]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
bpf: Track alignment of register values in the verifier.
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
d1174416
DM
244 if (reg->min_align)
245 verbose(",min_align=%u", reg->min_align);
246 if (reg->aux_off)
247 verbose(",aux_off=%u", reg->aux_off);
248 if (reg->aux_off_align)
249 verbose(",aux_off_align=%u", reg->aux_off_align);
17a52670 250 }
9c399760 251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 252 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 253 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
255 }
256 verbose("\n");
257}
258
cbd35700
AS
259static const char *const bpf_class_string[] = {
260 [BPF_LD] = "ld",
261 [BPF_LDX] = "ldx",
262 [BPF_ST] = "st",
263 [BPF_STX] = "stx",
264 [BPF_ALU] = "alu",
265 [BPF_JMP] = "jmp",
266 [BPF_RET] = "BUG",
267 [BPF_ALU64] = "alu64",
268};
269
687f0715 270static const char *const bpf_alu_string[16] = {
cbd35700
AS
271 [BPF_ADD >> 4] = "+=",
272 [BPF_SUB >> 4] = "-=",
273 [BPF_MUL >> 4] = "*=",
274 [BPF_DIV >> 4] = "/=",
275 [BPF_OR >> 4] = "|=",
276 [BPF_AND >> 4] = "&=",
277 [BPF_LSH >> 4] = "<<=",
278 [BPF_RSH >> 4] = ">>=",
279 [BPF_NEG >> 4] = "neg",
280 [BPF_MOD >> 4] = "%=",
281 [BPF_XOR >> 4] = "^=",
282 [BPF_MOV >> 4] = "=",
283 [BPF_ARSH >> 4] = "s>>=",
284 [BPF_END >> 4] = "endian",
285};
286
287static const char *const bpf_ldst_string[] = {
288 [BPF_W >> 3] = "u32",
289 [BPF_H >> 3] = "u16",
290 [BPF_B >> 3] = "u8",
291 [BPF_DW >> 3] = "u64",
292};
293
687f0715 294static const char *const bpf_jmp_string[16] = {
cbd35700
AS
295 [BPF_JA >> 4] = "jmp",
296 [BPF_JEQ >> 4] = "==",
297 [BPF_JGT >> 4] = ">",
298 [BPF_JGE >> 4] = ">=",
299 [BPF_JSET >> 4] = "&",
300 [BPF_JNE >> 4] = "!=",
301 [BPF_JSGT >> 4] = "s>",
302 [BPF_JSGE >> 4] = "s>=",
303 [BPF_CALL >> 4] = "call",
304 [BPF_EXIT >> 4] = "exit",
305};
306
0d0e5769
DB
307static void print_bpf_insn(const struct bpf_verifier_env *env,
308 const struct bpf_insn *insn)
cbd35700
AS
309{
310 u8 class = BPF_CLASS(insn->code);
311
312 if (class == BPF_ALU || class == BPF_ALU64) {
313 if (BPF_SRC(insn->code) == BPF_X)
314 verbose("(%02x) %sr%d %s %sr%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->src_reg);
320 else
321 verbose("(%02x) %sr%d %s %s%d\n",
322 insn->code, class == BPF_ALU ? "(u32) " : "",
323 insn->dst_reg,
324 bpf_alu_string[BPF_OP(insn->code) >> 4],
325 class == BPF_ALU ? "(u32) " : "",
326 insn->imm);
327 } else if (class == BPF_STX) {
328 if (BPF_MODE(insn->code) == BPF_MEM)
329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg,
333 insn->off, insn->src_reg);
334 else if (BPF_MODE(insn->code) == BPF_XADD)
335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 insn->code,
337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 insn->dst_reg, insn->off,
339 insn->src_reg);
340 else
341 verbose("BUG_%02x\n", insn->code);
342 } else if (class == BPF_ST) {
343 if (BPF_MODE(insn->code) != BPF_MEM) {
344 verbose("BUG_st_%02x\n", insn->code);
345 return;
346 }
347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 insn->code,
349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 insn->dst_reg,
351 insn->off, insn->imm);
352 } else if (class == BPF_LDX) {
353 if (BPF_MODE(insn->code) != BPF_MEM) {
354 verbose("BUG_ldx_%02x\n", insn->code);
355 return;
356 }
357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 insn->code, insn->dst_reg,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->src_reg, insn->off);
361 } else if (class == BPF_LD) {
362 if (BPF_MODE(insn->code) == BPF_ABS) {
363 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 insn->code,
365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 insn->imm);
367 } else if (BPF_MODE(insn->code) == BPF_IND) {
368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->src_reg, insn->imm);
0d0e5769
DB
372 } else if (BPF_MODE(insn->code) == BPF_IMM &&
373 BPF_SIZE(insn->code) == BPF_DW) {
374 /* At this point, we already made sure that the second
375 * part of the ldimm64 insn is accessible.
376 */
377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379
380 if (map_ptr && !env->allow_ptr_leaks)
381 imm = 0;
382
383 verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
385 } else {
386 verbose("BUG_ld_%02x\n", insn->code);
387 return;
388 }
389 } else if (class == BPF_JMP) {
390 u8 opcode = BPF_OP(insn->code);
391
392 if (opcode == BPF_CALL) {
ebb676da
TG
393 verbose("(%02x) call %s#%d\n", insn->code,
394 func_id_name(insn->imm), insn->imm);
cbd35700
AS
395 } else if (insn->code == (BPF_JMP | BPF_JA)) {
396 verbose("(%02x) goto pc%+d\n",
397 insn->code, insn->off);
398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 verbose("(%02x) exit\n", insn->code);
400 } else if (BPF_SRC(insn->code) == BPF_X) {
401 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 insn->code, insn->dst_reg,
403 bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 insn->src_reg, insn->off);
405 } else {
406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 insn->code, insn->dst_reg,
408 bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 insn->imm, insn->off);
410 }
411 } else {
412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 }
414}
415
58e2af8b 416static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 417{
58e2af8b 418 struct bpf_verifier_stack_elem *elem;
17a52670
AS
419 int insn_idx;
420
421 if (env->head == NULL)
422 return -1;
423
424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 insn_idx = env->head->insn_idx;
426 if (prev_insn_idx)
427 *prev_insn_idx = env->head->prev_insn_idx;
428 elem = env->head->next;
429 kfree(env->head);
430 env->head = elem;
431 env->stack_size--;
432 return insn_idx;
433}
434
58e2af8b
JK
435static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 int insn_idx, int prev_insn_idx)
17a52670 437{
58e2af8b 438 struct bpf_verifier_stack_elem *elem;
17a52670 439
58e2af8b 440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
441 if (!elem)
442 goto err;
443
444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 elem->insn_idx = insn_idx;
446 elem->prev_insn_idx = prev_insn_idx;
447 elem->next = env->head;
448 env->head = elem;
449 env->stack_size++;
07016151 450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
451 verbose("BPF program is too complex\n");
452 goto err;
453 }
454 return &elem->st;
455err:
456 /* pop all elements and return */
457 while (pop_stack(env, NULL) >= 0);
458 return NULL;
459}
460
461#define CALLER_SAVED_REGS 6
462static const int caller_saved[CALLER_SAVED_REGS] = {
463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464};
465
58e2af8b 466static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
467{
468 int i;
469
470 for (i = 0; i < MAX_BPF_REG; i++) {
471 regs[i].type = NOT_INIT;
472 regs[i].imm = 0;
48461135
JB
473 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
474 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
d1174416
DM
475 regs[i].min_align = 0;
476 regs[i].aux_off = 0;
477 regs[i].aux_off_align = 0;
17a52670
AS
478 }
479
480 /* frame pointer */
481 regs[BPF_REG_FP].type = FRAME_PTR;
482
483 /* 1st arg to a function */
484 regs[BPF_REG_1].type = PTR_TO_CTX;
485}
486
6760bf2d 487static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 488{
17a52670 489 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 490 regs[regno].id = 0;
17a52670 491 regs[regno].imm = 0;
17a52670
AS
492}
493
6760bf2d
DB
494static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
495{
496 BUG_ON(regno >= MAX_BPF_REG);
497 __mark_reg_unknown_value(regs, regno);
498}
499
48461135
JB
500static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
501{
502 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
503 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
d1174416 504 regs[regno].min_align = 0;
48461135
JB
505}
506
f0318d01
GB
507static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
508 u32 regno)
509{
510 mark_reg_unknown_value(regs, regno);
511 reset_reg_range_values(regs, regno);
512}
513
17a52670
AS
514enum reg_arg_type {
515 SRC_OP, /* register is used as source operand */
516 DST_OP, /* register is used as destination operand */
517 DST_OP_NO_MARK /* same as above, check only, don't mark */
518};
519
58e2af8b 520static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
521 enum reg_arg_type t)
522{
523 if (regno >= MAX_BPF_REG) {
524 verbose("R%d is invalid\n", regno);
525 return -EINVAL;
526 }
527
528 if (t == SRC_OP) {
529 /* check whether register used as source operand can be read */
530 if (regs[regno].type == NOT_INIT) {
531 verbose("R%d !read_ok\n", regno);
532 return -EACCES;
533 }
534 } else {
535 /* check whether register used as dest operand can be written to */
536 if (regno == BPF_REG_FP) {
537 verbose("frame pointer is read only\n");
538 return -EACCES;
539 }
540 if (t == DST_OP)
541 mark_reg_unknown_value(regs, regno);
542 }
543 return 0;
544}
545
546static int bpf_size_to_bytes(int bpf_size)
547{
548 if (bpf_size == BPF_W)
549 return 4;
550 else if (bpf_size == BPF_H)
551 return 2;
552 else if (bpf_size == BPF_B)
553 return 1;
554 else if (bpf_size == BPF_DW)
555 return 8;
556 else
557 return -EINVAL;
558}
559
1be7f75d
AS
560static bool is_spillable_regtype(enum bpf_reg_type type)
561{
562 switch (type) {
563 case PTR_TO_MAP_VALUE:
564 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 565 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
566 case PTR_TO_STACK:
567 case PTR_TO_CTX:
969bf05e
AS
568 case PTR_TO_PACKET:
569 case PTR_TO_PACKET_END:
1be7f75d
AS
570 case FRAME_PTR:
571 case CONST_PTR_TO_MAP:
572 return true;
573 default:
574 return false;
575 }
576}
577
17a52670
AS
578/* check_stack_read/write functions track spill/fill of registers,
579 * stack boundary and alignment are checked in check_mem_access()
580 */
58e2af8b
JK
581static int check_stack_write(struct bpf_verifier_state *state, int off,
582 int size, int value_regno)
17a52670 583{
17a52670 584 int i;
9c399760
AS
585 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
586 * so it's aligned access and [off, off + size) are within stack limits
587 */
17a52670
AS
588
589 if (value_regno >= 0 &&
1be7f75d 590 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
591
592 /* register containing pointer is being spilled into stack */
9c399760 593 if (size != BPF_REG_SIZE) {
17a52670
AS
594 verbose("invalid size of register spill\n");
595 return -EACCES;
596 }
597
17a52670 598 /* save register state */
9c399760
AS
599 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
600 state->regs[value_regno];
17a52670 601
9c399760
AS
602 for (i = 0; i < BPF_REG_SIZE; i++)
603 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
604 } else {
17a52670 605 /* regular write of data into stack */
9c399760 606 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 607 (struct bpf_reg_state) {};
9c399760
AS
608
609 for (i = 0; i < size; i++)
610 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
611 }
612 return 0;
613}
614
58e2af8b 615static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
616 int value_regno)
617{
9c399760 618 u8 *slot_type;
17a52670 619 int i;
17a52670 620
9c399760 621 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 622
9c399760
AS
623 if (slot_type[0] == STACK_SPILL) {
624 if (size != BPF_REG_SIZE) {
17a52670
AS
625 verbose("invalid size of register spill\n");
626 return -EACCES;
627 }
9c399760
AS
628 for (i = 1; i < BPF_REG_SIZE; i++) {
629 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
630 verbose("corrupted spill memory\n");
631 return -EACCES;
632 }
633 }
634
635 if (value_regno >= 0)
636 /* restore register state from stack */
9c399760
AS
637 state->regs[value_regno] =
638 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
639 return 0;
640 } else {
641 for (i = 0; i < size; i++) {
9c399760 642 if (slot_type[i] != STACK_MISC) {
17a52670
AS
643 verbose("invalid read from stack off %d+%d size %d\n",
644 off, i, size);
645 return -EACCES;
646 }
647 }
648 if (value_regno >= 0)
649 /* have read misc data from the stack */
f0318d01
GB
650 mark_reg_unknown_value_and_range(state->regs,
651 value_regno);
17a52670
AS
652 return 0;
653 }
654}
655
656/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 657static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
658 int size)
659{
660 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
661
5722569b 662 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
663 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
664 map->value_size, off, size);
665 return -EACCES;
666 }
667 return 0;
668}
669
dbcfe5f7
GB
670/* check read/write into an adjusted map element */
671static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
672 int off, int size)
673{
674 struct bpf_verifier_state *state = &env->cur_state;
675 struct bpf_reg_state *reg = &state->regs[regno];
676 int err;
677
678 /* We adjusted the register to this map value, so we
679 * need to change off and size to min_value and max_value
680 * respectively to make sure our theoretical access will be
681 * safe.
682 */
683 if (log_level)
684 print_verifier_state(state);
685 env->varlen_map_value_access = true;
686 /* The minimum value is only important with signed
687 * comparisons where we can't assume the floor of a
688 * value is 0. If we are using signed variables for our
689 * index'es we need to make sure that whatever we use
690 * will have a set floor within our range.
