]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
Merge branch 'xdp-adjust-xdp-redirect-tracepoint'
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
8e17c1b1 143#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
f1174f77 183 [SCALAR_VALUE] = "inv",
17a52670
AS
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 188 [PTR_TO_STACK] = "fp",
969bf05e
AS
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
191};
192
ebb676da
TG
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196};
197#undef __BPF_FUNC_STR_FN
198
199static const char *func_id_name(int id)
200{
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207}
208
58e2af8b 209static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 210{
58e2af8b 211 struct bpf_reg_state *reg;
17a52670
AS
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
216 reg = &state->regs[i];
217 t = reg->type;
17a52670
AS
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
7d1238f2
EC
237 if (tnum_is_const(reg->var_off)) {
238 /* Typically an immediate SCALAR_VALUE, but
239 * could be a pointer whose offset is too big
240 * for reg->off
241 */
242 verbose(",imm=%llx", reg->var_off.value);
243 } else {
244 if (reg->smin_value != reg->umin_value &&
245 reg->smin_value != S64_MIN)
246 verbose(",smin_value=%lld",
247 (long long)reg->smin_value);
248 if (reg->smax_value != reg->umax_value &&
249 reg->smax_value != S64_MAX)
250 verbose(",smax_value=%lld",
251 (long long)reg->smax_value);
252 if (reg->umin_value != 0)
253 verbose(",umin_value=%llu",
254 (unsigned long long)reg->umin_value);
255 if (reg->umax_value != U64_MAX)
256 verbose(",umax_value=%llu",
257 (unsigned long long)reg->umax_value);
258 if (!tnum_is_unknown(reg->var_off)) {
259 char tn_buf[48];
f1174f77 260
7d1238f2
EC
261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 verbose(",var_off=%s", tn_buf);
263 }
f1174f77
EC
264 }
265 verbose(")");
266 }
17a52670 267 }
9c399760 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 269 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
272 }
273 verbose("\n");
274}
275
cbd35700
AS
276static const char *const bpf_class_string[] = {
277 [BPF_LD] = "ld",
278 [BPF_LDX] = "ldx",
279 [BPF_ST] = "st",
280 [BPF_STX] = "stx",
281 [BPF_ALU] = "alu",
282 [BPF_JMP] = "jmp",
283 [BPF_RET] = "BUG",
284 [BPF_ALU64] = "alu64",
285};
286
687f0715 287static const char *const bpf_alu_string[16] = {
cbd35700
AS
288 [BPF_ADD >> 4] = "+=",
289 [BPF_SUB >> 4] = "-=",
290 [BPF_MUL >> 4] = "*=",
291 [BPF_DIV >> 4] = "/=",
292 [BPF_OR >> 4] = "|=",
293 [BPF_AND >> 4] = "&=",
294 [BPF_LSH >> 4] = "<<=",
295 [BPF_RSH >> 4] = ">>=",
296 [BPF_NEG >> 4] = "neg",
297 [BPF_MOD >> 4] = "%=",
298 [BPF_XOR >> 4] = "^=",
299 [BPF_MOV >> 4] = "=",
300 [BPF_ARSH >> 4] = "s>>=",
301 [BPF_END >> 4] = "endian",
302};
303
304static const char *const bpf_ldst_string[] = {
305 [BPF_W >> 3] = "u32",
306 [BPF_H >> 3] = "u16",
307 [BPF_B >> 3] = "u8",
308 [BPF_DW >> 3] = "u64",
309};
310
687f0715 311static const char *const bpf_jmp_string[16] = {
cbd35700
AS
312 [BPF_JA >> 4] = "jmp",
313 [BPF_JEQ >> 4] = "==",
314 [BPF_JGT >> 4] = ">",
b4e432f1 315 [BPF_JLT >> 4] = "<",
cbd35700 316 [BPF_JGE >> 4] = ">=",
b4e432f1 317 [BPF_JLE >> 4] = "<=",
cbd35700
AS
318 [BPF_JSET >> 4] = "&",
319 [BPF_JNE >> 4] = "!=",
320 [BPF_JSGT >> 4] = "s>",
b4e432f1 321 [BPF_JSLT >> 4] = "s<",
cbd35700 322 [BPF_JSGE >> 4] = "s>=",
b4e432f1 323 [BPF_JSLE >> 4] = "s<=",
cbd35700
AS
324 [BPF_CALL >> 4] = "call",
325 [BPF_EXIT >> 4] = "exit",
326};
327
0d0e5769
DB
328static void print_bpf_insn(const struct bpf_verifier_env *env,
329 const struct bpf_insn *insn)
cbd35700
AS
330{
331 u8 class = BPF_CLASS(insn->code);
332
333 if (class == BPF_ALU || class == BPF_ALU64) {
334 if (BPF_SRC(insn->code) == BPF_X)
335 verbose("(%02x) %sr%d %s %sr%d\n",
336 insn->code, class == BPF_ALU ? "(u32) " : "",
337 insn->dst_reg,
338 bpf_alu_string[BPF_OP(insn->code) >> 4],
339 class == BPF_ALU ? "(u32) " : "",
340 insn->src_reg);
341 else
342 verbose("(%02x) %sr%d %s %s%d\n",
343 insn->code, class == BPF_ALU ? "(u32) " : "",
344 insn->dst_reg,
345 bpf_alu_string[BPF_OP(insn->code) >> 4],
346 class == BPF_ALU ? "(u32) " : "",
347 insn->imm);
348 } else if (class == BPF_STX) {
349 if (BPF_MODE(insn->code) == BPF_MEM)
350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 insn->code,
352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 insn->dst_reg,
354 insn->off, insn->src_reg);
355 else if (BPF_MODE(insn->code) == BPF_XADD)
356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->dst_reg, insn->off,
360 insn->src_reg);
361 else
362 verbose("BUG_%02x\n", insn->code);
363 } else if (class == BPF_ST) {
364 if (BPF_MODE(insn->code) != BPF_MEM) {
365 verbose("BUG_st_%02x\n", insn->code);
366 return;
367 }
368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->dst_reg,
372 insn->off, insn->imm);
373 } else if (class == BPF_LDX) {
374 if (BPF_MODE(insn->code) != BPF_MEM) {
375 verbose("BUG_ldx_%02x\n", insn->code);
376 return;
377 }
378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 insn->code, insn->dst_reg,
380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 insn->src_reg, insn->off);
382 } else if (class == BPF_LD) {
383 if (BPF_MODE(insn->code) == BPF_ABS) {
384 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 insn->code,
386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 insn->imm);
388 } else if (BPF_MODE(insn->code) == BPF_IND) {
389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 insn->code,
391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 insn->src_reg, insn->imm);
0d0e5769
DB
393 } else if (BPF_MODE(insn->code) == BPF_IMM &&
394 BPF_SIZE(insn->code) == BPF_DW) {
395 /* At this point, we already made sure that the second
396 * part of the ldimm64 insn is accessible.
397 */
398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400
401 if (map_ptr && !env->allow_ptr_leaks)
402 imm = 0;
403
404 verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
406 } else {
407 verbose("BUG_ld_%02x\n", insn->code);
408 return;
409 }
410 } else if (class == BPF_JMP) {
411 u8 opcode = BPF_OP(insn->code);
412
413 if (opcode == BPF_CALL) {
ebb676da
TG
414 verbose("(%02x) call %s#%d\n", insn->code,
415 func_id_name(insn->imm), insn->imm);
cbd35700
AS
416 } else if (insn->code == (BPF_JMP | BPF_JA)) {
417 verbose("(%02x) goto pc%+d\n",
418 insn->code, insn->off);
419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 verbose("(%02x) exit\n", insn->code);
421 } else if (BPF_SRC(insn->code) == BPF_X) {
422 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 insn->code, insn->dst_reg,
424 bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 insn->src_reg, insn->off);
426 } else {
427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 insn->code, insn->dst_reg,
429 bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 insn->imm, insn->off);
431 }
432 } else {
433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 }
435}
436
58e2af8b 437static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 438{
58e2af8b 439 struct bpf_verifier_stack_elem *elem;
17a52670
AS
440 int insn_idx;
441
442 if (env->head == NULL)
443 return -1;
444
445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 insn_idx = env->head->insn_idx;
447 if (prev_insn_idx)
448 *prev_insn_idx = env->head->prev_insn_idx;
449 elem = env->head->next;
450 kfree(env->head);
451 env->head = elem;
452 env->stack_size--;
453 return insn_idx;
454}
455
58e2af8b
JK
456static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 int insn_idx, int prev_insn_idx)
17a52670 458{
58e2af8b 459 struct bpf_verifier_stack_elem *elem;
17a52670 460
58e2af8b 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
462 if (!elem)
463 goto err;
464
465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 elem->insn_idx = insn_idx;
467 elem->prev_insn_idx = prev_insn_idx;
468 elem->next = env->head;
469 env->head = elem;
470 env->stack_size++;
07016151 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
472 verbose("BPF program is too complex\n");
473 goto err;
474 }
475 return &elem->st;
476err:
477 /* pop all elements and return */
478 while (pop_stack(env, NULL) >= 0);
479 return NULL;
480}
481
482#define CALLER_SAVED_REGS 6
483static const int caller_saved[CALLER_SAVED_REGS] = {
484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485};
486
f1174f77
EC
487static void __mark_reg_not_init(struct bpf_reg_state *reg);
488
b03c9f9f
EC
489/* Mark the unknown part of a register (variable offset or scalar value) as
490 * known to have the value @imm.
491 */
492static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493{
494 reg->id = 0;
495 reg->var_off = tnum_const(imm);
496 reg->smin_value = (s64)imm;
497 reg->smax_value = (s64)imm;
498 reg->umin_value = imm;
499 reg->umax_value = imm;
500}
501
f1174f77
EC
502/* Mark the 'variable offset' part of a register as zero. This should be
503 * used only on registers holding a pointer type.
504 */
505static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 506{
b03c9f9f 507 __mark_reg_known(reg, 0);
f1174f77 508}
a9789ef9 509
f1174f77
EC
510static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511{
512 if (WARN_ON(regno >= MAX_BPF_REG)) {
513 verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 /* Something bad happened, let's kill all regs */
515 for (regno = 0; regno < MAX_BPF_REG; regno++)
516 __mark_reg_not_init(regs + regno);
517 return;
518 }
519 __mark_reg_known_zero(regs + regno);
520}
521
b03c9f9f
EC
522/* Attempts to improve min/max values based on var_off information */
523static void __update_reg_bounds(struct bpf_reg_state *reg)
524{
525 /* min signed is max(sign bit) | min(other bits) */
526 reg->smin_value = max_t(s64, reg->smin_value,
527 reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 /* max signed is min(sign bit) | max(other bits) */
529 reg->smax_value = min_t(s64, reg->smax_value,
530 reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 reg->umax_value = min(reg->umax_value,
533 reg->var_off.value | reg->var_off.mask);
534}
535
536/* Uses signed min/max values to inform unsigned, and vice-versa */
537static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538{
539 /* Learn sign from signed bounds.
540 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 * are the same, so combine. This works even in the negative case, e.g.
542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 */
544 if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 reg->umin_value);
547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 reg->umax_value);
549 return;
550 }
551 /* Learn sign from unsigned bounds. Signed bounds cross the sign
552 * boundary, so we must be careful.
553 */
554 if ((s64)reg->umax_value >= 0) {
555 /* Positive. We can't learn anything from the smin, but smax
556 * is positive, hence safe.
557 */
558 reg->smin_value = reg->umin_value;
559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 reg->umax_value);
561 } else if ((s64)reg->umin_value < 0) {
562 /* Negative. We can't learn anything from the smax, but smin
563 * is negative, hence safe.
564 */
565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 reg->umin_value);
567 reg->smax_value = reg->umax_value;
568 }
569}
570
571/* Attempts to improve var_off based on unsigned min/max information */
572static void __reg_bound_offset(struct bpf_reg_state *reg)
573{
574 reg->var_off = tnum_intersect(reg->var_off,
575 tnum_range(reg->umin_value,
576 reg->umax_value));
577}
578
579/* Reset the min/max bounds of a register */
580static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581{
582 reg->smin_value = S64_MIN;
583 reg->smax_value = S64_MAX;
584 reg->umin_value = 0;
585 reg->umax_value = U64_MAX;
586}
587
f1174f77
EC
588/* Mark a register as having a completely unknown (scalar) value. */
589static void __mark_reg_unknown(struct bpf_reg_state *reg)
590{
591 reg->type = SCALAR_VALUE;
592 reg->id = 0;
593 reg->off = 0;
594 reg->var_off = tnum_unknown;
b03c9f9f 595 __mark_reg_unbounded(reg);
f1174f77
EC
596}
597
598static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599{
600 if (WARN_ON(regno >= MAX_BPF_REG)) {
601 verbose("mark_reg_unknown(regs, %u)\n", regno);
602 /* Something bad happened, let's kill all regs */
603 for (regno = 0; regno < MAX_BPF_REG; regno++)
604 __mark_reg_not_init(regs + regno);
605 return;
606 }
607 __mark_reg_unknown(regs + regno);
608}
609
610static void __mark_reg_not_init(struct bpf_reg_state *reg)
611{
612 __mark_reg_unknown(reg);
613 reg->type = NOT_INIT;
614}
615
616static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617{
618 if (WARN_ON(regno >= MAX_BPF_REG)) {
619 verbose("mark_reg_not_init(regs, %u)\n", regno);
620 /* Something bad happened, let's kill all regs */
621 for (regno = 0; regno < MAX_BPF_REG; regno++)
622 __mark_reg_not_init(regs + regno);
623 return;
624 }
625 __mark_reg_not_init(regs + regno);
a9789ef9
DB
626}
627
58e2af8b 628static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
629{
630 int i;
631
dc503a8a 632 for (i = 0; i < MAX_BPF_REG; i++) {
a9789ef9 633 mark_reg_not_init(regs, i);
dc503a8a
EC
634 regs[i].live = REG_LIVE_NONE;
635 }
17a52670
AS
636
637 /* frame pointer */
f1174f77
EC
638 regs[BPF_REG_FP].type = PTR_TO_STACK;
639 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
640
641 /* 1st arg to a function */
642 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 643 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
644}
645
17a52670
AS
646enum reg_arg_type {
647 SRC_OP, /* register is used as source operand */
648 DST_OP, /* register is used as destination operand */
649 DST_OP_NO_MARK /* same as above, check only, don't mark */
650};
651
dc503a8a
EC
652static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653{
654 struct bpf_verifier_state *parent = state->parent;
655
656 while (parent) {
657 /* if read wasn't screened by an earlier write ... */
658 if (state->regs[regno].live & REG_LIVE_WRITTEN)
659 break;
660 /* ... then we depend on parent's value */
661 parent->regs[regno].live |= REG_LIVE_READ;
662 state = parent;
663 parent = state->parent;
664 }
665}
666
667static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
668 enum reg_arg_type t)
669{
dc503a8a
EC
670 struct bpf_reg_state *regs = env->cur_state.regs;
671
17a52670
AS
672 if (regno >= MAX_BPF_REG) {
673 verbose("R%d is invalid\n", regno);
674 return -EINVAL;
675 }
676
677 if (t == SRC_OP) {
678 /* check whether register used as source operand can be read */
679 if (regs[regno].type == NOT_INIT) {
680 verbose("R%d !read_ok\n", regno);
681 return -EACCES;
682 }
dc503a8a 683 mark_reg_read(&env->cur_state, regno);
17a52670
AS
684 } else {
685 /* check whether register used as dest operand can be written to */
686 if (regno == BPF_REG_FP) {
687 verbose("frame pointer is read only\n");
688 return -EACCES;
689 }
dc503a8a 690 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 691 if (t == DST_OP)
f1174f77 692 mark_reg_unknown(regs, regno);
17a52670
AS
693 }
694 return 0;
695}
696
1be7f75d
AS
697static bool is_spillable_regtype(enum bpf_reg_type type)
698{
699 switch (type) {
700 case PTR_TO_MAP_VALUE:
701 case PTR_TO_MAP_VALUE_OR_NULL:
702 case PTR_TO_STACK:
703 case PTR_TO_CTX:
969bf05e
AS
704 case PTR_TO_PACKET:
705 case PTR_TO_PACKET_END:
1be7f75d
AS
706 case CONST_PTR_TO_MAP:
707 return true;
708 default:
709 return false;
710 }
711}
712
17a52670
AS
713/* check_stack_read/write functions track spill/fill of registers,
714 * stack boundary and alignment are checked in check_mem_access()
715 */
58e2af8b
JK
716static int check_stack_write(struct bpf_verifier_state *state, int off,
717 int size, int value_regno)
17a52670 718{
dc503a8a 719 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
720 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
721 * so it's aligned access and [off, off + size) are within stack limits
722 */
17a52670
AS
723
724 if (value_regno >= 0 &&
1be7f75d 725 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
726
727 /* register containing pointer is being spilled into stack */
9c399760 728 if (size != BPF_REG_SIZE) {
17a52670
AS
729 verbose("invalid size of register spill\n");
730 return -EACCES;
731 }
732
17a52670 733 /* save register state */
dc503a8a
EC
734 state->spilled_regs[spi] = state->regs[value_regno];
735 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 736
9c399760
AS
737 for (i = 0; i < BPF_REG_SIZE; i++)
738 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
739 } else {
17a52670 740 /* regular write of data into stack */
dc503a8a 741 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
742
743 for (i = 0; i < size; i++)
744 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
745 }
746 return 0;
747}
748
dc503a8a
EC
749static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
750{
751 struct bpf_verifier_state *parent = state->parent;
752
753 while (parent) {
754 /* if read wasn't screened by an earlier write ... */
755 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
756 break;
757 /* ... then we depend on parent's value */
758 parent->spilled_regs[slot].live |= REG_LIVE_READ;
759 state = parent;
760 parent = state->parent;
761 }
762}
763
58e2af8b 764static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
765 int value_regno)
766{
9c399760 767 u8 *slot_type;
dc503a8a 768 int i, spi;
17a52670 769
9c399760 770 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 771
9c399760
AS
772 if (slot_type[0] == STACK_SPILL) {
773 if (size != BPF_REG_SIZE) {
17a52670
AS
774 verbose("invalid size of register spill\n");
775 return -EACCES;
776 }
9c399760
AS
777 for (i = 1; i < BPF_REG_SIZE; i++) {
778 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
779 verbose("corrupted spill memory\n");
780 return -EACCES;
781 }
782 }
783
dc503a8a
EC
784 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
785
786 if (value_regno >= 0) {
17a52670 787 /* restore register state from stack */
dc503a8a
EC
788 state->regs[value_regno] = state->spilled_regs[spi];
789 mark_stack_slot_read(state, spi);
790 }
17a52670
AS
791 return 0;
792 } else {
793 for (i = 0; i < size; i++) {
9c399760 794 if (slot_type[i] != STACK_MISC) {
17a52670
AS
795 verbose("invalid read from stack off %d+%d size %d\n",
796 off, i, size);
797 return -EACCES;
798 }
799 }
800 if (value_regno >= 0)
801 /* have read misc data from the stack */
f1174f77 802 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
803 return 0;
804 }
805}
806
807/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 808static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
809 int size)
810{
811 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
812
5722569b 813 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
814 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
815 map->value_size, off, size);
816 return -EACCES;
817 }
818 return 0;
819}
820
f1174f77
EC
821/* check read/write into a map element with possible variable offset */
822static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
823 int off, int size)
824{
825 struct bpf_verifier_state *state = &env->cur_state;
826 struct bpf_reg_state *reg = &state->regs[regno];
827 int err;
828
f1174f77
EC
829 /* We may have adjusted the register to this map value, so we
830 * need to try adding each of min_value and max_value to off
831 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
832 */
833 if (log_level)
834 print_verifier_state(state);
f1174f77
EC
835 /* If the offset is variable, we will need to be stricter in state
836 * pruning from now on.
