]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: force strict alignment checks for stack pointers
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 802 int size, bool zero_size_allowed)
17a52670 803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
9fd29c08
YS
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
61bd5218 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814}
815
f1174f77
EC
816/* check read/write into a map element with possible variable offset */
817static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 818 int off, int size, bool zero_size_allowed)
dbcfe5f7 819{
638f5b90 820 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
f1174f77
EC
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
dbcfe5f7 827 */
61bd5218
JK
828 if (env->log.level)
829 print_verifier_state(env, state);
dbcfe5f7
GB
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
b03c9f9f 836 if (reg->smin_value < 0) {
61bd5218 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
838 regno);
839 return -EACCES;
840 }
9fd29c08
YS
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
dbcfe5f7 843 if (err) {
61bd5218
JK
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
dbcfe5f7
GB
846 return err;
847 }
848
b03c9f9f
EC
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 852 */
b03c9f9f 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
855 regno);
856 return -EACCES;
857 }
9fd29c08
YS
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
f1174f77 860 if (err)
61bd5218
JK
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
f1174f77 863 return err;
dbcfe5f7
GB
864}
865
969bf05e
AS
866#define MAX_PACKET_OFF 0xffff
867
58e2af8b 868static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
4acf6c0b 871{
36bbef52 872 switch (env->prog->type) {
3a0af8fd
TG
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
7e57fbb2 878 /* fallthrough */
36bbef52
DB
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 881 case BPF_PROG_TYPE_XDP:
3a0af8fd 882 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 883 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
4acf6c0b
BB
888 return true;
889 default:
890 return false;
891 }
892}
893
f1174f77 894static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 895 int off, int size, bool zero_size_allowed)
969bf05e 896{
638f5b90 897 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 898 struct bpf_reg_state *reg = &regs[regno];
969bf05e 899
9fd29c08
YS
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
61bd5218 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 910 int size, bool zero_size_allowed)
f1174f77 911{
638f5b90 912 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
61bd5218 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
926 regno);
927 return -EACCES;
928 }
9fd29c08 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 930 if (err) {
61bd5218 931 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
4f9218aa
JK
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
31fd8581 953 */
23994631 954 *reg_type = info.reg_type;
31fd8581 955
4f9218aa 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
17a52670 960 return 0;
32bbe007 961 }
17a52670 962
61bd5218 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
964 return -EACCES;
965}
966
4cabc5b1
DB
967static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
1be7f75d 969{
4cabc5b1 970 if (allow_ptr_leaks)
1be7f75d
AS
971 return false;
972
f1174f77 973 return reg->type != SCALAR_VALUE;
1be7f75d
AS
974}
975
4cabc5b1
DB
976static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977{
638f5b90 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
979}
980
61bd5218
JK
981static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
d1174416 983 int off, int size, bool strict)
969bf05e 984{
f1174f77 985 struct tnum reg_off;
e07b98d9 986 int ip_align;
d1174416
DM
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
e4eda884
DM
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
e07b98d9 999 */
e4eda884 1000 ip_align = 2;
f1174f77
EC
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1009 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1010 return -EACCES;
1011 }
79adffcd 1012
969bf05e
AS
1013 return 0;
1014}
1015
61bd5218
JK
1016static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
f1174f77
EC
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
79adffcd 1020{
f1174f77
EC
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1033 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1034 return -EACCES;
1035 }
1036
969bf05e
AS
1037 return 0;
1038}
1039
e07b98d9
DM
1040static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
79adffcd
DB
1042 int off, int size)
1043{
e07b98d9 1044 bool strict = env->strict_alignment;
f1174f77 1045 const char *pointer_desc = "";
d1174416 1046
79adffcd
DB
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
de8f3a83
DB
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
61bd5218 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
a5ec6ae1
JH
1062 /* The stack spill tracking logic in check_stack_write()
1063 * and check_stack_read() relies on stack accesses being
1064 * aligned.
1065 */
1066 strict = true;
f1174f77 1067 break;
79adffcd 1068 default:
f1174f77 1069 break;
79adffcd 1070 }
61bd5218
JK
1071 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1072 strict);
79adffcd
DB
1073}
1074
0c17d1d2
JH
1075/* truncate register to smaller size (in bytes)
1076 * must be called with size < BPF_REG_SIZE
1077 */
1078static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1079{
1080 u64 mask;
1081
1082 /* clear high bits in bit representation */
1083 reg->var_off = tnum_cast(reg->var_off, size);
1084
1085 /* fix arithmetic bounds */
1086 mask = ((u64)1 << (size * 8)) - 1;
1087 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1088 reg->umin_value &= mask;
1089 reg->umax_value &= mask;
1090 } else {
1091 reg->umin_value = 0;
1092 reg->umax_value = mask;
1093 }
1094 reg->smin_value = reg->umin_value;
1095 reg->smax_value = reg->umax_value;
1096}
1097
17a52670
AS
1098/* check whether memory at (regno + off) is accessible for t = (read | write)
1099 * if t==write, value_regno is a register which value is stored into memory
1100 * if t==read, value_regno is a register which will receive the value from memory
1101 * if t==write && value_regno==-1, some unknown value is stored into memory
1102 * if t==read && value_regno==-1, don't care what we read from memory
1103 */
31fd8581 1104static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1105 int bpf_size, enum bpf_access_type t,
1106 int value_regno)
1107{
638f5b90
AS
1108 struct bpf_verifier_state *state = env->cur_state;
1109 struct bpf_reg_state *regs = cur_regs(env);
1110 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1111 int size, err = 0;
1112
1113 size = bpf_size_to_bytes(bpf_size);
1114 if (size < 0)
1115 return size;
1116
f1174f77 1117 /* alignment checks will add in reg->off themselves */
e07b98d9 1118 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1119 if (err)
1120 return err;
17a52670 1121
f1174f77
EC
1122 /* for access checks, reg->off is just part of off */
1123 off += reg->off;
1124
1125 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1126 if (t == BPF_WRITE && value_regno >= 0 &&
1127 is_pointer_value(env, value_regno)) {
61bd5218 1128 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1129 return -EACCES;
1130 }
48461135 1131
9fd29c08 1132 err = check_map_access(env, regno, off, size, false);
17a52670 1133 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1134 mark_reg_unknown(env, regs, value_regno);
17a52670 1135
1a0dc1ac 1136 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1137 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1138
1be7f75d
AS
1139 if (t == BPF_WRITE && value_regno >= 0 &&
1140 is_pointer_value(env, value_regno)) {
61bd5218 1141 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1142 return -EACCES;
1143 }
f1174f77
EC
1144 /* ctx accesses must be at a fixed offset, so that we can
1145 * determine what type of data were returned.
1146 */
28e33f9d 1147 if (reg->off) {
f8ddadc4
DM
1148 verbose(env,
1149 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1150 regno, reg->off, off - reg->off);
1151 return -EACCES;
1152 }
1153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1154 char tn_buf[48];
1155
1156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1157 verbose(env,
1158 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1159 tn_buf, off, size);
1160 return -EACCES;
1161 }
31fd8581 1162 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1163 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1164 /* ctx access returns either a scalar, or a
de8f3a83
DB
1165 * PTR_TO_PACKET[_META,_END]. In the latter
1166 * case, we know the offset is zero.
f1174f77
EC
1167 */
1168 if (reg_type == SCALAR_VALUE)
638f5b90 1169 mark_reg_unknown(env, regs, value_regno);
f1174f77 1170 else
638f5b90 1171 mark_reg_known_zero(env, regs,
61bd5218 1172 value_regno);
638f5b90
AS
1173 regs[value_regno].id = 0;
1174 regs[value_regno].off = 0;
1175 regs[value_regno].range = 0;
1176 regs[value_regno].type = reg_type;
969bf05e 1177 }
17a52670 1178
f1174f77
EC
1179 } else if (reg->type == PTR_TO_STACK) {
1180 /* stack accesses must be at a fixed offset, so that we can
1181 * determine what type of data were returned.
1182 * See check_stack_read().
1183 */
1184 if (!tnum_is_const(reg->var_off)) {
1185 char tn_buf[48];
1186
1187 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1188 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1189 tn_buf, off, size);
1190 return -EACCES;
1191 }
1192 off += reg->var_off.value;
17a52670 1193 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1194 verbose(env, "invalid stack off=%d size=%d\n", off,
1195 size);
17a52670
AS
1196 return -EACCES;
1197 }
8726679a
AS
1198
1199 if (env->prog->aux->stack_depth < -off)
1200 env->prog->aux->stack_depth = -off;
1201
638f5b90 1202 if (t == BPF_WRITE)
61bd5218
JK
1203 err = check_stack_write(env, state, off, size,
1204 value_regno);
638f5b90 1205 else
61bd5218
JK
1206 err = check_stack_read(env, state, off, size,
1207 value_regno);
de8f3a83 1208 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1209 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1210 verbose(env, "cannot write into packet\n");
969bf05e
AS
1211 return -EACCES;
1212 }
4acf6c0b
BB
1213 if (t == BPF_WRITE && value_regno >= 0 &&
1214 is_pointer_value(env, value_regno)) {
61bd5218
JK
1215 verbose(env, "R%d leaks addr into packet\n",
1216 value_regno);
4acf6c0b
BB
1217 return -EACCES;
1218 }
9fd29c08 1219 err = check_packet_access(env, regno, off, size, false);
969bf05e 1220 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1221 mark_reg_unknown(env, regs, value_regno);
17a52670 1222 } else {
61bd5218
JK
1223 verbose(env, "R%d invalid mem access '%s'\n", regno,
1224 reg_type_str[reg->type]);
17a52670
AS
1225 return -EACCES;
1226 }
969bf05e 1227
f1174f77 1228 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1229 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1230 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1231 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1232 }
17a52670
AS
1233 return err;
1234}
1235
31fd8581 1236static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1237{
17a52670
AS
1238 int err;
1239
1240 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1241 insn->imm != 0) {
61bd5218 1242 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1243 return -EINVAL;
1244 }
1245
1246 /* check src1 operand */
dc503a8a 1247 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1248 if (err)
1249 return err;
1250
1251 /* check src2 operand */
dc503a8a 1252 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1253 if (err)
1254 return err;
1255
6bdf6abc 1256 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1257 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1258 return -EACCES;
1259 }
1260
17a52670 1261 /* check whether atomic_add can read the memory */
31fd8581 1262 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1263 BPF_SIZE(insn->code), BPF_READ, -1);
1264 if (err)
1265 return err;
1266
1267 /* check whether atomic_add can write into the same memory */
31fd8581 1268 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1269 BPF_SIZE(insn->code), BPF_WRITE, -1);
1270}
1271
f1174f77
EC
1272/* Does this register contain a constant zero? */
1273static bool register_is_null(struct bpf_reg_state reg)
1274{
1275 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1276}
1277
17a52670
AS
1278/* when register 'regno' is passed into function that will read 'access_size'
1279 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1280 * and all elements of stack are initialized.
1281 * Unlike most pointer bounds-checking functions, this one doesn't take an
1282 * 'off' argument, so it has to add in reg->off itself.
17a52670 1283 */
58e2af8b 1284static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1285 int access_size, bool zero_size_allowed,
1286 struct bpf_call_arg_meta *meta)
17a52670 1287{
638f5b90 1288 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1289 struct bpf_reg_state *regs = state->regs;
638f5b90 1290 int off, i, slot, spi;
17a52670 1291
8e2fe1d9 1292 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1293 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1294 if (zero_size_allowed && access_size == 0 &&
f1174f77 1295 register_is_null(regs[regno]))
8e2fe1d9
DB
1296 return 0;
1297
61bd5218 1298 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1299 reg_type_str[regs[regno].type],
1300 reg_type_str[PTR_TO_STACK]);
17a52670 1301 return -EACCES;
8e2fe1d9 1302 }
17a52670 1303
f1174f77
EC
1304 /* Only allow fixed-offset stack reads */
1305 if (!tnum_is_const(regs[regno].var_off)) {
1306 char tn_buf[48];
1307
1308 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1309 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1310 regno, tn_buf);
ea25f914 1311 return -EACCES;
f1174f77
EC
1312 }
1313 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1314 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1315 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1316 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1317 regno, off, access_size);
1318 return -EACCES;
1319 }
1320
8726679a
AS
1321 if (env->prog->aux->stack_depth < -off)
1322 env->prog->aux->stack_depth = -off;
1323
435faee1
DB
1324 if (meta && meta->raw_mode) {
1325 meta->access_size = access_size;
1326 meta->regno = regno;
1327 return 0;
1328 }
1329
17a52670 1330 for (i = 0; i < access_size; i++) {
638f5b90
AS
1331 slot = -(off + i) - 1;
1332 spi = slot / BPF_REG_SIZE;
1333 if (state->allocated_stack <= slot ||
1334 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1335 STACK_MISC) {
61bd5218 1336 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1337 off, i, access_size);
1338 return -EACCES;
1339 }
1340 }
1341 return 0;
1342}
1343
06c1c049
GB
1344static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1345 int access_size, bool zero_size_allowed,
1346 struct bpf_call_arg_meta *meta)
1347{
638f5b90 1348 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1349
f1174f77 1350 switch (reg->type) {
06c1c049 1351 case PTR_TO_PACKET:
de8f3a83 1352 case PTR_TO_PACKET_META:
9fd29c08
YS
1353 return check_packet_access(env, regno, reg->off, access_size,
1354 zero_size_allowed);
06c1c049 1355 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1356 return check_map_access(env, regno, reg->off, access_size,
1357 zero_size_allowed);
f1174f77 1358 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1359 return check_stack_boundary(env, regno, access_size,
1360 zero_size_allowed, meta);
1361 }
1362}
1363
58e2af8b 1364static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1365 enum bpf_arg_type arg_type,
1366 struct bpf_call_arg_meta *meta)
17a52670 1367{
638f5b90 1368 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1369 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1370 int err = 0;
1371
80f1d68c 1372 if (arg_type == ARG_DONTCARE)
17a52670
AS
1373 return 0;
1374
dc503a8a
EC
1375 err = check_reg_arg(env, regno, SRC_OP);
1376 if (err)
1377 return err;
17a52670 1378
1be7f75d
AS
1379 if (arg_type == ARG_ANYTHING) {
1380 if (is_pointer_value(env, regno)) {
61bd5218
JK
1381 verbose(env, "R%d leaks addr into helper function\n",
1382 regno);
1be7f75d
AS
1383 return -EACCES;
1384 }
80f1d68c 1385 return 0;
1be7f75d 1386 }
80f1d68c 1387
de8f3a83 1388 if (type_is_pkt_pointer(type) &&
3a0af8fd 1389 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1390 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1391 return -EACCES;
1392 }
1393
8e2fe1d9 1394 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1395 arg_type == ARG_PTR_TO_MAP_VALUE) {
1396 expected_type = PTR_TO_STACK;
de8f3a83
DB
1397 if (!type_is_pkt_pointer(type) &&
1398 type != expected_type)
6841de8b 1399 goto err_type;
39f19ebb
AS
1400 } else if (arg_type == ARG_CONST_SIZE ||
1401 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1402 expected_type = SCALAR_VALUE;
1403 if (type != expected_type)
6841de8b 1404 goto err_type;
17a52670
AS
1405 } else if (arg_type == ARG_CONST_MAP_PTR) {
1406 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1407 if (type != expected_type)
1408 goto err_type;
608cd71a
AS
1409 } else if (arg_type == ARG_PTR_TO_CTX) {
1410 expected_type = PTR_TO_CTX;
6841de8b
AS
1411 if (type != expected_type)
1412 goto err_type;
39f19ebb 1413 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1414 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1415 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1416 expected_type = PTR_TO_STACK;
1417 /* One exception here. In case function allows for NULL to be
f1174f77 1418 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1419 * happens during stack boundary checking.
