]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/bpf/verifier.c
selftests/bpf: add a test for a pruning bug in the verifier
[mirror_ubuntu-eoan-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
f1174f77 64 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 65 * means the register has some value, but it's not a valid pointer.
f1174f77 66 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
67 *
68 * When verifier sees load or store instructions the type of base register
f1174f77 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
8e17c1b1 143#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
f1174f77 183 [SCALAR_VALUE] = "inv",
17a52670
AS
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 188 [PTR_TO_STACK] = "fp",
969bf05e
AS
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
191};
192
ebb676da
TG
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196};
197#undef __BPF_FUNC_STR_FN
198
199static const char *func_id_name(int id)
200{
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207}
208
58e2af8b 209static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 210{
58e2af8b 211 struct bpf_reg_state *reg;
17a52670
AS
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
216 reg = &state->regs[i];
217 t = reg->type;
17a52670
AS
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
f1174f77
EC
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
7d1238f2
EC
237 if (tnum_is_const(reg->var_off)) {
238 /* Typically an immediate SCALAR_VALUE, but
239 * could be a pointer whose offset is too big
240 * for reg->off
241 */
242 verbose(",imm=%llx", reg->var_off.value);
243 } else {
244 if (reg->smin_value != reg->umin_value &&
245 reg->smin_value != S64_MIN)
246 verbose(",smin_value=%lld",
247 (long long)reg->smin_value);
248 if (reg->smax_value != reg->umax_value &&
249 reg->smax_value != S64_MAX)
250 verbose(",smax_value=%lld",
251 (long long)reg->smax_value);
252 if (reg->umin_value != 0)
253 verbose(",umin_value=%llu",
254 (unsigned long long)reg->umin_value);
255 if (reg->umax_value != U64_MAX)
256 verbose(",umax_value=%llu",
257 (unsigned long long)reg->umax_value);
258 if (!tnum_is_unknown(reg->var_off)) {
259 char tn_buf[48];
f1174f77 260
7d1238f2
EC
261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 verbose(",var_off=%s", tn_buf);
263 }
f1174f77
EC
264 }
265 verbose(")");
266 }
17a52670 267 }
9c399760 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 269 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
272 }
273 verbose("\n");
274}
275
cbd35700
AS
276static const char *const bpf_class_string[] = {
277 [BPF_LD] = "ld",
278 [BPF_LDX] = "ldx",
279 [BPF_ST] = "st",
280 [BPF_STX] = "stx",
281 [BPF_ALU] = "alu",
282 [BPF_JMP] = "jmp",
283 [BPF_RET] = "BUG",
284 [BPF_ALU64] = "alu64",
285};
286
687f0715 287static const char *const bpf_alu_string[16] = {
cbd35700
AS
288 [BPF_ADD >> 4] = "+=",
289 [BPF_SUB >> 4] = "-=",
290 [BPF_MUL >> 4] = "*=",
291 [BPF_DIV >> 4] = "/=",
292 [BPF_OR >> 4] = "|=",
293 [BPF_AND >> 4] = "&=",
294 [BPF_LSH >> 4] = "<<=",
295 [BPF_RSH >> 4] = ">>=",
296 [BPF_NEG >> 4] = "neg",
297 [BPF_MOD >> 4] = "%=",
298 [BPF_XOR >> 4] = "^=",
299 [BPF_MOV >> 4] = "=",
300 [BPF_ARSH >> 4] = "s>>=",
301 [BPF_END >> 4] = "endian",
302};
303
304static const char *const bpf_ldst_string[] = {
305 [BPF_W >> 3] = "u32",
306 [BPF_H >> 3] = "u16",
307 [BPF_B >> 3] = "u8",
308 [BPF_DW >> 3] = "u64",
309};
310
687f0715 311static const char *const bpf_jmp_string[16] = {
cbd35700
AS
312 [BPF_JA >> 4] = "jmp",
313 [BPF_JEQ >> 4] = "==",
314 [BPF_JGT >> 4] = ">",
b4e432f1 315 [BPF_JLT >> 4] = "<",
cbd35700 316 [BPF_JGE >> 4] = ">=",
b4e432f1 317 [BPF_JLE >> 4] = "<=",
cbd35700
AS
318 [BPF_JSET >> 4] = "&",
319 [BPF_JNE >> 4] = "!=",
320 [BPF_JSGT >> 4] = "s>",
b4e432f1 321 [BPF_JSLT >> 4] = "s<",
cbd35700 322 [BPF_JSGE >> 4] = "s>=",
b4e432f1 323 [BPF_JSLE >> 4] = "s<=",
cbd35700
AS
324 [BPF_CALL >> 4] = "call",
325 [BPF_EXIT >> 4] = "exit",
326};
327
0d0e5769
DB
328static void print_bpf_insn(const struct bpf_verifier_env *env,
329 const struct bpf_insn *insn)
cbd35700
AS
330{
331 u8 class = BPF_CLASS(insn->code);
332
333 if (class == BPF_ALU || class == BPF_ALU64) {
334 if (BPF_SRC(insn->code) == BPF_X)
335 verbose("(%02x) %sr%d %s %sr%d\n",
336 insn->code, class == BPF_ALU ? "(u32) " : "",
337 insn->dst_reg,
338 bpf_alu_string[BPF_OP(insn->code) >> 4],
339 class == BPF_ALU ? "(u32) " : "",
340 insn->src_reg);
341 else
342 verbose("(%02x) %sr%d %s %s%d\n",
343 insn->code, class == BPF_ALU ? "(u32) " : "",
344 insn->dst_reg,
345 bpf_alu_string[BPF_OP(insn->code) >> 4],
346 class == BPF_ALU ? "(u32) " : "",
347 insn->imm);
348 } else if (class == BPF_STX) {
349 if (BPF_MODE(insn->code) == BPF_MEM)
350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 insn->code,
352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 insn->dst_reg,
354 insn->off, insn->src_reg);
355 else if (BPF_MODE(insn->code) == BPF_XADD)
356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->dst_reg, insn->off,
360 insn->src_reg);
361 else
362 verbose("BUG_%02x\n", insn->code);
363 } else if (class == BPF_ST) {
364 if (BPF_MODE(insn->code) != BPF_MEM) {
365 verbose("BUG_st_%02x\n", insn->code);
366 return;
367 }
368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->dst_reg,
372 insn->off, insn->imm);
373 } else if (class == BPF_LDX) {
374 if (BPF_MODE(insn->code) != BPF_MEM) {
375 verbose("BUG_ldx_%02x\n", insn->code);
376 return;
377 }
378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 insn->code, insn->dst_reg,
380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 insn->src_reg, insn->off);
382 } else if (class == BPF_LD) {
383 if (BPF_MODE(insn->code) == BPF_ABS) {
384 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 insn->code,
386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 insn->imm);
388 } else if (BPF_MODE(insn->code) == BPF_IND) {
389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 insn->code,
391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 insn->src_reg, insn->imm);
0d0e5769
DB
393 } else if (BPF_MODE(insn->code) == BPF_IMM &&
394 BPF_SIZE(insn->code) == BPF_DW) {
395 /* At this point, we already made sure that the second
396 * part of the ldimm64 insn is accessible.
397 */
398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400
401 if (map_ptr && !env->allow_ptr_leaks)
402 imm = 0;
403
404 verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 insn->dst_reg, (unsigned long long)imm);
cbd35700
AS
406 } else {
407 verbose("BUG_ld_%02x\n", insn->code);
408 return;
409 }
410 } else if (class == BPF_JMP) {
411 u8 opcode = BPF_OP(insn->code);
412
413 if (opcode == BPF_CALL) {
ebb676da
TG
414 verbose("(%02x) call %s#%d\n", insn->code,
415 func_id_name(insn->imm), insn->imm);
cbd35700
AS
416 } else if (insn->code == (BPF_JMP | BPF_JA)) {
417 verbose("(%02x) goto pc%+d\n",
418 insn->code, insn->off);
419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 verbose("(%02x) exit\n", insn->code);
421 } else if (BPF_SRC(insn->code) == BPF_X) {
422 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 insn->code, insn->dst_reg,
424 bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 insn->src_reg, insn->off);
426 } else {
427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 insn->code, insn->dst_reg,
429 bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 insn->imm, insn->off);
431 }
432 } else {
433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 }
435}
436
58e2af8b 437static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 438{
58e2af8b 439 struct bpf_verifier_stack_elem *elem;
17a52670
AS
440 int insn_idx;
441
442 if (env->head == NULL)
443 return -1;
444
445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 insn_idx = env->head->insn_idx;
447 if (prev_insn_idx)
448 *prev_insn_idx = env->head->prev_insn_idx;
449 elem = env->head->next;
450 kfree(env->head);
451 env->head = elem;
452 env->stack_size--;
453 return insn_idx;
454}
455
58e2af8b
JK
456static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 int insn_idx, int prev_insn_idx)
17a52670 458{
58e2af8b 459 struct bpf_verifier_stack_elem *elem;
17a52670 460
58e2af8b 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
462 if (!elem)
463 goto err;
464
465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 elem->insn_idx = insn_idx;
467 elem->prev_insn_idx = prev_insn_idx;
468 elem->next = env->head;
469 env->head = elem;
470 env->stack_size++;
07016151 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
472 verbose("BPF program is too complex\n");
473 goto err;
474 }
475 return &elem->st;
476err:
477 /* pop all elements and return */
478 while (pop_stack(env, NULL) >= 0);
479 return NULL;
480}
481
482#define CALLER_SAVED_REGS 6
483static const int caller_saved[CALLER_SAVED_REGS] = {
484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485};
486
f1174f77
EC
487static void __mark_reg_not_init(struct bpf_reg_state *reg);
488
b03c9f9f
EC
489/* Mark the unknown part of a register (variable offset or scalar value) as
490 * known to have the value @imm.
491 */
492static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493{
494 reg->id = 0;
495 reg->var_off = tnum_const(imm);
496 reg->smin_value = (s64)imm;
497 reg->smax_value = (s64)imm;
498 reg->umin_value = imm;
499 reg->umax_value = imm;
500}
501
f1174f77
EC
502/* Mark the 'variable offset' part of a register as zero. This should be
503 * used only on registers holding a pointer type.
504 */
505static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 506{
b03c9f9f 507 __mark_reg_known(reg, 0);
f1174f77 508}
a9789ef9 509
f1174f77
EC
510static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511{
512 if (WARN_ON(regno >= MAX_BPF_REG)) {
513 verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 /* Something bad happened, let's kill all regs */
515 for (regno = 0; regno < MAX_BPF_REG; regno++)
516 __mark_reg_not_init(regs + regno);
517 return;
518 }
519 __mark_reg_known_zero(regs + regno);
520}
521
b03c9f9f
EC
522/* Attempts to improve min/max values based on var_off information */
523static void __update_reg_bounds(struct bpf_reg_state *reg)
524{
525 /* min signed is max(sign bit) | min(other bits) */
526 reg->smin_value = max_t(s64, reg->smin_value,
527 reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 /* max signed is min(sign bit) | max(other bits) */
529 reg->smax_value = min_t(s64, reg->smax_value,
530 reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 reg->umax_value = min(reg->umax_value,
533 reg->var_off.value | reg->var_off.mask);
534}
535
536/* Uses signed min/max values to inform unsigned, and vice-versa */
537static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538{
539 /* Learn sign from signed bounds.
540 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 * are the same, so combine. This works even in the negative case, e.g.
542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 */
544 if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 reg->umin_value);
547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 reg->umax_value);
549 return;
550 }
551 /* Learn sign from unsigned bounds. Signed bounds cross the sign
552 * boundary, so we must be careful.
553 */
554 if ((s64)reg->umax_value >= 0) {
555 /* Positive. We can't learn anything from the smin, but smax
556 * is positive, hence safe.
557 */
558 reg->smin_value = reg->umin_value;
559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 reg->umax_value);
561 } else if ((s64)reg->umin_value < 0) {
562 /* Negative. We can't learn anything from the smax, but smin
563 * is negative, hence safe.
564 */
565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 reg->umin_value);
567 reg->smax_value = reg->umax_value;
568 }
569}
570
571/* Attempts to improve var_off based on unsigned min/max information */
572static void __reg_bound_offset(struct bpf_reg_state *reg)
573{
574 reg->var_off = tnum_intersect(reg->var_off,
575 tnum_range(reg->umin_value,
576 reg->umax_value));
577}
578
579/* Reset the min/max bounds of a register */
580static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581{
582 reg->smin_value = S64_MIN;
583 reg->smax_value = S64_MAX;
584 reg->umin_value = 0;
585 reg->umax_value = U64_MAX;
586}
587
f1174f77
EC
588/* Mark a register as having a completely unknown (scalar) value. */
589static void __mark_reg_unknown(struct bpf_reg_state *reg)
590{
591 reg->type = SCALAR_VALUE;
592 reg->id = 0;
593 reg->off = 0;
594 reg->var_off = tnum_unknown;
b03c9f9f 595 __mark_reg_unbounded(reg);
f1174f77
EC
596}
597
598static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599{
600 if (WARN_ON(regno >= MAX_BPF_REG)) {
601 verbose("mark_reg_unknown(regs, %u)\n", regno);
602 /* Something bad happened, let's kill all regs */
603 for (regno = 0; regno < MAX_BPF_REG; regno++)
604 __mark_reg_not_init(regs + regno);
605 return;
606 }
607 __mark_reg_unknown(regs + regno);
608}
609
610static void __mark_reg_not_init(struct bpf_reg_state *reg)
611{
612 __mark_reg_unknown(reg);
613 reg->type = NOT_INIT;
614}
615
616static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617{
618 if (WARN_ON(regno >= MAX_BPF_REG)) {
619 verbose("mark_reg_not_init(regs, %u)\n", regno);
620 /* Something bad happened, let's kill all regs */
621 for (regno = 0; regno < MAX_BPF_REG; regno++)
622 __mark_reg_not_init(regs + regno);
623 return;
624 }
625 __mark_reg_not_init(regs + regno);
a9789ef9
DB
626}
627
58e2af8b 628static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
629{
630 int i;
631
dc503a8a 632 for (i = 0; i < MAX_BPF_REG; i++) {
a9789ef9 633 mark_reg_not_init(regs, i);
dc503a8a
EC
634 regs[i].live = REG_LIVE_NONE;
635 }
17a52670
AS
636
637 /* frame pointer */
f1174f77
EC
638 regs[BPF_REG_FP].type = PTR_TO_STACK;
639 mark_reg_known_zero(regs, BPF_REG_FP);
17a52670
AS
640
641 /* 1st arg to a function */
642 regs[BPF_REG_1].type = PTR_TO_CTX;
f1174f77 643 mark_reg_known_zero(regs, BPF_REG_1);
6760bf2d
DB
644}
645
17a52670
AS
646enum reg_arg_type {
647 SRC_OP, /* register is used as source operand */
648 DST_OP, /* register is used as destination operand */
649 DST_OP_NO_MARK /* same as above, check only, don't mark */
650};
651
dc503a8a
EC
652static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653{
654 struct bpf_verifier_state *parent = state->parent;
655
656 while (parent) {
657 /* if read wasn't screened by an earlier write ... */
658 if (state->regs[regno].live & REG_LIVE_WRITTEN)
659 break;
660 /* ... then we depend on parent's value */
661 parent->regs[regno].live |= REG_LIVE_READ;
662 state = parent;
663 parent = state->parent;
664 }
665}
666
667static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
668 enum reg_arg_type t)
669{
dc503a8a
EC
670 struct bpf_reg_state *regs = env->cur_state.regs;
671
17a52670
AS
672 if (regno >= MAX_BPF_REG) {
673 verbose("R%d is invalid\n", regno);
674 return -EINVAL;
675 }
676
677 if (t == SRC_OP) {
678 /* check whether register used as source operand can be read */
679 if (regs[regno].type == NOT_INIT) {
680 verbose("R%d !read_ok\n", regno);
681 return -EACCES;
682 }
dc503a8a 683 mark_reg_read(&env->cur_state, regno);
17a52670
AS
684 } else {
685 /* check whether register used as dest operand can be written to */
686 if (regno == BPF_REG_FP) {
687 verbose("frame pointer is read only\n");
688 return -EACCES;
689 }
dc503a8a 690 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 691 if (t == DST_OP)
f1174f77 692 mark_reg_unknown(regs, regno);
17a52670
AS
693 }
694 return 0;
695}
696
1be7f75d
AS
697static bool is_spillable_regtype(enum bpf_reg_type type)
698{
699 switch (type) {
700 case PTR_TO_MAP_VALUE:
701 case PTR_TO_MAP_VALUE_OR_NULL:
702 case PTR_TO_STACK:
703 case PTR_TO_CTX:
969bf05e
AS
704 case PTR_TO_PACKET:
705 case PTR_TO_PACKET_END:
1be7f75d
AS
706 case CONST_PTR_TO_MAP:
707 return true;
708 default:
709 return false;
710 }
711}
712
17a52670
AS
713/* check_stack_read/write functions track spill/fill of registers,
714 * stack boundary and alignment are checked in check_mem_access()
715 */
58e2af8b
JK
716static int check_stack_write(struct bpf_verifier_state *state, int off,
717 int size, int value_regno)
17a52670 718{
dc503a8a 719 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
9c399760
AS
720 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
721 * so it's aligned access and [off, off + size) are within stack limits
722 */
17a52670
AS
723
724 if (value_regno >= 0 &&
1be7f75d 725 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
726
727 /* register containing pointer is being spilled into stack */
9c399760 728 if (size != BPF_REG_SIZE) {
17a52670
AS
729 verbose("invalid size of register spill\n");
730 return -EACCES;
731 }
732
17a52670 733 /* save register state */
dc503a8a
EC
734 state->spilled_regs[spi] = state->regs[value_regno];
735 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
17a52670 736
9c399760
AS
737 for (i = 0; i < BPF_REG_SIZE; i++)
738 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
739 } else {
17a52670 740 /* regular write of data into stack */
dc503a8a 741 state->spilled_regs[spi] = (struct bpf_reg_state) {};
9c399760
AS
742
743 for (i = 0; i < size; i++)
744 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
745 }
746 return 0;
747}
748
dc503a8a
EC
749static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
750{
751 struct bpf_verifier_state *parent = state->parent;
752
753 while (parent) {
754 /* if read wasn't screened by an earlier write ... */
755 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
756 break;
757 /* ... then we depend on parent's value */
758 parent->spilled_regs[slot].live |= REG_LIVE_READ;
759 state = parent;
760 parent = state->parent;
761 }
762}
763
58e2af8b 764static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
765 int value_regno)
766{
9c399760 767 u8 *slot_type;
dc503a8a 768 int i, spi;
17a52670 769
9c399760 770 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 771
9c399760
AS
772 if (slot_type[0] == STACK_SPILL) {
773 if (size != BPF_REG_SIZE) {
17a52670
AS
774 verbose("invalid size of register spill\n");
775 return -EACCES;
776 }
9c399760
AS
777 for (i = 1; i < BPF_REG_SIZE; i++) {
778 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
779 verbose("corrupted spill memory\n");
780 return -EACCES;
781 }
782 }
783
dc503a8a
EC
784 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
785
786 if (value_regno >= 0) {
17a52670 787 /* restore register state from stack */
dc503a8a
EC
788 state->regs[value_regno] = state->spilled_regs[spi];
789 mark_stack_slot_read(state, spi);
790 }
17a52670
AS
791 return 0;
792 } else {
793 for (i = 0; i < size; i++) {
9c399760 794 if (slot_type[i] != STACK_MISC) {
17a52670
AS
795 verbose("invalid read from stack off %d+%d size %d\n",
796 off, i, size);
797 return -EACCES;
798 }
799 }
800 if (value_regno >= 0)
801 /* have read misc data from the stack */
f1174f77 802 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
803 return 0;
804 }
805}
806
807/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 808static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
809 int size)
810{
811 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
812
5722569b 813 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
814 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
815 map->value_size, off, size);
816 return -EACCES;
817 }
818 return 0;
819}
820
f1174f77
EC
821/* check read/write into a map element with possible variable offset */
822static int check_map_access(struct bpf_verifier_env *env, u32 regno,
dbcfe5f7
GB
823 int off, int size)
824{
825 struct bpf_verifier_state *state = &env->cur_state;
826 struct bpf_reg_state *reg = &state->regs[regno];
827 int err;
828
f1174f77
EC
829 /* We may have adjusted the register to this map value, so we
830 * need to try adding each of min_value and max_value to off
831 * to make sure our theoretical access will be safe.
