]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/bpf/verifier.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
3c2ce60b 143#define BPF_COMPLEXITY_LIMIT_INSNS 98304
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
d1174416
DM
244 if (reg->min_align)
245 verbose(",min_align=%u", reg->min_align);
246 if (reg->aux_off)
247 verbose(",aux_off=%u", reg->aux_off);
248 if (reg->aux_off_align)
249 verbose(",aux_off_align=%u", reg->aux_off_align);
17a52670 250 }
9c399760 251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 252 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 253 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
255 }
256 verbose("\n");
257}
258
cbd35700
AS
259static const char *const bpf_class_string[] = {
260 [BPF_LD] = "ld",
261 [BPF_LDX] = "ldx",
262 [BPF_ST] = "st",
263 [BPF_STX] = "stx",
264 [BPF_ALU] = "alu",
265 [BPF_JMP] = "jmp",
266 [BPF_RET] = "BUG",
267 [BPF_ALU64] = "alu64",
268};
269
687f0715 270static const char *const bpf_alu_string[16] = {
cbd35700
AS
271 [BPF_ADD >> 4] = "+=",
272 [BPF_SUB >> 4] = "-=",
273 [BPF_MUL >> 4] = "*=",
274 [BPF_DIV >> 4] = "/=",
275 [BPF_OR >> 4] = "|=",
276 [BPF_AND >> 4] = "&=",
277 [BPF_LSH >> 4] = "<<=",
278 [BPF_RSH >> 4] = ">>=",
279 [BPF_NEG >> 4] = "neg",
280 [BPF_MOD >> 4] = "%=",
281 [BPF_XOR >> 4] = "^=",
282 [BPF_MOV >> 4] = "=",
283 [BPF_ARSH >> 4] = "s>>=",
284 [BPF_END >> 4] = "endian",
285};
286
287static const char *const bpf_ldst_string[] = {
288 [BPF_W >> 3] = "u32",
289 [BPF_H >> 3] = "u16",
290 [BPF_B >> 3] = "u8",
291 [BPF_DW >> 3] = "u64",
292};
293
687f0715 294static const char *const bpf_jmp_string[16] = {
cbd35700
AS
295 [BPF_JA >> 4] = "jmp",
296 [BPF_JEQ >> 4] = "==",
297 [BPF_JGT >> 4] = ">",
298 [BPF_JGE >> 4] = ">=",
299 [BPF_JSET >> 4] = "&",
300 [BPF_JNE >> 4] = "!=",
301 [BPF_JSGT >> 4] = "s>",
302 [BPF_JSGE >> 4] = "s>=",
303 [BPF_CALL >> 4] = "call",
304 [BPF_EXIT >> 4] = "exit",
305};
306
0d0e5769
DB
307static void print_bpf_insn(const struct bpf_verifier_env *env,
308 const struct bpf_insn *insn)
cbd35700
AS
309{
310 u8 class = BPF_CLASS(insn->code);
311
312 if (class == BPF_ALU || class == BPF_ALU64) {
313 if (BPF_SRC(insn->code) == BPF_X)
314 verbose("(%02x) %sr%d %s %sr%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->src_reg);
320 else
321 verbose("(%02x) %sr%d %s %s%d\n",
322 insn->code, class == BPF_ALU ? "(u32) " : "",
323 insn->dst_reg,
324 bpf_alu_string[BPF_OP(insn->code) >> 4],
325 class == BPF_ALU ? "(u32) " : "",
326 insn->imm);
327 } else if (class == BPF_STX) {
328 if (BPF_MODE(insn->code) == BPF_MEM)
329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg,
333 insn->off, insn->src_reg);
334 else if (BPF_MODE(insn->code) == BPF_XADD)
335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 insn->code,
337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 insn->dst_reg, insn->off,
339 insn->src_reg);
340 else
341 verbose("BUG_%02x\n", insn->code);
342 } else if (class == BPF_ST) {
343 if (BPF_MODE(insn->code) != BPF_MEM) {
344 verbose("BUG_st_%02x\n", insn->code);
345 return;
346 }
347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 insn->code,
349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 insn->dst_reg,
351 insn->off, insn->imm);
352 } else if (class == BPF_LDX) {
353 if (BPF_MODE(insn->code) != BPF_MEM) {
354 verbose("BUG_ldx_%02x\n", insn->code);
355 return;
356 }
357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 insn->code, insn->dst_reg,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->src_reg, insn->off);
361 } else if (class == BPF_LD) {
362 if (BPF_MODE(insn->code) == BPF_ABS) {
363 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 insn->code,
365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 insn->imm);
367 } else if (BPF_MODE(insn->code) == BPF_IND) {
368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->src_reg, insn->imm);
0d0e5769
DB
372 } else if (BPF_MODE(insn->code) == BPF_IMM &&
373 BPF_SIZE(insn->code) == BPF_DW) {
374 /* At this point, we already made sure that the second
375 * part of the ldimm64 insn is accessible.
376 */
377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379
380 if (map_ptr && !env->allow_ptr_leaks)
381 imm = 0;
382
383 verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
385 } else {
386 verbose("BUG_ld_%02x\n", insn->code);
387 return;
388 }
389 } else if (class == BPF_JMP) {
390 u8 opcode = BPF_OP(insn->code);
391
392 if (opcode == BPF_CALL) {
ebb676da
TG
393 verbose("(%02x) call %s#%d\n", insn->code,
394 func_id_name(insn->imm), insn->imm);
cbd35700
AS
395 } else if (insn->code == (BPF_JMP | BPF_JA)) {
396 verbose("(%02x) goto pc%+d\n",
397 insn->code, insn->off);
398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 verbose("(%02x) exit\n", insn->code);
400 } else if (BPF_SRC(insn->code) == BPF_X) {
401 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 insn->code, insn->dst_reg,
403 bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 insn->src_reg, insn->off);
405 } else {
406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 insn->code, insn->dst_reg,
408 bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 insn->imm, insn->off);
410 }
411 } else {
412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 }
414}
415
58e2af8b 416static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 417{
58e2af8b 418 struct bpf_verifier_stack_elem *elem;
17a52670
AS
419 int insn_idx;
420
421 if (env->head == NULL)
422 return -1;
423
424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 insn_idx = env->head->insn_idx;
426 if (prev_insn_idx)
427 *prev_insn_idx = env->head->prev_insn_idx;
428 elem = env->head->next;
429 kfree(env->head);
430 env->head = elem;
431 env->stack_size--;
432 return insn_idx;
433}
434
58e2af8b
JK
435static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 int insn_idx, int prev_insn_idx)
17a52670 437{
58e2af8b 438 struct bpf_verifier_stack_elem *elem;
17a52670 439
58e2af8b 440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
441 if (!elem)
442 goto err;
443
444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 elem->insn_idx = insn_idx;
446 elem->prev_insn_idx = prev_insn_idx;
447 elem->next = env->head;
448 env->head = elem;
449 env->stack_size++;
07016151 450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
451 verbose("BPF program is too complex\n");
452 goto err;
453 }
454 return &elem->st;
455err:
456 /* pop all elements and return */
457 while (pop_stack(env, NULL) >= 0);
458 return NULL;
459}
460
461#define CALLER_SAVED_REGS 6
462static const int caller_saved[CALLER_SAVED_REGS] = {
463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464};
465
a9789ef9
DB
466static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
467{
468 BUG_ON(regno >= MAX_BPF_REG);
469
470 memset(&regs[regno], 0, sizeof(regs[regno]));
471 regs[regno].type = NOT_INIT;
472 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
473 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
474}
475
58e2af8b 476static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
477{
478 int i;
479
a9789ef9
DB
480 for (i = 0; i < MAX_BPF_REG; i++)
481 mark_reg_not_init(regs, i);
17a52670
AS
482
483 /* frame pointer */
484 regs[BPF_REG_FP].type = FRAME_PTR;
485
486 /* 1st arg to a function */
487 regs[BPF_REG_1].type = PTR_TO_CTX;
488}
489
6760bf2d 490static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 491{
17a52670 492 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 493 regs[regno].id = 0;
17a52670 494 regs[regno].imm = 0;
17a52670
AS
495}
496
6760bf2d
DB
497static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
498{
499 BUG_ON(regno >= MAX_BPF_REG);
500 __mark_reg_unknown_value(regs, regno);
501}
502
48461135
JB
503static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
504{
505 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
506 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
4cabc5b1 507 regs[regno].value_from_signed = false;
d1174416 508 regs[regno].min_align = 0;
48461135
JB
509}
510
f0318d01
GB
511static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
512 u32 regno)
513{
514 mark_reg_unknown_value(regs, regno);
515 reset_reg_range_values(regs, regno);
516}
517
17a52670
AS
518enum reg_arg_type {
519 SRC_OP, /* register is used as source operand */
520 DST_OP, /* register is used as destination operand */
521 DST_OP_NO_MARK /* same as above, check only, don't mark */
522};
523
58e2af8b 524static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
525 enum reg_arg_type t)
526{
527 if (regno >= MAX_BPF_REG) {
528 verbose("R%d is invalid\n", regno);
529 return -EINVAL;
530 }
531
532 if (t == SRC_OP) {
533 /* check whether register used as source operand can be read */
534 if (regs[regno].type == NOT_INIT) {
535 verbose("R%d !read_ok\n", regno);
536 return -EACCES;
537 }
538 } else {
539 /* check whether register used as dest operand can be written to */
540 if (regno == BPF_REG_FP) {
541 verbose("frame pointer is read only\n");
542 return -EACCES;
543 }
544 if (t == DST_OP)
545 mark_reg_unknown_value(regs, regno);
546 }
547 return 0;
548}
549
1be7f75d
AS
550static bool is_spillable_regtype(enum bpf_reg_type type)
551{
552 switch (type) {
553 case PTR_TO_MAP_VALUE:
554 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 555 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
556 case PTR_TO_STACK:
557 case PTR_TO_CTX:
969bf05e
AS
558 case PTR_TO_PACKET:
559 case PTR_TO_PACKET_END:
1be7f75d
AS
560 case FRAME_PTR:
561 case CONST_PTR_TO_MAP:
562 return true;
563 default:
564 return false;
565 }
566}
567
17a52670
AS
568/* check_stack_read/write functions track spill/fill of registers,
569 * stack boundary and alignment are checked in check_mem_access()
570 */
58e2af8b
JK
571static int check_stack_write(struct bpf_verifier_state *state, int off,
572 int size, int value_regno)
17a52670 573{
17a52670 574 int i;
9c399760
AS
575 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
576 * so it's aligned access and [off, off + size) are within stack limits
577 */
17a52670
AS
578
579 if (value_regno >= 0 &&
1be7f75d 580 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
581
582 /* register containing pointer is being spilled into stack */
9c399760 583 if (size != BPF_REG_SIZE) {
17a52670
AS
584 verbose("invalid size of register spill\n");
585 return -EACCES;
586 }
587
17a52670 588 /* save register state */
9c399760
AS
589 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
590 state->regs[value_regno];
17a52670 591
9c399760
AS
592 for (i = 0; i < BPF_REG_SIZE; i++)
593 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
594 } else {
17a52670 595 /* regular write of data into stack */
9c399760 596 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 597 (struct bpf_reg_state) {};
9c399760
AS
598
599 for (i = 0; i < size; i++)
600 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
601 }
602 return 0;
603}
604
58e2af8b 605static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
606 int value_regno)
607{
9c399760 608 u8 *slot_type;
17a52670 609 int i;
17a52670 610
9c399760 611 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 612
9c399760
AS
613 if (slot_type[0] == STACK_SPILL) {
614 if (size != BPF_REG_SIZE) {
17a52670
AS
615 verbose("invalid size of register spill\n");
616 return -EACCES;
617 }
9c399760
AS
618 for (i = 1; i < BPF_REG_SIZE; i++) {
619 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
620 verbose("corrupted spill memory\n");
621 return -EACCES;
622 }
623 }
624
625 if (value_regno >= 0)
626 /* restore register state from stack */
9c399760
AS
627 state->regs[value_regno] =
628 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
629 return 0;
630 } else {
631 for (i = 0; i < size; i++) {
9c399760 632 if (slot_type[i] != STACK_MISC) {
17a52670
AS
633 verbose("invalid read from stack off %d+%d size %d\n",
634 off, i, size);
635 return -EACCES;
636 }
637 }
638 if (value_regno >= 0)
639 /* have read misc data from the stack */
f0318d01
GB
640 mark_reg_unknown_value_and_range(state->regs,
641 value_regno);
17a52670
AS
642 return 0;
643 }
644}
645
646/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 647static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
648 int size)
649{
650 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
651
5722569b 652 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
653 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
654 map->value_size, off, size);
655 return -EACCES;
656 }
657 return 0;
658}
659
dbcfe5f7
GB
660/* check read/write into an adjusted map element */
661static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
662 int off, int size)
663{
664 struct bpf_verifier_state *state = &env->cur_state;
665 struct bpf_reg_state *reg = &state->regs[regno];
666 int err;
667
668 /* We adjusted the register to this map value, so we
669 * need to change off and size to min_value and max_value
670 * respectively to make sure our theoretical access will be
671 * safe.
672 */
673 if (log_level)
674 print_verifier_state(state);
675 env->varlen_map_value_access = true;
676 /* The minimum value is only important with signed
677 * comparisons where we can't assume the floor of a
678 * value is 0. If we are using signed variables for our
679 * index'es we need to make sure that whatever we use
680 * will have a set floor within our range.
681 */
682 if (reg->min_value < 0) {
683 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
684 regno);
685 return -EACCES;
686 }
687 err = check_map_access(env, regno, reg->min_value + off, size);
688 if (err) {
689 verbose("R%d min value is outside of the array range\n",
690 regno);
691 return err;
692 }
693
694 /* If we haven't set a max value then we need to bail
695 * since we can't be sure we won't do bad things.
696 */
697 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
698 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
699 regno);
700 return -EACCES;
701 }
702 return check_map_access(env, regno, reg->max_value + off, size);
703}
704
969bf05e
AS
705#define MAX_PACKET_OFF 0xffff
706
58e2af8b 707static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
708 const struct bpf_call_arg_meta *meta,
709 enum bpf_access_type t)
4acf6c0b 710{
36bbef52 711 switch (env->prog->type) {
3a0af8fd
TG
712 case BPF_PROG_TYPE_LWT_IN:
713 case BPF_PROG_TYPE_LWT_OUT:
714 /* dst_input() and dst_output() can't write for now */
715 if (t == BPF_WRITE)
716 return false;
7e57fbb2 717 /* fallthrough */
36bbef52
DB
718 case BPF_PROG_TYPE_SCHED_CLS:
719 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 720 case BPF_PROG_TYPE_XDP:
3a0af8fd 721 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
722 if (meta)
723 return meta->pkt_access;
724
725 env->seen_direct_write = true;
4acf6c0b
BB
726 return true;
727 default:
728 return false;
729 }
730}
731
58e2af8b 732static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
733 int size)
734{
58e2af8b
JK
735 struct bpf_reg_state *regs = env->cur_state.regs;
736 struct bpf_reg_state *reg = &regs[regno];
969bf05e 737
d91b28ed 738 off += reg->off;
b399cf64 739 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
740 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
741 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
742 return -EACCES;
743 }
744 return 0;
745}
746
17a52670 747/* check access to 'struct bpf_context' fields */
31fd8581 748static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 749 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 750{
f96da094
DB
751 struct bpf_insn_access_aux info = {
752 .reg_type = *reg_type,
753 };
31fd8581 754
13a27dfc
JK
755 /* for analyzer ctx accesses are already validated and converted */
756 if (env->analyzer_ops)
757 return 0;
758
17a52670 759 if (env->prog->aux->ops->is_valid_access &&
23994631 760 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
761 /* A non zero info.ctx_field_size indicates that this field is a
762 * candidate for later verifier transformation to load the whole
763 * field and then apply a mask when accessed with a narrower
764 * access than actual ctx access size. A zero info.ctx_field_size
765 * will only allow for whole field access and rejects any other
766 * type of narrower access.