691 */
692 if (reg->min_value < 0) {
693 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
694 regno);
695 return -EACCES;
696 }
697 err = check_map_access(env, regno, reg->min_value + off, size);
698 if (err) {
699 verbose("R%d min value is outside of the array range\n",
700 regno);
701 return err;
702 }
703
704 /* If we haven't set a max value then we need to bail
705 * since we can't be sure we won't do bad things.
706 */
707 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
708 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
709 regno);
710 return -EACCES;
711 }
712 return check_map_access(env, regno, reg->max_value + off, size);
713}
714
969bf05e
AS
715#define MAX_PACKET_OFF 0xffff
716
58e2af8b 717static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
718 const struct bpf_call_arg_meta *meta,
719 enum bpf_access_type t)
4acf6c0b 720{
36bbef52 721 switch (env->prog->type) {
3a0af8fd
TG
722 case BPF_PROG_TYPE_LWT_IN:
723 case BPF_PROG_TYPE_LWT_OUT:
724 /* dst_input() and dst_output() can't write for now */
725 if (t == BPF_WRITE)
726 return false;
7e57fbb2 727 /* fallthrough */
36bbef52
DB
728 case BPF_PROG_TYPE_SCHED_CLS:
729 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 730 case BPF_PROG_TYPE_XDP:
3a0af8fd 731 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
732 if (meta)
733 return meta->pkt_access;
734
735 env->seen_direct_write = true;
4acf6c0b
BB
736 return true;
737 default:
738 return false;
739 }
740}
741
58e2af8b 742static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
743 int size)
744{
58e2af8b
JK
745 struct bpf_reg_state *regs = env->cur_state.regs;
746 struct bpf_reg_state *reg = &regs[regno];
969bf05e 747
d91b28ed 748 off += reg->off;
b399cf64 749 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
750 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
751 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
752 return -EACCES;
753 }
754 return 0;
755}
756
17a52670 757/* check access to 'struct bpf_context' fields */
58e2af8b 758static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 759 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 760{
13a27dfc
JK
761 /* for analyzer ctx accesses are already validated and converted */
762 if (env->analyzer_ops)
763 return 0;
764
17a52670 765 if (env->prog->aux->ops->is_valid_access &&
19de99f7 766 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
767 /* remember the offset of last byte accessed in ctx */
768 if (env->prog->aux->max_ctx_offset < off + size)
769 env->prog->aux->max_ctx_offset = off + size;
17a52670 770 return 0;
32bbe007 771 }
17a52670
AS
772
773 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
774 return -EACCES;
775}
776
58e2af8b 777static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
778{
779 if (env->allow_ptr_leaks)
780 return false;
781
782 switch (env->cur_state.regs[regno].type) {
783 case UNKNOWN_VALUE:
784 case CONST_IMM:
785 return false;
786 default:
787 return true;
788 }
789}
790
79adffcd 791static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 792 int off, int size, bool strict)
969bf05e 793{
d1174416
DM
794 int reg_off;
795
796 /* Byte size accesses are always allowed. */
797 if (!strict || size == 1)
798 return 0;
799
800 reg_off = reg->off;
801 if (reg->id) {
802 if (reg->aux_off_align % size) {
803 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
804 reg->aux_off_align, size);
805 return -EACCES;
806 }
807 reg_off += reg->aux_off;
969bf05e
AS
808 }
809
810 /* skb->data is NET_IP_ALIGN-ed */
d1174416 811 if ((NET_IP_ALIGN + reg_off + off) % size != 0) {
969bf05e 812 verbose("misaligned packet access off %d+%d+%d size %d\n",
d1174416 813 NET_IP_ALIGN, reg_off, off, size);
969bf05e
AS
814 return -EACCES;
815 }
79adffcd 816
969bf05e
AS
817 return 0;
818}
819
79adffcd 820static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 821 int size, bool strict)
79adffcd 822{
d1174416 823 if (strict && size != 1) {
79adffcd
DB
824 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
825 return -EACCES;
826 }
827
969bf05e
AS
828 return 0;
829}
830
79adffcd
DB
831static int check_ptr_alignment(const struct bpf_reg_state *reg,
832 int off, int size)
833{
d1174416
DM
834 bool strict = false;
835
836 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
837 strict = true;
838
79adffcd
DB
839 switch (reg->type) {
840 case PTR_TO_PACKET:
d1174416 841 return check_pkt_ptr_alignment(reg, off, size, strict);
79adffcd 842 case PTR_TO_MAP_VALUE_ADJ:
d1174416 843 return check_val_ptr_alignment(reg, size, strict);
79adffcd
DB
844 default:
845 if (off % size != 0) {
846 verbose("misaligned access off %d size %d\n",
847 off, size);
848 return -EACCES;
849 }
850
851 return 0;
852 }
853}
854
17a52670
AS
855/* check whether memory at (regno + off) is accessible for t = (read | write)
856 * if t==write, value_regno is a register which value is stored into memory
857 * if t==read, value_regno is a register which will receive the value from memory
858 * if t==write && value_regno==-1, some unknown value is stored into memory
859 * if t==read && value_regno==-1, don't care what we read from memory
860 */
58e2af8b 861static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
862 int bpf_size, enum bpf_access_type t,
863 int value_regno)
864{
58e2af8b
JK
865 struct bpf_verifier_state *state = &env->cur_state;
866 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
867 int size, err = 0;
868
1a0dc1ac
AS
869 if (reg->type == PTR_TO_STACK)
870 off += reg->imm;
24b4d2ab 871
17a52670
AS
872 size = bpf_size_to_bytes(bpf_size);
873 if (size < 0)
874 return size;
875
79adffcd 876 err = check_ptr_alignment(reg, off, size);
969bf05e
AS
877 if (err)
878 return err;
17a52670 879
48461135
JB
880 if (reg->type == PTR_TO_MAP_VALUE ||
881 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
882 if (t == BPF_WRITE && value_regno >= 0 &&
883 is_pointer_value(env, value_regno)) {
884 verbose("R%d leaks addr into map\n", value_regno);
885 return -EACCES;
886 }
48461135 887
dbcfe5f7
GB
888 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
889 err = check_map_access_adj(env, regno, off, size);
890 else
891 err = check_map_access(env, regno, off, size);
17a52670 892 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
893 mark_reg_unknown_value_and_range(state->regs,
894 value_regno);
17a52670 895
1a0dc1ac 896 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
897 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
898
1be7f75d
AS
899 if (t == BPF_WRITE && value_regno >= 0 &&
900 is_pointer_value(env, value_regno)) {
901 verbose("R%d leaks addr into ctx\n", value_regno);
902 return -EACCES;
903 }
19de99f7 904 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 905 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
906 mark_reg_unknown_value_and_range(state->regs,
907 value_regno);
1955351d
MS
908 /* note that reg.[id|off|range] == 0 */
909 state->regs[value_regno].type = reg_type;
d1174416
DM
910 state->regs[value_regno].aux_off = 0;
911 state->regs[value_regno].aux_off_align = 0;
969bf05e 912 }
17a52670 913
1a0dc1ac 914 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
915 if (off >= 0 || off < -MAX_BPF_STACK) {
916 verbose("invalid stack off=%d size=%d\n", off, size);
917 return -EACCES;
918 }
1be7f75d
AS
919 if (t == BPF_WRITE) {
920 if (!env->allow_ptr_leaks &&
921 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
922 size != BPF_REG_SIZE) {
923 verbose("attempt to corrupt spilled pointer on stack\n");
924 return -EACCES;
925 }
17a52670 926 err = check_stack_write(state, off, size, value_regno);
1be7f75d 927 } else {
17a52670 928 err = check_stack_read(state, off, size, value_regno);
1be7f75d 929 }
969bf05e 930 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 931 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
932 verbose("cannot write into packet\n");
933 return -EACCES;
934 }
4acf6c0b
BB
935 if (t == BPF_WRITE && value_regno >= 0 &&
936 is_pointer_value(env, value_regno)) {
937 verbose("R%d leaks addr into packet\n", value_regno);
938 return -EACCES;
939 }
969bf05e
AS
940 err = check_packet_access(env, regno, off, size);
941 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
942 mark_reg_unknown_value_and_range(state->regs,
943 value_regno);
17a52670
AS
944 } else {
945 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 946 regno, reg_type_str[reg->type]);
17a52670
AS
947 return -EACCES;
948 }
969bf05e
AS
949
950 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
951 state->regs[value_regno].type == UNKNOWN_VALUE) {
952 /* 1 or 2 byte load zero-extends, determine the number of
953 * zero upper bits. Not doing it fo 4 byte load, since
954 * such values cannot be added to ptr_to_packet anyway.
955 */
956 state->regs[value_regno].imm = 64 - size * 8;
957 }
17a52670
AS
958 return err;
959}
960
58e2af8b 961static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 962{
58e2af8b 963 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
964 int err;
965
966 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
967 insn->imm != 0) {
968 verbose("BPF_XADD uses reserved fields\n");
969 return -EINVAL;
970 }
971
972 /* check src1 operand */
973 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
974 if (err)
975 return err;
976
977 /* check src2 operand */
978 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
979 if (err)
980 return err;
981
982 /* check whether atomic_add can read the memory */
983 err = check_mem_access(env, insn->dst_reg, insn->off,
984 BPF_SIZE(insn->code), BPF_READ, -1);
985 if (err)
986 return err;
987
988 /* check whether atomic_add can write into the same memory */
989 return check_mem_access(env, insn->dst_reg, insn->off,
990 BPF_SIZE(insn->code), BPF_WRITE, -1);
991}
992
993/* when register 'regno' is passed into function that will read 'access_size'
994 * bytes from that pointer, make sure that it's within stack boundary
995 * and all elements of stack are initialized
996 */
58e2af8b 997static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
998 int access_size, bool zero_size_allowed,
999 struct bpf_call_arg_meta *meta)
17a52670 1000{
58e2af8b
JK
1001 struct bpf_verifier_state *state = &env->cur_state;
1002 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1003 int off, i;
1004
8e2fe1d9
DB
1005 if (regs[regno].type != PTR_TO_STACK) {
1006 if (zero_size_allowed && access_size == 0 &&
1007 regs[regno].type == CONST_IMM &&
1008 regs[regno].imm == 0)
1009 return 0;
1010
1011 verbose("R%d type=%s expected=%s\n", regno,
1012 reg_type_str[regs[regno].type],
1013 reg_type_str[PTR_TO_STACK]);
17a52670 1014 return -EACCES;
8e2fe1d9 1015 }
17a52670
AS
1016
1017 off = regs[regno].imm;
1018 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1019 access_size <= 0) {
1020 verbose("invalid stack type R%d off=%d access_size=%d\n",
1021 regno, off, access_size);
1022 return -EACCES;
1023 }
1024
435faee1
DB
1025 if (meta && meta->raw_mode) {
1026 meta->access_size = access_size;
1027 meta->regno = regno;
1028 return 0;
1029 }
1030
17a52670 1031 for (i = 0; i < access_size; i++) {
9c399760 1032 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1033 verbose("invalid indirect read from stack off %d+%d size %d\n",
1034 off, i, access_size);
1035 return -EACCES;
1036 }
1037 }
1038 return 0;
1039}
1040
06c1c049
GB
1041static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1042 int access_size, bool zero_size_allowed,
1043 struct bpf_call_arg_meta *meta)
1044{
1045 struct bpf_reg_state *regs = env->cur_state.regs;
1046
1047 switch (regs[regno].type) {
1048 case PTR_TO_PACKET:
1049 return check_packet_access(env, regno, 0, access_size);
1050 case PTR_TO_MAP_VALUE:
1051 return check_map_access(env, regno, 0, access_size);
1052 case PTR_TO_MAP_VALUE_ADJ:
1053 return check_map_access_adj(env, regno, 0, access_size);
1054 default: /* const_imm|ptr_to_stack or invalid ptr */
1055 return check_stack_boundary(env, regno, access_size,
1056 zero_size_allowed, meta);
1057 }
1058}
1059
58e2af8b 1060static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1061 enum bpf_arg_type arg_type,
1062 struct bpf_call_arg_meta *meta)
17a52670 1063{
58e2af8b 1064 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1065 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1066 int err = 0;
1067
80f1d68c 1068 if (arg_type == ARG_DONTCARE)
17a52670
AS
1069 return 0;
1070
6841de8b 1071 if (type == NOT_INIT) {
17a52670
AS
1072 verbose("R%d !read_ok\n", regno);
1073 return -EACCES;
1074 }
1075
1be7f75d
AS
1076 if (arg_type == ARG_ANYTHING) {
1077 if (is_pointer_value(env, regno)) {
1078 verbose("R%d leaks addr into helper function\n", regno);
1079 return -EACCES;
1080 }
80f1d68c 1081 return 0;
1be7f75d 1082 }
80f1d68c 1083
3a0af8fd
TG
1084 if (type == PTR_TO_PACKET &&
1085 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1086 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1087 return -EACCES;
1088 }
1089
8e2fe1d9 1090 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1091 arg_type == ARG_PTR_TO_MAP_VALUE) {
1092 expected_type = PTR_TO_STACK;
6841de8b
AS
1093 if (type != PTR_TO_PACKET && type != expected_type)
1094 goto err_type;
39f19ebb
AS
1095 } else if (arg_type == ARG_CONST_SIZE ||
1096 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1097 expected_type = CONST_IMM;
06c1c049
GB
1098 /* One exception. Allow UNKNOWN_VALUE registers when the
1099 * boundaries are known and don't cause unsafe memory accesses
1100 */
1101 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1102 goto err_type;
17a52670
AS
1103 } else if (arg_type == ARG_CONST_MAP_PTR) {
1104 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1105 if (type != expected_type)
1106 goto err_type;
608cd71a
AS
1107 } else if (arg_type == ARG_PTR_TO_CTX) {
1108 expected_type = PTR_TO_CTX;
6841de8b
AS
1109 if (type != expected_type)
1110 goto err_type;
39f19ebb
AS
1111 } else if (arg_type == ARG_PTR_TO_MEM ||
1112 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1113 expected_type = PTR_TO_STACK;
1114 /* One exception here. In case function allows for NULL to be
1115 * passed in as argument, it's a CONST_IMM type. Final test
1116 * happens during stack boundary checking.
