]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: introduce bpf_spin_lock
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
8e17c1b1 179#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151 180#define BPF_COMPLEXITY_LIMIT_STACK 1024
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
195 return aux->map_state & BPF_MAP_PTR_UNPRIV;
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
203 aux->map_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
fad73a1a 206
33ff9823
DB
207struct bpf_call_arg_meta {
208 struct bpf_map *map_ptr;
435faee1 209 bool raw_mode;
36bbef52 210 bool pkt_access;
435faee1
DB
211 int regno;
212 int access_size;
849fa506
YS
213 s64 msize_smax_value;
214 u64 msize_umax_value;
fd978bf7 215 int ptr_id;
d83525ca 216 int func_id;
33ff9823
DB
217};
218
cbd35700
AS
219static DEFINE_MUTEX(bpf_verifier_lock);
220
d9762e84
MKL
221static const struct bpf_line_info *
222find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
223{
224 const struct bpf_line_info *linfo;
225 const struct bpf_prog *prog;
226 u32 i, nr_linfo;
227
228 prog = env->prog;
229 nr_linfo = prog->aux->nr_linfo;
230
231 if (!nr_linfo || insn_off >= prog->len)
232 return NULL;
233
234 linfo = prog->aux->linfo;
235 for (i = 1; i < nr_linfo; i++)
236 if (insn_off < linfo[i].insn_off)
237 break;
238
239 return &linfo[i - 1];
240}
241
77d2e05a
MKL
242void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
243 va_list args)
cbd35700 244{
a2a7d570 245 unsigned int n;
cbd35700 246
a2a7d570 247 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
248
249 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
250 "verifier log line truncated - local buffer too short\n");
251
252 n = min(log->len_total - log->len_used - 1, n);
253 log->kbuf[n] = '\0';
254
255 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
256 log->len_used += n;
257 else
258 log->ubuf = NULL;
cbd35700 259}
abe08840
JO
260
261/* log_level controls verbosity level of eBPF verifier.
262 * bpf_verifier_log_write() is used to dump the verification trace to the log,
263 * so the user can figure out what's wrong with the program
430e68d1 264 */
abe08840
JO
265__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
266 const char *fmt, ...)
267{
268 va_list args;
269
77d2e05a
MKL
270 if (!bpf_verifier_log_needed(&env->log))
271 return;
272
abe08840 273 va_start(args, fmt);
77d2e05a 274 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
275 va_end(args);
276}
277EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
278
279__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
280{
77d2e05a 281 struct bpf_verifier_env *env = private_data;
abe08840
JO
282 va_list args;
283
77d2e05a
MKL
284 if (!bpf_verifier_log_needed(&env->log))
285 return;
286
abe08840 287 va_start(args, fmt);
77d2e05a 288 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
289 va_end(args);
290}
cbd35700 291
d9762e84
MKL
292static const char *ltrim(const char *s)
293{
294 while (isspace(*s))
295 s++;
296
297 return s;
298}
299
300__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
301 u32 insn_off,
302 const char *prefix_fmt, ...)
303{
304 const struct bpf_line_info *linfo;
305
306 if (!bpf_verifier_log_needed(&env->log))
307 return;
308
309 linfo = find_linfo(env, insn_off);
310 if (!linfo || linfo == env->prev_linfo)
311 return;
312
313 if (prefix_fmt) {
314 va_list args;
315
316 va_start(args, prefix_fmt);
317 bpf_verifier_vlog(&env->log, prefix_fmt, args);
318 va_end(args);
319 }
320
321 verbose(env, "%s\n",
322 ltrim(btf_name_by_offset(env->prog->aux->btf,
323 linfo->line_off)));
324
325 env->prev_linfo = linfo;
326}
327
de8f3a83
DB
328static bool type_is_pkt_pointer(enum bpf_reg_type type)
329{
330 return type == PTR_TO_PACKET ||
331 type == PTR_TO_PACKET_META;
332}
333
840b9615
JS
334static bool reg_type_may_be_null(enum bpf_reg_type type)
335{
fd978bf7
JS
336 return type == PTR_TO_MAP_VALUE_OR_NULL ||
337 type == PTR_TO_SOCKET_OR_NULL;
338}
339
340static bool type_is_refcounted(enum bpf_reg_type type)
341{
342 return type == PTR_TO_SOCKET;
343}
344
345static bool type_is_refcounted_or_null(enum bpf_reg_type type)
346{
347 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
348}
349
350static bool reg_is_refcounted(const struct bpf_reg_state *reg)
351{
352 return type_is_refcounted(reg->type);
353}
354
d83525ca
AS
355static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
356{
357 return reg->type == PTR_TO_MAP_VALUE &&
358 map_value_has_spin_lock(reg->map_ptr);
359}
360
fd978bf7
JS
361static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
362{
363 return type_is_refcounted_or_null(reg->type);
364}
365
366static bool arg_type_is_refcounted(enum bpf_arg_type type)
367{
368 return type == ARG_PTR_TO_SOCKET;
369}
370
371/* Determine whether the function releases some resources allocated by another
372 * function call. The first reference type argument will be assumed to be
373 * released by release_reference().
374 */
375static bool is_release_function(enum bpf_func_id func_id)
376{
6acc9b43 377 return func_id == BPF_FUNC_sk_release;
840b9615
JS
378}
379
17a52670
AS
380/* string representation of 'enum bpf_reg_type' */
381static const char * const reg_type_str[] = {
382 [NOT_INIT] = "?",
f1174f77 383 [SCALAR_VALUE] = "inv",
17a52670
AS
384 [PTR_TO_CTX] = "ctx",
385 [CONST_PTR_TO_MAP] = "map_ptr",
386 [PTR_TO_MAP_VALUE] = "map_value",
387 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 388 [PTR_TO_STACK] = "fp",
969bf05e 389 [PTR_TO_PACKET] = "pkt",
de8f3a83 390 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 391 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 392 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
393 [PTR_TO_SOCKET] = "sock",
394 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
395};
396
8efea21d
EC
397static char slot_type_char[] = {
398 [STACK_INVALID] = '?',
399 [STACK_SPILL] = 'r',
400 [STACK_MISC] = 'm',
401 [STACK_ZERO] = '0',
402};
403
4e92024a
AS
404static void print_liveness(struct bpf_verifier_env *env,
405 enum bpf_reg_liveness live)
406{
9242b5f5 407 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
408 verbose(env, "_");
409 if (live & REG_LIVE_READ)
410 verbose(env, "r");
411 if (live & REG_LIVE_WRITTEN)
412 verbose(env, "w");
9242b5f5
AS
413 if (live & REG_LIVE_DONE)
414 verbose(env, "D");
4e92024a
AS
415}
416
f4d7e40a
AS
417static struct bpf_func_state *func(struct bpf_verifier_env *env,
418 const struct bpf_reg_state *reg)
419{
420 struct bpf_verifier_state *cur = env->cur_state;
421
422 return cur->frame[reg->frameno];
423}
424
61bd5218 425static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 426 const struct bpf_func_state *state)
17a52670 427{
f4d7e40a 428 const struct bpf_reg_state *reg;
17a52670
AS
429 enum bpf_reg_type t;
430 int i;
431
f4d7e40a
AS
432 if (state->frameno)
433 verbose(env, " frame%d:", state->frameno);
17a52670 434 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
435 reg = &state->regs[i];
436 t = reg->type;
17a52670
AS
437 if (t == NOT_INIT)
438 continue;
4e92024a
AS
439 verbose(env, " R%d", i);
440 print_liveness(env, reg->live);
441 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
442 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
443 tnum_is_const(reg->var_off)) {
444 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 445 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
446 if (t == PTR_TO_STACK)
447 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 448 } else {
61bd5218 449 verbose(env, "(id=%d", reg->id);
f1174f77 450 if (t != SCALAR_VALUE)
61bd5218 451 verbose(env, ",off=%d", reg->off);
de8f3a83 452 if (type_is_pkt_pointer(t))
61bd5218 453 verbose(env, ",r=%d", reg->range);
f1174f77
EC
454 else if (t == CONST_PTR_TO_MAP ||
455 t == PTR_TO_MAP_VALUE ||
456 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 457 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
458 reg->map_ptr->key_size,
459 reg->map_ptr->value_size);
7d1238f2
EC
460 if (tnum_is_const(reg->var_off)) {
461 /* Typically an immediate SCALAR_VALUE, but
462 * could be a pointer whose offset is too big
463 * for reg->off
464 */
61bd5218 465 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
466 } else {
467 if (reg->smin_value != reg->umin_value &&
468 reg->smin_value != S64_MIN)
61bd5218 469 verbose(env, ",smin_value=%lld",
7d1238f2
EC
470 (long long)reg->smin_value);
471 if (reg->smax_value != reg->umax_value &&
472 reg->smax_value != S64_MAX)
61bd5218 473 verbose(env, ",smax_value=%lld",
7d1238f2
EC
474 (long long)reg->smax_value);
475 if (reg->umin_value != 0)
61bd5218 476 verbose(env, ",umin_value=%llu",
7d1238f2
EC
477 (unsigned long long)reg->umin_value);
478 if (reg->umax_value != U64_MAX)
61bd5218 479 verbose(env, ",umax_value=%llu",
7d1238f2
EC
480 (unsigned long long)reg->umax_value);
481 if (!tnum_is_unknown(reg->var_off)) {
482 char tn_buf[48];
f1174f77 483
7d1238f2 484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 485 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 486 }
f1174f77 487 }
61bd5218 488 verbose(env, ")");
f1174f77 489 }
17a52670 490 }
638f5b90 491 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
492 char types_buf[BPF_REG_SIZE + 1];
493 bool valid = false;
494 int j;
495
496 for (j = 0; j < BPF_REG_SIZE; j++) {
497 if (state->stack[i].slot_type[j] != STACK_INVALID)
498 valid = true;
499 types_buf[j] = slot_type_char[
500 state->stack[i].slot_type[j]];
501 }
502 types_buf[BPF_REG_SIZE] = 0;
503 if (!valid)
504 continue;
505 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
506 print_liveness(env, state->stack[i].spilled_ptr.live);
507 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 508 verbose(env, "=%s",
638f5b90 509 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
510 else
511 verbose(env, "=%s", types_buf);
17a52670 512 }
fd978bf7
JS
513 if (state->acquired_refs && state->refs[0].id) {
514 verbose(env, " refs=%d", state->refs[0].id);
515 for (i = 1; i < state->acquired_refs; i++)
516 if (state->refs[i].id)
517 verbose(env, ",%d", state->refs[i].id);
518 }
61bd5218 519 verbose(env, "\n");
17a52670
AS
520}
521
84dbf350
JS
522#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
523static int copy_##NAME##_state(struct bpf_func_state *dst, \
524 const struct bpf_func_state *src) \
525{ \
526 if (!src->FIELD) \
527 return 0; \
528 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
529 /* internal bug, make state invalid to reject the program */ \
530 memset(dst, 0, sizeof(*dst)); \
531 return -EFAULT; \
532 } \
533 memcpy(dst->FIELD, src->FIELD, \
534 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
535 return 0; \
638f5b90 536}
fd978bf7
JS
537/* copy_reference_state() */
538COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
539/* copy_stack_state() */
540COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
541#undef COPY_STATE_FN
542
543#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
544static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
545 bool copy_old) \
546{ \
547 u32 old_size = state->COUNT; \
548 struct bpf_##NAME##_state *new_##FIELD; \
549 int slot = size / SIZE; \
550 \
551 if (size <= old_size || !size) { \
552 if (copy_old) \
553 return 0; \
554 state->COUNT = slot * SIZE; \
555 if (!size && old_size) { \
556 kfree(state->FIELD); \
557 state->FIELD = NULL; \
558 } \
559 return 0; \
560 } \
561 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
562 GFP_KERNEL); \
563 if (!new_##FIELD) \
564 return -ENOMEM; \
565 if (copy_old) { \
566 if (state->FIELD) \
567 memcpy(new_##FIELD, state->FIELD, \
568 sizeof(*new_##FIELD) * (old_size / SIZE)); \
569 memset(new_##FIELD + old_size / SIZE, 0, \
570 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
571 } \
572 state->COUNT = slot * SIZE; \
573 kfree(state->FIELD); \
574 state->FIELD = new_##FIELD; \
575 return 0; \
576}
fd978bf7
JS
577/* realloc_reference_state() */
578REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
579/* realloc_stack_state() */
580REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
581#undef REALLOC_STATE_FN
638f5b90
AS
582
583/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
584 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 585 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
586 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
587 * which realloc_stack_state() copies over. It points to previous
588 * bpf_verifier_state which is never reallocated.
638f5b90 589 */
fd978bf7
JS
590static int realloc_func_state(struct bpf_func_state *state, int stack_size,
591 int refs_size, bool copy_old)
638f5b90 592{
fd978bf7
JS
593 int err = realloc_reference_state(state, refs_size, copy_old);
594 if (err)
595 return err;
596 return realloc_stack_state(state, stack_size, copy_old);
597}
598
599/* Acquire a pointer id from the env and update the state->refs to include
600 * this new pointer reference.
601 * On success, returns a valid pointer id to associate with the register
602 * On failure, returns a negative errno.
638f5b90 603 */
fd978bf7 604static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 605{
fd978bf7
JS
606 struct bpf_func_state *state = cur_func(env);
607 int new_ofs = state->acquired_refs;
608 int id, err;
609
610 err = realloc_reference_state(state, state->acquired_refs + 1, true);
611 if (err)
612 return err;
613 id = ++env->id_gen;
614 state->refs[new_ofs].id = id;
615 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 616
fd978bf7
JS
617 return id;
618}
619
620/* release function corresponding to acquire_reference_state(). Idempotent. */
621static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
622{
623 int i, last_idx;
624
625 if (!ptr_id)
626 return -EFAULT;
627
628 last_idx = state->acquired_refs - 1;
629 for (i = 0; i < state->acquired_refs; i++) {
630 if (state->refs[i].id == ptr_id) {
631 if (last_idx && i != last_idx)
632 memcpy(&state->refs[i], &state->refs[last_idx],
633 sizeof(*state->refs));
634 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
635 state->acquired_refs--;
638f5b90 636 return 0;
638f5b90 637 }
638f5b90 638 }
fd978bf7
JS
639 return -EFAULT;
640}
641
642/* variation on the above for cases where we expect that there must be an
643 * outstanding reference for the specified ptr_id.
644 */
645static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
646{
647 struct bpf_func_state *state = cur_func(env);
648 int err;
649
650 err = __release_reference_state(state, ptr_id);
651 if (WARN_ON_ONCE(err != 0))
652 verbose(env, "verifier internal error: can't release reference\n");
653 return err;
654}
655
656static int transfer_reference_state(struct bpf_func_state *dst,
657 struct bpf_func_state *src)
658{
659 int err = realloc_reference_state(dst, src->acquired_refs, false);
660 if (err)
661 return err;
662 err = copy_reference_state(dst, src);
663 if (err)
664 return err;
638f5b90
AS
665 return 0;
666}
667
f4d7e40a
AS
668static void free_func_state(struct bpf_func_state *state)
669{
5896351e
AS
670 if (!state)
671 return;
fd978bf7 672 kfree(state->refs);
f4d7e40a
AS
673 kfree(state->stack);
674 kfree(state);
675}
676
1969db47
AS
677static void free_verifier_state(struct bpf_verifier_state *state,
678 bool free_self)
638f5b90 679{
f4d7e40a
AS
680 int i;
681
682 for (i = 0; i <= state->curframe; i++) {
683 free_func_state(state->frame[i]);
684 state->frame[i] = NULL;
685 }
1969db47
AS
686 if (free_self)
687 kfree(state);
638f5b90
AS
688}
689
690/* copy verifier state from src to dst growing dst stack space
691 * when necessary to accommodate larger src stack
692 */
f4d7e40a
AS
693static int copy_func_state(struct bpf_func_state *dst,
694 const struct bpf_func_state *src)
638f5b90
AS
695{
696 int err;
697
fd978bf7
JS
698 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
699 false);
700 if (err)
701 return err;
702 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
703 err = copy_reference_state(dst, src);
638f5b90
AS
704 if (err)
705 return err;
638f5b90
AS
706 return copy_stack_state(dst, src);
707}
708
f4d7e40a
AS
709static int copy_verifier_state(struct bpf_verifier_state *dst_state,
710 const struct bpf_verifier_state *src)
711{
712 struct bpf_func_state *dst;
713 int i, err;
714
715 /* if dst has more stack frames then src frame, free them */
716 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
717 free_func_state(dst_state->frame[i]);
718 dst_state->frame[i] = NULL;
719 }
979d63d5 720 dst_state->speculative = src->speculative;
f4d7e40a 721 dst_state->curframe = src->curframe;
d83525ca 722 dst_state->active_spin_lock = src->active_spin_lock;
f4d7e40a
AS
723 for (i = 0; i <= src->curframe; i++) {
724 dst = dst_state->frame[i];
725 if (!dst) {
726 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
727 if (!dst)
728 return -ENOMEM;
729 dst_state->frame[i] = dst;
730 }
731 err = copy_func_state(dst, src->frame[i]);
732 if (err)
733 return err;
734 }
735 return 0;
736}
737
638f5b90
AS
738static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
739 int *insn_idx)
740{
741 struct bpf_verifier_state *cur = env->cur_state;
742 struct bpf_verifier_stack_elem *elem, *head = env->head;
743 int err;
17a52670
AS
744
745 if (env->head == NULL)
638f5b90 746 return -ENOENT;
17a52670 747
638f5b90
AS
748 if (cur) {
749 err = copy_verifier_state(cur, &head->st);
750 if (err)
751 return err;
752 }
753 if (insn_idx)
754 *insn_idx = head->insn_idx;
17a52670 755 if (prev_insn_idx)
638f5b90
AS
756 *prev_insn_idx = head->prev_insn_idx;
757 elem = head->next;
1969db47 758 free_verifier_state(&head->st, false);
638f5b90 759 kfree(head);
17a52670
AS
760 env->head = elem;
761 env->stack_size--;
638f5b90 762 return 0;
17a52670
AS
763}
764
58e2af8b 765static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
766 int insn_idx, int prev_insn_idx,
767 bool speculative)
17a52670 768{
638f5b90 769 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 770 struct bpf_verifier_stack_elem *elem;
638f5b90 771 int err;
17a52670 772
638f5b90 773 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
774 if (!elem)
775 goto err;
776
17a52670
AS
777 elem->insn_idx = insn_idx;
778 elem->prev_insn_idx = prev_insn_idx;
779 elem->next = env->head;
780 env->head = elem;
781 env->stack_size++;
1969db47
AS
782 err = copy_verifier_state(&elem->st, cur);
783 if (err)
784 goto err;
979d63d5 785 elem->st.speculative |= speculative;
07016151 786 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 787 verbose(env, "BPF program is too complex\n");
17a52670
AS
788 goto err;
789 }
790 return &elem->st;
791err:
5896351e
AS
792 free_verifier_state(env->cur_state, true);
793 env->cur_state = NULL;
17a52670 794 /* pop all elements and return */
638f5b90 795 while (!pop_stack(env, NULL, NULL));
17a52670
AS
796 return NULL;
797}
798
799#define CALLER_SAVED_REGS 6
800static const int caller_saved[CALLER_SAVED_REGS] = {
801 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
802};
803
f1174f77
EC
804static void __mark_reg_not_init(struct bpf_reg_state *reg);
805
b03c9f9f
EC
806/* Mark the unknown part of a register (variable offset or scalar value) as
807 * known to have the value @imm.
808 */
809static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
810{
a9c676bc
AS
811 /* Clear id, off, and union(map_ptr, range) */
812 memset(((u8 *)reg) + sizeof(reg->type), 0,
813 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
814 reg->var_off = tnum_const(imm);
815 reg->smin_value = (s64)imm;
816 reg->smax_value = (s64)imm;
817 reg->umin_value = imm;
818 reg->umax_value = imm;
819}
820
f1174f77
EC
821/* Mark the 'variable offset' part of a register as zero. This should be
822 * used only on registers holding a pointer type.
823 */
824static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 825{
b03c9f9f 826 __mark_reg_known(reg, 0);
f1174f77 827}
a9789ef9 828
cc2b14d5
AS
829static void __mark_reg_const_zero(struct bpf_reg_state *reg)
830{
831 __mark_reg_known(reg, 0);
cc2b14d5
AS
832 reg->type = SCALAR_VALUE;
833}
834
61bd5218
JK
835static void mark_reg_known_zero(struct bpf_verifier_env *env,
836 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
837{
838 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 839 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
840 /* Something bad happened, let's kill all regs */
841 for (regno = 0; regno < MAX_BPF_REG; regno++)
842 __mark_reg_not_init(regs + regno);
843 return;
844 }
845 __mark_reg_known_zero(regs + regno);
846}
847
de8f3a83
DB
848static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
849{
850 return type_is_pkt_pointer(reg->type);
851}
852
853static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
854{
855 return reg_is_pkt_pointer(reg) ||
856 reg->type == PTR_TO_PACKET_END;
857}
858
859/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
860static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
861 enum bpf_reg_type which)
862{
863 /* The register can already have a range from prior markings.
864 * This is fine as long as it hasn't been advanced from its
865 * origin.
866 */
867 return reg->type == which &&
868 reg->id == 0 &&
869 reg->off == 0 &&
870 tnum_equals_const(reg->var_off, 0);
871}
872
b03c9f9f
EC
873/* Attempts to improve min/max values based on var_off information */
874static void __update_reg_bounds(struct bpf_reg_state *reg)
875{
876 /* min signed is max(sign bit) | min(other bits) */
877 reg->smin_value = max_t(s64, reg->smin_value,
878 reg->var_off.value | (reg->var_off.mask & S64_MIN));
879 /* max signed is min(sign bit) | max(other bits) */
880 reg->smax_value = min_t(s64, reg->smax_value,
881 reg->var_off.value | (reg->var_off.mask & S64_MAX));
882 reg->umin_value = max(reg->umin_value, reg->var_off.value);
883 reg->umax_value = min(reg->umax_value,
884 reg->var_off.value | reg->var_off.mask);
885}
886
887/* Uses signed min/max values to inform unsigned, and vice-versa */
888static void __reg_deduce_bounds(struct bpf_reg_state *reg)
889{
890 /* Learn sign from signed bounds.
891 * If we cannot cross the sign boundary, then signed and unsigned bounds
892 * are the same, so combine. This works even in the negative case, e.g.
893 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
894 */
895 if (reg->smin_value >= 0 || reg->smax_value < 0) {
896 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
897 reg->umin_value);
898 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
899 reg->umax_value);
900 return;
901 }
902 /* Learn sign from unsigned bounds. Signed bounds cross the sign
903 * boundary, so we must be careful.
904 */
905 if ((s64)reg->umax_value >= 0) {
906 /* Positive. We can't learn anything from the smin, but smax
907 * is positive, hence safe.
908 */
909 reg->smin_value = reg->umin_value;
910 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
911 reg->umax_value);
912 } else if ((s64)reg->umin_value < 0) {
913 /* Negative. We can't learn anything from the smax, but smin
914 * is negative, hence safe.
915 */
916 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
917 reg->umin_value);
918 reg->smax_value = reg->umax_value;
919 }
920}
921
922/* Attempts to improve var_off based on unsigned min/max information */
923static void __reg_bound_offset(struct bpf_reg_state *reg)
924{
925 reg->var_off = tnum_intersect(reg->var_off,
926 tnum_range(reg->umin_value,
927 reg->umax_value));
928}
929
930/* Reset the min/max bounds of a register */
931static void __mark_reg_unbounded(struct bpf_reg_state *reg)
932{
933 reg->smin_value = S64_MIN;
934 reg->smax_value = S64_MAX;
935 reg->umin_value = 0;
936 reg->umax_value = U64_MAX;
937}
938
f1174f77
EC
939/* Mark a register as having a completely unknown (scalar) value. */
940static void __mark_reg_unknown(struct bpf_reg_state *reg)
941{
a9c676bc
AS
942 /*
943 * Clear type, id, off, and union(map_ptr, range) and
944 * padding between 'type' and union
945 */
946 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 947 reg->type = SCALAR_VALUE;
f1174f77 948 reg->var_off = tnum_unknown;
f4d7e40a 949 reg->frameno = 0;
b03c9f9f 950 __mark_reg_unbounded(reg);
f1174f77
EC
951}
952
61bd5218
JK
953static void mark_reg_unknown(struct bpf_verifier_env *env,
954 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
955{
956 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 957 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
958 /* Something bad happened, let's kill all regs except FP */
959 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
960 __mark_reg_not_init(regs + regno);
961 return;
962 }
963 __mark_reg_unknown(regs + regno);
964}
965
966static void __mark_reg_not_init(struct bpf_reg_state *reg)
967{
968 __mark_reg_unknown(reg);
969 reg->type = NOT_INIT;
970}
971
61bd5218
JK
972static void mark_reg_not_init(struct bpf_verifier_env *env,
973 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
974{
975 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 976 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
977 /* Something bad happened, let's kill all regs except FP */
978 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
979 __mark_reg_not_init(regs + regno);
980 return;
981 }
982 __mark_reg_not_init(regs + regno);
a9789ef9
DB
983}
984
61bd5218 985static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 986 struct bpf_func_state *state)
17a52670 987{
f4d7e40a 988 struct bpf_reg_state *regs = state->regs;
17a52670
AS
989 int i;
990
dc503a8a 991 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 992 mark_reg_not_init(env, regs, i);
dc503a8a 993 regs[i].live = REG_LIVE_NONE;
679c782d 994 regs[i].parent = NULL;
dc503a8a 995 }
17a52670
AS
996
997 /* frame pointer */
f1174f77 998 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 999 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1000 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1001
1002 /* 1st arg to a function */
1003 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1004 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1005}
1006
f4d7e40a
AS
1007#define BPF_MAIN_FUNC (-1)
1008static void init_func_state(struct bpf_verifier_env *env,
1009 struct bpf_func_state *state,
1010 int callsite, int frameno, int subprogno)
1011{
1012 state->callsite = callsite;
1013 state->frameno = frameno;
1014 state->subprogno = subprogno;
1015 init_reg_state(env, state);
1016}
1017
17a52670
AS
1018enum reg_arg_type {
1019 SRC_OP, /* register is used as source operand */
1020 DST_OP, /* register is used as destination operand */
1021 DST_OP_NO_MARK /* same as above, check only, don't mark */
1022};
1023
cc8b0b92
AS
1024static int cmp_subprogs(const void *a, const void *b)
1025{
9c8105bd
JW
1026 return ((struct bpf_subprog_info *)a)->start -
1027 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1028}
1029
1030static int find_subprog(struct bpf_verifier_env *env, int off)
1031{
9c8105bd 1032 struct bpf_subprog_info *p;
cc8b0b92 1033
9c8105bd
JW
1034 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1035 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1036 if (!p)
1037 return -ENOENT;
9c8105bd 1038 return p - env->subprog_info;
cc8b0b92
AS
1039
1040}
1041
1042static int add_subprog(struct bpf_verifier_env *env, int off)
1043{
1044 int insn_cnt = env->prog->len;
1045 int ret;
1046
1047 if (off >= insn_cnt || off < 0) {
1048 verbose(env, "call to invalid destination\n");
1049 return -EINVAL;
1050 }
1051 ret = find_subprog(env, off);
1052 if (ret >= 0)
1053 return 0;
4cb3d99c 1054 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1055 verbose(env, "too many subprograms\n");
1056 return -E2BIG;
1057 }
9c8105bd
JW
1058 env->subprog_info[env->subprog_cnt++].start = off;
1059 sort(env->subprog_info, env->subprog_cnt,
1060 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1061 return 0;
1062}
1063
1064static int check_subprogs(struct bpf_verifier_env *env)
1065{
1066 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1067 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1068 struct bpf_insn *insn = env->prog->insnsi;
1069 int insn_cnt = env->prog->len;
1070
f910cefa
JW
1071 /* Add entry function. */
1072 ret = add_subprog(env, 0);
1073 if (ret < 0)
1074 return ret;
1075
cc8b0b92
AS
1076 /* determine subprog starts. The end is one before the next starts */
1077 for (i = 0; i < insn_cnt; i++) {
1078 if (insn[i].code != (BPF_JMP | BPF_CALL))
1079 continue;
1080 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1081 continue;
1082 if (!env->allow_ptr_leaks) {
1083 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1084 return -EPERM;
1085 }
cc8b0b92
AS
1086 ret = add_subprog(env, i + insn[i].imm + 1);
1087 if (ret < 0)
1088 return ret;
1089 }
1090
4cb3d99c
JW
1091 /* Add a fake 'exit' subprog which could simplify subprog iteration
1092 * logic. 'subprog_cnt' should not be increased.
1093 */
1094 subprog[env->subprog_cnt].start = insn_cnt;
1095
cc8b0b92
AS
1096 if (env->log.level > 1)
1097 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1098 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1099
1100 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1101 subprog_start = subprog[cur_subprog].start;
1102 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1103 for (i = 0; i < insn_cnt; i++) {
1104 u8 code = insn[i].code;
1105
092ed096 1106 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1107 goto next;
1108 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1109 goto next;
1110 off = i + insn[i].off + 1;
1111 if (off < subprog_start || off >= subprog_end) {
1112 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1113 return -EINVAL;
1114 }
1115next:
1116 if (i == subprog_end - 1) {
1117 /* to avoid fall-through from one subprog into another
1118 * the last insn of the subprog should be either exit
1119 * or unconditional jump back
1120 */
1121 if (code != (BPF_JMP | BPF_EXIT) &&
1122 code != (BPF_JMP | BPF_JA)) {
1123 verbose(env, "last insn is not an exit or jmp\n");
1124 return -EINVAL;
1125 }
1126 subprog_start = subprog_end;
4cb3d99c
JW
1127 cur_subprog++;
1128 if (cur_subprog < env->subprog_cnt)
9c8105bd 1129 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1130 }
1131 }
1132 return 0;
1133}
1134
679c782d
EC
1135/* Parentage chain of this register (or stack slot) should take care of all
1136 * issues like callee-saved registers, stack slot allocation time, etc.