31fd8581 767 */
f96da094 768 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 769 *reg_type = info.reg_type;
31fd8581 770
32bbe007
AS
771 /* remember the offset of last byte accessed in ctx */
772 if (env->prog->aux->max_ctx_offset < off + size)
773 env->prog->aux->max_ctx_offset = off + size;
17a52670 774 return 0;
32bbe007 775 }
17a52670
AS
776
777 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
778 return -EACCES;
779}
780
4cabc5b1
DB
781static bool __is_pointer_value(bool allow_ptr_leaks,
782 const struct bpf_reg_state *reg)
1be7f75d 783{
4cabc5b1 784 if (allow_ptr_leaks)
1be7f75d
AS
785 return false;
786
4cabc5b1 787 switch (reg->type) {
1be7f75d
AS
788 case UNKNOWN_VALUE:
789 case CONST_IMM:
790 return false;
791 default:
792 return true;
793 }
794}
795
4cabc5b1
DB
796static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
797{
798 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
799}
800
79adffcd 801static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 802 int off, int size, bool strict)
969bf05e 803{
e07b98d9 804 int ip_align;
d1174416
DM
805 int reg_off;
806
807 /* Byte size accesses are always allowed. */
808 if (!strict || size == 1)
809 return 0;
810
811 reg_off = reg->off;
812 if (reg->id) {
813 if (reg->aux_off_align % size) {
814 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
815 reg->aux_off_align, size);
816 return -EACCES;
817 }
818 reg_off += reg->aux_off;
969bf05e
AS
819 }
820
e4eda884
DM
821 /* For platforms that do not have a Kconfig enabling
822 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
823 * NET_IP_ALIGN is universally set to '2'. And on platforms
824 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
825 * to this code only in strict mode where we want to emulate
826 * the NET_IP_ALIGN==2 checking. Therefore use an
827 * unconditional IP align value of '2'.
e07b98d9 828 */
e4eda884 829 ip_align = 2;
e07b98d9 830 if ((ip_align + reg_off + off) % size != 0) {
969bf05e 831 verbose("misaligned packet access off %d+%d+%d size %d\n",
e07b98d9 832 ip_align, reg_off, off, size);
969bf05e
AS
833 return -EACCES;
834 }
79adffcd 835
969bf05e
AS
836 return 0;
837}
838
79adffcd 839static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 840 int size, bool strict)
79adffcd 841{
d1174416 842 if (strict && size != 1) {
79adffcd
DB
843 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
844 return -EACCES;
845 }
846
969bf05e
AS
847 return 0;
848}
849
e07b98d9
DM
850static int check_ptr_alignment(struct bpf_verifier_env *env,
851 const struct bpf_reg_state *reg,
79adffcd
DB
852 int off, int size)
853{
e07b98d9 854 bool strict = env->strict_alignment;
d1174416 855
79adffcd
DB
856 switch (reg->type) {
857 case PTR_TO_PACKET:
d1174416 858 return check_pkt_ptr_alignment(reg, off, size, strict);
79adffcd 859 case PTR_TO_MAP_VALUE_ADJ:
d1174416 860 return check_val_ptr_alignment(reg, size, strict);
79adffcd
DB
861 default:
862 if (off % size != 0) {
863 verbose("misaligned access off %d size %d\n",
864 off, size);
865 return -EACCES;
866 }
867
868 return 0;
869 }
870}
871
17a52670
AS
872/* check whether memory at (regno + off) is accessible for t = (read | write)
873 * if t==write, value_regno is a register which value is stored into memory
874 * if t==read, value_regno is a register which will receive the value from memory
875 * if t==write && value_regno==-1, some unknown value is stored into memory
876 * if t==read && value_regno==-1, don't care what we read from memory
877 */
31fd8581 878static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
879 int bpf_size, enum bpf_access_type t,
880 int value_regno)
881{
58e2af8b
JK
882 struct bpf_verifier_state *state = &env->cur_state;
883 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
884 int size, err = 0;
885
1a0dc1ac
AS
886 if (reg->type == PTR_TO_STACK)
887 off += reg->imm;
24b4d2ab 888
17a52670
AS
889 size = bpf_size_to_bytes(bpf_size);
890 if (size < 0)
891 return size;
892
e07b98d9 893 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
894 if (err)
895 return err;
17a52670 896
48461135
JB
897 if (reg->type == PTR_TO_MAP_VALUE ||
898 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
899 if (t == BPF_WRITE && value_regno >= 0 &&
900 is_pointer_value(env, value_regno)) {
901 verbose("R%d leaks addr into map\n", value_regno);
902 return -EACCES;
903 }
48461135 904
dbcfe5f7
GB
905 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
906 err = check_map_access_adj(env, regno, off, size);
907 else
908 err = check_map_access(env, regno, off, size);
17a52670 909 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
910 mark_reg_unknown_value_and_range(state->regs,
911 value_regno);
17a52670 912
1a0dc1ac 913 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
914 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
915
1be7f75d
AS
916 if (t == BPF_WRITE && value_regno >= 0 &&
917 is_pointer_value(env, value_regno)) {
918 verbose("R%d leaks addr into ctx\n", value_regno);
919 return -EACCES;
920 }
31fd8581 921 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 922 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
923 mark_reg_unknown_value_and_range(state->regs,
924 value_regno);
1955351d
MS
925 /* note that reg.[id|off|range] == 0 */
926 state->regs[value_regno].type = reg_type;
d1174416
DM
927 state->regs[value_regno].aux_off = 0;
928 state->regs[value_regno].aux_off_align = 0;
969bf05e 929 }
17a52670 930
1a0dc1ac 931 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
932 if (off >= 0 || off < -MAX_BPF_STACK) {
933 verbose("invalid stack off=%d size=%d\n", off, size);
934 return -EACCES;
935 }
8726679a
AS
936
937 if (env->prog->aux->stack_depth < -off)
938 env->prog->aux->stack_depth = -off;
939
1be7f75d
AS
940 if (t == BPF_WRITE) {
941 if (!env->allow_ptr_leaks &&
942 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
943 size != BPF_REG_SIZE) {
944 verbose("attempt to corrupt spilled pointer on stack\n");
945 return -EACCES;
946 }
17a52670 947 err = check_stack_write(state, off, size, value_regno);
1be7f75d 948 } else {
17a52670 949 err = check_stack_read(state, off, size, value_regno);
1be7f75d 950 }
969bf05e 951 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 952 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
953 verbose("cannot write into packet\n");
954 return -EACCES;
955 }
4acf6c0b
BB
956 if (t == BPF_WRITE && value_regno >= 0 &&
957 is_pointer_value(env, value_regno)) {
958 verbose("R%d leaks addr into packet\n", value_regno);
959 return -EACCES;
960 }
969bf05e
AS
961 err = check_packet_access(env, regno, off, size);
962 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
963 mark_reg_unknown_value_and_range(state->regs,
964 value_regno);
17a52670
AS
965 } else {
966 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 967 regno, reg_type_str[reg->type]);
17a52670
AS
968 return -EACCES;
969 }
969bf05e
AS
970
971 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
972 state->regs[value_regno].type == UNKNOWN_VALUE) {
973 /* 1 or 2 byte load zero-extends, determine the number of
974 * zero upper bits. Not doing it fo 4 byte load, since
975 * such values cannot be added to ptr_to_packet anyway.
976 */
977 state->regs[value_regno].imm = 64 - size * 8;
978 }
17a52670
AS
979 return err;
980}
981
31fd8581 982static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 983{
58e2af8b 984 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
985 int err;
986
987 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
988 insn->imm != 0) {
989 verbose("BPF_XADD uses reserved fields\n");
990 return -EINVAL;
991 }
992
993 /* check src1 operand */
994 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
995 if (err)
996 return err;
997
998 /* check src2 operand */
999 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1000 if (err)
1001 return err;
1002
6bdf6abc
DB
1003 if (is_pointer_value(env, insn->src_reg)) {
1004 verbose("R%d leaks addr into mem\n", insn->src_reg);
1005 return -EACCES;
1006 }
1007
17a52670 1008 /* check whether atomic_add can read the memory */
31fd8581 1009 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1010 BPF_SIZE(insn->code), BPF_READ, -1);
1011 if (err)
1012 return err;
1013
1014 /* check whether atomic_add can write into the same memory */
31fd8581 1015 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1016 BPF_SIZE(insn->code), BPF_WRITE, -1);
1017}
1018
1019/* when register 'regno' is passed into function that will read 'access_size'
1020 * bytes from that pointer, make sure that it's within stack boundary
1021 * and all elements of stack are initialized
1022 */
58e2af8b 1023static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1024 int access_size, bool zero_size_allowed,
1025 struct bpf_call_arg_meta *meta)
17a52670 1026{
58e2af8b
JK
1027 struct bpf_verifier_state *state = &env->cur_state;
1028 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1029 int off, i;
1030
8e2fe1d9
DB
1031 if (regs[regno].type != PTR_TO_STACK) {
1032 if (zero_size_allowed && access_size == 0 &&
1033 regs[regno].type == CONST_IMM &&
1034 regs[regno].imm == 0)
1035 return 0;
1036
1037 verbose("R%d type=%s expected=%s\n", regno,
1038 reg_type_str[regs[regno].type],
1039 reg_type_str[PTR_TO_STACK]);
17a52670 1040 return -EACCES;
8e2fe1d9 1041 }
17a52670
AS
1042
1043 off = regs[regno].imm;
1044 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1045 access_size <= 0) {
1046 verbose("invalid stack type R%d off=%d access_size=%d\n",
1047 regno, off, access_size);
1048 return -EACCES;
1049 }
1050
8726679a
AS
1051 if (env->prog->aux->stack_depth < -off)
1052 env->prog->aux->stack_depth = -off;
1053
435faee1
DB
1054 if (meta && meta->raw_mode) {
1055 meta->access_size = access_size;
1056 meta->regno = regno;
1057 return 0;
1058 }
1059
17a52670 1060 for (i = 0; i < access_size; i++) {
9c399760 1061 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1062 verbose("invalid indirect read from stack off %d+%d size %d\n",
1063 off, i, access_size);
1064 return -EACCES;
1065 }
1066 }
1067 return 0;
1068}
1069
06c1c049
GB
1070static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1071 int access_size, bool zero_size_allowed,
1072 struct bpf_call_arg_meta *meta)
1073{
1074 struct bpf_reg_state *regs = env->cur_state.regs;
1075
1076 switch (regs[regno].type) {
1077 case PTR_TO_PACKET:
1078 return check_packet_access(env, regno, 0, access_size);
1079 case PTR_TO_MAP_VALUE:
1080 return check_map_access(env, regno, 0, access_size);
1081 case PTR_TO_MAP_VALUE_ADJ:
1082 return check_map_access_adj(env, regno, 0, access_size);
1083 default: /* const_imm|ptr_to_stack or invalid ptr */
1084 return check_stack_boundary(env, regno, access_size,
1085 zero_size_allowed, meta);
1086 }
1087}
1088
58e2af8b 1089static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1090 enum bpf_arg_type arg_type,
1091 struct bpf_call_arg_meta *meta)
17a52670 1092{
58e2af8b 1093 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1094 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1095 int err = 0;
1096
80f1d68c 1097 if (arg_type == ARG_DONTCARE)
17a52670
AS
1098 return 0;
1099
6841de8b 1100 if (type == NOT_INIT) {
17a52670
AS
1101 verbose("R%d !read_ok\n", regno);
1102 return -EACCES;
1103 }
1104
1be7f75d
AS
1105 if (arg_type == ARG_ANYTHING) {
1106 if (is_pointer_value(env, regno)) {
1107 verbose("R%d leaks addr into helper function\n", regno);
1108 return -EACCES;
1109 }
80f1d68c 1110 return 0;
1be7f75d 1111 }
80f1d68c 1112
3a0af8fd
TG
1113 if (type == PTR_TO_PACKET &&
1114 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1115 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1116 return -EACCES;
1117 }
1118
8e2fe1d9 1119 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1120 arg_type == ARG_PTR_TO_MAP_VALUE) {
1121 expected_type = PTR_TO_STACK;
6841de8b
AS
1122 if (type != PTR_TO_PACKET && type != expected_type)
1123 goto err_type;
39f19ebb
AS
1124 } else if (arg_type == ARG_CONST_SIZE ||
1125 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1126 expected_type = CONST_IMM;
06c1c049
GB
1127 /* One exception. Allow UNKNOWN_VALUE registers when the
1128 * boundaries are known and don't cause unsafe memory accesses
1129 */
1130 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1131 goto err_type;
17a52670
AS
1132 } else if (arg_type == ARG_CONST_MAP_PTR) {
1133 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1134 if (type != expected_type)
1135 goto err_type;
608cd71a
AS
1136 } else if (arg_type == ARG_PTR_TO_CTX) {
1137 expected_type = PTR_TO_CTX;
6841de8b
AS
1138 if (type != expected_type)
1139 goto err_type;
39f19ebb
AS
1140 } else if (arg_type == ARG_PTR_TO_MEM ||
1141 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1142 expected_type = PTR_TO_STACK;
1143 /* One exception here. In case function allows for NULL to be
1144 * passed in as argument, it's a CONST_IMM type. Final test
1145 * happens during stack boundary checking.
