]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/bpf/verifier.c
bpf, arm64: fix faulty emission of map access in tail calls
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
17a52670 244 }
9c399760 245 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 246 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 247 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 248 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
249 }
250 verbose("\n");
251}
252
cbd35700
AS
253static const char *const bpf_class_string[] = {
254 [BPF_LD] = "ld",
255 [BPF_LDX] = "ldx",
256 [BPF_ST] = "st",
257 [BPF_STX] = "stx",
258 [BPF_ALU] = "alu",
259 [BPF_JMP] = "jmp",
260 [BPF_RET] = "BUG",
261 [BPF_ALU64] = "alu64",
262};
263
687f0715 264static const char *const bpf_alu_string[16] = {
cbd35700
AS
265 [BPF_ADD >> 4] = "+=",
266 [BPF_SUB >> 4] = "-=",
267 [BPF_MUL >> 4] = "*=",
268 [BPF_DIV >> 4] = "/=",
269 [BPF_OR >> 4] = "|=",
270 [BPF_AND >> 4] = "&=",
271 [BPF_LSH >> 4] = "<<=",
272 [BPF_RSH >> 4] = ">>=",
273 [BPF_NEG >> 4] = "neg",
274 [BPF_MOD >> 4] = "%=",
275 [BPF_XOR >> 4] = "^=",
276 [BPF_MOV >> 4] = "=",
277 [BPF_ARSH >> 4] = "s>>=",
278 [BPF_END >> 4] = "endian",
279};
280
281static const char *const bpf_ldst_string[] = {
282 [BPF_W >> 3] = "u32",
283 [BPF_H >> 3] = "u16",
284 [BPF_B >> 3] = "u8",
285 [BPF_DW >> 3] = "u64",
286};
287
687f0715 288static const char *const bpf_jmp_string[16] = {
cbd35700
AS
289 [BPF_JA >> 4] = "jmp",
290 [BPF_JEQ >> 4] = "==",
291 [BPF_JGT >> 4] = ">",
292 [BPF_JGE >> 4] = ">=",
293 [BPF_JSET >> 4] = "&",
294 [BPF_JNE >> 4] = "!=",
295 [BPF_JSGT >> 4] = "s>",
296 [BPF_JSGE >> 4] = "s>=",
297 [BPF_CALL >> 4] = "call",
298 [BPF_EXIT >> 4] = "exit",
299};
300
0d0e5769
DB
301static void print_bpf_insn(const struct bpf_verifier_env *env,
302 const struct bpf_insn *insn)
cbd35700
AS
303{
304 u8 class = BPF_CLASS(insn->code);
305
306 if (class == BPF_ALU || class == BPF_ALU64) {
307 if (BPF_SRC(insn->code) == BPF_X)
308 verbose("(%02x) %sr%d %s %sr%d\n",
309 insn->code, class == BPF_ALU ? "(u32) " : "",
310 insn->dst_reg,
311 bpf_alu_string[BPF_OP(insn->code) >> 4],
312 class == BPF_ALU ? "(u32) " : "",
313 insn->src_reg);
314 else
315 verbose("(%02x) %sr%d %s %s%d\n",
316 insn->code, class == BPF_ALU ? "(u32) " : "",
317 insn->dst_reg,
318 bpf_alu_string[BPF_OP(insn->code) >> 4],
319 class == BPF_ALU ? "(u32) " : "",
320 insn->imm);
321 } else if (class == BPF_STX) {
322 if (BPF_MODE(insn->code) == BPF_MEM)
323 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
324 insn->code,
325 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
326 insn->dst_reg,
327 insn->off, insn->src_reg);
328 else if (BPF_MODE(insn->code) == BPF_XADD)
329 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg, insn->off,
333 insn->src_reg);
334 else
335 verbose("BUG_%02x\n", insn->code);
336 } else if (class == BPF_ST) {
337 if (BPF_MODE(insn->code) != BPF_MEM) {
338 verbose("BUG_st_%02x\n", insn->code);
339 return;
340 }
341 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
342 insn->code,
343 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
344 insn->dst_reg,
345 insn->off, insn->imm);
346 } else if (class == BPF_LDX) {
347 if (BPF_MODE(insn->code) != BPF_MEM) {
348 verbose("BUG_ldx_%02x\n", insn->code);
349 return;
350 }
351 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
352 insn->code, insn->dst_reg,
353 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
354 insn->src_reg, insn->off);
355 } else if (class == BPF_LD) {
356 if (BPF_MODE(insn->code) == BPF_ABS) {
357 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
358 insn->code,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->imm);
361 } else if (BPF_MODE(insn->code) == BPF_IND) {
362 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
363 insn->code,
364 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
365 insn->src_reg, insn->imm);
0d0e5769
DB
366 } else if (BPF_MODE(insn->code) == BPF_IMM &&
367 BPF_SIZE(insn->code) == BPF_DW) {
368 /* At this point, we already made sure that the second
369 * part of the ldimm64 insn is accessible.
370 */
371 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
372 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
373
374 if (map_ptr && !env->allow_ptr_leaks)
375 imm = 0;
376
377 verbose("(%02x) r%d = 0x%llx\n", insn->code,
378 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
379 } else {
380 verbose("BUG_ld_%02x\n", insn->code);
381 return;
382 }
383 } else if (class == BPF_JMP) {
384 u8 opcode = BPF_OP(insn->code);
385
386 if (opcode == BPF_CALL) {
ebb676da
TG
387 verbose("(%02x) call %s#%d\n", insn->code,
388 func_id_name(insn->imm), insn->imm);
cbd35700
AS
389 } else if (insn->code == (BPF_JMP | BPF_JA)) {
390 verbose("(%02x) goto pc%+d\n",
391 insn->code, insn->off);
392 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
393 verbose("(%02x) exit\n", insn->code);
394 } else if (BPF_SRC(insn->code) == BPF_X) {
395 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
396 insn->code, insn->dst_reg,
397 bpf_jmp_string[BPF_OP(insn->code) >> 4],
398 insn->src_reg, insn->off);
399 } else {
400 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
401 insn->code, insn->dst_reg,
402 bpf_jmp_string[BPF_OP(insn->code) >> 4],
403 insn->imm, insn->off);
404 }
405 } else {
406 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
407 }
408}
409
58e2af8b 410static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 411{
58e2af8b 412 struct bpf_verifier_stack_elem *elem;
17a52670
AS
413 int insn_idx;
414
415 if (env->head == NULL)
416 return -1;
417
418 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
419 insn_idx = env->head->insn_idx;
420 if (prev_insn_idx)
421 *prev_insn_idx = env->head->prev_insn_idx;
422 elem = env->head->next;
423 kfree(env->head);
424 env->head = elem;
425 env->stack_size--;
426 return insn_idx;
427}
428
58e2af8b
JK
429static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
430 int insn_idx, int prev_insn_idx)
17a52670 431{
58e2af8b 432 struct bpf_verifier_stack_elem *elem;
17a52670 433
58e2af8b 434 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
435 if (!elem)
436 goto err;
437
438 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
439 elem->insn_idx = insn_idx;
440 elem->prev_insn_idx = prev_insn_idx;
441 elem->next = env->head;
442 env->head = elem;
443 env->stack_size++;
07016151 444 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
445 verbose("BPF program is too complex\n");
446 goto err;
447 }
448 return &elem->st;
449err:
450 /* pop all elements and return */
451 while (pop_stack(env, NULL) >= 0);
452 return NULL;
453}
454
455#define CALLER_SAVED_REGS 6
456static const int caller_saved[CALLER_SAVED_REGS] = {
457 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
458};
459
58e2af8b 460static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
461{
462 int i;
463
464 for (i = 0; i < MAX_BPF_REG; i++) {
465 regs[i].type = NOT_INIT;
466 regs[i].imm = 0;
48461135
JB
467 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
468 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
469 }
470
471 /* frame pointer */
472 regs[BPF_REG_FP].type = FRAME_PTR;
473
474 /* 1st arg to a function */
475 regs[BPF_REG_1].type = PTR_TO_CTX;
476}
477
6760bf2d 478static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 479{
17a52670 480 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 481 regs[regno].id = 0;
17a52670 482 regs[regno].imm = 0;
17a52670
AS
483}
484
6760bf2d
DB
485static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
486{
487 BUG_ON(regno >= MAX_BPF_REG);
488 __mark_reg_unknown_value(regs, regno);
489}
490
48461135
JB
491static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
492{
493 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
494 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
495}
496
f0318d01
GB
497static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
498 u32 regno)
499{
500 mark_reg_unknown_value(regs, regno);
501 reset_reg_range_values(regs, regno);
502}
503
17a52670
AS
504enum reg_arg_type {
505 SRC_OP, /* register is used as source operand */
506 DST_OP, /* register is used as destination operand */
507 DST_OP_NO_MARK /* same as above, check only, don't mark */
508};
509
58e2af8b 510static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
511 enum reg_arg_type t)
512{
513 if (regno >= MAX_BPF_REG) {
514 verbose("R%d is invalid\n", regno);
515 return -EINVAL;
516 }
517
518 if (t == SRC_OP) {
519 /* check whether register used as source operand can be read */
520 if (regs[regno].type == NOT_INIT) {
521 verbose("R%d !read_ok\n", regno);
522 return -EACCES;
523 }
524 } else {
525 /* check whether register used as dest operand can be written to */
526 if (regno == BPF_REG_FP) {
527 verbose("frame pointer is read only\n");
528 return -EACCES;
529 }
530 if (t == DST_OP)
531 mark_reg_unknown_value(regs, regno);
532 }
533 return 0;
534}
535
536static int bpf_size_to_bytes(int bpf_size)
537{
538 if (bpf_size == BPF_W)
539 return 4;
540 else if (bpf_size == BPF_H)
541 return 2;
542 else if (bpf_size == BPF_B)
543 return 1;
544 else if (bpf_size == BPF_DW)
545 return 8;
546 else
547 return -EINVAL;
548}
549
1be7f75d
AS
550static bool is_spillable_regtype(enum bpf_reg_type type)
551{
552 switch (type) {
553 case PTR_TO_MAP_VALUE:
554 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 555 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
556 case PTR_TO_STACK:
557 case PTR_TO_CTX:
969bf05e
AS
558 case PTR_TO_PACKET:
559 case PTR_TO_PACKET_END:
1be7f75d
AS
560 case FRAME_PTR:
561 case CONST_PTR_TO_MAP:
562 return true;
563 default:
564 return false;
565 }
566}
567
17a52670
AS
568/* check_stack_read/write functions track spill/fill of registers,
569 * stack boundary and alignment are checked in check_mem_access()
570 */
58e2af8b
JK
571static int check_stack_write(struct bpf_verifier_state *state, int off,
572 int size, int value_regno)
17a52670 573{
17a52670 574 int i;
9c399760
AS
575 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
576 * so it's aligned access and [off, off + size) are within stack limits
577 */
17a52670
AS
578
579 if (value_regno >= 0 &&
1be7f75d 580 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
581
582 /* register containing pointer is being spilled into stack */
9c399760 583 if (size != BPF_REG_SIZE) {
17a52670
AS
584 verbose("invalid size of register spill\n");
585 return -EACCES;
586 }
587
17a52670 588 /* save register state */
9c399760
AS
589 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
590 state->regs[value_regno];
17a52670 591
9c399760
AS
592 for (i = 0; i < BPF_REG_SIZE; i++)
593 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
594 } else {
17a52670 595 /* regular write of data into stack */
9c399760 596 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 597 (struct bpf_reg_state) {};
9c399760
AS
598
599 for (i = 0; i < size; i++)
600 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
601 }
602 return 0;
603}
604
58e2af8b 605static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
606 int value_regno)
607{
9c399760 608 u8 *slot_type;
17a52670 609 int i;
17a52670 610
9c399760 611 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 612
9c399760
AS
613 if (slot_type[0] == STACK_SPILL) {
614 if (size != BPF_REG_SIZE) {
17a52670
AS
615 verbose("invalid size of register spill\n");
616 return -EACCES;
617 }
9c399760
AS
618 for (i = 1; i < BPF_REG_SIZE; i++) {
619 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
620 verbose("corrupted spill memory\n");
621 return -EACCES;
622 }
623 }
624
625 if (value_regno >= 0)
626 /* restore register state from stack */
9c399760
AS
627 state->regs[value_regno] =
628 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
629 return 0;
630 } else {
631 for (i = 0; i < size; i++) {
9c399760 632 if (slot_type[i] != STACK_MISC) {
17a52670
AS
633 verbose("invalid read from stack off %d+%d size %d\n",
634 off, i, size);
635 return -EACCES;
636 }
637 }
638 if (value_regno >= 0)
639 /* have read misc data from the stack */
f0318d01
GB
640 mark_reg_unknown_value_and_range(state->regs,
641 value_regno);
17a52670
AS
642 return 0;
643 }
644}
645
646/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 647static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
648 int size)
649{
650 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
651
5722569b 652 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
653 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
654 map->value_size, off, size);
655 return -EACCES;
656 }
657 return 0;
658}
659
dbcfe5f7
GB
660/* check read/write into an adjusted map element */
661static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
662 int off, int size)
663{
664 struct bpf_verifier_state *state = &env->cur_state;
665 struct bpf_reg_state *reg = &state->regs[regno];
666 int err;
667
668 /* We adjusted the register to this map value, so we
669 * need to change off and size to min_value and max_value
670 * respectively to make sure our theoretical access will be
671 * safe.