1137 */
f4d7e40a 1138static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1139 const struct bpf_reg_state *state,
1140 struct bpf_reg_state *parent)
f4d7e40a
AS
1141{
1142 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1143
1144 while (parent) {
1145 /* if read wasn't screened by an earlier write ... */
679c782d 1146 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1147 break;
9242b5f5
AS
1148 if (parent->live & REG_LIVE_DONE) {
1149 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1150 reg_type_str[parent->type],
1151 parent->var_off.value, parent->off);
1152 return -EFAULT;
1153 }
dc503a8a 1154 /* ... then we depend on parent's value */
679c782d 1155 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1156 state = parent;
1157 parent = state->parent;
f4d7e40a 1158 writes = true;
dc503a8a 1159 }
f4d7e40a 1160 return 0;
dc503a8a
EC
1161}
1162
1163static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1164 enum reg_arg_type t)
1165{
f4d7e40a
AS
1166 struct bpf_verifier_state *vstate = env->cur_state;
1167 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1168 struct bpf_reg_state *regs = state->regs;
dc503a8a 1169
17a52670 1170 if (regno >= MAX_BPF_REG) {
61bd5218 1171 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1172 return -EINVAL;
1173 }
1174
1175 if (t == SRC_OP) {
1176 /* check whether register used as source operand can be read */
1177 if (regs[regno].type == NOT_INIT) {
61bd5218 1178 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1179 return -EACCES;
1180 }
679c782d
EC
1181 /* We don't need to worry about FP liveness because it's read-only */
1182 if (regno != BPF_REG_FP)
1183 return mark_reg_read(env, &regs[regno],
1184 regs[regno].parent);
17a52670
AS
1185 } else {
1186 /* check whether register used as dest operand can be written to */
1187 if (regno == BPF_REG_FP) {
61bd5218 1188 verbose(env, "frame pointer is read only\n");
17a52670
AS
1189 return -EACCES;
1190 }
dc503a8a 1191 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1192 if (t == DST_OP)
61bd5218 1193 mark_reg_unknown(env, regs, regno);
17a52670
AS
1194 }
1195 return 0;
1196}
1197
1be7f75d
AS
1198static bool is_spillable_regtype(enum bpf_reg_type type)
1199{
1200 switch (type) {
1201 case PTR_TO_MAP_VALUE:
1202 case PTR_TO_MAP_VALUE_OR_NULL:
1203 case PTR_TO_STACK:
1204 case PTR_TO_CTX:
969bf05e 1205 case PTR_TO_PACKET:
de8f3a83 1206 case PTR_TO_PACKET_META:
969bf05e 1207 case PTR_TO_PACKET_END:
d58e468b 1208 case PTR_TO_FLOW_KEYS:
1be7f75d 1209 case CONST_PTR_TO_MAP:
c64b7983
JS
1210 case PTR_TO_SOCKET:
1211 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1212 return true;
1213 default:
1214 return false;
1215 }
1216}
1217
cc2b14d5
AS
1218/* Does this register contain a constant zero? */
1219static bool register_is_null(struct bpf_reg_state *reg)
1220{
1221 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1222}
1223
17a52670
AS
1224/* check_stack_read/write functions track spill/fill of registers,
1225 * stack boundary and alignment are checked in check_mem_access()
1226 */
61bd5218 1227static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1228 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1229 int off, int size, int value_regno, int insn_idx)
17a52670 1230{
f4d7e40a 1231 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1232 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1233 enum bpf_reg_type type;
638f5b90 1234
f4d7e40a 1235 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1236 state->acquired_refs, true);
638f5b90
AS
1237 if (err)
1238 return err;
9c399760
AS
1239 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1240 * so it's aligned access and [off, off + size) are within stack limits
1241 */
638f5b90
AS
1242 if (!env->allow_ptr_leaks &&
1243 state->stack[spi].slot_type[0] == STACK_SPILL &&
1244 size != BPF_REG_SIZE) {
1245 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1246 return -EACCES;
1247 }
17a52670 1248
f4d7e40a 1249 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1250 if (value_regno >= 0 &&
f4d7e40a 1251 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1252
1253 /* register containing pointer is being spilled into stack */
9c399760 1254 if (size != BPF_REG_SIZE) {
61bd5218 1255 verbose(env, "invalid size of register spill\n");
17a52670
AS
1256 return -EACCES;
1257 }
1258
f4d7e40a
AS
1259 if (state != cur && type == PTR_TO_STACK) {
1260 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1261 return -EINVAL;
1262 }
1263
17a52670 1264 /* save register state */
f4d7e40a 1265 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1266 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1267
af86ca4e
AS
1268 for (i = 0; i < BPF_REG_SIZE; i++) {
1269 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1270 !env->allow_ptr_leaks) {
1271 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1272 int soff = (-spi - 1) * BPF_REG_SIZE;
1273
1274 /* detected reuse of integer stack slot with a pointer
1275 * which means either llvm is reusing stack slot or
1276 * an attacker is trying to exploit CVE-2018-3639
1277 * (speculative store bypass)
1278 * Have to sanitize that slot with preemptive
1279 * store of zero.
1280 */
1281 if (*poff && *poff != soff) {
1282 /* disallow programs where single insn stores
1283 * into two different stack slots, since verifier
1284 * cannot sanitize them
1285 */
1286 verbose(env,
1287 "insn %d cannot access two stack slots fp%d and fp%d",
1288 insn_idx, *poff, soff);
1289 return -EINVAL;
1290 }
1291 *poff = soff;
1292 }
638f5b90 1293 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1294 }
9c399760 1295 } else {
cc2b14d5
AS
1296 u8 type = STACK_MISC;
1297
679c782d
EC
1298 /* regular write of data into stack destroys any spilled ptr */
1299 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1300 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1301 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1302 for (i = 0; i < BPF_REG_SIZE; i++)
1303 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1304
cc2b14d5
AS
1305 /* only mark the slot as written if all 8 bytes were written
1306 * otherwise read propagation may incorrectly stop too soon
1307 * when stack slots are partially written.
1308 * This heuristic means that read propagation will be
1309 * conservative, since it will add reg_live_read marks
1310 * to stack slots all the way to first state when programs
1311 * writes+reads less than 8 bytes
1312 */
1313 if (size == BPF_REG_SIZE)
1314 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1315
1316 /* when we zero initialize stack slots mark them as such */
1317 if (value_regno >= 0 &&
1318 register_is_null(&cur->regs[value_regno]))
1319 type = STACK_ZERO;
1320
0bae2d4d 1321 /* Mark slots affected by this stack write. */
9c399760 1322 for (i = 0; i < size; i++)
638f5b90 1323 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1324 type;
17a52670
AS
1325 }
1326 return 0;
1327}
1328
61bd5218 1329static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1330 struct bpf_func_state *reg_state /* func where register points to */,
1331 int off, int size, int value_regno)
17a52670 1332{
f4d7e40a
AS
1333 struct bpf_verifier_state *vstate = env->cur_state;
1334 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1335 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1336 u8 *stype;
17a52670 1337
f4d7e40a 1338 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1339 verbose(env, "invalid read from stack off %d+0 size %d\n",
1340 off, size);
1341 return -EACCES;
1342 }
f4d7e40a 1343 stype = reg_state->stack[spi].slot_type;
17a52670 1344
638f5b90 1345 if (stype[0] == STACK_SPILL) {
9c399760 1346 if (size != BPF_REG_SIZE) {
61bd5218 1347 verbose(env, "invalid size of register spill\n");
17a52670
AS
1348 return -EACCES;
1349 }
9c399760 1350 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1351 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1352 verbose(env, "corrupted spill memory\n");
17a52670
AS
1353 return -EACCES;
1354 }
1355 }
1356
dc503a8a 1357 if (value_regno >= 0) {
17a52670 1358 /* restore register state from stack */
f4d7e40a 1359 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1360 /* mark reg as written since spilled pointer state likely
1361 * has its liveness marks cleared by is_state_visited()
1362 * which resets stack/reg liveness for state transitions
1363 */
1364 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1365 }
679c782d
EC
1366 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1367 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1368 return 0;
1369 } else {
cc2b14d5
AS
1370 int zeros = 0;
1371
17a52670 1372 for (i = 0; i < size; i++) {
cc2b14d5
AS
1373 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1374 continue;
1375 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1376 zeros++;
1377 continue;
17a52670 1378 }
cc2b14d5
AS
1379 verbose(env, "invalid read from stack off %d+%d size %d\n",
1380 off, i, size);
1381 return -EACCES;
1382 }
679c782d
EC
1383 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1384 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1385 if (value_regno >= 0) {
1386 if (zeros == size) {
1387 /* any size read into register is zero extended,
1388 * so the whole register == const_zero
1389 */
1390 __mark_reg_const_zero(&state->regs[value_regno]);
1391 } else {
1392 /* have read misc data from the stack */
1393 mark_reg_unknown(env, state->regs, value_regno);
1394 }
1395 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1396 }
17a52670
AS
1397 return 0;
1398 }
1399}
1400
e4298d25
DB
1401static int check_stack_access(struct bpf_verifier_env *env,
1402 const struct bpf_reg_state *reg,
1403 int off, int size)
1404{
1405 /* Stack accesses must be at a fixed offset, so that we
1406 * can determine what type of data were returned. See
1407 * check_stack_read().
1408 */
1409 if (!tnum_is_const(reg->var_off)) {
1410 char tn_buf[48];
1411
1412 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1413 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1414 tn_buf, off, size);
1415 return -EACCES;
1416 }
1417
1418 if (off >= 0 || off < -MAX_BPF_STACK) {
1419 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1420 return -EACCES;
1421 }
1422
1423 return 0;
1424}
1425
17a52670 1426/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1427static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1428 int size, bool zero_size_allowed)
17a52670 1429{
638f5b90
AS
1430 struct bpf_reg_state *regs = cur_regs(env);
1431 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1432
9fd29c08
YS
1433 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1434 off + size > map->value_size) {
61bd5218 1435 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1436 map->value_size, off, size);
1437 return -EACCES;
1438 }
1439 return 0;
1440}
1441
f1174f77
EC
1442/* check read/write into a map element with possible variable offset */
1443static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1444 int off, int size, bool zero_size_allowed)
dbcfe5f7 1445{
f4d7e40a
AS
1446 struct bpf_verifier_state *vstate = env->cur_state;
1447 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1448 struct bpf_reg_state *reg = &state->regs[regno];
1449 int err;
1450
f1174f77
EC
1451 /* We may have adjusted the register to this map value, so we
1452 * need to try adding each of min_value and max_value to off
1453 * to make sure our theoretical access will be safe.
dbcfe5f7 1454 */
61bd5218
JK
1455 if (env->log.level)
1456 print_verifier_state(env, state);
b7137c4e 1457
dbcfe5f7
GB
1458 /* The minimum value is only important with signed
1459 * comparisons where we can't assume the floor of a
1460 * value is 0. If we are using signed variables for our
1461 * index'es we need to make sure that whatever we use
1462 * will have a set floor within our range.
1463 */
b7137c4e
DB
1464 if (reg->smin_value < 0 &&
1465 (reg->smin_value == S64_MIN ||
1466 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1467 reg->smin_value + off < 0)) {
61bd5218 1468 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1469 regno);
1470 return -EACCES;
1471 }
9fd29c08
YS
1472 err = __check_map_access(env, regno, reg->smin_value + off, size,
1473 zero_size_allowed);
dbcfe5f7 1474 if (err) {
61bd5218
JK
1475 verbose(env, "R%d min value is outside of the array range\n",
1476 regno);
dbcfe5f7
GB
1477 return err;
1478 }
1479
b03c9f9f
EC
1480 /* If we haven't set a max value then we need to bail since we can't be
1481 * sure we won't do bad things.
1482 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1483 */
b03c9f9f 1484 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1485 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1486 regno);
1487 return -EACCES;
1488 }
9fd29c08
YS
1489 err = __check_map_access(env, regno, reg->umax_value + off, size,
1490 zero_size_allowed);
f1174f77 1491 if (err)
61bd5218
JK
1492 verbose(env, "R%d max value is outside of the array range\n",
1493 regno);
d83525ca
AS
1494
1495 if (map_value_has_spin_lock(reg->map_ptr)) {
1496 u32 lock = reg->map_ptr->spin_lock_off;
1497
1498 /* if any part of struct bpf_spin_lock can be touched by
1499 * load/store reject this program.
1500 * To check that [x1, x2) overlaps with [y1, y2)
1501 * it is sufficient to check x1 < y2 && y1 < x2.
1502 */
1503 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1504 lock < reg->umax_value + off + size) {
1505 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1506 return -EACCES;
1507 }
1508 }
f1174f77 1509 return err;
dbcfe5f7
GB
1510}
1511
969bf05e
AS
1512#define MAX_PACKET_OFF 0xffff
1513
58e2af8b 1514static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1515 const struct bpf_call_arg_meta *meta,
1516 enum bpf_access_type t)
4acf6c0b 1517{
36bbef52 1518 switch (env->prog->type) {
5d66fa7d 1519 /* Program types only with direct read access go here! */
3a0af8fd
TG
1520 case BPF_PROG_TYPE_LWT_IN:
1521 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1522 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1523 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1524 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1525 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1526 if (t == BPF_WRITE)
1527 return false;
7e57fbb2 1528 /* fallthrough */
5d66fa7d
DB
1529
1530 /* Program types with direct read + write access go here! */
36bbef52
DB
1531 case BPF_PROG_TYPE_SCHED_CLS:
1532 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1533 case BPF_PROG_TYPE_XDP:
3a0af8fd 1534 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1535 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1536 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1537 if (meta)
1538 return meta->pkt_access;
1539
1540 env->seen_direct_write = true;
4acf6c0b
BB
1541 return true;
1542 default:
1543 return false;
1544 }
1545}
1546
f1174f77 1547static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1548 int off, int size, bool zero_size_allowed)
969bf05e 1549{
638f5b90 1550 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1551 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1552
9fd29c08
YS
1553 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1554 (u64)off + size > reg->range) {
61bd5218 1555 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1556 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1557 return -EACCES;
1558 }
1559 return 0;
1560}
1561
f1174f77 1562static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1563 int size, bool zero_size_allowed)
f1174f77 1564{
638f5b90 1565 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1566 struct bpf_reg_state *reg = &regs[regno];
1567 int err;
1568
1569 /* We may have added a variable offset to the packet pointer; but any
1570 * reg->range we have comes after that. We are only checking the fixed
1571 * offset.
1572 */
1573
1574 /* We don't allow negative numbers, because we aren't tracking enough
1575 * detail to prove they're safe.
1576 */
b03c9f9f 1577 if (reg->smin_value < 0) {
61bd5218 1578 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1579 regno);
1580 return -EACCES;
1581 }
9fd29c08 1582 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1583 if (err) {
61bd5218 1584 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1585 return err;
1586 }
e647815a
JW
1587
1588 /* __check_packet_access has made sure "off + size - 1" is within u16.
1589 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1590 * otherwise find_good_pkt_pointers would have refused to set range info
1591 * that __check_packet_access would have rejected this pkt access.
1592 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1593 */
1594 env->prog->aux->max_pkt_offset =
1595 max_t(u32, env->prog->aux->max_pkt_offset,
1596 off + reg->umax_value + size - 1);
1597
f1174f77
EC
1598 return err;
1599}
1600
1601/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1602static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1603 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1604{
f96da094
DB
1605 struct bpf_insn_access_aux info = {
1606 .reg_type = *reg_type,
1607 };
31fd8581 1608
4f9218aa 1609 if (env->ops->is_valid_access &&
5e43f899 1610 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1611 /* A non zero info.ctx_field_size indicates that this field is a
1612 * candidate for later verifier transformation to load the whole
1613 * field and then apply a mask when accessed with a narrower
1614 * access than actual ctx access size. A zero info.ctx_field_size
1615 * will only allow for whole field access and rejects any other
1616 * type of narrower access.
31fd8581 1617 */
23994631 1618 *reg_type = info.reg_type;
31fd8581 1619
4f9218aa 1620 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1621 /* remember the offset of last byte accessed in ctx */
1622 if (env->prog->aux->max_ctx_offset < off + size)
1623 env->prog->aux->max_ctx_offset = off + size;
17a52670 1624 return 0;
32bbe007 1625 }
17a52670 1626
61bd5218 1627 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1628 return -EACCES;
1629}
1630
d58e468b
PP
1631static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1632 int size)
1633{
1634 if (size < 0 || off < 0 ||
1635 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1636 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1637 off, size);
1638 return -EACCES;
1639 }
1640 return 0;
1641}
1642
c64b7983
JS
1643static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1644 int size, enum bpf_access_type t)
1645{
1646 struct bpf_reg_state *regs = cur_regs(env);
1647 struct bpf_reg_state *reg = &regs[regno];
1648 struct bpf_insn_access_aux info;
1649
1650 if (reg->smin_value < 0) {
1651 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1652 regno);
1653 return -EACCES;
1654 }
1655
1656 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1657 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1658 off, size);
1659 return -EACCES;
1660 }
1661
1662 return 0;
1663}
1664
4cabc5b1
DB
1665static bool __is_pointer_value(bool allow_ptr_leaks,
1666 const struct bpf_reg_state *reg)
1be7f75d 1667{
4cabc5b1 1668 if (allow_ptr_leaks)
1be7f75d
AS
1669 return false;
1670
f1174f77 1671 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1672}
1673
2a159c6f
DB
1674static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1675{
1676 return cur_regs(env) + regno;
1677}
1678
4cabc5b1
DB
1679static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1680{
2a159c6f 1681 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1682}
1683
f37a8cb8
DB
1684static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1685{
2a159c6f 1686 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1687
fd978bf7
JS
1688 return reg->type == PTR_TO_CTX ||
1689 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1690}
1691
ca369602
DB
1692static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1693{
2a159c6f 1694 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1695
1696 return type_is_pkt_pointer(reg->type);
1697}
1698
4b5defde
DB
1699static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1700{
1701 const struct bpf_reg_state *reg = reg_state(env, regno);
1702
1703 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1704 return reg->type == PTR_TO_FLOW_KEYS;
1705}
1706
61bd5218
JK
1707static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1708 const struct bpf_reg_state *reg,
d1174416 1709 int off, int size, bool strict)
969bf05e 1710{
f1174f77 1711 struct tnum reg_off;
e07b98d9 1712 int ip_align;
d1174416
DM
1713
1714 /* Byte size accesses are always allowed. */
1715 if (!strict || size == 1)
1716 return 0;
1717
e4eda884
DM
1718 /* For platforms that do not have a Kconfig enabling
1719 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1720 * NET_IP_ALIGN is universally set to '2'. And on platforms
1721 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1722 * to this code only in strict mode where we want to emulate
1723 * the NET_IP_ALIGN==2 checking. Therefore use an
1724 * unconditional IP align value of '2'.
e07b98d9 1725 */
e4eda884 1726 ip_align = 2;
f1174f77
EC
1727
1728 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1729 if (!tnum_is_aligned(reg_off, size)) {
1730 char tn_buf[48];
1731
1732 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1733 verbose(env,
1734 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1735 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1736 return -EACCES;
1737 }
79adffcd 1738
969bf05e
AS
1739 return 0;
1740}
1741
61bd5218
JK
1742static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1743 const struct bpf_reg_state *reg,
f1174f77
EC
1744 const char *pointer_desc,
1745 int off, int size, bool strict)
79adffcd 1746{
f1174f77
EC
1747 struct tnum reg_off;
1748
1749 /* Byte size accesses are always allowed. */
1750 if (!strict || size == 1)
1751 return 0;
1752
1753 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1754 if (!tnum_is_aligned(reg_off, size)) {
1755 char tn_buf[48];
1756
1757 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1758 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1759 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1760 return -EACCES;
1761 }
1762
969bf05e
AS
1763 return 0;
1764}
1765
e07b98d9 1766static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1767 const struct bpf_reg_state *reg, int off,
1768 int size, bool strict_alignment_once)
79adffcd 1769{
ca369602 1770 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1771 const char *pointer_desc = "";
d1174416 1772
79adffcd
DB
1773 switch (reg->type) {
1774 case PTR_TO_PACKET:
de8f3a83
DB
1775 case PTR_TO_PACKET_META:
1776 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1777 * right in front, treat it the very same way.
1778 */
61bd5218 1779 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1780 case PTR_TO_FLOW_KEYS:
1781 pointer_desc = "flow keys ";
1782 break;
f1174f77
EC
1783 case PTR_TO_MAP_VALUE:
1784 pointer_desc = "value ";
1785 break;
1786 case PTR_TO_CTX:
1787 pointer_desc = "context ";
1788 break;
1789 case PTR_TO_STACK:
1790 pointer_desc = "stack ";
a5ec6ae1
JH
1791 /* The stack spill tracking logic in check_stack_write()
1792 * and check_stack_read() relies on stack accesses being
1793 * aligned.
1794 */
1795 strict = true;
f1174f77 1796 break;
c64b7983
JS
1797 case PTR_TO_SOCKET:
1798 pointer_desc = "sock ";
1799 break;
79adffcd 1800 default:
f1174f77 1801 break;
79adffcd 1802 }
61bd5218
JK
1803 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1804 strict);
79adffcd
DB
1805}
1806
f4d7e40a
AS
1807static int update_stack_depth(struct bpf_verifier_env *env,
1808 const struct bpf_func_state *func,
1809 int off)
1810{
9c8105bd 1811 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1812
1813 if (stack >= -off)
1814 return 0;
1815
1816 /* update known max for given subprogram */
9c8105bd 1817 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1818 return 0;
1819}
f4d7e40a 1820
70a87ffe
AS
1821/* starting from main bpf function walk all instructions of the function
1822 * and recursively walk all callees that given function can call.
1823 * Ignore jump and exit insns.
1824 * Since recursion is prevented by check_cfg() this algorithm
1825 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1826 */
1827static int check_max_stack_depth(struct bpf_verifier_env *env)
1828{
9c8105bd
JW
1829 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1830 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1831 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1832 int ret_insn[MAX_CALL_FRAMES];
1833 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1834
70a87ffe
AS
1835process_func:
1836 /* round up to 32-bytes, since this is granularity
1837 * of interpreter stack size
1838 */
9c8105bd 1839 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1840 if (depth > MAX_BPF_STACK) {
f4d7e40a 1841 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1842 frame + 1, depth);
f4d7e40a
AS
1843 return -EACCES;
1844 }
70a87ffe 1845continue_func:
4cb3d99c 1846 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1847 for (; i < subprog_end; i++) {
1848 if (insn[i].code != (BPF_JMP | BPF_CALL))
1849 continue;
1850 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1851 continue;
1852 /* remember insn and function to return to */
1853 ret_insn[frame] = i + 1;
9c8105bd 1854 ret_prog[frame] = idx;
70a87ffe
AS
1855
1856 /* find the callee */
1857 i = i + insn[i].imm + 1;
9c8105bd
JW
1858 idx = find_subprog(env, i);
1859 if (idx < 0) {
70a87ffe
AS
1860 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1861 i);
1862 return -EFAULT;
1863 }
70a87ffe
AS
1864 frame++;
1865 if (frame >= MAX_CALL_FRAMES) {
1866 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1867 return -EFAULT;
1868 }
1869 goto process_func;
1870 }
1871 /* end of for() loop means the last insn of the 'subprog'
1872 * was reached. Doesn't matter whether it was JA or EXIT
1873 */
1874 if (frame == 0)
1875 return 0;
9c8105bd 1876 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1877 frame--;
1878 i = ret_insn[frame];
9c8105bd 1879 idx = ret_prog[frame];
70a87ffe 1880 goto continue_func;
f4d7e40a
AS
1881}
1882
19d28fbd 1883#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1884static int get_callee_stack_depth(struct bpf_verifier_env *env,
1885 const struct bpf_insn *insn, int idx)
1886{
1887 int start = idx + insn->imm + 1, subprog;
1888
1889 subprog = find_subprog(env, start);
1890 if (subprog < 0) {
1891 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1892 start);
1893 return -EFAULT;
1894 }
9c8105bd 1895 return env->subprog_info[subprog].stack_depth;
1ea47e01 1896}
19d28fbd 1897#endif
1ea47e01 1898
58990d1f
DB
1899static int check_ctx_reg(struct bpf_verifier_env *env,
1900 const struct bpf_reg_state *reg, int regno)
1901{
1902 /* Access to ctx or passing it to a helper is only allowed in
1903 * its original, unmodified form.
1904 */
1905
1906 if (reg->off) {
1907 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1908 regno, reg->off);
1909 return -EACCES;
1910 }
1911
1912 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1913 char tn_buf[48];
1914
1915 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1916 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1917 return -EACCES;
1918 }
1919
1920 return 0;
1921}
1922
0c17d1d2
JH
1923/* truncate register to smaller size (in bytes)
1924 * must be called with size < BPF_REG_SIZE
1925 */
1926static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1927{
1928 u64 mask;
1929
1930 /* clear high bits in bit representation */
1931 reg->var_off = tnum_cast(reg->var_off, size);
1932
1933 /* fix arithmetic bounds */
1934 mask = ((u64)1 << (size * 8)) - 1;
1935 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1936 reg->umin_value &= mask;
1937 reg->umax_value &= mask;
1938 } else {
1939 reg->umin_value = 0;
1940 reg->umax_value = mask;
1941 }
1942 reg->smin_value = reg->umin_value;
1943 reg->smax_value = reg->umax_value;
1944}
1945
17a52670
AS
1946/* check whether memory at (regno + off) is accessible for t = (read | write)
1947 * if t==write, value_regno is a register which value is stored into memory
1948 * if t==read, value_regno is a register which will receive the value from memory
1949 * if t==write && value_regno==-1, some unknown value is stored into memory
1950 * if t==read && value_regno==-1, don't care what we read from memory
1951 */
ca369602
DB
1952static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1953 int off, int bpf_size, enum bpf_access_type t,
1954 int value_regno, bool strict_alignment_once)
17a52670 1955{
638f5b90
AS
1956 struct bpf_reg_state *regs = cur_regs(env);
1957 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1958 struct bpf_func_state *state;
17a52670
AS
1959 int size, err = 0;
1960
1961 size = bpf_size_to_bytes(bpf_size);
1962 if (size < 0)
1963 return size;
1964
f1174f77 1965 /* alignment checks will add in reg->off themselves */
ca369602 1966 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1967 if (err)
1968 return err;
17a52670 1969
f1174f77
EC
1970 /* for access checks, reg->off is just part of off */
1971 off += reg->off;
1972
1973 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1974 if (t == BPF_WRITE && value_regno >= 0 &&
1975 is_pointer_value(env, value_regno)) {
61bd5218 1976 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1977 return -EACCES;
1978 }
48461135 1979
9fd29c08 1980 err = check_map_access(env, regno, off, size, false);
17a52670 1981 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1982 mark_reg_unknown(env, regs, value_regno);
17a52670 1983
1a0dc1ac 1984 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1985 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1986
1be7f75d
AS
1987 if (t == BPF_WRITE && value_regno >= 0 &&
1988 is_pointer_value(env, value_regno)) {
61bd5218 1989 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1990 return -EACCES;
1991 }
f1174f77 1992
58990d1f
DB
1993 err = check_ctx_reg(env, reg, regno);
1994 if (err < 0)
1995 return err;
1996
31fd8581 1997 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1998 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1999 /* ctx access returns either a scalar, or a
de8f3a83
DB
2000 * PTR_TO_PACKET[_META,_END]. In the latter
2001 * case, we know the offset is zero.
f1174f77
EC
2002 */
2003 if (reg_type == SCALAR_VALUE)
638f5b90 2004 mark_reg_unknown(env, regs, value_regno);
f1174f77 2005 else
638f5b90 2006 mark_reg_known_zero(env, regs,
61bd5218 2007 value_regno);
638f5b90 2008 regs[value_regno].type = reg_type;
969bf05e 2009 }
17a52670 2010
f1174f77 2011 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2012 off += reg->var_off.value;
e4298d25
DB
2013 err = check_stack_access(env, reg, off, size);
2014 if (err)
2015 return err;
8726679a 2016
f4d7e40a
AS
2017 state = func(env, reg);
2018 err = update_stack_depth(env, state, off);
2019 if (err)
2020 return err;
8726679a 2021
638f5b90 2022 if (t == BPF_WRITE)
61bd5218 2023 err = check_stack_write(env, state, off, size,
af86ca4e 2024 value_regno, insn_idx);
638f5b90 2025 else
61bd5218
JK
2026 err = check_stack_read(env, state, off, size,
2027 value_regno);
de8f3a83 2028 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2029 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2030 verbose(env, "cannot write into packet\n");
969bf05e
AS
2031 return -EACCES;
2032 }
4acf6c0b
BB
2033 if (t == BPF_WRITE && value_regno >= 0 &&
2034 is_pointer_value(env, value_regno)) {
61bd5218
JK
2035 verbose(env, "R%d leaks addr into packet\n",
2036 value_regno);
4acf6c0b
BB
2037 return -EACCES;
2038 }
9fd29c08 2039 err = check_packet_access(env, regno, off, size, false);
969bf05e 2040 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2041 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2042 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2043 if (t == BPF_WRITE && value_regno >= 0 &&
2044 is_pointer_value(env, value_regno)) {
2045 verbose(env, "R%d leaks addr into flow keys\n",
2046 value_regno);
2047 return -EACCES;
2048 }
2049
2050 err = check_flow_keys_access(env, off, size);
2051 if (!err && t == BPF_READ && value_regno >= 0)
2052 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
2053 } else if (reg->type == PTR_TO_SOCKET) {
2054 if (t == BPF_WRITE) {
2055 verbose(env, "cannot write into socket\n");
2056 return -EACCES;
2057 }
2058 err = check_sock_access(env, regno, off, size, t);
2059 if (!err && value_regno >= 0)
2060 mark_reg_unknown(env, regs, value_regno);
17a52670 2061 } else {
61bd5218
JK
2062 verbose(env, "R%d invalid mem access '%s'\n", regno,
2063 reg_type_str[reg->type]);
17a52670
AS
2064 return -EACCES;
2065 }
969bf05e 2066
f1174f77 2067 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2068 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2069 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2070 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2071 }
17a52670
AS
2072 return err;
2073}
2074
31fd8581 2075static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2076{
17a52670
AS
2077 int err;
2078
2079 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2080 insn->imm != 0) {
61bd5218 2081 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2082 return -EINVAL;
2083 }
2084
2085 /* check src1 operand */
dc503a8a 2086 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2087 if (err)
2088 return err;
2089
2090 /* check src2 operand */
dc503a8a 2091 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2092 if (err)
2093 return err;
2094
6bdf6abc 2095 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2096 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2097 return -EACCES;
2098 }
2099
ca369602 2100 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde
DB
2101 is_pkt_reg(env, insn->dst_reg) ||
2102 is_flow_key_reg(env, insn->dst_reg)) {
ca369602 2103 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2104 insn->dst_reg,
2105 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2106 return -EACCES;
2107 }
2108
17a52670 2109 /* check whether atomic_add can read the memory */
31fd8581 2110 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2111 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2112 if (err)
2113 return err;
2114
2115 /* check whether atomic_add can write into the same memory */
31fd8581 2116 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2117 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2118}
2119
2120/* when register 'regno' is passed into function that will read 'access_size'
2121 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2122 * and all elements of stack are initialized.
2123 * Unlike most pointer bounds-checking functions, this one doesn't take an
2124 * 'off' argument, so it has to add in reg->off itself.