1146 */
6841de8b
AS
1147 if (type == CONST_IMM && reg->imm == 0)
1148 /* final test in check_stack_boundary() */;
5722569b
GB
1149 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1150 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1151 goto err_type;
39f19ebb 1152 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1153 } else {
1154 verbose("unsupported arg_type %d\n", arg_type);
1155 return -EFAULT;
1156 }
1157
17a52670
AS
1158 if (arg_type == ARG_CONST_MAP_PTR) {
1159 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1160 meta->map_ptr = reg->map_ptr;
17a52670
AS
1161 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1162 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1163 * check that [key, key + map->key_size) are within
1164 * stack limits and initialized
1165 */
33ff9823 1166 if (!meta->map_ptr) {
17a52670
AS
1167 /* in function declaration map_ptr must come before
1168 * map_key, so that it's verified and known before
1169 * we have to check map_key here. Otherwise it means
1170 * that kernel subsystem misconfigured verifier
1171 */
1172 verbose("invalid map_ptr to access map->key\n");
1173 return -EACCES;
1174 }
6841de8b
AS
1175 if (type == PTR_TO_PACKET)
1176 err = check_packet_access(env, regno, 0,
1177 meta->map_ptr->key_size);
1178 else
1179 err = check_stack_boundary(env, regno,
1180 meta->map_ptr->key_size,
1181 false, NULL);
17a52670
AS
1182 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1183 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1184 * check [value, value + map->value_size) validity
1185 */
33ff9823 1186 if (!meta->map_ptr) {
17a52670
AS
1187 /* kernel subsystem misconfigured verifier */
1188 verbose("invalid map_ptr to access map->value\n");
1189 return -EACCES;
1190 }
6841de8b
AS
1191 if (type == PTR_TO_PACKET)
1192 err = check_packet_access(env, regno, 0,
1193 meta->map_ptr->value_size);
1194 else
1195 err = check_stack_boundary(env, regno,
1196 meta->map_ptr->value_size,
1197 false, NULL);
39f19ebb
AS
1198 } else if (arg_type == ARG_CONST_SIZE ||
1199 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1200 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1201
17a52670
AS
1202 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1203 * from stack pointer 'buf'. Check it
1204 * note: regno == len, regno - 1 == buf
1205 */
1206 if (regno == 0) {
1207 /* kernel subsystem misconfigured verifier */
39f19ebb 1208 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1209 return -EACCES;
1210 }
06c1c049
GB
1211
1212 /* If the register is UNKNOWN_VALUE, the access check happens
1213 * using its boundaries. Otherwise, just use its imm
1214 */
1215 if (type == UNKNOWN_VALUE) {
1216 /* For unprivileged variable accesses, disable raw
1217 * mode so that the program is required to
1218 * initialize all the memory that the helper could
1219 * just partially fill up.
1220 */
1221 meta = NULL;
1222
1223 if (reg->min_value < 0) {
1224 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1225 regno);
1226 return -EACCES;
1227 }
1228
1229 if (reg->min_value == 0) {
1230 err = check_helper_mem_access(env, regno - 1, 0,
1231 zero_size_allowed,
1232 meta);
1233 if (err)
1234 return err;
1235 }
1236
1237 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1238 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1239 regno);
1240 return -EACCES;
1241 }
1242 err = check_helper_mem_access(env, regno - 1,
1243 reg->max_value,
1244 zero_size_allowed, meta);
1245 if (err)
1246 return err;
1247 } else {
1248 /* register is CONST_IMM */
1249 err = check_helper_mem_access(env, regno - 1, reg->imm,
1250 zero_size_allowed, meta);
1251 }
17a52670
AS
1252 }
1253
1254 return err;
6841de8b
AS
1255err_type:
1256 verbose("R%d type=%s expected=%s\n", regno,
1257 reg_type_str[type], reg_type_str[expected_type]);
1258 return -EACCES;
17a52670
AS
1259}
1260
35578d79
KX
1261static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1262{
35578d79
KX
1263 if (!map)
1264 return 0;
1265
6aff67c8
AS
1266 /* We need a two way check, first is from map perspective ... */
1267 switch (map->map_type) {
1268 case BPF_MAP_TYPE_PROG_ARRAY:
1269 if (func_id != BPF_FUNC_tail_call)
1270 goto error;
1271 break;
1272 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1273 if (func_id != BPF_FUNC_perf_event_read &&
1274 func_id != BPF_FUNC_perf_event_output)
1275 goto error;
1276 break;
1277 case BPF_MAP_TYPE_STACK_TRACE:
1278 if (func_id != BPF_FUNC_get_stackid)
1279 goto error;
1280 break;
4ed8ec52 1281 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1282 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1283 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1284 goto error;
1285 break;
56f668df 1286 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1287 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1288 if (func_id != BPF_FUNC_map_lookup_elem)
1289 goto error;
6aff67c8
AS
1290 default:
1291 break;
1292 }
1293
1294 /* ... and second from the function itself. */
1295 switch (func_id) {
1296 case BPF_FUNC_tail_call:
1297 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1298 goto error;
1299 break;
1300 case BPF_FUNC_perf_event_read:
1301 case BPF_FUNC_perf_event_output:
1302 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1303 goto error;
1304 break;
1305 case BPF_FUNC_get_stackid:
1306 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1307 goto error;
1308 break;
60d20f91 1309 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1310 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1311 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1312 goto error;
1313 break;
6aff67c8
AS
1314 default:
1315 break;
35578d79
KX
1316 }
1317
1318 return 0;
6aff67c8 1319error:
ebb676da
TG
1320 verbose("cannot pass map_type %d into func %s#%d\n",
1321 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1322 return -EINVAL;
35578d79
KX
1323}
1324
435faee1
DB
1325static int check_raw_mode(const struct bpf_func_proto *fn)
1326{
1327 int count = 0;
1328
39f19ebb 1329 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1330 count++;
39f19ebb 1331 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1332 count++;
39f19ebb 1333 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1334 count++;
39f19ebb 1335 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1336 count++;
39f19ebb 1337 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1338 count++;
1339
1340 return count > 1 ? -EINVAL : 0;
1341}
1342
58e2af8b 1343static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1344{
58e2af8b
JK
1345 struct bpf_verifier_state *state = &env->cur_state;
1346 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1347 int i;
1348
1349 for (i = 0; i < MAX_BPF_REG; i++)
1350 if (regs[i].type == PTR_TO_PACKET ||
1351 regs[i].type == PTR_TO_PACKET_END)
1352 mark_reg_unknown_value(regs, i);
1353
1354 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1355 if (state->stack_slot_type[i] != STACK_SPILL)
1356 continue;
1357 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1358 if (reg->type != PTR_TO_PACKET &&
1359 reg->type != PTR_TO_PACKET_END)
1360 continue;
36e24c00
DB
1361 __mark_reg_unknown_value(state->spilled_regs,
1362 i / BPF_REG_SIZE);
969bf05e
AS
1363 }
1364}
1365
81ed18ab 1366static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1367{
58e2af8b 1368 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1369 const struct bpf_func_proto *fn = NULL;
58e2af8b 1370 struct bpf_reg_state *regs = state->regs;
33ff9823 1371 struct bpf_call_arg_meta meta;
969bf05e 1372 bool changes_data;
17a52670
AS
1373 int i, err;
1374
1375 /* find function prototype */
1376 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1377 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1378 return -EINVAL;
1379 }
1380
1381 if (env->prog->aux->ops->get_func_proto)
1382 fn = env->prog->aux->ops->get_func_proto(func_id);
1383
1384 if (!fn) {
ebb676da 1385 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1386 return -EINVAL;
1387 }
1388
1389 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1390 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1391 verbose("cannot call GPL only function from proprietary program\n");
1392 return -EINVAL;
1393 }
1394
17bedab2 1395 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1396
33ff9823 1397 memset(&meta, 0, sizeof(meta));
36bbef52 1398 meta.pkt_access = fn->pkt_access;
33ff9823 1399
435faee1
DB
1400 /* We only support one arg being in raw mode at the moment, which
1401 * is sufficient for the helper functions we have right now.
1402 */
1403 err = check_raw_mode(fn);
1404 if (err) {
ebb676da
TG
1405 verbose("kernel subsystem misconfigured func %s#%d\n",
1406 func_id_name(func_id), func_id);
435faee1
DB
1407 return err;
1408 }
1409
17a52670 1410 /* check args */
33ff9823 1411 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1412 if (err)
1413 return err;
33ff9823 1414 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1415 if (err)
1416 return err;
33ff9823 1417 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1418 if (err)
1419 return err;
33ff9823 1420 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1421 if (err)
1422 return err;
33ff9823 1423 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1424 if (err)
1425 return err;
1426
435faee1
DB
1427 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1428 * is inferred from register state.
1429 */
1430 for (i = 0; i < meta.access_size; i++) {
31fd8581 1431 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1432 if (err)
1433 return err;
1434 }
1435
17a52670 1436 /* reset caller saved regs */
a9789ef9
DB
1437 for (i = 0; i < CALLER_SAVED_REGS; i++)
1438 mark_reg_not_init(regs, caller_saved[i]);
17a52670
AS
1439
1440 /* update return register */
1441 if (fn->ret_type == RET_INTEGER) {
1442 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1443 } else if (fn->ret_type == RET_VOID) {
1444 regs[BPF_REG_0].type = NOT_INIT;
1445 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1446 struct bpf_insn_aux_data *insn_aux;
1447
17a52670 1448 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1449 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1450 /* remember map_ptr, so that check_map_access()
1451 * can check 'value_size' boundary of memory access
1452 * to map element returned from bpf_map_lookup_elem()
1453 */
33ff9823 1454 if (meta.map_ptr == NULL) {
17a52670
AS
1455 verbose("kernel subsystem misconfigured verifier\n");
1456 return -EINVAL;
1457 }
33ff9823 1458 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1459 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1460 insn_aux = &env->insn_aux_data[insn_idx];
1461 if (!insn_aux->map_ptr)
1462 insn_aux->map_ptr = meta.map_ptr;
1463 else if (insn_aux->map_ptr != meta.map_ptr)
1464 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1465 } else {
ebb676da
TG
1466 verbose("unknown return type %d of func %s#%d\n",
1467 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1468 return -EINVAL;
1469 }
04fd61ab 1470
33ff9823 1471 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1472 if (err)
1473 return err;
04fd61ab 1474
969bf05e
AS
1475 if (changes_data)
1476 clear_all_pkt_pointers(env);
1477 return 0;
1478}
1479
58e2af8b
JK
1480static int check_packet_ptr_add(struct bpf_verifier_env *env,
1481 struct bpf_insn *insn)
969bf05e 1482{
58e2af8b
JK
1483 struct bpf_reg_state *regs = env->cur_state.regs;
1484 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1485 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1486 struct bpf_reg_state tmp_reg;
969bf05e
AS
1487 s32 imm;
1488
1489 if (BPF_SRC(insn->code) == BPF_K) {
1490 /* pkt_ptr += imm */
1491 imm = insn->imm;
1492
1493add_imm:
63dfef75 1494 if (imm < 0) {
969bf05e
AS
1495 verbose("addition of negative constant to packet pointer is not allowed\n");
1496 return -EACCES;
1497 }
1498 if (imm >= MAX_PACKET_OFF ||
1499 imm + dst_reg->off >= MAX_PACKET_OFF) {
1500 verbose("constant %d is too large to add to packet pointer\n",
1501 imm);
1502 return -EACCES;
1503 }
1504 /* a constant was added to pkt_ptr.
1505 * Remember it while keeping the same 'id'
1506 */
1507 dst_reg->off += imm;
1508 } else {
d1174416
DM
1509 bool had_id;
1510
1b9b69ec
AS
1511 if (src_reg->type == PTR_TO_PACKET) {
1512 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1513 tmp_reg = *dst_reg; /* save r7 state */
1514 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1515 src_reg = &tmp_reg; /* pretend it's src_reg state */
1516 /* if the checks below reject it, the copy won't matter,
1517 * since we're rejecting the whole program. If all ok,
1518 * then imm22 state will be added to r7
1519 * and r7 will be pkt(id=0,off=22,r=62) while
1520 * r6 will stay as pkt(id=0,off=0,r=62)
1521 */
1522 }
1523
969bf05e
AS
1524 if (src_reg->type == CONST_IMM) {
1525 /* pkt_ptr += reg where reg is known constant */
1526 imm = src_reg->imm;
1527 goto add_imm;
1528 }
1529 /* disallow pkt_ptr += reg
1530 * if reg is not uknown_value with guaranteed zero upper bits
1531 * otherwise pkt_ptr may overflow and addition will become
1532 * subtraction which is not allowed
1533 */
1534 if (src_reg->type != UNKNOWN_VALUE) {
1535 verbose("cannot add '%s' to ptr_to_packet\n",
1536 reg_type_str[src_reg->type]);
1537 return -EACCES;
1538 }
1539 if (src_reg->imm < 48) {
1540 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1541 src_reg->imm);
1542 return -EACCES;
1543 }
d1174416
DM
1544
1545 had_id = (dst_reg->id != 0);
1546
969bf05e
AS
1547 /* dst_reg stays as pkt_ptr type and since some positive
1548 * integer value was added to the pointer, increment its 'id'
1549 */
1f415a74 1550 dst_reg->id = ++env->id_gen;
969bf05e 1551
d1174416 1552 /* something was added to pkt_ptr, set range to zero */
6832a333 1553 dst_reg->aux_off += dst_reg->off;
969bf05e
AS
1554 dst_reg->off = 0;
1555 dst_reg->range = 0;
d1174416
DM
1556 if (had_id)
1557 dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1558 src_reg->min_align);
1559 else
1560 dst_reg->aux_off_align = src_reg->min_align;
969bf05e
AS
1561 }
1562 return 0;
1563}
1564
58e2af8b 1565static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1566{
58e2af8b
JK
1567 struct bpf_reg_state *regs = env->cur_state.regs;
1568 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1569 u8 opcode = BPF_OP(insn->code);
1570 s64 imm_log2;
1571
1572 /* for type == UNKNOWN_VALUE:
1573 * imm > 0 -> number of zero upper bits
1574 * imm == 0 -> don't track which is the same as all bits can be non-zero
1575 */
1576
1577 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1578 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1579
1580 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1581 dst_reg->imm && opcode == BPF_ADD) {
1582 /* dreg += sreg
1583 * where both have zero upper bits. Adding them
1584 * can only result making one more bit non-zero
1585 * in the larger value.
1586 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1587 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1588 */
1589 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1590 dst_reg->imm--;
1591 return 0;
1592 }
1593 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1594 dst_reg->imm && opcode == BPF_ADD) {
1595 /* dreg += sreg
1596 * where dreg has zero upper bits and sreg is const.
1597 * Adding them can only result making one more bit
1598 * non-zero in the larger value.
1599 */
1600 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1601 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1602 dst_reg->imm--;
1603 return 0;
1604 }
1605 /* all other cases non supported yet, just mark dst_reg */
1606 dst_reg->imm = 0;
1607 return 0;
1608 }
1609
1610 /* sign extend 32-bit imm into 64-bit to make sure that
1611 * negative values occupy bit 63. Note ilog2() would have
1612 * been incorrect, since sizeof(insn->imm) == 4
1613 */
1614 imm_log2 = __ilog2_u64((long long)insn->imm);
1615
1616 if (dst_reg->imm && opcode == BPF_LSH) {
1617 /* reg <<= imm
1618 * if reg was a result of 2 byte load, then its imm == 48
1619 * which means that upper 48 bits are zero and shifting this reg
1620 * left by 4 would mean that upper 44 bits are still zero
1621 */
1622 dst_reg->imm -= insn->imm;
1623 } else if (dst_reg->imm && opcode == BPF_MUL) {
1624 /* reg *= imm
1625 * if multiplying by 14 subtract 4
1626 * This is conservative calculation of upper zero bits.