1420 */
db1ac496
GB
1421 if (register_is_null(*reg) &&
1422 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1423 /* final test in check_stack_boundary() */;
de8f3a83
DB
1424 else if (!type_is_pkt_pointer(type) &&
1425 type != PTR_TO_MAP_VALUE &&
f1174f77 1426 type != expected_type)
6841de8b 1427 goto err_type;
39f19ebb 1428 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1429 } else {
61bd5218 1430 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1431 return -EFAULT;
1432 }
1433
17a52670
AS
1434 if (arg_type == ARG_CONST_MAP_PTR) {
1435 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1436 meta->map_ptr = reg->map_ptr;
17a52670
AS
1437 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1438 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1439 * check that [key, key + map->key_size) are within
1440 * stack limits and initialized
1441 */
33ff9823 1442 if (!meta->map_ptr) {
17a52670
AS
1443 /* in function declaration map_ptr must come before
1444 * map_key, so that it's verified and known before
1445 * we have to check map_key here. Otherwise it means
1446 * that kernel subsystem misconfigured verifier
1447 */
61bd5218 1448 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1449 return -EACCES;
1450 }
de8f3a83 1451 if (type_is_pkt_pointer(type))
f1174f77 1452 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1453 meta->map_ptr->key_size,
1454 false);
6841de8b
AS
1455 else
1456 err = check_stack_boundary(env, regno,
1457 meta->map_ptr->key_size,
1458 false, NULL);
17a52670
AS
1459 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1460 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1461 * check [value, value + map->value_size) validity
1462 */
33ff9823 1463 if (!meta->map_ptr) {
17a52670 1464 /* kernel subsystem misconfigured verifier */
61bd5218 1465 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1466 return -EACCES;
1467 }
de8f3a83 1468 if (type_is_pkt_pointer(type))
f1174f77 1469 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1470 meta->map_ptr->value_size,
1471 false);
6841de8b
AS
1472 else
1473 err = check_stack_boundary(env, regno,
1474 meta->map_ptr->value_size,
1475 false, NULL);
39f19ebb
AS
1476 } else if (arg_type == ARG_CONST_SIZE ||
1477 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1478 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1479
17a52670
AS
1480 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1481 * from stack pointer 'buf'. Check it
1482 * note: regno == len, regno - 1 == buf
1483 */
1484 if (regno == 0) {
1485 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1486 verbose(env,
1487 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1488 return -EACCES;
1489 }
06c1c049 1490
f1174f77
EC
1491 /* The register is SCALAR_VALUE; the access check
1492 * happens using its boundaries.
06c1c049 1493 */
f1174f77
EC
1494
1495 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1496 /* For unprivileged variable accesses, disable raw
1497 * mode so that the program is required to
1498 * initialize all the memory that the helper could
1499 * just partially fill up.
1500 */
1501 meta = NULL;
1502
b03c9f9f 1503 if (reg->smin_value < 0) {
61bd5218 1504 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1505 regno);
1506 return -EACCES;
1507 }
06c1c049 1508
b03c9f9f 1509 if (reg->umin_value == 0) {
f1174f77
EC
1510 err = check_helper_mem_access(env, regno - 1, 0,
1511 zero_size_allowed,
1512 meta);
06c1c049
GB
1513 if (err)
1514 return err;
06c1c049 1515 }
f1174f77 1516
b03c9f9f 1517 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1518 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1519 regno);
1520 return -EACCES;
1521 }
1522 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1523 reg->umax_value,
f1174f77 1524 zero_size_allowed, meta);
17a52670
AS
1525 }
1526
1527 return err;
6841de8b 1528err_type:
61bd5218 1529 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1530 reg_type_str[type], reg_type_str[expected_type]);
1531 return -EACCES;
17a52670
AS
1532}
1533
61bd5218
JK
1534static int check_map_func_compatibility(struct bpf_verifier_env *env,
1535 struct bpf_map *map, int func_id)
35578d79 1536{
35578d79
KX
1537 if (!map)
1538 return 0;
1539
6aff67c8
AS
1540 /* We need a two way check, first is from map perspective ... */
1541 switch (map->map_type) {
1542 case BPF_MAP_TYPE_PROG_ARRAY:
1543 if (func_id != BPF_FUNC_tail_call)
1544 goto error;
1545 break;
1546 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1547 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1548 func_id != BPF_FUNC_perf_event_output &&
1549 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1550 goto error;
1551 break;
1552 case BPF_MAP_TYPE_STACK_TRACE:
1553 if (func_id != BPF_FUNC_get_stackid)
1554 goto error;
1555 break;
4ed8ec52 1556 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1557 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1558 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1559 goto error;
1560 break;
546ac1ff
JF
1561 /* devmap returns a pointer to a live net_device ifindex that we cannot
1562 * allow to be modified from bpf side. So do not allow lookup elements
1563 * for now.
1564 */
1565 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1566 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1567 goto error;
1568 break;
6710e112
JDB
1569 /* Restrict bpf side of cpumap, open when use-cases appear */
1570 case BPF_MAP_TYPE_CPUMAP:
1571 if (func_id != BPF_FUNC_redirect_map)
1572 goto error;
1573 break;
56f668df 1574 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1575 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1576 if (func_id != BPF_FUNC_map_lookup_elem)
1577 goto error;
16a43625 1578 break;
174a79ff
JF
1579 case BPF_MAP_TYPE_SOCKMAP:
1580 if (func_id != BPF_FUNC_sk_redirect_map &&
1581 func_id != BPF_FUNC_sock_map_update &&
1582 func_id != BPF_FUNC_map_delete_elem)
1583 goto error;
1584 break;
6aff67c8
AS
1585 default:
1586 break;
1587 }
1588
1589 /* ... and second from the function itself. */
1590 switch (func_id) {
1591 case BPF_FUNC_tail_call:
1592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1593 goto error;
1594 break;
1595 case BPF_FUNC_perf_event_read:
1596 case BPF_FUNC_perf_event_output:
908432ca 1597 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1598 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1599 goto error;
1600 break;
1601 case BPF_FUNC_get_stackid:
1602 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1603 goto error;
1604 break;
60d20f91 1605 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1606 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1607 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1608 goto error;
1609 break;
97f91a7c 1610 case BPF_FUNC_redirect_map:
9c270af3
JDB
1611 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1612 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1613 goto error;
1614 break;
174a79ff
JF
1615 case BPF_FUNC_sk_redirect_map:
1616 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1617 goto error;
1618 break;
1619 case BPF_FUNC_sock_map_update:
1620 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1621 goto error;
1622 break;
6aff67c8
AS
1623 default:
1624 break;
35578d79
KX
1625 }
1626
1627 return 0;
6aff67c8 1628error:
61bd5218 1629 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1630 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1631 return -EINVAL;
35578d79
KX
1632}
1633
435faee1
DB
1634static int check_raw_mode(const struct bpf_func_proto *fn)
1635{
1636 int count = 0;
1637
39f19ebb 1638 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1639 count++;
39f19ebb 1640 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1641 count++;
39f19ebb 1642 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1643 count++;
39f19ebb 1644 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1645 count++;
39f19ebb 1646 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1647 count++;
1648
1649 return count > 1 ? -EINVAL : 0;
1650}
1651
de8f3a83
DB
1652/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1653 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1654 */
58e2af8b 1655static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1656{
638f5b90 1657 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1658 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1659 int i;
1660
1661 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1662 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1663 mark_reg_unknown(env, regs, i);
969bf05e 1664
638f5b90
AS
1665 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1666 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1667 continue;
638f5b90 1668 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1669 if (reg_is_pkt_pointer_any(reg))
1670 __mark_reg_unknown(reg);
969bf05e
AS
1671 }
1672}
1673
81ed18ab 1674static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1675{
17a52670 1676 const struct bpf_func_proto *fn = NULL;
638f5b90 1677 struct bpf_reg_state *regs;
33ff9823 1678 struct bpf_call_arg_meta meta;
969bf05e 1679 bool changes_data;
17a52670
AS
1680 int i, err;
1681
1682 /* find function prototype */
1683 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1684 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1685 func_id);
17a52670
AS
1686 return -EINVAL;
1687 }
1688
00176a34
JK
1689 if (env->ops->get_func_proto)
1690 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1691
1692 if (!fn) {
61bd5218
JK
1693 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1694 func_id);
17a52670
AS
1695 return -EINVAL;
1696 }
1697
1698 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1699 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1700 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1701 return -EINVAL;
1702 }
1703
04514d13 1704 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1705 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1706 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1707 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1708 func_id_name(func_id), func_id);
1709 return -EINVAL;
1710 }
969bf05e 1711
33ff9823 1712 memset(&meta, 0, sizeof(meta));
36bbef52 1713 meta.pkt_access = fn->pkt_access;
33ff9823 1714
435faee1
DB
1715 /* We only support one arg being in raw mode at the moment, which
1716 * is sufficient for the helper functions we have right now.
1717 */
1718 err = check_raw_mode(fn);
1719 if (err) {
61bd5218 1720 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1721 func_id_name(func_id), func_id);
435faee1
DB
1722 return err;
1723 }
1724
17a52670 1725 /* check args */
33ff9823 1726 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1727 if (err)
1728 return err;
33ff9823 1729 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1730 if (err)
1731 return err;
33ff9823 1732 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1733 if (err)
1734 return err;
33ff9823 1735 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1736 if (err)
1737 return err;
33ff9823 1738 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1739 if (err)
1740 return err;
1741
435faee1
DB
1742 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1743 * is inferred from register state.
1744 */
1745 for (i = 0; i < meta.access_size; i++) {
31fd8581 1746 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1747 if (err)
1748 return err;
1749 }
1750
638f5b90 1751 regs = cur_regs(env);
17a52670 1752 /* reset caller saved regs */
dc503a8a 1753 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1754 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1755 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1756 }
17a52670 1757
dc503a8a 1758 /* update return register (already marked as written above) */
17a52670 1759 if (fn->ret_type == RET_INTEGER) {
f1174f77 1760 /* sets type to SCALAR_VALUE */
61bd5218 1761 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1762 } else if (fn->ret_type == RET_VOID) {
1763 regs[BPF_REG_0].type = NOT_INIT;
1764 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1765 struct bpf_insn_aux_data *insn_aux;
1766
17a52670 1767 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1768 /* There is no offset yet applied, variable or fixed */
61bd5218 1769 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1770 regs[BPF_REG_0].off = 0;
17a52670
AS
1771 /* remember map_ptr, so that check_map_access()
1772 * can check 'value_size' boundary of memory access
1773 * to map element returned from bpf_map_lookup_elem()
1774 */
33ff9823 1775 if (meta.map_ptr == NULL) {
61bd5218
JK
1776 verbose(env,
1777 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1778 return -EINVAL;
1779 }
33ff9823 1780 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1781 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1782 insn_aux = &env->insn_aux_data[insn_idx];
1783 if (!insn_aux->map_ptr)
1784 insn_aux->map_ptr = meta.map_ptr;
1785 else if (insn_aux->map_ptr != meta.map_ptr)
1786 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1787 } else {
61bd5218 1788 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1789 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1790 return -EINVAL;
1791 }
04fd61ab 1792
61bd5218 1793 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1794 if (err)
1795 return err;
04fd61ab 1796
969bf05e
AS
1797 if (changes_data)
1798 clear_all_pkt_pointers(env);
1799 return 0;
1800}
1801
b03c9f9f
EC
1802static bool signed_add_overflows(s64 a, s64 b)
1803{
1804 /* Do the add in u64, where overflow is well-defined */
1805 s64 res = (s64)((u64)a + (u64)b);
1806
1807 if (b < 0)
1808 return res > a;
1809 return res < a;
1810}
1811
1812static bool signed_sub_overflows(s64 a, s64 b)
1813{
1814 /* Do the sub in u64, where overflow is well-defined */
1815 s64 res = (s64)((u64)a - (u64)b);
1816
1817 if (b < 0)
1818 return res < a;
1819 return res > a;
969bf05e
AS
1820}
1821
f1174f77 1822/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1823 * Caller should also handle BPF_MOV case separately.
1824 * If we return -EACCES, caller may want to try again treating pointer as a
1825 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1826 */
1827static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1828 struct bpf_insn *insn,
1829 const struct bpf_reg_state *ptr_reg,
1830 const struct bpf_reg_state *off_reg)
969bf05e 1831{
638f5b90 1832 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1833 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1834 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1835 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1836 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1837 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1838 u8 opcode = BPF_OP(insn->code);
f1174f77 1839 u32 dst = insn->dst_reg;
969bf05e 1840
f1174f77 1841 dst_reg = &regs[dst];
969bf05e 1842
b03c9f9f 1843 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1844 print_verifier_state(env, env->cur_state);
61bd5218
JK
1845 verbose(env,
1846 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1847 return -EINVAL;
1848 }
1849 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1850 print_verifier_state(env, env->cur_state);
61bd5218
JK
1851 verbose(env,
1852 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1853 return -EINVAL;
1854 }
1855
1856 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1857 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1858 if (!env->allow_ptr_leaks)
61bd5218
JK
1859 verbose(env,
1860 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1861 dst);
1862 return -EACCES;
969bf05e
AS
1863 }
1864
f1174f77
EC
1865 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1866 if (!env->allow_ptr_leaks)
61bd5218 1867 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1868 dst);
1869 return -EACCES;
1870 }
1871 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1872 if (!env->allow_ptr_leaks)
61bd5218 1873 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1874 dst);
1875 return -EACCES;
1876 }
1877 if (ptr_reg->type == PTR_TO_PACKET_END) {
1878 if (!env->allow_ptr_leaks)
61bd5218 1879 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1880 dst);
1881 return -EACCES;
1882 }
1883
1884 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1885 * The id may be overwritten later if we create a new variable offset.