17a52670 2125 */
58e2af8b 2126static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2127 int access_size, bool zero_size_allowed,
2128 struct bpf_call_arg_meta *meta)
17a52670 2129{
2a159c6f 2130 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2131 struct bpf_func_state *state = func(env, reg);
638f5b90 2132 int off, i, slot, spi;
17a52670 2133
914cb781 2134 if (reg->type != PTR_TO_STACK) {
f1174f77 2135 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2136 if (zero_size_allowed && access_size == 0 &&
914cb781 2137 register_is_null(reg))
8e2fe1d9
DB
2138 return 0;
2139
61bd5218 2140 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2141 reg_type_str[reg->type],
8e2fe1d9 2142 reg_type_str[PTR_TO_STACK]);
17a52670 2143 return -EACCES;
8e2fe1d9 2144 }
17a52670 2145
f1174f77 2146 /* Only allow fixed-offset stack reads */
914cb781 2147 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2148 char tn_buf[48];
2149
914cb781 2150 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2151 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2152 regno, tn_buf);
ea25f914 2153 return -EACCES;
f1174f77 2154 }
914cb781 2155 off = reg->off + reg->var_off.value;
17a52670 2156 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2157 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2158 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2159 regno, off, access_size);
2160 return -EACCES;
2161 }
2162
435faee1
DB
2163 if (meta && meta->raw_mode) {
2164 meta->access_size = access_size;
2165 meta->regno = regno;
2166 return 0;
2167 }
2168
17a52670 2169 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2170 u8 *stype;
2171
638f5b90
AS
2172 slot = -(off + i) - 1;
2173 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2174 if (state->allocated_stack <= slot)
2175 goto err;
2176 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2177 if (*stype == STACK_MISC)
2178 goto mark;
2179 if (*stype == STACK_ZERO) {
2180 /* helper can write anything into the stack */
2181 *stype = STACK_MISC;
2182 goto mark;
17a52670 2183 }
cc2b14d5
AS
2184err:
2185 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2186 off, i, access_size);
2187 return -EACCES;
2188mark:
2189 /* reading any byte out of 8-byte 'spill_slot' will cause
2190 * the whole slot to be marked as 'read'
2191 */
679c782d
EC
2192 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2193 state->stack[spi].spilled_ptr.parent);
17a52670 2194 }
f4d7e40a 2195 return update_stack_depth(env, state, off);
17a52670
AS
2196}
2197
06c1c049
GB
2198static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2199 int access_size, bool zero_size_allowed,
2200 struct bpf_call_arg_meta *meta)
2201{
638f5b90 2202 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2203
f1174f77 2204 switch (reg->type) {
06c1c049 2205 case PTR_TO_PACKET:
de8f3a83 2206 case PTR_TO_PACKET_META:
9fd29c08
YS
2207 return check_packet_access(env, regno, reg->off, access_size,
2208 zero_size_allowed);
06c1c049 2209 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2210 return check_map_access(env, regno, reg->off, access_size,
2211 zero_size_allowed);
f1174f77 2212 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2213 return check_stack_boundary(env, regno, access_size,
2214 zero_size_allowed, meta);
2215 }
2216}
2217
d83525ca
AS
2218/* Implementation details:
2219 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2220 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2221 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2222 * value_or_null->value transition, since the verifier only cares about
2223 * the range of access to valid map value pointer and doesn't care about actual
2224 * address of the map element.
2225 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2226 * reg->id > 0 after value_or_null->value transition. By doing so
2227 * two bpf_map_lookups will be considered two different pointers that
2228 * point to different bpf_spin_locks.
2229 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2230 * dead-locks.
2231 * Since only one bpf_spin_lock is allowed the checks are simpler than
2232 * reg_is_refcounted() logic. The verifier needs to remember only
2233 * one spin_lock instead of array of acquired_refs.
2234 * cur_state->active_spin_lock remembers which map value element got locked
2235 * and clears it after bpf_spin_unlock.
2236 */
2237static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2238 bool is_lock)
2239{
2240 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2241 struct bpf_verifier_state *cur = env->cur_state;
2242 bool is_const = tnum_is_const(reg->var_off);
2243 struct bpf_map *map = reg->map_ptr;
2244 u64 val = reg->var_off.value;
2245
2246 if (reg->type != PTR_TO_MAP_VALUE) {
2247 verbose(env, "R%d is not a pointer to map_value\n", regno);
2248 return -EINVAL;
2249 }
2250 if (!is_const) {
2251 verbose(env,
2252 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2253 regno);
2254 return -EINVAL;
2255 }
2256 if (!map->btf) {
2257 verbose(env,
2258 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2259 map->name);
2260 return -EINVAL;
2261 }
2262 if (!map_value_has_spin_lock(map)) {
2263 if (map->spin_lock_off == -E2BIG)
2264 verbose(env,
2265 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2266 map->name);
2267 else if (map->spin_lock_off == -ENOENT)
2268 verbose(env,
2269 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2270 map->name);
2271 else
2272 verbose(env,
2273 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2274 map->name);
2275 return -EINVAL;
2276 }
2277 if (map->spin_lock_off != val + reg->off) {
2278 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2279 val + reg->off);
2280 return -EINVAL;
2281 }
2282 if (is_lock) {
2283 if (cur->active_spin_lock) {
2284 verbose(env,
2285 "Locking two bpf_spin_locks are not allowed\n");
2286 return -EINVAL;
2287 }
2288 cur->active_spin_lock = reg->id;
2289 } else {
2290 if (!cur->active_spin_lock) {
2291 verbose(env, "bpf_spin_unlock without taking a lock\n");
2292 return -EINVAL;
2293 }
2294 if (cur->active_spin_lock != reg->id) {
2295 verbose(env, "bpf_spin_unlock of different lock\n");
2296 return -EINVAL;
2297 }
2298 cur->active_spin_lock = 0;
2299 }
2300 return 0;
2301}
2302
90133415
DB
2303static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2304{
2305 return type == ARG_PTR_TO_MEM ||
2306 type == ARG_PTR_TO_MEM_OR_NULL ||
2307 type == ARG_PTR_TO_UNINIT_MEM;
2308}
2309
2310static bool arg_type_is_mem_size(enum bpf_arg_type type)
2311{
2312 return type == ARG_CONST_SIZE ||
2313 type == ARG_CONST_SIZE_OR_ZERO;
2314}
2315
58e2af8b 2316static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2317 enum bpf_arg_type arg_type,
2318 struct bpf_call_arg_meta *meta)
17a52670 2319{
638f5b90 2320 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2321 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2322 int err = 0;
2323
80f1d68c 2324 if (arg_type == ARG_DONTCARE)
17a52670
AS
2325 return 0;
2326
dc503a8a
EC
2327 err = check_reg_arg(env, regno, SRC_OP);
2328 if (err)
2329 return err;
17a52670 2330
1be7f75d
AS
2331 if (arg_type == ARG_ANYTHING) {
2332 if (is_pointer_value(env, regno)) {
61bd5218
JK
2333 verbose(env, "R%d leaks addr into helper function\n",
2334 regno);
1be7f75d
AS
2335 return -EACCES;
2336 }
80f1d68c 2337 return 0;
1be7f75d 2338 }
80f1d68c 2339
de8f3a83 2340 if (type_is_pkt_pointer(type) &&
3a0af8fd 2341 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2342 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2343 return -EACCES;
2344 }
2345
8e2fe1d9 2346 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2347 arg_type == ARG_PTR_TO_MAP_VALUE ||
2348 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2349 expected_type = PTR_TO_STACK;
d71962f3 2350 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2351 type != expected_type)
6841de8b 2352 goto err_type;
39f19ebb
AS
2353 } else if (arg_type == ARG_CONST_SIZE ||
2354 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2355 expected_type = SCALAR_VALUE;
2356 if (type != expected_type)
6841de8b 2357 goto err_type;
17a52670
AS
2358 } else if (arg_type == ARG_CONST_MAP_PTR) {
2359 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2360 if (type != expected_type)
2361 goto err_type;
608cd71a
AS
2362 } else if (arg_type == ARG_PTR_TO_CTX) {
2363 expected_type = PTR_TO_CTX;
6841de8b
AS
2364 if (type != expected_type)
2365 goto err_type;
58990d1f
DB
2366 err = check_ctx_reg(env, reg, regno);
2367 if (err < 0)
2368 return err;
c64b7983
JS
2369 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2370 expected_type = PTR_TO_SOCKET;
2371 if (type != expected_type)
2372 goto err_type;
fd978bf7
JS
2373 if (meta->ptr_id || !reg->id) {
2374 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2375 meta->ptr_id, reg->id);
2376 return -EFAULT;
2377 }
2378 meta->ptr_id = reg->id;
d83525ca
AS
2379 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2380 if (meta->func_id == BPF_FUNC_spin_lock) {
2381 if (process_spin_lock(env, regno, true))
2382 return -EACCES;
2383 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2384 if (process_spin_lock(env, regno, false))
2385 return -EACCES;
2386 } else {
2387 verbose(env, "verifier internal error\n");
2388 return -EFAULT;
2389 }
90133415 2390 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2391 expected_type = PTR_TO_STACK;
2392 /* One exception here. In case function allows for NULL to be
f1174f77 2393 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2394 * happens during stack boundary checking.
2395 */
914cb781 2396 if (register_is_null(reg) &&
db1ac496 2397 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2398 /* final test in check_stack_boundary() */;
de8f3a83
DB
2399 else if (!type_is_pkt_pointer(type) &&
2400 type != PTR_TO_MAP_VALUE &&
f1174f77 2401 type != expected_type)
6841de8b 2402 goto err_type;
39f19ebb 2403 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2404 } else {
61bd5218 2405 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2406 return -EFAULT;
2407 }
2408
17a52670
AS
2409 if (arg_type == ARG_CONST_MAP_PTR) {
2410 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2411 meta->map_ptr = reg->map_ptr;
17a52670
AS
2412 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2413 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2414 * check that [key, key + map->key_size) are within
2415 * stack limits and initialized
2416 */
33ff9823 2417 if (!meta->map_ptr) {
17a52670
AS
2418 /* in function declaration map_ptr must come before
2419 * map_key, so that it's verified and known before
2420 * we have to check map_key here. Otherwise it means
2421 * that kernel subsystem misconfigured verifier
2422 */
61bd5218 2423 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2424 return -EACCES;
2425 }
d71962f3
PC
2426 err = check_helper_mem_access(env, regno,
2427 meta->map_ptr->key_size, false,
2428 NULL);
2ea864c5
MV
2429 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2430 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2431 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2432 * check [value, value + map->value_size) validity
2433 */
33ff9823 2434 if (!meta->map_ptr) {
17a52670 2435 /* kernel subsystem misconfigured verifier */
61bd5218 2436 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2437 return -EACCES;
2438 }
2ea864c5 2439 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2440 err = check_helper_mem_access(env, regno,
2441 meta->map_ptr->value_size, false,
2ea864c5 2442 meta);
90133415 2443 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2444 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2445
849fa506
YS
2446 /* remember the mem_size which may be used later
2447 * to refine return values.
2448 */
2449 meta->msize_smax_value = reg->smax_value;
2450 meta->msize_umax_value = reg->umax_value;
2451
f1174f77
EC
2452 /* The register is SCALAR_VALUE; the access check
2453 * happens using its boundaries.
06c1c049 2454 */
f1174f77 2455 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2456 /* For unprivileged variable accesses, disable raw
2457 * mode so that the program is required to
2458 * initialize all the memory that the helper could
2459 * just partially fill up.
2460 */
2461 meta = NULL;
2462
b03c9f9f 2463 if (reg->smin_value < 0) {
61bd5218 2464 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2465 regno);
2466 return -EACCES;
2467 }
06c1c049 2468
b03c9f9f 2469 if (reg->umin_value == 0) {
f1174f77
EC
2470 err = check_helper_mem_access(env, regno - 1, 0,
2471 zero_size_allowed,
2472 meta);
06c1c049
GB
2473 if (err)
2474 return err;
06c1c049 2475 }
f1174f77 2476
b03c9f9f 2477 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2478 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2479 regno);
2480 return -EACCES;
2481 }
2482 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2483 reg->umax_value,
f1174f77 2484 zero_size_allowed, meta);
17a52670
AS
2485 }
2486
2487 return err;
6841de8b 2488err_type:
61bd5218 2489 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2490 reg_type_str[type], reg_type_str[expected_type]);
2491 return -EACCES;
17a52670
AS
2492}
2493
61bd5218
JK
2494static int check_map_func_compatibility(struct bpf_verifier_env *env,
2495 struct bpf_map *map, int func_id)
35578d79 2496{
35578d79
KX
2497 if (!map)
2498 return 0;
2499
6aff67c8
AS
2500 /* We need a two way check, first is from map perspective ... */
2501 switch (map->map_type) {
2502 case BPF_MAP_TYPE_PROG_ARRAY:
2503 if (func_id != BPF_FUNC_tail_call)
2504 goto error;
2505 break;
2506 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2507 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2508 func_id != BPF_FUNC_perf_event_output &&
2509 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2510 goto error;
2511 break;
2512 case BPF_MAP_TYPE_STACK_TRACE:
2513 if (func_id != BPF_FUNC_get_stackid)
2514 goto error;
2515 break;
4ed8ec52 2516 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2517 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2518 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2519 goto error;
2520 break;
cd339431 2521 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2522 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2523 if (func_id != BPF_FUNC_get_local_storage)
2524 goto error;
2525 break;
546ac1ff
JF
2526 /* devmap returns a pointer to a live net_device ifindex that we cannot
2527 * allow to be modified from bpf side. So do not allow lookup elements
2528 * for now.
2529 */
2530 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2531 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2532 goto error;
2533 break;
fbfc504a
BT
2534 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2535 * appear.
2536 */
6710e112 2537 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2538 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2539 if (func_id != BPF_FUNC_redirect_map)
2540 goto error;
2541 break;
56f668df 2542 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2543 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2544 if (func_id != BPF_FUNC_map_lookup_elem)
2545 goto error;
16a43625 2546 break;
174a79ff
JF
2547 case BPF_MAP_TYPE_SOCKMAP:
2548 if (func_id != BPF_FUNC_sk_redirect_map &&
2549 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2550 func_id != BPF_FUNC_map_delete_elem &&
2551 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2552 goto error;
2553 break;
81110384
JF
2554 case BPF_MAP_TYPE_SOCKHASH:
2555 if (func_id != BPF_FUNC_sk_redirect_hash &&
2556 func_id != BPF_FUNC_sock_hash_update &&
2557 func_id != BPF_FUNC_map_delete_elem &&
2558 func_id != BPF_FUNC_msg_redirect_hash)
2559 goto error;
2560 break;
2dbb9b9e
MKL
2561 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2562 if (func_id != BPF_FUNC_sk_select_reuseport)
2563 goto error;
2564 break;
f1a2e44a
MV
2565 case BPF_MAP_TYPE_QUEUE:
2566 case BPF_MAP_TYPE_STACK:
2567 if (func_id != BPF_FUNC_map_peek_elem &&
2568 func_id != BPF_FUNC_map_pop_elem &&
2569 func_id != BPF_FUNC_map_push_elem)
2570 goto error;
2571 break;
6aff67c8
AS
2572 default:
2573 break;
2574 }
2575
2576 /* ... and second from the function itself. */
2577 switch (func_id) {
2578 case BPF_FUNC_tail_call:
2579 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2580 goto error;
f910cefa 2581 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2582 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2583 return -EINVAL;
2584 }
6aff67c8
AS
2585 break;
2586 case BPF_FUNC_perf_event_read:
2587 case BPF_FUNC_perf_event_output:
908432ca 2588 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2589 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2590 goto error;
2591 break;
2592 case BPF_FUNC_get_stackid:
2593 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2594 goto error;
2595 break;
60d20f91 2596 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2597 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2598 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2599 goto error;
2600 break;
97f91a7c 2601 case BPF_FUNC_redirect_map:
9c270af3 2602 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2603 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2604 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2605 goto error;
2606 break;
174a79ff 2607 case BPF_FUNC_sk_redirect_map:
4f738adb 2608 case BPF_FUNC_msg_redirect_map:
81110384 2609 case BPF_FUNC_sock_map_update:
174a79ff
JF
2610 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2611 goto error;
2612 break;
81110384
JF
2613 case BPF_FUNC_sk_redirect_hash:
2614 case BPF_FUNC_msg_redirect_hash:
2615 case BPF_FUNC_sock_hash_update:
2616 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2617 goto error;
2618 break;
cd339431 2619 case BPF_FUNC_get_local_storage:
b741f163
RG
2620 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2621 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2622 goto error;
2623 break;
2dbb9b9e
MKL
2624 case BPF_FUNC_sk_select_reuseport:
2625 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2626 goto error;
2627 break;
f1a2e44a
MV
2628 case BPF_FUNC_map_peek_elem:
2629 case BPF_FUNC_map_pop_elem:
2630 case BPF_FUNC_map_push_elem:
2631 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2632 map->map_type != BPF_MAP_TYPE_STACK)
2633 goto error;
2634 break;
6aff67c8
AS
2635 default:
2636 break;
35578d79
KX
2637 }
2638
2639 return 0;
6aff67c8 2640error:
61bd5218 2641 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2642 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2643 return -EINVAL;
35578d79
KX
2644}
2645
90133415 2646static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2647{
2648 int count = 0;
2649
39f19ebb 2650 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2651 count++;
39f19ebb 2652 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2653 count++;
39f19ebb 2654 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2655 count++;
39f19ebb 2656 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2657 count++;
39f19ebb 2658 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2659 count++;
2660
90133415
DB
2661 /* We only support one arg being in raw mode at the moment,
2662 * which is sufficient for the helper functions we have
2663 * right now.
2664 */
2665 return count <= 1;
2666}
2667
2668static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2669 enum bpf_arg_type arg_next)
2670{
2671 return (arg_type_is_mem_ptr(arg_curr) &&
2672 !arg_type_is_mem_size(arg_next)) ||
2673 (!arg_type_is_mem_ptr(arg_curr) &&
2674 arg_type_is_mem_size(arg_next));
2675}
2676
2677static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2678{
2679 /* bpf_xxx(..., buf, len) call will access 'len'
2680 * bytes from memory 'buf'. Both arg types need
2681 * to be paired, so make sure there's no buggy
2682 * helper function specification.
2683 */
2684 if (arg_type_is_mem_size(fn->arg1_type) ||
2685 arg_type_is_mem_ptr(fn->arg5_type) ||
2686 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2687 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2688 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2689 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2690 return false;
2691
2692 return true;
2693}
2694
fd978bf7
JS
2695static bool check_refcount_ok(const struct bpf_func_proto *fn)
2696{
2697 int count = 0;
2698
2699 if (arg_type_is_refcounted(fn->arg1_type))
2700 count++;
2701 if (arg_type_is_refcounted(fn->arg2_type))
2702 count++;
2703 if (arg_type_is_refcounted(fn->arg3_type))
2704 count++;
2705 if (arg_type_is_refcounted(fn->arg4_type))
2706 count++;
2707 if (arg_type_is_refcounted(fn->arg5_type))
2708 count++;
2709
2710 /* We only support one arg being unreferenced at the moment,
2711 * which is sufficient for the helper functions we have right now.
2712 */
2713 return count <= 1;
2714}
2715
90133415
DB
2716static int check_func_proto(const struct bpf_func_proto *fn)
2717{
2718 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2719 check_arg_pair_ok(fn) &&
2720 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2721}
2722
de8f3a83
DB
2723/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2724 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2725 */
f4d7e40a
AS
2726static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2727 struct bpf_func_state *state)
969bf05e 2728{
58e2af8b 2729 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2730 int i;
2731
2732 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2733 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2734 mark_reg_unknown(env, regs, i);
969bf05e 2735
f3709f69
JS
2736 bpf_for_each_spilled_reg(i, state, reg) {
2737 if (!reg)
969bf05e 2738 continue;
de8f3a83
DB
2739 if (reg_is_pkt_pointer_any(reg))
2740 __mark_reg_unknown(reg);
969bf05e
AS
2741 }
2742}
2743
f4d7e40a
AS
2744static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2745{
2746 struct bpf_verifier_state *vstate = env->cur_state;
2747 int i;
2748
2749 for (i = 0; i <= vstate->curframe; i++)
2750 __clear_all_pkt_pointers(env, vstate->frame[i]);
2751}
2752
fd978bf7
JS
2753static void release_reg_references(struct bpf_verifier_env *env,
2754 struct bpf_func_state *state, int id)
2755{
2756 struct bpf_reg_state *regs = state->regs, *reg;
2757 int i;
2758
2759 for (i = 0; i < MAX_BPF_REG; i++)
2760 if (regs[i].id == id)
2761 mark_reg_unknown(env, regs, i);
2762
2763 bpf_for_each_spilled_reg(i, state, reg) {
2764 if (!reg)
2765 continue;
2766 if (reg_is_refcounted(reg) && reg->id == id)
2767 __mark_reg_unknown(reg);
2768 }
2769}
2770
2771/* The pointer with the specified id has released its reference to kernel
2772 * resources. Identify all copies of the same pointer and clear the reference.
2773 */
2774static int release_reference(struct bpf_verifier_env *env,
2775 struct bpf_call_arg_meta *meta)
2776{
2777 struct bpf_verifier_state *vstate = env->cur_state;
2778 int i;
2779
2780 for (i = 0; i <= vstate->curframe; i++)
2781 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2782
2783 return release_reference_state(env, meta->ptr_id);
2784}
2785
f4d7e40a
AS
2786static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2787 int *insn_idx)
2788{
2789 struct bpf_verifier_state *state = env->cur_state;
2790 struct bpf_func_state *caller, *callee;
fd978bf7 2791 int i, err, subprog, target_insn;
f4d7e40a 2792
aada9ce6 2793 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2794 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2795 state->curframe + 2);
f4d7e40a
AS
2796 return -E2BIG;
2797 }
2798
2799 target_insn = *insn_idx + insn->imm;
2800 subprog = find_subprog(env, target_insn + 1);
2801 if (subprog < 0) {
2802 verbose(env, "verifier bug. No program starts at insn %d\n",
2803 target_insn + 1);
2804 return -EFAULT;
2805 }
2806
2807 caller = state->frame[state->curframe];
2808 if (state->frame[state->curframe + 1]) {
2809 verbose(env, "verifier bug. Frame %d already allocated\n",
2810 state->curframe + 1);
2811 return -EFAULT;
2812 }
2813
2814 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2815 if (!callee)
2816 return -ENOMEM;
2817 state->frame[state->curframe + 1] = callee;
2818
2819 /* callee cannot access r0, r6 - r9 for reading and has to write
2820 * into its own stack before reading from it.
2821 * callee can read/write into caller's stack
2822 */
2823 init_func_state(env, callee,
2824 /* remember the callsite, it will be used by bpf_exit */
2825 *insn_idx /* callsite */,
2826 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2827 subprog /* subprog number within this prog */);
f4d7e40a 2828
fd978bf7
JS
2829 /* Transfer references to the callee */
2830 err = transfer_reference_state(callee, caller);
2831 if (err)
2832 return err;
2833
679c782d
EC
2834 /* copy r1 - r5 args that callee can access. The copy includes parent
2835 * pointers, which connects us up to the liveness chain
2836 */
f4d7e40a
AS
2837 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2838 callee->regs[i] = caller->regs[i];
2839
679c782d 2840 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2841 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2842 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2843 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2844 }
2845
2846 /* only increment it after check_reg_arg() finished */
2847 state->curframe++;
2848
2849 /* and go analyze first insn of the callee */
2850 *insn_idx = target_insn;
2851
2852 if (env->log.level) {
2853 verbose(env, "caller:\n");
2854 print_verifier_state(env, caller);
2855 verbose(env, "callee:\n");
2856 print_verifier_state(env, callee);
2857 }
2858 return 0;
2859}
2860
2861static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2862{
2863 struct bpf_verifier_state *state = env->cur_state;
2864 struct bpf_func_state *caller, *callee;
2865 struct bpf_reg_state *r0;
fd978bf7 2866 int err;
f4d7e40a
AS
2867
2868 callee = state->frame[state->curframe];
2869 r0 = &callee->regs[BPF_REG_0];
2870 if (r0->type == PTR_TO_STACK) {
2871 /* technically it's ok to return caller's stack pointer
2872 * (or caller's caller's pointer) back to the caller,
2873 * since these pointers are valid. Only current stack
2874 * pointer will be invalid as soon as function exits,
2875 * but let's be conservative
2876 */
2877 verbose(env, "cannot return stack pointer to the caller\n");
2878 return -EINVAL;
2879 }
2880
2881 state->curframe--;
2882 caller = state->frame[state->curframe];
2883 /* return to the caller whatever r0 had in the callee */
2884 caller->regs[BPF_REG_0] = *r0;
2885
fd978bf7
JS
2886 /* Transfer references to the caller */
2887 err = transfer_reference_state(caller, callee);
2888 if (err)
2889 return err;
2890
f4d7e40a
AS
2891 *insn_idx = callee->callsite + 1;
2892 if (env->log.level) {
2893 verbose(env, "returning from callee:\n");
2894 print_verifier_state(env, callee);
2895 verbose(env, "to caller at %d:\n", *insn_idx);
2896 print_verifier_state(env, caller);
2897 }
2898 /* clear everything in the callee */
2899 free_func_state(callee);
2900 state->frame[state->curframe + 1] = NULL;
2901 return 0;
2902}
2903
849fa506
YS
2904static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2905 int func_id,
2906 struct bpf_call_arg_meta *meta)
2907{
2908 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2909
2910 if (ret_type != RET_INTEGER ||
2911 (func_id != BPF_FUNC_get_stack &&
2912 func_id != BPF_FUNC_probe_read_str))
2913 return;
2914
2915 ret_reg->smax_value = meta->msize_smax_value;
2916 ret_reg->umax_value = meta->msize_umax_value;
2917 __reg_deduce_bounds(ret_reg);
2918 __reg_bound_offset(ret_reg);
2919}
2920
c93552c4
DB
2921static int
2922record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2923 int func_id, int insn_idx)
2924{
2925 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2926
2927 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2928 func_id != BPF_FUNC_map_lookup_elem &&
2929 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2930 func_id != BPF_FUNC_map_delete_elem &&
2931 func_id != BPF_FUNC_map_push_elem &&
2932 func_id != BPF_FUNC_map_pop_elem &&
2933 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2934 return 0;
09772d92 2935
c93552c4
DB
2936 if (meta->map_ptr == NULL) {
2937 verbose(env, "kernel subsystem misconfigured verifier\n");
2938 return -EINVAL;
2939 }
2940
2941 if (!BPF_MAP_PTR(aux->map_state))
2942 bpf_map_ptr_store(aux, meta->map_ptr,
2943 meta->map_ptr->unpriv_array);
2944 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2945 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2946 meta->map_ptr->unpriv_array);
2947 return 0;
2948}
2949
fd978bf7
JS
2950static int check_reference_leak(struct bpf_verifier_env *env)
2951{
2952 struct bpf_func_state *state = cur_func(env);
2953 int i;
2954
2955 for (i = 0; i < state->acquired_refs; i++) {
2956 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2957 state->refs[i].id, state->refs[i].insn_idx);
2958 }
2959 return state->acquired_refs ? -EINVAL : 0;
2960}
2961
f4d7e40a 2962static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2963{
17a52670 2964 const struct bpf_func_proto *fn = NULL;
638f5b90 2965 struct bpf_reg_state *regs;
33ff9823 2966 struct bpf_call_arg_meta meta;
969bf05e 2967 bool changes_data;
17a52670
AS
2968 int i, err;
2969
2970 /* find function prototype */
2971 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2972 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2973 func_id);
17a52670
AS
2974 return -EINVAL;
2975 }
2976
00176a34 2977 if (env->ops->get_func_proto)
5e43f899 2978 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2979 if (!fn) {
61bd5218
JK
2980 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2981 func_id);
17a52670
AS
2982 return -EINVAL;
2983 }
2984
2985 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2986 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2987 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2988 return -EINVAL;
2989 }
2990
04514d13 2991 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2992 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2993 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2994 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2995 func_id_name(func_id), func_id);
2996 return -EINVAL;
2997 }
969bf05e 2998
33ff9823 2999 memset(&meta, 0, sizeof(meta));
36bbef52 3000 meta.pkt_access = fn->pkt_access;
33ff9823 3001
90133415 3002 err = check_func_proto(fn);
435faee1 3003 if (err) {
61bd5218 3004 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3005 func_id_name(func_id), func_id);
435faee1
DB
3006 return err;
3007 }
3008
d83525ca 3009 meta.func_id = func_id;
17a52670 3010 /* check args */
33ff9823 3011 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3012 if (err)
3013 return err;
33ff9823 3014 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3015 if (err)
3016 return err;
33ff9823 3017 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3018 if (err)
3019 return err;
33ff9823 3020 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3021 if (err)
3022 return err;
33ff9823 3023 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3024 if (err)
3025 return err;
3026
c93552c4
DB
3027 err = record_func_map(env, &meta, func_id, insn_idx);
3028 if (err)
3029 return err;
3030
435faee1
DB
3031 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3032 * is inferred from register state.
3033 */
3034 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
3035 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3036 BPF_WRITE, -1, false);
435faee1
DB
3037 if (err)
3038 return err;
3039 }
3040
fd978bf7
JS
3041 if (func_id == BPF_FUNC_tail_call) {
3042 err = check_reference_leak(env);
3043 if (err) {
3044 verbose(env, "tail_call would lead to reference leak\n");
3045 return err;
3046 }
3047 } else if (is_release_function(func_id)) {
3048 err = release_reference(env, &meta);
3049 if (err)
3050 return err;
3051 }
3052
638f5b90 3053 regs = cur_regs(env);
cd339431
RG
3054
3055 /* check that flags argument in get_local_storage(map, flags) is 0,
3056 * this is required because get_local_storage() can't return an error.