1627 * It's not trying to special case insn->imm == 1 or 0 cases
1628 */
1629 dst_reg->imm -= imm_log2 + 1;
1630 } else if (opcode == BPF_AND) {
1631 /* reg &= imm */
1632 dst_reg->imm = 63 - imm_log2;
1633 } else if (dst_reg->imm && opcode == BPF_ADD) {
1634 /* reg += imm */
1635 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1636 dst_reg->imm--;
1637 } else if (opcode == BPF_RSH) {
1638 /* reg >>= imm
1639 * which means that after right shift, upper bits will be zero
1640 * note that verifier already checked that
1641 * 0 <= imm < 64 for shift insn
1642 */
1643 dst_reg->imm += insn->imm;
1644 if (unlikely(dst_reg->imm > 64))
1645 /* some dumb code did:
1646 * r2 = *(u32 *)mem;
1647 * r2 >>= 32;
1648 * and all bits are zero now */
1649 dst_reg->imm = 64;
1650 } else {
1651 /* all other alu ops, means that we don't know what will
1652 * happen to the value, mark it with unknown number of zero bits
1653 */
1654 dst_reg->imm = 0;
1655 }
1656
1657 if (dst_reg->imm < 0) {
1658 /* all 64 bits of the register can contain non-zero bits
1659 * and such value cannot be added to ptr_to_packet, since it
1660 * may overflow, mark it as unknown to avoid further eval
1661 */
1662 dst_reg->imm = 0;
1663 }
1664 return 0;
1665}
1666
43188702
JF
1667static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env *env,
1668 struct bpf_insn *insn)
1669{
1670 struct bpf_reg_state *regs = env->cur_state.regs;
1671 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1672 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1673 u8 opcode = BPF_OP(insn->code);
1674 s64 imm_log2 = __ilog2_u64((long long)dst_reg->imm);
1675
1676 /* BPF_X code with src_reg->type UNKNOWN_VALUE here. */
1677 if (src_reg->imm > 0 && dst_reg->imm) {
1678 switch (opcode) {
1679 case BPF_ADD:
1680 /* dreg += sreg
1681 * where both have zero upper bits. Adding them
1682 * can only result making one more bit non-zero
1683 * in the larger value.
1684 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1685 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1686 */
1687 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1688 dst_reg->imm--;
1689 break;
1690 case BPF_AND:
1691 /* dreg &= sreg
1692 * AND can not extend zero bits only shrink
1693 * Ex. 0x00..00ffffff
1694 * & 0x0f..ffffffff
1695 * ----------------
1696 * 0x00..00ffffff
1697 */
1698 dst_reg->imm = max(src_reg->imm, 63 - imm_log2);
1699 break;
1700 case BPF_OR:
1701 /* dreg |= sreg
1702 * OR can only extend zero bits
1703 * Ex. 0x00..00ffffff
1704 * | 0x0f..ffffffff
1705 * ----------------
1706 * 0x0f..00ffffff
1707 */
1708 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1709 break;
1710 case BPF_SUB:
1711 case BPF_MUL:
1712 case BPF_RSH:
1713 case BPF_LSH:
1714 /* These may be flushed out later */
1715 default:
1716 mark_reg_unknown_value(regs, insn->dst_reg);
1717 }
1718 } else {
1719 mark_reg_unknown_value(regs, insn->dst_reg);
1720 }
1721
1722 dst_reg->type = UNKNOWN_VALUE;
1723 return 0;
1724}
1725
58e2af8b
JK
1726static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1727 struct bpf_insn *insn)
969bf05e 1728{
58e2af8b
JK
1729 struct bpf_reg_state *regs = env->cur_state.regs;
1730 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1731 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1732 u8 opcode = BPF_OP(insn->code);
3fadc801 1733 u64 dst_imm = dst_reg->imm;
969bf05e 1734
43188702
JF
1735 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == UNKNOWN_VALUE)
1736 return evaluate_reg_imm_alu_unknown(env, insn);
1737
3fadc801
DB
1738 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1739 * containing ALU ops. Don't care about overflow or negative
1740 * values, just add/sub/... them; registers are in u64.
969bf05e 1741 */
3fadc801
DB
1742 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1743 dst_imm += insn->imm;
1744 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1745 src_reg->type == CONST_IMM) {
1746 dst_imm += src_reg->imm;
1747 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1748 dst_imm -= insn->imm;
1749 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1750 src_reg->type == CONST_IMM) {
1751 dst_imm -= src_reg->imm;
1752 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1753 dst_imm *= insn->imm;
1754 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1755 src_reg->type == CONST_IMM) {
1756 dst_imm *= src_reg->imm;
1757 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1758 dst_imm |= insn->imm;
1759 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1760 src_reg->type == CONST_IMM) {
1761 dst_imm |= src_reg->imm;
1762 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1763 dst_imm &= insn->imm;
1764 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1765 src_reg->type == CONST_IMM) {
1766 dst_imm &= src_reg->imm;
1767 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1768 dst_imm >>= insn->imm;
1769 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1770 src_reg->type == CONST_IMM) {
1771 dst_imm >>= src_reg->imm;
1772 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1773 dst_imm <<= insn->imm;
1774 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1775 src_reg->type == CONST_IMM) {
1776 dst_imm <<= src_reg->imm;
1777 } else {
969bf05e 1778 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1779 goto out;
1780 }
1781
1782 dst_reg->imm = dst_imm;
1783out:
17a52670
AS
1784 return 0;
1785}
1786
48461135
JB
1787static void check_reg_overflow(struct bpf_reg_state *reg)
1788{
1789 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1790 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1791 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1792 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1793 reg->min_value = BPF_REGISTER_MIN_RANGE;
1794}
1795
d1174416
DM
1796static u32 calc_align(u32 imm)
1797{
1798 if (!imm)
1799 return 1U << 31;
1800 return imm - ((imm - 1) & imm);
1801}
1802
48461135
JB
1803static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1804 struct bpf_insn *insn)
1805{
1806 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1807 s64 min_val = BPF_REGISTER_MIN_RANGE;
1808 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135 1809 u8 opcode = BPF_OP(insn->code);
d1174416 1810 u32 dst_align, src_align;
48461135
JB
1811
1812 dst_reg = &regs[insn->dst_reg];
d1174416 1813 src_align = 0;
48461135
JB
1814 if (BPF_SRC(insn->code) == BPF_X) {
1815 check_reg_overflow(&regs[insn->src_reg]);
1816 min_val = regs[insn->src_reg].min_value;
1817 max_val = regs[insn->src_reg].max_value;
1818
1819 /* If the source register is a random pointer then the
1820 * min_value/max_value values represent the range of the known
1821 * accesses into that value, not the actual min/max value of the
1822 * register itself. In this case we have to reset the reg range
1823 * values so we know it is not safe to look at.
1824 */
1825 if (regs[insn->src_reg].type != CONST_IMM &&
1826 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1827 min_val = BPF_REGISTER_MIN_RANGE;
1828 max_val = BPF_REGISTER_MAX_RANGE;
d1174416
DM
1829 src_align = 0;
1830 } else {
1831 src_align = regs[insn->src_reg].min_align;
48461135
JB
1832 }
1833 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1834 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1835 min_val = max_val = insn->imm;
d1174416 1836 src_align = calc_align(insn->imm);
48461135
JB
1837 }
1838
d1174416
DM
1839 dst_align = dst_reg->min_align;
1840
48461135 1841 /* We don't know anything about what was done to this register, mark it
4cabc5b1
DB
1842 * as unknown. Also, if both derived bounds came from signed/unsigned
1843 * mixed compares and one side is unbounded, we cannot really do anything
1844 * with them as boundaries cannot be trusted. Thus, arithmetic of two
1845 * regs of such kind will get invalidated bounds on the dst side.
48461135 1846 */
4cabc5b1
DB
1847 if ((min_val == BPF_REGISTER_MIN_RANGE &&
1848 max_val == BPF_REGISTER_MAX_RANGE) ||
1849 (BPF_SRC(insn->code) == BPF_X &&
1850 ((min_val != BPF_REGISTER_MIN_RANGE &&
1851 max_val == BPF_REGISTER_MAX_RANGE) ||
1852 (min_val == BPF_REGISTER_MIN_RANGE &&
1853 max_val != BPF_REGISTER_MAX_RANGE) ||
1854 (dst_reg->min_value != BPF_REGISTER_MIN_RANGE &&
1855 dst_reg->max_value == BPF_REGISTER_MAX_RANGE) ||
1856 (dst_reg->min_value == BPF_REGISTER_MIN_RANGE &&
1857 dst_reg->max_value != BPF_REGISTER_MAX_RANGE)) &&
1858 regs[insn->dst_reg].value_from_signed !=
1859 regs[insn->src_reg].value_from_signed)) {
48461135
JB
1860 reset_reg_range_values(regs, insn->dst_reg);
1861 return;
1862 }
1863
f23cc643
JB
1864 /* If one of our values was at the end of our ranges then we can't just
1865 * do our normal operations to the register, we need to set the values
1866 * to the min/max since they are undefined.
1867 */
9305706c
EC
1868 if (opcode != BPF_SUB) {
1869 if (min_val == BPF_REGISTER_MIN_RANGE)
1870 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1871 if (max_val == BPF_REGISTER_MAX_RANGE)
1872 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1873 }
f23cc643 1874
48461135
JB
1875 switch (opcode) {
1876 case BPF_ADD:
f23cc643
JB
1877 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1878 dst_reg->min_value += min_val;
1879 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1880 dst_reg->max_value += max_val;
d1174416 1881 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1882 break;
1883 case BPF_SUB:
9305706c
EC
1884 /* If one of our values was at the end of our ranges, then the
1885 * _opposite_ value in the dst_reg goes to the end of our range.
1886 */
1887 if (min_val == BPF_REGISTER_MIN_RANGE)
1888 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1889 if (max_val == BPF_REGISTER_MAX_RANGE)
1890 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1891 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
9305706c 1892 dst_reg->min_value -= max_val;
f23cc643 1893 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
9305706c 1894 dst_reg->max_value -= min_val;
d1174416 1895 dst_reg->min_align = min(src_align, dst_align);
48461135
JB
1896 break;
1897 case BPF_MUL:
f23cc643
JB
1898 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1899 dst_reg->min_value *= min_val;
1900 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1901 dst_reg->max_value *= max_val;
d1174416 1902 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1903 break;
1904 case BPF_AND:
f23cc643
JB
1905 /* Disallow AND'ing of negative numbers, ain't nobody got time
1906 * for that. Otherwise the minimum is 0 and the max is the max
1907 * value we could AND against.
1908 */
1909 if (min_val < 0)
1910 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1911 else
1912 dst_reg->min_value = 0;
48461135 1913 dst_reg->max_value = max_val;
d1174416 1914 dst_reg->min_align = max(src_align, dst_align);
48461135
JB
1915 break;
1916 case BPF_LSH:
1917 /* Gotta have special overflow logic here, if we're shifting
1918 * more than MAX_RANGE then just assume we have an invalid
1919 * range.
1920 */
d1174416 1921 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
48461135 1922 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416
DM
1923 dst_reg->min_align = 1;
1924 } else {
1925 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1926 dst_reg->min_value <<= min_val;
1927 if (!dst_reg->min_align)
1928 dst_reg->min_align = 1;
1929 dst_reg->min_align <<= min_val;
1930 }
48461135
JB
1931 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1932 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1933 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1934 dst_reg->max_value <<= max_val;
1935 break;
1936 case BPF_RSH:
f23cc643
JB
1937 /* RSH by a negative number is undefined, and the BPF_RSH is an
1938 * unsigned shift, so make the appropriate casts.
48461135 1939 */
d1174416 1940 if (min_val < 0 || dst_reg->min_value < 0) {
f23cc643 1941 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
d1174416 1942 } else {
f23cc643
JB
1943 dst_reg->min_value =
1944 (u64)(dst_reg->min_value) >> min_val;
d1174416
DM
1945 }
1946 if (min_val < 0) {
1947 dst_reg->min_align = 1;
1948 } else {
1949 dst_reg->min_align >>= (u64) min_val;
1950 if (!dst_reg->min_align)
1951 dst_reg->min_align = 1;
1952 }
f23cc643
JB
1953 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1954 dst_reg->max_value >>= max_val;
48461135
JB
1955 break;
1956 default:
1957 reset_reg_range_values(regs, insn->dst_reg);
1958 break;
1959 }
1960
1961 check_reg_overflow(dst_reg);
1962}
1963
17a52670 1964/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1965static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1966{
58e2af8b 1967 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1968 u8 opcode = BPF_OP(insn->code);
1969 int err;
1970
1971 if (opcode == BPF_END || opcode == BPF_NEG) {
1972 if (opcode == BPF_NEG) {
1973 if (BPF_SRC(insn->code) != 0 ||
1974 insn->src_reg != BPF_REG_0 ||
1975 insn->off != 0 || insn->imm != 0) {
1976 verbose("BPF_NEG uses reserved fields\n");
1977 return -EINVAL;
1978 }
1979 } else {
1980 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1981 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1982 verbose("BPF_END uses reserved fields\n");
1983 return -EINVAL;
1984 }
1985 }
1986
1987 /* check src operand */
1988 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1989 if (err)
1990 return err;
1991
1be7f75d
AS
1992 if (is_pointer_value(env, insn->dst_reg)) {
1993 verbose("R%d pointer arithmetic prohibited\n",
1994 insn->dst_reg);
1995 return -EACCES;
1996 }
1997
17a52670
AS
1998 /* check dest operand */
1999 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2000 if (err)
2001 return err;
2002
2003 } else if (opcode == BPF_MOV) {
2004
2005 if (BPF_SRC(insn->code) == BPF_X) {
2006 if (insn->imm != 0 || insn->off != 0) {
2007 verbose("BPF_MOV uses reserved fields\n");
2008 return -EINVAL;
2009 }
2010
2011 /* check src operand */
2012 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2013 if (err)
2014 return err;
2015 } else {
2016 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2017 verbose("BPF_MOV uses reserved fields\n");
2018 return -EINVAL;
2019 }
2020 }
2021
2022 /* check dest operand */
2023 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2024 if (err)
2025 return err;
2026
48461135
JB
2027 /* we are setting our register to something new, we need to
2028 * reset its range values.