672 */
673 if (log_level)
674 print_verifier_state(state);
675 env->varlen_map_value_access = true;
676 /* The minimum value is only important with signed
677 * comparisons where we can't assume the floor of a
678 * value is 0. If we are using signed variables for our
679 * index'es we need to make sure that whatever we use
680 * will have a set floor within our range.
681 */
682 if (reg->min_value < 0) {
683 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
684 regno);
685 return -EACCES;
686 }
687 err = check_map_access(env, regno, reg->min_value + off, size);
688 if (err) {
689 verbose("R%d min value is outside of the array range\n",
690 regno);
691 return err;
692 }
693
694 /* If we haven't set a max value then we need to bail
695 * since we can't be sure we won't do bad things.
696 */
697 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
698 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
699 regno);
700 return -EACCES;
701 }
702 return check_map_access(env, regno, reg->max_value + off, size);
703}
704
969bf05e
AS
705#define MAX_PACKET_OFF 0xffff
706
58e2af8b 707static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
708 const struct bpf_call_arg_meta *meta,
709 enum bpf_access_type t)
4acf6c0b 710{
36bbef52 711 switch (env->prog->type) {
3a0af8fd
TG
712 case BPF_PROG_TYPE_LWT_IN:
713 case BPF_PROG_TYPE_LWT_OUT:
714 /* dst_input() and dst_output() can't write for now */
715 if (t == BPF_WRITE)
716 return false;
7e57fbb2 717 /* fallthrough */
36bbef52
DB
718 case BPF_PROG_TYPE_SCHED_CLS:
719 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 720 case BPF_PROG_TYPE_XDP:
3a0af8fd 721 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
722 if (meta)
723 return meta->pkt_access;
724
725 env->seen_direct_write = true;
4acf6c0b
BB
726 return true;
727 default:
728 return false;
729 }
730}
731
58e2af8b 732static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
733 int size)
734{
58e2af8b
JK
735 struct bpf_reg_state *regs = env->cur_state.regs;
736 struct bpf_reg_state *reg = &regs[regno];
969bf05e 737
d91b28ed 738 off += reg->off;
b399cf64 739 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
740 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
741 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
742 return -EACCES;
743 }
744 return 0;
745}
746
17a52670 747/* check access to 'struct bpf_context' fields */
58e2af8b 748static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 749 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 750{
13a27dfc
JK
751 /* for analyzer ctx accesses are already validated and converted */
752 if (env->analyzer_ops)
753 return 0;
754
17a52670 755 if (env->prog->aux->ops->is_valid_access &&
19de99f7 756 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
757 /* remember the offset of last byte accessed in ctx */
758 if (env->prog->aux->max_ctx_offset < off + size)
759 env->prog->aux->max_ctx_offset = off + size;
17a52670 760 return 0;
32bbe007 761 }
17a52670
AS
762
763 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
764 return -EACCES;
765}
766
58e2af8b 767static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
768{
769 if (env->allow_ptr_leaks)
770 return false;
771
772 switch (env->cur_state.regs[regno].type) {
773 case UNKNOWN_VALUE:
774 case CONST_IMM:
775 return false;
776 default:
777 return true;
778 }
779}
780
79adffcd
DB
781static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
782 int off, int size)
969bf05e 783{
969bf05e 784 if (reg->id && size != 1) {
79adffcd 785 verbose("Unknown alignment. Only byte-sized access allowed in packet access.\n");
969bf05e
AS
786 return -EACCES;
787 }
788
789 /* skb->data is NET_IP_ALIGN-ed */
79adffcd 790 if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
791 verbose("misaligned packet access off %d+%d+%d size %d\n",
792 NET_IP_ALIGN, reg->off, off, size);
793 return -EACCES;
794 }
79adffcd 795
969bf05e
AS
796 return 0;
797}
798
79adffcd
DB
799static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
800 int size)
801{
802 if (size != 1) {
803 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
804 return -EACCES;
805 }
806
969bf05e
AS
807 return 0;
808}
809
79adffcd
DB
810static int check_ptr_alignment(const struct bpf_reg_state *reg,
811 int off, int size)
812{
813 switch (reg->type) {
814 case PTR_TO_PACKET:
815 return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
816 check_pkt_ptr_alignment(reg, off, size);
817 case PTR_TO_MAP_VALUE_ADJ:
818 return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
819 check_val_ptr_alignment(reg, size);
820 default:
821 if (off % size != 0) {
822 verbose("misaligned access off %d size %d\n",
823 off, size);
824 return -EACCES;
825 }
826
827 return 0;
828 }
829}
830
17a52670
AS
831/* check whether memory at (regno + off) is accessible for t = (read | write)
832 * if t==write, value_regno is a register which value is stored into memory
833 * if t==read, value_regno is a register which will receive the value from memory
834 * if t==write && value_regno==-1, some unknown value is stored into memory
835 * if t==read && value_regno==-1, don't care what we read from memory
836 */
58e2af8b 837static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
838 int bpf_size, enum bpf_access_type t,
839 int value_regno)
840{
58e2af8b
JK
841 struct bpf_verifier_state *state = &env->cur_state;
842 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
843 int size, err = 0;
844
1a0dc1ac
AS
845 if (reg->type == PTR_TO_STACK)
846 off += reg->imm;
24b4d2ab 847
17a52670
AS
848 size = bpf_size_to_bytes(bpf_size);
849 if (size < 0)
850 return size;
851
79adffcd 852 err = check_ptr_alignment(reg, off, size);
969bf05e
AS
853 if (err)
854 return err;
17a52670 855
48461135
JB
856 if (reg->type == PTR_TO_MAP_VALUE ||
857 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
858 if (t == BPF_WRITE && value_regno >= 0 &&
859 is_pointer_value(env, value_regno)) {
860 verbose("R%d leaks addr into map\n", value_regno);
861 return -EACCES;
862 }
48461135 863
dbcfe5f7
GB
864 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
865 err = check_map_access_adj(env, regno, off, size);
866 else
867 err = check_map_access(env, regno, off, size);
17a52670 868 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
869 mark_reg_unknown_value_and_range(state->regs,
870 value_regno);
17a52670 871
1a0dc1ac 872 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
873 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
874
1be7f75d
AS
875 if (t == BPF_WRITE && value_regno >= 0 &&
876 is_pointer_value(env, value_regno)) {
877 verbose("R%d leaks addr into ctx\n", value_regno);
878 return -EACCES;
879 }
19de99f7 880 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 881 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
882 mark_reg_unknown_value_and_range(state->regs,
883 value_regno);
1955351d
MS
884 /* note that reg.[id|off|range] == 0 */
885 state->regs[value_regno].type = reg_type;
969bf05e 886 }
17a52670 887
1a0dc1ac 888 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
889 if (off >= 0 || off < -MAX_BPF_STACK) {
890 verbose("invalid stack off=%d size=%d\n", off, size);
891 return -EACCES;
892 }
1be7f75d
AS
893 if (t == BPF_WRITE) {
894 if (!env->allow_ptr_leaks &&
895 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
896 size != BPF_REG_SIZE) {
897 verbose("attempt to corrupt spilled pointer on stack\n");
898 return -EACCES;
899 }
17a52670 900 err = check_stack_write(state, off, size, value_regno);
1be7f75d 901 } else {
17a52670 902 err = check_stack_read(state, off, size, value_regno);
1be7f75d 903 }
969bf05e 904 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 905 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
906 verbose("cannot write into packet\n");
907 return -EACCES;
908 }
4acf6c0b
BB
909 if (t == BPF_WRITE && value_regno >= 0 &&
910 is_pointer_value(env, value_regno)) {
911 verbose("R%d leaks addr into packet\n", value_regno);
912 return -EACCES;
913 }
969bf05e
AS
914 err = check_packet_access(env, regno, off, size);
915 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
916 mark_reg_unknown_value_and_range(state->regs,
917 value_regno);
17a52670
AS
918 } else {
919 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 920 regno, reg_type_str[reg->type]);
17a52670
AS
921 return -EACCES;
922 }
969bf05e
AS
923
924 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
925 state->regs[value_regno].type == UNKNOWN_VALUE) {
926 /* 1 or 2 byte load zero-extends, determine the number of
927 * zero upper bits. Not doing it fo 4 byte load, since
928 * such values cannot be added to ptr_to_packet anyway.
929 */
930 state->regs[value_regno].imm = 64 - size * 8;
931 }
17a52670
AS
932 return err;
933}
934
58e2af8b 935static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 936{
58e2af8b 937 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
938 int err;
939
940 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
941 insn->imm != 0) {
942 verbose("BPF_XADD uses reserved fields\n");
943 return -EINVAL;
944 }
945
946 /* check src1 operand */
947 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
948 if (err)
949 return err;
950
951 /* check src2 operand */
952 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
953 if (err)
954 return err;
955
956 /* check whether atomic_add can read the memory */
957 err = check_mem_access(env, insn->dst_reg, insn->off,
958 BPF_SIZE(insn->code), BPF_READ, -1);
959 if (err)
960 return err;
961
962 /* check whether atomic_add can write into the same memory */
963 return check_mem_access(env, insn->dst_reg, insn->off,
964 BPF_SIZE(insn->code), BPF_WRITE, -1);
965}
966
967/* when register 'regno' is passed into function that will read 'access_size'
968 * bytes from that pointer, make sure that it's within stack boundary
969 * and all elements of stack are initialized
970 */
58e2af8b 971static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
972 int access_size, bool zero_size_allowed,
973 struct bpf_call_arg_meta *meta)
17a52670 974{
58e2af8b
JK
975 struct bpf_verifier_state *state = &env->cur_state;
976 struct bpf_reg_state *regs = state->regs;
17a52670
AS
977 int off, i;
978
8e2fe1d9
DB
979 if (regs[regno].type != PTR_TO_STACK) {
980 if (zero_size_allowed && access_size == 0 &&
981 regs[regno].type == CONST_IMM &&
982 regs[regno].imm == 0)
983 return 0;
984
985 verbose("R%d type=%s expected=%s\n", regno,
986 reg_type_str[regs[regno].type],
987 reg_type_str[PTR_TO_STACK]);
17a52670 988 return -EACCES;
8e2fe1d9 989 }
17a52670
AS
990
991 off = regs[regno].imm;
992 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
993 access_size <= 0) {
994 verbose("invalid stack type R%d off=%d access_size=%d\n",
995 regno, off, access_size);
996 return -EACCES;
997 }
998
435faee1
DB
999 if (meta && meta->raw_mode) {
1000 meta->access_size = access_size;
1001 meta->regno = regno;
1002 return 0;
1003 }
1004
17a52670 1005 for (i = 0; i < access_size; i++) {
9c399760 1006 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1007 verbose("invalid indirect read from stack off %d+%d size %d\n",
1008 off, i, access_size);
1009 return -EACCES;
1010 }
1011 }
1012 return 0;
1013}
1014
06c1c049
GB
1015static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1016 int access_size, bool zero_size_allowed,
1017 struct bpf_call_arg_meta *meta)
1018{
1019 struct bpf_reg_state *regs = env->cur_state.regs;
1020
1021 switch (regs[regno].type) {
1022 case PTR_TO_PACKET:
1023 return check_packet_access(env, regno, 0, access_size);
1024 case PTR_TO_MAP_VALUE:
1025 return check_map_access(env, regno, 0, access_size);
1026 case PTR_TO_MAP_VALUE_ADJ:
1027 return check_map_access_adj(env, regno, 0, access_size);
1028 default: /* const_imm|ptr_to_stack or invalid ptr */
1029 return check_stack_boundary(env, regno, access_size,
1030 zero_size_allowed, meta);
1031 }
1032}
1033
58e2af8b 1034static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1035 enum bpf_arg_type arg_type,
1036 struct bpf_call_arg_meta *meta)
17a52670 1037{
58e2af8b 1038 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1039 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1040 int err = 0;
1041
80f1d68c 1042 if (arg_type == ARG_DONTCARE)
17a52670
AS
1043 return 0;
1044
6841de8b 1045 if (type == NOT_INIT) {
17a52670
AS
1046 verbose("R%d !read_ok\n", regno);
1047 return -EACCES;
1048 }
1049
1be7f75d
AS
1050 if (arg_type == ARG_ANYTHING) {
1051 if (is_pointer_value(env, regno)) {
1052 verbose("R%d leaks addr into helper function\n", regno);
1053 return -EACCES;
1054 }
80f1d68c 1055 return 0;
1be7f75d 1056 }
80f1d68c 1057
3a0af8fd
TG
1058 if (type == PTR_TO_PACKET &&
1059 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1060 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1061 return -EACCES;
1062 }
1063
8e2fe1d9 1064 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1065 arg_type == ARG_PTR_TO_MAP_VALUE) {
1066 expected_type = PTR_TO_STACK;
6841de8b
AS
1067 if (type != PTR_TO_PACKET && type != expected_type)
1068 goto err_type;
39f19ebb
AS
1069 } else if (arg_type == ARG_CONST_SIZE ||
1070 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1071 expected_type = CONST_IMM;
06c1c049
GB
1072 /* One exception. Allow UNKNOWN_VALUE registers when the
1073 * boundaries are known and don't cause unsafe memory accesses
1074 */
1075 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1076 goto err_type;
17a52670
AS
1077 } else if (arg_type == ARG_CONST_MAP_PTR) {
1078 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1079 if (type != expected_type)
1080 goto err_type;
608cd71a
AS
1081 } else if (arg_type == ARG_PTR_TO_CTX) {
1082 expected_type = PTR_TO_CTX;
6841de8b
AS
1083 if (type != expected_type)
1084 goto err_type;
39f19ebb
AS
1085 } else if (arg_type == ARG_PTR_TO_MEM ||
1086 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1087 expected_type = PTR_TO_STACK;
1088 /* One exception here. In case function allows for NULL to be
1089 * passed in as argument, it's a CONST_IMM type. Final test
1090 * happens during stack boundary checking.