3057 */
3058 if (func_id == BPF_FUNC_get_local_storage &&
3059 !register_is_null(&regs[BPF_REG_2])) {
3060 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3061 return -EINVAL;
3062 }
3063
17a52670 3064 /* reset caller saved regs */
dc503a8a 3065 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3066 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3067 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3068 }
17a52670 3069
dc503a8a 3070 /* update return register (already marked as written above) */
17a52670 3071 if (fn->ret_type == RET_INTEGER) {
f1174f77 3072 /* sets type to SCALAR_VALUE */
61bd5218 3073 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
3074 } else if (fn->ret_type == RET_VOID) {
3075 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
3076 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3077 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 3078 /* There is no offset yet applied, variable or fixed */
61bd5218 3079 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
3080 /* remember map_ptr, so that check_map_access()
3081 * can check 'value_size' boundary of memory access
3082 * to map element returned from bpf_map_lookup_elem()
3083 */
33ff9823 3084 if (meta.map_ptr == NULL) {
61bd5218
JK
3085 verbose(env,
3086 "kernel subsystem misconfigured verifier\n");
17a52670
AS
3087 return -EINVAL;
3088 }
33ff9823 3089 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
3090 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3091 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3092 } else {
3093 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3094 regs[BPF_REG_0].id = ++env->id_gen;
3095 }
c64b7983 3096 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
3097 int id = acquire_reference_state(env, insn_idx);
3098 if (id < 0)
3099 return id;
c64b7983
JS
3100 mark_reg_known_zero(env, regs, BPF_REG_0);
3101 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 3102 regs[BPF_REG_0].id = id;
17a52670 3103 } else {
61bd5218 3104 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 3105 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
3106 return -EINVAL;
3107 }
04fd61ab 3108
849fa506
YS
3109 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3110
61bd5218 3111 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
3112 if (err)
3113 return err;
04fd61ab 3114
c195651e
YS
3115 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3116 const char *err_str;
3117
3118#ifdef CONFIG_PERF_EVENTS
3119 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3120 err_str = "cannot get callchain buffer for func %s#%d\n";
3121#else
3122 err = -ENOTSUPP;
3123 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3124#endif
3125 if (err) {
3126 verbose(env, err_str, func_id_name(func_id), func_id);
3127 return err;
3128 }
3129
3130 env->prog->has_callchain_buf = true;
3131 }
3132
969bf05e
AS
3133 if (changes_data)
3134 clear_all_pkt_pointers(env);
3135 return 0;
3136}
3137
b03c9f9f
EC
3138static bool signed_add_overflows(s64 a, s64 b)
3139{
3140 /* Do the add in u64, where overflow is well-defined */
3141 s64 res = (s64)((u64)a + (u64)b);
3142
3143 if (b < 0)
3144 return res > a;
3145 return res < a;
3146}
3147
3148static bool signed_sub_overflows(s64 a, s64 b)
3149{
3150 /* Do the sub in u64, where overflow is well-defined */
3151 s64 res = (s64)((u64)a - (u64)b);
3152
3153 if (b < 0)
3154 return res < a;
3155 return res > a;
969bf05e
AS
3156}
3157
bb7f0f98
AS
3158static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3159 const struct bpf_reg_state *reg,
3160 enum bpf_reg_type type)
3161{
3162 bool known = tnum_is_const(reg->var_off);
3163 s64 val = reg->var_off.value;
3164 s64 smin = reg->smin_value;
3165
3166 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3167 verbose(env, "math between %s pointer and %lld is not allowed\n",
3168 reg_type_str[type], val);
3169 return false;
3170 }
3171
3172 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3173 verbose(env, "%s pointer offset %d is not allowed\n",
3174 reg_type_str[type], reg->off);
3175 return false;
3176 }
3177
3178 if (smin == S64_MIN) {
3179 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3180 reg_type_str[type]);
3181 return false;
3182 }
3183
3184 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3185 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3186 smin, reg_type_str[type]);
3187 return false;
3188 }
3189
3190 return true;
3191}
3192
979d63d5
DB
3193static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3194{
3195 return &env->insn_aux_data[env->insn_idx];
3196}
3197
3198static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3199 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3200{
3201 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3202 (opcode == BPF_SUB && !off_is_neg);
3203 u32 off;
3204
3205 switch (ptr_reg->type) {
3206 case PTR_TO_STACK:
3207 off = ptr_reg->off + ptr_reg->var_off.value;
3208 if (mask_to_left)
3209 *ptr_limit = MAX_BPF_STACK + off;
3210 else
3211 *ptr_limit = -off;
3212 return 0;
3213 case PTR_TO_MAP_VALUE:
3214 if (mask_to_left) {
3215 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3216 } else {
3217 off = ptr_reg->smin_value + ptr_reg->off;
3218 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3219 }
3220 return 0;
3221 default:
3222 return -EINVAL;
3223 }
3224}
3225
d3bd7413
DB
3226static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3227 const struct bpf_insn *insn)
3228{
3229 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3230}
3231
3232static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3233 u32 alu_state, u32 alu_limit)
3234{
3235 /* If we arrived here from different branches with different
3236 * state or limits to sanitize, then this won't work.
3237 */
3238 if (aux->alu_state &&
3239 (aux->alu_state != alu_state ||
3240 aux->alu_limit != alu_limit))
3241 return -EACCES;
3242
3243 /* Corresponding fixup done in fixup_bpf_calls(). */
3244 aux->alu_state = alu_state;
3245 aux->alu_limit = alu_limit;
3246 return 0;
3247}
3248
3249static int sanitize_val_alu(struct bpf_verifier_env *env,
3250 struct bpf_insn *insn)
3251{
3252 struct bpf_insn_aux_data *aux = cur_aux(env);
3253
3254 if (can_skip_alu_sanitation(env, insn))
3255 return 0;
3256
3257 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3258}
3259
979d63d5
DB
3260static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3261 struct bpf_insn *insn,
3262 const struct bpf_reg_state *ptr_reg,
3263 struct bpf_reg_state *dst_reg,
3264 bool off_is_neg)
3265{
3266 struct bpf_verifier_state *vstate = env->cur_state;
3267 struct bpf_insn_aux_data *aux = cur_aux(env);
3268 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3269 u8 opcode = BPF_OP(insn->code);
3270 u32 alu_state, alu_limit;
3271 struct bpf_reg_state tmp;
3272 bool ret;
3273
d3bd7413 3274 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
3275 return 0;
3276
3277 /* We already marked aux for masking from non-speculative
3278 * paths, thus we got here in the first place. We only care
3279 * to explore bad access from here.
3280 */
3281 if (vstate->speculative)
3282 goto do_sim;
3283
3284 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3285 alu_state |= ptr_is_dst_reg ?
3286 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3287
3288 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3289 return 0;
d3bd7413 3290 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 3291 return -EACCES;
979d63d5
DB
3292do_sim:
3293 /* Simulate and find potential out-of-bounds access under
3294 * speculative execution from truncation as a result of
3295 * masking when off was not within expected range. If off
3296 * sits in dst, then we temporarily need to move ptr there
3297 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3298 * for cases where we use K-based arithmetic in one direction
3299 * and truncated reg-based in the other in order to explore
3300 * bad access.
3301 */
3302 if (!ptr_is_dst_reg) {
3303 tmp = *dst_reg;
3304 *dst_reg = *ptr_reg;
3305 }
3306 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3307 if (!ptr_is_dst_reg)
3308 *dst_reg = tmp;
3309 return !ret ? -EFAULT : 0;
3310}
3311
f1174f77 3312/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3313 * Caller should also handle BPF_MOV case separately.
3314 * If we return -EACCES, caller may want to try again treating pointer as a
3315 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3316 */
3317static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3318 struct bpf_insn *insn,
3319 const struct bpf_reg_state *ptr_reg,
3320 const struct bpf_reg_state *off_reg)
969bf05e 3321{
f4d7e40a
AS
3322 struct bpf_verifier_state *vstate = env->cur_state;
3323 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3324 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3325 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3326 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3327 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3328 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3329 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 3330 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 3331 u8 opcode = BPF_OP(insn->code);
979d63d5 3332 int ret;
969bf05e 3333
f1174f77 3334 dst_reg = &regs[dst];
969bf05e 3335
6f16101e
DB
3336 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3337 smin_val > smax_val || umin_val > umax_val) {
3338 /* Taint dst register if offset had invalid bounds derived from
3339 * e.g. dead branches.
3340 */
3341 __mark_reg_unknown(dst_reg);
3342 return 0;
f1174f77
EC
3343 }
3344
3345 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3346 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3347 verbose(env,
3348 "R%d 32-bit pointer arithmetic prohibited\n",
3349 dst);
f1174f77 3350 return -EACCES;
969bf05e
AS
3351 }
3352
aad2eeaf
JS
3353 switch (ptr_reg->type) {
3354 case PTR_TO_MAP_VALUE_OR_NULL:
3355 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3356 dst, reg_type_str[ptr_reg->type]);
f1174f77 3357 return -EACCES;
aad2eeaf
JS
3358 case CONST_PTR_TO_MAP:
3359 case PTR_TO_PACKET_END:
c64b7983
JS
3360 case PTR_TO_SOCKET:
3361 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
3362 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3363 dst, reg_type_str[ptr_reg->type]);
f1174f77 3364 return -EACCES;
9d7eceed
DB
3365 case PTR_TO_MAP_VALUE:
3366 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3367 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3368 off_reg == dst_reg ? dst : src);
3369 return -EACCES;
3370 }
3371 /* fall-through */
aad2eeaf
JS
3372 default:
3373 break;
f1174f77
EC
3374 }
3375
3376 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3377 * The id may be overwritten later if we create a new variable offset.
969bf05e 3378 */
f1174f77
EC
3379 dst_reg->type = ptr_reg->type;
3380 dst_reg->id = ptr_reg->id;
969bf05e 3381
bb7f0f98
AS
3382 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3383 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3384 return -EINVAL;
3385
f1174f77
EC
3386 switch (opcode) {
3387 case BPF_ADD:
979d63d5
DB
3388 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3389 if (ret < 0) {
3390 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3391 return ret;
3392 }
f1174f77
EC
3393 /* We can take a fixed offset as long as it doesn't overflow
3394 * the s32 'off' field
969bf05e 3395 */
b03c9f9f
EC
3396 if (known && (ptr_reg->off + smin_val ==
3397 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3398 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3399 dst_reg->smin_value = smin_ptr;
3400 dst_reg->smax_value = smax_ptr;
3401 dst_reg->umin_value = umin_ptr;
3402 dst_reg->umax_value = umax_ptr;
f1174f77 3403 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3404 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3405 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3406 break;
3407 }
f1174f77
EC
3408 /* A new variable offset is created. Note that off_reg->off
3409 * == 0, since it's a scalar.
3410 * dst_reg gets the pointer type and since some positive
3411 * integer value was added to the pointer, give it a new 'id'
3412 * if it's a PTR_TO_PACKET.
3413 * this creates a new 'base' pointer, off_reg (variable) gets
3414 * added into the variable offset, and we copy the fixed offset
3415 * from ptr_reg.
969bf05e 3416 */
b03c9f9f
EC
3417 if (signed_add_overflows(smin_ptr, smin_val) ||
3418 signed_add_overflows(smax_ptr, smax_val)) {
3419 dst_reg->smin_value = S64_MIN;
3420 dst_reg->smax_value = S64_MAX;
3421 } else {
3422 dst_reg->smin_value = smin_ptr + smin_val;
3423 dst_reg->smax_value = smax_ptr + smax_val;
3424 }
3425 if (umin_ptr + umin_val < umin_ptr ||
3426 umax_ptr + umax_val < umax_ptr) {
3427 dst_reg->umin_value = 0;
3428 dst_reg->umax_value = U64_MAX;
3429 } else {
3430 dst_reg->umin_value = umin_ptr + umin_val;
3431 dst_reg->umax_value = umax_ptr + umax_val;
3432 }
f1174f77
EC
3433 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3434 dst_reg->off = ptr_reg->off;
0962590e 3435 dst_reg->raw = ptr_reg->raw;
de8f3a83 3436 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3437 dst_reg->id = ++env->id_gen;
3438 /* something was added to pkt_ptr, set range to zero */
0962590e 3439 dst_reg->raw = 0;
f1174f77
EC
3440 }
3441 break;
3442 case BPF_SUB:
979d63d5
DB
3443 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3444 if (ret < 0) {
3445 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3446 return ret;
3447 }
f1174f77
EC
3448 if (dst_reg == off_reg) {
3449 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3450 verbose(env, "R%d tried to subtract pointer from scalar\n",
3451 dst);
f1174f77
EC
3452 return -EACCES;
3453 }
3454 /* We don't allow subtraction from FP, because (according to
3455 * test_verifier.c test "invalid fp arithmetic", JITs might not
3456 * be able to deal with it.
969bf05e 3457 */
f1174f77 3458 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3459 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3460 dst);
f1174f77
EC
3461 return -EACCES;
3462 }
b03c9f9f
EC
3463 if (known && (ptr_reg->off - smin_val ==
3464 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3465 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3466 dst_reg->smin_value = smin_ptr;
3467 dst_reg->smax_value = smax_ptr;
3468 dst_reg->umin_value = umin_ptr;
3469 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3470 dst_reg->var_off = ptr_reg->var_off;
3471 dst_reg->id = ptr_reg->id;
b03c9f9f 3472 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3473 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3474 break;
3475 }
f1174f77
EC
3476 /* A new variable offset is created. If the subtrahend is known
3477 * nonnegative, then any reg->range we had before is still good.
969bf05e 3478 */
b03c9f9f
EC
3479 if (signed_sub_overflows(smin_ptr, smax_val) ||
3480 signed_sub_overflows(smax_ptr, smin_val)) {
3481 /* Overflow possible, we know nothing */
3482 dst_reg->smin_value = S64_MIN;
3483 dst_reg->smax_value = S64_MAX;
3484 } else {
3485 dst_reg->smin_value = smin_ptr - smax_val;
3486 dst_reg->smax_value = smax_ptr - smin_val;
3487 }
3488 if (umin_ptr < umax_val) {
3489 /* Overflow possible, we know nothing */
3490 dst_reg->umin_value = 0;
3491 dst_reg->umax_value = U64_MAX;
3492 } else {
3493 /* Cannot overflow (as long as bounds are consistent) */
3494 dst_reg->umin_value = umin_ptr - umax_val;
3495 dst_reg->umax_value = umax_ptr - umin_val;
3496 }
f1174f77
EC
3497 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3498 dst_reg->off = ptr_reg->off;
0962590e 3499 dst_reg->raw = ptr_reg->raw;
de8f3a83 3500 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3501 dst_reg->id = ++env->id_gen;
3502 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3503 if (smin_val < 0)
0962590e 3504 dst_reg->raw = 0;
43188702 3505 }
f1174f77
EC
3506 break;
3507 case BPF_AND:
3508 case BPF_OR:
3509 case BPF_XOR:
82abbf8d
AS
3510 /* bitwise ops on pointers are troublesome, prohibit. */
3511 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3512 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3513 return -EACCES;
3514 default:
3515 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3516 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3517 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3518 return -EACCES;
43188702
JF
3519 }
3520
bb7f0f98
AS
3521 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3522 return -EINVAL;
3523
b03c9f9f
EC
3524 __update_reg_bounds(dst_reg);
3525 __reg_deduce_bounds(dst_reg);
3526 __reg_bound_offset(dst_reg);
0d6303db
DB
3527
3528 /* For unprivileged we require that resulting offset must be in bounds
3529 * in order to be able to sanitize access later on.
3530 */
e4298d25
DB
3531 if (!env->allow_ptr_leaks) {
3532 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3533 check_map_access(env, dst, dst_reg->off, 1, false)) {
3534 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3535 "prohibited for !root\n", dst);
3536 return -EACCES;
3537 } else if (dst_reg->type == PTR_TO_STACK &&
3538 check_stack_access(env, dst_reg, dst_reg->off +
3539 dst_reg->var_off.value, 1)) {
3540 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3541 "prohibited for !root\n", dst);
3542 return -EACCES;
3543 }
0d6303db
DB
3544 }
3545
43188702
JF
3546 return 0;
3547}
3548
468f6eaf
JH
3549/* WARNING: This function does calculations on 64-bit values, but the actual
3550 * execution may occur on 32-bit values. Therefore, things like bitshifts
3551 * need extra checks in the 32-bit case.
3552 */
f1174f77
EC
3553static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3554 struct bpf_insn *insn,
3555 struct bpf_reg_state *dst_reg,
3556 struct bpf_reg_state src_reg)
969bf05e 3557{
638f5b90 3558 struct bpf_reg_state *regs = cur_regs(env);
48461135 3559 u8 opcode = BPF_OP(insn->code);
f1174f77 3560 bool src_known, dst_known;
b03c9f9f
EC
3561 s64 smin_val, smax_val;
3562 u64 umin_val, umax_val;
468f6eaf 3563 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
3564 u32 dst = insn->dst_reg;
3565 int ret;
48461135 3566
b799207e
JH
3567 if (insn_bitness == 32) {
3568 /* Relevant for 32-bit RSH: Information can propagate towards
3569 * LSB, so it isn't sufficient to only truncate the output to
3570 * 32 bits.
3571 */
3572 coerce_reg_to_size(dst_reg, 4);
3573 coerce_reg_to_size(&src_reg, 4);
3574 }
3575
b03c9f9f
EC
3576 smin_val = src_reg.smin_value;
3577 smax_val = src_reg.smax_value;
3578 umin_val = src_reg.umin_value;
3579 umax_val = src_reg.umax_value;
f1174f77
EC
3580 src_known = tnum_is_const(src_reg.var_off);
3581 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3582
6f16101e
DB
3583 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3584 smin_val > smax_val || umin_val > umax_val) {
3585 /* Taint dst register if offset had invalid bounds derived from
3586 * e.g. dead branches.
3587 */
3588 __mark_reg_unknown(dst_reg);
3589 return 0;
3590 }
3591
bb7f0f98
AS
3592 if (!src_known &&
3593 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3594 __mark_reg_unknown(dst_reg);
3595 return 0;
3596 }
3597
48461135
JB
3598 switch (opcode) {
3599 case BPF_ADD:
d3bd7413
DB
3600 ret = sanitize_val_alu(env, insn);
3601 if (ret < 0) {
3602 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3603 return ret;
3604 }
b03c9f9f
EC
3605 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3606 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3607 dst_reg->smin_value = S64_MIN;
3608 dst_reg->smax_value = S64_MAX;
3609 } else {
3610 dst_reg->smin_value += smin_val;
3611 dst_reg->smax_value += smax_val;
3612 }
3613 if (dst_reg->umin_value + umin_val < umin_val ||
3614 dst_reg->umax_value + umax_val < umax_val) {
3615 dst_reg->umin_value = 0;
3616 dst_reg->umax_value = U64_MAX;
3617 } else {
3618 dst_reg->umin_value += umin_val;
3619 dst_reg->umax_value += umax_val;
3620 }
f1174f77 3621 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3622 break;
3623 case BPF_SUB:
d3bd7413
DB
3624 ret = sanitize_val_alu(env, insn);
3625 if (ret < 0) {
3626 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3627 return ret;
3628 }
b03c9f9f
EC
3629 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3630 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3631 /* Overflow possible, we know nothing */
3632 dst_reg->smin_value = S64_MIN;
3633 dst_reg->smax_value = S64_MAX;
3634 } else {
3635 dst_reg->smin_value -= smax_val;
3636 dst_reg->smax_value -= smin_val;
3637 }
3638 if (dst_reg->umin_value < umax_val) {
3639 /* Overflow possible, we know nothing */
3640 dst_reg->umin_value = 0;
3641 dst_reg->umax_value = U64_MAX;
3642 } else {
3643 /* Cannot overflow (as long as bounds are consistent) */
3644 dst_reg->umin_value -= umax_val;
3645 dst_reg->umax_value -= umin_val;
3646 }
f1174f77 3647 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3648 break;
3649 case BPF_MUL:
b03c9f9f
EC
3650 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3651 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3652 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3653 __mark_reg_unbounded(dst_reg);
3654 __update_reg_bounds(dst_reg);
f1174f77
EC
3655 break;
3656 }
b03c9f9f
EC
3657 /* Both values are positive, so we can work with unsigned and
3658 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3659 */
b03c9f9f
EC
3660 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3661 /* Potential overflow, we know nothing */
3662 __mark_reg_unbounded(dst_reg);
3663 /* (except what we can learn from the var_off) */
3664 __update_reg_bounds(dst_reg);
3665 break;
3666 }
3667 dst_reg->umin_value *= umin_val;
3668 dst_reg->umax_value *= umax_val;
3669 if (dst_reg->umax_value > S64_MAX) {
3670 /* Overflow possible, we know nothing */
3671 dst_reg->smin_value = S64_MIN;
3672 dst_reg->smax_value = S64_MAX;
3673 } else {
3674 dst_reg->smin_value = dst_reg->umin_value;
3675 dst_reg->smax_value = dst_reg->umax_value;
3676 }
48461135
JB
3677 break;
3678 case BPF_AND:
f1174f77 3679 if (src_known && dst_known) {
b03c9f9f
EC
3680 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3681 src_reg.var_off.value);
f1174f77
EC
3682 break;
3683 }
b03c9f9f
EC
3684 /* We get our minimum from the var_off, since that's inherently
3685 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3686 */
f1174f77 3687 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3688 dst_reg->umin_value = dst_reg->var_off.value;
3689 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3690 if (dst_reg->smin_value < 0 || smin_val < 0) {
3691 /* Lose signed bounds when ANDing negative numbers,
3692 * ain't nobody got time for that.
3693 */
3694 dst_reg->smin_value = S64_MIN;
3695 dst_reg->smax_value = S64_MAX;
3696 } else {
3697 /* ANDing two positives gives a positive, so safe to
3698 * cast result into s64.
3699 */
3700 dst_reg->smin_value = dst_reg->umin_value;
3701 dst_reg->smax_value = dst_reg->umax_value;
3702 }
3703 /* We may learn something more from the var_off */
3704 __update_reg_bounds(dst_reg);
f1174f77
EC
3705 break;
3706 case BPF_OR:
3707 if (src_known && dst_known) {
b03c9f9f
EC
3708 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3709 src_reg.var_off.value);
f1174f77
EC
3710 break;
3711 }
b03c9f9f
EC
3712 /* We get our maximum from the var_off, and our minimum is the
3713 * maximum of the operands' minima
f1174f77
EC
3714 */
3715 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3716 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3717 dst_reg->umax_value = dst_reg->var_off.value |
3718 dst_reg->var_off.mask;
3719 if (dst_reg->smin_value < 0 || smin_val < 0) {
3720 /* Lose signed bounds when ORing negative numbers,
3721 * ain't nobody got time for that.
3722 */
3723 dst_reg->smin_value = S64_MIN;
3724 dst_reg->smax_value = S64_MAX;
f1174f77 3725 } else {
b03c9f9f
EC
3726 /* ORing two positives gives a positive, so safe to
3727 * cast result into s64.
3728 */
3729 dst_reg->smin_value = dst_reg->umin_value;
3730 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3731 }
b03c9f9f
EC
3732 /* We may learn something more from the var_off */
3733 __update_reg_bounds(dst_reg);
48461135
JB
3734 break;
3735 case BPF_LSH:
468f6eaf
JH
3736 if (umax_val >= insn_bitness) {
3737 /* Shifts greater than 31 or 63 are undefined.
3738 * This includes shifts by a negative number.
b03c9f9f 3739 */
61bd5218 3740 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3741 break;
3742 }
b03c9f9f
EC
3743 /* We lose all sign bit information (except what we can pick
3744 * up from var_off)
48461135 3745 */
b03c9f9f
EC
3746 dst_reg->smin_value = S64_MIN;
3747 dst_reg->smax_value = S64_MAX;
3748 /* If we might shift our top bit out, then we know nothing */
3749 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3750 dst_reg->umin_value = 0;
3751 dst_reg->umax_value = U64_MAX;
d1174416 3752 } else {
b03c9f9f
EC
3753 dst_reg->umin_value <<= umin_val;
3754 dst_reg->umax_value <<= umax_val;
d1174416 3755 }
afbe1a5b 3756 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3757 /* We may learn something more from the var_off */
3758 __update_reg_bounds(dst_reg);
48461135
JB
3759 break;
3760 case BPF_RSH:
468f6eaf
JH
3761 if (umax_val >= insn_bitness) {
3762 /* Shifts greater than 31 or 63 are undefined.
3763 * This includes shifts by a negative number.
b03c9f9f 3764 */
61bd5218 3765 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3766 break;
3767 }
4374f256
EC
3768 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3769 * be negative, then either:
3770 * 1) src_reg might be zero, so the sign bit of the result is
3771 * unknown, so we lose our signed bounds
3772 * 2) it's known negative, thus the unsigned bounds capture the
3773 * signed bounds
3774 * 3) the signed bounds cross zero, so they tell us nothing
3775 * about the result
3776 * If the value in dst_reg is known nonnegative, then again the
3777 * unsigned bounts capture the signed bounds.
3778 * Thus, in all cases it suffices to blow away our signed bounds
3779 * and rely on inferring new ones from the unsigned bounds and
3780 * var_off of the result.
3781 */
3782 dst_reg->smin_value = S64_MIN;
3783 dst_reg->smax_value = S64_MAX;
afbe1a5b 3784 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3785 dst_reg->umin_value >>= umax_val;
3786 dst_reg->umax_value >>= umin_val;
3787 /* We may learn something more from the var_off */
3788 __update_reg_bounds(dst_reg);
48461135 3789 break;
9cbe1f5a
YS
3790 case BPF_ARSH:
3791 if (umax_val >= insn_bitness) {
3792 /* Shifts greater than 31 or 63 are undefined.
3793 * This includes shifts by a negative number.
3794 */
3795 mark_reg_unknown(env, regs, insn->dst_reg);
3796 break;
3797 }
3798
3799 /* Upon reaching here, src_known is true and
3800 * umax_val is equal to umin_val.
3801 */
3802 dst_reg->smin_value >>= umin_val;
3803 dst_reg->smax_value >>= umin_val;
3804 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3805
3806 /* blow away the dst_reg umin_value/umax_value and rely on
3807 * dst_reg var_off to refine the result.
3808 */
3809 dst_reg->umin_value = 0;
3810 dst_reg->umax_value = U64_MAX;
3811 __update_reg_bounds(dst_reg);
3812 break;
48461135 3813 default:
61bd5218 3814 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3815 break;
3816 }
3817
468f6eaf
JH
3818 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3819 /* 32-bit ALU ops are (32,32)->32 */
3820 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3821 }
3822
b03c9f9f
EC
3823 __reg_deduce_bounds(dst_reg);
3824 __reg_bound_offset(dst_reg);
f1174f77
EC
3825 return 0;
3826}
3827
3828/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3829 * and var_off.
3830 */
3831static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3832 struct bpf_insn *insn)
3833{
f4d7e40a
AS
3834 struct bpf_verifier_state *vstate = env->cur_state;
3835 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3836 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3837 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3838 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3839
3840 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3841 src_reg = NULL;
3842 if (dst_reg->type != SCALAR_VALUE)
3843 ptr_reg = dst_reg;
3844 if (BPF_SRC(insn->code) == BPF_X) {
3845 src_reg = &regs[insn->src_reg];
f1174f77
EC
3846 if (src_reg->type != SCALAR_VALUE) {
3847 if (dst_reg->type != SCALAR_VALUE) {
3848 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3849 * an arbitrary scalar. Disallow all math except
3850 * pointer subtraction
f1174f77 3851 */
dd066823 3852 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3853 mark_reg_unknown(env, regs, insn->dst_reg);
3854 return 0;
f1174f77 3855 }
82abbf8d
AS
3856 verbose(env, "R%d pointer %s pointer prohibited\n",
3857 insn->dst_reg,
3858 bpf_alu_string[opcode >> 4]);
3859 return -EACCES;
f1174f77
EC
3860 } else {
3861 /* scalar += pointer
3862 * This is legal, but we have to reverse our
3863 * src/dest handling in computing the range
3864 */
82abbf8d
AS
3865 return adjust_ptr_min_max_vals(env, insn,
3866 src_reg, dst_reg);
f1174f77
EC
3867 }
3868 } else if (ptr_reg) {
3869 /* pointer += scalar */
82abbf8d
AS
3870 return adjust_ptr_min_max_vals(env, insn,
3871 dst_reg, src_reg);
f1174f77
EC
3872 }
3873 } else {
3874 /* Pretend the src is a reg with a known value, since we only
3875 * need to be able to read from this state.
3876 */
3877 off_reg.type = SCALAR_VALUE;
b03c9f9f 3878 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3879 src_reg = &off_reg;
82abbf8d
AS
3880 if (ptr_reg) /* pointer += K */
3881 return adjust_ptr_min_max_vals(env, insn,
3882 ptr_reg, src_reg);
f1174f77
EC
3883 }
3884
3885 /* Got here implies adding two SCALAR_VALUEs */
3886 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3887 print_verifier_state(env, state);
61bd5218 3888 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3889 return -EINVAL;
3890 }
3891 if (WARN_ON(!src_reg)) {
f4d7e40a 3892 print_verifier_state(env, state);
61bd5218 3893 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3894 return -EINVAL;
3895 }
3896 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3897}
3898
17a52670 3899/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3900static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3901{
638f5b90 3902 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3903 u8 opcode = BPF_OP(insn->code);
3904 int err;
3905
3906 if (opcode == BPF_END || opcode == BPF_NEG) {
3907 if (opcode == BPF_NEG) {
3908 if (BPF_SRC(insn->code) != 0 ||
3909 insn->src_reg != BPF_REG_0 ||
3910 insn->off != 0 || insn->imm != 0) {
61bd5218 3911 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3912 return -EINVAL;
3913 }
3914 } else {
3915 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3916 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3917 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3918 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3919 return -EINVAL;
3920 }
3921 }
3922
3923 /* check src operand */
dc503a8a 3924 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3925 if (err)
3926 return err;
3927
1be7f75d 3928 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3929 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3930 insn->dst_reg);
3931 return -EACCES;
3932 }
3933
17a52670 3934 /* check dest operand */
dc503a8a 3935 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3936 if (err)
3937 return err;
3938
3939 } else if (opcode == BPF_MOV) {
3940
3941 if (BPF_SRC(insn->code) == BPF_X) {
3942 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3943 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3944 return -EINVAL;
3945 }
3946
3947 /* check src operand */
dc503a8a 3948 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3949 if (err)
3950 return err;
3951 } else {
3952 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3953 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3954 return -EINVAL;
3955 }
3956 }
3957
fbeb1603
AF
3958 /* check dest operand, mark as required later */
3959 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3960 if (err)
3961 return err;
3962
3963 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
3964 struct bpf_reg_state *src_reg = regs + insn->src_reg;
3965 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
3966
17a52670
AS
3967 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3968 /* case: R1 = R2
3969 * copy register state to dest reg
3970 */
e434b8cd
JW
3971 *dst_reg = *src_reg;
3972 dst_reg->live |= REG_LIVE_WRITTEN;
17a52670 3973 } else {
f1174f77 3974 /* R1 = (u32) R2 */
1be7f75d 3975 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3976 verbose(env,
3977 "R%d partial copy of pointer\n",
1be7f75d
AS
3978 insn->src_reg);
3979 return -EACCES;
e434b8cd
JW
3980 } else if (src_reg->type == SCALAR_VALUE) {
3981 *dst_reg = *src_reg;
3982 dst_reg->live |= REG_LIVE_WRITTEN;
3983 } else {
3984 mark_reg_unknown(env, regs,
3985 insn->dst_reg);
1be7f75d 3986 }
e434b8cd 3987 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
3988 }
3989 } else {
3990 /* case: R = imm
3991 * remember the value we stored into this reg
3992 */
fbeb1603
AF
3993 /* clear any state __mark_reg_known doesn't set */
3994 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3995 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3996 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3997 __mark_reg_known(regs + insn->dst_reg,
3998 insn->imm);
3999 } else {
4000 __mark_reg_known(regs + insn->dst_reg,
4001 (u32)insn->imm);
4002 }
17a52670
AS
4003 }
4004
4005 } else if (opcode > BPF_END) {
61bd5218 4006 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
4007 return -EINVAL;
4008
4009 } else { /* all other ALU ops: and, sub, xor, add, ... */
4010
17a52670
AS
4011 if (BPF_SRC(insn->code) == BPF_X) {
4012 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4013 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4014 return -EINVAL;
4015 }
4016 /* check src1 operand */
dc503a8a 4017 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4018 if (err)
4019 return err;
4020 } else {
4021 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4022 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4023 return -EINVAL;
4024 }
4025 }
4026
4027 /* check src2 operand */
dc503a8a 4028 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4029 if (err)
4030 return err;
4031
4032 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4033 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 4034 verbose(env, "div by zero\n");
17a52670
AS
4035 return -EINVAL;
4036 }
4037
229394e8
RV
4038 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4039 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4040 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4041
4042 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 4043 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
4044 return -EINVAL;
4045 }
4046 }
4047
1a0dc1ac 4048 /* check dest operand */
dc503a8a 4049 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
4050 if (err)
4051 return err;
4052
f1174f77 4053 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
4054 }
4055
4056 return 0;
4057}
4058
f4d7e40a 4059static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 4060 struct bpf_reg_state *dst_reg,
f8ddadc4 4061 enum bpf_reg_type type,
fb2a311a 4062 bool range_right_open)
969bf05e 4063{
f4d7e40a 4064 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 4065 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 4066 u16 new_range;
f4d7e40a 4067 int i, j;
2d2be8ca 4068
fb2a311a
DB
4069 if (dst_reg->off < 0 ||
4070 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
4071 /* This doesn't give us any range */
4072 return;
4073
b03c9f9f
EC
4074 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4075 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
4076 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4077 * than pkt_end, but that's because it's also less than pkt.