2029 */
2030 reset_reg_range_values(regs, insn->dst_reg);
2031
17a52670
AS
2032 if (BPF_SRC(insn->code) == BPF_X) {
2033 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2034 /* case: R1 = R2
2035 * copy register state to dest reg
2036 */
2037 regs[insn->dst_reg] = regs[insn->src_reg];
2038 } else {
1be7f75d
AS
2039 if (is_pointer_value(env, insn->src_reg)) {
2040 verbose("R%d partial copy of pointer\n",
2041 insn->src_reg);
2042 return -EACCES;
2043 }
57a09bf0 2044 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2045 }
2046 } else {
2047 /* case: R = imm
2048 * remember the value we stored into this reg
2049 */
2050 regs[insn->dst_reg].type = CONST_IMM;
2051 regs[insn->dst_reg].imm = insn->imm;
4a2ff55a 2052 regs[insn->dst_reg].id = 0;
48461135
JB
2053 regs[insn->dst_reg].max_value = insn->imm;
2054 regs[insn->dst_reg].min_value = insn->imm;
d1174416 2055 regs[insn->dst_reg].min_align = calc_align(insn->imm);
4cabc5b1 2056 regs[insn->dst_reg].value_from_signed = false;
17a52670
AS
2057 }
2058
2059 } else if (opcode > BPF_END) {
2060 verbose("invalid BPF_ALU opcode %x\n", opcode);
2061 return -EINVAL;
2062
2063 } else { /* all other ALU ops: and, sub, xor, add, ... */
2064
17a52670
AS
2065 if (BPF_SRC(insn->code) == BPF_X) {
2066 if (insn->imm != 0 || insn->off != 0) {
2067 verbose("BPF_ALU uses reserved fields\n");
2068 return -EINVAL;
2069 }
2070 /* check src1 operand */
2071 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2072 if (err)
2073 return err;
2074 } else {
2075 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2076 verbose("BPF_ALU uses reserved fields\n");
2077 return -EINVAL;
2078 }
2079 }
2080
2081 /* check src2 operand */
2082 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2083 if (err)
2084 return err;
2085
2086 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2087 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2088 verbose("div by zero\n");
2089 return -EINVAL;
2090 }
2091
229394e8
RV
2092 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2093 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2094 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2095
2096 if (insn->imm < 0 || insn->imm >= size) {
2097 verbose("invalid shift %d\n", insn->imm);
2098 return -EINVAL;
2099 }
2100 }
2101
1a0dc1ac
AS
2102 /* check dest operand */
2103 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2104 if (err)
2105 return err;
2106
2107 dst_reg = &regs[insn->dst_reg];
2108
48461135
JB
2109 /* first we want to adjust our ranges. */
2110 adjust_reg_min_max_vals(env, insn);
2111
17a52670
AS
2112 /* pattern match 'bpf_add Rx, imm' instruction */
2113 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
2114 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2115 dst_reg->type = PTR_TO_STACK;
2116 dst_reg->imm = insn->imm;
2117 return 0;
332270fd
YS
2118 } else if (opcode == BPF_ADD &&
2119 BPF_CLASS(insn->code) == BPF_ALU64 &&
2120 dst_reg->type == PTR_TO_STACK &&
2121 ((BPF_SRC(insn->code) == BPF_X &&
2122 regs[insn->src_reg].type == CONST_IMM) ||
2123 BPF_SRC(insn->code) == BPF_K)) {
2124 if (BPF_SRC(insn->code) == BPF_X)
2125 dst_reg->imm += regs[insn->src_reg].imm;
2126 else
2127 dst_reg->imm += insn->imm;
2128 return 0;
969bf05e
AS
2129 } else if (opcode == BPF_ADD &&
2130 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
2131 (dst_reg->type == PTR_TO_PACKET ||
2132 (BPF_SRC(insn->code) == BPF_X &&
2133 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
2134 /* ptr_to_packet += K|X */
2135 return check_packet_ptr_add(env, insn);
2136 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2137 dst_reg->type == UNKNOWN_VALUE &&
2138 env->allow_ptr_leaks) {
2139 /* unknown += K|X */
2140 return evaluate_reg_alu(env, insn);
2141 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2142 dst_reg->type == CONST_IMM &&
2143 env->allow_ptr_leaks) {
2144 /* reg_imm += K|X */
2145 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
2146 } else if (is_pointer_value(env, insn->dst_reg)) {
2147 verbose("R%d pointer arithmetic prohibited\n",
2148 insn->dst_reg);
2149 return -EACCES;
2150 } else if (BPF_SRC(insn->code) == BPF_X &&
2151 is_pointer_value(env, insn->src_reg)) {
2152 verbose("R%d pointer arithmetic prohibited\n",
2153 insn->src_reg);
2154 return -EACCES;
2155 }
17a52670 2156
48461135
JB
2157 /* If we did pointer math on a map value then just set it to our
2158 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2159 * loads to this register appropriately, otherwise just mark the
2160 * register as unknown.
2161 */
2162 if (env->allow_ptr_leaks &&
fce366a9 2163 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
48461135
JB
2164 (dst_reg->type == PTR_TO_MAP_VALUE ||
2165 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2166 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2167 else
2168 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
2169 }
2170
2171 return 0;
2172}
2173
58e2af8b
JK
2174static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2175 struct bpf_reg_state *dst_reg)
969bf05e 2176{
58e2af8b 2177 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2178 int i;
2d2be8ca
DB
2179
2180 /* LLVM can generate two kind of checks:
2181 *
2182 * Type 1:
2183 *
2184 * r2 = r3;
2185 * r2 += 8;
2186 * if (r2 > pkt_end) goto <handle exception>
2187 * <access okay>
2188 *
2189 * Where:
2190 * r2 == dst_reg, pkt_end == src_reg
2191 * r2=pkt(id=n,off=8,r=0)
2192 * r3=pkt(id=n,off=0,r=0)
2193 *
2194 * Type 2:
2195 *
2196 * r2 = r3;
2197 * r2 += 8;
2198 * if (pkt_end >= r2) goto <access okay>
2199 * <handle exception>
2200 *
2201 * Where:
2202 * pkt_end == dst_reg, r2 == src_reg
2203 * r2=pkt(id=n,off=8,r=0)
2204 * r3=pkt(id=n,off=0,r=0)
2205 *
2206 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2207 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2208 */
2d2be8ca 2209
969bf05e
AS
2210 for (i = 0; i < MAX_BPF_REG; i++)
2211 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682
AS
2212 /* keep the maximum range already checked */
2213 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
2214
2215 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2216 if (state->stack_slot_type[i] != STACK_SPILL)
2217 continue;
2218 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2219 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
b1977682 2220 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
2221 }
2222}
2223
48461135
JB
2224/* Adjusts the register min/max values in the case that the dst_reg is the
2225 * variable register that we are working on, and src_reg is a constant or we're
2226 * simply doing a BPF_K check.
2227 */
2228static void reg_set_min_max(struct bpf_reg_state *true_reg,
2229 struct bpf_reg_state *false_reg, u64 val,
2230 u8 opcode)
2231{
4cabc5b1
DB
2232 bool value_from_signed = true;
2233 bool is_range = true;
2234
48461135
JB
2235 switch (opcode) {
2236 case BPF_JEQ:
2237 /* If this is false then we know nothing Jon Snow, but if it is
2238 * true then we know for sure.
2239 */
2240 true_reg->max_value = true_reg->min_value = val;
4cabc5b1 2241 is_range = false;
48461135
JB
2242 break;
2243 case BPF_JNE:
2244 /* If this is true we know nothing Jon Snow, but if it is false
2245 * we know the value for sure;
2246 */
2247 false_reg->max_value = false_reg->min_value = val;
4cabc5b1 2248 is_range = false;
48461135
JB
2249 break;
2250 case BPF_JGT:
4cabc5b1 2251 value_from_signed = false;
7e57fbb2 2252 /* fallthrough */
48461135 2253 case BPF_JSGT:
4cabc5b1
DB
2254 if (true_reg->value_from_signed != value_from_signed)
2255 reset_reg_range_values(true_reg, 0);
2256 if (false_reg->value_from_signed != value_from_signed)
2257 reset_reg_range_values(false_reg, 0);
2258 if (opcode == BPF_JGT) {
2259 /* Unsigned comparison, the minimum value is 0. */
2260 false_reg->min_value = 0;
2261 }
48461135
JB
2262 /* If this is false then we know the maximum val is val,
2263 * otherwise we know the min val is val+1.
2264 */
2265 false_reg->max_value = val;
4cabc5b1 2266 false_reg->value_from_signed = value_from_signed;
48461135 2267 true_reg->min_value = val + 1;
4cabc5b1 2268 true_reg->value_from_signed = value_from_signed;
48461135
JB
2269 break;
2270 case BPF_JGE:
4cabc5b1 2271 value_from_signed = false;
7e57fbb2 2272 /* fallthrough */
48461135 2273 case BPF_JSGE:
4cabc5b1
DB
2274 if (true_reg->value_from_signed != value_from_signed)
2275 reset_reg_range_values(true_reg, 0);
2276 if (false_reg->value_from_signed != value_from_signed)
2277 reset_reg_range_values(false_reg, 0);
2278 if (opcode == BPF_JGE) {
2279 /* Unsigned comparison, the minimum value is 0. */
2280 false_reg->min_value = 0;
2281 }
48461135
JB
2282 /* If this is false then we know the maximum value is val - 1,
2283 * otherwise we know the mimimum value is val.
2284 */
2285 false_reg->max_value = val - 1;
4cabc5b1 2286 false_reg->value_from_signed = value_from_signed;
48461135 2287 true_reg->min_value = val;
4cabc5b1 2288 true_reg->value_from_signed = value_from_signed;
48461135
JB
2289 break;
2290 default:
2291 break;
2292 }
2293
2294 check_reg_overflow(false_reg);
2295 check_reg_overflow(true_reg);
4cabc5b1
DB
2296 if (is_range) {
2297 if (__is_pointer_value(false, false_reg))
2298 reset_reg_range_values(false_reg, 0);
2299 if (__is_pointer_value(false, true_reg))
2300 reset_reg_range_values(true_reg, 0);
2301 }
48461135
JB
2302}
2303
2304/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2305 * is the variable reg.
2306 */
2307static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2308 struct bpf_reg_state *false_reg, u64 val,
2309 u8 opcode)
2310{
4cabc5b1
DB
2311 bool value_from_signed = true;
2312 bool is_range = true;
2313
48461135
JB
2314 switch (opcode) {
2315 case BPF_JEQ:
2316 /* If this is false then we know nothing Jon Snow, but if it is
2317 * true then we know for sure.
2318 */
2319 true_reg->max_value = true_reg->min_value = val;
4cabc5b1 2320 is_range = false;
48461135
JB
2321 break;
2322 case BPF_JNE:
2323 /* If this is true we know nothing Jon Snow, but if it is false
2324 * we know the value for sure;
2325 */
2326 false_reg->max_value = false_reg->min_value = val;
4cabc5b1 2327 is_range = false;
48461135
JB
2328 break;
2329 case BPF_JGT:
4cabc5b1 2330 value_from_signed = false;
7e57fbb2 2331 /* fallthrough */
48461135 2332 case BPF_JSGT:
4cabc5b1
DB
2333 if (true_reg->value_from_signed != value_from_signed)
2334 reset_reg_range_values(true_reg, 0);
2335 if (false_reg->value_from_signed != value_from_signed)
2336 reset_reg_range_values(false_reg, 0);
2337 if (opcode == BPF_JGT) {
2338 /* Unsigned comparison, the minimum value is 0. */
2339 true_reg->min_value = 0;
2340 }
48461135
JB
2341 /*
2342 * If this is false, then the val is <= the register, if it is
2343 * true the register <= to the val.
2344 */
2345 false_reg->min_value = val;
4cabc5b1 2346 false_reg->value_from_signed = value_from_signed;
48461135 2347 true_reg->max_value = val - 1;
4cabc5b1 2348 true_reg->value_from_signed = value_from_signed;
48461135
JB
2349 break;
2350 case BPF_JGE:
4cabc5b1 2351 value_from_signed = false;
7e57fbb2 2352 /* fallthrough */
48461135 2353 case BPF_JSGE:
4cabc5b1
DB
2354 if (true_reg->value_from_signed != value_from_signed)
2355 reset_reg_range_values(true_reg, 0);
2356 if (false_reg->value_from_signed != value_from_signed)
2357 reset_reg_range_values(false_reg, 0);
2358 if (opcode == BPF_JGE) {
2359 /* Unsigned comparison, the minimum value is 0. */
2360 true_reg->min_value = 0;
2361 }
48461135
JB
2362 /* If this is false then constant < register, if it is true then
2363 * the register < constant.
2364 */
2365 false_reg->min_value = val + 1;
4cabc5b1 2366 false_reg->value_from_signed = value_from_signed;
48461135 2367 true_reg->max_value = val;
4cabc5b1 2368 true_reg->value_from_signed = value_from_signed;
48461135
JB
2369 break;
2370 default:
2371 break;
2372 }
2373
2374 check_reg_overflow(false_reg);
2375 check_reg_overflow(true_reg);
4cabc5b1
DB
2376 if (is_range) {
2377 if (__is_pointer_value(false, false_reg))
2378 reset_reg_range_values(false_reg, 0);
2379 if (__is_pointer_value(false, true_reg))
2380 reset_reg_range_values(true_reg, 0);
2381 }
48461135
JB
2382}
2383
57a09bf0
TG
2384static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2385 enum bpf_reg_type type)
2386{
2387 struct bpf_reg_state *reg = &regs[regno];
2388
2389 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
56f668df
MKL
2390 if (type == UNKNOWN_VALUE) {
2391 __mark_reg_unknown_value(regs, regno);
2392 } else if (reg->map_ptr->inner_map_meta) {
2393 reg->type = CONST_PTR_TO_MAP;
2394 reg->map_ptr = reg->map_ptr->inner_map_meta;
2395 } else {
2396 reg->type = type;
2397 }
a08dd0da
DB
2398 /* We don't need id from this point onwards anymore, thus we
2399 * should better reset it, so that state pruning has chances
2400 * to take effect.
2401 */
2402 reg->id = 0;
57a09bf0
TG
2403 }
2404}
2405
2406/* The logic is similar to find_good_pkt_pointers(), both could eventually
2407 * be folded together at some point.
2408 */
2409static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2410 enum bpf_reg_type type)
2411{
2412 struct bpf_reg_state *regs = state->regs;
a08dd0da 2413 u32 id = regs[regno].id;
57a09bf0
TG
2414 int i;
2415
2416 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2417 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2418
2419 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2420 if (state->stack_slot_type[i] != STACK_SPILL)
2421 continue;
a08dd0da 2422 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2423 }
2424}
2425
58e2af8b 2426static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2427 struct bpf_insn *insn, int *insn_idx)
2428{
58e2af8b
JK
2429 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2430 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2431 u8 opcode = BPF_OP(insn->code);
2432 int err;
2433
2434 if (opcode > BPF_EXIT) {
2435 verbose("invalid BPF_JMP opcode %x\n", opcode);
2436 return -EINVAL;
2437 }
2438
2439 if (BPF_SRC(insn->code) == BPF_X) {
2440 if (insn->imm != 0) {
2441 verbose("BPF_JMP uses reserved fields\n");
2442 return -EINVAL;
2443 }
2444
2445 /* check src1 operand */
2446 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2447 if (err)
2448 return err;
1be7f75d
AS
2449
2450 if (is_pointer_value(env, insn->src_reg)) {
2451 verbose("R%d pointer comparison prohibited\n",
2452 insn->src_reg);
2453 return -EACCES;
2454 }
17a52670
AS
2455 } else {
2456 if (insn->src_reg != BPF_REG_0) {
2457 verbose("BPF_JMP uses reserved fields\n");
2458 return -EINVAL;
2459 }
2460 }
2461
2462 /* check src2 operand */
2463 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2464 if (err)
2465 return err;
2466
1a0dc1ac
AS
2467 dst_reg = &regs[insn->dst_reg];
2468
17a52670
AS
2469 /* detect if R == 0 where R was initialized to zero earlier */
2470 if (BPF_SRC(insn->code) == BPF_K &&
2471 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2472 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2473 if (opcode == BPF_JEQ) {
2474 /* if (imm == imm) goto pc+off;
2475 * only follow the goto, ignore fall-through
2476 */
2477 *insn_idx += insn->off;
2478 return 0;
2479 } else {
2480 /* if (imm != imm) goto pc+off;
2481 * only follow fall-through branch, since
2482 * that's where the program will go
2483 */
2484 return 0;
2485 }
2486 }
2487
2488 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2489 if (!other_branch)
2490 return -EFAULT;
2491
48461135
JB
2492 /* detect if we are comparing against a constant value so we can adjust
2493 * our min/max values for our dst register.
