]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
bpf: do not retain flags that are not tied to map lifetime
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
07016151 179#define BPF_COMPLEXITY_LIMIT_STACK 1024
ceefbc96 180#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 181
c93552c4
DB
182#define BPF_MAP_PTR_UNPRIV 1UL
183#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
184 POISON_POINTER_DELTA))
185#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186
187static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188{
189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190}
191
192static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193{
194 return aux->map_state & BPF_MAP_PTR_UNPRIV;
195}
196
197static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 const struct bpf_map *map, bool unpriv)
199{
200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 unpriv |= bpf_map_ptr_unpriv(aux);
202 aux->map_state = (unsigned long)map |
203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204}
fad73a1a 205
33ff9823
DB
206struct bpf_call_arg_meta {
207 struct bpf_map *map_ptr;
435faee1 208 bool raw_mode;
36bbef52 209 bool pkt_access;
435faee1
DB
210 int regno;
211 int access_size;
849fa506
YS
212 s64 msize_smax_value;
213 u64 msize_umax_value;
1b986589 214 int ref_obj_id;
d83525ca 215 int func_id;
33ff9823
DB
216};
217
cbd35700
AS
218static DEFINE_MUTEX(bpf_verifier_lock);
219
d9762e84
MKL
220static const struct bpf_line_info *
221find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222{
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239}
240
77d2e05a
MKL
241void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
cbd35700 243{
a2a7d570 244 unsigned int n;
cbd35700 245
a2a7d570 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
cbd35700 258}
abe08840
JO
259
260/* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
430e68d1 263 */
abe08840
JO
264__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266{
267 va_list args;
268
77d2e05a
MKL
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
abe08840 272 va_start(args, fmt);
77d2e05a 273 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
274 va_end(args);
275}
276EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279{
77d2e05a 280 struct bpf_verifier_env *env = private_data;
abe08840
JO
281 va_list args;
282
77d2e05a
MKL
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
abe08840 286 va_start(args, fmt);
77d2e05a 287 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
288 va_end(args);
289}
cbd35700 290
d9762e84
MKL
291static const char *ltrim(const char *s)
292{
293 while (isspace(*s))
294 s++;
295
296 return s;
297}
298
299__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302{
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325}
326
de8f3a83
DB
327static bool type_is_pkt_pointer(enum bpf_reg_type type)
328{
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331}
332
46f8bc92
MKL
333static bool type_is_sk_pointer(enum bpf_reg_type type)
334{
335 return type == PTR_TO_SOCKET ||
655a51e5
MKL
336 type == PTR_TO_SOCK_COMMON ||
337 type == PTR_TO_TCP_SOCK;
46f8bc92
MKL
338}
339
840b9615
JS
340static bool reg_type_may_be_null(enum bpf_reg_type type)
341{
fd978bf7 342 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 343 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
344 type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
346}
347
d83525ca
AS
348static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349{
350 return reg->type == PTR_TO_MAP_VALUE &&
351 map_value_has_spin_lock(reg->map_ptr);
352}
353
cba368c1
MKL
354static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355{
356 return type == PTR_TO_SOCKET ||
357 type == PTR_TO_SOCKET_OR_NULL ||
358 type == PTR_TO_TCP_SOCK ||
359 type == PTR_TO_TCP_SOCK_OR_NULL;
360}
361
1b986589 362static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 363{
1b986589 364 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
365}
366
367/* Determine whether the function releases some resources allocated by another
368 * function call. The first reference type argument will be assumed to be
369 * released by release_reference().
370 */
371static bool is_release_function(enum bpf_func_id func_id)
372{
6acc9b43 373 return func_id == BPF_FUNC_sk_release;
840b9615
JS
374}
375
46f8bc92
MKL
376static bool is_acquire_function(enum bpf_func_id func_id)
377{
378 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
379 func_id == BPF_FUNC_sk_lookup_udp ||
380 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
381}
382
1b986589
MKL
383static bool is_ptr_cast_function(enum bpf_func_id func_id)
384{
385 return func_id == BPF_FUNC_tcp_sock ||
386 func_id == BPF_FUNC_sk_fullsock;
387}
388
17a52670
AS
389/* string representation of 'enum bpf_reg_type' */
390static const char * const reg_type_str[] = {
391 [NOT_INIT] = "?",
f1174f77 392 [SCALAR_VALUE] = "inv",
17a52670
AS
393 [PTR_TO_CTX] = "ctx",
394 [CONST_PTR_TO_MAP] = "map_ptr",
395 [PTR_TO_MAP_VALUE] = "map_value",
396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 397 [PTR_TO_STACK] = "fp",
969bf05e 398 [PTR_TO_PACKET] = "pkt",
de8f3a83 399 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 400 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 401 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
402 [PTR_TO_SOCKET] = "sock",
403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
404 [PTR_TO_SOCK_COMMON] = "sock_common",
405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
406 [PTR_TO_TCP_SOCK] = "tcp_sock",
407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
17a52670
AS
408};
409
8efea21d
EC
410static char slot_type_char[] = {
411 [STACK_INVALID] = '?',
412 [STACK_SPILL] = 'r',
413 [STACK_MISC] = 'm',
414 [STACK_ZERO] = '0',
415};
416
4e92024a
AS
417static void print_liveness(struct bpf_verifier_env *env,
418 enum bpf_reg_liveness live)
419{
9242b5f5 420 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
421 verbose(env, "_");
422 if (live & REG_LIVE_READ)
423 verbose(env, "r");
424 if (live & REG_LIVE_WRITTEN)
425 verbose(env, "w");
9242b5f5
AS
426 if (live & REG_LIVE_DONE)
427 verbose(env, "D");
4e92024a
AS
428}
429
f4d7e40a
AS
430static struct bpf_func_state *func(struct bpf_verifier_env *env,
431 const struct bpf_reg_state *reg)
432{
433 struct bpf_verifier_state *cur = env->cur_state;
434
435 return cur->frame[reg->frameno];
436}
437
61bd5218 438static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 439 const struct bpf_func_state *state)
17a52670 440{
f4d7e40a 441 const struct bpf_reg_state *reg;
17a52670
AS
442 enum bpf_reg_type t;
443 int i;
444
f4d7e40a
AS
445 if (state->frameno)
446 verbose(env, " frame%d:", state->frameno);
17a52670 447 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
448 reg = &state->regs[i];
449 t = reg->type;
17a52670
AS
450 if (t == NOT_INIT)
451 continue;
4e92024a
AS
452 verbose(env, " R%d", i);
453 print_liveness(env, reg->live);
454 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
455 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
456 tnum_is_const(reg->var_off)) {
457 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 458 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
459 if (t == PTR_TO_STACK)
460 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 461 } else {
cba368c1
MKL
462 verbose(env, "(id=%d", reg->id);
463 if (reg_type_may_be_refcounted_or_null(t))
464 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 465 if (t != SCALAR_VALUE)
61bd5218 466 verbose(env, ",off=%d", reg->off);
de8f3a83 467 if (type_is_pkt_pointer(t))
61bd5218 468 verbose(env, ",r=%d", reg->range);
f1174f77
EC
469 else if (t == CONST_PTR_TO_MAP ||
470 t == PTR_TO_MAP_VALUE ||
471 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 472 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
473 reg->map_ptr->key_size,
474 reg->map_ptr->value_size);
7d1238f2
EC
475 if (tnum_is_const(reg->var_off)) {
476 /* Typically an immediate SCALAR_VALUE, but
477 * could be a pointer whose offset is too big
478 * for reg->off
479 */
61bd5218 480 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
481 } else {
482 if (reg->smin_value != reg->umin_value &&
483 reg->smin_value != S64_MIN)
61bd5218 484 verbose(env, ",smin_value=%lld",
7d1238f2
EC
485 (long long)reg->smin_value);
486 if (reg->smax_value != reg->umax_value &&
487 reg->smax_value != S64_MAX)
61bd5218 488 verbose(env, ",smax_value=%lld",
7d1238f2
EC
489 (long long)reg->smax_value);
490 if (reg->umin_value != 0)
61bd5218 491 verbose(env, ",umin_value=%llu",
7d1238f2
EC
492 (unsigned long long)reg->umin_value);
493 if (reg->umax_value != U64_MAX)
61bd5218 494 verbose(env, ",umax_value=%llu",
7d1238f2
EC
495 (unsigned long long)reg->umax_value);
496 if (!tnum_is_unknown(reg->var_off)) {
497 char tn_buf[48];
f1174f77 498
7d1238f2 499 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 500 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 501 }
f1174f77 502 }
61bd5218 503 verbose(env, ")");
f1174f77 504 }
17a52670 505 }
638f5b90 506 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
507 char types_buf[BPF_REG_SIZE + 1];
508 bool valid = false;
509 int j;
510
511 for (j = 0; j < BPF_REG_SIZE; j++) {
512 if (state->stack[i].slot_type[j] != STACK_INVALID)
513 valid = true;
514 types_buf[j] = slot_type_char[
515 state->stack[i].slot_type[j]];
516 }
517 types_buf[BPF_REG_SIZE] = 0;
518 if (!valid)
519 continue;
520 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
521 print_liveness(env, state->stack[i].spilled_ptr.live);
522 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 523 verbose(env, "=%s",
638f5b90 524 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
525 else
526 verbose(env, "=%s", types_buf);
17a52670 527 }
fd978bf7
JS
528 if (state->acquired_refs && state->refs[0].id) {
529 verbose(env, " refs=%d", state->refs[0].id);
530 for (i = 1; i < state->acquired_refs; i++)
531 if (state->refs[i].id)
532 verbose(env, ",%d", state->refs[i].id);
533 }
61bd5218 534 verbose(env, "\n");
17a52670
AS
535}
536
84dbf350
JS
537#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
538static int copy_##NAME##_state(struct bpf_func_state *dst, \
539 const struct bpf_func_state *src) \
540{ \
541 if (!src->FIELD) \
542 return 0; \
543 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
544 /* internal bug, make state invalid to reject the program */ \
545 memset(dst, 0, sizeof(*dst)); \
546 return -EFAULT; \
547 } \
548 memcpy(dst->FIELD, src->FIELD, \
549 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
550 return 0; \
638f5b90 551}
fd978bf7
JS
552/* copy_reference_state() */
553COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
554/* copy_stack_state() */
555COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556#undef COPY_STATE_FN
557
558#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
559static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 bool copy_old) \
561{ \
562 u32 old_size = state->COUNT; \
563 struct bpf_##NAME##_state *new_##FIELD; \
564 int slot = size / SIZE; \
565 \
566 if (size <= old_size || !size) { \
567 if (copy_old) \
568 return 0; \
569 state->COUNT = slot * SIZE; \
570 if (!size && old_size) { \
571 kfree(state->FIELD); \
572 state->FIELD = NULL; \
573 } \
574 return 0; \
575 } \
576 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 GFP_KERNEL); \
578 if (!new_##FIELD) \
579 return -ENOMEM; \
580 if (copy_old) { \
581 if (state->FIELD) \
582 memcpy(new_##FIELD, state->FIELD, \
583 sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 memset(new_##FIELD + old_size / SIZE, 0, \
585 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 } \
587 state->COUNT = slot * SIZE; \
588 kfree(state->FIELD); \
589 state->FIELD = new_##FIELD; \
590 return 0; \
591}
fd978bf7
JS
592/* realloc_reference_state() */
593REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
594/* realloc_stack_state() */
595REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596#undef REALLOC_STATE_FN
638f5b90
AS
597
598/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 600 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
601 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
602 * which realloc_stack_state() copies over. It points to previous
603 * bpf_verifier_state which is never reallocated.
638f5b90 604 */
fd978bf7
JS
605static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 int refs_size, bool copy_old)
638f5b90 607{
fd978bf7
JS
608 int err = realloc_reference_state(state, refs_size, copy_old);
609 if (err)
610 return err;
611 return realloc_stack_state(state, stack_size, copy_old);
612}
613
614/* Acquire a pointer id from the env and update the state->refs to include
615 * this new pointer reference.
616 * On success, returns a valid pointer id to associate with the register
617 * On failure, returns a negative errno.
638f5b90 618 */
fd978bf7 619static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 620{
fd978bf7
JS
621 struct bpf_func_state *state = cur_func(env);
622 int new_ofs = state->acquired_refs;
623 int id, err;
624
625 err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 if (err)
627 return err;
628 id = ++env->id_gen;
629 state->refs[new_ofs].id = id;
630 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 631
fd978bf7
JS
632 return id;
633}
634
635/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 636static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
637{
638 int i, last_idx;
639
fd978bf7
JS
640 last_idx = state->acquired_refs - 1;
641 for (i = 0; i < state->acquired_refs; i++) {
642 if (state->refs[i].id == ptr_id) {
643 if (last_idx && i != last_idx)
644 memcpy(&state->refs[i], &state->refs[last_idx],
645 sizeof(*state->refs));
646 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 state->acquired_refs--;
638f5b90 648 return 0;
638f5b90 649 }
638f5b90 650 }
46f8bc92 651 return -EINVAL;
fd978bf7
JS
652}
653
654static int transfer_reference_state(struct bpf_func_state *dst,
655 struct bpf_func_state *src)
656{
657 int err = realloc_reference_state(dst, src->acquired_refs, false);
658 if (err)
659 return err;
660 err = copy_reference_state(dst, src);
661 if (err)
662 return err;
638f5b90
AS
663 return 0;
664}
665
f4d7e40a
AS
666static void free_func_state(struct bpf_func_state *state)
667{
5896351e
AS
668 if (!state)
669 return;
fd978bf7 670 kfree(state->refs);
f4d7e40a
AS
671 kfree(state->stack);
672 kfree(state);
673}
674
1969db47
AS
675static void free_verifier_state(struct bpf_verifier_state *state,
676 bool free_self)
638f5b90 677{
f4d7e40a
AS
678 int i;
679
680 for (i = 0; i <= state->curframe; i++) {
681 free_func_state(state->frame[i]);
682 state->frame[i] = NULL;
683 }
1969db47
AS
684 if (free_self)
685 kfree(state);
638f5b90
AS
686}
687
688/* copy verifier state from src to dst growing dst stack space
689 * when necessary to accommodate larger src stack
690 */
f4d7e40a
AS
691static int copy_func_state(struct bpf_func_state *dst,
692 const struct bpf_func_state *src)
638f5b90
AS
693{
694 int err;
695
fd978bf7
JS
696 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
697 false);
698 if (err)
699 return err;
700 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
701 err = copy_reference_state(dst, src);
638f5b90
AS
702 if (err)
703 return err;
638f5b90
AS
704 return copy_stack_state(dst, src);
705}
706
f4d7e40a
AS
707static int copy_verifier_state(struct bpf_verifier_state *dst_state,
708 const struct bpf_verifier_state *src)
709{
710 struct bpf_func_state *dst;
711 int i, err;
712
713 /* if dst has more stack frames then src frame, free them */
714 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
715 free_func_state(dst_state->frame[i]);
716 dst_state->frame[i] = NULL;
717 }
979d63d5 718 dst_state->speculative = src->speculative;
f4d7e40a 719 dst_state->curframe = src->curframe;
d83525ca 720 dst_state->active_spin_lock = src->active_spin_lock;
f4d7e40a
AS
721 for (i = 0; i <= src->curframe; i++) {
722 dst = dst_state->frame[i];
723 if (!dst) {
724 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
725 if (!dst)
726 return -ENOMEM;
727 dst_state->frame[i] = dst;
728 }
729 err = copy_func_state(dst, src->frame[i]);
730 if (err)
731 return err;
732 }
733 return 0;
734}
735
638f5b90
AS
736static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
737 int *insn_idx)
738{
739 struct bpf_verifier_state *cur = env->cur_state;
740 struct bpf_verifier_stack_elem *elem, *head = env->head;
741 int err;
17a52670
AS
742
743 if (env->head == NULL)
638f5b90 744 return -ENOENT;
17a52670 745
638f5b90
AS
746 if (cur) {
747 err = copy_verifier_state(cur, &head->st);
748 if (err)
749 return err;
750 }
751 if (insn_idx)
752 *insn_idx = head->insn_idx;
17a52670 753 if (prev_insn_idx)
638f5b90
AS
754 *prev_insn_idx = head->prev_insn_idx;
755 elem = head->next;
1969db47 756 free_verifier_state(&head->st, false);
638f5b90 757 kfree(head);
17a52670
AS
758 env->head = elem;
759 env->stack_size--;
638f5b90 760 return 0;
17a52670
AS
761}
762
58e2af8b 763static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
764 int insn_idx, int prev_insn_idx,
765 bool speculative)
17a52670 766{
638f5b90 767 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 768 struct bpf_verifier_stack_elem *elem;
638f5b90 769 int err;
17a52670 770
638f5b90 771 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
772 if (!elem)
773 goto err;
774
17a52670
AS
775 elem->insn_idx = insn_idx;
776 elem->prev_insn_idx = prev_insn_idx;
777 elem->next = env->head;
778 env->head = elem;
779 env->stack_size++;
1969db47
AS
780 err = copy_verifier_state(&elem->st, cur);
781 if (err)
782 goto err;
979d63d5 783 elem->st.speculative |= speculative;
07016151 784 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 785 verbose(env, "BPF program is too complex\n");
17a52670
AS
786 goto err;
787 }
788 return &elem->st;
789err:
5896351e
AS
790 free_verifier_state(env->cur_state, true);
791 env->cur_state = NULL;
17a52670 792 /* pop all elements and return */
638f5b90 793 while (!pop_stack(env, NULL, NULL));
17a52670
AS
794 return NULL;
795}
796
797#define CALLER_SAVED_REGS 6
798static const int caller_saved[CALLER_SAVED_REGS] = {
799 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
800};
801
f1174f77
EC
802static void __mark_reg_not_init(struct bpf_reg_state *reg);
803
b03c9f9f
EC
804/* Mark the unknown part of a register (variable offset or scalar value) as
805 * known to have the value @imm.
806 */
807static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
808{
a9c676bc
AS
809 /* Clear id, off, and union(map_ptr, range) */
810 memset(((u8 *)reg) + sizeof(reg->type), 0,
811 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
812 reg->var_off = tnum_const(imm);
813 reg->smin_value = (s64)imm;
814 reg->smax_value = (s64)imm;
815 reg->umin_value = imm;
816 reg->umax_value = imm;
817}
818
f1174f77
EC
819/* Mark the 'variable offset' part of a register as zero. This should be
820 * used only on registers holding a pointer type.
821 */
822static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 823{
b03c9f9f 824 __mark_reg_known(reg, 0);
f1174f77 825}
a9789ef9 826
cc2b14d5
AS
827static void __mark_reg_const_zero(struct bpf_reg_state *reg)
828{
829 __mark_reg_known(reg, 0);
cc2b14d5
AS
830 reg->type = SCALAR_VALUE;
831}
832
61bd5218
JK
833static void mark_reg_known_zero(struct bpf_verifier_env *env,
834 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
835{
836 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 837 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
838 /* Something bad happened, let's kill all regs */
839 for (regno = 0; regno < MAX_BPF_REG; regno++)
840 __mark_reg_not_init(regs + regno);
841 return;
842 }
843 __mark_reg_known_zero(regs + regno);
844}
845
de8f3a83
DB
846static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
847{
848 return type_is_pkt_pointer(reg->type);
849}
850
851static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
852{
853 return reg_is_pkt_pointer(reg) ||
854 reg->type == PTR_TO_PACKET_END;
855}
856
857/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
858static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
859 enum bpf_reg_type which)
860{
861 /* The register can already have a range from prior markings.
862 * This is fine as long as it hasn't been advanced from its
863 * origin.
864 */
865 return reg->type == which &&
866 reg->id == 0 &&
867 reg->off == 0 &&
868 tnum_equals_const(reg->var_off, 0);
869}
870
b03c9f9f
EC
871/* Attempts to improve min/max values based on var_off information */
872static void __update_reg_bounds(struct bpf_reg_state *reg)
873{
874 /* min signed is max(sign bit) | min(other bits) */
875 reg->smin_value = max_t(s64, reg->smin_value,
876 reg->var_off.value | (reg->var_off.mask & S64_MIN));
877 /* max signed is min(sign bit) | max(other bits) */
878 reg->smax_value = min_t(s64, reg->smax_value,
879 reg->var_off.value | (reg->var_off.mask & S64_MAX));
880 reg->umin_value = max(reg->umin_value, reg->var_off.value);
881 reg->umax_value = min(reg->umax_value,
882 reg->var_off.value | reg->var_off.mask);
883}
884
885/* Uses signed min/max values to inform unsigned, and vice-versa */
886static void __reg_deduce_bounds(struct bpf_reg_state *reg)
887{
888 /* Learn sign from signed bounds.
889 * If we cannot cross the sign boundary, then signed and unsigned bounds
890 * are the same, so combine. This works even in the negative case, e.g.
891 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
892 */
893 if (reg->smin_value >= 0 || reg->smax_value < 0) {
894 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
895 reg->umin_value);
896 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
897 reg->umax_value);
898 return;
899 }
900 /* Learn sign from unsigned bounds. Signed bounds cross the sign
901 * boundary, so we must be careful.
902 */
903 if ((s64)reg->umax_value >= 0) {
904 /* Positive. We can't learn anything from the smin, but smax
905 * is positive, hence safe.
906 */
907 reg->smin_value = reg->umin_value;
908 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
909 reg->umax_value);
910 } else if ((s64)reg->umin_value < 0) {
911 /* Negative. We can't learn anything from the smax, but smin
912 * is negative, hence safe.
913 */
914 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
915 reg->umin_value);
916 reg->smax_value = reg->umax_value;
917 }
918}
919
920/* Attempts to improve var_off based on unsigned min/max information */
921static void __reg_bound_offset(struct bpf_reg_state *reg)
922{
923 reg->var_off = tnum_intersect(reg->var_off,
924 tnum_range(reg->umin_value,
925 reg->umax_value));
926}
927
928/* Reset the min/max bounds of a register */
929static void __mark_reg_unbounded(struct bpf_reg_state *reg)
930{
931 reg->smin_value = S64_MIN;
932 reg->smax_value = S64_MAX;
933 reg->umin_value = 0;
934 reg->umax_value = U64_MAX;
935}
936
f1174f77
EC
937/* Mark a register as having a completely unknown (scalar) value. */
938static void __mark_reg_unknown(struct bpf_reg_state *reg)
939{
a9c676bc
AS
940 /*
941 * Clear type, id, off, and union(map_ptr, range) and
942 * padding between 'type' and union
943 */
944 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 945 reg->type = SCALAR_VALUE;
f1174f77 946 reg->var_off = tnum_unknown;
f4d7e40a 947 reg->frameno = 0;
b03c9f9f 948 __mark_reg_unbounded(reg);
f1174f77
EC
949}
950
61bd5218
JK
951static void mark_reg_unknown(struct bpf_verifier_env *env,
952 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
953{
954 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 955 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
956 /* Something bad happened, let's kill all regs except FP */
957 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
958 __mark_reg_not_init(regs + regno);
959 return;
960 }
961 __mark_reg_unknown(regs + regno);
962}
963
964static void __mark_reg_not_init(struct bpf_reg_state *reg)
965{
966 __mark_reg_unknown(reg);
967 reg->type = NOT_INIT;
968}
969
61bd5218
JK
970static void mark_reg_not_init(struct bpf_verifier_env *env,
971 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
972{
973 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 974 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
975 /* Something bad happened, let's kill all regs except FP */
976 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
977 __mark_reg_not_init(regs + regno);
978 return;
979 }
980 __mark_reg_not_init(regs + regno);
a9789ef9
DB
981}
982
61bd5218 983static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 984 struct bpf_func_state *state)
17a52670 985{
f4d7e40a 986 struct bpf_reg_state *regs = state->regs;
17a52670
AS
987 int i;
988
dc503a8a 989 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 990 mark_reg_not_init(env, regs, i);
dc503a8a 991 regs[i].live = REG_LIVE_NONE;
679c782d 992 regs[i].parent = NULL;
dc503a8a 993 }
17a52670
AS
994
995 /* frame pointer */
f1174f77 996 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 997 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 998 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
999
1000 /* 1st arg to a function */
1001 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1002 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1003}
1004
f4d7e40a
AS
1005#define BPF_MAIN_FUNC (-1)
1006static void init_func_state(struct bpf_verifier_env *env,
1007 struct bpf_func_state *state,
1008 int callsite, int frameno, int subprogno)
1009{
1010 state->callsite = callsite;
1011 state->frameno = frameno;
1012 state->subprogno = subprogno;
1013 init_reg_state(env, state);
1014}
1015
17a52670
AS
1016enum reg_arg_type {
1017 SRC_OP, /* register is used as source operand */
1018 DST_OP, /* register is used as destination operand */
1019 DST_OP_NO_MARK /* same as above, check only, don't mark */
1020};
1021
cc8b0b92
AS
1022static int cmp_subprogs(const void *a, const void *b)
1023{
9c8105bd
JW
1024 return ((struct bpf_subprog_info *)a)->start -
1025 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1026}
1027
1028static int find_subprog(struct bpf_verifier_env *env, int off)
1029{
9c8105bd 1030 struct bpf_subprog_info *p;
cc8b0b92 1031
9c8105bd
JW
1032 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1033 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1034 if (!p)
1035 return -ENOENT;
9c8105bd 1036 return p - env->subprog_info;
cc8b0b92
AS
1037
1038}
1039
1040static int add_subprog(struct bpf_verifier_env *env, int off)
1041{
1042 int insn_cnt = env->prog->len;
1043 int ret;
1044
1045 if (off >= insn_cnt || off < 0) {
1046 verbose(env, "call to invalid destination\n");
1047 return -EINVAL;
1048 }
1049 ret = find_subprog(env, off);
1050 if (ret >= 0)
1051 return 0;
4cb3d99c 1052 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1053 verbose(env, "too many subprograms\n");
1054 return -E2BIG;
1055 }
9c8105bd
JW
1056 env->subprog_info[env->subprog_cnt++].start = off;
1057 sort(env->subprog_info, env->subprog_cnt,
1058 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1059 return 0;
1060}
1061
1062static int check_subprogs(struct bpf_verifier_env *env)
1063{
1064 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1065 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1066 struct bpf_insn *insn = env->prog->insnsi;
1067 int insn_cnt = env->prog->len;
1068
f910cefa
JW
1069 /* Add entry function. */
1070 ret = add_subprog(env, 0);
1071 if (ret < 0)
1072 return ret;
1073
cc8b0b92
AS
1074 /* determine subprog starts. The end is one before the next starts */
1075 for (i = 0; i < insn_cnt; i++) {
1076 if (insn[i].code != (BPF_JMP | BPF_CALL))
1077 continue;
1078 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1079 continue;
1080 if (!env->allow_ptr_leaks) {
1081 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1082 return -EPERM;
1083 }
cc8b0b92
AS
1084 ret = add_subprog(env, i + insn[i].imm + 1);
1085 if (ret < 0)
1086 return ret;
1087 }
1088
4cb3d99c
JW
1089 /* Add a fake 'exit' subprog which could simplify subprog iteration
1090 * logic. 'subprog_cnt' should not be increased.
1091 */
1092 subprog[env->subprog_cnt].start = insn_cnt;
1093
06ee7115 1094 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1095 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1096 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1097
1098 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1099 subprog_start = subprog[cur_subprog].start;
1100 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1101 for (i = 0; i < insn_cnt; i++) {
1102 u8 code = insn[i].code;
1103
092ed096 1104 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1105 goto next;
1106 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1107 goto next;
1108 off = i + insn[i].off + 1;
1109 if (off < subprog_start || off >= subprog_end) {
1110 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1111 return -EINVAL;
1112 }
1113next:
1114 if (i == subprog_end - 1) {
1115 /* to avoid fall-through from one subprog into another
1116 * the last insn of the subprog should be either exit
1117 * or unconditional jump back
1118 */
1119 if (code != (BPF_JMP | BPF_EXIT) &&
1120 code != (BPF_JMP | BPF_JA)) {
1121 verbose(env, "last insn is not an exit or jmp\n");
1122 return -EINVAL;
1123 }
1124 subprog_start = subprog_end;
4cb3d99c
JW
1125 cur_subprog++;
1126 if (cur_subprog < env->subprog_cnt)
9c8105bd 1127 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1128 }
1129 }
1130 return 0;
1131}
1132
679c782d
EC
1133/* Parentage chain of this register (or stack slot) should take care of all
1134 * issues like callee-saved registers, stack slot allocation time, etc.
1135 */
f4d7e40a 1136static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1137 const struct bpf_reg_state *state,
1138 struct bpf_reg_state *parent)
f4d7e40a
AS
1139{
1140 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1141 int cnt = 0;
dc503a8a
EC
1142
1143 while (parent) {
1144 /* if read wasn't screened by an earlier write ... */
679c782d 1145 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1146 break;
9242b5f5
AS
1147 if (parent->live & REG_LIVE_DONE) {
1148 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1149 reg_type_str[parent->type],
1150 parent->var_off.value, parent->off);
1151 return -EFAULT;
1152 }
25af32da
AS
1153 if (parent->live & REG_LIVE_READ)
1154 /* The parentage chain never changes and
1155 * this parent was already marked as LIVE_READ.
1156 * There is no need to keep walking the chain again and
1157 * keep re-marking all parents as LIVE_READ.
1158 * This case happens when the same register is read
1159 * multiple times without writes into it in-between.
1160 */
1161 break;
dc503a8a 1162 /* ... then we depend on parent's value */
679c782d 1163 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1164 state = parent;
1165 parent = state->parent;
f4d7e40a 1166 writes = true;
06ee7115 1167 cnt++;
dc503a8a 1168 }
06ee7115
AS
1169
1170 if (env->longest_mark_read_walk < cnt)
1171 env->longest_mark_read_walk = cnt;
f4d7e40a 1172 return 0;
dc503a8a
EC
1173}
1174
1175static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1176 enum reg_arg_type t)
1177{
f4d7e40a
AS
1178 struct bpf_verifier_state *vstate = env->cur_state;
1179 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1180 struct bpf_reg_state *regs = state->regs;
dc503a8a 1181
17a52670 1182 if (regno >= MAX_BPF_REG) {
61bd5218 1183 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1184 return -EINVAL;
1185 }
1186
1187 if (t == SRC_OP) {
1188 /* check whether register used as source operand can be read */
1189 if (regs[regno].type == NOT_INIT) {
61bd5218 1190 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1191 return -EACCES;
1192 }
679c782d
EC
1193 /* We don't need to worry about FP liveness because it's read-only */
1194 if (regno != BPF_REG_FP)
1195 return mark_reg_read(env, &regs[regno],
1196 regs[regno].parent);
17a52670
AS
1197 } else {
1198 /* check whether register used as dest operand can be written to */
1199 if (regno == BPF_REG_FP) {
61bd5218 1200 verbose(env, "frame pointer is read only\n");
17a52670
AS
1201 return -EACCES;
1202 }
dc503a8a 1203 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1204 if (t == DST_OP)
61bd5218 1205 mark_reg_unknown(env, regs, regno);
17a52670
AS
1206 }
1207 return 0;
1208}
1209
1be7f75d
AS
1210static bool is_spillable_regtype(enum bpf_reg_type type)
1211{
1212 switch (type) {
1213 case PTR_TO_MAP_VALUE:
1214 case PTR_TO_MAP_VALUE_OR_NULL:
1215 case PTR_TO_STACK:
1216 case PTR_TO_CTX:
969bf05e 1217 case PTR_TO_PACKET:
de8f3a83 1218 case PTR_TO_PACKET_META:
969bf05e 1219 case PTR_TO_PACKET_END:
d58e468b 1220 case PTR_TO_FLOW_KEYS:
1be7f75d 1221 case CONST_PTR_TO_MAP:
c64b7983
JS
1222 case PTR_TO_SOCKET:
1223 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1224 case PTR_TO_SOCK_COMMON:
1225 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1226 case PTR_TO_TCP_SOCK:
1227 case PTR_TO_TCP_SOCK_OR_NULL:
1be7f75d
AS
1228 return true;
1229 default:
1230 return false;
1231 }
1232}
1233
cc2b14d5
AS
1234/* Does this register contain a constant zero? */
1235static bool register_is_null(struct bpf_reg_state *reg)
1236{
1237 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1238}
1239
17a52670
AS
1240/* check_stack_read/write functions track spill/fill of registers,
1241 * stack boundary and alignment are checked in check_mem_access()
1242 */
61bd5218 1243static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1244 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1245 int off, int size, int value_regno, int insn_idx)
17a52670 1246{
f4d7e40a 1247 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1248 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1249 enum bpf_reg_type type;
638f5b90 1250
f4d7e40a 1251 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1252 state->acquired_refs, true);
638f5b90
AS
1253 if (err)
1254 return err;
9c399760
AS
1255 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1256 * so it's aligned access and [off, off + size) are within stack limits
1257 */
638f5b90
AS
1258 if (!env->allow_ptr_leaks &&
1259 state->stack[spi].slot_type[0] == STACK_SPILL &&
1260 size != BPF_REG_SIZE) {
1261 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1262 return -EACCES;
1263 }
17a52670 1264
f4d7e40a 1265 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1266 if (value_regno >= 0 &&
f4d7e40a 1267 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1268
1269 /* register containing pointer is being spilled into stack */
9c399760 1270 if (size != BPF_REG_SIZE) {
61bd5218 1271 verbose(env, "invalid size of register spill\n");
17a52670
AS
1272 return -EACCES;
1273 }
1274
f4d7e40a
AS
1275 if (state != cur && type == PTR_TO_STACK) {
1276 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1277 return -EINVAL;
1278 }
1279
17a52670 1280 /* save register state */
f4d7e40a 1281 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1282 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1283
af86ca4e
AS
1284 for (i = 0; i < BPF_REG_SIZE; i++) {
1285 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1286 !env->allow_ptr_leaks) {
1287 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1288 int soff = (-spi - 1) * BPF_REG_SIZE;
1289
1290 /* detected reuse of integer stack slot with a pointer
1291 * which means either llvm is reusing stack slot or
1292 * an attacker is trying to exploit CVE-2018-3639
1293 * (speculative store bypass)
1294 * Have to sanitize that slot with preemptive
1295 * store of zero.