4078 */
4079 return;
4080
fb2a311a
DB
4081 new_range = dst_reg->off;
4082 if (range_right_open)
4083 new_range--;
4084
4085 /* Examples for register markings:
2d2be8ca 4086 *
fb2a311a 4087 * pkt_data in dst register:
2d2be8ca
DB
4088 *
4089 * r2 = r3;
4090 * r2 += 8;
4091 * if (r2 > pkt_end) goto <handle exception>
4092 * <access okay>
4093 *
b4e432f1
DB
4094 * r2 = r3;
4095 * r2 += 8;
4096 * if (r2 < pkt_end) goto <access okay>
4097 * <handle exception>
4098 *
2d2be8ca
DB
4099 * Where:
4100 * r2 == dst_reg, pkt_end == src_reg
4101 * r2=pkt(id=n,off=8,r=0)
4102 * r3=pkt(id=n,off=0,r=0)
4103 *
fb2a311a 4104 * pkt_data in src register:
2d2be8ca
DB
4105 *
4106 * r2 = r3;
4107 * r2 += 8;
4108 * if (pkt_end >= r2) goto <access okay>
4109 * <handle exception>
4110 *
b4e432f1
DB
4111 * r2 = r3;
4112 * r2 += 8;
4113 * if (pkt_end <= r2) goto <handle exception>
4114 * <access okay>
4115 *
2d2be8ca
DB
4116 * Where:
4117 * pkt_end == dst_reg, r2 == src_reg
4118 * r2=pkt(id=n,off=8,r=0)
4119 * r3=pkt(id=n,off=0,r=0)
4120 *
4121 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
4122 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4123 * and [r3, r3 + 8-1) respectively is safe to access depending on
4124 * the check.
969bf05e 4125 */
2d2be8ca 4126
f1174f77
EC
4127 /* If our ids match, then we must have the same max_value. And we
4128 * don't care about the other reg's fixed offset, since if it's too big
4129 * the range won't allow anything.
4130 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4131 */
969bf05e 4132 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4133 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 4134 /* keep the maximum range already checked */
fb2a311a 4135 regs[i].range = max(regs[i].range, new_range);
969bf05e 4136
f4d7e40a
AS
4137 for (j = 0; j <= vstate->curframe; j++) {
4138 state = vstate->frame[j];
f3709f69
JS
4139 bpf_for_each_spilled_reg(i, state, reg) {
4140 if (!reg)
f4d7e40a 4141 continue;
f4d7e40a
AS
4142 if (reg->type == type && reg->id == dst_reg->id)
4143 reg->range = max(reg->range, new_range);
4144 }
969bf05e
AS
4145 }
4146}
4147
4f7b3e82
AS
4148/* compute branch direction of the expression "if (reg opcode val) goto target;"
4149 * and return:
4150 * 1 - branch will be taken and "goto target" will be executed
4151 * 0 - branch will not be taken and fall-through to next insn
4152 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4153 */
092ed096
JW
4154static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4155 bool is_jmp32)
4f7b3e82 4156{
092ed096 4157 struct bpf_reg_state reg_lo;
a72dafaf
JW
4158 s64 sval;
4159
4f7b3e82
AS
4160 if (__is_pointer_value(false, reg))
4161 return -1;
4162
092ed096
JW
4163 if (is_jmp32) {
4164 reg_lo = *reg;
4165 reg = &reg_lo;
4166 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4167 * could truncate high bits and update umin/umax according to
4168 * information of low bits.
4169 */
4170 coerce_reg_to_size(reg, 4);
4171 /* smin/smax need special handling. For example, after coerce,
4172 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4173 * used as operand to JMP32. It is a negative number from s32's
4174 * point of view, while it is a positive number when seen as
4175 * s64. The smin/smax are kept as s64, therefore, when used with
4176 * JMP32, they need to be transformed into s32, then sign
4177 * extended back to s64.
4178 *
4179 * Also, smin/smax were copied from umin/umax. If umin/umax has
4180 * different sign bit, then min/max relationship doesn't
4181 * maintain after casting into s32, for this case, set smin/smax
4182 * to safest range.
4183 */
4184 if ((reg->umax_value ^ reg->umin_value) &
4185 (1ULL << 31)) {
4186 reg->smin_value = S32_MIN;
4187 reg->smax_value = S32_MAX;
4188 }
4189 reg->smin_value = (s64)(s32)reg->smin_value;
4190 reg->smax_value = (s64)(s32)reg->smax_value;
4191
4192 val = (u32)val;
4193 sval = (s64)(s32)val;
4194 } else {
4195 sval = (s64)val;
4196 }
a72dafaf 4197
4f7b3e82
AS
4198 switch (opcode) {
4199 case BPF_JEQ:
4200 if (tnum_is_const(reg->var_off))
4201 return !!tnum_equals_const(reg->var_off, val);
4202 break;
4203 case BPF_JNE:
4204 if (tnum_is_const(reg->var_off))
4205 return !tnum_equals_const(reg->var_off, val);
4206 break;
960ea056
JK
4207 case BPF_JSET:
4208 if ((~reg->var_off.mask & reg->var_off.value) & val)
4209 return 1;
4210 if (!((reg->var_off.mask | reg->var_off.value) & val))
4211 return 0;
4212 break;
4f7b3e82
AS
4213 case BPF_JGT:
4214 if (reg->umin_value > val)
4215 return 1;
4216 else if (reg->umax_value <= val)
4217 return 0;
4218 break;
4219 case BPF_JSGT:
a72dafaf 4220 if (reg->smin_value > sval)
4f7b3e82 4221 return 1;
a72dafaf 4222 else if (reg->smax_value < sval)
4f7b3e82
AS
4223 return 0;
4224 break;
4225 case BPF_JLT:
4226 if (reg->umax_value < val)
4227 return 1;
4228 else if (reg->umin_value >= val)
4229 return 0;
4230 break;
4231 case BPF_JSLT:
a72dafaf 4232 if (reg->smax_value < sval)
4f7b3e82 4233 return 1;
a72dafaf 4234 else if (reg->smin_value >= sval)
4f7b3e82
AS
4235 return 0;
4236 break;
4237 case BPF_JGE:
4238 if (reg->umin_value >= val)
4239 return 1;
4240 else if (reg->umax_value < val)
4241 return 0;
4242 break;
4243 case BPF_JSGE:
a72dafaf 4244 if (reg->smin_value >= sval)
4f7b3e82 4245 return 1;
a72dafaf 4246 else if (reg->smax_value < sval)
4f7b3e82
AS
4247 return 0;
4248 break;
4249 case BPF_JLE:
4250 if (reg->umax_value <= val)
4251 return 1;
4252 else if (reg->umin_value > val)
4253 return 0;
4254 break;
4255 case BPF_JSLE:
a72dafaf 4256 if (reg->smax_value <= sval)
4f7b3e82 4257 return 1;
a72dafaf 4258 else if (reg->smin_value > sval)
4f7b3e82
AS
4259 return 0;
4260 break;
4261 }
4262
4263 return -1;
4264}
4265
092ed096
JW
4266/* Generate min value of the high 32-bit from TNUM info. */
4267static u64 gen_hi_min(struct tnum var)
4268{
4269 return var.value & ~0xffffffffULL;
4270}
4271
4272/* Generate max value of the high 32-bit from TNUM info. */
4273static u64 gen_hi_max(struct tnum var)
4274{
4275 return (var.value | var.mask) & ~0xffffffffULL;
4276}
4277
4278/* Return true if VAL is compared with a s64 sign extended from s32, and they
4279 * are with the same signedness.
4280 */
4281static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4282{
4283 return ((s32)sval >= 0 &&
4284 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4285 ((s32)sval < 0 &&
4286 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4287}
4288
48461135
JB
4289/* Adjusts the register min/max values in the case that the dst_reg is the
4290 * variable register that we are working on, and src_reg is a constant or we're
4291 * simply doing a BPF_K check.
f1174f77 4292 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
4293 */
4294static void reg_set_min_max(struct bpf_reg_state *true_reg,
4295 struct bpf_reg_state *false_reg, u64 val,
092ed096 4296 u8 opcode, bool is_jmp32)
48461135 4297{
a72dafaf
JW
4298 s64 sval;
4299
f1174f77
EC
4300 /* If the dst_reg is a pointer, we can't learn anything about its
4301 * variable offset from the compare (unless src_reg were a pointer into
4302 * the same object, but we don't bother with that.
4303 * Since false_reg and true_reg have the same type by construction, we
4304 * only need to check one of them for pointerness.
4305 */
4306 if (__is_pointer_value(false, false_reg))
4307 return;
4cabc5b1 4308
092ed096
JW
4309 val = is_jmp32 ? (u32)val : val;
4310 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4311
48461135
JB
4312 switch (opcode) {
4313 case BPF_JEQ:
48461135 4314 case BPF_JNE:
a72dafaf
JW
4315 {
4316 struct bpf_reg_state *reg =
4317 opcode == BPF_JEQ ? true_reg : false_reg;
4318
4319 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4320 * if it is true we know the value for sure. Likewise for
4321 * BPF_JNE.
48461135 4322 */
092ed096
JW
4323 if (is_jmp32) {
4324 u64 old_v = reg->var_off.value;
4325 u64 hi_mask = ~0xffffffffULL;
4326
4327 reg->var_off.value = (old_v & hi_mask) | val;
4328 reg->var_off.mask &= hi_mask;
4329 } else {
4330 __mark_reg_known(reg, val);
4331 }
48461135 4332 break;
a72dafaf 4333 }
960ea056
JK
4334 case BPF_JSET:
4335 false_reg->var_off = tnum_and(false_reg->var_off,
4336 tnum_const(~val));
4337 if (is_power_of_2(val))
4338 true_reg->var_off = tnum_or(true_reg->var_off,
4339 tnum_const(val));
4340 break;
48461135 4341 case BPF_JGE:
a72dafaf
JW
4342 case BPF_JGT:
4343 {
4344 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4345 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4346
092ed096
JW
4347 if (is_jmp32) {
4348 false_umax += gen_hi_max(false_reg->var_off);
4349 true_umin += gen_hi_min(true_reg->var_off);
4350 }
a72dafaf
JW
4351 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4352 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 4353 break;
a72dafaf 4354 }
48461135 4355 case BPF_JSGE:
a72dafaf
JW
4356 case BPF_JSGT:
4357 {
4358 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4359 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4360
092ed096
JW
4361 /* If the full s64 was not sign-extended from s32 then don't
4362 * deduct further info.
4363 */
4364 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4365 break;
a72dafaf
JW
4366 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4367 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 4368 break;
a72dafaf 4369 }
b4e432f1 4370 case BPF_JLE:
a72dafaf
JW
4371 case BPF_JLT:
4372 {
4373 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4374 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4375
092ed096
JW
4376 if (is_jmp32) {
4377 false_umin += gen_hi_min(false_reg->var_off);
4378 true_umax += gen_hi_max(true_reg->var_off);
4379 }
a72dafaf
JW
4380 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4381 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 4382 break;
a72dafaf 4383 }
b4e432f1 4384 case BPF_JSLE:
a72dafaf
JW
4385 case BPF_JSLT:
4386 {
4387 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4388 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4389
092ed096
JW
4390 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4391 break;
a72dafaf
JW
4392 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4393 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 4394 break;
a72dafaf 4395 }
48461135
JB
4396 default:
4397 break;
4398 }
4399
b03c9f9f
EC
4400 __reg_deduce_bounds(false_reg);
4401 __reg_deduce_bounds(true_reg);
4402 /* We might have learned some bits from the bounds. */
4403 __reg_bound_offset(false_reg);
4404 __reg_bound_offset(true_reg);
4405 /* Intersecting with the old var_off might have improved our bounds
4406 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4407 * then new var_off is (0; 0x7f...fc) which improves our umax.
4408 */
4409 __update_reg_bounds(false_reg);
4410 __update_reg_bounds(true_reg);
48461135
JB
4411}
4412
f1174f77
EC
4413/* Same as above, but for the case that dst_reg holds a constant and src_reg is
4414 * the variable reg.
48461135
JB
4415 */
4416static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4417 struct bpf_reg_state *false_reg, u64 val,
092ed096 4418 u8 opcode, bool is_jmp32)
48461135 4419{
a72dafaf
JW
4420 s64 sval;
4421
f1174f77
EC
4422 if (__is_pointer_value(false, false_reg))
4423 return;
4cabc5b1 4424
092ed096
JW
4425 val = is_jmp32 ? (u32)val : val;
4426 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4427
48461135
JB
4428 switch (opcode) {
4429 case BPF_JEQ:
48461135 4430 case BPF_JNE:
a72dafaf
JW
4431 {
4432 struct bpf_reg_state *reg =
4433 opcode == BPF_JEQ ? true_reg : false_reg;
4434
092ed096
JW
4435 if (is_jmp32) {
4436 u64 old_v = reg->var_off.value;
4437 u64 hi_mask = ~0xffffffffULL;
4438
4439 reg->var_off.value = (old_v & hi_mask) | val;
4440 reg->var_off.mask &= hi_mask;
4441 } else {
4442 __mark_reg_known(reg, val);
4443 }
48461135 4444 break;
a72dafaf 4445 }
960ea056
JK
4446 case BPF_JSET:
4447 false_reg->var_off = tnum_and(false_reg->var_off,
4448 tnum_const(~val));
4449 if (is_power_of_2(val))
4450 true_reg->var_off = tnum_or(true_reg->var_off,
4451 tnum_const(val));
4452 break;
48461135 4453 case BPF_JGE:
a72dafaf
JW
4454 case BPF_JGT:
4455 {
4456 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4457 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4458
092ed096
JW
4459 if (is_jmp32) {
4460 false_umin += gen_hi_min(false_reg->var_off);
4461 true_umax += gen_hi_max(true_reg->var_off);
4462 }
a72dafaf
JW
4463 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4464 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 4465 break;
a72dafaf 4466 }
48461135 4467 case BPF_JSGE:
a72dafaf
JW
4468 case BPF_JSGT:
4469 {
4470 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4471 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4472
092ed096
JW
4473 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4474 break;
a72dafaf
JW
4475 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4476 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 4477 break;
a72dafaf 4478 }
b4e432f1 4479 case BPF_JLE:
a72dafaf
JW
4480 case BPF_JLT:
4481 {
4482 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4483 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4484
092ed096
JW
4485 if (is_jmp32) {
4486 false_umax += gen_hi_max(false_reg->var_off);
4487 true_umin += gen_hi_min(true_reg->var_off);
4488 }
a72dafaf
JW
4489 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4490 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 4491 break;
a72dafaf 4492 }
b4e432f1 4493 case BPF_JSLE:
a72dafaf
JW
4494 case BPF_JSLT:
4495 {
4496 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4497 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4498
092ed096
JW
4499 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4500 break;
a72dafaf
JW
4501 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4502 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 4503 break;
a72dafaf 4504 }
48461135
JB
4505 default:
4506 break;
4507 }
4508
b03c9f9f
EC
4509 __reg_deduce_bounds(false_reg);
4510 __reg_deduce_bounds(true_reg);
4511 /* We might have learned some bits from the bounds. */
4512 __reg_bound_offset(false_reg);
4513 __reg_bound_offset(true_reg);
4514 /* Intersecting with the old var_off might have improved our bounds
4515 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4516 * then new var_off is (0; 0x7f...fc) which improves our umax.
4517 */
4518 __update_reg_bounds(false_reg);
4519 __update_reg_bounds(true_reg);
f1174f77
EC
4520}
4521
4522/* Regs are known to be equal, so intersect their min/max/var_off */
4523static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4524 struct bpf_reg_state *dst_reg)
4525{
b03c9f9f
EC
4526 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4527 dst_reg->umin_value);
4528 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4529 dst_reg->umax_value);
4530 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4531 dst_reg->smin_value);
4532 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4533 dst_reg->smax_value);
f1174f77
EC
4534 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4535 dst_reg->var_off);
b03c9f9f
EC
4536 /* We might have learned new bounds from the var_off. */
4537 __update_reg_bounds(src_reg);
4538 __update_reg_bounds(dst_reg);
4539 /* We might have learned something about the sign bit. */
4540 __reg_deduce_bounds(src_reg);
4541 __reg_deduce_bounds(dst_reg);
4542 /* We might have learned some bits from the bounds. */
4543 __reg_bound_offset(src_reg);
4544 __reg_bound_offset(dst_reg);
4545 /* Intersecting with the old var_off might have improved our bounds
4546 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4547 * then new var_off is (0; 0x7f...fc) which improves our umax.
4548 */
4549 __update_reg_bounds(src_reg);
4550 __update_reg_bounds(dst_reg);
f1174f77
EC
4551}
4552
4553static void reg_combine_min_max(struct bpf_reg_state *true_src,
4554 struct bpf_reg_state *true_dst,
4555 struct bpf_reg_state *false_src,
4556 struct bpf_reg_state *false_dst,
4557 u8 opcode)
4558{
4559 switch (opcode) {
4560 case BPF_JEQ:
4561 __reg_combine_min_max(true_src, true_dst);
4562 break;
4563 case BPF_JNE:
4564 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4565 break;
4cabc5b1 4566 }
48461135
JB
4567}
4568
fd978bf7
JS
4569static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4570 struct bpf_reg_state *reg, u32 id,
840b9615 4571 bool is_null)
57a09bf0 4572{
840b9615 4573 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4574 /* Old offset (both fixed and variable parts) should
4575 * have been known-zero, because we don't allow pointer
4576 * arithmetic on pointers that might be NULL.
4577 */
b03c9f9f
EC
4578 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4579 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4580 reg->off)) {
b03c9f9f
EC
4581 __mark_reg_known_zero(reg);
4582 reg->off = 0;
f1174f77
EC
4583 }
4584 if (is_null) {
4585 reg->type = SCALAR_VALUE;
840b9615
JS
4586 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4587 if (reg->map_ptr->inner_map_meta) {
4588 reg->type = CONST_PTR_TO_MAP;
4589 reg->map_ptr = reg->map_ptr->inner_map_meta;
4590 } else {
4591 reg->type = PTR_TO_MAP_VALUE;
4592 }
c64b7983
JS
4593 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4594 reg->type = PTR_TO_SOCKET;
56f668df 4595 }
d83525ca
AS
4596 if (is_null || !(reg_is_refcounted(reg) ||
4597 reg_may_point_to_spin_lock(reg))) {
fd978bf7
JS
4598 /* We don't need id from this point onwards anymore,
4599 * thus we should better reset it, so that state
4600 * pruning has chances to take effect.
4601 */
4602 reg->id = 0;
56f668df 4603 }
57a09bf0
TG
4604 }
4605}
4606
4607/* The logic is similar to find_good_pkt_pointers(), both could eventually
4608 * be folded together at some point.
4609 */
840b9615
JS
4610static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4611 bool is_null)
57a09bf0 4612{
f4d7e40a 4613 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4614 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 4615 u32 id = regs[regno].id;
f4d7e40a 4616 int i, j;
57a09bf0 4617
fd978bf7
JS
4618 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4619 __release_reference_state(state, id);
4620
57a09bf0 4621 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4622 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4623
f4d7e40a
AS
4624 for (j = 0; j <= vstate->curframe; j++) {
4625 state = vstate->frame[j];
f3709f69
JS
4626 bpf_for_each_spilled_reg(i, state, reg) {
4627 if (!reg)
f4d7e40a 4628 continue;
fd978bf7 4629 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4630 }
57a09bf0
TG
4631 }
4632}
4633
5beca081
DB
4634static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4635 struct bpf_reg_state *dst_reg,
4636 struct bpf_reg_state *src_reg,
4637 struct bpf_verifier_state *this_branch,
4638 struct bpf_verifier_state *other_branch)
4639{
4640 if (BPF_SRC(insn->code) != BPF_X)
4641 return false;
4642
092ed096
JW
4643 /* Pointers are always 64-bit. */
4644 if (BPF_CLASS(insn->code) == BPF_JMP32)
4645 return false;
4646
5beca081
DB
4647 switch (BPF_OP(insn->code)) {
4648 case BPF_JGT:
4649 if ((dst_reg->type == PTR_TO_PACKET &&
4650 src_reg->type == PTR_TO_PACKET_END) ||
4651 (dst_reg->type == PTR_TO_PACKET_META &&
4652 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4653 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4654 find_good_pkt_pointers(this_branch, dst_reg,
4655 dst_reg->type, false);
4656 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4657 src_reg->type == PTR_TO_PACKET) ||
4658 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4659 src_reg->type == PTR_TO_PACKET_META)) {
4660 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4661 find_good_pkt_pointers(other_branch, src_reg,
4662 src_reg->type, true);
4663 } else {
4664 return false;
4665 }
4666 break;
4667 case BPF_JLT:
4668 if ((dst_reg->type == PTR_TO_PACKET &&
4669 src_reg->type == PTR_TO_PACKET_END) ||
4670 (dst_reg->type == PTR_TO_PACKET_META &&
4671 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4672 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4673 find_good_pkt_pointers(other_branch, dst_reg,
4674 dst_reg->type, true);
4675 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4676 src_reg->type == PTR_TO_PACKET) ||
4677 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4678 src_reg->type == PTR_TO_PACKET_META)) {
4679 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4680 find_good_pkt_pointers(this_branch, src_reg,
4681 src_reg->type, false);
4682 } else {
4683 return false;
4684 }
4685 break;
4686 case BPF_JGE:
4687 if ((dst_reg->type == PTR_TO_PACKET &&
4688 src_reg->type == PTR_TO_PACKET_END) ||
4689 (dst_reg->type == PTR_TO_PACKET_META &&
4690 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4691 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4692 find_good_pkt_pointers(this_branch, dst_reg,
4693 dst_reg->type, true);
4694 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4695 src_reg->type == PTR_TO_PACKET) ||
4696 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4697 src_reg->type == PTR_TO_PACKET_META)) {
4698 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4699 find_good_pkt_pointers(other_branch, src_reg,
4700 src_reg->type, false);
4701 } else {
4702 return false;
4703 }
4704 break;
4705 case BPF_JLE:
4706 if ((dst_reg->type == PTR_TO_PACKET &&
4707 src_reg->type == PTR_TO_PACKET_END) ||
4708 (dst_reg->type == PTR_TO_PACKET_META &&
4709 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4710 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4711 find_good_pkt_pointers(other_branch, dst_reg,
4712 dst_reg->type, false);
4713 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4714 src_reg->type == PTR_TO_PACKET) ||
4715 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4716 src_reg->type == PTR_TO_PACKET_META)) {
4717 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4718 find_good_pkt_pointers(this_branch, src_reg,
4719 src_reg->type, true);
4720 } else {
4721 return false;
4722 }
4723 break;
4724 default:
4725 return false;
4726 }
4727
4728 return true;
4729}
4730
58e2af8b 4731static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4732 struct bpf_insn *insn, int *insn_idx)
4733{
f4d7e40a
AS
4734 struct bpf_verifier_state *this_branch = env->cur_state;
4735 struct bpf_verifier_state *other_branch;
4736 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4737 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670 4738 u8 opcode = BPF_OP(insn->code);
092ed096 4739 bool is_jmp32;
17a52670
AS
4740 int err;
4741
092ed096
JW
4742 /* Only conditional jumps are expected to reach here. */
4743 if (opcode == BPF_JA || opcode > BPF_JSLE) {
4744 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
4745 return -EINVAL;
4746 }
4747
4748 if (BPF_SRC(insn->code) == BPF_X) {
4749 if (insn->imm != 0) {
092ed096 4750 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
4751 return -EINVAL;
4752 }
4753
4754 /* check src1 operand */
dc503a8a 4755 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4756 if (err)
4757 return err;
1be7f75d
AS
4758
4759 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4760 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4761 insn->src_reg);
4762 return -EACCES;
4763 }
17a52670
AS
4764 } else {
4765 if (insn->src_reg != BPF_REG_0) {
092ed096 4766 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
4767 return -EINVAL;
4768 }
4769 }
4770
4771 /* check src2 operand */
dc503a8a 4772 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4773 if (err)
4774 return err;
4775
1a0dc1ac 4776 dst_reg = &regs[insn->dst_reg];
092ed096 4777 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 4778
4f7b3e82 4779 if (BPF_SRC(insn->code) == BPF_K) {
092ed096
JW
4780 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
4781 is_jmp32);
4f7b3e82
AS
4782
4783 if (pred == 1) {
4784 /* only follow the goto, ignore fall-through */
17a52670
AS
4785 *insn_idx += insn->off;
4786 return 0;
4f7b3e82
AS
4787 } else if (pred == 0) {
4788 /* only follow fall-through branch, since
17a52670
AS
4789 * that's where the program will go
4790 */
4791 return 0;
4792 }
4793 }
4794
979d63d5
DB
4795 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4796 false);
17a52670
AS
4797 if (!other_branch)
4798 return -EFAULT;
f4d7e40a 4799 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4800
48461135
JB
4801 /* detect if we are comparing against a constant value so we can adjust
4802 * our min/max values for our dst register.
f1174f77
EC
4803 * this is only legit if both are scalars (or pointers to the same
4804 * object, I suppose, but we don't support that right now), because
4805 * otherwise the different base pointers mean the offsets aren't
4806 * comparable.
48461135
JB
4807 */
4808 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
4809 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4810 struct bpf_reg_state lo_reg0 = *dst_reg;
4811 struct bpf_reg_state lo_reg1 = *src_reg;
4812 struct bpf_reg_state *src_lo, *dst_lo;
4813
4814 dst_lo = &lo_reg0;
4815 src_lo = &lo_reg1;
4816 coerce_reg_to_size(dst_lo, 4);
4817 coerce_reg_to_size(src_lo, 4);
4818
f1174f77 4819 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
4820 src_reg->type == SCALAR_VALUE) {
4821 if (tnum_is_const(src_reg->var_off) ||
4822 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 4823 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
4824 dst_reg,
4825 is_jmp32
4826 ? src_lo->var_off.value
4827 : src_reg->var_off.value,
4828 opcode, is_jmp32);
4829 else if (tnum_is_const(dst_reg->var_off) ||
4830 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 4831 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
4832 src_reg,
4833 is_jmp32
4834 ? dst_lo->var_off.value
4835 : dst_reg->var_off.value,
4836 opcode, is_jmp32);
4837 else if (!is_jmp32 &&
4838 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 4839 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4840 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4841 &other_branch_regs[insn->dst_reg],
092ed096 4842 src_reg, dst_reg, opcode);
f1174f77
EC
4843 }
4844 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4845 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 4846 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
4847 }
4848
092ed096
JW
4849 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
4850 * NOTE: these optimizations below are related with pointer comparison
4851 * which will never be JMP32.
4852 */
4853 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4854 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4855 reg_type_may_be_null(dst_reg->type)) {
4856 /* Mark all identical registers in each branch as either
57a09bf0
TG
4857 * safe or unknown depending R == 0 or R != 0 conditional.
4858 */
840b9615
JS
4859 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4860 opcode == BPF_JNE);
4861 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4862 opcode == BPF_JEQ);
5beca081
DB
4863 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4864 this_branch, other_branch) &&
4865 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4866 verbose(env, "R%d pointer comparison prohibited\n",
4867 insn->dst_reg);
1be7f75d 4868 return -EACCES;
17a52670 4869 }
61bd5218 4870 if (env->log.level)
f4d7e40a 4871 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4872 return 0;
4873}
4874
0246e64d
AS
4875/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4876static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4877{
4878 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4879
4880 return (struct bpf_map *) (unsigned long) imm64;
4881}
4882
17a52670 4883/* verify BPF_LD_IMM64 instruction */
58e2af8b 4884static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4885{
638f5b90 4886 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4887 int err;
4888
4889 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4890 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4891 return -EINVAL;
4892 }
4893 if (insn->off != 0) {
61bd5218 4894 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4895 return -EINVAL;
4896 }
4897
dc503a8a 4898 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4899 if (err)
4900 return err;
4901
6b173873 4902 if (insn->src_reg == 0) {
6b173873
JK
4903 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4904
f1174f77 4905 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4906 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4907 return 0;
6b173873 4908 }
17a52670
AS
4909
4910 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4911 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4912
4913 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4914 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4915 return 0;
4916}
4917
96be4325
DB
4918static bool may_access_skb(enum bpf_prog_type type)
4919{
4920 switch (type) {
4921 case BPF_PROG_TYPE_SOCKET_FILTER:
4922 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4923 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4924 return true;
4925 default:
4926 return false;
4927 }
4928}
4929
ddd872bc
AS
4930/* verify safety of LD_ABS|LD_IND instructions:
4931 * - they can only appear in the programs where ctx == skb
4932 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4933 * preserve R6-R9, and store return value into R0
4934 *
4935 * Implicit input:
4936 * ctx == skb == R6 == CTX
4937 *
4938 * Explicit input:
4939 * SRC == any register
4940 * IMM == 32-bit immediate
4941 *
4942 * Output:
4943 * R0 - 8/16/32-bit skb data converted to cpu endianness
4944 */
58e2af8b 4945static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4946{
638f5b90 4947 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4948 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4949 int i, err;
4950
24701ece 4951 if (!may_access_skb(env->prog->type)) {
61bd5218 4952 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4953 return -EINVAL;
4954 }
4955
e0cea7ce
DB
4956 if (!env->ops->gen_ld_abs) {
4957 verbose(env, "bpf verifier is misconfigured\n");
4958 return -EINVAL;
4959 }
4960
f910cefa 4961 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4962 /* when program has LD_ABS insn JITs and interpreter assume
4963 * that r1 == ctx == skb which is not the case for callees
4964 * that can have arbitrary arguments. It's problematic
4965 * for main prog as well since JITs would need to analyze
4966 * all functions in order to make proper register save/restore
4967 * decisions in the main prog. Hence disallow LD_ABS with calls
4968 */
4969 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4970 return -EINVAL;
4971 }
4972
ddd872bc 4973 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4974 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4975 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4976 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4977 return -EINVAL;
4978 }
4979
4980 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4981 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4982 if (err)
4983 return err;
4984
fd978bf7
JS
4985 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4986 * gen_ld_abs() may terminate the program at runtime, leading to
4987 * reference leak.
4988 */
4989 err = check_reference_leak(env);
4990 if (err) {
4991 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4992 return err;
4993 }
4994
d83525ca
AS
4995 if (env->cur_state->active_spin_lock) {
4996 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
4997 return -EINVAL;
4998 }
4999
ddd872bc 5000 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
5001 verbose(env,
5002 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
5003 return -EINVAL;
5004 }
5005
5006 if (mode == BPF_IND) {
5007 /* check explicit source operand */
dc503a8a 5008 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
5009 if (err)
5010 return err;
5011 }
5012
5013 /* reset caller saved regs to unreadable */
dc503a8a 5014 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5015 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5016 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5017 }
ddd872bc
AS
5018
5019 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
5020 * the value fetched from the packet.