969bf05e 1886 */
f1174f77
EC
1887 dst_reg->type = ptr_reg->type;
1888 dst_reg->id = ptr_reg->id;
969bf05e 1889
f1174f77
EC
1890 switch (opcode) {
1891 case BPF_ADD:
1892 /* We can take a fixed offset as long as it doesn't overflow
1893 * the s32 'off' field
969bf05e 1894 */
b03c9f9f
EC
1895 if (known && (ptr_reg->off + smin_val ==
1896 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1897 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1898 dst_reg->smin_value = smin_ptr;
1899 dst_reg->smax_value = smax_ptr;
1900 dst_reg->umin_value = umin_ptr;
1901 dst_reg->umax_value = umax_ptr;
f1174f77 1902 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1903 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1904 dst_reg->range = ptr_reg->range;
1905 break;
1906 }
f1174f77
EC
1907 /* A new variable offset is created. Note that off_reg->off
1908 * == 0, since it's a scalar.
1909 * dst_reg gets the pointer type and since some positive
1910 * integer value was added to the pointer, give it a new 'id'
1911 * if it's a PTR_TO_PACKET.
1912 * this creates a new 'base' pointer, off_reg (variable) gets
1913 * added into the variable offset, and we copy the fixed offset
1914 * from ptr_reg.
969bf05e 1915 */
b03c9f9f
EC
1916 if (signed_add_overflows(smin_ptr, smin_val) ||
1917 signed_add_overflows(smax_ptr, smax_val)) {
1918 dst_reg->smin_value = S64_MIN;
1919 dst_reg->smax_value = S64_MAX;
1920 } else {
1921 dst_reg->smin_value = smin_ptr + smin_val;
1922 dst_reg->smax_value = smax_ptr + smax_val;
1923 }
1924 if (umin_ptr + umin_val < umin_ptr ||
1925 umax_ptr + umax_val < umax_ptr) {
1926 dst_reg->umin_value = 0;
1927 dst_reg->umax_value = U64_MAX;
1928 } else {
1929 dst_reg->umin_value = umin_ptr + umin_val;
1930 dst_reg->umax_value = umax_ptr + umax_val;
1931 }
f1174f77
EC
1932 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1933 dst_reg->off = ptr_reg->off;
de8f3a83 1934 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1935 dst_reg->id = ++env->id_gen;
1936 /* something was added to pkt_ptr, set range to zero */
1937 dst_reg->range = 0;
1938 }
1939 break;
1940 case BPF_SUB:
1941 if (dst_reg == off_reg) {
1942 /* scalar -= pointer. Creates an unknown scalar */
1943 if (!env->allow_ptr_leaks)
61bd5218 1944 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1945 dst);
1946 return -EACCES;
1947 }
1948 /* We don't allow subtraction from FP, because (according to
1949 * test_verifier.c test "invalid fp arithmetic", JITs might not
1950 * be able to deal with it.
969bf05e 1951 */
f1174f77
EC
1952 if (ptr_reg->type == PTR_TO_STACK) {
1953 if (!env->allow_ptr_leaks)
61bd5218 1954 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1955 dst);
1956 return -EACCES;
1957 }
b03c9f9f
EC
1958 if (known && (ptr_reg->off - smin_val ==
1959 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1960 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1961 dst_reg->smin_value = smin_ptr;
1962 dst_reg->smax_value = smax_ptr;
1963 dst_reg->umin_value = umin_ptr;
1964 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1965 dst_reg->var_off = ptr_reg->var_off;
1966 dst_reg->id = ptr_reg->id;
b03c9f9f 1967 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1968 dst_reg->range = ptr_reg->range;
1969 break;
1970 }
f1174f77
EC
1971 /* A new variable offset is created. If the subtrahend is known
1972 * nonnegative, then any reg->range we had before is still good.
969bf05e 1973 */
b03c9f9f
EC
1974 if (signed_sub_overflows(smin_ptr, smax_val) ||
1975 signed_sub_overflows(smax_ptr, smin_val)) {
1976 /* Overflow possible, we know nothing */
1977 dst_reg->smin_value = S64_MIN;
1978 dst_reg->smax_value = S64_MAX;
1979 } else {
1980 dst_reg->smin_value = smin_ptr - smax_val;
1981 dst_reg->smax_value = smax_ptr - smin_val;
1982 }
1983 if (umin_ptr < umax_val) {
1984 /* Overflow possible, we know nothing */
1985 dst_reg->umin_value = 0;
1986 dst_reg->umax_value = U64_MAX;
1987 } else {
1988 /* Cannot overflow (as long as bounds are consistent) */
1989 dst_reg->umin_value = umin_ptr - umax_val;
1990 dst_reg->umax_value = umax_ptr - umin_val;
1991 }
f1174f77
EC
1992 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1993 dst_reg->off = ptr_reg->off;
de8f3a83 1994 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1995 dst_reg->id = ++env->id_gen;
1996 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1997 if (smin_val < 0)
f1174f77 1998 dst_reg->range = 0;
43188702 1999 }
f1174f77
EC
2000 break;
2001 case BPF_AND:
2002 case BPF_OR:
2003 case BPF_XOR:
2004 /* bitwise ops on pointers are troublesome, prohibit for now.
2005 * (However, in principle we could allow some cases, e.g.
2006 * ptr &= ~3 which would reduce min_value by 3.)
2007 */
2008 if (!env->allow_ptr_leaks)
61bd5218 2009 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
2010 dst, bpf_alu_string[opcode >> 4]);
2011 return -EACCES;
2012 default:
2013 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2014 if (!env->allow_ptr_leaks)
61bd5218 2015 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
2016 dst, bpf_alu_string[opcode >> 4]);
2017 return -EACCES;
43188702
JF
2018 }
2019
b03c9f9f
EC
2020 __update_reg_bounds(dst_reg);
2021 __reg_deduce_bounds(dst_reg);
2022 __reg_bound_offset(dst_reg);
43188702
JF
2023 return 0;
2024}
2025
468f6eaf
JH
2026/* WARNING: This function does calculations on 64-bit values, but the actual
2027 * execution may occur on 32-bit values. Therefore, things like bitshifts
2028 * need extra checks in the 32-bit case.
2029 */
f1174f77
EC
2030static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2031 struct bpf_insn *insn,
2032 struct bpf_reg_state *dst_reg,
2033 struct bpf_reg_state src_reg)
969bf05e 2034{
638f5b90 2035 struct bpf_reg_state *regs = cur_regs(env);
48461135 2036 u8 opcode = BPF_OP(insn->code);
f1174f77 2037 bool src_known, dst_known;
b03c9f9f
EC
2038 s64 smin_val, smax_val;
2039 u64 umin_val, umax_val;
468f6eaf 2040 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2041
b03c9f9f
EC
2042 smin_val = src_reg.smin_value;
2043 smax_val = src_reg.smax_value;
2044 umin_val = src_reg.umin_value;
2045 umax_val = src_reg.umax_value;
f1174f77
EC
2046 src_known = tnum_is_const(src_reg.var_off);
2047 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2048
48461135
JB
2049 switch (opcode) {
2050 case BPF_ADD:
b03c9f9f
EC
2051 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2052 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2053 dst_reg->smin_value = S64_MIN;
2054 dst_reg->smax_value = S64_MAX;
2055 } else {
2056 dst_reg->smin_value += smin_val;
2057 dst_reg->smax_value += smax_val;
2058 }
2059 if (dst_reg->umin_value + umin_val < umin_val ||
2060 dst_reg->umax_value + umax_val < umax_val) {
2061 dst_reg->umin_value = 0;
2062 dst_reg->umax_value = U64_MAX;
2063 } else {
2064 dst_reg->umin_value += umin_val;
2065 dst_reg->umax_value += umax_val;
2066 }
f1174f77 2067 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2068 break;
2069 case BPF_SUB:
b03c9f9f
EC
2070 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2071 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2072 /* Overflow possible, we know nothing */
2073 dst_reg->smin_value = S64_MIN;
2074 dst_reg->smax_value = S64_MAX;
2075 } else {
2076 dst_reg->smin_value -= smax_val;
2077 dst_reg->smax_value -= smin_val;
2078 }
2079 if (dst_reg->umin_value < umax_val) {
2080 /* Overflow possible, we know nothing */
2081 dst_reg->umin_value = 0;
2082 dst_reg->umax_value = U64_MAX;
2083 } else {
2084 /* Cannot overflow (as long as bounds are consistent) */
2085 dst_reg->umin_value -= umax_val;
2086 dst_reg->umax_value -= umin_val;
2087 }
f1174f77 2088 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2089 break;
2090 case BPF_MUL:
b03c9f9f
EC
2091 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2092 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2093 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2094 __mark_reg_unbounded(dst_reg);
2095 __update_reg_bounds(dst_reg);
f1174f77
EC
2096 break;
2097 }
b03c9f9f
EC
2098 /* Both values are positive, so we can work with unsigned and
2099 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2100 */
b03c9f9f
EC
2101 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2102 /* Potential overflow, we know nothing */
2103 __mark_reg_unbounded(dst_reg);
2104 /* (except what we can learn from the var_off) */
2105 __update_reg_bounds(dst_reg);
2106 break;
2107 }
2108 dst_reg->umin_value *= umin_val;
2109 dst_reg->umax_value *= umax_val;
2110 if (dst_reg->umax_value > S64_MAX) {
2111 /* Overflow possible, we know nothing */
2112 dst_reg->smin_value = S64_MIN;
2113 dst_reg->smax_value = S64_MAX;
2114 } else {
2115 dst_reg->smin_value = dst_reg->umin_value;
2116 dst_reg->smax_value = dst_reg->umax_value;
2117 }
48461135
JB
2118 break;
2119 case BPF_AND:
f1174f77 2120 if (src_known && dst_known) {
b03c9f9f
EC
2121 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2122 src_reg.var_off.value);
f1174f77
EC
2123 break;
2124 }
b03c9f9f
EC
2125 /* We get our minimum from the var_off, since that's inherently
2126 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2127 */
f1174f77 2128 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2129 dst_reg->umin_value = dst_reg->var_off.value;
2130 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2131 if (dst_reg->smin_value < 0 || smin_val < 0) {
2132 /* Lose signed bounds when ANDing negative numbers,
2133 * ain't nobody got time for that.
2134 */
2135 dst_reg->smin_value = S64_MIN;
2136 dst_reg->smax_value = S64_MAX;
2137 } else {
2138 /* ANDing two positives gives a positive, so safe to
2139 * cast result into s64.
2140 */
2141 dst_reg->smin_value = dst_reg->umin_value;
2142 dst_reg->smax_value = dst_reg->umax_value;
2143 }
2144 /* We may learn something more from the var_off */
2145 __update_reg_bounds(dst_reg);
f1174f77
EC
2146 break;
2147 case BPF_OR:
2148 if (src_known && dst_known) {
b03c9f9f
EC
2149 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2150 src_reg.var_off.value);
f1174f77
EC
2151 break;
2152 }
b03c9f9f
EC
2153 /* We get our maximum from the var_off, and our minimum is the
2154 * maximum of the operands' minima
f1174f77
EC
2155 */
2156 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2157 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2158 dst_reg->umax_value = dst_reg->var_off.value |
2159 dst_reg->var_off.mask;
2160 if (dst_reg->smin_value < 0 || smin_val < 0) {
2161 /* Lose signed bounds when ORing negative numbers,
2162 * ain't nobody got time for that.
2163 */
2164 dst_reg->smin_value = S64_MIN;
2165 dst_reg->smax_value = S64_MAX;
f1174f77 2166 } else {
b03c9f9f
EC
2167 /* ORing two positives gives a positive, so safe to
2168 * cast result into s64.
2169 */
2170 dst_reg->smin_value = dst_reg->umin_value;
2171 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2172 }
b03c9f9f
EC
2173 /* We may learn something more from the var_off */
2174 __update_reg_bounds(dst_reg);
48461135
JB
2175 break;
2176 case BPF_LSH:
468f6eaf
JH
2177 if (umax_val >= insn_bitness) {
2178 /* Shifts greater than 31 or 63 are undefined.
2179 * This includes shifts by a negative number.
b03c9f9f 2180 */
61bd5218 2181 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2182 break;
2183 }
b03c9f9f
EC
2184 /* We lose all sign bit information (except what we can pick
2185 * up from var_off)
48461135 2186 */
b03c9f9f
EC
2187 dst_reg->smin_value = S64_MIN;
2188 dst_reg->smax_value = S64_MAX;
2189 /* If we might shift our top bit out, then we know nothing */
2190 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2191 dst_reg->umin_value = 0;
2192 dst_reg->umax_value = U64_MAX;
d1174416 2193 } else {
b03c9f9f
EC
2194 dst_reg->umin_value <<= umin_val;
2195 dst_reg->umax_value <<= umax_val;
d1174416 2196 }
b03c9f9f
EC
2197 if (src_known)
2198 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2199 else
2200 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2201 /* We may learn something more from the var_off */
2202 __update_reg_bounds(dst_reg);
48461135
JB
2203 break;
2204 case BPF_RSH:
468f6eaf
JH
2205 if (umax_val >= insn_bitness) {
2206 /* Shifts greater than 31 or 63 are undefined.
2207 * This includes shifts by a negative number.
b03c9f9f 2208 */
61bd5218 2209 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2210 break;
2211 }
4374f256
EC
2212 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2213 * be negative, then either:
2214 * 1) src_reg might be zero, so the sign bit of the result is
2215 * unknown, so we lose our signed bounds
2216 * 2) it's known negative, thus the unsigned bounds capture the
2217 * signed bounds
2218 * 3) the signed bounds cross zero, so they tell us nothing
2219 * about the result
2220 * If the value in dst_reg is known nonnegative, then again the
2221 * unsigned bounts capture the signed bounds.
2222 * Thus, in all cases it suffices to blow away our signed bounds
2223 * and rely on inferring new ones from the unsigned bounds and
2224 * var_off of the result.
2225 */
2226 dst_reg->smin_value = S64_MIN;
2227 dst_reg->smax_value = S64_MAX;
f1174f77 2228 if (src_known)
b03c9f9f
EC
2229 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2230 umin_val);
f1174f77 2231 else
b03c9f9f
EC
2232 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2233 dst_reg->umin_value >>= umax_val;
2234 dst_reg->umax_value >>= umin_val;
2235 /* We may learn something more from the var_off */
2236 __update_reg_bounds(dst_reg);
48461135
JB
2237 break;
2238 default:
61bd5218 2239 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2240 break;
2241 }
2242
468f6eaf
JH
2243 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2244 /* 32-bit ALU ops are (32,32)->32 */
2245 coerce_reg_to_size(dst_reg, 4);
2246 coerce_reg_to_size(&src_reg, 4);
2247 }
2248
b03c9f9f
EC
2249 __reg_deduce_bounds(dst_reg);
2250 __reg_bound_offset(dst_reg);
f1174f77
EC
2251 return 0;
2252}
2253
2254/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2255 * and var_off.
2256 */
2257static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2258 struct bpf_insn *insn)
2259{
638f5b90 2260 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2261 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2262 u8 opcode = BPF_OP(insn->code);
2263 int rc;
2264
2265 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2266 src_reg = NULL;
2267 if (dst_reg->type != SCALAR_VALUE)
2268 ptr_reg = dst_reg;
2269 if (BPF_SRC(insn->code) == BPF_X) {
2270 src_reg = &regs[insn->src_reg];
f1174f77
EC
2271 if (src_reg->type != SCALAR_VALUE) {
2272 if (dst_reg->type != SCALAR_VALUE) {
2273 /* Combining two pointers by any ALU op yields
2274 * an arbitrary scalar.