1296 */
1297 if (*poff && *poff != soff) {
1298 /* disallow programs where single insn stores
1299 * into two different stack slots, since verifier
1300 * cannot sanitize them
1301 */
1302 verbose(env,
1303 "insn %d cannot access two stack slots fp%d and fp%d",
1304 insn_idx, *poff, soff);
1305 return -EINVAL;
1306 }
1307 *poff = soff;
1308 }
638f5b90 1309 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1310 }
9c399760 1311 } else {
cc2b14d5
AS
1312 u8 type = STACK_MISC;
1313
679c782d
EC
1314 /* regular write of data into stack destroys any spilled ptr */
1315 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1316 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1317 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1318 for (i = 0; i < BPF_REG_SIZE; i++)
1319 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1320
cc2b14d5
AS
1321 /* only mark the slot as written if all 8 bytes were written
1322 * otherwise read propagation may incorrectly stop too soon
1323 * when stack slots are partially written.
1324 * This heuristic means that read propagation will be
1325 * conservative, since it will add reg_live_read marks
1326 * to stack slots all the way to first state when programs
1327 * writes+reads less than 8 bytes
1328 */
1329 if (size == BPF_REG_SIZE)
1330 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1331
1332 /* when we zero initialize stack slots mark them as such */
1333 if (value_regno >= 0 &&
1334 register_is_null(&cur->regs[value_regno]))
1335 type = STACK_ZERO;
1336
0bae2d4d 1337 /* Mark slots affected by this stack write. */
9c399760 1338 for (i = 0; i < size; i++)
638f5b90 1339 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1340 type;
17a52670
AS
1341 }
1342 return 0;
1343}
1344
61bd5218 1345static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1346 struct bpf_func_state *reg_state /* func where register points to */,
1347 int off, int size, int value_regno)
17a52670 1348{
f4d7e40a
AS
1349 struct bpf_verifier_state *vstate = env->cur_state;
1350 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1351 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1352 u8 *stype;
17a52670 1353
f4d7e40a 1354 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1355 verbose(env, "invalid read from stack off %d+0 size %d\n",
1356 off, size);
1357 return -EACCES;
1358 }
f4d7e40a 1359 stype = reg_state->stack[spi].slot_type;
17a52670 1360
638f5b90 1361 if (stype[0] == STACK_SPILL) {
9c399760 1362 if (size != BPF_REG_SIZE) {
61bd5218 1363 verbose(env, "invalid size of register spill\n");
17a52670
AS
1364 return -EACCES;
1365 }
9c399760 1366 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1367 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1368 verbose(env, "corrupted spill memory\n");
17a52670
AS
1369 return -EACCES;
1370 }
1371 }
1372
dc503a8a 1373 if (value_regno >= 0) {
17a52670 1374 /* restore register state from stack */
f4d7e40a 1375 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1376 /* mark reg as written since spilled pointer state likely
1377 * has its liveness marks cleared by is_state_visited()
1378 * which resets stack/reg liveness for state transitions
1379 */
1380 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1381 }
679c782d
EC
1382 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1383 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1384 return 0;
1385 } else {
cc2b14d5
AS
1386 int zeros = 0;
1387
17a52670 1388 for (i = 0; i < size; i++) {
cc2b14d5
AS
1389 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1390 continue;
1391 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1392 zeros++;
1393 continue;
17a52670 1394 }
cc2b14d5
AS
1395 verbose(env, "invalid read from stack off %d+%d size %d\n",
1396 off, i, size);
1397 return -EACCES;
1398 }
679c782d
EC
1399 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1400 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1401 if (value_regno >= 0) {
1402 if (zeros == size) {
1403 /* any size read into register is zero extended,
1404 * so the whole register == const_zero
1405 */
1406 __mark_reg_const_zero(&state->regs[value_regno]);
1407 } else {
1408 /* have read misc data from the stack */
1409 mark_reg_unknown(env, state->regs, value_regno);
1410 }
1411 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1412 }
17a52670
AS
1413 return 0;
1414 }
1415}
1416
e4298d25
DB
1417static int check_stack_access(struct bpf_verifier_env *env,
1418 const struct bpf_reg_state *reg,
1419 int off, int size)
1420{
1421 /* Stack accesses must be at a fixed offset, so that we
1422 * can determine what type of data were returned. See
1423 * check_stack_read().
1424 */
1425 if (!tnum_is_const(reg->var_off)) {
1426 char tn_buf[48];
1427
1428 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 1429 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
1430 tn_buf, off, size);
1431 return -EACCES;
1432 }
1433
1434 if (off >= 0 || off < -MAX_BPF_STACK) {
1435 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1436 return -EACCES;
1437 }
1438
1439 return 0;
1440}
1441
17a52670 1442/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1443static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1444 int size, bool zero_size_allowed)
17a52670 1445{
638f5b90
AS
1446 struct bpf_reg_state *regs = cur_regs(env);
1447 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1448
9fd29c08
YS
1449 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1450 off + size > map->value_size) {
61bd5218 1451 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1452 map->value_size, off, size);
1453 return -EACCES;
1454 }
1455 return 0;
1456}
1457
f1174f77
EC
1458/* check read/write into a map element with possible variable offset */
1459static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1460 int off, int size, bool zero_size_allowed)
dbcfe5f7 1461{
f4d7e40a
AS
1462 struct bpf_verifier_state *vstate = env->cur_state;
1463 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1464 struct bpf_reg_state *reg = &state->regs[regno];
1465 int err;
1466
f1174f77
EC
1467 /* We may have adjusted the register to this map value, so we
1468 * need to try adding each of min_value and max_value to off
1469 * to make sure our theoretical access will be safe.
dbcfe5f7 1470 */
06ee7115 1471 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 1472 print_verifier_state(env, state);
b7137c4e 1473
dbcfe5f7
GB
1474 /* The minimum value is only important with signed
1475 * comparisons where we can't assume the floor of a
1476 * value is 0. If we are using signed variables for our
1477 * index'es we need to make sure that whatever we use
1478 * will have a set floor within our range.
1479 */
b7137c4e
DB
1480 if (reg->smin_value < 0 &&
1481 (reg->smin_value == S64_MIN ||
1482 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1483 reg->smin_value + off < 0)) {
61bd5218 1484 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1485 regno);
1486 return -EACCES;
1487 }
9fd29c08
YS
1488 err = __check_map_access(env, regno, reg->smin_value + off, size,
1489 zero_size_allowed);
dbcfe5f7 1490 if (err) {
61bd5218
JK
1491 verbose(env, "R%d min value is outside of the array range\n",
1492 regno);
dbcfe5f7
GB
1493 return err;
1494 }
1495
b03c9f9f
EC
1496 /* If we haven't set a max value then we need to bail since we can't be
1497 * sure we won't do bad things.
1498 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1499 */
b03c9f9f 1500 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1501 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1502 regno);
1503 return -EACCES;
1504 }
9fd29c08
YS
1505 err = __check_map_access(env, regno, reg->umax_value + off, size,
1506 zero_size_allowed);
f1174f77 1507 if (err)
61bd5218
JK
1508 verbose(env, "R%d max value is outside of the array range\n",
1509 regno);
d83525ca
AS
1510
1511 if (map_value_has_spin_lock(reg->map_ptr)) {
1512 u32 lock = reg->map_ptr->spin_lock_off;
1513
1514 /* if any part of struct bpf_spin_lock can be touched by
1515 * load/store reject this program.
1516 * To check that [x1, x2) overlaps with [y1, y2)
1517 * it is sufficient to check x1 < y2 && y1 < x2.
1518 */
1519 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1520 lock < reg->umax_value + off + size) {
1521 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1522 return -EACCES;
1523 }
1524 }
f1174f77 1525 return err;
dbcfe5f7
GB
1526}
1527
969bf05e
AS
1528#define MAX_PACKET_OFF 0xffff
1529
58e2af8b 1530static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1531 const struct bpf_call_arg_meta *meta,
1532 enum bpf_access_type t)
4acf6c0b 1533{
36bbef52 1534 switch (env->prog->type) {
5d66fa7d 1535 /* Program types only with direct read access go here! */
3a0af8fd
TG
1536 case BPF_PROG_TYPE_LWT_IN:
1537 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1538 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1539 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1540 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1541 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1542 if (t == BPF_WRITE)
1543 return false;
7e57fbb2 1544 /* fallthrough */
5d66fa7d
DB
1545
1546 /* Program types with direct read + write access go here! */
36bbef52
DB
1547 case BPF_PROG_TYPE_SCHED_CLS:
1548 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1549 case BPF_PROG_TYPE_XDP:
3a0af8fd 1550 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1551 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1552 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1553 if (meta)
1554 return meta->pkt_access;
1555
1556 env->seen_direct_write = true;
4acf6c0b
BB
1557 return true;
1558 default:
1559 return false;
1560 }
1561}
1562
f1174f77 1563static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1564 int off, int size, bool zero_size_allowed)
969bf05e 1565{
638f5b90 1566 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1567 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1568
9fd29c08
YS
1569 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1570 (u64)off + size > reg->range) {
61bd5218 1571 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1572 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1573 return -EACCES;
1574 }
1575 return 0;
1576}
1577
f1174f77 1578static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1579 int size, bool zero_size_allowed)
f1174f77 1580{
638f5b90 1581 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1582 struct bpf_reg_state *reg = &regs[regno];
1583 int err;
1584
1585 /* We may have added a variable offset to the packet pointer; but any
1586 * reg->range we have comes after that. We are only checking the fixed
1587 * offset.
1588 */
1589
1590 /* We don't allow negative numbers, because we aren't tracking enough
1591 * detail to prove they're safe.
1592 */
b03c9f9f 1593 if (reg->smin_value < 0) {
61bd5218 1594 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1595 regno);
1596 return -EACCES;
1597 }
9fd29c08 1598 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1599 if (err) {
61bd5218 1600 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1601 return err;
1602 }
e647815a
JW
1603
1604 /* __check_packet_access has made sure "off + size - 1" is within u16.
1605 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1606 * otherwise find_good_pkt_pointers would have refused to set range info
1607 * that __check_packet_access would have rejected this pkt access.
1608 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1609 */
1610 env->prog->aux->max_pkt_offset =
1611 max_t(u32, env->prog->aux->max_pkt_offset,
1612 off + reg->umax_value + size - 1);
1613
f1174f77
EC
1614 return err;
1615}
1616
1617/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1618static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1619 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1620{
f96da094
DB
1621 struct bpf_insn_access_aux info = {
1622 .reg_type = *reg_type,
1623 };
31fd8581 1624
4f9218aa 1625 if (env->ops->is_valid_access &&
5e43f899 1626 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1627 /* A non zero info.ctx_field_size indicates that this field is a
1628 * candidate for later verifier transformation to load the whole
1629 * field and then apply a mask when accessed with a narrower
1630 * access than actual ctx access size. A zero info.ctx_field_size
1631 * will only allow for whole field access and rejects any other
1632 * type of narrower access.
31fd8581 1633 */
23994631 1634 *reg_type = info.reg_type;
31fd8581 1635
4f9218aa 1636 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1637 /* remember the offset of last byte accessed in ctx */
1638 if (env->prog->aux->max_ctx_offset < off + size)
1639 env->prog->aux->max_ctx_offset = off + size;
17a52670 1640 return 0;
32bbe007 1641 }
17a52670 1642
61bd5218 1643 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1644 return -EACCES;
1645}
1646
d58e468b
PP
1647static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1648 int size)
1649{
1650 if (size < 0 || off < 0 ||
1651 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1652 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1653 off, size);
1654 return -EACCES;
1655 }
1656 return 0;
1657}
1658
5f456649
MKL
1659static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1660 u32 regno, int off, int size,
1661 enum bpf_access_type t)
c64b7983
JS
1662{
1663 struct bpf_reg_state *regs = cur_regs(env);
1664 struct bpf_reg_state *reg = &regs[regno];
5f456649 1665 struct bpf_insn_access_aux info = {};
46f8bc92 1666 bool valid;
c64b7983
JS
1667
1668 if (reg->smin_value < 0) {
1669 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1670 regno);
1671 return -EACCES;
1672 }
1673
46f8bc92
MKL
1674 switch (reg->type) {
1675 case PTR_TO_SOCK_COMMON:
1676 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1677 break;
1678 case PTR_TO_SOCKET:
1679 valid = bpf_sock_is_valid_access(off, size, t, &info);
1680 break;
655a51e5
MKL
1681 case PTR_TO_TCP_SOCK:
1682 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1683 break;
46f8bc92
MKL
1684 default:
1685 valid = false;
c64b7983
JS
1686 }
1687
5f456649 1688
46f8bc92
MKL
1689 if (valid) {
1690 env->insn_aux_data[insn_idx].ctx_field_size =
1691 info.ctx_field_size;
1692 return 0;
1693 }
1694
1695 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1696 regno, reg_type_str[reg->type], off, size);
1697
1698 return -EACCES;
c64b7983
JS
1699}
1700
4cabc5b1
DB
1701static bool __is_pointer_value(bool allow_ptr_leaks,
1702 const struct bpf_reg_state *reg)
1be7f75d 1703{
4cabc5b1 1704 if (allow_ptr_leaks)
1be7f75d
AS
1705 return false;
1706
f1174f77 1707 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1708}
1709
2a159c6f
DB
1710static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1711{
1712 return cur_regs(env) + regno;
1713}
1714
4cabc5b1
DB
1715static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1716{
2a159c6f 1717 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1718}
1719
f37a8cb8
DB
1720static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1721{
2a159c6f 1722 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1723
46f8bc92
MKL
1724 return reg->type == PTR_TO_CTX;
1725}
1726
1727static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1728{
1729 const struct bpf_reg_state *reg = reg_state(env, regno);
1730
1731 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
1732}
1733
ca369602
DB
1734static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1735{
2a159c6f 1736 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1737
1738 return type_is_pkt_pointer(reg->type);
1739}
1740
4b5defde
DB
1741static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1742{
1743 const struct bpf_reg_state *reg = reg_state(env, regno);
1744
1745 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1746 return reg->type == PTR_TO_FLOW_KEYS;
1747}
1748
61bd5218
JK
1749static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1750 const struct bpf_reg_state *reg,
d1174416 1751 int off, int size, bool strict)
969bf05e 1752{
f1174f77 1753 struct tnum reg_off;
e07b98d9 1754 int ip_align;
d1174416
DM
1755
1756 /* Byte size accesses are always allowed. */
1757 if (!strict || size == 1)
1758 return 0;
1759
e4eda884
DM
1760 /* For platforms that do not have a Kconfig enabling
1761 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1762 * NET_IP_ALIGN is universally set to '2'. And on platforms
1763 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1764 * to this code only in strict mode where we want to emulate
1765 * the NET_IP_ALIGN==2 checking. Therefore use an
1766 * unconditional IP align value of '2'.
e07b98d9 1767 */
e4eda884 1768 ip_align = 2;
f1174f77
EC
1769
1770 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1771 if (!tnum_is_aligned(reg_off, size)) {
1772 char tn_buf[48];
1773
1774 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1775 verbose(env,
1776 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1777 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1778 return -EACCES;
1779 }
79adffcd 1780
969bf05e
AS
1781 return 0;
1782}
1783
61bd5218
JK
1784static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1785 const struct bpf_reg_state *reg,
f1174f77
EC
1786 const char *pointer_desc,
1787 int off, int size, bool strict)
79adffcd 1788{
f1174f77
EC
1789 struct tnum reg_off;
1790
1791 /* Byte size accesses are always allowed. */
1792 if (!strict || size == 1)
1793 return 0;
1794
1795 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1796 if (!tnum_is_aligned(reg_off, size)) {
1797 char tn_buf[48];
1798
1799 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1800 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1801 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1802 return -EACCES;
1803 }
1804
969bf05e
AS
1805 return 0;
1806}
1807
e07b98d9 1808static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1809 const struct bpf_reg_state *reg, int off,
1810 int size, bool strict_alignment_once)
79adffcd 1811{
ca369602 1812 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1813 const char *pointer_desc = "";
d1174416 1814
79adffcd
DB
1815 switch (reg->type) {
1816 case PTR_TO_PACKET:
de8f3a83
DB
1817 case PTR_TO_PACKET_META:
1818 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1819 * right in front, treat it the very same way.
1820 */
61bd5218 1821 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1822 case PTR_TO_FLOW_KEYS:
1823 pointer_desc = "flow keys ";
1824 break;
f1174f77
EC
1825 case PTR_TO_MAP_VALUE:
1826 pointer_desc = "value ";
1827 break;
1828 case PTR_TO_CTX:
1829 pointer_desc = "context ";
1830 break;
1831 case PTR_TO_STACK:
1832 pointer_desc = "stack ";
a5ec6ae1
JH
1833 /* The stack spill tracking logic in check_stack_write()
1834 * and check_stack_read() relies on stack accesses being
1835 * aligned.
1836 */
1837 strict = true;
f1174f77 1838 break;
c64b7983
JS
1839 case PTR_TO_SOCKET:
1840 pointer_desc = "sock ";
1841 break;
46f8bc92
MKL
1842 case PTR_TO_SOCK_COMMON:
1843 pointer_desc = "sock_common ";
1844 break;
655a51e5
MKL
1845 case PTR_TO_TCP_SOCK:
1846 pointer_desc = "tcp_sock ";
1847 break;
79adffcd 1848 default:
f1174f77 1849 break;
79adffcd 1850 }
61bd5218
JK
1851 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1852 strict);
79adffcd
DB
1853}
1854
f4d7e40a
AS
1855static int update_stack_depth(struct bpf_verifier_env *env,
1856 const struct bpf_func_state *func,
1857 int off)
1858{
9c8105bd 1859 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1860
1861 if (stack >= -off)
1862 return 0;
1863
1864 /* update known max for given subprogram */
9c8105bd 1865 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1866 return 0;
1867}
f4d7e40a 1868
70a87ffe
AS
1869/* starting from main bpf function walk all instructions of the function
1870 * and recursively walk all callees that given function can call.
1871 * Ignore jump and exit insns.
1872 * Since recursion is prevented by check_cfg() this algorithm
1873 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1874 */
1875static int check_max_stack_depth(struct bpf_verifier_env *env)
1876{
9c8105bd
JW
1877 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1878 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1879 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1880 int ret_insn[MAX_CALL_FRAMES];
1881 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1882
70a87ffe
AS
1883process_func:
1884 /* round up to 32-bytes, since this is granularity
1885 * of interpreter stack size
1886 */
9c8105bd 1887 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1888 if (depth > MAX_BPF_STACK) {
f4d7e40a 1889 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1890 frame + 1, depth);
f4d7e40a
AS
1891 return -EACCES;
1892 }
70a87ffe 1893continue_func:
4cb3d99c 1894 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1895 for (; i < subprog_end; i++) {
1896 if (insn[i].code != (BPF_JMP | BPF_CALL))
1897 continue;
1898 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1899 continue;
1900 /* remember insn and function to return to */
1901 ret_insn[frame] = i + 1;
9c8105bd 1902 ret_prog[frame] = idx;
70a87ffe
AS
1903
1904 /* find the callee */
1905 i = i + insn[i].imm + 1;
9c8105bd
JW
1906 idx = find_subprog(env, i);
1907 if (idx < 0) {
70a87ffe
AS
1908 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1909 i);
1910 return -EFAULT;
1911 }
70a87ffe
AS
1912 frame++;
1913 if (frame >= MAX_CALL_FRAMES) {
1914 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1915 return -EFAULT;
1916 }
1917 goto process_func;
1918 }
1919 /* end of for() loop means the last insn of the 'subprog'
1920 * was reached. Doesn't matter whether it was JA or EXIT
1921 */
1922 if (frame == 0)
1923 return 0;
9c8105bd 1924 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1925 frame--;
1926 i = ret_insn[frame];
9c8105bd 1927 idx = ret_prog[frame];
70a87ffe 1928 goto continue_func;
f4d7e40a
AS
1929}
1930
19d28fbd 1931#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1932static int get_callee_stack_depth(struct bpf_verifier_env *env,
1933 const struct bpf_insn *insn, int idx)
1934{
1935 int start = idx + insn->imm + 1, subprog;
1936
1937 subprog = find_subprog(env, start);
1938 if (subprog < 0) {
1939 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1940 start);
1941 return -EFAULT;
1942 }
9c8105bd 1943 return env->subprog_info[subprog].stack_depth;
1ea47e01 1944}
19d28fbd 1945#endif
1ea47e01 1946
58990d1f
DB
1947static int check_ctx_reg(struct bpf_verifier_env *env,
1948 const struct bpf_reg_state *reg, int regno)
1949{
1950 /* Access to ctx or passing it to a helper is only allowed in
1951 * its original, unmodified form.
1952 */
1953
1954 if (reg->off) {
1955 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1956 regno, reg->off);
1957 return -EACCES;
1958 }
1959
1960 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1961 char tn_buf[48];
1962
1963 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1964 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1965 return -EACCES;
1966 }
1967
1968 return 0;
1969}
1970
0c17d1d2
JH
1971/* truncate register to smaller size (in bytes)
1972 * must be called with size < BPF_REG_SIZE
1973 */
1974static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1975{
1976 u64 mask;
1977
1978 /* clear high bits in bit representation */
1979 reg->var_off = tnum_cast(reg->var_off, size);
1980
1981 /* fix arithmetic bounds */
1982 mask = ((u64)1 << (size * 8)) - 1;
1983 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1984 reg->umin_value &= mask;
1985 reg->umax_value &= mask;
1986 } else {
1987 reg->umin_value = 0;
1988 reg->umax_value = mask;
1989 }
1990 reg->smin_value = reg->umin_value;
1991 reg->smax_value = reg->umax_value;
1992}
1993
17a52670
AS
1994/* check whether memory at (regno + off) is accessible for t = (read | write)
1995 * if t==write, value_regno is a register which value is stored into memory
1996 * if t==read, value_regno is a register which will receive the value from memory
1997 * if t==write && value_regno==-1, some unknown value is stored into memory
1998 * if t==read && value_regno==-1, don't care what we read from memory
1999 */
ca369602
DB
2000static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2001 int off, int bpf_size, enum bpf_access_type t,
2002 int value_regno, bool strict_alignment_once)
17a52670 2003{
638f5b90
AS
2004 struct bpf_reg_state *regs = cur_regs(env);
2005 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2006 struct bpf_func_state *state;
17a52670
AS
2007 int size, err = 0;
2008
2009 size = bpf_size_to_bytes(bpf_size);
2010 if (size < 0)
2011 return size;
2012
f1174f77 2013 /* alignment checks will add in reg->off themselves */
ca369602 2014 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2015 if (err)
2016 return err;
17a52670 2017
f1174f77
EC
2018 /* for access checks, reg->off is just part of off */
2019 off += reg->off;
2020
2021 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2022 if (t == BPF_WRITE && value_regno >= 0 &&
2023 is_pointer_value(env, value_regno)) {
61bd5218 2024 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2025 return -EACCES;
2026 }
48461135 2027
9fd29c08 2028 err = check_map_access(env, regno, off, size, false);
17a52670 2029 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2030 mark_reg_unknown(env, regs, value_regno);
17a52670 2031
1a0dc1ac 2032 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2033 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2034
1be7f75d
AS
2035 if (t == BPF_WRITE && value_regno >= 0 &&
2036 is_pointer_value(env, value_regno)) {
61bd5218 2037 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2038 return -EACCES;
2039 }
f1174f77 2040
58990d1f
DB
2041 err = check_ctx_reg(env, reg, regno);
2042 if (err < 0)
2043 return err;
2044
31fd8581 2045 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2046 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2047 /* ctx access returns either a scalar, or a
de8f3a83
DB
2048 * PTR_TO_PACKET[_META,_END]. In the latter
2049 * case, we know the offset is zero.
f1174f77 2050 */
46f8bc92 2051 if (reg_type == SCALAR_VALUE) {
638f5b90 2052 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2053 } else {
638f5b90 2054 mark_reg_known_zero(env, regs,
61bd5218 2055 value_regno);
46f8bc92
MKL
2056 if (reg_type_may_be_null(reg_type))
2057 regs[value_regno].id = ++env->id_gen;
2058 }
638f5b90 2059 regs[value_regno].type = reg_type;
969bf05e 2060 }
17a52670 2061
f1174f77 2062 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2063 off += reg->var_off.value;
e4298d25
DB
2064 err = check_stack_access(env, reg, off, size);
2065 if (err)
2066 return err;
8726679a 2067
f4d7e40a
AS
2068 state = func(env, reg);
2069 err = update_stack_depth(env, state, off);
2070 if (err)
2071 return err;
8726679a 2072
638f5b90 2073 if (t == BPF_WRITE)
61bd5218 2074 err = check_stack_write(env, state, off, size,
af86ca4e 2075 value_regno, insn_idx);
638f5b90 2076 else
61bd5218
JK
2077 err = check_stack_read(env, state, off, size,
2078 value_regno);
de8f3a83 2079 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2080 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2081 verbose(env, "cannot write into packet\n");
969bf05e
AS
2082 return -EACCES;
2083 }
4acf6c0b
BB
2084 if (t == BPF_WRITE && value_regno >= 0 &&
2085 is_pointer_value(env, value_regno)) {
61bd5218
JK
2086 verbose(env, "R%d leaks addr into packet\n",
2087 value_regno);
4acf6c0b
BB
2088 return -EACCES;
2089 }
9fd29c08 2090 err = check_packet_access(env, regno, off, size, false);
969bf05e 2091 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2092 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2093 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2094 if (t == BPF_WRITE && value_regno >= 0 &&
2095 is_pointer_value(env, value_regno)) {
2096 verbose(env, "R%d leaks addr into flow keys\n",
2097 value_regno);
2098 return -EACCES;
2099 }
2100
2101 err = check_flow_keys_access(env, off, size);
2102 if (!err && t == BPF_READ && value_regno >= 0)
2103 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2104 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2105 if (t == BPF_WRITE) {
46f8bc92
MKL
2106 verbose(env, "R%d cannot write into %s\n",
2107 regno, reg_type_str[reg->type]);
c64b7983
JS
2108 return -EACCES;
2109 }
5f456649 2110 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2111 if (!err && value_regno >= 0)
2112 mark_reg_unknown(env, regs, value_regno);
17a52670 2113 } else {
61bd5218
JK
2114 verbose(env, "R%d invalid mem access '%s'\n", regno,
2115 reg_type_str[reg->type]);
17a52670
AS
2116 return -EACCES;
2117 }
969bf05e 2118
f1174f77 2119 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2120 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2121 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2122 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2123 }
17a52670
AS
2124 return err;
2125}
2126
31fd8581 2127static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2128{
17a52670
AS
2129 int err;
2130
2131 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2132 insn->imm != 0) {
61bd5218 2133 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2134 return -EINVAL;
2135 }
2136
2137 /* check src1 operand */
dc503a8a 2138 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2139 if (err)
2140 return err;
2141
2142 /* check src2 operand */
dc503a8a 2143 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2144 if (err)
2145 return err;
2146
6bdf6abc 2147 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2148 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2149 return -EACCES;
2150 }
2151
ca369602 2152 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2153 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2154 is_flow_key_reg(env, insn->dst_reg) ||
2155 is_sk_reg(env, insn->dst_reg)) {
ca369602 2156 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2157 insn->dst_reg,
2158 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2159 return -EACCES;
2160 }
2161
17a52670 2162 /* check whether atomic_add can read the memory */
31fd8581 2163 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2164 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2165 if (err)
2166 return err;
2167
2168 /* check whether atomic_add can write into the same memory */
31fd8581 2169 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2170 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2171}
2172
2011fccf
AI
2173static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2174 int off, int access_size,
2175 bool zero_size_allowed)
2176{
2177 struct bpf_reg_state *reg = reg_state(env, regno);
2178
2179 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2180 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2181 if (tnum_is_const(reg->var_off)) {
2182 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2183 regno, off, access_size);
2184 } else {
2185 char tn_buf[48];
2186
2187 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2188 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2189 regno, tn_buf, access_size);
2190 }
2191 return -EACCES;
2192 }
2193 return 0;
2194}
2195
17a52670
AS
2196/* when register 'regno' is passed into function that will read 'access_size'
2197 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2198 * and all elements of stack are initialized.
2199 * Unlike most pointer bounds-checking functions, this one doesn't take an
2200 * 'off' argument, so it has to add in reg->off itself.
17a52670 2201 */
58e2af8b 2202static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2203 int access_size, bool zero_size_allowed,
2204 struct bpf_call_arg_meta *meta)
17a52670 2205{
2a159c6f 2206 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2207 struct bpf_func_state *state = func(env, reg);
2011fccf 2208 int err, min_off, max_off, i, slot, spi;
17a52670 2209
914cb781 2210 if (reg->type != PTR_TO_STACK) {
f1174f77 2211 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2212 if (zero_size_allowed && access_size == 0 &&
914cb781 2213 register_is_null(reg))
8e2fe1d9
DB
2214 return 0;
2215
61bd5218 2216 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2217 reg_type_str[reg->type],
8e2fe1d9 2218 reg_type_str[PTR_TO_STACK]);
17a52670 2219 return -EACCES;
8e2fe1d9 2220 }
17a52670 2221
2011fccf
AI
2222 if (tnum_is_const(reg->var_off)) {
2223 min_off = max_off = reg->var_off.value + reg->off;
2224 err = __check_stack_boundary(env, regno, min_off, access_size,
2225 zero_size_allowed);
2226 if (err)
2227 return err;
2228 } else {
088ec26d
AI
2229 /* Variable offset is prohibited for unprivileged mode for
2230 * simplicity since it requires corresponding support in
2231 * Spectre masking for stack ALU.
2232 * See also retrieve_ptr_limit().
2233 */
2234 if (!env->allow_ptr_leaks) {
2235 char tn_buf[48];
2236
2237 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2238 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2239 regno, tn_buf);
2240 return -EACCES;
2241 }
f2bcd05e
AI
2242 /* Only initialized buffer on stack is allowed to be accessed
2243 * with variable offset. With uninitialized buffer it's hard to
2244 * guarantee that whole memory is marked as initialized on
2245 * helper return since specific bounds are unknown what may
2246 * cause uninitialized stack leaking.