2494 */
2495 if (BPF_SRC(insn->code) == BPF_X) {
2496 if (regs[insn->src_reg].type == CONST_IMM)
2497 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2498 dst_reg, regs[insn->src_reg].imm,
2499 opcode);
2500 else if (dst_reg->type == CONST_IMM)
2501 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2502 &regs[insn->src_reg], dst_reg->imm,
2503 opcode);
2504 } else {
2505 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2506 dst_reg, insn->imm, opcode);
2507 }
2508
58e2af8b 2509 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2510 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2511 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2512 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2513 /* Mark all identical map registers in each branch as either
2514 * safe or unknown depending R == 0 or R != 0 conditional.
2515 */
2516 mark_map_regs(this_branch, insn->dst_reg,
2517 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2518 mark_map_regs(other_branch, insn->dst_reg,
2519 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2520 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2521 dst_reg->type == PTR_TO_PACKET &&
2522 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2523 find_good_pkt_pointers(this_branch, dst_reg);
2524 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2525 dst_reg->type == PTR_TO_PACKET_END &&
2526 regs[insn->src_reg].type == PTR_TO_PACKET) {
2527 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2528 } else if (is_pointer_value(env, insn->dst_reg)) {
2529 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2530 return -EACCES;
17a52670
AS
2531 }
2532 if (log_level)
2d2be8ca 2533 print_verifier_state(this_branch);
17a52670
AS
2534 return 0;
2535}
2536
0246e64d
AS
2537/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2538static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2539{
2540 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2541
2542 return (struct bpf_map *) (unsigned long) imm64;
2543}
2544
17a52670 2545/* verify BPF_LD_IMM64 instruction */
58e2af8b 2546static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2547{
58e2af8b 2548 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2549 int err;
2550
2551 if (BPF_SIZE(insn->code) != BPF_DW) {
2552 verbose("invalid BPF_LD_IMM insn\n");
2553 return -EINVAL;
2554 }
2555 if (insn->off != 0) {
2556 verbose("BPF_LD_IMM64 uses reserved fields\n");
2557 return -EINVAL;
2558 }
2559
2560 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2561 if (err)
2562 return err;
2563
6b173873 2564 if (insn->src_reg == 0) {
6b173873
JK
2565 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2566
6b173873
JK
2567 regs[insn->dst_reg].type = CONST_IMM;
2568 regs[insn->dst_reg].imm = imm;
4a2ff55a 2569 regs[insn->dst_reg].id = 0;
17a52670 2570 return 0;
6b173873 2571 }
17a52670
AS
2572
2573 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2574 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2575
2576 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2577 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2578 return 0;
2579}
2580
96be4325
DB
2581static bool may_access_skb(enum bpf_prog_type type)
2582{
2583 switch (type) {
2584 case BPF_PROG_TYPE_SOCKET_FILTER:
2585 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2586 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2587 return true;
2588 default:
2589 return false;
2590 }
2591}
2592
ddd872bc
AS
2593/* verify safety of LD_ABS|LD_IND instructions:
2594 * - they can only appear in the programs where ctx == skb
2595 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2596 * preserve R6-R9, and store return value into R0
2597 *
2598 * Implicit input:
2599 * ctx == skb == R6 == CTX
2600 *
2601 * Explicit input:
2602 * SRC == any register
2603 * IMM == 32-bit immediate
2604 *
2605 * Output:
2606 * R0 - 8/16/32-bit skb data converted to cpu endianness
2607 */
58e2af8b 2608static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2609{
58e2af8b 2610 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2611 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2612 int i, err;
2613
24701ece 2614 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2615 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2616 return -EINVAL;
2617 }
2618
2619 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2620 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2621 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2622 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2623 return -EINVAL;
2624 }
2625
2626 /* check whether implicit source operand (register R6) is readable */
2627 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2628 if (err)
2629 return err;
2630
2631 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2632 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2633 return -EINVAL;
2634 }
2635
2636 if (mode == BPF_IND) {
2637 /* check explicit source operand */
2638 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2639 if (err)
2640 return err;
2641 }
2642
2643 /* reset caller saved regs to unreadable */
a9789ef9
DB
2644 for (i = 0; i < CALLER_SAVED_REGS; i++)
2645 mark_reg_not_init(regs, caller_saved[i]);
ddd872bc
AS
2646
2647 /* mark destination R0 register as readable, since it contains
2648 * the value fetched from the packet
2649 */
2650 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2651 return 0;
2652}
2653
475fb78f
AS
2654/* non-recursive DFS pseudo code
2655 * 1 procedure DFS-iterative(G,v):
2656 * 2 label v as discovered
2657 * 3 let S be a stack
2658 * 4 S.push(v)
2659 * 5 while S is not empty
2660 * 6 t <- S.pop()
2661 * 7 if t is what we're looking for:
2662 * 8 return t
2663 * 9 for all edges e in G.adjacentEdges(t) do
2664 * 10 if edge e is already labelled
2665 * 11 continue with the next edge
2666 * 12 w <- G.adjacentVertex(t,e)
2667 * 13 if vertex w is not discovered and not explored
2668 * 14 label e as tree-edge
2669 * 15 label w as discovered
2670 * 16 S.push(w)
2671 * 17 continue at 5
2672 * 18 else if vertex w is discovered
2673 * 19 label e as back-edge
2674 * 20 else
2675 * 21 // vertex w is explored
2676 * 22 label e as forward- or cross-edge
2677 * 23 label t as explored
2678 * 24 S.pop()
2679 *
2680 * convention:
2681 * 0x10 - discovered
2682 * 0x11 - discovered and fall-through edge labelled
2683 * 0x12 - discovered and fall-through and branch edges labelled
2684 * 0x20 - explored
2685 */
2686
2687enum {
2688 DISCOVERED = 0x10,
2689 EXPLORED = 0x20,
2690 FALLTHROUGH = 1,
2691 BRANCH = 2,
2692};
2693
58e2af8b 2694#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2695
475fb78f
AS
2696static int *insn_stack; /* stack of insns to process */
2697static int cur_stack; /* current stack index */
2698static int *insn_state;
2699
2700/* t, w, e - match pseudo-code above:
2701 * t - index of current instruction
2702 * w - next instruction
2703 * e - edge
2704 */
58e2af8b 2705static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2706{
2707 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2708 return 0;
2709
2710 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2711 return 0;
2712
2713 if (w < 0 || w >= env->prog->len) {
2714 verbose("jump out of range from insn %d to %d\n", t, w);
2715 return -EINVAL;
2716 }
2717
f1bca824
AS
2718 if (e == BRANCH)
2719 /* mark branch target for state pruning */
2720 env->explored_states[w] = STATE_LIST_MARK;
2721
475fb78f
AS
2722 if (insn_state[w] == 0) {
2723 /* tree-edge */
2724 insn_state[t] = DISCOVERED | e;
2725 insn_state[w] = DISCOVERED;
2726 if (cur_stack >= env->prog->len)
2727 return -E2BIG;
2728 insn_stack[cur_stack++] = w;
2729 return 1;
2730 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2731 verbose("back-edge from insn %d to %d\n", t, w);
2732 return -EINVAL;
2733 } else if (insn_state[w] == EXPLORED) {
2734 /* forward- or cross-edge */
2735 insn_state[t] = DISCOVERED | e;
2736 } else {
2737 verbose("insn state internal bug\n");
2738 return -EFAULT;
2739 }
2740 return 0;
2741}
2742
2743/* non-recursive depth-first-search to detect loops in BPF program
2744 * loop == back-edge in directed graph
2745 */
58e2af8b 2746static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2747{
2748 struct bpf_insn *insns = env->prog->insnsi;
2749 int insn_cnt = env->prog->len;
2750 int ret = 0;
2751 int i, t;
2752
2753 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2754 if (!insn_state)
2755 return -ENOMEM;
2756
2757 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2758 if (!insn_stack) {
2759 kfree(insn_state);
2760 return -ENOMEM;
2761 }
2762
2763 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2764 insn_stack[0] = 0; /* 0 is the first instruction */
2765 cur_stack = 1;
2766
2767peek_stack:
2768 if (cur_stack == 0)
2769 goto check_state;
2770 t = insn_stack[cur_stack - 1];
2771
2772 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2773 u8 opcode = BPF_OP(insns[t].code);
2774
2775 if (opcode == BPF_EXIT) {
2776 goto mark_explored;
2777 } else if (opcode == BPF_CALL) {
2778 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2779 if (ret == 1)
2780 goto peek_stack;
2781 else if (ret < 0)
2782 goto err_free;
07016151
DB
2783 if (t + 1 < insn_cnt)
2784 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2785 } else if (opcode == BPF_JA) {
2786 if (BPF_SRC(insns[t].code) != BPF_K) {
2787 ret = -EINVAL;
2788 goto err_free;
2789 }
2790 /* unconditional jump with single edge */
2791 ret = push_insn(t, t + insns[t].off + 1,
2792 FALLTHROUGH, env);
2793 if (ret == 1)
2794 goto peek_stack;
2795 else if (ret < 0)
2796 goto err_free;
f1bca824
AS
2797 /* tell verifier to check for equivalent states
2798 * after every call and jump
2799 */
c3de6317
AS
2800 if (t + 1 < insn_cnt)
2801 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2802 } else {
2803 /* conditional jump with two edges */
3c2ce60b 2804 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
2805 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2806 if (ret == 1)
2807 goto peek_stack;
2808 else if (ret < 0)
2809 goto err_free;
2810
2811 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2812 if (ret == 1)
2813 goto peek_stack;
2814 else if (ret < 0)
2815 goto err_free;
2816 }
2817 } else {
2818 /* all other non-branch instructions with single
2819 * fall-through edge
2820 */
2821 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2822 if (ret == 1)
2823 goto peek_stack;
2824 else if (ret < 0)
2825 goto err_free;
2826 }
2827
2828mark_explored:
2829 insn_state[t] = EXPLORED;
2830 if (cur_stack-- <= 0) {
2831 verbose("pop stack internal bug\n");
2832 ret = -EFAULT;
2833 goto err_free;
2834 }
2835 goto peek_stack;
2836
2837check_state:
2838 for (i = 0; i < insn_cnt; i++) {
2839 if (insn_state[i] != EXPLORED) {
2840 verbose("unreachable insn %d\n", i);
2841 ret = -EINVAL;
2842 goto err_free;
2843 }
2844 }
2845 ret = 0; /* cfg looks good */
2846
2847err_free:
2848 kfree(insn_state);
2849 kfree(insn_stack);
2850 return ret;
2851}
2852
969bf05e
AS
2853/* the following conditions reduce the number of explored insns
2854 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2855 */
1ad2f583
DB
2856static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2857 struct bpf_reg_state *old,
58e2af8b 2858 struct bpf_reg_state *cur)
969bf05e
AS
2859{
2860 if (old->id != cur->id)
2861 return false;
2862
2863 /* old ptr_to_packet is more conservative, since it allows smaller
2864 * range. Ex:
2865 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2866 * old(off=0,r=10) means that with range=10 the verifier proceeded
2867 * further and found no issues with the program. Now we're in the same
2868 * spot with cur(off=0,r=20), so we're safe too, since anything further
2869 * will only be looking at most 10 bytes after this pointer.
2870 */
2871 if (old->off == cur->off && old->range < cur->range)
2872 return true;
2873
2874 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2875 * since both cannot be used for packet access and safe(old)
2876 * pointer has smaller off that could be used for further
2877 * 'if (ptr > data_end)' check
2878 * Ex:
2879 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2880 * that we cannot access the packet.
2881 * The safe range is:
2882 * [ptr, ptr + range - off)
2883 * so whenever off >=range, it means no safe bytes from this pointer.
2884 * When comparing old->off <= cur->off, it means that older code
2885 * went with smaller offset and that offset was later
2886 * used to figure out the safe range after 'if (ptr > data_end)' check
2887 * Say, 'old' state was explored like:
2888 * ... R3(off=0, r=0)
2889 * R4 = R3 + 20
2890 * ... now R4(off=20,r=0) <-- here
2891 * if (R4 > data_end)
2892 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2893 * ... the code further went all the way to bpf_exit.
2894 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2895 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2896 * goes further, such cur_R4 will give larger safe packet range after
2897 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2898 * so they will be good with r=30 and we can prune the search.
2899 */
1ad2f583 2900 if (!env->strict_alignment && old->off <= cur->off &&
969bf05e
AS
2901 old->off >= old->range && cur->off >= cur->range)
2902 return true;
2903
2904 return false;
2905}
2906
f1bca824
AS
2907/* compare two verifier states
2908 *
2909 * all states stored in state_list are known to be valid, since
2910 * verifier reached 'bpf_exit' instruction through them
2911 *
2912 * this function is called when verifier exploring different branches of
2913 * execution popped from the state stack. If it sees an old state that has
2914 * more strict register state and more strict stack state then this execution
2915 * branch doesn't need to be explored further, since verifier already
2916 * concluded that more strict state leads to valid finish.
2917 *
2918 * Therefore two states are equivalent if register state is more conservative
2919 * and explored stack state is more conservative than the current one.
2920 * Example:
2921 * explored current
2922 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2923 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2924 *
2925 * In other words if current stack state (one being explored) has more
2926 * valid slots than old one that already passed validation, it means
2927 * the verifier can stop exploring and conclude that current state is valid too
2928 *
2929 * Similarly with registers. If explored state has register type as invalid
2930 * whereas register type in current state is meaningful, it means that
2931 * the current state will reach 'bpf_exit' instruction safely
2932 */
48461135
JB
2933static bool states_equal(struct bpf_verifier_env *env,
2934 struct bpf_verifier_state *old,
58e2af8b 2935 struct bpf_verifier_state *cur)
f1bca824 2936{
e2d2afe1 2937 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2938 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2939 int i;
2940
2941 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2942 rold = &old->regs[i];
2943 rcur = &cur->regs[i];
2944
2945 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2946 continue;
2947
48461135
JB
2948 /* If the ranges were not the same, but everything else was and
2949 * we didn't do a variable access into a map then we are a-ok.
