]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
UBUNTU: Ubuntu-5.11.0-12.13
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
33ff9823
DB
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
435faee1 233 bool raw_mode;
36bbef52 234 bool pkt_access;
435faee1
DB
235 int regno;
236 int access_size;
457f4436 237 int mem_size;
10060503 238 u64 msize_max_value;
1b986589 239 int ref_obj_id;
d83525ca 240 int func_id;
22dc4a0f 241 struct btf *btf;
eaa6bcb7 242 u32 btf_id;
22dc4a0f 243 struct btf *ret_btf;
eaa6bcb7 244 u32 ret_btf_id;
33ff9823
DB
245};
246
8580ac94
AS
247struct btf *btf_vmlinux;
248
cbd35700
AS
249static DEFINE_MUTEX(bpf_verifier_lock);
250
d9762e84
MKL
251static const struct bpf_line_info *
252find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253{
254 const struct bpf_line_info *linfo;
255 const struct bpf_prog *prog;
256 u32 i, nr_linfo;
257
258 prog = env->prog;
259 nr_linfo = prog->aux->nr_linfo;
260
261 if (!nr_linfo || insn_off >= prog->len)
262 return NULL;
263
264 linfo = prog->aux->linfo;
265 for (i = 1; i < nr_linfo; i++)
266 if (insn_off < linfo[i].insn_off)
267 break;
268
269 return &linfo[i - 1];
270}
271
77d2e05a
MKL
272void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 va_list args)
cbd35700 274{
a2a7d570 275 unsigned int n;
cbd35700 276
a2a7d570 277 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
278
279 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 "verifier log line truncated - local buffer too short\n");
281
282 n = min(log->len_total - log->len_used - 1, n);
283 log->kbuf[n] = '\0';
284
8580ac94
AS
285 if (log->level == BPF_LOG_KERNEL) {
286 pr_err("BPF:%s\n", log->kbuf);
287 return;
288 }
a2a7d570
JK
289 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 log->len_used += n;
291 else
292 log->ubuf = NULL;
cbd35700 293}
abe08840 294
6f8a57cc
AN
295static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296{
297 char zero = 0;
298
299 if (!bpf_verifier_log_needed(log))
300 return;
301
302 log->len_used = new_pos;
303 if (put_user(zero, log->ubuf + new_pos))
304 log->ubuf = NULL;
305}
306
abe08840
JO
307/* log_level controls verbosity level of eBPF verifier.
308 * bpf_verifier_log_write() is used to dump the verification trace to the log,
309 * so the user can figure out what's wrong with the program
430e68d1 310 */
abe08840
JO
311__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 const char *fmt, ...)
313{
314 va_list args;
315
77d2e05a
MKL
316 if (!bpf_verifier_log_needed(&env->log))
317 return;
318
abe08840 319 va_start(args, fmt);
77d2e05a 320 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
321 va_end(args);
322}
323EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324
325__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326{
77d2e05a 327 struct bpf_verifier_env *env = private_data;
abe08840
JO
328 va_list args;
329
77d2e05a
MKL
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
abe08840 333 va_start(args, fmt);
77d2e05a 334 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
335 va_end(args);
336}
cbd35700 337
9e15db66
AS
338__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 const char *fmt, ...)
340{
341 va_list args;
342
343 if (!bpf_verifier_log_needed(log))
344 return;
345
346 va_start(args, fmt);
347 bpf_verifier_vlog(log, fmt, args);
348 va_end(args);
349}
350
d9762e84
MKL
351static const char *ltrim(const char *s)
352{
353 while (isspace(*s))
354 s++;
355
356 return s;
357}
358
359__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 u32 insn_off,
361 const char *prefix_fmt, ...)
362{
363 const struct bpf_line_info *linfo;
364
365 if (!bpf_verifier_log_needed(&env->log))
366 return;
367
368 linfo = find_linfo(env, insn_off);
369 if (!linfo || linfo == env->prev_linfo)
370 return;
371
372 if (prefix_fmt) {
373 va_list args;
374
375 va_start(args, prefix_fmt);
376 bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 va_end(args);
378 }
379
380 verbose(env, "%s\n",
381 ltrim(btf_name_by_offset(env->prog->aux->btf,
382 linfo->line_off)));
383
384 env->prev_linfo = linfo;
385}
386
de8f3a83
DB
387static bool type_is_pkt_pointer(enum bpf_reg_type type)
388{
389 return type == PTR_TO_PACKET ||
390 type == PTR_TO_PACKET_META;
391}
392
46f8bc92
MKL
393static bool type_is_sk_pointer(enum bpf_reg_type type)
394{
395 return type == PTR_TO_SOCKET ||
655a51e5 396 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
399}
400
cac616db
JF
401static bool reg_type_not_null(enum bpf_reg_type type)
402{
403 return type == PTR_TO_SOCKET ||
404 type == PTR_TO_TCP_SOCK ||
405 type == PTR_TO_MAP_VALUE ||
01c66c48 406 type == PTR_TO_SOCK_COMMON;
cac616db
JF
407}
408
840b9615
JS
409static bool reg_type_may_be_null(enum bpf_reg_type type)
410{
fd978bf7 411 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 412 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 413 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 414 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 415 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
416 type == PTR_TO_MEM_OR_NULL ||
417 type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
419}
420
d83525ca
AS
421static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422{
423 return reg->type == PTR_TO_MAP_VALUE &&
424 map_value_has_spin_lock(reg->map_ptr);
425}
426
cba368c1
MKL
427static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428{
429 return type == PTR_TO_SOCKET ||
430 type == PTR_TO_SOCKET_OR_NULL ||
431 type == PTR_TO_TCP_SOCK ||
457f4436
AN
432 type == PTR_TO_TCP_SOCK_OR_NULL ||
433 type == PTR_TO_MEM ||
434 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
435}
436
1b986589 437static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 438{
1b986589 439 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
440}
441
fd1b0d60
LB
442static bool arg_type_may_be_null(enum bpf_arg_type type)
443{
444 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 type == ARG_PTR_TO_MEM_OR_NULL ||
446 type == ARG_PTR_TO_CTX_OR_NULL ||
447 type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449}
450
fd978bf7
JS
451/* Determine whether the function releases some resources allocated by another
452 * function call. The first reference type argument will be assumed to be
453 * released by release_reference().
454 */
455static bool is_release_function(enum bpf_func_id func_id)
456{
457f4436
AN
457 return func_id == BPF_FUNC_sk_release ||
458 func_id == BPF_FUNC_ringbuf_submit ||
459 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
460}
461
64d85290 462static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
463{
464 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 465 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 466 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
467 func_id == BPF_FUNC_map_lookup_elem ||
468 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
469}
470
471static bool is_acquire_function(enum bpf_func_id func_id,
472 const struct bpf_map *map)
473{
474 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475
476 if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
478 func_id == BPF_FUNC_skc_lookup_tcp ||
479 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
480 return true;
481
482 if (func_id == BPF_FUNC_map_lookup_elem &&
483 (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 map_type == BPF_MAP_TYPE_SOCKHASH))
485 return true;
486
487 return false;
46f8bc92
MKL
488}
489
1b986589
MKL
490static bool is_ptr_cast_function(enum bpf_func_id func_id)
491{
492 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
493 func_id == BPF_FUNC_sk_fullsock ||
494 func_id == BPF_FUNC_skc_to_tcp_sock ||
495 func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 func_id == BPF_FUNC_skc_to_udp6_sock ||
497 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
499}
500
17a52670
AS
501/* string representation of 'enum bpf_reg_type' */
502static const char * const reg_type_str[] = {
503 [NOT_INIT] = "?",
f1174f77 504 [SCALAR_VALUE] = "inv",
17a52670
AS
505 [PTR_TO_CTX] = "ctx",
506 [CONST_PTR_TO_MAP] = "map_ptr",
507 [PTR_TO_MAP_VALUE] = "map_value",
508 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 509 [PTR_TO_STACK] = "fp",
969bf05e 510 [PTR_TO_PACKET] = "pkt",
de8f3a83 511 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 512 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 513 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
514 [PTR_TO_SOCKET] = "sock",
515 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
516 [PTR_TO_SOCK_COMMON] = "sock_common",
517 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
518 [PTR_TO_TCP_SOCK] = "tcp_sock",
519 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 520 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 521 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 522 [PTR_TO_BTF_ID] = "ptr_",
b121b341 523 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 524 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
525 [PTR_TO_MEM] = "mem",
526 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
527 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
528 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 [PTR_TO_RDWR_BUF] = "rdwr_buf",
530 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
531};
532
8efea21d
EC
533static char slot_type_char[] = {
534 [STACK_INVALID] = '?',
535 [STACK_SPILL] = 'r',
536 [STACK_MISC] = 'm',
537 [STACK_ZERO] = '0',
538};
539
4e92024a
AS
540static void print_liveness(struct bpf_verifier_env *env,
541 enum bpf_reg_liveness live)
542{
9242b5f5 543 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
544 verbose(env, "_");
545 if (live & REG_LIVE_READ)
546 verbose(env, "r");
547 if (live & REG_LIVE_WRITTEN)
548 verbose(env, "w");
9242b5f5
AS
549 if (live & REG_LIVE_DONE)
550 verbose(env, "D");
4e92024a
AS
551}
552
f4d7e40a
AS
553static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 const struct bpf_reg_state *reg)
555{
556 struct bpf_verifier_state *cur = env->cur_state;
557
558 return cur->frame[reg->frameno];
559}
560
22dc4a0f 561static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 562{
22dc4a0f 563 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
564}
565
61bd5218 566static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 567 const struct bpf_func_state *state)
17a52670 568{
f4d7e40a 569 const struct bpf_reg_state *reg;
17a52670
AS
570 enum bpf_reg_type t;
571 int i;
572
f4d7e40a
AS
573 if (state->frameno)
574 verbose(env, " frame%d:", state->frameno);
17a52670 575 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
576 reg = &state->regs[i];
577 t = reg->type;
17a52670
AS
578 if (t == NOT_INIT)
579 continue;
4e92024a
AS
580 verbose(env, " R%d", i);
581 print_liveness(env, reg->live);
582 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
583 if (t == SCALAR_VALUE && reg->precise)
584 verbose(env, "P");
f1174f77
EC
585 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 tnum_is_const(reg->var_off)) {
587 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 588 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 589 } else {
eaa6bcb7
HL
590 if (t == PTR_TO_BTF_ID ||
591 t == PTR_TO_BTF_ID_OR_NULL ||
592 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 593 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
594 verbose(env, "(id=%d", reg->id);
595 if (reg_type_may_be_refcounted_or_null(t))
596 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 597 if (t != SCALAR_VALUE)
61bd5218 598 verbose(env, ",off=%d", reg->off);
de8f3a83 599 if (type_is_pkt_pointer(t))
61bd5218 600 verbose(env, ",r=%d", reg->range);
f1174f77
EC
601 else if (t == CONST_PTR_TO_MAP ||
602 t == PTR_TO_MAP_VALUE ||
603 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 604 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
605 reg->map_ptr->key_size,
606 reg->map_ptr->value_size);
7d1238f2
EC
607 if (tnum_is_const(reg->var_off)) {
608 /* Typically an immediate SCALAR_VALUE, but
609 * could be a pointer whose offset is too big
610 * for reg->off
611 */
61bd5218 612 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
613 } else {
614 if (reg->smin_value != reg->umin_value &&
615 reg->smin_value != S64_MIN)
61bd5218 616 verbose(env, ",smin_value=%lld",
7d1238f2
EC
617 (long long)reg->smin_value);
618 if (reg->smax_value != reg->umax_value &&
619 reg->smax_value != S64_MAX)
61bd5218 620 verbose(env, ",smax_value=%lld",
7d1238f2
EC
621 (long long)reg->smax_value);
622 if (reg->umin_value != 0)
61bd5218 623 verbose(env, ",umin_value=%llu",
7d1238f2
EC
624 (unsigned long long)reg->umin_value);
625 if (reg->umax_value != U64_MAX)
61bd5218 626 verbose(env, ",umax_value=%llu",
7d1238f2
EC
627 (unsigned long long)reg->umax_value);
628 if (!tnum_is_unknown(reg->var_off)) {
629 char tn_buf[48];
f1174f77 630
7d1238f2 631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 632 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 633 }
3f50f132
JF
634 if (reg->s32_min_value != reg->smin_value &&
635 reg->s32_min_value != S32_MIN)
636 verbose(env, ",s32_min_value=%d",
637 (int)(reg->s32_min_value));
638 if (reg->s32_max_value != reg->smax_value &&
639 reg->s32_max_value != S32_MAX)
640 verbose(env, ",s32_max_value=%d",
641 (int)(reg->s32_max_value));
642 if (reg->u32_min_value != reg->umin_value &&
643 reg->u32_min_value != U32_MIN)
644 verbose(env, ",u32_min_value=%d",
645 (int)(reg->u32_min_value));
646 if (reg->u32_max_value != reg->umax_value &&
647 reg->u32_max_value != U32_MAX)
648 verbose(env, ",u32_max_value=%d",
649 (int)(reg->u32_max_value));
f1174f77 650 }
61bd5218 651 verbose(env, ")");
f1174f77 652 }
17a52670 653 }
638f5b90 654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
655 char types_buf[BPF_REG_SIZE + 1];
656 bool valid = false;
657 int j;
658
659 for (j = 0; j < BPF_REG_SIZE; j++) {
660 if (state->stack[i].slot_type[j] != STACK_INVALID)
661 valid = true;
662 types_buf[j] = slot_type_char[
663 state->stack[i].slot_type[j]];
664 }
665 types_buf[BPF_REG_SIZE] = 0;
666 if (!valid)
667 continue;
668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
670 if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 reg = &state->stack[i].spilled_ptr;
672 t = reg->type;
673 verbose(env, "=%s", reg_type_str[t]);
674 if (t == SCALAR_VALUE && reg->precise)
675 verbose(env, "P");
676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 verbose(env, "%lld", reg->var_off.value + reg->off);
678 } else {
8efea21d 679 verbose(env, "=%s", types_buf);
b5dc0163 680 }
17a52670 681 }
fd978bf7
JS
682 if (state->acquired_refs && state->refs[0].id) {
683 verbose(env, " refs=%d", state->refs[0].id);
684 for (i = 1; i < state->acquired_refs; i++)
685 if (state->refs[i].id)
686 verbose(env, ",%d", state->refs[i].id);
687 }
61bd5218 688 verbose(env, "\n");
17a52670
AS
689}
690
84dbf350
JS
691#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
692static int copy_##NAME##_state(struct bpf_func_state *dst, \
693 const struct bpf_func_state *src) \
694{ \
695 if (!src->FIELD) \
696 return 0; \
697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
698 /* internal bug, make state invalid to reject the program */ \
699 memset(dst, 0, sizeof(*dst)); \
700 return -EFAULT; \
701 } \
702 memcpy(dst->FIELD, src->FIELD, \
703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
704 return 0; \
638f5b90 705}
fd978bf7
JS
706/* copy_reference_state() */
707COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
708/* copy_stack_state() */
709COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710#undef COPY_STATE_FN
711
712#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
713static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 bool copy_old) \
715{ \
716 u32 old_size = state->COUNT; \
717 struct bpf_##NAME##_state *new_##FIELD; \
718 int slot = size / SIZE; \
719 \
720 if (size <= old_size || !size) { \
721 if (copy_old) \
722 return 0; \
723 state->COUNT = slot * SIZE; \
724 if (!size && old_size) { \
725 kfree(state->FIELD); \
726 state->FIELD = NULL; \
727 } \
728 return 0; \
729 } \
730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 GFP_KERNEL); \
732 if (!new_##FIELD) \
733 return -ENOMEM; \
734 if (copy_old) { \
735 if (state->FIELD) \
736 memcpy(new_##FIELD, state->FIELD, \
737 sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 memset(new_##FIELD + old_size / SIZE, 0, \
739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 } \
741 state->COUNT = slot * SIZE; \
742 kfree(state->FIELD); \
743 state->FIELD = new_##FIELD; \
744 return 0; \
745}
fd978bf7
JS
746/* realloc_reference_state() */
747REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
748/* realloc_stack_state() */
749REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750#undef REALLOC_STATE_FN
638f5b90
AS
751
752/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 754 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756 * which realloc_stack_state() copies over. It points to previous
757 * bpf_verifier_state which is never reallocated.
638f5b90 758 */
fd978bf7
JS
759static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 int refs_size, bool copy_old)
638f5b90 761{
fd978bf7
JS
762 int err = realloc_reference_state(state, refs_size, copy_old);
763 if (err)
764 return err;
765 return realloc_stack_state(state, stack_size, copy_old);
766}
767
768/* Acquire a pointer id from the env and update the state->refs to include
769 * this new pointer reference.
770 * On success, returns a valid pointer id to associate with the register
771 * On failure, returns a negative errno.
638f5b90 772 */
fd978bf7 773static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 774{
fd978bf7
JS
775 struct bpf_func_state *state = cur_func(env);
776 int new_ofs = state->acquired_refs;
777 int id, err;
778
779 err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 if (err)
781 return err;
782 id = ++env->id_gen;
783 state->refs[new_ofs].id = id;
784 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 785
fd978bf7
JS
786 return id;
787}
788
789/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 790static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
791{
792 int i, last_idx;
793
fd978bf7
JS
794 last_idx = state->acquired_refs - 1;
795 for (i = 0; i < state->acquired_refs; i++) {
796 if (state->refs[i].id == ptr_id) {
797 if (last_idx && i != last_idx)
798 memcpy(&state->refs[i], &state->refs[last_idx],
799 sizeof(*state->refs));
800 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 state->acquired_refs--;
638f5b90 802 return 0;
638f5b90 803 }
638f5b90 804 }
46f8bc92 805 return -EINVAL;
fd978bf7
JS
806}
807
808static int transfer_reference_state(struct bpf_func_state *dst,
809 struct bpf_func_state *src)
810{
811 int err = realloc_reference_state(dst, src->acquired_refs, false);
812 if (err)
813 return err;
814 err = copy_reference_state(dst, src);
815 if (err)
816 return err;
638f5b90
AS
817 return 0;
818}
819
f4d7e40a
AS
820static void free_func_state(struct bpf_func_state *state)
821{
5896351e
AS
822 if (!state)
823 return;
fd978bf7 824 kfree(state->refs);
f4d7e40a
AS
825 kfree(state->stack);
826 kfree(state);
827}
828
b5dc0163
AS
829static void clear_jmp_history(struct bpf_verifier_state *state)
830{
831 kfree(state->jmp_history);
832 state->jmp_history = NULL;
833 state->jmp_history_cnt = 0;
834}
835
1969db47
AS
836static void free_verifier_state(struct bpf_verifier_state *state,
837 bool free_self)
638f5b90 838{
f4d7e40a
AS
839 int i;
840
841 for (i = 0; i <= state->curframe; i++) {
842 free_func_state(state->frame[i]);
843 state->frame[i] = NULL;
844 }
b5dc0163 845 clear_jmp_history(state);
1969db47
AS
846 if (free_self)
847 kfree(state);
638f5b90
AS
848}
849
850/* copy verifier state from src to dst growing dst stack space
851 * when necessary to accommodate larger src stack
852 */
f4d7e40a
AS
853static int copy_func_state(struct bpf_func_state *dst,
854 const struct bpf_func_state *src)
638f5b90
AS
855{
856 int err;
857
fd978bf7
JS
858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 false);
860 if (err)
861 return err;
862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 err = copy_reference_state(dst, src);
638f5b90
AS
864 if (err)
865 return err;
638f5b90
AS
866 return copy_stack_state(dst, src);
867}
868
f4d7e40a
AS
869static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 const struct bpf_verifier_state *src)
871{
872 struct bpf_func_state *dst;
b5dc0163 873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
874 int i, err;
875
b5dc0163
AS
876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 kfree(dst_state->jmp_history);
878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 if (!dst_state->jmp_history)
880 return -ENOMEM;
881 }
882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 dst_state->jmp_history_cnt = src->jmp_history_cnt;
884
f4d7e40a
AS
885 /* if dst has more stack frames then src frame, free them */
886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 free_func_state(dst_state->frame[i]);
888 dst_state->frame[i] = NULL;
889 }
979d63d5 890 dst_state->speculative = src->speculative;
f4d7e40a 891 dst_state->curframe = src->curframe;
d83525ca 892 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
893 dst_state->branches = src->branches;
894 dst_state->parent = src->parent;
b5dc0163
AS
895 dst_state->first_insn_idx = src->first_insn_idx;
896 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
897 for (i = 0; i <= src->curframe; i++) {
898 dst = dst_state->frame[i];
899 if (!dst) {
900 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 if (!dst)
902 return -ENOMEM;
903 dst_state->frame[i] = dst;
904 }
905 err = copy_func_state(dst, src->frame[i]);
906 if (err)
907 return err;
908 }
909 return 0;
910}
911
2589726d
AS
912static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913{
914 while (st) {
915 u32 br = --st->branches;
916
917 /* WARN_ON(br > 1) technically makes sense here,
918 * but see comment in push_stack(), hence:
919 */
920 WARN_ONCE((int)br < 0,
921 "BUG update_branch_counts:branches_to_explore=%d\n",
922 br);
923 if (br)
924 break;
925 st = st->parent;
926 }
927}
928
638f5b90 929static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 930 int *insn_idx, bool pop_log)
638f5b90
AS
931{
932 struct bpf_verifier_state *cur = env->cur_state;
933 struct bpf_verifier_stack_elem *elem, *head = env->head;
934 int err;
17a52670
AS
935
936 if (env->head == NULL)
638f5b90 937 return -ENOENT;
17a52670 938
638f5b90
AS
939 if (cur) {
940 err = copy_verifier_state(cur, &head->st);
941 if (err)
942 return err;
943 }
6f8a57cc
AN
944 if (pop_log)
945 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
946 if (insn_idx)
947 *insn_idx = head->insn_idx;
17a52670 948 if (prev_insn_idx)
638f5b90
AS
949 *prev_insn_idx = head->prev_insn_idx;
950 elem = head->next;
1969db47 951 free_verifier_state(&head->st, false);
638f5b90 952 kfree(head);
17a52670
AS
953 env->head = elem;
954 env->stack_size--;
638f5b90 955 return 0;
17a52670
AS
956}
957
58e2af8b 958static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
959 int insn_idx, int prev_insn_idx,
960 bool speculative)
17a52670 961{
638f5b90 962 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 963 struct bpf_verifier_stack_elem *elem;
638f5b90 964 int err;
17a52670 965
638f5b90 966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
967 if (!elem)
968 goto err;
969
17a52670
AS
970 elem->insn_idx = insn_idx;
971 elem->prev_insn_idx = prev_insn_idx;
972 elem->next = env->head;
6f8a57cc 973 elem->log_pos = env->log.len_used;
17a52670
AS
974 env->head = elem;
975 env->stack_size++;
1969db47
AS
976 err = copy_verifier_state(&elem->st, cur);
977 if (err)
978 goto err;
979d63d5 979 elem->st.speculative |= speculative;
b285fcb7
AS
980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 verbose(env, "The sequence of %d jumps is too complex.\n",
982 env->stack_size);
17a52670
AS
983 goto err;
984 }
2589726d
AS
985 if (elem->st.parent) {
986 ++elem->st.parent->branches;
987 /* WARN_ON(branches > 2) technically makes sense here,
988 * but
989 * 1. speculative states will bump 'branches' for non-branch
990 * instructions
991 * 2. is_state_visited() heuristics may decide not to create
992 * a new state for a sequence of branches and all such current
993 * and cloned states will be pointing to a single parent state
994 * which might have large 'branches' count.