1117 */
6841de8b
AS
1118 if (type == CONST_IMM && reg->imm == 0)
1119 /* final test in check_stack_boundary() */;
5722569b
GB
1120 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1121 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1122 goto err_type;
39f19ebb 1123 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1124 } else {
1125 verbose("unsupported arg_type %d\n", arg_type);
1126 return -EFAULT;
1127 }
1128
17a52670
AS
1129 if (arg_type == ARG_CONST_MAP_PTR) {
1130 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1131 meta->map_ptr = reg->map_ptr;
17a52670
AS
1132 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1133 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1134 * check that [key, key + map->key_size) are within
1135 * stack limits and initialized
1136 */
33ff9823 1137 if (!meta->map_ptr) {
17a52670
AS
1138 /* in function declaration map_ptr must come before
1139 * map_key, so that it's verified and known before
1140 * we have to check map_key here. Otherwise it means
1141 * that kernel subsystem misconfigured verifier
1142 */
1143 verbose("invalid map_ptr to access map->key\n");
1144 return -EACCES;
1145 }
6841de8b
AS
1146 if (type == PTR_TO_PACKET)
1147 err = check_packet_access(env, regno, 0,
1148 meta->map_ptr->key_size);
1149 else
1150 err = check_stack_boundary(env, regno,
1151 meta->map_ptr->key_size,
1152 false, NULL);
17a52670
AS
1153 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1154 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1155 * check [value, value + map->value_size) validity
1156 */
33ff9823 1157 if (!meta->map_ptr) {
17a52670
AS
1158 /* kernel subsystem misconfigured verifier */
1159 verbose("invalid map_ptr to access map->value\n");
1160 return -EACCES;
1161 }
6841de8b
AS
1162 if (type == PTR_TO_PACKET)
1163 err = check_packet_access(env, regno, 0,
1164 meta->map_ptr->value_size);
1165 else
1166 err = check_stack_boundary(env, regno,
1167 meta->map_ptr->value_size,
1168 false, NULL);
39f19ebb
AS
1169 } else if (arg_type == ARG_CONST_SIZE ||
1170 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1171 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1172
17a52670
AS
1173 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1174 * from stack pointer 'buf'. Check it
1175 * note: regno == len, regno - 1 == buf
1176 */
1177 if (regno == 0) {
1178 /* kernel subsystem misconfigured verifier */
39f19ebb 1179 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1180 return -EACCES;
1181 }
06c1c049
GB
1182
1183 /* If the register is UNKNOWN_VALUE, the access check happens
1184 * using its boundaries. Otherwise, just use its imm
1185 */
1186 if (type == UNKNOWN_VALUE) {
1187 /* For unprivileged variable accesses, disable raw
1188 * mode so that the program is required to
1189 * initialize all the memory that the helper could
1190 * just partially fill up.
1191 */
1192 meta = NULL;
1193
1194 if (reg->min_value < 0) {
1195 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1196 regno);
1197 return -EACCES;
1198 }
1199
1200 if (reg->min_value == 0) {
1201 err = check_helper_mem_access(env, regno - 1, 0,
1202 zero_size_allowed,
1203 meta);
1204 if (err)
1205 return err;
1206 }
1207
1208 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1209 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1210 regno);
1211 return -EACCES;
1212 }
1213 err = check_helper_mem_access(env, regno - 1,
1214 reg->max_value,
1215 zero_size_allowed, meta);
1216 if (err)
1217 return err;
1218 } else {
1219 /* register is CONST_IMM */
1220 err = check_helper_mem_access(env, regno - 1, reg->imm,
1221 zero_size_allowed, meta);
1222 }
17a52670
AS
1223 }
1224
1225 return err;
6841de8b
AS
1226err_type:
1227 verbose("R%d type=%s expected=%s\n", regno,
1228 reg_type_str[type], reg_type_str[expected_type]);
1229 return -EACCES;
17a52670
AS
1230}
1231
35578d79
KX
1232static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1233{
35578d79
KX
1234 if (!map)
1235 return 0;
1236
6aff67c8
AS
1237 /* We need a two way check, first is from map perspective ... */
1238 switch (map->map_type) {
1239 case BPF_MAP_TYPE_PROG_ARRAY:
1240 if (func_id != BPF_FUNC_tail_call)
1241 goto error;
1242 break;
1243 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1244 if (func_id != BPF_FUNC_perf_event_read &&
1245 func_id != BPF_FUNC_perf_event_output)
1246 goto error;
1247 break;
1248 case BPF_MAP_TYPE_STACK_TRACE:
1249 if (func_id != BPF_FUNC_get_stackid)
1250 goto error;
1251 break;
4ed8ec52 1252 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1253 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1254 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1255 goto error;
1256 break;
56f668df 1257 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1258 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1259 if (func_id != BPF_FUNC_map_lookup_elem)
1260 goto error;
6aff67c8
AS
1261 default:
1262 break;
1263 }
1264
1265 /* ... and second from the function itself. */
1266 switch (func_id) {
1267 case BPF_FUNC_tail_call:
1268 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1269 goto error;
1270 break;
1271 case BPF_FUNC_perf_event_read:
1272 case BPF_FUNC_perf_event_output:
1273 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1274 goto error;
1275 break;
1276 case BPF_FUNC_get_stackid:
1277 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1278 goto error;
1279 break;
60d20f91 1280 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1281 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1282 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1283 goto error;
1284 break;
6aff67c8
AS
1285 default:
1286 break;
35578d79
KX
1287 }
1288
1289 return 0;
6aff67c8 1290error:
ebb676da
TG
1291 verbose("cannot pass map_type %d into func %s#%d\n",
1292 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1293 return -EINVAL;
35578d79
KX
1294}
1295
435faee1
DB
1296static int check_raw_mode(const struct bpf_func_proto *fn)
1297{
1298 int count = 0;
1299
39f19ebb 1300 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1301 count++;
39f19ebb 1302 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1303 count++;
39f19ebb 1304 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1305 count++;
39f19ebb 1306 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1307 count++;
39f19ebb 1308 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1309 count++;
1310
1311 return count > 1 ? -EINVAL : 0;
1312}
1313
58e2af8b 1314static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1315{
58e2af8b
JK
1316 struct bpf_verifier_state *state = &env->cur_state;
1317 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1318 int i;
1319
1320 for (i = 0; i < MAX_BPF_REG; i++)
1321 if (regs[i].type == PTR_TO_PACKET ||
1322 regs[i].type == PTR_TO_PACKET_END)
1323 mark_reg_unknown_value(regs, i);
1324
1325 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1326 if (state->stack_slot_type[i] != STACK_SPILL)
1327 continue;
1328 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1329 if (reg->type != PTR_TO_PACKET &&
1330 reg->type != PTR_TO_PACKET_END)
1331 continue;
1332 reg->type = UNKNOWN_VALUE;
1333 reg->imm = 0;
1334 }
1335}
1336
81ed18ab 1337static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1338{
58e2af8b 1339 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1340 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1341 struct bpf_reg_state *regs = state->regs;
1342 struct bpf_reg_state *reg;
33ff9823 1343 struct bpf_call_arg_meta meta;
969bf05e 1344 bool changes_data;
17a52670
AS
1345 int i, err;
1346
1347 /* find function prototype */
1348 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1349 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1350 return -EINVAL;
1351 }
1352
1353 if (env->prog->aux->ops->get_func_proto)
1354 fn = env->prog->aux->ops->get_func_proto(func_id);
1355
1356 if (!fn) {
ebb676da 1357 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1358 return -EINVAL;
1359 }
1360
1361 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1362 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1363 verbose("cannot call GPL only function from proprietary program\n");
1364 return -EINVAL;
1365 }
1366
17bedab2 1367 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1368
33ff9823 1369 memset(&meta, 0, sizeof(meta));
36bbef52 1370 meta.pkt_access = fn->pkt_access;
33ff9823 1371
435faee1
DB
1372 /* We only support one arg being in raw mode at the moment, which
1373 * is sufficient for the helper functions we have right now.
1374 */
1375 err = check_raw_mode(fn);
1376 if (err) {
ebb676da
TG
1377 verbose("kernel subsystem misconfigured func %s#%d\n",
1378 func_id_name(func_id), func_id);
435faee1
DB
1379 return err;
1380 }
1381
17a52670 1382 /* check args */
33ff9823 1383 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1384 if (err)
1385 return err;
33ff9823 1386 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1387 if (err)
1388 return err;
33ff9823 1389 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1390 if (err)
1391 return err;
33ff9823 1392 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1393 if (err)
1394 return err;
33ff9823 1395 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1396 if (err)
1397 return err;
1398
435faee1
DB
1399 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1400 * is inferred from register state.
1401 */
1402 for (i = 0; i < meta.access_size; i++) {
1403 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1404 if (err)
1405 return err;
1406 }
1407
17a52670
AS
1408 /* reset caller saved regs */
1409 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1410 reg = regs + caller_saved[i];
1411 reg->type = NOT_INIT;
1412 reg->imm = 0;
1413 }
1414
1415 /* update return register */
1416 if (fn->ret_type == RET_INTEGER) {
1417 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1418 } else if (fn->ret_type == RET_VOID) {
1419 regs[BPF_REG_0].type = NOT_INIT;
1420 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1421 struct bpf_insn_aux_data *insn_aux;
1422
17a52670 1423 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1424 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1425 /* remember map_ptr, so that check_map_access()
1426 * can check 'value_size' boundary of memory access
1427 * to map element returned from bpf_map_lookup_elem()
1428 */
33ff9823 1429 if (meta.map_ptr == NULL) {
17a52670
AS
1430 verbose("kernel subsystem misconfigured verifier\n");
1431 return -EINVAL;
1432 }
33ff9823 1433 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1434 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1435 insn_aux = &env->insn_aux_data[insn_idx];
1436 if (!insn_aux->map_ptr)
1437 insn_aux->map_ptr = meta.map_ptr;
1438 else if (insn_aux->map_ptr != meta.map_ptr)
1439 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1440 } else {
ebb676da
TG
1441 verbose("unknown return type %d of func %s#%d\n",
1442 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1443 return -EINVAL;
1444 }
04fd61ab 1445
33ff9823 1446 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1447 if (err)
1448 return err;
04fd61ab 1449
969bf05e
AS
1450 if (changes_data)
1451 clear_all_pkt_pointers(env);
1452 return 0;
1453}
1454
58e2af8b
JK
1455static int check_packet_ptr_add(struct bpf_verifier_env *env,
1456 struct bpf_insn *insn)
969bf05e 1457{
58e2af8b
JK
1458 struct bpf_reg_state *regs = env->cur_state.regs;
1459 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1460 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1461 struct bpf_reg_state tmp_reg;
969bf05e
AS
1462 s32 imm;
1463
1464 if (BPF_SRC(insn->code) == BPF_K) {
1465 /* pkt_ptr += imm */
1466 imm = insn->imm;
1467
1468add_imm:
63dfef75 1469 if (imm < 0) {
969bf05e
AS
1470 verbose("addition of negative constant to packet pointer is not allowed\n");
1471 return -EACCES;
1472 }
1473 if (imm >= MAX_PACKET_OFF ||
1474 imm + dst_reg->off >= MAX_PACKET_OFF) {
1475 verbose("constant %d is too large to add to packet pointer\n",
1476 imm);
1477 return -EACCES;
1478 }
1479 /* a constant was added to pkt_ptr.
1480 * Remember it while keeping the same 'id'
1481 */
1482 dst_reg->off += imm;
1483 } else {
d1174416
DM
1484 bool had_id;
1485
1b9b69ec
AS
1486 if (src_reg->type == PTR_TO_PACKET) {
1487 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1488 tmp_reg = *dst_reg; /* save r7 state */
1489 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1490 src_reg = &tmp_reg; /* pretend it's src_reg state */
1491 /* if the checks below reject it, the copy won't matter,
1492 * since we're rejecting the whole program. If all ok,
1493 * then imm22 state will be added to r7
1494 * and r7 will be pkt(id=0,off=22,r=62) while
1495 * r6 will stay as pkt(id=0,off=0,r=62)
1496 */
1497 }
1498
969bf05e
AS
1499 if (src_reg->type == CONST_IMM) {
1500 /* pkt_ptr += reg where reg is known constant */
1501 imm = src_reg->imm;
1502 goto add_imm;
1503 }
1504 /* disallow pkt_ptr += reg
1505 * if reg is not uknown_value with guaranteed zero upper bits
1506 * otherwise pkt_ptr may overflow and addition will become
1507 * subtraction which is not allowed
1508 */
1509 if (src_reg->type != UNKNOWN_VALUE) {
1510 verbose("cannot add '%s' to ptr_to_packet\n",
1511 reg_type_str[src_reg->type]);
1512 return -EACCES;
1513 }
1514 if (src_reg->imm < 48) {
1515 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1516 src_reg->imm);
1517 return -EACCES;
1518 }
d1174416
DM
1519
1520 had_id = (dst_reg->id != 0);
1521
969bf05e
AS
1522 /* dst_reg stays as pkt_ptr type and since some positive
1523 * integer value was added to the pointer, increment its 'id'
1524 */
1f415a74 1525 dst_reg->id = ++env->id_gen;
969bf05e 1526
d1174416
DM
1527 /* something was added to pkt_ptr, set range to zero */
1528 dst_reg->aux_off = dst_reg->off;
969bf05e
AS
1529 dst_reg->off = 0;
1530 dst_reg->range = 0;
d1174416
DM
1531 if (had_id)
1532 dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1533 src_reg->min_align);
1534 else
1535 dst_reg->aux_off_align = src_reg->min_align;
969bf05e
AS
1536 }
1537 return 0;
1538}
1539
58e2af8b 1540static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1541{
58e2af8b
JK
1542 struct bpf_reg_state *regs = env->cur_state.regs;
1543 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1544 u8 opcode = BPF_OP(insn->code);
1545 s64 imm_log2;
1546
1547 /* for type == UNKNOWN_VALUE:
1548 * imm > 0 -> number of zero upper bits
1549 * imm == 0 -> don't track which is the same as all bits can be non-zero
1550 */
1551
1552 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1553 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1554
1555 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1556 dst_reg->imm && opcode == BPF_ADD) {
1557 /* dreg += sreg
1558 * where both have zero upper bits. Adding them
1559 * can only result making one more bit non-zero
1560 * in the larger value.