2247 */
2248 if (meta && meta->raw_mode)
2249 meta = NULL;
2250
107c26a7
AI
2251 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2252 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2253 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2254 regno);
2255 return -EACCES;
2256 }
2011fccf 2257 min_off = reg->smin_value + reg->off;
107c26a7 2258 max_off = reg->smax_value + reg->off;
2011fccf
AI
2259 err = __check_stack_boundary(env, regno, min_off, access_size,
2260 zero_size_allowed);
107c26a7
AI
2261 if (err) {
2262 verbose(env, "R%d min value is outside of stack bound\n",
2263 regno);
2011fccf 2264 return err;
107c26a7 2265 }
2011fccf
AI
2266 err = __check_stack_boundary(env, regno, max_off, access_size,
2267 zero_size_allowed);
107c26a7
AI
2268 if (err) {
2269 verbose(env, "R%d max value is outside of stack bound\n",
2270 regno);
2011fccf 2271 return err;
107c26a7 2272 }
17a52670
AS
2273 }
2274
435faee1
DB
2275 if (meta && meta->raw_mode) {
2276 meta->access_size = access_size;
2277 meta->regno = regno;
2278 return 0;
2279 }
2280
2011fccf 2281 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
2282 u8 *stype;
2283
2011fccf 2284 slot = -i - 1;
638f5b90 2285 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2286 if (state->allocated_stack <= slot)
2287 goto err;
2288 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2289 if (*stype == STACK_MISC)
2290 goto mark;
2291 if (*stype == STACK_ZERO) {
2292 /* helper can write anything into the stack */
2293 *stype = STACK_MISC;
2294 goto mark;
17a52670 2295 }
cc2b14d5 2296err:
2011fccf
AI
2297 if (tnum_is_const(reg->var_off)) {
2298 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2299 min_off, i - min_off, access_size);
2300 } else {
2301 char tn_buf[48];
2302
2303 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2304 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2305 tn_buf, i - min_off, access_size);
2306 }
cc2b14d5
AS
2307 return -EACCES;
2308mark:
2309 /* reading any byte out of 8-byte 'spill_slot' will cause
2310 * the whole slot to be marked as 'read'
2311 */
679c782d
EC
2312 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2313 state->stack[spi].spilled_ptr.parent);
17a52670 2314 }
2011fccf 2315 return update_stack_depth(env, state, min_off);
17a52670
AS
2316}
2317
06c1c049
GB
2318static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2319 int access_size, bool zero_size_allowed,
2320 struct bpf_call_arg_meta *meta)
2321{
638f5b90 2322 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2323
f1174f77 2324 switch (reg->type) {
06c1c049 2325 case PTR_TO_PACKET:
de8f3a83 2326 case PTR_TO_PACKET_META:
9fd29c08
YS
2327 return check_packet_access(env, regno, reg->off, access_size,
2328 zero_size_allowed);
06c1c049 2329 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2330 return check_map_access(env, regno, reg->off, access_size,
2331 zero_size_allowed);
f1174f77 2332 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2333 return check_stack_boundary(env, regno, access_size,
2334 zero_size_allowed, meta);
2335 }
2336}
2337
d83525ca
AS
2338/* Implementation details:
2339 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2340 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2341 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2342 * value_or_null->value transition, since the verifier only cares about
2343 * the range of access to valid map value pointer and doesn't care about actual
2344 * address of the map element.
2345 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2346 * reg->id > 0 after value_or_null->value transition. By doing so
2347 * two bpf_map_lookups will be considered two different pointers that
2348 * point to different bpf_spin_locks.
2349 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2350 * dead-locks.
2351 * Since only one bpf_spin_lock is allowed the checks are simpler than
2352 * reg_is_refcounted() logic. The verifier needs to remember only
2353 * one spin_lock instead of array of acquired_refs.
2354 * cur_state->active_spin_lock remembers which map value element got locked
2355 * and clears it after bpf_spin_unlock.
2356 */
2357static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2358 bool is_lock)
2359{
2360 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2361 struct bpf_verifier_state *cur = env->cur_state;
2362 bool is_const = tnum_is_const(reg->var_off);
2363 struct bpf_map *map = reg->map_ptr;
2364 u64 val = reg->var_off.value;
2365
2366 if (reg->type != PTR_TO_MAP_VALUE) {
2367 verbose(env, "R%d is not a pointer to map_value\n", regno);
2368 return -EINVAL;
2369 }
2370 if (!is_const) {
2371 verbose(env,
2372 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2373 regno);
2374 return -EINVAL;
2375 }
2376 if (!map->btf) {
2377 verbose(env,
2378 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2379 map->name);
2380 return -EINVAL;
2381 }
2382 if (!map_value_has_spin_lock(map)) {
2383 if (map->spin_lock_off == -E2BIG)
2384 verbose(env,
2385 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2386 map->name);
2387 else if (map->spin_lock_off == -ENOENT)
2388 verbose(env,
2389 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2390 map->name);
2391 else
2392 verbose(env,
2393 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2394 map->name);
2395 return -EINVAL;
2396 }
2397 if (map->spin_lock_off != val + reg->off) {
2398 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2399 val + reg->off);
2400 return -EINVAL;
2401 }
2402 if (is_lock) {
2403 if (cur->active_spin_lock) {
2404 verbose(env,
2405 "Locking two bpf_spin_locks are not allowed\n");
2406 return -EINVAL;
2407 }
2408 cur->active_spin_lock = reg->id;
2409 } else {
2410 if (!cur->active_spin_lock) {
2411 verbose(env, "bpf_spin_unlock without taking a lock\n");
2412 return -EINVAL;
2413 }
2414 if (cur->active_spin_lock != reg->id) {
2415 verbose(env, "bpf_spin_unlock of different lock\n");
2416 return -EINVAL;
2417 }
2418 cur->active_spin_lock = 0;
2419 }
2420 return 0;
2421}
2422
90133415
DB
2423static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2424{
2425 return type == ARG_PTR_TO_MEM ||
2426 type == ARG_PTR_TO_MEM_OR_NULL ||
2427 type == ARG_PTR_TO_UNINIT_MEM;
2428}
2429
2430static bool arg_type_is_mem_size(enum bpf_arg_type type)
2431{
2432 return type == ARG_CONST_SIZE ||
2433 type == ARG_CONST_SIZE_OR_ZERO;
2434}
2435
58e2af8b 2436static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2437 enum bpf_arg_type arg_type,
2438 struct bpf_call_arg_meta *meta)
17a52670 2439{
638f5b90 2440 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2441 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2442 int err = 0;
2443
80f1d68c 2444 if (arg_type == ARG_DONTCARE)
17a52670
AS
2445 return 0;
2446
dc503a8a
EC
2447 err = check_reg_arg(env, regno, SRC_OP);
2448 if (err)
2449 return err;
17a52670 2450
1be7f75d
AS
2451 if (arg_type == ARG_ANYTHING) {
2452 if (is_pointer_value(env, regno)) {
61bd5218
JK
2453 verbose(env, "R%d leaks addr into helper function\n",
2454 regno);
1be7f75d
AS
2455 return -EACCES;
2456 }
80f1d68c 2457 return 0;
1be7f75d 2458 }
80f1d68c 2459
de8f3a83 2460 if (type_is_pkt_pointer(type) &&
3a0af8fd 2461 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2462 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2463 return -EACCES;
2464 }
2465
8e2fe1d9 2466 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2467 arg_type == ARG_PTR_TO_MAP_VALUE ||
2468 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2469 expected_type = PTR_TO_STACK;
d71962f3 2470 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2471 type != expected_type)
6841de8b 2472 goto err_type;
39f19ebb
AS
2473 } else if (arg_type == ARG_CONST_SIZE ||
2474 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2475 expected_type = SCALAR_VALUE;
2476 if (type != expected_type)
6841de8b 2477 goto err_type;
17a52670
AS
2478 } else if (arg_type == ARG_CONST_MAP_PTR) {
2479 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2480 if (type != expected_type)
2481 goto err_type;
608cd71a
AS
2482 } else if (arg_type == ARG_PTR_TO_CTX) {
2483 expected_type = PTR_TO_CTX;
6841de8b
AS
2484 if (type != expected_type)
2485 goto err_type;
58990d1f
DB
2486 err = check_ctx_reg(env, reg, regno);
2487 if (err < 0)
2488 return err;
46f8bc92
MKL
2489 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2490 expected_type = PTR_TO_SOCK_COMMON;
2491 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2492 if (!type_is_sk_pointer(type))
2493 goto err_type;
1b986589
MKL
2494 if (reg->ref_obj_id) {
2495 if (meta->ref_obj_id) {
2496 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2497 regno, reg->ref_obj_id,
2498 meta->ref_obj_id);
2499 return -EFAULT;
2500 }
2501 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 2502 }
d83525ca
AS
2503 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2504 if (meta->func_id == BPF_FUNC_spin_lock) {
2505 if (process_spin_lock(env, regno, true))
2506 return -EACCES;
2507 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2508 if (process_spin_lock(env, regno, false))
2509 return -EACCES;
2510 } else {
2511 verbose(env, "verifier internal error\n");
2512 return -EFAULT;
2513 }
90133415 2514 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2515 expected_type = PTR_TO_STACK;
2516 /* One exception here. In case function allows for NULL to be
f1174f77 2517 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2518 * happens during stack boundary checking.
2519 */
914cb781 2520 if (register_is_null(reg) &&
db1ac496 2521 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2522 /* final test in check_stack_boundary() */;
de8f3a83
DB
2523 else if (!type_is_pkt_pointer(type) &&
2524 type != PTR_TO_MAP_VALUE &&
f1174f77 2525 type != expected_type)
6841de8b 2526 goto err_type;
39f19ebb 2527 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2528 } else {
61bd5218 2529 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2530 return -EFAULT;
2531 }
2532
17a52670
AS
2533 if (arg_type == ARG_CONST_MAP_PTR) {
2534 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2535 meta->map_ptr = reg->map_ptr;
17a52670
AS
2536 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2537 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2538 * check that [key, key + map->key_size) are within
2539 * stack limits and initialized
2540 */
33ff9823 2541 if (!meta->map_ptr) {
17a52670
AS
2542 /* in function declaration map_ptr must come before
2543 * map_key, so that it's verified and known before
2544 * we have to check map_key here. Otherwise it means
2545 * that kernel subsystem misconfigured verifier
2546 */
61bd5218 2547 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2548 return -EACCES;
2549 }
d71962f3
PC
2550 err = check_helper_mem_access(env, regno,
2551 meta->map_ptr->key_size, false,
2552 NULL);
2ea864c5
MV
2553 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2554 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2555 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2556 * check [value, value + map->value_size) validity
2557 */
33ff9823 2558 if (!meta->map_ptr) {
17a52670 2559 /* kernel subsystem misconfigured verifier */
61bd5218 2560 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2561 return -EACCES;
2562 }
2ea864c5 2563 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2564 err = check_helper_mem_access(env, regno,
2565 meta->map_ptr->value_size, false,
2ea864c5 2566 meta);
90133415 2567 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2568 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2569
849fa506
YS
2570 /* remember the mem_size which may be used later
2571 * to refine return values.
2572 */
2573 meta->msize_smax_value = reg->smax_value;
2574 meta->msize_umax_value = reg->umax_value;
2575
f1174f77
EC
2576 /* The register is SCALAR_VALUE; the access check
2577 * happens using its boundaries.
06c1c049 2578 */
f1174f77 2579 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2580 /* For unprivileged variable accesses, disable raw
2581 * mode so that the program is required to
2582 * initialize all the memory that the helper could
2583 * just partially fill up.
2584 */
2585 meta = NULL;
2586
b03c9f9f 2587 if (reg->smin_value < 0) {
61bd5218 2588 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2589 regno);
2590 return -EACCES;
2591 }
06c1c049 2592
b03c9f9f 2593 if (reg->umin_value == 0) {
f1174f77
EC
2594 err = check_helper_mem_access(env, regno - 1, 0,
2595 zero_size_allowed,
2596 meta);
06c1c049
GB
2597 if (err)
2598 return err;
06c1c049 2599 }
f1174f77 2600
b03c9f9f 2601 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2602 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2603 regno);
2604 return -EACCES;
2605 }
2606 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2607 reg->umax_value,
f1174f77 2608 zero_size_allowed, meta);
17a52670
AS
2609 }
2610
2611 return err;
6841de8b 2612err_type:
61bd5218 2613 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2614 reg_type_str[type], reg_type_str[expected_type]);
2615 return -EACCES;
17a52670
AS
2616}
2617
61bd5218
JK
2618static int check_map_func_compatibility(struct bpf_verifier_env *env,
2619 struct bpf_map *map, int func_id)
35578d79 2620{
35578d79
KX
2621 if (!map)
2622 return 0;
2623
6aff67c8
AS
2624 /* We need a two way check, first is from map perspective ... */
2625 switch (map->map_type) {
2626 case BPF_MAP_TYPE_PROG_ARRAY:
2627 if (func_id != BPF_FUNC_tail_call)
2628 goto error;
2629 break;
2630 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2631 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2632 func_id != BPF_FUNC_perf_event_output &&
2633 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2634 goto error;
2635 break;
2636 case BPF_MAP_TYPE_STACK_TRACE:
2637 if (func_id != BPF_FUNC_get_stackid)
2638 goto error;
2639 break;
4ed8ec52 2640 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2641 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2642 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2643 goto error;
2644 break;
cd339431 2645 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2646 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2647 if (func_id != BPF_FUNC_get_local_storage)
2648 goto error;
2649 break;
546ac1ff
JF
2650 /* devmap returns a pointer to a live net_device ifindex that we cannot
2651 * allow to be modified from bpf side. So do not allow lookup elements
2652 * for now.
2653 */
2654 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2655 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2656 goto error;
2657 break;
fbfc504a
BT
2658 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2659 * appear.
2660 */
6710e112 2661 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2662 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2663 if (func_id != BPF_FUNC_redirect_map)
2664 goto error;
2665 break;
56f668df 2666 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2667 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2668 if (func_id != BPF_FUNC_map_lookup_elem)
2669 goto error;
16a43625 2670 break;
174a79ff
JF
2671 case BPF_MAP_TYPE_SOCKMAP:
2672 if (func_id != BPF_FUNC_sk_redirect_map &&
2673 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2674 func_id != BPF_FUNC_map_delete_elem &&
2675 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2676 goto error;
2677 break;
81110384
JF
2678 case BPF_MAP_TYPE_SOCKHASH:
2679 if (func_id != BPF_FUNC_sk_redirect_hash &&
2680 func_id != BPF_FUNC_sock_hash_update &&
2681 func_id != BPF_FUNC_map_delete_elem &&
2682 func_id != BPF_FUNC_msg_redirect_hash)
2683 goto error;
2684 break;
2dbb9b9e
MKL
2685 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2686 if (func_id != BPF_FUNC_sk_select_reuseport)
2687 goto error;
2688 break;
f1a2e44a
MV
2689 case BPF_MAP_TYPE_QUEUE:
2690 case BPF_MAP_TYPE_STACK:
2691 if (func_id != BPF_FUNC_map_peek_elem &&
2692 func_id != BPF_FUNC_map_pop_elem &&
2693 func_id != BPF_FUNC_map_push_elem)
2694 goto error;
2695 break;
6aff67c8
AS
2696 default:
2697 break;
2698 }
2699
2700 /* ... and second from the function itself. */
2701 switch (func_id) {
2702 case BPF_FUNC_tail_call:
2703 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2704 goto error;
f910cefa 2705 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2706 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2707 return -EINVAL;
2708 }
6aff67c8
AS
2709 break;
2710 case BPF_FUNC_perf_event_read:
2711 case BPF_FUNC_perf_event_output:
908432ca 2712 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2713 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2714 goto error;
2715 break;
2716 case BPF_FUNC_get_stackid:
2717 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2718 goto error;
2719 break;
60d20f91 2720 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2721 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2722 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2723 goto error;
2724 break;
97f91a7c 2725 case BPF_FUNC_redirect_map:
9c270af3 2726 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2727 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2728 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2729 goto error;
2730 break;
174a79ff 2731 case BPF_FUNC_sk_redirect_map:
4f738adb 2732 case BPF_FUNC_msg_redirect_map:
81110384 2733 case BPF_FUNC_sock_map_update:
174a79ff
JF
2734 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2735 goto error;
2736 break;
81110384
JF
2737 case BPF_FUNC_sk_redirect_hash:
2738 case BPF_FUNC_msg_redirect_hash:
2739 case BPF_FUNC_sock_hash_update:
2740 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2741 goto error;
2742 break;
cd339431 2743 case BPF_FUNC_get_local_storage:
b741f163
RG
2744 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2745 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2746 goto error;
2747 break;
2dbb9b9e
MKL
2748 case BPF_FUNC_sk_select_reuseport:
2749 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2750 goto error;
2751 break;
f1a2e44a
MV
2752 case BPF_FUNC_map_peek_elem:
2753 case BPF_FUNC_map_pop_elem:
2754 case BPF_FUNC_map_push_elem:
2755 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2756 map->map_type != BPF_MAP_TYPE_STACK)
2757 goto error;
2758 break;
6aff67c8
AS
2759 default:
2760 break;
35578d79
KX
2761 }
2762
2763 return 0;
6aff67c8 2764error:
61bd5218 2765 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2766 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2767 return -EINVAL;
35578d79
KX
2768}
2769
90133415 2770static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2771{
2772 int count = 0;
2773
39f19ebb 2774 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2775 count++;
39f19ebb 2776 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2777 count++;
39f19ebb 2778 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2779 count++;
39f19ebb 2780 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2781 count++;
39f19ebb 2782 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2783 count++;
2784
90133415
DB
2785 /* We only support one arg being in raw mode at the moment,
2786 * which is sufficient for the helper functions we have
2787 * right now.
2788 */
2789 return count <= 1;
2790}
2791
2792static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2793 enum bpf_arg_type arg_next)
2794{
2795 return (arg_type_is_mem_ptr(arg_curr) &&
2796 !arg_type_is_mem_size(arg_next)) ||
2797 (!arg_type_is_mem_ptr(arg_curr) &&
2798 arg_type_is_mem_size(arg_next));
2799}
2800
2801static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2802{
2803 /* bpf_xxx(..., buf, len) call will access 'len'
2804 * bytes from memory 'buf'. Both arg types need
2805 * to be paired, so make sure there's no buggy
2806 * helper function specification.
2807 */
2808 if (arg_type_is_mem_size(fn->arg1_type) ||
2809 arg_type_is_mem_ptr(fn->arg5_type) ||
2810 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2811 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2812 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2813 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2814 return false;
2815
2816 return true;
2817}
2818
1b986589 2819static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
2820{
2821 int count = 0;
2822
1b986589 2823 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 2824 count++;
1b986589 2825 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 2826 count++;
1b986589 2827 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 2828 count++;
1b986589 2829 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 2830 count++;
1b986589 2831 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
2832 count++;
2833
1b986589
MKL
2834 /* A reference acquiring function cannot acquire
2835 * another refcounted ptr.
2836 */
2837 if (is_acquire_function(func_id) && count)
2838 return false;
2839
fd978bf7
JS
2840 /* We only support one arg being unreferenced at the moment,
2841 * which is sufficient for the helper functions we have right now.
2842 */
2843 return count <= 1;
2844}
2845
1b986589 2846static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
2847{
2848 return check_raw_mode_ok(fn) &&
fd978bf7 2849 check_arg_pair_ok(fn) &&
1b986589 2850 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
2851}
2852
de8f3a83
DB
2853/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2854 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2855 */
f4d7e40a
AS
2856static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2857 struct bpf_func_state *state)
969bf05e 2858{
58e2af8b 2859 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2860 int i;
2861
2862 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2863 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2864 mark_reg_unknown(env, regs, i);
969bf05e 2865
f3709f69
JS
2866 bpf_for_each_spilled_reg(i, state, reg) {
2867 if (!reg)
969bf05e 2868 continue;
de8f3a83
DB
2869 if (reg_is_pkt_pointer_any(reg))
2870 __mark_reg_unknown(reg);
969bf05e
AS
2871 }
2872}
2873
f4d7e40a
AS
2874static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2875{
2876 struct bpf_verifier_state *vstate = env->cur_state;
2877 int i;
2878
2879 for (i = 0; i <= vstate->curframe; i++)
2880 __clear_all_pkt_pointers(env, vstate->frame[i]);
2881}
2882
fd978bf7 2883static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
2884 struct bpf_func_state *state,
2885 int ref_obj_id)
fd978bf7
JS
2886{
2887 struct bpf_reg_state *regs = state->regs, *reg;
2888 int i;
2889
2890 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 2891 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
2892 mark_reg_unknown(env, regs, i);
2893
2894 bpf_for_each_spilled_reg(i, state, reg) {
2895 if (!reg)
2896 continue;
1b986589 2897 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
2898 __mark_reg_unknown(reg);
2899 }
2900}
2901
2902/* The pointer with the specified id has released its reference to kernel
2903 * resources. Identify all copies of the same pointer and clear the reference.
2904 */
2905static int release_reference(struct bpf_verifier_env *env,
1b986589 2906 int ref_obj_id)
fd978bf7
JS
2907{
2908 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 2909 int err;
fd978bf7
JS
2910 int i;
2911
1b986589
MKL
2912 err = release_reference_state(cur_func(env), ref_obj_id);
2913 if (err)
2914 return err;
2915
fd978bf7 2916 for (i = 0; i <= vstate->curframe; i++)
1b986589 2917 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 2918
1b986589 2919 return 0;
fd978bf7
JS
2920}
2921
f4d7e40a
AS
2922static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2923 int *insn_idx)
2924{
2925 struct bpf_verifier_state *state = env->cur_state;
2926 struct bpf_func_state *caller, *callee;
fd978bf7 2927 int i, err, subprog, target_insn;
f4d7e40a 2928
aada9ce6 2929 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2930 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2931 state->curframe + 2);
f4d7e40a
AS
2932 return -E2BIG;
2933 }
2934
2935 target_insn = *insn_idx + insn->imm;
2936 subprog = find_subprog(env, target_insn + 1);
2937 if (subprog < 0) {
2938 verbose(env, "verifier bug. No program starts at insn %d\n",
2939 target_insn + 1);
2940 return -EFAULT;
2941 }
2942
2943 caller = state->frame[state->curframe];
2944 if (state->frame[state->curframe + 1]) {
2945 verbose(env, "verifier bug. Frame %d already allocated\n",
2946 state->curframe + 1);
2947 return -EFAULT;
2948 }
2949
2950 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2951 if (!callee)
2952 return -ENOMEM;
2953 state->frame[state->curframe + 1] = callee;
2954
2955 /* callee cannot access r0, r6 - r9 for reading and has to write
2956 * into its own stack before reading from it.
2957 * callee can read/write into caller's stack
2958 */
2959 init_func_state(env, callee,
2960 /* remember the callsite, it will be used by bpf_exit */
2961 *insn_idx /* callsite */,
2962 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2963 subprog /* subprog number within this prog */);
f4d7e40a 2964
fd978bf7
JS
2965 /* Transfer references to the callee */
2966 err = transfer_reference_state(callee, caller);
2967 if (err)
2968 return err;
2969
679c782d
EC
2970 /* copy r1 - r5 args that callee can access. The copy includes parent
2971 * pointers, which connects us up to the liveness chain
2972 */
f4d7e40a
AS
2973 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2974 callee->regs[i] = caller->regs[i];
2975
679c782d 2976 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2977 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2978 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2979 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2980 }
2981
2982 /* only increment it after check_reg_arg() finished */
2983 state->curframe++;
2984
2985 /* and go analyze first insn of the callee */
2986 *insn_idx = target_insn;
2987
06ee7115 2988 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
2989 verbose(env, "caller:\n");
2990 print_verifier_state(env, caller);
2991 verbose(env, "callee:\n");
2992 print_verifier_state(env, callee);
2993 }
2994 return 0;
2995}
2996
2997static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2998{
2999 struct bpf_verifier_state *state = env->cur_state;
3000 struct bpf_func_state *caller, *callee;
3001 struct bpf_reg_state *r0;
fd978bf7 3002 int err;
f4d7e40a
AS
3003
3004 callee = state->frame[state->curframe];
3005 r0 = &callee->regs[BPF_REG_0];
3006 if (r0->type == PTR_TO_STACK) {
3007 /* technically it's ok to return caller's stack pointer
3008 * (or caller's caller's pointer) back to the caller,
3009 * since these pointers are valid. Only current stack
3010 * pointer will be invalid as soon as function exits,
3011 * but let's be conservative
3012 */
3013 verbose(env, "cannot return stack pointer to the caller\n");
3014 return -EINVAL;
3015 }
3016
3017 state->curframe--;
3018 caller = state->frame[state->curframe];
3019 /* return to the caller whatever r0 had in the callee */
3020 caller->regs[BPF_REG_0] = *r0;
3021
fd978bf7
JS
3022 /* Transfer references to the caller */
3023 err = transfer_reference_state(caller, callee);
3024 if (err)
3025 return err;
3026
f4d7e40a 3027 *insn_idx = callee->callsite + 1;
06ee7115 3028 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3029 verbose(env, "returning from callee:\n");
3030 print_verifier_state(env, callee);
3031 verbose(env, "to caller at %d:\n", *insn_idx);
3032 print_verifier_state(env, caller);
3033 }
3034 /* clear everything in the callee */
3035 free_func_state(callee);
3036 state->frame[state->curframe + 1] = NULL;
3037 return 0;
3038}
3039
849fa506
YS
3040static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3041 int func_id,
3042 struct bpf_call_arg_meta *meta)
3043{
3044 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3045
3046 if (ret_type != RET_INTEGER ||
3047 (func_id != BPF_FUNC_get_stack &&
3048 func_id != BPF_FUNC_probe_read_str))
3049 return;
3050
3051 ret_reg->smax_value = meta->msize_smax_value;
3052 ret_reg->umax_value = meta->msize_umax_value;
3053 __reg_deduce_bounds(ret_reg);
3054 __reg_bound_offset(ret_reg);
3055}
3056
c93552c4
DB
3057static int
3058record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3059 int func_id, int insn_idx)
3060{
3061 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3062
3063 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3064 func_id != BPF_FUNC_map_lookup_elem &&
3065 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3066 func_id != BPF_FUNC_map_delete_elem &&
3067 func_id != BPF_FUNC_map_push_elem &&
3068 func_id != BPF_FUNC_map_pop_elem &&
3069 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3070 return 0;
09772d92 3071
c93552c4
DB
3072 if (meta->map_ptr == NULL) {
3073 verbose(env, "kernel subsystem misconfigured verifier\n");
3074 return -EINVAL;
3075 }
3076
3077 if (!BPF_MAP_PTR(aux->map_state))
3078 bpf_map_ptr_store(aux, meta->map_ptr,
3079 meta->map_ptr->unpriv_array);
3080 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3081 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3082 meta->map_ptr->unpriv_array);
3083 return 0;
3084}
3085
fd978bf7
JS
3086static int check_reference_leak(struct bpf_verifier_env *env)
3087{
3088 struct bpf_func_state *state = cur_func(env);
3089 int i;
3090
3091 for (i = 0; i < state->acquired_refs; i++) {
3092 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3093 state->refs[i].id, state->refs[i].insn_idx);
3094 }
3095 return state->acquired_refs ? -EINVAL : 0;
3096}
3097
f4d7e40a 3098static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3099{
17a52670 3100 const struct bpf_func_proto *fn = NULL;
638f5b90 3101 struct bpf_reg_state *regs;
33ff9823 3102 struct bpf_call_arg_meta meta;
969bf05e 3103 bool changes_data;
17a52670
AS
3104 int i, err;
3105
3106 /* find function prototype */
3107 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3108 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3109 func_id);
17a52670
AS
3110 return -EINVAL;
3111 }
3112
00176a34 3113 if (env->ops->get_func_proto)
5e43f899 3114 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3115 if (!fn) {
61bd5218
JK
3116 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3117 func_id);
17a52670
AS
3118 return -EINVAL;
3119 }
3120
3121 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3122 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3123 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3124 return -EINVAL;
3125 }
3126
04514d13 3127 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3128 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3129 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3130 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3131 func_id_name(func_id), func_id);
3132 return -EINVAL;
3133 }
969bf05e 3134
33ff9823 3135 memset(&meta, 0, sizeof(meta));
36bbef52 3136 meta.pkt_access = fn->pkt_access;
33ff9823 3137
1b986589 3138 err = check_func_proto(fn, func_id);
435faee1 3139 if (err) {
61bd5218 3140 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3141 func_id_name(func_id), func_id);
435faee1
DB
3142 return err;
3143 }
3144
d83525ca 3145 meta.func_id = func_id;
17a52670 3146 /* check args */
33ff9823 3147 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3148 if (err)
3149 return err;
33ff9823 3150 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3151 if (err)
3152 return err;
33ff9823 3153 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3154 if (err)
3155 return err;
33ff9823 3156 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3157 if (err)
3158 return err;
33ff9823 3159 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3160 if (err)
3161 return err;
3162
c93552c4
DB
3163 err = record_func_map(env, &meta, func_id, insn_idx);
3164 if (err)
3165 return err;
3166
435faee1
DB
3167 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3168 * is inferred from register state.
3169 */
3170 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
3171 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3172 BPF_WRITE, -1, false);
435faee1
DB
3173 if (err)
3174 return err;
3175 }
3176
fd978bf7
JS
3177 if (func_id == BPF_FUNC_tail_call) {
3178 err = check_reference_leak(env);
3179 if (err) {
3180 verbose(env, "tail_call would lead to reference leak\n");
3181 return err;
3182 }
3183 } else if (is_release_function(func_id)) {
1b986589 3184 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
3185 if (err) {
3186 verbose(env, "func %s#%d reference has not been acquired before\n",
3187 func_id_name(func_id), func_id);
fd978bf7 3188 return err;
46f8bc92 3189 }
fd978bf7
JS
3190 }
3191
638f5b90 3192 regs = cur_regs(env);
cd339431
RG
3193
3194 /* check that flags argument in get_local_storage(map, flags) is 0,
3195 * this is required because get_local_storage() can't return an error.
3196 */
3197 if (func_id == BPF_FUNC_get_local_storage &&
3198 !register_is_null(&regs[BPF_REG_2])) {
3199 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3200 return -EINVAL;
3201 }
3202
17a52670 3203 /* reset caller saved regs */
dc503a8a 3204 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3205 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3206 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3207 }
17a52670 3208
dc503a8a 3209 /* update return register (already marked as written above) */
17a52670 3210 if (fn->ret_type == RET_INTEGER) {
f1174f77 3211 /* sets type to SCALAR_VALUE */
61bd5218 3212 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
3213 } else if (fn->ret_type == RET_VOID) {
3214 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
3215 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3216 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 3217 /* There is no offset yet applied, variable or fixed */
61bd5218 3218 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
3219 /* remember map_ptr, so that check_map_access()
3220 * can check 'value_size' boundary of memory access
3221 * to map element returned from bpf_map_lookup_elem()
3222 */
33ff9823 3223 if (meta.map_ptr == NULL) {
61bd5218
JK
3224 verbose(env,
3225 "kernel subsystem misconfigured verifier\n");
17a52670
AS
3226 return -EINVAL;
3227 }
33ff9823 3228 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
3229 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3230 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
3231 if (map_value_has_spin_lock(meta.map_ptr))
3232 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
3233 } else {
3234 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3235 regs[BPF_REG_0].id = ++env->id_gen;
3236 }
c64b7983
JS
3237 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3238 mark_reg_known_zero(env, regs, BPF_REG_0);
3239 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 3240 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
3241 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3242 mark_reg_known_zero(env, regs, BPF_REG_0);
3243 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3244 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
3245 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3246 mark_reg_known_zero(env, regs, BPF_REG_0);
3247 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3248 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 3249 } else {
61bd5218 3250 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 3251 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
3252 return -EINVAL;
3253 }
04fd61ab 3254
0f3adc28 3255 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
3256 /* For release_reference() */
3257 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
3258 } else if (is_acquire_function(func_id)) {
3259 int id = acquire_reference_state(env, insn_idx);
3260
3261 if (id < 0)
3262 return id;
3263 /* For mark_ptr_or_null_reg() */
3264 regs[BPF_REG_0].id = id;
3265 /* For release_reference() */
3266 regs[BPF_REG_0].ref_obj_id = id;
3267 }
1b986589 3268
849fa506
YS
3269 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3270
61bd5218 3271 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
3272 if (err)
3273 return err;
04fd61ab 3274
c195651e
YS
3275 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3276 const char *err_str;
3277
3278#ifdef CONFIG_PERF_EVENTS
3279 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3280 err_str = "cannot get callchain buffer for func %s#%d\n";
3281#else
3282 err = -ENOTSUPP;
3283 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3284#endif
3285 if (err) {
3286 verbose(env, err_str, func_id_name(func_id), func_id);
3287 return err;
3288 }
3289
3290 env->prog->has_callchain_buf = true;
3291 }
3292
969bf05e
AS
3293 if (changes_data)
3294 clear_all_pkt_pointers(env);
3295 return 0;
3296}
3297
b03c9f9f
EC
3298static bool signed_add_overflows(s64 a, s64 b)
3299{
3300 /* Do the add in u64, where overflow is well-defined */
3301 s64 res = (s64)((u64)a + (u64)b);
3302
3303 if (b < 0)
3304 return res > a;
3305 return res < a;
3306}
3307
3308static bool signed_sub_overflows(s64 a, s64 b)
3309{
3310 /* Do the sub in u64, where overflow is well-defined */
3311 s64 res = (s64)((u64)a - (u64)b);
3312
3313 if (b < 0)
3314 return res < a;
3315 return res > a;
969bf05e
AS
3316}
3317
bb7f0f98
AS
3318static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3319 const struct bpf_reg_state *reg,
3320 enum bpf_reg_type type)
3321{
3322 bool known = tnum_is_const(reg->var_off);
3323 s64 val = reg->var_off.value;
3324 s64 smin = reg->smin_value;
3325
3326 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3327 verbose(env, "math between %s pointer and %lld is not allowed\n",
3328 reg_type_str[type], val);
3329 return false;
3330 }
3331
3332 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3333 verbose(env, "%s pointer offset %d is not allowed\n",
3334 reg_type_str[type], reg->off);
3335 return false;
3336 }
3337
3338 if (smin == S64_MIN) {
3339 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3340 reg_type_str[type]);
3341 return false;
3342 }
3343
3344 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3345 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3346 smin, reg_type_str[type]);
3347 return false;
3348 }
3349
3350 return true;
3351}
3352
979d63d5
DB
3353static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3354{
3355 return &env->insn_aux_data[env->insn_idx];
3356}
3357
3358static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3359 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3360{
3361 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3362 (opcode == BPF_SUB && !off_is_neg);
3363 u32 off;
3364
3365 switch (ptr_reg->type) {
3366 case PTR_TO_STACK:
088ec26d
AI
3367 /* Indirect variable offset stack access is prohibited in
3368 * unprivileged mode so it's not handled here.