995 */
996 }
17a52670
AS
997 return &elem->st;
998err:
5896351e
AS
999 free_verifier_state(env->cur_state, true);
1000 env->cur_state = NULL;
17a52670 1001 /* pop all elements and return */
6f8a57cc 1002 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1003 return NULL;
1004}
1005
1006#define CALLER_SAVED_REGS 6
1007static const int caller_saved[CALLER_SAVED_REGS] = {
1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009};
1010
f54c7898
DB
1011static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 struct bpf_reg_state *reg);
f1174f77 1013
e688c3db
AS
1014/* This helper doesn't clear reg->id */
1015static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1016{
b03c9f9f
EC
1017 reg->var_off = tnum_const(imm);
1018 reg->smin_value = (s64)imm;
1019 reg->smax_value = (s64)imm;
1020 reg->umin_value = imm;
1021 reg->umax_value = imm;
3f50f132
JF
1022
1023 reg->s32_min_value = (s32)imm;
1024 reg->s32_max_value = (s32)imm;
1025 reg->u32_min_value = (u32)imm;
1026 reg->u32_max_value = (u32)imm;
1027}
1028
e688c3db
AS
1029/* Mark the unknown part of a register (variable offset or scalar value) as
1030 * known to have the value @imm.
1031 */
1032static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033{
1034 /* Clear id, off, and union(map_ptr, range) */
1035 memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 ___mark_reg_known(reg, imm);
1038}
1039
3f50f132
JF
1040static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041{
1042 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 reg->s32_min_value = (s32)imm;
1044 reg->s32_max_value = (s32)imm;
1045 reg->u32_min_value = (u32)imm;
1046 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1047}
1048
f1174f77
EC
1049/* Mark the 'variable offset' part of a register as zero. This should be
1050 * used only on registers holding a pointer type.
1051 */
1052static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1053{
b03c9f9f 1054 __mark_reg_known(reg, 0);
f1174f77 1055}
a9789ef9 1056
cc2b14d5
AS
1057static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058{
1059 __mark_reg_known(reg, 0);
cc2b14d5
AS
1060 reg->type = SCALAR_VALUE;
1061}
1062
61bd5218
JK
1063static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1065{
1066 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1068 /* Something bad happened, let's kill all regs */
1069 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1070 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1071 return;
1072 }
1073 __mark_reg_known_zero(regs + regno);
1074}
1075
de8f3a83
DB
1076static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077{
1078 return type_is_pkt_pointer(reg->type);
1079}
1080
1081static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082{
1083 return reg_is_pkt_pointer(reg) ||
1084 reg->type == PTR_TO_PACKET_END;
1085}
1086
1087/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 enum bpf_reg_type which)
1090{
1091 /* The register can already have a range from prior markings.
1092 * This is fine as long as it hasn't been advanced from its
1093 * origin.
1094 */
1095 return reg->type == which &&
1096 reg->id == 0 &&
1097 reg->off == 0 &&
1098 tnum_equals_const(reg->var_off, 0);
1099}
1100
3f50f132
JF
1101/* Reset the min/max bounds of a register */
1102static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103{
1104 reg->smin_value = S64_MIN;
1105 reg->smax_value = S64_MAX;
1106 reg->umin_value = 0;
1107 reg->umax_value = U64_MAX;
1108
1109 reg->s32_min_value = S32_MIN;
1110 reg->s32_max_value = S32_MAX;
1111 reg->u32_min_value = 0;
1112 reg->u32_max_value = U32_MAX;
1113}
1114
1115static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116{
1117 reg->smin_value = S64_MIN;
1118 reg->smax_value = S64_MAX;
1119 reg->umin_value = 0;
1120 reg->umax_value = U64_MAX;
1121}
1122
1123static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124{
1125 reg->s32_min_value = S32_MIN;
1126 reg->s32_max_value = S32_MAX;
1127 reg->u32_min_value = 0;
1128 reg->u32_max_value = U32_MAX;
1129}
1130
1131static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132{
1133 struct tnum var32_off = tnum_subreg(reg->var_off);
1134
1135 /* min signed is max(sign bit) | min(other bits) */
1136 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 var32_off.value | (var32_off.mask & S32_MIN));
1138 /* max signed is min(sign bit) | max(other bits) */
1139 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 var32_off.value | (var32_off.mask & S32_MAX));
1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 reg->u32_max_value = min(reg->u32_max_value,
1143 (u32)(var32_off.value | var32_off.mask));
1144}
1145
1146static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1147{
1148 /* min signed is max(sign bit) | min(other bits) */
1149 reg->smin_value = max_t(s64, reg->smin_value,
1150 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 /* max signed is min(sign bit) | max(other bits) */
1152 reg->smax_value = min_t(s64, reg->smax_value,
1153 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 reg->umax_value = min(reg->umax_value,
1156 reg->var_off.value | reg->var_off.mask);
1157}
1158
3f50f132
JF
1159static void __update_reg_bounds(struct bpf_reg_state *reg)
1160{
1161 __update_reg32_bounds(reg);
1162 __update_reg64_bounds(reg);
1163}
1164
b03c9f9f 1165/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1166static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167{
1168 /* Learn sign from signed bounds.
1169 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 * are the same, so combine. This works even in the negative case, e.g.
1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 */
1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 reg->s32_min_value = reg->u32_min_value =
1175 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 return;
1179 }
1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1181 * boundary, so we must be careful.
1182 */
1183 if ((s32)reg->u32_max_value >= 0) {
1184 /* Positive. We can't learn anything from the smin, but smax
1185 * is positive, hence safe.
1186 */
1187 reg->s32_min_value = reg->u32_min_value;
1188 reg->s32_max_value = reg->u32_max_value =
1189 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 } else if ((s32)reg->u32_min_value < 0) {
1191 /* Negative. We can't learn anything from the smax, but smin
1192 * is negative, hence safe.
1193 */
1194 reg->s32_min_value = reg->u32_min_value =
1195 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 reg->s32_max_value = reg->u32_max_value;
1197 }
1198}
1199
1200static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1201{
1202 /* Learn sign from signed bounds.
1203 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 * are the same, so combine. This works even in the negative case, e.g.
1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 */
1207 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 reg->umin_value);
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 return;
1213 }
1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1215 * boundary, so we must be careful.
1216 */
1217 if ((s64)reg->umax_value >= 0) {
1218 /* Positive. We can't learn anything from the smin, but smax
1219 * is positive, hence safe.
1220 */
1221 reg->smin_value = reg->umin_value;
1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 reg->umax_value);
1224 } else if ((s64)reg->umin_value < 0) {
1225 /* Negative. We can't learn anything from the smax, but smin
1226 * is negative, hence safe.
1227 */
1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 reg->umin_value);
1230 reg->smax_value = reg->umax_value;
1231 }
1232}
1233
3f50f132
JF
1234static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235{
1236 __reg32_deduce_bounds(reg);
1237 __reg64_deduce_bounds(reg);
1238}
1239
b03c9f9f
EC
1240/* Attempts to improve var_off based on unsigned min/max information */
1241static void __reg_bound_offset(struct bpf_reg_state *reg)
1242{
3f50f132
JF
1243 struct tnum var64_off = tnum_intersect(reg->var_off,
1244 tnum_range(reg->umin_value,
1245 reg->umax_value));
1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 tnum_range(reg->u32_min_value,
1248 reg->u32_max_value));
1249
1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1251}
1252
3f50f132 1253static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1254{
3f50f132
JF
1255 reg->umin_value = reg->u32_min_value;
1256 reg->umax_value = reg->u32_max_value;
1257 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 * but must be positive otherwise set to worse case bounds
1259 * and refine later from tnum.
1260 */
3a71dc36 1261 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1262 reg->smax_value = reg->s32_max_value;
1263 else
1264 reg->smax_value = U32_MAX;
3a71dc36
JF
1265 if (reg->s32_min_value >= 0)
1266 reg->smin_value = reg->s32_min_value;
1267 else
1268 reg->smin_value = 0;
3f50f132
JF
1269}
1270
1271static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272{
1273 /* special case when 64-bit register has upper 32-bit register
1274 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 * allowing us to use 32-bit bounds directly,
1276 */
1277 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 __reg_assign_32_into_64(reg);
1279 } else {
1280 /* Otherwise the best we can do is push lower 32bit known and
1281 * unknown bits into register (var_off set from jmp logic)
1282 * then learn as much as possible from the 64-bit tnum
1283 * known and unknown bits. The previous smin/smax bounds are
1284 * invalid here because of jmp32 compare so mark them unknown
1285 * so they do not impact tnum bounds calculation.
1286 */
1287 __mark_reg64_unbounded(reg);
1288 __update_reg_bounds(reg);
1289 }
1290
1291 /* Intersecting with the old var_off might have improved our bounds
1292 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 */
1295 __reg_deduce_bounds(reg);
1296 __reg_bound_offset(reg);
1297 __update_reg_bounds(reg);
1298}
1299
1300static bool __reg64_bound_s32(s64 a)
1301{
b0270958 1302 return a > S32_MIN && a < S32_MAX;
3f50f132
JF
1303}
1304
1305static bool __reg64_bound_u32(u64 a)
1306{
1307 if (a > U32_MIN && a < U32_MAX)
1308 return true;
1309 return false;
1310}
1311
1312static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1313{
1314 __mark_reg32_unbounded(reg);
1315
b0270958 1316 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1317 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1318 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1319 }
3f50f132
JF
1320 if (__reg64_bound_u32(reg->umin_value))
1321 reg->u32_min_value = (u32)reg->umin_value;
1322 if (__reg64_bound_u32(reg->umax_value))
1323 reg->u32_max_value = (u32)reg->umax_value;
1324
1325 /* Intersecting with the old var_off might have improved our bounds
1326 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 * then new var_off is (0; 0x7f...fc) which improves our umax.
1328 */
1329 __reg_deduce_bounds(reg);
1330 __reg_bound_offset(reg);
1331 __update_reg_bounds(reg);
b03c9f9f
EC
1332}
1333
f1174f77 1334/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1335static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 struct bpf_reg_state *reg)
f1174f77 1337{
a9c676bc
AS
1338 /*
1339 * Clear type, id, off, and union(map_ptr, range) and
1340 * padding between 'type' and union
1341 */
1342 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1343 reg->type = SCALAR_VALUE;
f1174f77 1344 reg->var_off = tnum_unknown;
f4d7e40a 1345 reg->frameno = 0;
2c78ee89 1346 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1347 __mark_reg_unbounded(reg);
f1174f77
EC
1348}
1349
61bd5218
JK
1350static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1352{
1353 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1354 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1355 /* Something bad happened, let's kill all regs except FP */
1356 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1357 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1358 return;
1359 }
f54c7898 1360 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1361}
1362
f54c7898
DB
1363static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 struct bpf_reg_state *reg)
f1174f77 1365{
f54c7898 1366 __mark_reg_unknown(env, reg);
f1174f77
EC
1367 reg->type = NOT_INIT;
1368}
1369
61bd5218
JK
1370static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1372{
1373 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1374 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1375 /* Something bad happened, let's kill all regs except FP */
1376 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1377 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1378 return;
1379 }
f54c7898 1380 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1381}
1382
41c48f3a
AI
1383static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1385 enum bpf_reg_type reg_type,
1386 struct btf *btf, u32 btf_id)
41c48f3a
AI
1387{
1388 if (reg_type == SCALAR_VALUE) {
1389 mark_reg_unknown(env, regs, regno);
1390 return;
1391 }
1392 mark_reg_known_zero(env, regs, regno);
1393 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1394 regs[regno].btf = btf;
41c48f3a
AI
1395 regs[regno].btf_id = btf_id;
1396}
1397
5327ed3d 1398#define DEF_NOT_SUBREG (0)
61bd5218 1399static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1400 struct bpf_func_state *state)
17a52670 1401{
f4d7e40a 1402 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1403 int i;
1404
dc503a8a 1405 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1406 mark_reg_not_init(env, regs, i);
dc503a8a 1407 regs[i].live = REG_LIVE_NONE;
679c782d 1408 regs[i].parent = NULL;
5327ed3d 1409 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1410 }
17a52670
AS
1411
1412 /* frame pointer */
f1174f77 1413 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1414 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1415 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1416}
1417
f4d7e40a
AS
1418#define BPF_MAIN_FUNC (-1)
1419static void init_func_state(struct bpf_verifier_env *env,
1420 struct bpf_func_state *state,
1421 int callsite, int frameno, int subprogno)
1422{
1423 state->callsite = callsite;
1424 state->frameno = frameno;
1425 state->subprogno = subprogno;
1426 init_reg_state(env, state);
1427}
1428
17a52670
AS
1429enum reg_arg_type {
1430 SRC_OP, /* register is used as source operand */
1431 DST_OP, /* register is used as destination operand */
1432 DST_OP_NO_MARK /* same as above, check only, don't mark */
1433};
1434
cc8b0b92
AS
1435static int cmp_subprogs(const void *a, const void *b)
1436{
9c8105bd
JW
1437 return ((struct bpf_subprog_info *)a)->start -
1438 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1439}
1440
1441static int find_subprog(struct bpf_verifier_env *env, int off)
1442{
9c8105bd 1443 struct bpf_subprog_info *p;
cc8b0b92 1444
9c8105bd
JW
1445 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1447 if (!p)
1448 return -ENOENT;
9c8105bd 1449 return p - env->subprog_info;
cc8b0b92
AS
1450
1451}
1452
1453static int add_subprog(struct bpf_verifier_env *env, int off)
1454{
1455 int insn_cnt = env->prog->len;
1456 int ret;
1457
1458 if (off >= insn_cnt || off < 0) {
1459 verbose(env, "call to invalid destination\n");
1460 return -EINVAL;
1461 }
1462 ret = find_subprog(env, off);
1463 if (ret >= 0)
1464 return 0;
4cb3d99c 1465 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1466 verbose(env, "too many subprograms\n");
1467 return -E2BIG;
1468 }
9c8105bd
JW
1469 env->subprog_info[env->subprog_cnt++].start = off;
1470 sort(env->subprog_info, env->subprog_cnt,
1471 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1472 return 0;
1473}
1474
1475static int check_subprogs(struct bpf_verifier_env *env)
1476{
1477 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1478 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1479 struct bpf_insn *insn = env->prog->insnsi;
1480 int insn_cnt = env->prog->len;
1481
f910cefa
JW
1482 /* Add entry function. */
1483 ret = add_subprog(env, 0);
1484 if (ret < 0)
1485 return ret;
1486
cc8b0b92
AS
1487 /* determine subprog starts. The end is one before the next starts */
1488 for (i = 0; i < insn_cnt; i++) {
1489 if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 continue;
1491 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 continue;
2c78ee89
AS
1493 if (!env->bpf_capable) {
1494 verbose(env,
1495 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1496 return -EPERM;
1497 }
cc8b0b92
AS
1498 ret = add_subprog(env, i + insn[i].imm + 1);
1499 if (ret < 0)
1500 return ret;
1501 }
1502
4cb3d99c
JW
1503 /* Add a fake 'exit' subprog which could simplify subprog iteration
1504 * logic. 'subprog_cnt' should not be increased.
1505 */
1506 subprog[env->subprog_cnt].start = insn_cnt;
1507
06ee7115 1508 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1509 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1510 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1511
1512 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1513 subprog_start = subprog[cur_subprog].start;
1514 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1515 for (i = 0; i < insn_cnt; i++) {
1516 u8 code = insn[i].code;
1517
7f6e4312
MF
1518 if (code == (BPF_JMP | BPF_CALL) &&
1519 insn[i].imm == BPF_FUNC_tail_call &&
1520 insn[i].src_reg != BPF_PSEUDO_CALL)
1521 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1522 if (BPF_CLASS(code) == BPF_LD &&
1523 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 subprog[cur_subprog].has_ld_abs = true;
092ed096 1525 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1526 goto next;
1527 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 goto next;
1529 off = i + insn[i].off + 1;
1530 if (off < subprog_start || off >= subprog_end) {
1531 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 return -EINVAL;
1533 }
1534next:
1535 if (i == subprog_end - 1) {
1536 /* to avoid fall-through from one subprog into another
1537 * the last insn of the subprog should be either exit
1538 * or unconditional jump back
1539 */
1540 if (code != (BPF_JMP | BPF_EXIT) &&
1541 code != (BPF_JMP | BPF_JA)) {
1542 verbose(env, "last insn is not an exit or jmp\n");
1543 return -EINVAL;
1544 }
1545 subprog_start = subprog_end;
4cb3d99c
JW
1546 cur_subprog++;
1547 if (cur_subprog < env->subprog_cnt)
9c8105bd 1548 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1549 }
1550 }
1551 return 0;
1552}
1553
679c782d
EC
1554/* Parentage chain of this register (or stack slot) should take care of all
1555 * issues like callee-saved registers, stack slot allocation time, etc.
1556 */
f4d7e40a 1557static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1558 const struct bpf_reg_state *state,
5327ed3d 1559 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1560{
1561 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1562 int cnt = 0;
dc503a8a
EC
1563
1564 while (parent) {
1565 /* if read wasn't screened by an earlier write ... */
679c782d 1566 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1567 break;
9242b5f5
AS
1568 if (parent->live & REG_LIVE_DONE) {
1569 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 reg_type_str[parent->type],
1571 parent->var_off.value, parent->off);
1572 return -EFAULT;
1573 }
5327ed3d
JW
1574 /* The first condition is more likely to be true than the
1575 * second, checked it first.
1576 */
1577 if ((parent->live & REG_LIVE_READ) == flag ||
1578 parent->live & REG_LIVE_READ64)
25af32da
AS
1579 /* The parentage chain never changes and
1580 * this parent was already marked as LIVE_READ.
1581 * There is no need to keep walking the chain again and
1582 * keep re-marking all parents as LIVE_READ.