837 */
838 if (!tnum_is_const(reg->var_off))
839 env->varlen_map_value_access = true;
dbcfe5f7
GB
840 /* The minimum value is only important with signed
841 * comparisons where we can't assume the floor of a
842 * value is 0. If we are using signed variables for our
843 * index'es we need to make sure that whatever we use
844 * will have a set floor within our range.
845 */
b03c9f9f 846 if (reg->smin_value < 0) {
dbcfe5f7
GB
847 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
848 regno);
849 return -EACCES;
850 }
b03c9f9f 851 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 852 if (err) {
f1174f77 853 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
854 return err;
855 }
856
b03c9f9f
EC
857 /* If we haven't set a max value then we need to bail since we can't be
858 * sure we won't do bad things.
859 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 860 */
b03c9f9f 861 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
862 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
863 regno);
864 return -EACCES;
865 }
b03c9f9f 866 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
867 if (err)
868 verbose("R%d max value is outside of the array range\n", regno);
869 return err;
dbcfe5f7
GB
870}
871
969bf05e
AS
872#define MAX_PACKET_OFF 0xffff
873
58e2af8b 874static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
875 const struct bpf_call_arg_meta *meta,
876 enum bpf_access_type t)
4acf6c0b 877{
36bbef52 878 switch (env->prog->type) {
3a0af8fd
TG
879 case BPF_PROG_TYPE_LWT_IN:
880 case BPF_PROG_TYPE_LWT_OUT:
881 /* dst_input() and dst_output() can't write for now */
882 if (t == BPF_WRITE)
883 return false;
7e57fbb2 884 /* fallthrough */
36bbef52
DB
885 case BPF_PROG_TYPE_SCHED_CLS:
886 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 887 case BPF_PROG_TYPE_XDP:
3a0af8fd 888 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 889 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
890 if (meta)
891 return meta->pkt_access;
892
893 env->seen_direct_write = true;
4acf6c0b
BB
894 return true;
895 default:
896 return false;
897 }
898}
899
f1174f77
EC
900static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
901 int off, int size)
969bf05e 902{
58e2af8b
JK
903 struct bpf_reg_state *regs = env->cur_state.regs;
904 struct bpf_reg_state *reg = &regs[regno];
969bf05e 905
f1174f77 906 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
907 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
908 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
909 return -EACCES;
910 }
911 return 0;
912}
913
f1174f77
EC
914static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
915 int size)
916{
917 struct bpf_reg_state *regs = env->cur_state.regs;
918 struct bpf_reg_state *reg = &regs[regno];
919 int err;
920
921 /* We may have added a variable offset to the packet pointer; but any
922 * reg->range we have comes after that. We are only checking the fixed
923 * offset.
924 */
925
926 /* We don't allow negative numbers, because we aren't tracking enough
927 * detail to prove they're safe.
928 */
b03c9f9f 929 if (reg->smin_value < 0) {
f1174f77
EC
930 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
931 regno);
932 return -EACCES;
933 }
934 err = __check_packet_access(env, regno, off, size);
935 if (err) {
936 verbose("R%d offset is outside of the packet\n", regno);
937 return err;
938 }
939 return err;
940}
941
942/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 943static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 944 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 945{
f96da094
DB
946 struct bpf_insn_access_aux info = {
947 .reg_type = *reg_type,
948 };
31fd8581 949
13a27dfc
JK
950 /* for analyzer ctx accesses are already validated and converted */
951 if (env->analyzer_ops)
952 return 0;
953
17a52670 954 if (env->prog->aux->ops->is_valid_access &&
23994631 955 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
956 /* A non zero info.ctx_field_size indicates that this field is a
957 * candidate for later verifier transformation to load the whole
958 * field and then apply a mask when accessed with a narrower
959 * access than actual ctx access size. A zero info.ctx_field_size
960 * will only allow for whole field access and rejects any other
961 * type of narrower access.
31fd8581 962 */
f96da094 963 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 964 *reg_type = info.reg_type;
31fd8581 965
32bbe007
AS
966 /* remember the offset of last byte accessed in ctx */
967 if (env->prog->aux->max_ctx_offset < off + size)
968 env->prog->aux->max_ctx_offset = off + size;
17a52670 969 return 0;
32bbe007 970 }
17a52670
AS
971
972 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
973 return -EACCES;
974}
975
4cabc5b1
DB
976static bool __is_pointer_value(bool allow_ptr_leaks,
977 const struct bpf_reg_state *reg)
1be7f75d 978{
4cabc5b1 979 if (allow_ptr_leaks)
1be7f75d
AS
980 return false;
981
f1174f77 982 return reg->type != SCALAR_VALUE;
1be7f75d
AS
983}
984
4cabc5b1
DB
985static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
986{
987 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
988}
989
79adffcd 990static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 991 int off, int size, bool strict)
969bf05e 992{
f1174f77 993 struct tnum reg_off;
e07b98d9 994 int ip_align;
d1174416
DM
995
996 /* Byte size accesses are always allowed. */
997 if (!strict || size == 1)
998 return 0;
999
e4eda884
DM
1000 /* For platforms that do not have a Kconfig enabling
1001 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1002 * NET_IP_ALIGN is universally set to '2'. And on platforms
1003 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1004 * to this code only in strict mode where we want to emulate
1005 * the NET_IP_ALIGN==2 checking. Therefore use an
1006 * unconditional IP align value of '2'.
e07b98d9 1007 */
e4eda884 1008 ip_align = 2;
f1174f77
EC
1009
1010 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1011 if (!tnum_is_aligned(reg_off, size)) {
1012 char tn_buf[48];
1013
1014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1015 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1016 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1017 return -EACCES;
1018 }
79adffcd 1019
969bf05e
AS
1020 return 0;
1021}
1022
f1174f77
EC
1023static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1024 const char *pointer_desc,
1025 int off, int size, bool strict)
79adffcd 1026{
f1174f77
EC
1027 struct tnum reg_off;
1028
1029 /* Byte size accesses are always allowed. */
1030 if (!strict || size == 1)
1031 return 0;
1032
1033 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1034 if (!tnum_is_aligned(reg_off, size)) {
1035 char tn_buf[48];
1036
1037 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1038 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1039 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1040 return -EACCES;
1041 }
1042
969bf05e
AS
1043 return 0;
1044}
1045
e07b98d9
DM
1046static int check_ptr_alignment(struct bpf_verifier_env *env,
1047 const struct bpf_reg_state *reg,
79adffcd
DB
1048 int off, int size)
1049{
e07b98d9 1050 bool strict = env->strict_alignment;
f1174f77 1051 const char *pointer_desc = "";
d1174416 1052
79adffcd
DB
1053 switch (reg->type) {
1054 case PTR_TO_PACKET:
f1174f77 1055 /* special case, because of NET_IP_ALIGN */
d1174416 1056 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1057 case PTR_TO_MAP_VALUE:
1058 pointer_desc = "value ";
1059 break;
1060 case PTR_TO_CTX:
1061 pointer_desc = "context ";
1062 break;
1063 case PTR_TO_STACK:
1064 pointer_desc = "stack ";
1065 break;
79adffcd 1066 default:
f1174f77 1067 break;
79adffcd 1068 }
f1174f77 1069 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1070}
1071
17a52670
AS
1072/* check whether memory at (regno + off) is accessible for t = (read | write)
1073 * if t==write, value_regno is a register which value is stored into memory
1074 * if t==read, value_regno is a register which will receive the value from memory
1075 * if t==write && value_regno==-1, some unknown value is stored into memory
1076 * if t==read && value_regno==-1, don't care what we read from memory
1077 */
31fd8581 1078static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1079 int bpf_size, enum bpf_access_type t,
1080 int value_regno)
1081{
58e2af8b
JK
1082 struct bpf_verifier_state *state = &env->cur_state;
1083 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1084 int size, err = 0;
1085
1086 size = bpf_size_to_bytes(bpf_size);
1087 if (size < 0)
1088 return size;
1089
f1174f77 1090 /* alignment checks will add in reg->off themselves */
e07b98d9 1091 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1092 if (err)
1093 return err;
17a52670 1094
f1174f77
EC
1095 /* for access checks, reg->off is just part of off */
1096 off += reg->off;
1097
1098 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1099 if (t == BPF_WRITE && value_regno >= 0 &&
1100 is_pointer_value(env, value_regno)) {
1101 verbose("R%d leaks addr into map\n", value_regno);
1102 return -EACCES;
1103 }
48461135 1104
f1174f77 1105 err = check_map_access(env, regno, off, size);
17a52670 1106 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1107 mark_reg_unknown(state->regs, value_regno);
17a52670 1108
1a0dc1ac 1109 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1110 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1111
1be7f75d
AS
1112 if (t == BPF_WRITE && value_regno >= 0 &&
1113 is_pointer_value(env, value_regno)) {
1114 verbose("R%d leaks addr into ctx\n", value_regno);
1115 return -EACCES;
1116 }
f1174f77
EC
1117 /* ctx accesses must be at a fixed offset, so that we can
1118 * determine what type of data were returned.
1119 */
1120 if (!tnum_is_const(reg->var_off)) {
1121 char tn_buf[48];
1122
1123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1124 verbose("variable ctx access var_off=%s off=%d size=%d",
1125 tn_buf, off, size);
1126 return -EACCES;
1127 }
1128 off += reg->var_off.value;
31fd8581 1129 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1130 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77
EC
1131 /* ctx access returns either a scalar, or a
1132 * PTR_TO_PACKET[_END]. In the latter case, we know
1133 * the offset is zero.
1134 */
1135 if (reg_type == SCALAR_VALUE)
1136 mark_reg_unknown(state->regs, value_regno);
1137 else
1138 mark_reg_known_zero(state->regs, value_regno);
1139 state->regs[value_regno].id = 0;
1140 state->regs[value_regno].off = 0;
1141 state->regs[value_regno].range = 0;
1955351d 1142 state->regs[value_regno].type = reg_type;
969bf05e 1143 }
17a52670 1144
f1174f77
EC
1145 } else if (reg->type == PTR_TO_STACK) {
1146 /* stack accesses must be at a fixed offset, so that we can
1147 * determine what type of data were returned.
1148 * See check_stack_read().
1149 */
1150 if (!tnum_is_const(reg->var_off)) {
1151 char tn_buf[48];
1152
1153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1154 verbose("variable stack access var_off=%s off=%d size=%d",
1155 tn_buf, off, size);
1156 return -EACCES;
1157 }
1158 off += reg->var_off.value;
17a52670
AS
1159 if (off >= 0 || off < -MAX_BPF_STACK) {
1160 verbose("invalid stack off=%d size=%d\n", off, size);
1161 return -EACCES;
1162 }
8726679a
AS
1163
1164 if (env->prog->aux->stack_depth < -off)
1165 env->prog->aux->stack_depth = -off;
1166
1be7f75d
AS
1167 if (t == BPF_WRITE) {
1168 if (!env->allow_ptr_leaks &&
1169 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1170 size != BPF_REG_SIZE) {
1171 verbose("attempt to corrupt spilled pointer on stack\n");
1172 return -EACCES;
1173 }
17a52670 1174 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1175 } else {
17a52670 1176 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1177 }
f1174f77 1178 } else if (reg->type == PTR_TO_PACKET) {
3a0af8fd 1179 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1180 verbose("cannot write into packet\n");
1181 return -EACCES;
1182 }
4acf6c0b
BB
1183 if (t == BPF_WRITE && value_regno >= 0 &&
1184 is_pointer_value(env, value_regno)) {
1185 verbose("R%d leaks addr into packet\n", value_regno);
1186 return -EACCES;
1187 }
969bf05e
AS
1188 err = check_packet_access(env, regno, off, size);
1189 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1190 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1191 } else {
1192 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1193 regno, reg_type_str[reg->type]);
17a52670
AS
1194 return -EACCES;
1195 }
969bf05e 1196
f1174f77
EC
1197 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1198 state->regs[value_regno].type == SCALAR_VALUE) {
1199 /* b/h/w load zero-extends, mark upper bits as known 0 */
1200 state->regs[value_regno].var_off = tnum_cast(
1201 state->regs[value_regno].var_off, size);
b03c9f9f 1202 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1203 }
17a52670
AS
1204 return err;
1205}
1206
31fd8581 1207static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1208{
17a52670
AS
1209 int err;
1210
1211 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1212 insn->imm != 0) {
1213 verbose("BPF_XADD uses reserved fields\n");
1214 return -EINVAL;
1215 }
1216
1217 /* check src1 operand */
dc503a8a 1218 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1219 if (err)
1220 return err;
1221
1222 /* check src2 operand */
dc503a8a 1223 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1224 if (err)
1225 return err;
1226
6bdf6abc
DB
1227 if (is_pointer_value(env, insn->src_reg)) {
1228 verbose("R%d leaks addr into mem\n", insn->src_reg);
1229 return -EACCES;
1230 }
1231
17a52670 1232 /* check whether atomic_add can read the memory */
31fd8581 1233 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1234 BPF_SIZE(insn->code), BPF_READ, -1);
1235 if (err)
1236 return err;
1237
1238 /* check whether atomic_add can write into the same memory */
31fd8581 1239 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1240 BPF_SIZE(insn->code), BPF_WRITE, -1);
1241}
1242
f1174f77
EC
1243/* Does this register contain a constant zero? */
1244static bool register_is_null(struct bpf_reg_state reg)
1245{
1246 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1247}
1248
17a52670
AS
1249/* when register 'regno' is passed into function that will read 'access_size'
1250 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1251 * and all elements of stack are initialized.
1252 * Unlike most pointer bounds-checking functions, this one doesn't take an
1253 * 'off' argument, so it has to add in reg->off itself.