1091 */
6841de8b
AS
1092 if (type == CONST_IMM && reg->imm == 0)
1093 /* final test in check_stack_boundary() */;
5722569b
GB
1094 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1095 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1096 goto err_type;
39f19ebb 1097 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1098 } else {
1099 verbose("unsupported arg_type %d\n", arg_type);
1100 return -EFAULT;
1101 }
1102
17a52670
AS
1103 if (arg_type == ARG_CONST_MAP_PTR) {
1104 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1105 meta->map_ptr = reg->map_ptr;
17a52670
AS
1106 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1107 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1108 * check that [key, key + map->key_size) are within
1109 * stack limits and initialized
1110 */
33ff9823 1111 if (!meta->map_ptr) {
17a52670
AS
1112 /* in function declaration map_ptr must come before
1113 * map_key, so that it's verified and known before
1114 * we have to check map_key here. Otherwise it means
1115 * that kernel subsystem misconfigured verifier
1116 */
1117 verbose("invalid map_ptr to access map->key\n");
1118 return -EACCES;
1119 }
6841de8b
AS
1120 if (type == PTR_TO_PACKET)
1121 err = check_packet_access(env, regno, 0,
1122 meta->map_ptr->key_size);
1123 else
1124 err = check_stack_boundary(env, regno,
1125 meta->map_ptr->key_size,
1126 false, NULL);
17a52670
AS
1127 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1128 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1129 * check [value, value + map->value_size) validity
1130 */
33ff9823 1131 if (!meta->map_ptr) {
17a52670
AS
1132 /* kernel subsystem misconfigured verifier */
1133 verbose("invalid map_ptr to access map->value\n");
1134 return -EACCES;
1135 }
6841de8b
AS
1136 if (type == PTR_TO_PACKET)
1137 err = check_packet_access(env, regno, 0,
1138 meta->map_ptr->value_size);
1139 else
1140 err = check_stack_boundary(env, regno,
1141 meta->map_ptr->value_size,
1142 false, NULL);
39f19ebb
AS
1143 } else if (arg_type == ARG_CONST_SIZE ||
1144 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1145 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1146
17a52670
AS
1147 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1148 * from stack pointer 'buf'. Check it
1149 * note: regno == len, regno - 1 == buf
1150 */
1151 if (regno == 0) {
1152 /* kernel subsystem misconfigured verifier */
39f19ebb 1153 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1154 return -EACCES;
1155 }
06c1c049
GB
1156
1157 /* If the register is UNKNOWN_VALUE, the access check happens
1158 * using its boundaries. Otherwise, just use its imm
1159 */
1160 if (type == UNKNOWN_VALUE) {
1161 /* For unprivileged variable accesses, disable raw
1162 * mode so that the program is required to
1163 * initialize all the memory that the helper could
1164 * just partially fill up.
1165 */
1166 meta = NULL;
1167
1168 if (reg->min_value < 0) {
1169 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1170 regno);
1171 return -EACCES;
1172 }
1173
1174 if (reg->min_value == 0) {
1175 err = check_helper_mem_access(env, regno - 1, 0,
1176 zero_size_allowed,
1177 meta);
1178 if (err)
1179 return err;
1180 }
1181
1182 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1183 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1184 regno);
1185 return -EACCES;
1186 }
1187 err = check_helper_mem_access(env, regno - 1,
1188 reg->max_value,
1189 zero_size_allowed, meta);
1190 if (err)
1191 return err;
1192 } else {
1193 /* register is CONST_IMM */
1194 err = check_helper_mem_access(env, regno - 1, reg->imm,
1195 zero_size_allowed, meta);
1196 }
17a52670
AS
1197 }
1198
1199 return err;
6841de8b
AS
1200err_type:
1201 verbose("R%d type=%s expected=%s\n", regno,
1202 reg_type_str[type], reg_type_str[expected_type]);
1203 return -EACCES;
17a52670
AS
1204}
1205
35578d79
KX
1206static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1207{
35578d79
KX
1208 if (!map)
1209 return 0;
1210
6aff67c8
AS
1211 /* We need a two way check, first is from map perspective ... */
1212 switch (map->map_type) {
1213 case BPF_MAP_TYPE_PROG_ARRAY:
1214 if (func_id != BPF_FUNC_tail_call)
1215 goto error;
1216 break;
1217 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1218 if (func_id != BPF_FUNC_perf_event_read &&
1219 func_id != BPF_FUNC_perf_event_output)
1220 goto error;
1221 break;
1222 case BPF_MAP_TYPE_STACK_TRACE:
1223 if (func_id != BPF_FUNC_get_stackid)
1224 goto error;
1225 break;
4ed8ec52 1226 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1227 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1228 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1229 goto error;
1230 break;
56f668df 1231 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1232 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1233 if (func_id != BPF_FUNC_map_lookup_elem)
1234 goto error;
6aff67c8
AS
1235 default:
1236 break;
1237 }
1238
1239 /* ... and second from the function itself. */
1240 switch (func_id) {
1241 case BPF_FUNC_tail_call:
1242 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1243 goto error;
1244 break;
1245 case BPF_FUNC_perf_event_read:
1246 case BPF_FUNC_perf_event_output:
1247 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1248 goto error;
1249 break;
1250 case BPF_FUNC_get_stackid:
1251 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1252 goto error;
1253 break;
60d20f91 1254 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1255 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1256 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1257 goto error;
1258 break;
6aff67c8
AS
1259 default:
1260 break;
35578d79
KX
1261 }
1262
1263 return 0;
6aff67c8 1264error:
ebb676da
TG
1265 verbose("cannot pass map_type %d into func %s#%d\n",
1266 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1267 return -EINVAL;
35578d79
KX
1268}
1269
435faee1
DB
1270static int check_raw_mode(const struct bpf_func_proto *fn)
1271{
1272 int count = 0;
1273
39f19ebb 1274 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1275 count++;
39f19ebb 1276 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1277 count++;
39f19ebb 1278 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1279 count++;
39f19ebb 1280 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1281 count++;
39f19ebb 1282 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1283 count++;
1284
1285 return count > 1 ? -EINVAL : 0;
1286}
1287
58e2af8b 1288static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1289{
58e2af8b
JK
1290 struct bpf_verifier_state *state = &env->cur_state;
1291 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1292 int i;
1293
1294 for (i = 0; i < MAX_BPF_REG; i++)
1295 if (regs[i].type == PTR_TO_PACKET ||
1296 regs[i].type == PTR_TO_PACKET_END)
1297 mark_reg_unknown_value(regs, i);
1298
1299 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1300 if (state->stack_slot_type[i] != STACK_SPILL)
1301 continue;
1302 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1303 if (reg->type != PTR_TO_PACKET &&
1304 reg->type != PTR_TO_PACKET_END)
1305 continue;
1306 reg->type = UNKNOWN_VALUE;
1307 reg->imm = 0;
1308 }
1309}
1310
81ed18ab 1311static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1312{
58e2af8b 1313 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1314 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1315 struct bpf_reg_state *regs = state->regs;
1316 struct bpf_reg_state *reg;
33ff9823 1317 struct bpf_call_arg_meta meta;
969bf05e 1318 bool changes_data;
17a52670
AS
1319 int i, err;
1320
1321 /* find function prototype */
1322 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1323 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1324 return -EINVAL;
1325 }
1326
1327 if (env->prog->aux->ops->get_func_proto)
1328 fn = env->prog->aux->ops->get_func_proto(func_id);
1329
1330 if (!fn) {
ebb676da 1331 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1332 return -EINVAL;
1333 }
1334
1335 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1336 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1337 verbose("cannot call GPL only function from proprietary program\n");
1338 return -EINVAL;
1339 }
1340
17bedab2 1341 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1342
33ff9823 1343 memset(&meta, 0, sizeof(meta));
36bbef52 1344 meta.pkt_access = fn->pkt_access;
33ff9823 1345
435faee1
DB
1346 /* We only support one arg being in raw mode at the moment, which
1347 * is sufficient for the helper functions we have right now.
1348 */
1349 err = check_raw_mode(fn);
1350 if (err) {
ebb676da
TG
1351 verbose("kernel subsystem misconfigured func %s#%d\n",
1352 func_id_name(func_id), func_id);
435faee1
DB
1353 return err;
1354 }
1355
17a52670 1356 /* check args */
33ff9823 1357 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1358 if (err)
1359 return err;
33ff9823 1360 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1361 if (err)
1362 return err;
33ff9823 1363 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1364 if (err)
1365 return err;
33ff9823 1366 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1367 if (err)
1368 return err;
33ff9823 1369 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1370 if (err)
1371 return err;
1372
435faee1
DB
1373 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1374 * is inferred from register state.
1375 */
1376 for (i = 0; i < meta.access_size; i++) {
1377 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1378 if (err)
1379 return err;
1380 }
1381
17a52670
AS
1382 /* reset caller saved regs */
1383 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1384 reg = regs + caller_saved[i];
1385 reg->type = NOT_INIT;
1386 reg->imm = 0;
1387 }
1388
1389 /* update return register */
1390 if (fn->ret_type == RET_INTEGER) {
1391 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1392 } else if (fn->ret_type == RET_VOID) {
1393 regs[BPF_REG_0].type = NOT_INIT;
1394 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1395 struct bpf_insn_aux_data *insn_aux;
1396
17a52670 1397 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1398 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1399 /* remember map_ptr, so that check_map_access()
1400 * can check 'value_size' boundary of memory access
1401 * to map element returned from bpf_map_lookup_elem()
1402 */
33ff9823 1403 if (meta.map_ptr == NULL) {
17a52670
AS
1404 verbose("kernel subsystem misconfigured verifier\n");
1405 return -EINVAL;
1406 }
33ff9823 1407 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1408 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1409 insn_aux = &env->insn_aux_data[insn_idx];
1410 if (!insn_aux->map_ptr)
1411 insn_aux->map_ptr = meta.map_ptr;
1412 else if (insn_aux->map_ptr != meta.map_ptr)
1413 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1414 } else {
ebb676da
TG
1415 verbose("unknown return type %d of func %s#%d\n",
1416 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1417 return -EINVAL;
1418 }
04fd61ab 1419
33ff9823 1420 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1421 if (err)
1422 return err;
04fd61ab 1423
969bf05e
AS
1424 if (changes_data)
1425 clear_all_pkt_pointers(env);
1426 return 0;
1427}
1428
58e2af8b
JK
1429static int check_packet_ptr_add(struct bpf_verifier_env *env,
1430 struct bpf_insn *insn)
969bf05e 1431{
58e2af8b
JK
1432 struct bpf_reg_state *regs = env->cur_state.regs;
1433 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1434 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1435 struct bpf_reg_state tmp_reg;
969bf05e
AS
1436 s32 imm;
1437
1438 if (BPF_SRC(insn->code) == BPF_K) {
1439 /* pkt_ptr += imm */
1440 imm = insn->imm;
1441
1442add_imm:
63dfef75 1443 if (imm < 0) {
969bf05e
AS
1444 verbose("addition of negative constant to packet pointer is not allowed\n");
1445 return -EACCES;
1446 }
1447 if (imm >= MAX_PACKET_OFF ||
1448 imm + dst_reg->off >= MAX_PACKET_OFF) {
1449 verbose("constant %d is too large to add to packet pointer\n",
1450 imm);
1451 return -EACCES;
1452 }
1453 /* a constant was added to pkt_ptr.
1454 * Remember it while keeping the same 'id'
1455 */
1456 dst_reg->off += imm;
1457 } else {
1b9b69ec
AS
1458 if (src_reg->type == PTR_TO_PACKET) {
1459 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1460 tmp_reg = *dst_reg; /* save r7 state */
1461 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1462 src_reg = &tmp_reg; /* pretend it's src_reg state */
1463 /* if the checks below reject it, the copy won't matter,
1464 * since we're rejecting the whole program. If all ok,
1465 * then imm22 state will be added to r7
1466 * and r7 will be pkt(id=0,off=22,r=62) while
1467 * r6 will stay as pkt(id=0,off=0,r=62)
1468 */
1469 }
1470
969bf05e
AS
1471 if (src_reg->type == CONST_IMM) {
1472 /* pkt_ptr += reg where reg is known constant */
1473 imm = src_reg->imm;
1474 goto add_imm;
1475 }
1476 /* disallow pkt_ptr += reg
1477 * if reg is not uknown_value with guaranteed zero upper bits
1478 * otherwise pkt_ptr may overflow and addition will become
1479 * subtraction which is not allowed
1480 */
1481 if (src_reg->type != UNKNOWN_VALUE) {
1482 verbose("cannot add '%s' to ptr_to_packet\n",
1483 reg_type_str[src_reg->type]);
1484 return -EACCES;
1485 }
1486 if (src_reg->imm < 48) {
1487 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1488 src_reg->imm);
1489 return -EACCES;
1490 }
1491 /* dst_reg stays as pkt_ptr type and since some positive
1492 * integer value was added to the pointer, increment its 'id'
1493 */
1f415a74 1494 dst_reg->id = ++env->id_gen;
969bf05e
AS
1495
1496 /* something was added to pkt_ptr, set range and off to zero */
1497 dst_reg->off = 0;
1498 dst_reg->range = 0;
1499 }
1500 return 0;
1501}
1502
58e2af8b 1503static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1504{
58e2af8b
JK
1505 struct bpf_reg_state *regs = env->cur_state.regs;
1506 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1507 u8 opcode = BPF_OP(insn->code);
1508 s64 imm_log2;
1509
1510 /* for type == UNKNOWN_VALUE:
1511 * imm > 0 -> number of zero upper bits
1512 * imm == 0 -> don't track which is the same as all bits can be non-zero
1513 */
1514
1515 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1516 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1517
1518 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1519 dst_reg->imm && opcode == BPF_ADD) {
1520 /* dreg += sreg
1521 * where both have zero upper bits. Adding them
1522 * can only result making one more bit non-zero
1523 * in the larger value.
