can only use preallocated hash maps\n");
9758 return -EINVAL;
9759 }
9760 break;
9761 default:
9762 verbose(env,
9763 "Sleepable programs can only use array and hash maps\n");
9764 return -EINVAL;
9765 }
9766
fdc15d38
AS
9767 return 0;
9768}
9769
b741f163
RG
9770static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9771{
9772 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9773 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9774}
9775
4976b718
HL
9776/* find and rewrite pseudo imm in ld_imm64 instructions:
9777 *
9778 * 1. if it accesses map FD, replace it with actual map pointer.
9779 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9780 *
9781 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 9782 */
4976b718 9783static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
9784{
9785 struct bpf_insn *insn = env->prog->insnsi;
9786 int insn_cnt = env->prog->len;
fdc15d38 9787 int i, j, err;
0246e64d 9788
f1f7714e 9789 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9790 if (err)
9791 return err;
9792
0246e64d 9793 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9794 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9795 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9796 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9797 return -EINVAL;
9798 }
9799
d691f9e8
AS
9800 if (BPF_CLASS(insn->code) == BPF_STX &&
9801 ((BPF_MODE(insn->code) != BPF_MEM &&
9802 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9803 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9804 return -EINVAL;
9805 }
9806
0246e64d 9807 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9808 struct bpf_insn_aux_data *aux;
0246e64d
AS
9809 struct bpf_map *map;
9810 struct fd f;
d8eca5bb 9811 u64 addr;
0246e64d
AS
9812
9813 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9814 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9815 insn[1].off != 0) {
61bd5218 9816 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9817 return -EINVAL;
9818 }
9819
d8eca5bb 9820 if (insn[0].src_reg == 0)
0246e64d
AS
9821 /* valid generic load 64-bit imm */
9822 goto next_insn;
9823
4976b718
HL
9824 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9825 aux = &env->insn_aux_data[i];
9826 err = check_pseudo_btf_id(env, insn, aux);
9827 if (err)
9828 return err;
9829 goto next_insn;
9830 }
9831
d8eca5bb
DB
9832 /* In final convert_pseudo_ld_imm64() step, this is
9833 * converted into regular 64-bit imm load insn.
9834 */
9835 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9836 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9837 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9838 insn[1].imm != 0)) {
9839 verbose(env,
9840 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9841 return -EINVAL;
9842 }
9843
20182390 9844 f = fdget(insn[0].imm);
c2101297 9845 map = __bpf_map_get(f);
0246e64d 9846 if (IS_ERR(map)) {
61bd5218 9847 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9848 insn[0].imm);
0246e64d
AS
9849 return PTR_ERR(map);
9850 }
9851
61bd5218 9852 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9853 if (err) {
9854 fdput(f);
9855 return err;
9856 }
9857
d8eca5bb
DB
9858 aux = &env->insn_aux_data[i];
9859 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9860 addr = (unsigned long)map;
9861 } else {
9862 u32 off = insn[1].imm;
9863
9864 if (off >= BPF_MAX_VAR_OFF) {
9865 verbose(env, "direct value offset of %u is not allowed\n", off);
9866 fdput(f);
9867 return -EINVAL;
9868 }
9869
9870 if (!map->ops->map_direct_value_addr) {
9871 verbose(env, "no direct value access support for this map type\n");
9872 fdput(f);
9873 return -EINVAL;
9874 }
9875
9876 err = map->ops->map_direct_value_addr(map, &addr, off);
9877 if (err) {
9878 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9879 map->value_size, off);
9880 fdput(f);
9881 return err;
9882 }
9883
9884 aux->map_off = off;
9885 addr += off;
9886 }
9887
9888 insn[0].imm = (u32)addr;
9889 insn[1].imm = addr >> 32;
0246e64d
AS
9890
9891 /* check whether we recorded this map already */
d8eca5bb 9892 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9893 if (env->used_maps[j] == map) {
d8eca5bb 9894 aux->map_index = j;
0246e64d
AS
9895 fdput(f);
9896 goto next_insn;
9897 }
d8eca5bb 9898 }
0246e64d
AS
9899
9900 if (env->used_map_cnt >= MAX_USED_MAPS) {
9901 fdput(f);
9902 return -E2BIG;
9903 }
9904
0246e64d
AS
9905 /* hold the map. If the program is rejected by verifier,
9906 * the map will be released by release_maps() or it
9907 * will be used by the valid program until it's unloaded
ab7f5bf0 9908 * and all maps are released in free_used_maps()
0246e64d 9909 */
1e0bd5a0 9910 bpf_map_inc(map);
d8eca5bb
DB
9911
9912 aux->map_index = env->used_map_cnt;
92117d84
AS
9913 env->used_maps[env->used_map_cnt++] = map;
9914
b741f163 9915 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9916 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9917 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9918 fdput(f);
9919 return -EBUSY;
9920 }
9921
0246e64d
AS
9922 fdput(f);
9923next_insn:
9924 insn++;
9925 i++;
5e581dad
DB
9926 continue;
9927 }
9928
9929 /* Basic sanity check before we invest more work here. */
9930 if (!bpf_opcode_in_insntable(insn->code)) {
9931 verbose(env, "unknown opcode %02x\n", insn->code);
9932 return -EINVAL;
0246e64d
AS
9933 }
9934 }
9935
9936 /* now all pseudo BPF_LD_IMM64 instructions load valid
9937 * 'struct bpf_map *' into a register instead of user map_fd.
9938 * These pointers will be used later by verifier to validate map access.
9939 */
9940 return 0;
9941}
9942
9943/* drop refcnt of maps used by the rejected program */
58e2af8b 9944static void release_maps(struct bpf_verifier_env *env)
0246e64d 9945{
a2ea0746
DB
9946 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9947 env->used_map_cnt);
0246e64d
AS
9948}
9949
9950/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9951static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9952{
9953 struct bpf_insn *insn = env->prog->insnsi;
9954 int insn_cnt = env->prog->len;
9955 int i;
9956
9957 for (i = 0; i < insn_cnt; i++, insn++)
9958 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9959 insn->src_reg = 0;
9960}
9961
8041902d
AS
9962/* single env->prog->insni[off] instruction was replaced with the range
9963 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9964 * [0, off) and [off, end) to new locations, so the patched range stays zero
9965 */
b325fbca
JW
9966static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9967 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9968{
9969 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9970 struct bpf_insn *insn = new_prog->insnsi;
9971 u32 prog_len;
c131187d 9972 int i;
8041902d 9973
b325fbca
JW
9974 /* aux info at OFF always needs adjustment, no matter fast path
9975 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9976 * original insn at old prog.
9977 */
9978 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9979
8041902d
AS
9980 if (cnt == 1)
9981 return 0;
b325fbca 9982 prog_len = new_prog->len;
fad953ce
KC
9983 new_data = vzalloc(array_size(prog_len,
9984 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9985 if (!new_data)
9986 return -ENOMEM;
9987 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9988 memcpy(new_data + off + cnt - 1, old_data + off,
9989 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9990 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9991 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9992 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9993 }
8041902d
AS
9994 env->insn_aux_data = new_data;
9995 vfree(old_data);
9996 return 0;
9997}
9998
cc8b0b92
AS
9999static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10000{
10001 int i;
10002
10003 if (len == 1)
10004 return;
4cb3d99c
JW
10005 /* NOTE: fake 'exit' subprog should be updated as well. */
10006 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 10007 if (env->subprog_info[i].start <= off)
cc8b0b92 10008 continue;
9c8105bd 10009 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
10010 }
10011}
10012
a748c697
MF
10013static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10014{
10015 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10016 int i, sz = prog->aux->size_poke_tab;
10017 struct bpf_jit_poke_descriptor *desc;
10018
10019 for (i = 0; i < sz; i++) {
10020 desc = &tab[i];
10021 desc->insn_idx += len - 1;
10022 }
10023}
10024
8041902d
AS
10025static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10026 const struct bpf_insn *patch, u32 len)
10027{
10028 struct bpf_prog *new_prog;
10029
10030 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
10031 if (IS_ERR(new_prog)) {
10032 if (PTR_ERR(new_prog) == -ERANGE)
10033 verbose(env,
10034 "insn %d cannot be patched due to 16-bit range\n",
10035 env->insn_aux_data[off].orig_idx);
8041902d 10036 return NULL;
4f73379e 10037 }
b325fbca 10038 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 10039 return NULL;
cc8b0b92 10040 adjust_subprog_starts(env, off, len);
a748c697 10041 adjust_poke_descs(new_prog, len);
8041902d
AS
10042 return new_prog;
10043}
10044
52875a04
JK
10045static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10046 u32 off, u32 cnt)
10047{
10048 int i, j;
10049
10050 /* find first prog starting at or after off (first to remove) */
10051 for (i = 0; i < env->subprog_cnt; i++)
10052 if (env->subprog_info[i].start >= off)
10053 break;
10054 /* find first prog starting at or after off + cnt (first to stay) */
10055 for (j = i; j < env->subprog_cnt; j++)
10056 if (env->subprog_info[j].start >= off + cnt)
10057 break;
10058 /* if j doesn't start exactly at off + cnt, we are just removing
10059 * the front of previous prog
10060 */
10061 if (env->subprog_info[j].start != off + cnt)
10062 j--;
10063
10064 if (j > i) {
10065 struct bpf_prog_aux *aux = env->prog->aux;
10066 int move;
10067
10068 /* move fake 'exit' subprog as well */
10069 move = env->subprog_cnt + 1 - j;
10070
10071 memmove(env->subprog_info + i,
10072 env->subprog_info + j,
10073 sizeof(*env->subprog_info) * move);
10074 env->subprog_cnt -= j - i;
10075
10076 /* remove func_info */
10077 if (aux->func_info) {
10078 move = aux->func_info_cnt - j;
10079
10080 memmove(aux->func_info + i,
10081 aux->func_info + j,
10082 sizeof(*aux->func_info) * move);
10083 aux->func_info_cnt -= j - i;
10084 /* func_info->insn_off is set after all code rewrites,
10085 * in adjust_btf_func() - no need to adjust
10086 */
10087 }
10088 } else {
10089 /* convert i from "first prog to remove" to "first to adjust" */
10090 if (env->subprog_info[i].start == off)
10091 i++;
10092 }
10093
10094 /* update fake 'exit' subprog as well */
10095 for (; i <= env->subprog_cnt; i++)
10096 env->subprog_info[i].start -= cnt;
10097
10098 return 0;
10099}
10100
10101static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10102 u32 cnt)
10103{
10104 struct bpf_prog *prog = env->prog;
10105 u32 i, l_off, l_cnt, nr_linfo;
10106 struct bpf_line_info *linfo;
10107
10108 nr_linfo = prog->aux->nr_linfo;
10109 if (!nr_linfo)
10110 return 0;
10111
10112 linfo = prog->aux->linfo;
10113
10114 /* find first line info to remove, count lines to be removed */
10115 for (i = 0; i < nr_linfo; i++)
10116 if (linfo[i].insn_off >= off)
10117 break;
10118
10119 l_off = i;
10120 l_cnt = 0;
10121 for (; i < nr_linfo; i++)
10122 if (linfo[i].insn_off < off + cnt)
10123 l_cnt++;
10124 else
10125 break;
10126
10127 /* First live insn doesn't match first live linfo, it needs to "inherit"
10128 * last removed linfo. prog is already modified, so prog->len == off
10129 * means no live instructions after (tail of the program was removed).