17a52670 1254 */
58e2af8b 1255static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1256 int access_size, bool zero_size_allowed,
1257 struct bpf_call_arg_meta *meta)
17a52670 1258{
58e2af8b
JK
1259 struct bpf_verifier_state *state = &env->cur_state;
1260 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1261 int off, i;
1262
8e2fe1d9 1263 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1264 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1265 if (zero_size_allowed && access_size == 0 &&
f1174f77 1266 register_is_null(regs[regno]))
8e2fe1d9
DB
1267 return 0;
1268
1269 verbose("R%d type=%s expected=%s\n", regno,
1270 reg_type_str[regs[regno].type],
1271 reg_type_str[PTR_TO_STACK]);
17a52670 1272 return -EACCES;
8e2fe1d9 1273 }
17a52670 1274
f1174f77
EC
1275 /* Only allow fixed-offset stack reads */
1276 if (!tnum_is_const(regs[regno].var_off)) {
1277 char tn_buf[48];
1278
1279 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1280 verbose("invalid variable stack read R%d var_off=%s\n",
1281 regno, tn_buf);
1282 }
1283 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1284 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1285 access_size <= 0) {
1286 verbose("invalid stack type R%d off=%d access_size=%d\n",
1287 regno, off, access_size);
1288 return -EACCES;
1289 }
1290
8726679a
AS
1291 if (env->prog->aux->stack_depth < -off)
1292 env->prog->aux->stack_depth = -off;
1293
435faee1
DB
1294 if (meta && meta->raw_mode) {
1295 meta->access_size = access_size;
1296 meta->regno = regno;
1297 return 0;
1298 }
1299
17a52670 1300 for (i = 0; i < access_size; i++) {
9c399760 1301 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1302 verbose("invalid indirect read from stack off %d+%d size %d\n",
1303 off, i, access_size);
1304 return -EACCES;
1305 }
1306 }
1307 return 0;
1308}
1309
06c1c049
GB
1310static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1311 int access_size, bool zero_size_allowed,
1312 struct bpf_call_arg_meta *meta)
1313{
f1174f77 1314 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1315
f1174f77 1316 switch (reg->type) {
06c1c049 1317 case PTR_TO_PACKET:
f1174f77 1318 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1319 case PTR_TO_MAP_VALUE:
f1174f77
EC
1320 return check_map_access(env, regno, reg->off, access_size);
1321 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1322 return check_stack_boundary(env, regno, access_size,
1323 zero_size_allowed, meta);
1324 }
1325}
1326
58e2af8b 1327static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1328 enum bpf_arg_type arg_type,
1329 struct bpf_call_arg_meta *meta)
17a52670 1330{
58e2af8b 1331 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1332 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1333 int err = 0;
1334
80f1d68c 1335 if (arg_type == ARG_DONTCARE)
17a52670
AS
1336 return 0;
1337
dc503a8a
EC
1338 err = check_reg_arg(env, regno, SRC_OP);
1339 if (err)
1340 return err;
17a52670 1341
1be7f75d
AS
1342 if (arg_type == ARG_ANYTHING) {
1343 if (is_pointer_value(env, regno)) {
1344 verbose("R%d leaks addr into helper function\n", regno);
1345 return -EACCES;
1346 }
80f1d68c 1347 return 0;
1be7f75d 1348 }
80f1d68c 1349
3a0af8fd
TG
1350 if (type == PTR_TO_PACKET &&
1351 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1352 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1353 return -EACCES;
1354 }
1355
8e2fe1d9 1356 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1357 arg_type == ARG_PTR_TO_MAP_VALUE) {
1358 expected_type = PTR_TO_STACK;
6841de8b
AS
1359 if (type != PTR_TO_PACKET && type != expected_type)
1360 goto err_type;
39f19ebb
AS
1361 } else if (arg_type == ARG_CONST_SIZE ||
1362 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1363 expected_type = SCALAR_VALUE;
1364 if (type != expected_type)
6841de8b 1365 goto err_type;
17a52670
AS
1366 } else if (arg_type == ARG_CONST_MAP_PTR) {
1367 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1368 if (type != expected_type)
1369 goto err_type;
608cd71a
AS
1370 } else if (arg_type == ARG_PTR_TO_CTX) {
1371 expected_type = PTR_TO_CTX;
6841de8b
AS
1372 if (type != expected_type)
1373 goto err_type;
39f19ebb
AS
1374 } else if (arg_type == ARG_PTR_TO_MEM ||
1375 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1376 expected_type = PTR_TO_STACK;
1377 /* One exception here. In case function allows for NULL to be
f1174f77 1378 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1379 * happens during stack boundary checking.
1380 */
f1174f77 1381 if (register_is_null(*reg))
6841de8b 1382 /* final test in check_stack_boundary() */;
5722569b 1383 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
f1174f77 1384 type != expected_type)
6841de8b 1385 goto err_type;
39f19ebb 1386 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1387 } else {
1388 verbose("unsupported arg_type %d\n", arg_type);
1389 return -EFAULT;
1390 }
1391
17a52670
AS
1392 if (arg_type == ARG_CONST_MAP_PTR) {
1393 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1394 meta->map_ptr = reg->map_ptr;
17a52670
AS
1395 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1396 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1397 * check that [key, key + map->key_size) are within
1398 * stack limits and initialized
1399 */
33ff9823 1400 if (!meta->map_ptr) {
17a52670
AS
1401 /* in function declaration map_ptr must come before
1402 * map_key, so that it's verified and known before
1403 * we have to check map_key here. Otherwise it means
1404 * that kernel subsystem misconfigured verifier
1405 */
1406 verbose("invalid map_ptr to access map->key\n");
1407 return -EACCES;
1408 }
6841de8b 1409 if (type == PTR_TO_PACKET)
f1174f77 1410 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1411 meta->map_ptr->key_size);
1412 else
1413 err = check_stack_boundary(env, regno,
1414 meta->map_ptr->key_size,
1415 false, NULL);
17a52670
AS
1416 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1417 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1418 * check [value, value + map->value_size) validity
1419 */
33ff9823 1420 if (!meta->map_ptr) {
17a52670
AS
1421 /* kernel subsystem misconfigured verifier */
1422 verbose("invalid map_ptr to access map->value\n");
1423 return -EACCES;
1424 }
6841de8b 1425 if (type == PTR_TO_PACKET)
f1174f77 1426 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1427 meta->map_ptr->value_size);
1428 else
1429 err = check_stack_boundary(env, regno,
1430 meta->map_ptr->value_size,
1431 false, NULL);
39f19ebb
AS
1432 } else if (arg_type == ARG_CONST_SIZE ||
1433 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1434 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1435
17a52670
AS
1436 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1437 * from stack pointer 'buf'. Check it
1438 * note: regno == len, regno - 1 == buf
1439 */
1440 if (regno == 0) {
1441 /* kernel subsystem misconfigured verifier */
39f19ebb 1442 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1443 return -EACCES;
1444 }
06c1c049 1445
f1174f77
EC
1446 /* The register is SCALAR_VALUE; the access check
1447 * happens using its boundaries.
06c1c049 1448 */
f1174f77
EC
1449
1450 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1451 /* For unprivileged variable accesses, disable raw
1452 * mode so that the program is required to
1453 * initialize all the memory that the helper could
1454 * just partially fill up.
1455 */
1456 meta = NULL;
1457
b03c9f9f 1458 if (reg->smin_value < 0) {
f1174f77
EC
1459 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1460 regno);
1461 return -EACCES;
1462 }
06c1c049 1463
b03c9f9f 1464 if (reg->umin_value == 0) {
f1174f77
EC
1465 err = check_helper_mem_access(env, regno - 1, 0,
1466 zero_size_allowed,
1467 meta);
06c1c049
GB
1468 if (err)
1469 return err;
06c1c049 1470 }
f1174f77 1471
b03c9f9f 1472 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1473 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1474 regno);
1475 return -EACCES;
1476 }
1477 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1478 reg->umax_value,
f1174f77 1479 zero_size_allowed, meta);
17a52670
AS
1480 }
1481
1482 return err;
6841de8b
AS
1483err_type:
1484 verbose("R%d type=%s expected=%s\n", regno,
1485 reg_type_str[type], reg_type_str[expected_type]);
1486 return -EACCES;
17a52670
AS
1487}
1488
35578d79
KX
1489static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1490{
35578d79
KX
1491 if (!map)
1492 return 0;
1493
6aff67c8
AS
1494 /* We need a two way check, first is from map perspective ... */
1495 switch (map->map_type) {
1496 case BPF_MAP_TYPE_PROG_ARRAY:
1497 if (func_id != BPF_FUNC_tail_call)
1498 goto error;
1499 break;
1500 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1501 if (func_id != BPF_FUNC_perf_event_read &&
1502 func_id != BPF_FUNC_perf_event_output)
1503 goto error;
1504 break;
1505 case BPF_MAP_TYPE_STACK_TRACE:
1506 if (func_id != BPF_FUNC_get_stackid)
1507 goto error;
1508 break;
4ed8ec52 1509 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1510 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1511 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1512 goto error;
1513 break;
546ac1ff
JF
1514 /* devmap returns a pointer to a live net_device ifindex that we cannot
1515 * allow to be modified from bpf side. So do not allow lookup elements
1516 * for now.
1517 */
1518 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1519 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1520 goto error;
1521 break;
56f668df 1522 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1523 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1524 if (func_id != BPF_FUNC_map_lookup_elem)
1525 goto error;
174a79ff
JF
1526 case BPF_MAP_TYPE_SOCKMAP:
1527 if (func_id != BPF_FUNC_sk_redirect_map &&
1528 func_id != BPF_FUNC_sock_map_update &&
1529 func_id != BPF_FUNC_map_delete_elem)
1530 goto error;
1531 break;
6aff67c8
AS
1532 default:
1533 break;
1534 }
1535
1536 /* ... and second from the function itself. */
1537 switch (func_id) {
1538 case BPF_FUNC_tail_call:
1539 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1540 goto error;
1541 break;
1542 case BPF_FUNC_perf_event_read:
1543 case BPF_FUNC_perf_event_output:
1544 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1545 goto error;
1546 break;
1547 case BPF_FUNC_get_stackid:
1548 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1549 goto error;
1550 break;
60d20f91 1551 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1552 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1553 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1554 goto error;
1555 break;
97f91a7c
JF
1556 case BPF_FUNC_redirect_map:
1557 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1558 goto error;
1559 break;
174a79ff
JF
1560 case BPF_FUNC_sk_redirect_map:
1561 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1562 goto error;
1563 break;
1564 case BPF_FUNC_sock_map_update:
1565 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1566 goto error;
1567 break;
6aff67c8
AS
1568 default:
1569 break;
35578d79
KX
1570 }
1571
1572 return 0;
6aff67c8 1573error:
ebb676da
TG
1574 verbose("cannot pass map_type %d into func %s#%d\n",
1575 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1576 return -EINVAL;
35578d79
KX
1577}
1578
435faee1
DB
1579static int check_raw_mode(const struct bpf_func_proto *fn)
1580{
1581 int count = 0;
1582
39f19ebb 1583 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1584 count++;
39f19ebb 1585 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1586 count++;
39f19ebb 1587 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1588 count++;
39f19ebb 1589 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1590 count++;
39f19ebb 1591 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1592 count++;
1593
1594 return count > 1 ? -EINVAL : 0;
1595}
1596
f1174f77
EC
1597/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1598 * so turn them into unknown SCALAR_VALUE.
1599 */
58e2af8b 1600static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1601{
58e2af8b
JK
1602 struct bpf_verifier_state *state = &env->cur_state;
1603 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1604 int i;
1605
1606 for (i = 0; i < MAX_BPF_REG; i++)
1607 if (regs[i].type == PTR_TO_PACKET ||
1608 regs[i].type == PTR_TO_PACKET_END)
f1174f77 1609 mark_reg_unknown(regs, i);
969bf05e
AS
1610
1611 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1612 if (state->stack_slot_type[i] != STACK_SPILL)
1613 continue;
1614 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1615 if (reg->type != PTR_TO_PACKET &&
1616 reg->type != PTR_TO_PACKET_END)
1617 continue;
f1174f77 1618 __mark_reg_unknown(reg);
969bf05e
AS
1619 }
1620}
1621
81ed18ab 1622static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1623{
58e2af8b 1624 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1625 const struct bpf_func_proto *fn = NULL;
58e2af8b 1626 struct bpf_reg_state *regs = state->regs;
33ff9823 1627 struct bpf_call_arg_meta meta;
969bf05e 1628 bool changes_data;
17a52670
AS
1629 int i, err;
1630
1631 /* find function prototype */
1632 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1633 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1634 return -EINVAL;
1635 }
1636
1637 if (env->prog->aux->ops->get_func_proto)
1638 fn = env->prog->aux->ops->get_func_proto(func_id);
1639
1640 if (!fn) {
ebb676da 1641 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1642 return -EINVAL;
1643 }
1644
1645 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1646 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1647 verbose("cannot call GPL only function from proprietary program\n");
1648 return -EINVAL;
1649 }
1650
17bedab2 1651 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1652
33ff9823 1653 memset(&meta, 0, sizeof(meta));
36bbef52 1654 meta.pkt_access = fn->pkt_access;
33ff9823 1655
435faee1
DB
1656 /* We only support one arg being in raw mode at the moment, which
1657 * is sufficient for the helper functions we have right now.
1658 */
1659 err = check_raw_mode(fn);
1660 if (err) {
ebb676da
TG
1661 verbose("kernel subsystem misconfigured func %s#%d\n",
1662 func_id_name(func_id), func_id);
435faee1
DB
1663 return err;
1664 }
1665
17a52670 1666 /* check args */
33ff9823 1667 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1668 if (err)
1669 return err;
33ff9823 1670 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1671 if (err)
1672 return err;
33ff9823 1673 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1674 if (err)
1675 return err;
33ff9823 1676 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1677 if (err)
1678 return err;
33ff9823 1679 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1680 if (err)
1681 return err;
1682
435faee1
DB
1683 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1684 * is inferred from register state.
1685 */
1686 for (i = 0; i < meta.access_size; i++) {
31fd8581 1687 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1688 if (err)
1689 return err;
1690 }
1691
17a52670 1692 /* reset caller saved regs */
dc503a8a 1693 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 1694 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
1695 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1696 }
17a52670 1697
dc503a8a 1698 /* update return register (already marked as written above) */
17a52670 1699 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1700 /* sets type to SCALAR_VALUE */
1701 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1702 } else if (fn->ret_type == RET_VOID) {
1703 regs[BPF_REG_0].type = NOT_INIT;
1704 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1705 struct bpf_insn_aux_data *insn_aux;
1706
17a52670 1707 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1708 /* There is no offset yet applied, variable or fixed */
1709 mark_reg_known_zero(regs, BPF_REG_0);
1710 regs[BPF_REG_0].off = 0;
17a52670
AS
1711 /* remember map_ptr, so that check_map_access()
1712 * can check 'value_size' boundary of memory access
1713 * to map element returned from bpf_map_lookup_elem()
1714 */
33ff9823 1715 if (meta.map_ptr == NULL) {
17a52670
AS
1716 verbose("kernel subsystem misconfigured verifier\n");
1717 return -EINVAL;
1718 }
33ff9823 1719 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1720 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1721 insn_aux = &env->insn_aux_data[insn_idx];
1722 if (!insn_aux->map_ptr)
1723 insn_aux->map_ptr = meta.map_ptr;
1724 else if (insn_aux->map_ptr != meta.map_ptr)
1725 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1726 } else {
ebb676da
TG
1727 verbose("unknown return type %d of func %s#%d\n",
1728 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1729 return -EINVAL;
1730 }
04fd61ab 1731
33ff9823 1732 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1733 if (err)
1734 return err;
04fd61ab 1735
969bf05e
AS
1736 if (changes_data)
1737 clear_all_pkt_pointers(env);
1738 return 0;
1739}
1740
f1174f77
EC
1741static void coerce_reg_to_32(struct bpf_reg_state *reg)
1742{
f1174f77
EC
1743 /* clear high 32 bits */
1744 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1745 /* Update bounds */
1746 __update_reg_bounds(reg);
1747}
1748
1749static bool signed_add_overflows(s64 a, s64 b)
1750{
1751 /* Do the add in u64, where overflow is well-defined */
1752 s64 res = (s64)((u64)a + (u64)b);
1753
1754 if (b < 0)
1755 return res > a;
1756 return res < a;
1757}
1758
1759static bool signed_sub_overflows(s64 a, s64 b)
1760{
1761 /* Do the sub in u64, where overflow is well-defined */
1762 s64 res = (s64)((u64)a - (u64)b);
1763
1764 if (b < 0)
1765 return res < a;
1766 return res > a;
969bf05e
AS
1767}
1768
f1174f77 1769/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1770 * Caller should also handle BPF_MOV case separately.
1771 * If we return -EACCES, caller may want to try again treating pointer as a
1772 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1773 */
1774static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1775 struct bpf_insn *insn,
1776 const struct bpf_reg_state *ptr_reg,
1777 const struct bpf_reg_state *off_reg)
969bf05e 1778{
f1174f77
EC
1779 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1780 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1781 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1782 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1783 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1784 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1785 u8 opcode = BPF_OP(insn->code);
f1174f77 1786 u32 dst = insn->dst_reg;
969bf05e 1787
f1174f77 1788 dst_reg = &regs[dst];
969bf05e 1789
b03c9f9f 1790 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1791 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1792 verbose("verifier internal error: known but bad sbounds\n");
1793 return -EINVAL;
1794 }
1795 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1796 print_verifier_state(&env->cur_state);
1797 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1798 return -EINVAL;
1799 }
1800
1801 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1802 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1803 if (!env->allow_ptr_leaks)
1804 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1805 dst);
1806 return -EACCES;
969bf05e
AS
1807 }
1808
f1174f77
EC
1809 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1810 if (!env->allow_ptr_leaks)
1811 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1812 dst);
1813 return -EACCES;
1814 }
1815 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1816 if (!env->allow_ptr_leaks)
1817 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1818 dst);
1819 return -EACCES;
1820 }
1821 if (ptr_reg->type == PTR_TO_PACKET_END) {
1822 if (!env->allow_ptr_leaks)
1823 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1824 dst);
1825 return -EACCES;
1826 }
1827
1828 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1829 * The id may be overwritten later if we create a new variable offset.