1524 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1525 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1526 */
1527 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1528 dst_reg->imm--;
1529 return 0;
1530 }
1531 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1532 dst_reg->imm && opcode == BPF_ADD) {
1533 /* dreg += sreg
1534 * where dreg has zero upper bits and sreg is const.
1535 * Adding them can only result making one more bit
1536 * non-zero in the larger value.
1537 */
1538 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1539 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1540 dst_reg->imm--;
1541 return 0;
1542 }
1543 /* all other cases non supported yet, just mark dst_reg */
1544 dst_reg->imm = 0;
1545 return 0;
1546 }
1547
1548 /* sign extend 32-bit imm into 64-bit to make sure that
1549 * negative values occupy bit 63. Note ilog2() would have
1550 * been incorrect, since sizeof(insn->imm) == 4
1551 */
1552 imm_log2 = __ilog2_u64((long long)insn->imm);
1553
1554 if (dst_reg->imm && opcode == BPF_LSH) {
1555 /* reg <<= imm
1556 * if reg was a result of 2 byte load, then its imm == 48
1557 * which means that upper 48 bits are zero and shifting this reg
1558 * left by 4 would mean that upper 44 bits are still zero
1559 */
1560 dst_reg->imm -= insn->imm;
1561 } else if (dst_reg->imm && opcode == BPF_MUL) {
1562 /* reg *= imm
1563 * if multiplying by 14 subtract 4
1564 * This is conservative calculation of upper zero bits.
1565 * It's not trying to special case insn->imm == 1 or 0 cases
1566 */
1567 dst_reg->imm -= imm_log2 + 1;
1568 } else if (opcode == BPF_AND) {
1569 /* reg &= imm */
1570 dst_reg->imm = 63 - imm_log2;
1571 } else if (dst_reg->imm && opcode == BPF_ADD) {
1572 /* reg += imm */
1573 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1574 dst_reg->imm--;
1575 } else if (opcode == BPF_RSH) {
1576 /* reg >>= imm
1577 * which means that after right shift, upper bits will be zero
1578 * note that verifier already checked that
1579 * 0 <= imm < 64 for shift insn
1580 */
1581 dst_reg->imm += insn->imm;
1582 if (unlikely(dst_reg->imm > 64))
1583 /* some dumb code did:
1584 * r2 = *(u32 *)mem;
1585 * r2 >>= 32;
1586 * and all bits are zero now */
1587 dst_reg->imm = 64;
1588 } else {
1589 /* all other alu ops, means that we don't know what will
1590 * happen to the value, mark it with unknown number of zero bits
1591 */
1592 dst_reg->imm = 0;
1593 }
1594
1595 if (dst_reg->imm < 0) {
1596 /* all 64 bits of the register can contain non-zero bits
1597 * and such value cannot be added to ptr_to_packet, since it
1598 * may overflow, mark it as unknown to avoid further eval
1599 */
1600 dst_reg->imm = 0;
1601 }
1602 return 0;
1603}
1604
58e2af8b
JK
1605static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1606 struct bpf_insn *insn)
969bf05e 1607{
58e2af8b
JK
1608 struct bpf_reg_state *regs = env->cur_state.regs;
1609 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1610 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1611 u8 opcode = BPF_OP(insn->code);
3fadc801 1612 u64 dst_imm = dst_reg->imm;
969bf05e 1613
3fadc801
DB
1614 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1615 * containing ALU ops. Don't care about overflow or negative
1616 * values, just add/sub/... them; registers are in u64.
969bf05e 1617 */
3fadc801
DB
1618 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1619 dst_imm += insn->imm;
1620 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1621 src_reg->type == CONST_IMM) {
1622 dst_imm += src_reg->imm;
1623 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1624 dst_imm -= insn->imm;
1625 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1626 src_reg->type == CONST_IMM) {
1627 dst_imm -= src_reg->imm;
1628 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1629 dst_imm *= insn->imm;
1630 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1631 src_reg->type == CONST_IMM) {
1632 dst_imm *= src_reg->imm;
1633 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1634 dst_imm |= insn->imm;
1635 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1636 src_reg->type == CONST_IMM) {
1637 dst_imm |= src_reg->imm;
1638 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1639 dst_imm &= insn->imm;
1640 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1641 src_reg->type == CONST_IMM) {
1642 dst_imm &= src_reg->imm;
1643 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1644 dst_imm >>= insn->imm;
1645 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1646 src_reg->type == CONST_IMM) {
1647 dst_imm >>= src_reg->imm;
1648 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1649 dst_imm <<= insn->imm;
1650 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1651 src_reg->type == CONST_IMM) {
1652 dst_imm <<= src_reg->imm;
1653 } else {
969bf05e 1654 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1655 goto out;
1656 }
1657
1658 dst_reg->imm = dst_imm;
1659out:
17a52670
AS
1660 return 0;
1661}
1662
48461135
JB
1663static void check_reg_overflow(struct bpf_reg_state *reg)
1664{
1665 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1666 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1667 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1668 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1669 reg->min_value = BPF_REGISTER_MIN_RANGE;
1670}
1671
1672static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1673 struct bpf_insn *insn)
1674{
1675 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1676 s64 min_val = BPF_REGISTER_MIN_RANGE;
1677 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1678 u8 opcode = BPF_OP(insn->code);
1679
1680 dst_reg = &regs[insn->dst_reg];
1681 if (BPF_SRC(insn->code) == BPF_X) {
1682 check_reg_overflow(&regs[insn->src_reg]);
1683 min_val = regs[insn->src_reg].min_value;
1684 max_val = regs[insn->src_reg].max_value;
1685
1686 /* If the source register is a random pointer then the
1687 * min_value/max_value values represent the range of the known
1688 * accesses into that value, not the actual min/max value of the
1689 * register itself. In this case we have to reset the reg range
1690 * values so we know it is not safe to look at.
1691 */
1692 if (regs[insn->src_reg].type != CONST_IMM &&
1693 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1694 min_val = BPF_REGISTER_MIN_RANGE;
1695 max_val = BPF_REGISTER_MAX_RANGE;
1696 }
1697 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1698 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1699 min_val = max_val = insn->imm;
48461135
JB
1700 }
1701
1702 /* We don't know anything about what was done to this register, mark it
1703 * as unknown.
1704 */
1705 if (min_val == BPF_REGISTER_MIN_RANGE &&
1706 max_val == BPF_REGISTER_MAX_RANGE) {
1707 reset_reg_range_values(regs, insn->dst_reg);
1708 return;
1709 }
1710
f23cc643
JB
1711 /* If one of our values was at the end of our ranges then we can't just
1712 * do our normal operations to the register, we need to set the values
1713 * to the min/max since they are undefined.
1714 */
1715 if (min_val == BPF_REGISTER_MIN_RANGE)
1716 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1717 if (max_val == BPF_REGISTER_MAX_RANGE)
1718 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1719
48461135
JB
1720 switch (opcode) {
1721 case BPF_ADD:
f23cc643
JB
1722 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1723 dst_reg->min_value += min_val;
1724 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1725 dst_reg->max_value += max_val;
48461135
JB
1726 break;
1727 case BPF_SUB:
f23cc643
JB
1728 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1729 dst_reg->min_value -= min_val;
1730 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1731 dst_reg->max_value -= max_val;
48461135
JB
1732 break;
1733 case BPF_MUL:
f23cc643
JB
1734 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1735 dst_reg->min_value *= min_val;
1736 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1737 dst_reg->max_value *= max_val;
48461135
JB
1738 break;
1739 case BPF_AND:
f23cc643
JB
1740 /* Disallow AND'ing of negative numbers, ain't nobody got time
1741 * for that. Otherwise the minimum is 0 and the max is the max
1742 * value we could AND against.
1743 */
1744 if (min_val < 0)
1745 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1746 else
1747 dst_reg->min_value = 0;
48461135
JB
1748 dst_reg->max_value = max_val;
1749 break;
1750 case BPF_LSH:
1751 /* Gotta have special overflow logic here, if we're shifting
1752 * more than MAX_RANGE then just assume we have an invalid
1753 * range.
1754 */
1755 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1756 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1757 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1758 dst_reg->min_value <<= min_val;
1759
1760 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1761 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1762 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1763 dst_reg->max_value <<= max_val;
1764 break;
1765 case BPF_RSH:
f23cc643
JB
1766 /* RSH by a negative number is undefined, and the BPF_RSH is an
1767 * unsigned shift, so make the appropriate casts.
48461135 1768 */
f23cc643
JB
1769 if (min_val < 0 || dst_reg->min_value < 0)
1770 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1771 else
1772 dst_reg->min_value =
1773 (u64)(dst_reg->min_value) >> min_val;
1774 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1775 dst_reg->max_value >>= max_val;
48461135
JB
1776 break;
1777 default:
1778 reset_reg_range_values(regs, insn->dst_reg);
1779 break;
1780 }
1781
1782 check_reg_overflow(dst_reg);
1783}
1784
17a52670 1785/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1786static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1787{
58e2af8b 1788 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1789 u8 opcode = BPF_OP(insn->code);
1790 int err;
1791
1792 if (opcode == BPF_END || opcode == BPF_NEG) {
1793 if (opcode == BPF_NEG) {
1794 if (BPF_SRC(insn->code) != 0 ||
1795 insn->src_reg != BPF_REG_0 ||
1796 insn->off != 0 || insn->imm != 0) {
1797 verbose("BPF_NEG uses reserved fields\n");
1798 return -EINVAL;
1799 }
1800 } else {
1801 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1802 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1803 verbose("BPF_END uses reserved fields\n");
1804 return -EINVAL;
1805 }
1806 }
1807
1808 /* check src operand */
1809 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1810 if (err)
1811 return err;
1812
1be7f75d
AS
1813 if (is_pointer_value(env, insn->dst_reg)) {
1814 verbose("R%d pointer arithmetic prohibited\n",
1815 insn->dst_reg);
1816 return -EACCES;
1817 }
1818
17a52670
AS
1819 /* check dest operand */
1820 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1821 if (err)
1822 return err;
1823
1824 } else if (opcode == BPF_MOV) {
1825
1826 if (BPF_SRC(insn->code) == BPF_X) {
1827 if (insn->imm != 0 || insn->off != 0) {
1828 verbose("BPF_MOV uses reserved fields\n");
1829 return -EINVAL;
1830 }
1831
1832 /* check src operand */
1833 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1834 if (err)
1835 return err;
1836 } else {
1837 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1838 verbose("BPF_MOV uses reserved fields\n");
1839 return -EINVAL;
1840 }
1841 }
1842
1843 /* check dest operand */
1844 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1845 if (err)
1846 return err;
1847
48461135
JB
1848 /* we are setting our register to something new, we need to
1849 * reset its range values.