2275 */
2276 if (!env->allow_ptr_leaks) {
61bd5218 2277 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2278 insn->dst_reg,
2279 bpf_alu_string[opcode >> 4]);
2280 return -EACCES;
2281 }
61bd5218 2282 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2283 return 0;
2284 } else {
2285 /* scalar += pointer
2286 * This is legal, but we have to reverse our
2287 * src/dest handling in computing the range
2288 */
2289 rc = adjust_ptr_min_max_vals(env, insn,
2290 src_reg, dst_reg);
2291 if (rc == -EACCES && env->allow_ptr_leaks) {
2292 /* scalar += unknown scalar */
2293 __mark_reg_unknown(&off_reg);
2294 return adjust_scalar_min_max_vals(
2295 env, insn,
2296 dst_reg, off_reg);
2297 }
2298 return rc;
2299 }
2300 } else if (ptr_reg) {
2301 /* pointer += scalar */
2302 rc = adjust_ptr_min_max_vals(env, insn,
2303 dst_reg, src_reg);
2304 if (rc == -EACCES && env->allow_ptr_leaks) {
2305 /* unknown scalar += scalar */
2306 __mark_reg_unknown(dst_reg);
2307 return adjust_scalar_min_max_vals(
2308 env, insn, dst_reg, *src_reg);
2309 }
2310 return rc;
2311 }
2312 } else {
2313 /* Pretend the src is a reg with a known value, since we only
2314 * need to be able to read from this state.
2315 */
2316 off_reg.type = SCALAR_VALUE;
b03c9f9f 2317 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2318 src_reg = &off_reg;
f1174f77
EC
2319 if (ptr_reg) { /* pointer += K */
2320 rc = adjust_ptr_min_max_vals(env, insn,
2321 ptr_reg, src_reg);
2322 if (rc == -EACCES && env->allow_ptr_leaks) {
2323 /* unknown scalar += K */
2324 __mark_reg_unknown(dst_reg);
2325 return adjust_scalar_min_max_vals(
2326 env, insn, dst_reg, off_reg);
2327 }
2328 return rc;
2329 }
2330 }
2331
2332 /* Got here implies adding two SCALAR_VALUEs */
2333 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2334 print_verifier_state(env, env->cur_state);
61bd5218 2335 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2336 return -EINVAL;
2337 }
2338 if (WARN_ON(!src_reg)) {
638f5b90 2339 print_verifier_state(env, env->cur_state);
61bd5218 2340 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2341 return -EINVAL;
2342 }
2343 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2344}
2345
17a52670 2346/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2347static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2348{
638f5b90 2349 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2350 u8 opcode = BPF_OP(insn->code);
2351 int err;
2352
2353 if (opcode == BPF_END || opcode == BPF_NEG) {
2354 if (opcode == BPF_NEG) {
2355 if (BPF_SRC(insn->code) != 0 ||
2356 insn->src_reg != BPF_REG_0 ||
2357 insn->off != 0 || insn->imm != 0) {
61bd5218 2358 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2359 return -EINVAL;
2360 }
2361 } else {
2362 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2363 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2364 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2365 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2366 return -EINVAL;
2367 }
2368 }
2369
2370 /* check src operand */
dc503a8a 2371 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2372 if (err)
2373 return err;
2374
1be7f75d 2375 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2376 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2377 insn->dst_reg);
2378 return -EACCES;
2379 }
2380
17a52670 2381 /* check dest operand */
dc503a8a 2382 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2383 if (err)
2384 return err;
2385
2386 } else if (opcode == BPF_MOV) {
2387
2388 if (BPF_SRC(insn->code) == BPF_X) {
2389 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2390 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2391 return -EINVAL;
2392 }
2393
2394 /* check src operand */
dc503a8a 2395 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2396 if (err)
2397 return err;
2398 } else {
2399 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2400 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2401 return -EINVAL;
2402 }
2403 }
2404
2405 /* check dest operand */
dc503a8a 2406 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2407 if (err)
2408 return err;
2409
2410 if (BPF_SRC(insn->code) == BPF_X) {
2411 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2412 /* case: R1 = R2
2413 * copy register state to dest reg
2414 */
2415 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2416 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2417 } else {
f1174f77 2418 /* R1 = (u32) R2 */
1be7f75d 2419 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2420 verbose(env,
2421 "R%d partial copy of pointer\n",
1be7f75d
AS
2422 insn->src_reg);
2423 return -EACCES;
2424 }
61bd5218 2425 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2426 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2427 }
2428 } else {
2429 /* case: R = imm
2430 * remember the value we stored into this reg
2431 */
f1174f77 2432 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2433 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2434 __mark_reg_known(regs + insn->dst_reg,
2435 insn->imm);
2436 } else {
2437 __mark_reg_known(regs + insn->dst_reg,
2438 (u32)insn->imm);
2439 }
17a52670
AS
2440 }
2441
2442 } else if (opcode > BPF_END) {
61bd5218 2443 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2444 return -EINVAL;
2445
2446 } else { /* all other ALU ops: and, sub, xor, add, ... */
2447
17a52670
AS
2448 if (BPF_SRC(insn->code) == BPF_X) {
2449 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2450 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2451 return -EINVAL;
2452 }
2453 /* check src1 operand */
dc503a8a 2454 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2455 if (err)
2456 return err;
2457 } else {
2458 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2459 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2460 return -EINVAL;
2461 }
2462 }
2463
2464 /* check src2 operand */
dc503a8a 2465 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2466 if (err)
2467 return err;
2468
2469 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2470 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2471 verbose(env, "div by zero\n");
17a52670
AS
2472 return -EINVAL;
2473 }
2474
229394e8
RV
2475 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2476 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2477 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2478
2479 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2480 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2481 return -EINVAL;
2482 }
2483 }
2484
1a0dc1ac 2485 /* check dest operand */
dc503a8a 2486 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2487 if (err)
2488 return err;
2489
f1174f77 2490 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2491 }
2492
2493 return 0;
2494}
2495
58e2af8b 2496static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2497 struct bpf_reg_state *dst_reg,
f8ddadc4 2498 enum bpf_reg_type type,
fb2a311a 2499 bool range_right_open)
969bf05e 2500{
58e2af8b 2501 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2502 u16 new_range;
969bf05e 2503 int i;
2d2be8ca 2504
fb2a311a
DB
2505 if (dst_reg->off < 0 ||
2506 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2507 /* This doesn't give us any range */
2508 return;
2509
b03c9f9f
EC
2510 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2511 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2512 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2513 * than pkt_end, but that's because it's also less than pkt.
2514 */
2515 return;
2516
fb2a311a
DB
2517 new_range = dst_reg->off;
2518 if (range_right_open)
2519 new_range--;
2520
2521 /* Examples for register markings:
2d2be8ca 2522 *
fb2a311a 2523 * pkt_data in dst register:
2d2be8ca
DB
2524 *
2525 * r2 = r3;
2526 * r2 += 8;
2527 * if (r2 > pkt_end) goto <handle exception>
2528 * <access okay>
2529 *
b4e432f1
DB
2530 * r2 = r3;
2531 * r2 += 8;
2532 * if (r2 < pkt_end) goto <access okay>
2533 * <handle exception>
2534 *
2d2be8ca
DB
2535 * Where:
2536 * r2 == dst_reg, pkt_end == src_reg
2537 * r2=pkt(id=n,off=8,r=0)
2538 * r3=pkt(id=n,off=0,r=0)
2539 *
fb2a311a 2540 * pkt_data in src register:
2d2be8ca
DB
2541 *
2542 * r2 = r3;
2543 * r2 += 8;
2544 * if (pkt_end >= r2) goto <access okay>
2545 * <handle exception>
2546 *
b4e432f1
DB
2547 * r2 = r3;
2548 * r2 += 8;
2549 * if (pkt_end <= r2) goto <handle exception>
2550 * <access okay>
2551 *
2d2be8ca
DB
2552 * Where:
2553 * pkt_end == dst_reg, r2 == src_reg
2554 * r2=pkt(id=n,off=8,r=0)
2555 * r3=pkt(id=n,off=0,r=0)
2556 *
2557 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2558 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2559 * and [r3, r3 + 8-1) respectively is safe to access depending on
2560 * the check.
969bf05e 2561 */
2d2be8ca 2562
f1174f77
EC
2563 /* If our ids match, then we must have the same max_value. And we
2564 * don't care about the other reg's fixed offset, since if it's too big
2565 * the range won't allow anything.
2566 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2567 */
969bf05e 2568 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2569 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2570 /* keep the maximum range already checked */
fb2a311a 2571 regs[i].range = max(regs[i].range, new_range);
969bf05e 2572
638f5b90
AS
2573 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2574 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2575 continue;
638f5b90 2576 reg = &state->stack[i].spilled_ptr;
de8f3a83 2577 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2578 reg->range = max(reg->range, new_range);
969bf05e
AS
2579 }
2580}
2581
48461135
JB
2582/* Adjusts the register min/max values in the case that the dst_reg is the
2583 * variable register that we are working on, and src_reg is a constant or we're
2584 * simply doing a BPF_K check.
f1174f77 2585 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2586 */
2587static void reg_set_min_max(struct bpf_reg_state *true_reg,
2588 struct bpf_reg_state *false_reg, u64 val,
2589 u8 opcode)
2590{
f1174f77
EC
2591 /* If the dst_reg is a pointer, we can't learn anything about its
2592 * variable offset from the compare (unless src_reg were a pointer into
2593 * the same object, but we don't bother with that.
2594 * Since false_reg and true_reg have the same type by construction, we
2595 * only need to check one of them for pointerness.
2596 */
2597 if (__is_pointer_value(false, false_reg))
2598 return;
4cabc5b1 2599
48461135
JB
2600 switch (opcode) {
2601 case BPF_JEQ:
2602 /* If this is false then we know nothing Jon Snow, but if it is
2603 * true then we know for sure.
2604 */
b03c9f9f 2605 __mark_reg_known(true_reg, val);
48461135
JB
2606 break;
2607 case BPF_JNE:
2608 /* If this is true we know nothing Jon Snow, but if it is false
2609 * we know the value for sure;
2610 */
b03c9f9f 2611 __mark_reg_known(false_reg, val);
48461135
JB
2612 break;
2613 case BPF_JGT:
b03c9f9f
EC
2614 false_reg->umax_value = min(false_reg->umax_value, val);
2615 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2616 break;
48461135 2617 case BPF_JSGT:
b03c9f9f
EC
2618 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2619 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2620 break;
b4e432f1
DB
2621 case BPF_JLT:
2622 false_reg->umin_value = max(false_reg->umin_value, val);
2623 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2624 break;
2625 case BPF_JSLT:
2626 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2627 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2628 break;
48461135 2629 case BPF_JGE:
b03c9f9f
EC
2630 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2631 true_reg->umin_value = max(true_reg->umin_value, val);
2632 break;
48461135 2633 case BPF_JSGE:
b03c9f9f
EC
2634 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2635 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2636 break;
b4e432f1
DB
2637 case BPF_JLE:
2638 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2639 true_reg->umax_value = min(true_reg->umax_value, val);
2640 break;
2641 case BPF_JSLE:
2642 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2643 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2644 break;
48461135
JB
2645 default:
2646 break;
2647 }
2648
b03c9f9f
EC
2649 __reg_deduce_bounds(false_reg);
2650 __reg_deduce_bounds(true_reg);
2651 /* We might have learned some bits from the bounds. */
2652 __reg_bound_offset(false_reg);
2653 __reg_bound_offset(true_reg);
2654 /* Intersecting with the old var_off might have improved our bounds
2655 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2656 * then new var_off is (0; 0x7f...fc) which improves our umax.
2657 */
2658 __update_reg_bounds(false_reg);
2659 __update_reg_bounds(true_reg);
48461135
JB
2660}
2661
f1174f77
EC
2662/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2663 * the variable reg.
48461135
JB
2664 */
2665static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2666 struct bpf_reg_state *false_reg, u64 val,
2667 u8 opcode)
2668{
f1174f77
EC
2669 if (__is_pointer_value(false, false_reg))
2670 return;
4cabc5b1 2671
48461135
JB
2672 switch (opcode) {
2673 case BPF_JEQ:
2674 /* If this is false then we know nothing Jon Snow, but if it is
2675 * true then we know for sure.
2676 */
b03c9f9f 2677 __mark_reg_known(true_reg, val);
48461135
JB
2678 break;
2679 case BPF_JNE:
2680 /* If this is true we know nothing Jon Snow, but if it is false
2681 * we know the value for sure;
2682 */
b03c9f9f 2683 __mark_reg_known(false_reg, val);
48461135
JB
2684 break;
2685 case BPF_JGT:
b03c9f9f
EC
2686 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2687 false_reg->umin_value = max(false_reg->umin_value, val);
2688 break;
48461135 2689 case BPF_JSGT:
b03c9f9f
EC
2690 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2691 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2692 break;
b4e432f1
DB
2693 case BPF_JLT:
2694 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2695 false_reg->umax_value = min(false_reg->umax_value, val);
2696 break;
2697 case BPF_JSLT:
2698 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2699 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2700 break;
48461135 2701 case BPF_JGE:
b03c9f9f
EC
2702 true_reg->umax_value = min(true_reg->umax_value, val);
2703 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2704 break;
48461135 2705 case BPF_JSGE:
b03c9f9f
EC
2706 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2707 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2708 break;
b4e432f1
DB
2709 case BPF_JLE:
2710 true_reg->umin_value = max(true_reg->umin_value, val);
2711 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2712 break;
2713 case BPF_JSLE:
2714 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2715 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2716 break;
48461135
JB
2717 default:
2718 break;
2719 }
2720
b03c9f9f
EC
2721 __reg_deduce_bounds(false_reg);
2722 __reg_deduce_bounds(true_reg);
2723 /* We might have learned some bits from the bounds. */
2724 __reg_bound_offset(false_reg);
2725 __reg_bound_offset(true_reg);
2726 /* Intersecting with the old var_off might have improved our bounds
2727 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2728 * then new var_off is (0; 0x7f...fc) which improves our umax.
2729 */
2730 __update_reg_bounds(false_reg);
2731 __update_reg_bounds(true_reg);
f1174f77
EC
2732}
2733
2734/* Regs are known to be equal, so intersect their min/max/var_off */
2735static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2736 struct bpf_reg_state *dst_reg)
2737{
b03c9f9f
EC
2738 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2739 dst_reg->umin_value);
2740 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2741 dst_reg->umax_value);
2742 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2743 dst_reg->smin_value);
2744 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2745 dst_reg->smax_value);
f1174f77
EC
2746 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2747 dst_reg->var_off);
b03c9f9f
EC
2748 /* We might have learned new bounds from the var_off. */
2749 __update_reg_bounds(src_reg);
2750 __update_reg_bounds(dst_reg);
2751 /* We might have learned something about the sign bit. */
2752 __reg_deduce_bounds(src_reg);
2753 __reg_deduce_bounds(dst_reg);
2754 /* We might have learned some bits from the bounds. */
2755 __reg_bound_offset(src_reg);
2756 __reg_bound_offset(dst_reg);
2757 /* Intersecting with the old var_off might have improved our bounds
2758 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2759 * then new var_off is (0; 0x7f...fc) which improves our umax.