dbcfe5f7
GB
832 */
833 if (log_level)
834 print_verifier_state(state);
f1174f77
EC
835 /* If the offset is variable, we will need to be stricter in state
836 * pruning from now on.
837 */
838 if (!tnum_is_const(reg->var_off))
839 env->varlen_map_value_access = true;
dbcfe5f7
GB
840 /* The minimum value is only important with signed
841 * comparisons where we can't assume the floor of a
842 * value is 0. If we are using signed variables for our
843 * index'es we need to make sure that whatever we use
844 * will have a set floor within our range.
845 */
b03c9f9f 846 if (reg->smin_value < 0) {
dbcfe5f7
GB
847 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
848 regno);
849 return -EACCES;
850 }
b03c9f9f 851 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 852 if (err) {
f1174f77 853 verbose("R%d min value is outside of the array range\n", regno);
dbcfe5f7
GB
854 return err;
855 }
856
b03c9f9f
EC
857 /* If we haven't set a max value then we need to bail since we can't be
858 * sure we won't do bad things.
859 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 860 */
b03c9f9f 861 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
dbcfe5f7
GB
862 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
863 regno);
864 return -EACCES;
865 }
b03c9f9f 866 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77
EC
867 if (err)
868 verbose("R%d max value is outside of the array range\n", regno);
869 return err;
dbcfe5f7
GB
870}
871
969bf05e
AS
872#define MAX_PACKET_OFF 0xffff
873
58e2af8b 874static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
875 const struct bpf_call_arg_meta *meta,
876 enum bpf_access_type t)
4acf6c0b 877{
36bbef52 878 switch (env->prog->type) {
3a0af8fd
TG
879 case BPF_PROG_TYPE_LWT_IN:
880 case BPF_PROG_TYPE_LWT_OUT:
881 /* dst_input() and dst_output() can't write for now */
882 if (t == BPF_WRITE)
883 return false;
7e57fbb2 884 /* fallthrough */
36bbef52
DB
885 case BPF_PROG_TYPE_SCHED_CLS:
886 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 887 case BPF_PROG_TYPE_XDP:
3a0af8fd 888 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 889 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
890 if (meta)
891 return meta->pkt_access;
892
893 env->seen_direct_write = true;
4acf6c0b
BB
894 return true;
895 default:
896 return false;
897 }
898}
899
f1174f77
EC
900static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
901 int off, int size)
969bf05e 902{
58e2af8b
JK
903 struct bpf_reg_state *regs = env->cur_state.regs;
904 struct bpf_reg_state *reg = &regs[regno];
969bf05e 905
f1174f77 906 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
d91b28ed
AS
907 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
908 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
909 return -EACCES;
910 }
911 return 0;
912}
913
f1174f77
EC
914static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
915 int size)
916{
917 struct bpf_reg_state *regs = env->cur_state.regs;
918 struct bpf_reg_state *reg = &regs[regno];
919 int err;
920
921 /* We may have added a variable offset to the packet pointer; but any
922 * reg->range we have comes after that. We are only checking the fixed
923 * offset.
924 */
925
926 /* We don't allow negative numbers, because we aren't tracking enough
927 * detail to prove they're safe.
928 */
b03c9f9f 929 if (reg->smin_value < 0) {
f1174f77
EC
930 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
931 regno);
932 return -EACCES;
933 }
934 err = __check_packet_access(env, regno, off, size);
935 if (err) {
936 verbose("R%d offset is outside of the packet\n", regno);
937 return err;
938 }
939 return err;
940}
941
942/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 943static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 944 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 945{
f96da094
DB
946 struct bpf_insn_access_aux info = {
947 .reg_type = *reg_type,
948 };
31fd8581 949
13a27dfc
JK
950 /* for analyzer ctx accesses are already validated and converted */
951 if (env->analyzer_ops)
952 return 0;
953
17a52670 954 if (env->prog->aux->ops->is_valid_access &&
23994631 955 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
956 /* A non zero info.ctx_field_size indicates that this field is a
957 * candidate for later verifier transformation to load the whole
958 * field and then apply a mask when accessed with a narrower
959 * access than actual ctx access size. A zero info.ctx_field_size
960 * will only allow for whole field access and rejects any other
961 * type of narrower access.
31fd8581 962 */
f96da094 963 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
23994631 964 *reg_type = info.reg_type;
31fd8581 965
32bbe007
AS
966 /* remember the offset of last byte accessed in ctx */
967 if (env->prog->aux->max_ctx_offset < off + size)
968 env->prog->aux->max_ctx_offset = off + size;
17a52670 969 return 0;
32bbe007 970 }
17a52670
AS
971
972 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
973 return -EACCES;
974}
975
4cabc5b1
DB
976static bool __is_pointer_value(bool allow_ptr_leaks,
977 const struct bpf_reg_state *reg)
1be7f75d 978{
4cabc5b1 979 if (allow_ptr_leaks)
1be7f75d
AS
980 return false;
981
f1174f77 982 return reg->type != SCALAR_VALUE;
1be7f75d
AS
983}
984
4cabc5b1
DB
985static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
986{
987 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
988}
989
79adffcd 990static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
d1174416 991 int off, int size, bool strict)
969bf05e 992{
f1174f77 993 struct tnum reg_off;
e07b98d9 994 int ip_align;
d1174416
DM
995
996 /* Byte size accesses are always allowed. */
997 if (!strict || size == 1)
998 return 0;
999
e4eda884
DM
1000 /* For platforms that do not have a Kconfig enabling
1001 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1002 * NET_IP_ALIGN is universally set to '2'. And on platforms
1003 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1004 * to this code only in strict mode where we want to emulate
1005 * the NET_IP_ALIGN==2 checking. Therefore use an
1006 * unconditional IP align value of '2'.
e07b98d9 1007 */
e4eda884 1008 ip_align = 2;
f1174f77
EC
1009
1010 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1011 if (!tnum_is_aligned(reg_off, size)) {
1012 char tn_buf[48];
1013
1014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1015 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1016 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1017 return -EACCES;
1018 }
79adffcd 1019
969bf05e
AS
1020 return 0;
1021}
1022
f1174f77
EC
1023static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1024 const char *pointer_desc,
1025 int off, int size, bool strict)
79adffcd 1026{
f1174f77
EC
1027 struct tnum reg_off;
1028
1029 /* Byte size accesses are always allowed. */
1030 if (!strict || size == 1)
1031 return 0;
1032
1033 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1034 if (!tnum_is_aligned(reg_off, size)) {
1035 char tn_buf[48];
1036
1037 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1038 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1039 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1040 return -EACCES;
1041 }
1042
969bf05e
AS
1043 return 0;
1044}
1045
e07b98d9
DM
1046static int check_ptr_alignment(struct bpf_verifier_env *env,
1047 const struct bpf_reg_state *reg,
79adffcd
DB
1048 int off, int size)
1049{
e07b98d9 1050 bool strict = env->strict_alignment;
f1174f77 1051 const char *pointer_desc = "";
d1174416 1052
79adffcd
DB
1053 switch (reg->type) {
1054 case PTR_TO_PACKET:
f1174f77 1055 /* special case, because of NET_IP_ALIGN */
d1174416 1056 return check_pkt_ptr_alignment(reg, off, size, strict);
f1174f77
EC
1057 case PTR_TO_MAP_VALUE:
1058 pointer_desc = "value ";
1059 break;
1060 case PTR_TO_CTX:
1061 pointer_desc = "context ";
1062 break;
1063 case PTR_TO_STACK:
1064 pointer_desc = "stack ";
1065 break;
79adffcd 1066 default:
f1174f77 1067 break;
79adffcd 1068 }
f1174f77 1069 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
79adffcd
DB
1070}
1071
17a52670
AS
1072/* check whether memory at (regno + off) is accessible for t = (read | write)
1073 * if t==write, value_regno is a register which value is stored into memory
1074 * if t==read, value_regno is a register which will receive the value from memory
1075 * if t==write && value_regno==-1, some unknown value is stored into memory
1076 * if t==read && value_regno==-1, don't care what we read from memory
1077 */
31fd8581 1078static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1079 int bpf_size, enum bpf_access_type t,
1080 int value_regno)
1081{
58e2af8b
JK
1082 struct bpf_verifier_state *state = &env->cur_state;
1083 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
1084 int size, err = 0;
1085
1086 size = bpf_size_to_bytes(bpf_size);
1087 if (size < 0)
1088 return size;
1089
f1174f77 1090 /* alignment checks will add in reg->off themselves */
e07b98d9 1091 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1092 if (err)
1093 return err;
17a52670 1094
f1174f77
EC
1095 /* for access checks, reg->off is just part of off */
1096 off += reg->off;
1097
1098 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1099 if (t == BPF_WRITE && value_regno >= 0 &&
1100 is_pointer_value(env, value_regno)) {
1101 verbose("R%d leaks addr into map\n", value_regno);
1102 return -EACCES;
1103 }
48461135 1104
f1174f77 1105 err = check_map_access(env, regno, off, size);
17a52670 1106 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1107 mark_reg_unknown(state->regs, value_regno);
17a52670 1108
1a0dc1ac 1109 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1110 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1111
1be7f75d
AS
1112 if (t == BPF_WRITE && value_regno >= 0 &&
1113 is_pointer_value(env, value_regno)) {
1114 verbose("R%d leaks addr into ctx\n", value_regno);
1115 return -EACCES;
1116 }
f1174f77
EC
1117 /* ctx accesses must be at a fixed offset, so that we can
1118 * determine what type of data were returned.
1119 */
1120 if (!tnum_is_const(reg->var_off)) {
1121 char tn_buf[48];
1122
1123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1124 verbose("variable ctx access var_off=%s off=%d size=%d",
1125 tn_buf, off, size);
1126 return -EACCES;
1127 }
1128 off += reg->var_off.value;
31fd8581 1129 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1130 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77
EC
1131 /* ctx access returns either a scalar, or a
1132 * PTR_TO_PACKET[_END]. In the latter case, we know
1133 * the offset is zero.
1134 */
1135 if (reg_type == SCALAR_VALUE)
1136 mark_reg_unknown(state->regs, value_regno);
1137 else
1138 mark_reg_known_zero(state->regs, value_regno);
1139 state->regs[value_regno].id = 0;
1140 state->regs[value_regno].off = 0;
1141 state->regs[value_regno].range = 0;
1955351d 1142 state->regs[value_regno].type = reg_type;
969bf05e 1143 }
17a52670 1144
f1174f77
EC
1145 } else if (reg->type == PTR_TO_STACK) {
1146 /* stack accesses must be at a fixed offset, so that we can
1147 * determine what type of data were returned.
1148 * See check_stack_read().
1149 */
1150 if (!tnum_is_const(reg->var_off)) {
1151 char tn_buf[48];
1152
1153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1154 verbose("variable stack access var_off=%s off=%d size=%d",
1155 tn_buf, off, size);
1156 return -EACCES;
1157 }
1158 off += reg->var_off.value;
17a52670
AS
1159 if (off >= 0 || off < -MAX_BPF_STACK) {
1160 verbose("invalid stack off=%d size=%d\n", off, size);
1161 return -EACCES;
1162 }
8726679a
AS
1163
1164 if (env->prog->aux->stack_depth < -off)
1165 env->prog->aux->stack_depth = -off;
1166
1be7f75d
AS
1167 if (t == BPF_WRITE) {
1168 if (!env->allow_ptr_leaks &&
1169 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1170 size != BPF_REG_SIZE) {
1171 verbose("attempt to corrupt spilled pointer on stack\n");
1172 return -EACCES;
1173 }
17a52670 1174 err = check_stack_write(state, off, size, value_regno);
1be7f75d 1175 } else {
17a52670 1176 err = check_stack_read(state, off, size, value_regno);
1be7f75d 1177 }
f1174f77 1178 } else if (reg->type == PTR_TO_PACKET) {
3a0af8fd 1179 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
1180 verbose("cannot write into packet\n");
1181 return -EACCES;
1182 }
4acf6c0b
BB
1183 if (t == BPF_WRITE && value_regno >= 0 &&
1184 is_pointer_value(env, value_regno)) {
1185 verbose("R%d leaks addr into packet\n", value_regno);
1186 return -EACCES;
1187 }
969bf05e
AS
1188 err = check_packet_access(env, regno, off, size);
1189 if (!err && t == BPF_READ && value_regno >= 0)
f1174f77 1190 mark_reg_unknown(state->regs, value_regno);
17a52670
AS
1191 } else {
1192 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 1193 regno, reg_type_str[reg->type]);
17a52670
AS
1194 return -EACCES;
1195 }
969bf05e 1196
f1174f77
EC
1197 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1198 state->regs[value_regno].type == SCALAR_VALUE) {
1199 /* b/h/w load zero-extends, mark upper bits as known 0 */
1200 state->regs[value_regno].var_off = tnum_cast(
1201 state->regs[value_regno].var_off, size);
b03c9f9f 1202 __update_reg_bounds(&state->regs[value_regno]);
969bf05e 1203 }
17a52670
AS
1204 return err;
1205}
1206
31fd8581 1207static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1208{
17a52670
AS
1209 int err;
1210
1211 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1212 insn->imm != 0) {
1213 verbose("BPF_XADD uses reserved fields\n");
1214 return -EINVAL;
1215 }
1216
1217 /* check src1 operand */
dc503a8a 1218 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1219 if (err)
1220 return err;
1221
1222 /* check src2 operand */
dc503a8a 1223 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1224 if (err)
1225 return err;
1226
6bdf6abc
DB
1227 if (is_pointer_value(env, insn->src_reg)) {
1228 verbose("R%d leaks addr into mem\n", insn->src_reg);
1229 return -EACCES;
1230 }
1231
17a52670 1232 /* check whether atomic_add can read the memory */
31fd8581 1233 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1234 BPF_SIZE(insn->code), BPF_READ, -1);
1235 if (err)
1236 return err;
1237
1238 /* check whether atomic_add can write into the same memory */
31fd8581 1239 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1240 BPF_SIZE(insn->code), BPF_WRITE, -1);
1241}
1242
f1174f77
EC
1243/* Does this register contain a constant zero? */
1244static bool register_is_null(struct bpf_reg_state reg)
1245{
1246 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1247}
1248
17a52670
AS
1249/* when register 'regno' is passed into function that will read 'access_size'
1250 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1251 * and all elements of stack are initialized.
1252 * Unlike most pointer bounds-checking functions, this one doesn't take an
1253 * 'off' argument, so it has to add in reg->off itself.