1850 */
1851 reset_reg_range_values(regs, insn->dst_reg);
1852
17a52670
AS
1853 if (BPF_SRC(insn->code) == BPF_X) {
1854 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1855 /* case: R1 = R2
1856 * copy register state to dest reg
1857 */
1858 regs[insn->dst_reg] = regs[insn->src_reg];
1859 } else {
1be7f75d
AS
1860 if (is_pointer_value(env, insn->src_reg)) {
1861 verbose("R%d partial copy of pointer\n",
1862 insn->src_reg);
1863 return -EACCES;
1864 }
57a09bf0 1865 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1866 }
1867 } else {
1868 /* case: R = imm
1869 * remember the value we stored into this reg
1870 */
1871 regs[insn->dst_reg].type = CONST_IMM;
1872 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1873 regs[insn->dst_reg].max_value = insn->imm;
1874 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1875 }
1876
1877 } else if (opcode > BPF_END) {
1878 verbose("invalid BPF_ALU opcode %x\n", opcode);
1879 return -EINVAL;
1880
1881 } else { /* all other ALU ops: and, sub, xor, add, ... */
1882
17a52670
AS
1883 if (BPF_SRC(insn->code) == BPF_X) {
1884 if (insn->imm != 0 || insn->off != 0) {
1885 verbose("BPF_ALU uses reserved fields\n");
1886 return -EINVAL;
1887 }
1888 /* check src1 operand */
1889 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1890 if (err)
1891 return err;
1892 } else {
1893 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1894 verbose("BPF_ALU uses reserved fields\n");
1895 return -EINVAL;
1896 }
1897 }
1898
1899 /* check src2 operand */
1900 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1901 if (err)
1902 return err;
1903
1904 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1905 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1906 verbose("div by zero\n");
1907 return -EINVAL;
1908 }
1909
229394e8
RV
1910 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1911 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1912 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1913
1914 if (insn->imm < 0 || insn->imm >= size) {
1915 verbose("invalid shift %d\n", insn->imm);
1916 return -EINVAL;
1917 }
1918 }
1919
1a0dc1ac
AS
1920 /* check dest operand */
1921 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1922 if (err)
1923 return err;
1924
1925 dst_reg = &regs[insn->dst_reg];
1926
48461135
JB
1927 /* first we want to adjust our ranges. */
1928 adjust_reg_min_max_vals(env, insn);
1929
17a52670
AS
1930 /* pattern match 'bpf_add Rx, imm' instruction */
1931 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1932 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1933 dst_reg->type = PTR_TO_STACK;
1934 dst_reg->imm = insn->imm;
1935 return 0;
332270fd
YS
1936 } else if (opcode == BPF_ADD &&
1937 BPF_CLASS(insn->code) == BPF_ALU64 &&
1938 dst_reg->type == PTR_TO_STACK &&
1939 ((BPF_SRC(insn->code) == BPF_X &&
1940 regs[insn->src_reg].type == CONST_IMM) ||
1941 BPF_SRC(insn->code) == BPF_K)) {
1942 if (BPF_SRC(insn->code) == BPF_X)
1943 dst_reg->imm += regs[insn->src_reg].imm;
1944 else
1945 dst_reg->imm += insn->imm;
1946 return 0;
969bf05e
AS
1947 } else if (opcode == BPF_ADD &&
1948 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1949 (dst_reg->type == PTR_TO_PACKET ||
1950 (BPF_SRC(insn->code) == BPF_X &&
1951 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1952 /* ptr_to_packet += K|X */
1953 return check_packet_ptr_add(env, insn);
1954 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1955 dst_reg->type == UNKNOWN_VALUE &&
1956 env->allow_ptr_leaks) {
1957 /* unknown += K|X */
1958 return evaluate_reg_alu(env, insn);
1959 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1960 dst_reg->type == CONST_IMM &&
1961 env->allow_ptr_leaks) {
1962 /* reg_imm += K|X */
1963 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1964 } else if (is_pointer_value(env, insn->dst_reg)) {
1965 verbose("R%d pointer arithmetic prohibited\n",
1966 insn->dst_reg);
1967 return -EACCES;
1968 } else if (BPF_SRC(insn->code) == BPF_X &&
1969 is_pointer_value(env, insn->src_reg)) {
1970 verbose("R%d pointer arithmetic prohibited\n",
1971 insn->src_reg);
1972 return -EACCES;
1973 }
17a52670 1974
48461135
JB
1975 /* If we did pointer math on a map value then just set it to our
1976 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1977 * loads to this register appropriately, otherwise just mark the
1978 * register as unknown.
1979 */
1980 if (env->allow_ptr_leaks &&
fce366a9 1981 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
48461135
JB
1982 (dst_reg->type == PTR_TO_MAP_VALUE ||
1983 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1984 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1985 else
1986 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1987 }
1988
1989 return 0;
1990}
1991
58e2af8b
JK
1992static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1993 struct bpf_reg_state *dst_reg)
969bf05e 1994{
58e2af8b 1995 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1996 int i;
2d2be8ca
DB
1997
1998 /* LLVM can generate two kind of checks:
1999 *
2000 * Type 1:
2001 *
2002 * r2 = r3;
2003 * r2 += 8;
2004 * if (r2 > pkt_end) goto <handle exception>
2005 * <access okay>
2006 *
2007 * Where:
2008 * r2 == dst_reg, pkt_end == src_reg
2009 * r2=pkt(id=n,off=8,r=0)
2010 * r3=pkt(id=n,off=0,r=0)
2011 *
2012 * Type 2:
2013 *
2014 * r2 = r3;
2015 * r2 += 8;
2016 * if (pkt_end >= r2) goto <access okay>
2017 * <handle exception>
2018 *
2019 * Where:
2020 * pkt_end == dst_reg, r2 == src_reg
2021 * r2=pkt(id=n,off=8,r=0)
2022 * r3=pkt(id=n,off=0,r=0)
2023 *
2024 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2025 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2026 */
2d2be8ca 2027
969bf05e
AS
2028 for (i = 0; i < MAX_BPF_REG; i++)
2029 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682
AS
2030 /* keep the maximum range already checked */
2031 regs[i].range = max(regs[i].range, dst_reg->off);
969bf05e
AS
2032
2033 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2034 if (state->stack_slot_type[i] != STACK_SPILL)
2035 continue;
2036 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2037 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
b1977682 2038 reg->range = max(reg->range, dst_reg->off);
969bf05e
AS
2039 }
2040}
2041
48461135
JB
2042/* Adjusts the register min/max values in the case that the dst_reg is the
2043 * variable register that we are working on, and src_reg is a constant or we're
2044 * simply doing a BPF_K check.
2045 */
2046static void reg_set_min_max(struct bpf_reg_state *true_reg,
2047 struct bpf_reg_state *false_reg, u64 val,
2048 u8 opcode)
2049{
2050 switch (opcode) {
2051 case BPF_JEQ:
2052 /* If this is false then we know nothing Jon Snow, but if it is
2053 * true then we know for sure.
2054 */
2055 true_reg->max_value = true_reg->min_value = val;
2056 break;
2057 case BPF_JNE:
2058 /* If this is true we know nothing Jon Snow, but if it is false
2059 * we know the value for sure;
2060 */
2061 false_reg->max_value = false_reg->min_value = val;
2062 break;
2063 case BPF_JGT:
2064 /* Unsigned comparison, the minimum value is 0. */
2065 false_reg->min_value = 0;
7e57fbb2 2066 /* fallthrough */
48461135
JB
2067 case BPF_JSGT:
2068 /* If this is false then we know the maximum val is val,
2069 * otherwise we know the min val is val+1.
2070 */
2071 false_reg->max_value = val;
2072 true_reg->min_value = val + 1;
2073 break;
2074 case BPF_JGE:
2075 /* Unsigned comparison, the minimum value is 0. */
2076 false_reg->min_value = 0;
7e57fbb2 2077 /* fallthrough */
48461135
JB
2078 case BPF_JSGE:
2079 /* If this is false then we know the maximum value is val - 1,
2080 * otherwise we know the mimimum value is val.
2081 */
2082 false_reg->max_value = val - 1;
2083 true_reg->min_value = val;
2084 break;
2085 default:
2086 break;
2087 }
2088
2089 check_reg_overflow(false_reg);
2090 check_reg_overflow(true_reg);
2091}
2092
2093/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2094 * is the variable reg.
2095 */
2096static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2097 struct bpf_reg_state *false_reg, u64 val,
2098 u8 opcode)
2099{
2100 switch (opcode) {
2101 case BPF_JEQ:
2102 /* If this is false then we know nothing Jon Snow, but if it is
2103 * true then we know for sure.
2104 */
2105 true_reg->max_value = true_reg->min_value = val;
2106 break;
2107 case BPF_JNE:
2108 /* If this is true we know nothing Jon Snow, but if it is false
2109 * we know the value for sure;
2110 */
2111 false_reg->max_value = false_reg->min_value = val;
2112 break;
2113 case BPF_JGT:
2114 /* Unsigned comparison, the minimum value is 0. */
2115 true_reg->min_value = 0;
7e57fbb2 2116 /* fallthrough */
48461135
JB
2117 case BPF_JSGT:
2118 /*
2119 * If this is false, then the val is <= the register, if it is
2120 * true the register <= to the val.
2121 */
2122 false_reg->min_value = val;
2123 true_reg->max_value = val - 1;
2124 break;
2125 case BPF_JGE:
2126 /* Unsigned comparison, the minimum value is 0. */
2127 true_reg->min_value = 0;
7e57fbb2 2128 /* fallthrough */
48461135
JB
2129 case BPF_JSGE:
2130 /* If this is false then constant < register, if it is true then
2131 * the register < constant.
2132 */
2133 false_reg->min_value = val + 1;
2134 true_reg->max_value = val;
2135 break;
2136 default:
2137 break;
2138 }
2139
2140 check_reg_overflow(false_reg);
2141 check_reg_overflow(true_reg);
2142}
2143
57a09bf0
TG
2144static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2145 enum bpf_reg_type type)
2146{
2147 struct bpf_reg_state *reg = &regs[regno];
2148
2149 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
56f668df
MKL
2150 if (type == UNKNOWN_VALUE) {
2151 __mark_reg_unknown_value(regs, regno);
2152 } else if (reg->map_ptr->inner_map_meta) {
2153 reg->type = CONST_PTR_TO_MAP;
2154 reg->map_ptr = reg->map_ptr->inner_map_meta;
2155 } else {
2156 reg->type = type;
2157 }
a08dd0da
DB
2158 /* We don't need id from this point onwards anymore, thus we
2159 * should better reset it, so that state pruning has chances
2160 * to take effect.
2161 */
2162 reg->id = 0;
57a09bf0
TG
2163 }
2164}
2165
2166/* The logic is similar to find_good_pkt_pointers(), both could eventually
2167 * be folded together at some point.
2168 */
2169static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2170 enum bpf_reg_type type)
2171{
2172 struct bpf_reg_state *regs = state->regs;
a08dd0da 2173 u32 id = regs[regno].id;
57a09bf0
TG
2174 int i;
2175
2176 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2177 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2178
2179 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2180 if (state->stack_slot_type[i] != STACK_SPILL)
2181 continue;
a08dd0da 2182 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2183 }
2184}
2185
58e2af8b 2186static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2187 struct bpf_insn *insn, int *insn_idx)
2188{
58e2af8b
JK
2189 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2190 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2191 u8 opcode = BPF_OP(insn->code);
2192 int err;
2193
2194 if (opcode > BPF_EXIT) {
2195 verbose("invalid BPF_JMP opcode %x\n", opcode);
2196 return -EINVAL;
2197 }
2198
2199 if (BPF_SRC(insn->code) == BPF_X) {
2200 if (insn->imm != 0) {
2201 verbose("BPF_JMP uses reserved fields\n");
2202 return -EINVAL;
2203 }
2204
2205 /* check src1 operand */
2206 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2207 if (err)
2208 return err;
1be7f75d
AS
2209
2210 if (is_pointer_value(env, insn->src_reg)) {
2211 verbose("R%d pointer comparison prohibited\n",
2212 insn->src_reg);
2213 return -EACCES;
2214 }
17a52670
AS
2215 } else {
2216 if (insn->src_reg != BPF_REG_0) {
2217 verbose("BPF_JMP uses reserved fields\n");
2218 return -EINVAL;
2219 }
2220 }
2221
2222 /* check src2 operand */
2223 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2224 if (err)
2225 return err;
2226
1a0dc1ac
AS
2227 dst_reg = &regs[insn->dst_reg];
2228
17a52670
AS
2229 /* detect if R == 0 where R was initialized to zero earlier */
2230 if (BPF_SRC(insn->code) == BPF_K &&
2231 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2232 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2233 if (opcode == BPF_JEQ) {
2234 /* if (imm == imm) goto pc+off;
2235 * only follow the goto, ignore fall-through
2236 */
2237 *insn_idx += insn->off;
2238 return 0;
2239 } else {
2240 /* if (imm != imm) goto pc+off;
2241 * only follow fall-through branch, since
2242 * that's where the program will go
2243 */
2244 return 0;
2245 }
2246 }
2247
2248 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2249 if (!other_branch)
2250 return -EFAULT;
2251
48461135
JB
2252 /* detect if we are comparing against a constant value so we can adjust
2253 * our min/max values for our dst register.
2254 */
2255 if (BPF_SRC(insn->code) == BPF_X) {
2256 if (regs[insn->src_reg].type == CONST_IMM)
2257 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2258 dst_reg, regs[insn->src_reg].imm,
2259 opcode);
2260 else if (dst_reg->type == CONST_IMM)
2261 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2262 &regs[insn->src_reg], dst_reg->imm,
2263 opcode);
2264 } else {
2265 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2266 dst_reg, insn->imm, opcode);
2267 }
2268
58e2af8b 2269 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2270 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2271 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2272 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2273 /* Mark all identical map registers in each branch as either
2274 * safe or unknown depending R == 0 or R != 0 conditional.