1561 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1562 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1563 */
1564 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1565 dst_reg->imm--;
1566 return 0;
1567 }
1568 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1569 dst_reg->imm && opcode == BPF_ADD) {
1570 /* dreg += sreg
1571 * where dreg has zero upper bits and sreg is const.
1572 * Adding them can only result making one more bit
1573 * non-zero in the larger value.
1574 */
1575 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1576 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1577 dst_reg->imm--;
1578 return 0;
1579 }
1580 /* all other cases non supported yet, just mark dst_reg */
1581 dst_reg->imm = 0;
1582 return 0;
1583 }
1584
1585 /* sign extend 32-bit imm into 64-bit to make sure that
1586 * negative values occupy bit 63. Note ilog2() would have
1587 * been incorrect, since sizeof(insn->imm) == 4
1588 */
1589 imm_log2 = __ilog2_u64((long long)insn->imm);
1590
1591 if (dst_reg->imm && opcode == BPF_LSH) {
1592 /* reg <<= imm
1593 * if reg was a result of 2 byte load, then its imm == 48
1594 * which means that upper 48 bits are zero and shifting this reg
1595 * left by 4 would mean that upper 44 bits are still zero
1596 */
1597 dst_reg->imm -= insn->imm;
1598 } else if (dst_reg->imm && opcode == BPF_MUL) {
1599 /* reg *= imm
1600 * if multiplying by 14 subtract 4
1601 * This is conservative calculation of upper zero bits.
1602 * It's not trying to special case insn->imm == 1 or 0 cases
1603 */
1604 dst_reg->imm -= imm_log2 + 1;
1605 } else if (opcode == BPF_AND) {
1606 /* reg &= imm */
1607 dst_reg->imm = 63 - imm_log2;
1608 } else if (dst_reg->imm && opcode == BPF_ADD) {
1609 /* reg += imm */
1610 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1611 dst_reg->imm--;
1612 } else if (opcode == BPF_RSH) {
1613 /* reg >>= imm
1614 * which means that after right shift, upper bits will be zero
1615 * note that verifier already checked that
1616 * 0 <= imm < 64 for shift insn
1617 */
1618 dst_reg->imm += insn->imm;
1619 if (unlikely(dst_reg->imm > 64))
1620 /* some dumb code did:
1621 * r2 = *(u32 *)mem;
1622 * r2 >>= 32;
1623 * and all bits are zero now */
1624 dst_reg->imm = 64;
1625 } else {
1626 /* all other alu ops, means that we don't know what will
1627 * happen to the value, mark it with unknown number of zero bits
1628 */
1629 dst_reg->imm = 0;
1630 }
1631
1632 if (dst_reg->imm < 0) {
1633 /* all 64 bits of the register can contain non-zero bits
1634 * and such value cannot be added to ptr_to_packet, since it
1635 * may overflow, mark it as unknown to avoid further eval
1636 */
1637 dst_reg->imm = 0;
1638 }
1639 return 0;
1640}
1641
58e2af8b
JK
1642static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1643 struct bpf_insn *insn)
969bf05e 1644{
58e2af8b
JK
1645 struct bpf_reg_state *regs = env->cur_state.regs;
1646 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1647 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1648 u8 opcode = BPF_OP(insn->code);
3fadc801 1649 u64 dst_imm = dst_reg->imm;
969bf05e 1650
3fadc801
DB
1651 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1652 * containing ALU ops. Don't care about overflow or negative
1653 * values, just add/sub/... them; registers are in u64.
969bf05e 1654 */
3fadc801
DB
1655 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1656 dst_imm += insn->imm;
1657 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1658 src_reg->type == CONST_IMM) {
1659 dst_imm += src_reg->imm;
1660 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1661 dst_imm -= insn->imm;
1662 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1663 src_reg->type == CONST_IMM) {
1664 dst_imm -= src_reg->imm;
1665 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1666 dst_imm *= insn->imm;
1667 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1668 src_reg->type == CONST_IMM) {
1669 dst_imm *= src_reg->imm;
1670 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1671 dst_imm |= insn->imm;
1672 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1673 src_reg->type == CONST_IMM) {
1674 dst_imm |= src_reg->imm;
1675 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1676 dst_imm &= insn->imm;
1677 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1678 src_reg->type == CONST_IMM) {
1679 dst_imm &= src_reg->imm;
1680 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1681 dst_imm >>= insn->imm;
1682 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1683 src_reg->type == CONST_IMM) {
1684 dst_imm >>= src_reg->imm;
1685 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1686 dst_imm <<= insn->imm;
1687 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1688 src_reg->type == CONST_IMM) {
1689 dst_imm <<= src_reg->imm;
1690 } else {
969bf05e 1691 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1692 goto out;
1693 }
1694
1695 dst_reg->imm = dst_imm;
1696out:
17a52670
AS
1697 return 0;
1698}
1699
48461135
JB
1700static void check_reg_overflow(struct bpf_reg_state *reg)
1701{
1702 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1703 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1704 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1705 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1706 reg->min_value = BPF_REGISTER_MIN_RANGE;
1707}
1708
d1174416
DM
1709static u32 calc_align(u32 imm)
1710{
1711 if (!imm)
1712 return 1U << 31;
1713 return imm - ((imm - 1) & imm);
1714}
1715
48461135
JB
1716static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1717 struct bpf_insn *insn)
1718{
1719 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1720 s64 min_val = BPF_REGISTER_MIN_RANGE;
1721 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135 1722 u8 opcode = BPF_OP(insn->code);
d1174416 1723 u32 dst_align, src_align;
48461135
JB
1724
1725 dst_reg = &regs[insn->dst_reg];
d1174416 1726 src_align = 0;
48461135
JB
1727 if (BPF_SRC(insn->code) == BPF_X) {
1728 check_reg_overflow(&regs[insn->src_reg]);
1729 min_val = regs[insn->src_reg].min_value;
1730 max_val = regs[insn->src_reg].max_value;
1731
1732 /* If the source register is a random pointer then the
1733 * min_value/max_value values represent the range of the known
1734 * accesses into that value, not the actual min/max value of the
1735 * register itself. In this case we have to reset the reg range
1736 * values so we know it is not safe to look at.
1737 */
1738 if (regs[insn->src_reg].type != CONST_IMM &&
1739 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1740 min_val = BPF_REGISTER_MIN_RANGE;
1741 max_val = BPF_REGISTER_MAX_RANGE;
d1174416
DM
1742 src_align = 0;
1743 } else {
1744 src_align = regs[insn->src_reg].min_align;
48461135
JB
1745 }
1746 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1747 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1748 min_val = max_val = insn->imm;
d1174416 1749 src_align = calc_align(insn->imm);
48461135
JB
1750 }
1751
d1174416
DM
1752 dst_align = dst_reg->min_align;
1753
48461135
JB
1754 /* We don't know anything about what was done to this register, mark it
1755 * as unknown.
1756 */
1757 if (min_val == BPF_REGISTER_MIN_RANGE &&
1758 max_val == BPF_REGISTER_MAX_RANGE) {
1759 reset_reg_range_values(regs, insn->dst_reg);
1760 return;
1761 }
1762
f23cc643
JB
1763 /* If one of our values was at the end of our ranges then we can't just
1764 * do our normal operations to the register, we need to set the values
1765 * to the min/max since they are undefined.
1766 */
1767 if (min_val == BPF_REGISTER_MIN_RANGE)
1768 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1769 if (max_val == BPF_REGISTER_MAX_RANGE)
1770 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1771
48461135
JB
1772 switch (opcode) {
1773 case BPF_ADD:
f23cc643
JB
1774 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1775 dst_reg->min_value += min_val;
1776 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1777 dst_reg->max_value += max_val;
d1174416 1778 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1779 break;
1780 case BPF_SUB:
f23cc643
JB
1781 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1782 dst_reg->min_value -= min_val;
1783 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1784 dst_reg->max_value -= max_val;
d1174416 1785 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1786 break;
1787 case BPF_MUL:
f23cc643
JB
1788 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1789 dst_reg->min_value *= min_val;
1790 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1791 dst_reg->max_value *= max_val;
d1174416 1792 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1793 break;
1794 case BPF_AND:
f23cc643
JB
1795 /* Disallow AND'ing of negative numbers, ain't nobody got time
1796 * for that. Otherwise the minimum is 0 and the max is the max
1797 * value we could AND against.
1798 */
1799 if (min_val < 0)
1800 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1801 else
1802 dst_reg->min_value = 0;
48461135 1803 dst_reg->max_value = max_val;
d1174416 1804 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1805 break;
1806 case BPF_LSH:
1807 /* Gotta have special overflow logic here, if we're shifting
1808 * more than MAX_RANGE then just assume we have an invalid
1809 * range.
1810 */
d1174416 1811 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
48461135 1812 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416
DM
1813 dst_reg->min_align = 1;
1814 } else {
1815 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1816 dst_reg->min_value <<= min_val;
1817 if (!dst_reg->min_align)
1818 dst_reg->min_align = 1;
1819 dst_reg->min_align <<= min_val;
1820 }
48461135
JB
1821 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1822 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1823 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1824 dst_reg->max_value <<= max_val;
1825 break;
1826 case BPF_RSH:
f23cc643
JB
1827 /* RSH by a negative number is undefined, and the BPF_RSH is an
1828 * unsigned shift, so make the appropriate casts.
48461135 1829 */
d1174416 1830 if (min_val < 0 || dst_reg->min_value < 0) {
f23cc643 1831 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416 1832 } else {
f23cc643
JB
1833 dst_reg->min_value =
1834 (u64)(dst_reg->min_value) >> min_val;
d1174416
DM
1835 }
1836 if (min_val < 0) {
1837 dst_reg->min_align = 1;
1838 } else {
1839 dst_reg->min_align >>= (u64) min_val;
1840 if (!dst_reg->min_align)
1841 dst_reg->min_align = 1;
1842 }
f23cc643
JB
1843 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1844 dst_reg->max_value >>= max_val;
48461135
JB
1845 break;
1846 default:
1847 reset_reg_range_values(regs, insn->dst_reg);
1848 break;
1849 }
1850
1851 check_reg_overflow(dst_reg);
1852}
1853
17a52670 1854/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1855static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1856{
58e2af8b 1857 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1858 u8 opcode = BPF_OP(insn->code);
1859 int err;
1860
1861 if (opcode == BPF_END || opcode == BPF_NEG) {
1862 if (opcode == BPF_NEG) {
1863 if (BPF_SRC(insn->code) != 0 ||
1864 insn->src_reg != BPF_REG_0 ||
1865 insn->off != 0 || insn->imm != 0) {
1866 verbose("BPF_NEG uses reserved fields\n");
1867 return -EINVAL;
1868 }
1869 } else {
1870 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1871 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1872 verbose("BPF_END uses reserved fields\n");
1873 return -EINVAL;
1874 }
1875 }
1876
1877 /* check src operand */
1878 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1879 if (err)
1880 return err;
1881
1be7f75d
AS
1882 if (is_pointer_value(env, insn->dst_reg)) {
1883 verbose("R%d pointer arithmetic prohibited\n",
1884 insn->dst_reg);
1885 return -EACCES;
1886 }
1887
17a52670
AS
1888 /* check dest operand */
1889 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1890 if (err)
1891 return err;
1892
1893 } else if (opcode == BPF_MOV) {
1894
1895 if (BPF_SRC(insn->code) == BPF_X) {
1896 if (insn->imm != 0 || insn->off != 0) {
1897 verbose("BPF_MOV uses reserved fields\n");
1898 return -EINVAL;
1899 }
1900
1901 /* check src operand */
1902 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1903 if (err)
1904 return err;
1905 } else {
1906 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1907 verbose("BPF_MOV uses reserved fields\n");
1908 return -EINVAL;
1909 }
1910 }
1911
1912 /* check dest operand */
1913 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1914 if (err)
1915 return err;
1916
48461135
JB
1917 /* we are setting our register to something new, we need to
1918 * reset its range values.