10130 */
10131 if (prog->len != off && l_cnt &&
10132 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10133 l_cnt--;
10134 linfo[--i].insn_off = off + cnt;
10135 }
10136
10137 /* remove the line info which refer to the removed instructions */
10138 if (l_cnt) {
10139 memmove(linfo + l_off, linfo + i,
10140 sizeof(*linfo) * (nr_linfo - i));
10141
10142 prog->aux->nr_linfo -= l_cnt;
10143 nr_linfo = prog->aux->nr_linfo;
10144 }
10145
10146 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10147 for (i = l_off; i < nr_linfo; i++)
10148 linfo[i].insn_off -= cnt;
10149
10150 /* fix up all subprogs (incl. 'exit') which start >= off */
10151 for (i = 0; i <= env->subprog_cnt; i++)
10152 if (env->subprog_info[i].linfo_idx > l_off) {
10153 /* program may have started in the removed region but
10154 * may not be fully removed
10155 */
10156 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10157 env->subprog_info[i].linfo_idx -= l_cnt;
10158 else
10159 env->subprog_info[i].linfo_idx = l_off;
10160 }
10161
10162 return 0;
10163}
10164
10165static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10166{
10167 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10168 unsigned int orig_prog_len = env->prog->len;
10169 int err;
10170
08ca90af
JK
10171 if (bpf_prog_is_dev_bound(env->prog->aux))
10172 bpf_prog_offload_remove_insns(env, off, cnt);
10173
52875a04
JK
10174 err = bpf_remove_insns(env->prog, off, cnt);
10175 if (err)
10176 return err;
10177
10178 err = adjust_subprog_starts_after_remove(env, off, cnt);
10179 if (err)
10180 return err;
10181
10182 err = bpf_adj_linfo_after_remove(env, off, cnt);
10183 if (err)
10184 return err;
10185
10186 memmove(aux_data + off, aux_data + off + cnt,
10187 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10188
10189 return 0;
10190}
10191
2a5418a1
DB
10192/* The verifier does more data flow analysis than llvm and will not
10193 * explore branches that are dead at run time. Malicious programs can
10194 * have dead code too. Therefore replace all dead at-run-time code
10195 * with 'ja -1'.
10196 *
10197 * Just nops are not optimal, e.g. if they would sit at the end of the
10198 * program and through another bug we would manage to jump there, then
10199 * we'd execute beyond program memory otherwise. Returning exception
10200 * code also wouldn't work since we can have subprogs where the dead
10201 * code could be located.
c131187d
AS
10202 */
10203static void sanitize_dead_code(struct bpf_verifier_env *env)
10204{
10205 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 10206 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
10207 struct bpf_insn *insn = env->prog->insnsi;
10208 const int insn_cnt = env->prog->len;
10209 int i;
10210
10211 for (i = 0; i < insn_cnt; i++) {
10212 if (aux_data[i].seen)
10213 continue;
2a5418a1 10214 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
10215 }
10216}
10217
e2ae4ca2
JK
10218static bool insn_is_cond_jump(u8 code)
10219{
10220 u8 op;
10221
092ed096
JW
10222 if (BPF_CLASS(code) == BPF_JMP32)
10223 return true;
10224
e2ae4ca2
JK
10225 if (BPF_CLASS(code) != BPF_JMP)
10226 return false;
10227
10228 op = BPF_OP(code);
10229 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10230}
10231
10232static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10233{
10234 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10235 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10236 struct bpf_insn *insn = env->prog->insnsi;
10237 const int insn_cnt = env->prog->len;
10238 int i;
10239
10240 for (i = 0; i < insn_cnt; i++, insn++) {
10241 if (!insn_is_cond_jump(insn->code))
10242 continue;
10243
10244 if (!aux_data[i + 1].seen)
10245 ja.off = insn->off;
10246 else if (!aux_data[i + 1 + insn->off].seen)
10247 ja.off = 0;
10248 else
10249 continue;
10250
08ca90af
JK
10251 if (bpf_prog_is_dev_bound(env->prog->aux))
10252 bpf_prog_offload_replace_insn(env, i, &ja);
10253
e2ae4ca2
JK
10254 memcpy(insn, &ja, sizeof(ja));
10255 }
10256}
10257
52875a04
JK
10258static int opt_remove_dead_code(struct bpf_verifier_env *env)
10259{
10260 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10261 int insn_cnt = env->prog->len;
10262 int i, err;
10263
10264 for (i = 0; i < insn_cnt; i++) {
10265 int j;
10266
10267 j = 0;
10268 while (i + j < insn_cnt && !aux_data[i + j].seen)
10269 j++;
10270 if (!j)
10271 continue;
10272
10273 err = verifier_remove_insns(env, i, j);
10274 if (err)
10275 return err;
10276 insn_cnt = env->prog->len;
10277 }
10278
10279 return 0;
10280}
10281
a1b14abc
JK
10282static int opt_remove_nops(struct bpf_verifier_env *env)
10283{
10284 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10285 struct bpf_insn *insn = env->prog->insnsi;
10286 int insn_cnt = env->prog->len;
10287 int i, err;
10288
10289 for (i = 0; i < insn_cnt; i++) {
10290 if (memcmp(&insn[i], &ja, sizeof(ja)))
10291 continue;
10292
10293 err = verifier_remove_insns(env, i, 1);
10294 if (err)
10295 return err;
10296 insn_cnt--;
10297 i--;
10298 }
10299
10300 return 0;
10301}
10302
d6c2308c
JW
10303static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10304 const union bpf_attr *attr)
a4b1d3c1 10305{
d6c2308c 10306 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 10307 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 10308 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 10309 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 10310 struct bpf_prog *new_prog;
d6c2308c 10311 bool rnd_hi32;
a4b1d3c1 10312
d6c2308c 10313 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 10314 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
10315 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10316 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10317 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
10318 for (i = 0; i < len; i++) {
10319 int adj_idx = i + delta;
10320 struct bpf_insn insn;
10321
d6c2308c
JW
10322 insn = insns[adj_idx];
10323 if (!aux[adj_idx].zext_dst) {
10324 u8 code, class;
10325 u32 imm_rnd;
10326
10327 if (!rnd_hi32)
10328 continue;
10329
10330 code = insn.code;
10331 class = BPF_CLASS(code);
10332 if (insn_no_def(&insn))
10333 continue;
10334
10335 /* NOTE: arg "reg" (the fourth one) is only used for
10336 * BPF_STX which has been ruled out in above
10337 * check, it is safe to pass NULL here.