2275 */
2276 mark_map_regs(this_branch, insn->dst_reg,
2277 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2278 mark_map_regs(other_branch, insn->dst_reg,
2279 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2280 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2281 dst_reg->type == PTR_TO_PACKET &&
2282 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2283 find_good_pkt_pointers(this_branch, dst_reg);
2284 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2285 dst_reg->type == PTR_TO_PACKET_END &&
2286 regs[insn->src_reg].type == PTR_TO_PACKET) {
2287 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2288 } else if (is_pointer_value(env, insn->dst_reg)) {
2289 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2290 return -EACCES;
17a52670
AS
2291 }
2292 if (log_level)
2d2be8ca 2293 print_verifier_state(this_branch);
17a52670
AS
2294 return 0;
2295}
2296
0246e64d
AS
2297/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2298static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2299{
2300 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2301
2302 return (struct bpf_map *) (unsigned long) imm64;
2303}
2304
17a52670 2305/* verify BPF_LD_IMM64 instruction */
58e2af8b 2306static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2307{
58e2af8b 2308 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2309 int err;
2310
2311 if (BPF_SIZE(insn->code) != BPF_DW) {
2312 verbose("invalid BPF_LD_IMM insn\n");
2313 return -EINVAL;
2314 }
2315 if (insn->off != 0) {
2316 verbose("BPF_LD_IMM64 uses reserved fields\n");
2317 return -EINVAL;
2318 }
2319
2320 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2321 if (err)
2322 return err;
2323
6b173873 2324 if (insn->src_reg == 0) {
6b173873
JK
2325 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2326
6b173873
JK
2327 regs[insn->dst_reg].type = CONST_IMM;
2328 regs[insn->dst_reg].imm = imm;
17a52670 2329 return 0;
6b173873 2330 }
17a52670
AS
2331
2332 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2333 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2334
2335 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2336 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2337 return 0;
2338}
2339
96be4325
DB
2340static bool may_access_skb(enum bpf_prog_type type)
2341{
2342 switch (type) {
2343 case BPF_PROG_TYPE_SOCKET_FILTER:
2344 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2345 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2346 return true;
2347 default:
2348 return false;
2349 }
2350}
2351
ddd872bc
AS
2352/* verify safety of LD_ABS|LD_IND instructions:
2353 * - they can only appear in the programs where ctx == skb
2354 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2355 * preserve R6-R9, and store return value into R0
2356 *
2357 * Implicit input:
2358 * ctx == skb == R6 == CTX
2359 *
2360 * Explicit input:
2361 * SRC == any register
2362 * IMM == 32-bit immediate
2363 *
2364 * Output:
2365 * R0 - 8/16/32-bit skb data converted to cpu endianness
2366 */
58e2af8b 2367static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2368{
58e2af8b 2369 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2370 u8 mode = BPF_MODE(insn->code);
58e2af8b 2371 struct bpf_reg_state *reg;
ddd872bc
AS
2372 int i, err;
2373
24701ece 2374 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2375 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2376 return -EINVAL;
2377 }
2378
2379 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2380 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2381 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2382 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2383 return -EINVAL;
2384 }
2385
2386 /* check whether implicit source operand (register R6) is readable */
2387 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2388 if (err)
2389 return err;
2390
2391 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2392 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2393 return -EINVAL;
2394 }
2395
2396 if (mode == BPF_IND) {
2397 /* check explicit source operand */
2398 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2399 if (err)
2400 return err;
2401 }
2402
2403 /* reset caller saved regs to unreadable */
2404 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2405 reg = regs + caller_saved[i];
2406 reg->type = NOT_INIT;
2407 reg->imm = 0;
2408 }
2409
2410 /* mark destination R0 register as readable, since it contains
2411 * the value fetched from the packet
2412 */
2413 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2414 return 0;
2415}
2416
475fb78f
AS
2417/* non-recursive DFS pseudo code
2418 * 1 procedure DFS-iterative(G,v):
2419 * 2 label v as discovered
2420 * 3 let S be a stack
2421 * 4 S.push(v)
2422 * 5 while S is not empty
2423 * 6 t <- S.pop()
2424 * 7 if t is what we're looking for:
2425 * 8 return t
2426 * 9 for all edges e in G.adjacentEdges(t) do
2427 * 10 if edge e is already labelled
2428 * 11 continue with the next edge
2429 * 12 w <- G.adjacentVertex(t,e)
2430 * 13 if vertex w is not discovered and not explored
2431 * 14 label e as tree-edge
2432 * 15 label w as discovered
2433 * 16 S.push(w)
2434 * 17 continue at 5
2435 * 18 else if vertex w is discovered
2436 * 19 label e as back-edge
2437 * 20 else
2438 * 21 // vertex w is explored
2439 * 22 label e as forward- or cross-edge
2440 * 23 label t as explored
2441 * 24 S.pop()
2442 *
2443 * convention:
2444 * 0x10 - discovered
2445 * 0x11 - discovered and fall-through edge labelled
2446 * 0x12 - discovered and fall-through and branch edges labelled
2447 * 0x20 - explored
2448 */
2449
2450enum {
2451 DISCOVERED = 0x10,
2452 EXPLORED = 0x20,
2453 FALLTHROUGH = 1,
2454 BRANCH = 2,
2455};
2456
58e2af8b 2457#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2458
475fb78f
AS
2459static int *insn_stack; /* stack of insns to process */
2460static int cur_stack; /* current stack index */
2461static int *insn_state;
2462
2463/* t, w, e - match pseudo-code above:
2464 * t - index of current instruction
2465 * w - next instruction
2466 * e - edge
2467 */
58e2af8b 2468static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2469{
2470 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2471 return 0;
2472
2473 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2474 return 0;
2475
2476 if (w < 0 || w >= env->prog->len) {
2477 verbose("jump out of range from insn %d to %d\n", t, w);
2478 return -EINVAL;
2479 }
2480
f1bca824
AS
2481 if (e == BRANCH)
2482 /* mark branch target for state pruning */
2483 env->explored_states[w] = STATE_LIST_MARK;
2484
475fb78f
AS
2485 if (insn_state[w] == 0) {
2486 /* tree-edge */
2487 insn_state[t] = DISCOVERED | e;
2488 insn_state[w] = DISCOVERED;
2489 if (cur_stack >= env->prog->len)
2490 return -E2BIG;
2491 insn_stack[cur_stack++] = w;
2492 return 1;
2493 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2494 verbose("back-edge from insn %d to %d\n", t, w);
2495 return -EINVAL;
2496 } else if (insn_state[w] == EXPLORED) {
2497 /* forward- or cross-edge */
2498 insn_state[t] = DISCOVERED | e;
2499 } else {
2500 verbose("insn state internal bug\n");
2501 return -EFAULT;
2502 }
2503 return 0;
2504}
2505
2506/* non-recursive depth-first-search to detect loops in BPF program
2507 * loop == back-edge in directed graph
2508 */
58e2af8b 2509static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2510{
2511 struct bpf_insn *insns = env->prog->insnsi;
2512 int insn_cnt = env->prog->len;
2513 int ret = 0;
2514 int i, t;
2515
2516 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2517 if (!insn_state)
2518 return -ENOMEM;
2519
2520 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2521 if (!insn_stack) {
2522 kfree(insn_state);
2523 return -ENOMEM;
2524 }
2525
2526 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2527 insn_stack[0] = 0; /* 0 is the first instruction */
2528 cur_stack = 1;
2529
2530peek_stack:
2531 if (cur_stack == 0)
2532 goto check_state;
2533 t = insn_stack[cur_stack - 1];
2534
2535 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2536 u8 opcode = BPF_OP(insns[t].code);
2537
2538 if (opcode == BPF_EXIT) {
2539 goto mark_explored;
2540 } else if (opcode == BPF_CALL) {
2541 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2542 if (ret == 1)
2543 goto peek_stack;
2544 else if (ret < 0)
2545 goto err_free;
07016151
DB
2546 if (t + 1 < insn_cnt)
2547 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2548 } else if (opcode == BPF_JA) {
2549 if (BPF_SRC(insns[t].code) != BPF_K) {
2550 ret = -EINVAL;
2551 goto err_free;
2552 }
2553 /* unconditional jump with single edge */
2554 ret = push_insn(t, t + insns[t].off + 1,
2555 FALLTHROUGH, env);
2556 if (ret == 1)
2557 goto peek_stack;
2558 else if (ret < 0)
2559 goto err_free;
f1bca824
AS
2560 /* tell verifier to check for equivalent states
2561 * after every call and jump
2562 */
c3de6317
AS
2563 if (t + 1 < insn_cnt)
2564 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2565 } else {
2566 /* conditional jump with two edges */
2567 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2568 if (ret == 1)
2569 goto peek_stack;
2570 else if (ret < 0)
2571 goto err_free;
2572
2573 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2574 if (ret == 1)
2575 goto peek_stack;
2576 else if (ret < 0)
2577 goto err_free;
2578 }
2579 } else {
2580 /* all other non-branch instructions with single
2581 * fall-through edge
2582 */
2583 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2584 if (ret == 1)
2585 goto peek_stack;
2586 else if (ret < 0)
2587 goto err_free;
2588 }
2589
2590mark_explored:
2591 insn_state[t] = EXPLORED;
2592 if (cur_stack-- <= 0) {
2593 verbose("pop stack internal bug\n");
2594 ret = -EFAULT;
2595 goto err_free;
2596 }
2597 goto peek_stack;
2598
2599check_state:
2600 for (i = 0; i < insn_cnt; i++) {
2601 if (insn_state[i] != EXPLORED) {
2602 verbose("unreachable insn %d\n", i);
2603 ret = -EINVAL;
2604 goto err_free;
2605 }
2606 }
2607 ret = 0; /* cfg looks good */
2608
2609err_free:
2610 kfree(insn_state);
2611 kfree(insn_stack);
2612 return ret;
2613}
2614
969bf05e
AS
2615/* the following conditions reduce the number of explored insns
2616 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2617 */
58e2af8b
JK
2618static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2619 struct bpf_reg_state *cur)
969bf05e
AS
2620{
2621 if (old->id != cur->id)
2622 return false;
2623
2624 /* old ptr_to_packet is more conservative, since it allows smaller
2625 * range. Ex:
2626 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2627 * old(off=0,r=10) means that with range=10 the verifier proceeded
2628 * further and found no issues with the program. Now we're in the same
2629 * spot with cur(off=0,r=20), so we're safe too, since anything further
2630 * will only be looking at most 10 bytes after this pointer.
2631 */
2632 if (old->off == cur->off && old->range < cur->range)
2633 return true;
2634
2635 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2636 * since both cannot be used for packet access and safe(old)
2637 * pointer has smaller off that could be used for further
2638 * 'if (ptr > data_end)' check
2639 * Ex:
2640 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2641 * that we cannot access the packet.
2642 * The safe range is:
2643 * [ptr, ptr + range - off)
2644 * so whenever off >=range, it means no safe bytes from this pointer.
2645 * When comparing old->off <= cur->off, it means that older code
2646 * went with smaller offset and that offset was later
2647 * used to figure out the safe range after 'if (ptr > data_end)' check
2648 * Say, 'old' state was explored like:
2649 * ... R3(off=0, r=0)
2650 * R4 = R3 + 20
2651 * ... now R4(off=20,r=0) <-- here
2652 * if (R4 > data_end)
2653 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2654 * ... the code further went all the way to bpf_exit.
2655 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2656 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2657 * goes further, such cur_R4 will give larger safe packet range after
2658 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2659 * so they will be good with r=30 and we can prune the search.
2660 */
2661 if (old->off <= cur->off &&
2662 old->off >= old->range && cur->off >= cur->range)
2663 return true;
2664
2665 return false;
2666}
2667
f1bca824
AS
2668/* compare two verifier states
2669 *
2670 * all states stored in state_list are known to be valid, since
2671 * verifier reached 'bpf_exit' instruction through them
2672 *
2673 * this function is called when verifier exploring different branches of
2674 * execution popped from the state stack. If it sees an old state that has
2675 * more strict register state and more strict stack state then this execution
2676 * branch doesn't need to be explored further, since verifier already
2677 * concluded that more strict state leads to valid finish.
2678 *
2679 * Therefore two states are equivalent if register state is more conservative
2680 * and explored stack state is more conservative than the current one.
2681 * Example:
2682 * explored current
2683 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2684 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2685 *
2686 * In other words if current stack state (one being explored) has more
2687 * valid slots than old one that already passed validation, it means
2688 * the verifier can stop exploring and conclude that current state is valid too
2689 *
2690 * Similarly with registers. If explored state has register type as invalid
2691 * whereas register type in current state is meaningful, it means that
2692 * the current state will reach 'bpf_exit' instruction safely
2693 */
48461135
JB
2694static bool states_equal(struct bpf_verifier_env *env,
2695 struct bpf_verifier_state *old,
58e2af8b 2696 struct bpf_verifier_state *cur)
f1bca824 2697{
e2d2afe1 2698 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2699 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2700 int i;
2701
2702 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2703 rold = &old->regs[i];
2704 rcur = &cur->regs[i];
2705
2706 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2707 continue;
2708
48461135
JB
2709 /* If the ranges were not the same, but everything else was and
2710 * we didn't do a variable access into a map then we are a-ok.
2711 */
e2d2afe1 2712 if (!varlen_map_access &&
d2a4dd37 2713 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2714 continue;
2715
e2d2afe1
JB
2716 /* If we didn't map access then again we don't care about the
2717 * mismatched range values and it's ok if our old type was
2718 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2719 */
1a0dc1ac 2720 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2721 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2722 rcur->type != NOT_INIT))
1a0dc1ac
AS
2723 continue;
2724
969bf05e
AS
2725 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2726 compare_ptrs_to_packet(rold, rcur))
2727 continue;
2728
1a0dc1ac 2729 return false;
f1bca824
AS
2730 }
2731
2732 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2733 if (old->stack_slot_type[i] == STACK_INVALID)
2734 continue;
2735 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2736 /* Ex: old explored (safe) state has STACK_SPILL in
2737 * this stack slot, but current has has STACK_MISC ->
2738 * this verifier states are not equivalent,
2739 * return false to continue verification of this path
2740 */
f1bca824 2741 return false;
9c399760
AS
2742 if (i % BPF_REG_SIZE)
2743 continue;
2744 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2745 &cur->spilled_regs[i / BPF_REG_SIZE],
2746 sizeof(old->spilled_regs[0])))
2747 /* when explored and current stack slot types are
2748 * the same, check that stored pointers types
2749 * are the same as well.
2750 * Ex: explored safe path could have stored
58e2af8b 2751 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2752 * but current path has stored:
58e2af8b 2753 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2754 * such verifier states are not equivalent.