1919 */
1920 reset_reg_range_values(regs, insn->dst_reg);
1921
17a52670
AS
1922 if (BPF_SRC(insn->code) == BPF_X) {
1923 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1924 /* case: R1 = R2
1925 * copy register state to dest reg
1926 */
1927 regs[insn->dst_reg] = regs[insn->src_reg];
1928 } else {
1be7f75d
AS
1929 if (is_pointer_value(env, insn->src_reg)) {
1930 verbose("R%d partial copy of pointer\n",
1931 insn->src_reg);
1932 return -EACCES;
1933 }
57a09bf0 1934 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1935 }
1936 } else {
1937 /* case: R = imm
1938 * remember the value we stored into this reg
1939 */
1940 regs[insn->dst_reg].type = CONST_IMM;
1941 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1942 regs[insn->dst_reg].max_value = insn->imm;
1943 regs[insn->dst_reg].min_value = insn->imm;
d1174416 1944 regs[insn->dst_reg].min_align = calc_align(insn->imm);
17a52670
AS
1945 }
1946
1947 } else if (opcode > BPF_END) {
1948 verbose("invalid BPF_ALU opcode %x\n", opcode);
1949 return -EINVAL;
1950
1951 } else { /* all other ALU ops: and, sub, xor, add, ... */
1952
17a52670
AS
1953 if (BPF_SRC(insn->code) == BPF_X) {
1954 if (insn->imm != 0 || insn->off != 0) {
1955 verbose("BPF_ALU uses reserved fields\n");
1956 return -EINVAL;
1957 }
1958 /* check src1 operand */
1959 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1960 if (err)
1961 return err;
1962 } else {
1963 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1964 verbose("BPF_ALU uses reserved fields\n");
1965 return -EINVAL;
1966 }
1967 }
1968
1969 /* check src2 operand */
1970 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1971 if (err)
1972 return err;
1973
1974 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1975 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1976 verbose("div by zero\n");
1977 return -EINVAL;
1978 }
1979
229394e8
RV
1980 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1981 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1982 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1983
1984 if (insn->imm < 0 || insn->imm >= size) {
1985 verbose("invalid shift %d\n", insn->imm);
1986 return -EINVAL;
1987 }
1988 }
1989
1a0dc1ac
AS
1990 /* check dest operand */
1991 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1992 if (err)
1993 return err;
1994
1995 dst_reg = &regs[insn->dst_reg];
1996
48461135
JB
1997 /* first we want to adjust our ranges. */
1998 adjust_reg_min_max_vals(env, insn);
1999
17a52670
AS
2000 /* pattern match 'bpf_add Rx, imm' instruction */
2001 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
2002 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2003 dst_reg->type = PTR_TO_STACK;
2004 dst_reg->imm = insn->imm;
2005 return 0;
332270fd
YS
2006 } else if (opcode == BPF_ADD &&
2007 BPF_CLASS(insn->code) == BPF_ALU64 &&
2008 dst_reg->type == PTR_TO_STACK &&
2009 ((BPF_SRC(insn->code) == BPF_X &&
2010 regs[insn->src_reg].type == CONST_IMM) ||
2011 BPF_SRC(insn->code) == BPF_K)) {
2012 if (BPF_SRC(insn->code) == BPF_X)
2013 dst_reg->imm += regs[insn->src_reg].imm;
2014 else
2015 dst_reg->imm += insn->imm;
2016 return 0;
969bf05e
AS
2017 } else if (opcode == BPF_ADD &&
2018 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
2019 (dst_reg->type == PTR_TO_PACKET ||
2020 (BPF_SRC(insn->code) == BPF_X &&
2021 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
2022 /* ptr_to_packet += K|X */
2023 return check_packet_ptr_add(env, insn);
2024 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2025 dst_reg->type == UNKNOWN_VALUE &&
2026 env->allow_ptr_leaks) {
2027 /* unknown += K|X */
2028 return evaluate_reg_alu(env, insn);
2029 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2030 dst_reg->type == CONST_IMM &&
2031 env->allow_ptr_leaks) {
2032 /* reg_imm += K|X */
2033 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
2034 } else if (is_pointer_value(env, insn->dst_reg)) {
2035 verbose("R%d pointer arithmetic prohibited\n",
2036 insn->dst_reg);
2037 return -EACCES;
2038 } else if (BPF_SRC(insn->code) == BPF_X &&
2039 is_pointer_value(env, insn->src_reg)) {
2040 verbose("R%d pointer arithmetic prohibited\n",
2041 insn->src_reg);
2042 return -EACCES;
2043 }
17a52670 2044
48461135
JB
2045 /* If we did pointer math on a map value then just set it to our
2046 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2047 * loads to this register appropriately, otherwise just mark the
2048 * register as unknown.
2049 */
2050 if (env->allow_ptr_leaks &&
fce366a9 2051 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
48461135
JB
2052 (dst_reg->type == PTR_TO_MAP_VALUE ||
2053 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2054 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2055 else
2056 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2057 }
2058
2059 return 0;
2060}
2061
58e2af8b
JK
2062static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2063 struct bpf_reg_state *dst_reg)
969bf05e 2064{
58e2af8b 2065 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2066 int i;
2d2be8ca
DB
2067
2068 /* LLVM can generate two kind of checks:
2069 *
2070 * Type 1:
2071 *
2072 * r2 = r3;
2073 * r2 += 8;
2074 * if (r2 > pkt_end) goto <handle exception>
2075 * <access okay>
2076 *
2077 * Where:
2078 * r2 == dst_reg, pkt_end == src_reg
2079 * r2=pkt(id=n,off=8,r=0)
2080 * r3=pkt(id=n,off=0,r=0)
2081 *
2082 * Type 2:
2083 *
2084 * r2 = r3;
2085 * r2 += 8;
2086 * if (pkt_end >= r2) goto <access okay>
2087 * <handle exception>
2088 *
2089 * Where:
2090 * pkt_end == dst_reg, r2 == src_reg
2091 * r2=pkt(id=n,off=8,r=0)
2092 * r3=pkt(id=n,off=0,r=0)
2093 *
2094 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2095 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2096 */
2d2be8ca 2097
969bf05e
AS
2098 for (i = 0; i < MAX_BPF_REG; i++)
2099 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682
AS
2100 /* keep the maximum range already checked */
2101 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
2102
2103 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2104 if (state->stack_slot_type[i] != STACK_SPILL)
2105 continue;
2106 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2107 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
b1977682 2108 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
2109 }
2110}
2111
48461135
JB
2112/* Adjusts the register min/max values in the case that the dst_reg is the
2113 * variable register that we are working on, and src_reg is a constant or we're
2114 * simply doing a BPF_K check.
2115 */
2116static void reg_set_min_max(struct bpf_reg_state *true_reg,
2117 struct bpf_reg_state *false_reg, u64 val,
2118 u8 opcode)
2119{
2120 switch (opcode) {
2121 case BPF_JEQ:
2122 /* If this is false then we know nothing Jon Snow, but if it is
2123 * true then we know for sure.
2124 */
2125 true_reg->max_value = true_reg->min_value = val;
2126 break;
2127 case BPF_JNE:
2128 /* If this is true we know nothing Jon Snow, but if it is false
2129 * we know the value for sure;
2130 */
2131 false_reg->max_value = false_reg->min_value = val;
2132 break;
2133 case BPF_JGT:
2134 /* Unsigned comparison, the minimum value is 0. */
2135 false_reg->min_value = 0;
7e57fbb2 2136 /* fallthrough */
48461135
JB
2137 case BPF_JSGT:
2138 /* If this is false then we know the maximum val is val,
2139 * otherwise we know the min val is val+1.
2140 */
2141 false_reg->max_value = val;
2142 true_reg->min_value = val + 1;
2143 break;
2144 case BPF_JGE:
2145 /* Unsigned comparison, the minimum value is 0. */
2146 false_reg->min_value = 0;
7e57fbb2 2147 /* fallthrough */
48461135
JB
2148 case BPF_JSGE:
2149 /* If this is false then we know the maximum value is val - 1,
2150 * otherwise we know the mimimum value is val.
2151 */
2152 false_reg->max_value = val - 1;
2153 true_reg->min_value = val;
2154 break;
2155 default:
2156 break;
2157 }
2158
2159 check_reg_overflow(false_reg);
2160 check_reg_overflow(true_reg);
2161}
2162
2163/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2164 * is the variable reg.
2165 */
2166static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2167 struct bpf_reg_state *false_reg, u64 val,
2168 u8 opcode)
2169{
2170 switch (opcode) {
2171 case BPF_JEQ:
2172 /* If this is false then we know nothing Jon Snow, but if it is
2173 * true then we know for sure.
2174 */
2175 true_reg->max_value = true_reg->min_value = val;
2176 break;
2177 case BPF_JNE:
2178 /* If this is true we know nothing Jon Snow, but if it is false
2179 * we know the value for sure;
2180 */
2181 false_reg->max_value = false_reg->min_value = val;
2182 break;
2183 case BPF_JGT:
2184 /* Unsigned comparison, the minimum value is 0. */
2185 true_reg->min_value = 0;
7e57fbb2 2186 /* fallthrough */
48461135
JB
2187 case BPF_JSGT:
2188 /*
2189 * If this is false, then the val is <= the register, if it is
2190 * true the register <= to the val.
2191 */
2192 false_reg->min_value = val;
2193 true_reg->max_value = val - 1;
2194 break;
2195 case BPF_JGE:
2196 /* Unsigned comparison, the minimum value is 0. */
2197 true_reg->min_value = 0;
7e57fbb2 2198 /* fallthrough */
48461135
JB
2199 case BPF_JSGE:
2200 /* If this is false then constant < register, if it is true then
2201 * the register < constant.
2202 */
2203 false_reg->min_value = val + 1;
2204 true_reg->max_value = val;
2205 break;
2206 default:
2207 break;
2208 }
2209
2210 check_reg_overflow(false_reg);
2211 check_reg_overflow(true_reg);
2212}
2213
57a09bf0
TG
2214static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2215 enum bpf_reg_type type)
2216{
2217 struct bpf_reg_state *reg = &regs[regno];
2218
2219 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
56f668df
MKL
2220 if (type == UNKNOWN_VALUE) {
2221 __mark_reg_unknown_value(regs, regno);
2222 } else if (reg->map_ptr->inner_map_meta) {
2223 reg->type = CONST_PTR_TO_MAP;
2224 reg->map_ptr = reg->map_ptr->inner_map_meta;
2225 } else {
2226 reg->type = type;
2227 }
a08dd0da
DB
2228 /* We don't need id from this point onwards anymore, thus we
2229 * should better reset it, so that state pruning has chances
2230 * to take effect.
2231 */
2232 reg->id = 0;
57a09bf0
TG
2233 }
2234}
2235
2236/* The logic is similar to find_good_pkt_pointers(), both could eventually
2237 * be folded together at some point.
2238 */
2239static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2240 enum bpf_reg_type type)
2241{
2242 struct bpf_reg_state *regs = state->regs;
a08dd0da 2243 u32 id = regs[regno].id;
57a09bf0
TG
2244 int i;
2245
2246 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2247 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2248
2249 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2250 if (state->stack_slot_type[i] != STACK_SPILL)
2251 continue;
a08dd0da 2252 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2253 }
2254}
2255
58e2af8b 2256static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2257 struct bpf_insn *insn, int *insn_idx)
2258{
58e2af8b
JK
2259 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2260 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2261 u8 opcode = BPF_OP(insn->code);
2262 int err;
2263
2264 if (opcode > BPF_EXIT) {
2265 verbose("invalid BPF_JMP opcode %x\n", opcode);
2266 return -EINVAL;
2267 }
2268
2269 if (BPF_SRC(insn->code) == BPF_X) {
2270 if (insn->imm != 0) {
2271 verbose("BPF_JMP uses reserved fields\n");
2272 return -EINVAL;
2273 }
2274
2275 /* check src1 operand */
2276 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2277 if (err)
2278 return err;
1be7f75d
AS
2279
2280 if (is_pointer_value(env, insn->src_reg)) {
2281 verbose("R%d pointer comparison prohibited\n",
2282 insn->src_reg);
2283 return -EACCES;
2284 }
17a52670
AS
2285 } else {
2286 if (insn->src_reg != BPF_REG_0) {
2287 verbose("BPF_JMP uses reserved fields\n");
2288 return -EINVAL;
2289 }
2290 }
2291
2292 /* check src2 operand */
2293 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2294 if (err)
2295 return err;
2296
1a0dc1ac
AS
2297 dst_reg = &regs[insn->dst_reg];
2298
17a52670
AS
2299 /* detect if R == 0 where R was initialized to zero earlier */
2300 if (BPF_SRC(insn->code) == BPF_K &&
2301 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2302 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2303 if (opcode == BPF_JEQ) {
2304 /* if (imm == imm) goto pc+off;
2305 * only follow the goto, ignore fall-through
2306 */
2307 *insn_idx += insn->off;
2308 return 0;
2309 } else {
2310 /* if (imm != imm) goto pc+off;
2311 * only follow fall-through branch, since
2312 * that's where the program will go
2313 */
2314 return 0;
2315 }
2316 }
2317
2318 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2319 if (!other_branch)
2320 return -EFAULT;
2321
48461135
JB
2322 /* detect if we are comparing against a constant value so we can adjust
2323 * our min/max values for our dst register.
2324 */
2325 if (BPF_SRC(insn->code) == BPF_X) {
2326 if (regs[insn->src_reg].type == CONST_IMM)
2327 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2328 dst_reg, regs[insn->src_reg].imm,
2329 opcode);
2330 else if (dst_reg->type == CONST_IMM)
2331 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2332 &regs[insn->src_reg], dst_reg->imm,
2333 opcode);
2334 } else {
2335 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2336 dst_reg, insn->imm, opcode);
2337 }
2338
58e2af8b 2339 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2340 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2341 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2342 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2343 /* Mark all identical map registers in each branch as either
2344 * safe or unknown depending R == 0 or R != 0 conditional.