5021 * Already marked as written above.
ddd872bc 5022 */
61bd5218 5023 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
5024 return 0;
5025}
5026
390ee7e2
AS
5027static int check_return_code(struct bpf_verifier_env *env)
5028{
5029 struct bpf_reg_state *reg;
5030 struct tnum range = tnum_range(0, 1);
5031
5032 switch (env->prog->type) {
5033 case BPF_PROG_TYPE_CGROUP_SKB:
5034 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 5035 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 5036 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 5037 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
5038 break;
5039 default:
5040 return 0;
5041 }
5042
638f5b90 5043 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 5044 if (reg->type != SCALAR_VALUE) {
61bd5218 5045 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
5046 reg_type_str[reg->type]);
5047 return -EINVAL;
5048 }
5049
5050 if (!tnum_in(range, reg->var_off)) {
61bd5218 5051 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
5052 if (!tnum_is_unknown(reg->var_off)) {
5053 char tn_buf[48];
5054
5055 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5056 verbose(env, "has value %s", tn_buf);
390ee7e2 5057 } else {
61bd5218 5058 verbose(env, "has unknown scalar value");
390ee7e2 5059 }
61bd5218 5060 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
5061 return -EINVAL;
5062 }
5063 return 0;
5064}
5065
475fb78f
AS
5066/* non-recursive DFS pseudo code
5067 * 1 procedure DFS-iterative(G,v):
5068 * 2 label v as discovered
5069 * 3 let S be a stack
5070 * 4 S.push(v)
5071 * 5 while S is not empty
5072 * 6 t <- S.pop()
5073 * 7 if t is what we're looking for:
5074 * 8 return t
5075 * 9 for all edges e in G.adjacentEdges(t) do
5076 * 10 if edge e is already labelled
5077 * 11 continue with the next edge
5078 * 12 w <- G.adjacentVertex(t,e)
5079 * 13 if vertex w is not discovered and not explored
5080 * 14 label e as tree-edge
5081 * 15 label w as discovered
5082 * 16 S.push(w)
5083 * 17 continue at 5
5084 * 18 else if vertex w is discovered
5085 * 19 label e as back-edge
5086 * 20 else
5087 * 21 // vertex w is explored
5088 * 22 label e as forward- or cross-edge
5089 * 23 label t as explored
5090 * 24 S.pop()
5091 *
5092 * convention:
5093 * 0x10 - discovered
5094 * 0x11 - discovered and fall-through edge labelled
5095 * 0x12 - discovered and fall-through and branch edges labelled
5096 * 0x20 - explored
5097 */
5098
5099enum {
5100 DISCOVERED = 0x10,
5101 EXPLORED = 0x20,
5102 FALLTHROUGH = 1,
5103 BRANCH = 2,
5104};
5105
58e2af8b 5106#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 5107
475fb78f
AS
5108static int *insn_stack; /* stack of insns to process */
5109static int cur_stack; /* current stack index */
5110static int *insn_state;
5111
5112/* t, w, e - match pseudo-code above:
5113 * t - index of current instruction
5114 * w - next instruction
5115 * e - edge
5116 */
58e2af8b 5117static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
5118{
5119 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5120 return 0;
5121
5122 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5123 return 0;
5124
5125 if (w < 0 || w >= env->prog->len) {
d9762e84 5126 verbose_linfo(env, t, "%d: ", t);
61bd5218 5127 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
5128 return -EINVAL;
5129 }
5130
f1bca824
AS
5131 if (e == BRANCH)
5132 /* mark branch target for state pruning */
5133 env->explored_states[w] = STATE_LIST_MARK;
5134
475fb78f
AS
5135 if (insn_state[w] == 0) {
5136 /* tree-edge */
5137 insn_state[t] = DISCOVERED | e;
5138 insn_state[w] = DISCOVERED;
5139 if (cur_stack >= env->prog->len)
5140 return -E2BIG;
5141 insn_stack[cur_stack++] = w;
5142 return 1;
5143 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
5144 verbose_linfo(env, t, "%d: ", t);
5145 verbose_linfo(env, w, "%d: ", w);
61bd5218 5146 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
5147 return -EINVAL;
5148 } else if (insn_state[w] == EXPLORED) {
5149 /* forward- or cross-edge */
5150 insn_state[t] = DISCOVERED | e;
5151 } else {
61bd5218 5152 verbose(env, "insn state internal bug\n");
475fb78f
AS
5153 return -EFAULT;
5154 }
5155 return 0;
5156}
5157
5158/* non-recursive depth-first-search to detect loops in BPF program
5159 * loop == back-edge in directed graph
5160 */
58e2af8b 5161static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
5162{
5163 struct bpf_insn *insns = env->prog->insnsi;
5164 int insn_cnt = env->prog->len;
5165 int ret = 0;
5166 int i, t;
5167
5168 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5169 if (!insn_state)
5170 return -ENOMEM;
5171
5172 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5173 if (!insn_stack) {
5174 kfree(insn_state);
5175 return -ENOMEM;
5176 }
5177
5178 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5179 insn_stack[0] = 0; /* 0 is the first instruction */
5180 cur_stack = 1;
5181
5182peek_stack:
5183 if (cur_stack == 0)
5184 goto check_state;
5185 t = insn_stack[cur_stack - 1];
5186
092ed096
JW
5187 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5188 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
5189 u8 opcode = BPF_OP(insns[t].code);
5190
5191 if (opcode == BPF_EXIT) {
5192 goto mark_explored;
5193 } else if (opcode == BPF_CALL) {
5194 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5195 if (ret == 1)
5196 goto peek_stack;
5197 else if (ret < 0)
5198 goto err_free;
07016151
DB
5199 if (t + 1 < insn_cnt)
5200 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
5201 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5202 env->explored_states[t] = STATE_LIST_MARK;
5203 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5204 if (ret == 1)
5205 goto peek_stack;
5206 else if (ret < 0)
5207 goto err_free;
5208 }
475fb78f
AS
5209 } else if (opcode == BPF_JA) {
5210 if (BPF_SRC(insns[t].code) != BPF_K) {
5211 ret = -EINVAL;
5212 goto err_free;
5213 }
5214 /* unconditional jump with single edge */
5215 ret = push_insn(t, t + insns[t].off + 1,
5216 FALLTHROUGH, env);
5217 if (ret == 1)
5218 goto peek_stack;
5219 else if (ret < 0)
5220 goto err_free;
f1bca824
AS
5221 /* tell verifier to check for equivalent states
5222 * after every call and jump
5223 */
c3de6317
AS
5224 if (t + 1 < insn_cnt)
5225 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
5226 } else {
5227 /* conditional jump with two edges */
3c2ce60b 5228 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
5229 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5230 if (ret == 1)
5231 goto peek_stack;
5232 else if (ret < 0)
5233 goto err_free;
5234
5235 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5236 if (ret == 1)
5237 goto peek_stack;
5238 else if (ret < 0)
5239 goto err_free;
5240 }
5241 } else {
5242 /* all other non-branch instructions with single
5243 * fall-through edge
5244 */
5245 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5246 if (ret == 1)
5247 goto peek_stack;
5248 else if (ret < 0)
5249 goto err_free;
5250 }
5251
5252mark_explored:
5253 insn_state[t] = EXPLORED;
5254 if (cur_stack-- <= 0) {
61bd5218 5255 verbose(env, "pop stack internal bug\n");
475fb78f
AS
5256 ret = -EFAULT;
5257 goto err_free;
5258 }
5259 goto peek_stack;
5260
5261check_state:
5262 for (i = 0; i < insn_cnt; i++) {
5263 if (insn_state[i] != EXPLORED) {
61bd5218 5264 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
5265 ret = -EINVAL;
5266 goto err_free;
5267 }
5268 }
5269 ret = 0; /* cfg looks good */
5270
5271err_free:
5272 kfree(insn_state);
5273 kfree(insn_stack);
5274 return ret;
5275}
5276
838e9690
YS
5277/* The minimum supported BTF func info size */
5278#define MIN_BPF_FUNCINFO_SIZE 8
5279#define MAX_FUNCINFO_REC_SIZE 252
5280
c454a46b
MKL
5281static int check_btf_func(struct bpf_verifier_env *env,
5282 const union bpf_attr *attr,
5283 union bpf_attr __user *uattr)
838e9690 5284{
d0b2818e 5285 u32 i, nfuncs, urec_size, min_size;
838e9690 5286 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 5287 struct bpf_func_info *krecord;
838e9690 5288 const struct btf_type *type;
c454a46b
MKL
5289 struct bpf_prog *prog;
5290 const struct btf *btf;
838e9690 5291 void __user *urecord;
d0b2818e 5292 u32 prev_offset = 0;
838e9690
YS
5293 int ret = 0;
5294
5295 nfuncs = attr->func_info_cnt;
5296 if (!nfuncs)
5297 return 0;
5298
5299 if (nfuncs != env->subprog_cnt) {
5300 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5301 return -EINVAL;
5302 }
5303
5304 urec_size = attr->func_info_rec_size;
5305 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5306 urec_size > MAX_FUNCINFO_REC_SIZE ||
5307 urec_size % sizeof(u32)) {
5308 verbose(env, "invalid func info rec size %u\n", urec_size);
5309 return -EINVAL;
5310 }
5311
c454a46b
MKL
5312 prog = env->prog;
5313 btf = prog->aux->btf;
838e9690
YS
5314
5315 urecord = u64_to_user_ptr(attr->func_info);
5316 min_size = min_t(u32, krec_size, urec_size);
5317
ba64e7d8 5318 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
5319 if (!krecord)
5320 return -ENOMEM;
ba64e7d8 5321
838e9690
YS
5322 for (i = 0; i < nfuncs; i++) {
5323 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5324 if (ret) {
5325 if (ret == -E2BIG) {
5326 verbose(env, "nonzero tailing record in func info");
5327 /* set the size kernel expects so loader can zero
5328 * out the rest of the record.
5329 */
5330 if (put_user(min_size, &uattr->func_info_rec_size))
5331 ret = -EFAULT;
5332 }
c454a46b 5333 goto err_free;
838e9690
YS
5334 }
5335
ba64e7d8 5336 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 5337 ret = -EFAULT;
c454a46b 5338 goto err_free;
838e9690
YS
5339 }
5340
d30d42e0 5341 /* check insn_off */
838e9690 5342 if (i == 0) {
d30d42e0 5343 if (krecord[i].insn_off) {
838e9690 5344 verbose(env,
d30d42e0
MKL
5345 "nonzero insn_off %u for the first func info record",
5346 krecord[i].insn_off);
838e9690 5347 ret = -EINVAL;
c454a46b 5348 goto err_free;
838e9690 5349 }
d30d42e0 5350 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
5351 verbose(env,
5352 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 5353 krecord[i].insn_off, prev_offset);
838e9690 5354 ret = -EINVAL;
c454a46b 5355 goto err_free;
838e9690
YS
5356 }
5357
d30d42e0 5358 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
5359 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5360 ret = -EINVAL;
c454a46b 5361 goto err_free;
838e9690
YS
5362 }
5363
5364 /* check type_id */
ba64e7d8 5365 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
5366 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5367 verbose(env, "invalid type id %d in func info",
ba64e7d8 5368 krecord[i].type_id);
838e9690 5369 ret = -EINVAL;
c454a46b 5370 goto err_free;
838e9690
YS
5371 }
5372
d30d42e0 5373 prev_offset = krecord[i].insn_off;
838e9690
YS
5374 urecord += urec_size;
5375 }
5376
ba64e7d8
YS
5377 prog->aux->func_info = krecord;
5378 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
5379 return 0;
5380
c454a46b 5381err_free:
ba64e7d8 5382 kvfree(krecord);
838e9690
YS
5383 return ret;
5384}
5385
ba64e7d8
YS
5386static void adjust_btf_func(struct bpf_verifier_env *env)
5387{
5388 int i;
5389
5390 if (!env->prog->aux->func_info)
5391 return;
5392
5393 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 5394 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
5395}
5396
c454a46b
MKL
5397#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5398 sizeof(((struct bpf_line_info *)(0))->line_col))
5399#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5400
5401static int check_btf_line(struct bpf_verifier_env *env,
5402 const union bpf_attr *attr,
5403 union bpf_attr __user *uattr)
5404{
5405 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5406 struct bpf_subprog_info *sub;
5407 struct bpf_line_info *linfo;
5408 struct bpf_prog *prog;
5409 const struct btf *btf;
5410 void __user *ulinfo;
5411 int err;
5412
5413 nr_linfo = attr->line_info_cnt;
5414 if (!nr_linfo)
5415 return 0;
5416
5417 rec_size = attr->line_info_rec_size;
5418 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5419 rec_size > MAX_LINEINFO_REC_SIZE ||
5420 rec_size & (sizeof(u32) - 1))
5421 return -EINVAL;
5422
5423 /* Need to zero it in case the userspace may
5424 * pass in a smaller bpf_line_info object.
5425 */
5426 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5427 GFP_KERNEL | __GFP_NOWARN);
5428 if (!linfo)
5429 return -ENOMEM;
5430
5431 prog = env->prog;
5432 btf = prog->aux->btf;
5433
5434 s = 0;
5435 sub = env->subprog_info;
5436 ulinfo = u64_to_user_ptr(attr->line_info);
5437 expected_size = sizeof(struct bpf_line_info);
5438 ncopy = min_t(u32, expected_size, rec_size);
5439 for (i = 0; i < nr_linfo; i++) {
5440 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5441 if (err) {
5442 if (err == -E2BIG) {
5443 verbose(env, "nonzero tailing record in line_info");
5444 if (put_user(expected_size,
5445 &uattr->line_info_rec_size))
5446 err = -EFAULT;
5447 }
5448 goto err_free;
5449 }
5450
5451 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5452 err = -EFAULT;
5453 goto err_free;
5454 }
5455
5456 /*
5457 * Check insn_off to ensure
5458 * 1) strictly increasing AND
5459 * 2) bounded by prog->len
5460 *
5461 * The linfo[0].insn_off == 0 check logically falls into
5462 * the later "missing bpf_line_info for func..." case
5463 * because the first linfo[0].insn_off must be the
5464 * first sub also and the first sub must have
5465 * subprog_info[0].start == 0.
5466 */
5467 if ((i && linfo[i].insn_off <= prev_offset) ||
5468 linfo[i].insn_off >= prog->len) {
5469 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5470 i, linfo[i].insn_off, prev_offset,
5471 prog->len);
5472 err = -EINVAL;
5473 goto err_free;
5474 }
5475
fdbaa0be
MKL
5476 if (!prog->insnsi[linfo[i].insn_off].code) {
5477 verbose(env,
5478 "Invalid insn code at line_info[%u].insn_off\n",
5479 i);
5480 err = -EINVAL;
5481 goto err_free;
5482 }
5483
23127b33
MKL
5484 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5485 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
5486 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5487 err = -EINVAL;
5488 goto err_free;
5489 }
5490
5491 if (s != env->subprog_cnt) {
5492 if (linfo[i].insn_off == sub[s].start) {
5493 sub[s].linfo_idx = i;
5494 s++;
5495 } else if (sub[s].start < linfo[i].insn_off) {
5496 verbose(env, "missing bpf_line_info for func#%u\n", s);
5497 err = -EINVAL;
5498 goto err_free;
5499 }
5500 }
5501
5502 prev_offset = linfo[i].insn_off;
5503 ulinfo += rec_size;
5504 }
5505
5506 if (s != env->subprog_cnt) {
5507 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5508 env->subprog_cnt - s, s);
5509 err = -EINVAL;
5510 goto err_free;
5511 }
5512
5513 prog->aux->linfo = linfo;
5514 prog->aux->nr_linfo = nr_linfo;
5515
5516 return 0;
5517
5518err_free:
5519 kvfree(linfo);
5520 return err;
5521}
5522
5523static int check_btf_info(struct bpf_verifier_env *env,
5524 const union bpf_attr *attr,
5525 union bpf_attr __user *uattr)
5526{
5527 struct btf *btf;
5528 int err;
5529
5530 if (!attr->func_info_cnt && !attr->line_info_cnt)
5531 return 0;
5532
5533 btf = btf_get_by_fd(attr->prog_btf_fd);
5534 if (IS_ERR(btf))
5535 return PTR_ERR(btf);
5536 env->prog->aux->btf = btf;
5537
5538 err = check_btf_func(env, attr, uattr);
5539 if (err)
5540 return err;
5541
5542 err = check_btf_line(env, attr, uattr);
5543 if (err)
5544 return err;
5545
5546 return 0;
ba64e7d8
YS
5547}
5548
f1174f77
EC
5549/* check %cur's range satisfies %old's */
5550static bool range_within(struct bpf_reg_state *old,
5551 struct bpf_reg_state *cur)
5552{
b03c9f9f
EC
5553 return old->umin_value <= cur->umin_value &&
5554 old->umax_value >= cur->umax_value &&
5555 old->smin_value <= cur->smin_value &&
5556 old->smax_value >= cur->smax_value;
f1174f77
EC
5557}
5558
5559/* Maximum number of register states that can exist at once */
5560#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5561struct idpair {
5562 u32 old;
5563 u32 cur;
5564};
5565
5566/* If in the old state two registers had the same id, then they need to have
5567 * the same id in the new state as well. But that id could be different from
5568 * the old state, so we need to track the mapping from old to new ids.
5569 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5570 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5571 * regs with a different old id could still have new id 9, we don't care about
5572 * that.
5573 * So we look through our idmap to see if this old id has been seen before. If
5574 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 5575 */
f1174f77 5576static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 5577{
f1174f77 5578 unsigned int i;
969bf05e 5579
f1174f77
EC
5580 for (i = 0; i < ID_MAP_SIZE; i++) {
5581 if (!idmap[i].old) {
5582 /* Reached an empty slot; haven't seen this id before */
5583 idmap[i].old = old_id;
5584 idmap[i].cur = cur_id;
5585 return true;
5586 }
5587 if (idmap[i].old == old_id)
5588 return idmap[i].cur == cur_id;
5589 }
5590 /* We ran out of idmap slots, which should be impossible */
5591 WARN_ON_ONCE(1);
5592 return false;
5593}
5594
9242b5f5
AS
5595static void clean_func_state(struct bpf_verifier_env *env,
5596 struct bpf_func_state *st)
5597{
5598 enum bpf_reg_liveness live;
5599 int i, j;
5600
5601 for (i = 0; i < BPF_REG_FP; i++) {
5602 live = st->regs[i].live;
5603 /* liveness must not touch this register anymore */
5604 st->regs[i].live |= REG_LIVE_DONE;
5605 if (!(live & REG_LIVE_READ))
5606 /* since the register is unused, clear its state
5607 * to make further comparison simpler
5608 */
5609 __mark_reg_not_init(&st->regs[i]);
5610 }
5611
5612 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5613 live = st->stack[i].spilled_ptr.live;
5614 /* liveness must not touch this stack slot anymore */
5615 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5616 if (!(live & REG_LIVE_READ)) {
5617 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5618 for (j = 0; j < BPF_REG_SIZE; j++)
5619 st->stack[i].slot_type[j] = STACK_INVALID;
5620 }
5621 }
5622}
5623
5624static void clean_verifier_state(struct bpf_verifier_env *env,
5625 struct bpf_verifier_state *st)
5626{
5627 int i;
5628
5629 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5630 /* all regs in this state in all frames were already marked */
5631 return;
5632
5633 for (i = 0; i <= st->curframe; i++)
5634 clean_func_state(env, st->frame[i]);
5635}
5636
5637/* the parentage chains form a tree.
5638 * the verifier states are added to state lists at given insn and
5639 * pushed into state stack for future exploration.
5640 * when the verifier reaches bpf_exit insn some of the verifer states
5641 * stored in the state lists have their final liveness state already,
5642 * but a lot of states will get revised from liveness point of view when
5643 * the verifier explores other branches.
5644 * Example:
5645 * 1: r0 = 1
5646 * 2: if r1 == 100 goto pc+1
5647 * 3: r0 = 2
5648 * 4: exit
5649 * when the verifier reaches exit insn the register r0 in the state list of
5650 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5651 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5652 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5653 *
5654 * Since the verifier pushes the branch states as it sees them while exploring
5655 * the program the condition of walking the branch instruction for the second
5656 * time means that all states below this branch were already explored and
5657 * their final liveness markes are already propagated.
5658 * Hence when the verifier completes the search of state list in is_state_visited()
5659 * we can call this clean_live_states() function to mark all liveness states
5660 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5661 * will not be used.
5662 * This function also clears the registers and stack for states that !READ
5663 * to simplify state merging.
5664 *
5665 * Important note here that walking the same branch instruction in the callee
5666 * doesn't meant that the states are DONE. The verifier has to compare
5667 * the callsites
5668 */
5669static void clean_live_states(struct bpf_verifier_env *env, int insn,
5670 struct bpf_verifier_state *cur)
5671{
5672 struct bpf_verifier_state_list *sl;
5673 int i;
5674
5675 sl = env->explored_states[insn];
5676 if (!sl)
5677 return;
5678
5679 while (sl != STATE_LIST_MARK) {
5680 if (sl->state.curframe != cur->curframe)
5681 goto next;
5682 for (i = 0; i <= cur->curframe; i++)
5683 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5684 goto next;
5685 clean_verifier_state(env, &sl->state);
5686next:
5687 sl = sl->next;
5688 }
5689}
5690
f1174f77 5691/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
5692static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5693 struct idpair *idmap)
f1174f77 5694{
f4d7e40a
AS
5695 bool equal;
5696
dc503a8a
EC
5697 if (!(rold->live & REG_LIVE_READ))
5698 /* explored state didn't use this */
5699 return true;
5700
679c782d 5701 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
5702
5703 if (rold->type == PTR_TO_STACK)
5704 /* two stack pointers are equal only if they're pointing to
5705 * the same stack frame, since fp-8 in foo != fp-8 in bar
5706 */
5707 return equal && rold->frameno == rcur->frameno;
5708
5709 if (equal)
969bf05e
AS
5710 return true;
5711
f1174f77
EC
5712 if (rold->type == NOT_INIT)
5713 /* explored state can't have used this */
969bf05e 5714 return true;
f1174f77
EC
5715 if (rcur->type == NOT_INIT)
5716 return false;
5717 switch (rold->type) {
5718 case SCALAR_VALUE:
5719 if (rcur->type == SCALAR_VALUE) {
5720 /* new val must satisfy old val knowledge */
5721 return range_within(rold, rcur) &&
5722 tnum_in(rold->var_off, rcur->var_off);
5723 } else {
179d1c56
JH
5724 /* We're trying to use a pointer in place of a scalar.
5725 * Even if the scalar was unbounded, this could lead to
5726 * pointer leaks because scalars are allowed to leak
5727 * while pointers are not. We could make this safe in
5728 * special cases if root is calling us, but it's
5729 * probably not worth the hassle.
f1174f77 5730 */
179d1c56 5731 return false;
f1174f77
EC
5732 }
5733 case PTR_TO_MAP_VALUE:
1b688a19
EC
5734 /* If the new min/max/var_off satisfy the old ones and
5735 * everything else matches, we are OK.
d83525ca
AS
5736 * 'id' is not compared, since it's only used for maps with
5737 * bpf_spin_lock inside map element and in such cases if
5738 * the rest of the prog is valid for one map element then
5739 * it's valid for all map elements regardless of the key
5740 * used in bpf_map_lookup()
1b688a19
EC
5741 */
5742 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5743 range_within(rold, rcur) &&
5744 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
5745 case PTR_TO_MAP_VALUE_OR_NULL:
5746 /* a PTR_TO_MAP_VALUE could be safe to use as a
5747 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5748 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5749 * checked, doing so could have affected others with the same
5750 * id, and we can't check for that because we lost the id when
5751 * we converted to a PTR_TO_MAP_VALUE.
5752 */
5753 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5754 return false;
5755 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5756 return false;
5757 /* Check our ids match any regs they're supposed to */
5758 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 5759 case PTR_TO_PACKET_META:
f1174f77 5760 case PTR_TO_PACKET:
de8f3a83 5761 if (rcur->type != rold->type)
f1174f77
EC
5762 return false;
5763 /* We must have at least as much range as the old ptr
5764 * did, so that any accesses which were safe before are
5765 * still safe. This is true even if old range < old off,
5766 * since someone could have accessed through (ptr - k), or
5767 * even done ptr -= k in a register, to get a safe access.
5768 */
5769 if (rold->range > rcur->range)
5770 return false;
5771 /* If the offsets don't match, we can't trust our alignment;
5772 * nor can we be sure that we won't fall out of range.
5773 */
5774 if (rold->off != rcur->off)
5775 return false;
5776 /* id relations must be preserved */
5777 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5778 return false;
5779 /* new val must satisfy old val knowledge */
5780 return range_within(rold, rcur) &&
5781 tnum_in(rold->var_off, rcur->var_off);
5782 case PTR_TO_CTX:
5783 case CONST_PTR_TO_MAP:
f1174f77 5784 case PTR_TO_PACKET_END:
d58e468b 5785 case PTR_TO_FLOW_KEYS:
c64b7983
JS
5786 case PTR_TO_SOCKET:
5787 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
5788 /* Only valid matches are exact, which memcmp() above
5789 * would have accepted
5790 */
5791 default:
5792 /* Don't know what's going on, just say it's not safe */
5793 return false;
5794 }
969bf05e 5795
f1174f77
EC
5796 /* Shouldn't get here; if we do, say it's not safe */
5797 WARN_ON_ONCE(1);
969bf05e
AS
5798 return false;
5799}
5800
f4d7e40a
AS
5801static bool stacksafe(struct bpf_func_state *old,
5802 struct bpf_func_state *cur,
638f5b90
AS
5803 struct idpair *idmap)
5804{
5805 int i, spi;
5806
638f5b90
AS
5807 /* walk slots of the explored stack and ignore any additional
5808 * slots in the current stack, since explored(safe) state
5809 * didn't use them
5810 */
5811 for (i = 0; i < old->allocated_stack; i++) {
5812 spi = i / BPF_REG_SIZE;
5813
b233920c
AS
5814 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5815 i += BPF_REG_SIZE - 1;
cc2b14d5 5816 /* explored state didn't use this */
fd05e57b 5817 continue;
b233920c 5818 }
cc2b14d5 5819
638f5b90
AS
5820 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5821 continue;
19e2dbb7
AS
5822
5823 /* explored stack has more populated slots than current stack
5824 * and these slots were used
5825 */
5826 if (i >= cur->allocated_stack)
5827 return false;
5828
cc2b14d5
AS
5829 /* if old state was safe with misc data in the stack
5830 * it will be safe with zero-initialized stack.
5831 * The opposite is not true
5832 */
5833 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5834 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5835 continue;
638f5b90
AS
5836 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5837 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5838 /* Ex: old explored (safe) state has STACK_SPILL in
5839 * this stack slot, but current has has STACK_MISC ->
5840 * this verifier states are not equivalent,
5841 * return false to continue verification of this path
5842 */
5843 return false;
5844 if (i % BPF_REG_SIZE)
5845 continue;
5846 if (old->stack[spi].slot_type[0] != STACK_SPILL)
5847 continue;
5848 if (!regsafe(&old->stack[spi].spilled_ptr,
5849 &cur->stack[spi].spilled_ptr,
5850 idmap))
5851 /* when explored and current stack slot are both storing
5852 * spilled registers, check that stored pointers types
5853 * are the same as well.
5854 * Ex: explored safe path could have stored
5855 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5856 * but current path has stored:
5857 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5858 * such verifier states are not equivalent.
5859 * return false to continue verification of this path
5860 */
5861 return false;
5862 }
5863 return true;
5864}
5865
fd978bf7
JS
5866static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5867{
5868 if (old->acquired_refs != cur->acquired_refs)
5869 return false;
5870 return !memcmp(old->refs, cur->refs,
5871 sizeof(*old->refs) * old->acquired_refs);
5872}
5873
f1bca824
AS
5874/* compare two verifier states
5875 *
5876 * all states stored in state_list are known to be valid, since
5877 * verifier reached 'bpf_exit' instruction through them
5878 *
5879 * this function is called when verifier exploring different branches of
5880 * execution popped from the state stack. If it sees an old state that has
5881 * more strict register state and more strict stack state then this execution
5882 * branch doesn't need to be explored further, since verifier already
5883 * concluded that more strict state leads to valid finish.
5884 *
5885 * Therefore two states are equivalent if register state is more conservative
5886 * and explored stack state is more conservative than the current one.
5887 * Example:
5888 * explored current
5889 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5890 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5891 *
5892 * In other words if current stack state (one being explored) has more
5893 * valid slots than old one that already passed validation, it means
5894 * the verifier can stop exploring and conclude that current state is valid too
5895 *
5896 * Similarly with registers. If explored state has register type as invalid
5897 * whereas register type in current state is meaningful, it means that
5898 * the current state will reach 'bpf_exit' instruction safely
5899 */
f4d7e40a
AS
5900static bool func_states_equal(struct bpf_func_state *old,
5901 struct bpf_func_state *cur)
f1bca824 5902{
f1174f77
EC
5903 struct idpair *idmap;
5904 bool ret = false;
f1bca824
AS
5905 int i;
5906
f1174f77
EC
5907 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5908 /* If we failed to allocate the idmap, just say it's not safe */
5909 if (!idmap)
1a0dc1ac 5910 return false;
f1174f77
EC
5911
5912 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 5913 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 5914 goto out_free;
f1bca824
AS
5915 }
5916
638f5b90
AS
5917 if (!stacksafe(old, cur, idmap))
5918 goto out_free;
fd978bf7
JS
5919
5920 if (!refsafe(old, cur))
5921 goto out_free;
f1174f77
EC
5922 ret = true;
5923out_free:
5924 kfree(idmap);
5925 return ret;
f1bca824
AS
5926}
5927
f4d7e40a
AS
5928static bool states_equal(struct bpf_verifier_env *env,
5929 struct bpf_verifier_state *old,
5930 struct bpf_verifier_state *cur)
5931{
5932 int i;
5933
5934 if (old->curframe != cur->curframe)
5935 return false;
5936
979d63d5
DB
5937 /* Verification state from speculative execution simulation
5938 * must never prune a non-speculative execution one.
5939 */
5940 if (old->speculative && !cur->speculative)
5941 return false;
5942
d83525ca
AS
5943 if (old->active_spin_lock != cur->active_spin_lock)
5944 return false;
5945
f4d7e40a
AS
5946 /* for states to be equal callsites have to be the same
5947 * and all frame states need to be equivalent
5948 */
5949 for (i = 0; i <= old->curframe; i++) {
5950 if (old->frame[i]->callsite != cur->frame[i]->callsite)
5951 return false;
5952 if (!func_states_equal(old->frame[i], cur->frame[i]))
5953 return false;
5954 }
5955 return true;
5956}
5957
8e9cd9ce 5958/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
5959 * straight-line code between a state and its parent. When we arrive at an
5960 * equivalent state (jump target or such) we didn't arrive by the straight-line
5961 * code, so read marks in the state must propagate to the parent regardless
5962 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 5963 * in mark_reg_read() is for.