17a52670 1254 */
58e2af8b 1255static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1256 int access_size, bool zero_size_allowed,
1257 struct bpf_call_arg_meta *meta)
17a52670 1258{
58e2af8b
JK
1259 struct bpf_verifier_state *state = &env->cur_state;
1260 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1261 int off, i;
1262
8e2fe1d9 1263 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1264 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1265 if (zero_size_allowed && access_size == 0 &&
f1174f77 1266 register_is_null(regs[regno]))
8e2fe1d9
DB
1267 return 0;
1268
1269 verbose("R%d type=%s expected=%s\n", regno,
1270 reg_type_str[regs[regno].type],
1271 reg_type_str[PTR_TO_STACK]);
17a52670 1272 return -EACCES;
8e2fe1d9 1273 }
17a52670 1274
f1174f77
EC
1275 /* Only allow fixed-offset stack reads */
1276 if (!tnum_is_const(regs[regno].var_off)) {
1277 char tn_buf[48];
1278
1279 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1280 verbose("invalid variable stack read R%d var_off=%s\n",
1281 regno, tn_buf);
1282 }
1283 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1284 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1285 access_size <= 0) {
1286 verbose("invalid stack type R%d off=%d access_size=%d\n",
1287 regno, off, access_size);
1288 return -EACCES;
1289 }
1290
8726679a
AS
1291 if (env->prog->aux->stack_depth < -off)
1292 env->prog->aux->stack_depth = -off;
1293
435faee1
DB
1294 if (meta && meta->raw_mode) {
1295 meta->access_size = access_size;
1296 meta->regno = regno;
1297 return 0;
1298 }
1299
17a52670 1300 for (i = 0; i < access_size; i++) {
9c399760 1301 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
1302 verbose("invalid indirect read from stack off %d+%d size %d\n",
1303 off, i, access_size);
1304 return -EACCES;
1305 }
1306 }
1307 return 0;
1308}
1309
06c1c049
GB
1310static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1311 int access_size, bool zero_size_allowed,
1312 struct bpf_call_arg_meta *meta)
1313{
f1174f77 1314 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
06c1c049 1315
f1174f77 1316 switch (reg->type) {
06c1c049 1317 case PTR_TO_PACKET:
f1174f77 1318 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1319 case PTR_TO_MAP_VALUE:
f1174f77
EC
1320 return check_map_access(env, regno, reg->off, access_size);
1321 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1322 return check_stack_boundary(env, regno, access_size,
1323 zero_size_allowed, meta);
1324 }
1325}
1326
58e2af8b 1327static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1328 enum bpf_arg_type arg_type,
1329 struct bpf_call_arg_meta *meta)
17a52670 1330{
58e2af8b 1331 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1332 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1333 int err = 0;
1334
80f1d68c 1335 if (arg_type == ARG_DONTCARE)
17a52670
AS
1336 return 0;
1337
dc503a8a
EC
1338 err = check_reg_arg(env, regno, SRC_OP);
1339 if (err)
1340 return err;
17a52670 1341
1be7f75d
AS
1342 if (arg_type == ARG_ANYTHING) {
1343 if (is_pointer_value(env, regno)) {
1344 verbose("R%d leaks addr into helper function\n", regno);
1345 return -EACCES;
1346 }
80f1d68c 1347 return 0;
1be7f75d 1348 }
80f1d68c 1349
3a0af8fd
TG
1350 if (type == PTR_TO_PACKET &&
1351 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1352 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1353 return -EACCES;
1354 }
1355
8e2fe1d9 1356 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1357 arg_type == ARG_PTR_TO_MAP_VALUE) {
1358 expected_type = PTR_TO_STACK;
6841de8b
AS
1359 if (type != PTR_TO_PACKET && type != expected_type)
1360 goto err_type;
39f19ebb
AS
1361 } else if (arg_type == ARG_CONST_SIZE ||
1362 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1363 expected_type = SCALAR_VALUE;
1364 if (type != expected_type)
6841de8b 1365 goto err_type;
17a52670
AS
1366 } else if (arg_type == ARG_CONST_MAP_PTR) {
1367 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1368 if (type != expected_type)
1369 goto err_type;
608cd71a
AS
1370 } else if (arg_type == ARG_PTR_TO_CTX) {
1371 expected_type = PTR_TO_CTX;
6841de8b
AS
1372 if (type != expected_type)
1373 goto err_type;
39f19ebb
AS
1374 } else if (arg_type == ARG_PTR_TO_MEM ||
1375 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1376 expected_type = PTR_TO_STACK;
1377 /* One exception here. In case function allows for NULL to be
f1174f77 1378 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1379 * happens during stack boundary checking.
1380 */
f1174f77 1381 if (register_is_null(*reg))
6841de8b 1382 /* final test in check_stack_boundary() */;
5722569b 1383 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
f1174f77 1384 type != expected_type)
6841de8b 1385 goto err_type;
39f19ebb 1386 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1387 } else {
1388 verbose("unsupported arg_type %d\n", arg_type);
1389 return -EFAULT;
1390 }
1391
17a52670
AS
1392 if (arg_type == ARG_CONST_MAP_PTR) {
1393 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1394 meta->map_ptr = reg->map_ptr;
17a52670
AS
1395 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1396 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1397 * check that [key, key + map->key_size) are within
1398 * stack limits and initialized
1399 */
33ff9823 1400 if (!meta->map_ptr) {
17a52670
AS
1401 /* in function declaration map_ptr must come before
1402 * map_key, so that it's verified and known before
1403 * we have to check map_key here. Otherwise it means
1404 * that kernel subsystem misconfigured verifier
1405 */
1406 verbose("invalid map_ptr to access map->key\n");
1407 return -EACCES;
1408 }
6841de8b 1409 if (type == PTR_TO_PACKET)
f1174f77 1410 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1411 meta->map_ptr->key_size);
1412 else
1413 err = check_stack_boundary(env, regno,
1414 meta->map_ptr->key_size,
1415 false, NULL);
17a52670
AS
1416 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1417 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1418 * check [value, value + map->value_size) validity
1419 */
33ff9823 1420 if (!meta->map_ptr) {
17a52670
AS
1421 /* kernel subsystem misconfigured verifier */
1422 verbose("invalid map_ptr to access map->value\n");
1423 return -EACCES;
1424 }
6841de8b 1425 if (type == PTR_TO_PACKET)
f1174f77 1426 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1427 meta->map_ptr->value_size);
1428 else
1429 err = check_stack_boundary(env, regno,
1430 meta->map_ptr->value_size,
1431 false, NULL);
39f19ebb
AS
1432 } else if (arg_type == ARG_CONST_SIZE ||
1433 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1434 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1435
17a52670
AS
1436 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1437 * from stack pointer 'buf'. Check it
1438 * note: regno == len, regno - 1 == buf
1439 */
1440 if (regno == 0) {
1441 /* kernel subsystem misconfigured verifier */
39f19ebb 1442 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1443 return -EACCES;
1444 }
06c1c049 1445
f1174f77
EC
1446 /* The register is SCALAR_VALUE; the access check
1447 * happens using its boundaries.
06c1c049 1448 */
f1174f77
EC
1449
1450 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1451 /* For unprivileged variable accesses, disable raw
1452 * mode so that the program is required to
1453 * initialize all the memory that the helper could
1454 * just partially fill up.
1455 */
1456 meta = NULL;
1457
b03c9f9f 1458 if (reg->smin_value < 0) {
f1174f77
EC
1459 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1460 regno);
1461 return -EACCES;
1462 }
06c1c049 1463
b03c9f9f 1464 if (reg->umin_value == 0) {
f1174f77
EC
1465 err = check_helper_mem_access(env, regno - 1, 0,
1466 zero_size_allowed,
1467 meta);
06c1c049
GB
1468 if (err)
1469 return err;
06c1c049 1470 }
f1174f77 1471
b03c9f9f 1472 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
f1174f77
EC
1473 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1474 regno);
1475 return -EACCES;
1476 }
1477 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1478 reg->umax_value,
f1174f77 1479 zero_size_allowed, meta);
17a52670
AS
1480 }
1481
1482 return err;
6841de8b
AS
1483err_type:
1484 verbose("R%d type=%s expected=%s\n", regno,
1485 reg_type_str[type], reg_type_str[expected_type]);
1486 return -EACCES;
17a52670
AS
1487}
1488
35578d79
KX
1489static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1490{
35578d79
KX
1491 if (!map)
1492 return 0;
1493
6aff67c8
AS
1494 /* We need a two way check, first is from map perspective ... */
1495 switch (map->map_type) {
1496 case BPF_MAP_TYPE_PROG_ARRAY:
1497 if (func_id != BPF_FUNC_tail_call)
1498 goto error;
1499 break;
1500 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1501 if (func_id != BPF_FUNC_perf_event_read &&
1502 func_id != BPF_FUNC_perf_event_output)
1503 goto error;
1504 break;
1505 case BPF_MAP_TYPE_STACK_TRACE:
1506 if (func_id != BPF_FUNC_get_stackid)
1507 goto error;
1508 break;
4ed8ec52 1509 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1510 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1511 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1512 goto error;
1513 break;
546ac1ff
JF
1514 /* devmap returns a pointer to a live net_device ifindex that we cannot
1515 * allow to be modified from bpf side. So do not allow lookup elements
1516 * for now.
1517 */
1518 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1519 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1520 goto error;
1521 break;
56f668df 1522 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1523 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1524 if (func_id != BPF_FUNC_map_lookup_elem)
1525 goto error;
16a43625 1526 break;
174a79ff
JF
1527 case BPF_MAP_TYPE_SOCKMAP:
1528 if (func_id != BPF_FUNC_sk_redirect_map &&
1529 func_id != BPF_FUNC_sock_map_update &&
1530 func_id != BPF_FUNC_map_delete_elem)
1531 goto error;
1532 break;
6aff67c8
AS
1533 default:
1534 break;
1535 }
1536
1537 /* ... and second from the function itself. */
1538 switch (func_id) {
1539 case BPF_FUNC_tail_call:
1540 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1541 goto error;
1542 break;
1543 case BPF_FUNC_perf_event_read:
1544 case BPF_FUNC_perf_event_output:
1545 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1546 goto error;
1547 break;
1548 case BPF_FUNC_get_stackid:
1549 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1550 goto error;
1551 break;
60d20f91 1552 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1553 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1554 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1555 goto error;
1556 break;
97f91a7c
JF
1557 case BPF_FUNC_redirect_map:
1558 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1559 goto error;
1560 break;
174a79ff
JF
1561 case BPF_FUNC_sk_redirect_map:
1562 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1563 goto error;
1564 break;
1565 case BPF_FUNC_sock_map_update:
1566 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1567 goto error;
1568 break;
6aff67c8
AS
1569 default:
1570 break;
35578d79
KX
1571 }
1572
1573 return 0;
6aff67c8 1574error:
ebb676da
TG
1575 verbose("cannot pass map_type %d into func %s#%d\n",
1576 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1577 return -EINVAL;
35578d79
KX
1578}
1579
435faee1
DB
1580static int check_raw_mode(const struct bpf_func_proto *fn)
1581{
1582 int count = 0;
1583
39f19ebb 1584 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1585 count++;
39f19ebb 1586 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1587 count++;
39f19ebb 1588 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1589 count++;
39f19ebb 1590 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1591 count++;
39f19ebb 1592 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1593 count++;
1594
1595 return count > 1 ? -EINVAL : 0;
1596}
1597
f1174f77
EC
1598/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1599 * so turn them into unknown SCALAR_VALUE.
1600 */
58e2af8b 1601static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1602{
58e2af8b
JK
1603 struct bpf_verifier_state *state = &env->cur_state;
1604 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1605 int i;
1606
1607 for (i = 0; i < MAX_BPF_REG; i++)
1608 if (regs[i].type == PTR_TO_PACKET ||
1609 regs[i].type == PTR_TO_PACKET_END)
f1174f77 1610 mark_reg_unknown(regs, i);
969bf05e
AS
1611
1612 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1613 if (state->stack_slot_type[i] != STACK_SPILL)
1614 continue;
1615 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1616 if (reg->type != PTR_TO_PACKET &&
1617 reg->type != PTR_TO_PACKET_END)
1618 continue;
f1174f77 1619 __mark_reg_unknown(reg);
969bf05e
AS
1620 }
1621}
1622
81ed18ab 1623static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1624{
58e2af8b 1625 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1626 const struct bpf_func_proto *fn = NULL;
58e2af8b 1627 struct bpf_reg_state *regs = state->regs;
33ff9823 1628 struct bpf_call_arg_meta meta;
969bf05e 1629 bool changes_data;
17a52670
AS
1630 int i, err;
1631
1632 /* find function prototype */
1633 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1634 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1635 return -EINVAL;
1636 }
1637
1638 if (env->prog->aux->ops->get_func_proto)
1639 fn = env->prog->aux->ops->get_func_proto(func_id);
1640
1641 if (!fn) {
ebb676da 1642 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1643 return -EINVAL;
1644 }
1645
1646 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1647 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1648 verbose("cannot call GPL only function from proprietary program\n");
1649 return -EINVAL;
1650 }
1651
17bedab2 1652 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1653
33ff9823 1654 memset(&meta, 0, sizeof(meta));
36bbef52 1655 meta.pkt_access = fn->pkt_access;
33ff9823 1656
435faee1
DB
1657 /* We only support one arg being in raw mode at the moment, which
1658 * is sufficient for the helper functions we have right now.
1659 */
1660 err = check_raw_mode(fn);
1661 if (err) {
ebb676da
TG
1662 verbose("kernel subsystem misconfigured func %s#%d\n",
1663 func_id_name(func_id), func_id);
435faee1
DB
1664 return err;
1665 }
1666
17a52670 1667 /* check args */
33ff9823 1668 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1669 if (err)
1670 return err;
33ff9823 1671 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1672 if (err)
1673 return err;
33ff9823 1674 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1675 if (err)
1676 return err;
33ff9823 1677 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1678 if (err)
1679 return err;
33ff9823 1680 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1681 if (err)
1682 return err;
1683
435faee1
DB
1684 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1685 * is inferred from register state.
1686 */
1687 for (i = 0; i < meta.access_size; i++) {
31fd8581 1688 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1689 if (err)
1690 return err;
1691 }
1692
17a52670 1693 /* reset caller saved regs */
dc503a8a 1694 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 1695 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
1696 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1697 }
17a52670 1698
dc503a8a 1699 /* update return register (already marked as written above) */
17a52670 1700 if (fn->ret_type == RET_INTEGER) {
f1174f77
EC
1701 /* sets type to SCALAR_VALUE */
1702 mark_reg_unknown(regs, BPF_REG_0);
17a52670
AS
1703 } else if (fn->ret_type == RET_VOID) {
1704 regs[BPF_REG_0].type = NOT_INIT;
1705 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1706 struct bpf_insn_aux_data *insn_aux;
1707
17a52670 1708 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77
EC
1709 /* There is no offset yet applied, variable or fixed */
1710 mark_reg_known_zero(regs, BPF_REG_0);
1711 regs[BPF_REG_0].off = 0;
17a52670
AS
1712 /* remember map_ptr, so that check_map_access()
1713 * can check 'value_size' boundary of memory access
1714 * to map element returned from bpf_map_lookup_elem()
1715 */
33ff9823 1716 if (meta.map_ptr == NULL) {
17a52670
AS
1717 verbose("kernel subsystem misconfigured verifier\n");
1718 return -EINVAL;
1719 }
33ff9823 1720 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1721 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1722 insn_aux = &env->insn_aux_data[insn_idx];
1723 if (!insn_aux->map_ptr)
1724 insn_aux->map_ptr = meta.map_ptr;
1725 else if (insn_aux->map_ptr != meta.map_ptr)
1726 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1727 } else {
ebb676da
TG
1728 verbose("unknown return type %d of func %s#%d\n",
1729 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1730 return -EINVAL;
1731 }
04fd61ab 1732
33ff9823 1733 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1734 if (err)
1735 return err;
04fd61ab 1736
969bf05e
AS
1737 if (changes_data)
1738 clear_all_pkt_pointers(env);
1739 return 0;
1740}
1741
f1174f77
EC
1742static void coerce_reg_to_32(struct bpf_reg_state *reg)
1743{
f1174f77
EC
1744 /* clear high 32 bits */
1745 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1746 /* Update bounds */
1747 __update_reg_bounds(reg);
1748}
1749
1750static bool signed_add_overflows(s64 a, s64 b)
1751{
1752 /* Do the add in u64, where overflow is well-defined */
1753 s64 res = (s64)((u64)a + (u64)b);
1754
1755 if (b < 0)
1756 return res > a;
1757 return res < a;
1758}
1759
1760static bool signed_sub_overflows(s64 a, s64 b)
1761{
1762 /* Do the sub in u64, where overflow is well-defined */
1763 s64 res = (s64)((u64)a - (u64)b);
1764
1765 if (b < 0)
1766 return res < a;
1767 return res > a;
969bf05e
AS
1768}
1769
f1174f77 1770/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1771 * Caller should also handle BPF_MOV case separately.