1583 * This case happens when the same register is read
1584 * multiple times without writes into it in-between.
5327ed3d
JW
1585 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1587 */
1588 break;
dc503a8a 1589 /* ... then we depend on parent's value */
5327ed3d
JW
1590 parent->live |= flag;
1591 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 if (flag == REG_LIVE_READ64)
1593 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1594 state = parent;
1595 parent = state->parent;
f4d7e40a 1596 writes = true;
06ee7115 1597 cnt++;
dc503a8a 1598 }
06ee7115
AS
1599
1600 if (env->longest_mark_read_walk < cnt)
1601 env->longest_mark_read_walk = cnt;
f4d7e40a 1602 return 0;
dc503a8a
EC
1603}
1604
5327ed3d
JW
1605/* This function is supposed to be used by the following 32-bit optimization
1606 * code only. It returns TRUE if the source or destination register operates
1607 * on 64-bit, otherwise return FALSE.
1608 */
1609static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1611{
1612 u8 code, class, op;
1613
1614 code = insn->code;
1615 class = BPF_CLASS(code);
1616 op = BPF_OP(code);
1617 if (class == BPF_JMP) {
1618 /* BPF_EXIT for "main" will reach here. Return TRUE
1619 * conservatively.
1620 */
1621 if (op == BPF_EXIT)
1622 return true;
1623 if (op == BPF_CALL) {
1624 /* BPF to BPF call will reach here because of marking
1625 * caller saved clobber with DST_OP_NO_MARK for which we
1626 * don't care the register def because they are anyway
1627 * marked as NOT_INIT already.
1628 */
1629 if (insn->src_reg == BPF_PSEUDO_CALL)
1630 return false;
1631 /* Helper call will reach here because of arg type
1632 * check, conservatively return TRUE.
1633 */
1634 if (t == SRC_OP)
1635 return true;
1636
1637 return false;
1638 }
1639 }
1640
1641 if (class == BPF_ALU64 || class == BPF_JMP ||
1642 /* BPF_END always use BPF_ALU class. */
1643 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 return true;
1645
1646 if (class == BPF_ALU || class == BPF_JMP32)
1647 return false;
1648
1649 if (class == BPF_LDX) {
1650 if (t != SRC_OP)
1651 return BPF_SIZE(code) == BPF_DW;
1652 /* LDX source must be ptr. */
1653 return true;
1654 }
1655
1656 if (class == BPF_STX) {
1657 if (reg->type != SCALAR_VALUE)
1658 return true;
1659 return BPF_SIZE(code) == BPF_DW;
1660 }
1661
1662 if (class == BPF_LD) {
1663 u8 mode = BPF_MODE(code);
1664
1665 /* LD_IMM64 */
1666 if (mode == BPF_IMM)
1667 return true;
1668
1669 /* Both LD_IND and LD_ABS return 32-bit data. */
1670 if (t != SRC_OP)
1671 return false;
1672
1673 /* Implicit ctx ptr. */
1674 if (regno == BPF_REG_6)
1675 return true;
1676
1677 /* Explicit source could be any width. */
1678 return true;
1679 }
1680
1681 if (class == BPF_ST)
1682 /* The only source register for BPF_ST is a ptr. */
1683 return true;
1684
1685 /* Conservatively return true at default. */
1686 return true;
1687}
1688
b325fbca
JW
1689/* Return TRUE if INSN doesn't have explicit value define. */
1690static bool insn_no_def(struct bpf_insn *insn)
1691{
1692 u8 class = BPF_CLASS(insn->code);
1693
1694 return (class == BPF_JMP || class == BPF_JMP32 ||
1695 class == BPF_STX || class == BPF_ST);
1696}
1697
1698/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1700{
1701 if (insn_no_def(insn))
1702 return false;
1703
1704 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1705}
1706
5327ed3d
JW
1707static void mark_insn_zext(struct bpf_verifier_env *env,
1708 struct bpf_reg_state *reg)
1709{
1710 s32 def_idx = reg->subreg_def;
1711
1712 if (def_idx == DEF_NOT_SUBREG)
1713 return;
1714
1715 env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 /* The dst will be zero extended, so won't be sub-register anymore. */
1717 reg->subreg_def = DEF_NOT_SUBREG;
1718}
1719
dc503a8a 1720static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1721 enum reg_arg_type t)
1722{
f4d7e40a
AS
1723 struct bpf_verifier_state *vstate = env->cur_state;
1724 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1725 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1726 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1727 bool rw64;
dc503a8a 1728
17a52670 1729 if (regno >= MAX_BPF_REG) {
61bd5218 1730 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1731 return -EINVAL;
1732 }
1733
c342dc10 1734 reg = &regs[regno];
5327ed3d 1735 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1736 if (t == SRC_OP) {
1737 /* check whether register used as source operand can be read */
c342dc10 1738 if (reg->type == NOT_INIT) {
61bd5218 1739 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1740 return -EACCES;
1741 }
679c782d 1742 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1743 if (regno == BPF_REG_FP)
1744 return 0;
1745
5327ed3d
JW
1746 if (rw64)
1747 mark_insn_zext(env, reg);
1748
1749 return mark_reg_read(env, reg, reg->parent,
1750 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1751 } else {
1752 /* check whether register used as dest operand can be written to */
1753 if (regno == BPF_REG_FP) {
61bd5218 1754 verbose(env, "frame pointer is read only\n");
17a52670
AS
1755 return -EACCES;
1756 }
c342dc10 1757 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1758 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1759 if (t == DST_OP)
61bd5218 1760 mark_reg_unknown(env, regs, regno);
17a52670
AS
1761 }
1762 return 0;
1763}
1764
b5dc0163
AS
1765/* for any branch, call, exit record the history of jmps in the given state */
1766static int push_jmp_history(struct bpf_verifier_env *env,
1767 struct bpf_verifier_state *cur)
1768{
1769 u32 cnt = cur->jmp_history_cnt;
1770 struct bpf_idx_pair *p;
1771
1772 cnt++;
1773 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 if (!p)
1775 return -ENOMEM;
1776 p[cnt - 1].idx = env->insn_idx;
1777 p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 cur->jmp_history = p;
1779 cur->jmp_history_cnt = cnt;
1780 return 0;
1781}
1782
1783/* Backtrack one insn at a time. If idx is not at the top of recorded
1784 * history then previous instruction came from straight line execution.
1785 */
1786static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 u32 *history)
1788{
1789 u32 cnt = *history;
1790
1791 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 i = st->jmp_history[cnt - 1].prev_idx;
1793 (*history)--;
1794 } else {
1795 i--;
1796 }
1797 return i;
1798}
1799
1800/* For given verifier state backtrack_insn() is called from the last insn to
1801 * the first insn. Its purpose is to compute a bitmask of registers and
1802 * stack slots that needs precision in the parent verifier state.
1803 */
1804static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 u32 *reg_mask, u64 *stack_mask)
1806{
1807 const struct bpf_insn_cbs cbs = {
1808 .cb_print = verbose,
1809 .private_data = env,
1810 };
1811 struct bpf_insn *insn = env->prog->insnsi + idx;
1812 u8 class = BPF_CLASS(insn->code);
1813 u8 opcode = BPF_OP(insn->code);
1814 u8 mode = BPF_MODE(insn->code);
1815 u32 dreg = 1u << insn->dst_reg;
1816 u32 sreg = 1u << insn->src_reg;
1817 u32 spi;
1818
1819 if (insn->code == 0)
1820 return 0;
1821 if (env->log.level & BPF_LOG_LEVEL) {
1822 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 verbose(env, "%d: ", idx);
1824 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1825 }
1826
1827 if (class == BPF_ALU || class == BPF_ALU64) {
1828 if (!(*reg_mask & dreg))
1829 return 0;
1830 if (opcode == BPF_MOV) {
1831 if (BPF_SRC(insn->code) == BPF_X) {
1832 /* dreg = sreg
1833 * dreg needs precision after this insn
1834 * sreg needs precision before this insn
1835 */
1836 *reg_mask &= ~dreg;
1837 *reg_mask |= sreg;
1838 } else {
1839 /* dreg = K
1840 * dreg needs precision after this insn.
1841 * Corresponding register is already marked
1842 * as precise=true in this verifier state.
1843 * No further markings in parent are necessary
1844 */
1845 *reg_mask &= ~dreg;
1846 }
1847 } else {
1848 if (BPF_SRC(insn->code) == BPF_X) {
1849 /* dreg += sreg
1850 * both dreg and sreg need precision
1851 * before this insn
1852 */
1853 *reg_mask |= sreg;
1854 } /* else dreg += K
1855 * dreg still needs precision before this insn
1856 */
1857 }
1858 } else if (class == BPF_LDX) {
1859 if (!(*reg_mask & dreg))
1860 return 0;
1861 *reg_mask &= ~dreg;
1862
1863 /* scalars can only be spilled into stack w/o losing precision.
1864 * Load from any other memory can be zero extended.
1865 * The desire to keep that precision is already indicated
1866 * by 'precise' mark in corresponding register of this state.
1867 * No further tracking necessary.
1868 */
1869 if (insn->src_reg != BPF_REG_FP)
1870 return 0;
1871 if (BPF_SIZE(insn->code) != BPF_DW)
1872 return 0;
1873
1874 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 * that [fp - off] slot contains scalar that needs to be
1876 * tracked with precision
1877 */
1878 spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 if (spi >= 64) {
1880 verbose(env, "BUG spi %d\n", spi);
1881 WARN_ONCE(1, "verifier backtracking bug");
1882 return -EFAULT;
1883 }
1884 *stack_mask |= 1ull << spi;
b3b50f05 1885 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1886 if (*reg_mask & dreg)
b3b50f05 1887 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1888 * to access memory. It means backtracking
1889 * encountered a case of pointer subtraction.
1890 */
1891 return -ENOTSUPP;
1892 /* scalars can only be spilled into stack */
1893 if (insn->dst_reg != BPF_REG_FP)
1894 return 0;
1895 if (BPF_SIZE(insn->code) != BPF_DW)
1896 return 0;
1897 spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 if (spi >= 64) {
1899 verbose(env, "BUG spi %d\n", spi);
1900 WARN_ONCE(1, "verifier backtracking bug");
1901 return -EFAULT;
1902 }
1903 if (!(*stack_mask & (1ull << spi)))
1904 return 0;
1905 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1906 if (class == BPF_STX)
1907 *reg_mask |= sreg;
b5dc0163
AS
1908 } else if (class == BPF_JMP || class == BPF_JMP32) {
1909 if (opcode == BPF_CALL) {
1910 if (insn->src_reg == BPF_PSEUDO_CALL)
1911 return -ENOTSUPP;
1912 /* regular helper call sets R0 */
1913 *reg_mask &= ~1;
1914 if (*reg_mask & 0x3f) {
1915 /* if backtracing was looking for registers R1-R5
1916 * they should have been found already.
1917 */
1918 verbose(env, "BUG regs %x\n", *reg_mask);
1919 WARN_ONCE(1, "verifier backtracking bug");
1920 return -EFAULT;
1921 }
1922 } else if (opcode == BPF_EXIT) {
1923 return -ENOTSUPP;
1924 }
1925 } else if (class == BPF_LD) {
1926 if (!(*reg_mask & dreg))
1927 return 0;
1928 *reg_mask &= ~dreg;
1929 /* It's ld_imm64 or ld_abs or ld_ind.
1930 * For ld_imm64 no further tracking of precision
1931 * into parent is necessary
1932 */
1933 if (mode == BPF_IND || mode == BPF_ABS)
1934 /* to be analyzed */
1935 return -ENOTSUPP;
b5dc0163
AS
1936 }
1937 return 0;
1938}
1939
1940/* the scalar precision tracking algorithm:
1941 * . at the start all registers have precise=false.
1942 * . scalar ranges are tracked as normal through alu and jmp insns.
1943 * . once precise value of the scalar register is used in:
1944 * . ptr + scalar alu
1945 * . if (scalar cond K|scalar)
1946 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1947 * backtrack through the verifier states and mark all registers and
1948 * stack slots with spilled constants that these scalar regisers
1949 * should be precise.
1950 * . during state pruning two registers (or spilled stack slots)
1951 * are equivalent if both are not precise.
1952 *
1953 * Note the verifier cannot simply walk register parentage chain,
1954 * since many different registers and stack slots could have been
1955 * used to compute single precise scalar.
1956 *
1957 * The approach of starting with precise=true for all registers and then
1958 * backtrack to mark a register as not precise when the verifier detects
1959 * that program doesn't care about specific value (e.g., when helper
1960 * takes register as ARG_ANYTHING parameter) is not safe.
1961 *
1962 * It's ok to walk single parentage chain of the verifier states.
1963 * It's possible that this backtracking will go all the way till 1st insn.
1964 * All other branches will be explored for needing precision later.
1965 *
1966 * The backtracking needs to deal with cases like:
1967 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968 * r9 -= r8
1969 * r5 = r9
1970 * if r5 > 0x79f goto pc+7
1971 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972 * r5 += 1
1973 * ...
1974 * call bpf_perf_event_output#25
1975 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1976 *
1977 * and this case:
1978 * r6 = 1
1979 * call foo // uses callee's r6 inside to compute r0
1980 * r0 += r6
1981 * if r0 == 0 goto
1982 *
1983 * to track above reg_mask/stack_mask needs to be independent for each frame.
1984 *
1985 * Also if parent's curframe > frame where backtracking started,
1986 * the verifier need to mark registers in both frames, otherwise callees
1987 * may incorrectly prune callers. This is similar to
1988 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1989 *
1990 * For now backtracking falls back into conservative marking.
1991 */
1992static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 struct bpf_verifier_state *st)
1994{
1995 struct bpf_func_state *func;
1996 struct bpf_reg_state *reg;
1997 int i, j;
1998
1999 /* big hammer: mark all scalars precise in this path.
2000 * pop_stack may still get !precise scalars.
2001 */
2002 for (; st; st = st->parent)
2003 for (i = 0; i <= st->curframe; i++) {
2004 func = st->frame[i];
2005 for (j = 0; j < BPF_REG_FP; j++) {
2006 reg = &func->regs[j];
2007 if (reg->type != SCALAR_VALUE)
2008 continue;
2009 reg->precise = true;
2010 }
2011 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 continue;
2014 reg = &func->stack[j].spilled_ptr;
2015 if (reg->type != SCALAR_VALUE)
2016 continue;
2017 reg->precise = true;
2018 }
2019 }
2020}
2021
a3ce685d
AS
2022static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 int spi)
b5dc0163
AS
2024{
2025 struct bpf_verifier_state *st = env->cur_state;
2026 int first_idx = st->first_insn_idx;
2027 int last_idx = env->insn_idx;
2028 struct bpf_func_state *func;
2029 struct bpf_reg_state *reg;
a3ce685d
AS
2030 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2032 bool skip_first = true;
a3ce685d 2033 bool new_marks = false;
b5dc0163
AS
2034 int i, err;
2035
2c78ee89 2036 if (!env->bpf_capable)
b5dc0163
AS
2037 return 0;
2038
2039 func = st->frame[st->curframe];
a3ce685d
AS
2040 if (regno >= 0) {
2041 reg = &func->regs[regno];
2042 if (reg->type != SCALAR_VALUE) {
2043 WARN_ONCE(1, "backtracing misuse");
2044 return -EFAULT;
2045 }
2046 if (!reg->precise)
2047 new_marks = true;
2048 else
2049 reg_mask = 0;
2050 reg->precise = true;
b5dc0163 2051 }
b5dc0163 2052
a3ce685d
AS
2053 while (spi >= 0) {
2054 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 stack_mask = 0;
2056 break;
2057 }
2058 reg = &func->stack[spi].spilled_ptr;
2059 if (reg->type != SCALAR_VALUE) {
2060 stack_mask = 0;
2061 break;
2062 }
2063 if (!reg->precise)
2064 new_marks = true;
2065 else
2066 stack_mask = 0;
2067 reg->precise = true;
2068 break;
2069 }
2070
2071 if (!new_marks)
2072 return 0;
2073 if (!reg_mask && !stack_mask)
2074 return 0;
b5dc0163
AS
2075 for (;;) {
2076 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2077 u32 history = st->jmp_history_cnt;
2078
2079 if (env->log.level & BPF_LOG_LEVEL)
2080 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 for (i = last_idx;;) {
2082 if (skip_first) {
2083 err = 0;
2084 skip_first = false;
2085 } else {
2086 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2087 }
2088 if (err == -ENOTSUPP) {
2089 mark_all_scalars_precise(env, st);
2090 return 0;
2091 } else if (err) {
2092 return err;
2093 }
2094 if (!reg_mask && !stack_mask)
2095 /* Found assignment(s) into tracked register in this state.
2096 * Since this state is already marked, just return.
2097 * Nothing to be tracked further in the parent state.
2098 */
2099 return 0;
2100 if (i == first_idx)
2101 break;
2102 i = get_prev_insn_idx(st, i, &history);
2103 if (i >= env->prog->len) {
2104 /* This can happen if backtracking reached insn 0
2105 * and there are still reg_mask or stack_mask
2106 * to backtrack.
2107 * It means the backtracking missed the spot where
2108 * particular register was initialized with a constant.
2109 */
2110 verbose(env, "BUG backtracking idx %d\n", i);
2111 WARN_ONCE(1, "verifier backtracking bug");
2112 return -EFAULT;
2113 }
2114 }
2115 st = st->parent;
2116 if (!st)
2117 break;
2118
a3ce685d 2119 new_marks = false;
b5dc0163
AS
2120 func = st->frame[st->curframe];
2121 bitmap_from_u64(mask, reg_mask);
2122 for_each_set_bit(i, mask, 32) {
2123 reg = &func->regs[i];
a3ce685d
AS
2124 if (reg->type != SCALAR_VALUE) {
2125 reg_mask &= ~(1u << i);
b5dc0163 2126 continue;
a3ce685d 2127 }
b5dc0163
AS
2128 if (!reg->precise)
2129 new_marks = true;
2130 reg->precise = true;
2131 }
2132
2133 bitmap_from_u64(mask, stack_mask);
2134 for_each_set_bit(i, mask, 64) {
2135 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2136 /* the sequence of instructions:
2137 * 2: (bf) r3 = r10
2138 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 * doesn't contain jmps. It's backtracked
2141 * as a single block.
2142 * During backtracking insn 3 is not recognized as
2143 * stack access, so at the end of backtracking
2144 * stack slot fp-8 is still marked in stack_mask.
2145 * However the parent state may not have accessed
2146 * fp-8 and it's "unallocated" stack space.