2755 * return false to continue verification of this path
2756 */
2757 return false;
2758 else
2759 continue;
f1bca824
AS
2760 }
2761 return true;
2762}
2763
58e2af8b 2764static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2765{
58e2af8b
JK
2766 struct bpf_verifier_state_list *new_sl;
2767 struct bpf_verifier_state_list *sl;
f1bca824
AS
2768
2769 sl = env->explored_states[insn_idx];
2770 if (!sl)
2771 /* this 'insn_idx' instruction wasn't marked, so we will not
2772 * be doing state search here
2773 */
2774 return 0;
2775
2776 while (sl != STATE_LIST_MARK) {
48461135 2777 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2778 /* reached equivalent register/stack state,
2779 * prune the search
2780 */
2781 return 1;
2782 sl = sl->next;
2783 }
2784
2785 /* there were no equivalent states, remember current one.
2786 * technically the current state is not proven to be safe yet,
2787 * but it will either reach bpf_exit (which means it's safe) or
2788 * it will be rejected. Since there are no loops, we won't be
2789 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2790 */
58e2af8b 2791 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2792 if (!new_sl)
2793 return -ENOMEM;
2794
2795 /* add new state to the head of linked list */
2796 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2797 new_sl->next = env->explored_states[insn_idx];
2798 env->explored_states[insn_idx] = new_sl;
2799 return 0;
2800}
2801
13a27dfc
JK
2802static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2803 int insn_idx, int prev_insn_idx)
2804{
2805 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2806 return 0;
2807
2808 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2809}
2810
58e2af8b 2811static int do_check(struct bpf_verifier_env *env)
17a52670 2812{
58e2af8b 2813 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2814 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2815 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2816 int insn_cnt = env->prog->len;
2817 int insn_idx, prev_insn_idx = 0;
2818 int insn_processed = 0;
2819 bool do_print_state = false;
2820
2821 init_reg_state(regs);
2822 insn_idx = 0;
48461135 2823 env->varlen_map_value_access = false;
17a52670
AS
2824 for (;;) {
2825 struct bpf_insn *insn;
2826 u8 class;
2827 int err;
2828
2829 if (insn_idx >= insn_cnt) {
2830 verbose("invalid insn idx %d insn_cnt %d\n",
2831 insn_idx, insn_cnt);
2832 return -EFAULT;
2833 }
2834
2835 insn = &insns[insn_idx];
2836 class = BPF_CLASS(insn->code);
2837
07016151 2838 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 2839 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
2840 insn_processed);
2841 return -E2BIG;
2842 }
2843
f1bca824
AS
2844 err = is_state_visited(env, insn_idx);
2845 if (err < 0)
2846 return err;
2847 if (err == 1) {
2848 /* found equivalent state, can prune the search */
2849 if (log_level) {
2850 if (do_print_state)
2851 verbose("\nfrom %d to %d: safe\n",
2852 prev_insn_idx, insn_idx);
2853 else
2854 verbose("%d: safe\n", insn_idx);
2855 }
2856 goto process_bpf_exit;
2857 }
2858
17a52670
AS
2859 if (log_level && do_print_state) {
2860 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2861 print_verifier_state(&env->cur_state);
17a52670
AS
2862 do_print_state = false;
2863 }
2864
2865 if (log_level) {
2866 verbose("%d: ", insn_idx);
0d0e5769 2867 print_bpf_insn(env, insn);
17a52670
AS
2868 }
2869
13a27dfc
JK
2870 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2871 if (err)
2872 return err;
2873
17a52670 2874 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2875 err = check_alu_op(env, insn);
17a52670
AS
2876 if (err)
2877 return err;
2878
2879 } else if (class == BPF_LDX) {
3df126f3 2880 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2881
2882 /* check for reserved fields is already done */
2883
17a52670
AS
2884 /* check src operand */
2885 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2886 if (err)
2887 return err;
2888
2889 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2890 if (err)
2891 return err;
2892
725f9dcd
AS
2893 src_reg_type = regs[insn->src_reg].type;
2894
17a52670
AS
2895 /* check that memory (src_reg + off) is readable,
2896 * the state of dst_reg will be updated by this func
2897 */
2898 err = check_mem_access(env, insn->src_reg, insn->off,
2899 BPF_SIZE(insn->code), BPF_READ,
2900 insn->dst_reg);
2901 if (err)
2902 return err;
2903
ea2e7ce5
AS
2904 if (BPF_SIZE(insn->code) != BPF_W &&
2905 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2906 insn_idx++;
2907 continue;
2908 }
9bac3d6d 2909
3df126f3
JK
2910 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2911
2912 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2913 /* saw a valid insn
2914 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2915 * save type to validate intersecting paths
9bac3d6d 2916 */
3df126f3 2917 *prev_src_type = src_reg_type;
9bac3d6d 2918
3df126f3 2919 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2920 (src_reg_type == PTR_TO_CTX ||
3df126f3 2921 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2922 /* ABuser program is trying to use the same insn
2923 * dst_reg = *(u32*) (src_reg + off)
2924 * with different pointer types:
2925 * src_reg == ctx in one branch and
2926 * src_reg == stack|map in some other branch.
2927 * Reject it.
2928 */
2929 verbose("same insn cannot be used with different pointers\n");
2930 return -EINVAL;
2931 }
2932
17a52670 2933 } else if (class == BPF_STX) {
3df126f3 2934 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2935
17a52670
AS
2936 if (BPF_MODE(insn->code) == BPF_XADD) {
2937 err = check_xadd(env, insn);
2938 if (err)
2939 return err;
2940 insn_idx++;
2941 continue;
2942 }
2943
17a52670
AS
2944 /* check src1 operand */
2945 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2946 if (err)
2947 return err;
2948 /* check src2 operand */
2949 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2950 if (err)
2951 return err;
2952
d691f9e8
AS
2953 dst_reg_type = regs[insn->dst_reg].type;
2954
17a52670
AS
2955 /* check that memory (dst_reg + off) is writeable */
2956 err = check_mem_access(env, insn->dst_reg, insn->off,
2957 BPF_SIZE(insn->code), BPF_WRITE,
2958 insn->src_reg);
2959 if (err)
2960 return err;
2961
3df126f3
JK
2962 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2963
2964 if (*prev_dst_type == NOT_INIT) {
2965 *prev_dst_type = dst_reg_type;
2966 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2967 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2968 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2969 verbose("same insn cannot be used with different pointers\n");
2970 return -EINVAL;
2971 }
2972
17a52670
AS
2973 } else if (class == BPF_ST) {
2974 if (BPF_MODE(insn->code) != BPF_MEM ||
2975 insn->src_reg != BPF_REG_0) {
2976 verbose("BPF_ST uses reserved fields\n");
2977 return -EINVAL;
2978 }
2979 /* check src operand */
2980 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2981 if (err)
2982 return err;
2983
2984 /* check that memory (dst_reg + off) is writeable */
2985 err = check_mem_access(env, insn->dst_reg, insn->off,
2986 BPF_SIZE(insn->code), BPF_WRITE,
2987 -1);
2988 if (err)
2989 return err;
2990
2991 } else if (class == BPF_JMP) {
2992 u8 opcode = BPF_OP(insn->code);
2993
2994 if (opcode == BPF_CALL) {
2995 if (BPF_SRC(insn->code) != BPF_K ||
2996 insn->off != 0 ||
2997 insn->src_reg != BPF_REG_0 ||
2998 insn->dst_reg != BPF_REG_0) {
2999 verbose("BPF_CALL uses reserved fields\n");
3000 return -EINVAL;
3001 }
3002
81ed18ab 3003 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3004 if (err)
3005 return err;
3006
3007 } else if (opcode == BPF_JA) {
3008 if (BPF_SRC(insn->code) != BPF_K ||
3009 insn->imm != 0 ||
3010 insn->src_reg != BPF_REG_0 ||
3011 insn->dst_reg != BPF_REG_0) {
3012 verbose("BPF_JA uses reserved fields\n");
3013 return -EINVAL;
3014 }
3015
3016 insn_idx += insn->off + 1;
3017 continue;
3018
3019 } else if (opcode == BPF_EXIT) {
3020 if (BPF_SRC(insn->code) != BPF_K ||
3021 insn->imm != 0 ||
3022 insn->src_reg != BPF_REG_0 ||
3023 insn->dst_reg != BPF_REG_0) {
3024 verbose("BPF_EXIT uses reserved fields\n");
3025 return -EINVAL;
3026 }
3027
3028 /* eBPF calling convetion is such that R0 is used
3029 * to return the value from eBPF program.
3030 * Make sure that it's readable at this time
3031 * of bpf_exit, which means that program wrote
3032 * something into it earlier
3033 */
3034 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3035 if (err)
3036 return err;
3037
1be7f75d
AS
3038 if (is_pointer_value(env, BPF_REG_0)) {
3039 verbose("R0 leaks addr as return value\n");
3040 return -EACCES;
3041 }
3042
f1bca824 3043process_bpf_exit:
17a52670
AS
3044 insn_idx = pop_stack(env, &prev_insn_idx);
3045 if (insn_idx < 0) {
3046 break;
3047 } else {
3048 do_print_state = true;
3049 continue;
3050 }
3051 } else {
3052 err = check_cond_jmp_op(env, insn, &insn_idx);
3053 if (err)
3054 return err;
3055 }
3056 } else if (class == BPF_LD) {
3057 u8 mode = BPF_MODE(insn->code);
3058
3059 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3060 err = check_ld_abs(env, insn);
3061 if (err)
3062 return err;
3063
17a52670
AS
3064 } else if (mode == BPF_IMM) {
3065 err = check_ld_imm(env, insn);
3066 if (err)
3067 return err;
3068
3069 insn_idx++;
3070 } else {
3071 verbose("invalid BPF_LD mode\n");
3072 return -EINVAL;
3073 }
48461135 3074 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3075 } else {
3076 verbose("unknown insn class %d\n", class);
3077 return -EINVAL;
3078 }
3079
3080 insn_idx++;
3081 }
3082
1a0dc1ac 3083 verbose("processed %d insns\n", insn_processed);
17a52670
AS
3084 return 0;
3085}
3086
56f668df
MKL
3087static int check_map_prealloc(struct bpf_map *map)
3088{
3089 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3090 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3091 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3092 !(map->map_flags & BPF_F_NO_PREALLOC);
3093}
3094
fdc15d38
AS
3095static int check_map_prog_compatibility(struct bpf_map *map,
3096 struct bpf_prog *prog)
3097
3098{
56f668df
MKL
3099 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3100 * preallocated hash maps, since doing memory allocation
3101 * in overflow_handler can crash depending on where nmi got
3102 * triggered.
3103 */
3104 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3105 if (!check_map_prealloc(map)) {
3106 verbose("perf_event programs can only use preallocated hash map\n");
3107 return -EINVAL;
3108 }
3109 if (map->inner_map_meta &&
3110 !check_map_prealloc(map->inner_map_meta)) {
3111 verbose("perf_event programs can only use preallocated inner hash map\n");
3112 return -EINVAL;
3113 }
fdc15d38
AS
3114 }
3115 return 0;
3116}
3117
0246e64d
AS
3118/* look for pseudo eBPF instructions that access map FDs and
3119 * replace them with actual map pointers
3120 */
58e2af8b 3121static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3122{
3123 struct bpf_insn *insn = env->prog->insnsi;
3124 int insn_cnt = env->prog->len;
fdc15d38 3125 int i, j, err;
0246e64d 3126
f1f7714e 3127 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3128 if (err)
3129 return err;
3130
0246e64d 3131 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3132 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3133 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3134 verbose("BPF_LDX uses reserved fields\n");
3135 return -EINVAL;
3136 }
3137
d691f9e8
AS
3138 if (BPF_CLASS(insn->code) == BPF_STX &&
3139 ((BPF_MODE(insn->code) != BPF_MEM &&
3140 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3141 verbose("BPF_STX uses reserved fields\n");
3142 return -EINVAL;
3143 }
3144
0246e64d
AS
3145 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3146 struct bpf_map *map;
3147 struct fd f;
3148
3149 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3150 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3151 insn[1].off != 0) {
3152 verbose("invalid bpf_ld_imm64 insn\n");
3153 return -EINVAL;
3154 }
3155
3156 if (insn->src_reg == 0)
3157 /* valid generic load 64-bit imm */
3158 goto next_insn;
3159
3160 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3161 verbose("unrecognized bpf_ld_imm64 insn\n");
3162 return -EINVAL;
3163 }
3164
3165 f = fdget(insn->imm);
c2101297 3166 map = __bpf_map_get(f);
0246e64d
AS
3167 if (IS_ERR(map)) {
3168 verbose("fd %d is not pointing to valid bpf_map\n",
3169 insn->imm);
0246e64d
AS
3170 return PTR_ERR(map);
3171 }
3172
fdc15d38
AS
3173 err = check_map_prog_compatibility(map, env->prog);
3174 if (err) {
3175 fdput(f);
3176 return err;
3177 }
3178
0246e64d
AS
3179 /* store map pointer inside BPF_LD_IMM64 instruction */
3180 insn[0].imm = (u32) (unsigned long) map;
3181 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3182
3183 /* check whether we recorded this map already */
3184 for (j = 0; j < env->used_map_cnt; j++)
3185 if (env->used_maps[j] == map) {
3186 fdput(f);
3187 goto next_insn;
3188 }
3189
3190 if (env->used_map_cnt >= MAX_USED_MAPS) {
3191 fdput(f);
3192 return -E2BIG;
3193 }
3194
0246e64d
AS
3195 /* hold the map. If the program is rejected by verifier,
3196 * the map will be released by release_maps() or it
3197 * will be used by the valid program until it's unloaded
3198 * and all maps are released in free_bpf_prog_info()
3199 */
92117d84
AS
3200 map = bpf_map_inc(map, false);
3201 if (IS_ERR(map)) {
3202 fdput(f);
3203 return PTR_ERR(map);
3204 }
3205 env->used_maps[env->used_map_cnt++] = map;
3206
0246e64d
AS
3207 fdput(f);
3208next_insn:
3209 insn++;
3210 i++;
3211 }
3212 }
3213
3214 /* now all pseudo BPF_LD_IMM64 instructions load valid
3215 * 'struct bpf_map *' into a register instead of user map_fd.