1772 * If we return -EACCES, caller may want to try again treating pointer as a
1773 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1774 */
1775static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1776 struct bpf_insn *insn,
1777 const struct bpf_reg_state *ptr_reg,
1778 const struct bpf_reg_state *off_reg)
969bf05e 1779{
f1174f77
EC
1780 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1781 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1782 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1783 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1784 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1785 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1786 u8 opcode = BPF_OP(insn->code);
f1174f77 1787 u32 dst = insn->dst_reg;
969bf05e 1788
f1174f77 1789 dst_reg = &regs[dst];
969bf05e 1790
b03c9f9f 1791 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
f1174f77 1792 print_verifier_state(&env->cur_state);
b03c9f9f
EC
1793 verbose("verifier internal error: known but bad sbounds\n");
1794 return -EINVAL;
1795 }
1796 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1797 print_verifier_state(&env->cur_state);
1798 verbose("verifier internal error: known but bad ubounds\n");
f1174f77
EC
1799 return -EINVAL;
1800 }
1801
1802 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1803 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1804 if (!env->allow_ptr_leaks)
1805 verbose("R%d 32-bit pointer arithmetic prohibited\n",
1806 dst);
1807 return -EACCES;
969bf05e
AS
1808 }
1809
f1174f77
EC
1810 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1811 if (!env->allow_ptr_leaks)
1812 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1813 dst);
1814 return -EACCES;
1815 }
1816 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1817 if (!env->allow_ptr_leaks)
1818 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1819 dst);
1820 return -EACCES;
1821 }
1822 if (ptr_reg->type == PTR_TO_PACKET_END) {
1823 if (!env->allow_ptr_leaks)
1824 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1825 dst);
1826 return -EACCES;
1827 }
1828
1829 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1830 * The id may be overwritten later if we create a new variable offset.
969bf05e 1831 */
f1174f77
EC
1832 dst_reg->type = ptr_reg->type;
1833 dst_reg->id = ptr_reg->id;
969bf05e 1834
f1174f77
EC
1835 switch (opcode) {
1836 case BPF_ADD:
1837 /* We can take a fixed offset as long as it doesn't overflow
1838 * the s32 'off' field
969bf05e 1839 */
b03c9f9f
EC
1840 if (known && (ptr_reg->off + smin_val ==
1841 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1842 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1843 dst_reg->smin_value = smin_ptr;
1844 dst_reg->smax_value = smax_ptr;
1845 dst_reg->umin_value = umin_ptr;
1846 dst_reg->umax_value = umax_ptr;
f1174f77 1847 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1848 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1849 dst_reg->range = ptr_reg->range;
1850 break;
1851 }
f1174f77
EC
1852 /* A new variable offset is created. Note that off_reg->off
1853 * == 0, since it's a scalar.
1854 * dst_reg gets the pointer type and since some positive
1855 * integer value was added to the pointer, give it a new 'id'
1856 * if it's a PTR_TO_PACKET.
1857 * this creates a new 'base' pointer, off_reg (variable) gets
1858 * added into the variable offset, and we copy the fixed offset
1859 * from ptr_reg.
969bf05e 1860 */
b03c9f9f
EC
1861 if (signed_add_overflows(smin_ptr, smin_val) ||
1862 signed_add_overflows(smax_ptr, smax_val)) {
1863 dst_reg->smin_value = S64_MIN;
1864 dst_reg->smax_value = S64_MAX;
1865 } else {
1866 dst_reg->smin_value = smin_ptr + smin_val;
1867 dst_reg->smax_value = smax_ptr + smax_val;
1868 }
1869 if (umin_ptr + umin_val < umin_ptr ||
1870 umax_ptr + umax_val < umax_ptr) {
1871 dst_reg->umin_value = 0;
1872 dst_reg->umax_value = U64_MAX;
1873 } else {
1874 dst_reg->umin_value = umin_ptr + umin_val;
1875 dst_reg->umax_value = umax_ptr + umax_val;
1876 }
f1174f77
EC
1877 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1878 dst_reg->off = ptr_reg->off;
1879 if (ptr_reg->type == PTR_TO_PACKET) {
1880 dst_reg->id = ++env->id_gen;
1881 /* something was added to pkt_ptr, set range to zero */
1882 dst_reg->range = 0;
1883 }
1884 break;
1885 case BPF_SUB:
1886 if (dst_reg == off_reg) {
1887 /* scalar -= pointer. Creates an unknown scalar */
1888 if (!env->allow_ptr_leaks)
1889 verbose("R%d tried to subtract pointer from scalar\n",
1890 dst);
1891 return -EACCES;
1892 }
1893 /* We don't allow subtraction from FP, because (according to
1894 * test_verifier.c test "invalid fp arithmetic", JITs might not
1895 * be able to deal with it.
969bf05e 1896 */
f1174f77
EC
1897 if (ptr_reg->type == PTR_TO_STACK) {
1898 if (!env->allow_ptr_leaks)
1899 verbose("R%d subtraction from stack pointer prohibited\n",
1900 dst);
1901 return -EACCES;
1902 }
b03c9f9f
EC
1903 if (known && (ptr_reg->off - smin_val ==
1904 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1905 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1906 dst_reg->smin_value = smin_ptr;
1907 dst_reg->smax_value = smax_ptr;
1908 dst_reg->umin_value = umin_ptr;
1909 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1910 dst_reg->var_off = ptr_reg->var_off;
1911 dst_reg->id = ptr_reg->id;
b03c9f9f 1912 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1913 dst_reg->range = ptr_reg->range;
1914 break;
1915 }
f1174f77
EC
1916 /* A new variable offset is created. If the subtrahend is known
1917 * nonnegative, then any reg->range we had before is still good.
969bf05e 1918 */
b03c9f9f
EC
1919 if (signed_sub_overflows(smin_ptr, smax_val) ||
1920 signed_sub_overflows(smax_ptr, smin_val)) {
1921 /* Overflow possible, we know nothing */
1922 dst_reg->smin_value = S64_MIN;
1923 dst_reg->smax_value = S64_MAX;
1924 } else {
1925 dst_reg->smin_value = smin_ptr - smax_val;
1926 dst_reg->smax_value = smax_ptr - smin_val;
1927 }
1928 if (umin_ptr < umax_val) {
1929 /* Overflow possible, we know nothing */
1930 dst_reg->umin_value = 0;
1931 dst_reg->umax_value = U64_MAX;
1932 } else {
1933 /* Cannot overflow (as long as bounds are consistent) */
1934 dst_reg->umin_value = umin_ptr - umax_val;
1935 dst_reg->umax_value = umax_ptr - umin_val;
1936 }
f1174f77
EC
1937 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1938 dst_reg->off = ptr_reg->off;
1939 if (ptr_reg->type == PTR_TO_PACKET) {
1940 dst_reg->id = ++env->id_gen;
1941 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1942 if (smin_val < 0)
f1174f77 1943 dst_reg->range = 0;
43188702 1944 }
f1174f77
EC
1945 break;
1946 case BPF_AND:
1947 case BPF_OR:
1948 case BPF_XOR:
1949 /* bitwise ops on pointers are troublesome, prohibit for now.
1950 * (However, in principle we could allow some cases, e.g.
1951 * ptr &= ~3 which would reduce min_value by 3.)
1952 */
1953 if (!env->allow_ptr_leaks)
1954 verbose("R%d bitwise operator %s on pointer prohibited\n",
1955 dst, bpf_alu_string[opcode >> 4]);
1956 return -EACCES;
1957 default:
1958 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1959 if (!env->allow_ptr_leaks)
1960 verbose("R%d pointer arithmetic with %s operator prohibited\n",
1961 dst, bpf_alu_string[opcode >> 4]);
1962 return -EACCES;
43188702
JF
1963 }
1964
b03c9f9f
EC
1965 __update_reg_bounds(dst_reg);
1966 __reg_deduce_bounds(dst_reg);
1967 __reg_bound_offset(dst_reg);
43188702
JF
1968 return 0;
1969}
1970
f1174f77
EC
1971static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1972 struct bpf_insn *insn,
1973 struct bpf_reg_state *dst_reg,
1974 struct bpf_reg_state src_reg)
969bf05e 1975{
58e2af8b 1976 struct bpf_reg_state *regs = env->cur_state.regs;
48461135 1977 u8 opcode = BPF_OP(insn->code);
f1174f77 1978 bool src_known, dst_known;
b03c9f9f
EC
1979 s64 smin_val, smax_val;
1980 u64 umin_val, umax_val;
48461135 1981
f1174f77
EC
1982 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1983 /* 32-bit ALU ops are (32,32)->64 */
1984 coerce_reg_to_32(dst_reg);
1985 coerce_reg_to_32(&src_reg);
9305706c 1986 }
b03c9f9f
EC
1987 smin_val = src_reg.smin_value;
1988 smax_val = src_reg.smax_value;
1989 umin_val = src_reg.umin_value;
1990 umax_val = src_reg.umax_value;
f1174f77
EC
1991 src_known = tnum_is_const(src_reg.var_off);
1992 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 1993
48461135
JB
1994 switch (opcode) {
1995 case BPF_ADD:
b03c9f9f
EC
1996 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1997 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1998 dst_reg->smin_value = S64_MIN;
1999 dst_reg->smax_value = S64_MAX;
2000 } else {
2001 dst_reg->smin_value += smin_val;
2002 dst_reg->smax_value += smax_val;
2003 }
2004 if (dst_reg->umin_value + umin_val < umin_val ||
2005 dst_reg->umax_value + umax_val < umax_val) {
2006 dst_reg->umin_value = 0;
2007 dst_reg->umax_value = U64_MAX;
2008 } else {
2009 dst_reg->umin_value += umin_val;
2010 dst_reg->umax_value += umax_val;
2011 }
f1174f77 2012 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2013 break;
2014 case BPF_SUB:
b03c9f9f
EC
2015 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2016 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2017 /* Overflow possible, we know nothing */
2018 dst_reg->smin_value = S64_MIN;
2019 dst_reg->smax_value = S64_MAX;
2020 } else {
2021 dst_reg->smin_value -= smax_val;
2022 dst_reg->smax_value -= smin_val;
2023 }
2024 if (dst_reg->umin_value < umax_val) {
2025 /* Overflow possible, we know nothing */
2026 dst_reg->umin_value = 0;
2027 dst_reg->umax_value = U64_MAX;
2028 } else {
2029 /* Cannot overflow (as long as bounds are consistent) */
2030 dst_reg->umin_value -= umax_val;
2031 dst_reg->umax_value -= umin_val;
2032 }
f1174f77 2033 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2034 break;
2035 case BPF_MUL:
b03c9f9f
EC
2036 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2037 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2038 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2039 __mark_reg_unbounded(dst_reg);
2040 __update_reg_bounds(dst_reg);
f1174f77
EC
2041 break;
2042 }
b03c9f9f
EC
2043 /* Both values are positive, so we can work with unsigned and
2044 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2045 */
b03c9f9f
EC
2046 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2047 /* Potential overflow, we know nothing */
2048 __mark_reg_unbounded(dst_reg);
2049 /* (except what we can learn from the var_off) */
2050 __update_reg_bounds(dst_reg);
2051 break;
2052 }
2053 dst_reg->umin_value *= umin_val;
2054 dst_reg->umax_value *= umax_val;
2055 if (dst_reg->umax_value > S64_MAX) {
2056 /* Overflow possible, we know nothing */
2057 dst_reg->smin_value = S64_MIN;
2058 dst_reg->smax_value = S64_MAX;
2059 } else {
2060 dst_reg->smin_value = dst_reg->umin_value;
2061 dst_reg->smax_value = dst_reg->umax_value;
2062 }
48461135
JB
2063 break;
2064 case BPF_AND:
f1174f77 2065 if (src_known && dst_known) {
b03c9f9f
EC
2066 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2067 src_reg.var_off.value);
f1174f77
EC
2068 break;
2069 }
b03c9f9f
EC
2070 /* We get our minimum from the var_off, since that's inherently
2071 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2072 */
f1174f77 2073 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2074 dst_reg->umin_value = dst_reg->var_off.value;
2075 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2076 if (dst_reg->smin_value < 0 || smin_val < 0) {
2077 /* Lose signed bounds when ANDing negative numbers,
2078 * ain't nobody got time for that.
2079 */
2080 dst_reg->smin_value = S64_MIN;
2081 dst_reg->smax_value = S64_MAX;
2082 } else {
2083 /* ANDing two positives gives a positive, so safe to
2084 * cast result into s64.
2085 */
2086 dst_reg->smin_value = dst_reg->umin_value;
2087 dst_reg->smax_value = dst_reg->umax_value;
2088 }
2089 /* We may learn something more from the var_off */
2090 __update_reg_bounds(dst_reg);
f1174f77
EC
2091 break;
2092 case BPF_OR:
2093 if (src_known && dst_known) {
b03c9f9f
EC
2094 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2095 src_reg.var_off.value);
f1174f77
EC
2096 break;
2097 }
b03c9f9f
EC
2098 /* We get our maximum from the var_off, and our minimum is the
2099 * maximum of the operands' minima
f1174f77
EC
2100 */
2101 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2102 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2103 dst_reg->umax_value = dst_reg->var_off.value |
2104 dst_reg->var_off.mask;
2105 if (dst_reg->smin_value < 0 || smin_val < 0) {
2106 /* Lose signed bounds when ORing negative numbers,
2107 * ain't nobody got time for that.
2108 */
2109 dst_reg->smin_value = S64_MIN;
2110 dst_reg->smax_value = S64_MAX;
f1174f77 2111 } else {
b03c9f9f
EC
2112 /* ORing two positives gives a positive, so safe to
2113 * cast result into s64.
2114 */
2115 dst_reg->smin_value = dst_reg->umin_value;
2116 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2117 }
b03c9f9f
EC
2118 /* We may learn something more from the var_off */
2119 __update_reg_bounds(dst_reg);
48461135
JB
2120 break;
2121 case BPF_LSH:
b03c9f9f
EC
2122 if (umax_val > 63) {
2123 /* Shifts greater than 63 are undefined. This includes
2124 * shifts by a negative number.
2125 */
f1174f77
EC
2126 mark_reg_unknown(regs, insn->dst_reg);
2127 break;
2128 }
b03c9f9f
EC
2129 /* We lose all sign bit information (except what we can pick
2130 * up from var_off)
48461135 2131 */
b03c9f9f
EC
2132 dst_reg->smin_value = S64_MIN;
2133 dst_reg->smax_value = S64_MAX;
2134 /* If we might shift our top bit out, then we know nothing */
2135 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2136 dst_reg->umin_value = 0;
2137 dst_reg->umax_value = U64_MAX;
d1174416 2138 } else {
b03c9f9f
EC
2139 dst_reg->umin_value <<= umin_val;
2140 dst_reg->umax_value <<= umax_val;
d1174416 2141 }
b03c9f9f
EC
2142 if (src_known)
2143 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2144 else
2145 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2146 /* We may learn something more from the var_off */
2147 __update_reg_bounds(dst_reg);
48461135
JB
2148 break;
2149 case BPF_RSH:
b03c9f9f
EC
2150 if (umax_val > 63) {
2151 /* Shifts greater than 63 are undefined. This includes
2152 * shifts by a negative number.
2153 */
f1174f77
EC
2154 mark_reg_unknown(regs, insn->dst_reg);
2155 break;
2156 }
2157 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2158 if (dst_reg->smin_value < 0) {
2159 if (umin_val) {
f1174f77 2160 /* Sign bit will be cleared */
b03c9f9f
EC
2161 dst_reg->smin_value = 0;
2162 } else {
2163 /* Lost sign bit information */
2164 dst_reg->smin_value = S64_MIN;
2165 dst_reg->smax_value = S64_MAX;
2166 }
d1174416 2167 } else {
b03c9f9f
EC
2168 dst_reg->smin_value =
2169 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2170 }
f1174f77 2171 if (src_known)
b03c9f9f
EC
2172 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2173 umin_val);
f1174f77 2174 else
b03c9f9f
EC
2175 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2176 dst_reg->umin_value >>= umax_val;
2177 dst_reg->umax_value >>= umin_val;
2178 /* We may learn something more from the var_off */
2179 __update_reg_bounds(dst_reg);
48461135
JB
2180 break;
2181 default:
f1174f77 2182 mark_reg_unknown(regs, insn->dst_reg);
48461135
JB
2183 break;
2184 }
2185
b03c9f9f
EC
2186 __reg_deduce_bounds(dst_reg);
2187 __reg_bound_offset(dst_reg);
f1174f77
EC
2188 return 0;
2189}
2190
2191/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2192 * and var_off.
2193 */
2194static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2195 struct bpf_insn *insn)
2196{
2197 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2198 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2199 u8 opcode = BPF_OP(insn->code);
2200 int rc;
2201
2202 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2203 src_reg = NULL;
2204 if (dst_reg->type != SCALAR_VALUE)
2205 ptr_reg = dst_reg;
2206 if (BPF_SRC(insn->code) == BPF_X) {
2207 src_reg = &regs[insn->src_reg];
f1174f77
EC
2208 if (src_reg->type != SCALAR_VALUE) {
2209 if (dst_reg->type != SCALAR_VALUE) {
2210 /* Combining two pointers by any ALU op yields
2211 * an arbitrary scalar.
2212 */
2213 if (!env->allow_ptr_leaks) {
2214 verbose("R%d pointer %s pointer prohibited\n",
2215 insn->dst_reg,
2216 bpf_alu_string[opcode >> 4]);
2217 return -EACCES;
2218 }
2219 mark_reg_unknown(regs, insn->dst_reg);
2220 return 0;
2221 } else {
2222 /* scalar += pointer
2223 * This is legal, but we have to reverse our
2224 * src/dest handling in computing the range
2225 */
2226 rc = adjust_ptr_min_max_vals(env, insn,
2227 src_reg, dst_reg);
2228 if (rc == -EACCES && env->allow_ptr_leaks) {
2229 /* scalar += unknown scalar */
2230 __mark_reg_unknown(&off_reg);
2231 return adjust_scalar_min_max_vals(
2232 env, insn,
2233 dst_reg, off_reg);
2234 }
2235 return rc;
2236 }
2237 } else if (ptr_reg) {
2238 /* pointer += scalar */
2239 rc = adjust_ptr_min_max_vals(env, insn,
2240 dst_reg, src_reg);
2241 if (rc == -EACCES && env->allow_ptr_leaks) {
2242 /* unknown scalar += scalar */
2243 __mark_reg_unknown(dst_reg);
2244 return adjust_scalar_min_max_vals(
2245 env, insn, dst_reg, *src_reg);
2246 }
2247 return rc;
2248 }
2249 } else {
2250 /* Pretend the src is a reg with a known value, since we only
2251 * need to be able to read from this state.