2147 * In such case fallback to conservative.
b5dc0163 2148 */
2339cd6c
AS
2149 mark_all_scalars_precise(env, st);
2150 return 0;
b5dc0163
AS
2151 }
2152
a3ce685d
AS
2153 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 stack_mask &= ~(1ull << i);
b5dc0163 2155 continue;
a3ce685d 2156 }
b5dc0163 2157 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2158 if (reg->type != SCALAR_VALUE) {
2159 stack_mask &= ~(1ull << i);
b5dc0163 2160 continue;
a3ce685d 2161 }
b5dc0163
AS
2162 if (!reg->precise)
2163 new_marks = true;
2164 reg->precise = true;
2165 }
2166 if (env->log.level & BPF_LOG_LEVEL) {
2167 print_verifier_state(env, func);
2168 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 new_marks ? "didn't have" : "already had",
2170 reg_mask, stack_mask);
2171 }
2172
a3ce685d
AS
2173 if (!reg_mask && !stack_mask)
2174 break;
b5dc0163
AS
2175 if (!new_marks)
2176 break;
2177
2178 last_idx = st->last_insn_idx;
2179 first_idx = st->first_insn_idx;
2180 }
2181 return 0;
2182}
2183
a3ce685d
AS
2184static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2185{
2186 return __mark_chain_precision(env, regno, -1);
2187}
2188
2189static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2190{
2191 return __mark_chain_precision(env, -1, spi);
2192}
b5dc0163 2193
1be7f75d
AS
2194static bool is_spillable_regtype(enum bpf_reg_type type)
2195{
2196 switch (type) {
2197 case PTR_TO_MAP_VALUE:
2198 case PTR_TO_MAP_VALUE_OR_NULL:
2199 case PTR_TO_STACK:
2200 case PTR_TO_CTX:
969bf05e 2201 case PTR_TO_PACKET:
de8f3a83 2202 case PTR_TO_PACKET_META:
969bf05e 2203 case PTR_TO_PACKET_END:
d58e468b 2204 case PTR_TO_FLOW_KEYS:
1be7f75d 2205 case CONST_PTR_TO_MAP:
c64b7983
JS
2206 case PTR_TO_SOCKET:
2207 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2208 case PTR_TO_SOCK_COMMON:
2209 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2210 case PTR_TO_TCP_SOCK:
2211 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2212 case PTR_TO_XDP_SOCK:
65726b5b 2213 case PTR_TO_BTF_ID:
b121b341 2214 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2215 case PTR_TO_RDONLY_BUF:
2216 case PTR_TO_RDONLY_BUF_OR_NULL:
2217 case PTR_TO_RDWR_BUF:
2218 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2219 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2220 case PTR_TO_MEM:
2221 case PTR_TO_MEM_OR_NULL:
1be7f75d
AS
2222 return true;
2223 default:
2224 return false;
2225 }
2226}
2227
cc2b14d5
AS
2228/* Does this register contain a constant zero? */
2229static bool register_is_null(struct bpf_reg_state *reg)
2230{
2231 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2232}
2233
f7cf25b2
AS
2234static bool register_is_const(struct bpf_reg_state *reg)
2235{
2236 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2237}
2238
5689d49b
YS
2239static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2240{
2241 return tnum_is_unknown(reg->var_off) &&
2242 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2243 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2244 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2245 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2246}
2247
2248static bool register_is_bounded(struct bpf_reg_state *reg)
2249{
2250 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2251}
2252
6e7e63cb
JH
2253static bool __is_pointer_value(bool allow_ptr_leaks,
2254 const struct bpf_reg_state *reg)
2255{
2256 if (allow_ptr_leaks)
2257 return false;
2258
2259 return reg->type != SCALAR_VALUE;
2260}
2261
f7cf25b2
AS
2262static void save_register_state(struct bpf_func_state *state,
2263 int spi, struct bpf_reg_state *reg)
2264{
2265 int i;
2266
2267 state->stack[spi].spilled_ptr = *reg;
2268 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2269
2270 for (i = 0; i < BPF_REG_SIZE; i++)
2271 state->stack[spi].slot_type[i] = STACK_SPILL;
2272}
2273
17a52670
AS
2274/* check_stack_read/write functions track spill/fill of registers,
2275 * stack boundary and alignment are checked in check_mem_access()
2276 */
61bd5218 2277static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2278 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2279 int off, int size, int value_regno, int insn_idx)
17a52670 2280{
f4d7e40a 2281 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2282 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2283 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2284 struct bpf_reg_state *reg = NULL;
638f5b90 2285
f4d7e40a 2286 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2287 state->acquired_refs, true);
638f5b90
AS
2288 if (err)
2289 return err;
9c399760
AS
2290 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2291 * so it's aligned access and [off, off + size) are within stack limits
2292 */
638f5b90
AS
2293 if (!env->allow_ptr_leaks &&
2294 state->stack[spi].slot_type[0] == STACK_SPILL &&
2295 size != BPF_REG_SIZE) {
2296 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2297 return -EACCES;
2298 }
17a52670 2299
f4d7e40a 2300 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2301 if (value_regno >= 0)
2302 reg = &cur->regs[value_regno];
17a52670 2303
5689d49b 2304 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2c78ee89 2305 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2306 if (dst_reg != BPF_REG_FP) {
2307 /* The backtracking logic can only recognize explicit
2308 * stack slot address like [fp - 8]. Other spill of
2309 * scalar via different register has to be conervative.
2310 * Backtrack from here and mark all registers as precise
2311 * that contributed into 'reg' being a constant.
2312 */
2313 err = mark_chain_precision(env, value_regno);
2314 if (err)
2315 return err;
2316 }
f7cf25b2
AS
2317 save_register_state(state, spi, reg);
2318 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2319 /* register containing pointer is being spilled into stack */
9c399760 2320 if (size != BPF_REG_SIZE) {
f7cf25b2 2321 verbose_linfo(env, insn_idx, "; ");
61bd5218 2322 verbose(env, "invalid size of register spill\n");
17a52670
AS
2323 return -EACCES;
2324 }
2325
f7cf25b2 2326 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2327 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2328 return -EINVAL;
2329 }
2330
2c78ee89 2331 if (!env->bypass_spec_v4) {
f7cf25b2 2332 bool sanitize = false;
17a52670 2333
f7cf25b2
AS
2334 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2335 register_is_const(&state->stack[spi].spilled_ptr))
2336 sanitize = true;
2337 for (i = 0; i < BPF_REG_SIZE; i++)
2338 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2339 sanitize = true;
2340 break;
2341 }
2342 if (sanitize) {
af86ca4e
AS
2343 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2344 int soff = (-spi - 1) * BPF_REG_SIZE;
2345
2346 /* detected reuse of integer stack slot with a pointer
2347 * which means either llvm is reusing stack slot or
2348 * an attacker is trying to exploit CVE-2018-3639
2349 * (speculative store bypass)
2350 * Have to sanitize that slot with preemptive
2351 * store of zero.
2352 */
2353 if (*poff && *poff != soff) {
2354 /* disallow programs where single insn stores
2355 * into two different stack slots, since verifier
2356 * cannot sanitize them
2357 */
2358 verbose(env,
2359 "insn %d cannot access two stack slots fp%d and fp%d",
2360 insn_idx, *poff, soff);
2361 return -EINVAL;
2362 }
2363 *poff = soff;
2364 }
af86ca4e 2365 }
f7cf25b2 2366 save_register_state(state, spi, reg);
9c399760 2367 } else {
cc2b14d5
AS
2368 u8 type = STACK_MISC;
2369
679c782d
EC
2370 /* regular write of data into stack destroys any spilled ptr */
2371 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2372 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2373 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2374 for (i = 0; i < BPF_REG_SIZE; i++)
2375 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2376
cc2b14d5
AS
2377 /* only mark the slot as written if all 8 bytes were written
2378 * otherwise read propagation may incorrectly stop too soon
2379 * when stack slots are partially written.
2380 * This heuristic means that read propagation will be
2381 * conservative, since it will add reg_live_read marks
2382 * to stack slots all the way to first state when programs
2383 * writes+reads less than 8 bytes
2384 */
2385 if (size == BPF_REG_SIZE)
2386 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2387
2388 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2389 if (reg && register_is_null(reg)) {
2390 /* backtracking doesn't work for STACK_ZERO yet. */
2391 err = mark_chain_precision(env, value_regno);
2392 if (err)
2393 return err;
cc2b14d5 2394 type = STACK_ZERO;
b5dc0163 2395 }
cc2b14d5 2396
0bae2d4d 2397 /* Mark slots affected by this stack write. */
9c399760 2398 for (i = 0; i < size; i++)
638f5b90 2399 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2400 type;
17a52670
AS
2401 }
2402 return 0;
2403}
2404
61bd5218 2405static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2406 struct bpf_func_state *reg_state /* func where register points to */,
2407 int off, int size, int value_regno)
17a52670 2408{
f4d7e40a
AS
2409 struct bpf_verifier_state *vstate = env->cur_state;
2410 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2411 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2412 struct bpf_reg_state *reg;
638f5b90 2413 u8 *stype;
17a52670 2414
f4d7e40a 2415 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2416 verbose(env, "invalid read from stack off %d+0 size %d\n",
2417 off, size);
2418 return -EACCES;
2419 }
f4d7e40a 2420 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2421 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2422
638f5b90 2423 if (stype[0] == STACK_SPILL) {
9c399760 2424 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2425 if (reg->type != SCALAR_VALUE) {
2426 verbose_linfo(env, env->insn_idx, "; ");
2427 verbose(env, "invalid size of register fill\n");
2428 return -EACCES;
2429 }
2430 if (value_regno >= 0) {
2431 mark_reg_unknown(env, state->regs, value_regno);
2432 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2433 }
2434 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2435 return 0;
17a52670 2436 }
9c399760 2437 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2438 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2439 verbose(env, "corrupted spill memory\n");
17a52670
AS
2440 return -EACCES;
2441 }
2442 }
2443
dc503a8a 2444 if (value_regno >= 0) {
17a52670 2445 /* restore register state from stack */
f7cf25b2 2446 state->regs[value_regno] = *reg;
2f18f62e
AS
2447 /* mark reg as written since spilled pointer state likely
2448 * has its liveness marks cleared by is_state_visited()
2449 * which resets stack/reg liveness for state transitions
2450 */
2451 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2452 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2453 /* If value_regno==-1, the caller is asking us whether
2454 * it is acceptable to use this value as a SCALAR_VALUE
2455 * (e.g. for XADD).
2456 * We must not allow unprivileged callers to do that
2457 * with spilled pointers.
2458 */
2459 verbose(env, "leaking pointer from stack off %d\n",
2460 off);
2461 return -EACCES;
dc503a8a 2462 }
f7cf25b2 2463 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2464 } else {
cc2b14d5
AS
2465 int zeros = 0;
2466
17a52670 2467 for (i = 0; i < size; i++) {
cc2b14d5
AS
2468 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2469 continue;
2470 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2471 zeros++;
2472 continue;
17a52670 2473 }
cc2b14d5
AS
2474 verbose(env, "invalid read from stack off %d+%d size %d\n",
2475 off, i, size);
2476 return -EACCES;
2477 }
f7cf25b2 2478 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2479 if (value_regno >= 0) {
2480 if (zeros == size) {
2481 /* any size read into register is zero extended,
2482 * so the whole register == const_zero
2483 */
2484 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2485 /* backtracking doesn't support STACK_ZERO yet,
2486 * so mark it precise here, so that later
2487 * backtracking can stop here.
2488 * Backtracking may not need this if this register
2489 * doesn't participate in pointer adjustment.
2490 * Forward propagation of precise flag is not
2491 * necessary either. This mark is only to stop
2492 * backtracking. Any register that contributed
2493 * to const 0 was marked precise before spill.
2494 */
2495 state->regs[value_regno].precise = true;
cc2b14d5
AS
2496 } else {
2497 /* have read misc data from the stack */
2498 mark_reg_unknown(env, state->regs, value_regno);
2499 }
2500 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2501 }
17a52670 2502 }
f7cf25b2 2503 return 0;
17a52670
AS
2504}
2505
e4298d25
DB
2506static int check_stack_access(struct bpf_verifier_env *env,
2507 const struct bpf_reg_state *reg,
2508 int off, int size)
2509{
2510 /* Stack accesses must be at a fixed offset, so that we
2511 * can determine what type of data were returned. See
2512 * check_stack_read().
2513 */
2514 if (!tnum_is_const(reg->var_off)) {
2515 char tn_buf[48];
2516
2517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2518 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2519 tn_buf, off, size);
2520 return -EACCES;
2521 }
2522
2523 if (off >= 0 || off < -MAX_BPF_STACK) {
2524 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2525 return -EACCES;
2526 }
2527
2528 return 0;
2529}
2530
591fe988
DB
2531static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2532 int off, int size, enum bpf_access_type type)
2533{
2534 struct bpf_reg_state *regs = cur_regs(env);
2535 struct bpf_map *map = regs[regno].map_ptr;
2536 u32 cap = bpf_map_flags_to_cap(map);
2537
2538 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2539 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2540 map->value_size, off, size);
2541 return -EACCES;
2542 }
2543
2544 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2545 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2546 map->value_size, off, size);
2547 return -EACCES;
2548 }
2549
2550 return 0;
2551}
2552
457f4436
AN
2553/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2554static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2555 int off, int size, u32 mem_size,
2556 bool zero_size_allowed)
17a52670 2557{
457f4436
AN
2558 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2559 struct bpf_reg_state *reg;
2560
2561 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2562 return 0;
17a52670 2563
457f4436
AN
2564 reg = &cur_regs(env)[regno];
2565 switch (reg->type) {
2566 case PTR_TO_MAP_VALUE:
61bd5218 2567 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2568 mem_size, off, size);
2569 break;
2570 case PTR_TO_PACKET:
2571 case PTR_TO_PACKET_META:
2572 case PTR_TO_PACKET_END:
2573 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2574 off, size, regno, reg->id, off, mem_size);
2575 break;
2576 case PTR_TO_MEM:
2577 default:
2578 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2579 mem_size, off, size);
17a52670 2580 }
457f4436
AN
2581
2582 return -EACCES;
17a52670
AS
2583}
2584
457f4436
AN
2585/* check read/write into a memory region with possible variable offset */
2586static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2587 int off, int size, u32 mem_size,
2588 bool zero_size_allowed)
dbcfe5f7 2589{
f4d7e40a
AS
2590 struct bpf_verifier_state *vstate = env->cur_state;
2591 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2592 struct bpf_reg_state *reg = &state->regs[regno];
2593 int err;
2594
457f4436 2595 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2596 * need to try adding each of min_value and max_value to off
2597 * to make sure our theoretical access will be safe.
dbcfe5f7 2598 */
06ee7115 2599 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2600 print_verifier_state(env, state);
b7137c4e 2601
dbcfe5f7
GB
2602 /* The minimum value is only important with signed
2603 * comparisons where we can't assume the floor of a
2604 * value is 0. If we are using signed variables for our
2605 * index'es we need to make sure that whatever we use
2606 * will have a set floor within our range.
2607 */
b7137c4e
DB
2608 if (reg->smin_value < 0 &&
2609 (reg->smin_value == S64_MIN ||
2610 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2611 reg->smin_value + off < 0)) {
61bd5218 2612 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2613 regno);
2614 return -EACCES;
2615 }
457f4436
AN
2616 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2617 mem_size, zero_size_allowed);
dbcfe5f7 2618 if (err) {
457f4436 2619 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2620 regno);
dbcfe5f7
GB
2621 return err;
2622 }
2623
b03c9f9f
EC
2624 /* If we haven't set a max value then we need to bail since we can't be
2625 * sure we won't do bad things.
2626 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2627 */
b03c9f9f 2628 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2629 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2630 regno);
2631 return -EACCES;
2632 }
457f4436
AN
2633 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2634 mem_size, zero_size_allowed);
2635 if (err) {
2636 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2637 regno);
457f4436
AN
2638 return err;
2639 }
2640
2641 return 0;
2642}
d83525ca 2643
457f4436
AN
2644/* check read/write into a map element with possible variable offset */
2645static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2646 int off, int size, bool zero_size_allowed)
2647{
2648 struct bpf_verifier_state *vstate = env->cur_state;
2649 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2650 struct bpf_reg_state *reg = &state->regs[regno];
2651 struct bpf_map *map = reg->map_ptr;
2652 int err;
2653
2654 err = check_mem_region_access(env, regno, off, size, map->value_size,
2655 zero_size_allowed);
2656 if (err)
2657 return err;
2658
2659 if (map_value_has_spin_lock(map)) {
2660 u32 lock = map->spin_lock_off;
d83525ca
AS
2661
2662 /* if any part of struct bpf_spin_lock can be touched by
2663 * load/store reject this program.
2664 * To check that [x1, x2) overlaps with [y1, y2)
2665 * it is sufficient to check x1 < y2 && y1 < x2.
2666 */
2667 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2668 lock < reg->umax_value + off + size) {
2669 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2670 return -EACCES;
2671 }
2672 }
f1174f77 2673 return err;
dbcfe5f7
GB
2674}
2675
969bf05e
AS
2676#define MAX_PACKET_OFF 0xffff
2677
7e40781c
UP
2678static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2679{
3aac1ead 2680 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
2681}
2682
58e2af8b 2683static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2684 const struct bpf_call_arg_meta *meta,
2685 enum bpf_access_type t)
4acf6c0b 2686{
7e40781c
UP
2687 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2688
2689 switch (prog_type) {
5d66fa7d 2690 /* Program types only with direct read access go here! */
3a0af8fd
TG
2691 case BPF_PROG_TYPE_LWT_IN:
2692 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2693 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2694 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2695 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2696 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2697 if (t == BPF_WRITE)
2698 return false;
8731745e 2699 fallthrough;
5d66fa7d
DB
2700
2701 /* Program types with direct read + write access go here! */
36bbef52
DB
2702 case BPF_PROG_TYPE_SCHED_CLS:
2703 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2704 case BPF_PROG_TYPE_XDP:
3a0af8fd 2705 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2706 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2707 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2708 if (meta)
2709 return meta->pkt_access;
2710
2711 env->seen_direct_write = true;
4acf6c0b 2712 return true;
0d01da6a
SF
2713
2714 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2715 if (t == BPF_WRITE)
2716 env->seen_direct_write = true;
2717
2718 return true;
2719
4acf6c0b
BB
2720 default:
2721 return false;
2722 }
2723}
2724
f1174f77 2725static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2726 int size, bool zero_size_allowed)
f1174f77 2727{
638f5b90 2728 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2729 struct bpf_reg_state *reg = &regs[regno];
2730 int err;
2731
2732 /* We may have added a variable offset to the packet pointer; but any
2733 * reg->range we have comes after that. We are only checking the fixed
2734 * offset.
2735 */
2736
2737 /* We don't allow negative numbers, because we aren't tracking enough
2738 * detail to prove they're safe.
2739 */
b03c9f9f 2740 if (reg->smin_value < 0) {
61bd5218 2741 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2742 regno);
2743 return -EACCES;
2744 }
6d94e741
AS
2745
2746 err = reg->range < 0 ? -EINVAL :
2747 __check_mem_access(env, regno, off, size, reg->range,
457f4436 2748 zero_size_allowed);
f1174f77 2749 if (err) {
61bd5218 2750 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2751 return err;
2752 }
e647815a 2753
457f4436 2754 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2755 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2756 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2757 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2758 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2759 */
2760 env->prog->aux->max_pkt_offset =
2761 max_t(u32, env->prog->aux->max_pkt_offset,
2762 off + reg->umax_value + size - 1);
2763
f1174f77
EC
2764 return err;
2765}
2766
2767/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2768static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 2769 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 2770 struct btf **btf, u32 *btf_id)
17a52670 2771{
f96da094
DB
2772 struct bpf_insn_access_aux info = {
2773 .reg_type = *reg_type,
9e15db66 2774 .log = &env->log,
f96da094 2775 };
31fd8581 2776
4f9218aa 2777 if (env->ops->is_valid_access &&
5e43f899 2778 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2779 /* A non zero info.ctx_field_size indicates that this field is a
2780 * candidate for later verifier transformation to load the whole
2781 * field and then apply a mask when accessed with a narrower
2782 * access than actual ctx access size. A zero info.ctx_field_size
2783 * will only allow for whole field access and rejects any other
2784 * type of narrower access.