2345 */
2346 mark_map_regs(this_branch, insn->dst_reg,
2347 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2348 mark_map_regs(other_branch, insn->dst_reg,
2349 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2350 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2351 dst_reg->type == PTR_TO_PACKET &&
2352 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2353 find_good_pkt_pointers(this_branch, dst_reg);
2354 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2355 dst_reg->type == PTR_TO_PACKET_END &&
2356 regs[insn->src_reg].type == PTR_TO_PACKET) {
2357 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2358 } else if (is_pointer_value(env, insn->dst_reg)) {
2359 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2360 return -EACCES;
17a52670
AS
2361 }
2362 if (log_level)
2d2be8ca 2363 print_verifier_state(this_branch);
17a52670
AS
2364 return 0;
2365}
2366
0246e64d
AS
2367/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2368static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2369{
2370 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2371
2372 return (struct bpf_map *) (unsigned long) imm64;
2373}
2374
17a52670 2375/* verify BPF_LD_IMM64 instruction */
58e2af8b 2376static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2377{
58e2af8b 2378 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2379 int err;
2380
2381 if (BPF_SIZE(insn->code) != BPF_DW) {
2382 verbose("invalid BPF_LD_IMM insn\n");
2383 return -EINVAL;
2384 }
2385 if (insn->off != 0) {
2386 verbose("BPF_LD_IMM64 uses reserved fields\n");
2387 return -EINVAL;
2388 }
2389
2390 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2391 if (err)
2392 return err;
2393
6b173873 2394 if (insn->src_reg == 0) {
6b173873
JK
2395 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2396
6b173873
JK
2397 regs[insn->dst_reg].type = CONST_IMM;
2398 regs[insn->dst_reg].imm = imm;
17a52670 2399 return 0;
6b173873 2400 }
17a52670
AS
2401
2402 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2403 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2404
2405 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2406 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2407 return 0;
2408}
2409
96be4325
DB
2410static bool may_access_skb(enum bpf_prog_type type)
2411{
2412 switch (type) {
2413 case BPF_PROG_TYPE_SOCKET_FILTER:
2414 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2415 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2416 return true;
2417 default:
2418 return false;
2419 }
2420}
2421
ddd872bc
AS
2422/* verify safety of LD_ABS|LD_IND instructions:
2423 * - they can only appear in the programs where ctx == skb
2424 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2425 * preserve R6-R9, and store return value into R0
2426 *
2427 * Implicit input:
2428 * ctx == skb == R6 == CTX
2429 *
2430 * Explicit input:
2431 * SRC == any register
2432 * IMM == 32-bit immediate
2433 *
2434 * Output:
2435 * R0 - 8/16/32-bit skb data converted to cpu endianness
2436 */
58e2af8b 2437static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2438{
58e2af8b 2439 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2440 u8 mode = BPF_MODE(insn->code);
58e2af8b 2441 struct bpf_reg_state *reg;
ddd872bc
AS
2442 int i, err;
2443
24701ece 2444 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2445 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2446 return -EINVAL;
2447 }
2448
2449 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2450 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2451 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2452 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2453 return -EINVAL;
2454 }
2455
2456 /* check whether implicit source operand (register R6) is readable */
2457 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2458 if (err)
2459 return err;
2460
2461 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2462 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2463 return -EINVAL;
2464 }
2465
2466 if (mode == BPF_IND) {
2467 /* check explicit source operand */
2468 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2469 if (err)
2470 return err;
2471 }
2472
2473 /* reset caller saved regs to unreadable */
2474 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2475 reg = regs + caller_saved[i];
2476 reg->type = NOT_INIT;
2477 reg->imm = 0;
2478 }
2479
2480 /* mark destination R0 register as readable, since it contains
2481 * the value fetched from the packet
2482 */
2483 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2484 return 0;
2485}
2486
475fb78f
AS
2487/* non-recursive DFS pseudo code
2488 * 1 procedure DFS-iterative(G,v):
2489 * 2 label v as discovered
2490 * 3 let S be a stack
2491 * 4 S.push(v)
2492 * 5 while S is not empty
2493 * 6 t <- S.pop()
2494 * 7 if t is what we're looking for:
2495 * 8 return t
2496 * 9 for all edges e in G.adjacentEdges(t) do
2497 * 10 if edge e is already labelled
2498 * 11 continue with the next edge
2499 * 12 w <- G.adjacentVertex(t,e)
2500 * 13 if vertex w is not discovered and not explored
2501 * 14 label e as tree-edge
2502 * 15 label w as discovered
2503 * 16 S.push(w)
2504 * 17 continue at 5
2505 * 18 else if vertex w is discovered
2506 * 19 label e as back-edge
2507 * 20 else
2508 * 21 // vertex w is explored
2509 * 22 label e as forward- or cross-edge
2510 * 23 label t as explored
2511 * 24 S.pop()
2512 *
2513 * convention:
2514 * 0x10 - discovered
2515 * 0x11 - discovered and fall-through edge labelled
2516 * 0x12 - discovered and fall-through and branch edges labelled
2517 * 0x20 - explored
2518 */
2519
2520enum {
2521 DISCOVERED = 0x10,
2522 EXPLORED = 0x20,
2523 FALLTHROUGH = 1,
2524 BRANCH = 2,
2525};
2526
58e2af8b 2527#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2528
475fb78f
AS
2529static int *insn_stack; /* stack of insns to process */
2530static int cur_stack; /* current stack index */
2531static int *insn_state;
2532
2533/* t, w, e - match pseudo-code above:
2534 * t - index of current instruction
2535 * w - next instruction
2536 * e - edge
2537 */
58e2af8b 2538static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2539{
2540 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2541 return 0;
2542
2543 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2544 return 0;
2545
2546 if (w < 0 || w >= env->prog->len) {
2547 verbose("jump out of range from insn %d to %d\n", t, w);
2548 return -EINVAL;
2549 }
2550
f1bca824
AS
2551 if (e == BRANCH)
2552 /* mark branch target for state pruning */
2553 env->explored_states[w] = STATE_LIST_MARK;
2554
475fb78f
AS
2555 if (insn_state[w] == 0) {
2556 /* tree-edge */
2557 insn_state[t] = DISCOVERED | e;
2558 insn_state[w] = DISCOVERED;
2559 if (cur_stack >= env->prog->len)
2560 return -E2BIG;
2561 insn_stack[cur_stack++] = w;
2562 return 1;
2563 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2564 verbose("back-edge from insn %d to %d\n", t, w);
2565 return -EINVAL;
2566 } else if (insn_state[w] == EXPLORED) {
2567 /* forward- or cross-edge */
2568 insn_state[t] = DISCOVERED | e;
2569 } else {
2570 verbose("insn state internal bug\n");
2571 return -EFAULT;
2572 }
2573 return 0;
2574}
2575
2576/* non-recursive depth-first-search to detect loops in BPF program
2577 * loop == back-edge in directed graph
2578 */
58e2af8b 2579static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2580{
2581 struct bpf_insn *insns = env->prog->insnsi;
2582 int insn_cnt = env->prog->len;
2583 int ret = 0;
2584 int i, t;
2585
2586 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2587 if (!insn_state)
2588 return -ENOMEM;
2589
2590 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2591 if (!insn_stack) {
2592 kfree(insn_state);
2593 return -ENOMEM;
2594 }
2595
2596 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2597 insn_stack[0] = 0; /* 0 is the first instruction */
2598 cur_stack = 1;
2599
2600peek_stack:
2601 if (cur_stack == 0)
2602 goto check_state;
2603 t = insn_stack[cur_stack - 1];
2604
2605 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2606 u8 opcode = BPF_OP(insns[t].code);
2607
2608 if (opcode == BPF_EXIT) {
2609 goto mark_explored;
2610 } else if (opcode == BPF_CALL) {
2611 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2612 if (ret == 1)
2613 goto peek_stack;
2614 else if (ret < 0)
2615 goto err_free;
07016151
DB
2616 if (t + 1 < insn_cnt)
2617 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2618 } else if (opcode == BPF_JA) {
2619 if (BPF_SRC(insns[t].code) != BPF_K) {
2620 ret = -EINVAL;
2621 goto err_free;
2622 }
2623 /* unconditional jump with single edge */
2624 ret = push_insn(t, t + insns[t].off + 1,
2625 FALLTHROUGH, env);
2626 if (ret == 1)
2627 goto peek_stack;
2628 else if (ret < 0)
2629 goto err_free;
f1bca824
AS
2630 /* tell verifier to check for equivalent states
2631 * after every call and jump
2632 */
c3de6317
AS
2633 if (t + 1 < insn_cnt)
2634 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2635 } else {
2636 /* conditional jump with two edges */
2637 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2638 if (ret == 1)
2639 goto peek_stack;
2640 else if (ret < 0)
2641 goto err_free;
2642
2643 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2644 if (ret == 1)
2645 goto peek_stack;
2646 else if (ret < 0)
2647 goto err_free;
2648 }
2649 } else {
2650 /* all other non-branch instructions with single
2651 * fall-through edge
2652 */
2653 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2654 if (ret == 1)
2655 goto peek_stack;
2656 else if (ret < 0)
2657 goto err_free;
2658 }
2659
2660mark_explored:
2661 insn_state[t] = EXPLORED;
2662 if (cur_stack-- <= 0) {
2663 verbose("pop stack internal bug\n");
2664 ret = -EFAULT;
2665 goto err_free;
2666 }
2667 goto peek_stack;
2668
2669check_state:
2670 for (i = 0; i < insn_cnt; i++) {
2671 if (insn_state[i] != EXPLORED) {
2672 verbose("unreachable insn %d\n", i);
2673 ret = -EINVAL;
2674 goto err_free;
2675 }
2676 }
2677 ret = 0; /* cfg looks good */
2678
2679err_free:
2680 kfree(insn_state);
2681 kfree(insn_stack);
2682 return ret;
2683}
2684
969bf05e
AS
2685/* the following conditions reduce the number of explored insns
2686 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2687 */
58e2af8b
JK
2688static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2689 struct bpf_reg_state *cur)
969bf05e
AS
2690{
2691 if (old->id != cur->id)
2692 return false;
2693
2694 /* old ptr_to_packet is more conservative, since it allows smaller
2695 * range. Ex:
2696 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2697 * old(off=0,r=10) means that with range=10 the verifier proceeded
2698 * further and found no issues with the program. Now we're in the same
2699 * spot with cur(off=0,r=20), so we're safe too, since anything further
2700 * will only be looking at most 10 bytes after this pointer.
2701 */
2702 if (old->off == cur->off && old->range < cur->range)
2703 return true;
2704
2705 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2706 * since both cannot be used for packet access and safe(old)
2707 * pointer has smaller off that could be used for further
2708 * 'if (ptr > data_end)' check
2709 * Ex:
2710 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2711 * that we cannot access the packet.
2712 * The safe range is:
2713 * [ptr, ptr + range - off)
2714 * so whenever off >=range, it means no safe bytes from this pointer.
2715 * When comparing old->off <= cur->off, it means that older code
2716 * went with smaller offset and that offset was later
2717 * used to figure out the safe range after 'if (ptr > data_end)' check
2718 * Say, 'old' state was explored like:
2719 * ... R3(off=0, r=0)
2720 * R4 = R3 + 20
2721 * ... now R4(off=20,r=0) <-- here
2722 * if (R4 > data_end)
2723 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2724 * ... the code further went all the way to bpf_exit.
2725 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2726 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2727 * goes further, such cur_R4 will give larger safe packet range after
2728 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2729 * so they will be good with r=30 and we can prune the search.
2730 */
2731 if (old->off <= cur->off &&
2732 old->off >= old->range && cur->off >= cur->range)
2733 return true;
2734
2735 return false;
2736}
2737
f1bca824
AS
2738/* compare two verifier states
2739 *
2740 * all states stored in state_list are known to be valid, since
2741 * verifier reached 'bpf_exit' instruction through them
2742 *
2743 * this function is called when verifier exploring different branches of
2744 * execution popped from the state stack. If it sees an old state that has
2745 * more strict register state and more strict stack state then this execution
2746 * branch doesn't need to be explored further, since verifier already
2747 * concluded that more strict state leads to valid finish.
2748 *
2749 * Therefore two states are equivalent if register state is more conservative
2750 * and explored stack state is more conservative than the current one.
2751 * Example:
2752 * explored current
2753 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2754 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2755 *
2756 * In other words if current stack state (one being explored) has more
2757 * valid slots than old one that already passed validation, it means
2758 * the verifier can stop exploring and conclude that current state is valid too
2759 *
2760 * Similarly with registers. If explored state has register type as invalid
2761 * whereas register type in current state is meaningful, it means that
2762 * the current state will reach 'bpf_exit' instruction safely
2763 */
48461135
JB
2764static bool states_equal(struct bpf_verifier_env *env,
2765 struct bpf_verifier_state *old,
58e2af8b 2766 struct bpf_verifier_state *cur)
f1bca824 2767{
e2d2afe1 2768 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2769 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2770 int i;
2771
2772 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2773 rold = &old->regs[i];
2774 rcur = &cur->regs[i];
2775
2776 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2777 continue;
2778
48461135
JB
2779 /* If the ranges were not the same, but everything else was and
2780 * we didn't do a variable access into a map then we are a-ok.
2781 */
e2d2afe1 2782 if (!varlen_map_access &&
d2a4dd37 2783 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2784 continue;
2785
e2d2afe1
JB
2786 /* If we didn't map access then again we don't care about the
2787 * mismatched range values and it's ok if our old type was
2788 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2789 */
1a0dc1ac 2790 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2791 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2792 rcur->type != NOT_INIT))
1a0dc1ac
AS
2793 continue;
2794
969bf05e
AS
2795 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2796 compare_ptrs_to_packet(rold, rcur))
2797 continue;
2798
1a0dc1ac 2799 return false;
f1bca824
AS
2800 }
2801
2802 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2803 if (old->stack_slot_type[i] == STACK_INVALID)
2804 continue;
2805 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2806 /* Ex: old explored (safe) state has STACK_SPILL in
2807 * this stack slot, but current has has STACK_MISC ->
2808 * this verifier states are not equivalent,
2809 * return false to continue verification of this path
2810 */
f1bca824 2811 return false;
9c399760
AS
2812 if (i % BPF_REG_SIZE)
2813 continue;
2814 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2815 &cur->spilled_regs[i / BPF_REG_SIZE],
2816 sizeof(old->spilled_regs[0])))
2817 /* when explored and current stack slot types are
2818 * the same, check that stored pointers types
2819 * are the same as well.