2252 */
2253 off_reg.type = SCALAR_VALUE;
b03c9f9f 2254 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2255 src_reg = &off_reg;
f1174f77
EC
2256 if (ptr_reg) { /* pointer += K */
2257 rc = adjust_ptr_min_max_vals(env, insn,
2258 ptr_reg, src_reg);
2259 if (rc == -EACCES && env->allow_ptr_leaks) {
2260 /* unknown scalar += K */
2261 __mark_reg_unknown(dst_reg);
2262 return adjust_scalar_min_max_vals(
2263 env, insn, dst_reg, off_reg);
2264 }
2265 return rc;
2266 }
2267 }
2268
2269 /* Got here implies adding two SCALAR_VALUEs */
2270 if (WARN_ON_ONCE(ptr_reg)) {
2271 print_verifier_state(&env->cur_state);
2272 verbose("verifier internal error: unexpected ptr_reg\n");
2273 return -EINVAL;
2274 }
2275 if (WARN_ON(!src_reg)) {
2276 print_verifier_state(&env->cur_state);
2277 verbose("verifier internal error: no src_reg\n");
2278 return -EINVAL;
2279 }
2280 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2281}
2282
17a52670 2283/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2284static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2285{
f1174f77 2286 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2287 u8 opcode = BPF_OP(insn->code);
2288 int err;
2289
2290 if (opcode == BPF_END || opcode == BPF_NEG) {
2291 if (opcode == BPF_NEG) {
2292 if (BPF_SRC(insn->code) != 0 ||
2293 insn->src_reg != BPF_REG_0 ||
2294 insn->off != 0 || insn->imm != 0) {
2295 verbose("BPF_NEG uses reserved fields\n");
2296 return -EINVAL;
2297 }
2298 } else {
2299 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2300 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
2301 verbose("BPF_END uses reserved fields\n");
2302 return -EINVAL;
2303 }
2304 }
2305
2306 /* check src operand */
dc503a8a 2307 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2308 if (err)
2309 return err;
2310
1be7f75d
AS
2311 if (is_pointer_value(env, insn->dst_reg)) {
2312 verbose("R%d pointer arithmetic prohibited\n",
2313 insn->dst_reg);
2314 return -EACCES;
2315 }
2316
17a52670 2317 /* check dest operand */
dc503a8a 2318 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2319 if (err)
2320 return err;
2321
2322 } else if (opcode == BPF_MOV) {
2323
2324 if (BPF_SRC(insn->code) == BPF_X) {
2325 if (insn->imm != 0 || insn->off != 0) {
2326 verbose("BPF_MOV uses reserved fields\n");
2327 return -EINVAL;
2328 }
2329
2330 /* check src operand */
dc503a8a 2331 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2332 if (err)
2333 return err;
2334 } else {
2335 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2336 verbose("BPF_MOV uses reserved fields\n");
2337 return -EINVAL;
2338 }
2339 }
2340
2341 /* check dest operand */
dc503a8a 2342 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2343 if (err)
2344 return err;
2345
2346 if (BPF_SRC(insn->code) == BPF_X) {
2347 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2348 /* case: R1 = R2
2349 * copy register state to dest reg
2350 */
2351 regs[insn->dst_reg] = regs[insn->src_reg];
2352 } else {
f1174f77 2353 /* R1 = (u32) R2 */
1be7f75d
AS
2354 if (is_pointer_value(env, insn->src_reg)) {
2355 verbose("R%d partial copy of pointer\n",
2356 insn->src_reg);
2357 return -EACCES;
2358 }
f1174f77 2359 mark_reg_unknown(regs, insn->dst_reg);
b03c9f9f 2360 /* high 32 bits are known zero. */
f1174f77
EC
2361 regs[insn->dst_reg].var_off = tnum_cast(
2362 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2363 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2364 }
2365 } else {
2366 /* case: R = imm
2367 * remember the value we stored into this reg
2368 */
f1174f77 2369 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2370 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2371 }
2372
2373 } else if (opcode > BPF_END) {
2374 verbose("invalid BPF_ALU opcode %x\n", opcode);
2375 return -EINVAL;
2376
2377 } else { /* all other ALU ops: and, sub, xor, add, ... */
2378
17a52670
AS
2379 if (BPF_SRC(insn->code) == BPF_X) {
2380 if (insn->imm != 0 || insn->off != 0) {
2381 verbose("BPF_ALU uses reserved fields\n");
2382 return -EINVAL;
2383 }
2384 /* check src1 operand */
dc503a8a 2385 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2386 if (err)
2387 return err;
2388 } else {
2389 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2390 verbose("BPF_ALU uses reserved fields\n");
2391 return -EINVAL;
2392 }
2393 }
2394
2395 /* check src2 operand */
dc503a8a 2396 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2397 if (err)
2398 return err;
2399
2400 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2401 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2402 verbose("div by zero\n");
2403 return -EINVAL;
2404 }
2405
229394e8
RV
2406 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2407 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2408 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2409
2410 if (insn->imm < 0 || insn->imm >= size) {
2411 verbose("invalid shift %d\n", insn->imm);
2412 return -EINVAL;
2413 }
2414 }
2415
1a0dc1ac 2416 /* check dest operand */
dc503a8a 2417 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2418 if (err)
2419 return err;
2420
f1174f77 2421 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2422 }
2423
2424 return 0;
2425}
2426
58e2af8b
JK
2427static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2428 struct bpf_reg_state *dst_reg)
969bf05e 2429{
58e2af8b 2430 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 2431 int i;
2d2be8ca 2432
f1174f77
EC
2433 if (dst_reg->off < 0)
2434 /* This doesn't give us any range */
2435 return;
2436
b03c9f9f
EC
2437 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2438 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2439 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2440 * than pkt_end, but that's because it's also less than pkt.
2441 */
2442 return;
2443
b4e432f1 2444 /* LLVM can generate four kind of checks:
2d2be8ca 2445 *
b4e432f1 2446 * Type 1/2:
2d2be8ca
DB
2447 *
2448 * r2 = r3;
2449 * r2 += 8;
2450 * if (r2 > pkt_end) goto <handle exception>
2451 * <access okay>
2452 *
b4e432f1
DB
2453 * r2 = r3;
2454 * r2 += 8;
2455 * if (r2 < pkt_end) goto <access okay>
2456 * <handle exception>
2457 *
2d2be8ca
DB
2458 * Where:
2459 * r2 == dst_reg, pkt_end == src_reg
2460 * r2=pkt(id=n,off=8,r=0)
2461 * r3=pkt(id=n,off=0,r=0)
2462 *
b4e432f1 2463 * Type 3/4:
2d2be8ca
DB
2464 *
2465 * r2 = r3;
2466 * r2 += 8;
2467 * if (pkt_end >= r2) goto <access okay>
2468 * <handle exception>
2469 *
b4e432f1
DB
2470 * r2 = r3;
2471 * r2 += 8;
2472 * if (pkt_end <= r2) goto <handle exception>
2473 * <access okay>
2474 *
2d2be8ca
DB
2475 * Where:
2476 * pkt_end == dst_reg, r2 == src_reg
2477 * r2=pkt(id=n,off=8,r=0)
2478 * r3=pkt(id=n,off=0,r=0)
2479 *
2480 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2481 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 2482 */
2d2be8ca 2483
f1174f77
EC
2484 /* If our ids match, then we must have the same max_value. And we
2485 * don't care about the other reg's fixed offset, since if it's too big
2486 * the range won't allow anything.
2487 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2488 */
969bf05e
AS
2489 for (i = 0; i < MAX_BPF_REG; i++)
2490 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
b1977682 2491 /* keep the maximum range already checked */
f1174f77 2492 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
969bf05e
AS
2493
2494 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2495 if (state->stack_slot_type[i] != STACK_SPILL)
2496 continue;
2497 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2498 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
f1174f77 2499 reg->range = max_t(u16, reg->range, dst_reg->off);
969bf05e
AS
2500 }
2501}
2502
48461135
JB
2503/* Adjusts the register min/max values in the case that the dst_reg is the
2504 * variable register that we are working on, and src_reg is a constant or we're
2505 * simply doing a BPF_K check.
f1174f77 2506 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2507 */
2508static void reg_set_min_max(struct bpf_reg_state *true_reg,
2509 struct bpf_reg_state *false_reg, u64 val,
2510 u8 opcode)
2511{
f1174f77
EC
2512 /* If the dst_reg is a pointer, we can't learn anything about its
2513 * variable offset from the compare (unless src_reg were a pointer into
2514 * the same object, but we don't bother with that.
2515 * Since false_reg and true_reg have the same type by construction, we
2516 * only need to check one of them for pointerness.
2517 */
2518 if (__is_pointer_value(false, false_reg))
2519 return;
4cabc5b1 2520
48461135
JB
2521 switch (opcode) {
2522 case BPF_JEQ:
2523 /* If this is false then we know nothing Jon Snow, but if it is
2524 * true then we know for sure.
2525 */
b03c9f9f 2526 __mark_reg_known(true_reg, val);
48461135
JB
2527 break;
2528 case BPF_JNE:
2529 /* If this is true we know nothing Jon Snow, but if it is false
2530 * we know the value for sure;
2531 */
b03c9f9f 2532 __mark_reg_known(false_reg, val);
48461135
JB
2533 break;
2534 case BPF_JGT:
b03c9f9f
EC
2535 false_reg->umax_value = min(false_reg->umax_value, val);
2536 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2537 break;
48461135 2538 case BPF_JSGT:
b03c9f9f
EC
2539 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2540 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2541 break;
b4e432f1
DB
2542 case BPF_JLT:
2543 false_reg->umin_value = max(false_reg->umin_value, val);
2544 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2545 break;
2546 case BPF_JSLT:
2547 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2548 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2549 break;
48461135 2550 case BPF_JGE:
b03c9f9f
EC
2551 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2552 true_reg->umin_value = max(true_reg->umin_value, val);
2553 break;
48461135 2554 case BPF_JSGE:
b03c9f9f
EC
2555 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2556 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2557 break;
b4e432f1
DB
2558 case BPF_JLE:
2559 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2560 true_reg->umax_value = min(true_reg->umax_value, val);
2561 break;
2562 case BPF_JSLE:
2563 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2564 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2565 break;
48461135
JB
2566 default:
2567 break;
2568 }
2569
b03c9f9f
EC
2570 __reg_deduce_bounds(false_reg);
2571 __reg_deduce_bounds(true_reg);
2572 /* We might have learned some bits from the bounds. */
2573 __reg_bound_offset(false_reg);
2574 __reg_bound_offset(true_reg);
2575 /* Intersecting with the old var_off might have improved our bounds
2576 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2577 * then new var_off is (0; 0x7f...fc) which improves our umax.
2578 */
2579 __update_reg_bounds(false_reg);
2580 __update_reg_bounds(true_reg);
48461135
JB
2581}
2582
f1174f77
EC
2583/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2584 * the variable reg.
48461135
JB
2585 */
2586static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2587 struct bpf_reg_state *false_reg, u64 val,
2588 u8 opcode)
2589{
f1174f77
EC
2590 if (__is_pointer_value(false, false_reg))
2591 return;
4cabc5b1 2592
48461135
JB
2593 switch (opcode) {
2594 case BPF_JEQ:
2595 /* If this is false then we know nothing Jon Snow, but if it is
2596 * true then we know for sure.
2597 */
b03c9f9f 2598 __mark_reg_known(true_reg, val);
48461135
JB
2599 break;
2600 case BPF_JNE:
2601 /* If this is true we know nothing Jon Snow, but if it is false
2602 * we know the value for sure;
2603 */
b03c9f9f 2604 __mark_reg_known(false_reg, val);
48461135
JB
2605 break;
2606 case BPF_JGT:
b03c9f9f
EC
2607 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2608 false_reg->umin_value = max(false_reg->umin_value, val);
2609 break;
48461135 2610 case BPF_JSGT:
b03c9f9f
EC
2611 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2612 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2613 break;
b4e432f1
DB
2614 case BPF_JLT:
2615 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2616 false_reg->umax_value = min(false_reg->umax_value, val);
2617 break;
2618 case BPF_JSLT:
2619 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2620 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2621 break;
48461135 2622 case BPF_JGE:
b03c9f9f
EC
2623 true_reg->umax_value = min(true_reg->umax_value, val);
2624 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2625 break;
48461135 2626 case BPF_JSGE:
b03c9f9f
EC
2627 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2628 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2629 break;
b4e432f1
DB
2630 case BPF_JLE:
2631 true_reg->umin_value = max(true_reg->umin_value, val);
2632 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2633 break;
2634 case BPF_JSLE:
2635 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2636 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2637 break;
48461135
JB
2638 default:
2639 break;
2640 }
2641
b03c9f9f
EC
2642 __reg_deduce_bounds(false_reg);
2643 __reg_deduce_bounds(true_reg);
2644 /* We might have learned some bits from the bounds. */
2645 __reg_bound_offset(false_reg);
2646 __reg_bound_offset(true_reg);
2647 /* Intersecting with the old var_off might have improved our bounds
2648 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2649 * then new var_off is (0; 0x7f...fc) which improves our umax.
2650 */
2651 __update_reg_bounds(false_reg);
2652 __update_reg_bounds(true_reg);
f1174f77
EC
2653}
2654
2655/* Regs are known to be equal, so intersect their min/max/var_off */
2656static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2657 struct bpf_reg_state *dst_reg)
2658{
b03c9f9f
EC
2659 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2660 dst_reg->umin_value);
2661 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2662 dst_reg->umax_value);
2663 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2664 dst_reg->smin_value);
2665 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2666 dst_reg->smax_value);
f1174f77
EC
2667 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2668 dst_reg->var_off);
b03c9f9f
EC
2669 /* We might have learned new bounds from the var_off. */
2670 __update_reg_bounds(src_reg);
2671 __update_reg_bounds(dst_reg);
2672 /* We might have learned something about the sign bit. */
2673 __reg_deduce_bounds(src_reg);
2674 __reg_deduce_bounds(dst_reg);
2675 /* We might have learned some bits from the bounds. */
2676 __reg_bound_offset(src_reg);
2677 __reg_bound_offset(dst_reg);
2678 /* Intersecting with the old var_off might have improved our bounds
2679 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2680 * then new var_off is (0; 0x7f...fc) which improves our umax.
2681 */
2682 __update_reg_bounds(src_reg);
2683 __update_reg_bounds(dst_reg);
f1174f77
EC
2684}
2685
2686static void reg_combine_min_max(struct bpf_reg_state *true_src,
2687 struct bpf_reg_state *true_dst,
2688 struct bpf_reg_state *false_src,
2689 struct bpf_reg_state *false_dst,
2690 u8 opcode)
2691{
2692 switch (opcode) {
2693 case BPF_JEQ:
2694 __reg_combine_min_max(true_src, true_dst);
2695 break;
2696 case BPF_JNE:
2697 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2698 break;
4cabc5b1 2699 }
48461135
JB
2700}
2701
57a09bf0 2702static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2703 bool is_null)
57a09bf0
TG
2704{
2705 struct bpf_reg_state *reg = &regs[regno];
2706
2707 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2708 /* Old offset (both fixed and variable parts) should
2709 * have been known-zero, because we don't allow pointer
2710 * arithmetic on pointers that might be NULL.
2711 */
b03c9f9f
EC
2712 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2713 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2714 reg->off)) {
b03c9f9f
EC
2715 __mark_reg_known_zero(reg);
2716 reg->off = 0;
f1174f77
EC
2717 }
2718 if (is_null) {
2719 reg->type = SCALAR_VALUE;
56f668df
MKL
2720 } else if (reg->map_ptr->inner_map_meta) {
2721 reg->type = CONST_PTR_TO_MAP;
2722 reg->map_ptr = reg->map_ptr->inner_map_meta;
2723 } else {
f1174f77 2724 reg->type = PTR_TO_MAP_VALUE;
56f668df 2725 }
a08dd0da
DB
2726 /* We don't need id from this point onwards anymore, thus we
2727 * should better reset it, so that state pruning has chances
2728 * to take effect.
2729 */
2730 reg->id = 0;
57a09bf0
TG
2731 }
2732}
2733
2734/* The logic is similar to find_good_pkt_pointers(), both could eventually
2735 * be folded together at some point.