31fd8581 2785 */
23994631 2786 *reg_type = info.reg_type;
31fd8581 2787
22dc4a0f
AN
2788 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2789 *btf = info.btf;
9e15db66 2790 *btf_id = info.btf_id;
22dc4a0f 2791 } else {
9e15db66 2792 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 2793 }
32bbe007
AS
2794 /* remember the offset of last byte accessed in ctx */
2795 if (env->prog->aux->max_ctx_offset < off + size)
2796 env->prog->aux->max_ctx_offset = off + size;
17a52670 2797 return 0;
32bbe007 2798 }
17a52670 2799
61bd5218 2800 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2801 return -EACCES;
2802}
2803
d58e468b
PP
2804static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2805 int size)
2806{
2807 if (size < 0 || off < 0 ||
2808 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2809 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2810 off, size);
2811 return -EACCES;
2812 }
2813 return 0;
2814}
2815
5f456649
MKL
2816static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2817 u32 regno, int off, int size,
2818 enum bpf_access_type t)
c64b7983
JS
2819{
2820 struct bpf_reg_state *regs = cur_regs(env);
2821 struct bpf_reg_state *reg = &regs[regno];
5f456649 2822 struct bpf_insn_access_aux info = {};
46f8bc92 2823 bool valid;
c64b7983
JS
2824
2825 if (reg->smin_value < 0) {
2826 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2827 regno);
2828 return -EACCES;
2829 }
2830
46f8bc92
MKL
2831 switch (reg->type) {
2832 case PTR_TO_SOCK_COMMON:
2833 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2834 break;
2835 case PTR_TO_SOCKET:
2836 valid = bpf_sock_is_valid_access(off, size, t, &info);
2837 break;
655a51e5
MKL
2838 case PTR_TO_TCP_SOCK:
2839 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2840 break;
fada7fdc
JL
2841 case PTR_TO_XDP_SOCK:
2842 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2843 break;
46f8bc92
MKL
2844 default:
2845 valid = false;
c64b7983
JS
2846 }
2847
5f456649 2848
46f8bc92
MKL
2849 if (valid) {
2850 env->insn_aux_data[insn_idx].ctx_field_size =
2851 info.ctx_field_size;
2852 return 0;
2853 }
2854
2855 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2856 regno, reg_type_str[reg->type], off, size);
2857
2858 return -EACCES;
c64b7983
JS
2859}
2860
2a159c6f
DB
2861static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2862{
2863 return cur_regs(env) + regno;
2864}
2865
4cabc5b1
DB
2866static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2867{
2a159c6f 2868 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2869}
2870
f37a8cb8
DB
2871static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2872{
2a159c6f 2873 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2874
46f8bc92
MKL
2875 return reg->type == PTR_TO_CTX;
2876}
2877
2878static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2879{
2880 const struct bpf_reg_state *reg = reg_state(env, regno);
2881
2882 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2883}
2884
ca369602
DB
2885static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2886{
2a159c6f 2887 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2888
2889 return type_is_pkt_pointer(reg->type);
2890}
2891
4b5defde
DB
2892static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2893{
2894 const struct bpf_reg_state *reg = reg_state(env, regno);
2895
2896 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2897 return reg->type == PTR_TO_FLOW_KEYS;
2898}
2899
61bd5218
JK
2900static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2901 const struct bpf_reg_state *reg,
d1174416 2902 int off, int size, bool strict)
969bf05e 2903{
f1174f77 2904 struct tnum reg_off;
e07b98d9 2905 int ip_align;
d1174416
DM
2906
2907 /* Byte size accesses are always allowed. */
2908 if (!strict || size == 1)
2909 return 0;
2910
e4eda884
DM
2911 /* For platforms that do not have a Kconfig enabling
2912 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2913 * NET_IP_ALIGN is universally set to '2'. And on platforms
2914 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2915 * to this code only in strict mode where we want to emulate
2916 * the NET_IP_ALIGN==2 checking. Therefore use an
2917 * unconditional IP align value of '2'.
e07b98d9 2918 */
e4eda884 2919 ip_align = 2;
f1174f77
EC
2920
2921 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2922 if (!tnum_is_aligned(reg_off, size)) {
2923 char tn_buf[48];
2924
2925 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2926 verbose(env,
2927 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2928 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2929 return -EACCES;
2930 }
79adffcd 2931
969bf05e
AS
2932 return 0;
2933}
2934
61bd5218
JK
2935static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2936 const struct bpf_reg_state *reg,
f1174f77
EC
2937 const char *pointer_desc,
2938 int off, int size, bool strict)
79adffcd 2939{
f1174f77
EC
2940 struct tnum reg_off;
2941
2942 /* Byte size accesses are always allowed. */
2943 if (!strict || size == 1)
2944 return 0;
2945
2946 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2947 if (!tnum_is_aligned(reg_off, size)) {
2948 char tn_buf[48];
2949
2950 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2951 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2952 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2953 return -EACCES;
2954 }
2955
969bf05e
AS
2956 return 0;
2957}
2958
e07b98d9 2959static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2960 const struct bpf_reg_state *reg, int off,
2961 int size, bool strict_alignment_once)
79adffcd 2962{
ca369602 2963 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2964 const char *pointer_desc = "";
d1174416 2965
79adffcd
DB
2966 switch (reg->type) {
2967 case PTR_TO_PACKET:
de8f3a83
DB
2968 case PTR_TO_PACKET_META:
2969 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2970 * right in front, treat it the very same way.
2971 */
61bd5218 2972 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2973 case PTR_TO_FLOW_KEYS:
2974 pointer_desc = "flow keys ";
2975 break;
f1174f77
EC
2976 case PTR_TO_MAP_VALUE:
2977 pointer_desc = "value ";
2978 break;
2979 case PTR_TO_CTX:
2980 pointer_desc = "context ";
2981 break;
2982 case PTR_TO_STACK:
2983 pointer_desc = "stack ";
a5ec6ae1
JH
2984 /* The stack spill tracking logic in check_stack_write()
2985 * and check_stack_read() relies on stack accesses being
2986 * aligned.
2987 */
2988 strict = true;
f1174f77 2989 break;
c64b7983
JS
2990 case PTR_TO_SOCKET:
2991 pointer_desc = "sock ";
2992 break;
46f8bc92
MKL
2993 case PTR_TO_SOCK_COMMON:
2994 pointer_desc = "sock_common ";
2995 break;
655a51e5
MKL
2996 case PTR_TO_TCP_SOCK:
2997 pointer_desc = "tcp_sock ";
2998 break;
fada7fdc
JL
2999 case PTR_TO_XDP_SOCK:
3000 pointer_desc = "xdp_sock ";
3001 break;
79adffcd 3002 default:
f1174f77 3003 break;
79adffcd 3004 }
61bd5218
JK
3005 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3006 strict);
79adffcd
DB
3007}
3008
f4d7e40a
AS
3009static int update_stack_depth(struct bpf_verifier_env *env,
3010 const struct bpf_func_state *func,
3011 int off)
3012{
9c8105bd 3013 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3014
3015 if (stack >= -off)
3016 return 0;
3017
3018 /* update known max for given subprogram */
9c8105bd 3019 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3020 return 0;
3021}
f4d7e40a 3022
70a87ffe
AS
3023/* starting from main bpf function walk all instructions of the function
3024 * and recursively walk all callees that given function can call.
3025 * Ignore jump and exit insns.
3026 * Since recursion is prevented by check_cfg() this algorithm
3027 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3028 */
3029static int check_max_stack_depth(struct bpf_verifier_env *env)
3030{
9c8105bd
JW
3031 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3032 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3033 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3034 bool tail_call_reachable = false;
70a87ffe
AS
3035 int ret_insn[MAX_CALL_FRAMES];
3036 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3037 int j;
f4d7e40a 3038
70a87ffe 3039process_func:
7f6e4312
MF
3040 /* protect against potential stack overflow that might happen when
3041 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3042 * depth for such case down to 256 so that the worst case scenario
3043 * would result in 8k stack size (32 which is tailcall limit * 256 =
3044 * 8k).
3045 *
3046 * To get the idea what might happen, see an example:
3047 * func1 -> sub rsp, 128
3048 * subfunc1 -> sub rsp, 256
3049 * tailcall1 -> add rsp, 256
3050 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3051 * subfunc2 -> sub rsp, 64
3052 * subfunc22 -> sub rsp, 128
3053 * tailcall2 -> add rsp, 128
3054 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3055 *
3056 * tailcall will unwind the current stack frame but it will not get rid
3057 * of caller's stack as shown on the example above.
3058 */
3059 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3060 verbose(env,
3061 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3062 depth);
3063 return -EACCES;
3064 }
70a87ffe
AS
3065 /* round up to 32-bytes, since this is granularity
3066 * of interpreter stack size
3067 */
9c8105bd 3068 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3069 if (depth > MAX_BPF_STACK) {
f4d7e40a 3070 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3071 frame + 1, depth);
f4d7e40a
AS
3072 return -EACCES;
3073 }
70a87ffe 3074continue_func:
4cb3d99c 3075 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
3076 for (; i < subprog_end; i++) {
3077 if (insn[i].code != (BPF_JMP | BPF_CALL))
3078 continue;
3079 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3080 continue;
3081 /* remember insn and function to return to */
3082 ret_insn[frame] = i + 1;
9c8105bd 3083 ret_prog[frame] = idx;
70a87ffe
AS
3084
3085 /* find the callee */
3086 i = i + insn[i].imm + 1;
9c8105bd
JW
3087 idx = find_subprog(env, i);
3088 if (idx < 0) {
70a87ffe
AS
3089 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3090 i);
3091 return -EFAULT;
3092 }
ebf7d1f5
MF
3093
3094 if (subprog[idx].has_tail_call)
3095 tail_call_reachable = true;
3096
70a87ffe
AS
3097 frame++;
3098 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3099 verbose(env, "the call stack of %d frames is too deep !\n",
3100 frame);
3101 return -E2BIG;
70a87ffe
AS
3102 }
3103 goto process_func;
3104 }
ebf7d1f5
MF
3105 /* if tail call got detected across bpf2bpf calls then mark each of the
3106 * currently present subprog frames as tail call reachable subprogs;
3107 * this info will be utilized by JIT so that we will be preserving the
3108 * tail call counter throughout bpf2bpf calls combined with tailcalls
3109 */
3110 if (tail_call_reachable)
3111 for (j = 0; j < frame; j++)
3112 subprog[ret_prog[j]].tail_call_reachable = true;
3113
70a87ffe
AS
3114 /* end of for() loop means the last insn of the 'subprog'
3115 * was reached. Doesn't matter whether it was JA or EXIT
3116 */
3117 if (frame == 0)
3118 return 0;
9c8105bd 3119 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3120 frame--;
3121 i = ret_insn[frame];
9c8105bd 3122 idx = ret_prog[frame];
70a87ffe 3123 goto continue_func;
f4d7e40a
AS
3124}
3125
19d28fbd 3126#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3127static int get_callee_stack_depth(struct bpf_verifier_env *env,
3128 const struct bpf_insn *insn, int idx)
3129{
3130 int start = idx + insn->imm + 1, subprog;
3131
3132 subprog = find_subprog(env, start);
3133 if (subprog < 0) {
3134 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3135 start);
3136 return -EFAULT;
3137 }
9c8105bd 3138 return env->subprog_info[subprog].stack_depth;
1ea47e01 3139}
19d28fbd 3140#endif
1ea47e01 3141
51c39bb1
AS
3142int check_ctx_reg(struct bpf_verifier_env *env,
3143 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3144{
3145 /* Access to ctx or passing it to a helper is only allowed in
3146 * its original, unmodified form.
3147 */
3148
3149 if (reg->off) {
3150 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3151 regno, reg->off);
3152 return -EACCES;
3153 }
3154
3155 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3156 char tn_buf[48];
3157
3158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3159 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3160 return -EACCES;
3161 }
3162
3163 return 0;
3164}
3165
afbf21dc
YS
3166static int __check_buffer_access(struct bpf_verifier_env *env,
3167 const char *buf_info,
3168 const struct bpf_reg_state *reg,
3169 int regno, int off, int size)
9df1c28b
MM
3170{
3171 if (off < 0) {
3172 verbose(env,
4fc00b79 3173 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3174 regno, buf_info, off, size);
9df1c28b
MM
3175 return -EACCES;
3176 }
3177 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3178 char tn_buf[48];
3179
3180 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3181 verbose(env,
4fc00b79 3182 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3183 regno, off, tn_buf);
3184 return -EACCES;
3185 }
afbf21dc
YS
3186
3187 return 0;
3188}
3189
3190static int check_tp_buffer_access(struct bpf_verifier_env *env,
3191 const struct bpf_reg_state *reg,
3192 int regno, int off, int size)
3193{
3194 int err;
3195
3196 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3197 if (err)
3198 return err;
3199
9df1c28b
MM
3200 if (off + size > env->prog->aux->max_tp_access)
3201 env->prog->aux->max_tp_access = off + size;
3202
3203 return 0;
3204}
3205
afbf21dc
YS
3206static int check_buffer_access(struct bpf_verifier_env *env,
3207 const struct bpf_reg_state *reg,
3208 int regno, int off, int size,
3209 bool zero_size_allowed,
3210 const char *buf_info,
3211 u32 *max_access)
3212{
3213 int err;
3214
3215 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3216 if (err)
3217 return err;
3218
3219 if (off + size > *max_access)
3220 *max_access = off + size;
3221
3222 return 0;
3223}
3224
3f50f132
JF
3225/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3226static void zext_32_to_64(struct bpf_reg_state *reg)
3227{
3228 reg->var_off = tnum_subreg(reg->var_off);
3229 __reg_assign_32_into_64(reg);
3230}
9df1c28b 3231
0c17d1d2
JH
3232/* truncate register to smaller size (in bytes)
3233 * must be called with size < BPF_REG_SIZE
3234 */
3235static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3236{
3237 u64 mask;
3238
3239 /* clear high bits in bit representation */
3240 reg->var_off = tnum_cast(reg->var_off, size);
3241
3242 /* fix arithmetic bounds */
3243 mask = ((u64)1 << (size * 8)) - 1;
3244 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3245 reg->umin_value &= mask;
3246 reg->umax_value &= mask;
3247 } else {
3248 reg->umin_value = 0;
3249 reg->umax_value = mask;
3250 }
3251 reg->smin_value = reg->umin_value;
3252 reg->smax_value = reg->umax_value;
3f50f132
JF
3253
3254 /* If size is smaller than 32bit register the 32bit register
3255 * values are also truncated so we push 64-bit bounds into
3256 * 32-bit bounds. Above were truncated < 32-bits already.
3257 */
3258 if (size >= 4)
3259 return;
3260 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3261}
3262
a23740ec
AN
3263static bool bpf_map_is_rdonly(const struct bpf_map *map)
3264{
3265 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3266}
3267
3268static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3269{
3270 void *ptr;
3271 u64 addr;
3272 int err;
3273
3274 err = map->ops->map_direct_value_addr(map, &addr, off);
3275 if (err)
3276 return err;
2dedd7d2 3277 ptr = (void *)(long)addr + off;
a23740ec
AN
3278
3279 switch (size) {
3280 case sizeof(u8):
3281 *val = (u64)*(u8 *)ptr;
3282 break;
3283 case sizeof(u16):
3284 *val = (u64)*(u16 *)ptr;
3285 break;
3286 case sizeof(u32):
3287 *val = (u64)*(u32 *)ptr;
3288 break;
3289 case sizeof(u64):
3290 *val = *(u64 *)ptr;
3291 break;
3292 default:
3293 return -EINVAL;
3294 }
3295 return 0;
3296}
3297
9e15db66
AS
3298static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3299 struct bpf_reg_state *regs,
3300 int regno, int off, int size,
3301 enum bpf_access_type atype,
3302 int value_regno)
3303{
3304 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
3305 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3306 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
3307 u32 btf_id;
3308 int ret;
3309
9e15db66
AS
3310 if (off < 0) {
3311 verbose(env,
3312 "R%d is ptr_%s invalid negative access: off=%d\n",
3313 regno, tname, off);
3314 return -EACCES;
3315 }
3316 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3317 char tn_buf[48];
3318
3319 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3320 verbose(env,
3321 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3322 regno, tname, off, tn_buf);
3323 return -EACCES;
3324 }
3325
27ae7997 3326 if (env->ops->btf_struct_access) {
22dc4a0f
AN
3327 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3328 off, size, atype, &btf_id);
27ae7997
MKL
3329 } else {
3330 if (atype != BPF_READ) {
3331 verbose(env, "only read is supported\n");
3332 return -EACCES;
3333 }
3334
22dc4a0f
AN
3335 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3336 atype, &btf_id);
27ae7997
MKL
3337 }
3338
9e15db66
AS
3339 if (ret < 0)
3340 return ret;
3341
41c48f3a 3342 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 3343 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
3344
3345 return 0;
3346}
3347
3348static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3349 struct bpf_reg_state *regs,
3350 int regno, int off, int size,
3351 enum bpf_access_type atype,
3352 int value_regno)
3353{
3354 struct bpf_reg_state *reg = regs + regno;
3355 struct bpf_map *map = reg->map_ptr;
3356 const struct btf_type *t;
3357 const char *tname;
3358 u32 btf_id;
3359 int ret;
3360
3361 if (!btf_vmlinux) {
3362 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3363 return -ENOTSUPP;
3364 }
3365
3366 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3367 verbose(env, "map_ptr access not supported for map type %d\n",
3368 map->map_type);
3369 return -ENOTSUPP;
3370 }
3371
3372 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3373 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3374
3375 if (!env->allow_ptr_to_map_access) {
3376 verbose(env,
3377 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3378 tname);
3379 return -EPERM;
9e15db66 3380 }
27ae7997 3381
41c48f3a
AI
3382 if (off < 0) {
3383 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3384 regno, tname, off);
3385 return -EACCES;
3386 }
3387
3388 if (atype != BPF_READ) {
3389 verbose(env, "only read from %s is supported\n", tname);
3390 return -EACCES;
3391 }
3392
22dc4a0f 3393 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
3394 if (ret < 0)
3395 return ret;
3396
3397 if (value_regno >= 0)
22dc4a0f 3398 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 3399
9e15db66
AS
3400 return 0;
3401}
3402
41c48f3a 3403
17a52670
AS
3404/* check whether memory at (regno + off) is accessible for t = (read | write)
3405 * if t==write, value_regno is a register which value is stored into memory
3406 * if t==read, value_regno is a register which will receive the value from memory
3407 * if t==write && value_regno==-1, some unknown value is stored into memory
3408 * if t==read && value_regno==-1, don't care what we read from memory
3409 */
ca369602
DB
3410static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3411 int off, int bpf_size, enum bpf_access_type t,
3412 int value_regno, bool strict_alignment_once)
17a52670 3413{
638f5b90
AS
3414 struct bpf_reg_state *regs = cur_regs(env);
3415 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3416 struct bpf_func_state *state;
17a52670
AS
3417 int size, err = 0;
3418
3419 size = bpf_size_to_bytes(bpf_size);
3420 if (size < 0)
3421 return size;
3422
f1174f77 3423 /* alignment checks will add in reg->off themselves */
ca369602 3424 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3425 if (err)
3426 return err;
17a52670 3427
f1174f77
EC
3428 /* for access checks, reg->off is just part of off */
3429 off += reg->off;
3430
3431 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3432 if (t == BPF_WRITE && value_regno >= 0 &&
3433 is_pointer_value(env, value_regno)) {
61bd5218 3434 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3435 return -EACCES;
3436 }
591fe988
DB
3437 err = check_map_access_type(env, regno, off, size, t);
3438 if (err)
3439 return err;
9fd29c08 3440 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3441 if (!err && t == BPF_READ && value_regno >= 0) {
3442 struct bpf_map *map = reg->map_ptr;
3443
3444 /* if map is read-only, track its contents as scalars */
3445 if (tnum_is_const(reg->var_off) &&
3446 bpf_map_is_rdonly(map) &&
3447 map->ops->map_direct_value_addr) {
3448 int map_off = off + reg->var_off.value;
3449 u64 val = 0;
3450
3451 err = bpf_map_direct_read(map, map_off, size,
3452 &val);
3453 if (err)
3454 return err;
3455
3456 regs[value_regno].type = SCALAR_VALUE;
3457 __mark_reg_known(&regs[value_regno], val);
3458 } else {
3459 mark_reg_unknown(env, regs, value_regno);
3460 }
3461 }
457f4436
AN
3462 } else if (reg->type == PTR_TO_MEM) {
3463 if (t == BPF_WRITE && value_regno >= 0 &&
3464 is_pointer_value(env, value_regno)) {
3465 verbose(env, "R%d leaks addr into mem\n", value_regno);
3466 return -EACCES;
3467 }
3468 err = check_mem_region_access(env, regno, off, size,
3469 reg->mem_size, false);
3470 if (!err && t == BPF_READ && value_regno >= 0)
3471 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3472 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3473 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 3474 struct btf *btf = NULL;
9e15db66 3475 u32 btf_id = 0;
19de99f7 3476
1be7f75d
AS
3477 if (t == BPF_WRITE && value_regno >= 0 &&
3478 is_pointer_value(env, value_regno)) {
61bd5218 3479 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3480 return -EACCES;
3481 }
f1174f77 3482
58990d1f
DB
3483 err = check_ctx_reg(env, reg, regno);
3484 if (err < 0)
3485 return err;
3486
22dc4a0f 3487 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
3488 if (err)
3489 verbose_linfo(env, insn_idx, "; ");
969bf05e 3490 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3491 /* ctx access returns either a scalar, or a
de8f3a83
DB
3492 * PTR_TO_PACKET[_META,_END]. In the latter
3493 * case, we know the offset is zero.
f1174f77 3494 */
46f8bc92 3495 if (reg_type == SCALAR_VALUE) {
638f5b90 3496 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3497 } else {
638f5b90 3498 mark_reg_known_zero(env, regs,
61bd5218 3499 value_regno);
46f8bc92
MKL
3500 if (reg_type_may_be_null(reg_type))
3501 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3502 /* A load of ctx field could have different
3503 * actual load size with the one encoded in the
3504 * insn. When the dst is PTR, it is for sure not
3505 * a sub-register.