969bf05e 1830 */
f1174f77
EC
1831 dst_reg->type = ptr_reg->type;
1832 dst_reg->id = ptr_reg->id;
969bf05e 1833
f1174f77
EC
1834 switch (opcode) {
1835 case BPF_ADD:
1836 /* We can take a fixed offset as long as it doesn't overflow
1837 * the s32 'off' field
969bf05e 1838 */
b03c9f9f
EC
1839 if (known && (ptr_reg->off + smin_val ==
1840 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1841 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1842 dst_reg->smin_value = smin_ptr;
1843 dst_reg->smax_value = smax_ptr;
1844 dst_reg->umin_value = umin_ptr;
1845 dst_reg->umax_value = umax_ptr;
f1174f77 1846 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1847 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1848 dst_reg->range = ptr_reg->range;
1849 break;
1850 }
f1174f77
EC
1851 /* A new variable offset is created. Note that off_reg->off
1852 * == 0, since it's a scalar.
1853 * dst_reg gets the pointer type and since some positive
1854 * integer value was added to the pointer, give it a new 'id'
1855 * if it's a PTR_TO_PACKET.
1856 * this creates a new 'base' pointer, off_reg (variable) gets
1857 * added into the variable offset, and we copy the fixed offset
1858 * from ptr_reg.
969bf05e 1859 */
b03c9f9f
EC
1860 if (signed_add_overflows(smin_ptr, smin_val) ||
1861 signed_add_overflows(smax_ptr, smax_val)) {
1862 dst_reg->smin_value = S64_MIN;
1863 dst_reg->smax_value = S64_MAX;
1864 } else {
1865 dst_reg->smin_value = smin_ptr + smin_val;
1866 dst_reg->smax_value = smax_ptr + smax_val;
1867 }
1868 if (umin_ptr + umin_val < umin_ptr ||
1869 umax_ptr + umax_val < umax_ptr) {
1870 dst_reg->umin_value = 0;
1871 dst_reg->umax_value = U64_MAX;
1872 } else {
1873 dst_reg->umin_value = umin_ptr + umin_val;
1874 dst_reg->umax_value = umax_ptr + umax_val;
1875 }
f1174f77
EC
1876 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1877 dst_reg->off = ptr_reg->off;
1878 if (ptr_reg->type == PTR_TO_PACKET) {
1879 dst_reg->id = ++env->id_gen;
1880 /* something was added to pkt_ptr, set range to zero */
1881 dst_reg->range = 0;
1882 }
1883 break;
1884 case BPF_SUB:
1885 if (dst_reg == off_reg) {
1886 /* scalar -= pointer. Creates an unknown scalar */
1887 if (!env->allow_ptr_leaks)
1888 verbose("R%d tried to subtract pointer from scalar\n",
1889 dst);
1890 return -EACCES;
1891 }
1892 /* We don't allow subtraction from FP, because (according to
1893 * test_verifier.c test "invalid fp arithmetic", JITs might not
1894 * be able to deal with it.
969bf05e 1895 */
f1174f77
EC
1896 if (ptr_reg->type == PTR_TO_STACK) {
1897 if (!env->allow_ptr_leaks)
1898 verbose("R%d subtraction from stack pointer prohibited\n",
1899 dst);
1900 return -EACCES;
1901 }
b03c9f9f
EC
1902 if (known && (ptr_reg->off - smin_val ==
1903 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1904 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1905 dst_reg->smin_value = smin_ptr;
1906 dst_reg->smax_value = smax_ptr;
1907 dst_reg->umin_value = umin_ptr;
1908 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1909 dst_reg->var_off = ptr_reg->var_off;
1910 dst_reg->id = ptr_reg->id;
b03c9f9f 1911 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1912 dst_reg->range = ptr_reg->range;
1913 break;
1914 }
f1174f77
EC
1915 /* A new variable offset is created. If the subtrahend is known
1916 * nonnegative, then any reg->range we had before is still good.
969bf05e 1917 */
b03c9f9f
EC
1918 if (signed_sub_overflows(smin_ptr, smax_val) ||
1919 signed_sub_overflows(smax_ptr, smin_val)) {
1920 /* Overflow possible, we know nothing */
1921 dst_reg->smin_value = S64_MIN;
1922 dst_reg->smax_value = S64_MAX;
1923 } else {
1924 dst_reg->smin_value = smin_ptr - smax_val;
1925 dst_reg->smax_value = smax_ptr - smin_val;
1926 }
1927 if (umin_ptr < umax_val) {
1928 /* Overflow possible, we know nothing */
1929 dst_reg->umin_value = 0;
1930 dst_reg->umax_value = U64_MAX;
1931 } else {
1932 /* Cannot overflow (as long as bounds are consistent) */
1933 dst_reg->umin_value = umin_ptr - umax_val;
1934 dst_reg->umax_value = umax_ptr - umin_val;
1935 }
f1174f77
EC
1936 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1937 dst_reg->off = ptr_reg->off;
1938 if (ptr_reg->type == PTR_TO_PACKET) {
1939 dst_reg->id = ++env->id_gen;
1940 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1941 if (smin_val < 0)
f1174f77 1942 dst_reg->range = 0;
43188702 1943 }
f1174f77
EC
1944 break;
1945 case BPF_AND:
1946 case BPF_OR:
1947 case BPF_XOR:
1948 /* bitwise ops on pointers are troublesome, prohibit for now.
1949 * (However, in principle we could allow some cases, e.g.
1950 * ptr &= ~3 which would reduce min_value by 3.)
1951 */
1952 if (!env->allow_ptr_leaks)
1953 verbose("R%d bitwise operator %s on pointer prohibited\n",
1954 dst, bpf_alu_string[opcode >> 4]);
1955 return -EACCES;
1956 default:
1957 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1958 if (!env->allow_ptr_leaks)
1959 verbose("R%d pointer arithmetic with %s operator prohibited\n",
1960 dst, bpf_alu_string[opcode >> 4]);
1961 return -EACCES;
43188702
JF
1962 }
1963
b03c9f9f
EC
1964 __update_reg_bounds(dst_reg);
1965 __reg_deduce_bounds(dst_reg);
1966 __reg_bound_offset(dst_reg);
43188702
JF
1967 return 0;
1968}
1969
f1174f77
EC
1970static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1971 struct bpf_insn *insn,
1972 struct bpf_reg_state *dst_reg,
1973 struct bpf_reg_state src_reg)
969bf05e 1974{
58e2af8b 1975 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1976 u8 opcode = BPF_OP(insn->code);
f1174f77 1977 bool src_known, dst_known;
b03c9f9f
EC
1978 s64 smin_val, smax_val;
1979 u64 umin_val, umax_val;
48461135 1980
f1174f77
EC
1981 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1982 /* 32-bit ALU ops are (32,32)->64 */
1983 coerce_reg_to_32(dst_reg);
1984 coerce_reg_to_32(&src_reg);
9305706c 1985 }
b03c9f9f
EC
1986 smin_val = src_reg.smin_value;
1987 smax_val = src_reg.smax_value;
1988 umin_val = src_reg.umin_value;
1989 umax_val = src_reg.umax_value;
f1174f77
EC
1990 src_known = tnum_is_const(src_reg.var_off);
1991 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1992
48461135
JB
1993 switch (opcode) {
1994 case BPF_ADD:
b03c9f9f
EC
1995 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1996 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1997 dst_reg->smin_value = S64_MIN;
1998 dst_reg->smax_value = S64_MAX;
1999 } else {
2000 dst_reg->smin_value += smin_val;
2001 dst_reg->smax_value += smax_val;
2002 }
2003 if (dst_reg->umin_value + umin_val < umin_val ||
2004 dst_reg->umax_value + umax_val < umax_val) {
2005 dst_reg->umin_value = 0;
2006 dst_reg->umax_value = U64_MAX;
2007 } else {
2008 dst_reg->umin_value += umin_val;
2009 dst_reg->umax_value += umax_val;
2010 }
f1174f77 2011 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2012 break;
2013 case BPF_SUB:
b03c9f9f
EC
2014 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2015 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2016 /* Overflow possible, we know nothing */
2017 dst_reg->smin_value = S64_MIN;
2018 dst_reg->smax_value = S64_MAX;
2019 } else {
2020 dst_reg->smin_value -= smax_val;
2021 dst_reg->smax_value -= smin_val;
2022 }
2023 if (dst_reg->umin_value < umax_val) {
2024 /* Overflow possible, we know nothing */
2025 dst_reg->umin_value = 0;
2026 dst_reg->umax_value = U64_MAX;
2027 } else {
2028 /* Cannot overflow (as long as bounds are consistent) */
2029 dst_reg->umin_value -= umax_val;
2030 dst_reg->umax_value -= umin_val;
2031 }
f1174f77 2032 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2033 break;
2034 case BPF_MUL:
b03c9f9f
EC
2035 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2036 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2037 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2038 __mark_reg_unbounded(dst_reg);
2039 __update_reg_bounds(dst_reg);
f1174f77
EC
2040 break;
2041 }
b03c9f9f
EC
2042 /* Both values are positive, so we can work with unsigned and
2043 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2044 */
b03c9f9f
EC
2045 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2046 /* Potential overflow, we know nothing */
2047 __mark_reg_unbounded(dst_reg);
2048 /* (except what we can learn from the var_off) */
2049 __update_reg_bounds(dst_reg);
2050 break;
2051 }
2052 dst_reg->umin_value *= umin_val;
2053 dst_reg->umax_value *= umax_val;
2054 if (dst_reg->umax_value > S64_MAX) {
2055 /* Overflow possible, we know nothing */
2056 dst_reg->smin_value = S64_MIN;
2057 dst_reg->smax_value = S64_MAX;
2058 } else {
2059 dst_reg->smin_value = dst_reg->umin_value;
2060 dst_reg->smax_value = dst_reg->umax_value;
2061 }
48461135
JB
2062 break;
2063 case BPF_AND:
f1174f77 2064 if (src_known && dst_known) {
b03c9f9f
EC
2065 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2066 src_reg.var_off.value);
f1174f77
EC
2067 break;
2068 }
b03c9f9f
EC
2069 /* We get our minimum from the var_off, since that's inherently
2070 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2071 */
f1174f77 2072 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2073 dst_reg->umin_value = dst_reg->var_off.value;
2074 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2075 if (dst_reg->smin_value < 0 || smin_val < 0) {
2076 /* Lose signed bounds when ANDing negative numbers,
2077 * ain't nobody got time for that.
2078 */
2079 dst_reg->smin_value = S64_MIN;
2080 dst_reg->smax_value = S64_MAX;
2081 } else {
2082 /* ANDing two positives gives a positive, so safe to
2083 * cast result into s64.
2084 */
2085 dst_reg->smin_value = dst_reg->umin_value;
2086 dst_reg->smax_value = dst_reg->umax_value;
2087 }
2088 /* We may learn something more from the var_off */
2089 __update_reg_bounds(dst_reg);
f1174f77
EC
2090 break;
2091 case BPF_OR:
2092 if (src_known && dst_known) {
b03c9f9f
EC
2093 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2094 src_reg.var_off.value);
f1174f77
EC
2095 break;
2096 }
b03c9f9f
EC
2097 /* We get our maximum from the var_off, and our minimum is the
2098 * maximum of the operands' minima
f1174f77
EC
2099 */
2100 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2101 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2102 dst_reg->umax_value = dst_reg->var_off.value |
2103 dst_reg->var_off.mask;
2104 if (dst_reg->smin_value < 0 || smin_val < 0) {
2105 /* Lose signed bounds when ORing negative numbers,
2106 * ain't nobody got time for that.
2107 */
2108 dst_reg->smin_value = S64_MIN;
2109 dst_reg->smax_value = S64_MAX;
f1174f77 2110 } else {
b03c9f9f
EC
2111 /* ORing two positives gives a positive, so safe to
2112 * cast result into s64.
2113 */
2114 dst_reg->smin_value = dst_reg->umin_value;
2115 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2116 }
b03c9f9f
EC
2117 /* We may learn something more from the var_off */
2118 __update_reg_bounds(dst_reg);
48461135
JB
2119 break;
2120 case BPF_LSH:
b03c9f9f
EC
2121 if (umax_val > 63) {
2122 /* Shifts greater than 63 are undefined. This includes
2123 * shifts by a negative number.
2124 */
f1174f77
EC
2125 mark_reg_unknown(regs, insn->dst_reg);
2126 break;
2127 }
b03c9f9f
EC
2128 /* We lose all sign bit information (except what we can pick
2129 * up from var_off)
48461135 2130 */
b03c9f9f
EC
2131 dst_reg->smin_value = S64_MIN;
2132 dst_reg->smax_value = S64_MAX;
2133 /* If we might shift our top bit out, then we know nothing */
2134 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2135 dst_reg->umin_value = 0;
2136 dst_reg->umax_value = U64_MAX;
d1174416 2137 } else {
b03c9f9f
EC
2138 dst_reg->umin_value <<= umin_val;
2139 dst_reg->umax_value <<= umax_val;
d1174416 2140 }
b03c9f9f
EC
2141 if (src_known)
2142 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2143 else
2144 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2145 /* We may learn something more from the var_off */
2146 __update_reg_bounds(dst_reg);
48461135
JB
2147 break;
2148 case BPF_RSH:
b03c9f9f
EC
2149 if (umax_val > 63) {
2150 /* Shifts greater than 63 are undefined. This includes
2151 * shifts by a negative number.
2152 */
f1174f77
EC
2153 mark_reg_unknown(regs, insn->dst_reg);
2154 break;
2155 }
2156 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2157 if (dst_reg->smin_value < 0) {
2158 if (umin_val) {
f1174f77 2159 /* Sign bit will be cleared */
b03c9f9f
EC
2160 dst_reg->smin_value = 0;
2161 } else {
2162 /* Lost sign bit information */
2163 dst_reg->smin_value = S64_MIN;
2164 dst_reg->smax_value = S64_MAX;
2165 }
d1174416 2166 } else {
b03c9f9f
EC
2167 dst_reg->smin_value =
2168 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2169 }
f1174f77 2170 if (src_known)
b03c9f9f
EC
2171 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2172 umin_val);
f1174f77 2173 else
b03c9f9f
EC
2174 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2175 dst_reg->umin_value >>= umax_val;
2176 dst_reg->umax_value >>= umin_val;
2177 /* We may learn something more from the var_off */
2178 __update_reg_bounds(dst_reg);
48461135
JB
2179 break;
2180 default:
f1174f77 2181 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2182 break;
2183 }
2184
b03c9f9f
EC
2185 __reg_deduce_bounds(dst_reg);
2186 __reg_bound_offset(dst_reg);
f1174f77
EC
2187 return 0;
2188}
2189
2190/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2191 * and var_off.
2192 */
2193static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2194 struct bpf_insn *insn)
2195{
2196 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2197 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2198 u8 opcode = BPF_OP(insn->code);
2199 int rc;
2200
2201 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2202 src_reg = NULL;
2203 if (dst_reg->type != SCALAR_VALUE)
2204 ptr_reg = dst_reg;
2205 if (BPF_SRC(insn->code) == BPF_X) {
2206 src_reg = &regs[insn->src_reg];
f1174f77
EC
2207 if (src_reg->type != SCALAR_VALUE) {
2208 if (dst_reg->type != SCALAR_VALUE) {
2209 /* Combining two pointers by any ALU op yields
2210 * an arbitrary scalar.
2211 */
2212 if (!env->allow_ptr_leaks) {
2213 verbose("R%d pointer %s pointer prohibited\n",
2214 insn->dst_reg,
2215 bpf_alu_string[opcode >> 4]);
2216 return -EACCES;
2217 }
2218 mark_reg_unknown(regs, insn->dst_reg);
2219 return 0;
2220 } else {
2221 /* scalar += pointer
2222 * This is legal, but we have to reverse our
2223 * src/dest handling in computing the range
2224 */
2225 rc = adjust_ptr_min_max_vals(env, insn,
2226 src_reg, dst_reg);
2227 if (rc == -EACCES && env->allow_ptr_leaks) {
2228 /* scalar += unknown scalar */
2229 __mark_reg_unknown(&off_reg);
2230 return adjust_scalar_min_max_vals(
2231 env, insn,
2232 dst_reg, off_reg);
2233 }
2234 return rc;
2235 }
2236 } else if (ptr_reg) {
2237 /* pointer += scalar */
2238 rc = adjust_ptr_min_max_vals(env, insn,
2239 dst_reg, src_reg);
2240 if (rc == -EACCES && env->allow_ptr_leaks) {
2241 /* unknown scalar += scalar */
2242 __mark_reg_unknown(dst_reg);
2243 return adjust_scalar_min_max_vals(
2244 env, insn, dst_reg, *src_reg);
2245 }
2246 return rc;
2247 }
2248 } else {
2249 /* Pretend the src is a reg with a known value, since we only
2250 * need to be able to read from this state.