2736 */
2737static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2738 bool is_null)
57a09bf0
TG
2739{
2740 struct bpf_reg_state *regs = state->regs;
a08dd0da 2741 u32 id = regs[regno].id;
57a09bf0
TG
2742 int i;
2743
2744 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2745 mark_map_reg(regs, i, id, is_null);
57a09bf0
TG
2746
2747 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2748 if (state->stack_slot_type[i] != STACK_SPILL)
2749 continue;
f1174f77 2750 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
57a09bf0
TG
2751 }
2752}
2753
58e2af8b 2754static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2755 struct bpf_insn *insn, int *insn_idx)
2756{
58e2af8b
JK
2757 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2758 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2759 u8 opcode = BPF_OP(insn->code);
2760 int err;
2761
b4e432f1 2762 if (opcode > BPF_JSLE) {
17a52670
AS
2763 verbose("invalid BPF_JMP opcode %x\n", opcode);
2764 return -EINVAL;
2765 }
2766
2767 if (BPF_SRC(insn->code) == BPF_X) {
2768 if (insn->imm != 0) {
2769 verbose("BPF_JMP uses reserved fields\n");
2770 return -EINVAL;
2771 }
2772
2773 /* check src1 operand */
dc503a8a 2774 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2775 if (err)
2776 return err;
1be7f75d
AS
2777
2778 if (is_pointer_value(env, insn->src_reg)) {
2779 verbose("R%d pointer comparison prohibited\n",
2780 insn->src_reg);
2781 return -EACCES;
2782 }
17a52670
AS
2783 } else {
2784 if (insn->src_reg != BPF_REG_0) {
2785 verbose("BPF_JMP uses reserved fields\n");
2786 return -EINVAL;
2787 }
2788 }
2789
2790 /* check src2 operand */
dc503a8a 2791 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2792 if (err)
2793 return err;
2794
1a0dc1ac
AS
2795 dst_reg = &regs[insn->dst_reg];
2796
17a52670
AS
2797 /* detect if R == 0 where R was initialized to zero earlier */
2798 if (BPF_SRC(insn->code) == BPF_K &&
2799 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2800 dst_reg->type == SCALAR_VALUE &&
2801 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2802 if (opcode == BPF_JEQ) {
2803 /* if (imm == imm) goto pc+off;
2804 * only follow the goto, ignore fall-through
2805 */
2806 *insn_idx += insn->off;
2807 return 0;
2808 } else {
2809 /* if (imm != imm) goto pc+off;
2810 * only follow fall-through branch, since
2811 * that's where the program will go
2812 */
2813 return 0;
2814 }
2815 }
2816
2817 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2818 if (!other_branch)
2819 return -EFAULT;
2820
48461135
JB
2821 /* detect if we are comparing against a constant value so we can adjust
2822 * our min/max values for our dst register.
f1174f77
EC
2823 * this is only legit if both are scalars (or pointers to the same
2824 * object, I suppose, but we don't support that right now), because
2825 * otherwise the different base pointers mean the offsets aren't
2826 * comparable.
48461135
JB
2827 */
2828 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2829 if (dst_reg->type == SCALAR_VALUE &&
2830 regs[insn->src_reg].type == SCALAR_VALUE) {
2831 if (tnum_is_const(regs[insn->src_reg].var_off))
2832 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2833 dst_reg, regs[insn->src_reg].var_off.value,
2834 opcode);
2835 else if (tnum_is_const(dst_reg->var_off))
2836 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2837 &regs[insn->src_reg],
2838 dst_reg->var_off.value, opcode);
2839 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2840 /* Comparing for equality, we can combine knowledge */
2841 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2842 &other_branch->regs[insn->dst_reg],
2843 &regs[insn->src_reg],
2844 &regs[insn->dst_reg], opcode);
2845 }
2846 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2847 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2848 dst_reg, insn->imm, opcode);
2849 }
2850
58e2af8b 2851 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2852 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2853 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2854 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2855 /* Mark all identical map registers in each branch as either
2856 * safe or unknown depending R == 0 or R != 0 conditional.
2857 */
f1174f77
EC
2858 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2859 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
969bf05e
AS
2860 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2861 dst_reg->type == PTR_TO_PACKET &&
2862 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca 2863 find_good_pkt_pointers(this_branch, dst_reg);
b4e432f1
DB
2864 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2865 dst_reg->type == PTR_TO_PACKET &&
2866 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2867 find_good_pkt_pointers(other_branch, dst_reg);
2d2be8ca
DB
2868 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2869 dst_reg->type == PTR_TO_PACKET_END &&
2870 regs[insn->src_reg].type == PTR_TO_PACKET) {
2871 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
b4e432f1
DB
2872 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2873 dst_reg->type == PTR_TO_PACKET_END &&
2874 regs[insn->src_reg].type == PTR_TO_PACKET) {
2875 find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
1be7f75d
AS
2876 } else if (is_pointer_value(env, insn->dst_reg)) {
2877 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2878 return -EACCES;
17a52670
AS
2879 }
2880 if (log_level)
2d2be8ca 2881 print_verifier_state(this_branch);
17a52670
AS
2882 return 0;
2883}
2884
0246e64d
AS
2885/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2886static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2887{
2888 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2889
2890 return (struct bpf_map *) (unsigned long) imm64;
2891}
2892
17a52670 2893/* verify BPF_LD_IMM64 instruction */
58e2af8b 2894static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2895{
58e2af8b 2896 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2897 int err;
2898
2899 if (BPF_SIZE(insn->code) != BPF_DW) {
2900 verbose("invalid BPF_LD_IMM insn\n");
2901 return -EINVAL;
2902 }
2903 if (insn->off != 0) {
2904 verbose("BPF_LD_IMM64 uses reserved fields\n");
2905 return -EINVAL;
2906 }
2907
dc503a8a 2908 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2909 if (err)
2910 return err;
2911
6b173873 2912 if (insn->src_reg == 0) {
6b173873
JK
2913 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2914
f1174f77 2915 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2916 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 2917 return 0;
6b173873 2918 }
17a52670
AS
2919
2920 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2921 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2922
2923 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2924 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2925 return 0;
2926}
2927
96be4325
DB
2928static bool may_access_skb(enum bpf_prog_type type)
2929{
2930 switch (type) {
2931 case BPF_PROG_TYPE_SOCKET_FILTER:
2932 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2933 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2934 return true;
2935 default:
2936 return false;
2937 }
2938}
2939
ddd872bc
AS
2940/* verify safety of LD_ABS|LD_IND instructions:
2941 * - they can only appear in the programs where ctx == skb
2942 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2943 * preserve R6-R9, and store return value into R0
2944 *
2945 * Implicit input:
2946 * ctx == skb == R6 == CTX
2947 *
2948 * Explicit input:
2949 * SRC == any register
2950 * IMM == 32-bit immediate
2951 *
2952 * Output:
2953 * R0 - 8/16/32-bit skb data converted to cpu endianness
2954 */
58e2af8b 2955static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2956{
58e2af8b 2957 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2958 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
2959 int i, err;
2960
24701ece 2961 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2962 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2963 return -EINVAL;
2964 }
2965
2966 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2967 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2968 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2969 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2970 return -EINVAL;
2971 }
2972
2973 /* check whether implicit source operand (register R6) is readable */
dc503a8a 2974 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
2975 if (err)
2976 return err;
2977
2978 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2979 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2980 return -EINVAL;
2981 }
2982
2983 if (mode == BPF_IND) {
2984 /* check explicit source operand */
dc503a8a 2985 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
2986 if (err)
2987 return err;
2988 }
2989
2990 /* reset caller saved regs to unreadable */
dc503a8a 2991 for (i = 0; i < CALLER_SAVED_REGS; i++) {
a9789ef9 2992 mark_reg_not_init(regs, caller_saved[i]);
dc503a8a
EC
2993 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2994 }
ddd872bc
AS
2995
2996 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
2997 * the value fetched from the packet.
2998 * Already marked as written above.
ddd872bc 2999 */
f1174f77 3000 mark_reg_unknown(regs, BPF_REG_0);
ddd872bc
AS
3001 return 0;
3002}
3003
475fb78f
AS
3004/* non-recursive DFS pseudo code
3005 * 1 procedure DFS-iterative(G,v):
3006 * 2 label v as discovered
3007 * 3 let S be a stack
3008 * 4 S.push(v)
3009 * 5 while S is not empty
3010 * 6 t <- S.pop()
3011 * 7 if t is what we're looking for:
3012 * 8 return t
3013 * 9 for all edges e in G.adjacentEdges(t) do
3014 * 10 if edge e is already labelled
3015 * 11 continue with the next edge
3016 * 12 w <- G.adjacentVertex(t,e)
3017 * 13 if vertex w is not discovered and not explored
3018 * 14 label e as tree-edge
3019 * 15 label w as discovered
3020 * 16 S.push(w)
3021 * 17 continue at 5
3022 * 18 else if vertex w is discovered
3023 * 19 label e as back-edge
3024 * 20 else
3025 * 21 // vertex w is explored
3026 * 22 label e as forward- or cross-edge
3027 * 23 label t as explored
3028 * 24 S.pop()
3029 *
3030 * convention:
3031 * 0x10 - discovered
3032 * 0x11 - discovered and fall-through edge labelled
3033 * 0x12 - discovered and fall-through and branch edges labelled
3034 * 0x20 - explored
3035 */
3036
3037enum {
3038 DISCOVERED = 0x10,
3039 EXPLORED = 0x20,
3040 FALLTHROUGH = 1,
3041 BRANCH = 2,
3042};
3043
58e2af8b 3044#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3045
475fb78f
AS
3046static int *insn_stack; /* stack of insns to process */
3047static int cur_stack; /* current stack index */
3048static int *insn_state;
3049
3050/* t, w, e - match pseudo-code above:
3051 * t - index of current instruction
3052 * w - next instruction
3053 * e - edge
3054 */
58e2af8b 3055static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3056{
3057 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3058 return 0;
3059
3060 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3061 return 0;
3062
3063 if (w < 0 || w >= env->prog->len) {
3064 verbose("jump out of range from insn %d to %d\n", t, w);
3065 return -EINVAL;
3066 }
3067
f1bca824
AS
3068 if (e == BRANCH)
3069 /* mark branch target for state pruning */
3070 env->explored_states[w] = STATE_LIST_MARK;
3071
475fb78f
AS
3072 if (insn_state[w] == 0) {
3073 /* tree-edge */
3074 insn_state[t] = DISCOVERED | e;
3075 insn_state[w] = DISCOVERED;
3076 if (cur_stack >= env->prog->len)
3077 return -E2BIG;
3078 insn_stack[cur_stack++] = w;
3079 return 1;
3080 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3081 verbose("back-edge from insn %d to %d\n", t, w);
3082 return -EINVAL;
3083 } else if (insn_state[w] == EXPLORED) {
3084 /* forward- or cross-edge */
3085 insn_state[t] = DISCOVERED | e;
3086 } else {
3087 verbose("insn state internal bug\n");
3088 return -EFAULT;
3089 }
3090 return 0;
3091}
3092
3093/* non-recursive depth-first-search to detect loops in BPF program
3094 * loop == back-edge in directed graph
3095 */
58e2af8b 3096static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3097{
3098 struct bpf_insn *insns = env->prog->insnsi;
3099 int insn_cnt = env->prog->len;
3100 int ret = 0;
3101 int i, t;
3102
3103 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3104 if (!insn_state)
3105 return -ENOMEM;
3106
3107 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3108 if (!insn_stack) {
3109 kfree(insn_state);
3110 return -ENOMEM;
3111 }
3112
3113 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3114 insn_stack[0] = 0; /* 0 is the first instruction */
3115 cur_stack = 1;
3116
3117peek_stack:
3118 if (cur_stack == 0)
3119 goto check_state;
3120 t = insn_stack[cur_stack - 1];
3121
3122 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3123 u8 opcode = BPF_OP(insns[t].code);
3124
3125 if (opcode == BPF_EXIT) {
3126 goto mark_explored;
3127 } else if (opcode == BPF_CALL) {
3128 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3129 if (ret == 1)
3130 goto peek_stack;
3131 else if (ret < 0)
3132 goto err_free;
07016151
DB
3133 if (t + 1 < insn_cnt)
3134 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3135 } else if (opcode == BPF_JA) {
3136 if (BPF_SRC(insns[t].code) != BPF_K) {
3137 ret = -EINVAL;
3138 goto err_free;
3139 }
3140 /* unconditional jump with single edge */
3141 ret = push_insn(t, t + insns[t].off + 1,
3142 FALLTHROUGH, env);
3143 if (ret == 1)
3144 goto peek_stack;
3145 else if (ret < 0)
3146 goto err_free;
f1bca824
AS
3147 /* tell verifier to check for equivalent states
3148 * after every call and jump
3149 */
c3de6317
AS
3150 if (t + 1 < insn_cnt)
3151 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3152 } else {
3153 /* conditional jump with two edges */
3c2ce60b 3154 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3155 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3156 if (ret == 1)
3157 goto peek_stack;
3158 else if (ret < 0)
3159 goto err_free;
3160
3161 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3162 if (ret == 1)
3163 goto peek_stack;
3164 else if (ret < 0)
3165 goto err_free;
3166 }
3167 } else {
3168 /* all other non-branch instructions with single
3169 * fall-through edge
3170 */
3171 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3172 if (ret == 1)
3173 goto peek_stack;
3174 else if (ret < 0)
3175 goto err_free;
3176 }
3177
3178mark_explored:
3179 insn_state[t] = EXPLORED;
3180 if (cur_stack-- <= 0) {
3181 verbose("pop stack internal bug\n");
3182 ret = -EFAULT;
3183 goto err_free;
3184 }
3185 goto peek_stack;
3186
3187check_state:
3188 for (i = 0; i < insn_cnt; i++) {
3189 if (insn_state[i] != EXPLORED) {
3190 verbose("unreachable insn %d\n", i);
3191 ret = -EINVAL;
3192 goto err_free;
3193 }
3194 }
3195 ret = 0; /* cfg looks good */
3196
3197err_free:
3198 kfree(insn_state);
3199 kfree(insn_stack);
3200 return ret;
3201}
3202
f1174f77
EC
3203/* check %cur's range satisfies %old's */
3204static bool range_within(struct bpf_reg_state *old,
3205 struct bpf_reg_state *cur)
3206{
b03c9f9f
EC
3207 return old->umin_value <= cur->umin_value &&
3208 old->umax_value >= cur->umax_value &&
3209 old->smin_value <= cur->smin_value &&
3210 old->smax_value >= cur->smax_value;
f1174f77
EC
3211}
3212
3213/* Maximum number of register states that can exist at once */
3214#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3215struct idpair {
3216 u32 old;
3217 u32 cur;
3218};
3219
3220/* If in the old state two registers had the same id, then they need to have
3221 * the same id in the new state as well. But that id could be different from
3222 * the old state, so we need to track the mapping from old to new ids.
3223 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3224 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3225 * regs with a different old id could still have new id 9, we don't care about
3226 * that.
3227 * So we look through our idmap to see if this old id has been seen before. If
3228 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3229 */
f1174f77 3230static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3231{
f1174f77 3232 unsigned int i;
969bf05e 3233
f1174f77
EC
3234 for (i = 0; i < ID_MAP_SIZE; i++) {
3235 if (!idmap[i].old) {
3236 /* Reached an empty slot; haven't seen this id before */
3237 idmap[i].old = old_id;
3238 idmap[i].cur = cur_id;
3239 return true;
3240 }
3241 if (idmap[i].old == old_id)
3242 return idmap[i].cur == cur_id;
3243 }
3244 /* We ran out of idmap slots, which should be impossible */
3245 WARN_ON_ONCE(1);
3246 return false;
3247}
3248
3249/* Returns true if (rold safe implies rcur safe) */
3250static bool regsafe(struct bpf_reg_state *rold,
3251 struct bpf_reg_state *rcur,
3252 bool varlen_map_access, struct idpair *idmap)
3253{
dc503a8a
EC
3254 if (!(rold->live & REG_LIVE_READ))
3255 /* explored state didn't use this */
3256 return true;
3257
3258 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3259 return true;
3260
f1174f77
EC
3261 if (rold->type == NOT_INIT)
3262 /* explored state can't have used this */
969bf05e 3263 return true;
f1174f77
EC
3264 if (rcur->type == NOT_INIT)
3265 return false;
3266 switch (rold->type) {
3267 case SCALAR_VALUE:
3268 if (rcur->type == SCALAR_VALUE) {
3269 /* new val must satisfy old val knowledge */
3270 return range_within(rold, rcur) &&
3271 tnum_in(rold->var_off, rcur->var_off);
3272 } else {
3273 /* if we knew anything about the old value, we're not
3274 * equal, because we can't know anything about the
3275 * scalar value of the pointer in the new value.
3276 */
b03c9f9f
EC
3277 return rold->umin_value == 0 &&
3278 rold->umax_value == U64_MAX &&
3279 rold->smin_value == S64_MIN &&
3280 rold->smax_value == S64_MAX &&
f1174f77
EC
3281 tnum_is_unknown(rold->var_off);
3282 }
3283 case PTR_TO_MAP_VALUE:
3284 if (varlen_map_access) {
3285 /* If the new min/max/var_off satisfy the old ones and
3286 * everything else matches, we are OK.
3287 * We don't care about the 'id' value, because nothing
3288 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3289 */
3290 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3291 range_within(rold, rcur) &&
3292 tnum_in(rold->var_off, rcur->var_off);
3293 } else {
3294 /* If the ranges/var_off were not the same, but
3295 * everything else was and we didn't do a variable
3296 * access into a map then we are a-ok.
3297 */
3298 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
3299 }
3300 case PTR_TO_MAP_VALUE_OR_NULL:
3301 /* a PTR_TO_MAP_VALUE could be safe to use as a
3302 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3303 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3304 * checked, doing so could have affected others with the same
3305 * id, and we can't check for that because we lost the id when
3306 * we converted to a PTR_TO_MAP_VALUE.
3307 */
3308 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3309 return false;
3310 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3311 return false;
3312 /* Check our ids match any regs they're supposed to */
3313 return check_ids(rold->id, rcur->id, idmap);
3314 case PTR_TO_PACKET:
3315 if (rcur->type != PTR_TO_PACKET)
3316 return false;
3317 /* We must have at least as much range as the old ptr
3318 * did, so that any accesses which were safe before are
3319 * still safe. This is true even if old range < old off,
3320 * since someone could have accessed through (ptr - k), or
3321 * even done ptr -= k in a register, to get a safe access.