2760 */
2761 __update_reg_bounds(src_reg);
2762 __update_reg_bounds(dst_reg);
f1174f77
EC
2763}
2764
2765static void reg_combine_min_max(struct bpf_reg_state *true_src,
2766 struct bpf_reg_state *true_dst,
2767 struct bpf_reg_state *false_src,
2768 struct bpf_reg_state *false_dst,
2769 u8 opcode)
2770{
2771 switch (opcode) {
2772 case BPF_JEQ:
2773 __reg_combine_min_max(true_src, true_dst);
2774 break;
2775 case BPF_JNE:
2776 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2777 break;
4cabc5b1 2778 }
48461135
JB
2779}
2780
57a09bf0 2781static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2782 bool is_null)
57a09bf0
TG
2783{
2784 struct bpf_reg_state *reg = &regs[regno];
2785
2786 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2787 /* Old offset (both fixed and variable parts) should
2788 * have been known-zero, because we don't allow pointer
2789 * arithmetic on pointers that might be NULL.
2790 */
b03c9f9f
EC
2791 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2792 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2793 reg->off)) {
b03c9f9f
EC
2794 __mark_reg_known_zero(reg);
2795 reg->off = 0;
f1174f77
EC
2796 }
2797 if (is_null) {
2798 reg->type = SCALAR_VALUE;
56f668df
MKL
2799 } else if (reg->map_ptr->inner_map_meta) {
2800 reg->type = CONST_PTR_TO_MAP;
2801 reg->map_ptr = reg->map_ptr->inner_map_meta;
2802 } else {
f1174f77 2803 reg->type = PTR_TO_MAP_VALUE;
56f668df 2804 }
a08dd0da
DB
2805 /* We don't need id from this point onwards anymore, thus we
2806 * should better reset it, so that state pruning has chances
2807 * to take effect.
2808 */
2809 reg->id = 0;
57a09bf0
TG
2810 }
2811}
2812
2813/* The logic is similar to find_good_pkt_pointers(), both could eventually
2814 * be folded together at some point.
2815 */
2816static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2817 bool is_null)
57a09bf0
TG
2818{
2819 struct bpf_reg_state *regs = state->regs;
a08dd0da 2820 u32 id = regs[regno].id;
57a09bf0
TG
2821 int i;
2822
2823 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2824 mark_map_reg(regs, i, id, is_null);
57a09bf0 2825
638f5b90
AS
2826 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2827 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2828 continue;
638f5b90 2829 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2830 }
2831}
2832
5beca081
DB
2833static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2834 struct bpf_reg_state *dst_reg,
2835 struct bpf_reg_state *src_reg,
2836 struct bpf_verifier_state *this_branch,
2837 struct bpf_verifier_state *other_branch)
2838{
2839 if (BPF_SRC(insn->code) != BPF_X)
2840 return false;
2841
2842 switch (BPF_OP(insn->code)) {
2843 case BPF_JGT:
2844 if ((dst_reg->type == PTR_TO_PACKET &&
2845 src_reg->type == PTR_TO_PACKET_END) ||
2846 (dst_reg->type == PTR_TO_PACKET_META &&
2847 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2848 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2849 find_good_pkt_pointers(this_branch, dst_reg,
2850 dst_reg->type, false);
2851 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2852 src_reg->type == PTR_TO_PACKET) ||
2853 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2854 src_reg->type == PTR_TO_PACKET_META)) {
2855 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2856 find_good_pkt_pointers(other_branch, src_reg,
2857 src_reg->type, true);
2858 } else {
2859 return false;
2860 }
2861 break;
2862 case BPF_JLT:
2863 if ((dst_reg->type == PTR_TO_PACKET &&
2864 src_reg->type == PTR_TO_PACKET_END) ||
2865 (dst_reg->type == PTR_TO_PACKET_META &&
2866 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2867 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2868 find_good_pkt_pointers(other_branch, dst_reg,
2869 dst_reg->type, true);
2870 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2871 src_reg->type == PTR_TO_PACKET) ||
2872 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2873 src_reg->type == PTR_TO_PACKET_META)) {
2874 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2875 find_good_pkt_pointers(this_branch, src_reg,
2876 src_reg->type, false);
2877 } else {
2878 return false;
2879 }
2880 break;
2881 case BPF_JGE:
2882 if ((dst_reg->type == PTR_TO_PACKET &&
2883 src_reg->type == PTR_TO_PACKET_END) ||
2884 (dst_reg->type == PTR_TO_PACKET_META &&
2885 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2886 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2887 find_good_pkt_pointers(this_branch, dst_reg,
2888 dst_reg->type, true);
2889 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2890 src_reg->type == PTR_TO_PACKET) ||
2891 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2892 src_reg->type == PTR_TO_PACKET_META)) {
2893 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2894 find_good_pkt_pointers(other_branch, src_reg,
2895 src_reg->type, false);
2896 } else {
2897 return false;
2898 }
2899 break;
2900 case BPF_JLE:
2901 if ((dst_reg->type == PTR_TO_PACKET &&
2902 src_reg->type == PTR_TO_PACKET_END) ||
2903 (dst_reg->type == PTR_TO_PACKET_META &&
2904 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2905 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2906 find_good_pkt_pointers(other_branch, dst_reg,
2907 dst_reg->type, false);
2908 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2909 src_reg->type == PTR_TO_PACKET) ||
2910 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2911 src_reg->type == PTR_TO_PACKET_META)) {
2912 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2913 find_good_pkt_pointers(this_branch, src_reg,
2914 src_reg->type, true);
2915 } else {
2916 return false;
2917 }
2918 break;
2919 default:
2920 return false;
2921 }
2922
2923 return true;
2924}
2925
58e2af8b 2926static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2927 struct bpf_insn *insn, int *insn_idx)
2928{
638f5b90 2929 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2930 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2931 u8 opcode = BPF_OP(insn->code);
2932 int err;
2933
b4e432f1 2934 if (opcode > BPF_JSLE) {
61bd5218 2935 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2936 return -EINVAL;
2937 }
2938
2939 if (BPF_SRC(insn->code) == BPF_X) {
2940 if (insn->imm != 0) {
61bd5218 2941 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2942 return -EINVAL;
2943 }
2944
2945 /* check src1 operand */
dc503a8a 2946 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2947 if (err)
2948 return err;
1be7f75d
AS
2949
2950 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2951 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2952 insn->src_reg);
2953 return -EACCES;
2954 }
17a52670
AS
2955 } else {
2956 if (insn->src_reg != BPF_REG_0) {
61bd5218 2957 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2958 return -EINVAL;
2959 }
2960 }
2961
2962 /* check src2 operand */
dc503a8a 2963 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2964 if (err)
2965 return err;
2966
1a0dc1ac
AS
2967 dst_reg = &regs[insn->dst_reg];
2968
17a52670
AS
2969 /* detect if R == 0 where R was initialized to zero earlier */
2970 if (BPF_SRC(insn->code) == BPF_K &&
2971 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2972 dst_reg->type == SCALAR_VALUE &&
2973 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2974 if (opcode == BPF_JEQ) {
2975 /* if (imm == imm) goto pc+off;
2976 * only follow the goto, ignore fall-through
2977 */
2978 *insn_idx += insn->off;
2979 return 0;
2980 } else {
2981 /* if (imm != imm) goto pc+off;
2982 * only follow fall-through branch, since
2983 * that's where the program will go
2984 */
2985 return 0;
2986 }
2987 }
2988
2989 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2990 if (!other_branch)
2991 return -EFAULT;
2992
48461135
JB
2993 /* detect if we are comparing against a constant value so we can adjust
2994 * our min/max values for our dst register.
f1174f77
EC
2995 * this is only legit if both are scalars (or pointers to the same
2996 * object, I suppose, but we don't support that right now), because
2997 * otherwise the different base pointers mean the offsets aren't
2998 * comparable.
48461135
JB
2999 */
3000 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3001 if (dst_reg->type == SCALAR_VALUE &&
3002 regs[insn->src_reg].type == SCALAR_VALUE) {
3003 if (tnum_is_const(regs[insn->src_reg].var_off))
3004 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3005 dst_reg, regs[insn->src_reg].var_off.value,
3006 opcode);
3007 else if (tnum_is_const(dst_reg->var_off))
3008 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3009 &regs[insn->src_reg],
3010 dst_reg->var_off.value, opcode);
3011 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3012 /* Comparing for equality, we can combine knowledge */
3013 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3014 &other_branch->regs[insn->dst_reg],
3015 &regs[insn->src_reg],
3016 &regs[insn->dst_reg], opcode);
3017 }
3018 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3019 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3020 dst_reg, insn->imm, opcode);
3021 }
3022
58e2af8b 3023 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3024 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3025 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3026 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3027 /* Mark all identical map registers in each branch as either
3028 * safe or unknown depending R == 0 or R != 0 conditional.
3029 */
f1174f77
EC
3030 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3031 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3032 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3033 this_branch, other_branch) &&
3034 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3035 verbose(env, "R%d pointer comparison prohibited\n",
3036 insn->dst_reg);
1be7f75d 3037 return -EACCES;
17a52670 3038 }
61bd5218
JK
3039 if (env->log.level)
3040 print_verifier_state(env, this_branch);
17a52670
AS
3041 return 0;
3042}
3043
0246e64d
AS
3044/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3045static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3046{
3047 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3048
3049 return (struct bpf_map *) (unsigned long) imm64;
3050}
3051
17a52670 3052/* verify BPF_LD_IMM64 instruction */
58e2af8b 3053static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3054{
638f5b90 3055 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3056 int err;
3057
3058 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3059 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3060 return -EINVAL;
3061 }
3062 if (insn->off != 0) {
61bd5218 3063 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3064 return -EINVAL;
3065 }
3066
dc503a8a 3067 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3068 if (err)
3069 return err;
3070
6b173873 3071 if (insn->src_reg == 0) {
6b173873
JK
3072 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3073
f1174f77 3074 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3075 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3076 return 0;
6b173873 3077 }
17a52670
AS
3078
3079 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3080 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3081
3082 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3083 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3084 return 0;
3085}
3086
96be4325
DB
3087static bool may_access_skb(enum bpf_prog_type type)
3088{
3089 switch (type) {
3090 case BPF_PROG_TYPE_SOCKET_FILTER:
3091 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3092 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3093 return true;
3094 default:
3095 return false;
3096 }
3097}
3098
ddd872bc
AS
3099/* verify safety of LD_ABS|LD_IND instructions:
3100 * - they can only appear in the programs where ctx == skb
3101 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3102 * preserve R6-R9, and store return value into R0
3103 *
3104 * Implicit input:
3105 * ctx == skb == R6 == CTX
3106 *
3107 * Explicit input:
3108 * SRC == any register
3109 * IMM == 32-bit immediate
3110 *
3111 * Output:
3112 * R0 - 8/16/32-bit skb data converted to cpu endianness
3113 */
58e2af8b 3114static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3115{
638f5b90 3116 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3117 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3118 int i, err;
3119
24701ece 3120 if (!may_access_skb(env->prog->type)) {
61bd5218 3121 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3122 return -EINVAL;
3123 }
3124
3125 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3126 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3127 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3128 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3129 return -EINVAL;
3130 }
3131
3132 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3133 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3134 if (err)
3135 return err;
3136
3137 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3138 verbose(env,
3139 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3140 return -EINVAL;
3141 }
3142
3143 if (mode == BPF_IND) {
3144 /* check explicit source operand */
dc503a8a 3145 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3146 if (err)
3147 return err;
3148 }
3149
3150 /* reset caller saved regs to unreadable */
dc503a8a 3151 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3152 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3153 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3154 }
ddd872bc
AS
3155
3156 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3157 * the value fetched from the packet.
3158 * Already marked as written above.