3369 */
979d63d5
DB
3370 off = ptr_reg->off + ptr_reg->var_off.value;
3371 if (mask_to_left)
3372 *ptr_limit = MAX_BPF_STACK + off;
3373 else
3374 *ptr_limit = -off;
3375 return 0;
3376 case PTR_TO_MAP_VALUE:
3377 if (mask_to_left) {
3378 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3379 } else {
3380 off = ptr_reg->smin_value + ptr_reg->off;
3381 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3382 }
3383 return 0;
3384 default:
3385 return -EINVAL;
3386 }
3387}
3388
d3bd7413
DB
3389static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3390 const struct bpf_insn *insn)
3391{
3392 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3393}
3394
3395static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3396 u32 alu_state, u32 alu_limit)
3397{
3398 /* If we arrived here from different branches with different
3399 * state or limits to sanitize, then this won't work.
3400 */
3401 if (aux->alu_state &&
3402 (aux->alu_state != alu_state ||
3403 aux->alu_limit != alu_limit))
3404 return -EACCES;
3405
3406 /* Corresponding fixup done in fixup_bpf_calls(). */
3407 aux->alu_state = alu_state;
3408 aux->alu_limit = alu_limit;
3409 return 0;
3410}
3411
3412static int sanitize_val_alu(struct bpf_verifier_env *env,
3413 struct bpf_insn *insn)
3414{
3415 struct bpf_insn_aux_data *aux = cur_aux(env);
3416
3417 if (can_skip_alu_sanitation(env, insn))
3418 return 0;
3419
3420 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3421}
3422
979d63d5
DB
3423static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3424 struct bpf_insn *insn,
3425 const struct bpf_reg_state *ptr_reg,
3426 struct bpf_reg_state *dst_reg,
3427 bool off_is_neg)
3428{
3429 struct bpf_verifier_state *vstate = env->cur_state;
3430 struct bpf_insn_aux_data *aux = cur_aux(env);
3431 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3432 u8 opcode = BPF_OP(insn->code);
3433 u32 alu_state, alu_limit;
3434 struct bpf_reg_state tmp;
3435 bool ret;
3436
d3bd7413 3437 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
3438 return 0;
3439
3440 /* We already marked aux for masking from non-speculative
3441 * paths, thus we got here in the first place. We only care
3442 * to explore bad access from here.
3443 */
3444 if (vstate->speculative)
3445 goto do_sim;
3446
3447 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3448 alu_state |= ptr_is_dst_reg ?
3449 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3450
3451 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3452 return 0;
d3bd7413 3453 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 3454 return -EACCES;
979d63d5
DB
3455do_sim:
3456 /* Simulate and find potential out-of-bounds access under
3457 * speculative execution from truncation as a result of
3458 * masking when off was not within expected range. If off
3459 * sits in dst, then we temporarily need to move ptr there
3460 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3461 * for cases where we use K-based arithmetic in one direction
3462 * and truncated reg-based in the other in order to explore
3463 * bad access.
3464 */
3465 if (!ptr_is_dst_reg) {
3466 tmp = *dst_reg;
3467 *dst_reg = *ptr_reg;
3468 }
3469 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 3470 if (!ptr_is_dst_reg && ret)
979d63d5
DB
3471 *dst_reg = tmp;
3472 return !ret ? -EFAULT : 0;
3473}
3474
f1174f77 3475/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3476 * Caller should also handle BPF_MOV case separately.
3477 * If we return -EACCES, caller may want to try again treating pointer as a
3478 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3479 */
3480static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3481 struct bpf_insn *insn,
3482 const struct bpf_reg_state *ptr_reg,
3483 const struct bpf_reg_state *off_reg)
969bf05e 3484{
f4d7e40a
AS
3485 struct bpf_verifier_state *vstate = env->cur_state;
3486 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3487 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3488 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3489 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3490 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3491 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3492 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 3493 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 3494 u8 opcode = BPF_OP(insn->code);
979d63d5 3495 int ret;
969bf05e 3496
f1174f77 3497 dst_reg = &regs[dst];
969bf05e 3498
6f16101e
DB
3499 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3500 smin_val > smax_val || umin_val > umax_val) {
3501 /* Taint dst register if offset had invalid bounds derived from
3502 * e.g. dead branches.
3503 */
3504 __mark_reg_unknown(dst_reg);
3505 return 0;
f1174f77
EC
3506 }
3507
3508 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3509 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3510 verbose(env,
3511 "R%d 32-bit pointer arithmetic prohibited\n",
3512 dst);
f1174f77 3513 return -EACCES;
969bf05e
AS
3514 }
3515
aad2eeaf
JS
3516 switch (ptr_reg->type) {
3517 case PTR_TO_MAP_VALUE_OR_NULL:
3518 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3519 dst, reg_type_str[ptr_reg->type]);
f1174f77 3520 return -EACCES;
aad2eeaf
JS
3521 case CONST_PTR_TO_MAP:
3522 case PTR_TO_PACKET_END:
c64b7983
JS
3523 case PTR_TO_SOCKET:
3524 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
3525 case PTR_TO_SOCK_COMMON:
3526 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
3527 case PTR_TO_TCP_SOCK:
3528 case PTR_TO_TCP_SOCK_OR_NULL:
aad2eeaf
JS
3529 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3530 dst, reg_type_str[ptr_reg->type]);
f1174f77 3531 return -EACCES;
9d7eceed
DB
3532 case PTR_TO_MAP_VALUE:
3533 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3534 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3535 off_reg == dst_reg ? dst : src);
3536 return -EACCES;
3537 }
3538 /* fall-through */
aad2eeaf
JS
3539 default:
3540 break;
f1174f77
EC
3541 }
3542
3543 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3544 * The id may be overwritten later if we create a new variable offset.
969bf05e 3545 */
f1174f77
EC
3546 dst_reg->type = ptr_reg->type;
3547 dst_reg->id = ptr_reg->id;
969bf05e 3548
bb7f0f98
AS
3549 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3550 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3551 return -EINVAL;
3552
f1174f77
EC
3553 switch (opcode) {
3554 case BPF_ADD:
979d63d5
DB
3555 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3556 if (ret < 0) {
3557 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3558 return ret;
3559 }
f1174f77
EC
3560 /* We can take a fixed offset as long as it doesn't overflow
3561 * the s32 'off' field
969bf05e 3562 */
b03c9f9f
EC
3563 if (known && (ptr_reg->off + smin_val ==
3564 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3565 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3566 dst_reg->smin_value = smin_ptr;
3567 dst_reg->smax_value = smax_ptr;
3568 dst_reg->umin_value = umin_ptr;
3569 dst_reg->umax_value = umax_ptr;
f1174f77 3570 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3571 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3572 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3573 break;
3574 }
f1174f77
EC
3575 /* A new variable offset is created. Note that off_reg->off
3576 * == 0, since it's a scalar.
3577 * dst_reg gets the pointer type and since some positive
3578 * integer value was added to the pointer, give it a new 'id'
3579 * if it's a PTR_TO_PACKET.
3580 * this creates a new 'base' pointer, off_reg (variable) gets
3581 * added into the variable offset, and we copy the fixed offset
3582 * from ptr_reg.
969bf05e 3583 */
b03c9f9f
EC
3584 if (signed_add_overflows(smin_ptr, smin_val) ||
3585 signed_add_overflows(smax_ptr, smax_val)) {
3586 dst_reg->smin_value = S64_MIN;
3587 dst_reg->smax_value = S64_MAX;
3588 } else {
3589 dst_reg->smin_value = smin_ptr + smin_val;
3590 dst_reg->smax_value = smax_ptr + smax_val;
3591 }
3592 if (umin_ptr + umin_val < umin_ptr ||
3593 umax_ptr + umax_val < umax_ptr) {
3594 dst_reg->umin_value = 0;
3595 dst_reg->umax_value = U64_MAX;
3596 } else {
3597 dst_reg->umin_value = umin_ptr + umin_val;
3598 dst_reg->umax_value = umax_ptr + umax_val;
3599 }
f1174f77
EC
3600 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3601 dst_reg->off = ptr_reg->off;
0962590e 3602 dst_reg->raw = ptr_reg->raw;
de8f3a83 3603 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3604 dst_reg->id = ++env->id_gen;
3605 /* something was added to pkt_ptr, set range to zero */
0962590e 3606 dst_reg->raw = 0;
f1174f77
EC
3607 }
3608 break;
3609 case BPF_SUB:
979d63d5
DB
3610 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3611 if (ret < 0) {
3612 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3613 return ret;
3614 }
f1174f77
EC
3615 if (dst_reg == off_reg) {
3616 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3617 verbose(env, "R%d tried to subtract pointer from scalar\n",
3618 dst);
f1174f77
EC
3619 return -EACCES;
3620 }
3621 /* We don't allow subtraction from FP, because (according to
3622 * test_verifier.c test "invalid fp arithmetic", JITs might not
3623 * be able to deal with it.
969bf05e 3624 */
f1174f77 3625 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3626 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3627 dst);
f1174f77
EC
3628 return -EACCES;
3629 }
b03c9f9f
EC
3630 if (known && (ptr_reg->off - smin_val ==
3631 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3632 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3633 dst_reg->smin_value = smin_ptr;
3634 dst_reg->smax_value = smax_ptr;
3635 dst_reg->umin_value = umin_ptr;
3636 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3637 dst_reg->var_off = ptr_reg->var_off;
3638 dst_reg->id = ptr_reg->id;
b03c9f9f 3639 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3640 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3641 break;
3642 }
f1174f77
EC
3643 /* A new variable offset is created. If the subtrahend is known
3644 * nonnegative, then any reg->range we had before is still good.
969bf05e 3645 */
b03c9f9f
EC
3646 if (signed_sub_overflows(smin_ptr, smax_val) ||
3647 signed_sub_overflows(smax_ptr, smin_val)) {
3648 /* Overflow possible, we know nothing */
3649 dst_reg->smin_value = S64_MIN;
3650 dst_reg->smax_value = S64_MAX;
3651 } else {
3652 dst_reg->smin_value = smin_ptr - smax_val;
3653 dst_reg->smax_value = smax_ptr - smin_val;
3654 }
3655 if (umin_ptr < umax_val) {
3656 /* Overflow possible, we know nothing */
3657 dst_reg->umin_value = 0;
3658 dst_reg->umax_value = U64_MAX;
3659 } else {
3660 /* Cannot overflow (as long as bounds are consistent) */
3661 dst_reg->umin_value = umin_ptr - umax_val;
3662 dst_reg->umax_value = umax_ptr - umin_val;
3663 }
f1174f77
EC
3664 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3665 dst_reg->off = ptr_reg->off;
0962590e 3666 dst_reg->raw = ptr_reg->raw;
de8f3a83 3667 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3668 dst_reg->id = ++env->id_gen;
3669 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3670 if (smin_val < 0)
0962590e 3671 dst_reg->raw = 0;
43188702 3672 }
f1174f77
EC
3673 break;
3674 case BPF_AND:
3675 case BPF_OR:
3676 case BPF_XOR:
82abbf8d
AS
3677 /* bitwise ops on pointers are troublesome, prohibit. */
3678 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3679 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3680 return -EACCES;
3681 default:
3682 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3683 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3684 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3685 return -EACCES;
43188702
JF
3686 }
3687
bb7f0f98
AS
3688 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3689 return -EINVAL;
3690
b03c9f9f
EC
3691 __update_reg_bounds(dst_reg);
3692 __reg_deduce_bounds(dst_reg);
3693 __reg_bound_offset(dst_reg);
0d6303db
DB
3694
3695 /* For unprivileged we require that resulting offset must be in bounds
3696 * in order to be able to sanitize access later on.
3697 */
e4298d25
DB
3698 if (!env->allow_ptr_leaks) {
3699 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3700 check_map_access(env, dst, dst_reg->off, 1, false)) {
3701 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3702 "prohibited for !root\n", dst);
3703 return -EACCES;
3704 } else if (dst_reg->type == PTR_TO_STACK &&
3705 check_stack_access(env, dst_reg, dst_reg->off +
3706 dst_reg->var_off.value, 1)) {
3707 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3708 "prohibited for !root\n", dst);
3709 return -EACCES;
3710 }
0d6303db
DB
3711 }
3712
43188702
JF
3713 return 0;
3714}
3715
468f6eaf
JH
3716/* WARNING: This function does calculations on 64-bit values, but the actual
3717 * execution may occur on 32-bit values. Therefore, things like bitshifts
3718 * need extra checks in the 32-bit case.
3719 */
f1174f77
EC
3720static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3721 struct bpf_insn *insn,
3722 struct bpf_reg_state *dst_reg,
3723 struct bpf_reg_state src_reg)
969bf05e 3724{
638f5b90 3725 struct bpf_reg_state *regs = cur_regs(env);
48461135 3726 u8 opcode = BPF_OP(insn->code);
f1174f77 3727 bool src_known, dst_known;
b03c9f9f
EC
3728 s64 smin_val, smax_val;
3729 u64 umin_val, umax_val;
468f6eaf 3730 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
3731 u32 dst = insn->dst_reg;
3732 int ret;
48461135 3733
b799207e
JH
3734 if (insn_bitness == 32) {
3735 /* Relevant for 32-bit RSH: Information can propagate towards
3736 * LSB, so it isn't sufficient to only truncate the output to
3737 * 32 bits.
3738 */
3739 coerce_reg_to_size(dst_reg, 4);
3740 coerce_reg_to_size(&src_reg, 4);
3741 }
3742
b03c9f9f
EC
3743 smin_val = src_reg.smin_value;
3744 smax_val = src_reg.smax_value;
3745 umin_val = src_reg.umin_value;
3746 umax_val = src_reg.umax_value;
f1174f77
EC
3747 src_known = tnum_is_const(src_reg.var_off);
3748 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3749
6f16101e
DB
3750 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3751 smin_val > smax_val || umin_val > umax_val) {
3752 /* Taint dst register if offset had invalid bounds derived from
3753 * e.g. dead branches.
3754 */
3755 __mark_reg_unknown(dst_reg);
3756 return 0;
3757 }
3758
bb7f0f98
AS
3759 if (!src_known &&
3760 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3761 __mark_reg_unknown(dst_reg);
3762 return 0;
3763 }
3764
48461135
JB
3765 switch (opcode) {
3766 case BPF_ADD:
d3bd7413
DB
3767 ret = sanitize_val_alu(env, insn);
3768 if (ret < 0) {
3769 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3770 return ret;
3771 }
b03c9f9f
EC
3772 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3773 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3774 dst_reg->smin_value = S64_MIN;
3775 dst_reg->smax_value = S64_MAX;
3776 } else {
3777 dst_reg->smin_value += smin_val;
3778 dst_reg->smax_value += smax_val;
3779 }
3780 if (dst_reg->umin_value + umin_val < umin_val ||
3781 dst_reg->umax_value + umax_val < umax_val) {
3782 dst_reg->umin_value = 0;
3783 dst_reg->umax_value = U64_MAX;
3784 } else {
3785 dst_reg->umin_value += umin_val;
3786 dst_reg->umax_value += umax_val;
3787 }
f1174f77 3788 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3789 break;
3790 case BPF_SUB:
d3bd7413
DB
3791 ret = sanitize_val_alu(env, insn);
3792 if (ret < 0) {
3793 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3794 return ret;
3795 }
b03c9f9f
EC
3796 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3797 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3798 /* Overflow possible, we know nothing */
3799 dst_reg->smin_value = S64_MIN;
3800 dst_reg->smax_value = S64_MAX;
3801 } else {
3802 dst_reg->smin_value -= smax_val;
3803 dst_reg->smax_value -= smin_val;
3804 }
3805 if (dst_reg->umin_value < umax_val) {
3806 /* Overflow possible, we know nothing */
3807 dst_reg->umin_value = 0;
3808 dst_reg->umax_value = U64_MAX;
3809 } else {
3810 /* Cannot overflow (as long as bounds are consistent) */
3811 dst_reg->umin_value -= umax_val;
3812 dst_reg->umax_value -= umin_val;
3813 }
f1174f77 3814 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3815 break;
3816 case BPF_MUL:
b03c9f9f
EC
3817 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3818 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3819 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3820 __mark_reg_unbounded(dst_reg);
3821 __update_reg_bounds(dst_reg);
f1174f77
EC
3822 break;
3823 }
b03c9f9f
EC
3824 /* Both values are positive, so we can work with unsigned and
3825 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3826 */
b03c9f9f
EC
3827 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3828 /* Potential overflow, we know nothing */
3829 __mark_reg_unbounded(dst_reg);
3830 /* (except what we can learn from the var_off) */
3831 __update_reg_bounds(dst_reg);
3832 break;
3833 }
3834 dst_reg->umin_value *= umin_val;
3835 dst_reg->umax_value *= umax_val;
3836 if (dst_reg->umax_value > S64_MAX) {
3837 /* Overflow possible, we know nothing */
3838 dst_reg->smin_value = S64_MIN;
3839 dst_reg->smax_value = S64_MAX;
3840 } else {
3841 dst_reg->smin_value = dst_reg->umin_value;
3842 dst_reg->smax_value = dst_reg->umax_value;
3843 }
48461135
JB
3844 break;
3845 case BPF_AND:
f1174f77 3846 if (src_known && dst_known) {
b03c9f9f
EC
3847 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3848 src_reg.var_off.value);
f1174f77
EC
3849 break;
3850 }
b03c9f9f
EC
3851 /* We get our minimum from the var_off, since that's inherently
3852 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3853 */
f1174f77 3854 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3855 dst_reg->umin_value = dst_reg->var_off.value;
3856 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3857 if (dst_reg->smin_value < 0 || smin_val < 0) {
3858 /* Lose signed bounds when ANDing negative numbers,
3859 * ain't nobody got time for that.
3860 */
3861 dst_reg->smin_value = S64_MIN;
3862 dst_reg->smax_value = S64_MAX;
3863 } else {
3864 /* ANDing two positives gives a positive, so safe to
3865 * cast result into s64.
3866 */
3867 dst_reg->smin_value = dst_reg->umin_value;
3868 dst_reg->smax_value = dst_reg->umax_value;
3869 }
3870 /* We may learn something more from the var_off */
3871 __update_reg_bounds(dst_reg);
f1174f77
EC
3872 break;
3873 case BPF_OR:
3874 if (src_known && dst_known) {
b03c9f9f
EC
3875 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3876 src_reg.var_off.value);
f1174f77
EC
3877 break;
3878 }
b03c9f9f
EC
3879 /* We get our maximum from the var_off, and our minimum is the
3880 * maximum of the operands' minima
f1174f77
EC
3881 */
3882 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3883 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3884 dst_reg->umax_value = dst_reg->var_off.value |
3885 dst_reg->var_off.mask;
3886 if (dst_reg->smin_value < 0 || smin_val < 0) {
3887 /* Lose signed bounds when ORing negative numbers,
3888 * ain't nobody got time for that.
3889 */
3890 dst_reg->smin_value = S64_MIN;
3891 dst_reg->smax_value = S64_MAX;
f1174f77 3892 } else {
b03c9f9f
EC
3893 /* ORing two positives gives a positive, so safe to
3894 * cast result into s64.
3895 */
3896 dst_reg->smin_value = dst_reg->umin_value;
3897 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3898 }
b03c9f9f
EC
3899 /* We may learn something more from the var_off */
3900 __update_reg_bounds(dst_reg);
48461135
JB
3901 break;
3902 case BPF_LSH:
468f6eaf
JH
3903 if (umax_val >= insn_bitness) {
3904 /* Shifts greater than 31 or 63 are undefined.
3905 * This includes shifts by a negative number.
b03c9f9f 3906 */
61bd5218 3907 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3908 break;
3909 }
b03c9f9f
EC
3910 /* We lose all sign bit information (except what we can pick
3911 * up from var_off)
48461135 3912 */
b03c9f9f
EC
3913 dst_reg->smin_value = S64_MIN;
3914 dst_reg->smax_value = S64_MAX;
3915 /* If we might shift our top bit out, then we know nothing */
3916 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3917 dst_reg->umin_value = 0;
3918 dst_reg->umax_value = U64_MAX;
d1174416 3919 } else {
b03c9f9f
EC
3920 dst_reg->umin_value <<= umin_val;
3921 dst_reg->umax_value <<= umax_val;
d1174416 3922 }
afbe1a5b 3923 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3924 /* We may learn something more from the var_off */
3925 __update_reg_bounds(dst_reg);
48461135
JB
3926 break;
3927 case BPF_RSH:
468f6eaf
JH
3928 if (umax_val >= insn_bitness) {
3929 /* Shifts greater than 31 or 63 are undefined.
3930 * This includes shifts by a negative number.
b03c9f9f 3931 */
61bd5218 3932 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3933 break;
3934 }
4374f256
EC
3935 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3936 * be negative, then either:
3937 * 1) src_reg might be zero, so the sign bit of the result is
3938 * unknown, so we lose our signed bounds
3939 * 2) it's known negative, thus the unsigned bounds capture the
3940 * signed bounds
3941 * 3) the signed bounds cross zero, so they tell us nothing
3942 * about the result
3943 * If the value in dst_reg is known nonnegative, then again the
3944 * unsigned bounts capture the signed bounds.
3945 * Thus, in all cases it suffices to blow away our signed bounds
3946 * and rely on inferring new ones from the unsigned bounds and
3947 * var_off of the result.
3948 */
3949 dst_reg->smin_value = S64_MIN;
3950 dst_reg->smax_value = S64_MAX;
afbe1a5b 3951 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3952 dst_reg->umin_value >>= umax_val;
3953 dst_reg->umax_value >>= umin_val;
3954 /* We may learn something more from the var_off */
3955 __update_reg_bounds(dst_reg);
48461135 3956 break;
9cbe1f5a
YS
3957 case BPF_ARSH:
3958 if (umax_val >= insn_bitness) {
3959 /* Shifts greater than 31 or 63 are undefined.
3960 * This includes shifts by a negative number.
3961 */
3962 mark_reg_unknown(env, regs, insn->dst_reg);
3963 break;
3964 }
3965
3966 /* Upon reaching here, src_known is true and
3967 * umax_val is equal to umin_val.
3968 */
3969 dst_reg->smin_value >>= umin_val;
3970 dst_reg->smax_value >>= umin_val;
3971 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3972
3973 /* blow away the dst_reg umin_value/umax_value and rely on
3974 * dst_reg var_off to refine the result.
3975 */
3976 dst_reg->umin_value = 0;
3977 dst_reg->umax_value = U64_MAX;
3978 __update_reg_bounds(dst_reg);
3979 break;
48461135 3980 default:
61bd5218 3981 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3982 break;
3983 }
3984
468f6eaf
JH
3985 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3986 /* 32-bit ALU ops are (32,32)->32 */
3987 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3988 }
3989
b03c9f9f
EC
3990 __reg_deduce_bounds(dst_reg);
3991 __reg_bound_offset(dst_reg);
f1174f77
EC
3992 return 0;
3993}
3994
3995/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3996 * and var_off.
3997 */
3998static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3999 struct bpf_insn *insn)
4000{
f4d7e40a
AS
4001 struct bpf_verifier_state *vstate = env->cur_state;
4002 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4003 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4004 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4005 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
4006
4007 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4008 src_reg = NULL;
4009 if (dst_reg->type != SCALAR_VALUE)
4010 ptr_reg = dst_reg;
4011 if (BPF_SRC(insn->code) == BPF_X) {
4012 src_reg = &regs[insn->src_reg];
f1174f77
EC
4013 if (src_reg->type != SCALAR_VALUE) {
4014 if (dst_reg->type != SCALAR_VALUE) {
4015 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4016 * an arbitrary scalar. Disallow all math except
4017 * pointer subtraction
f1174f77 4018 */
dd066823 4019 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4020 mark_reg_unknown(env, regs, insn->dst_reg);
4021 return 0;
f1174f77 4022 }
82abbf8d
AS
4023 verbose(env, "R%d pointer %s pointer prohibited\n",
4024 insn->dst_reg,
4025 bpf_alu_string[opcode >> 4]);
4026 return -EACCES;
f1174f77
EC
4027 } else {
4028 /* scalar += pointer
4029 * This is legal, but we have to reverse our
4030 * src/dest handling in computing the range
4031 */
82abbf8d
AS
4032 return adjust_ptr_min_max_vals(env, insn,
4033 src_reg, dst_reg);
f1174f77
EC
4034 }
4035 } else if (ptr_reg) {
4036 /* pointer += scalar */
82abbf8d
AS
4037 return adjust_ptr_min_max_vals(env, insn,
4038 dst_reg, src_reg);
f1174f77
EC
4039 }
4040 } else {
4041 /* Pretend the src is a reg with a known value, since we only
4042 * need to be able to read from this state.
4043 */
4044 off_reg.type = SCALAR_VALUE;
b03c9f9f 4045 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4046 src_reg = &off_reg;
82abbf8d
AS
4047 if (ptr_reg) /* pointer += K */
4048 return adjust_ptr_min_max_vals(env, insn,
4049 ptr_reg, src_reg);
f1174f77
EC
4050 }
4051
4052 /* Got here implies adding two SCALAR_VALUEs */
4053 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4054 print_verifier_state(env, state);
61bd5218 4055 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4056 return -EINVAL;
4057 }
4058 if (WARN_ON(!src_reg)) {
f4d7e40a 4059 print_verifier_state(env, state);
61bd5218 4060 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4061 return -EINVAL;
4062 }
4063 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4064}
4065
17a52670 4066/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4067static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4068{
638f5b90 4069 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4070 u8 opcode = BPF_OP(insn->code);
4071 int err;
4072
4073 if (opcode == BPF_END || opcode == BPF_NEG) {
4074 if (opcode == BPF_NEG) {
4075 if (BPF_SRC(insn->code) != 0 ||
4076 insn->src_reg != BPF_REG_0 ||
4077 insn->off != 0 || insn->imm != 0) {
61bd5218 4078 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4079 return -EINVAL;
4080 }
4081 } else {
4082 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4083 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4084 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4085 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4086 return -EINVAL;
4087 }
4088 }
4089
4090 /* check src operand */
dc503a8a 4091 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4092 if (err)
4093 return err;
4094
1be7f75d 4095 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 4096 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4097 insn->dst_reg);
4098 return -EACCES;
4099 }
4100
17a52670 4101 /* check dest operand */
dc503a8a 4102 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4103 if (err)
4104 return err;
4105
4106 } else if (opcode == BPF_MOV) {
4107
4108 if (BPF_SRC(insn->code) == BPF_X) {
4109 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4110 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4111 return -EINVAL;
4112 }
4113
4114 /* check src operand */
dc503a8a 4115 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4116 if (err)
4117 return err;
4118 } else {
4119 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4120 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4121 return -EINVAL;
4122 }
4123 }
4124
fbeb1603
AF
4125 /* check dest operand, mark as required later */
4126 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4127 if (err)
4128 return err;
4129
4130 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4131 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4132 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4133
17a52670
AS
4134 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4135 /* case: R1 = R2
4136 * copy register state to dest reg
4137 */
e434b8cd
JW
4138 *dst_reg = *src_reg;
4139 dst_reg->live |= REG_LIVE_WRITTEN;
17a52670 4140 } else {
f1174f77 4141 /* R1 = (u32) R2 */
1be7f75d 4142 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4143 verbose(env,
4144 "R%d partial copy of pointer\n",
1be7f75d
AS
4145 insn->src_reg);
4146 return -EACCES;
e434b8cd
JW
4147 } else if (src_reg->type == SCALAR_VALUE) {
4148 *dst_reg = *src_reg;
4149 dst_reg->live |= REG_LIVE_WRITTEN;
4150 } else {
4151 mark_reg_unknown(env, regs,
4152 insn->dst_reg);
1be7f75d 4153 }
e434b8cd 4154 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
4155 }
4156 } else {
4157 /* case: R = imm
4158 * remember the value we stored into this reg
4159 */
fbeb1603
AF
4160 /* clear any state __mark_reg_known doesn't set */
4161 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 4162 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
4163 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4164 __mark_reg_known(regs + insn->dst_reg,
4165 insn->imm);
4166 } else {
4167 __mark_reg_known(regs + insn->dst_reg,
4168 (u32)insn->imm);
4169 }
17a52670
AS
4170 }
4171
4172 } else if (opcode > BPF_END) {
61bd5218 4173 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
4174 return -EINVAL;
4175
4176 } else { /* all other ALU ops: and, sub, xor, add, ... */
4177
17a52670
AS
4178 if (BPF_SRC(insn->code) == BPF_X) {
4179 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4180 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4181 return -EINVAL;
4182 }
4183 /* check src1 operand */
dc503a8a 4184 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4185 if (err)
4186 return err;
4187 } else {
4188 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4189 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4190 return -EINVAL;
4191 }
4192 }
4193
4194 /* check src2 operand */
dc503a8a 4195 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4196 if (err)
4197 return err;
4198
4199 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4200 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 4201 verbose(env, "div by zero\n");
17a52670
AS
4202 return -EINVAL;
4203 }
4204
229394e8
RV
4205 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4206 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4207 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4208
4209 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 4210 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
4211 return -EINVAL;
4212 }
4213 }
4214
1a0dc1ac 4215 /* check dest operand */
dc503a8a 4216 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
4217 if (err)
4218 return err;
4219
f1174f77 4220 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
4221 }
4222
4223 return 0;
4224}
4225
f4d7e40a 4226static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 4227 struct bpf_reg_state *dst_reg,
f8ddadc4 4228 enum bpf_reg_type type,
fb2a311a 4229 bool range_right_open)
969bf05e 4230{
f4d7e40a 4231 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 4232 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 4233 u16 new_range;
f4d7e40a 4234 int i, j;
2d2be8ca 4235
fb2a311a
DB
4236 if (dst_reg->off < 0 ||
4237 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
4238 /* This doesn't give us any range */
4239 return;
4240
b03c9f9f
EC
4241 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4242 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
4243 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4244 * than pkt_end, but that's because it's also less than pkt.