2251 */
2252 off_reg.type = SCALAR_VALUE;
b03c9f9f 2253 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2254 src_reg = &off_reg;
f1174f77
EC
2255 if (ptr_reg) { /* pointer += K */
2256 rc = adjust_ptr_min_max_vals(env, insn,
2257 ptr_reg, src_reg);
2258 if (rc == -EACCES && env->allow_ptr_leaks) {
2259 /* unknown scalar += K */
2260 __mark_reg_unknown(dst_reg);
2261 return adjust_scalar_min_max_vals(
2262 env, insn, dst_reg, off_reg);
2263 }
2264 return rc;
2265 }
2266 }
2267
2268 /* Got here implies adding two SCALAR_VALUEs */
2269 if (WARN_ON_ONCE(ptr_reg)) {
2270 print_verifier_state(&env->cur_state);
2271 verbose("verifier internal error: unexpected ptr_reg\n");
2272 return -EINVAL;
2273 }
2274 if (WARN_ON(!src_reg)) {
2275 print_verifier_state(&env->cur_state);
2276 verbose("verifier internal error: no src_reg\n");
2277 return -EINVAL;
2278 }
2279 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2280}
2281
17a52670 2282/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2283static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2284{
f1174f77 2285 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2286 u8 opcode = BPF_OP(insn->code);
2287 int err;
2288
2289 if (opcode == BPF_END || opcode == BPF_NEG) {
2290 if (opcode == BPF_NEG) {
2291 if (BPF_SRC(insn->code) != 0 ||
2292 insn->src_reg != BPF_REG_0 ||
2293 insn->off != 0 || insn->imm != 0) {
2294 verbose("BPF_NEG uses reserved fields\n");
2295 return -EINVAL;
2296 }
2297 } else {
2298 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2299 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
2300 verbose("BPF_END uses reserved fields\n");
2301 return -EINVAL;
2302 }
2303 }
2304
2305 /* check src operand */
dc503a8a 2306 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2307 if (err)
2308 return err;
2309
1be7f75d
AS
2310 if (is_pointer_value(env, insn->dst_reg)) {
2311 verbose("R%d pointer arithmetic prohibited\n",
2312 insn->dst_reg);
2313 return -EACCES;
2314 }
2315
17a52670 2316 /* check dest operand */
dc503a8a 2317 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2318 if (err)
2319 return err;
2320
2321 } else if (opcode == BPF_MOV) {
2322
2323 if (BPF_SRC(insn->code) == BPF_X) {
2324 if (insn->imm != 0 || insn->off != 0) {
2325 verbose("BPF_MOV uses reserved fields\n");
2326 return -EINVAL;
2327 }
2328
2329 /* check src operand */
dc503a8a 2330 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2331 if (err)
2332 return err;
2333 } else {
2334 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2335 verbose("BPF_MOV uses reserved fields\n");
2336 return -EINVAL;
2337 }
2338 }
2339
2340 /* check dest operand */
dc503a8a 2341 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2342 if (err)
2343 return err;
2344
2345 if (BPF_SRC(insn->code) == BPF_X) {
2346 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2347 /* case: R1 = R2
2348 * copy register state to dest reg
2349 */
2350 regs[insn->dst_reg] = regs[insn->src_reg];
2351 } else {
f1174f77 2352 /* R1 = (u32) R2 */
1be7f75d
AS
2353 if (is_pointer_value(env, insn->src_reg)) {
2354 verbose("R%d partial copy of pointer\n",
2355 insn->src_reg);
2356 return -EACCES;
2357 }
f1174f77 2358 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2359 /* high 32 bits are known zero. */
f1174f77
EC
2360 regs[insn->dst_reg].var_off = tnum_cast(
2361 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2362 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2363 }
2364 } else {
2365 /* case: R = imm
2366 * remember the value we stored into this reg
2367 */
f1174f77 2368 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2369 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2370 }
2371
2372 } else if (opcode > BPF_END) {
2373 verbose("invalid BPF_ALU opcode %x\n", opcode);
2374 return -EINVAL;
2375
2376 } else { /* all other ALU ops: and, sub, xor, add, ... */
2377
17a52670
AS
2378 if (BPF_SRC(insn->code) == BPF_X) {
2379 if (insn->imm != 0 || insn->off != 0) {
2380 verbose("BPF_ALU uses reserved fields\n");
2381 return -EINVAL;
2382 }
2383 /* check src1 operand */
dc503a8a 2384 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2385 if (err)
2386 return err;
2387 } else {
2388 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2389 verbose("BPF_ALU uses reserved fields\n");
2390 return -EINVAL;
2391 }
2392 }
2393
2394 /* check src2 operand */
dc503a8a 2395 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2396 if (err)
2397 return err;
2398
2399 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2400 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2401 verbose("div by zero\n");
2402 return -EINVAL;
2403 }
2404
229394e8
RV
2405 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2406 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2407 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2408
2409 if (insn->imm < 0 || insn->imm >= size) {
2410 verbose("invalid shift %d\n", insn->imm);
2411 return -EINVAL;
2412 }
2413 }
2414
1a0dc1ac 2415 /* check dest operand */
dc503a8a 2416 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2417 if (err)
2418 return err;
2419
f1174f77 2420 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2421 }
2422
2423 return 0;
2424}
2425
58e2af8b
JK
2426static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2427 struct bpf_reg_state *dst_reg)
969bf05e 2428{
58e2af8b 2429 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2430 int i;
2d2be8ca 2431
f1174f77
EC
2432 if (dst_reg->off < 0)
2433 /* This doesn't give us any range */
2434 return;
2435
b03c9f9f
EC
2436 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2437 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2438 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2439 * than pkt_end, but that's because it's also less than pkt.
2440 */
2441 return;
2442
b4e432f1 2443 /* LLVM can generate four kind of checks:
2d2be8ca 2444 *
b4e432f1 2445 * Type 1/2:
2d2be8ca
DB
2446 *
2447 * r2 = r3;
2448 * r2 += 8;
2449 * if (r2 > pkt_end) goto <handle exception>
2450 * <access okay>
2451 *
b4e432f1
DB
2452 * r2 = r3;
2453 * r2 += 8;
2454 * if (r2 < pkt_end) goto <access okay>
2455 * <handle exception>
2456 *
2d2be8ca
DB
2457 * Where:
2458 * r2 == dst_reg, pkt_end == src_reg
2459 * r2=pkt(id=n,off=8,r=0)
2460 * r3=pkt(id=n,off=0,r=0)
2461 *
b4e432f1 2462 * Type 3/4:
2d2be8ca
DB
2463 *
2464 * r2 = r3;
2465 * r2 += 8;
2466 * if (pkt_end >= r2) goto <access okay>
2467 * <handle exception>
2468 *
b4e432f1
DB
2469 * r2 = r3;
2470 * r2 += 8;
2471 * if (pkt_end <= r2) goto <handle exception>
2472 * <access okay>
2473 *
2d2be8ca
DB
2474 * Where:
2475 * pkt_end == dst_reg, r2 == src_reg
2476 * r2=pkt(id=n,off=8,r=0)
2477 * r3=pkt(id=n,off=0,r=0)
2478 *
2479 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2480 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2481 */
2d2be8ca 2482
f1174f77
EC
2483 /* If our ids match, then we must have the same max_value. And we
2484 * don't care about the other reg's fixed offset, since if it's too big
2485 * the range won't allow anything.
2486 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2487 */
969bf05e
AS
2488 for (i = 0; i < MAX_BPF_REG; i++)
2489 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682 2490 /* keep the maximum range already checked */
f1174f77 2491 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2492
2493 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2494 if (state->stack_slot_type[i] != STACK_SPILL)
2495 continue;
2496 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2497 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
f1174f77 2498 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2499 }
2500}
2501
48461135
JB
2502/* Adjusts the register min/max values in the case that the dst_reg is the
2503 * variable register that we are working on, and src_reg is a constant or we're
2504 * simply doing a BPF_K check.
f1174f77 2505 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2506 */
2507static void reg_set_min_max(struct bpf_reg_state *true_reg,
2508 struct bpf_reg_state *false_reg, u64 val,
2509 u8 opcode)
2510{
f1174f77
EC
2511 /* If the dst_reg is a pointer, we can't learn anything about its
2512 * variable offset from the compare (unless src_reg were a pointer into
2513 * the same object, but we don't bother with that.
2514 * Since false_reg and true_reg have the same type by construction, we
2515 * only need to check one of them for pointerness.
2516 */
2517 if (__is_pointer_value(false, false_reg))
2518 return;
4cabc5b1 2519
48461135
JB
2520 switch (opcode) {
2521 case BPF_JEQ:
2522 /* If this is false then we know nothing Jon Snow, but if it is
2523 * true then we know for sure.
2524 */
b03c9f9f 2525 __mark_reg_known(true_reg, val);
48461135
JB
2526 break;
2527 case BPF_JNE:
2528 /* If this is true we know nothing Jon Snow, but if it is false
2529 * we know the value for sure;
2530 */
b03c9f9f 2531 __mark_reg_known(false_reg, val);
48461135
JB
2532 break;
2533 case BPF_JGT:
b03c9f9f
EC
2534 false_reg->umax_value = min(false_reg->umax_value, val);
2535 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2536 break;
48461135 2537 case BPF_JSGT:
b03c9f9f
EC
2538 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2539 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2540 break;
b4e432f1
DB
2541 case BPF_JLT:
2542 false_reg->umin_value = max(false_reg->umin_value, val);
2543 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2544 break;
2545 case BPF_JSLT:
2546 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2547 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2548 break;
48461135 2549 case BPF_JGE:
b03c9f9f
EC
2550 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2551 true_reg->umin_value = max(true_reg->umin_value, val);
2552 break;
48461135 2553 case BPF_JSGE:
b03c9f9f
EC
2554 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2555 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2556 break;
b4e432f1
DB
2557 case BPF_JLE:
2558 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2559 true_reg->umax_value = min(true_reg->umax_value, val);
2560 break;
2561 case BPF_JSLE:
2562 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2563 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2564 break;
48461135
JB
2565 default:
2566 break;
2567 }
2568
b03c9f9f
EC
2569 __reg_deduce_bounds(false_reg);
2570 __reg_deduce_bounds(true_reg);
2571 /* We might have learned some bits from the bounds. */
2572 __reg_bound_offset(false_reg);
2573 __reg_bound_offset(true_reg);
2574 /* Intersecting with the old var_off might have improved our bounds
2575 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2576 * then new var_off is (0; 0x7f...fc) which improves our umax.
2577 */
2578 __update_reg_bounds(false_reg);
2579 __update_reg_bounds(true_reg);
48461135
JB
2580}
2581
f1174f77
EC
2582/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2583 * the variable reg.
48461135
JB
2584 */
2585static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2586 struct bpf_reg_state *false_reg, u64 val,
2587 u8 opcode)
2588{
f1174f77
EC
2589 if (__is_pointer_value(false, false_reg))
2590 return;
4cabc5b1 2591
48461135
JB
2592 switch (opcode) {
2593 case BPF_JEQ:
2594 /* If this is false then we know nothing Jon Snow, but if it is
2595 * true then we know for sure.
2596 */
b03c9f9f 2597 __mark_reg_known(true_reg, val);
48461135
JB
2598 break;
2599 case BPF_JNE:
2600 /* If this is true we know nothing Jon Snow, but if it is false
2601 * we know the value for sure;
2602 */
b03c9f9f 2603 __mark_reg_known(false_reg, val);
48461135
JB
2604 break;
2605 case BPF_JGT:
b03c9f9f
EC
2606 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2607 false_reg->umin_value = max(false_reg->umin_value, val);
2608 break;
48461135 2609 case BPF_JSGT:
b03c9f9f
EC
2610 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2611 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2612 break;
b4e432f1
DB
2613 case BPF_JLT:
2614 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2615 false_reg->umax_value = min(false_reg->umax_value, val);
2616 break;
2617 case BPF_JSLT:
2618 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2619 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2620 break;
48461135 2621 case BPF_JGE:
b03c9f9f
EC
2622 true_reg->umax_value = min(true_reg->umax_value, val);
2623 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2624 break;
48461135 2625 case BPF_JSGE:
b03c9f9f
EC
2626 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2627 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2628 break;
b4e432f1
DB
2629 case BPF_JLE:
2630 true_reg->umin_value = max(true_reg->umin_value, val);
2631 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2632 break;
2633 case BPF_JSLE:
2634 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2635 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2636 break;
48461135
JB
2637 default:
2638 break;
2639 }
2640
b03c9f9f
EC
2641 __reg_deduce_bounds(false_reg);
2642 __reg_deduce_bounds(true_reg);
2643 /* We might have learned some bits from the bounds. */
2644 __reg_bound_offset(false_reg);
2645 __reg_bound_offset(true_reg);
2646 /* Intersecting with the old var_off might have improved our bounds
2647 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2648 * then new var_off is (0; 0x7f...fc) which improves our umax.
2649 */
2650 __update_reg_bounds(false_reg);
2651 __update_reg_bounds(true_reg);
f1174f77
EC
2652}
2653
2654/* Regs are known to be equal, so intersect their min/max/var_off */
2655static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2656 struct bpf_reg_state *dst_reg)
2657{
b03c9f9f
EC
2658 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2659 dst_reg->umin_value);
2660 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2661 dst_reg->umax_value);
2662 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2663 dst_reg->smin_value);
2664 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2665 dst_reg->smax_value);
f1174f77
EC
2666 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2667 dst_reg->var_off);
b03c9f9f
EC
2668 /* We might have learned new bounds from the var_off. */
2669 __update_reg_bounds(src_reg);
2670 __update_reg_bounds(dst_reg);
2671 /* We might have learned something about the sign bit. */
2672 __reg_deduce_bounds(src_reg);
2673 __reg_deduce_bounds(dst_reg);
2674 /* We might have learned some bits from the bounds. */
2675 __reg_bound_offset(src_reg);
2676 __reg_bound_offset(dst_reg);
2677 /* Intersecting with the old var_off might have improved our bounds
2678 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2679 * then new var_off is (0; 0x7f...fc) which improves our umax.
2680 */
2681 __update_reg_bounds(src_reg);
2682 __update_reg_bounds(dst_reg);
f1174f77
EC
2683}
2684
2685static void reg_combine_min_max(struct bpf_reg_state *true_src,
2686 struct bpf_reg_state *true_dst,
2687 struct bpf_reg_state *false_src,
2688 struct bpf_reg_state *false_dst,
2689 u8 opcode)
2690{
2691 switch (opcode) {
2692 case BPF_JEQ:
2693 __reg_combine_min_max(true_src, true_dst);
2694 break;
2695 case BPF_JNE:
2696 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2697 break;
4cabc5b1 2698 }
48461135
JB
2699}
2700
57a09bf0 2701static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2702 bool is_null)
57a09bf0
TG
2703{
2704 struct bpf_reg_state *reg = &regs[regno];
2705
2706 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2707 /* Old offset (both fixed and variable parts) should
2708 * have been known-zero, because we don't allow pointer
2709 * arithmetic on pointers that might be NULL.
2710 */
b03c9f9f
EC
2711 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2712 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2713 reg->off)) {
b03c9f9f
EC
2714 __mark_reg_known_zero(reg);
2715 reg->off = 0;
f1174f77
EC
2716 }
2717 if (is_null) {
2718 reg->type = SCALAR_VALUE;
56f668df
MKL
2719 } else if (reg->map_ptr->inner_map_meta) {
2720 reg->type = CONST_PTR_TO_MAP;
2721 reg->map_ptr = reg->map_ptr->inner_map_meta;
2722 } else {
f1174f77 2723 reg->type = PTR_TO_MAP_VALUE;
56f668df 2724 }
a08dd0da
DB
2725 /* We don't need id from this point onwards anymore, thus we
2726 * should better reset it, so that state pruning has chances
2727 * to take effect.
2728 */
2729 reg->id = 0;
57a09bf0
TG
2730 }
2731}
2732
2733/* The logic is similar to find_good_pkt_pointers(), both could eventually
2734 * be folded together at some point.