2820 * Ex: explored safe path could have stored
58e2af8b 2821 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2822 * but current path has stored:
58e2af8b 2823 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2824 * such verifier states are not equivalent.
2825 * return false to continue verification of this path
2826 */
2827 return false;
2828 else
2829 continue;
f1bca824
AS
2830 }
2831 return true;
2832}
2833
58e2af8b 2834static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2835{
58e2af8b
JK
2836 struct bpf_verifier_state_list *new_sl;
2837 struct bpf_verifier_state_list *sl;
f1bca824
AS
2838
2839 sl = env->explored_states[insn_idx];
2840 if (!sl)
2841 /* this 'insn_idx' instruction wasn't marked, so we will not
2842 * be doing state search here
2843 */
2844 return 0;
2845
2846 while (sl != STATE_LIST_MARK) {
48461135 2847 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2848 /* reached equivalent register/stack state,
2849 * prune the search
2850 */
2851 return 1;
2852 sl = sl->next;
2853 }
2854
2855 /* there were no equivalent states, remember current one.
2856 * technically the current state is not proven to be safe yet,
2857 * but it will either reach bpf_exit (which means it's safe) or
2858 * it will be rejected. Since there are no loops, we won't be
2859 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2860 */
58e2af8b 2861 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2862 if (!new_sl)
2863 return -ENOMEM;
2864
2865 /* add new state to the head of linked list */
2866 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2867 new_sl->next = env->explored_states[insn_idx];
2868 env->explored_states[insn_idx] = new_sl;
2869 return 0;
2870}
2871
13a27dfc
JK
2872static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2873 int insn_idx, int prev_insn_idx)
2874{
2875 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2876 return 0;
2877
2878 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2879}
2880
58e2af8b 2881static int do_check(struct bpf_verifier_env *env)
17a52670 2882{
58e2af8b 2883 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2884 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2885 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2886 int insn_cnt = env->prog->len;
2887 int insn_idx, prev_insn_idx = 0;
2888 int insn_processed = 0;
2889 bool do_print_state = false;
2890
2891 init_reg_state(regs);
2892 insn_idx = 0;
48461135 2893 env->varlen_map_value_access = false;
17a52670
AS
2894 for (;;) {
2895 struct bpf_insn *insn;
2896 u8 class;
2897 int err;
2898
2899 if (insn_idx >= insn_cnt) {
2900 verbose("invalid insn idx %d insn_cnt %d\n",
2901 insn_idx, insn_cnt);
2902 return -EFAULT;
2903 }
2904
2905 insn = &insns[insn_idx];
2906 class = BPF_CLASS(insn->code);
2907
07016151 2908 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 2909 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
2910 insn_processed);
2911 return -E2BIG;
2912 }
2913
f1bca824
AS
2914 err = is_state_visited(env, insn_idx);
2915 if (err < 0)
2916 return err;
2917 if (err == 1) {
2918 /* found equivalent state, can prune the search */
2919 if (log_level) {
2920 if (do_print_state)
2921 verbose("\nfrom %d to %d: safe\n",
2922 prev_insn_idx, insn_idx);
2923 else
2924 verbose("%d: safe\n", insn_idx);
2925 }
2926 goto process_bpf_exit;
2927 }
2928
17a52670
AS
2929 if (log_level && do_print_state) {
2930 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2931 print_verifier_state(&env->cur_state);
17a52670
AS
2932 do_print_state = false;
2933 }
2934
2935 if (log_level) {
2936 verbose("%d: ", insn_idx);
0d0e5769 2937 print_bpf_insn(env, insn);
17a52670
AS
2938 }
2939
13a27dfc
JK
2940 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2941 if (err)
2942 return err;
2943
17a52670 2944 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2945 err = check_alu_op(env, insn);
17a52670
AS
2946 if (err)
2947 return err;
2948
2949 } else if (class == BPF_LDX) {
3df126f3 2950 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2951
2952 /* check for reserved fields is already done */
2953
17a52670
AS
2954 /* check src operand */
2955 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2956 if (err)
2957 return err;
2958
2959 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2960 if (err)
2961 return err;
2962
725f9dcd
AS
2963 src_reg_type = regs[insn->src_reg].type;
2964
17a52670
AS
2965 /* check that memory (src_reg + off) is readable,
2966 * the state of dst_reg will be updated by this func
2967 */
2968 err = check_mem_access(env, insn->src_reg, insn->off,
2969 BPF_SIZE(insn->code), BPF_READ,
2970 insn->dst_reg);
2971 if (err)
2972 return err;
2973
ea2e7ce5
AS
2974 if (BPF_SIZE(insn->code) != BPF_W &&
2975 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2976 insn_idx++;
2977 continue;
2978 }
9bac3d6d 2979
3df126f3
JK
2980 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2981
2982 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2983 /* saw a valid insn
2984 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2985 * save type to validate intersecting paths
9bac3d6d 2986 */
3df126f3 2987 *prev_src_type = src_reg_type;
9bac3d6d 2988
3df126f3 2989 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2990 (src_reg_type == PTR_TO_CTX ||
3df126f3 2991 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2992 /* ABuser program is trying to use the same insn
2993 * dst_reg = *(u32*) (src_reg + off)
2994 * with different pointer types:
2995 * src_reg == ctx in one branch and
2996 * src_reg == stack|map in some other branch.
2997 * Reject it.
2998 */
2999 verbose("same insn cannot be used with different pointers\n");
3000 return -EINVAL;
3001 }
3002
17a52670 3003 } else if (class == BPF_STX) {
3df126f3 3004 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3005
17a52670
AS
3006 if (BPF_MODE(insn->code) == BPF_XADD) {
3007 err = check_xadd(env, insn);
3008 if (err)
3009 return err;
3010 insn_idx++;
3011 continue;
3012 }
3013
17a52670
AS
3014 /* check src1 operand */
3015 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3016 if (err)
3017 return err;
3018 /* check src2 operand */
3019 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3020 if (err)
3021 return err;
3022
d691f9e8
AS
3023 dst_reg_type = regs[insn->dst_reg].type;
3024
17a52670
AS
3025 /* check that memory (dst_reg + off) is writeable */
3026 err = check_mem_access(env, insn->dst_reg, insn->off,
3027 BPF_SIZE(insn->code), BPF_WRITE,
3028 insn->src_reg);
3029 if (err)
3030 return err;
3031
3df126f3
JK
3032 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3033
3034 if (*prev_dst_type == NOT_INIT) {
3035 *prev_dst_type = dst_reg_type;
3036 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3037 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3038 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3039 verbose("same insn cannot be used with different pointers\n");
3040 return -EINVAL;
3041 }
3042
17a52670
AS
3043 } else if (class == BPF_ST) {
3044 if (BPF_MODE(insn->code) != BPF_MEM ||
3045 insn->src_reg != BPF_REG_0) {
3046 verbose("BPF_ST uses reserved fields\n");
3047 return -EINVAL;
3048 }
3049 /* check src operand */
3050 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3051 if (err)
3052 return err;
3053
3054 /* check that memory (dst_reg + off) is writeable */
3055 err = check_mem_access(env, insn->dst_reg, insn->off,
3056 BPF_SIZE(insn->code), BPF_WRITE,
3057 -1);
3058 if (err)
3059 return err;
3060
3061 } else if (class == BPF_JMP) {
3062 u8 opcode = BPF_OP(insn->code);
3063
3064 if (opcode == BPF_CALL) {
3065 if (BPF_SRC(insn->code) != BPF_K ||
3066 insn->off != 0 ||
3067 insn->src_reg != BPF_REG_0 ||
3068 insn->dst_reg != BPF_REG_0) {
3069 verbose("BPF_CALL uses reserved fields\n");
3070 return -EINVAL;
3071 }
3072
81ed18ab 3073 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3074 if (err)
3075 return err;
3076
3077 } else if (opcode == BPF_JA) {
3078 if (BPF_SRC(insn->code) != BPF_K ||
3079 insn->imm != 0 ||
3080 insn->src_reg != BPF_REG_0 ||
3081 insn->dst_reg != BPF_REG_0) {
3082 verbose("BPF_JA uses reserved fields\n");
3083 return -EINVAL;
3084 }
3085
3086 insn_idx += insn->off + 1;
3087 continue;
3088
3089 } else if (opcode == BPF_EXIT) {
3090 if (BPF_SRC(insn->code) != BPF_K ||
3091 insn->imm != 0 ||
3092 insn->src_reg != BPF_REG_0 ||
3093 insn->dst_reg != BPF_REG_0) {
3094 verbose("BPF_EXIT uses reserved fields\n");
3095 return -EINVAL;
3096 }
3097
3098 /* eBPF calling convetion is such that R0 is used
3099 * to return the value from eBPF program.
3100 * Make sure that it's readable at this time
3101 * of bpf_exit, which means that program wrote
3102 * something into it earlier
3103 */
3104 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3105 if (err)
3106 return err;
3107
1be7f75d
AS
3108 if (is_pointer_value(env, BPF_REG_0)) {
3109 verbose("R0 leaks addr as return value\n");
3110 return -EACCES;
3111 }
3112
f1bca824 3113process_bpf_exit:
17a52670
AS
3114 insn_idx = pop_stack(env, &prev_insn_idx);
3115 if (insn_idx < 0) {
3116 break;
3117 } else {
3118 do_print_state = true;
3119 continue;
3120 }
3121 } else {
3122 err = check_cond_jmp_op(env, insn, &insn_idx);
3123 if (err)
3124 return err;
3125 }
3126 } else if (class == BPF_LD) {
3127 u8 mode = BPF_MODE(insn->code);
3128
3129 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3130 err = check_ld_abs(env, insn);
3131 if (err)
3132 return err;
3133
17a52670
AS
3134 } else if (mode == BPF_IMM) {
3135 err = check_ld_imm(env, insn);
3136 if (err)
3137 return err;
3138
3139 insn_idx++;
3140 } else {
3141 verbose("invalid BPF_LD mode\n");
3142 return -EINVAL;
3143 }
48461135 3144 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3145 } else {
3146 verbose("unknown insn class %d\n", class);
3147 return -EINVAL;
3148 }
3149
3150 insn_idx++;
3151 }
3152
1a0dc1ac 3153 verbose("processed %d insns\n", insn_processed);
17a52670
AS
3154 return 0;
3155}
3156
56f668df
MKL
3157static int check_map_prealloc(struct bpf_map *map)
3158{
3159 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3160 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3161 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3162 !(map->map_flags & BPF_F_NO_PREALLOC);
3163}
3164
fdc15d38
AS
3165static int check_map_prog_compatibility(struct bpf_map *map,
3166 struct bpf_prog *prog)
3167
3168{
56f668df
MKL
3169 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3170 * preallocated hash maps, since doing memory allocation
3171 * in overflow_handler can crash depending on where nmi got
3172 * triggered.
3173 */
3174 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3175 if (!check_map_prealloc(map)) {
3176 verbose("perf_event programs can only use preallocated hash map\n");
3177 return -EINVAL;
3178 }
3179 if (map->inner_map_meta &&
3180 !check_map_prealloc(map->inner_map_meta)) {
3181 verbose("perf_event programs can only use preallocated inner hash map\n");
3182 return -EINVAL;
3183 }
fdc15d38
AS
3184 }
3185 return 0;
3186}
3187
0246e64d
AS
3188/* look for pseudo eBPF instructions that access map FDs and
3189 * replace them with actual map pointers
3190 */
58e2af8b 3191static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3192{
3193 struct bpf_insn *insn = env->prog->insnsi;
3194 int insn_cnt = env->prog->len;
fdc15d38 3195 int i, j, err;
0246e64d 3196
f1f7714e 3197 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3198 if (err)
3199 return err;
3200
0246e64d 3201 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3202 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3203 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3204 verbose("BPF_LDX uses reserved fields\n");
3205 return -EINVAL;
3206 }
3207
d691f9e8
AS
3208 if (BPF_CLASS(insn->code) == BPF_STX &&
3209 ((BPF_MODE(insn->code) != BPF_MEM &&
3210 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3211 verbose("BPF_STX uses reserved fields\n");
3212 return -EINVAL;
3213 }
3214
0246e64d
AS
3215 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3216 struct bpf_map *map;
3217 struct fd f;
3218
3219 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3220 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3221 insn[1].off != 0) {
3222 verbose("invalid bpf_ld_imm64 insn\n");
3223 return -EINVAL;
3224 }
3225
3226 if (insn->src_reg == 0)
3227 /* valid generic load 64-bit imm */
3228 goto next_insn;
3229
3230 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3231 verbose("unrecognized bpf_ld_imm64 insn\n");
3232 return -EINVAL;
3233 }
3234
3235 f = fdget(insn->imm);
c2101297 3236 map = __bpf_map_get(f);
0246e64d
AS
3237 if (IS_ERR(map)) {
3238 verbose("fd %d is not pointing to valid bpf_map\n",
3239 insn->imm);
0246e64d
AS
3240 return PTR_ERR(map);
3241 }
3242
fdc15d38
AS
3243 err = check_map_prog_compatibility(map, env->prog);
3244 if (err) {
3245 fdput(f);
3246 return err;
3247 }
3248
0246e64d
AS
3249 /* store map pointer inside BPF_LD_IMM64 instruction */
3250 insn[0].imm = (u32) (unsigned long) map;
3251 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3252
3253 /* check whether we recorded this map already */
3254 for (j = 0; j < env->used_map_cnt; j++)
3255 if (env->used_maps[j] == map) {
3256 fdput(f);
3257 goto next_insn;
3258 }
3259
3260 if (env->used_map_cnt >= MAX_USED_MAPS) {
3261 fdput(f);
3262 return -E2BIG;
3263 }
3264
0246e64d
AS
3265 /* hold the map. If the program is rejected by verifier,
3266 * the map will be released by release_maps() or it
3267 * will be used by the valid program until it's unloaded
3268 * and all maps are released in free_bpf_prog_info()
3269 */
92117d84
AS
3270 map = bpf_map_inc(map, false);
3271 if (IS_ERR(map)) {
3272 fdput(f);
3273 return PTR_ERR(map);
3274 }
3275 env->used_maps[env->used_map_cnt++] = map;
3276
0246e64d
AS
3277 fdput(f);
3278next_insn:
3279 insn++;
3280 i++;
3281 }
3282 }
3283
3284 /* now all pseudo BPF_LD_IMM64 instructions load valid
3285 * 'struct bpf_map *' into a register instead of user map_fd.