10338 */
10339 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10340 if (class == BPF_LD &&
10341 BPF_MODE(code) == BPF_IMM)
10342 i++;
10343 continue;
10344 }
10345
10346 /* ctx load could be transformed into wider load. */
10347 if (class == BPF_LDX &&
10348 aux[adj_idx].ptr_type == PTR_TO_CTX)
10349 continue;
10350
10351 imm_rnd = get_random_int();
10352 rnd_hi32_patch[0] = insn;
10353 rnd_hi32_patch[1].imm = imm_rnd;
10354 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10355 patch = rnd_hi32_patch;
10356 patch_len = 4;
10357 goto apply_patch_buffer;
10358 }
10359
10360 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
10361 continue;
10362
a4b1d3c1
JW
10363 zext_patch[0] = insn;
10364 zext_patch[1].dst_reg = insn.dst_reg;
10365 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
10366 patch = zext_patch;
10367 patch_len = 2;
10368apply_patch_buffer:
10369 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
10370 if (!new_prog)
10371 return -ENOMEM;
10372 env->prog = new_prog;
10373 insns = new_prog->insnsi;
10374 aux = env->insn_aux_data;
d6c2308c 10375 delta += patch_len - 1;
a4b1d3c1
JW
10376 }
10377
10378 return 0;
10379}
10380
c64b7983
JS
10381/* convert load instructions that access fields of a context type into a
10382 * sequence of instructions that access fields of the underlying structure:
10383 * struct __sk_buff -> struct sk_buff
10384 * struct bpf_sock_ops -> struct sock
9bac3d6d 10385 */
58e2af8b 10386static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 10387{
00176a34 10388 const struct bpf_verifier_ops *ops = env->ops;
f96da094 10389 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 10390 const int insn_cnt = env->prog->len;
36bbef52 10391 struct bpf_insn insn_buf[16], *insn;
46f53a65 10392 u32 target_size, size_default, off;
9bac3d6d 10393 struct bpf_prog *new_prog;
d691f9e8 10394 enum bpf_access_type type;
f96da094 10395 bool is_narrower_load;
9bac3d6d 10396
b09928b9
DB
10397 if (ops->gen_prologue || env->seen_direct_write) {
10398 if (!ops->gen_prologue) {
10399 verbose(env, "bpf verifier is misconfigured\n");
10400 return -EINVAL;
10401 }
36bbef52
DB
10402 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10403 env->prog);
10404 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 10405 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
10406 return -EINVAL;
10407 } else if (cnt) {
8041902d 10408 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
10409 if (!new_prog)
10410 return -ENOMEM;
8041902d 10411
36bbef52 10412 env->prog = new_prog;
3df126f3 10413 delta += cnt - 1;
36bbef52
DB
10414 }
10415 }
10416
c64b7983 10417 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
10418 return 0;
10419
3df126f3 10420 insn = env->prog->insnsi + delta;
36bbef52 10421
9bac3d6d 10422 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10423 bpf_convert_ctx_access_t convert_ctx_access;
10424
62c7989b
DB
10425 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10426 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10427 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10428 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10429 type = BPF_READ;
62c7989b
DB
10430 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10431 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10432 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10433 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10434 type = BPF_WRITE;
10435 else
9bac3d6d
AS
10436 continue;
10437
af86ca4e
AS
10438 if (type == BPF_WRITE &&
10439 env->insn_aux_data[i + delta].sanitize_stack_off) {
10440 struct bpf_insn patch[] = {
10441 /* Sanitize suspicious stack slot with zero.
10442 * There are no memory dependencies for this store,
10443 * since it's only using frame pointer and immediate
10444 * constant of zero
10445 */
10446 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10447 env->insn_aux_data[i + delta].sanitize_stack_off,
10448 0),
10449 /* the original STX instruction will immediately
10450 * overwrite the same stack slot with appropriate value
10451 */
10452 *insn,
10453 };
10454
10455 cnt = ARRAY_SIZE(patch);
10456 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10457 if (!new_prog)
10458 return -ENOMEM;
10459
10460 delta += cnt - 1;
10461 env->prog = new_prog;
10462 insn = new_prog->insnsi + i + delta;
10463 continue;
10464 }
10465
c64b7983
JS
10466 switch (env->insn_aux_data[i + delta].ptr_type) {
10467 case PTR_TO_CTX:
10468 if (!ops->convert_ctx_access)
10469 continue;
10470 convert_ctx_access = ops->convert_ctx_access;
10471 break;
10472 case PTR_TO_SOCKET:
46f8bc92 10473 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10474 convert_ctx_access = bpf_sock_convert_ctx_access;
10475 break;
655a51e5
MKL
10476 case PTR_TO_TCP_SOCK:
10477 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10478 break;
fada7fdc
JL
10479 case PTR_TO_XDP_SOCK:
10480 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10481 break;
2a02759e 10482 case PTR_TO_BTF_ID:
27ae7997
MKL
10483 if (type == BPF_READ) {
10484 insn->code = BPF_LDX | BPF_PROBE_MEM |
10485 BPF_SIZE((insn)->code);
10486 env->prog->aux->num_exentries++;
7e40781c 10487 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10488 verbose(env, "Writes through BTF pointers are not allowed\n");
10489 return -EINVAL;
10490 }
2a02759e 10491 continue;
c64b7983 10492 default:
9bac3d6d 10493 continue;
c64b7983 10494 }
9bac3d6d 10495
31fd8581 10496 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10497 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10498
10499 /* If the read access is a narrower load of the field,
10500 * convert to a 4/8-byte load, to minimum program type specific
10501 * convert_ctx_access changes. If conversion is successful,
10502 * we will apply proper mask to the result.
10503 */
f96da094 10504 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10505 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10506 off = insn->off;
31fd8581 10507 if (is_narrower_load) {
f96da094
DB
10508 u8 size_code;
10509
10510 if (type == BPF_WRITE) {
61bd5218 10511 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10512 return -EINVAL;
10513 }
31fd8581 10514
f96da094 10515 size_code = BPF_H;
31fd8581
YS
10516 if (ctx_field_size == 4)
10517 size_code = BPF_W;
10518 else if (ctx_field_size == 8)
10519 size_code = BPF_DW;
f96da094 10520
bc23105c 10521 insn->off = off & ~(size_default - 1);
31fd8581
YS
10522 insn->code = BPF_LDX | BPF_MEM | size_code;
10523 }
f96da094
DB
10524
10525 target_size = 0;
c64b7983
JS
10526 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10527 &target_size);
f96da094
DB
10528 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10529 (ctx_field_size && !target_size)) {
61bd5218 10530 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10531 return -EINVAL;
10532 }
f96da094
DB
10533
10534 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10535 u8 shift = bpf_ctx_narrow_access_offset(
10536 off, size, size_default) * 8;
46f53a65
AI
10537 if (ctx_field_size <= 4) {
10538 if (shift)
10539 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10540 insn->dst_reg,
10541 shift);
31fd8581 10542 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10543 (1 << size * 8) - 1);
46f53a65
AI
10544 } else {
10545 if (shift)
10546 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10547 insn->dst_reg,
10548 shift);
31fd8581 10549 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10550 (1ULL << size * 8) - 1);
46f53a65 10551 }
31fd8581 10552 }
9bac3d6d 10553
8041902d 10554 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10555 if (!new_prog)
10556 return -ENOMEM;
10557
3df126f3 10558 delta += cnt - 1;
9bac3d6d
AS
10559
10560 /* keep walking new program and skip insns we just inserted */
10561 env->prog = new_prog;
3df126f3 10562 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10563 }
10564
10565 return 0;
10566}
10567
1c2a088a
AS
10568static int jit_subprogs(struct bpf_verifier_env *env)
10569{
10570 struct bpf_prog *prog = env->prog, **func, *tmp;
10571 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 10572 struct bpf_map *map_ptr;
7105e828 10573 struct bpf_insn *insn;
1c2a088a 10574 void *old_bpf_func;
c4c0bdc0 10575 int err, num_exentries;
1c2a088a 10576
f910cefa 10577 if (env->subprog_cnt <= 1)
1c2a088a
AS
10578 return 0;
10579
7105e828 10580 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10581 if (insn->code != (BPF_JMP | BPF_CALL) ||
10582 insn->src_reg != BPF_PSEUDO_CALL)
10583 continue;
c7a89784
DB
10584 /* Upon error here we cannot fall back to interpreter but
10585 * need a hard reject of the program. Thus -EFAULT is
10586 * propagated in any case.
10587 */
1c2a088a
AS
10588 subprog = find_subprog(env, i + insn->imm + 1);
10589 if (subprog < 0) {
10590 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10591 i + insn->imm + 1);
10592 return -EFAULT;
10593 }
10594 /* temporarily remember subprog id inside insn instead of
10595 * aux_data, since next loop will split up all insns into funcs
10596 */
f910cefa 10597 insn->off = subprog;
1c2a088a
AS
10598 /* remember original imm in case JIT fails and fallback
10599 * to interpreter will be needed
10600 */
10601 env->insn_aux_data[i].call_imm = insn->imm;
10602 /* point imm to __bpf_call_base+1 from JITs point of view */
10603 insn->imm = 1;
10604 }
10605
c454a46b
MKL
10606 err = bpf_prog_alloc_jited_linfo(prog);
10607 if (err)
10608 goto out_undo_insn;
10609
10610 err = -ENOMEM;
6396bb22 10611 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10612 if (!func)
c7a89784 10613 goto out_undo_insn;
1c2a088a 10614
f910cefa 10615 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10616 subprog_start = subprog_end;
4cb3d99c 10617 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10618
10619 len = subprog_end - subprog_start;
492ecee8
AS
10620 /* BPF_PROG_RUN doesn't call subprogs directly,
10621 * hence main prog stats include the runtime of subprogs.