3216 * These pointers will be used later by verifier to validate map access.
3217 */
3218 return 0;
3219}
3220
3221/* drop refcnt of maps used by the rejected program */
58e2af8b 3222static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3223{
3224 int i;
3225
3226 for (i = 0; i < env->used_map_cnt; i++)
3227 bpf_map_put(env->used_maps[i]);
3228}
3229
3230/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3231static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3232{
3233 struct bpf_insn *insn = env->prog->insnsi;
3234 int insn_cnt = env->prog->len;
3235 int i;
3236
3237 for (i = 0; i < insn_cnt; i++, insn++)
3238 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3239 insn->src_reg = 0;
3240}
3241
8041902d
AS
3242/* single env->prog->insni[off] instruction was replaced with the range
3243 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3244 * [0, off) and [off, end) to new locations, so the patched range stays zero
3245 */
3246static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3247 u32 off, u32 cnt)
3248{
3249 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3250
3251 if (cnt == 1)
3252 return 0;
3253 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3254 if (!new_data)
3255 return -ENOMEM;
3256 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3257 memcpy(new_data + off + cnt - 1, old_data + off,
3258 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3259 env->insn_aux_data = new_data;
3260 vfree(old_data);
3261 return 0;
3262}
3263
3264static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3265 const struct bpf_insn *patch, u32 len)
3266{
3267 struct bpf_prog *new_prog;
3268
3269 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3270 if (!new_prog)
3271 return NULL;
3272 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3273 return NULL;
3274 return new_prog;
3275}
3276
9bac3d6d
AS
3277/* convert load instructions that access fields of 'struct __sk_buff'
3278 * into sequence of instructions that access fields of 'struct sk_buff'
3279 */
58e2af8b 3280static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3281{
36bbef52 3282 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3283 const int insn_cnt = env->prog->len;
36bbef52 3284 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3285 struct bpf_prog *new_prog;
d691f9e8 3286 enum bpf_access_type type;
3df126f3 3287 int i, cnt, delta = 0;
9bac3d6d 3288
36bbef52
DB
3289 if (ops->gen_prologue) {
3290 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3291 env->prog);
3292 if (cnt >= ARRAY_SIZE(insn_buf)) {
3293 verbose("bpf verifier is misconfigured\n");
3294 return -EINVAL;
3295 } else if (cnt) {
8041902d 3296 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3297 if (!new_prog)
3298 return -ENOMEM;
8041902d 3299
36bbef52 3300 env->prog = new_prog;
3df126f3 3301 delta += cnt - 1;
36bbef52
DB
3302 }
3303 }
3304
3305 if (!ops->convert_ctx_access)
9bac3d6d
AS
3306 return 0;
3307
3df126f3 3308 insn = env->prog->insnsi + delta;
36bbef52 3309
9bac3d6d 3310 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3311 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3312 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3313 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3314 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3315 type = BPF_READ;
62c7989b
DB
3316 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3317 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3318 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3319 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3320 type = BPF_WRITE;
3321 else
9bac3d6d
AS
3322 continue;
3323
8041902d 3324 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3325 continue;
9bac3d6d 3326
6b8cc1d1 3327 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
9bac3d6d
AS
3328 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3329 verbose("bpf verifier is misconfigured\n");
3330 return -EINVAL;
3331 }
3332
8041902d 3333 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3334 if (!new_prog)
3335 return -ENOMEM;
3336
3df126f3 3337 delta += cnt - 1;
9bac3d6d
AS
3338
3339 /* keep walking new program and skip insns we just inserted */
3340 env->prog = new_prog;
3df126f3 3341 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3342 }
3343
3344 return 0;
3345}
3346
79741b3b 3347/* fixup insn->imm field of bpf_call instructions
81ed18ab 3348 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3349 *
3350 * this function is called after eBPF program passed verification
3351 */
79741b3b 3352static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3353{
79741b3b
AS
3354 struct bpf_prog *prog = env->prog;
3355 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3356 const struct bpf_func_proto *fn;
79741b3b 3357 const int insn_cnt = prog->len;
81ed18ab
AS
3358 struct bpf_insn insn_buf[16];
3359 struct bpf_prog *new_prog;
3360 struct bpf_map *map_ptr;
3361 int i, cnt, delta = 0;
e245c5c6 3362
79741b3b
AS
3363 for (i = 0; i < insn_cnt; i++, insn++) {
3364 if (insn->code != (BPF_JMP | BPF_CALL))
3365 continue;
e245c5c6 3366
79741b3b
AS
3367 if (insn->imm == BPF_FUNC_get_route_realm)
3368 prog->dst_needed = 1;
3369 if (insn->imm == BPF_FUNC_get_prandom_u32)
3370 bpf_user_rnd_init_once();
79741b3b 3371 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
3372 /* If we tail call into other programs, we
3373 * cannot make any assumptions since they can
3374 * be replaced dynamically during runtime in
3375 * the program array.
3376 */
3377 prog->cb_access = 1;
7b9f6da1 3378
79741b3b
AS
3379 /* mark bpf_tail_call as different opcode to avoid
3380 * conditional branch in the interpeter for every normal
3381 * call and to prevent accidental JITing by JIT compiler
3382 * that doesn't support bpf_tail_call yet
e245c5c6 3383 */
79741b3b
AS
3384 insn->imm = 0;
3385 insn->code |= BPF_X;
3386 continue;
3387 }
e245c5c6 3388
81ed18ab
AS
3389 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3390 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3391 if (map_ptr == BPF_MAP_PTR_POISON ||
3392 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3393 goto patch_call_imm;
3394
3395 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3396 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3397 verbose("bpf verifier is misconfigured\n");
3398 return -EINVAL;
3399 }
3400
3401 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3402 cnt);
3403 if (!new_prog)
3404 return -ENOMEM;
3405
3406 delta += cnt - 1;
3407
3408 /* keep walking new program and skip insns we just inserted */
3409 env->prog = prog = new_prog;
3410 insn = new_prog->insnsi + i + delta;
3411 continue;
3412 }
3413
3414patch_call_imm:
79741b3b
AS
3415 fn = prog->aux->ops->get_func_proto(insn->imm);
3416 /* all functions that have prototype and verifier allowed
3417 * programs to call them, must be real in-kernel functions
3418 */
3419 if (!fn->func) {
3420 verbose("kernel subsystem misconfigured func %s#%d\n",
3421 func_id_name(insn->imm), insn->imm);
3422 return -EFAULT;
e245c5c6 3423 }
79741b3b 3424 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3425 }
e245c5c6 3426
79741b3b
AS
3427 return 0;
3428}
e245c5c6 3429
58e2af8b 3430static void free_states(struct bpf_verifier_env *env)
f1bca824 3431{
58e2af8b 3432 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3433 int i;
3434
3435 if (!env->explored_states)
3436 return;
3437
3438 for (i = 0; i < env->prog->len; i++) {
3439 sl = env->explored_states[i];
3440
3441 if (sl)
3442 while (sl != STATE_LIST_MARK) {
3443 sln = sl->next;
3444 kfree(sl);
3445 sl = sln;
3446 }
3447 }
3448
3449 kfree(env->explored_states);
3450}
3451
9bac3d6d 3452int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3453{
cbd35700 3454 char __user *log_ubuf = NULL;
58e2af8b 3455 struct bpf_verifier_env *env;
51580e79
AS
3456 int ret = -EINVAL;
3457
58e2af8b 3458 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3459 * allocate/free it every time bpf_check() is called
3460 */
58e2af8b 3461 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3462 if (!env)
3463 return -ENOMEM;
3464
3df126f3
JK
3465 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3466 (*prog)->len);
3467 ret = -ENOMEM;
3468 if (!env->insn_aux_data)
3469 goto err_free_env;
9bac3d6d 3470 env->prog = *prog;
0246e64d 3471
cbd35700
AS
3472 /* grab the mutex to protect few globals used by verifier */
3473 mutex_lock(&bpf_verifier_lock);
3474
3475 if (attr->log_level || attr->log_buf || attr->log_size) {
3476 /* user requested verbose verifier output
3477 * and supplied buffer to store the verification trace
3478 */
3479 log_level = attr->log_level;
3480 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3481 log_size = attr->log_size;
3482 log_len = 0;
3483
3484 ret = -EINVAL;
3485 /* log_* values have to be sane */
3486 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3487 log_level == 0 || log_ubuf == NULL)
3df126f3 3488 goto err_unlock;
cbd35700
AS
3489
3490 ret = -ENOMEM;
3491 log_buf = vmalloc(log_size);
3492 if (!log_buf)
3df126f3 3493 goto err_unlock;
cbd35700
AS
3494 } else {
3495 log_level = 0;
3496 }
3497
0246e64d
AS
3498 ret = replace_map_fd_with_map_ptr(env);
3499 if (ret < 0)
3500 goto skip_full_check;
3501
9bac3d6d 3502 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3503 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3504 GFP_USER);
3505 ret = -ENOMEM;
3506 if (!env->explored_states)
3507 goto skip_full_check;
3508
475fb78f
AS
3509 ret = check_cfg(env);
3510 if (ret < 0)
3511 goto skip_full_check;
3512
1be7f75d
AS
3513 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3514
17a52670 3515 ret = do_check(env);
cbd35700 3516
0246e64d 3517skip_full_check:
17a52670 3518 while (pop_stack(env, NULL) >= 0);
f1bca824 3519 free_states(env);
0246e64d 3520
9bac3d6d
AS
3521 if (ret == 0)
3522 /* program is valid, convert *(u32*)(ctx + off) accesses */
3523 ret = convert_ctx_accesses(env);
3524
e245c5c6 3525 if (ret == 0)
79741b3b 3526 ret = fixup_bpf_calls(env);
e245c5c6 3527
cbd35700
AS
3528 if (log_level && log_len >= log_size - 1) {
3529 BUG_ON(log_len >= log_size);
3530 /* verifier log exceeded user supplied buffer */
3531 ret = -ENOSPC;
3532 /* fall through to return what was recorded */
3533 }
3534
3535 /* copy verifier log back to user space including trailing zero */
3536 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3537 ret = -EFAULT;
3538 goto free_log_buf;
3539 }
3540
0246e64d
AS
3541 if (ret == 0 && env->used_map_cnt) {
3542 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3543 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3544 sizeof(env->used_maps[0]),
3545 GFP_KERNEL);
0246e64d 3546
9bac3d6d 3547 if (!env->prog->aux->used_maps) {
0246e64d
AS
3548 ret = -ENOMEM;
3549 goto free_log_buf;
3550 }
3551
9bac3d6d 3552 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3553 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3554 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3555
3556 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3557 * bpf_ld_imm64 instructions
3558 */
3559 convert_pseudo_ld_imm64(env);
3560 }
cbd35700
AS
3561
3562free_log_buf:
3563 if (log_level)
3564 vfree(log_buf);
9bac3d6d 3565 if (!env->prog->aux->used_maps)
0246e64d
AS
3566 /* if we didn't copy map pointers into bpf_prog_info, release
3567 * them now. Otherwise free_bpf_prog_info() will release them.
3568 */
3569 release_maps(env);
9bac3d6d 3570 *prog = env->prog;
3df126f3 3571err_unlock:
cbd35700 3572 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3573 vfree(env->insn_aux_data);
3574err_free_env:
3575 kfree(env);
51580e79
AS
3576 return ret;
3577}
13a27dfc
JK
3578
3579int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3580 void *priv)
3581{
3582 struct bpf_verifier_env *env;
3583 int ret;
3584
3585 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3586 if (!env)
3587 return -ENOMEM;
3588
3589 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3590 prog->len);
3591 ret = -ENOMEM;
3592 if (!env->insn_aux_data)
3593 goto err_free_env;
3594 env->prog = prog;
3595 env->analyzer_ops = ops;
3596 env->analyzer_priv = priv;
3597
3598 /* grab the mutex to protect few globals used by verifier */
3599 mutex_lock(&bpf_verifier_lock);
3600
3601 log_level = 0;
3602
3603 env->explored_states = kcalloc(env->prog->len,
3604 sizeof(struct bpf_verifier_state_list *),
3605 GFP_KERNEL);
3606 ret = -ENOMEM;
3607 if (!env->explored_states)
3608 goto skip_full_check;
3609
3610 ret = check_cfg(env);
3611 if (ret < 0)
3612 goto skip_full_check;
3613
3614 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3615
3616 ret = do_check(env);
3617
3618skip_full_check:
3619 while (pop_stack(env, NULL) >= 0);
3620 free_states(env);
3621
3622 mutex_unlock(&bpf_verifier_lock);
3623 vfree(env->insn_aux_data);
3624err_free_env:
3625 kfree(env);
3626 return ret;
3627}
3628EXPORT_SYMBOL_GPL(bpf_analyzer);