3322 */
3323 if (rold->range > rcur->range)
3324 return false;
3325 /* If the offsets don't match, we can't trust our alignment;
3326 * nor can we be sure that we won't fall out of range.
3327 */
3328 if (rold->off != rcur->off)
3329 return false;
3330 /* id relations must be preserved */
3331 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3332 return false;
3333 /* new val must satisfy old val knowledge */
3334 return range_within(rold, rcur) &&
3335 tnum_in(rold->var_off, rcur->var_off);
3336 case PTR_TO_CTX:
3337 case CONST_PTR_TO_MAP:
3338 case PTR_TO_STACK:
3339 case PTR_TO_PACKET_END:
3340 /* Only valid matches are exact, which memcmp() above
3341 * would have accepted
3342 */
3343 default:
3344 /* Don't know what's going on, just say it's not safe */
3345 return false;
3346 }
969bf05e 3347
f1174f77
EC
3348 /* Shouldn't get here; if we do, say it's not safe */
3349 WARN_ON_ONCE(1);
969bf05e
AS
3350 return false;
3351}
3352
f1bca824
AS
3353/* compare two verifier states
3354 *
3355 * all states stored in state_list are known to be valid, since
3356 * verifier reached 'bpf_exit' instruction through them
3357 *
3358 * this function is called when verifier exploring different branches of
3359 * execution popped from the state stack. If it sees an old state that has
3360 * more strict register state and more strict stack state then this execution
3361 * branch doesn't need to be explored further, since verifier already
3362 * concluded that more strict state leads to valid finish.
3363 *
3364 * Therefore two states are equivalent if register state is more conservative
3365 * and explored stack state is more conservative than the current one.
3366 * Example:
3367 * explored current
3368 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3369 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3370 *
3371 * In other words if current stack state (one being explored) has more
3372 * valid slots than old one that already passed validation, it means
3373 * the verifier can stop exploring and conclude that current state is valid too
3374 *
3375 * Similarly with registers. If explored state has register type as invalid
3376 * whereas register type in current state is meaningful, it means that
3377 * the current state will reach 'bpf_exit' instruction safely
3378 */
48461135
JB
3379static bool states_equal(struct bpf_verifier_env *env,
3380 struct bpf_verifier_state *old,
58e2af8b 3381 struct bpf_verifier_state *cur)
f1bca824 3382{
e2d2afe1 3383 bool varlen_map_access = env->varlen_map_value_access;
f1174f77
EC
3384 struct idpair *idmap;
3385 bool ret = false;
f1bca824
AS
3386 int i;
3387
f1174f77
EC
3388 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3389 /* If we failed to allocate the idmap, just say it's not safe */
3390 if (!idmap)
1a0dc1ac 3391 return false;
f1174f77
EC
3392
3393 for (i = 0; i < MAX_BPF_REG; i++) {
3394 if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
3395 idmap))
3396 goto out_free;
f1bca824
AS
3397 }
3398
3399 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
3400 if (old->stack_slot_type[i] == STACK_INVALID)
3401 continue;
3402 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3403 /* Ex: old explored (safe) state has STACK_SPILL in
3404 * this stack slot, but current has has STACK_MISC ->
3405 * this verifier states are not equivalent,
3406 * return false to continue verification of this path
3407 */
f1174f77 3408 goto out_free;
9c399760
AS
3409 if (i % BPF_REG_SIZE)
3410 continue;
d25da6ca
DB
3411 if (old->stack_slot_type[i] != STACK_SPILL)
3412 continue;
f1174f77
EC
3413 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3414 &cur->spilled_regs[i / BPF_REG_SIZE],
3415 varlen_map_access, idmap))
3416 /* when explored and current stack slot are both storing
3417 * spilled registers, check that stored pointers types
9c399760
AS
3418 * are the same as well.
3419 * Ex: explored safe path could have stored
f1174f77 3420 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9c399760 3421 * but current path has stored:
f1174f77 3422 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9c399760
AS
3423 * such verifier states are not equivalent.
3424 * return false to continue verification of this path
3425 */
f1174f77 3426 goto out_free;
9c399760
AS
3427 else
3428 continue;
f1bca824 3429 }
f1174f77
EC
3430 ret = true;
3431out_free:
3432 kfree(idmap);
3433 return ret;
f1bca824
AS
3434}
3435
dc503a8a
EC
3436static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3437 struct bpf_verifier_state *parent)
3438{
63f45f84 3439 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3440 bool touched = false; /* any changes made? */
3441 int i;
3442
3443 if (!parent)
3444 return touched;
3445 /* Propagate read liveness of registers... */
3446 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3447 /* We don't need to worry about FP liveness because it's read-only */
3448 for (i = 0; i < BPF_REG_FP; i++) {
3449 if (parent->regs[i].live & REG_LIVE_READ)
3450 continue;
63f45f84
EC
3451 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3452 continue;
3453 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3454 parent->regs[i].live |= REG_LIVE_READ;
3455 touched = true;
3456 }
3457 }
3458 /* ... and stack slots */
3459 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3460 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3461 continue;
3462 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3463 continue;
3464 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3465 continue;
63f45f84
EC
3466 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3467 continue;
3468 if (state->spilled_regs[i].live & REG_LIVE_READ) {
1ab2de2b 3469 parent->spilled_regs[i].live |= REG_LIVE_READ;
dc503a8a
EC
3470 touched = true;
3471 }
3472 }
3473 return touched;
3474}
3475
3476static void propagate_liveness(const struct bpf_verifier_state *state,
3477 struct bpf_verifier_state *parent)
3478{
3479 while (do_propagate_liveness(state, parent)) {
3480 /* Something changed, so we need to feed those changes onward */
3481 state = parent;
3482 parent = state->parent;
3483 }
3484}
3485
58e2af8b 3486static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3487{
58e2af8b
JK
3488 struct bpf_verifier_state_list *new_sl;
3489 struct bpf_verifier_state_list *sl;
dc503a8a 3490 int i;
f1bca824
AS
3491
3492 sl = env->explored_states[insn_idx];
3493 if (!sl)
3494 /* this 'insn_idx' instruction wasn't marked, so we will not
3495 * be doing state search here
3496 */
3497 return 0;
3498
3499 while (sl != STATE_LIST_MARK) {
dc503a8a 3500 if (states_equal(env, &sl->state, &env->cur_state)) {
f1bca824 3501 /* reached equivalent register/stack state,
dc503a8a
EC
3502 * prune the search.
3503 * Registers read by the continuation are read by us.
f1bca824 3504 */
dc503a8a 3505 propagate_liveness(&sl->state, &env->cur_state);
f1bca824 3506 return 1;
dc503a8a 3507 }
f1bca824
AS
3508 sl = sl->next;
3509 }
3510
3511 /* there were no equivalent states, remember current one.
3512 * technically the current state is not proven to be safe yet,
3513 * but it will either reach bpf_exit (which means it's safe) or
3514 * it will be rejected. Since there are no loops, we won't be
3515 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3516 */
58e2af8b 3517 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
3518 if (!new_sl)
3519 return -ENOMEM;
3520
3521 /* add new state to the head of linked list */
3522 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3523 new_sl->next = env->explored_states[insn_idx];
3524 env->explored_states[insn_idx] = new_sl;
dc503a8a
EC
3525 /* connect new state to parentage chain */
3526 env->cur_state.parent = &new_sl->state;
3527 /* clear liveness marks in current state */
3528 for (i = 0; i < BPF_REG_FP; i++)
3529 env->cur_state.regs[i].live = REG_LIVE_NONE;
3530 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3531 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3532 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
f1bca824
AS
3533 return 0;
3534}
3535
13a27dfc
JK
3536static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3537 int insn_idx, int prev_insn_idx)
3538{
3539 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3540 return 0;
3541
3542 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3543}
3544
58e2af8b 3545static int do_check(struct bpf_verifier_env *env)
17a52670 3546{
58e2af8b 3547 struct bpf_verifier_state *state = &env->cur_state;
17a52670 3548 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 3549 struct bpf_reg_state *regs = state->regs;
17a52670
AS
3550 int insn_cnt = env->prog->len;
3551 int insn_idx, prev_insn_idx = 0;
3552 int insn_processed = 0;
3553 bool do_print_state = false;
3554
3555 init_reg_state(regs);
dc503a8a 3556 state->parent = NULL;
17a52670 3557 insn_idx = 0;
48461135 3558 env->varlen_map_value_access = false;
17a52670
AS
3559 for (;;) {
3560 struct bpf_insn *insn;
3561 u8 class;
3562 int err;
3563
3564 if (insn_idx >= insn_cnt) {
3565 verbose("invalid insn idx %d insn_cnt %d\n",
3566 insn_idx, insn_cnt);
3567 return -EFAULT;
3568 }
3569
3570 insn = &insns[insn_idx];
3571 class = BPF_CLASS(insn->code);
3572
07016151 3573 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 3574 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
3575 insn_processed);
3576 return -E2BIG;
3577 }
3578
f1bca824
AS
3579 err = is_state_visited(env, insn_idx);
3580 if (err < 0)
3581 return err;
3582 if (err == 1) {
3583 /* found equivalent state, can prune the search */
3584 if (log_level) {
3585 if (do_print_state)
3586 verbose("\nfrom %d to %d: safe\n",
3587 prev_insn_idx, insn_idx);
3588 else
3589 verbose("%d: safe\n", insn_idx);
3590 }
3591 goto process_bpf_exit;
3592 }
3593
3c2ce60b
DB
3594 if (need_resched())
3595 cond_resched();
3596
c5fc9692
DM
3597 if (log_level > 1 || (log_level && do_print_state)) {
3598 if (log_level > 1)
3599 verbose("%d:", insn_idx);
3600 else
3601 verbose("\nfrom %d to %d:",
3602 prev_insn_idx, insn_idx);
1a0dc1ac 3603 print_verifier_state(&env->cur_state);
17a52670
AS
3604 do_print_state = false;
3605 }
3606
3607 if (log_level) {
3608 verbose("%d: ", insn_idx);
0d0e5769 3609 print_bpf_insn(env, insn);
17a52670
AS
3610 }
3611
13a27dfc
JK
3612 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3613 if (err)
3614 return err;
3615
17a52670 3616 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3617 err = check_alu_op(env, insn);
17a52670
AS
3618 if (err)
3619 return err;
3620
3621 } else if (class == BPF_LDX) {
3df126f3 3622 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3623
3624 /* check for reserved fields is already done */
3625
17a52670 3626 /* check src operand */
dc503a8a 3627 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3628 if (err)
3629 return err;
3630
dc503a8a 3631 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3632 if (err)
3633 return err;
3634
725f9dcd
AS
3635 src_reg_type = regs[insn->src_reg].type;
3636
17a52670
AS
3637 /* check that memory (src_reg + off) is readable,
3638 * the state of dst_reg will be updated by this func
3639 */
31fd8581 3640 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3641 BPF_SIZE(insn->code), BPF_READ,
3642 insn->dst_reg);
3643 if (err)
3644 return err;
3645
3df126f3
JK
3646 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3647
3648 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3649 /* saw a valid insn
3650 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3651 * save type to validate intersecting paths
9bac3d6d 3652 */
3df126f3 3653 *prev_src_type = src_reg_type;
9bac3d6d 3654
3df126f3 3655 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3656 (src_reg_type == PTR_TO_CTX ||
3df126f3 3657 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3658 /* ABuser program is trying to use the same insn
3659 * dst_reg = *(u32*) (src_reg + off)
3660 * with different pointer types:
3661 * src_reg == ctx in one branch and
3662 * src_reg == stack|map in some other branch.
3663 * Reject it.
3664 */
3665 verbose("same insn cannot be used with different pointers\n");
3666 return -EINVAL;
3667 }
3668
17a52670 3669 } else if (class == BPF_STX) {
3df126f3 3670 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3671
17a52670 3672 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3673 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3674 if (err)
3675 return err;
3676 insn_idx++;
3677 continue;
3678 }
3679
17a52670 3680 /* check src1 operand */
dc503a8a 3681 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3682 if (err)
3683 return err;
3684 /* check src2 operand */
dc503a8a 3685 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3686 if (err)
3687 return err;
3688
d691f9e8
AS
3689 dst_reg_type = regs[insn->dst_reg].type;
3690
17a52670 3691 /* check that memory (dst_reg + off) is writeable */
31fd8581 3692 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3693 BPF_SIZE(insn->code), BPF_WRITE,
3694 insn->src_reg);
3695 if (err)
3696 return err;
3697
3df126f3
JK
3698 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3699
3700 if (*prev_dst_type == NOT_INIT) {
3701 *prev_dst_type = dst_reg_type;
3702 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3703 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3704 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
3705 verbose("same insn cannot be used with different pointers\n");
3706 return -EINVAL;
3707 }
3708
17a52670
AS
3709 } else if (class == BPF_ST) {
3710 if (BPF_MODE(insn->code) != BPF_MEM ||
3711 insn->src_reg != BPF_REG_0) {
3712 verbose("BPF_ST uses reserved fields\n");
3713 return -EINVAL;
3714 }
3715 /* check src operand */
dc503a8a 3716 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3717 if (err)
3718 return err;
3719
3720 /* check that memory (dst_reg + off) is writeable */
31fd8581 3721 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3722 BPF_SIZE(insn->code), BPF_WRITE,
3723 -1);
3724 if (err)
3725 return err;
3726
3727 } else if (class == BPF_JMP) {
3728 u8 opcode = BPF_OP(insn->code);
3729
3730 if (opcode == BPF_CALL) {
3731 if (BPF_SRC(insn->code) != BPF_K ||
3732 insn->off != 0 ||
3733 insn->src_reg != BPF_REG_0 ||
3734 insn->dst_reg != BPF_REG_0) {
3735 verbose("BPF_CALL uses reserved fields\n");
3736 return -EINVAL;
3737 }
3738
81ed18ab 3739 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3740 if (err)
3741 return err;
3742
3743 } else if (opcode == BPF_JA) {
3744 if (BPF_SRC(insn->code) != BPF_K ||
3745 insn->imm != 0 ||
3746 insn->src_reg != BPF_REG_0 ||
3747 insn->dst_reg != BPF_REG_0) {
3748 verbose("BPF_JA uses reserved fields\n");
3749 return -EINVAL;
3750 }
3751
3752 insn_idx += insn->off + 1;
3753 continue;
3754
3755 } else if (opcode == BPF_EXIT) {
3756 if (BPF_SRC(insn->code) != BPF_K ||
3757 insn->imm != 0 ||
3758 insn->src_reg != BPF_REG_0 ||
3759 insn->dst_reg != BPF_REG_0) {
3760 verbose("BPF_EXIT uses reserved fields\n");
3761 return -EINVAL;
3762 }
3763
3764 /* eBPF calling convetion is such that R0 is used
3765 * to return the value from eBPF program.
3766 * Make sure that it's readable at this time
3767 * of bpf_exit, which means that program wrote
3768 * something into it earlier
3769 */
dc503a8a 3770 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3771 if (err)
3772 return err;
3773
1be7f75d
AS
3774 if (is_pointer_value(env, BPF_REG_0)) {
3775 verbose("R0 leaks addr as return value\n");
3776 return -EACCES;
3777 }
3778
f1bca824 3779process_bpf_exit:
17a52670
AS
3780 insn_idx = pop_stack(env, &prev_insn_idx);
3781 if (insn_idx < 0) {
3782 break;
3783 } else {
3784 do_print_state = true;
3785 continue;
3786 }
3787 } else {
3788 err = check_cond_jmp_op(env, insn, &insn_idx);
3789 if (err)
3790 return err;
3791 }
3792 } else if (class == BPF_LD) {
3793 u8 mode = BPF_MODE(insn->code);
3794
3795 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3796 err = check_ld_abs(env, insn);
3797 if (err)
3798 return err;
3799
17a52670
AS
3800 } else if (mode == BPF_IMM) {
3801 err = check_ld_imm(env, insn);
3802 if (err)
3803 return err;
3804
3805 insn_idx++;
3806 } else {
3807 verbose("invalid BPF_LD mode\n");
3808 return -EINVAL;
3809 }
3810 } else {
3811 verbose("unknown insn class %d\n", class);
3812 return -EINVAL;
3813 }
3814
3815 insn_idx++;
3816 }
3817
8726679a
AS
3818 verbose("processed %d insns, stack depth %d\n",
3819 insn_processed, env->prog->aux->stack_depth);
17a52670
AS
3820 return 0;
3821}
3822
56f668df
MKL
3823static int check_map_prealloc(struct bpf_map *map)
3824{
3825 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
3826 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3827 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
3828 !(map->map_flags & BPF_F_NO_PREALLOC);
3829}
3830
fdc15d38
AS
3831static int check_map_prog_compatibility(struct bpf_map *map,
3832 struct bpf_prog *prog)
3833
3834{
56f668df
MKL
3835 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3836 * preallocated hash maps, since doing memory allocation
3837 * in overflow_handler can crash depending on where nmi got
3838 * triggered.