3506 */
3507 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 3508 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
3509 reg_type == PTR_TO_BTF_ID_OR_NULL) {
3510 regs[value_regno].btf = btf;
9e15db66 3511 regs[value_regno].btf_id = btf_id;
22dc4a0f 3512 }
46f8bc92 3513 }
638f5b90 3514 regs[value_regno].type = reg_type;
969bf05e 3515 }
17a52670 3516
f1174f77 3517 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3518 off += reg->var_off.value;
e4298d25
DB
3519 err = check_stack_access(env, reg, off, size);
3520 if (err)
3521 return err;
8726679a 3522
f4d7e40a
AS
3523 state = func(env, reg);
3524 err = update_stack_depth(env, state, off);
3525 if (err)
3526 return err;
8726679a 3527
638f5b90 3528 if (t == BPF_WRITE)
61bd5218 3529 err = check_stack_write(env, state, off, size,
af86ca4e 3530 value_regno, insn_idx);
638f5b90 3531 else
61bd5218
JK
3532 err = check_stack_read(env, state, off, size,
3533 value_regno);
de8f3a83 3534 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3535 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3536 verbose(env, "cannot write into packet\n");
969bf05e
AS
3537 return -EACCES;
3538 }
4acf6c0b
BB
3539 if (t == BPF_WRITE && value_regno >= 0 &&
3540 is_pointer_value(env, value_regno)) {
61bd5218
JK
3541 verbose(env, "R%d leaks addr into packet\n",
3542 value_regno);
4acf6c0b
BB
3543 return -EACCES;
3544 }
9fd29c08 3545 err = check_packet_access(env, regno, off, size, false);
969bf05e 3546 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3547 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3548 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3549 if (t == BPF_WRITE && value_regno >= 0 &&
3550 is_pointer_value(env, value_regno)) {
3551 verbose(env, "R%d leaks addr into flow keys\n",
3552 value_regno);
3553 return -EACCES;
3554 }
3555
3556 err = check_flow_keys_access(env, off, size);
3557 if (!err && t == BPF_READ && value_regno >= 0)
3558 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3559 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3560 if (t == BPF_WRITE) {
46f8bc92
MKL
3561 verbose(env, "R%d cannot write into %s\n",
3562 regno, reg_type_str[reg->type]);
c64b7983
JS
3563 return -EACCES;
3564 }
5f456649 3565 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3566 if (!err && value_regno >= 0)
3567 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3568 } else if (reg->type == PTR_TO_TP_BUFFER) {
3569 err = check_tp_buffer_access(env, reg, regno, off, size);
3570 if (!err && t == BPF_READ && value_regno >= 0)
3571 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3572 } else if (reg->type == PTR_TO_BTF_ID) {
3573 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3574 value_regno);
41c48f3a
AI
3575 } else if (reg->type == CONST_PTR_TO_MAP) {
3576 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3577 value_regno);
afbf21dc
YS
3578 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3579 if (t == BPF_WRITE) {
3580 verbose(env, "R%d cannot write into %s\n",
3581 regno, reg_type_str[reg->type]);
3582 return -EACCES;
3583 }
f6dfbe31
CIK
3584 err = check_buffer_access(env, reg, regno, off, size, false,
3585 "rdonly",
afbf21dc
YS
3586 &env->prog->aux->max_rdonly_access);
3587 if (!err && value_regno >= 0)
3588 mark_reg_unknown(env, regs, value_regno);
3589 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3590 err = check_buffer_access(env, reg, regno, off, size, false,
3591 "rdwr",
afbf21dc
YS
3592 &env->prog->aux->max_rdwr_access);
3593 if (!err && t == BPF_READ && value_regno >= 0)
3594 mark_reg_unknown(env, regs, value_regno);
17a52670 3595 } else {
61bd5218
JK
3596 verbose(env, "R%d invalid mem access '%s'\n", regno,
3597 reg_type_str[reg->type]);
17a52670
AS
3598 return -EACCES;
3599 }
969bf05e 3600
f1174f77 3601 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3602 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3603 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3604 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3605 }
17a52670
AS
3606 return err;
3607}
3608
31fd8581 3609static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3610{
17a52670
AS
3611 int err;
3612
3613 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3614 insn->imm != 0) {
61bd5218 3615 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3616 return -EINVAL;
3617 }
3618
3619 /* check src1 operand */
dc503a8a 3620 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3621 if (err)
3622 return err;
3623
3624 /* check src2 operand */
dc503a8a 3625 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3626 if (err)
3627 return err;
3628
6bdf6abc 3629 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3630 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3631 return -EACCES;
3632 }
3633
ca369602 3634 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3635 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3636 is_flow_key_reg(env, insn->dst_reg) ||
3637 is_sk_reg(env, insn->dst_reg)) {
ca369602 3638 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3639 insn->dst_reg,
3640 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3641 return -EACCES;
3642 }
3643
17a52670 3644 /* check whether atomic_add can read the memory */
31fd8581 3645 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3646 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3647 if (err)
3648 return err;
3649
3650 /* check whether atomic_add can write into the same memory */
31fd8581 3651 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3652 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3653}
3654
2011fccf
AI
3655static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3656 int off, int access_size,
3657 bool zero_size_allowed)
3658{
3659 struct bpf_reg_state *reg = reg_state(env, regno);
3660
3661 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3662 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3663 if (tnum_is_const(reg->var_off)) {
3664 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3665 regno, off, access_size);
3666 } else {
3667 char tn_buf[48];
3668
3669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3670 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3671 regno, tn_buf, access_size);
3672 }
3673 return -EACCES;
3674 }
3675 return 0;
3676}
3677
17a52670
AS
3678/* when register 'regno' is passed into function that will read 'access_size'
3679 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3680 * and all elements of stack are initialized.
3681 * Unlike most pointer bounds-checking functions, this one doesn't take an
3682 * 'off' argument, so it has to add in reg->off itself.
17a52670 3683 */
58e2af8b 3684static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3685 int access_size, bool zero_size_allowed,
3686 struct bpf_call_arg_meta *meta)
17a52670 3687{
2a159c6f 3688 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3689 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3690 int err, min_off, max_off, i, j, slot, spi;
17a52670 3691
2011fccf
AI
3692 if (tnum_is_const(reg->var_off)) {
3693 min_off = max_off = reg->var_off.value + reg->off;
3694 err = __check_stack_boundary(env, regno, min_off, access_size,
3695 zero_size_allowed);
3696 if (err)
3697 return err;
3698 } else {
088ec26d
AI
3699 /* Variable offset is prohibited for unprivileged mode for
3700 * simplicity since it requires corresponding support in
3701 * Spectre masking for stack ALU.
3702 * See also retrieve_ptr_limit().
3703 */
2c78ee89 3704 if (!env->bypass_spec_v1) {
088ec26d 3705 char tn_buf[48];
f1174f77 3706
088ec26d
AI
3707 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3708 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3709 regno, tn_buf);
3710 return -EACCES;
3711 }
f2bcd05e
AI
3712 /* Only initialized buffer on stack is allowed to be accessed
3713 * with variable offset. With uninitialized buffer it's hard to
3714 * guarantee that whole memory is marked as initialized on
3715 * helper return since specific bounds are unknown what may
3716 * cause uninitialized stack leaking.
3717 */
3718 if (meta && meta->raw_mode)
3719 meta = NULL;
3720
107c26a7
AI
3721 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3722 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3723 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3724 regno);
3725 return -EACCES;
3726 }
2011fccf 3727 min_off = reg->smin_value + reg->off;
107c26a7 3728 max_off = reg->smax_value + reg->off;
2011fccf
AI
3729 err = __check_stack_boundary(env, regno, min_off, access_size,
3730 zero_size_allowed);
107c26a7
AI
3731 if (err) {
3732 verbose(env, "R%d min value is outside of stack bound\n",
3733 regno);
2011fccf 3734 return err;
107c26a7 3735 }
2011fccf
AI
3736 err = __check_stack_boundary(env, regno, max_off, access_size,
3737 zero_size_allowed);
107c26a7
AI
3738 if (err) {
3739 verbose(env, "R%d max value is outside of stack bound\n",
3740 regno);
2011fccf 3741 return err;
107c26a7 3742 }
17a52670
AS
3743 }
3744
435faee1
DB
3745 if (meta && meta->raw_mode) {
3746 meta->access_size = access_size;
3747 meta->regno = regno;
3748 return 0;
3749 }
3750
2011fccf 3751 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3752 u8 *stype;
3753
2011fccf 3754 slot = -i - 1;
638f5b90 3755 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3756 if (state->allocated_stack <= slot)
3757 goto err;
3758 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3759 if (*stype == STACK_MISC)
3760 goto mark;
3761 if (*stype == STACK_ZERO) {
3762 /* helper can write anything into the stack */
3763 *stype = STACK_MISC;
3764 goto mark;
17a52670 3765 }
1d68f22b
YS
3766
3767 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3768 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3769 goto mark;
3770
f7cf25b2 3771 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
cd17d38f
YS
3772 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3773 env->allow_ptr_leaks)) {
f54c7898 3774 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3775 for (j = 0; j < BPF_REG_SIZE; j++)
3776 state->stack[spi].slot_type[j] = STACK_MISC;
3777 goto mark;
3778 }
3779
cc2b14d5 3780err:
2011fccf
AI
3781 if (tnum_is_const(reg->var_off)) {
3782 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3783 min_off, i - min_off, access_size);
3784 } else {
3785 char tn_buf[48];
3786
3787 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3788 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3789 tn_buf, i - min_off, access_size);
3790 }
cc2b14d5
AS
3791 return -EACCES;
3792mark:
3793 /* reading any byte out of 8-byte 'spill_slot' will cause
3794 * the whole slot to be marked as 'read'
3795 */
679c782d 3796 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3797 state->stack[spi].spilled_ptr.parent,
3798 REG_LIVE_READ64);
17a52670 3799 }
2011fccf 3800 return update_stack_depth(env, state, min_off);
17a52670
AS
3801}
3802
06c1c049
GB
3803static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3804 int access_size, bool zero_size_allowed,
3805 struct bpf_call_arg_meta *meta)
3806{
638f5b90 3807 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3808
f1174f77 3809 switch (reg->type) {
06c1c049 3810 case PTR_TO_PACKET:
de8f3a83 3811 case PTR_TO_PACKET_META:
9fd29c08
YS
3812 return check_packet_access(env, regno, reg->off, access_size,
3813 zero_size_allowed);
06c1c049 3814 case PTR_TO_MAP_VALUE:
591fe988
DB
3815 if (check_map_access_type(env, regno, reg->off, access_size,
3816 meta && meta->raw_mode ? BPF_WRITE :
3817 BPF_READ))
3818 return -EACCES;
9fd29c08
YS
3819 return check_map_access(env, regno, reg->off, access_size,
3820 zero_size_allowed);
457f4436
AN
3821 case PTR_TO_MEM:
3822 return check_mem_region_access(env, regno, reg->off,
3823 access_size, reg->mem_size,
3824 zero_size_allowed);
afbf21dc
YS
3825 case PTR_TO_RDONLY_BUF:
3826 if (meta && meta->raw_mode)
3827 return -EACCES;
3828 return check_buffer_access(env, reg, regno, reg->off,
3829 access_size, zero_size_allowed,
3830 "rdonly",
3831 &env->prog->aux->max_rdonly_access);
3832 case PTR_TO_RDWR_BUF:
3833 return check_buffer_access(env, reg, regno, reg->off,
3834 access_size, zero_size_allowed,
3835 "rdwr",
3836 &env->prog->aux->max_rdwr_access);
0d004c02 3837 case PTR_TO_STACK:
06c1c049
GB
3838 return check_stack_boundary(env, regno, access_size,
3839 zero_size_allowed, meta);
0d004c02
LB
3840 default: /* scalar_value or invalid ptr */
3841 /* Allow zero-byte read from NULL, regardless of pointer type */
3842 if (zero_size_allowed && access_size == 0 &&
3843 register_is_null(reg))
3844 return 0;
3845
3846 verbose(env, "R%d type=%s expected=%s\n", regno,
3847 reg_type_str[reg->type],
3848 reg_type_str[PTR_TO_STACK]);
3849 return -EACCES;
06c1c049
GB
3850 }
3851}
3852
d83525ca
AS
3853/* Implementation details:
3854 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3855 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3856 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3857 * value_or_null->value transition, since the verifier only cares about
3858 * the range of access to valid map value pointer and doesn't care about actual
3859 * address of the map element.
3860 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3861 * reg->id > 0 after value_or_null->value transition. By doing so
3862 * two bpf_map_lookups will be considered two different pointers that
3863 * point to different bpf_spin_locks.
3864 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3865 * dead-locks.
3866 * Since only one bpf_spin_lock is allowed the checks are simpler than
3867 * reg_is_refcounted() logic. The verifier needs to remember only
3868 * one spin_lock instead of array of acquired_refs.
3869 * cur_state->active_spin_lock remembers which map value element got locked
3870 * and clears it after bpf_spin_unlock.
3871 */
3872static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3873 bool is_lock)
3874{
3875 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3876 struct bpf_verifier_state *cur = env->cur_state;
3877 bool is_const = tnum_is_const(reg->var_off);
3878 struct bpf_map *map = reg->map_ptr;
3879 u64 val = reg->var_off.value;
3880
d83525ca
AS
3881 if (!is_const) {
3882 verbose(env,
3883 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3884 regno);
3885 return -EINVAL;
3886 }
3887 if (!map->btf) {
3888 verbose(env,
3889 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3890 map->name);
3891 return -EINVAL;
3892 }
3893 if (!map_value_has_spin_lock(map)) {
3894 if (map->spin_lock_off == -E2BIG)
3895 verbose(env,
3896 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3897 map->name);
3898 else if (map->spin_lock_off == -ENOENT)
3899 verbose(env,
3900 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3901 map->name);
3902 else
3903 verbose(env,
3904 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3905 map->name);
3906 return -EINVAL;
3907 }
3908 if (map->spin_lock_off != val + reg->off) {
3909 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3910 val + reg->off);
3911 return -EINVAL;
3912 }
3913 if (is_lock) {
3914 if (cur->active_spin_lock) {
3915 verbose(env,
3916 "Locking two bpf_spin_locks are not allowed\n");
3917 return -EINVAL;
3918 }
3919 cur->active_spin_lock = reg->id;
3920 } else {
3921 if (!cur->active_spin_lock) {
3922 verbose(env, "bpf_spin_unlock without taking a lock\n");
3923 return -EINVAL;
3924 }
3925 if (cur->active_spin_lock != reg->id) {
3926 verbose(env, "bpf_spin_unlock of different lock\n");
3927 return -EINVAL;
3928 }
3929 cur->active_spin_lock = 0;
3930 }
3931 return 0;
3932}
3933
90133415
DB
3934static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3935{
3936 return type == ARG_PTR_TO_MEM ||
3937 type == ARG_PTR_TO_MEM_OR_NULL ||
3938 type == ARG_PTR_TO_UNINIT_MEM;
3939}
3940
3941static bool arg_type_is_mem_size(enum bpf_arg_type type)
3942{
3943 return type == ARG_CONST_SIZE ||
3944 type == ARG_CONST_SIZE_OR_ZERO;
3945}
3946
457f4436
AN
3947static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3948{
3949 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3950}
3951
57c3bb72
AI
3952static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3953{
3954 return type == ARG_PTR_TO_INT ||
3955 type == ARG_PTR_TO_LONG;
3956}
3957
3958static int int_ptr_type_to_size(enum bpf_arg_type type)
3959{
3960 if (type == ARG_PTR_TO_INT)
3961 return sizeof(u32);
3962 else if (type == ARG_PTR_TO_LONG)
3963 return sizeof(u64);
3964
3965 return -EINVAL;
3966}
3967
912f442c
LB
3968static int resolve_map_arg_type(struct bpf_verifier_env *env,
3969 const struct bpf_call_arg_meta *meta,
3970 enum bpf_arg_type *arg_type)
3971{
3972 if (!meta->map_ptr) {
3973 /* kernel subsystem misconfigured verifier */
3974 verbose(env, "invalid map_ptr to access map->type\n");
3975 return -EACCES;
3976 }
3977
3978 switch (meta->map_ptr->map_type) {
3979 case BPF_MAP_TYPE_SOCKMAP:
3980 case BPF_MAP_TYPE_SOCKHASH:
3981 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 3982 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
3983 } else {
3984 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3985 return -EINVAL;
3986 }
3987 break;
3988
3989 default:
3990 break;
3991 }
3992 return 0;
3993}
3994
f79e7ea5
LB
3995struct bpf_reg_types {
3996 const enum bpf_reg_type types[10];
1df8f55a 3997 u32 *btf_id;
f79e7ea5
LB
3998};
3999
4000static const struct bpf_reg_types map_key_value_types = {
4001 .types = {
4002 PTR_TO_STACK,
4003 PTR_TO_PACKET,
4004 PTR_TO_PACKET_META,
4005 PTR_TO_MAP_VALUE,
4006 },
4007};
4008
4009static const struct bpf_reg_types sock_types = {
4010 .types = {
4011 PTR_TO_SOCK_COMMON,
4012 PTR_TO_SOCKET,
4013 PTR_TO_TCP_SOCK,
4014 PTR_TO_XDP_SOCK,
4015 },
4016};
4017
49a2a4d4 4018#ifdef CONFIG_NET
1df8f55a
MKL
4019static const struct bpf_reg_types btf_id_sock_common_types = {
4020 .types = {
4021 PTR_TO_SOCK_COMMON,
4022 PTR_TO_SOCKET,
4023 PTR_TO_TCP_SOCK,
4024 PTR_TO_XDP_SOCK,
4025 PTR_TO_BTF_ID,
4026 },
4027 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4028};
49a2a4d4 4029#endif
1df8f55a 4030
f79e7ea5
LB
4031static const struct bpf_reg_types mem_types = {
4032 .types = {
4033 PTR_TO_STACK,
4034 PTR_TO_PACKET,
4035 PTR_TO_PACKET_META,
4036 PTR_TO_MAP_VALUE,
4037 PTR_TO_MEM,
4038 PTR_TO_RDONLY_BUF,
4039 PTR_TO_RDWR_BUF,
4040 },
4041};
4042
4043static const struct bpf_reg_types int_ptr_types = {
4044 .types = {
4045 PTR_TO_STACK,
4046 PTR_TO_PACKET,
4047 PTR_TO_PACKET_META,
4048 PTR_TO_MAP_VALUE,
4049 },
4050};
4051
4052static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4053static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4054static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4055static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4056static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4057static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4058static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 4059static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
f79e7ea5 4060
0789e13b 4061static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4062 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4063 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4064 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4065 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4066 [ARG_CONST_SIZE] = &scalar_types,
4067 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4068 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4069 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4070 [ARG_PTR_TO_CTX] = &context_types,
4071 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4072 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 4073#ifdef CONFIG_NET
1df8f55a 4074 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 4075#endif
f79e7ea5
LB
4076 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4077 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4078 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4079 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4080 [ARG_PTR_TO_MEM] = &mem_types,
4081 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4082 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4083 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4084 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4085 [ARG_PTR_TO_INT] = &int_ptr_types,
4086 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 4087 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
f79e7ea5
LB
4088};
4089
4090static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4091 enum bpf_arg_type arg_type,
4092 const u32 *arg_btf_id)
f79e7ea5
LB
4093{
4094 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4095 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4096 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4097 int i, j;
4098
a968d5e2
MKL
4099 compatible = compatible_reg_types[arg_type];
4100 if (!compatible) {
4101 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4102 return -EFAULT;
4103 }
4104
f79e7ea5
LB
4105 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4106 expected = compatible->types[i];
4107 if (expected == NOT_INIT)
4108 break;
4109
4110 if (type == expected)
a968d5e2 4111 goto found;
f79e7ea5
LB
4112 }
4113
4114 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4115 for (j = 0; j + 1 < i; j++)
4116 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4117 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4118 return -EACCES;
a968d5e2
MKL
4119
4120found:
4121 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4122 if (!arg_btf_id) {
4123 if (!compatible->btf_id) {
4124 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4125 return -EFAULT;
4126 }
4127 arg_btf_id = compatible->btf_id;
4128 }
4129
22dc4a0f
AN
4130 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4131 btf_vmlinux, *arg_btf_id)) {
a968d5e2 4132 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
4133 regno, kernel_type_name(reg->btf, reg->btf_id),
4134 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
4135 return -EACCES;
4136 }
4137
4138 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4139 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4140 regno);
4141 return -EACCES;
4142 }
4143 }
4144
4145 return 0;
f79e7ea5
LB
4146}
4147
af7ec138
YS
4148static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4149 struct bpf_call_arg_meta *meta,
4150 const struct bpf_func_proto *fn)
17a52670 4151{
af7ec138 4152 u32 regno = BPF_REG_1 + arg;
638f5b90 4153 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4154 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4155 enum bpf_reg_type type = reg->type;
17a52670
AS
4156 int err = 0;
4157
80f1d68c 4158 if (arg_type == ARG_DONTCARE)
17a52670
AS
4159 return 0;
4160
dc503a8a
EC
4161 err = check_reg_arg(env, regno, SRC_OP);
4162 if (err)
4163 return err;
17a52670 4164
1be7f75d
AS
4165 if (arg_type == ARG_ANYTHING) {
4166 if (is_pointer_value(env, regno)) {
61bd5218
JK
4167 verbose(env, "R%d leaks addr into helper function\n",
4168 regno);
1be7f75d
AS
4169 return -EACCES;
4170 }
80f1d68c 4171 return 0;
1be7f75d 4172 }
80f1d68c 4173
de8f3a83 4174 if (type_is_pkt_pointer(type) &&
3a0af8fd 4175 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4176 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4177 return -EACCES;
4178 }
4179
912f442c
LB
4180 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4181 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4182 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4183 err = resolve_map_arg_type(env, meta, &arg_type);
4184 if (err)
4185 return err;
4186 }
4187
fd1b0d60
LB
4188 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4189 /* A NULL register has a SCALAR_VALUE type, so skip
4190 * type checking.