2735 */
2736static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2737 bool is_null)
57a09bf0
TG
2738{
2739 struct bpf_reg_state *regs = state->regs;
a08dd0da 2740 u32 id = regs[regno].id;
57a09bf0
TG
2741 int i;
2742
2743 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2744 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2745
2746 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2747 if (state->stack_slot_type[i] != STACK_SPILL)
2748 continue;
f1174f77 2749 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2750 }
2751}
2752
58e2af8b 2753static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2754 struct bpf_insn *insn, int *insn_idx)
2755{
58e2af8b
JK
2756 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2757 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2758 u8 opcode = BPF_OP(insn->code);
2759 int err;
2760
b4e432f1 2761 if (opcode > BPF_JSLE) {
17a52670
AS
2762 verbose("invalid BPF_JMP opcode %x\n", opcode);
2763 return -EINVAL;
2764 }
2765
2766 if (BPF_SRC(insn->code) == BPF_X) {
2767 if (insn->imm != 0) {
2768 verbose("BPF_JMP uses reserved fields\n");
2769 return -EINVAL;
2770 }
2771
2772 /* check src1 operand */
dc503a8a 2773 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2774 if (err)
2775 return err;
1be7f75d
AS
2776
2777 if (is_pointer_value(env, insn->src_reg)) {
2778 verbose("R%d pointer comparison prohibited\n",
2779 insn->src_reg);
2780 return -EACCES;
2781 }
17a52670
AS
2782 } else {
2783 if (insn->src_reg != BPF_REG_0) {
2784 verbose("BPF_JMP uses reserved fields\n");
2785 return -EINVAL;
2786 }
2787 }
2788
2789 /* check src2 operand */
dc503a8a 2790 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2791 if (err)
2792 return err;
2793
1a0dc1ac
AS
2794 dst_reg = &regs[insn->dst_reg];
2795
17a52670
AS
2796 /* detect if R == 0 where R was initialized to zero earlier */
2797 if (BPF_SRC(insn->code) == BPF_K &&
2798 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2799 dst_reg->type == SCALAR_VALUE &&
2800 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2801 if (opcode == BPF_JEQ) {
2802 /* if (imm == imm) goto pc+off;
2803 * only follow the goto, ignore fall-through
2804 */
2805 *insn_idx += insn->off;
2806 return 0;
2807 } else {
2808 /* if (imm != imm) goto pc+off;
2809 * only follow fall-through branch, since
2810 * that's where the program will go
2811 */
2812 return 0;
2813 }
2814 }
2815
2816 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2817 if (!other_branch)
2818 return -EFAULT;
2819
48461135
JB
2820 /* detect if we are comparing against a constant value so we can adjust
2821 * our min/max values for our dst register.
f1174f77
EC
2822 * this is only legit if both are scalars (or pointers to the same
2823 * object, I suppose, but we don't support that right now), because
2824 * otherwise the different base pointers mean the offsets aren't
2825 * comparable.
48461135
JB
2826 */
2827 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2828 if (dst_reg->type == SCALAR_VALUE &&
2829 regs[insn->src_reg].type == SCALAR_VALUE) {
2830 if (tnum_is_const(regs[insn->src_reg].var_off))
2831 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2832 dst_reg, regs[insn->src_reg].var_off.value,
2833 opcode);
2834 else if (tnum_is_const(dst_reg->var_off))
2835 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2836 &regs[insn->src_reg],
2837 dst_reg->var_off.value, opcode);
2838 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2839 /* Comparing for equality, we can combine knowledge */
2840 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2841 &other_branch->regs[insn->dst_reg],
2842 &regs[insn->src_reg],
2843 &regs[insn->dst_reg], opcode);
2844 }
2845 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2846 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2847 dst_reg, insn->imm, opcode);
2848 }
2849
58e2af8b 2850 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2851 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2852 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2853 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2854 /* Mark all identical map registers in each branch as either
2855 * safe or unknown depending R == 0 or R != 0 conditional.
2856 */
f1174f77
EC
2857 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2858 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2859 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2860 dst_reg->type == PTR_TO_PACKET &&
2861 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca 2862 find_good_pkt_pointers(this_branch, dst_reg);
b4e432f1
DB
2863 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2864 dst_reg->type == PTR_TO_PACKET &&
2865 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2866 find_good_pkt_pointers(other_branch, dst_reg);
2d2be8ca
DB
2867 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2868 dst_reg->type == PTR_TO_PACKET_END &&
2869 regs[insn->src_reg].type == PTR_TO_PACKET) {
2870 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
b4e432f1
DB
2871 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2872 dst_reg->type == PTR_TO_PACKET_END &&
2873 regs[insn->src_reg].type == PTR_TO_PACKET) {
2874 find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
1be7f75d
AS
2875 } else if (is_pointer_value(env, insn->dst_reg)) {
2876 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2877 return -EACCES;
17a52670
AS
2878 }
2879 if (log_level)
2d2be8ca 2880 print_verifier_state(this_branch);
17a52670
AS
2881 return 0;
2882}
2883
0246e64d
AS
2884/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2885static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2886{
2887 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2888
2889 return (struct bpf_map *) (unsigned long) imm64;
2890}
2891
17a52670 2892/* verify BPF_LD_IMM64 instruction */
58e2af8b 2893static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2894{
58e2af8b 2895 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2896 int err;
2897
2898 if (BPF_SIZE(insn->code) != BPF_DW) {
2899 verbose("invalid BPF_LD_IMM insn\n");
2900 return -EINVAL;
2901 }
2902 if (insn->off != 0) {
2903 verbose("BPF_LD_IMM64 uses reserved fields\n");
2904 return -EINVAL;
2905 }
2906
dc503a8a 2907 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2908 if (err)
2909 return err;
2910
6b173873 2911 if (insn->src_reg == 0) {
6b173873
JK
2912 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2913
f1174f77 2914 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2915 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2916 return 0;
6b173873 2917 }
17a52670
AS
2918
2919 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2920 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2921
2922 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2923 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2924 return 0;
2925}
2926
96be4325
DB
2927static bool may_access_skb(enum bpf_prog_type type)
2928{
2929 switch (type) {
2930 case BPF_PROG_TYPE_SOCKET_FILTER:
2931 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2932 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2933 return true;
2934 default:
2935 return false;
2936 }
2937}
2938
ddd872bc
AS
2939/* verify safety of LD_ABS|LD_IND instructions:
2940 * - they can only appear in the programs where ctx == skb
2941 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2942 * preserve R6-R9, and store return value into R0
2943 *
2944 * Implicit input:
2945 * ctx == skb == R6 == CTX
2946 *
2947 * Explicit input:
2948 * SRC == any register
2949 * IMM == 32-bit immediate
2950 *
2951 * Output:
2952 * R0 - 8/16/32-bit skb data converted to cpu endianness
2953 */
58e2af8b 2954static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2955{
58e2af8b 2956 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2957 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2958 int i, err;
2959
24701ece 2960 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2961 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2962 return -EINVAL;
2963 }
2964
2965 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2966 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2967 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2968 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2969 return -EINVAL;
2970 }
2971
2972 /* check whether implicit source operand (register R6) is readable */
dc503a8a 2973 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
2974 if (err)
2975 return err;
2976
2977 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2978 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2979 return -EINVAL;
2980 }
2981
2982 if (mode == BPF_IND) {
2983 /* check explicit source operand */
dc503a8a 2984 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
2985 if (err)
2986 return err;
2987 }
2988
2989 /* reset caller saved regs to unreadable */
dc503a8a 2990 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 2991 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
2992 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2993 }
ddd872bc
AS
2994
2995 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
2996 * the value fetched from the packet.
2997 * Already marked as written above.
ddd872bc 2998 */
f1174f77 2999 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
3000 return 0;
3001}
3002
475fb78f
AS
3003/* non-recursive DFS pseudo code
3004 * 1 procedure DFS-iterative(G,v):
3005 * 2 label v as discovered
3006 * 3 let S be a stack
3007 * 4 S.push(v)
3008 * 5 while S is not empty
3009 * 6 t <- S.pop()
3010 * 7 if t is what we're looking for:
3011 * 8 return t
3012 * 9 for all edges e in G.adjacentEdges(t) do
3013 * 10 if edge e is already labelled
3014 * 11 continue with the next edge
3015 * 12 w <- G.adjacentVertex(t,e)
3016 * 13 if vertex w is not discovered and not explored
3017 * 14 label e as tree-edge
3018 * 15 label w as discovered
3019 * 16 S.push(w)
3020 * 17 continue at 5
3021 * 18 else if vertex w is discovered
3022 * 19 label e as back-edge
3023 * 20 else
3024 * 21 // vertex w is explored
3025 * 22 label e as forward- or cross-edge
3026 * 23 label t as explored
3027 * 24 S.pop()
3028 *
3029 * convention:
3030 * 0x10 - discovered
3031 * 0x11 - discovered and fall-through edge labelled
3032 * 0x12 - discovered and fall-through and branch edges labelled
3033 * 0x20 - explored
3034 */
3035
3036enum {
3037 DISCOVERED = 0x10,
3038 EXPLORED = 0x20,
3039 FALLTHROUGH = 1,
3040 BRANCH = 2,
3041};
3042
58e2af8b 3043#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3044
475fb78f
AS
3045static int *insn_stack; /* stack of insns to process */
3046static int cur_stack; /* current stack index */
3047static int *insn_state;
3048
3049/* t, w, e - match pseudo-code above:
3050 * t - index of current instruction
3051 * w - next instruction
3052 * e - edge
3053 */
58e2af8b 3054static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3055{
3056 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3057 return 0;
3058
3059 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3060 return 0;
3061
3062 if (w < 0 || w >= env->prog->len) {
3063 verbose("jump out of range from insn %d to %d\n", t, w);
3064 return -EINVAL;
3065 }
3066
f1bca824
AS
3067 if (e == BRANCH)
3068 /* mark branch target for state pruning */
3069 env->explored_states[w] = STATE_LIST_MARK;
3070
475fb78f
AS
3071 if (insn_state[w] == 0) {
3072 /* tree-edge */
3073 insn_state[t] = DISCOVERED | e;
3074 insn_state[w] = DISCOVERED;
3075 if (cur_stack >= env->prog->len)
3076 return -E2BIG;
3077 insn_stack[cur_stack++] = w;
3078 return 1;
3079 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3080 verbose("back-edge from insn %d to %d\n", t, w);
3081 return -EINVAL;
3082 } else if (insn_state[w] == EXPLORED) {
3083 /* forward- or cross-edge */
3084 insn_state[t] = DISCOVERED | e;
3085 } else {
3086 verbose("insn state internal bug\n");
3087 return -EFAULT;
3088 }
3089 return 0;
3090}
3091
3092/* non-recursive depth-first-search to detect loops in BPF program
3093 * loop == back-edge in directed graph
3094 */
58e2af8b 3095static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3096{
3097 struct bpf_insn *insns = env->prog->insnsi;
3098 int insn_cnt = env->prog->len;
3099 int ret = 0;
3100 int i, t;
3101
3102 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3103 if (!insn_state)
3104 return -ENOMEM;
3105
3106 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3107 if (!insn_stack) {
3108 kfree(insn_state);
3109 return -ENOMEM;
3110 }
3111
3112 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3113 insn_stack[0] = 0; /* 0 is the first instruction */
3114 cur_stack = 1;
3115
3116peek_stack:
3117 if (cur_stack == 0)
3118 goto check_state;
3119 t = insn_stack[cur_stack - 1];
3120
3121 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3122 u8 opcode = BPF_OP(insns[t].code);
3123
3124 if (opcode == BPF_EXIT) {
3125 goto mark_explored;
3126 } else if (opcode == BPF_CALL) {
3127 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3128 if (ret == 1)
3129 goto peek_stack;
3130 else if (ret < 0)
3131 goto err_free;
07016151
DB
3132 if (t + 1 < insn_cnt)
3133 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3134 } else if (opcode == BPF_JA) {
3135 if (BPF_SRC(insns[t].code) != BPF_K) {
3136 ret = -EINVAL;
3137 goto err_free;
3138 }
3139 /* unconditional jump with single edge */
3140 ret = push_insn(t, t + insns[t].off + 1,
3141 FALLTHROUGH, env);
3142 if (ret == 1)
3143 goto peek_stack;
3144 else if (ret < 0)
3145 goto err_free;
f1bca824
AS
3146 /* tell verifier to check for equivalent states
3147 * after every call and jump
3148 */
c3de6317
AS
3149 if (t + 1 < insn_cnt)
3150 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3151 } else {
3152 /* conditional jump with two edges */
3c2ce60b 3153 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3154 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3155 if (ret == 1)
3156 goto peek_stack;
3157 else if (ret < 0)
3158 goto err_free;
3159
3160 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3161 if (ret == 1)
3162 goto peek_stack;
3163 else if (ret < 0)
3164 goto err_free;
3165 }
3166 } else {
3167 /* all other non-branch instructions with single
3168 * fall-through edge
3169 */
3170 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3171 if (ret == 1)
3172 goto peek_stack;
3173 else if (ret < 0)
3174 goto err_free;
3175 }
3176
3177mark_explored:
3178 insn_state[t] = EXPLORED;
3179 if (cur_stack-- <= 0) {
3180 verbose("pop stack internal bug\n");
3181 ret = -EFAULT;
3182 goto err_free;
3183 }
3184 goto peek_stack;
3185
3186check_state:
3187 for (i = 0; i < insn_cnt; i++) {
3188 if (insn_state[i] != EXPLORED) {
3189 verbose("unreachable insn %d\n", i);
3190 ret = -EINVAL;
3191 goto err_free;
3192 }
3193 }
3194 ret = 0; /* cfg looks good */
3195
3196err_free:
3197 kfree(insn_state);
3198 kfree(insn_stack);
3199 return ret;
3200}
3201
f1174f77
EC
3202/* check %cur's range satisfies %old's */
3203static bool range_within(struct bpf_reg_state *old,
3204 struct bpf_reg_state *cur)
3205{
b03c9f9f
EC
3206 return old->umin_value <= cur->umin_value &&
3207 old->umax_value >= cur->umax_value &&
3208 old->smin_value <= cur->smin_value &&
3209 old->smax_value >= cur->smax_value;
f1174f77
EC
3210}
3211
3212/* Maximum number of register states that can exist at once */
3213#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3214struct idpair {
3215 u32 old;
3216 u32 cur;
3217};
3218
3219/* If in the old state two registers had the same id, then they need to have
3220 * the same id in the new state as well. But that id could be different from
3221 * the old state, so we need to track the mapping from old to new ids.
3222 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3223 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3224 * regs with a different old id could still have new id 9, we don't care about
3225 * that.
3226 * So we look through our idmap to see if this old id has been seen before. If
3227 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3228 */
f1174f77 3229static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3230{
f1174f77 3231 unsigned int i;
969bf05e 3232
f1174f77
EC
3233 for (i = 0; i < ID_MAP_SIZE; i++) {
3234 if (!idmap[i].old) {
3235 /* Reached an empty slot; haven't seen this id before */
3236 idmap[i].old = old_id;
3237 idmap[i].cur = cur_id;
3238 return true;
3239 }
3240 if (idmap[i].old == old_id)
3241 return idmap[i].cur == cur_id;
3242 }
3243 /* We ran out of idmap slots, which should be impossible */
3244 WARN_ON_ONCE(1);
3245 return false;
3246}
3247
3248/* Returns true if (rold safe implies rcur safe) */
3249static bool regsafe(struct bpf_reg_state *rold,
3250 struct bpf_reg_state *rcur,
3251 bool varlen_map_access, struct idpair *idmap)
3252{
dc503a8a
EC
3253 if (!(rold->live & REG_LIVE_READ))
3254 /* explored state didn't use this */
3255 return true;
3256
3257 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3258 return true;
3259
f1174f77
EC
3260 if (rold->type == NOT_INIT)
3261 /* explored state can't have used this */
969bf05e 3262 return true;
f1174f77
EC
3263 if (rcur->type == NOT_INIT)
3264 return false;
3265 switch (rold->type) {
3266 case SCALAR_VALUE:
3267 if (rcur->type == SCALAR_VALUE) {
3268 /* new val must satisfy old val knowledge */
3269 return range_within(rold, rcur) &&
3270 tnum_in(rold->var_off, rcur->var_off);
3271 } else {
3272 /* if we knew anything about the old value, we're not
3273 * equal, because we can't know anything about the
3274 * scalar value of the pointer in the new value.
3275 */
b03c9f9f
EC
3276 return rold->umin_value == 0 &&
3277 rold->umax_value == U64_MAX &&
3278 rold->smin_value == S64_MIN &&
3279 rold->smax_value == S64_MAX &&
f1174f77
EC
3280 tnum_is_unknown(rold->var_off);
3281 }
3282 case PTR_TO_MAP_VALUE:
3283 if (varlen_map_access) {
3284 /* If the new min/max/var_off satisfy the old ones and
3285 * everything else matches, we are OK.
3286 * We don't care about the 'id' value, because nothing
3287 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3288 */
3289 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3290 range_within(rold, rcur) &&
3291 tnum_in(rold->var_off, rcur->var_off);
3292 } else {
3293 /* If the ranges/var_off were not the same, but
3294 * everything else was and we didn't do a variable
3295 * access into a map then we are a-ok.
3296 */
3297 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
3298 }
3299 case PTR_TO_MAP_VALUE_OR_NULL:
3300 /* a PTR_TO_MAP_VALUE could be safe to use as a
3301 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3302 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3303 * checked, doing so could have affected others with the same
3304 * id, and we can't check for that because we lost the id when
3305 * we converted to a PTR_TO_MAP_VALUE.
3306 */
3307 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3308 return false;
3309 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3310 return false;
3311 /* Check our ids match any regs they're supposed to */
3312 return check_ids(rold->id, rcur->id, idmap);
3313 case PTR_TO_PACKET:
3314 if (rcur->type != PTR_TO_PACKET)
3315 return false;
3316 /* We must have at least as much range as the old ptr
3317 * did, so that any accesses which were safe before are
3318 * still safe. This is true even if old range < old off,
3319 * since someone could have accessed through (ptr - k), or
3320 * even done ptr -= k in a register, to get a safe access.
3321 */
3322 if (rold->range > rcur->range)
3323 return false;
3324 /* If the offsets don't match, we can't trust our alignment;
3325 * nor can we be sure that we won't fall out of range.