2950 */
e2d2afe1 2951 if (!varlen_map_access &&
d2a4dd37 2952 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2953 continue;
2954
e2d2afe1
JB
2955 /* If we didn't map access then again we don't care about the
2956 * mismatched range values and it's ok if our old type was
2957 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2958 */
1a0dc1ac 2959 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2960 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2961 rcur->type != NOT_INIT))
1a0dc1ac
AS
2962 continue;
2963
3c2ce60b
DB
2964 /* Don't care about the reg->id in this case. */
2965 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2966 rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2967 rold->map_ptr == rcur->map_ptr)
2968 continue;
2969
969bf05e 2970 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
1ad2f583 2971 compare_ptrs_to_packet(env, rold, rcur))
969bf05e
AS
2972 continue;
2973
1a0dc1ac 2974 return false;
f1bca824
AS
2975 }
2976
2977 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2978 if (old->stack_slot_type[i] == STACK_INVALID)
2979 continue;
2980 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2981 /* Ex: old explored (safe) state has STACK_SPILL in
2982 * this stack slot, but current has has STACK_MISC ->
2983 * this verifier states are not equivalent,
2984 * return false to continue verification of this path
2985 */
f1bca824 2986 return false;
9c399760
AS
2987 if (i % BPF_REG_SIZE)
2988 continue;
d25da6ca
DB
2989 if (old->stack_slot_type[i] != STACK_SPILL)
2990 continue;
9c399760
AS
2991 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2992 &cur->spilled_regs[i / BPF_REG_SIZE],
2993 sizeof(old->spilled_regs[0])))
2994 /* when explored and current stack slot types are
2995 * the same, check that stored pointers types
2996 * are the same as well.
2997 * Ex: explored safe path could have stored
58e2af8b 2998 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2999 * but current path has stored:
58e2af8b 3000 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
3001 * such verifier states are not equivalent.
3002 * return false to continue verification of this path
3003 */
3004 return false;
3005 else
3006 continue;
f1bca824
AS
3007 }
3008 return true;
3009}
3010
58e2af8b 3011static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3012{
58e2af8b
JK
3013 struct bpf_verifier_state_list *new_sl;
3014 struct bpf_verifier_state_list *sl;
f1bca824
AS
3015
3016 sl = env->explored_states[insn_idx];
3017 if (!sl)
3018 /* this 'insn_idx' instruction wasn't marked, so we will not
3019 * be doing state search here
3020 */
3021 return 0;
3022
3023 while (sl != STATE_LIST_MARK) {
48461135 3024 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
3025 /* reached equivalent register/stack state,
3026 * prune the search
3027 */
3028 return 1;
3029 sl = sl->next;
3030 }
3031
3032 /* there were no equivalent states, remember current one.
3033 * technically the current state is not proven to be safe yet,
3034 * but it will either reach bpf_exit (which means it's safe) or
3035 * it will be rejected. Since there are no loops, we won't be
3036 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3037 */
58e2af8b 3038 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3039 if (!new_sl)
3040 return -ENOMEM;
3041
3042 /* add new state to the head of linked list */
3043 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3044 new_sl->next = env->explored_states[insn_idx];
3045 env->explored_states[insn_idx] = new_sl;
3046 return 0;
3047}
3048
13a27dfc
JK
3049static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3050 int insn_idx, int prev_insn_idx)
3051{
3052 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3053 return 0;
3054
3055 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3056}
3057
58e2af8b 3058static int do_check(struct bpf_verifier_env *env)
17a52670 3059{
58e2af8b 3060 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3061 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3062 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3063 int insn_cnt = env->prog->len;
3064 int insn_idx, prev_insn_idx = 0;
3065 int insn_processed = 0;
3066 bool do_print_state = false;
3067
3068 init_reg_state(regs);
3069 insn_idx = 0;
48461135 3070 env->varlen_map_value_access = false;
17a52670
AS
3071 for (;;) {
3072 struct bpf_insn *insn;
3073 u8 class;
3074 int err;
3075
3076 if (insn_idx >= insn_cnt) {
3077 verbose("invalid insn idx %d insn_cnt %d\n",
3078 insn_idx, insn_cnt);
3079 return -EFAULT;
3080 }
3081
3082 insn = &insns[insn_idx];
3083 class = BPF_CLASS(insn->code);
3084
07016151 3085 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3086 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3087 insn_processed);
3088 return -E2BIG;
3089 }
3090
f1bca824
AS
3091 err = is_state_visited(env, insn_idx);
3092 if (err < 0)
3093 return err;
3094 if (err == 1) {
3095 /* found equivalent state, can prune the search */
3096 if (log_level) {
3097 if (do_print_state)
3098 verbose("\nfrom %d to %d: safe\n",
3099 prev_insn_idx, insn_idx);
3100 else
3101 verbose("%d: safe\n", insn_idx);
3102 }
3103 goto process_bpf_exit;
3104 }
3105
3c2ce60b
DB
3106 if (need_resched())
3107 cond_resched();
3108
c5fc9692
DM
3109 if (log_level > 1 || (log_level && do_print_state)) {
3110 if (log_level > 1)
3111 verbose("%d:", insn_idx);
3112 else
3113 verbose("\nfrom %d to %d:",
3114 prev_insn_idx, insn_idx);
1a0dc1ac 3115 print_verifier_state(&env->cur_state);
17a52670
AS
3116 do_print_state = false;
3117 }
3118
3119 if (log_level) {
3120 verbose("%d: ", insn_idx);
0d0e5769 3121 print_bpf_insn(env, insn);
17a52670
AS
3122 }
3123
13a27dfc
JK
3124 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3125 if (err)
3126 return err;
3127
17a52670 3128 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3129 err = check_alu_op(env, insn);
17a52670
AS
3130 if (err)
3131 return err;
3132
3133 } else if (class == BPF_LDX) {
3df126f3 3134 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3135
3136 /* check for reserved fields is already done */
3137
17a52670
AS
3138 /* check src operand */
3139 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3140 if (err)
3141 return err;
3142
3143 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
3144 if (err)
3145 return err;
3146
725f9dcd
AS
3147 src_reg_type = regs[insn->src_reg].type;
3148
17a52670
AS
3149 /* check that memory (src_reg + off) is readable,
3150 * the state of dst_reg will be updated by this func
3151 */
31fd8581 3152 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3153 BPF_SIZE(insn->code), BPF_READ,
3154 insn->dst_reg);
3155 if (err)
3156 return err;
3157
3df126f3
JK
3158 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3159
3160 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3161 /* saw a valid insn
3162 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3163 * save type to validate intersecting paths
9bac3d6d 3164 */
3df126f3 3165 *prev_src_type = src_reg_type;
9bac3d6d 3166
3df126f3 3167 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3168 (src_reg_type == PTR_TO_CTX ||
3df126f3 3169 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3170 /* ABuser program is trying to use the same insn
3171 * dst_reg = *(u32*) (src_reg + off)
3172 * with different pointer types:
3173 * src_reg == ctx in one branch and
3174 * src_reg == stack|map in some other branch.
3175 * Reject it.
3176 */
3177 verbose("same insn cannot be used with different pointers\n");
3178 return -EINVAL;
3179 }
3180
17a52670 3181 } else if (class == BPF_STX) {
3df126f3 3182 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3183
17a52670 3184 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3185 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3186 if (err)
3187 return err;
3188 insn_idx++;
3189 continue;
3190 }
3191
17a52670
AS
3192 /* check src1 operand */
3193 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3194 if (err)
3195 return err;
3196 /* check src2 operand */
3197 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3198 if (err)
3199 return err;
3200
d691f9e8
AS
3201 dst_reg_type = regs[insn->dst_reg].type;
3202
17a52670 3203 /* check that memory (dst_reg + off) is writeable */
31fd8581 3204 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3205 BPF_SIZE(insn->code), BPF_WRITE,
3206 insn->src_reg);
3207 if (err)
3208 return err;
3209
3df126f3
JK
3210 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3211
3212 if (*prev_dst_type == NOT_INIT) {
3213 *prev_dst_type = dst_reg_type;
3214 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3215 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3216 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3217 verbose("same insn cannot be used with different pointers\n");
3218 return -EINVAL;
3219 }
3220
17a52670
AS
3221 } else if (class == BPF_ST) {
3222 if (BPF_MODE(insn->code) != BPF_MEM ||
3223 insn->src_reg != BPF_REG_0) {
3224 verbose("BPF_ST uses reserved fields\n");
3225 return -EINVAL;
3226 }
3227 /* check src operand */
3228 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3229 if (err)
3230 return err;
3231
3232 /* check that memory (dst_reg + off) is writeable */
31fd8581 3233 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3234 BPF_SIZE(insn->code), BPF_WRITE,
3235 -1);
3236 if (err)
3237 return err;
3238
3239 } else if (class == BPF_JMP) {
3240 u8 opcode = BPF_OP(insn->code);
3241
3242 if (opcode == BPF_CALL) {
3243 if (BPF_SRC(insn->code) != BPF_K ||
3244 insn->off != 0 ||
3245 insn->src_reg != BPF_REG_0 ||
3246 insn->dst_reg != BPF_REG_0) {
3247 verbose("BPF_CALL uses reserved fields\n");
3248 return -EINVAL;
3249 }
3250
81ed18ab 3251 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3252 if (err)
3253 return err;
3254
3255 } else if (opcode == BPF_JA) {
3256 if (BPF_SRC(insn->code) != BPF_K ||
3257 insn->imm != 0 ||
3258 insn->src_reg != BPF_REG_0 ||
3259 insn->dst_reg != BPF_REG_0) {
3260 verbose("BPF_JA uses reserved fields\n");
3261 return -EINVAL;
3262 }
3263
3264 insn_idx += insn->off + 1;
3265 continue;
3266
3267 } else if (opcode == BPF_EXIT) {
3268 if (BPF_SRC(insn->code) != BPF_K ||
3269 insn->imm != 0 ||
3270 insn->src_reg != BPF_REG_0 ||
3271 insn->dst_reg != BPF_REG_0) {
3272 verbose("BPF_EXIT uses reserved fields\n");
3273 return -EINVAL;
3274 }
3275
3276 /* eBPF calling convetion is such that R0 is used
3277 * to return the value from eBPF program.
3278 * Make sure that it's readable at this time
3279 * of bpf_exit, which means that program wrote
3280 * something into it earlier
3281 */
3282 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3283 if (err)
3284 return err;
3285
1be7f75d
AS
3286 if (is_pointer_value(env, BPF_REG_0)) {
3287 verbose("R0 leaks addr as return value\n");
3288 return -EACCES;
3289 }
3290
f1bca824 3291process_bpf_exit:
17a52670
AS
3292 insn_idx = pop_stack(env, &prev_insn_idx);
3293 if (insn_idx < 0) {
3294 break;
3295 } else {
3296 do_print_state = true;
3297 continue;
3298 }
3299 } else {
3300 err = check_cond_jmp_op(env, insn, &insn_idx);
3301 if (err)
3302 return err;
3303 }
3304 } else if (class == BPF_LD) {
3305 u8 mode = BPF_MODE(insn->code);
3306
3307 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3308 err = check_ld_abs(env, insn);
3309 if (err)
3310 return err;
3311
17a52670
AS
3312 } else if (mode == BPF_IMM) {
3313 err = check_ld_imm(env, insn);
3314 if (err)
3315 return err;
3316
3317 insn_idx++;
3318 } else {
3319 verbose("invalid BPF_LD mode\n");
3320 return -EINVAL;
3321 }
48461135 3322 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3323 } else {
3324 verbose("unknown insn class %d\n", class);
3325 return -EINVAL;
3326 }
3327
3328 insn_idx++;
3329 }
3330
8726679a
AS
3331 verbose("processed %d insns, stack depth %d\n",
3332 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3333 return 0;
3334}
3335
56f668df
MKL
3336static int check_map_prealloc(struct bpf_map *map)
3337{
3338 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3339 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3340 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3341 !(map->map_flags & BPF_F_NO_PREALLOC);
3342}
3343
fdc15d38
AS
3344static int check_map_prog_compatibility(struct bpf_map *map,
3345 struct bpf_prog *prog)
3346
3347{
56f668df
MKL
3348 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3349 * preallocated hash maps, since doing memory allocation
3350 * in overflow_handler can crash depending on where nmi got
3351 * triggered.
3352 */
3353 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3354 if (!check_map_prealloc(map)) {
3355 verbose("perf_event programs can only use preallocated hash map\n");
3356 return -EINVAL;
3357 }
3358 if (map->inner_map_meta &&
3359 !check_map_prealloc(map->inner_map_meta)) {
3360 verbose("perf_event programs can only use preallocated inner hash map\n");
3361 return -EINVAL;
3362 }
fdc15d38
AS
3363 }
3364 return 0;
3365}
3366
0246e64d
AS
3367/* look for pseudo eBPF instructions that access map FDs and
3368 * replace them with actual map pointers
3369 */
58e2af8b 3370static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3371{
3372 struct bpf_insn *insn = env->prog->insnsi;
3373 int insn_cnt = env->prog->len;
fdc15d38 3374 int i, j, err;
0246e64d 3375
f1f7714e 3376 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3377 if (err)
3378 return err;
3379
0246e64d 3380 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3381 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3382 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3383 verbose("BPF_LDX uses reserved fields\n");
3384 return -EINVAL;
3385 }
3386
d691f9e8
AS
3387 if (BPF_CLASS(insn->code) == BPF_STX &&
3388 ((BPF_MODE(insn->code) != BPF_MEM &&
3389 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3390 verbose("BPF_STX uses reserved fields\n");
3391 return -EINVAL;
3392 }
3393
0246e64d
AS
3394 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3395 struct bpf_map *map;
3396 struct fd f;
3397
3398 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3399 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3400 insn[1].off != 0) {
3401 verbose("invalid bpf_ld_imm64 insn\n");
3402 return -EINVAL;
3403 }
3404
3405 if (insn->src_reg == 0)
3406 /* valid generic load 64-bit imm */
3407 goto next_insn;
3408
3409 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3410 verbose("unrecognized bpf_ld_imm64 insn\n");
3411 return -EINVAL;
3412 }
3413
3414 f = fdget(insn->imm);
c2101297 3415 map = __bpf_map_get(f);
0246e64d
AS
3416 if (IS_ERR(map)) {
3417 verbose("fd %d is not pointing to valid bpf_map\n",
3418 insn->imm);
0246e64d
AS
3419 return PTR_ERR(map);
3420 }
3421
fdc15d38
AS
3422 err = check_map_prog_compatibility(map, env->prog);
3423 if (err) {
3424 fdput(f);
3425 return err;
3426 }
3427
0246e64d
AS
3428 /* store map pointer inside BPF_LD_IMM64 instruction */
3429 insn[0].imm = (u32) (unsigned long) map;
3430 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3431
3432 /* check whether we recorded this map already */
3433 for (j = 0; j < env->used_map_cnt; j++)
3434 if (env->used_maps[j] == map) {
3435 fdput(f);
3436 goto next_insn;
3437 }
3438
3439 if (env->used_map_cnt >= MAX_USED_MAPS) {
3440 fdput(f);
3441 return -E2BIG;
3442 }
3443
0246e64d
AS
3444 /* hold the map. If the program is rejected by verifier,
3445 * the map will be released by release_maps() or it
3446 * will be used by the valid program until it's unloaded
3447 * and all maps are released in free_bpf_prog_info()
3448 */
92117d84
AS
3449 map = bpf_map_inc(map, false);
3450 if (IS_ERR(map)) {
3451 fdput(f);
3452 return PTR_ERR(map);
3453 }
3454 env->used_maps[env->used_map_cnt++] = map;
3455
0246e64d
AS
3456 fdput(f);
3457next_insn:
3458 insn++;
3459 i++;
3460 }
3461 }
3462
3463 /* now all pseudo BPF_LD_IMM64 instructions load valid
3464 * 'struct bpf_map *' into a register instead of user map_fd.