3839 */
3840 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3841 if (!check_map_prealloc(map)) {
3842 verbose("perf_event programs can only use preallocated hash map\n");
3843 return -EINVAL;
3844 }
3845 if (map->inner_map_meta &&
3846 !check_map_prealloc(map->inner_map_meta)) {
3847 verbose("perf_event programs can only use preallocated inner hash map\n");
3848 return -EINVAL;
3849 }
fdc15d38
AS
3850 }
3851 return 0;
3852}
3853
0246e64d
AS
3854/* look for pseudo eBPF instructions that access map FDs and
3855 * replace them with actual map pointers
3856 */
58e2af8b 3857static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3858{
3859 struct bpf_insn *insn = env->prog->insnsi;
3860 int insn_cnt = env->prog->len;
fdc15d38 3861 int i, j, err;
0246e64d 3862
f1f7714e 3863 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3864 if (err)
3865 return err;
3866
0246e64d 3867 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3868 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3869 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3870 verbose("BPF_LDX uses reserved fields\n");
3871 return -EINVAL;
3872 }
3873
d691f9e8
AS
3874 if (BPF_CLASS(insn->code) == BPF_STX &&
3875 ((BPF_MODE(insn->code) != BPF_MEM &&
3876 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3877 verbose("BPF_STX uses reserved fields\n");
3878 return -EINVAL;
3879 }
3880
0246e64d
AS
3881 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3882 struct bpf_map *map;
3883 struct fd f;
3884
3885 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3886 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3887 insn[1].off != 0) {
3888 verbose("invalid bpf_ld_imm64 insn\n");
3889 return -EINVAL;
3890 }
3891
3892 if (insn->src_reg == 0)
3893 /* valid generic load 64-bit imm */
3894 goto next_insn;
3895
3896 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3897 verbose("unrecognized bpf_ld_imm64 insn\n");
3898 return -EINVAL;
3899 }
3900
3901 f = fdget(insn->imm);
c2101297 3902 map = __bpf_map_get(f);
0246e64d
AS
3903 if (IS_ERR(map)) {
3904 verbose("fd %d is not pointing to valid bpf_map\n",
3905 insn->imm);
0246e64d
AS
3906 return PTR_ERR(map);
3907 }
3908
fdc15d38
AS
3909 err = check_map_prog_compatibility(map, env->prog);
3910 if (err) {
3911 fdput(f);
3912 return err;
3913 }
3914
0246e64d
AS
3915 /* store map pointer inside BPF_LD_IMM64 instruction */
3916 insn[0].imm = (u32) (unsigned long) map;
3917 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3918
3919 /* check whether we recorded this map already */
3920 for (j = 0; j < env->used_map_cnt; j++)
3921 if (env->used_maps[j] == map) {
3922 fdput(f);
3923 goto next_insn;
3924 }
3925
3926 if (env->used_map_cnt >= MAX_USED_MAPS) {
3927 fdput(f);
3928 return -E2BIG;
3929 }
3930
0246e64d
AS
3931 /* hold the map. If the program is rejected by verifier,
3932 * the map will be released by release_maps() or it
3933 * will be used by the valid program until it's unloaded
3934 * and all maps are released in free_bpf_prog_info()
3935 */
92117d84
AS
3936 map = bpf_map_inc(map, false);
3937 if (IS_ERR(map)) {
3938 fdput(f);
3939 return PTR_ERR(map);
3940 }
3941 env->used_maps[env->used_map_cnt++] = map;
3942
0246e64d
AS
3943 fdput(f);
3944next_insn:
3945 insn++;
3946 i++;
3947 }
3948 }
3949
3950 /* now all pseudo BPF_LD_IMM64 instructions load valid
3951 * 'struct bpf_map *' into a register instead of user map_fd.
3952 * These pointers will be used later by verifier to validate map access.
3953 */
3954 return 0;
3955}
3956
3957/* drop refcnt of maps used by the rejected program */
58e2af8b 3958static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3959{
3960 int i;
3961
3962 for (i = 0; i < env->used_map_cnt; i++)
3963 bpf_map_put(env->used_maps[i]);
3964}
3965
3966/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3967static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3968{
3969 struct bpf_insn *insn = env->prog->insnsi;
3970 int insn_cnt = env->prog->len;
3971 int i;
3972
3973 for (i = 0; i < insn_cnt; i++, insn++)
3974 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3975 insn->src_reg = 0;
3976}
3977
8041902d
AS
3978/* single env->prog->insni[off] instruction was replaced with the range
3979 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3980 * [0, off) and [off, end) to new locations, so the patched range stays zero
3981 */
3982static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3983 u32 off, u32 cnt)
3984{
3985 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3986
3987 if (cnt == 1)
3988 return 0;
3989 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3990 if (!new_data)
3991 return -ENOMEM;
3992 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3993 memcpy(new_data + off + cnt - 1, old_data + off,
3994 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3995 env->insn_aux_data = new_data;
3996 vfree(old_data);
3997 return 0;
3998}
3999
4000static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4001 const struct bpf_insn *patch, u32 len)
4002{
4003 struct bpf_prog *new_prog;
4004
4005 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4006 if (!new_prog)
4007 return NULL;
4008 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4009 return NULL;
4010 return new_prog;
4011}
4012
9bac3d6d
AS
4013/* convert load instructions that access fields of 'struct __sk_buff'
4014 * into sequence of instructions that access fields of 'struct sk_buff'
4015 */
58e2af8b 4016static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4017{
36bbef52 4018 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
f96da094 4019 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4020 const int insn_cnt = env->prog->len;
36bbef52 4021 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4022 struct bpf_prog *new_prog;
d691f9e8 4023 enum bpf_access_type type;
f96da094
DB
4024 bool is_narrower_load;
4025 u32 target_size;
9bac3d6d 4026
36bbef52
DB
4027 if (ops->gen_prologue) {
4028 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4029 env->prog);
4030 if (cnt >= ARRAY_SIZE(insn_buf)) {
4031 verbose("bpf verifier is misconfigured\n");
4032 return -EINVAL;
4033 } else if (cnt) {
8041902d 4034 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4035 if (!new_prog)
4036 return -ENOMEM;
8041902d 4037
36bbef52 4038 env->prog = new_prog;
3df126f3 4039 delta += cnt - 1;
36bbef52
DB
4040 }
4041 }
4042
4043 if (!ops->convert_ctx_access)
9bac3d6d
AS
4044 return 0;
4045
3df126f3 4046 insn = env->prog->insnsi + delta;
36bbef52 4047
9bac3d6d 4048 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4049 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4050 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4051 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4052 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4053 type = BPF_READ;
62c7989b
DB
4054 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4055 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4056 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4057 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4058 type = BPF_WRITE;
4059 else
9bac3d6d
AS
4060 continue;
4061
8041902d 4062 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4063 continue;
9bac3d6d 4064
31fd8581 4065 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4066 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4067
4068 /* If the read access is a narrower load of the field,
4069 * convert to a 4/8-byte load, to minimum program type specific
4070 * convert_ctx_access changes. If conversion is successful,
4071 * we will apply proper mask to the result.
4072 */
f96da094 4073 is_narrower_load = size < ctx_field_size;
31fd8581 4074 if (is_narrower_load) {
f96da094
DB
4075 u32 off = insn->off;
4076 u8 size_code;
4077
4078 if (type == BPF_WRITE) {
4079 verbose("bpf verifier narrow ctx access misconfigured\n");
4080 return -EINVAL;
4081 }
31fd8581 4082
f96da094 4083 size_code = BPF_H;
31fd8581
YS
4084 if (ctx_field_size == 4)
4085 size_code = BPF_W;
4086 else if (ctx_field_size == 8)
4087 size_code = BPF_DW;
f96da094 4088
31fd8581
YS
4089 insn->off = off & ~(ctx_field_size - 1);
4090 insn->code = BPF_LDX | BPF_MEM | size_code;
4091 }
f96da094
DB
4092
4093 target_size = 0;
4094 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4095 &target_size);
4096 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4097 (ctx_field_size && !target_size)) {
9bac3d6d
AS
4098 verbose("bpf verifier is misconfigured\n");
4099 return -EINVAL;
4100 }
f96da094
DB
4101
4102 if (is_narrower_load && size < target_size) {
31fd8581
YS
4103 if (ctx_field_size <= 4)
4104 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4105 (1 << size * 8) - 1);
31fd8581
YS
4106 else
4107 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4108 (1 << size * 8) - 1);
31fd8581 4109 }
9bac3d6d 4110
8041902d 4111 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4112 if (!new_prog)
4113 return -ENOMEM;
4114
3df126f3 4115 delta += cnt - 1;
9bac3d6d
AS
4116
4117 /* keep walking new program and skip insns we just inserted */
4118 env->prog = new_prog;
3df126f3 4119 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4120 }
4121
4122 return 0;
4123}
4124
79741b3b 4125/* fixup insn->imm field of bpf_call instructions
81ed18ab 4126 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4127 *
4128 * this function is called after eBPF program passed verification
4129 */
79741b3b 4130static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4131{
79741b3b
AS
4132 struct bpf_prog *prog = env->prog;
4133 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4134 const struct bpf_func_proto *fn;
79741b3b 4135 const int insn_cnt = prog->len;
81ed18ab
AS
4136 struct bpf_insn insn_buf[16];
4137 struct bpf_prog *new_prog;
4138 struct bpf_map *map_ptr;
4139 int i, cnt, delta = 0;
e245c5c6 4140
79741b3b
AS
4141 for (i = 0; i < insn_cnt; i++, insn++) {
4142 if (insn->code != (BPF_JMP | BPF_CALL))
4143 continue;
e245c5c6 4144
79741b3b
AS
4145 if (insn->imm == BPF_FUNC_get_route_realm)
4146 prog->dst_needed = 1;
4147 if (insn->imm == BPF_FUNC_get_prandom_u32)
4148 bpf_user_rnd_init_once();
79741b3b 4149 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4150 /* If we tail call into other programs, we
4151 * cannot make any assumptions since they can
4152 * be replaced dynamically during runtime in
4153 * the program array.
4154 */
4155 prog->cb_access = 1;
80a58d02 4156 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4157
79741b3b
AS
4158 /* mark bpf_tail_call as different opcode to avoid
4159 * conditional branch in the interpeter for every normal
4160 * call and to prevent accidental JITing by JIT compiler
4161 * that doesn't support bpf_tail_call yet
e245c5c6 4162 */
79741b3b 4163 insn->imm = 0;
71189fa9 4164 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4165 continue;
4166 }
e245c5c6 4167
89c63074
DB
4168 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4169 * handlers are currently limited to 64 bit only.
4170 */
4171 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4172 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4173 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4174 if (map_ptr == BPF_MAP_PTR_POISON ||
4175 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4176 goto patch_call_imm;
4177
4178 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4179 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4180 verbose("bpf verifier is misconfigured\n");
4181 return -EINVAL;
4182 }
4183
4184 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4185 cnt);
4186 if (!new_prog)
4187 return -ENOMEM;
4188
4189 delta += cnt - 1;
4190
4191 /* keep walking new program and skip insns we just inserted */
4192 env->prog = prog = new_prog;
4193 insn = new_prog->insnsi + i + delta;
4194 continue;
4195 }
4196
4197patch_call_imm:
79741b3b
AS
4198 fn = prog->aux->ops->get_func_proto(insn->imm);
4199 /* all functions that have prototype and verifier allowed
4200 * programs to call them, must be real in-kernel functions
4201 */
4202 if (!fn->func) {
4203 verbose("kernel subsystem misconfigured func %s#%d\n",
4204 func_id_name(insn->imm), insn->imm);
4205 return -EFAULT;
e245c5c6 4206 }
79741b3b 4207 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4208 }
e245c5c6 4209
79741b3b
AS
4210 return 0;
4211}
e245c5c6 4212
58e2af8b 4213static void free_states(struct bpf_verifier_env *env)
f1bca824 4214{
58e2af8b 4215 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4216 int i;
4217
4218 if (!env->explored_states)
4219 return;
4220
4221 for (i = 0; i < env->prog->len; i++) {
4222 sl = env->explored_states[i];
4223
4224 if (sl)
4225 while (sl != STATE_LIST_MARK) {
4226 sln = sl->next;
4227 kfree(sl);
4228 sl = sln;
4229 }
4230 }
4231
4232 kfree(env->explored_states);
4233}
4234
9bac3d6d 4235int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4236{
cbd35700 4237 char __user *log_ubuf = NULL;
58e2af8b 4238 struct bpf_verifier_env *env;
51580e79
AS
4239 int ret = -EINVAL;
4240
58e2af8b 4241 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4242 * allocate/free it every time bpf_check() is called
4243 */
58e2af8b 4244 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4245 if (!env)
4246 return -ENOMEM;
4247
3df126f3
JK
4248 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4249 (*prog)->len);
4250 ret = -ENOMEM;
4251 if (!env->insn_aux_data)
4252 goto err_free_env;
9bac3d6d 4253 env->prog = *prog;
0246e64d 4254
cbd35700
AS
4255 /* grab the mutex to protect few globals used by verifier */
4256 mutex_lock(&bpf_verifier_lock);
4257
4258 if (attr->log_level || attr->log_buf || attr->log_size) {
4259 /* user requested verbose verifier output
4260 * and supplied buffer to store the verification trace
4261 */
4262 log_level = attr->log_level;
4263 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4264 log_size = attr->log_size;
4265 log_len = 0;
4266
4267 ret = -EINVAL;
4268 /* log_* values have to be sane */
4269 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4270 log_level == 0 || log_ubuf == NULL)
3df126f3 4271 goto err_unlock;
cbd35700
AS
4272
4273 ret = -ENOMEM;
4274 log_buf = vmalloc(log_size);
4275 if (!log_buf)
3df126f3 4276 goto err_unlock;
cbd35700
AS
4277 } else {
4278 log_level = 0;
4279 }
1ad2f583
DB
4280
4281 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4282 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4283 env->strict_alignment = true;
cbd35700 4284
0246e64d
AS
4285 ret = replace_map_fd_with_map_ptr(env);
4286 if (ret < 0)
4287 goto skip_full_check;
4288
9bac3d6d 4289 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4290 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4291 GFP_USER);
4292 ret = -ENOMEM;
4293 if (!env->explored_states)
4294 goto skip_full_check;
4295
475fb78f
AS
4296 ret = check_cfg(env);
4297 if (ret < 0)
4298 goto skip_full_check;
4299
1be7f75d
AS
4300 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4301
17a52670 4302 ret = do_check(env);
cbd35700 4303
0246e64d 4304skip_full_check:
17a52670 4305 while (pop_stack(env, NULL) >= 0);
f1bca824 4306 free_states(env);
0246e64d 4307
9bac3d6d
AS
4308 if (ret == 0)
4309 /* program is valid, convert *(u32*)(ctx + off) accesses */
4310 ret = convert_ctx_accesses(env);
4311
e245c5c6 4312 if (ret == 0)
79741b3b 4313 ret = fixup_bpf_calls(env);
e245c5c6 4314
cbd35700
AS
4315 if (log_level && log_len >= log_size - 1) {
4316 BUG_ON(log_len >= log_size);
4317 /* verifier log exceeded user supplied buffer */
4318 ret = -ENOSPC;
4319 /* fall through to return what was recorded */
4320 }
4321
4322 /* copy verifier log back to user space including trailing zero */
4323 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4324 ret = -EFAULT;
4325 goto free_log_buf;
4326 }
4327
0246e64d
AS
4328 if (ret == 0 && env->used_map_cnt) {
4329 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4330 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4331 sizeof(env->used_maps[0]),
4332 GFP_KERNEL);
0246e64d 4333
9bac3d6d 4334 if (!env->prog->aux->used_maps) {
0246e64d
AS
4335 ret = -ENOMEM;
4336 goto free_log_buf;
4337 }
4338
9bac3d6d 4339 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4340 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4341 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4342
4343 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4344 * bpf_ld_imm64 instructions
4345 */
4346 convert_pseudo_ld_imm64(env);
4347 }
cbd35700
AS
4348
4349free_log_buf:
4350 if (log_level)
4351 vfree(log_buf);
9bac3d6d 4352 if (!env->prog->aux->used_maps)
0246e64d
AS
4353 /* if we didn't copy map pointers into bpf_prog_info, release
4354 * them now. Otherwise free_bpf_prog_info() will release them.
4355 */
4356 release_maps(env);
9bac3d6d 4357 *prog = env->prog;
3df126f3 4358err_unlock:
cbd35700 4359 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4360 vfree(env->insn_aux_data);
4361err_free_env:
4362 kfree(env);
51580e79
AS
4363 return ret;
4364}
13a27dfc
JK
4365
4366int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4367 void *priv)
4368{
4369 struct bpf_verifier_env *env;
4370 int ret;
4371
4372 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4373 if (!env)
4374 return -ENOMEM;
4375
4376 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4377 prog->len);
4378 ret = -ENOMEM;
4379 if (!env->insn_aux_data)
4380 goto err_free_env;
4381 env->prog = prog;
4382 env->analyzer_ops = ops;
4383 env->analyzer_priv = priv;
4384
4385 /* grab the mutex to protect few globals used by verifier */
4386 mutex_lock(&bpf_verifier_lock);
4387
4388 log_level = 0;
1ad2f583 4389
e07b98d9 4390 env->strict_alignment = false;
1ad2f583
DB
4391 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4392 env->strict_alignment = true;
13a27dfc
JK
4393
4394 env->explored_states = kcalloc(env->prog->len,
4395 sizeof(struct bpf_verifier_state_list *),
4396 GFP_KERNEL);
4397 ret = -ENOMEM;
4398 if (!env->explored_states)
4399 goto skip_full_check;
4400
4401 ret = check_cfg(env);
4402 if (ret < 0)
4403 goto skip_full_check;
4404
4405 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4406
4407 ret = do_check(env);
4408
4409skip_full_check:
4410 while (pop_stack(env, NULL) >= 0);
4411 free_states(env);
4412
4413 mutex_unlock(&bpf_verifier_lock);
4414 vfree(env->insn_aux_data);
4415err_free_env:
4416 kfree(env);
4417 return ret;
4418}
4419EXPORT_SYMBOL_GPL(bpf_analyzer);