4245 */
4246 return;
4247
fb2a311a
DB
4248 new_range = dst_reg->off;
4249 if (range_right_open)
4250 new_range--;
4251
4252 /* Examples for register markings:
2d2be8ca 4253 *
fb2a311a 4254 * pkt_data in dst register:
2d2be8ca
DB
4255 *
4256 * r2 = r3;
4257 * r2 += 8;
4258 * if (r2 > pkt_end) goto <handle exception>
4259 * <access okay>
4260 *
b4e432f1
DB
4261 * r2 = r3;
4262 * r2 += 8;
4263 * if (r2 < pkt_end) goto <access okay>
4264 * <handle exception>
4265 *
2d2be8ca
DB
4266 * Where:
4267 * r2 == dst_reg, pkt_end == src_reg
4268 * r2=pkt(id=n,off=8,r=0)
4269 * r3=pkt(id=n,off=0,r=0)
4270 *
fb2a311a 4271 * pkt_data in src register:
2d2be8ca
DB
4272 *
4273 * r2 = r3;
4274 * r2 += 8;
4275 * if (pkt_end >= r2) goto <access okay>
4276 * <handle exception>
4277 *
b4e432f1
DB
4278 * r2 = r3;
4279 * r2 += 8;
4280 * if (pkt_end <= r2) goto <handle exception>
4281 * <access okay>
4282 *
2d2be8ca
DB
4283 * Where:
4284 * pkt_end == dst_reg, r2 == src_reg
4285 * r2=pkt(id=n,off=8,r=0)
4286 * r3=pkt(id=n,off=0,r=0)
4287 *
4288 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
4289 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4290 * and [r3, r3 + 8-1) respectively is safe to access depending on
4291 * the check.
969bf05e 4292 */
2d2be8ca 4293
f1174f77
EC
4294 /* If our ids match, then we must have the same max_value. And we
4295 * don't care about the other reg's fixed offset, since if it's too big
4296 * the range won't allow anything.
4297 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4298 */
969bf05e 4299 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4300 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 4301 /* keep the maximum range already checked */
fb2a311a 4302 regs[i].range = max(regs[i].range, new_range);
969bf05e 4303
f4d7e40a
AS
4304 for (j = 0; j <= vstate->curframe; j++) {
4305 state = vstate->frame[j];
f3709f69
JS
4306 bpf_for_each_spilled_reg(i, state, reg) {
4307 if (!reg)
f4d7e40a 4308 continue;
f4d7e40a
AS
4309 if (reg->type == type && reg->id == dst_reg->id)
4310 reg->range = max(reg->range, new_range);
4311 }
969bf05e
AS
4312 }
4313}
4314
4f7b3e82
AS
4315/* compute branch direction of the expression "if (reg opcode val) goto target;"
4316 * and return:
4317 * 1 - branch will be taken and "goto target" will be executed
4318 * 0 - branch will not be taken and fall-through to next insn
4319 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4320 */
092ed096
JW
4321static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4322 bool is_jmp32)
4f7b3e82 4323{
092ed096 4324 struct bpf_reg_state reg_lo;
a72dafaf
JW
4325 s64 sval;
4326
4f7b3e82
AS
4327 if (__is_pointer_value(false, reg))
4328 return -1;
4329
092ed096
JW
4330 if (is_jmp32) {
4331 reg_lo = *reg;
4332 reg = &reg_lo;
4333 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4334 * could truncate high bits and update umin/umax according to
4335 * information of low bits.
4336 */
4337 coerce_reg_to_size(reg, 4);
4338 /* smin/smax need special handling. For example, after coerce,
4339 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4340 * used as operand to JMP32. It is a negative number from s32's
4341 * point of view, while it is a positive number when seen as
4342 * s64. The smin/smax are kept as s64, therefore, when used with
4343 * JMP32, they need to be transformed into s32, then sign
4344 * extended back to s64.
4345 *
4346 * Also, smin/smax were copied from umin/umax. If umin/umax has
4347 * different sign bit, then min/max relationship doesn't
4348 * maintain after casting into s32, for this case, set smin/smax
4349 * to safest range.
4350 */
4351 if ((reg->umax_value ^ reg->umin_value) &
4352 (1ULL << 31)) {
4353 reg->smin_value = S32_MIN;
4354 reg->smax_value = S32_MAX;
4355 }
4356 reg->smin_value = (s64)(s32)reg->smin_value;
4357 reg->smax_value = (s64)(s32)reg->smax_value;
4358
4359 val = (u32)val;
4360 sval = (s64)(s32)val;
4361 } else {
4362 sval = (s64)val;
4363 }
a72dafaf 4364
4f7b3e82
AS
4365 switch (opcode) {
4366 case BPF_JEQ:
4367 if (tnum_is_const(reg->var_off))
4368 return !!tnum_equals_const(reg->var_off, val);
4369 break;
4370 case BPF_JNE:
4371 if (tnum_is_const(reg->var_off))
4372 return !tnum_equals_const(reg->var_off, val);
4373 break;
960ea056
JK
4374 case BPF_JSET:
4375 if ((~reg->var_off.mask & reg->var_off.value) & val)
4376 return 1;
4377 if (!((reg->var_off.mask | reg->var_off.value) & val))
4378 return 0;
4379 break;
4f7b3e82
AS
4380 case BPF_JGT:
4381 if (reg->umin_value > val)
4382 return 1;
4383 else if (reg->umax_value <= val)
4384 return 0;
4385 break;
4386 case BPF_JSGT:
a72dafaf 4387 if (reg->smin_value > sval)
4f7b3e82 4388 return 1;
a72dafaf 4389 else if (reg->smax_value < sval)
4f7b3e82
AS
4390 return 0;
4391 break;
4392 case BPF_JLT:
4393 if (reg->umax_value < val)
4394 return 1;
4395 else if (reg->umin_value >= val)
4396 return 0;
4397 break;
4398 case BPF_JSLT:
a72dafaf 4399 if (reg->smax_value < sval)
4f7b3e82 4400 return 1;
a72dafaf 4401 else if (reg->smin_value >= sval)
4f7b3e82
AS
4402 return 0;
4403 break;
4404 case BPF_JGE:
4405 if (reg->umin_value >= val)
4406 return 1;
4407 else if (reg->umax_value < val)
4408 return 0;
4409 break;
4410 case BPF_JSGE:
a72dafaf 4411 if (reg->smin_value >= sval)
4f7b3e82 4412 return 1;
a72dafaf 4413 else if (reg->smax_value < sval)
4f7b3e82
AS
4414 return 0;
4415 break;
4416 case BPF_JLE:
4417 if (reg->umax_value <= val)
4418 return 1;
4419 else if (reg->umin_value > val)
4420 return 0;
4421 break;
4422 case BPF_JSLE:
a72dafaf 4423 if (reg->smax_value <= sval)
4f7b3e82 4424 return 1;
a72dafaf 4425 else if (reg->smin_value > sval)
4f7b3e82
AS
4426 return 0;
4427 break;
4428 }
4429
4430 return -1;
4431}
4432
092ed096
JW
4433/* Generate min value of the high 32-bit from TNUM info. */
4434static u64 gen_hi_min(struct tnum var)
4435{
4436 return var.value & ~0xffffffffULL;
4437}
4438
4439/* Generate max value of the high 32-bit from TNUM info. */
4440static u64 gen_hi_max(struct tnum var)
4441{
4442 return (var.value | var.mask) & ~0xffffffffULL;
4443}
4444
4445/* Return true if VAL is compared with a s64 sign extended from s32, and they
4446 * are with the same signedness.
4447 */
4448static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4449{
4450 return ((s32)sval >= 0 &&
4451 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4452 ((s32)sval < 0 &&
4453 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4454}
4455
48461135
JB
4456/* Adjusts the register min/max values in the case that the dst_reg is the
4457 * variable register that we are working on, and src_reg is a constant or we're
4458 * simply doing a BPF_K check.
f1174f77 4459 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
4460 */
4461static void reg_set_min_max(struct bpf_reg_state *true_reg,
4462 struct bpf_reg_state *false_reg, u64 val,
092ed096 4463 u8 opcode, bool is_jmp32)
48461135 4464{
a72dafaf
JW
4465 s64 sval;
4466
f1174f77
EC
4467 /* If the dst_reg is a pointer, we can't learn anything about its
4468 * variable offset from the compare (unless src_reg were a pointer into
4469 * the same object, but we don't bother with that.
4470 * Since false_reg and true_reg have the same type by construction, we
4471 * only need to check one of them for pointerness.
4472 */
4473 if (__is_pointer_value(false, false_reg))
4474 return;
4cabc5b1 4475
092ed096
JW
4476 val = is_jmp32 ? (u32)val : val;
4477 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4478
48461135
JB
4479 switch (opcode) {
4480 case BPF_JEQ:
48461135 4481 case BPF_JNE:
a72dafaf
JW
4482 {
4483 struct bpf_reg_state *reg =
4484 opcode == BPF_JEQ ? true_reg : false_reg;
4485
4486 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4487 * if it is true we know the value for sure. Likewise for
4488 * BPF_JNE.
48461135 4489 */
092ed096
JW
4490 if (is_jmp32) {
4491 u64 old_v = reg->var_off.value;
4492 u64 hi_mask = ~0xffffffffULL;
4493
4494 reg->var_off.value = (old_v & hi_mask) | val;
4495 reg->var_off.mask &= hi_mask;
4496 } else {
4497 __mark_reg_known(reg, val);
4498 }
48461135 4499 break;
a72dafaf 4500 }
960ea056
JK
4501 case BPF_JSET:
4502 false_reg->var_off = tnum_and(false_reg->var_off,
4503 tnum_const(~val));
4504 if (is_power_of_2(val))
4505 true_reg->var_off = tnum_or(true_reg->var_off,
4506 tnum_const(val));
4507 break;
48461135 4508 case BPF_JGE:
a72dafaf
JW
4509 case BPF_JGT:
4510 {
4511 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4512 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4513
092ed096
JW
4514 if (is_jmp32) {
4515 false_umax += gen_hi_max(false_reg->var_off);
4516 true_umin += gen_hi_min(true_reg->var_off);
4517 }
a72dafaf
JW
4518 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4519 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 4520 break;
a72dafaf 4521 }
48461135 4522 case BPF_JSGE:
a72dafaf
JW
4523 case BPF_JSGT:
4524 {
4525 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4526 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4527
092ed096
JW
4528 /* If the full s64 was not sign-extended from s32 then don't
4529 * deduct further info.
4530 */
4531 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4532 break;
a72dafaf
JW
4533 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4534 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 4535 break;
a72dafaf 4536 }
b4e432f1 4537 case BPF_JLE:
a72dafaf
JW
4538 case BPF_JLT:
4539 {
4540 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4541 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4542
092ed096
JW
4543 if (is_jmp32) {
4544 false_umin += gen_hi_min(false_reg->var_off);
4545 true_umax += gen_hi_max(true_reg->var_off);
4546 }
a72dafaf
JW
4547 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4548 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 4549 break;
a72dafaf 4550 }
b4e432f1 4551 case BPF_JSLE:
a72dafaf
JW
4552 case BPF_JSLT:
4553 {
4554 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4555 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4556
092ed096
JW
4557 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4558 break;
a72dafaf
JW
4559 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4560 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 4561 break;
a72dafaf 4562 }
48461135
JB
4563 default:
4564 break;
4565 }
4566
b03c9f9f
EC
4567 __reg_deduce_bounds(false_reg);
4568 __reg_deduce_bounds(true_reg);
4569 /* We might have learned some bits from the bounds. */
4570 __reg_bound_offset(false_reg);
4571 __reg_bound_offset(true_reg);
4572 /* Intersecting with the old var_off might have improved our bounds
4573 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4574 * then new var_off is (0; 0x7f...fc) which improves our umax.
4575 */
4576 __update_reg_bounds(false_reg);
4577 __update_reg_bounds(true_reg);
48461135
JB
4578}
4579
f1174f77
EC
4580/* Same as above, but for the case that dst_reg holds a constant and src_reg is
4581 * the variable reg.
48461135
JB
4582 */
4583static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4584 struct bpf_reg_state *false_reg, u64 val,
092ed096 4585 u8 opcode, bool is_jmp32)
48461135 4586{
a72dafaf
JW
4587 s64 sval;
4588
f1174f77
EC
4589 if (__is_pointer_value(false, false_reg))
4590 return;
4cabc5b1 4591
092ed096
JW
4592 val = is_jmp32 ? (u32)val : val;
4593 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4594
48461135
JB
4595 switch (opcode) {
4596 case BPF_JEQ:
48461135 4597 case BPF_JNE:
a72dafaf
JW
4598 {
4599 struct bpf_reg_state *reg =
4600 opcode == BPF_JEQ ? true_reg : false_reg;
4601
092ed096
JW
4602 if (is_jmp32) {
4603 u64 old_v = reg->var_off.value;
4604 u64 hi_mask = ~0xffffffffULL;
4605
4606 reg->var_off.value = (old_v & hi_mask) | val;
4607 reg->var_off.mask &= hi_mask;
4608 } else {
4609 __mark_reg_known(reg, val);
4610 }
48461135 4611 break;
a72dafaf 4612 }
960ea056
JK
4613 case BPF_JSET:
4614 false_reg->var_off = tnum_and(false_reg->var_off,
4615 tnum_const(~val));
4616 if (is_power_of_2(val))
4617 true_reg->var_off = tnum_or(true_reg->var_off,
4618 tnum_const(val));
4619 break;
48461135 4620 case BPF_JGE:
a72dafaf
JW
4621 case BPF_JGT:
4622 {
4623 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4624 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4625
092ed096
JW
4626 if (is_jmp32) {
4627 false_umin += gen_hi_min(false_reg->var_off);
4628 true_umax += gen_hi_max(true_reg->var_off);
4629 }
a72dafaf
JW
4630 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4631 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 4632 break;
a72dafaf 4633 }
48461135 4634 case BPF_JSGE:
a72dafaf
JW
4635 case BPF_JSGT:
4636 {
4637 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4638 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4639
092ed096
JW
4640 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4641 break;
a72dafaf
JW
4642 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4643 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 4644 break;
a72dafaf 4645 }
b4e432f1 4646 case BPF_JLE:
a72dafaf
JW
4647 case BPF_JLT:
4648 {
4649 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4650 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4651
092ed096
JW
4652 if (is_jmp32) {
4653 false_umax += gen_hi_max(false_reg->var_off);
4654 true_umin += gen_hi_min(true_reg->var_off);
4655 }
a72dafaf
JW
4656 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4657 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 4658 break;
a72dafaf 4659 }
b4e432f1 4660 case BPF_JSLE:
a72dafaf
JW
4661 case BPF_JSLT:
4662 {
4663 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4664 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4665
092ed096
JW
4666 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4667 break;
a72dafaf
JW
4668 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4669 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 4670 break;
a72dafaf 4671 }
48461135
JB
4672 default:
4673 break;
4674 }
4675
b03c9f9f
EC
4676 __reg_deduce_bounds(false_reg);
4677 __reg_deduce_bounds(true_reg);
4678 /* We might have learned some bits from the bounds. */
4679 __reg_bound_offset(false_reg);
4680 __reg_bound_offset(true_reg);
4681 /* Intersecting with the old var_off might have improved our bounds
4682 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4683 * then new var_off is (0; 0x7f...fc) which improves our umax.
4684 */
4685 __update_reg_bounds(false_reg);
4686 __update_reg_bounds(true_reg);
f1174f77
EC
4687}
4688
4689/* Regs are known to be equal, so intersect their min/max/var_off */
4690static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4691 struct bpf_reg_state *dst_reg)
4692{
b03c9f9f
EC
4693 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4694 dst_reg->umin_value);
4695 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4696 dst_reg->umax_value);
4697 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4698 dst_reg->smin_value);
4699 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4700 dst_reg->smax_value);
f1174f77
EC
4701 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4702 dst_reg->var_off);
b03c9f9f
EC
4703 /* We might have learned new bounds from the var_off. */
4704 __update_reg_bounds(src_reg);
4705 __update_reg_bounds(dst_reg);
4706 /* We might have learned something about the sign bit. */
4707 __reg_deduce_bounds(src_reg);
4708 __reg_deduce_bounds(dst_reg);
4709 /* We might have learned some bits from the bounds. */
4710 __reg_bound_offset(src_reg);
4711 __reg_bound_offset(dst_reg);
4712 /* Intersecting with the old var_off might have improved our bounds
4713 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4714 * then new var_off is (0; 0x7f...fc) which improves our umax.
4715 */
4716 __update_reg_bounds(src_reg);
4717 __update_reg_bounds(dst_reg);
f1174f77
EC
4718}
4719
4720static void reg_combine_min_max(struct bpf_reg_state *true_src,
4721 struct bpf_reg_state *true_dst,
4722 struct bpf_reg_state *false_src,
4723 struct bpf_reg_state *false_dst,
4724 u8 opcode)
4725{
4726 switch (opcode) {
4727 case BPF_JEQ:
4728 __reg_combine_min_max(true_src, true_dst);
4729 break;
4730 case BPF_JNE:
4731 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4732 break;
4cabc5b1 4733 }
48461135
JB
4734}
4735
fd978bf7
JS
4736static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4737 struct bpf_reg_state *reg, u32 id,
840b9615 4738 bool is_null)
57a09bf0 4739{
840b9615 4740 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4741 /* Old offset (both fixed and variable parts) should
4742 * have been known-zero, because we don't allow pointer
4743 * arithmetic on pointers that might be NULL.
4744 */
b03c9f9f
EC
4745 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4746 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4747 reg->off)) {
b03c9f9f
EC
4748 __mark_reg_known_zero(reg);
4749 reg->off = 0;
f1174f77
EC
4750 }
4751 if (is_null) {
4752 reg->type = SCALAR_VALUE;
840b9615
JS
4753 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4754 if (reg->map_ptr->inner_map_meta) {
4755 reg->type = CONST_PTR_TO_MAP;
4756 reg->map_ptr = reg->map_ptr->inner_map_meta;
4757 } else {
4758 reg->type = PTR_TO_MAP_VALUE;
4759 }
c64b7983
JS
4760 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4761 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
4762 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4763 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
4764 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4765 reg->type = PTR_TO_TCP_SOCK;
56f668df 4766 }
1b986589
MKL
4767 if (is_null) {
4768 /* We don't need id and ref_obj_id from this point
4769 * onwards anymore, thus we should better reset it,
4770 * so that state pruning has chances to take effect.
4771 */
4772 reg->id = 0;
4773 reg->ref_obj_id = 0;
4774 } else if (!reg_may_point_to_spin_lock(reg)) {
4775 /* For not-NULL ptr, reg->ref_obj_id will be reset
4776 * in release_reg_references().
4777 *
4778 * reg->id is still used by spin_lock ptr. Other
4779 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
4780 */
4781 reg->id = 0;
56f668df 4782 }
57a09bf0
TG
4783 }
4784}
4785
4786/* The logic is similar to find_good_pkt_pointers(), both could eventually
4787 * be folded together at some point.
4788 */
840b9615
JS
4789static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4790 bool is_null)
57a09bf0 4791{
f4d7e40a 4792 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4793 struct bpf_reg_state *reg, *regs = state->regs;
1b986589 4794 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 4795 u32 id = regs[regno].id;
f4d7e40a 4796 int i, j;
57a09bf0 4797
1b986589
MKL
4798 if (ref_obj_id && ref_obj_id == id && is_null)
4799 /* regs[regno] is in the " == NULL" branch.
4800 * No one could have freed the reference state before
4801 * doing the NULL check.
4802 */
4803 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 4804
57a09bf0 4805 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4806 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4807
f4d7e40a
AS
4808 for (j = 0; j <= vstate->curframe; j++) {
4809 state = vstate->frame[j];
f3709f69
JS
4810 bpf_for_each_spilled_reg(i, state, reg) {
4811 if (!reg)
f4d7e40a 4812 continue;
fd978bf7 4813 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4814 }
57a09bf0
TG
4815 }
4816}
4817
5beca081
DB
4818static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4819 struct bpf_reg_state *dst_reg,
4820 struct bpf_reg_state *src_reg,
4821 struct bpf_verifier_state *this_branch,
4822 struct bpf_verifier_state *other_branch)
4823{
4824 if (BPF_SRC(insn->code) != BPF_X)
4825 return false;
4826
092ed096
JW
4827 /* Pointers are always 64-bit. */
4828 if (BPF_CLASS(insn->code) == BPF_JMP32)
4829 return false;
4830
5beca081
DB
4831 switch (BPF_OP(insn->code)) {
4832 case BPF_JGT:
4833 if ((dst_reg->type == PTR_TO_PACKET &&
4834 src_reg->type == PTR_TO_PACKET_END) ||
4835 (dst_reg->type == PTR_TO_PACKET_META &&
4836 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4837 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4838 find_good_pkt_pointers(this_branch, dst_reg,
4839 dst_reg->type, false);
4840 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4841 src_reg->type == PTR_TO_PACKET) ||
4842 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4843 src_reg->type == PTR_TO_PACKET_META)) {
4844 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4845 find_good_pkt_pointers(other_branch, src_reg,
4846 src_reg->type, true);
4847 } else {
4848 return false;
4849 }
4850 break;
4851 case BPF_JLT:
4852 if ((dst_reg->type == PTR_TO_PACKET &&
4853 src_reg->type == PTR_TO_PACKET_END) ||
4854 (dst_reg->type == PTR_TO_PACKET_META &&
4855 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4856 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4857 find_good_pkt_pointers(other_branch, dst_reg,
4858 dst_reg->type, true);
4859 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4860 src_reg->type == PTR_TO_PACKET) ||
4861 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4862 src_reg->type == PTR_TO_PACKET_META)) {
4863 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4864 find_good_pkt_pointers(this_branch, src_reg,
4865 src_reg->type, false);
4866 } else {
4867 return false;
4868 }
4869 break;
4870 case BPF_JGE:
4871 if ((dst_reg->type == PTR_TO_PACKET &&
4872 src_reg->type == PTR_TO_PACKET_END) ||
4873 (dst_reg->type == PTR_TO_PACKET_META &&
4874 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4875 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4876 find_good_pkt_pointers(this_branch, dst_reg,
4877 dst_reg->type, true);
4878 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4879 src_reg->type == PTR_TO_PACKET) ||
4880 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4881 src_reg->type == PTR_TO_PACKET_META)) {
4882 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4883 find_good_pkt_pointers(other_branch, src_reg,
4884 src_reg->type, false);
4885 } else {
4886 return false;
4887 }
4888 break;
4889 case BPF_JLE:
4890 if ((dst_reg->type == PTR_TO_PACKET &&
4891 src_reg->type == PTR_TO_PACKET_END) ||
4892 (dst_reg->type == PTR_TO_PACKET_META &&
4893 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4894 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4895 find_good_pkt_pointers(other_branch, dst_reg,
4896 dst_reg->type, false);
4897 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4898 src_reg->type == PTR_TO_PACKET) ||
4899 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4900 src_reg->type == PTR_TO_PACKET_META)) {
4901 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4902 find_good_pkt_pointers(this_branch, src_reg,
4903 src_reg->type, true);
4904 } else {
4905 return false;
4906 }
4907 break;
4908 default:
4909 return false;
4910 }
4911
4912 return true;
4913}
4914
58e2af8b 4915static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4916 struct bpf_insn *insn, int *insn_idx)
4917{
f4d7e40a
AS
4918 struct bpf_verifier_state *this_branch = env->cur_state;
4919 struct bpf_verifier_state *other_branch;
4920 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4921 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670 4922 u8 opcode = BPF_OP(insn->code);
092ed096 4923 bool is_jmp32;
17a52670
AS
4924 int err;
4925
092ed096
JW
4926 /* Only conditional jumps are expected to reach here. */
4927 if (opcode == BPF_JA || opcode > BPF_JSLE) {
4928 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
4929 return -EINVAL;
4930 }
4931
4932 if (BPF_SRC(insn->code) == BPF_X) {
4933 if (insn->imm != 0) {
092ed096 4934 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
4935 return -EINVAL;
4936 }
4937
4938 /* check src1 operand */
dc503a8a 4939 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4940 if (err)
4941 return err;
1be7f75d
AS
4942
4943 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4944 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4945 insn->src_reg);
4946 return -EACCES;
4947 }
17a52670
AS
4948 } else {
4949 if (insn->src_reg != BPF_REG_0) {
092ed096 4950 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
4951 return -EINVAL;
4952 }
4953 }
4954
4955 /* check src2 operand */
dc503a8a 4956 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4957 if (err)
4958 return err;
4959
1a0dc1ac 4960 dst_reg = &regs[insn->dst_reg];
092ed096 4961 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 4962
4f7b3e82 4963 if (BPF_SRC(insn->code) == BPF_K) {
092ed096
JW
4964 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
4965 is_jmp32);
4f7b3e82
AS
4966
4967 if (pred == 1) {
4968 /* only follow the goto, ignore fall-through */
17a52670
AS
4969 *insn_idx += insn->off;
4970 return 0;
4f7b3e82
AS
4971 } else if (pred == 0) {
4972 /* only follow fall-through branch, since
17a52670
AS
4973 * that's where the program will go
4974 */
4975 return 0;
4976 }
4977 }
4978
979d63d5
DB
4979 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4980 false);
17a52670
AS
4981 if (!other_branch)
4982 return -EFAULT;
f4d7e40a 4983 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4984
48461135
JB
4985 /* detect if we are comparing against a constant value so we can adjust
4986 * our min/max values for our dst register.
f1174f77
EC
4987 * this is only legit if both are scalars (or pointers to the same
4988 * object, I suppose, but we don't support that right now), because
4989 * otherwise the different base pointers mean the offsets aren't
4990 * comparable.
48461135
JB
4991 */
4992 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
4993 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4994 struct bpf_reg_state lo_reg0 = *dst_reg;
4995 struct bpf_reg_state lo_reg1 = *src_reg;
4996 struct bpf_reg_state *src_lo, *dst_lo;
4997
4998 dst_lo = &lo_reg0;
4999 src_lo = &lo_reg1;
5000 coerce_reg_to_size(dst_lo, 4);
5001 coerce_reg_to_size(src_lo, 4);
5002
f1174f77 5003 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5004 src_reg->type == SCALAR_VALUE) {
5005 if (tnum_is_const(src_reg->var_off) ||
5006 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5007 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5008 dst_reg,
5009 is_jmp32
5010 ? src_lo->var_off.value
5011 : src_reg->var_off.value,
5012 opcode, is_jmp32);
5013 else if (tnum_is_const(dst_reg->var_off) ||
5014 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5015 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5016 src_reg,
5017 is_jmp32
5018 ? dst_lo->var_off.value
5019 : dst_reg->var_off.value,
5020 opcode, is_jmp32);
5021 else if (!is_jmp32 &&
5022 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5023 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5024 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5025 &other_branch_regs[insn->dst_reg],
092ed096 5026 src_reg, dst_reg, opcode);
f1174f77
EC
5027 }
5028 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5029 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5030 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5031 }
5032
092ed096
JW
5033 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5034 * NOTE: these optimizations below are related with pointer comparison
5035 * which will never be JMP32.
5036 */
5037 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5038 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5039 reg_type_may_be_null(dst_reg->type)) {
5040 /* Mark all identical registers in each branch as either
57a09bf0
TG
5041 * safe or unknown depending R == 0 or R != 0 conditional.
5042 */
840b9615
JS
5043 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5044 opcode == BPF_JNE);
5045 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5046 opcode == BPF_JEQ);
5beca081
DB
5047 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5048 this_branch, other_branch) &&
5049 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5050 verbose(env, "R%d pointer comparison prohibited\n",
5051 insn->dst_reg);
1be7f75d 5052 return -EACCES;
17a52670 5053 }
06ee7115 5054 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5055 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
5056 return 0;
5057}
5058
17a52670 5059/* verify BPF_LD_IMM64 instruction */
58e2af8b 5060static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5061{
d8eca5bb 5062 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 5063 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 5064 struct bpf_map *map;
17a52670
AS
5065 int err;
5066
5067 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 5068 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
5069 return -EINVAL;
5070 }
5071 if (insn->off != 0) {
61bd5218 5072 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
5073 return -EINVAL;
5074 }
5075
dc503a8a 5076 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5077 if (err)
5078 return err;
5079
6b173873 5080 if (insn->src_reg == 0) {
6b173873
JK
5081 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5082
f1174f77 5083 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 5084 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 5085 return 0;
6b173873 5086 }
17a52670 5087
d8eca5bb
DB
5088 map = env->used_maps[aux->map_index];
5089 mark_reg_known_zero(env, regs, insn->dst_reg);
5090 regs[insn->dst_reg].map_ptr = map;
5091
5092 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5093 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5094 regs[insn->dst_reg].off = aux->map_off;
5095 if (map_value_has_spin_lock(map))
5096 regs[insn->dst_reg].id = ++env->id_gen;
5097 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5098 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5099 } else {
5100 verbose(env, "bpf verifier is misconfigured\n");
5101 return -EINVAL;
5102 }
17a52670 5103
17a52670
AS
5104 return 0;
5105}
5106
96be4325
DB
5107static bool may_access_skb(enum bpf_prog_type type)
5108{
5109 switch (type) {
5110 case BPF_PROG_TYPE_SOCKET_FILTER:
5111 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5112 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5113 return true;
5114 default:
5115 return false;
5116 }
5117}
5118
ddd872bc
AS
5119/* verify safety of LD_ABS|LD_IND instructions:
5120 * - they can only appear in the programs where ctx == skb
5121 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5122 * preserve R6-R9, and store return value into R0
5123 *
5124 * Implicit input:
5125 * ctx == skb == R6 == CTX
5126 *
5127 * Explicit input:
5128 * SRC == any register
5129 * IMM == 32-bit immediate
5130 *
5131 * Output:
5132 * R0 - 8/16/32-bit skb data converted to cpu endianness
5133 */
58e2af8b 5134static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 5135{
638f5b90 5136 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 5137 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
5138 int i, err;
5139
24701ece 5140 if (!may_access_skb(env->prog->type)) {
61bd5218 5141 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
5142 return -EINVAL;
5143 }
5144
e0cea7ce
DB
5145 if (!env->ops->gen_ld_abs) {
5146 verbose(env, "bpf verifier is misconfigured\n");
5147 return -EINVAL;
5148 }
5149
f910cefa 5150 if (env->subprog_cnt > 1) {
f4d7e40a
AS
5151 /* when program has LD_ABS insn JITs and interpreter assume
5152 * that r1 == ctx == skb which is not the case for callees
5153 * that can have arbitrary arguments. It's problematic
5154 * for main prog as well since JITs would need to analyze
5155 * all functions in order to make proper register save/restore
5156 * decisions in the main prog. Hence disallow LD_ABS with calls
5157 */
5158 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5159 return -EINVAL;
5160 }
5161
ddd872bc 5162 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 5163 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 5164 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 5165 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
5166 return -EINVAL;
5167 }
5168
5169 /* check whether implicit source operand (register R6) is readable */
dc503a8a 5170 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
5171 if (err)
5172 return err;
5173
fd978bf7
JS
5174 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5175 * gen_ld_abs() may terminate the program at runtime, leading to
5176 * reference leak.
5177 */
5178 err = check_reference_leak(env);
5179 if (err) {
5180 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5181 return err;
5182 }
5183
d83525ca
AS
5184 if (env->cur_state->active_spin_lock) {
5185 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5186 return -EINVAL;
5187 }
5188
ddd872bc 5189 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
5190 verbose(env,
5191 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
5192 return -EINVAL;
5193 }
5194
5195 if (mode == BPF_IND) {
5196 /* check explicit source operand */
dc503a8a 5197 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
5198 if (err)
5199 return err;
5200 }
5201
5202 /* reset caller saved regs to unreadable */
dc503a8a 5203 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5204 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5205 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5206 }
ddd872bc
AS
5207
5208 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
5209 * the value fetched from the packet.