3286 * These pointers will be used later by verifier to validate map access.
3287 */
3288 return 0;
3289}
3290
3291/* drop refcnt of maps used by the rejected program */
58e2af8b 3292static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3293{
3294 int i;
3295
3296 for (i = 0; i < env->used_map_cnt; i++)
3297 bpf_map_put(env->used_maps[i]);
3298}
3299
3300/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3301static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3302{
3303 struct bpf_insn *insn = env->prog->insnsi;
3304 int insn_cnt = env->prog->len;
3305 int i;
3306
3307 for (i = 0; i < insn_cnt; i++, insn++)
3308 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3309 insn->src_reg = 0;
3310}
3311
8041902d
AS
3312/* single env->prog->insni[off] instruction was replaced with the range
3313 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3314 * [0, off) and [off, end) to new locations, so the patched range stays zero
3315 */
3316static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3317 u32 off, u32 cnt)
3318{
3319 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3320
3321 if (cnt == 1)
3322 return 0;
3323 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3324 if (!new_data)
3325 return -ENOMEM;
3326 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3327 memcpy(new_data + off + cnt - 1, old_data + off,
3328 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3329 env->insn_aux_data = new_data;
3330 vfree(old_data);
3331 return 0;
3332}
3333
3334static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3335 const struct bpf_insn *patch, u32 len)
3336{
3337 struct bpf_prog *new_prog;
3338
3339 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3340 if (!new_prog)
3341 return NULL;
3342 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3343 return NULL;
3344 return new_prog;
3345}
3346
9bac3d6d
AS
3347/* convert load instructions that access fields of 'struct __sk_buff'
3348 * into sequence of instructions that access fields of 'struct sk_buff'
3349 */
58e2af8b 3350static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3351{
36bbef52 3352 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3353 const int insn_cnt = env->prog->len;
36bbef52 3354 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3355 struct bpf_prog *new_prog;
d691f9e8 3356 enum bpf_access_type type;
3df126f3 3357 int i, cnt, delta = 0;
9bac3d6d 3358
36bbef52
DB
3359 if (ops->gen_prologue) {
3360 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3361 env->prog);
3362 if (cnt >= ARRAY_SIZE(insn_buf)) {
3363 verbose("bpf verifier is misconfigured\n");
3364 return -EINVAL;
3365 } else if (cnt) {
8041902d 3366 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3367 if (!new_prog)
3368 return -ENOMEM;
8041902d 3369
36bbef52 3370 env->prog = new_prog;
3df126f3 3371 delta += cnt - 1;
36bbef52
DB
3372 }
3373 }
3374
3375 if (!ops->convert_ctx_access)
9bac3d6d
AS
3376 return 0;
3377
3df126f3 3378 insn = env->prog->insnsi + delta;
36bbef52 3379
9bac3d6d 3380 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3381 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3382 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3383 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3384 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3385 type = BPF_READ;
62c7989b
DB
3386 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3387 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3388 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3389 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3390 type = BPF_WRITE;
3391 else
9bac3d6d
AS
3392 continue;
3393
8041902d 3394 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3395 continue;
9bac3d6d 3396
6b8cc1d1 3397 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
9bac3d6d
AS
3398 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3399 verbose("bpf verifier is misconfigured\n");
3400 return -EINVAL;
3401 }
3402
8041902d 3403 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3404 if (!new_prog)
3405 return -ENOMEM;
3406
3df126f3 3407 delta += cnt - 1;
9bac3d6d
AS
3408
3409 /* keep walking new program and skip insns we just inserted */
3410 env->prog = new_prog;
3df126f3 3411 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3412 }
3413
3414 return 0;
3415}
3416
79741b3b 3417/* fixup insn->imm field of bpf_call instructions
81ed18ab 3418 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3419 *
3420 * this function is called after eBPF program passed verification
3421 */
79741b3b 3422static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3423{
79741b3b
AS
3424 struct bpf_prog *prog = env->prog;
3425 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3426 const struct bpf_func_proto *fn;
79741b3b 3427 const int insn_cnt = prog->len;
81ed18ab
AS
3428 struct bpf_insn insn_buf[16];
3429 struct bpf_prog *new_prog;
3430 struct bpf_map *map_ptr;
3431 int i, cnt, delta = 0;
e245c5c6 3432
79741b3b
AS
3433 for (i = 0; i < insn_cnt; i++, insn++) {
3434 if (insn->code != (BPF_JMP | BPF_CALL))
3435 continue;
e245c5c6 3436
79741b3b
AS
3437 if (insn->imm == BPF_FUNC_get_route_realm)
3438 prog->dst_needed = 1;
3439 if (insn->imm == BPF_FUNC_get_prandom_u32)
3440 bpf_user_rnd_init_once();
79741b3b 3441 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3442 /* If we tail call into other programs, we
3443 * cannot make any assumptions since they can
3444 * be replaced dynamically during runtime in
3445 * the program array.
3446 */
3447 prog->cb_access = 1;
7b9f6da1 3448
79741b3b
AS
3449 /* mark bpf_tail_call as different opcode to avoid
3450 * conditional branch in the interpeter for every normal
3451 * call and to prevent accidental JITing by JIT compiler
3452 * that doesn't support bpf_tail_call yet
e245c5c6 3453 */
79741b3b
AS
3454 insn->imm = 0;
3455 insn->code |= BPF_X;
3456 continue;
3457 }
e245c5c6 3458
81ed18ab
AS
3459 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3460 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3461 if (map_ptr == BPF_MAP_PTR_POISON ||
3462 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3463 goto patch_call_imm;
3464
3465 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3466 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3467 verbose("bpf verifier is misconfigured\n");
3468 return -EINVAL;
3469 }
3470
3471 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3472 cnt);
3473 if (!new_prog)
3474 return -ENOMEM;
3475
3476 delta += cnt - 1;
3477
3478 /* keep walking new program and skip insns we just inserted */
3479 env->prog = prog = new_prog;
3480 insn = new_prog->insnsi + i + delta;
3481 continue;
3482 }
3483
3484patch_call_imm:
79741b3b
AS
3485 fn = prog->aux->ops->get_func_proto(insn->imm);
3486 /* all functions that have prototype and verifier allowed
3487 * programs to call them, must be real in-kernel functions
3488 */
3489 if (!fn->func) {
3490 verbose("kernel subsystem misconfigured func %s#%d\n",
3491 func_id_name(insn->imm), insn->imm);
3492 return -EFAULT;
e245c5c6 3493 }
79741b3b 3494 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3495 }
e245c5c6 3496
79741b3b
AS
3497 return 0;
3498}
e245c5c6 3499
58e2af8b 3500static void free_states(struct bpf_verifier_env *env)
f1bca824 3501{
58e2af8b 3502 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3503 int i;
3504
3505 if (!env->explored_states)
3506 return;
3507
3508 for (i = 0; i < env->prog->len; i++) {
3509 sl = env->explored_states[i];
3510
3511 if (sl)
3512 while (sl != STATE_LIST_MARK) {
3513 sln = sl->next;
3514 kfree(sl);
3515 sl = sln;
3516 }
3517 }
3518
3519 kfree(env->explored_states);
3520}
3521
9bac3d6d 3522int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3523{
cbd35700 3524 char __user *log_ubuf = NULL;
58e2af8b 3525 struct bpf_verifier_env *env;
51580e79
AS
3526 int ret = -EINVAL;
3527
58e2af8b 3528 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3529 * allocate/free it every time bpf_check() is called
3530 */
58e2af8b 3531 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3532 if (!env)
3533 return -ENOMEM;
3534
3df126f3
JK
3535 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3536 (*prog)->len);
3537 ret = -ENOMEM;
3538 if (!env->insn_aux_data)
3539 goto err_free_env;
9bac3d6d 3540 env->prog = *prog;
0246e64d 3541
cbd35700
AS
3542 /* grab the mutex to protect few globals used by verifier */
3543 mutex_lock(&bpf_verifier_lock);
3544
3545 if (attr->log_level || attr->log_buf || attr->log_size) {
3546 /* user requested verbose verifier output
3547 * and supplied buffer to store the verification trace
3548 */
3549 log_level = attr->log_level;
3550 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3551 log_size = attr->log_size;
3552 log_len = 0;
3553
3554 ret = -EINVAL;
3555 /* log_* values have to be sane */
3556 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3557 log_level == 0 || log_ubuf == NULL)
3df126f3 3558 goto err_unlock;
cbd35700
AS
3559
3560 ret = -ENOMEM;
3561 log_buf = vmalloc(log_size);
3562 if (!log_buf)
3df126f3 3563 goto err_unlock;
cbd35700
AS
3564 } else {
3565 log_level = 0;
3566 }
3567
0246e64d
AS
3568 ret = replace_map_fd_with_map_ptr(env);
3569 if (ret < 0)
3570 goto skip_full_check;
3571
9bac3d6d 3572 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3573 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3574 GFP_USER);
3575 ret = -ENOMEM;
3576 if (!env->explored_states)
3577 goto skip_full_check;
3578
475fb78f
AS
3579 ret = check_cfg(env);
3580 if (ret < 0)
3581 goto skip_full_check;
3582
1be7f75d
AS
3583 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3584
17a52670 3585 ret = do_check(env);
cbd35700 3586
0246e64d 3587skip_full_check:
17a52670 3588 while (pop_stack(env, NULL) >= 0);
f1bca824 3589 free_states(env);
0246e64d 3590
9bac3d6d
AS
3591 if (ret == 0)
3592 /* program is valid, convert *(u32*)(ctx + off) accesses */
3593 ret = convert_ctx_accesses(env);
3594
e245c5c6 3595 if (ret == 0)
79741b3b 3596 ret = fixup_bpf_calls(env);
e245c5c6 3597
cbd35700
AS
3598 if (log_level && log_len >= log_size - 1) {
3599 BUG_ON(log_len >= log_size);
3600 /* verifier log exceeded user supplied buffer */
3601 ret = -ENOSPC;
3602 /* fall through to return what was recorded */
3603 }
3604
3605 /* copy verifier log back to user space including trailing zero */
3606 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3607 ret = -EFAULT;
3608 goto free_log_buf;
3609 }
3610
0246e64d
AS
3611 if (ret == 0 && env->used_map_cnt) {
3612 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3613 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3614 sizeof(env->used_maps[0]),
3615 GFP_KERNEL);
0246e64d 3616
9bac3d6d 3617 if (!env->prog->aux->used_maps) {
0246e64d
AS
3618 ret = -ENOMEM;
3619 goto free_log_buf;
3620 }
3621
9bac3d6d 3622 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3623 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3624 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3625
3626 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3627 * bpf_ld_imm64 instructions
3628 */
3629 convert_pseudo_ld_imm64(env);
3630 }
cbd35700
AS
3631
3632free_log_buf:
3633 if (log_level)
3634 vfree(log_buf);
9bac3d6d 3635 if (!env->prog->aux->used_maps)
0246e64d
AS
3636 /* if we didn't copy map pointers into bpf_prog_info, release
3637 * them now. Otherwise free_bpf_prog_info() will release them.
3638 */
3639 release_maps(env);
9bac3d6d 3640 *prog = env->prog;
3df126f3 3641err_unlock:
cbd35700 3642 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3643 vfree(env->insn_aux_data);
3644err_free_env:
3645 kfree(env);
51580e79
AS
3646 return ret;
3647}
13a27dfc
JK
3648
3649int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3650 void *priv)
3651{
3652 struct bpf_verifier_env *env;
3653 int ret;
3654
3655 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3656 if (!env)
3657 return -ENOMEM;
3658
3659 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3660 prog->len);
3661 ret = -ENOMEM;
3662 if (!env->insn_aux_data)
3663 goto err_free_env;
3664 env->prog = prog;
3665 env->analyzer_ops = ops;
3666 env->analyzer_priv = priv;
3667
3668 /* grab the mutex to protect few globals used by verifier */
3669 mutex_lock(&bpf_verifier_lock);
3670
3671 log_level = 0;
3672
3673 env->explored_states = kcalloc(env->prog->len,
3674 sizeof(struct bpf_verifier_state_list *),
3675 GFP_KERNEL);
3676 ret = -ENOMEM;
3677 if (!env->explored_states)
3678 goto skip_full_check;
3679
3680 ret = check_cfg(env);
3681 if (ret < 0)
3682 goto skip_full_check;
3683
3684 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3685
3686 ret = do_check(env);
3687
3688skip_full_check:
3689 while (pop_stack(env, NULL) >= 0);
3690 free_states(env);
3691
3692 mutex_unlock(&bpf_verifier_lock);
3693 vfree(env->insn_aux_data);
3694err_free_env:
3695 kfree(env);
3696 return ret;
3697}
3698EXPORT_SYMBOL_GPL(bpf_analyzer);