10622 * subprogs don't have IDs and not reachable via prog_get_next_id
10623 * func[i]->aux->stats will never be accessed and stays NULL
10624 */
10625 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10626 if (!func[i])
10627 goto out_free;
10628 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10629 len * sizeof(struct bpf_insn));
4f74d809 10630 func[i]->type = prog->type;
1c2a088a 10631 func[i]->len = len;
4f74d809
DB
10632 if (bpf_prog_calc_tag(func[i]))
10633 goto out_free;
1c2a088a 10634 func[i]->is_func = 1;
ba64e7d8
YS
10635 func[i]->aux->func_idx = i;
10636 /* the btf and func_info will be freed only at prog->aux */
10637 func[i]->aux->btf = prog->aux->btf;
10638 func[i]->aux->func_info = prog->aux->func_info;
10639
a748c697
MF
10640 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10641 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10642 int ret;
10643
10644 if (!(insn_idx >= subprog_start &&
10645 insn_idx <= subprog_end))
10646 continue;
10647
10648 ret = bpf_jit_add_poke_descriptor(func[i],
10649 &prog->aux->poke_tab[j]);
10650 if (ret < 0) {
10651 verbose(env, "adding tail call poke descriptor failed\n");
10652 goto out_free;
10653 }
10654
10655 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10656
10657 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10658 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10659 if (ret < 0) {
10660 verbose(env, "tracking tail call prog failed\n");
10661 goto out_free;
10662 }
10663 }
10664
1c2a088a
AS
10665 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10666 * Long term would need debug info to populate names
10667 */
10668 func[i]->aux->name[0] = 'F';
9c8105bd 10669 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10670 func[i]->jit_requested = 1;
c454a46b
MKL
10671 func[i]->aux->linfo = prog->aux->linfo;
10672 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10673 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10674 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10675 num_exentries = 0;
10676 insn = func[i]->insnsi;
10677 for (j = 0; j < func[i]->len; j++, insn++) {
10678 if (BPF_CLASS(insn->code) == BPF_LDX &&
10679 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10680 num_exentries++;
10681 }
10682 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 10683 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
10684 func[i] = bpf_int_jit_compile(func[i]);
10685 if (!func[i]->jited) {
10686 err = -ENOTSUPP;
10687 goto out_free;
10688 }
10689 cond_resched();
10690 }
a748c697
MF
10691
10692 /* Untrack main program's aux structs so that during map_poke_run()
10693 * we will not stumble upon the unfilled poke descriptors; each
10694 * of the main program's poke descs got distributed across subprogs
10695 * and got tracked onto map, so we are sure that none of them will
10696 * be missed after the operation below
10697 */
10698 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10699 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10700
10701 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10702 }
10703
1c2a088a
AS
10704 /* at this point all bpf functions were successfully JITed
10705 * now populate all bpf_calls with correct addresses and
10706 * run last pass of JIT
10707 */
f910cefa 10708 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10709 insn = func[i]->insnsi;
10710 for (j = 0; j < func[i]->len; j++, insn++) {
10711 if (insn->code != (BPF_JMP | BPF_CALL) ||
10712 insn->src_reg != BPF_PSEUDO_CALL)
10713 continue;
10714 subprog = insn->off;
0d306c31
PB
10715 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10716 __bpf_call_base;
1c2a088a 10717 }
2162fed4
SD
10718
10719 /* we use the aux data to keep a list of the start addresses
10720 * of the JITed images for each function in the program
10721 *
10722 * for some architectures, such as powerpc64, the imm field
10723 * might not be large enough to hold the offset of the start
10724 * address of the callee's JITed image from __bpf_call_base
10725 *
10726 * in such cases, we can lookup the start address of a callee
10727 * by using its subprog id, available from the off field of
10728 * the call instruction, as an index for this list
10729 */
10730 func[i]->aux->func = func;
10731 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10732 }
f910cefa 10733 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10734 old_bpf_func = func[i]->bpf_func;
10735 tmp = bpf_int_jit_compile(func[i]);
10736 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10737 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10738 err = -ENOTSUPP;
1c2a088a
AS
10739 goto out_free;
10740 }
10741 cond_resched();
10742 }
10743
10744 /* finally lock prog and jit images for all functions and
10745 * populate kallsysm
10746 */
f910cefa 10747 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10748 bpf_prog_lock_ro(func[i]);
10749 bpf_prog_kallsyms_add(func[i]);
10750 }
7105e828
DB
10751
10752 /* Last step: make now unused interpreter insns from main
10753 * prog consistent for later dump requests, so they can
10754 * later look the same as if they were interpreted only.
10755 */
10756 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10757 if (insn->code != (BPF_JMP | BPF_CALL) ||
10758 insn->src_reg != BPF_PSEUDO_CALL)
10759 continue;
10760 insn->off = env->insn_aux_data[i].call_imm;
10761 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10762 insn->imm = subprog;
7105e828
DB
10763 }
10764
1c2a088a
AS
10765 prog->jited = 1;
10766 prog->bpf_func = func[0]->bpf_func;
10767 prog->aux->func = func;
f910cefa 10768 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10769 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10770 return 0;
10771out_free:
a748c697
MF
10772 for (i = 0; i < env->subprog_cnt; i++) {
10773 if (!func[i])
10774 continue;
10775
10776 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10777 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10778 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10779 }
10780 bpf_jit_free(func[i]);
10781 }
1c2a088a 10782 kfree(func);
c7a89784 10783out_undo_insn:
1c2a088a
AS
10784 /* cleanup main prog to be interpreted */
10785 prog->jit_requested = 0;
10786 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10787 if (insn->code != (BPF_JMP | BPF_CALL) ||
10788 insn->src_reg != BPF_PSEUDO_CALL)
10789 continue;
10790 insn->off = 0;
10791 insn->imm = env->insn_aux_data[i].call_imm;
10792 }
c454a46b 10793 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10794 return err;
10795}
10796
1ea47e01
AS
10797static int fixup_call_args(struct bpf_verifier_env *env)
10798{
19d28fbd 10799#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10800 struct bpf_prog *prog = env->prog;
10801 struct bpf_insn *insn = prog->insnsi;
10802 int i, depth;
19d28fbd 10803#endif
e4052d06 10804 int err = 0;
1ea47e01 10805
e4052d06
QM
10806 if (env->prog->jit_requested &&
10807 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10808 err = jit_subprogs(env);
10809 if (err == 0)
1c2a088a 10810 return 0;
c7a89784
DB
10811 if (err == -EFAULT)
10812 return err;
19d28fbd
DM
10813 }
10814#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e411901c
MF
10815 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10816 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10817 * have to be rejected, since interpreter doesn't support them yet.
10818 */
10819 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10820 return -EINVAL;
10821 }
1ea47e01
AS
10822 for (i = 0; i < prog->len; i++, insn++) {
10823 if (insn->code != (BPF_JMP | BPF_CALL) ||
10824 insn->src_reg != BPF_PSEUDO_CALL)
10825 continue;
10826 depth = get_callee_stack_depth(env, insn, i);
10827 if (depth < 0)
10828 return depth;
10829 bpf_patch_call_args(insn, depth);
10830 }
19d28fbd
DM
10831 err = 0;
10832#endif
10833 return err;
1ea47e01
AS
10834}
10835
79741b3b 10836/* fixup insn->imm field of bpf_call instructions
81ed18ab 10837 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10838 *
10839 * this function is called after eBPF program passed verification
10840 */
79741b3b 10841static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10842{
79741b3b 10843 struct bpf_prog *prog = env->prog;
d2e4c1e6 10844 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10845 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10846 const struct bpf_func_proto *fn;
79741b3b 10847 const int insn_cnt = prog->len;
09772d92 10848 const struct bpf_map_ops *ops;
c93552c4 10849 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10850 struct bpf_insn insn_buf[16];
10851 struct bpf_prog *new_prog;
10852 struct bpf_map *map_ptr;
d2e4c1e6 10853 int i, ret, cnt, delta = 0;
e245c5c6 10854
79741b3b 10855 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
10856 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10857 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10858 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 10859 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
10860 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10861 struct bpf_insn mask_and_div[] = {
10862 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10863 /* Rx div 0 -> 0 */
10864 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10865 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10866 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10867 *insn,
10868 };
10869 struct bpf_insn mask_and_mod[] = {
10870 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10871 /* Rx mod 0 -> Rx */
10872 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10873 *insn,
10874 };
10875 struct bpf_insn *patchlet;
10876
10877 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10878 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10879 patchlet = mask_and_div + (is64 ? 1 : 0);
10880 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10881 } else {
10882 patchlet = mask_and_mod + (is64 ? 1 : 0);
10883 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10884 }
10885
10886 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
10887 if (!new_prog)
10888 return -ENOMEM;
10889
10890 delta += cnt - 1;
10891 env->prog = prog = new_prog;
10892 insn = new_prog->insnsi + i + delta;
10893 continue;
10894 }
10895
e0cea7ce
DB
10896 if (BPF_CLASS(insn->code) == BPF_LD &&
10897 (BPF_MODE(insn->code) == BPF_ABS ||
10898 BPF_MODE(insn->code) == BPF_IND)) {
10899 cnt = env->ops->gen_ld_abs(insn, insn_buf);
10900 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10901 verbose(env, "bpf verifier is misconfigured\n");
10902 return -EINVAL;
10903 }
10904
10905 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10906 if (!new_prog)
10907 return -ENOMEM;
10908
10909 delta += cnt - 1;
10910 env->prog = prog = new_prog;
10911 insn = new_prog->insnsi + i + delta;
10912 continue;
10913 }
10914
979d63d5
DB
10915 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10916 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10917 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10918 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10919 struct bpf_insn insn_buf[16];
10920 struct bpf_insn *patch = &insn_buf[0];
10921 bool issrc, isneg;
10922 u32 off_reg;
10923
10924 aux = &env->insn_aux_data[i + delta];
3612af78
DB
10925 if (!aux->alu_state ||
10926 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
10927 continue;
10928
10929 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10930 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10931 BPF_ALU_SANITIZE_SRC;
10932
10933 off_reg = issrc ? insn->src_reg : insn->dst_reg;
10934 if (isneg)
10935 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10936 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10937 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10938 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10939 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10940 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10941 if (issrc) {
10942 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10943 off_reg);
10944 insn->src_reg = BPF_REG_AX;
10945 } else {
10946 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10947 BPF_REG_AX);
10948 }
10949 if (isneg)
10950 insn->code = insn->code == code_add ?