5210 * Already marked as written above.
ddd872bc 5211 */
61bd5218 5212 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
5213 return 0;
5214}
5215
390ee7e2
AS
5216static int check_return_code(struct bpf_verifier_env *env)
5217{
5218 struct bpf_reg_state *reg;
5219 struct tnum range = tnum_range(0, 1);
5220
5221 switch (env->prog->type) {
5222 case BPF_PROG_TYPE_CGROUP_SKB:
5223 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 5224 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 5225 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 5226 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
5227 break;
5228 default:
5229 return 0;
5230 }
5231
638f5b90 5232 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 5233 if (reg->type != SCALAR_VALUE) {
61bd5218 5234 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
5235 reg_type_str[reg->type]);
5236 return -EINVAL;
5237 }
5238
5239 if (!tnum_in(range, reg->var_off)) {
61bd5218 5240 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
5241 if (!tnum_is_unknown(reg->var_off)) {
5242 char tn_buf[48];
5243
5244 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5245 verbose(env, "has value %s", tn_buf);
390ee7e2 5246 } else {
61bd5218 5247 verbose(env, "has unknown scalar value");
390ee7e2 5248 }
61bd5218 5249 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
5250 return -EINVAL;
5251 }
5252 return 0;
5253}
5254
475fb78f
AS
5255/* non-recursive DFS pseudo code
5256 * 1 procedure DFS-iterative(G,v):
5257 * 2 label v as discovered
5258 * 3 let S be a stack
5259 * 4 S.push(v)
5260 * 5 while S is not empty
5261 * 6 t <- S.pop()
5262 * 7 if t is what we're looking for:
5263 * 8 return t
5264 * 9 for all edges e in G.adjacentEdges(t) do
5265 * 10 if edge e is already labelled
5266 * 11 continue with the next edge
5267 * 12 w <- G.adjacentVertex(t,e)
5268 * 13 if vertex w is not discovered and not explored
5269 * 14 label e as tree-edge
5270 * 15 label w as discovered
5271 * 16 S.push(w)
5272 * 17 continue at 5
5273 * 18 else if vertex w is discovered
5274 * 19 label e as back-edge
5275 * 20 else
5276 * 21 // vertex w is explored
5277 * 22 label e as forward- or cross-edge
5278 * 23 label t as explored
5279 * 24 S.pop()
5280 *
5281 * convention:
5282 * 0x10 - discovered
5283 * 0x11 - discovered and fall-through edge labelled
5284 * 0x12 - discovered and fall-through and branch edges labelled
5285 * 0x20 - explored
5286 */
5287
5288enum {
5289 DISCOVERED = 0x10,
5290 EXPLORED = 0x20,
5291 FALLTHROUGH = 1,
5292 BRANCH = 2,
5293};
5294
58e2af8b 5295#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 5296
475fb78f
AS
5297static int *insn_stack; /* stack of insns to process */
5298static int cur_stack; /* current stack index */
5299static int *insn_state;
5300
5301/* t, w, e - match pseudo-code above:
5302 * t - index of current instruction
5303 * w - next instruction
5304 * e - edge
5305 */
58e2af8b 5306static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
5307{
5308 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5309 return 0;
5310
5311 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5312 return 0;
5313
5314 if (w < 0 || w >= env->prog->len) {
d9762e84 5315 verbose_linfo(env, t, "%d: ", t);
61bd5218 5316 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
5317 return -EINVAL;
5318 }
5319
f1bca824
AS
5320 if (e == BRANCH)
5321 /* mark branch target for state pruning */
5322 env->explored_states[w] = STATE_LIST_MARK;
5323
475fb78f
AS
5324 if (insn_state[w] == 0) {
5325 /* tree-edge */
5326 insn_state[t] = DISCOVERED | e;
5327 insn_state[w] = DISCOVERED;
5328 if (cur_stack >= env->prog->len)
5329 return -E2BIG;
5330 insn_stack[cur_stack++] = w;
5331 return 1;
5332 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
5333 verbose_linfo(env, t, "%d: ", t);
5334 verbose_linfo(env, w, "%d: ", w);
61bd5218 5335 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
5336 return -EINVAL;
5337 } else if (insn_state[w] == EXPLORED) {
5338 /* forward- or cross-edge */
5339 insn_state[t] = DISCOVERED | e;
5340 } else {
61bd5218 5341 verbose(env, "insn state internal bug\n");
475fb78f
AS
5342 return -EFAULT;
5343 }
5344 return 0;
5345}
5346
5347/* non-recursive depth-first-search to detect loops in BPF program
5348 * loop == back-edge in directed graph
5349 */
58e2af8b 5350static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
5351{
5352 struct bpf_insn *insns = env->prog->insnsi;
5353 int insn_cnt = env->prog->len;
5354 int ret = 0;
5355 int i, t;
5356
71dde681 5357 insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
5358 if (!insn_state)
5359 return -ENOMEM;
5360
71dde681 5361 insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 5362 if (!insn_stack) {
71dde681 5363 kvfree(insn_state);
475fb78f
AS
5364 return -ENOMEM;
5365 }
5366
5367 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5368 insn_stack[0] = 0; /* 0 is the first instruction */
5369 cur_stack = 1;
5370
5371peek_stack:
5372 if (cur_stack == 0)
5373 goto check_state;
5374 t = insn_stack[cur_stack - 1];
5375
092ed096
JW
5376 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5377 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
5378 u8 opcode = BPF_OP(insns[t].code);
5379
5380 if (opcode == BPF_EXIT) {
5381 goto mark_explored;
5382 } else if (opcode == BPF_CALL) {
5383 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5384 if (ret == 1)
5385 goto peek_stack;
5386 else if (ret < 0)
5387 goto err_free;
07016151
DB
5388 if (t + 1 < insn_cnt)
5389 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
5390 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5391 env->explored_states[t] = STATE_LIST_MARK;
5392 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5393 if (ret == 1)
5394 goto peek_stack;
5395 else if (ret < 0)
5396 goto err_free;
5397 }
475fb78f
AS
5398 } else if (opcode == BPF_JA) {
5399 if (BPF_SRC(insns[t].code) != BPF_K) {
5400 ret = -EINVAL;
5401 goto err_free;
5402 }
5403 /* unconditional jump with single edge */
5404 ret = push_insn(t, t + insns[t].off + 1,
5405 FALLTHROUGH, env);
5406 if (ret == 1)
5407 goto peek_stack;
5408 else if (ret < 0)
5409 goto err_free;
f1bca824
AS
5410 /* tell verifier to check for equivalent states
5411 * after every call and jump
5412 */
c3de6317
AS
5413 if (t + 1 < insn_cnt)
5414 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
5415 } else {
5416 /* conditional jump with two edges */
3c2ce60b 5417 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
5418 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5419 if (ret == 1)
5420 goto peek_stack;
5421 else if (ret < 0)
5422 goto err_free;
5423
5424 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5425 if (ret == 1)
5426 goto peek_stack;
5427 else if (ret < 0)
5428 goto err_free;
5429 }
5430 } else {
5431 /* all other non-branch instructions with single
5432 * fall-through edge
5433 */
5434 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5435 if (ret == 1)
5436 goto peek_stack;
5437 else if (ret < 0)
5438 goto err_free;
5439 }
5440
5441mark_explored:
5442 insn_state[t] = EXPLORED;
5443 if (cur_stack-- <= 0) {
61bd5218 5444 verbose(env, "pop stack internal bug\n");
475fb78f
AS
5445 ret = -EFAULT;
5446 goto err_free;
5447 }
5448 goto peek_stack;
5449
5450check_state:
5451 for (i = 0; i < insn_cnt; i++) {
5452 if (insn_state[i] != EXPLORED) {
61bd5218 5453 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
5454 ret = -EINVAL;
5455 goto err_free;
5456 }
5457 }
5458 ret = 0; /* cfg looks good */
5459
5460err_free:
71dde681
AS
5461 kvfree(insn_state);
5462 kvfree(insn_stack);
475fb78f
AS
5463 return ret;
5464}
5465
838e9690
YS
5466/* The minimum supported BTF func info size */
5467#define MIN_BPF_FUNCINFO_SIZE 8
5468#define MAX_FUNCINFO_REC_SIZE 252
5469
c454a46b
MKL
5470static int check_btf_func(struct bpf_verifier_env *env,
5471 const union bpf_attr *attr,
5472 union bpf_attr __user *uattr)
838e9690 5473{
d0b2818e 5474 u32 i, nfuncs, urec_size, min_size;
838e9690 5475 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 5476 struct bpf_func_info *krecord;
838e9690 5477 const struct btf_type *type;
c454a46b
MKL
5478 struct bpf_prog *prog;
5479 const struct btf *btf;
838e9690 5480 void __user *urecord;
d0b2818e 5481 u32 prev_offset = 0;
838e9690
YS
5482 int ret = 0;
5483
5484 nfuncs = attr->func_info_cnt;
5485 if (!nfuncs)
5486 return 0;
5487
5488 if (nfuncs != env->subprog_cnt) {
5489 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5490 return -EINVAL;
5491 }
5492
5493 urec_size = attr->func_info_rec_size;
5494 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5495 urec_size > MAX_FUNCINFO_REC_SIZE ||
5496 urec_size % sizeof(u32)) {
5497 verbose(env, "invalid func info rec size %u\n", urec_size);
5498 return -EINVAL;
5499 }
5500
c454a46b
MKL
5501 prog = env->prog;
5502 btf = prog->aux->btf;
838e9690
YS
5503
5504 urecord = u64_to_user_ptr(attr->func_info);
5505 min_size = min_t(u32, krec_size, urec_size);
5506
ba64e7d8 5507 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
5508 if (!krecord)
5509 return -ENOMEM;
ba64e7d8 5510
838e9690
YS
5511 for (i = 0; i < nfuncs; i++) {
5512 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5513 if (ret) {
5514 if (ret == -E2BIG) {
5515 verbose(env, "nonzero tailing record in func info");
5516 /* set the size kernel expects so loader can zero
5517 * out the rest of the record.
5518 */
5519 if (put_user(min_size, &uattr->func_info_rec_size))
5520 ret = -EFAULT;
5521 }
c454a46b 5522 goto err_free;
838e9690
YS
5523 }
5524
ba64e7d8 5525 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 5526 ret = -EFAULT;
c454a46b 5527 goto err_free;
838e9690
YS
5528 }
5529
d30d42e0 5530 /* check insn_off */
838e9690 5531 if (i == 0) {
d30d42e0 5532 if (krecord[i].insn_off) {
838e9690 5533 verbose(env,
d30d42e0
MKL
5534 "nonzero insn_off %u for the first func info record",
5535 krecord[i].insn_off);
838e9690 5536 ret = -EINVAL;
c454a46b 5537 goto err_free;
838e9690 5538 }
d30d42e0 5539 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
5540 verbose(env,
5541 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 5542 krecord[i].insn_off, prev_offset);
838e9690 5543 ret = -EINVAL;
c454a46b 5544 goto err_free;
838e9690
YS
5545 }
5546
d30d42e0 5547 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
5548 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5549 ret = -EINVAL;
c454a46b 5550 goto err_free;
838e9690
YS
5551 }
5552
5553 /* check type_id */
ba64e7d8 5554 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
5555 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5556 verbose(env, "invalid type id %d in func info",
ba64e7d8 5557 krecord[i].type_id);
838e9690 5558 ret = -EINVAL;
c454a46b 5559 goto err_free;
838e9690
YS
5560 }
5561
d30d42e0 5562 prev_offset = krecord[i].insn_off;
838e9690
YS
5563 urecord += urec_size;
5564 }
5565
ba64e7d8
YS
5566 prog->aux->func_info = krecord;
5567 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
5568 return 0;
5569
c454a46b 5570err_free:
ba64e7d8 5571 kvfree(krecord);
838e9690
YS
5572 return ret;
5573}
5574
ba64e7d8
YS
5575static void adjust_btf_func(struct bpf_verifier_env *env)
5576{
5577 int i;
5578
5579 if (!env->prog->aux->func_info)
5580 return;
5581
5582 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 5583 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
5584}
5585
c454a46b
MKL
5586#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5587 sizeof(((struct bpf_line_info *)(0))->line_col))
5588#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5589
5590static int check_btf_line(struct bpf_verifier_env *env,
5591 const union bpf_attr *attr,
5592 union bpf_attr __user *uattr)
5593{
5594 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5595 struct bpf_subprog_info *sub;
5596 struct bpf_line_info *linfo;
5597 struct bpf_prog *prog;
5598 const struct btf *btf;
5599 void __user *ulinfo;
5600 int err;
5601
5602 nr_linfo = attr->line_info_cnt;
5603 if (!nr_linfo)
5604 return 0;
5605
5606 rec_size = attr->line_info_rec_size;
5607 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5608 rec_size > MAX_LINEINFO_REC_SIZE ||
5609 rec_size & (sizeof(u32) - 1))
5610 return -EINVAL;
5611
5612 /* Need to zero it in case the userspace may
5613 * pass in a smaller bpf_line_info object.
5614 */
5615 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5616 GFP_KERNEL | __GFP_NOWARN);
5617 if (!linfo)
5618 return -ENOMEM;
5619
5620 prog = env->prog;
5621 btf = prog->aux->btf;
5622
5623 s = 0;
5624 sub = env->subprog_info;
5625 ulinfo = u64_to_user_ptr(attr->line_info);
5626 expected_size = sizeof(struct bpf_line_info);
5627 ncopy = min_t(u32, expected_size, rec_size);
5628 for (i = 0; i < nr_linfo; i++) {
5629 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5630 if (err) {
5631 if (err == -E2BIG) {
5632 verbose(env, "nonzero tailing record in line_info");
5633 if (put_user(expected_size,
5634 &uattr->line_info_rec_size))
5635 err = -EFAULT;
5636 }
5637 goto err_free;
5638 }
5639
5640 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5641 err = -EFAULT;
5642 goto err_free;
5643 }
5644
5645 /*
5646 * Check insn_off to ensure
5647 * 1) strictly increasing AND
5648 * 2) bounded by prog->len
5649 *
5650 * The linfo[0].insn_off == 0 check logically falls into
5651 * the later "missing bpf_line_info for func..." case
5652 * because the first linfo[0].insn_off must be the
5653 * first sub also and the first sub must have
5654 * subprog_info[0].start == 0.
5655 */
5656 if ((i && linfo[i].insn_off <= prev_offset) ||
5657 linfo[i].insn_off >= prog->len) {
5658 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5659 i, linfo[i].insn_off, prev_offset,
5660 prog->len);
5661 err = -EINVAL;
5662 goto err_free;
5663 }
5664
fdbaa0be
MKL
5665 if (!prog->insnsi[linfo[i].insn_off].code) {
5666 verbose(env,
5667 "Invalid insn code at line_info[%u].insn_off\n",
5668 i);
5669 err = -EINVAL;
5670 goto err_free;
5671 }
5672
23127b33
MKL
5673 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5674 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
5675 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5676 err = -EINVAL;
5677 goto err_free;
5678 }
5679
5680 if (s != env->subprog_cnt) {
5681 if (linfo[i].insn_off == sub[s].start) {
5682 sub[s].linfo_idx = i;
5683 s++;
5684 } else if (sub[s].start < linfo[i].insn_off) {
5685 verbose(env, "missing bpf_line_info for func#%u\n", s);
5686 err = -EINVAL;
5687 goto err_free;
5688 }
5689 }
5690
5691 prev_offset = linfo[i].insn_off;
5692 ulinfo += rec_size;
5693 }
5694
5695 if (s != env->subprog_cnt) {
5696 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5697 env->subprog_cnt - s, s);
5698 err = -EINVAL;
5699 goto err_free;
5700 }
5701
5702 prog->aux->linfo = linfo;
5703 prog->aux->nr_linfo = nr_linfo;
5704
5705 return 0;
5706
5707err_free:
5708 kvfree(linfo);
5709 return err;
5710}
5711
5712static int check_btf_info(struct bpf_verifier_env *env,
5713 const union bpf_attr *attr,
5714 union bpf_attr __user *uattr)
5715{
5716 struct btf *btf;
5717 int err;
5718
5719 if (!attr->func_info_cnt && !attr->line_info_cnt)
5720 return 0;
5721
5722 btf = btf_get_by_fd(attr->prog_btf_fd);
5723 if (IS_ERR(btf))
5724 return PTR_ERR(btf);
5725 env->prog->aux->btf = btf;
5726
5727 err = check_btf_func(env, attr, uattr);
5728 if (err)
5729 return err;
5730
5731 err = check_btf_line(env, attr, uattr);
5732 if (err)
5733 return err;
5734
5735 return 0;
ba64e7d8
YS
5736}
5737
f1174f77
EC
5738/* check %cur's range satisfies %old's */
5739static bool range_within(struct bpf_reg_state *old,
5740 struct bpf_reg_state *cur)
5741{
b03c9f9f
EC
5742 return old->umin_value <= cur->umin_value &&
5743 old->umax_value >= cur->umax_value &&
5744 old->smin_value <= cur->smin_value &&
5745 old->smax_value >= cur->smax_value;
f1174f77
EC
5746}
5747
5748/* Maximum number of register states that can exist at once */
5749#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5750struct idpair {
5751 u32 old;
5752 u32 cur;
5753};
5754
5755/* If in the old state two registers had the same id, then they need to have
5756 * the same id in the new state as well. But that id could be different from
5757 * the old state, so we need to track the mapping from old to new ids.
5758 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5759 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5760 * regs with a different old id could still have new id 9, we don't care about
5761 * that.
5762 * So we look through our idmap to see if this old id has been seen before. If
5763 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 5764 */
f1174f77 5765static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 5766{
f1174f77 5767 unsigned int i;
969bf05e 5768
f1174f77
EC
5769 for (i = 0; i < ID_MAP_SIZE; i++) {
5770 if (!idmap[i].old) {
5771 /* Reached an empty slot; haven't seen this id before */
5772 idmap[i].old = old_id;
5773 idmap[i].cur = cur_id;
5774 return true;
5775 }
5776 if (idmap[i].old == old_id)
5777 return idmap[i].cur == cur_id;
5778 }
5779 /* We ran out of idmap slots, which should be impossible */
5780 WARN_ON_ONCE(1);
5781 return false;
5782}
5783
9242b5f5
AS
5784static void clean_func_state(struct bpf_verifier_env *env,
5785 struct bpf_func_state *st)
5786{
5787 enum bpf_reg_liveness live;
5788 int i, j;
5789
5790 for (i = 0; i < BPF_REG_FP; i++) {
5791 live = st->regs[i].live;
5792 /* liveness must not touch this register anymore */
5793 st->regs[i].live |= REG_LIVE_DONE;
5794 if (!(live & REG_LIVE_READ))
5795 /* since the register is unused, clear its state
5796 * to make further comparison simpler
5797 */
5798 __mark_reg_not_init(&st->regs[i]);
5799 }
5800
5801 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5802 live = st->stack[i].spilled_ptr.live;
5803 /* liveness must not touch this stack slot anymore */
5804 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5805 if (!(live & REG_LIVE_READ)) {
5806 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5807 for (j = 0; j < BPF_REG_SIZE; j++)
5808 st->stack[i].slot_type[j] = STACK_INVALID;
5809 }
5810 }
5811}
5812
5813static void clean_verifier_state(struct bpf_verifier_env *env,
5814 struct bpf_verifier_state *st)
5815{
5816 int i;
5817
5818 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5819 /* all regs in this state in all frames were already marked */
5820 return;
5821
5822 for (i = 0; i <= st->curframe; i++)
5823 clean_func_state(env, st->frame[i]);
5824}
5825
5826/* the parentage chains form a tree.
5827 * the verifier states are added to state lists at given insn and
5828 * pushed into state stack for future exploration.
5829 * when the verifier reaches bpf_exit insn some of the verifer states
5830 * stored in the state lists have their final liveness state already,
5831 * but a lot of states will get revised from liveness point of view when
5832 * the verifier explores other branches.
5833 * Example:
5834 * 1: r0 = 1
5835 * 2: if r1 == 100 goto pc+1
5836 * 3: r0 = 2
5837 * 4: exit
5838 * when the verifier reaches exit insn the register r0 in the state list of
5839 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5840 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5841 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5842 *
5843 * Since the verifier pushes the branch states as it sees them while exploring
5844 * the program the condition of walking the branch instruction for the second
5845 * time means that all states below this branch were already explored and
5846 * their final liveness markes are already propagated.
5847 * Hence when the verifier completes the search of state list in is_state_visited()
5848 * we can call this clean_live_states() function to mark all liveness states
5849 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5850 * will not be used.
5851 * This function also clears the registers and stack for states that !READ
5852 * to simplify state merging.
5853 *
5854 * Important note here that walking the same branch instruction in the callee
5855 * doesn't meant that the states are DONE. The verifier has to compare
5856 * the callsites
5857 */
5858static void clean_live_states(struct bpf_verifier_env *env, int insn,
5859 struct bpf_verifier_state *cur)
5860{
5861 struct bpf_verifier_state_list *sl;
5862 int i;
5863
5864 sl = env->explored_states[insn];
5865 if (!sl)
5866 return;
5867
5868 while (sl != STATE_LIST_MARK) {
5869 if (sl->state.curframe != cur->curframe)
5870 goto next;
5871 for (i = 0; i <= cur->curframe; i++)
5872 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5873 goto next;
5874 clean_verifier_state(env, &sl->state);
5875next:
5876 sl = sl->next;
5877 }
5878}
5879
f1174f77 5880/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
5881static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5882 struct idpair *idmap)
f1174f77 5883{
f4d7e40a
AS
5884 bool equal;
5885
dc503a8a
EC
5886 if (!(rold->live & REG_LIVE_READ))
5887 /* explored state didn't use this */
5888 return true;
5889
679c782d 5890 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
5891
5892 if (rold->type == PTR_TO_STACK)
5893 /* two stack pointers are equal only if they're pointing to
5894 * the same stack frame, since fp-8 in foo != fp-8 in bar
5895 */
5896 return equal && rold->frameno == rcur->frameno;
5897
5898 if (equal)
969bf05e
AS
5899 return true;
5900
f1174f77
EC
5901 if (rold->type == NOT_INIT)
5902 /* explored state can't have used this */
969bf05e 5903 return true;
f1174f77
EC
5904 if (rcur->type == NOT_INIT)
5905 return false;
5906 switch (rold->type) {
5907 case SCALAR_VALUE:
5908 if (rcur->type == SCALAR_VALUE) {
5909 /* new val must satisfy old val knowledge */
5910 return range_within(rold, rcur) &&
5911 tnum_in(rold->var_off, rcur->var_off);
5912 } else {
179d1c56
JH
5913 /* We're trying to use a pointer in place of a scalar.
5914 * Even if the scalar was unbounded, this could lead to
5915 * pointer leaks because scalars are allowed to leak
5916 * while pointers are not. We could make this safe in
5917 * special cases if root is calling us, but it's
5918 * probably not worth the hassle.
f1174f77 5919 */
179d1c56 5920 return false;
f1174f77
EC
5921 }
5922 case PTR_TO_MAP_VALUE:
1b688a19
EC
5923 /* If the new min/max/var_off satisfy the old ones and
5924 * everything else matches, we are OK.
d83525ca
AS
5925 * 'id' is not compared, since it's only used for maps with
5926 * bpf_spin_lock inside map element and in such cases if
5927 * the rest of the prog is valid for one map element then
5928 * it's valid for all map elements regardless of the key
5929 * used in bpf_map_lookup()
1b688a19
EC
5930 */
5931 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5932 range_within(rold, rcur) &&
5933 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
5934 case PTR_TO_MAP_VALUE_OR_NULL:
5935 /* a PTR_TO_MAP_VALUE could be safe to use as a
5936 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5937 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5938 * checked, doing so could have affected others with the same
5939 * id, and we can't check for that because we lost the id when
5940 * we converted to a PTR_TO_MAP_VALUE.
5941 */
5942 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5943 return false;
5944 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5945 return false;
5946 /* Check our ids match any regs they're supposed to */
5947 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 5948 case PTR_TO_PACKET_META:
f1174f77 5949 case PTR_TO_PACKET:
de8f3a83 5950 if (rcur->type != rold->type)
f1174f77
EC
5951 return false;
5952 /* We must have at least as much range as the old ptr
5953 * did, so that any accesses which were safe before are
5954 * still safe. This is true even if old range < old off,
5955 * since someone could have accessed through (ptr - k), or
5956 * even done ptr -= k in a register, to get a safe access.
5957 */
5958 if (rold->range > rcur->range)
5959 return false;
5960 /* If the offsets don't match, we can't trust our alignment;
5961 * nor can we be sure that we won't fall out of range.
5962 */
5963 if (rold->off != rcur->off)
5964 return false;
5965 /* id relations must be preserved */
5966 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5967 return false;
5968 /* new val must satisfy old val knowledge */
5969 return range_within(rold, rcur) &&
5970 tnum_in(rold->var_off, rcur->var_off);
5971 case PTR_TO_CTX:
5972 case CONST_PTR_TO_MAP:
f1174f77 5973 case PTR_TO_PACKET_END:
d58e468b 5974 case PTR_TO_FLOW_KEYS:
c64b7983
JS
5975 case PTR_TO_SOCKET:
5976 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5977 case PTR_TO_SOCK_COMMON:
5978 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5979 case PTR_TO_TCP_SOCK:
5980 case PTR_TO_TCP_SOCK_OR_NULL:
f1174f77
EC
5981 /* Only valid matches are exact, which memcmp() above
5982 * would have accepted
5983 */
5984 default:
5985 /* Don't know what's going on, just say it's not safe */
5986 return false;
5987 }
969bf05e 5988
f1174f77
EC
5989 /* Shouldn't get here; if we do, say it's not safe */
5990 WARN_ON_ONCE(1);
969bf05e
AS
5991 return false;
5992}
5993
f4d7e40a
AS
5994static bool stacksafe(struct bpf_func_state *old,
5995 struct bpf_func_state *cur,
638f5b90
AS
5996 struct idpair *idmap)
5997{
5998 int i, spi;
5999
638f5b90
AS
6000 /* walk slots of the explored stack and ignore any additional
6001 * slots in the current stack, since explored(safe) state
6002 * didn't use them
6003 */
6004 for (i = 0; i < old->allocated_stack; i++) {
6005 spi = i / BPF_REG_SIZE;
6006
b233920c
AS
6007 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6008 i += BPF_REG_SIZE - 1;
cc2b14d5 6009 /* explored state didn't use this */
fd05e57b 6010 continue;
b233920c 6011 }
cc2b14d5 6012
638f5b90
AS
6013 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6014 continue;
19e2dbb7
AS
6015
6016 /* explored stack has more populated slots than current stack
6017 * and these slots were used
6018 */
6019 if (i >= cur->allocated_stack)
6020 return false;
6021
cc2b14d5
AS
6022 /* if old state was safe with misc data in the stack
6023 * it will be safe with zero-initialized stack.
6024 * The opposite is not true
6025 */
6026 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6027 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6028 continue;
638f5b90
AS
6029 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6030 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6031 /* Ex: old explored (safe) state has STACK_SPILL in
6032 * this stack slot, but current has has STACK_MISC ->
6033 * this verifier states are not equivalent,
6034 * return false to continue verification of this path
6035 */
6036 return false;
6037 if (i % BPF_REG_SIZE)
6038 continue;
6039 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6040 continue;
6041 if (!regsafe(&old->stack[spi].spilled_ptr,
6042 &cur->stack[spi].spilled_ptr,
6043 idmap))
6044 /* when explored and current stack slot are both storing
6045 * spilled registers, check that stored pointers types
6046 * are the same as well.
6047 * Ex: explored safe path could have stored
6048 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6049 * but current path has stored:
6050 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6051 * such verifier states are not equivalent.
6052 * return false to continue verification of this path
6053 */
6054 return false;
6055 }
6056 return true;
6057}
6058
fd978bf7
JS
6059static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6060{
6061 if (old->acquired_refs != cur->acquired_refs)
6062 return false;
6063 return !memcmp(old->refs, cur->refs,
6064 sizeof(*old->refs) * old->acquired_refs);
6065}
6066
f1bca824
AS
6067/* compare two verifier states
6068 *
6069 * all states stored in state_list are known to be valid, since
6070 * verifier reached 'bpf_exit' instruction through them
6071 *
6072 * this function is called when verifier exploring different branches of
6073 * execution popped from the state stack. If it sees an old state that has
6074 * more strict register state and more strict stack state then this execution
6075 * branch doesn't need to be explored further, since verifier already
6076 * concluded that more strict state leads to valid finish.
6077 *
6078 * Therefore two states are equivalent if register state is more conservative
6079 * and explored stack state is more conservative than the current one.
6080 * Example:
6081 * explored current
6082 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6083 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6084 *
6085 * In other words if current stack state (one being explored) has more
6086 * valid slots than old one that already passed validation, it means
6087 * the verifier can stop exploring and conclude that current state is valid too
6088 *
6089 * Similarly with registers. If explored state has register type as invalid
6090 * whereas register type in current state is meaningful, it means that
6091 * the current state will reach 'bpf_exit' instruction safely
6092 */
f4d7e40a
AS
6093static bool func_states_equal(struct bpf_func_state *old,
6094 struct bpf_func_state *cur)
f1bca824 6095{
f1174f77
EC
6096 struct idpair *idmap;
6097 bool ret = false;
f1bca824
AS
6098 int i;
6099
f1174f77
EC
6100 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6101 /* If we failed to allocate the idmap, just say it's not safe */
6102 if (!idmap)
1a0dc1ac 6103 return false;
f1174f77
EC
6104
6105 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 6106 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 6107 goto out_free;
f1bca824
AS
6108 }
6109
638f5b90
AS
6110 if (!stacksafe(old, cur, idmap))
6111 goto out_free;
fd978bf7
JS
6112
6113 if (!refsafe(old, cur))
6114 goto out_free;
f1174f77
EC
6115 ret = true;
6116out_free:
6117 kfree(idmap);
6118 return ret;
f1bca824
AS
6119}
6120
f4d7e40a
AS
6121static bool states_equal(struct bpf_verifier_env *env,
6122 struct bpf_verifier_state *old,
6123 struct bpf_verifier_state *cur)
6124{
6125 int i;
6126
6127 if (old->curframe != cur->curframe)
6128 return false;
6129
979d63d5
DB
6130 /* Verification state from speculative execution simulation
6131 * must never prune a non-speculative execution one.
6132 */
6133 if (old->speculative && !cur->speculative)
6134 return false;
6135
d83525ca
AS
6136 if (old->active_spin_lock != cur->active_spin_lock)
6137 return false;
6138
f4d7e40a
AS
6139 /* for states to be equal callsites have to be the same
6140 * and all frame states need to be equivalent
6141 */
6142 for (i = 0; i <= old->curframe; i++) {
6143 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6144 return false;
6145 if (!func_states_equal(old->frame[i], cur->frame[i]))
6146 return false;
6147 }
6148 return true;
6149}
6150
8e9cd9ce 6151/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
6152 * straight-line code between a state and its parent. When we arrive at an
6153 * equivalent state (jump target or such) we didn't arrive by the straight-line
6154 * code, so read marks in the state must propagate to the parent regardless
6155 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 6156 * in mark_reg_read() is for.
8e9cd9ce 6157 */
f4d7e40a
AS
6158static int propagate_liveness(struct bpf_verifier_env *env,
6159 const struct bpf_verifier_state *vstate,
6160 struct bpf_verifier_state *vparent)
dc503a8a 6161{
f4d7e40a
AS
6162 int i, frame, err = 0;
6163 struct bpf_func_state *state, *parent;
dc503a8a 6164
f4d7e40a
AS
6165 if (vparent->curframe != vstate->curframe) {
6166 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6167 vparent->curframe, vstate->curframe);
6168 return -EFAULT;
6169 }
dc503a8a
EC
6170 /* Propagate read liveness of registers... */
6171 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312
JK
6172 for (frame = 0; frame <= vstate->curframe; frame++) {
6173 /* We don't need to worry about FP liveness, it's read-only */
6174 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6175 if (vparent->frame[frame]->regs[i].live & REG_LIVE_READ)
6176 continue;
6177 if (vstate->frame[frame]->regs[i].live & REG_LIVE_READ) {
6178 err = mark_reg_read(env, &vstate->frame[frame]->regs[i],
6179 &vparent->frame[frame]->regs[i]);
6180 if (err)
6181 return err;
6182 }
dc503a8a
EC
6183 }
6184 }
f4d7e40a 6185
dc503a8a 6186 /* ... and stack slots */
f4d7e40a
AS
6187 for (frame = 0; frame <= vstate->curframe; frame++) {
6188 state = vstate->frame[frame];
6189 parent = vparent->frame[frame];
6190 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6191 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
6192 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
6193 continue;
6194 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
6195 mark_reg_read(env, &state->stack[i].spilled_ptr,
6196 &parent->stack[i].spilled_ptr);
dc503a8a
EC
6197 }
6198 }
f4d7e40a 6199 return err;
dc503a8a
EC
6200}
6201
58e2af8b 6202static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 6203{
58e2af8b 6204 struct bpf_verifier_state_list *new_sl;
9f4686c4 6205 struct bpf_verifier_state_list *sl, **pprev;
679c782d 6206 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 6207 int i, j, err, states_cnt = 0;
f1bca824 6208
9f4686c4
AS
6209 pprev = &env->explored_states[insn_idx];
6210 sl = *pprev;
6211
f1bca824
AS
6212 if (!sl)
6213 /* this 'insn_idx' instruction wasn't marked, so we will not
6214 * be doing state search here
6215 */
6216 return 0;
6217
9242b5f5
AS
6218 clean_live_states(env, insn_idx, cur);
6219
f1bca824 6220 while (sl != STATE_LIST_MARK) {
638f5b90 6221 if (states_equal(env, &sl->state, cur)) {
9f4686c4 6222 sl->hit_cnt++;
f1bca824 6223 /* reached equivalent register/stack state,
dc503a8a
EC
6224 * prune the search.