3326 */
3327 if (rold->off != rcur->off)
3328 return false;
3329 /* id relations must be preserved */
3330 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3331 return false;
3332 /* new val must satisfy old val knowledge */
3333 return range_within(rold, rcur) &&
3334 tnum_in(rold->var_off, rcur->var_off);
3335 case PTR_TO_CTX:
3336 case CONST_PTR_TO_MAP:
3337 case PTR_TO_STACK:
3338 case PTR_TO_PACKET_END:
3339 /* Only valid matches are exact, which memcmp() above
3340 * would have accepted
3341 */
3342 default:
3343 /* Don't know what's going on, just say it's not safe */
3344 return false;
3345 }
969bf05e 3346
f1174f77
EC
3347 /* Shouldn't get here; if we do, say it's not safe */
3348 WARN_ON_ONCE(1);
969bf05e
AS
3349 return false;
3350}
3351
f1bca824
AS
3352/* compare two verifier states
3353 *
3354 * all states stored in state_list are known to be valid, since
3355 * verifier reached 'bpf_exit' instruction through them
3356 *
3357 * this function is called when verifier exploring different branches of
3358 * execution popped from the state stack. If it sees an old state that has
3359 * more strict register state and more strict stack state then this execution
3360 * branch doesn't need to be explored further, since verifier already
3361 * concluded that more strict state leads to valid finish.
3362 *
3363 * Therefore two states are equivalent if register state is more conservative
3364 * and explored stack state is more conservative than the current one.
3365 * Example:
3366 * explored current
3367 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3368 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3369 *
3370 * In other words if current stack state (one being explored) has more
3371 * valid slots than old one that already passed validation, it means
3372 * the verifier can stop exploring and conclude that current state is valid too
3373 *
3374 * Similarly with registers. If explored state has register type as invalid
3375 * whereas register type in current state is meaningful, it means that
3376 * the current state will reach 'bpf_exit' instruction safely
3377 */
48461135
JB
3378static bool states_equal(struct bpf_verifier_env *env,
3379 struct bpf_verifier_state *old,
58e2af8b 3380 struct bpf_verifier_state *cur)
f1bca824 3381{
e2d2afe1 3382 bool varlen_map_access = env->varlen_map_value_access;
f1174f77
EC
3383 struct idpair *idmap;
3384 bool ret = false;
f1bca824
AS
3385 int i;
3386
f1174f77
EC
3387 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3388 /* If we failed to allocate the idmap, just say it's not safe */
3389 if (!idmap)
1a0dc1ac 3390 return false;
f1174f77
EC
3391
3392 for (i = 0; i < MAX_BPF_REG; i++) {
3393 if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
3394 idmap))
3395 goto out_free;
f1bca824
AS
3396 }
3397
3398 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3399 if (old->stack_slot_type[i] == STACK_INVALID)
3400 continue;
3401 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3402 /* Ex: old explored (safe) state has STACK_SPILL in
3403 * this stack slot, but current has has STACK_MISC ->
3404 * this verifier states are not equivalent,
3405 * return false to continue verification of this path
3406 */
f1174f77 3407 goto out_free;
9c399760
AS
3408 if (i % BPF_REG_SIZE)
3409 continue;
d25da6ca
DB
3410 if (old->stack_slot_type[i] != STACK_SPILL)
3411 continue;
f1174f77
EC
3412 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3413 &cur->spilled_regs[i / BPF_REG_SIZE],
3414 varlen_map_access, idmap))
3415 /* when explored and current stack slot are both storing
3416 * spilled registers, check that stored pointers types
9c399760
AS
3417 * are the same as well.
3418 * Ex: explored safe path could have stored
f1174f77 3419 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3420 * but current path has stored:
f1174f77 3421 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3422 * such verifier states are not equivalent.
3423 * return false to continue verification of this path
3424 */
f1174f77 3425 goto out_free;
9c399760
AS
3426 else
3427 continue;
f1bca824 3428 }
f1174f77
EC
3429 ret = true;
3430out_free:
3431 kfree(idmap);
3432 return ret;
f1bca824
AS
3433}
3434
dc503a8a
EC
3435static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3436 struct bpf_verifier_state *parent)
3437{
3438 bool touched = false; /* any changes made? */
3439 int i;
3440
3441 if (!parent)
3442 return touched;
3443 /* Propagate read liveness of registers... */
3444 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3445 /* We don't need to worry about FP liveness because it's read-only */
3446 for (i = 0; i < BPF_REG_FP; i++) {
3447 if (parent->regs[i].live & REG_LIVE_READ)
3448 continue;
3449 if (state->regs[i].live == REG_LIVE_READ) {
3450 parent->regs[i].live |= REG_LIVE_READ;
3451 touched = true;
3452 }
3453 }
3454 /* ... and stack slots */
3455 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3456 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3457 continue;
3458 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3459 continue;
3460 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3461 continue;
3462 if (state->spilled_regs[i].live == REG_LIVE_READ) {
1ab2de2b 3463 parent->spilled_regs[i].live |= REG_LIVE_READ;
dc503a8a
EC
3464 touched = true;
3465 }
3466 }
3467 return touched;
3468}
3469
3470static void propagate_liveness(const struct bpf_verifier_state *state,
3471 struct bpf_verifier_state *parent)
3472{
3473 while (do_propagate_liveness(state, parent)) {
3474 /* Something changed, so we need to feed those changes onward */
3475 state = parent;
3476 parent = state->parent;
3477 }
3478}
3479
58e2af8b 3480static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3481{
58e2af8b
JK
3482 struct bpf_verifier_state_list *new_sl;
3483 struct bpf_verifier_state_list *sl;
dc503a8a 3484 int i;
f1bca824
AS
3485
3486 sl = env->explored_states[insn_idx];
3487 if (!sl)
3488 /* this 'insn_idx' instruction wasn't marked, so we will not
3489 * be doing state search here
3490 */
3491 return 0;
3492
3493 while (sl != STATE_LIST_MARK) {
dc503a8a 3494 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3495 /* reached equivalent register/stack state,
dc503a8a
EC
3496 * prune the search.
3497 * Registers read by the continuation are read by us.
f1bca824 3498 */
dc503a8a 3499 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3500 return 1;
dc503a8a 3501 }
f1bca824
AS
3502 sl = sl->next;
3503 }
3504
3505 /* there were no equivalent states, remember current one.
3506 * technically the current state is not proven to be safe yet,
3507 * but it will either reach bpf_exit (which means it's safe) or
3508 * it will be rejected. Since there are no loops, we won't be
3509 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3510 */
58e2af8b 3511 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3512 if (!new_sl)
3513 return -ENOMEM;
3514
3515 /* add new state to the head of linked list */
3516 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3517 new_sl->next = env->explored_states[insn_idx];
3518 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3519 /* connect new state to parentage chain */
3520 env->cur_state.parent = &new_sl->state;
3521 /* clear liveness marks in current state */
3522 for (i = 0; i < BPF_REG_FP; i++)
3523 env->cur_state.regs[i].live = REG_LIVE_NONE;
3524 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3525 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3526 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3527 return 0;
3528}
3529
13a27dfc
JK
3530static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3531 int insn_idx, int prev_insn_idx)
3532{
3533 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3534 return 0;
3535
3536 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3537}
3538
58e2af8b 3539static int do_check(struct bpf_verifier_env *env)
17a52670 3540{
58e2af8b 3541 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3542 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3543 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3544 int insn_cnt = env->prog->len;
3545 int insn_idx, prev_insn_idx = 0;
3546 int insn_processed = 0;
3547 bool do_print_state = false;
3548
3549 init_reg_state(regs);
dc503a8a 3550 state->parent = NULL;
17a52670 3551 insn_idx = 0;
48461135 3552 env->varlen_map_value_access = false;
17a52670
AS
3553 for (;;) {
3554 struct bpf_insn *insn;
3555 u8 class;
3556 int err;
3557
3558 if (insn_idx >= insn_cnt) {
3559 verbose("invalid insn idx %d insn_cnt %d\n",
3560 insn_idx, insn_cnt);
3561 return -EFAULT;
3562 }
3563
3564 insn = &insns[insn_idx];
3565 class = BPF_CLASS(insn->code);
3566
07016151 3567 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3568 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3569 insn_processed);
3570 return -E2BIG;
3571 }
3572
f1bca824
AS
3573 err = is_state_visited(env, insn_idx);
3574 if (err < 0)
3575 return err;
3576 if (err == 1) {
3577 /* found equivalent state, can prune the search */
3578 if (log_level) {
3579 if (do_print_state)
3580 verbose("\nfrom %d to %d: safe\n",
3581 prev_insn_idx, insn_idx);
3582 else
3583 verbose("%d: safe\n", insn_idx);
3584 }
3585 goto process_bpf_exit;
3586 }
3587
3c2ce60b
DB
3588 if (need_resched())
3589 cond_resched();
3590
c5fc9692
DM
3591 if (log_level > 1 || (log_level && do_print_state)) {
3592 if (log_level > 1)
3593 verbose("%d:", insn_idx);
3594 else
3595 verbose("\nfrom %d to %d:",
3596 prev_insn_idx, insn_idx);
1a0dc1ac 3597 print_verifier_state(&env->cur_state);
17a52670
AS
3598 do_print_state = false;
3599 }
3600
3601 if (log_level) {
3602 verbose("%d: ", insn_idx);
0d0e5769 3603 print_bpf_insn(env, insn);
17a52670
AS
3604 }
3605
13a27dfc
JK
3606 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3607 if (err)
3608 return err;
3609
17a52670 3610 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3611 err = check_alu_op(env, insn);
17a52670
AS
3612 if (err)
3613 return err;
3614
3615 } else if (class == BPF_LDX) {
3df126f3 3616 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3617
3618 /* check for reserved fields is already done */
3619
17a52670 3620 /* check src operand */
dc503a8a 3621 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3622 if (err)
3623 return err;
3624
dc503a8a 3625 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3626 if (err)
3627 return err;
3628
725f9dcd
AS
3629 src_reg_type = regs[insn->src_reg].type;
3630
17a52670
AS
3631 /* check that memory (src_reg + off) is readable,
3632 * the state of dst_reg will be updated by this func
3633 */
31fd8581 3634 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3635 BPF_SIZE(insn->code), BPF_READ,
3636 insn->dst_reg);
3637 if (err)
3638 return err;
3639
3df126f3
JK
3640 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3641
3642 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3643 /* saw a valid insn
3644 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3645 * save type to validate intersecting paths
9bac3d6d 3646 */
3df126f3 3647 *prev_src_type = src_reg_type;
9bac3d6d 3648
3df126f3 3649 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3650 (src_reg_type == PTR_TO_CTX ||
3df126f3 3651 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3652 /* ABuser program is trying to use the same insn
3653 * dst_reg = *(u32*) (src_reg + off)
3654 * with different pointer types:
3655 * src_reg == ctx in one branch and
3656 * src_reg == stack|map in some other branch.
3657 * Reject it.
3658 */
3659 verbose("same insn cannot be used with different pointers\n");
3660 return -EINVAL;
3661 }
3662
17a52670 3663 } else if (class == BPF_STX) {
3df126f3 3664 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3665
17a52670 3666 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3667 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3668 if (err)
3669 return err;
3670 insn_idx++;
3671 continue;
3672 }
3673
17a52670 3674 /* check src1 operand */
dc503a8a 3675 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3676 if (err)
3677 return err;
3678 /* check src2 operand */
dc503a8a 3679 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3680 if (err)
3681 return err;
3682
d691f9e8
AS
3683 dst_reg_type = regs[insn->dst_reg].type;
3684
17a52670 3685 /* check that memory (dst_reg + off) is writeable */
31fd8581 3686 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3687 BPF_SIZE(insn->code), BPF_WRITE,
3688 insn->src_reg);
3689 if (err)
3690 return err;
3691
3df126f3
JK
3692 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3693
3694 if (*prev_dst_type == NOT_INIT) {
3695 *prev_dst_type = dst_reg_type;
3696 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3697 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3698 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3699 verbose("same insn cannot be used with different pointers\n");
3700 return -EINVAL;
3701 }
3702
17a52670
AS
3703 } else if (class == BPF_ST) {
3704 if (BPF_MODE(insn->code) != BPF_MEM ||
3705 insn->src_reg != BPF_REG_0) {
3706 verbose("BPF_ST uses reserved fields\n");
3707 return -EINVAL;
3708 }
3709 /* check src operand */
dc503a8a 3710 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3711 if (err)
3712 return err;
3713
3714 /* check that memory (dst_reg + off) is writeable */
31fd8581 3715 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3716 BPF_SIZE(insn->code), BPF_WRITE,
3717 -1);
3718 if (err)
3719 return err;
3720
3721 } else if (class == BPF_JMP) {
3722 u8 opcode = BPF_OP(insn->code);
3723
3724 if (opcode == BPF_CALL) {
3725 if (BPF_SRC(insn->code) != BPF_K ||
3726 insn->off != 0 ||
3727 insn->src_reg != BPF_REG_0 ||
3728 insn->dst_reg != BPF_REG_0) {
3729 verbose("BPF_CALL uses reserved fields\n");
3730 return -EINVAL;
3731 }
3732
81ed18ab 3733 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3734 if (err)
3735 return err;
3736
3737 } else if (opcode == BPF_JA) {
3738 if (BPF_SRC(insn->code) != BPF_K ||
3739 insn->imm != 0 ||
3740 insn->src_reg != BPF_REG_0 ||
3741 insn->dst_reg != BPF_REG_0) {
3742 verbose("BPF_JA uses reserved fields\n");
3743 return -EINVAL;
3744 }
3745
3746 insn_idx += insn->off + 1;
3747 continue;
3748
3749 } else if (opcode == BPF_EXIT) {
3750 if (BPF_SRC(insn->code) != BPF_K ||
3751 insn->imm != 0 ||
3752 insn->src_reg != BPF_REG_0 ||
3753 insn->dst_reg != BPF_REG_0) {
3754 verbose("BPF_EXIT uses reserved fields\n");
3755 return -EINVAL;
3756 }
3757
3758 /* eBPF calling convetion is such that R0 is used
3759 * to return the value from eBPF program.
3760 * Make sure that it's readable at this time
3761 * of bpf_exit, which means that program wrote
3762 * something into it earlier
3763 */
dc503a8a 3764 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3765 if (err)
3766 return err;
3767
1be7f75d
AS
3768 if (is_pointer_value(env, BPF_REG_0)) {
3769 verbose("R0 leaks addr as return value\n");
3770 return -EACCES;
3771 }
3772
f1bca824 3773process_bpf_exit:
17a52670
AS
3774 insn_idx = pop_stack(env, &prev_insn_idx);
3775 if (insn_idx < 0) {
3776 break;
3777 } else {
3778 do_print_state = true;
3779 continue;
3780 }
3781 } else {
3782 err = check_cond_jmp_op(env, insn, &insn_idx);
3783 if (err)
3784 return err;
3785 }
3786 } else if (class == BPF_LD) {
3787 u8 mode = BPF_MODE(insn->code);
3788
3789 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3790 err = check_ld_abs(env, insn);
3791 if (err)
3792 return err;
3793
17a52670
AS
3794 } else if (mode == BPF_IMM) {
3795 err = check_ld_imm(env, insn);
3796 if (err)
3797 return err;
3798
3799 insn_idx++;
3800 } else {
3801 verbose("invalid BPF_LD mode\n");
3802 return -EINVAL;
3803 }
3804 } else {
3805 verbose("unknown insn class %d\n", class);
3806 return -EINVAL;
3807 }
3808
3809 insn_idx++;
3810 }
3811
8726679a
AS
3812 verbose("processed %d insns, stack depth %d\n",
3813 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3814 return 0;
3815}
3816
56f668df
MKL
3817static int check_map_prealloc(struct bpf_map *map)
3818{
3819 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3820 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3821 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3822 !(map->map_flags & BPF_F_NO_PREALLOC);
3823}
3824
fdc15d38
AS
3825static int check_map_prog_compatibility(struct bpf_map *map,
3826 struct bpf_prog *prog)
3827
3828{
56f668df
MKL
3829 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3830 * preallocated hash maps, since doing memory allocation
3831 * in overflow_handler can crash depending on where nmi got
3832 * triggered.