10951 code_sub : code_add;
10952 *patch++ = *insn;
10953 if (issrc && isneg)
10954 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10955 cnt = patch - insn_buf;
10956
10957 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10958 if (!new_prog)
10959 return -ENOMEM;
10960
10961 delta += cnt - 1;
10962 env->prog = prog = new_prog;
10963 insn = new_prog->insnsi + i + delta;
10964 continue;
10965 }
10966
79741b3b
AS
10967 if (insn->code != (BPF_JMP | BPF_CALL))
10968 continue;
cc8b0b92
AS
10969 if (insn->src_reg == BPF_PSEUDO_CALL)
10970 continue;
e245c5c6 10971
79741b3b
AS
10972 if (insn->imm == BPF_FUNC_get_route_realm)
10973 prog->dst_needed = 1;
10974 if (insn->imm == BPF_FUNC_get_prandom_u32)
10975 bpf_user_rnd_init_once();
9802d865
JB
10976 if (insn->imm == BPF_FUNC_override_return)
10977 prog->kprobe_override = 1;
79741b3b 10978 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10979 /* If we tail call into other programs, we
10980 * cannot make any assumptions since they can
10981 * be replaced dynamically during runtime in
10982 * the program array.
10983 */
10984 prog->cb_access = 1;
e411901c
MF
10985 if (!allow_tail_call_in_subprogs(env))
10986 prog->aux->stack_depth = MAX_BPF_STACK;
10987 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10988
79741b3b
AS
10989 /* mark bpf_tail_call as different opcode to avoid
10990 * conditional branch in the interpeter for every normal
10991 * call and to prevent accidental JITing by JIT compiler
10992 * that doesn't support bpf_tail_call yet
e245c5c6 10993 */
79741b3b 10994 insn->imm = 0;
71189fa9 10995 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10996
c93552c4 10997 aux = &env->insn_aux_data[i + delta];
2c78ee89 10998 if (env->bpf_capable && !expect_blinding &&
cc52d914 10999 prog->jit_requested &&
d2e4c1e6
DB
11000 !bpf_map_key_poisoned(aux) &&
11001 !bpf_map_ptr_poisoned(aux) &&
11002 !bpf_map_ptr_unpriv(aux)) {
11003 struct bpf_jit_poke_descriptor desc = {
11004 .reason = BPF_POKE_REASON_TAIL_CALL,
11005 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11006 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 11007 .insn_idx = i + delta,
d2e4c1e6
DB
11008 };
11009
11010 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11011 if (ret < 0) {
11012 verbose(env, "adding tail call poke descriptor failed\n");
11013 return ret;
11014 }
11015
11016 insn->imm = ret + 1;
11017 continue;
11018 }
11019
c93552c4
DB
11020 if (!bpf_map_ptr_unpriv(aux))
11021 continue;
11022
b2157399
AS
11023 /* instead of changing every JIT dealing with tail_call
11024 * emit two extra insns:
11025 * if (index >= max_entries) goto out;
11026 * index &= array->index_mask;
11027 * to avoid out-of-bounds cpu speculation
11028 */
c93552c4 11029 if (bpf_map_ptr_poisoned(aux)) {
40950343 11030 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
11031 return -EINVAL;
11032 }
c93552c4 11033
d2e4c1e6 11034 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
11035 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11036 map_ptr->max_entries, 2);
11037 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11038 container_of(map_ptr,
11039 struct bpf_array,
11040 map)->index_mask);
11041 insn_buf[2] = *insn;
11042 cnt = 3;
11043 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11044 if (!new_prog)
11045 return -ENOMEM;
11046
11047 delta += cnt - 1;
11048 env->prog = prog = new_prog;
11049 insn = new_prog->insnsi + i + delta;
79741b3b
AS
11050 continue;
11051 }
e245c5c6 11052
89c63074 11053 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
11054 * and other inlining handlers are currently limited to 64 bit
11055 * only.
89c63074 11056 */
60b58afc 11057 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
11058 (insn->imm == BPF_FUNC_map_lookup_elem ||
11059 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
11060 insn->imm == BPF_FUNC_map_delete_elem ||
11061 insn->imm == BPF_FUNC_map_push_elem ||
11062 insn->imm == BPF_FUNC_map_pop_elem ||
11063 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
11064 aux = &env->insn_aux_data[i + delta];
11065 if (bpf_map_ptr_poisoned(aux))
11066 goto patch_call_imm;
11067
d2e4c1e6 11068 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
11069 ops = map_ptr->ops;
11070 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11071 ops->map_gen_lookup) {
11072 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
11073 if (cnt == -EOPNOTSUPP)
11074 goto patch_map_ops_generic;
11075 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
11076 verbose(env, "bpf verifier is misconfigured\n");
11077 return -EINVAL;
11078 }
81ed18ab 11079
09772d92
DB
11080 new_prog = bpf_patch_insn_data(env, i + delta,
11081 insn_buf, cnt);
11082 if (!new_prog)
11083 return -ENOMEM;
81ed18ab 11084
09772d92
DB
11085 delta += cnt - 1;
11086 env->prog = prog = new_prog;
11087 insn = new_prog->insnsi + i + delta;
11088 continue;
11089 }
81ed18ab 11090
09772d92
DB
11091 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11092 (void *(*)(struct bpf_map *map, void *key))NULL));
11093 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11094 (int (*)(struct bpf_map *map, void *key))NULL));
11095 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11096 (int (*)(struct bpf_map *map, void *key, void *value,
11097 u64 flags))NULL));
84430d42
DB
11098 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11099 (int (*)(struct bpf_map *map, void *value,
11100 u64 flags))NULL));
11101 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11102 (int (*)(struct bpf_map *map, void *value))NULL));
11103 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11104 (int (*)(struct bpf_map *map, void *value))NULL));
4a8f87e6 11105patch_map_ops_generic:
09772d92
DB
11106 switch (insn->imm) {
11107 case BPF_FUNC_map_lookup_elem:
11108 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11109 __bpf_call_base;
11110 continue;
11111 case BPF_FUNC_map_update_elem:
11112 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11113 __bpf_call_base;
11114 continue;
11115 case BPF_FUNC_map_delete_elem:
11116 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11117 __bpf_call_base;
11118 continue;
84430d42
DB
11119 case BPF_FUNC_map_push_elem:
11120 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11121 __bpf_call_base;
11122 continue;
11123 case BPF_FUNC_map_pop_elem:
11124 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11125 __bpf_call_base;
11126 continue;
11127 case BPF_FUNC_map_peek_elem:
11128 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11129 __bpf_call_base;
11130 continue;
09772d92 11131 }
81ed18ab 11132
09772d92 11133 goto patch_call_imm;
81ed18ab
AS
11134 }
11135
5576b991
MKL
11136 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11137 insn->imm == BPF_FUNC_jiffies64) {
11138 struct bpf_insn ld_jiffies_addr[2] = {
11139 BPF_LD_IMM64(BPF_REG_0,
11140 (unsigned long)&jiffies),
11141 };
11142
11143 insn_buf[0] = ld_jiffies_addr[0];
11144 insn_buf[1] = ld_jiffies_addr[1];
11145 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11146 BPF_REG_0, 0);
11147 cnt = 3;
11148
11149 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11150 cnt);
11151 if (!new_prog)
11152 return -ENOMEM;
11153
11154 delta += cnt - 1;
11155 env->prog = prog = new_prog;
11156 insn = new_prog->insnsi + i + delta;
11157 continue;
11158 }
11159
81ed18ab 11160patch_call_imm:
5e43f899 11161 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
11162 /* all functions that have prototype and verifier allowed
11163 * programs to call them, must be real in-kernel functions
11164 */
11165 if (!fn->func) {
61bd5218
JK
11166 verbose(env,
11167 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
11168 func_id_name(insn->imm), insn->imm);
11169 return -EFAULT;
e245c5c6 11170 }
79741b3b 11171 insn->imm = fn->func - __bpf_call_base;
e245c5c6 11172 }
e245c5c6 11173
d2e4c1e6
DB
11174 /* Since poke tab is now finalized, publish aux to tracker. */
11175 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11176 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11177 if (!map_ptr->ops->map_poke_track ||
11178 !map_ptr->ops->map_poke_untrack ||
11179 !map_ptr->ops->map_poke_run) {
11180 verbose(env, "bpf verifier is misconfigured\n");
11181 return -EINVAL;
11182 }
11183
11184 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11185 if (ret < 0) {
11186 verbose(env, "tracking tail call prog failed\n");
11187 return ret;
11188 }
11189 }
11190
79741b3b
AS
11191 return 0;
11192}
e245c5c6 11193
58e2af8b 11194static void free_states(struct bpf_verifier_env *env)
f1bca824 11195{
58e2af8b 11196 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
11197 int i;
11198
9f4686c4
AS
11199 sl = env->free_list;
11200 while (sl) {
11201 sln = sl->next;
11202 free_verifier_state(&sl->state, false);
11203 kfree(sl);
11204 sl = sln;
11205 }
51c39bb1 11206 env->free_list = NULL;
9f4686c4 11207
f1bca824
AS
11208 if (!env->explored_states)
11209 return;
11210
dc2a4ebc 11211 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
11212 sl = env->explored_states[i];
11213
a8f500af
AS
11214 while (sl) {
11215 sln = sl->next;
11216 free_verifier_state(&sl->state, false);
11217 kfree(sl);
11218 sl = sln;
11219 }
51c39bb1 11220 env->explored_states[i] = NULL;
f1bca824 11221 }
51c39bb1 11222}
f1bca824 11223
51c39bb1
AS
11224/* The verifier is using insn_aux_data[] to store temporary data during
11225 * verification and to store information for passes that run after the
11226 * verification like dead code sanitization. do_check_common() for subprogram N
11227 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11228 * temporary data after do_check_common() finds that subprogram N cannot be
11229 * verified independently. pass_cnt counts the number of times
11230 * do_check_common() was run and insn->aux->seen tells the pass number
11231 * insn_aux_data was touched. These variables are compared to clear temporary
11232 * data from failed pass. For testing and experiments do_check_common() can be
11233 * run multiple times even when prior attempt to verify is unsuccessful.