3465 * These pointers will be used later by verifier to validate map access.
3466 */
3467 return 0;
3468}
3469
3470/* drop refcnt of maps used by the rejected program */
58e2af8b 3471static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3472{
3473 int i;
3474
3475 for (i = 0; i < env->used_map_cnt; i++)
3476 bpf_map_put(env->used_maps[i]);
3477}
3478
3479/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3480static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3481{
3482 struct bpf_insn *insn = env->prog->insnsi;
3483 int insn_cnt = env->prog->len;
3484 int i;
3485
3486 for (i = 0; i < insn_cnt; i++, insn++)
3487 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3488 insn->src_reg = 0;
3489}
3490
8041902d
AS
3491/* single env->prog->insni[off] instruction was replaced with the range
3492 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3493 * [0, off) and [off, end) to new locations, so the patched range stays zero
3494 */
3495static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3496 u32 off, u32 cnt)
3497{
3498 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3499
3500 if (cnt == 1)
3501 return 0;
3502 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3503 if (!new_data)
3504 return -ENOMEM;
3505 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3506 memcpy(new_data + off + cnt - 1, old_data + off,
3507 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3508 env->insn_aux_data = new_data;
3509 vfree(old_data);
3510 return 0;
3511}
3512
3513static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3514 const struct bpf_insn *patch, u32 len)
3515{
3516 struct bpf_prog *new_prog;
3517
3518 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3519 if (!new_prog)
3520 return NULL;
3521 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3522 return NULL;
3523 return new_prog;
3524}
3525
9bac3d6d
AS
3526/* convert load instructions that access fields of 'struct __sk_buff'
3527 * into sequence of instructions that access fields of 'struct sk_buff'
3528 */
58e2af8b 3529static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3530{
36bbef52 3531 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 3532 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 3533 const int insn_cnt = env->prog->len;
36bbef52 3534 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3535 struct bpf_prog *new_prog;
d691f9e8 3536 enum bpf_access_type type;
f96da094
DB
3537 bool is_narrower_load;
3538 u32 target_size;
9bac3d6d 3539
36bbef52
DB
3540 if (ops->gen_prologue) {
3541 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3542 env->prog);
3543 if (cnt >= ARRAY_SIZE(insn_buf)) {
3544 verbose("bpf verifier is misconfigured\n");
3545 return -EINVAL;
3546 } else if (cnt) {
8041902d 3547 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3548 if (!new_prog)
3549 return -ENOMEM;
8041902d 3550
36bbef52 3551 env->prog = new_prog;
3df126f3 3552 delta += cnt - 1;
36bbef52
DB
3553 }
3554 }
3555
3556 if (!ops->convert_ctx_access)
9bac3d6d
AS
3557 return 0;
3558
3df126f3 3559 insn = env->prog->insnsi + delta;
36bbef52 3560
9bac3d6d 3561 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3562 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3563 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3564 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3565 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3566 type = BPF_READ;
62c7989b
DB
3567 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3568 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3569 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3570 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3571 type = BPF_WRITE;
3572 else
9bac3d6d
AS
3573 continue;
3574
8041902d 3575 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3576 continue;
9bac3d6d 3577
31fd8581 3578 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 3579 size = BPF_LDST_BYTES(insn);
31fd8581
YS
3580
3581 /* If the read access is a narrower load of the field,
3582 * convert to a 4/8-byte load, to minimum program type specific
3583 * convert_ctx_access changes. If conversion is successful,
3584 * we will apply proper mask to the result.
3585 */
f96da094 3586 is_narrower_load = size < ctx_field_size;
31fd8581 3587 if (is_narrower_load) {
f96da094
DB
3588 u32 off = insn->off;
3589 u8 size_code;
3590
3591 if (type == BPF_WRITE) {
3592 verbose("bpf verifier narrow ctx access misconfigured\n");
3593 return -EINVAL;
3594 }
31fd8581 3595
f96da094 3596 size_code = BPF_H;
31fd8581
YS
3597 if (ctx_field_size == 4)
3598 size_code = BPF_W;
3599 else if (ctx_field_size == 8)
3600 size_code = BPF_DW;
f96da094 3601
31fd8581
YS
3602 insn->off = off & ~(ctx_field_size - 1);
3603 insn->code = BPF_LDX | BPF_MEM | size_code;
3604 }
f96da094
DB
3605
3606 target_size = 0;
3607 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
3608 &target_size);
3609 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
3610 (ctx_field_size && !target_size)) {
9bac3d6d
AS
3611 verbose("bpf verifier is misconfigured\n");
3612 return -EINVAL;
3613 }
f96da094
DB
3614
3615 if (is_narrower_load && size < target_size) {
31fd8581
YS
3616 if (ctx_field_size <= 4)
3617 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 3618 (1 << size * 8) - 1);
31fd8581
YS
3619 else
3620 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 3621 (1 << size * 8) - 1);
31fd8581 3622 }
9bac3d6d 3623
8041902d 3624 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3625 if (!new_prog)
3626 return -ENOMEM;
3627
3df126f3 3628 delta += cnt - 1;
9bac3d6d
AS
3629
3630 /* keep walking new program and skip insns we just inserted */
3631 env->prog = new_prog;
3df126f3 3632 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3633 }
3634
3635 return 0;
3636}
3637
79741b3b 3638/* fixup insn->imm field of bpf_call instructions
81ed18ab 3639 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3640 *
3641 * this function is called after eBPF program passed verification
3642 */
79741b3b 3643static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3644{
79741b3b
AS
3645 struct bpf_prog *prog = env->prog;
3646 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3647 const struct bpf_func_proto *fn;
79741b3b 3648 const int insn_cnt = prog->len;
81ed18ab
AS
3649 struct bpf_insn insn_buf[16];
3650 struct bpf_prog *new_prog;
3651 struct bpf_map *map_ptr;
3652 int i, cnt, delta = 0;
e245c5c6 3653
79741b3b
AS
3654 for (i = 0; i < insn_cnt; i++, insn++) {
3655 if (insn->code != (BPF_JMP | BPF_CALL))
3656 continue;
e245c5c6 3657
79741b3b
AS
3658 if (insn->imm == BPF_FUNC_get_route_realm)
3659 prog->dst_needed = 1;
3660 if (insn->imm == BPF_FUNC_get_prandom_u32)
3661 bpf_user_rnd_init_once();
79741b3b 3662 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3663 /* If we tail call into other programs, we
3664 * cannot make any assumptions since they can
3665 * be replaced dynamically during runtime in
3666 * the program array.
3667 */
3668 prog->cb_access = 1;
80a58d02 3669 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 3670
79741b3b
AS
3671 /* mark bpf_tail_call as different opcode to avoid
3672 * conditional branch in the interpeter for every normal
3673 * call and to prevent accidental JITing by JIT compiler
3674 * that doesn't support bpf_tail_call yet
e245c5c6 3675 */
79741b3b 3676 insn->imm = 0;
71189fa9 3677 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
3678 continue;
3679 }
e245c5c6 3680
81ed18ab
AS
3681 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3682 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3683 if (map_ptr == BPF_MAP_PTR_POISON ||
3684 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3685 goto patch_call_imm;
3686
3687 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3688 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3689 verbose("bpf verifier is misconfigured\n");
3690 return -EINVAL;
3691 }
3692
3693 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3694 cnt);
3695 if (!new_prog)
3696 return -ENOMEM;
3697
3698 delta += cnt - 1;
3699
3700 /* keep walking new program and skip insns we just inserted */
3701 env->prog = prog = new_prog;
3702 insn = new_prog->insnsi + i + delta;
3703 continue;
3704 }
3705
3706patch_call_imm:
79741b3b
AS
3707 fn = prog->aux->ops->get_func_proto(insn->imm);
3708 /* all functions that have prototype and verifier allowed
3709 * programs to call them, must be real in-kernel functions
3710 */
3711 if (!fn->func) {
3712 verbose("kernel subsystem misconfigured func %s#%d\n",
3713 func_id_name(insn->imm), insn->imm);
3714 return -EFAULT;
e245c5c6 3715 }
79741b3b 3716 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3717 }
e245c5c6 3718
79741b3b
AS
3719 return 0;
3720}
e245c5c6 3721
58e2af8b 3722static void free_states(struct bpf_verifier_env *env)
f1bca824 3723{
58e2af8b 3724 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3725 int i;
3726
3727 if (!env->explored_states)
3728 return;
3729
3730 for (i = 0; i < env->prog->len; i++) {
3731 sl = env->explored_states[i];
3732
3733 if (sl)
3734 while (sl != STATE_LIST_MARK) {
3735 sln = sl->next;
3736 kfree(sl);
3737 sl = sln;
3738 }
3739 }
3740
3741 kfree(env->explored_states);
3742}
3743
9bac3d6d 3744int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3745{
cbd35700 3746 char __user *log_ubuf = NULL;
58e2af8b 3747 struct bpf_verifier_env *env;
51580e79
AS
3748 int ret = -EINVAL;
3749
58e2af8b 3750 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3751 * allocate/free it every time bpf_check() is called
3752 */
58e2af8b 3753 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3754 if (!env)
3755 return -ENOMEM;
3756
3df126f3
JK
3757 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3758 (*prog)->len);
3759 ret = -ENOMEM;
3760 if (!env->insn_aux_data)
3761 goto err_free_env;
9bac3d6d 3762 env->prog = *prog;
0246e64d 3763
cbd35700
AS
3764 /* grab the mutex to protect few globals used by verifier */
3765 mutex_lock(&bpf_verifier_lock);
3766
3767 if (attr->log_level || attr->log_buf || attr->log_size) {
3768 /* user requested verbose verifier output
3769 * and supplied buffer to store the verification trace
3770 */
3771 log_level = attr->log_level;
3772 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3773 log_size = attr->log_size;
3774 log_len = 0;
3775
3776 ret = -EINVAL;
3777 /* log_* values have to be sane */
3778 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3779 log_level == 0 || log_ubuf == NULL)
3df126f3 3780 goto err_unlock;
cbd35700
AS
3781
3782 ret = -ENOMEM;
3783 log_buf = vmalloc(log_size);
3784 if (!log_buf)
3df126f3 3785 goto err_unlock;
cbd35700
AS
3786 } else {
3787 log_level = 0;
3788 }
1ad2f583
DB
3789
3790 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3791 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 3792 env->strict_alignment = true;
cbd35700 3793
0246e64d
AS
3794 ret = replace_map_fd_with_map_ptr(env);
3795 if (ret < 0)
3796 goto skip_full_check;
3797
9bac3d6d 3798 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3799 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3800 GFP_USER);
3801 ret = -ENOMEM;
3802 if (!env->explored_states)
3803 goto skip_full_check;
3804
475fb78f
AS
3805 ret = check_cfg(env);
3806 if (ret < 0)
3807 goto skip_full_check;
3808
1be7f75d
AS
3809 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3810
17a52670 3811 ret = do_check(env);
cbd35700 3812
0246e64d 3813skip_full_check:
17a52670 3814 while (pop_stack(env, NULL) >= 0);
f1bca824 3815 free_states(env);
0246e64d 3816
9bac3d6d
AS
3817 if (ret == 0)
3818 /* program is valid, convert *(u32*)(ctx + off) accesses */
3819 ret = convert_ctx_accesses(env);
3820
e245c5c6 3821 if (ret == 0)
79741b3b 3822 ret = fixup_bpf_calls(env);
e245c5c6 3823
cbd35700
AS
3824 if (log_level && log_len >= log_size - 1) {
3825 BUG_ON(log_len >= log_size);
3826 /* verifier log exceeded user supplied buffer */
3827 ret = -ENOSPC;
3828 /* fall through to return what was recorded */
3829 }
3830
3831 /* copy verifier log back to user space including trailing zero */
3832 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3833 ret = -EFAULT;
3834 goto free_log_buf;
3835 }
3836
0246e64d
AS
3837 if (ret == 0 && env->used_map_cnt) {
3838 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3839 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3840 sizeof(env->used_maps[0]),
3841 GFP_KERNEL);
0246e64d 3842
9bac3d6d 3843 if (!env->prog->aux->used_maps) {
0246e64d
AS
3844 ret = -ENOMEM;
3845 goto free_log_buf;
3846 }
3847
9bac3d6d 3848 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3849 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3850 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3851
3852 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3853 * bpf_ld_imm64 instructions
3854 */
3855 convert_pseudo_ld_imm64(env);
3856 }
cbd35700
AS
3857
3858free_log_buf:
3859 if (log_level)
3860 vfree(log_buf);
9bac3d6d 3861 if (!env->prog->aux->used_maps)
0246e64d
AS
3862 /* if we didn't copy map pointers into bpf_prog_info, release
3863 * them now. Otherwise free_bpf_prog_info() will release them.
3864 */
3865 release_maps(env);
9bac3d6d 3866 *prog = env->prog;
3df126f3 3867err_unlock:
cbd35700 3868 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3869 vfree(env->insn_aux_data);
3870err_free_env:
3871 kfree(env);
51580e79
AS
3872 return ret;
3873}
13a27dfc
JK
3874
3875int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3876 void *priv)
3877{
3878 struct bpf_verifier_env *env;
3879 int ret;
3880
3881 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3882 if (!env)
3883 return -ENOMEM;
3884
3885 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3886 prog->len);
3887 ret = -ENOMEM;
3888 if (!env->insn_aux_data)
3889 goto err_free_env;
3890 env->prog = prog;
3891 env->analyzer_ops = ops;
3892 env->analyzer_priv = priv;
3893
3894 /* grab the mutex to protect few globals used by verifier */
3895 mutex_lock(&bpf_verifier_lock);
3896
3897 log_level = 0;
1ad2f583 3898
e07b98d9 3899 env->strict_alignment = false;
1ad2f583
DB
3900 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3901 env->strict_alignment = true;
13a27dfc
JK
3902
3903 env->explored_states = kcalloc(env->prog->len,
3904 sizeof(struct bpf_verifier_state_list *),
3905 GFP_KERNEL);
3906 ret = -ENOMEM;
3907 if (!env->explored_states)
3908 goto skip_full_check;
3909
3910 ret = check_cfg(env);
3911 if (ret < 0)
3912 goto skip_full_check;
3913
3914 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3915
3916 ret = do_check(env);
3917
3918skip_full_check:
3919 while (pop_stack(env, NULL) >= 0);
3920 free_states(env);
3921
3922 mutex_unlock(&bpf_verifier_lock);
3923 vfree(env->insn_aux_data);
3924err_free_env:
3925 kfree(env);
3926 return ret;
3927}
3928EXPORT_SYMBOL_GPL(bpf_analyzer);