8e9cd9ce 5964 */
f4d7e40a
AS
5965static int propagate_liveness(struct bpf_verifier_env *env,
5966 const struct bpf_verifier_state *vstate,
5967 struct bpf_verifier_state *vparent)
dc503a8a 5968{
f4d7e40a
AS
5969 int i, frame, err = 0;
5970 struct bpf_func_state *state, *parent;
dc503a8a 5971
f4d7e40a
AS
5972 if (vparent->curframe != vstate->curframe) {
5973 WARN(1, "propagate_live: parent frame %d current frame %d\n",
5974 vparent->curframe, vstate->curframe);
5975 return -EFAULT;
5976 }
dc503a8a
EC
5977 /* Propagate read liveness of registers... */
5978 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5979 /* We don't need to worry about FP liveness because it's read-only */
5980 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 5981 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 5982 continue;
f4d7e40a 5983 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
5984 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5985 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
5986 if (err)
5987 return err;
dc503a8a
EC
5988 }
5989 }
f4d7e40a 5990
dc503a8a 5991 /* ... and stack slots */
f4d7e40a
AS
5992 for (frame = 0; frame <= vstate->curframe; frame++) {
5993 state = vstate->frame[frame];
5994 parent = vparent->frame[frame];
5995 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5996 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
5997 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5998 continue;
5999 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
6000 mark_reg_read(env, &state->stack[i].spilled_ptr,
6001 &parent->stack[i].spilled_ptr);
dc503a8a
EC
6002 }
6003 }
f4d7e40a 6004 return err;
dc503a8a
EC
6005}
6006
58e2af8b 6007static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 6008{
58e2af8b
JK
6009 struct bpf_verifier_state_list *new_sl;
6010 struct bpf_verifier_state_list *sl;
679c782d 6011 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 6012 int i, j, err, states_cnt = 0;
f1bca824
AS
6013
6014 sl = env->explored_states[insn_idx];
6015 if (!sl)
6016 /* this 'insn_idx' instruction wasn't marked, so we will not
6017 * be doing state search here
6018 */
6019 return 0;
6020
9242b5f5
AS
6021 clean_live_states(env, insn_idx, cur);
6022
f1bca824 6023 while (sl != STATE_LIST_MARK) {
638f5b90 6024 if (states_equal(env, &sl->state, cur)) {
f1bca824 6025 /* reached equivalent register/stack state,
dc503a8a
EC
6026 * prune the search.
6027 * Registers read by the continuation are read by us.
8e9cd9ce
EC
6028 * If we have any write marks in env->cur_state, they
6029 * will prevent corresponding reads in the continuation
6030 * from reaching our parent (an explored_state). Our
6031 * own state will get the read marks recorded, but
6032 * they'll be immediately forgotten as we're pruning
6033 * this state and will pop a new one.
f1bca824 6034 */
f4d7e40a
AS
6035 err = propagate_liveness(env, &sl->state, cur);
6036 if (err)
6037 return err;
f1bca824 6038 return 1;
dc503a8a 6039 }
f1bca824 6040 sl = sl->next;
ceefbc96 6041 states_cnt++;
f1bca824
AS
6042 }
6043
ceefbc96
AS
6044 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6045 return 0;
6046
f1bca824
AS
6047 /* there were no equivalent states, remember current one.
6048 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
6049 * but it will either reach outer most bpf_exit (which means it's safe)
6050 * or it will be rejected. Since there are no loops, we won't be
6051 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6052 * again on the way to bpf_exit
f1bca824 6053 */
638f5b90 6054 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
6055 if (!new_sl)
6056 return -ENOMEM;
6057
6058 /* add new state to the head of linked list */
679c782d
EC
6059 new = &new_sl->state;
6060 err = copy_verifier_state(new, cur);
1969db47 6061 if (err) {
679c782d 6062 free_verifier_state(new, false);
1969db47
AS
6063 kfree(new_sl);
6064 return err;
6065 }
f1bca824
AS
6066 new_sl->next = env->explored_states[insn_idx];
6067 env->explored_states[insn_idx] = new_sl;
7640ead9
JK
6068 /* connect new state to parentage chain. Current frame needs all
6069 * registers connected. Only r6 - r9 of the callers are alive (pushed
6070 * to the stack implicitly by JITs) so in callers' frames connect just
6071 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6072 * the state of the call instruction (with WRITTEN set), and r0 comes
6073 * from callee with its full parentage chain, anyway.
6074 */
6075 for (j = 0; j <= cur->curframe; j++)
6076 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6077 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8e9cd9ce
EC
6078 /* clear write marks in current state: the writes we did are not writes
6079 * our child did, so they don't screen off its reads from us.
6080 * (There are no read marks in current state, because reads always mark
6081 * their parent and current state never has children yet. Only
6082 * explored_states can get read marks.)
6083 */
dc503a8a 6084 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
6085 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6086
6087 /* all stack frames are accessible from callee, clear them all */
6088 for (j = 0; j <= cur->curframe; j++) {
6089 struct bpf_func_state *frame = cur->frame[j];
679c782d 6090 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 6091
679c782d 6092 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 6093 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
6094 frame->stack[i].spilled_ptr.parent =
6095 &newframe->stack[i].spilled_ptr;
6096 }
f4d7e40a 6097 }
f1bca824
AS
6098 return 0;
6099}
6100
c64b7983
JS
6101/* Return true if it's OK to have the same insn return a different type. */
6102static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6103{
6104 switch (type) {
6105 case PTR_TO_CTX:
6106 case PTR_TO_SOCKET:
6107 case PTR_TO_SOCKET_OR_NULL:
6108 return false;
6109 default:
6110 return true;
6111 }
6112}
6113
6114/* If an instruction was previously used with particular pointer types, then we
6115 * need to be careful to avoid cases such as the below, where it may be ok
6116 * for one branch accessing the pointer, but not ok for the other branch:
6117 *
6118 * R1 = sock_ptr
6119 * goto X;
6120 * ...
6121 * R1 = some_other_valid_ptr;
6122 * goto X;
6123 * ...
6124 * R2 = *(u32 *)(R1 + 0);
6125 */
6126static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6127{
6128 return src != prev && (!reg_type_mismatch_ok(src) ||
6129 !reg_type_mismatch_ok(prev));
6130}
6131
58e2af8b 6132static int do_check(struct bpf_verifier_env *env)
17a52670 6133{
638f5b90 6134 struct bpf_verifier_state *state;
17a52670 6135 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 6136 struct bpf_reg_state *regs;
f4d7e40a 6137 int insn_cnt = env->prog->len, i;
17a52670
AS
6138 int insn_processed = 0;
6139 bool do_print_state = false;
6140
d9762e84
MKL
6141 env->prev_linfo = NULL;
6142
638f5b90
AS
6143 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6144 if (!state)
6145 return -ENOMEM;
f4d7e40a 6146 state->curframe = 0;
979d63d5 6147 state->speculative = false;
f4d7e40a
AS
6148 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6149 if (!state->frame[0]) {
6150 kfree(state);
6151 return -ENOMEM;
6152 }
6153 env->cur_state = state;
6154 init_func_state(env, state->frame[0],
6155 BPF_MAIN_FUNC /* callsite */,
6156 0 /* frameno */,
6157 0 /* subprogno, zero == main subprog */);
c08435ec 6158
17a52670
AS
6159 for (;;) {
6160 struct bpf_insn *insn;
6161 u8 class;
6162 int err;
6163
c08435ec 6164 if (env->insn_idx >= insn_cnt) {
61bd5218 6165 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 6166 env->insn_idx, insn_cnt);
17a52670
AS
6167 return -EFAULT;
6168 }
6169
c08435ec 6170 insn = &insns[env->insn_idx];
17a52670
AS
6171 class = BPF_CLASS(insn->code);
6172
07016151 6173 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
6174 verbose(env,
6175 "BPF program is too large. Processed %d insn\n",
17a52670
AS
6176 insn_processed);
6177 return -E2BIG;
6178 }
6179
c08435ec 6180 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
6181 if (err < 0)
6182 return err;
6183 if (err == 1) {
6184 /* found equivalent state, can prune the search */
61bd5218 6185 if (env->log.level) {
f1bca824 6186 if (do_print_state)
979d63d5
DB
6187 verbose(env, "\nfrom %d to %d%s: safe\n",
6188 env->prev_insn_idx, env->insn_idx,
6189 env->cur_state->speculative ?
6190 " (speculative execution)" : "");
f1bca824 6191 else
c08435ec 6192 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
6193 }
6194 goto process_bpf_exit;
6195 }
6196
c3494801
AS
6197 if (signal_pending(current))
6198 return -EAGAIN;
6199
3c2ce60b
DB
6200 if (need_resched())
6201 cond_resched();
6202
61bd5218
JK
6203 if (env->log.level > 1 || (env->log.level && do_print_state)) {
6204 if (env->log.level > 1)
c08435ec 6205 verbose(env, "%d:", env->insn_idx);
c5fc9692 6206 else
979d63d5
DB
6207 verbose(env, "\nfrom %d to %d%s:",
6208 env->prev_insn_idx, env->insn_idx,
6209 env->cur_state->speculative ?
6210 " (speculative execution)" : "");
f4d7e40a 6211 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
6212 do_print_state = false;
6213 }
6214
61bd5218 6215 if (env->log.level) {
7105e828
DB
6216 const struct bpf_insn_cbs cbs = {
6217 .cb_print = verbose,
abe08840 6218 .private_data = env,
7105e828
DB
6219 };
6220
c08435ec
DB
6221 verbose_linfo(env, env->insn_idx, "; ");
6222 verbose(env, "%d: ", env->insn_idx);
abe08840 6223 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
6224 }
6225
cae1927c 6226 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
6227 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6228 env->prev_insn_idx);
cae1927c
JK
6229 if (err)
6230 return err;
6231 }
13a27dfc 6232
638f5b90 6233 regs = cur_regs(env);
c08435ec 6234 env->insn_aux_data[env->insn_idx].seen = true;
fd978bf7 6235
17a52670 6236 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 6237 err = check_alu_op(env, insn);
17a52670
AS
6238 if (err)
6239 return err;
6240
6241 } else if (class == BPF_LDX) {
3df126f3 6242 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
6243
6244 /* check for reserved fields is already done */
6245
17a52670 6246 /* check src operand */
dc503a8a 6247 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6248 if (err)
6249 return err;
6250
dc503a8a 6251 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6252 if (err)
6253 return err;
6254
725f9dcd
AS
6255 src_reg_type = regs[insn->src_reg].type;
6256
17a52670
AS
6257 /* check that memory (src_reg + off) is readable,
6258 * the state of dst_reg will be updated by this func
6259 */
c08435ec
DB
6260 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6261 insn->off, BPF_SIZE(insn->code),
6262 BPF_READ, insn->dst_reg, false);
17a52670
AS
6263 if (err)
6264 return err;
6265
c08435ec 6266 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6267
6268 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
6269 /* saw a valid insn
6270 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 6271 * save type to validate intersecting paths
9bac3d6d 6272 */
3df126f3 6273 *prev_src_type = src_reg_type;
9bac3d6d 6274
c64b7983 6275 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
6276 /* ABuser program is trying to use the same insn
6277 * dst_reg = *(u32*) (src_reg + off)
6278 * with different pointer types:
6279 * src_reg == ctx in one branch and
6280 * src_reg == stack|map in some other branch.
6281 * Reject it.
6282 */
61bd5218 6283 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
6284 return -EINVAL;
6285 }
6286
17a52670 6287 } else if (class == BPF_STX) {
3df126f3 6288 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 6289
17a52670 6290 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 6291 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
6292 if (err)
6293 return err;
c08435ec 6294 env->insn_idx++;
17a52670
AS
6295 continue;
6296 }
6297
17a52670 6298 /* check src1 operand */
dc503a8a 6299 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6300 if (err)
6301 return err;
6302 /* check src2 operand */
dc503a8a 6303 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6304 if (err)
6305 return err;
6306
d691f9e8
AS
6307 dst_reg_type = regs[insn->dst_reg].type;
6308
17a52670 6309 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6310 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6311 insn->off, BPF_SIZE(insn->code),
6312 BPF_WRITE, insn->src_reg, false);
17a52670
AS
6313 if (err)
6314 return err;
6315
c08435ec 6316 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6317
6318 if (*prev_dst_type == NOT_INIT) {
6319 *prev_dst_type = dst_reg_type;
c64b7983 6320 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 6321 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
6322 return -EINVAL;
6323 }
6324
17a52670
AS
6325 } else if (class == BPF_ST) {
6326 if (BPF_MODE(insn->code) != BPF_MEM ||
6327 insn->src_reg != BPF_REG_0) {
61bd5218 6328 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
6329 return -EINVAL;
6330 }
6331 /* check src operand */
dc503a8a 6332 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6333 if (err)
6334 return err;
6335
f37a8cb8 6336 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 6337 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
6338 insn->dst_reg,
6339 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
6340 return -EACCES;
6341 }
6342
17a52670 6343 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6344 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6345 insn->off, BPF_SIZE(insn->code),
6346 BPF_WRITE, -1, false);
17a52670
AS
6347 if (err)
6348 return err;
6349
092ed096 6350 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
6351 u8 opcode = BPF_OP(insn->code);
6352
6353 if (opcode == BPF_CALL) {
6354 if (BPF_SRC(insn->code) != BPF_K ||
6355 insn->off != 0 ||
f4d7e40a
AS
6356 (insn->src_reg != BPF_REG_0 &&
6357 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
6358 insn->dst_reg != BPF_REG_0 ||
6359 class == BPF_JMP32) {
61bd5218 6360 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
6361 return -EINVAL;
6362 }
6363
d83525ca
AS
6364 if (env->cur_state->active_spin_lock &&
6365 (insn->src_reg == BPF_PSEUDO_CALL ||
6366 insn->imm != BPF_FUNC_spin_unlock)) {
6367 verbose(env, "function calls are not allowed while holding a lock\n");
6368 return -EINVAL;
6369 }
f4d7e40a 6370 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 6371 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 6372 else
c08435ec 6373 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
6374 if (err)
6375 return err;
6376
6377 } else if (opcode == BPF_JA) {
6378 if (BPF_SRC(insn->code) != BPF_K ||
6379 insn->imm != 0 ||
6380 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6381 insn->dst_reg != BPF_REG_0 ||
6382 class == BPF_JMP32) {
61bd5218 6383 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
6384 return -EINVAL;
6385 }
6386
c08435ec 6387 env->insn_idx += insn->off + 1;
17a52670
AS
6388 continue;
6389
6390 } else if (opcode == BPF_EXIT) {
6391 if (BPF_SRC(insn->code) != BPF_K ||
6392 insn->imm != 0 ||
6393 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6394 insn->dst_reg != BPF_REG_0 ||
6395 class == BPF_JMP32) {
61bd5218 6396 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
6397 return -EINVAL;
6398 }
6399
d83525ca
AS
6400 if (env->cur_state->active_spin_lock) {
6401 verbose(env, "bpf_spin_unlock is missing\n");
6402 return -EINVAL;
6403 }
6404
f4d7e40a
AS
6405 if (state->curframe) {
6406 /* exit from nested function */
c08435ec
DB
6407 env->prev_insn_idx = env->insn_idx;
6408 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
6409 if (err)
6410 return err;
6411 do_print_state = true;
6412 continue;
6413 }
6414
fd978bf7
JS
6415 err = check_reference_leak(env);
6416 if (err)
6417 return err;
6418
17a52670
AS
6419 /* eBPF calling convetion is such that R0 is used
6420 * to return the value from eBPF program.
6421 * Make sure that it's readable at this time
6422 * of bpf_exit, which means that program wrote
6423 * something into it earlier
6424 */
dc503a8a 6425 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
6426 if (err)
6427 return err;
6428
1be7f75d 6429 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 6430 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
6431 return -EACCES;
6432 }
6433
390ee7e2
AS
6434 err = check_return_code(env);
6435 if (err)
6436 return err;
f1bca824 6437process_bpf_exit:
c08435ec
DB
6438 err = pop_stack(env, &env->prev_insn_idx,
6439 &env->insn_idx);
638f5b90
AS
6440 if (err < 0) {
6441 if (err != -ENOENT)
6442 return err;
17a52670
AS
6443 break;
6444 } else {
6445 do_print_state = true;
6446 continue;
6447 }
6448 } else {
c08435ec 6449 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
6450 if (err)
6451 return err;
6452 }
6453 } else if (class == BPF_LD) {
6454 u8 mode = BPF_MODE(insn->code);
6455
6456 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
6457 err = check_ld_abs(env, insn);
6458 if (err)
6459 return err;
6460
17a52670
AS
6461 } else if (mode == BPF_IMM) {
6462 err = check_ld_imm(env, insn);
6463 if (err)
6464 return err;
6465
c08435ec
DB
6466 env->insn_idx++;
6467 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 6468 } else {
61bd5218 6469 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
6470 return -EINVAL;
6471 }
6472 } else {
61bd5218 6473 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
6474 return -EINVAL;
6475 }
6476
c08435ec 6477 env->insn_idx++;
17a52670
AS
6478 }
6479
4bd95f4b
DB
6480 verbose(env, "processed %d insns (limit %d), stack depth ",
6481 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 6482 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 6483 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
6484
6485 verbose(env, "%d", depth);
f910cefa 6486 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
6487 verbose(env, "+");
6488 }
6489 verbose(env, "\n");
9c8105bd 6490 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
6491 return 0;
6492}
6493
56f668df
MKL
6494static int check_map_prealloc(struct bpf_map *map)
6495{
6496 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
6497 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6498 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
6499 !(map->map_flags & BPF_F_NO_PREALLOC);
6500}
6501
d83525ca
AS
6502static bool is_tracing_prog_type(enum bpf_prog_type type)
6503{
6504 switch (type) {
6505 case BPF_PROG_TYPE_KPROBE:
6506 case BPF_PROG_TYPE_TRACEPOINT:
6507 case BPF_PROG_TYPE_PERF_EVENT:
6508 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6509 return true;
6510 default:
6511 return false;
6512 }
6513}
6514
61bd5218
JK
6515static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6516 struct bpf_map *map,
fdc15d38
AS
6517 struct bpf_prog *prog)
6518
6519{
56f668df
MKL
6520 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6521 * preallocated hash maps, since doing memory allocation
6522 * in overflow_handler can crash depending on where nmi got
6523 * triggered.
6524 */
6525 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6526 if (!check_map_prealloc(map)) {
61bd5218 6527 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
6528 return -EINVAL;
6529 }
6530 if (map->inner_map_meta &&
6531 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 6532 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
6533 return -EINVAL;
6534 }
fdc15d38 6535 }
a3884572 6536
d83525ca
AS
6537 if ((is_tracing_prog_type(prog->type) ||
6538 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6539 map_value_has_spin_lock(map)) {
6540 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6541 return -EINVAL;
6542 }
6543
a3884572 6544 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 6545 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
6546 verbose(env, "offload device mismatch between prog and map\n");
6547 return -EINVAL;
6548 }
6549
fdc15d38
AS
6550 return 0;
6551}
6552
b741f163
RG
6553static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6554{
6555 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6556 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6557}
6558
0246e64d
AS
6559/* look for pseudo eBPF instructions that access map FDs and
6560 * replace them with actual map pointers
6561 */
58e2af8b 6562static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
6563{
6564 struct bpf_insn *insn = env->prog->insnsi;
6565 int insn_cnt = env->prog->len;
fdc15d38 6566 int i, j, err;
0246e64d 6567
f1f7714e 6568 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
6569 if (err)
6570 return err;
6571
0246e64d 6572 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 6573 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 6574 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 6575 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
6576 return -EINVAL;
6577 }
6578
d691f9e8
AS
6579 if (BPF_CLASS(insn->code) == BPF_STX &&
6580 ((BPF_MODE(insn->code) != BPF_MEM &&
6581 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 6582 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
6583 return -EINVAL;
6584 }
6585
0246e64d
AS
6586 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6587 struct bpf_map *map;
6588 struct fd f;
6589
6590 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6591 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6592 insn[1].off != 0) {
61bd5218 6593 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
6594 return -EINVAL;
6595 }
6596
6597 if (insn->src_reg == 0)
6598 /* valid generic load 64-bit imm */
6599 goto next_insn;
6600
6601 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
6602 verbose(env,
6603 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
6604 return -EINVAL;
6605 }
6606
6607 f = fdget(insn->imm);
c2101297 6608 map = __bpf_map_get(f);
0246e64d 6609 if (IS_ERR(map)) {
61bd5218 6610 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 6611 insn->imm);
0246e64d
AS
6612 return PTR_ERR(map);
6613 }
6614
61bd5218 6615 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
6616 if (err) {
6617 fdput(f);
6618 return err;
6619 }
6620
0246e64d
AS
6621 /* store map pointer inside BPF_LD_IMM64 instruction */
6622 insn[0].imm = (u32) (unsigned long) map;
6623 insn[1].imm = ((u64) (unsigned long) map) >> 32;
6624
6625 /* check whether we recorded this map already */
6626 for (j = 0; j < env->used_map_cnt; j++)
6627 if (env->used_maps[j] == map) {
6628 fdput(f);
6629 goto next_insn;
6630 }
6631
6632 if (env->used_map_cnt >= MAX_USED_MAPS) {
6633 fdput(f);
6634 return -E2BIG;
6635 }
6636
0246e64d
AS
6637 /* hold the map. If the program is rejected by verifier,
6638 * the map will be released by release_maps() or it
6639 * will be used by the valid program until it's unloaded
ab7f5bf0 6640 * and all maps are released in free_used_maps()
0246e64d 6641 */
92117d84
AS
6642 map = bpf_map_inc(map, false);
6643 if (IS_ERR(map)) {
6644 fdput(f);
6645 return PTR_ERR(map);
6646 }
6647 env->used_maps[env->used_map_cnt++] = map;
6648
b741f163 6649 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 6650 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 6651 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
6652 fdput(f);
6653 return -EBUSY;
6654 }
6655
0246e64d
AS
6656 fdput(f);
6657next_insn:
6658 insn++;
6659 i++;
5e581dad
DB
6660 continue;
6661 }
6662
6663 /* Basic sanity check before we invest more work here. */
6664 if (!bpf_opcode_in_insntable(insn->code)) {
6665 verbose(env, "unknown opcode %02x\n", insn->code);
6666 return -EINVAL;
0246e64d
AS
6667 }
6668 }
6669
6670 /* now all pseudo BPF_LD_IMM64 instructions load valid
6671 * 'struct bpf_map *' into a register instead of user map_fd.
6672 * These pointers will be used later by verifier to validate map access.
6673 */
6674 return 0;
6675}
6676
6677/* drop refcnt of maps used by the rejected program */
58e2af8b 6678static void release_maps(struct bpf_verifier_env *env)
0246e64d 6679{
8bad74f9 6680 enum bpf_cgroup_storage_type stype;
0246e64d
AS
6681 int i;
6682
8bad74f9
RG
6683 for_each_cgroup_storage_type(stype) {
6684 if (!env->prog->aux->cgroup_storage[stype])
6685 continue;
de9cbbaa 6686 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
6687 env->prog->aux->cgroup_storage[stype]);
6688 }
de9cbbaa 6689
0246e64d
AS
6690 for (i = 0; i < env->used_map_cnt; i++)
6691 bpf_map_put(env->used_maps[i]);
6692}
6693
6694/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 6695static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
6696{
6697 struct bpf_insn *insn = env->prog->insnsi;
6698 int insn_cnt = env->prog->len;
6699 int i;
6700
6701 for (i = 0; i < insn_cnt; i++, insn++)
6702 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6703 insn->src_reg = 0;
6704}
6705
8041902d
AS
6706/* single env->prog->insni[off] instruction was replaced with the range
6707 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
6708 * [0, off) and [off, end) to new locations, so the patched range stays zero
6709 */
6710static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6711 u32 off, u32 cnt)
6712{
6713 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 6714 int i;
8041902d
AS
6715
6716 if (cnt == 1)
6717 return 0;
fad953ce
KC
6718 new_data = vzalloc(array_size(prog_len,
6719 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
6720 if (!new_data)
6721 return -ENOMEM;
6722 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6723 memcpy(new_data + off + cnt - 1, old_data + off,
6724 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
6725 for (i = off; i < off + cnt - 1; i++)
6726 new_data[i].seen = true;
8041902d
AS
6727 env->insn_aux_data = new_data;
6728 vfree(old_data);
6729 return 0;
6730}
6731
cc8b0b92
AS
6732static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6733{
6734 int i;
6735
6736 if (len == 1)
6737 return;
4cb3d99c
JW
6738 /* NOTE: fake 'exit' subprog should be updated as well. */
6739 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 6740 if (env->subprog_info[i].start <= off)
cc8b0b92 6741 continue;
9c8105bd 6742 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
6743 }
6744}
6745
8041902d
AS
6746static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6747 const struct bpf_insn *patch, u32 len)
6748{
6749 struct bpf_prog *new_prog;
6750
6751 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6752 if (!new_prog)
6753 return NULL;
6754 if (adjust_insn_aux_data(env, new_prog->len, off, len))
6755 return NULL;
cc8b0b92 6756 adjust_subprog_starts(env, off, len);
8041902d
AS
6757 return new_prog;
6758}
6759
52875a04
JK
6760static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
6761 u32 off, u32 cnt)
6762{
6763 int i, j;
6764
6765 /* find first prog starting at or after off (first to remove) */
6766 for (i = 0; i < env->subprog_cnt; i++)
6767 if (env->subprog_info[i].start >= off)
6768 break;
6769 /* find first prog starting at or after off + cnt (first to stay) */
6770 for (j = i; j < env->subprog_cnt; j++)
6771 if (env->subprog_info[j].start >= off + cnt)
6772 break;
6773 /* if j doesn't start exactly at off + cnt, we are just removing
6774 * the front of previous prog
6775 */
6776 if (env->subprog_info[j].start != off + cnt)
6777 j--;
6778
6779 if (j > i) {
6780 struct bpf_prog_aux *aux = env->prog->aux;
6781 int move;
6782
6783 /* move fake 'exit' subprog as well */
6784 move = env->subprog_cnt + 1 - j;
6785
6786 memmove(env->subprog_info + i,
6787 env->subprog_info + j,
6788 sizeof(*env->subprog_info) * move);
6789 env->subprog_cnt -= j - i;
6790
6791 /* remove func_info */
6792 if (aux->func_info) {
6793 move = aux->func_info_cnt - j;
6794
6795 memmove(aux->func_info + i,
6796 aux->func_info + j,
6797 sizeof(*aux->func_info) * move);
6798 aux->func_info_cnt -= j - i;
6799 /* func_info->insn_off is set after all code rewrites,
6800 * in adjust_btf_func() - no need to adjust
6801 */
6802 }
6803 } else {
6804 /* convert i from "first prog to remove" to "first to adjust" */
6805 if (env->subprog_info[i].start == off)
6806 i++;
6807 }
6808
6809 /* update fake 'exit' subprog as well */
6810 for (; i <= env->subprog_cnt; i++)
6811 env->subprog_info[i].start -= cnt;
6812
6813 return 0;
6814}
6815
6816static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
6817 u32 cnt)
6818{
6819 struct bpf_prog *prog = env->prog;
6820 u32 i, l_off, l_cnt, nr_linfo;
6821 struct bpf_line_info *linfo;
6822
6823 nr_linfo = prog->aux->nr_linfo;
6824 if (!nr_linfo)
6825 return 0;
6826
6827 linfo = prog->aux->linfo;
6828
6829 /* find first line info to remove, count lines to be removed */
6830 for (i = 0; i < nr_linfo; i++)
6831 if (linfo[i].insn_off >= off)
6832 break;
6833
6834 l_off = i;
6835 l_cnt = 0;
6836 for (; i < nr_linfo; i++)
6837 if (linfo[i].insn_off < off + cnt)
6838 l_cnt++;
6839 else
6840 break;
6841
6842 /* First live insn doesn't match first live linfo, it needs to "inherit"
6843 * last removed linfo. prog is already modified, so prog->len == off
6844 * means no live instructions after (tail of the program was removed).
6845 */
6846 if (prog->len != off && l_cnt &&
6847 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
6848 l_cnt--;
6849 linfo[--i].insn_off = off + cnt;
6850 }
6851
6852 /* remove the line info which refer to the removed instructions */
6853 if (l_cnt) {
6854 memmove(linfo + l_off, linfo + i,
6855 sizeof(*linfo) * (nr_linfo - i));
6856
6857 prog->aux->nr_linfo -= l_cnt;
6858 nr_linfo = prog->aux->nr_linfo;
6859 }
6860
6861 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
6862 for (i = l_off; i < nr_linfo; i++)
6863 linfo[i].insn_off -= cnt;
6864
6865 /* fix up all subprogs (incl. 'exit') which start >= off */
6866 for (i = 0; i <= env->subprog_cnt; i++)
6867 if (env->subprog_info[i].linfo_idx > l_off) {
6868 /* program may have started in the removed region but
6869 * may not be fully removed
6870 */
6871 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
6872 env->subprog_info[i].linfo_idx -= l_cnt;
6873 else
6874 env->subprog_info[i].linfo_idx = l_off;
6875 }
6876
6877 return 0;
6878}
6879
6880static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
6881{
6882 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6883 unsigned int orig_prog_len = env->prog->len;
6884 int err;
6885
08ca90af
JK
6886 if (bpf_prog_is_dev_bound(env->prog->aux))
6887 bpf_prog_offload_remove_insns(env, off, cnt);
6888
52875a04
JK
6889 err = bpf_remove_insns(env->prog, off, cnt);
6890 if (err)
6891 return err;
6892
6893 err = adjust_subprog_starts_after_remove(env, off, cnt);
6894 if (err)
6895 return err;
6896
6897 err = bpf_adj_linfo_after_remove(env, off, cnt);
6898 if (err)
6899 return err;
6900
6901 memmove(aux_data + off, aux_data + off + cnt,
6902 sizeof(*aux_data) * (orig_prog_len - off - cnt));
6903
6904 return 0;
6905}
6906
2a5418a1
DB
6907/* The verifier does more data flow analysis than llvm and will not
6908 * explore branches that are dead at run time. Malicious programs can
6909 * have dead code too. Therefore replace all dead at-run-time code
6910 * with 'ja -1'.