11234 */
11235static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11236{
11237 struct bpf_insn *insn = env->prog->insnsi;
11238 struct bpf_insn_aux_data *aux;
11239 int i, class;
11240
11241 for (i = 0; i < env->prog->len; i++) {
11242 class = BPF_CLASS(insn[i].code);
11243 if (class != BPF_LDX && class != BPF_STX)
11244 continue;
11245 aux = &env->insn_aux_data[i];
11246 if (aux->seen != env->pass_cnt)
11247 continue;
11248 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11249 }
f1bca824
AS
11250}
11251
51c39bb1
AS
11252static int do_check_common(struct bpf_verifier_env *env, int subprog)
11253{
6f8a57cc 11254 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
11255 struct bpf_verifier_state *state;
11256 struct bpf_reg_state *regs;
11257 int ret, i;
11258
11259 env->prev_linfo = NULL;
11260 env->pass_cnt++;
11261
11262 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11263 if (!state)
11264 return -ENOMEM;
11265 state->curframe = 0;
11266 state->speculative = false;
11267 state->branches = 1;
11268 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11269 if (!state->frame[0]) {
11270 kfree(state);
11271 return -ENOMEM;
11272 }
11273 env->cur_state = state;
11274 init_func_state(env, state->frame[0],
11275 BPF_MAIN_FUNC /* callsite */,
11276 0 /* frameno */,
11277 subprog);
11278
11279 regs = state->frame[state->curframe]->regs;
be8704ff 11280 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
11281 ret = btf_prepare_func_args(env, subprog, regs);
11282 if (ret)
11283 goto out;
11284 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11285 if (regs[i].type == PTR_TO_CTX)
11286 mark_reg_known_zero(env, regs, i);
11287 else if (regs[i].type == SCALAR_VALUE)
11288 mark_reg_unknown(env, regs, i);
11289 }
11290 } else {
11291 /* 1st arg to a function */
11292 regs[BPF_REG_1].type = PTR_TO_CTX;
11293 mark_reg_known_zero(env, regs, BPF_REG_1);
11294 ret = btf_check_func_arg_match(env, subprog, regs);
11295 if (ret == -EFAULT)
11296 /* unlikely verifier bug. abort.
11297 * ret == 0 and ret < 0 are sadly acceptable for
11298 * main() function due to backward compatibility.
11299 * Like socket filter program may be written as:
11300 * int bpf_prog(struct pt_regs *ctx)
11301 * and never dereference that ctx in the program.
11302 * 'struct pt_regs' is a type mismatch for socket
11303 * filter that should be using 'struct __sk_buff'.
11304 */
11305 goto out;
11306 }
11307
11308 ret = do_check(env);
11309out:
f59bbfc2
AS
11310 /* check for NULL is necessary, since cur_state can be freed inside
11311 * do_check() under memory pressure.
11312 */
11313 if (env->cur_state) {
11314 free_verifier_state(env->cur_state, true);
11315 env->cur_state = NULL;
11316 }
6f8a57cc
AN
11317 while (!pop_stack(env, NULL, NULL, false));
11318 if (!ret && pop_log)
11319 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
11320 free_states(env);
11321 if (ret)
11322 /* clean aux data in case subprog was rejected */
11323 sanitize_insn_aux_data(env);
11324 return ret;
11325}
11326
11327/* Verify all global functions in a BPF program one by one based on their BTF.
11328 * All global functions must pass verification. Otherwise the whole program is rejected.
11329 * Consider:
11330 * int bar(int);
11331 * int foo(int f)
11332 * {
11333 * return bar(f);
11334 * }
11335 * int bar(int b)
11336 * {
11337 * ...
11338 * }
11339 * foo() will be verified first for R1=any_scalar_value. During verification it
11340 * will be assumed that bar() already verified successfully and call to bar()
11341 * from foo() will be checked for type match only. Later bar() will be verified
11342 * independently to check that it's safe for R1=any_scalar_value.
11343 */
11344static int do_check_subprogs(struct bpf_verifier_env *env)
11345{
11346 struct bpf_prog_aux *aux = env->prog->aux;
11347 int i, ret;
11348
11349 if (!aux->func_info)
11350 return 0;
11351
11352 for (i = 1; i < env->subprog_cnt; i++) {
11353 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11354 continue;
11355 env->insn_idx = env->subprog_info[i].start;
11356 WARN_ON_ONCE(env->insn_idx == 0);
11357 ret = do_check_common(env, i);
11358 if (ret) {
11359 return ret;
11360 } else if (env->log.level & BPF_LOG_LEVEL) {
11361 verbose(env,
11362 "Func#%d is safe for any args that match its prototype\n",
11363 i);
11364 }
11365 }
11366 return 0;
11367}
11368
11369static int do_check_main(struct bpf_verifier_env *env)
11370{
11371 int ret;
11372
11373 env->insn_idx = 0;
11374 ret = do_check_common(env, 0);
11375 if (!ret)
11376 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11377 return ret;
11378}
11379
11380
06ee7115
AS
11381static void print_verification_stats(struct bpf_verifier_env *env)
11382{
11383 int i;
11384
11385 if (env->log.level & BPF_LOG_STATS) {
11386 verbose(env, "verification time %lld usec\n",
11387 div_u64(env->verification_time, 1000));
11388 verbose(env, "stack depth ");
11389 for (i = 0; i < env->subprog_cnt; i++) {
11390 u32 depth = env->subprog_info[i].stack_depth;
11391
11392 verbose(env, "%d", depth);
11393 if (i + 1 < env->subprog_cnt)
11394 verbose(env, "+");
11395 }
11396 verbose(env, "\n");
11397 }
11398 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11399 "total_states %d peak_states %d mark_read %d\n",
11400 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11401 env->max_states_per_insn, env->total_states,
11402 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
11403}
11404
27ae7997
MKL
11405static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11406{
11407 const struct btf_type *t, *func_proto;
11408 const struct bpf_struct_ops *st_ops;
11409 const struct btf_member *member;
11410 struct bpf_prog *prog = env->prog;
11411 u32 btf_id, member_idx;
11412 const char *mname;
11413
11414 btf_id = prog->aux->attach_btf_id;
11415 st_ops = bpf_struct_ops_find(btf_id);
11416 if (!st_ops) {
11417 verbose(env, "attach_btf_id %u is not a supported struct\n",
11418 btf_id);
11419 return -ENOTSUPP;
11420 }
11421
11422 t = st_ops->type;
11423 member_idx = prog->expected_attach_type;
11424 if (member_idx >= btf_type_vlen(t)) {
11425 verbose(env, "attach to invalid member idx %u of struct %s\n",
11426 member_idx, st_ops->name);
11427 return -EINVAL;
11428 }
11429
11430 member = &btf_type_member(t)[member_idx];
11431 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11432 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11433 NULL);
11434 if (!func_proto) {
11435 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11436 mname, member_idx, st_ops->name);
11437 return -EINVAL;
11438 }
11439
11440 if (st_ops->check_member) {
11441 int err = st_ops->check_member(t, member);
11442
11443 if (err) {
11444 verbose(env, "attach to unsupported member %s of struct %s\n",
11445 mname, st_ops->name);
11446 return err;
11447 }
11448 }
11449
11450 prog->aux->attach_func_proto = func_proto;
11451 prog->aux->attach_func_name = mname;
11452 env->ops = st_ops->verifier_ops;
11453
11454 return 0;
11455}
6ba43b76
KS
11456#define SECURITY_PREFIX "security_"
11457
f7b12b6f 11458static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 11459{
69191754 11460 if (within_error_injection_list(addr) ||
f7b12b6f 11461 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 11462 return 0;
6ba43b76 11463
6ba43b76
KS
11464 return -EINVAL;
11465}
27ae7997 11466
1e6c62a8
AS
11467/* non exhaustive list of sleepable bpf_lsm_*() functions */
11468BTF_SET_START(btf_sleepable_lsm_hooks)
11469#ifdef CONFIG_BPF_LSM
1e6c62a8 11470BTF_ID(func, bpf_lsm_bprm_committed_creds)
29523c5e
AS
11471#else
11472BTF_ID_UNUSED
1e6c62a8
AS
11473#endif
11474BTF_SET_END(btf_sleepable_lsm_hooks)
11475
11476static int check_sleepable_lsm_hook(u32 btf_id)
11477{
11478 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11479}
11480
11481/* list of non-sleepable functions that are otherwise on
11482 * ALLOW_ERROR_INJECTION list
11483 */
11484BTF_SET_START(btf_non_sleepable_error_inject)
11485/* Three functions below can be called from sleepable and non-sleepable context.