ddd872bc 3159 */
61bd5218 3160 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3161 return 0;
3162}
3163
390ee7e2
AS
3164static int check_return_code(struct bpf_verifier_env *env)
3165{
3166 struct bpf_reg_state *reg;
3167 struct tnum range = tnum_range(0, 1);
3168
3169 switch (env->prog->type) {
3170 case BPF_PROG_TYPE_CGROUP_SKB:
3171 case BPF_PROG_TYPE_CGROUP_SOCK:
3172 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3173 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3174 break;
3175 default:
3176 return 0;
3177 }
3178
638f5b90 3179 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3180 if (reg->type != SCALAR_VALUE) {
61bd5218 3181 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3182 reg_type_str[reg->type]);
3183 return -EINVAL;
3184 }
3185
3186 if (!tnum_in(range, reg->var_off)) {
61bd5218 3187 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3188 if (!tnum_is_unknown(reg->var_off)) {
3189 char tn_buf[48];
3190
3191 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3192 verbose(env, "has value %s", tn_buf);
390ee7e2 3193 } else {
61bd5218 3194 verbose(env, "has unknown scalar value");
390ee7e2 3195 }
61bd5218 3196 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3197 return -EINVAL;
3198 }
3199 return 0;
3200}
3201
475fb78f
AS
3202/* non-recursive DFS pseudo code
3203 * 1 procedure DFS-iterative(G,v):
3204 * 2 label v as discovered
3205 * 3 let S be a stack
3206 * 4 S.push(v)
3207 * 5 while S is not empty
3208 * 6 t <- S.pop()
3209 * 7 if t is what we're looking for:
3210 * 8 return t
3211 * 9 for all edges e in G.adjacentEdges(t) do
3212 * 10 if edge e is already labelled
3213 * 11 continue with the next edge
3214 * 12 w <- G.adjacentVertex(t,e)
3215 * 13 if vertex w is not discovered and not explored
3216 * 14 label e as tree-edge
3217 * 15 label w as discovered
3218 * 16 S.push(w)
3219 * 17 continue at 5
3220 * 18 else if vertex w is discovered
3221 * 19 label e as back-edge
3222 * 20 else
3223 * 21 // vertex w is explored
3224 * 22 label e as forward- or cross-edge
3225 * 23 label t as explored
3226 * 24 S.pop()
3227 *
3228 * convention:
3229 * 0x10 - discovered
3230 * 0x11 - discovered and fall-through edge labelled
3231 * 0x12 - discovered and fall-through and branch edges labelled
3232 * 0x20 - explored
3233 */
3234
3235enum {
3236 DISCOVERED = 0x10,
3237 EXPLORED = 0x20,
3238 FALLTHROUGH = 1,
3239 BRANCH = 2,
3240};
3241
58e2af8b 3242#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3243
475fb78f
AS
3244static int *insn_stack; /* stack of insns to process */
3245static int cur_stack; /* current stack index */
3246static int *insn_state;
3247
3248/* t, w, e - match pseudo-code above:
3249 * t - index of current instruction
3250 * w - next instruction
3251 * e - edge
3252 */
58e2af8b 3253static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3254{
3255 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3256 return 0;
3257
3258 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3259 return 0;
3260
3261 if (w < 0 || w >= env->prog->len) {
61bd5218 3262 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3263 return -EINVAL;
3264 }
3265
f1bca824
AS
3266 if (e == BRANCH)
3267 /* mark branch target for state pruning */
3268 env->explored_states[w] = STATE_LIST_MARK;
3269
475fb78f
AS
3270 if (insn_state[w] == 0) {
3271 /* tree-edge */
3272 insn_state[t] = DISCOVERED | e;
3273 insn_state[w] = DISCOVERED;
3274 if (cur_stack >= env->prog->len)
3275 return -E2BIG;
3276 insn_stack[cur_stack++] = w;
3277 return 1;
3278 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3279 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3280 return -EINVAL;
3281 } else if (insn_state[w] == EXPLORED) {
3282 /* forward- or cross-edge */
3283 insn_state[t] = DISCOVERED | e;
3284 } else {
61bd5218 3285 verbose(env, "insn state internal bug\n");
475fb78f
AS
3286 return -EFAULT;
3287 }
3288 return 0;
3289}
3290
3291/* non-recursive depth-first-search to detect loops in BPF program
3292 * loop == back-edge in directed graph
3293 */
58e2af8b 3294static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3295{
3296 struct bpf_insn *insns = env->prog->insnsi;
3297 int insn_cnt = env->prog->len;
3298 int ret = 0;
3299 int i, t;
3300
3301 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3302 if (!insn_state)
3303 return -ENOMEM;
3304
3305 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3306 if (!insn_stack) {
3307 kfree(insn_state);
3308 return -ENOMEM;
3309 }
3310
3311 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3312 insn_stack[0] = 0; /* 0 is the first instruction */
3313 cur_stack = 1;
3314
3315peek_stack:
3316 if (cur_stack == 0)
3317 goto check_state;
3318 t = insn_stack[cur_stack - 1];
3319
3320 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3321 u8 opcode = BPF_OP(insns[t].code);
3322
3323 if (opcode == BPF_EXIT) {
3324 goto mark_explored;
3325 } else if (opcode == BPF_CALL) {
3326 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3327 if (ret == 1)
3328 goto peek_stack;
3329 else if (ret < 0)
3330 goto err_free;
07016151
DB
3331 if (t + 1 < insn_cnt)
3332 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3333 } else if (opcode == BPF_JA) {
3334 if (BPF_SRC(insns[t].code) != BPF_K) {
3335 ret = -EINVAL;
3336 goto err_free;
3337 }
3338 /* unconditional jump with single edge */
3339 ret = push_insn(t, t + insns[t].off + 1,
3340 FALLTHROUGH, env);
3341 if (ret == 1)
3342 goto peek_stack;
3343 else if (ret < 0)
3344 goto err_free;
f1bca824
AS
3345 /* tell verifier to check for equivalent states
3346 * after every call and jump
3347 */
c3de6317
AS
3348 if (t + 1 < insn_cnt)
3349 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3350 } else {
3351 /* conditional jump with two edges */
3c2ce60b 3352 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3353 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3354 if (ret == 1)
3355 goto peek_stack;
3356 else if (ret < 0)
3357 goto err_free;
3358
3359 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3360 if (ret == 1)
3361 goto peek_stack;
3362 else if (ret < 0)
3363 goto err_free;
3364 }
3365 } else {
3366 /* all other non-branch instructions with single
3367 * fall-through edge
3368 */
3369 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3370 if (ret == 1)
3371 goto peek_stack;
3372 else if (ret < 0)
3373 goto err_free;
3374 }
3375
3376mark_explored:
3377 insn_state[t] = EXPLORED;
3378 if (cur_stack-- <= 0) {
61bd5218 3379 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3380 ret = -EFAULT;
3381 goto err_free;
3382 }
3383 goto peek_stack;
3384
3385check_state:
3386 for (i = 0; i < insn_cnt; i++) {
3387 if (insn_state[i] != EXPLORED) {
61bd5218 3388 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3389 ret = -EINVAL;
3390 goto err_free;
3391 }
3392 }
3393 ret = 0; /* cfg looks good */
3394
3395err_free:
3396 kfree(insn_state);
3397 kfree(insn_stack);
3398 return ret;
3399}
3400
f1174f77
EC
3401/* check %cur's range satisfies %old's */
3402static bool range_within(struct bpf_reg_state *old,
3403 struct bpf_reg_state *cur)
3404{
b03c9f9f
EC
3405 return old->umin_value <= cur->umin_value &&
3406 old->umax_value >= cur->umax_value &&
3407 old->smin_value <= cur->smin_value &&
3408 old->smax_value >= cur->smax_value;
f1174f77
EC
3409}
3410
3411/* Maximum number of register states that can exist at once */
3412#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3413struct idpair {
3414 u32 old;
3415 u32 cur;
3416};
3417
3418/* If in the old state two registers had the same id, then they need to have
3419 * the same id in the new state as well. But that id could be different from
3420 * the old state, so we need to track the mapping from old to new ids.
3421 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3422 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3423 * regs with a different old id could still have new id 9, we don't care about
3424 * that.
3425 * So we look through our idmap to see if this old id has been seen before. If
3426 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3427 */
f1174f77 3428static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3429{
f1174f77 3430 unsigned int i;
969bf05e 3431
f1174f77
EC
3432 for (i = 0; i < ID_MAP_SIZE; i++) {
3433 if (!idmap[i].old) {
3434 /* Reached an empty slot; haven't seen this id before */
3435 idmap[i].old = old_id;
3436 idmap[i].cur = cur_id;
3437 return true;
3438 }
3439 if (idmap[i].old == old_id)
3440 return idmap[i].cur == cur_id;
3441 }
3442 /* We ran out of idmap slots, which should be impossible */
3443 WARN_ON_ONCE(1);
3444 return false;
3445}
3446
3447/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3448static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3449 struct idpair *idmap)
f1174f77 3450{
dc503a8a
EC
3451 if (!(rold->live & REG_LIVE_READ))
3452 /* explored state didn't use this */
3453 return true;
3454
3455 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3456 return true;
3457
f1174f77
EC
3458 if (rold->type == NOT_INIT)
3459 /* explored state can't have used this */
969bf05e 3460 return true;
f1174f77
EC
3461 if (rcur->type == NOT_INIT)
3462 return false;
3463 switch (rold->type) {
3464 case SCALAR_VALUE:
3465 if (rcur->type == SCALAR_VALUE) {
3466 /* new val must satisfy old val knowledge */
3467 return range_within(rold, rcur) &&
3468 tnum_in(rold->var_off, rcur->var_off);
3469 } else {
3470 /* if we knew anything about the old value, we're not
3471 * equal, because we can't know anything about the
3472 * scalar value of the pointer in the new value.
3473 */
b03c9f9f
EC
3474 return rold->umin_value == 0 &&
3475 rold->umax_value == U64_MAX &&
3476 rold->smin_value == S64_MIN &&
3477 rold->smax_value == S64_MAX &&
f1174f77
EC
3478 tnum_is_unknown(rold->var_off);
3479 }
3480 case PTR_TO_MAP_VALUE:
1b688a19
EC
3481 /* If the new min/max/var_off satisfy the old ones and
3482 * everything else matches, we are OK.
3483 * We don't care about the 'id' value, because nothing
3484 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3485 */
3486 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3487 range_within(rold, rcur) &&
3488 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3489 case PTR_TO_MAP_VALUE_OR_NULL:
3490 /* a PTR_TO_MAP_VALUE could be safe to use as a
3491 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3492 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3493 * checked, doing so could have affected others with the same
3494 * id, and we can't check for that because we lost the id when
3495 * we converted to a PTR_TO_MAP_VALUE.
3496 */
3497 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3498 return false;
3499 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3500 return false;
3501 /* Check our ids match any regs they're supposed to */
3502 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3503 case PTR_TO_PACKET_META:
f1174f77 3504 case PTR_TO_PACKET:
de8f3a83 3505 if (rcur->type != rold->type)
f1174f77
EC
3506 return false;
3507 /* We must have at least as much range as the old ptr
3508 * did, so that any accesses which were safe before are
3509 * still safe. This is true even if old range < old off,
3510 * since someone could have accessed through (ptr - k), or
3511 * even done ptr -= k in a register, to get a safe access.
3512 */
3513 if (rold->range > rcur->range)
3514 return false;
3515 /* If the offsets don't match, we can't trust our alignment;
3516 * nor can we be sure that we won't fall out of range.
3517 */
3518 if (rold->off != rcur->off)
3519 return false;
3520 /* id relations must be preserved */
3521 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3522 return false;
3523 /* new val must satisfy old val knowledge */
3524 return range_within(rold, rcur) &&
3525 tnum_in(rold->var_off, rcur->var_off);
3526 case PTR_TO_CTX:
3527 case CONST_PTR_TO_MAP:
3528 case PTR_TO_STACK:
3529 case PTR_TO_PACKET_END:
3530 /* Only valid matches are exact, which memcmp() above
3531 * would have accepted
3532 */
3533 default:
3534 /* Don't know what's going on, just say it's not safe */
3535 return false;
3536 }
969bf05e 3537
f1174f77
EC
3538 /* Shouldn't get here; if we do, say it's not safe */
3539 WARN_ON_ONCE(1);
969bf05e
AS
3540 return false;
3541}
3542
638f5b90
AS
3543static bool stacksafe(struct bpf_verifier_state *old,
3544 struct bpf_verifier_state *cur,
3545 struct idpair *idmap)
3546{
3547 int i, spi;
3548
3549 /* if explored stack has more populated slots than current stack
3550 * such stacks are not equivalent
3551 */
3552 if (old->allocated_stack > cur->allocated_stack)
3553 return false;
3554
3555 /* walk slots of the explored stack and ignore any additional
3556 * slots in the current stack, since explored(safe) state
3557 * didn't use them
3558 */
3559 for (i = 0; i < old->allocated_stack; i++) {
3560 spi = i / BPF_REG_SIZE;
3561
3562 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3563 continue;
3564 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3565 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3566 /* Ex: old explored (safe) state has STACK_SPILL in
3567 * this stack slot, but current has has STACK_MISC ->
3568 * this verifier states are not equivalent,
3569 * return false to continue verification of this path
3570 */
3571 return false;
3572 if (i % BPF_REG_SIZE)
3573 continue;
3574 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3575 continue;
3576 if (!regsafe(&old->stack[spi].spilled_ptr,
3577 &cur->stack[spi].spilled_ptr,
3578 idmap))
3579 /* when explored and current stack slot are both storing
3580 * spilled registers, check that stored pointers types
3581 * are the same as well.
3582 * Ex: explored safe path could have stored
3583 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3584 * but current path has stored:
3585 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3586 * such verifier states are not equivalent.
3587 * return false to continue verification of this path
3588 */
3589 return false;
3590 }
3591 return true;
3592}
3593
f1bca824
AS
3594/* compare two verifier states
3595 *
3596 * all states stored in state_list are known to be valid, since
3597 * verifier reached 'bpf_exit' instruction through them
3598 *
3599 * this function is called when verifier exploring different branches of
3600 * execution popped from the state stack. If it sees an old state that has
3601 * more strict register state and more strict stack state then this execution
3602 * branch doesn't need to be explored further, since verifier already
3603 * concluded that more strict state leads to valid finish.
3604 *
3605 * Therefore two states are equivalent if register state is more conservative
3606 * and explored stack state is more conservative than the current one.
3607 * Example:
3608 * explored current
3609 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3610 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3611 *
3612 * In other words if current stack state (one being explored) has more
3613 * valid slots than old one that already passed validation, it means
3614 * the verifier can stop exploring and conclude that current state is valid too
3615 *
3616 * Similarly with registers. If explored state has register type as invalid
3617 * whereas register type in current state is meaningful, it means that
3618 * the current state will reach 'bpf_exit' instruction safely
3619 */
48461135
JB
3620static bool states_equal(struct bpf_verifier_env *env,
3621 struct bpf_verifier_state *old,
58e2af8b 3622 struct bpf_verifier_state *cur)
f1bca824 3623{
f1174f77
EC
3624 struct idpair *idmap;
3625 bool ret = false;
f1bca824
AS
3626 int i;
3627
f1174f77
EC
3628 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3629 /* If we failed to allocate the idmap, just say it's not safe */
3630 if (!idmap)
1a0dc1ac 3631 return false;
f1174f77
EC
3632
3633 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3634 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3635 goto out_free;
f1bca824
AS
3636 }
3637
638f5b90
AS
3638 if (!stacksafe(old, cur, idmap))
3639 goto out_free;
f1174f77
EC
3640 ret = true;
3641out_free:
3642 kfree(idmap);
3643 return ret;
f1bca824
AS
3644}
3645
8e9cd9ce
EC
3646/* A write screens off any subsequent reads; but write marks come from the
3647 * straight-line code between a state and its parent. When we arrive at a
3648 * jump target (in the first iteration of the propagate_liveness() loop),
3649 * we didn't arrive by the straight-line code, so read marks in state must
3650 * propagate to parent regardless of state's write marks.
3651 */
dc503a8a
EC
3652static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3653 struct bpf_verifier_state *parent)
3654{
63f45f84 3655 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3656 bool touched = false; /* any changes made? */
3657 int i;
3658
3659 if (!parent)
3660 return touched;
3661 /* Propagate read liveness of registers... */
3662 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3663 /* We don't need to worry about FP liveness because it's read-only */
3664 for (i = 0; i < BPF_REG_FP; i++) {
3665 if (parent->regs[i].live & REG_LIVE_READ)
3666 continue;
63f45f84
EC
3667 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3668 continue;
3669 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3670 parent->regs[i].live |= REG_LIVE_READ;
3671 touched = true;
3672 }
3673 }
3674 /* ... and stack slots */
638f5b90
AS
3675 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3676 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3677 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3678 continue;
638f5b90 3679 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3680 continue;
638f5b90 3681 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3682 continue;
638f5b90
AS
3683 if (writes &&
3684 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3685 continue;
638f5b90
AS
3686 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3687 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3688 touched = true;
3689 }
3690 }
3691 return touched;
3692}
3693
8e9cd9ce
EC
3694/* "parent" is "a state from which we reach the current state", but initially
3695 * it is not the state->parent (i.e. "the state whose straight-line code leads
3696 * to the current state"), instead it is the state that happened to arrive at
3697 * a (prunable) equivalent of the current state. See comment above
3698 * do_propagate_liveness() for consequences of this.
3699 * This function is just a more efficient way of calling mark_reg_read() or
3700 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3701 * though it requires that parent != state->parent in the call arguments.