6911 *
6912 * Just nops are not optimal, e.g. if they would sit at the end of the
6913 * program and through another bug we would manage to jump there, then
6914 * we'd execute beyond program memory otherwise. Returning exception
6915 * code also wouldn't work since we can have subprogs where the dead
6916 * code could be located.
c131187d
AS
6917 */
6918static void sanitize_dead_code(struct bpf_verifier_env *env)
6919{
6920 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 6921 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
6922 struct bpf_insn *insn = env->prog->insnsi;
6923 const int insn_cnt = env->prog->len;
6924 int i;
6925
6926 for (i = 0; i < insn_cnt; i++) {
6927 if (aux_data[i].seen)
6928 continue;
2a5418a1 6929 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
6930 }
6931}
6932
e2ae4ca2
JK
6933static bool insn_is_cond_jump(u8 code)
6934{
6935 u8 op;
6936
092ed096
JW
6937 if (BPF_CLASS(code) == BPF_JMP32)
6938 return true;
6939
e2ae4ca2
JK
6940 if (BPF_CLASS(code) != BPF_JMP)
6941 return false;
6942
6943 op = BPF_OP(code);
6944 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
6945}
6946
6947static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
6948{
6949 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6950 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
6951 struct bpf_insn *insn = env->prog->insnsi;
6952 const int insn_cnt = env->prog->len;
6953 int i;
6954
6955 for (i = 0; i < insn_cnt; i++, insn++) {
6956 if (!insn_is_cond_jump(insn->code))
6957 continue;
6958
6959 if (!aux_data[i + 1].seen)
6960 ja.off = insn->off;
6961 else if (!aux_data[i + 1 + insn->off].seen)
6962 ja.off = 0;
6963 else
6964 continue;
6965
08ca90af
JK
6966 if (bpf_prog_is_dev_bound(env->prog->aux))
6967 bpf_prog_offload_replace_insn(env, i, &ja);
6968
e2ae4ca2
JK
6969 memcpy(insn, &ja, sizeof(ja));
6970 }
6971}
6972
52875a04
JK
6973static int opt_remove_dead_code(struct bpf_verifier_env *env)
6974{
6975 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6976 int insn_cnt = env->prog->len;
6977 int i, err;
6978
6979 for (i = 0; i < insn_cnt; i++) {
6980 int j;
6981
6982 j = 0;
6983 while (i + j < insn_cnt && !aux_data[i + j].seen)
6984 j++;
6985 if (!j)
6986 continue;
6987
6988 err = verifier_remove_insns(env, i, j);
6989 if (err)
6990 return err;
6991 insn_cnt = env->prog->len;
6992 }
6993
6994 return 0;
6995}
6996
a1b14abc
JK
6997static int opt_remove_nops(struct bpf_verifier_env *env)
6998{
6999 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7000 struct bpf_insn *insn = env->prog->insnsi;
7001 int insn_cnt = env->prog->len;
7002 int i, err;
7003
7004 for (i = 0; i < insn_cnt; i++) {
7005 if (memcmp(&insn[i], &ja, sizeof(ja)))
7006 continue;
7007
7008 err = verifier_remove_insns(env, i, 1);
7009 if (err)
7010 return err;
7011 insn_cnt--;
7012 i--;
7013 }
7014
7015 return 0;
7016}
7017
c64b7983
JS
7018/* convert load instructions that access fields of a context type into a
7019 * sequence of instructions that access fields of the underlying structure:
7020 * struct __sk_buff -> struct sk_buff
7021 * struct bpf_sock_ops -> struct sock
9bac3d6d 7022 */
58e2af8b 7023static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 7024{
00176a34 7025 const struct bpf_verifier_ops *ops = env->ops;
f96da094 7026 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 7027 const int insn_cnt = env->prog->len;
36bbef52 7028 struct bpf_insn insn_buf[16], *insn;
46f53a65 7029 u32 target_size, size_default, off;
9bac3d6d 7030 struct bpf_prog *new_prog;
d691f9e8 7031 enum bpf_access_type type;
f96da094 7032 bool is_narrower_load;
9bac3d6d 7033
b09928b9
DB
7034 if (ops->gen_prologue || env->seen_direct_write) {
7035 if (!ops->gen_prologue) {
7036 verbose(env, "bpf verifier is misconfigured\n");
7037 return -EINVAL;
7038 }
36bbef52
DB
7039 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7040 env->prog);
7041 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 7042 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
7043 return -EINVAL;
7044 } else if (cnt) {
8041902d 7045 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
7046 if (!new_prog)
7047 return -ENOMEM;
8041902d 7048
36bbef52 7049 env->prog = new_prog;
3df126f3 7050 delta += cnt - 1;
36bbef52
DB
7051 }
7052 }
7053
c64b7983 7054 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
7055 return 0;
7056
3df126f3 7057 insn = env->prog->insnsi + delta;
36bbef52 7058
9bac3d6d 7059 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
7060 bpf_convert_ctx_access_t convert_ctx_access;
7061
62c7989b
DB
7062 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7063 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7064 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 7065 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 7066 type = BPF_READ;
62c7989b
DB
7067 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7068 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7069 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 7070 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
7071 type = BPF_WRITE;
7072 else
9bac3d6d
AS
7073 continue;
7074
af86ca4e
AS
7075 if (type == BPF_WRITE &&
7076 env->insn_aux_data[i + delta].sanitize_stack_off) {
7077 struct bpf_insn patch[] = {
7078 /* Sanitize suspicious stack slot with zero.
7079 * There are no memory dependencies for this store,
7080 * since it's only using frame pointer and immediate
7081 * constant of zero
7082 */
7083 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7084 env->insn_aux_data[i + delta].sanitize_stack_off,
7085 0),
7086 /* the original STX instruction will immediately
7087 * overwrite the same stack slot with appropriate value
7088 */
7089 *insn,
7090 };
7091
7092 cnt = ARRAY_SIZE(patch);
7093 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7094 if (!new_prog)
7095 return -ENOMEM;
7096
7097 delta += cnt - 1;
7098 env->prog = new_prog;
7099 insn = new_prog->insnsi + i + delta;
7100 continue;
7101 }
7102
c64b7983
JS
7103 switch (env->insn_aux_data[i + delta].ptr_type) {
7104 case PTR_TO_CTX:
7105 if (!ops->convert_ctx_access)
7106 continue;
7107 convert_ctx_access = ops->convert_ctx_access;
7108 break;
7109 case PTR_TO_SOCKET:
7110 convert_ctx_access = bpf_sock_convert_ctx_access;
7111 break;
7112 default:
9bac3d6d 7113 continue;
c64b7983 7114 }
9bac3d6d 7115
31fd8581 7116 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 7117 size = BPF_LDST_BYTES(insn);
31fd8581
YS
7118
7119 /* If the read access is a narrower load of the field,
7120 * convert to a 4/8-byte load, to minimum program type specific
7121 * convert_ctx_access changes. If conversion is successful,
7122 * we will apply proper mask to the result.
7123 */
f96da094 7124 is_narrower_load = size < ctx_field_size;
46f53a65
AI
7125 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7126 off = insn->off;
31fd8581 7127 if (is_narrower_load) {
f96da094
DB
7128 u8 size_code;
7129
7130 if (type == BPF_WRITE) {
61bd5218 7131 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
7132 return -EINVAL;
7133 }
31fd8581 7134
f96da094 7135 size_code = BPF_H;
31fd8581
YS
7136 if (ctx_field_size == 4)
7137 size_code = BPF_W;
7138 else if (ctx_field_size == 8)
7139 size_code = BPF_DW;
f96da094 7140
bc23105c 7141 insn->off = off & ~(size_default - 1);
31fd8581
YS
7142 insn->code = BPF_LDX | BPF_MEM | size_code;
7143 }
f96da094
DB
7144
7145 target_size = 0;
c64b7983
JS
7146 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7147 &target_size);
f96da094
DB
7148 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7149 (ctx_field_size && !target_size)) {
61bd5218 7150 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
7151 return -EINVAL;
7152 }
f96da094
DB
7153
7154 if (is_narrower_load && size < target_size) {
46f53a65
AI
7155 u8 shift = (off & (size_default - 1)) * 8;
7156
7157 if (ctx_field_size <= 4) {
7158 if (shift)
7159 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7160 insn->dst_reg,
7161 shift);
31fd8581 7162 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 7163 (1 << size * 8) - 1);
46f53a65
AI
7164 } else {
7165 if (shift)
7166 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7167 insn->dst_reg,
7168 shift);
31fd8581 7169 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 7170 (1 << size * 8) - 1);
46f53a65 7171 }
31fd8581 7172 }
9bac3d6d 7173
8041902d 7174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
7175 if (!new_prog)
7176 return -ENOMEM;
7177
3df126f3 7178 delta += cnt - 1;
9bac3d6d
AS
7179
7180 /* keep walking new program and skip insns we just inserted */
7181 env->prog = new_prog;
3df126f3 7182 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
7183 }
7184
7185 return 0;
7186}
7187
1c2a088a
AS
7188static int jit_subprogs(struct bpf_verifier_env *env)
7189{
7190 struct bpf_prog *prog = env->prog, **func, *tmp;
7191 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 7192 struct bpf_insn *insn;
1c2a088a 7193 void *old_bpf_func;
c454a46b 7194 int err;
1c2a088a 7195
f910cefa 7196 if (env->subprog_cnt <= 1)
1c2a088a
AS
7197 return 0;
7198
7105e828 7199 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
7200 if (insn->code != (BPF_JMP | BPF_CALL) ||
7201 insn->src_reg != BPF_PSEUDO_CALL)
7202 continue;
c7a89784
DB
7203 /* Upon error here we cannot fall back to interpreter but
7204 * need a hard reject of the program. Thus -EFAULT is
7205 * propagated in any case.
7206 */
1c2a088a
AS
7207 subprog = find_subprog(env, i + insn->imm + 1);
7208 if (subprog < 0) {
7209 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7210 i + insn->imm + 1);
7211 return -EFAULT;
7212 }
7213 /* temporarily remember subprog id inside insn instead of
7214 * aux_data, since next loop will split up all insns into funcs
7215 */
f910cefa 7216 insn->off = subprog;
1c2a088a
AS
7217 /* remember original imm in case JIT fails and fallback
7218 * to interpreter will be needed
7219 */
7220 env->insn_aux_data[i].call_imm = insn->imm;
7221 /* point imm to __bpf_call_base+1 from JITs point of view */
7222 insn->imm = 1;
7223 }
7224
c454a46b
MKL
7225 err = bpf_prog_alloc_jited_linfo(prog);
7226 if (err)
7227 goto out_undo_insn;
7228
7229 err = -ENOMEM;
6396bb22 7230 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 7231 if (!func)
c7a89784 7232 goto out_undo_insn;
1c2a088a 7233
f910cefa 7234 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 7235 subprog_start = subprog_end;
4cb3d99c 7236 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
7237
7238 len = subprog_end - subprog_start;
7239 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
7240 if (!func[i])
7241 goto out_free;
7242 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7243 len * sizeof(struct bpf_insn));
4f74d809 7244 func[i]->type = prog->type;
1c2a088a 7245 func[i]->len = len;
4f74d809
DB
7246 if (bpf_prog_calc_tag(func[i]))
7247 goto out_free;
1c2a088a 7248 func[i]->is_func = 1;
ba64e7d8
YS
7249 func[i]->aux->func_idx = i;
7250 /* the btf and func_info will be freed only at prog->aux */
7251 func[i]->aux->btf = prog->aux->btf;
7252 func[i]->aux->func_info = prog->aux->func_info;
7253
1c2a088a
AS
7254 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7255 * Long term would need debug info to populate names
7256 */
7257 func[i]->aux->name[0] = 'F';
9c8105bd 7258 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 7259 func[i]->jit_requested = 1;
c454a46b
MKL
7260 func[i]->aux->linfo = prog->aux->linfo;
7261 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7262 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7263 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
7264 func[i] = bpf_int_jit_compile(func[i]);
7265 if (!func[i]->jited) {
7266 err = -ENOTSUPP;
7267 goto out_free;
7268 }
7269 cond_resched();
7270 }
7271 /* at this point all bpf functions were successfully JITed
7272 * now populate all bpf_calls with correct addresses and
7273 * run last pass of JIT
7274 */
f910cefa 7275 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7276 insn = func[i]->insnsi;
7277 for (j = 0; j < func[i]->len; j++, insn++) {
7278 if (insn->code != (BPF_JMP | BPF_CALL) ||
7279 insn->src_reg != BPF_PSEUDO_CALL)
7280 continue;
7281 subprog = insn->off;
1c2a088a
AS
7282 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7283 func[subprog]->bpf_func -
7284 __bpf_call_base;
7285 }
2162fed4
SD
7286
7287 /* we use the aux data to keep a list of the start addresses
7288 * of the JITed images for each function in the program
7289 *
7290 * for some architectures, such as powerpc64, the imm field
7291 * might not be large enough to hold the offset of the start
7292 * address of the callee's JITed image from __bpf_call_base
7293 *
7294 * in such cases, we can lookup the start address of a callee
7295 * by using its subprog id, available from the off field of
7296 * the call instruction, as an index for this list
7297 */
7298 func[i]->aux->func = func;
7299 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 7300 }
f910cefa 7301 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7302 old_bpf_func = func[i]->bpf_func;
7303 tmp = bpf_int_jit_compile(func[i]);
7304 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7305 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 7306 err = -ENOTSUPP;
1c2a088a
AS
7307 goto out_free;
7308 }
7309 cond_resched();
7310 }
7311
7312 /* finally lock prog and jit images for all functions and
7313 * populate kallsysm
7314 */
f910cefa 7315 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7316 bpf_prog_lock_ro(func[i]);
7317 bpf_prog_kallsyms_add(func[i]);
7318 }
7105e828
DB
7319
7320 /* Last step: make now unused interpreter insns from main
7321 * prog consistent for later dump requests, so they can
7322 * later look the same as if they were interpreted only.
7323 */
7324 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
7325 if (insn->code != (BPF_JMP | BPF_CALL) ||
7326 insn->src_reg != BPF_PSEUDO_CALL)
7327 continue;
7328 insn->off = env->insn_aux_data[i].call_imm;
7329 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 7330 insn->imm = subprog;
7105e828
DB
7331 }
7332
1c2a088a
AS
7333 prog->jited = 1;
7334 prog->bpf_func = func[0]->bpf_func;
7335 prog->aux->func = func;
f910cefa 7336 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 7337 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
7338 return 0;
7339out_free:
f910cefa 7340 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
7341 if (func[i])
7342 bpf_jit_free(func[i]);
7343 kfree(func);
c7a89784 7344out_undo_insn:
1c2a088a
AS
7345 /* cleanup main prog to be interpreted */
7346 prog->jit_requested = 0;
7347 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7348 if (insn->code != (BPF_JMP | BPF_CALL) ||
7349 insn->src_reg != BPF_PSEUDO_CALL)
7350 continue;
7351 insn->off = 0;
7352 insn->imm = env->insn_aux_data[i].call_imm;
7353 }
c454a46b 7354 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
7355 return err;
7356}
7357
1ea47e01
AS
7358static int fixup_call_args(struct bpf_verifier_env *env)
7359{
19d28fbd 7360#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
7361 struct bpf_prog *prog = env->prog;
7362 struct bpf_insn *insn = prog->insnsi;
7363 int i, depth;
19d28fbd 7364#endif
e4052d06 7365 int err = 0;
1ea47e01 7366
e4052d06
QM
7367 if (env->prog->jit_requested &&
7368 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
7369 err = jit_subprogs(env);
7370 if (err == 0)
1c2a088a 7371 return 0;
c7a89784
DB
7372 if (err == -EFAULT)
7373 return err;
19d28fbd
DM
7374 }
7375#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
7376 for (i = 0; i < prog->len; i++, insn++) {
7377 if (insn->code != (BPF_JMP | BPF_CALL) ||
7378 insn->src_reg != BPF_PSEUDO_CALL)
7379 continue;
7380 depth = get_callee_stack_depth(env, insn, i);
7381 if (depth < 0)
7382 return depth;
7383 bpf_patch_call_args(insn, depth);
7384 }
19d28fbd
DM
7385 err = 0;
7386#endif
7387 return err;
1ea47e01
AS
7388}
7389
79741b3b 7390/* fixup insn->imm field of bpf_call instructions
81ed18ab 7391 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
7392 *
7393 * this function is called after eBPF program passed verification
7394 */
79741b3b 7395static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 7396{
79741b3b
AS
7397 struct bpf_prog *prog = env->prog;
7398 struct bpf_insn *insn = prog->insnsi;
e245c5c6 7399 const struct bpf_func_proto *fn;
79741b3b 7400 const int insn_cnt = prog->len;
09772d92 7401 const struct bpf_map_ops *ops;
c93552c4 7402 struct bpf_insn_aux_data *aux;
81ed18ab
AS
7403 struct bpf_insn insn_buf[16];
7404 struct bpf_prog *new_prog;
7405 struct bpf_map *map_ptr;
7406 int i, cnt, delta = 0;
e245c5c6 7407
79741b3b 7408 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
7409 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7410 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7411 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 7412 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
7413 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7414 struct bpf_insn mask_and_div[] = {
7415 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7416 /* Rx div 0 -> 0 */
7417 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7418 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7419 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7420 *insn,
7421 };
7422 struct bpf_insn mask_and_mod[] = {
7423 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7424 /* Rx mod 0 -> Rx */
7425 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7426 *insn,
7427 };
7428 struct bpf_insn *patchlet;
7429
7430 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7431 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7432 patchlet = mask_and_div + (is64 ? 1 : 0);
7433 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7434 } else {
7435 patchlet = mask_and_mod + (is64 ? 1 : 0);
7436 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7437 }
7438
7439 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
7440 if (!new_prog)
7441 return -ENOMEM;
7442
7443 delta += cnt - 1;
7444 env->prog = prog = new_prog;
7445 insn = new_prog->insnsi + i + delta;
7446 continue;
7447 }
7448
e0cea7ce
DB
7449 if (BPF_CLASS(insn->code) == BPF_LD &&
7450 (BPF_MODE(insn->code) == BPF_ABS ||
7451 BPF_MODE(insn->code) == BPF_IND)) {
7452 cnt = env->ops->gen_ld_abs(insn, insn_buf);
7453 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7454 verbose(env, "bpf verifier is misconfigured\n");
7455 return -EINVAL;
7456 }
7457
7458 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7459 if (!new_prog)
7460 return -ENOMEM;
7461
7462 delta += cnt - 1;
7463 env->prog = prog = new_prog;
7464 insn = new_prog->insnsi + i + delta;
7465 continue;
7466 }
7467
979d63d5
DB
7468 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7469 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7470 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7471 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7472 struct bpf_insn insn_buf[16];
7473 struct bpf_insn *patch = &insn_buf[0];
7474 bool issrc, isneg;
7475 u32 off_reg;
7476
7477 aux = &env->insn_aux_data[i + delta];
7478 if (!aux->alu_state)
7479 continue;
7480
7481 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7482 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7483 BPF_ALU_SANITIZE_SRC;
7484
7485 off_reg = issrc ? insn->src_reg : insn->dst_reg;
7486 if (isneg)
7487 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7488 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7489 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7490 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7491 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7492 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7493 if (issrc) {
7494 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7495 off_reg);
7496 insn->src_reg = BPF_REG_AX;
7497 } else {
7498 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7499 BPF_REG_AX);
7500 }
7501 if (isneg)
7502 insn->code = insn->code == code_add ?
7503 code_sub : code_add;
7504 *patch++ = *insn;
7505 if (issrc && isneg)
7506 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7507 cnt = patch - insn_buf;
7508
7509 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7510 if (!new_prog)
7511 return -ENOMEM;
7512
7513 delta += cnt - 1;
7514 env->prog = prog = new_prog;
7515 insn = new_prog->insnsi + i + delta;
7516 continue;
7517 }
7518
79741b3b
AS
7519 if (insn->code != (BPF_JMP | BPF_CALL))
7520 continue;
cc8b0b92
AS
7521 if (insn->src_reg == BPF_PSEUDO_CALL)
7522 continue;
e245c5c6 7523
79741b3b
AS
7524 if (insn->imm == BPF_FUNC_get_route_realm)
7525 prog->dst_needed = 1;
7526 if (insn->imm == BPF_FUNC_get_prandom_u32)
7527 bpf_user_rnd_init_once();
9802d865
JB
7528 if (insn->imm == BPF_FUNC_override_return)
7529 prog->kprobe_override = 1;
79741b3b 7530 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
7531 /* If we tail call into other programs, we
7532 * cannot make any assumptions since they can
7533 * be replaced dynamically during runtime in
7534 * the program array.
7535 */
7536 prog->cb_access = 1;
80a58d02 7537 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 7538 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 7539
79741b3b
AS
7540 /* mark bpf_tail_call as different opcode to avoid
7541 * conditional branch in the interpeter for every normal
7542 * call and to prevent accidental JITing by JIT compiler
7543 * that doesn't support bpf_tail_call yet
e245c5c6 7544 */
79741b3b 7545 insn->imm = 0;
71189fa9 7546 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 7547
c93552c4
DB
7548 aux = &env->insn_aux_data[i + delta];
7549 if (!bpf_map_ptr_unpriv(aux))
7550 continue;
7551
b2157399
AS
7552 /* instead of changing every JIT dealing with tail_call
7553 * emit two extra insns:
7554 * if (index >= max_entries) goto out;
7555 * index &= array->index_mask;
7556 * to avoid out-of-bounds cpu speculation
7557 */
c93552c4 7558 if (bpf_map_ptr_poisoned(aux)) {
40950343 7559 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
7560 return -EINVAL;
7561 }
c93552c4
DB
7562
7563 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
7564 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7565 map_ptr->max_entries, 2);
7566 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7567 container_of(map_ptr,
7568 struct bpf_array,
7569 map)->index_mask);
7570 insn_buf[2] = *insn;
7571 cnt = 3;
7572 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7573 if (!new_prog)
7574 return -ENOMEM;
7575
7576 delta += cnt - 1;
7577 env->prog = prog = new_prog;
7578 insn = new_prog->insnsi + i + delta;
79741b3b
AS
7579 continue;
7580 }
e245c5c6 7581
89c63074 7582 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
7583 * and other inlining handlers are currently limited to 64 bit
7584 * only.
89c63074 7585 */
60b58afc 7586 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
7587 (insn->imm == BPF_FUNC_map_lookup_elem ||
7588 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
7589 insn->imm == BPF_FUNC_map_delete_elem ||
7590 insn->imm == BPF_FUNC_map_push_elem ||
7591 insn->imm == BPF_FUNC_map_pop_elem ||
7592 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
7593 aux = &env->insn_aux_data[i + delta];
7594 if (bpf_map_ptr_poisoned(aux))
7595 goto patch_call_imm;
7596
7597 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
7598 ops = map_ptr->ops;
7599 if (insn->imm == BPF_FUNC_map_lookup_elem &&
7600 ops->map_gen_lookup) {
7601 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7602 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7603 verbose(env, "bpf verifier is misconfigured\n");
7604 return -EINVAL;
7605 }
81ed18ab 7606
09772d92
DB
7607 new_prog = bpf_patch_insn_data(env, i + delta,
7608 insn_buf, cnt);
7609 if (!new_prog)
7610 return -ENOMEM;
81ed18ab 7611
09772d92
DB
7612 delta += cnt - 1;
7613 env->prog = prog = new_prog;
7614 insn = new_prog->insnsi + i + delta;
7615 continue;
7616 }
81ed18ab 7617
09772d92
DB
7618 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7619 (void *(*)(struct bpf_map *map, void *key))NULL));
7620 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7621 (int (*)(struct bpf_map *map, void *key))NULL));
7622 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7623 (int (*)(struct bpf_map *map, void *key, void *value,
7624 u64 flags))NULL));
84430d42
DB
7625 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7626 (int (*)(struct bpf_map *map, void *value,
7627 u64 flags))NULL));
7628 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7629 (int (*)(struct bpf_map *map, void *value))NULL));
7630 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7631 (int (*)(struct bpf_map *map, void *value))NULL));
7632
09772d92
DB
7633 switch (insn->imm) {
7634 case BPF_FUNC_map_lookup_elem:
7635 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7636 __bpf_call_base;
7637 continue;
7638 case BPF_FUNC_map_update_elem:
7639 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7640 __bpf_call_base;
7641 continue;
7642 case BPF_FUNC_map_delete_elem:
7643 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7644 __bpf_call_base;
7645 continue;
84430d42
DB
7646 case BPF_FUNC_map_push_elem:
7647 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7648 __bpf_call_base;
7649 continue;
7650 case BPF_FUNC_map_pop_elem:
7651 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7652 __bpf_call_base;
7653 continue;
7654 case BPF_FUNC_map_peek_elem:
7655 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7656 __bpf_call_base;
7657 continue;
09772d92 7658 }
81ed18ab 7659
09772d92 7660 goto patch_call_imm;
81ed18ab
AS
7661 }
7662
7663patch_call_imm:
5e43f899 7664 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
7665 /* all functions that have prototype and verifier allowed
7666 * programs to call them, must be real in-kernel functions
7667 */
7668 if (!fn->func) {
61bd5218
JK
7669 verbose(env,
7670 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
7671 func_id_name(insn->imm), insn->imm);
7672 return -EFAULT;
e245c5c6 7673 }
79741b3b 7674 insn->imm = fn->func - __bpf_call_base;
e245c5c6 7675 }
e245c5c6 7676
79741b3b
AS
7677 return 0;
7678}
e245c5c6 7679
58e2af8b 7680static void free_states(struct bpf_verifier_env *env)
f1bca824 7681{
58e2af8b 7682 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
7683 int i;
7684
7685 if (!env->explored_states)
7686 return;
7687
7688 for (i = 0; i < env->prog->len; i++) {
7689 sl = env->explored_states[i];
7690
7691 if (sl)
7692 while (sl != STATE_LIST_MARK) {
7693 sln = sl->next;
1969db47 7694 free_verifier_state(&sl->state, false);
f1bca824
AS
7695 kfree(sl);
7696 sl = sln;
7697 }
7698 }
7699
7700 kfree(env->explored_states);
7701}
7702
838e9690
YS
7703int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
7704 union bpf_attr __user *uattr)
51580e79 7705{
58e2af8b 7706 struct bpf_verifier_env *env;
b9193c1b 7707 struct bpf_verifier_log *log;
9e4c24e7 7708 int i, len, ret = -EINVAL;
e2ae4ca2 7709 bool is_priv;
51580e79 7710
eba0c929
AB
7711 /* no program is valid */
7712 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
7713 return -EINVAL;
7714
58e2af8b 7715 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
7716 * allocate/free it every time bpf_check() is called
7717 */
58e2af8b 7718 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
7719 if (!env)
7720 return -ENOMEM;
61bd5218 7721 log = &env->log;
cbd35700 7722
9e4c24e7 7723 len = (*prog)->len;
fad953ce 7724 env->insn_aux_data =
9e4c24e7 7725 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
7726 ret = -ENOMEM;
7727 if (!env->insn_aux_data)
7728 goto err_free_env;
9e4c24e7
JK
7729 for (i = 0; i < len; i++)
7730 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 7731 env->prog = *prog;
00176a34 7732 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 7733
cbd35700
AS
7734 /* grab the mutex to protect few globals used by verifier */
7735 mutex_lock(&bpf_verifier_lock);
7736
7737 if (attr->log_level || attr->log_buf || attr->log_size) {
7738 /* user requested verbose verifier output
7739 * and supplied buffer to store the verification trace
7740 */
e7bf8249
JK
7741 log->level = attr->log_level;
7742 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
7743 log->len_total = attr->log_size;
cbd35700
AS
7744
7745 ret = -EINVAL;
e7bf8249
JK
7746 /* log attributes have to be sane */
7747 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
7748 !log->level || !log->ubuf)
3df126f3 7749 goto err_unlock;
cbd35700 7750 }
1ad2f583
DB
7751
7752 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
7753 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 7754 env->strict_alignment = true;
e9ee9efc
DM
7755 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
7756 env->strict_alignment = false;
cbd35700 7757
e2ae4ca2
JK
7758 is_priv = capable(CAP_SYS_ADMIN);
7759 env->allow_ptr_leaks = is_priv;
7760
f4e3ec0d
JK
7761 ret = replace_map_fd_with_map_ptr(env);
7762 if (ret < 0)
7763 goto skip_full_check;
7764
cae1927c 7765 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 7766 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 7767 if (ret)
f4e3ec0d 7768 goto skip_full_check;
ab3f0063
JK
7769 }
7770
9bac3d6d 7771 env->explored_states = kcalloc(env->prog->len,
58e2af8b 7772 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
7773 GFP_USER);
7774 ret = -ENOMEM;
7775 if (!env->explored_states)
7776 goto skip_full_check;
7777
d9762e84 7778 ret = check_subprogs(env);
475fb78f
AS
7779 if (ret < 0)
7780 goto skip_full_check;
7781
c454a46b 7782 ret = check_btf_info(env, attr, uattr);
838e9690
YS
7783 if (ret < 0)
7784 goto skip_full_check;
7785
d9762e84
MKL
7786 ret = check_cfg(env);
7787 if (ret < 0)
7788 goto skip_full_check;
7789
17a52670 7790 ret = do_check(env);
8c01c4f8
CG
7791 if (env->cur_state) {
7792 free_verifier_state(env->cur_state, true);
7793 env->cur_state = NULL;
7794 }
cbd35700 7795
c941ce9c
QM
7796 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
7797 ret = bpf_prog_offload_finalize(env);
7798
0246e64d 7799skip_full_check:
638f5b90 7800 while (!pop_stack(env, NULL, NULL));
f1bca824 7801 free_states(env);
0246e64d 7802
c131187d 7803 if (ret == 0)
9b38c405 7804 ret = check_max_stack_depth(env);
c131187d 7805
9b38c405 7806 /* instruction rewrites happen after this point */
e2ae4ca2
JK
7807 if (is_priv) {
7808 if (ret == 0)
7809 opt_hard_wire_dead_code_branches(env);
52875a04
JK
7810 if (ret == 0)
7811 ret = opt_remove_dead_code(env);
a1b14abc
JK
7812 if (ret == 0)
7813 ret = opt_remove_nops(env);
52875a04
JK
7814 } else {
7815 if (ret == 0)
7816 sanitize_dead_code(env);
e2ae4ca2
JK
7817 }
7818
9bac3d6d
AS
7819 if (ret == 0)
7820 /* program is valid, convert *(u32*)(ctx + off) accesses */
7821 ret = convert_ctx_accesses(env);
7822
e245c5c6 7823 if (ret == 0)
79741b3b 7824 ret = fixup_bpf_calls(env);
e245c5c6 7825
1ea47e01
AS
7826 if (ret == 0)
7827 ret = fixup_call_args(env);
7828
a2a7d570 7829 if (log->level && bpf_verifier_log_full(log))
cbd35700 7830 ret = -ENOSPC;
a2a7d570 7831 if (log->level && !log->ubuf) {
cbd35700 7832 ret = -EFAULT;
a2a7d570 7833 goto err_release_maps;
cbd35700
AS
7834 }
7835
0246e64d
AS
7836 if (ret == 0 && env->used_map_cnt) {
7837 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
7838 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7839 sizeof(env->used_maps[0]),
7840 GFP_KERNEL);
0246e64d 7841
9bac3d6d 7842 if (!env->prog->aux->used_maps) {
0246e64d 7843 ret = -ENOMEM;
a2a7d570 7844 goto err_release_maps;
0246e64d
AS
7845 }
7846
9bac3d6d 7847 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 7848 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 7849 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
7850
7851 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
7852 * bpf_ld_imm64 instructions
7853 */
7854 convert_pseudo_ld_imm64(env);
7855 }
cbd35700 7856
ba64e7d8
YS
7857 if (ret == 0)
7858 adjust_btf_func(env);
7859
a2a7d570 7860err_release_maps:
9bac3d6d 7861 if (!env->prog->aux->used_maps)
0246e64d 7862 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 7863 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
7864 */
7865 release_maps(env);
9bac3d6d 7866 *prog = env->prog;
3df126f3 7867err_unlock:
cbd35700 7868 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
7869 vfree(env->insn_aux_data);
7870err_free_env:
7871 kfree(env);
51580e79
AS
7872 return ret;
7873}