11486 * Assume non-sleepable from bpf safety point of view.
11487 */
11488BTF_ID(func, __add_to_page_cache_locked)
11489BTF_ID(func, should_fail_alloc_page)
11490BTF_ID(func, should_failslab)
11491BTF_SET_END(btf_non_sleepable_error_inject)
11492
11493static int check_non_sleepable_error_inject(u32 btf_id)
11494{
11495 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11496}
11497
f7b12b6f
THJ
11498int bpf_check_attach_target(struct bpf_verifier_log *log,
11499 const struct bpf_prog *prog,
11500 const struct bpf_prog *tgt_prog,
11501 u32 btf_id,
11502 struct bpf_attach_target_info *tgt_info)
38207291 11503{
be8704ff 11504 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 11505 const char prefix[] = "btf_trace_";
5b92a28a 11506 int ret = 0, subprog = -1, i;
38207291 11507 const struct btf_type *t;
5b92a28a 11508 bool conservative = true;
38207291 11509 const char *tname;
5b92a28a 11510 struct btf *btf;
f7b12b6f 11511 long addr = 0;
38207291 11512
f1b9509c 11513 if (!btf_id) {
efc68158 11514 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
11515 return -EINVAL;
11516 }
f7b12b6f 11517 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
5b92a28a 11518 if (!btf) {
efc68158 11519 bpf_log(log,
5b92a28a
AS
11520 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11521 return -EINVAL;
11522 }
11523 t = btf_type_by_id(btf, btf_id);
f1b9509c 11524 if (!t) {
efc68158 11525 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
11526 return -EINVAL;
11527 }
5b92a28a 11528 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 11529 if (!tname) {
efc68158 11530 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
11531 return -EINVAL;
11532 }
5b92a28a
AS
11533 if (tgt_prog) {
11534 struct bpf_prog_aux *aux = tgt_prog->aux;
11535
11536 for (i = 0; i < aux->func_info_cnt; i++)
11537 if (aux->func_info[i].type_id == btf_id) {
11538 subprog = i;
11539 break;
11540 }
11541 if (subprog == -1) {
efc68158 11542 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
11543 return -EINVAL;
11544 }
11545 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11546 if (prog_extension) {
11547 if (conservative) {
efc68158 11548 bpf_log(log,
be8704ff
AS
11549 "Cannot replace static functions\n");
11550 return -EINVAL;
11551 }
11552 if (!prog->jit_requested) {
efc68158 11553 bpf_log(log,
be8704ff
AS
11554 "Extension programs should be JITed\n");
11555 return -EINVAL;
11556 }
be8704ff
AS
11557 }
11558 if (!tgt_prog->jited) {
efc68158 11559 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
11560 return -EINVAL;
11561 }
11562 if (tgt_prog->type == prog->type) {
11563 /* Cannot fentry/fexit another fentry/fexit program.
11564 * Cannot attach program extension to another extension.
11565 * It's ok to attach fentry/fexit to extension program.
11566 */
efc68158 11567 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
11568 return -EINVAL;
11569 }
11570 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11571 prog_extension &&
11572 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11573 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11574 /* Program extensions can extend all program types
11575 * except fentry/fexit. The reason is the following.
11576 * The fentry/fexit programs are used for performance
11577 * analysis, stats and can be attached to any program
11578 * type except themselves. When extension program is
11579 * replacing XDP function it is necessary to allow
11580 * performance analysis of all functions. Both original
11581 * XDP program and its program extension. Hence
11582 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11583 * allowed. If extending of fentry/fexit was allowed it
11584 * would be possible to create long call chain
11585 * fentry->extension->fentry->extension beyond
11586 * reasonable stack size. Hence extending fentry is not
11587 * allowed.
11588 */
efc68158 11589 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
11590 return -EINVAL;
11591 }
5b92a28a 11592 } else {
be8704ff 11593 if (prog_extension) {
efc68158 11594 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
11595 return -EINVAL;
11596 }
5b92a28a 11597 }
f1b9509c
AS
11598
11599 switch (prog->expected_attach_type) {
11600 case BPF_TRACE_RAW_TP:
5b92a28a 11601 if (tgt_prog) {
efc68158 11602 bpf_log(log,
5b92a28a
AS
11603 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11604 return -EINVAL;
11605 }
38207291 11606 if (!btf_type_is_typedef(t)) {
efc68158 11607 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
11608 btf_id);
11609 return -EINVAL;
11610 }
f1b9509c 11611 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 11612 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
11613 btf_id, tname);
11614 return -EINVAL;
11615 }
11616 tname += sizeof(prefix) - 1;
5b92a28a 11617 t = btf_type_by_id(btf, t->type);
38207291
MKL
11618 if (!btf_type_is_ptr(t))
11619 /* should never happen in valid vmlinux build */
11620 return -EINVAL;
5b92a28a 11621 t = btf_type_by_id(btf, t->type);
38207291
MKL
11622 if (!btf_type_is_func_proto(t))
11623 /* should never happen in valid vmlinux build */
11624 return -EINVAL;
11625
f7b12b6f 11626 break;
15d83c4d
YS
11627 case BPF_TRACE_ITER:
11628 if (!btf_type_is_func(t)) {
efc68158 11629 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
11630 btf_id);
11631 return -EINVAL;
11632 }
11633 t = btf_type_by_id(btf, t->type);
11634 if (!btf_type_is_func_proto(t))
11635 return -EINVAL;
f7b12b6f
THJ
11636 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11637 if (ret)
11638 return ret;
11639 break;
be8704ff
AS
11640 default:
11641 if (!prog_extension)
11642 return -EINVAL;
df561f66 11643 fallthrough;
ae240823 11644 case BPF_MODIFY_RETURN:
9e4e01df 11645 case BPF_LSM_MAC:
fec56f58
AS
11646 case BPF_TRACE_FENTRY:
11647 case BPF_TRACE_FEXIT:
11648 if (!btf_type_is_func(t)) {
efc68158 11649 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
11650 btf_id);
11651 return -EINVAL;
11652 }
be8704ff 11653 if (prog_extension &&
efc68158 11654 btf_check_type_match(log, prog, btf, t))
be8704ff 11655 return -EINVAL;
5b92a28a 11656 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11657 if (!btf_type_is_func_proto(t))
11658 return -EINVAL;
f7b12b6f 11659
4a1e7c0c
THJ
11660 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11661 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11662 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11663 return -EINVAL;
11664
f7b12b6f 11665 if (tgt_prog && conservative)
5b92a28a 11666 t = NULL;
f7b12b6f
THJ
11667
11668 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 11669 if (ret < 0)
f7b12b6f
THJ
11670 return ret;
11671
5b92a28a 11672 if (tgt_prog) {
e9eeec58
YS
11673 if (subprog == 0)
11674 addr = (long) tgt_prog->bpf_func;
11675 else
11676 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11677 } else {
11678 addr = kallsyms_lookup_name(tname);
11679 if (!addr) {
efc68158 11680 bpf_log(log,
5b92a28a
AS
11681 "The address of function %s cannot be found\n",
11682 tname);
f7b12b6f 11683 return -ENOENT;
5b92a28a 11684 }
fec56f58 11685 }
18644cec 11686
1e6c62a8
AS
11687 if (prog->aux->sleepable) {
11688 ret = -EINVAL;
11689 switch (prog->type) {
11690 case BPF_PROG_TYPE_TRACING:
11691 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11692 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11693 */
11694 if (!check_non_sleepable_error_inject(btf_id) &&
11695 within_error_injection_list(addr))
11696 ret = 0;
11697 break;
11698 case BPF_PROG_TYPE_LSM:
11699 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11700 * Only some of them are sleepable.