4191 */
4192 goto skip_type_check;
4193
a968d5e2 4194 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4195 if (err)
4196 return err;
4197
a968d5e2 4198 if (type == PTR_TO_CTX) {
feec7040
LB
4199 err = check_ctx_reg(env, reg, regno);
4200 if (err < 0)
4201 return err;
d7b9454a
LB
4202 }
4203
fd1b0d60 4204skip_type_check:
02f7c958 4205 if (reg->ref_obj_id) {
457f4436
AN
4206 if (meta->ref_obj_id) {
4207 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4208 regno, reg->ref_obj_id,
4209 meta->ref_obj_id);
4210 return -EFAULT;
4211 }
4212 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4213 }
4214
17a52670
AS
4215 if (arg_type == ARG_CONST_MAP_PTR) {
4216 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4217 meta->map_ptr = reg->map_ptr;
17a52670
AS
4218 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4219 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4220 * check that [key, key + map->key_size) are within
4221 * stack limits and initialized
4222 */
33ff9823 4223 if (!meta->map_ptr) {
17a52670
AS
4224 /* in function declaration map_ptr must come before
4225 * map_key, so that it's verified and known before
4226 * we have to check map_key here. Otherwise it means
4227 * that kernel subsystem misconfigured verifier
4228 */
61bd5218 4229 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4230 return -EACCES;
4231 }
d71962f3
PC
4232 err = check_helper_mem_access(env, regno,
4233 meta->map_ptr->key_size, false,
4234 NULL);
2ea864c5 4235 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4236 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4237 !register_is_null(reg)) ||
2ea864c5 4238 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4239 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4240 * check [value, value + map->value_size) validity
4241 */
33ff9823 4242 if (!meta->map_ptr) {
17a52670 4243 /* kernel subsystem misconfigured verifier */
61bd5218 4244 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4245 return -EACCES;
4246 }
2ea864c5 4247 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4248 err = check_helper_mem_access(env, regno,
4249 meta->map_ptr->value_size, false,
2ea864c5 4250 meta);
eaa6bcb7
HL
4251 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4252 if (!reg->btf_id) {
4253 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4254 return -EACCES;
4255 }
22dc4a0f 4256 meta->ret_btf = reg->btf;
eaa6bcb7 4257 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
4258 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4259 if (meta->func_id == BPF_FUNC_spin_lock) {
4260 if (process_spin_lock(env, regno, true))
4261 return -EACCES;
4262 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4263 if (process_spin_lock(env, regno, false))
4264 return -EACCES;
4265 } else {
4266 verbose(env, "verifier internal error\n");
4267 return -EFAULT;
4268 }
a2bbe7cc
LB
4269 } else if (arg_type_is_mem_ptr(arg_type)) {
4270 /* The access to this pointer is only checked when we hit the
4271 * next is_mem_size argument below.
4272 */
4273 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 4274 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4275 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4276
10060503
JF
4277 /* This is used to refine r0 return value bounds for helpers
4278 * that enforce this value as an upper bound on return values.
4279 * See do_refine_retval_range() for helpers that can refine
4280 * the return value. C type of helper is u32 so we pull register
4281 * bound from umax_value however, if negative verifier errors
4282 * out. Only upper bounds can be learned because retval is an
4283 * int type and negative retvals are allowed.
849fa506 4284 */
10060503 4285 meta->msize_max_value = reg->umax_value;
849fa506 4286
f1174f77
EC
4287 /* The register is SCALAR_VALUE; the access check
4288 * happens using its boundaries.
06c1c049 4289 */
f1174f77 4290 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4291 /* For unprivileged variable accesses, disable raw
4292 * mode so that the program is required to
4293 * initialize all the memory that the helper could
4294 * just partially fill up.
4295 */
4296 meta = NULL;
4297
b03c9f9f 4298 if (reg->smin_value < 0) {
61bd5218 4299 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4300 regno);
4301 return -EACCES;
4302 }
06c1c049 4303
b03c9f9f 4304 if (reg->umin_value == 0) {
f1174f77
EC
4305 err = check_helper_mem_access(env, regno - 1, 0,
4306 zero_size_allowed,
4307 meta);
06c1c049
GB
4308 if (err)
4309 return err;
06c1c049 4310 }
f1174f77 4311
b03c9f9f 4312 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4313 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4314 regno);
4315 return -EACCES;
4316 }
4317 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4318 reg->umax_value,
f1174f77 4319 zero_size_allowed, meta);
b5dc0163
AS
4320 if (!err)
4321 err = mark_chain_precision(env, regno);
457f4436
AN
4322 } else if (arg_type_is_alloc_size(arg_type)) {
4323 if (!tnum_is_const(reg->var_off)) {
4324 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4325 regno);
4326 return -EACCES;
4327 }
4328 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4329 } else if (arg_type_is_int_ptr(arg_type)) {
4330 int size = int_ptr_type_to_size(arg_type);
4331
4332 err = check_helper_mem_access(env, regno, size, false, meta);
4333 if (err)
4334 return err;
4335 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4336 }
4337
4338 return err;
4339}
4340
0126240f
LB
4341static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4342{
4343 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4344 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4345
4346 if (func_id != BPF_FUNC_map_update_elem)
4347 return false;
4348
4349 /* It's not possible to get access to a locked struct sock in these
4350 * contexts, so updating is safe.
4351 */
4352 switch (type) {
4353 case BPF_PROG_TYPE_TRACING:
4354 if (eatype == BPF_TRACE_ITER)
4355 return true;
4356 break;
4357 case BPF_PROG_TYPE_SOCKET_FILTER:
4358 case BPF_PROG_TYPE_SCHED_CLS:
4359 case BPF_PROG_TYPE_SCHED_ACT:
4360 case BPF_PROG_TYPE_XDP:
4361 case BPF_PROG_TYPE_SK_REUSEPORT:
4362 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4363 case BPF_PROG_TYPE_SK_LOOKUP:
4364 return true;
4365 default:
4366 break;
4367 }
4368
4369 verbose(env, "cannot update sockmap in this context\n");
4370 return false;
4371}
4372
e411901c
MF
4373static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4374{
4375 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4376}
4377
61bd5218
JK
4378static int check_map_func_compatibility(struct bpf_verifier_env *env,
4379 struct bpf_map *map, int func_id)
35578d79 4380{
35578d79
KX
4381 if (!map)
4382 return 0;
4383
6aff67c8
AS
4384 /* We need a two way check, first is from map perspective ... */
4385 switch (map->map_type) {
4386 case BPF_MAP_TYPE_PROG_ARRAY:
4387 if (func_id != BPF_FUNC_tail_call)
4388 goto error;
4389 break;
4390 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4391 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4392 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4393 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4394 func_id != BPF_FUNC_perf_event_read_value &&
4395 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4396 goto error;
4397 break;
457f4436
AN
4398 case BPF_MAP_TYPE_RINGBUF:
4399 if (func_id != BPF_FUNC_ringbuf_output &&
4400 func_id != BPF_FUNC_ringbuf_reserve &&
4401 func_id != BPF_FUNC_ringbuf_submit &&
4402 func_id != BPF_FUNC_ringbuf_discard &&
4403 func_id != BPF_FUNC_ringbuf_query)
4404 goto error;
4405 break;
6aff67c8
AS
4406 case BPF_MAP_TYPE_STACK_TRACE:
4407 if (func_id != BPF_FUNC_get_stackid)
4408 goto error;
4409 break;
4ed8ec52 4410 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4411 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4412 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4413 goto error;
4414 break;
cd339431 4415 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4416 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4417 if (func_id != BPF_FUNC_get_local_storage)
4418 goto error;
4419 break;
546ac1ff 4420 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4421 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4422 if (func_id != BPF_FUNC_redirect_map &&
4423 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4424 goto error;
4425 break;
fbfc504a
BT
4426 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4427 * appear.
4428 */
6710e112
JDB
4429 case BPF_MAP_TYPE_CPUMAP:
4430 if (func_id != BPF_FUNC_redirect_map)
4431 goto error;
4432 break;
fada7fdc
JL
4433 case BPF_MAP_TYPE_XSKMAP:
4434 if (func_id != BPF_FUNC_redirect_map &&
4435 func_id != BPF_FUNC_map_lookup_elem)
4436 goto error;
4437 break;
56f668df 4438 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4439 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4440 if (func_id != BPF_FUNC_map_lookup_elem)
4441 goto error;
16a43625 4442 break;
174a79ff
JF
4443 case BPF_MAP_TYPE_SOCKMAP:
4444 if (func_id != BPF_FUNC_sk_redirect_map &&
4445 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4446 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4447 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4448 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4449 func_id != BPF_FUNC_map_lookup_elem &&
4450 !may_update_sockmap(env, func_id))
174a79ff
JF
4451 goto error;
4452 break;
81110384
JF
4453 case BPF_MAP_TYPE_SOCKHASH:
4454 if (func_id != BPF_FUNC_sk_redirect_hash &&
4455 func_id != BPF_FUNC_sock_hash_update &&
4456 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4457 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4458 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4459 func_id != BPF_FUNC_map_lookup_elem &&
4460 !may_update_sockmap(env, func_id))
81110384
JF
4461 goto error;
4462 break;
2dbb9b9e
MKL
4463 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4464 if (func_id != BPF_FUNC_sk_select_reuseport)
4465 goto error;
4466 break;
f1a2e44a
MV
4467 case BPF_MAP_TYPE_QUEUE:
4468 case BPF_MAP_TYPE_STACK:
4469 if (func_id != BPF_FUNC_map_peek_elem &&
4470 func_id != BPF_FUNC_map_pop_elem &&
4471 func_id != BPF_FUNC_map_push_elem)
4472 goto error;
4473 break;
6ac99e8f
MKL
4474 case BPF_MAP_TYPE_SK_STORAGE:
4475 if (func_id != BPF_FUNC_sk_storage_get &&
4476 func_id != BPF_FUNC_sk_storage_delete)
4477 goto error;
4478 break;
8ea63684
KS
4479 case BPF_MAP_TYPE_INODE_STORAGE:
4480 if (func_id != BPF_FUNC_inode_storage_get &&
4481 func_id != BPF_FUNC_inode_storage_delete)
4482 goto error;
4483 break;
4cf1bc1f
KS
4484 case BPF_MAP_TYPE_TASK_STORAGE:
4485 if (func_id != BPF_FUNC_task_storage_get &&
4486 func_id != BPF_FUNC_task_storage_delete)
4487 goto error;
4488 break;
6aff67c8
AS
4489 default:
4490 break;
4491 }
4492
4493 /* ... and second from the function itself. */
4494 switch (func_id) {
4495 case BPF_FUNC_tail_call:
4496 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4497 goto error;
e411901c
MF
4498 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4499 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
4500 return -EINVAL;
4501 }
6aff67c8
AS
4502 break;
4503 case BPF_FUNC_perf_event_read:
4504 case BPF_FUNC_perf_event_output:
908432ca 4505 case BPF_FUNC_perf_event_read_value:
a7658e1a 4506 case BPF_FUNC_skb_output:
d831ee84 4507 case BPF_FUNC_xdp_output:
6aff67c8
AS
4508 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4509 goto error;
4510 break;
4511 case BPF_FUNC_get_stackid:
4512 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4513 goto error;
4514 break;
60d20f91 4515 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4516 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4517 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4518 goto error;
4519 break;
97f91a7c 4520 case BPF_FUNC_redirect_map:
9c270af3 4521 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4522 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4523 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4524 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4525 goto error;
4526 break;
174a79ff 4527 case BPF_FUNC_sk_redirect_map:
4f738adb 4528 case BPF_FUNC_msg_redirect_map:
81110384 4529 case BPF_FUNC_sock_map_update:
174a79ff
JF
4530 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4531 goto error;
4532 break;
81110384
JF
4533 case BPF_FUNC_sk_redirect_hash:
4534 case BPF_FUNC_msg_redirect_hash:
4535 case BPF_FUNC_sock_hash_update:
4536 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4537 goto error;
4538 break;
cd339431 4539 case BPF_FUNC_get_local_storage:
b741f163
RG
4540 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4541 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4542 goto error;
4543 break;
2dbb9b9e 4544 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4545 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4546 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4547 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4548 goto error;
4549 break;
f1a2e44a
MV
4550 case BPF_FUNC_map_peek_elem:
4551 case BPF_FUNC_map_pop_elem:
4552 case BPF_FUNC_map_push_elem:
4553 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4554 map->map_type != BPF_MAP_TYPE_STACK)
4555 goto error;
4556 break;
6ac99e8f
MKL
4557 case BPF_FUNC_sk_storage_get:
4558 case BPF_FUNC_sk_storage_delete:
4559 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4560 goto error;
4561 break;
8ea63684
KS
4562 case BPF_FUNC_inode_storage_get:
4563 case BPF_FUNC_inode_storage_delete:
4564 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4565 goto error;
4566 break;
4cf1bc1f
KS
4567 case BPF_FUNC_task_storage_get:
4568 case BPF_FUNC_task_storage_delete:
4569 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4570 goto error;
4571 break;
6aff67c8
AS
4572 default:
4573 break;
35578d79
KX
4574 }
4575
4576 return 0;
6aff67c8 4577error:
61bd5218 4578 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4579 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4580 return -EINVAL;
35578d79
KX
4581}
4582
90133415 4583static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4584{
4585 int count = 0;
4586
39f19ebb 4587 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4588 count++;
39f19ebb 4589 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4590 count++;
39f19ebb 4591 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4592 count++;
39f19ebb 4593 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4594 count++;
39f19ebb 4595 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4596 count++;
4597
90133415
DB
4598 /* We only support one arg being in raw mode at the moment,
4599 * which is sufficient for the helper functions we have
4600 * right now.
4601 */
4602 return count <= 1;
4603}
4604
4605static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4606 enum bpf_arg_type arg_next)
4607{
4608 return (arg_type_is_mem_ptr(arg_curr) &&
4609 !arg_type_is_mem_size(arg_next)) ||
4610 (!arg_type_is_mem_ptr(arg_curr) &&
4611 arg_type_is_mem_size(arg_next));
4612}
4613
4614static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4615{
4616 /* bpf_xxx(..., buf, len) call will access 'len'
4617 * bytes from memory 'buf'. Both arg types need
4618 * to be paired, so make sure there's no buggy
4619 * helper function specification.
4620 */
4621 if (arg_type_is_mem_size(fn->arg1_type) ||
4622 arg_type_is_mem_ptr(fn->arg5_type) ||
4623 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4624 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4625 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4626 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4627 return false;
4628
4629 return true;
4630}
4631
1b986589 4632static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4633{
4634 int count = 0;
4635
1b986589 4636 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4637 count++;
1b986589 4638 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4639 count++;
1b986589 4640 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4641 count++;
1b986589 4642 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4643 count++;
1b986589 4644 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4645 count++;
4646
1b986589
MKL
4647 /* A reference acquiring function cannot acquire
4648 * another refcounted ptr.
4649 */
64d85290 4650 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4651 return false;
4652
fd978bf7
JS
4653 /* We only support one arg being unreferenced at the moment,
4654 * which is sufficient for the helper functions we have right now.
4655 */
4656 return count <= 1;
4657}
4658
9436ef6e
LB
4659static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4660{
4661 int i;
4662
1df8f55a 4663 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
4664 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4665 return false;
4666
1df8f55a
MKL
4667 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4668 return false;
4669 }
4670
9436ef6e
LB
4671 return true;
4672}
4673
1b986589 4674static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4675{
4676 return check_raw_mode_ok(fn) &&
fd978bf7 4677 check_arg_pair_ok(fn) &&
9436ef6e 4678 check_btf_id_ok(fn) &&
1b986589 4679 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4680}
4681
de8f3a83
DB
4682/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4683 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4684 */
f4d7e40a
AS
4685static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4686 struct bpf_func_state *state)
969bf05e 4687{
58e2af8b 4688 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4689 int i;
4690
4691 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4692 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4693 mark_reg_unknown(env, regs, i);
969bf05e 4694
f3709f69
JS
4695 bpf_for_each_spilled_reg(i, state, reg) {
4696 if (!reg)
969bf05e 4697 continue;
de8f3a83 4698 if (reg_is_pkt_pointer_any(reg))
f54c7898 4699 __mark_reg_unknown(env, reg);
969bf05e
AS
4700 }
4701}
4702
f4d7e40a
AS
4703static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4704{
4705 struct bpf_verifier_state *vstate = env->cur_state;
4706 int i;
4707
4708 for (i = 0; i <= vstate->curframe; i++)
4709 __clear_all_pkt_pointers(env, vstate->frame[i]);
4710}
4711
6d94e741
AS
4712enum {
4713 AT_PKT_END = -1,
4714 BEYOND_PKT_END = -2,
4715};
4716
4717static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4718{
4719 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4720 struct bpf_reg_state *reg = &state->regs[regn];
4721
4722 if (reg->type != PTR_TO_PACKET)
4723 /* PTR_TO_PACKET_META is not supported yet */
4724 return;
4725
4726 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4727 * How far beyond pkt_end it goes is unknown.
4728 * if (!range_open) it's the case of pkt >= pkt_end
4729 * if (range_open) it's the case of pkt > pkt_end
4730 * hence this pointer is at least 1 byte bigger than pkt_end
4731 */
4732 if (range_open)
4733 reg->range = BEYOND_PKT_END;
4734 else
4735 reg->range = AT_PKT_END;
4736}
4737
fd978bf7 4738static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4739 struct bpf_func_state *state,
4740 int ref_obj_id)
fd978bf7
JS
4741{
4742 struct bpf_reg_state *regs = state->regs, *reg;
4743 int i;
4744
4745 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4746 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4747 mark_reg_unknown(env, regs, i);
4748
4749 bpf_for_each_spilled_reg(i, state, reg) {
4750 if (!reg)
4751 continue;
1b986589 4752 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4753 __mark_reg_unknown(env, reg);
fd978bf7
JS
4754 }
4755}
4756
4757/* The pointer with the specified id has released its reference to kernel
4758 * resources. Identify all copies of the same pointer and clear the reference.
4759 */
4760static int release_reference(struct bpf_verifier_env *env,
1b986589 4761 int ref_obj_id)
fd978bf7
JS
4762{
4763 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4764 int err;
fd978bf7
JS
4765 int i;
4766
1b986589
MKL
4767 err = release_reference_state(cur_func(env), ref_obj_id);
4768 if (err)
4769 return err;
4770
fd978bf7 4771 for (i = 0; i <= vstate->curframe; i++)
1b986589 4772 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4773
1b986589 4774 return 0;
fd978bf7
JS
4775}
4776
51c39bb1
AS
4777static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4778 struct bpf_reg_state *regs)
4779{
4780 int i;
4781
4782 /* after the call registers r0 - r5 were scratched */
4783 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4784 mark_reg_not_init(env, regs, caller_saved[i]);
4785 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4786 }
4787}
4788
f4d7e40a
AS
4789static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4790 int *insn_idx)
4791{
4792 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4793 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4794 struct bpf_func_state *caller, *callee;
fd978bf7 4795 int i, err, subprog, target_insn;
51c39bb1 4796 bool is_global = false;
f4d7e40a 4797
aada9ce6 4798 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4799 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4800 state->curframe + 2);
f4d7e40a
AS
4801 return -E2BIG;
4802 }
4803
4804 target_insn = *insn_idx + insn->imm;
4805 subprog = find_subprog(env, target_insn + 1);
4806 if (subprog < 0) {
4807 verbose(env, "verifier bug. No program starts at insn %d\n",
4808 target_insn + 1);
4809 return -EFAULT;
4810 }
4811
4812 caller = state->frame[state->curframe];
4813 if (state->frame[state->curframe + 1]) {
4814 verbose(env, "verifier bug. Frame %d already allocated\n",
4815 state->curframe + 1);
4816 return -EFAULT;
4817 }
4818
51c39bb1
AS
4819 func_info_aux = env->prog->aux->func_info_aux;
4820 if (func_info_aux)
4821 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4822 err = btf_check_func_arg_match(env, subprog, caller->regs);
4823 if (err == -EFAULT)
4824 return err;
4825 if (is_global) {
4826 if (err) {
4827 verbose(env, "Caller passes invalid args into func#%d\n",
4828 subprog);
4829 return err;
4830 } else {
4831 if (env->log.level & BPF_LOG_LEVEL)
4832 verbose(env,
4833 "Func#%d is global and valid. Skipping.\n",
4834 subprog);
4835 clear_caller_saved_regs(env, caller->regs);
4836
1f0a2930 4837 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 4838 mark_reg_unknown(env, caller->regs, BPF_REG_0);
1f0a2930 4839 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
4840
4841 /* continue with next insn after call */
4842 return 0;
4843 }
4844 }
4845
f4d7e40a
AS
4846 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4847 if (!callee)
4848 return -ENOMEM;
4849 state->frame[state->curframe + 1] = callee;
4850
4851 /* callee cannot access r0, r6 - r9 for reading and has to write
4852 * into its own stack before reading from it.