6225 * Registers read by the continuation are read by us.
8e9cd9ce
EC
6226 * If we have any write marks in env->cur_state, they
6227 * will prevent corresponding reads in the continuation
6228 * from reaching our parent (an explored_state). Our
6229 * own state will get the read marks recorded, but
6230 * they'll be immediately forgotten as we're pruning
6231 * this state and will pop a new one.
f1bca824 6232 */
f4d7e40a
AS
6233 err = propagate_liveness(env, &sl->state, cur);
6234 if (err)
6235 return err;
f1bca824 6236 return 1;
dc503a8a 6237 }
ceefbc96 6238 states_cnt++;
9f4686c4
AS
6239 sl->miss_cnt++;
6240 /* heuristic to determine whether this state is beneficial
6241 * to keep checking from state equivalence point of view.
6242 * Higher numbers increase max_states_per_insn and verification time,
6243 * but do not meaningfully decrease insn_processed.
6244 */
6245 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6246 /* the state is unlikely to be useful. Remove it to
6247 * speed up verification
6248 */
6249 *pprev = sl->next;
6250 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6251 free_verifier_state(&sl->state, false);
6252 kfree(sl);
6253 env->peak_states--;
6254 } else {
6255 /* cannot free this state, since parentage chain may
6256 * walk it later. Add it for free_list instead to
6257 * be freed at the end of verification
6258 */
6259 sl->next = env->free_list;
6260 env->free_list = sl;
6261 }
6262 sl = *pprev;
6263 continue;
6264 }
6265 pprev = &sl->next;
6266 sl = *pprev;
f1bca824
AS
6267 }
6268
06ee7115
AS
6269 if (env->max_states_per_insn < states_cnt)
6270 env->max_states_per_insn = states_cnt;
6271
ceefbc96
AS
6272 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6273 return 0;
6274
f1bca824
AS
6275 /* there were no equivalent states, remember current one.
6276 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
6277 * but it will either reach outer most bpf_exit (which means it's safe)
6278 * or it will be rejected. Since there are no loops, we won't be
6279 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6280 * again on the way to bpf_exit
f1bca824 6281 */
638f5b90 6282 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
6283 if (!new_sl)
6284 return -ENOMEM;
06ee7115
AS
6285 env->total_states++;
6286 env->peak_states++;
f1bca824
AS
6287
6288 /* add new state to the head of linked list */
679c782d
EC
6289 new = &new_sl->state;
6290 err = copy_verifier_state(new, cur);
1969db47 6291 if (err) {
679c782d 6292 free_verifier_state(new, false);
1969db47
AS
6293 kfree(new_sl);
6294 return err;
6295 }
f1bca824
AS
6296 new_sl->next = env->explored_states[insn_idx];
6297 env->explored_states[insn_idx] = new_sl;
7640ead9
JK
6298 /* connect new state to parentage chain. Current frame needs all
6299 * registers connected. Only r6 - r9 of the callers are alive (pushed
6300 * to the stack implicitly by JITs) so in callers' frames connect just
6301 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6302 * the state of the call instruction (with WRITTEN set), and r0 comes
6303 * from callee with its full parentage chain, anyway.
6304 */
6305 for (j = 0; j <= cur->curframe; j++)
6306 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6307 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8e9cd9ce
EC
6308 /* clear write marks in current state: the writes we did are not writes
6309 * our child did, so they don't screen off its reads from us.
6310 * (There are no read marks in current state, because reads always mark
6311 * their parent and current state never has children yet. Only
6312 * explored_states can get read marks.)
6313 */
dc503a8a 6314 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
6315 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6316
6317 /* all stack frames are accessible from callee, clear them all */
6318 for (j = 0; j <= cur->curframe; j++) {
6319 struct bpf_func_state *frame = cur->frame[j];
679c782d 6320 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 6321
679c782d 6322 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 6323 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
6324 frame->stack[i].spilled_ptr.parent =
6325 &newframe->stack[i].spilled_ptr;
6326 }
f4d7e40a 6327 }
f1bca824
AS
6328 return 0;
6329}
6330
c64b7983
JS
6331/* Return true if it's OK to have the same insn return a different type. */
6332static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6333{
6334 switch (type) {
6335 case PTR_TO_CTX:
6336 case PTR_TO_SOCKET:
6337 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6338 case PTR_TO_SOCK_COMMON:
6339 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6340 case PTR_TO_TCP_SOCK:
6341 case PTR_TO_TCP_SOCK_OR_NULL:
c64b7983
JS
6342 return false;
6343 default:
6344 return true;
6345 }
6346}
6347
6348/* If an instruction was previously used with particular pointer types, then we
6349 * need to be careful to avoid cases such as the below, where it may be ok
6350 * for one branch accessing the pointer, but not ok for the other branch:
6351 *
6352 * R1 = sock_ptr
6353 * goto X;
6354 * ...
6355 * R1 = some_other_valid_ptr;
6356 * goto X;
6357 * ...
6358 * R2 = *(u32 *)(R1 + 0);
6359 */
6360static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6361{
6362 return src != prev && (!reg_type_mismatch_ok(src) ||
6363 !reg_type_mismatch_ok(prev));
6364}
6365
58e2af8b 6366static int do_check(struct bpf_verifier_env *env)
17a52670 6367{
638f5b90 6368 struct bpf_verifier_state *state;
17a52670 6369 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 6370 struct bpf_reg_state *regs;
06ee7115 6371 int insn_cnt = env->prog->len;
17a52670
AS
6372 bool do_print_state = false;
6373
d9762e84
MKL
6374 env->prev_linfo = NULL;
6375
638f5b90
AS
6376 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6377 if (!state)
6378 return -ENOMEM;
f4d7e40a 6379 state->curframe = 0;
979d63d5 6380 state->speculative = false;
f4d7e40a
AS
6381 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6382 if (!state->frame[0]) {
6383 kfree(state);
6384 return -ENOMEM;
6385 }
6386 env->cur_state = state;
6387 init_func_state(env, state->frame[0],
6388 BPF_MAIN_FUNC /* callsite */,
6389 0 /* frameno */,
6390 0 /* subprogno, zero == main subprog */);
c08435ec 6391
17a52670
AS
6392 for (;;) {
6393 struct bpf_insn *insn;
6394 u8 class;
6395 int err;
6396
c08435ec 6397 if (env->insn_idx >= insn_cnt) {
61bd5218 6398 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 6399 env->insn_idx, insn_cnt);
17a52670
AS
6400 return -EFAULT;
6401 }
6402
c08435ec 6403 insn = &insns[env->insn_idx];
17a52670
AS
6404 class = BPF_CLASS(insn->code);
6405
06ee7115 6406 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
6407 verbose(env,
6408 "BPF program is too large. Processed %d insn\n",
06ee7115 6409 env->insn_processed);
17a52670
AS
6410 return -E2BIG;
6411 }
6412
c08435ec 6413 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
6414 if (err < 0)
6415 return err;
6416 if (err == 1) {
6417 /* found equivalent state, can prune the search */
06ee7115 6418 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 6419 if (do_print_state)
979d63d5
DB
6420 verbose(env, "\nfrom %d to %d%s: safe\n",
6421 env->prev_insn_idx, env->insn_idx,
6422 env->cur_state->speculative ?
6423 " (speculative execution)" : "");
f1bca824 6424 else
c08435ec 6425 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
6426 }
6427 goto process_bpf_exit;
6428 }
6429
c3494801
AS
6430 if (signal_pending(current))
6431 return -EAGAIN;
6432
3c2ce60b
DB
6433 if (need_resched())
6434 cond_resched();
6435
06ee7115
AS
6436 if (env->log.level & BPF_LOG_LEVEL2 ||
6437 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6438 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 6439 verbose(env, "%d:", env->insn_idx);
c5fc9692 6440 else
979d63d5
DB
6441 verbose(env, "\nfrom %d to %d%s:",
6442 env->prev_insn_idx, env->insn_idx,
6443 env->cur_state->speculative ?
6444 " (speculative execution)" : "");
f4d7e40a 6445 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
6446 do_print_state = false;
6447 }
6448
06ee7115 6449 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
6450 const struct bpf_insn_cbs cbs = {
6451 .cb_print = verbose,
abe08840 6452 .private_data = env,
7105e828
DB
6453 };
6454
c08435ec
DB
6455 verbose_linfo(env, env->insn_idx, "; ");
6456 verbose(env, "%d: ", env->insn_idx);
abe08840 6457 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
6458 }
6459
cae1927c 6460 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
6461 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6462 env->prev_insn_idx);
cae1927c
JK
6463 if (err)
6464 return err;
6465 }
13a27dfc 6466
638f5b90 6467 regs = cur_regs(env);
c08435ec 6468 env->insn_aux_data[env->insn_idx].seen = true;
fd978bf7 6469
17a52670 6470 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 6471 err = check_alu_op(env, insn);
17a52670
AS
6472 if (err)
6473 return err;
6474
6475 } else if (class == BPF_LDX) {
3df126f3 6476 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
6477
6478 /* check for reserved fields is already done */
6479
17a52670 6480 /* check src operand */
dc503a8a 6481 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6482 if (err)
6483 return err;
6484
dc503a8a 6485 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6486 if (err)
6487 return err;
6488
725f9dcd
AS
6489 src_reg_type = regs[insn->src_reg].type;
6490
17a52670
AS
6491 /* check that memory (src_reg + off) is readable,
6492 * the state of dst_reg will be updated by this func
6493 */
c08435ec
DB
6494 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6495 insn->off, BPF_SIZE(insn->code),
6496 BPF_READ, insn->dst_reg, false);
17a52670
AS
6497 if (err)
6498 return err;
6499
c08435ec 6500 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6501
6502 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
6503 /* saw a valid insn
6504 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 6505 * save type to validate intersecting paths
9bac3d6d 6506 */
3df126f3 6507 *prev_src_type = src_reg_type;
9bac3d6d 6508
c64b7983 6509 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
6510 /* ABuser program is trying to use the same insn
6511 * dst_reg = *(u32*) (src_reg + off)
6512 * with different pointer types:
6513 * src_reg == ctx in one branch and
6514 * src_reg == stack|map in some other branch.
6515 * Reject it.
6516 */
61bd5218 6517 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
6518 return -EINVAL;
6519 }
6520
17a52670 6521 } else if (class == BPF_STX) {
3df126f3 6522 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 6523
17a52670 6524 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 6525 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
6526 if (err)
6527 return err;
c08435ec 6528 env->insn_idx++;
17a52670
AS
6529 continue;
6530 }
6531
17a52670 6532 /* check src1 operand */
dc503a8a 6533 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6534 if (err)
6535 return err;
6536 /* check src2 operand */
dc503a8a 6537 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6538 if (err)
6539 return err;
6540
d691f9e8
AS
6541 dst_reg_type = regs[insn->dst_reg].type;
6542
17a52670 6543 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6544 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6545 insn->off, BPF_SIZE(insn->code),
6546 BPF_WRITE, insn->src_reg, false);
17a52670
AS
6547 if (err)
6548 return err;
6549
c08435ec 6550 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6551
6552 if (*prev_dst_type == NOT_INIT) {
6553 *prev_dst_type = dst_reg_type;
c64b7983 6554 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 6555 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
6556 return -EINVAL;
6557 }
6558
17a52670
AS
6559 } else if (class == BPF_ST) {
6560 if (BPF_MODE(insn->code) != BPF_MEM ||
6561 insn->src_reg != BPF_REG_0) {
61bd5218 6562 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
6563 return -EINVAL;
6564 }
6565 /* check src operand */
dc503a8a 6566 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6567 if (err)
6568 return err;
6569
f37a8cb8 6570 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 6571 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
6572 insn->dst_reg,
6573 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
6574 return -EACCES;
6575 }
6576
17a52670 6577 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6578 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6579 insn->off, BPF_SIZE(insn->code),
6580 BPF_WRITE, -1, false);
17a52670
AS
6581 if (err)
6582 return err;
6583
092ed096 6584 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
6585 u8 opcode = BPF_OP(insn->code);
6586
6587 if (opcode == BPF_CALL) {
6588 if (BPF_SRC(insn->code) != BPF_K ||
6589 insn->off != 0 ||
f4d7e40a
AS
6590 (insn->src_reg != BPF_REG_0 &&
6591 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
6592 insn->dst_reg != BPF_REG_0 ||
6593 class == BPF_JMP32) {
61bd5218 6594 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
6595 return -EINVAL;
6596 }
6597
d83525ca
AS
6598 if (env->cur_state->active_spin_lock &&
6599 (insn->src_reg == BPF_PSEUDO_CALL ||
6600 insn->imm != BPF_FUNC_spin_unlock)) {
6601 verbose(env, "function calls are not allowed while holding a lock\n");
6602 return -EINVAL;
6603 }
f4d7e40a 6604 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 6605 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 6606 else
c08435ec 6607 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
6608 if (err)
6609 return err;
6610
6611 } else if (opcode == BPF_JA) {
6612 if (BPF_SRC(insn->code) != BPF_K ||
6613 insn->imm != 0 ||
6614 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6615 insn->dst_reg != BPF_REG_0 ||
6616 class == BPF_JMP32) {
61bd5218 6617 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
6618 return -EINVAL;
6619 }
6620
c08435ec 6621 env->insn_idx += insn->off + 1;
17a52670
AS
6622 continue;
6623
6624 } else if (opcode == BPF_EXIT) {
6625 if (BPF_SRC(insn->code) != BPF_K ||
6626 insn->imm != 0 ||
6627 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6628 insn->dst_reg != BPF_REG_0 ||
6629 class == BPF_JMP32) {
61bd5218 6630 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
6631 return -EINVAL;
6632 }
6633
d83525ca
AS
6634 if (env->cur_state->active_spin_lock) {
6635 verbose(env, "bpf_spin_unlock is missing\n");
6636 return -EINVAL;
6637 }
6638
f4d7e40a
AS
6639 if (state->curframe) {
6640 /* exit from nested function */
c08435ec
DB
6641 env->prev_insn_idx = env->insn_idx;
6642 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
6643 if (err)
6644 return err;
6645 do_print_state = true;
6646 continue;
6647 }
6648
fd978bf7
JS
6649 err = check_reference_leak(env);
6650 if (err)
6651 return err;
6652
17a52670
AS
6653 /* eBPF calling convetion is such that R0 is used
6654 * to return the value from eBPF program.
6655 * Make sure that it's readable at this time
6656 * of bpf_exit, which means that program wrote
6657 * something into it earlier
6658 */
dc503a8a 6659 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
6660 if (err)
6661 return err;
6662
1be7f75d 6663 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 6664 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
6665 return -EACCES;
6666 }
6667
390ee7e2
AS
6668 err = check_return_code(env);
6669 if (err)
6670 return err;
f1bca824 6671process_bpf_exit:
c08435ec
DB
6672 err = pop_stack(env, &env->prev_insn_idx,
6673 &env->insn_idx);
638f5b90
AS
6674 if (err < 0) {
6675 if (err != -ENOENT)
6676 return err;
17a52670
AS
6677 break;
6678 } else {
6679 do_print_state = true;
6680 continue;
6681 }
6682 } else {
c08435ec 6683 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
6684 if (err)
6685 return err;
6686 }
6687 } else if (class == BPF_LD) {
6688 u8 mode = BPF_MODE(insn->code);
6689
6690 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
6691 err = check_ld_abs(env, insn);
6692 if (err)
6693 return err;
6694
17a52670
AS
6695 } else if (mode == BPF_IMM) {
6696 err = check_ld_imm(env, insn);
6697 if (err)
6698 return err;
6699
c08435ec
DB
6700 env->insn_idx++;
6701 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 6702 } else {
61bd5218 6703 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
6704 return -EINVAL;
6705 }
6706 } else {
61bd5218 6707 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
6708 return -EINVAL;
6709 }
6710
c08435ec 6711 env->insn_idx++;
17a52670
AS
6712 }
6713
9c8105bd 6714 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
6715 return 0;
6716}
6717
56f668df
MKL
6718static int check_map_prealloc(struct bpf_map *map)
6719{
6720 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
6721 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6722 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
6723 !(map->map_flags & BPF_F_NO_PREALLOC);
6724}
6725
d83525ca
AS
6726static bool is_tracing_prog_type(enum bpf_prog_type type)
6727{
6728 switch (type) {
6729 case BPF_PROG_TYPE_KPROBE:
6730 case BPF_PROG_TYPE_TRACEPOINT:
6731 case BPF_PROG_TYPE_PERF_EVENT:
6732 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6733 return true;
6734 default:
6735 return false;
6736 }
6737}
6738
61bd5218
JK
6739static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6740 struct bpf_map *map,
fdc15d38
AS
6741 struct bpf_prog *prog)
6742
6743{
56f668df
MKL
6744 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6745 * preallocated hash maps, since doing memory allocation
6746 * in overflow_handler can crash depending on where nmi got
6747 * triggered.
6748 */
6749 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6750 if (!check_map_prealloc(map)) {
61bd5218 6751 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
6752 return -EINVAL;
6753 }
6754 if (map->inner_map_meta &&
6755 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 6756 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
6757 return -EINVAL;
6758 }
fdc15d38 6759 }
a3884572 6760
d83525ca
AS
6761 if ((is_tracing_prog_type(prog->type) ||
6762 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6763 map_value_has_spin_lock(map)) {
6764 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6765 return -EINVAL;
6766 }
6767
a3884572 6768 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 6769 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
6770 verbose(env, "offload device mismatch between prog and map\n");
6771 return -EINVAL;
6772 }
6773
fdc15d38
AS
6774 return 0;
6775}
6776
b741f163
RG
6777static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6778{
6779 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6780 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6781}
6782
0246e64d
AS
6783/* look for pseudo eBPF instructions that access map FDs and
6784 * replace them with actual map pointers
6785 */
58e2af8b 6786static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
6787{
6788 struct bpf_insn *insn = env->prog->insnsi;
6789 int insn_cnt = env->prog->len;
fdc15d38 6790 int i, j, err;
0246e64d 6791
f1f7714e 6792 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
6793 if (err)
6794 return err;
6795
0246e64d 6796 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 6797 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 6798 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 6799 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
6800 return -EINVAL;
6801 }
6802
d691f9e8
AS
6803 if (BPF_CLASS(insn->code) == BPF_STX &&
6804 ((BPF_MODE(insn->code) != BPF_MEM &&
6805 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 6806 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
6807 return -EINVAL;
6808 }
6809
0246e64d 6810 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 6811 struct bpf_insn_aux_data *aux;
0246e64d
AS
6812 struct bpf_map *map;
6813 struct fd f;
d8eca5bb 6814 u64 addr;
0246e64d
AS
6815
6816 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6817 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6818 insn[1].off != 0) {
61bd5218 6819 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
6820 return -EINVAL;
6821 }
6822
d8eca5bb 6823 if (insn[0].src_reg == 0)
0246e64d
AS
6824 /* valid generic load 64-bit imm */
6825 goto next_insn;
6826
d8eca5bb
DB
6827 /* In final convert_pseudo_ld_imm64() step, this is
6828 * converted into regular 64-bit imm load insn.
6829 */
6830 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6831 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6832 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6833 insn[1].imm != 0)) {
6834 verbose(env,
6835 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
6836 return -EINVAL;
6837 }
6838
20182390 6839 f = fdget(insn[0].imm);
c2101297 6840 map = __bpf_map_get(f);
0246e64d 6841 if (IS_ERR(map)) {
61bd5218 6842 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 6843 insn[0].imm);
0246e64d
AS
6844 return PTR_ERR(map);
6845 }
6846
61bd5218 6847 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
6848 if (err) {
6849 fdput(f);
6850 return err;
6851 }
6852
d8eca5bb
DB
6853 aux = &env->insn_aux_data[i];
6854 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6855 addr = (unsigned long)map;
6856 } else {
6857 u32 off = insn[1].imm;
6858
6859 if (off >= BPF_MAX_VAR_OFF) {
6860 verbose(env, "direct value offset of %u is not allowed\n", off);
6861 fdput(f);
6862 return -EINVAL;
6863 }
6864
6865 if (!map->ops->map_direct_value_addr) {
6866 verbose(env, "no direct value access support for this map type\n");
6867 fdput(f);
6868 return -EINVAL;
6869 }
6870
6871 err = map->ops->map_direct_value_addr(map, &addr, off);
6872 if (err) {
6873 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
6874 map->value_size, off);
6875 fdput(f);
6876 return err;
6877 }
6878
6879 aux->map_off = off;
6880 addr += off;
6881 }
6882
6883 insn[0].imm = (u32)addr;
6884 insn[1].imm = addr >> 32;
0246e64d
AS
6885
6886 /* check whether we recorded this map already */
d8eca5bb 6887 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 6888 if (env->used_maps[j] == map) {
d8eca5bb 6889 aux->map_index = j;
0246e64d
AS
6890 fdput(f);
6891 goto next_insn;
6892 }
d8eca5bb 6893 }
0246e64d
AS
6894
6895 if (env->used_map_cnt >= MAX_USED_MAPS) {
6896 fdput(f);
6897 return -E2BIG;
6898 }
6899
0246e64d
AS
6900 /* hold the map. If the program is rejected by verifier,
6901 * the map will be released by release_maps() or it
6902 * will be used by the valid program until it's unloaded
ab7f5bf0 6903 * and all maps are released in free_used_maps()
0246e64d 6904 */
92117d84
AS
6905 map = bpf_map_inc(map, false);
6906 if (IS_ERR(map)) {
6907 fdput(f);
6908 return PTR_ERR(map);
6909 }
d8eca5bb
DB
6910
6911 aux->map_index = env->used_map_cnt;
92117d84
AS
6912 env->used_maps[env->used_map_cnt++] = map;
6913
b741f163 6914 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 6915 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 6916 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
6917 fdput(f);
6918 return -EBUSY;
6919 }
6920
0246e64d
AS
6921 fdput(f);
6922next_insn:
6923 insn++;
6924 i++;
5e581dad
DB
6925 continue;
6926 }
6927
6928 /* Basic sanity check before we invest more work here. */
6929 if (!bpf_opcode_in_insntable(insn->code)) {
6930 verbose(env, "unknown opcode %02x\n", insn->code);
6931 return -EINVAL;
0246e64d
AS
6932 }
6933 }
6934
6935 /* now all pseudo BPF_LD_IMM64 instructions load valid
6936 * 'struct bpf_map *' into a register instead of user map_fd.
6937 * These pointers will be used later by verifier to validate map access.
6938 */
6939 return 0;
6940}
6941
6942/* drop refcnt of maps used by the rejected program */
58e2af8b 6943static void release_maps(struct bpf_verifier_env *env)
0246e64d 6944{
8bad74f9 6945 enum bpf_cgroup_storage_type stype;
0246e64d
AS
6946 int i;
6947
8bad74f9
RG
6948 for_each_cgroup_storage_type(stype) {
6949 if (!env->prog->aux->cgroup_storage[stype])
6950 continue;
de9cbbaa 6951 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
6952 env->prog->aux->cgroup_storage[stype]);
6953 }
de9cbbaa 6954
0246e64d
AS
6955 for (i = 0; i < env->used_map_cnt; i++)
6956 bpf_map_put(env->used_maps[i]);
6957}
6958
6959/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 6960static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
6961{
6962 struct bpf_insn *insn = env->prog->insnsi;
6963 int insn_cnt = env->prog->len;
6964 int i;
6965
6966 for (i = 0; i < insn_cnt; i++, insn++)
6967 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6968 insn->src_reg = 0;
6969}
6970
8041902d
AS
6971/* single env->prog->insni[off] instruction was replaced with the range
6972 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
6973 * [0, off) and [off, end) to new locations, so the patched range stays zero
6974 */
6975static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6976 u32 off, u32 cnt)
6977{
6978 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 6979 int i;
8041902d
AS
6980
6981 if (cnt == 1)
6982 return 0;
fad953ce
KC
6983 new_data = vzalloc(array_size(prog_len,
6984 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
6985 if (!new_data)
6986 return -ENOMEM;
6987 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6988 memcpy(new_data + off + cnt - 1, old_data + off,
6989 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
6990 for (i = off; i < off + cnt - 1; i++)
6991 new_data[i].seen = true;
8041902d
AS
6992 env->insn_aux_data = new_data;
6993 vfree(old_data);
6994 return 0;
6995}
6996
cc8b0b92
AS
6997static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6998{
6999 int i;
7000
7001 if (len == 1)
7002 return;
4cb3d99c
JW
7003 /* NOTE: fake 'exit' subprog should be updated as well. */
7004 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 7005 if (env->subprog_info[i].start <= off)
cc8b0b92 7006 continue;
9c8105bd 7007 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
7008 }
7009}
7010
8041902d
AS
7011static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7012 const struct bpf_insn *patch, u32 len)
7013{
7014 struct bpf_prog *new_prog;
7015
7016 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
7017 if (IS_ERR(new_prog)) {
7018 if (PTR_ERR(new_prog) == -ERANGE)
7019 verbose(env,
7020 "insn %d cannot be patched due to 16-bit range\n",
7021 env->insn_aux_data[off].orig_idx);
8041902d 7022 return NULL;
4f73379e 7023 }
8041902d
AS
7024 if (adjust_insn_aux_data(env, new_prog->len, off, len))
7025 return NULL;
cc8b0b92 7026 adjust_subprog_starts(env, off, len);
8041902d
AS
7027 return new_prog;
7028}
7029
52875a04
JK
7030static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7031 u32 off, u32 cnt)
7032{
7033 int i, j;
7034
7035 /* find first prog starting at or after off (first to remove) */
7036 for (i = 0; i < env->subprog_cnt; i++)
7037 if (env->subprog_info[i].start >= off)
7038 break;
7039 /* find first prog starting at or after off + cnt (first to stay) */
7040 for (j = i; j < env->subprog_cnt; j++)
7041 if (env->subprog_info[j].start >= off + cnt)
7042 break;
7043 /* if j doesn't start exactly at off + cnt, we are just removing
7044 * the front of previous prog
7045 */
7046 if (env->subprog_info[j].start != off + cnt)
7047 j--;
7048
7049 if (j > i) {
7050 struct bpf_prog_aux *aux = env->prog->aux;
7051 int move;
7052
7053 /* move fake 'exit' subprog as well */
7054 move = env->subprog_cnt + 1 - j;
7055
7056 memmove(env->subprog_info + i,
7057 env->subprog_info + j,
7058 sizeof(*env->subprog_info) * move);
7059 env->subprog_cnt -= j - i;
7060
7061 /* remove func_info */
7062 if (aux->func_info) {
7063 move = aux->func_info_cnt - j;
7064
7065 memmove(aux->func_info + i,
7066 aux->func_info + j,
7067 sizeof(*aux->func_info) * move);
7068 aux->func_info_cnt -= j - i;
7069 /* func_info->insn_off is set after all code rewrites,
7070 * in adjust_btf_func() - no need to adjust
7071 */
7072 }
7073 } else {
7074 /* convert i from "first prog to remove" to "first to adjust" */
7075 if (env->subprog_info[i].start == off)
7076 i++;
7077 }
7078
7079 /* update fake 'exit' subprog as well */
7080 for (; i <= env->subprog_cnt; i++)
7081 env->subprog_info[i].start -= cnt;
7082
7083 return 0;
7084}
7085
7086static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7087 u32 cnt)
7088{
7089 struct bpf_prog *prog = env->prog;
7090 u32 i, l_off, l_cnt, nr_linfo;
7091 struct bpf_line_info *linfo;
7092
7093 nr_linfo = prog->aux->nr_linfo;
7094 if (!nr_linfo)
7095 return 0;
7096
7097 linfo = prog->aux->linfo;
7098
7099 /* find first line info to remove, count lines to be removed */
7100 for (i = 0; i < nr_linfo; i++)
7101 if (linfo[i].insn_off >= off)
7102 break;
7103
7104 l_off = i;
7105 l_cnt = 0;
7106 for (; i < nr_linfo; i++)
7107 if (linfo[i].insn_off < off + cnt)
7108 l_cnt++;
7109 else
7110 break;
7111
7112 /* First live insn doesn't match first live linfo, it needs to "inherit"
7113 * last removed linfo. prog is already modified, so prog->len == off
7114 * means no live instructions after (tail of the program was removed).
7115 */
7116 if (prog->len != off && l_cnt &&
7117 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7118 l_cnt--;
7119 linfo[--i].insn_off = off + cnt;
7120 }
7121
7122 /* remove the line info which refer to the removed instructions */
7123 if (l_cnt) {
7124 memmove(linfo + l_off, linfo + i,
7125 sizeof(*linfo) * (nr_linfo - i));
7126
7127 prog->aux->nr_linfo -= l_cnt;
7128 nr_linfo = prog->aux->nr_linfo;
7129 }
7130
7131 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7132 for (i = l_off; i < nr_linfo; i++)
7133 linfo[i].insn_off -= cnt;
7134
7135 /* fix up all subprogs (incl. 'exit') which start >= off */
7136 for (i = 0; i <= env->subprog_cnt; i++)
7137 if (env->subprog_info[i].linfo_idx > l_off) {
7138 /* program may have started in the removed region but
7139 * may not be fully removed
7140 */
7141 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7142 env->subprog_info[i].linfo_idx -= l_cnt;
7143 else
7144 env->subprog_info[i].linfo_idx = l_off;
7145 }
7146
7147 return 0;
7148}
7149
7150static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7151{
7152 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7153 unsigned int orig_prog_len = env->prog->len;
7154 int err;
7155
08ca90af
JK
7156 if (bpf_prog_is_dev_bound(env->prog->aux))
7157 bpf_prog_offload_remove_insns(env, off, cnt);
7158
52875a04
JK
7159 err = bpf_remove_insns(env->prog, off, cnt);
7160 if (err)
7161 return err;
7162
7163 err = adjust_subprog_starts_after_remove(env, off, cnt);
7164 if (err)
7165 return err;
7166
7167 err = bpf_adj_linfo_after_remove(env, off, cnt);
7168 if (err)
7169 return err;
7170
7171 memmove(aux_data + off, aux_data + off + cnt,
7172 sizeof(*aux_data) * (orig_prog_len - off - cnt));
7173
7174 return 0;
7175}
7176
2a5418a1
DB
7177/* The verifier does more data flow analysis than llvm and will not
7178 * explore branches that are dead at run time. Malicious programs can
7179 * have dead code too. Therefore replace all dead at-run-time code
7180 * with 'ja -1'.