11701 */
11702 if (check_sleepable_lsm_hook(btf_id))
11703 ret = 0;
11704 break;
11705 default:
11706 break;
11707 }
f7b12b6f
THJ
11708 if (ret) {
11709 bpf_log(log, "%s is not sleepable\n", tname);
11710 return ret;
11711 }
1e6c62a8 11712 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 11713 if (tgt_prog) {
efc68158 11714 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
11715 return -EINVAL;
11716 }
11717 ret = check_attach_modify_return(addr, tname);
11718 if (ret) {
11719 bpf_log(log, "%s() is not modifiable\n", tname);
11720 return ret;
1af9270e 11721 }
18644cec 11722 }
f7b12b6f
THJ
11723
11724 break;
11725 }
11726 tgt_info->tgt_addr = addr;
11727 tgt_info->tgt_name = tname;
11728 tgt_info->tgt_type = t;
11729 return 0;
11730}
11731
11732static int check_attach_btf_id(struct bpf_verifier_env *env)
11733{
11734 struct bpf_prog *prog = env->prog;
3aac1ead 11735 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
11736 struct bpf_attach_target_info tgt_info = {};
11737 u32 btf_id = prog->aux->attach_btf_id;
11738 struct bpf_trampoline *tr;
11739 int ret;
11740 u64 key;
11741
11742 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11743 prog->type != BPF_PROG_TYPE_LSM) {
11744 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11745 return -EINVAL;
11746 }
11747
11748 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11749 return check_struct_ops_btf_id(env);
11750
11751 if (prog->type != BPF_PROG_TYPE_TRACING &&
11752 prog->type != BPF_PROG_TYPE_LSM &&
11753 prog->type != BPF_PROG_TYPE_EXT)
11754 return 0;
11755
11756 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11757 if (ret)
fec56f58 11758 return ret;
f7b12b6f
THJ
11759
11760 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
11761 /* to make freplace equivalent to their targets, they need to
11762 * inherit env->ops and expected_attach_type for the rest of the
11763 * verification
11764 */
f7b12b6f
THJ
11765 env->ops = bpf_verifier_ops[tgt_prog->type];
11766 prog->expected_attach_type = tgt_prog->expected_attach_type;
11767 }
11768
11769 /* store info about the attachment target that will be used later */
11770 prog->aux->attach_func_proto = tgt_info.tgt_type;
11771 prog->aux->attach_func_name = tgt_info.tgt_name;
11772
4a1e7c0c
THJ
11773 if (tgt_prog) {
11774 prog->aux->saved_dst_prog_type = tgt_prog->type;
11775 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11776 }
11777
f7b12b6f
THJ
11778 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11779 prog->aux->attach_btf_trace = true;
11780 return 0;
11781 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11782 if (!bpf_iter_prog_supported(prog))
11783 return -EINVAL;
11784 return 0;
11785 }
11786
11787 if (prog->type == BPF_PROG_TYPE_LSM) {
11788 ret = bpf_lsm_verify_prog(&env->log, prog);
11789 if (ret < 0)
11790 return ret;
38207291 11791 }
f7b12b6f
THJ
11792
11793 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
11794 tr = bpf_trampoline_get(key, &tgt_info);
11795 if (!tr)
11796 return -ENOMEM;
11797
3aac1ead 11798 prog->aux->dst_trampoline = tr;
f7b12b6f 11799 return 0;
38207291
MKL
11800}
11801
76654e67
AM
11802struct btf *bpf_get_btf_vmlinux(void)
11803{
11804 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11805 mutex_lock(&bpf_verifier_lock);
11806 if (!btf_vmlinux)
11807 btf_vmlinux = btf_parse_vmlinux();
11808 mutex_unlock(&bpf_verifier_lock);
11809 }
11810 return btf_vmlinux;
11811}
11812
838e9690
YS
11813int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11814 union bpf_attr __user *uattr)
51580e79 11815{
06ee7115 11816 u64 start_time = ktime_get_ns();
58e2af8b 11817 struct bpf_verifier_env *env;
b9193c1b 11818 struct bpf_verifier_log *log;
9e4c24e7 11819 int i, len, ret = -EINVAL;
e2ae4ca2 11820 bool is_priv;
51580e79 11821
eba0c929
AB
11822 /* no program is valid */
11823 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11824 return -EINVAL;
11825
58e2af8b 11826 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11827 * allocate/free it every time bpf_check() is called
11828 */
58e2af8b 11829 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11830 if (!env)
11831 return -ENOMEM;
61bd5218 11832 log = &env->log;
cbd35700 11833
9e4c24e7 11834 len = (*prog)->len;
fad953ce 11835 env->insn_aux_data =
9e4c24e7 11836 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11837 ret = -ENOMEM;
11838 if (!env->insn_aux_data)
11839 goto err_free_env;
9e4c24e7
JK
11840 for (i = 0; i < len; i++)
11841 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11842 env->prog = *prog;
00176a34 11843 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11844 is_priv = bpf_capable();
0246e64d 11845
76654e67 11846 bpf_get_btf_vmlinux();
8580ac94 11847
cbd35700 11848 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11849 if (!is_priv)
11850 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11851
11852 if (attr->log_level || attr->log_buf || attr->log_size) {
11853 /* user requested verbose verifier output
11854 * and supplied buffer to store the verification trace
11855 */
e7bf8249
JK
11856 log->level = attr->log_level;
11857 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11858 log->len_total = attr->log_size;
cbd35700
AS
11859
11860 ret = -EINVAL;
e7bf8249 11861 /* log attributes have to be sane */
7a9f5c65 11862 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11863 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11864 goto err_unlock;
cbd35700 11865 }
1ad2f583 11866
8580ac94
AS
11867 if (IS_ERR(btf_vmlinux)) {
11868 /* Either gcc or pahole or kernel are broken. */
11869 verbose(env, "in-kernel BTF is malformed\n");
11870 ret = PTR_ERR(btf_vmlinux);
38207291 11871 goto skip_full_check;
8580ac94
AS
11872 }
11873
1ad2f583
DB
11874 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11875 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 11876 env->strict_alignment = true;
e9ee9efc
DM
11877 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11878 env->strict_alignment = false;
cbd35700 11879
2c78ee89 11880 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 11881 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
11882 env->bypass_spec_v1 = bpf_bypass_spec_v1();
11883 env->bypass_spec_v4 = bpf_bypass_spec_v4();
11884 env->bpf_capable = bpf_capable();
e2ae4ca2 11885
10d274e8
AS
11886 if (is_priv)
11887 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11888
cae1927c 11889 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 11890 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 11891 if (ret)
f4e3ec0d 11892 goto skip_full_check;
ab3f0063
JK
11893 }
11894
dc2a4ebc 11895 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 11896 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
11897 GFP_USER);
11898 ret = -ENOMEM;
11899 if (!env->explored_states)
11900 goto skip_full_check;
11901
d9762e84 11902 ret = check_subprogs(env);
475fb78f
AS
11903 if (ret < 0)
11904 goto skip_full_check;
11905
c454a46b 11906 ret = check_btf_info(env, attr, uattr);
838e9690
YS
11907 if (ret < 0)
11908 goto skip_full_check;
11909
be8704ff
AS
11910 ret = check_attach_btf_id(env);
11911 if (ret)
11912 goto skip_full_check;
11913
4976b718
HL
11914 ret = resolve_pseudo_ldimm64(env);
11915 if (ret < 0)
11916 goto skip_full_check;
11917
d9762e84
MKL
11918 ret = check_cfg(env);
11919 if (ret < 0)
11920 goto skip_full_check;
11921
51c39bb1
AS
11922 ret = do_check_subprogs(env);
11923 ret = ret ?: do_check_main(env);
cbd35700 11924
c941ce9c
QM
11925 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11926 ret = bpf_prog_offload_finalize(env);
11927
0246e64d 11928skip_full_check:
51c39bb1 11929 kvfree(env->explored_states);
0246e64d 11930
c131187d 11931 if (ret == 0)
9b38c405 11932 ret = check_max_stack_depth(env);
c131187d 11933
9b38c405 11934 /* instruction rewrites happen after this point */
e2ae4ca2
JK
11935 if (is_priv) {
11936 if (ret == 0)
11937 opt_hard_wire_dead_code_branches(env);
52875a04
JK
11938 if (ret == 0)
11939 ret = opt_remove_dead_code(env);
a1b14abc
JK
11940 if (ret == 0)
11941 ret = opt_remove_nops(env);
52875a04
JK
11942 } else {
11943 if (ret == 0)
11944 sanitize_dead_code(env);
e2ae4ca2
JK
11945 }
11946
9bac3d6d
AS
11947 if (ret == 0)
11948 /* program is valid, convert *(u32*)(ctx + off) accesses */
11949 ret = convert_ctx_accesses(env);
11950
e245c5c6 11951 if (ret == 0)
79741b3b 11952 ret = fixup_bpf_calls(env);
e245c5c6 11953
a4b1d3c1
JW
11954 /* do 32-bit optimization after insn patching has done so those patched
11955 * insns could be handled correctly.
11956 */
d6c2308c
JW
11957 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11958 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11959 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11960 : false;
a4b1d3c1
JW
11961 }
11962
1ea47e01
AS
11963 if (ret == 0)
11964 ret = fixup_call_args(env);
11965
06ee7115
AS
11966 env->verification_time = ktime_get_ns() - start_time;
11967 print_verification_stats(env);
11968
a2a7d570 11969 if (log->level && bpf_verifier_log_full(log))
cbd35700 11970 ret = -ENOSPC;
a2a7d570 11971 if (log->level && !log->ubuf) {
cbd35700 11972 ret = -EFAULT;
a2a7d570 11973 goto err_release_maps;
cbd35700
AS
11974 }
11975
0246e64d
AS
11976 if (ret == 0 && env->used_map_cnt) {
11977 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
11978 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11979 sizeof(env->used_maps[0]),
11980 GFP_KERNEL);
0246e64d 11981
9bac3d6d 11982 if (!env->prog->aux->used_maps) {
0246e64d 11983 ret = -ENOMEM;
a2a7d570 11984 goto err_release_maps;
0246e64d
AS
11985 }
11986
9bac3d6d 11987 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 11988 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 11989 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
11990
11991 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11992 * bpf_ld_imm64 instructions
11993 */
11994 convert_pseudo_ld_imm64(env);
11995 }
cbd35700 11996
ba64e7d8
YS
11997 if (ret == 0)
11998 adjust_btf_func(env);
11999
a2a7d570 12000err_release_maps:
9bac3d6d 12001 if (!env->prog->aux->used_maps)
0246e64d 12002 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 12003 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
12004 */
12005 release_maps(env);
03f87c0b
THJ
12006
12007 /* extension progs temporarily inherit the attach_type of their targets
12008 for verification purposes, so set it back to zero before returning
12009 */
12010 if (env->prog->type == BPF_PROG_TYPE_EXT)
12011 env->prog->expected_attach_type = 0;
12012
9bac3d6d 12013 *prog = env->prog;
3df126f3 12014err_unlock:
45a73c17
AS
12015 if (!is_priv)
12016 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
12017 vfree(env->insn_aux_data);
12018err_free_env:
12019 kfree(env);
51580e79
AS
12020 return ret;
12021}