3833 */
3834 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3835 if (!check_map_prealloc(map)) {
3836 verbose("perf_event programs can only use preallocated hash map\n");
3837 return -EINVAL;
3838 }
3839 if (map->inner_map_meta &&
3840 !check_map_prealloc(map->inner_map_meta)) {
3841 verbose("perf_event programs can only use preallocated inner hash map\n");
3842 return -EINVAL;
3843 }
fdc15d38
AS
3844 }
3845 return 0;
3846}
3847
0246e64d
AS
3848/* look for pseudo eBPF instructions that access map FDs and
3849 * replace them with actual map pointers
3850 */
58e2af8b 3851static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3852{
3853 struct bpf_insn *insn = env->prog->insnsi;
3854 int insn_cnt = env->prog->len;
fdc15d38 3855 int i, j, err;
0246e64d 3856
f1f7714e 3857 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3858 if (err)
3859 return err;
3860
0246e64d 3861 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3862 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3863 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3864 verbose("BPF_LDX uses reserved fields\n");
3865 return -EINVAL;
3866 }
3867
d691f9e8
AS
3868 if (BPF_CLASS(insn->code) == BPF_STX &&
3869 ((BPF_MODE(insn->code) != BPF_MEM &&
3870 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3871 verbose("BPF_STX uses reserved fields\n");
3872 return -EINVAL;
3873 }
3874
0246e64d
AS
3875 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3876 struct bpf_map *map;
3877 struct fd f;
3878
3879 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3880 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3881 insn[1].off != 0) {
3882 verbose("invalid bpf_ld_imm64 insn\n");
3883 return -EINVAL;
3884 }
3885
3886 if (insn->src_reg == 0)
3887 /* valid generic load 64-bit imm */
3888 goto next_insn;
3889
3890 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3891 verbose("unrecognized bpf_ld_imm64 insn\n");
3892 return -EINVAL;
3893 }
3894
3895 f = fdget(insn->imm);
c2101297 3896 map = __bpf_map_get(f);
0246e64d
AS
3897 if (IS_ERR(map)) {
3898 verbose("fd %d is not pointing to valid bpf_map\n",
3899 insn->imm);
0246e64d
AS
3900 return PTR_ERR(map);
3901 }
3902
fdc15d38
AS
3903 err = check_map_prog_compatibility(map, env->prog);
3904 if (err) {
3905 fdput(f);
3906 return err;
3907 }
3908
0246e64d
AS
3909 /* store map pointer inside BPF_LD_IMM64 instruction */
3910 insn[0].imm = (u32) (unsigned long) map;
3911 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3912
3913 /* check whether we recorded this map already */
3914 for (j = 0; j < env->used_map_cnt; j++)
3915 if (env->used_maps[j] == map) {
3916 fdput(f);
3917 goto next_insn;
3918 }
3919
3920 if (env->used_map_cnt >= MAX_USED_MAPS) {
3921 fdput(f);
3922 return -E2BIG;
3923 }
3924
0246e64d
AS
3925 /* hold the map. If the program is rejected by verifier,
3926 * the map will be released by release_maps() or it
3927 * will be used by the valid program until it's unloaded
3928 * and all maps are released in free_bpf_prog_info()
3929 */
92117d84
AS
3930 map = bpf_map_inc(map, false);
3931 if (IS_ERR(map)) {
3932 fdput(f);
3933 return PTR_ERR(map);
3934 }
3935 env->used_maps[env->used_map_cnt++] = map;
3936
0246e64d
AS
3937 fdput(f);
3938next_insn:
3939 insn++;
3940 i++;
3941 }
3942 }
3943
3944 /* now all pseudo BPF_LD_IMM64 instructions load valid
3945 * 'struct bpf_map *' into a register instead of user map_fd.
3946 * These pointers will be used later by verifier to validate map access.
3947 */
3948 return 0;
3949}
3950
3951/* drop refcnt of maps used by the rejected program */
58e2af8b 3952static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3953{
3954 int i;
3955
3956 for (i = 0; i < env->used_map_cnt; i++)
3957 bpf_map_put(env->used_maps[i]);
3958}
3959
3960/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3961static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3962{
3963 struct bpf_insn *insn = env->prog->insnsi;
3964 int insn_cnt = env->prog->len;
3965 int i;
3966
3967 for (i = 0; i < insn_cnt; i++, insn++)
3968 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3969 insn->src_reg = 0;
3970}
3971
8041902d
AS
3972/* single env->prog->insni[off] instruction was replaced with the range
3973 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3974 * [0, off) and [off, end) to new locations, so the patched range stays zero
3975 */
3976static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3977 u32 off, u32 cnt)
3978{
3979 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3980
3981 if (cnt == 1)
3982 return 0;
3983 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3984 if (!new_data)
3985 return -ENOMEM;
3986 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3987 memcpy(new_data + off + cnt - 1, old_data + off,
3988 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3989 env->insn_aux_data = new_data;
3990 vfree(old_data);
3991 return 0;
3992}
3993
3994static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3995 const struct bpf_insn *patch, u32 len)
3996{
3997 struct bpf_prog *new_prog;
3998
3999 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4000 if (!new_prog)
4001 return NULL;
4002 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4003 return NULL;
4004 return new_prog;
4005}
4006
9bac3d6d
AS
4007/* convert load instructions that access fields of 'struct __sk_buff'
4008 * into sequence of instructions that access fields of 'struct sk_buff'
4009 */
58e2af8b 4010static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4011{
36bbef52 4012 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 4013 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4014 const int insn_cnt = env->prog->len;
36bbef52 4015 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4016 struct bpf_prog *new_prog;
d691f9e8 4017 enum bpf_access_type type;
f96da094
DB
4018 bool is_narrower_load;
4019 u32 target_size;
9bac3d6d 4020
36bbef52
DB
4021 if (ops->gen_prologue) {
4022 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4023 env->prog);
4024 if (cnt >= ARRAY_SIZE(insn_buf)) {
4025 verbose("bpf verifier is misconfigured\n");
4026 return -EINVAL;
4027 } else if (cnt) {
8041902d 4028 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4029 if (!new_prog)
4030 return -ENOMEM;
8041902d 4031
36bbef52 4032 env->prog = new_prog;
3df126f3 4033 delta += cnt - 1;
36bbef52
DB
4034 }
4035 }
4036
4037 if (!ops->convert_ctx_access)
9bac3d6d
AS
4038 return 0;
4039
3df126f3 4040 insn = env->prog->insnsi + delta;
36bbef52 4041
9bac3d6d 4042 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4043 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4044 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4045 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4046 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4047 type = BPF_READ;
62c7989b
DB
4048 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4049 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4050 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4051 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4052 type = BPF_WRITE;
4053 else
9bac3d6d
AS
4054 continue;
4055
8041902d 4056 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4057 continue;
9bac3d6d 4058
31fd8581 4059 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4060 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4061
4062 /* If the read access is a narrower load of the field,
4063 * convert to a 4/8-byte load, to minimum program type specific
4064 * convert_ctx_access changes. If conversion is successful,
4065 * we will apply proper mask to the result.
4066 */
f96da094 4067 is_narrower_load = size < ctx_field_size;
31fd8581 4068 if (is_narrower_load) {
f96da094
DB
4069 u32 off = insn->off;
4070 u8 size_code;
4071
4072 if (type == BPF_WRITE) {
4073 verbose("bpf verifier narrow ctx access misconfigured\n");
4074 return -EINVAL;
4075 }
31fd8581 4076
f96da094 4077 size_code = BPF_H;
31fd8581
YS
4078 if (ctx_field_size == 4)
4079 size_code = BPF_W;
4080 else if (ctx_field_size == 8)
4081 size_code = BPF_DW;
f96da094 4082
31fd8581
YS
4083 insn->off = off & ~(ctx_field_size - 1);
4084 insn->code = BPF_LDX | BPF_MEM | size_code;
4085 }
f96da094
DB
4086
4087 target_size = 0;
4088 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4089 &target_size);
4090 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4091 (ctx_field_size && !target_size)) {
9bac3d6d
AS
4092 verbose("bpf verifier is misconfigured\n");
4093 return -EINVAL;
4094 }
f96da094
DB
4095
4096 if (is_narrower_load && size < target_size) {
31fd8581
YS
4097 if (ctx_field_size <= 4)
4098 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4099 (1 << size * 8) - 1);
31fd8581
YS
4100 else
4101 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4102 (1 << size * 8) - 1);
31fd8581 4103 }
9bac3d6d 4104
8041902d 4105 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4106 if (!new_prog)
4107 return -ENOMEM;
4108
3df126f3 4109 delta += cnt - 1;
9bac3d6d
AS
4110
4111 /* keep walking new program and skip insns we just inserted */
4112 env->prog = new_prog;
3df126f3 4113 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4114 }
4115
4116 return 0;
4117}
4118
79741b3b 4119/* fixup insn->imm field of bpf_call instructions
81ed18ab 4120 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4121 *
4122 * this function is called after eBPF program passed verification
4123 */
79741b3b 4124static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4125{
79741b3b
AS
4126 struct bpf_prog *prog = env->prog;
4127 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4128 const struct bpf_func_proto *fn;
79741b3b 4129 const int insn_cnt = prog->len;
81ed18ab
AS
4130 struct bpf_insn insn_buf[16];
4131 struct bpf_prog *new_prog;
4132 struct bpf_map *map_ptr;
4133 int i, cnt, delta = 0;
e245c5c6 4134
79741b3b
AS
4135 for (i = 0; i < insn_cnt; i++, insn++) {
4136 if (insn->code != (BPF_JMP | BPF_CALL))
4137 continue;
e245c5c6 4138
79741b3b
AS
4139 if (insn->imm == BPF_FUNC_get_route_realm)
4140 prog->dst_needed = 1;
4141 if (insn->imm == BPF_FUNC_get_prandom_u32)
4142 bpf_user_rnd_init_once();
79741b3b 4143 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4144 /* If we tail call into other programs, we
4145 * cannot make any assumptions since they can
4146 * be replaced dynamically during runtime in
4147 * the program array.
4148 */
4149 prog->cb_access = 1;
80a58d02 4150 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4151
79741b3b
AS
4152 /* mark bpf_tail_call as different opcode to avoid
4153 * conditional branch in the interpeter for every normal
4154 * call and to prevent accidental JITing by JIT compiler
4155 * that doesn't support bpf_tail_call yet
e245c5c6 4156 */
79741b3b 4157 insn->imm = 0;
71189fa9 4158 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4159 continue;
4160 }
e245c5c6 4161
81ed18ab
AS
4162 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
4163 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4164 if (map_ptr == BPF_MAP_PTR_POISON ||
4165 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4166 goto patch_call_imm;
4167
4168 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4169 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4170 verbose("bpf verifier is misconfigured\n");
4171 return -EINVAL;
4172 }
4173
4174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4175 cnt);
4176 if (!new_prog)
4177 return -ENOMEM;
4178
4179 delta += cnt - 1;
4180
4181 /* keep walking new program and skip insns we just inserted */
4182 env->prog = prog = new_prog;
4183 insn = new_prog->insnsi + i + delta;
4184 continue;
4185 }
4186
4187patch_call_imm:
79741b3b
AS
4188 fn = prog->aux->ops->get_func_proto(insn->imm);
4189 /* all functions that have prototype and verifier allowed
4190 * programs to call them, must be real in-kernel functions
4191 */
4192 if (!fn->func) {
4193 verbose("kernel subsystem misconfigured func %s#%d\n",
4194 func_id_name(insn->imm), insn->imm);
4195 return -EFAULT;
e245c5c6 4196 }
79741b3b 4197 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4198 }
e245c5c6 4199
79741b3b
AS
4200 return 0;
4201}
e245c5c6 4202
58e2af8b 4203static void free_states(struct bpf_verifier_env *env)
f1bca824 4204{
58e2af8b 4205 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4206 int i;
4207
4208 if (!env->explored_states)
4209 return;
4210
4211 for (i = 0; i < env->prog->len; i++) {
4212 sl = env->explored_states[i];
4213
4214 if (sl)
4215 while (sl != STATE_LIST_MARK) {
4216 sln = sl->next;
4217 kfree(sl);
4218 sl = sln;
4219 }
4220 }
4221
4222 kfree(env->explored_states);
4223}
4224
9bac3d6d 4225int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4226{
cbd35700 4227 char __user *log_ubuf = NULL;
58e2af8b 4228 struct bpf_verifier_env *env;
51580e79
AS
4229 int ret = -EINVAL;
4230
58e2af8b 4231 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4232 * allocate/free it every time bpf_check() is called
4233 */
58e2af8b 4234 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4235 if (!env)
4236 return -ENOMEM;
4237
3df126f3
JK
4238 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4239 (*prog)->len);
4240 ret = -ENOMEM;
4241 if (!env->insn_aux_data)
4242 goto err_free_env;
9bac3d6d 4243 env->prog = *prog;
0246e64d 4244
cbd35700
AS
4245 /* grab the mutex to protect few globals used by verifier */
4246 mutex_lock(&bpf_verifier_lock);
4247
4248 if (attr->log_level || attr->log_buf || attr->log_size) {
4249 /* user requested verbose verifier output
4250 * and supplied buffer to store the verification trace
4251 */
4252 log_level = attr->log_level;
4253 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4254 log_size = attr->log_size;
4255 log_len = 0;
4256
4257 ret = -EINVAL;
4258 /* log_* values have to be sane */
4259 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4260 log_level == 0 || log_ubuf == NULL)
3df126f3 4261 goto err_unlock;
cbd35700
AS
4262
4263 ret = -ENOMEM;
4264 log_buf = vmalloc(log_size);
4265 if (!log_buf)
3df126f3 4266 goto err_unlock;
cbd35700
AS
4267 } else {
4268 log_level = 0;
4269 }
1ad2f583
DB
4270
4271 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4272 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4273 env->strict_alignment = true;
cbd35700 4274
0246e64d
AS
4275 ret = replace_map_fd_with_map_ptr(env);
4276 if (ret < 0)
4277 goto skip_full_check;
4278
9bac3d6d 4279 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4280 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4281 GFP_USER);
4282 ret = -ENOMEM;
4283 if (!env->explored_states)
4284 goto skip_full_check;
4285
475fb78f
AS
4286 ret = check_cfg(env);
4287 if (ret < 0)
4288 goto skip_full_check;
4289
1be7f75d
AS
4290 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4291
17a52670 4292 ret = do_check(env);
cbd35700 4293
0246e64d 4294skip_full_check:
17a52670 4295 while (pop_stack(env, NULL) >= 0);
f1bca824 4296 free_states(env);
0246e64d 4297
9bac3d6d
AS
4298 if (ret == 0)
4299 /* program is valid, convert *(u32*)(ctx + off) accesses */
4300 ret = convert_ctx_accesses(env);
4301
e245c5c6 4302 if (ret == 0)
79741b3b 4303 ret = fixup_bpf_calls(env);
e245c5c6 4304
cbd35700
AS
4305 if (log_level && log_len >= log_size - 1) {
4306 BUG_ON(log_len >= log_size);
4307 /* verifier log exceeded user supplied buffer */
4308 ret = -ENOSPC;
4309 /* fall through to return what was recorded */
4310 }
4311
4312 /* copy verifier log back to user space including trailing zero */
4313 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4314 ret = -EFAULT;
4315 goto free_log_buf;
4316 }
4317
0246e64d
AS
4318 if (ret == 0 && env->used_map_cnt) {
4319 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4320 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4321 sizeof(env->used_maps[0]),
4322 GFP_KERNEL);
0246e64d 4323
9bac3d6d 4324 if (!env->prog->aux->used_maps) {
0246e64d
AS
4325 ret = -ENOMEM;
4326 goto free_log_buf;
4327 }
4328
9bac3d6d 4329 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4330 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4331 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4332
4333 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4334 * bpf_ld_imm64 instructions
4335 */
4336 convert_pseudo_ld_imm64(env);
4337 }
cbd35700
AS
4338
4339free_log_buf:
4340 if (log_level)
4341 vfree(log_buf);
9bac3d6d 4342 if (!env->prog->aux->used_maps)
0246e64d
AS
4343 /* if we didn't copy map pointers into bpf_prog_info, release
4344 * them now. Otherwise free_bpf_prog_info() will release them.
4345 */
4346 release_maps(env);
9bac3d6d 4347 *prog = env->prog;
3df126f3 4348err_unlock:
cbd35700 4349 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4350 vfree(env->insn_aux_data);
4351err_free_env:
4352 kfree(env);
51580e79
AS
4353 return ret;
4354}
13a27dfc
JK
4355
4356int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4357 void *priv)
4358{
4359 struct bpf_verifier_env *env;
4360 int ret;
4361
4362 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4363 if (!env)
4364 return -ENOMEM;
4365
4366 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4367 prog->len);
4368 ret = -ENOMEM;
4369 if (!env->insn_aux_data)
4370 goto err_free_env;
4371 env->prog = prog;
4372 env->analyzer_ops = ops;
4373 env->analyzer_priv = priv;
4374
4375 /* grab the mutex to protect few globals used by verifier */
4376 mutex_lock(&bpf_verifier_lock);
4377
4378 log_level = 0;
1ad2f583 4379
e07b98d9 4380 env->strict_alignment = false;
1ad2f583
DB
4381 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4382 env->strict_alignment = true;
13a27dfc
JK
4383
4384 env->explored_states = kcalloc(env->prog->len,
4385 sizeof(struct bpf_verifier_state_list *),
4386 GFP_KERNEL);
4387 ret = -ENOMEM;
4388 if (!env->explored_states)
4389 goto skip_full_check;
4390
4391 ret = check_cfg(env);
4392 if (ret < 0)
4393 goto skip_full_check;
4394
4395 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4396
4397 ret = do_check(env);
4398
4399skip_full_check:
4400 while (pop_stack(env, NULL) >= 0);
4401 free_states(env);
4402
4403 mutex_unlock(&bpf_verifier_lock);
4404 vfree(env->insn_aux_data);
4405err_free_env:
4406 kfree(env);
4407 return ret;
4408}
4409EXPORT_SYMBOL_GPL(bpf_analyzer);