3702 */
dc503a8a
EC
3703static void propagate_liveness(const struct bpf_verifier_state *state,
3704 struct bpf_verifier_state *parent)
3705{
3706 while (do_propagate_liveness(state, parent)) {
3707 /* Something changed, so we need to feed those changes onward */
3708 state = parent;
3709 parent = state->parent;
3710 }
3711}
3712
58e2af8b 3713static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3714{
58e2af8b
JK
3715 struct bpf_verifier_state_list *new_sl;
3716 struct bpf_verifier_state_list *sl;
638f5b90 3717 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3718 int i, err;
f1bca824
AS
3719
3720 sl = env->explored_states[insn_idx];
3721 if (!sl)
3722 /* this 'insn_idx' instruction wasn't marked, so we will not
3723 * be doing state search here
3724 */
3725 return 0;
3726
3727 while (sl != STATE_LIST_MARK) {
638f5b90 3728 if (states_equal(env, &sl->state, cur)) {
f1bca824 3729 /* reached equivalent register/stack state,
dc503a8a
EC
3730 * prune the search.
3731 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3732 * If we have any write marks in env->cur_state, they
3733 * will prevent corresponding reads in the continuation
3734 * from reaching our parent (an explored_state). Our
3735 * own state will get the read marks recorded, but
3736 * they'll be immediately forgotten as we're pruning
3737 * this state and will pop a new one.
f1bca824 3738 */
638f5b90 3739 propagate_liveness(&sl->state, cur);
f1bca824 3740 return 1;
dc503a8a 3741 }
f1bca824
AS
3742 sl = sl->next;
3743 }
3744
3745 /* there were no equivalent states, remember current one.
3746 * technically the current state is not proven to be safe yet,
3747 * but it will either reach bpf_exit (which means it's safe) or
3748 * it will be rejected. Since there are no loops, we won't be
3749 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3750 */
638f5b90 3751 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3752 if (!new_sl)
3753 return -ENOMEM;
3754
3755 /* add new state to the head of linked list */
1969db47
AS
3756 err = copy_verifier_state(&new_sl->state, cur);
3757 if (err) {
3758 free_verifier_state(&new_sl->state, false);
3759 kfree(new_sl);
3760 return err;
3761 }
f1bca824
AS
3762 new_sl->next = env->explored_states[insn_idx];
3763 env->explored_states[insn_idx] = new_sl;
dc503a8a 3764 /* connect new state to parentage chain */
638f5b90 3765 cur->parent = &new_sl->state;
8e9cd9ce
EC
3766 /* clear write marks in current state: the writes we did are not writes
3767 * our child did, so they don't screen off its reads from us.
3768 * (There are no read marks in current state, because reads always mark
3769 * their parent and current state never has children yet. Only
3770 * explored_states can get read marks.)
3771 */
dc503a8a 3772 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3773 cur->regs[i].live = REG_LIVE_NONE;
3774 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3775 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3776 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3777 return 0;
3778}
3779
13a27dfc
JK
3780static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3781 int insn_idx, int prev_insn_idx)
3782{
ab3f0063
JK
3783 if (env->dev_ops && env->dev_ops->insn_hook)
3784 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3785
ab3f0063 3786 return 0;
13a27dfc
JK
3787}
3788
58e2af8b 3789static int do_check(struct bpf_verifier_env *env)
17a52670 3790{
638f5b90 3791 struct bpf_verifier_state *state;
17a52670 3792 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3793 struct bpf_reg_state *regs;
17a52670
AS
3794 int insn_cnt = env->prog->len;
3795 int insn_idx, prev_insn_idx = 0;
3796 int insn_processed = 0;
3797 bool do_print_state = false;
3798
638f5b90
AS
3799 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3800 if (!state)
3801 return -ENOMEM;
3802 env->cur_state = state;
3803 init_reg_state(env, state->regs);
dc503a8a 3804 state->parent = NULL;
17a52670
AS
3805 insn_idx = 0;
3806 for (;;) {
3807 struct bpf_insn *insn;
3808 u8 class;
3809 int err;
3810
3811 if (insn_idx >= insn_cnt) {
61bd5218 3812 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3813 insn_idx, insn_cnt);
3814 return -EFAULT;
3815 }
3816
3817 insn = &insns[insn_idx];
3818 class = BPF_CLASS(insn->code);
3819
07016151 3820 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3821 verbose(env,
3822 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3823 insn_processed);
3824 return -E2BIG;
3825 }
3826
f1bca824
AS
3827 err = is_state_visited(env, insn_idx);
3828 if (err < 0)
3829 return err;
3830 if (err == 1) {
3831 /* found equivalent state, can prune the search */
61bd5218 3832 if (env->log.level) {
f1bca824 3833 if (do_print_state)
61bd5218 3834 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3835 prev_insn_idx, insn_idx);
3836 else
61bd5218 3837 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3838 }
3839 goto process_bpf_exit;
3840 }
3841
3c2ce60b
DB
3842 if (need_resched())
3843 cond_resched();
3844
61bd5218
JK
3845 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3846 if (env->log.level > 1)
3847 verbose(env, "%d:", insn_idx);
c5fc9692 3848 else
61bd5218 3849 verbose(env, "\nfrom %d to %d:",
c5fc9692 3850 prev_insn_idx, insn_idx);
638f5b90 3851 print_verifier_state(env, state);
17a52670
AS
3852 do_print_state = false;
3853 }
3854
61bd5218
JK
3855 if (env->log.level) {
3856 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3857 print_bpf_insn(verbose, env, insn,
3858 env->allow_ptr_leaks);
17a52670
AS
3859 }
3860
13a27dfc
JK
3861 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3862 if (err)
3863 return err;
3864
638f5b90 3865 regs = cur_regs(env);
c131187d 3866 env->insn_aux_data[insn_idx].seen = true;
17a52670 3867 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3868 err = check_alu_op(env, insn);
17a52670
AS
3869 if (err)
3870 return err;
3871
3872 } else if (class == BPF_LDX) {
3df126f3 3873 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3874
3875 /* check for reserved fields is already done */
3876
17a52670 3877 /* check src operand */
dc503a8a 3878 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3879 if (err)
3880 return err;
3881
dc503a8a 3882 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3883 if (err)
3884 return err;
3885
725f9dcd
AS
3886 src_reg_type = regs[insn->src_reg].type;
3887
17a52670
AS
3888 /* check that memory (src_reg + off) is readable,
3889 * the state of dst_reg will be updated by this func
3890 */
31fd8581 3891 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3892 BPF_SIZE(insn->code), BPF_READ,
3893 insn->dst_reg);
3894 if (err)
3895 return err;
3896
3df126f3
JK
3897 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3898
3899 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3900 /* saw a valid insn
3901 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3902 * save type to validate intersecting paths
9bac3d6d 3903 */
3df126f3 3904 *prev_src_type = src_reg_type;
9bac3d6d 3905
3df126f3 3906 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3907 (src_reg_type == PTR_TO_CTX ||
3df126f3 3908 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3909 /* ABuser program is trying to use the same insn
3910 * dst_reg = *(u32*) (src_reg + off)
3911 * with different pointer types:
3912 * src_reg == ctx in one branch and
3913 * src_reg == stack|map in some other branch.
3914 * Reject it.
3915 */
61bd5218 3916 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3917 return -EINVAL;
3918 }
3919
17a52670 3920 } else if (class == BPF_STX) {
3df126f3 3921 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3922
17a52670 3923 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3924 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3925 if (err)
3926 return err;
3927 insn_idx++;
3928 continue;
3929 }
3930
17a52670 3931 /* check src1 operand */
dc503a8a 3932 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3933 if (err)
3934 return err;
3935 /* check src2 operand */
dc503a8a 3936 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3937 if (err)
3938 return err;
3939
d691f9e8
AS
3940 dst_reg_type = regs[insn->dst_reg].type;
3941
17a52670 3942 /* check that memory (dst_reg + off) is writeable */
31fd8581 3943 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3944 BPF_SIZE(insn->code), BPF_WRITE,
3945 insn->src_reg);
3946 if (err)
3947 return err;
3948
3df126f3
JK
3949 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3950
3951 if (*prev_dst_type == NOT_INIT) {
3952 *prev_dst_type = dst_reg_type;
3953 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3954 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3955 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3956 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3957 return -EINVAL;
3958 }
3959
17a52670
AS
3960 } else if (class == BPF_ST) {
3961 if (BPF_MODE(insn->code) != BPF_MEM ||
3962 insn->src_reg != BPF_REG_0) {
61bd5218 3963 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3964 return -EINVAL;
3965 }
3966 /* check src operand */
dc503a8a 3967 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3968 if (err)
3969 return err;
3970
3971 /* check that memory (dst_reg + off) is writeable */
31fd8581 3972 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3973 BPF_SIZE(insn->code), BPF_WRITE,
3974 -1);
3975 if (err)
3976 return err;
3977
3978 } else if (class == BPF_JMP) {
3979 u8 opcode = BPF_OP(insn->code);
3980
3981 if (opcode == BPF_CALL) {
3982 if (BPF_SRC(insn->code) != BPF_K ||
3983 insn->off != 0 ||
3984 insn->src_reg != BPF_REG_0 ||
3985 insn->dst_reg != BPF_REG_0) {
61bd5218 3986 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3987 return -EINVAL;
3988 }
3989
81ed18ab 3990 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3991 if (err)
3992 return err;
3993
3994 } else if (opcode == BPF_JA) {
3995 if (BPF_SRC(insn->code) != BPF_K ||
3996 insn->imm != 0 ||
3997 insn->src_reg != BPF_REG_0 ||
3998 insn->dst_reg != BPF_REG_0) {
61bd5218 3999 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4000 return -EINVAL;
4001 }
4002
4003 insn_idx += insn->off + 1;
4004 continue;
4005
4006 } else if (opcode == BPF_EXIT) {
4007 if (BPF_SRC(insn->code) != BPF_K ||
4008 insn->imm != 0 ||
4009 insn->src_reg != BPF_REG_0 ||
4010 insn->dst_reg != BPF_REG_0) {
61bd5218 4011 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4012 return -EINVAL;
4013 }
4014
4015 /* eBPF calling convetion is such that R0 is used
4016 * to return the value from eBPF program.
4017 * Make sure that it's readable at this time
4018 * of bpf_exit, which means that program wrote
4019 * something into it earlier
4020 */
dc503a8a 4021 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4022 if (err)
4023 return err;
4024
1be7f75d 4025 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4026 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4027 return -EACCES;
4028 }
4029
390ee7e2
AS
4030 err = check_return_code(env);
4031 if (err)
4032 return err;
f1bca824 4033process_bpf_exit:
638f5b90
AS
4034 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4035 if (err < 0) {
4036 if (err != -ENOENT)
4037 return err;
17a52670
AS
4038 break;
4039 } else {
4040 do_print_state = true;
4041 continue;
4042 }
4043 } else {
4044 err = check_cond_jmp_op(env, insn, &insn_idx);
4045 if (err)
4046 return err;
4047 }
4048 } else if (class == BPF_LD) {
4049 u8 mode = BPF_MODE(insn->code);
4050
4051 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4052 err = check_ld_abs(env, insn);
4053 if (err)
4054 return err;
4055
17a52670
AS
4056 } else if (mode == BPF_IMM) {
4057 err = check_ld_imm(env, insn);
4058 if (err)
4059 return err;
4060
4061 insn_idx++;
c131187d 4062 env->insn_aux_data[insn_idx].seen = true;
17a52670 4063 } else {
61bd5218 4064 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4065 return -EINVAL;
4066 }
4067 } else {
61bd5218 4068 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4069 return -EINVAL;
4070 }
4071
4072 insn_idx++;
4073 }
4074
61bd5218
JK
4075 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4076 env->prog->aux->stack_depth);
17a52670
AS
4077 return 0;
4078}
4079
56f668df
MKL
4080static int check_map_prealloc(struct bpf_map *map)
4081{
4082 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4083 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4084 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4085 !(map->map_flags & BPF_F_NO_PREALLOC);
4086}
4087
61bd5218
JK
4088static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4089 struct bpf_map *map,
fdc15d38
AS
4090 struct bpf_prog *prog)
4091
4092{
56f668df
MKL
4093 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4094 * preallocated hash maps, since doing memory allocation
4095 * in overflow_handler can crash depending on where nmi got
4096 * triggered.
4097 */
4098 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4099 if (!check_map_prealloc(map)) {
61bd5218 4100 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4101 return -EINVAL;
4102 }
4103 if (map->inner_map_meta &&
4104 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4105 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4106 return -EINVAL;
4107 }
fdc15d38
AS
4108 }
4109 return 0;
4110}
4111
0246e64d
AS
4112/* look for pseudo eBPF instructions that access map FDs and
4113 * replace them with actual map pointers
4114 */
58e2af8b 4115static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4116{
4117 struct bpf_insn *insn = env->prog->insnsi;
4118 int insn_cnt = env->prog->len;
fdc15d38 4119 int i, j, err;
0246e64d 4120
f1f7714e 4121 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4122 if (err)
4123 return err;
4124
0246e64d 4125 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4126 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4127 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4128 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4129 return -EINVAL;
4130 }
4131
d691f9e8
AS
4132 if (BPF_CLASS(insn->code) == BPF_STX &&
4133 ((BPF_MODE(insn->code) != BPF_MEM &&
4134 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4135 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4136 return -EINVAL;
4137 }
4138
0246e64d
AS
4139 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4140 struct bpf_map *map;
4141 struct fd f;
4142
4143 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4144 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4145 insn[1].off != 0) {
61bd5218 4146 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4147 return -EINVAL;
4148 }
4149
4150 if (insn->src_reg == 0)
4151 /* valid generic load 64-bit imm */
4152 goto next_insn;
4153
4154 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4155 verbose(env,
4156 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4157 return -EINVAL;
4158 }
4159
4160 f = fdget(insn->imm);
c2101297 4161 map = __bpf_map_get(f);
0246e64d 4162 if (IS_ERR(map)) {
61bd5218 4163 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4164 insn->imm);
0246e64d
AS
4165 return PTR_ERR(map);
4166 }
4167
61bd5218 4168 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4169 if (err) {
4170 fdput(f);
4171 return err;
4172 }
4173
0246e64d
AS
4174 /* store map pointer inside BPF_LD_IMM64 instruction */
4175 insn[0].imm = (u32) (unsigned long) map;
4176 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4177
4178 /* check whether we recorded this map already */
4179 for (j = 0; j < env->used_map_cnt; j++)
4180 if (env->used_maps[j] == map) {
4181 fdput(f);
4182 goto next_insn;
4183 }
4184
4185 if (env->used_map_cnt >= MAX_USED_MAPS) {
4186 fdput(f);
4187 return -E2BIG;
4188 }
4189
0246e64d
AS
4190 /* hold the map. If the program is rejected by verifier,
4191 * the map will be released by release_maps() or it
4192 * will be used by the valid program until it's unloaded
4193 * and all maps are released in free_bpf_prog_info()
4194 */
92117d84
AS
4195 map = bpf_map_inc(map, false);
4196 if (IS_ERR(map)) {
4197 fdput(f);
4198 return PTR_ERR(map);
4199 }
4200 env->used_maps[env->used_map_cnt++] = map;
4201
0246e64d
AS
4202 fdput(f);
4203next_insn:
4204 insn++;
4205 i++;
4206 }
4207 }
4208
4209 /* now all pseudo BPF_LD_IMM64 instructions load valid
4210 * 'struct bpf_map *' into a register instead of user map_fd.