7181 *
7182 * Just nops are not optimal, e.g. if they would sit at the end of the
7183 * program and through another bug we would manage to jump there, then
7184 * we'd execute beyond program memory otherwise. Returning exception
7185 * code also wouldn't work since we can have subprogs where the dead
7186 * code could be located.
c131187d
AS
7187 */
7188static void sanitize_dead_code(struct bpf_verifier_env *env)
7189{
7190 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 7191 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
7192 struct bpf_insn *insn = env->prog->insnsi;
7193 const int insn_cnt = env->prog->len;
7194 int i;
7195
7196 for (i = 0; i < insn_cnt; i++) {
7197 if (aux_data[i].seen)
7198 continue;
2a5418a1 7199 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
7200 }
7201}
7202
e2ae4ca2
JK
7203static bool insn_is_cond_jump(u8 code)
7204{
7205 u8 op;
7206
092ed096
JW
7207 if (BPF_CLASS(code) == BPF_JMP32)
7208 return true;
7209
e2ae4ca2
JK
7210 if (BPF_CLASS(code) != BPF_JMP)
7211 return false;
7212
7213 op = BPF_OP(code);
7214 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7215}
7216
7217static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7218{
7219 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7220 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7221 struct bpf_insn *insn = env->prog->insnsi;
7222 const int insn_cnt = env->prog->len;
7223 int i;
7224
7225 for (i = 0; i < insn_cnt; i++, insn++) {
7226 if (!insn_is_cond_jump(insn->code))
7227 continue;
7228
7229 if (!aux_data[i + 1].seen)
7230 ja.off = insn->off;
7231 else if (!aux_data[i + 1 + insn->off].seen)
7232 ja.off = 0;
7233 else
7234 continue;
7235
08ca90af
JK
7236 if (bpf_prog_is_dev_bound(env->prog->aux))
7237 bpf_prog_offload_replace_insn(env, i, &ja);
7238
e2ae4ca2
JK
7239 memcpy(insn, &ja, sizeof(ja));
7240 }
7241}
7242
52875a04
JK
7243static int opt_remove_dead_code(struct bpf_verifier_env *env)
7244{
7245 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7246 int insn_cnt = env->prog->len;
7247 int i, err;
7248
7249 for (i = 0; i < insn_cnt; i++) {
7250 int j;
7251
7252 j = 0;
7253 while (i + j < insn_cnt && !aux_data[i + j].seen)
7254 j++;
7255 if (!j)
7256 continue;
7257
7258 err = verifier_remove_insns(env, i, j);
7259 if (err)
7260 return err;
7261 insn_cnt = env->prog->len;
7262 }
7263
7264 return 0;
7265}
7266
a1b14abc
JK
7267static int opt_remove_nops(struct bpf_verifier_env *env)
7268{
7269 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7270 struct bpf_insn *insn = env->prog->insnsi;
7271 int insn_cnt = env->prog->len;
7272 int i, err;
7273
7274 for (i = 0; i < insn_cnt; i++) {
7275 if (memcmp(&insn[i], &ja, sizeof(ja)))
7276 continue;
7277
7278 err = verifier_remove_insns(env, i, 1);
7279 if (err)
7280 return err;
7281 insn_cnt--;
7282 i--;
7283 }
7284
7285 return 0;
7286}
7287
c64b7983
JS
7288/* convert load instructions that access fields of a context type into a
7289 * sequence of instructions that access fields of the underlying structure:
7290 * struct __sk_buff -> struct sk_buff
7291 * struct bpf_sock_ops -> struct sock
9bac3d6d 7292 */
58e2af8b 7293static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 7294{
00176a34 7295 const struct bpf_verifier_ops *ops = env->ops;
f96da094 7296 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 7297 const int insn_cnt = env->prog->len;
36bbef52 7298 struct bpf_insn insn_buf[16], *insn;
46f53a65 7299 u32 target_size, size_default, off;
9bac3d6d 7300 struct bpf_prog *new_prog;
d691f9e8 7301 enum bpf_access_type type;
f96da094 7302 bool is_narrower_load;
9bac3d6d 7303
b09928b9
DB
7304 if (ops->gen_prologue || env->seen_direct_write) {
7305 if (!ops->gen_prologue) {
7306 verbose(env, "bpf verifier is misconfigured\n");
7307 return -EINVAL;
7308 }
36bbef52
DB
7309 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7310 env->prog);
7311 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 7312 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
7313 return -EINVAL;
7314 } else if (cnt) {
8041902d 7315 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
7316 if (!new_prog)
7317 return -ENOMEM;
8041902d 7318
36bbef52 7319 env->prog = new_prog;
3df126f3 7320 delta += cnt - 1;
36bbef52
DB
7321 }
7322 }
7323
c64b7983 7324 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
7325 return 0;
7326
3df126f3 7327 insn = env->prog->insnsi + delta;
36bbef52 7328
9bac3d6d 7329 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
7330 bpf_convert_ctx_access_t convert_ctx_access;
7331
62c7989b
DB
7332 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7333 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7334 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 7335 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 7336 type = BPF_READ;
62c7989b
DB
7337 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7338 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7339 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 7340 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
7341 type = BPF_WRITE;
7342 else
9bac3d6d
AS
7343 continue;
7344
af86ca4e
AS
7345 if (type == BPF_WRITE &&
7346 env->insn_aux_data[i + delta].sanitize_stack_off) {
7347 struct bpf_insn patch[] = {
7348 /* Sanitize suspicious stack slot with zero.
7349 * There are no memory dependencies for this store,
7350 * since it's only using frame pointer and immediate
7351 * constant of zero
7352 */
7353 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7354 env->insn_aux_data[i + delta].sanitize_stack_off,
7355 0),
7356 /* the original STX instruction will immediately
7357 * overwrite the same stack slot with appropriate value
7358 */
7359 *insn,
7360 };
7361
7362 cnt = ARRAY_SIZE(patch);
7363 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7364 if (!new_prog)
7365 return -ENOMEM;
7366
7367 delta += cnt - 1;
7368 env->prog = new_prog;
7369 insn = new_prog->insnsi + i + delta;
7370 continue;
7371 }
7372
c64b7983
JS
7373 switch (env->insn_aux_data[i + delta].ptr_type) {
7374 case PTR_TO_CTX:
7375 if (!ops->convert_ctx_access)
7376 continue;
7377 convert_ctx_access = ops->convert_ctx_access;
7378 break;
7379 case PTR_TO_SOCKET:
46f8bc92 7380 case PTR_TO_SOCK_COMMON:
c64b7983
JS
7381 convert_ctx_access = bpf_sock_convert_ctx_access;
7382 break;
655a51e5
MKL
7383 case PTR_TO_TCP_SOCK:
7384 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7385 break;
c64b7983 7386 default:
9bac3d6d 7387 continue;
c64b7983 7388 }
9bac3d6d 7389
31fd8581 7390 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 7391 size = BPF_LDST_BYTES(insn);
31fd8581
YS
7392
7393 /* If the read access is a narrower load of the field,
7394 * convert to a 4/8-byte load, to minimum program type specific
7395 * convert_ctx_access changes. If conversion is successful,
7396 * we will apply proper mask to the result.
7397 */
f96da094 7398 is_narrower_load = size < ctx_field_size;
46f53a65
AI
7399 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7400 off = insn->off;
31fd8581 7401 if (is_narrower_load) {
f96da094
DB
7402 u8 size_code;
7403
7404 if (type == BPF_WRITE) {
61bd5218 7405 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
7406 return -EINVAL;
7407 }
31fd8581 7408
f96da094 7409 size_code = BPF_H;
31fd8581
YS
7410 if (ctx_field_size == 4)
7411 size_code = BPF_W;
7412 else if (ctx_field_size == 8)
7413 size_code = BPF_DW;
f96da094 7414
bc23105c 7415 insn->off = off & ~(size_default - 1);
31fd8581
YS
7416 insn->code = BPF_LDX | BPF_MEM | size_code;
7417 }
f96da094
DB
7418
7419 target_size = 0;
c64b7983
JS
7420 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7421 &target_size);
f96da094
DB
7422 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7423 (ctx_field_size && !target_size)) {
61bd5218 7424 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
7425 return -EINVAL;
7426 }
f96da094
DB
7427
7428 if (is_narrower_load && size < target_size) {
46f53a65
AI
7429 u8 shift = (off & (size_default - 1)) * 8;
7430
7431 if (ctx_field_size <= 4) {
7432 if (shift)
7433 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7434 insn->dst_reg,
7435 shift);
31fd8581 7436 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 7437 (1 << size * 8) - 1);
46f53a65
AI
7438 } else {
7439 if (shift)
7440 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7441 insn->dst_reg,
7442 shift);
31fd8581 7443 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 7444 (1 << size * 8) - 1);
46f53a65 7445 }
31fd8581 7446 }
9bac3d6d 7447
8041902d 7448 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
7449 if (!new_prog)
7450 return -ENOMEM;
7451
3df126f3 7452 delta += cnt - 1;
9bac3d6d
AS
7453
7454 /* keep walking new program and skip insns we just inserted */
7455 env->prog = new_prog;
3df126f3 7456 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
7457 }
7458
7459 return 0;
7460}
7461
1c2a088a
AS
7462static int jit_subprogs(struct bpf_verifier_env *env)
7463{
7464 struct bpf_prog *prog = env->prog, **func, *tmp;
7465 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 7466 struct bpf_insn *insn;
1c2a088a 7467 void *old_bpf_func;
c454a46b 7468 int err;
1c2a088a 7469
f910cefa 7470 if (env->subprog_cnt <= 1)
1c2a088a
AS
7471 return 0;
7472
7105e828 7473 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
7474 if (insn->code != (BPF_JMP | BPF_CALL) ||
7475 insn->src_reg != BPF_PSEUDO_CALL)
7476 continue;
c7a89784
DB
7477 /* Upon error here we cannot fall back to interpreter but
7478 * need a hard reject of the program. Thus -EFAULT is
7479 * propagated in any case.
7480 */
1c2a088a
AS
7481 subprog = find_subprog(env, i + insn->imm + 1);
7482 if (subprog < 0) {
7483 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7484 i + insn->imm + 1);
7485 return -EFAULT;
7486 }
7487 /* temporarily remember subprog id inside insn instead of
7488 * aux_data, since next loop will split up all insns into funcs
7489 */
f910cefa 7490 insn->off = subprog;
1c2a088a
AS
7491 /* remember original imm in case JIT fails and fallback
7492 * to interpreter will be needed
7493 */
7494 env->insn_aux_data[i].call_imm = insn->imm;
7495 /* point imm to __bpf_call_base+1 from JITs point of view */
7496 insn->imm = 1;
7497 }
7498
c454a46b
MKL
7499 err = bpf_prog_alloc_jited_linfo(prog);
7500 if (err)
7501 goto out_undo_insn;
7502
7503 err = -ENOMEM;
6396bb22 7504 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 7505 if (!func)
c7a89784 7506 goto out_undo_insn;
1c2a088a 7507
f910cefa 7508 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 7509 subprog_start = subprog_end;
4cb3d99c 7510 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
7511
7512 len = subprog_end - subprog_start;
492ecee8
AS
7513 /* BPF_PROG_RUN doesn't call subprogs directly,
7514 * hence main prog stats include the runtime of subprogs.
7515 * subprogs don't have IDs and not reachable via prog_get_next_id
7516 * func[i]->aux->stats will never be accessed and stays NULL
7517 */
7518 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
7519 if (!func[i])
7520 goto out_free;
7521 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7522 len * sizeof(struct bpf_insn));
4f74d809 7523 func[i]->type = prog->type;
1c2a088a 7524 func[i]->len = len;
4f74d809
DB
7525 if (bpf_prog_calc_tag(func[i]))
7526 goto out_free;
1c2a088a 7527 func[i]->is_func = 1;
ba64e7d8
YS
7528 func[i]->aux->func_idx = i;
7529 /* the btf and func_info will be freed only at prog->aux */
7530 func[i]->aux->btf = prog->aux->btf;
7531 func[i]->aux->func_info = prog->aux->func_info;
7532
1c2a088a
AS
7533 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7534 * Long term would need debug info to populate names
7535 */
7536 func[i]->aux->name[0] = 'F';
9c8105bd 7537 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 7538 func[i]->jit_requested = 1;
c454a46b
MKL
7539 func[i]->aux->linfo = prog->aux->linfo;
7540 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7541 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7542 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
7543 func[i] = bpf_int_jit_compile(func[i]);
7544 if (!func[i]->jited) {
7545 err = -ENOTSUPP;
7546 goto out_free;
7547 }
7548 cond_resched();
7549 }
7550 /* at this point all bpf functions were successfully JITed
7551 * now populate all bpf_calls with correct addresses and
7552 * run last pass of JIT
7553 */
f910cefa 7554 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7555 insn = func[i]->insnsi;
7556 for (j = 0; j < func[i]->len; j++, insn++) {
7557 if (insn->code != (BPF_JMP | BPF_CALL) ||
7558 insn->src_reg != BPF_PSEUDO_CALL)
7559 continue;
7560 subprog = insn->off;
1c2a088a
AS
7561 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7562 func[subprog]->bpf_func -
7563 __bpf_call_base;
7564 }
2162fed4
SD
7565
7566 /* we use the aux data to keep a list of the start addresses
7567 * of the JITed images for each function in the program
7568 *
7569 * for some architectures, such as powerpc64, the imm field
7570 * might not be large enough to hold the offset of the start
7571 * address of the callee's JITed image from __bpf_call_base
7572 *
7573 * in such cases, we can lookup the start address of a callee
7574 * by using its subprog id, available from the off field of
7575 * the call instruction, as an index for this list
7576 */
7577 func[i]->aux->func = func;
7578 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 7579 }
f910cefa 7580 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7581 old_bpf_func = func[i]->bpf_func;
7582 tmp = bpf_int_jit_compile(func[i]);
7583 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7584 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 7585 err = -ENOTSUPP;
1c2a088a
AS
7586 goto out_free;
7587 }
7588 cond_resched();
7589 }
7590
7591 /* finally lock prog and jit images for all functions and
7592 * populate kallsysm
7593 */
f910cefa 7594 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7595 bpf_prog_lock_ro(func[i]);
7596 bpf_prog_kallsyms_add(func[i]);
7597 }
7105e828
DB
7598
7599 /* Last step: make now unused interpreter insns from main
7600 * prog consistent for later dump requests, so they can
7601 * later look the same as if they were interpreted only.
7602 */
7603 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
7604 if (insn->code != (BPF_JMP | BPF_CALL) ||
7605 insn->src_reg != BPF_PSEUDO_CALL)
7606 continue;
7607 insn->off = env->insn_aux_data[i].call_imm;
7608 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 7609 insn->imm = subprog;
7105e828
DB
7610 }
7611
1c2a088a
AS
7612 prog->jited = 1;
7613 prog->bpf_func = func[0]->bpf_func;
7614 prog->aux->func = func;
f910cefa 7615 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 7616 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
7617 return 0;
7618out_free:
f910cefa 7619 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
7620 if (func[i])
7621 bpf_jit_free(func[i]);
7622 kfree(func);
c7a89784 7623out_undo_insn:
1c2a088a
AS
7624 /* cleanup main prog to be interpreted */
7625 prog->jit_requested = 0;
7626 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7627 if (insn->code != (BPF_JMP | BPF_CALL) ||
7628 insn->src_reg != BPF_PSEUDO_CALL)
7629 continue;
7630 insn->off = 0;
7631 insn->imm = env->insn_aux_data[i].call_imm;
7632 }
c454a46b 7633 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
7634 return err;
7635}
7636
1ea47e01
AS
7637static int fixup_call_args(struct bpf_verifier_env *env)
7638{
19d28fbd 7639#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
7640 struct bpf_prog *prog = env->prog;
7641 struct bpf_insn *insn = prog->insnsi;
7642 int i, depth;
19d28fbd 7643#endif
e4052d06 7644 int err = 0;
1ea47e01 7645
e4052d06
QM
7646 if (env->prog->jit_requested &&
7647 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
7648 err = jit_subprogs(env);
7649 if (err == 0)
1c2a088a 7650 return 0;
c7a89784
DB
7651 if (err == -EFAULT)
7652 return err;
19d28fbd
DM
7653 }
7654#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
7655 for (i = 0; i < prog->len; i++, insn++) {
7656 if (insn->code != (BPF_JMP | BPF_CALL) ||
7657 insn->src_reg != BPF_PSEUDO_CALL)
7658 continue;
7659 depth = get_callee_stack_depth(env, insn, i);
7660 if (depth < 0)
7661 return depth;
7662 bpf_patch_call_args(insn, depth);
7663 }
19d28fbd
DM
7664 err = 0;
7665#endif
7666 return err;
1ea47e01
AS
7667}
7668
79741b3b 7669/* fixup insn->imm field of bpf_call instructions
81ed18ab 7670 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
7671 *
7672 * this function is called after eBPF program passed verification
7673 */
79741b3b 7674static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 7675{
79741b3b
AS
7676 struct bpf_prog *prog = env->prog;
7677 struct bpf_insn *insn = prog->insnsi;
e245c5c6 7678 const struct bpf_func_proto *fn;
79741b3b 7679 const int insn_cnt = prog->len;
09772d92 7680 const struct bpf_map_ops *ops;
c93552c4 7681 struct bpf_insn_aux_data *aux;
81ed18ab
AS
7682 struct bpf_insn insn_buf[16];
7683 struct bpf_prog *new_prog;
7684 struct bpf_map *map_ptr;
7685 int i, cnt, delta = 0;
e245c5c6 7686
79741b3b 7687 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
7688 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7689 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7690 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 7691 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
7692 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7693 struct bpf_insn mask_and_div[] = {
7694 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7695 /* Rx div 0 -> 0 */
7696 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7697 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7698 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7699 *insn,
7700 };
7701 struct bpf_insn mask_and_mod[] = {
7702 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7703 /* Rx mod 0 -> Rx */
7704 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7705 *insn,
7706 };
7707 struct bpf_insn *patchlet;
7708
7709 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7710 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7711 patchlet = mask_and_div + (is64 ? 1 : 0);
7712 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7713 } else {
7714 patchlet = mask_and_mod + (is64 ? 1 : 0);
7715 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7716 }
7717
7718 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
7719 if (!new_prog)
7720 return -ENOMEM;
7721
7722 delta += cnt - 1;
7723 env->prog = prog = new_prog;
7724 insn = new_prog->insnsi + i + delta;
7725 continue;
7726 }
7727
e0cea7ce
DB
7728 if (BPF_CLASS(insn->code) == BPF_LD &&
7729 (BPF_MODE(insn->code) == BPF_ABS ||
7730 BPF_MODE(insn->code) == BPF_IND)) {
7731 cnt = env->ops->gen_ld_abs(insn, insn_buf);
7732 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7733 verbose(env, "bpf verifier is misconfigured\n");
7734 return -EINVAL;
7735 }
7736
7737 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7738 if (!new_prog)
7739 return -ENOMEM;
7740
7741 delta += cnt - 1;
7742 env->prog = prog = new_prog;
7743 insn = new_prog->insnsi + i + delta;
7744 continue;
7745 }
7746
979d63d5
DB
7747 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7748 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7749 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7750 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7751 struct bpf_insn insn_buf[16];
7752 struct bpf_insn *patch = &insn_buf[0];
7753 bool issrc, isneg;
7754 u32 off_reg;
7755
7756 aux = &env->insn_aux_data[i + delta];
3612af78
DB
7757 if (!aux->alu_state ||
7758 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
7759 continue;
7760
7761 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7762 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7763 BPF_ALU_SANITIZE_SRC;
7764
7765 off_reg = issrc ? insn->src_reg : insn->dst_reg;
7766 if (isneg)
7767 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7768 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7769 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7770 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7771 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7772 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7773 if (issrc) {
7774 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7775 off_reg);
7776 insn->src_reg = BPF_REG_AX;
7777 } else {
7778 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7779 BPF_REG_AX);
7780 }
7781 if (isneg)
7782 insn->code = insn->code == code_add ?
7783 code_sub : code_add;
7784 *patch++ = *insn;
7785 if (issrc && isneg)
7786 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7787 cnt = patch - insn_buf;
7788
7789 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7790 if (!new_prog)
7791 return -ENOMEM;
7792
7793 delta += cnt - 1;
7794 env->prog = prog = new_prog;
7795 insn = new_prog->insnsi + i + delta;
7796 continue;
7797 }
7798
79741b3b
AS
7799 if (insn->code != (BPF_JMP | BPF_CALL))
7800 continue;
cc8b0b92
AS
7801 if (insn->src_reg == BPF_PSEUDO_CALL)
7802 continue;
e245c5c6 7803
79741b3b
AS
7804 if (insn->imm == BPF_FUNC_get_route_realm)
7805 prog->dst_needed = 1;
7806 if (insn->imm == BPF_FUNC_get_prandom_u32)
7807 bpf_user_rnd_init_once();
9802d865
JB
7808 if (insn->imm == BPF_FUNC_override_return)
7809 prog->kprobe_override = 1;
79741b3b 7810 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
7811 /* If we tail call into other programs, we
7812 * cannot make any assumptions since they can
7813 * be replaced dynamically during runtime in
7814 * the program array.
7815 */
7816 prog->cb_access = 1;
80a58d02 7817 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 7818 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 7819
79741b3b
AS
7820 /* mark bpf_tail_call as different opcode to avoid
7821 * conditional branch in the interpeter for every normal
7822 * call and to prevent accidental JITing by JIT compiler
7823 * that doesn't support bpf_tail_call yet
e245c5c6 7824 */
79741b3b 7825 insn->imm = 0;
71189fa9 7826 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 7827
c93552c4
DB
7828 aux = &env->insn_aux_data[i + delta];
7829 if (!bpf_map_ptr_unpriv(aux))
7830 continue;
7831
b2157399
AS
7832 /* instead of changing every JIT dealing with tail_call
7833 * emit two extra insns:
7834 * if (index >= max_entries) goto out;
7835 * index &= array->index_mask;
7836 * to avoid out-of-bounds cpu speculation
7837 */
c93552c4 7838 if (bpf_map_ptr_poisoned(aux)) {
40950343 7839 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
7840 return -EINVAL;
7841 }
c93552c4
DB
7842
7843 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
7844 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7845 map_ptr->max_entries, 2);
7846 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7847 container_of(map_ptr,
7848 struct bpf_array,
7849 map)->index_mask);
7850 insn_buf[2] = *insn;
7851 cnt = 3;
7852 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7853 if (!new_prog)
7854 return -ENOMEM;
7855
7856 delta += cnt - 1;
7857 env->prog = prog = new_prog;
7858 insn = new_prog->insnsi + i + delta;
79741b3b
AS
7859 continue;
7860 }
e245c5c6 7861
89c63074 7862 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
7863 * and other inlining handlers are currently limited to 64 bit
7864 * only.
89c63074 7865 */
60b58afc 7866 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
7867 (insn->imm == BPF_FUNC_map_lookup_elem ||
7868 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
7869 insn->imm == BPF_FUNC_map_delete_elem ||
7870 insn->imm == BPF_FUNC_map_push_elem ||
7871 insn->imm == BPF_FUNC_map_pop_elem ||
7872 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
7873 aux = &env->insn_aux_data[i + delta];
7874 if (bpf_map_ptr_poisoned(aux))
7875 goto patch_call_imm;
7876
7877 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
7878 ops = map_ptr->ops;
7879 if (insn->imm == BPF_FUNC_map_lookup_elem &&
7880 ops->map_gen_lookup) {
7881 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7882 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7883 verbose(env, "bpf verifier is misconfigured\n");
7884 return -EINVAL;
7885 }
81ed18ab 7886
09772d92
DB
7887 new_prog = bpf_patch_insn_data(env, i + delta,
7888 insn_buf, cnt);
7889 if (!new_prog)
7890 return -ENOMEM;
81ed18ab 7891
09772d92
DB
7892 delta += cnt - 1;
7893 env->prog = prog = new_prog;
7894 insn = new_prog->insnsi + i + delta;
7895 continue;
7896 }
81ed18ab 7897
09772d92
DB
7898 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7899 (void *(*)(struct bpf_map *map, void *key))NULL));
7900 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7901 (int (*)(struct bpf_map *map, void *key))NULL));
7902 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7903 (int (*)(struct bpf_map *map, void *key, void *value,
7904 u64 flags))NULL));
84430d42
DB
7905 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7906 (int (*)(struct bpf_map *map, void *value,
7907 u64 flags))NULL));
7908 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7909 (int (*)(struct bpf_map *map, void *value))NULL));
7910 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7911 (int (*)(struct bpf_map *map, void *value))NULL));
7912
09772d92
DB
7913 switch (insn->imm) {
7914 case BPF_FUNC_map_lookup_elem:
7915 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7916 __bpf_call_base;
7917 continue;
7918 case BPF_FUNC_map_update_elem:
7919 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7920 __bpf_call_base;
7921 continue;
7922 case BPF_FUNC_map_delete_elem:
7923 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7924 __bpf_call_base;
7925 continue;
84430d42
DB
7926 case BPF_FUNC_map_push_elem:
7927 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7928 __bpf_call_base;
7929 continue;
7930 case BPF_FUNC_map_pop_elem:
7931 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7932 __bpf_call_base;
7933 continue;
7934 case BPF_FUNC_map_peek_elem:
7935 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7936 __bpf_call_base;
7937 continue;
09772d92 7938 }
81ed18ab 7939
09772d92 7940 goto patch_call_imm;
81ed18ab
AS
7941 }
7942
7943patch_call_imm:
5e43f899 7944 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
7945 /* all functions that have prototype and verifier allowed
7946 * programs to call them, must be real in-kernel functions
7947 */
7948 if (!fn->func) {
61bd5218
JK
7949 verbose(env,
7950 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
7951 func_id_name(insn->imm), insn->imm);
7952 return -EFAULT;
e245c5c6 7953 }
79741b3b 7954 insn->imm = fn->func - __bpf_call_base;
e245c5c6 7955 }
e245c5c6 7956
79741b3b
AS
7957 return 0;
7958}
e245c5c6 7959
58e2af8b 7960static void free_states(struct bpf_verifier_env *env)
f1bca824 7961{
58e2af8b 7962 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
7963 int i;
7964
9f4686c4
AS
7965 sl = env->free_list;
7966 while (sl) {
7967 sln = sl->next;
7968 free_verifier_state(&sl->state, false);
7969 kfree(sl);
7970 sl = sln;
7971 }
7972
f1bca824
AS
7973 if (!env->explored_states)
7974 return;
7975
7976 for (i = 0; i < env->prog->len; i++) {
7977 sl = env->explored_states[i];
7978
7979 if (sl)
7980 while (sl != STATE_LIST_MARK) {
7981 sln = sl->next;
1969db47 7982 free_verifier_state(&sl->state, false);
f1bca824
AS
7983 kfree(sl);
7984 sl = sln;
7985 }
7986 }
7987
71dde681 7988 kvfree(env->explored_states);
f1bca824
AS
7989}
7990
06ee7115
AS
7991static void print_verification_stats(struct bpf_verifier_env *env)
7992{
7993 int i;
7994
7995 if (env->log.level & BPF_LOG_STATS) {
7996 verbose(env, "verification time %lld usec\n",
7997 div_u64(env->verification_time, 1000));
7998 verbose(env, "stack depth ");
7999 for (i = 0; i < env->subprog_cnt; i++) {
8000 u32 depth = env->subprog_info[i].stack_depth;
8001
8002 verbose(env, "%d", depth);
8003 if (i + 1 < env->subprog_cnt)
8004 verbose(env, "+");
8005 }
8006 verbose(env, "\n");
8007 }
8008 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8009 "total_states %d peak_states %d mark_read %d\n",
8010 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8011 env->max_states_per_insn, env->total_states,
8012 env->peak_states, env->longest_mark_read_walk);
8013}
8014
838e9690
YS
8015int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8016 union bpf_attr __user *uattr)
51580e79 8017{
06ee7115 8018 u64 start_time = ktime_get_ns();
58e2af8b 8019 struct bpf_verifier_env *env;
b9193c1b 8020 struct bpf_verifier_log *log;
9e4c24e7 8021 int i, len, ret = -EINVAL;
e2ae4ca2 8022 bool is_priv;
51580e79 8023
eba0c929
AB
8024 /* no program is valid */
8025 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8026 return -EINVAL;
8027
58e2af8b 8028 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
8029 * allocate/free it every time bpf_check() is called
8030 */
58e2af8b 8031 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
8032 if (!env)
8033 return -ENOMEM;
61bd5218 8034 log = &env->log;
cbd35700 8035
9e4c24e7 8036 len = (*prog)->len;
fad953ce 8037 env->insn_aux_data =
9e4c24e7 8038 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
8039 ret = -ENOMEM;
8040 if (!env->insn_aux_data)
8041 goto err_free_env;
9e4c24e7
JK
8042 for (i = 0; i < len; i++)
8043 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 8044 env->prog = *prog;
00176a34 8045 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 8046
cbd35700
AS
8047 /* grab the mutex to protect few globals used by verifier */
8048 mutex_lock(&bpf_verifier_lock);
8049
8050 if (attr->log_level || attr->log_buf || attr->log_size) {
8051 /* user requested verbose verifier output
8052 * and supplied buffer to store the verification trace
8053 */
e7bf8249
JK
8054 log->level = attr->log_level;
8055 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8056 log->len_total = attr->log_size;
cbd35700
AS
8057
8058 ret = -EINVAL;
e7bf8249 8059 /* log attributes have to be sane */
7a9f5c65 8060 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 8061 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 8062 goto err_unlock;
cbd35700 8063 }
1ad2f583
DB
8064
8065 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8066 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 8067 env->strict_alignment = true;
e9ee9efc
DM
8068 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8069 env->strict_alignment = false;
cbd35700 8070
e2ae4ca2
JK
8071 is_priv = capable(CAP_SYS_ADMIN);
8072 env->allow_ptr_leaks = is_priv;
8073
f4e3ec0d
JK
8074 ret = replace_map_fd_with_map_ptr(env);
8075 if (ret < 0)
8076 goto skip_full_check;
8077
cae1927c 8078 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 8079 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 8080 if (ret)
f4e3ec0d 8081 goto skip_full_check;
ab3f0063
JK
8082 }
8083
71dde681 8084 env->explored_states = kvcalloc(env->prog->len,
58e2af8b 8085 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
8086 GFP_USER);
8087 ret = -ENOMEM;
8088 if (!env->explored_states)
8089 goto skip_full_check;
8090
d9762e84 8091 ret = check_subprogs(env);
475fb78f
AS
8092 if (ret < 0)
8093 goto skip_full_check;
8094
c454a46b 8095 ret = check_btf_info(env, attr, uattr);
838e9690
YS
8096 if (ret < 0)
8097 goto skip_full_check;
8098
d9762e84
MKL
8099 ret = check_cfg(env);
8100 if (ret < 0)
8101 goto skip_full_check;
8102
17a52670 8103 ret = do_check(env);
8c01c4f8
CG
8104 if (env->cur_state) {
8105 free_verifier_state(env->cur_state, true);
8106 env->cur_state = NULL;
8107 }
cbd35700 8108
c941ce9c
QM
8109 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8110 ret = bpf_prog_offload_finalize(env);
8111
0246e64d 8112skip_full_check:
638f5b90 8113 while (!pop_stack(env, NULL, NULL));
f1bca824 8114 free_states(env);
0246e64d 8115
c131187d 8116 if (ret == 0)
9b38c405 8117 ret = check_max_stack_depth(env);
c131187d 8118
9b38c405 8119 /* instruction rewrites happen after this point */
e2ae4ca2
JK
8120 if (is_priv) {
8121 if (ret == 0)
8122 opt_hard_wire_dead_code_branches(env);
52875a04
JK
8123 if (ret == 0)
8124 ret = opt_remove_dead_code(env);
a1b14abc
JK
8125 if (ret == 0)
8126 ret = opt_remove_nops(env);
52875a04
JK
8127 } else {
8128 if (ret == 0)
8129 sanitize_dead_code(env);
e2ae4ca2
JK
8130 }
8131
9bac3d6d
AS
8132 if (ret == 0)
8133 /* program is valid, convert *(u32*)(ctx + off) accesses */
8134 ret = convert_ctx_accesses(env);
8135
e245c5c6 8136 if (ret == 0)
79741b3b 8137 ret = fixup_bpf_calls(env);
e245c5c6 8138
1ea47e01
AS
8139 if (ret == 0)
8140 ret = fixup_call_args(env);
8141
06ee7115
AS
8142 env->verification_time = ktime_get_ns() - start_time;
8143 print_verification_stats(env);
8144
a2a7d570 8145 if (log->level && bpf_verifier_log_full(log))
cbd35700 8146 ret = -ENOSPC;
a2a7d570 8147 if (log->level && !log->ubuf) {
cbd35700 8148 ret = -EFAULT;
a2a7d570 8149 goto err_release_maps;
cbd35700
AS
8150 }
8151
0246e64d
AS
8152 if (ret == 0 && env->used_map_cnt) {
8153 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
8154 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8155 sizeof(env->used_maps[0]),
8156 GFP_KERNEL);
0246e64d 8157
9bac3d6d 8158 if (!env->prog->aux->used_maps) {
0246e64d 8159 ret = -ENOMEM;
a2a7d570 8160 goto err_release_maps;
0246e64d
AS
8161 }
8162
9bac3d6d 8163 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 8164 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 8165 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
8166
8167 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8168 * bpf_ld_imm64 instructions
8169 */
8170 convert_pseudo_ld_imm64(env);
8171 }
cbd35700 8172
ba64e7d8
YS
8173 if (ret == 0)
8174 adjust_btf_func(env);
8175
a2a7d570 8176err_release_maps:
9bac3d6d 8177 if (!env->prog->aux->used_maps)
0246e64d 8178 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 8179 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
8180 */
8181 release_maps(env);
9bac3d6d 8182 *prog = env->prog;
3df126f3 8183err_unlock:
cbd35700 8184 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
8185 vfree(env->insn_aux_data);
8186err_free_env:
8187 kfree(env);
51580e79
AS
8188 return ret;
8189}