4211 * These pointers will be used later by verifier to validate map access.
4212 */
4213 return 0;
4214}
4215
4216/* drop refcnt of maps used by the rejected program */
58e2af8b 4217static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4218{
4219 int i;
4220
4221 for (i = 0; i < env->used_map_cnt; i++)
4222 bpf_map_put(env->used_maps[i]);
4223}
4224
4225/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4226static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4227{
4228 struct bpf_insn *insn = env->prog->insnsi;
4229 int insn_cnt = env->prog->len;
4230 int i;
4231
4232 for (i = 0; i < insn_cnt; i++, insn++)
4233 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4234 insn->src_reg = 0;
4235}
4236
8041902d
AS
4237/* single env->prog->insni[off] instruction was replaced with the range
4238 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4239 * [0, off) and [off, end) to new locations, so the patched range stays zero
4240 */
4241static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4242 u32 off, u32 cnt)
4243{
4244 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4245 int i;
8041902d
AS
4246
4247 if (cnt == 1)
4248 return 0;
4249 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4250 if (!new_data)
4251 return -ENOMEM;
4252 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4253 memcpy(new_data + off + cnt - 1, old_data + off,
4254 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4255 for (i = off; i < off + cnt - 1; i++)
4256 new_data[i].seen = true;
8041902d
AS
4257 env->insn_aux_data = new_data;
4258 vfree(old_data);
4259 return 0;
4260}
4261
4262static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4263 const struct bpf_insn *patch, u32 len)
4264{
4265 struct bpf_prog *new_prog;
4266
4267 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4268 if (!new_prog)
4269 return NULL;
4270 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4271 return NULL;
4272 return new_prog;
4273}
4274
c131187d
AS
4275/* The verifier does more data flow analysis than llvm and will not explore
4276 * branches that are dead at run time. Malicious programs can have dead code
4277 * too. Therefore replace all dead at-run-time code with nops.
4278 */
4279static void sanitize_dead_code(struct bpf_verifier_env *env)
4280{
4281 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4282 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4283 struct bpf_insn *insn = env->prog->insnsi;
4284 const int insn_cnt = env->prog->len;
4285 int i;
4286
4287 for (i = 0; i < insn_cnt; i++) {
4288 if (aux_data[i].seen)
4289 continue;
4290 memcpy(insn + i, &nop, sizeof(nop));
4291 }
4292}
4293
9bac3d6d
AS
4294/* convert load instructions that access fields of 'struct __sk_buff'
4295 * into sequence of instructions that access fields of 'struct sk_buff'
4296 */
58e2af8b 4297static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4298{
00176a34 4299 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4300 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4301 const int insn_cnt = env->prog->len;
36bbef52 4302 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4303 struct bpf_prog *new_prog;
d691f9e8 4304 enum bpf_access_type type;
f96da094
DB
4305 bool is_narrower_load;
4306 u32 target_size;
9bac3d6d 4307
36bbef52
DB
4308 if (ops->gen_prologue) {
4309 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4310 env->prog);
4311 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4312 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4313 return -EINVAL;
4314 } else if (cnt) {
8041902d 4315 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4316 if (!new_prog)
4317 return -ENOMEM;
8041902d 4318
36bbef52 4319 env->prog = new_prog;
3df126f3 4320 delta += cnt - 1;
36bbef52
DB
4321 }
4322 }
4323
4324 if (!ops->convert_ctx_access)
9bac3d6d
AS
4325 return 0;
4326
3df126f3 4327 insn = env->prog->insnsi + delta;
36bbef52 4328
9bac3d6d 4329 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4330 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4331 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4332 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4333 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4334 type = BPF_READ;
62c7989b
DB
4335 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4336 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4337 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4338 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4339 type = BPF_WRITE;
4340 else
9bac3d6d
AS
4341 continue;
4342
8041902d 4343 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4344 continue;
9bac3d6d 4345
31fd8581 4346 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4347 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4348
4349 /* If the read access is a narrower load of the field,
4350 * convert to a 4/8-byte load, to minimum program type specific
4351 * convert_ctx_access changes. If conversion is successful,
4352 * we will apply proper mask to the result.
4353 */
f96da094 4354 is_narrower_load = size < ctx_field_size;
31fd8581 4355 if (is_narrower_load) {
f96da094
DB
4356 u32 off = insn->off;
4357 u8 size_code;
4358
4359 if (type == BPF_WRITE) {
61bd5218 4360 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4361 return -EINVAL;
4362 }
31fd8581 4363
f96da094 4364 size_code = BPF_H;
31fd8581
YS
4365 if (ctx_field_size == 4)
4366 size_code = BPF_W;
4367 else if (ctx_field_size == 8)
4368 size_code = BPF_DW;
f96da094 4369
31fd8581
YS
4370 insn->off = off & ~(ctx_field_size - 1);
4371 insn->code = BPF_LDX | BPF_MEM | size_code;
4372 }
f96da094
DB
4373
4374 target_size = 0;
4375 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4376 &target_size);
4377 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4378 (ctx_field_size && !target_size)) {
61bd5218 4379 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4380 return -EINVAL;
4381 }
f96da094
DB
4382
4383 if (is_narrower_load && size < target_size) {
31fd8581
YS
4384 if (ctx_field_size <= 4)
4385 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4386 (1 << size * 8) - 1);
31fd8581
YS
4387 else
4388 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4389 (1 << size * 8) - 1);
31fd8581 4390 }
9bac3d6d 4391
8041902d 4392 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4393 if (!new_prog)
4394 return -ENOMEM;
4395
3df126f3 4396 delta += cnt - 1;
9bac3d6d
AS
4397
4398 /* keep walking new program and skip insns we just inserted */
4399 env->prog = new_prog;
3df126f3 4400 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4401 }
4402
4403 return 0;
4404}
4405
79741b3b 4406/* fixup insn->imm field of bpf_call instructions
81ed18ab 4407 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4408 *
4409 * this function is called after eBPF program passed verification
4410 */
79741b3b 4411static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4412{
79741b3b
AS
4413 struct bpf_prog *prog = env->prog;
4414 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4415 const struct bpf_func_proto *fn;
79741b3b 4416 const int insn_cnt = prog->len;
81ed18ab
AS
4417 struct bpf_insn insn_buf[16];
4418 struct bpf_prog *new_prog;
4419 struct bpf_map *map_ptr;
4420 int i, cnt, delta = 0;
e245c5c6 4421
79741b3b
AS
4422 for (i = 0; i < insn_cnt; i++, insn++) {
4423 if (insn->code != (BPF_JMP | BPF_CALL))
4424 continue;
e245c5c6 4425
79741b3b
AS
4426 if (insn->imm == BPF_FUNC_get_route_realm)
4427 prog->dst_needed = 1;
4428 if (insn->imm == BPF_FUNC_get_prandom_u32)
4429 bpf_user_rnd_init_once();
79741b3b 4430 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4431 /* If we tail call into other programs, we
4432 * cannot make any assumptions since they can
4433 * be replaced dynamically during runtime in
4434 * the program array.
4435 */
4436 prog->cb_access = 1;
80a58d02 4437 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4438
79741b3b
AS
4439 /* mark bpf_tail_call as different opcode to avoid
4440 * conditional branch in the interpeter for every normal
4441 * call and to prevent accidental JITing by JIT compiler
4442 * that doesn't support bpf_tail_call yet
e245c5c6 4443 */
79741b3b 4444 insn->imm = 0;
71189fa9 4445 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4446 continue;
4447 }
e245c5c6 4448
89c63074
DB
4449 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4450 * handlers are currently limited to 64 bit only.
4451 */
4452 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4453 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4454 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4455 if (map_ptr == BPF_MAP_PTR_POISON ||
4456 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4457 goto patch_call_imm;
4458
4459 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4460 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4461 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4462 return -EINVAL;
4463 }
4464
4465 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4466 cnt);
4467 if (!new_prog)
4468 return -ENOMEM;
4469
4470 delta += cnt - 1;
4471
4472 /* keep walking new program and skip insns we just inserted */
4473 env->prog = prog = new_prog;
4474 insn = new_prog->insnsi + i + delta;
4475 continue;
4476 }
4477
109980b8 4478 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4479 /* Note, we cannot use prog directly as imm as subsequent
4480 * rewrites would still change the prog pointer. The only
4481 * stable address we can use is aux, which also works with
4482 * prog clones during blinding.
4483 */
4484 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4485 struct bpf_insn r4_ld[] = {
4486 BPF_LD_IMM64(BPF_REG_4, addr),
4487 *insn,
4488 };
4489 cnt = ARRAY_SIZE(r4_ld);
4490
4491 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4492 if (!new_prog)
4493 return -ENOMEM;
4494
4495 delta += cnt - 1;
4496 env->prog = prog = new_prog;
4497 insn = new_prog->insnsi + i + delta;
4498 }
81ed18ab 4499patch_call_imm:
00176a34 4500 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4501 /* all functions that have prototype and verifier allowed
4502 * programs to call them, must be real in-kernel functions
4503 */
4504 if (!fn->func) {
61bd5218
JK
4505 verbose(env,
4506 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4507 func_id_name(insn->imm), insn->imm);
4508 return -EFAULT;
e245c5c6 4509 }
79741b3b 4510 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4511 }
e245c5c6 4512
79741b3b
AS
4513 return 0;
4514}
e245c5c6 4515
58e2af8b 4516static void free_states(struct bpf_verifier_env *env)
f1bca824 4517{
58e2af8b 4518 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4519 int i;
4520
4521 if (!env->explored_states)
4522 return;
4523
4524 for (i = 0; i < env->prog->len; i++) {
4525 sl = env->explored_states[i];
4526
4527 if (sl)
4528 while (sl != STATE_LIST_MARK) {
4529 sln = sl->next;
1969db47 4530 free_verifier_state(&sl->state, false);
f1bca824
AS
4531 kfree(sl);
4532 sl = sln;
4533 }
4534 }
4535
4536 kfree(env->explored_states);
4537}
4538
9bac3d6d 4539int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4540{
58e2af8b 4541 struct bpf_verifier_env *env;
61bd5218 4542 struct bpf_verifer_log *log;
51580e79
AS
4543 int ret = -EINVAL;
4544
eba0c929
AB
4545 /* no program is valid */
4546 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4547 return -EINVAL;
4548
58e2af8b 4549 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4550 * allocate/free it every time bpf_check() is called
4551 */
58e2af8b 4552 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4553 if (!env)
4554 return -ENOMEM;
61bd5218 4555 log = &env->log;
cbd35700 4556
3df126f3
JK
4557 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4558 (*prog)->len);
4559 ret = -ENOMEM;
4560 if (!env->insn_aux_data)
4561 goto err_free_env;
9bac3d6d 4562 env->prog = *prog;
00176a34 4563 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4564
cbd35700
AS
4565 /* grab the mutex to protect few globals used by verifier */
4566 mutex_lock(&bpf_verifier_lock);
4567
4568 if (attr->log_level || attr->log_buf || attr->log_size) {
4569 /* user requested verbose verifier output
4570 * and supplied buffer to store the verification trace
4571 */
e7bf8249
JK
4572 log->level = attr->log_level;
4573 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4574 log->len_total = attr->log_size;
cbd35700
AS
4575
4576 ret = -EINVAL;
e7bf8249
JK
4577 /* log attributes have to be sane */
4578 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4579 !log->level || !log->ubuf)
3df126f3 4580 goto err_unlock;
cbd35700 4581 }
1ad2f583
DB
4582
4583 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4584 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4585 env->strict_alignment = true;
cbd35700 4586
ab3f0063
JK
4587 if (env->prog->aux->offload) {
4588 ret = bpf_prog_offload_verifier_prep(env);
4589 if (ret)
4590 goto err_unlock;
4591 }
4592
0246e64d
AS
4593 ret = replace_map_fd_with_map_ptr(env);
4594 if (ret < 0)
4595 goto skip_full_check;
4596
9bac3d6d 4597 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4598 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4599 GFP_USER);
4600 ret = -ENOMEM;
4601 if (!env->explored_states)
4602 goto skip_full_check;
4603
475fb78f
AS
4604 ret = check_cfg(env);
4605 if (ret < 0)
4606 goto skip_full_check;
4607
1be7f75d
AS
4608 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4609
17a52670 4610 ret = do_check(env);
8c01c4f8
CG
4611 if (env->cur_state) {
4612 free_verifier_state(env->cur_state, true);
4613 env->cur_state = NULL;
4614 }
cbd35700 4615
0246e64d 4616skip_full_check:
638f5b90 4617 while (!pop_stack(env, NULL, NULL));
f1bca824 4618 free_states(env);
0246e64d 4619
c131187d
AS
4620 if (ret == 0)
4621 sanitize_dead_code(env);
4622
9bac3d6d
AS
4623 if (ret == 0)
4624 /* program is valid, convert *(u32*)(ctx + off) accesses */
4625 ret = convert_ctx_accesses(env);
4626
e245c5c6 4627 if (ret == 0)
79741b3b 4628 ret = fixup_bpf_calls(env);
e245c5c6 4629
a2a7d570 4630 if (log->level && bpf_verifier_log_full(log))
cbd35700 4631 ret = -ENOSPC;
a2a7d570 4632 if (log->level && !log->ubuf) {
cbd35700 4633 ret = -EFAULT;
a2a7d570 4634 goto err_release_maps;
cbd35700
AS
4635 }
4636
0246e64d
AS
4637 if (ret == 0 && env->used_map_cnt) {
4638 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4639 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4640 sizeof(env->used_maps[0]),
4641 GFP_KERNEL);
0246e64d 4642
9bac3d6d 4643 if (!env->prog->aux->used_maps) {
0246e64d 4644 ret = -ENOMEM;
a2a7d570 4645 goto err_release_maps;
0246e64d
AS
4646 }
4647
9bac3d6d 4648 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4649 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4650 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4651
4652 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4653 * bpf_ld_imm64 instructions
4654 */
4655 convert_pseudo_ld_imm64(env);
4656 }
cbd35700 4657
a2a7d570 4658err_release_maps:
9bac3d6d 4659 if (!env->prog->aux->used_maps)
0246e64d
AS
4660 /* if we didn't copy map pointers into bpf_prog_info, release
4661 * them now. Otherwise free_bpf_prog_info() will release them.
4662 */
4663 release_maps(env);
9bac3d6d 4664 *prog = env->prog;
3df126f3 4665err_unlock:
cbd35700 4666 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4667 vfree(env->insn_aux_data);
4668err_free_env:
4669 kfree(env);
51580e79
AS
4670 return ret;
4671}