4853 * callee can read/write into caller's stack
4854 */
4855 init_func_state(env, callee,
4856 /* remember the callsite, it will be used by bpf_exit */
4857 *insn_idx /* callsite */,
4858 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4859 subprog /* subprog number within this prog */);
f4d7e40a 4860
fd978bf7
JS
4861 /* Transfer references to the callee */
4862 err = transfer_reference_state(callee, caller);
4863 if (err)
4864 return err;
4865
679c782d
EC
4866 /* copy r1 - r5 args that callee can access. The copy includes parent
4867 * pointers, which connects us up to the liveness chain
4868 */
f4d7e40a
AS
4869 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4870 callee->regs[i] = caller->regs[i];
4871
51c39bb1 4872 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4873
4874 /* only increment it after check_reg_arg() finished */
4875 state->curframe++;
4876
4877 /* and go analyze first insn of the callee */
4878 *insn_idx = target_insn;
4879
06ee7115 4880 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4881 verbose(env, "caller:\n");
4882 print_verifier_state(env, caller);
4883 verbose(env, "callee:\n");
4884 print_verifier_state(env, callee);
4885 }
4886 return 0;
4887}
4888
4889static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4890{
4891 struct bpf_verifier_state *state = env->cur_state;
4892 struct bpf_func_state *caller, *callee;
4893 struct bpf_reg_state *r0;
fd978bf7 4894 int err;
f4d7e40a
AS
4895
4896 callee = state->frame[state->curframe];
4897 r0 = &callee->regs[BPF_REG_0];
4898 if (r0->type == PTR_TO_STACK) {
4899 /* technically it's ok to return caller's stack pointer
4900 * (or caller's caller's pointer) back to the caller,
4901 * since these pointers are valid. Only current stack
4902 * pointer will be invalid as soon as function exits,
4903 * but let's be conservative
4904 */
4905 verbose(env, "cannot return stack pointer to the caller\n");
4906 return -EINVAL;
4907 }
4908
4909 state->curframe--;
4910 caller = state->frame[state->curframe];
4911 /* return to the caller whatever r0 had in the callee */
4912 caller->regs[BPF_REG_0] = *r0;
4913
fd978bf7
JS
4914 /* Transfer references to the caller */
4915 err = transfer_reference_state(caller, callee);
4916 if (err)
4917 return err;
4918
f4d7e40a 4919 *insn_idx = callee->callsite + 1;
06ee7115 4920 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4921 verbose(env, "returning from callee:\n");
4922 print_verifier_state(env, callee);
4923 verbose(env, "to caller at %d:\n", *insn_idx);
4924 print_verifier_state(env, caller);
4925 }
4926 /* clear everything in the callee */
4927 free_func_state(callee);
4928 state->frame[state->curframe + 1] = NULL;
4929 return 0;
4930}
4931
849fa506
YS
4932static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4933 int func_id,
4934 struct bpf_call_arg_meta *meta)
4935{
4936 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4937
4938 if (ret_type != RET_INTEGER ||
4939 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4940 func_id != BPF_FUNC_probe_read_str &&
4941 func_id != BPF_FUNC_probe_read_kernel_str &&
4942 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4943 return;
4944
10060503 4945 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4946 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
4947 ret_reg->smin_value = -MAX_ERRNO;
4948 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
4949 __reg_deduce_bounds(ret_reg);
4950 __reg_bound_offset(ret_reg);
10060503 4951 __update_reg_bounds(ret_reg);
849fa506
YS
4952}
4953
c93552c4
DB
4954static int
4955record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4956 int func_id, int insn_idx)
4957{
4958 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4959 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4960
4961 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4962 func_id != BPF_FUNC_map_lookup_elem &&
4963 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4964 func_id != BPF_FUNC_map_delete_elem &&
4965 func_id != BPF_FUNC_map_push_elem &&
4966 func_id != BPF_FUNC_map_pop_elem &&
4967 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4968 return 0;
09772d92 4969
591fe988 4970 if (map == NULL) {
c93552c4
DB
4971 verbose(env, "kernel subsystem misconfigured verifier\n");
4972 return -EINVAL;
4973 }
4974
591fe988
DB
4975 /* In case of read-only, some additional restrictions
4976 * need to be applied in order to prevent altering the
4977 * state of the map from program side.
4978 */
4979 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4980 (func_id == BPF_FUNC_map_delete_elem ||
4981 func_id == BPF_FUNC_map_update_elem ||
4982 func_id == BPF_FUNC_map_push_elem ||
4983 func_id == BPF_FUNC_map_pop_elem)) {
4984 verbose(env, "write into map forbidden\n");
4985 return -EACCES;
4986 }
4987
d2e4c1e6 4988 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4989 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4990 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4991 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4992 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4993 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4994 return 0;
4995}
4996
d2e4c1e6
DB
4997static int
4998record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4999 int func_id, int insn_idx)
5000{
5001 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5002 struct bpf_reg_state *regs = cur_regs(env), *reg;
5003 struct bpf_map *map = meta->map_ptr;
5004 struct tnum range;
5005 u64 val;
cc52d914 5006 int err;
d2e4c1e6
DB
5007
5008 if (func_id != BPF_FUNC_tail_call)
5009 return 0;
5010 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5011 verbose(env, "kernel subsystem misconfigured verifier\n");
5012 return -EINVAL;
5013 }
5014
5015 range = tnum_range(0, map->max_entries - 1);
5016 reg = &regs[BPF_REG_3];
5017
5018 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5019 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5020 return 0;
5021 }
5022
cc52d914
DB
5023 err = mark_chain_precision(env, BPF_REG_3);
5024 if (err)
5025 return err;
5026
d2e4c1e6
DB
5027 val = reg->var_off.value;
5028 if (bpf_map_key_unseen(aux))
5029 bpf_map_key_store(aux, val);
5030 else if (!bpf_map_key_poisoned(aux) &&
5031 bpf_map_key_immediate(aux) != val)
5032 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5033 return 0;
5034}
5035
fd978bf7
JS
5036static int check_reference_leak(struct bpf_verifier_env *env)
5037{
5038 struct bpf_func_state *state = cur_func(env);
5039 int i;
5040
5041 for (i = 0; i < state->acquired_refs; i++) {
5042 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5043 state->refs[i].id, state->refs[i].insn_idx);
5044 }
5045 return state->acquired_refs ? -EINVAL : 0;
5046}
5047
f4d7e40a 5048static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 5049{
17a52670 5050 const struct bpf_func_proto *fn = NULL;
638f5b90 5051 struct bpf_reg_state *regs;
33ff9823 5052 struct bpf_call_arg_meta meta;
969bf05e 5053 bool changes_data;
17a52670
AS
5054 int i, err;
5055
5056 /* find function prototype */
5057 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
5058 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5059 func_id);
17a52670
AS
5060 return -EINVAL;
5061 }
5062
00176a34 5063 if (env->ops->get_func_proto)
5e43f899 5064 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 5065 if (!fn) {
61bd5218
JK
5066 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5067 func_id);
17a52670
AS
5068 return -EINVAL;
5069 }
5070
5071 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 5072 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 5073 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
5074 return -EINVAL;
5075 }
5076
eae2e83e
JO
5077 if (fn->allowed && !fn->allowed(env->prog)) {
5078 verbose(env, "helper call is not allowed in probe\n");
5079 return -EINVAL;
5080 }
5081
04514d13 5082 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 5083 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
5084 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5085 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5086 func_id_name(func_id), func_id);
5087 return -EINVAL;
5088 }
969bf05e 5089
33ff9823 5090 memset(&meta, 0, sizeof(meta));
36bbef52 5091 meta.pkt_access = fn->pkt_access;
33ff9823 5092
1b986589 5093 err = check_func_proto(fn, func_id);
435faee1 5094 if (err) {
61bd5218 5095 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 5096 func_id_name(func_id), func_id);
435faee1
DB
5097 return err;
5098 }
5099
d83525ca 5100 meta.func_id = func_id;
17a52670 5101 /* check args */
a7658e1a 5102 for (i = 0; i < 5; i++) {
af7ec138 5103 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
5104 if (err)
5105 return err;
5106 }
17a52670 5107
c93552c4
DB
5108 err = record_func_map(env, &meta, func_id, insn_idx);
5109 if (err)
5110 return err;
5111
d2e4c1e6
DB
5112 err = record_func_key(env, &meta, func_id, insn_idx);
5113 if (err)
5114 return err;
5115
435faee1
DB
5116 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5117 * is inferred from register state.
5118 */
5119 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
5120 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5121 BPF_WRITE, -1, false);
435faee1
DB
5122 if (err)
5123 return err;
5124 }
5125
fd978bf7
JS
5126 if (func_id == BPF_FUNC_tail_call) {
5127 err = check_reference_leak(env);
5128 if (err) {
5129 verbose(env, "tail_call would lead to reference leak\n");
5130 return err;
5131 }
5132 } else if (is_release_function(func_id)) {
1b986589 5133 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
5134 if (err) {
5135 verbose(env, "func %s#%d reference has not been acquired before\n",
5136 func_id_name(func_id), func_id);
fd978bf7 5137 return err;
46f8bc92 5138 }
fd978bf7
JS
5139 }
5140
638f5b90 5141 regs = cur_regs(env);
cd339431
RG
5142
5143 /* check that flags argument in get_local_storage(map, flags) is 0,
5144 * this is required because get_local_storage() can't return an error.
5145 */
5146 if (func_id == BPF_FUNC_get_local_storage &&
5147 !register_is_null(&regs[BPF_REG_2])) {
5148 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5149 return -EINVAL;
5150 }
5151
17a52670 5152 /* reset caller saved regs */
dc503a8a 5153 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5154 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5155 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5156 }
17a52670 5157
5327ed3d
JW
5158 /* helper call returns 64-bit value. */
5159 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5160
dc503a8a 5161 /* update return register (already marked as written above) */
17a52670 5162 if (fn->ret_type == RET_INTEGER) {
f1174f77 5163 /* sets type to SCALAR_VALUE */
61bd5218 5164 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
5165 } else if (fn->ret_type == RET_VOID) {
5166 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
5167 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5168 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 5169 /* There is no offset yet applied, variable or fixed */
61bd5218 5170 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
5171 /* remember map_ptr, so that check_map_access()
5172 * can check 'value_size' boundary of memory access
5173 * to map element returned from bpf_map_lookup_elem()
5174 */
33ff9823 5175 if (meta.map_ptr == NULL) {
61bd5218
JK
5176 verbose(env,
5177 "kernel subsystem misconfigured verifier\n");
17a52670
AS
5178 return -EINVAL;
5179 }
33ff9823 5180 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
5181 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5182 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
5183 if (map_value_has_spin_lock(meta.map_ptr))
5184 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
5185 } else {
5186 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 5187 }
c64b7983
JS
5188 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5189 mark_reg_known_zero(env, regs, BPF_REG_0);
5190 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
5191 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5192 mark_reg_known_zero(env, regs, BPF_REG_0);
5193 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
5194 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5195 mark_reg_known_zero(env, regs, BPF_REG_0);
5196 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
5197 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5198 mark_reg_known_zero(env, regs, BPF_REG_0);
5199 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 5200 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
5201 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5202 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
5203 const struct btf_type *t;
5204
5205 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 5206 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
5207 if (!btf_type_is_struct(t)) {
5208 u32 tsize;
5209 const struct btf_type *ret;
5210 const char *tname;
5211
5212 /* resolve the type size of ksym. */
22dc4a0f 5213 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 5214 if (IS_ERR(ret)) {
22dc4a0f 5215 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
5216 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5217 tname, PTR_ERR(ret));
5218 return -EINVAL;
5219 }
63d9b80d
HL
5220 regs[BPF_REG_0].type =
5221 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5222 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
5223 regs[BPF_REG_0].mem_size = tsize;
5224 } else {
63d9b80d
HL
5225 regs[BPF_REG_0].type =
5226 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5227 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 5228 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
5229 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5230 }
3ca1032a
KS
5231 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5232 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
5233 int ret_btf_id;
5234
5235 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
5236 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5237 PTR_TO_BTF_ID :
5238 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
5239 ret_btf_id = *fn->ret_btf_id;
5240 if (ret_btf_id == 0) {
5241 verbose(env, "invalid return type %d of func %s#%d\n",
5242 fn->ret_type, func_id_name(func_id), func_id);
5243 return -EINVAL;
5244 }
22dc4a0f
AN
5245 /* current BPF helper definitions are only coming from
5246 * built-in code with type IDs from vmlinux BTF
5247 */
5248 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 5249 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5250 } else {
61bd5218 5251 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5252 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5253 return -EINVAL;
5254 }
04fd61ab 5255
93c230e3
MKL
5256 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5257 regs[BPF_REG_0].id = ++env->id_gen;
5258
0f3adc28 5259 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5260 /* For release_reference() */
5261 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5262 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5263 int id = acquire_reference_state(env, insn_idx);
5264
5265 if (id < 0)
5266 return id;
5267 /* For mark_ptr_or_null_reg() */
5268 regs[BPF_REG_0].id = id;
5269 /* For release_reference() */
5270 regs[BPF_REG_0].ref_obj_id = id;
5271 }
1b986589 5272
849fa506
YS
5273 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5274
61bd5218 5275 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5276 if (err)
5277 return err;
04fd61ab 5278
fa28dcb8
SL
5279 if ((func_id == BPF_FUNC_get_stack ||
5280 func_id == BPF_FUNC_get_task_stack) &&
5281 !env->prog->has_callchain_buf) {
c195651e
YS
5282 const char *err_str;
5283
5284#ifdef CONFIG_PERF_EVENTS
5285 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5286 err_str = "cannot get callchain buffer for func %s#%d\n";
5287#else
5288 err = -ENOTSUPP;
5289 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5290#endif
5291 if (err) {
5292 verbose(env, err_str, func_id_name(func_id), func_id);
5293 return err;
5294 }
5295
5296 env->prog->has_callchain_buf = true;
5297 }
5298
5d99cb2c
SL
5299 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5300 env->prog->call_get_stack = true;
5301
969bf05e
AS
5302 if (changes_data)
5303 clear_all_pkt_pointers(env);
5304 return 0;
5305}
5306
b03c9f9f
EC
5307static bool signed_add_overflows(s64 a, s64 b)
5308{
5309 /* Do the add in u64, where overflow is well-defined */
5310 s64 res = (s64)((u64)a + (u64)b);
5311
5312 if (b < 0)
5313 return res > a;
5314 return res < a;
5315}
5316
bc895e8b 5317static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
5318{
5319 /* Do the add in u32, where overflow is well-defined */
5320 s32 res = (s32)((u32)a + (u32)b);
5321
5322 if (b < 0)
5323 return res > a;
5324 return res < a;
5325}
5326
bc895e8b 5327static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
5328{
5329 /* Do the sub in u64, where overflow is well-defined */
5330 s64 res = (s64)((u64)a - (u64)b);
5331
5332 if (b < 0)
5333 return res < a;
5334 return res > a;
969bf05e
AS
5335}
5336
3f50f132
JF
5337static bool signed_sub32_overflows(s32 a, s32 b)
5338{
bc895e8b 5339 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
5340 s32 res = (s32)((u32)a - (u32)b);
5341
5342 if (b < 0)
5343 return res < a;
5344 return res > a;
5345}
5346
bb7f0f98
AS
5347static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5348 const struct bpf_reg_state *reg,
5349 enum bpf_reg_type type)
5350{
5351 bool known = tnum_is_const(reg->var_off);
5352 s64 val = reg->var_off.value;
5353 s64 smin = reg->smin_value;
5354
5355 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5356 verbose(env, "math between %s pointer and %lld is not allowed\n",
5357 reg_type_str[type], val);
5358 return false;
5359 }
5360
5361 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5362 verbose(env, "%s pointer offset %d is not allowed\n",
5363 reg_type_str[type], reg->off);
5364 return false;
5365 }
5366
5367 if (smin == S64_MIN) {
5368 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5369 reg_type_str[type]);
5370 return false;
5371 }
5372
5373 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5374 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5375 smin, reg_type_str[type]);
5376 return false;
5377 }
5378
5379 return true;
5380}
5381
979d63d5
DB
5382static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5383{
5384 return &env->insn_aux_data[env->insn_idx];
5385}
5386
5387static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5388 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5389{
5390 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5391 (opcode == BPF_SUB && !off_is_neg);
5392 u32 off;
5393
5394 switch (ptr_reg->type) {
5395 case PTR_TO_STACK:
088ec26d
AI
5396 /* Indirect variable offset stack access is prohibited in
5397 * unprivileged mode so it's not handled here.
5398 */
979d63d5
DB
5399 off = ptr_reg->off + ptr_reg->var_off.value;
5400 if (mask_to_left)
5401 *ptr_limit = MAX_BPF_STACK + off;
5402 else
5403 *ptr_limit = -off;
5404 return 0;
5405 case PTR_TO_MAP_VALUE:
5406 if (mask_to_left) {
5407 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5408 } else {
5409 off = ptr_reg->smin_value + ptr_reg->off;
5410 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5411 }
5412 return 0;
5413 default:
5414 return -EINVAL;
5415 }
5416}
5417
d3bd7413
DB
5418static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5419 const struct bpf_insn *insn)
5420{
2c78ee89 5421 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5422}
5423
5424static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5425 u32 alu_state, u32 alu_limit)
5426{
5427 /* If we arrived here from different branches with different
5428 * state or limits to sanitize, then this won't work.
5429 */
5430 if (aux->alu_state &&
5431 (aux->alu_state != alu_state ||
5432 aux->alu_limit != alu_limit))
5433 return -EACCES;
5434
5435 /* Corresponding fixup done in fixup_bpf_calls(). */
5436 aux->alu_state = alu_state;
5437 aux->alu_limit = alu_limit;
5438 return 0;
5439}
5440
5441static int sanitize_val_alu(struct bpf_verifier_env *env,
5442 struct bpf_insn *insn)
5443{
5444 struct bpf_insn_aux_data *aux = cur_aux(env);
5445
5446 if (can_skip_alu_sanitation(env, insn))
5447 return 0;
5448
5449 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5450}
5451
979d63d5
DB
5452static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5453 struct bpf_insn *insn,
5454 const struct bpf_reg_state *ptr_reg,
5455 struct bpf_reg_state *dst_reg,
5456 bool off_is_neg)
5457{
5458 struct bpf_verifier_state *vstate = env->cur_state;
5459 struct bpf_insn_aux_data *aux = cur_aux(env);
5460 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5461 u8 opcode = BPF_OP(insn->code);
5462 u32 alu_state, alu_limit;
5463 struct bpf_reg_state tmp;
5464 bool ret;
5465
d3bd7413 5466 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5467 return 0;
5468
5469 /* We already marked aux for masking from non-speculative
5470 * paths, thus we got here in the first place. We only care
5471 * to explore bad access from here.
5472 */
5473 if (vstate->speculative)
5474 goto do_sim;
5475
5476 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5477 alu_state |= ptr_is_dst_reg ?
5478 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5479
5480 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5481 return 0;
d3bd7413 5482 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5483 return -EACCES;
979d63d5
DB
5484do_sim:
5485 /* Simulate and find potential out-of-bounds access under
5486 * speculative execution from truncation as a result of
5487 * masking when off was not within expected range. If off
5488 * sits in dst, then we temporarily need to move ptr there
5489 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5490 * for cases where we use K-based arithmetic in one direction
5491 * and truncated reg-based in the other in order to explore
5492 * bad access.
5493 */
5494 if (!ptr_is_dst_reg) {
5495 tmp = *dst_reg;
5496 *dst_reg = *ptr_reg;
5497 }
5498 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5499 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5500 *dst_reg = tmp;
5501 return !ret ? -EFAULT : 0;
5502}
5503
f1174f77 5504/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5505 * Caller should also handle BPF_MOV case separately.
5506 * If we return -EACCES, caller may want to try again treating pointer as a
5507 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5508 */
5509static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5510 struct bpf_insn *insn,
5511 const struct bpf_reg_state *ptr_reg,
5512 const struct bpf_reg_state *off_reg)
969bf05e 5513{
f4d7e40a
AS
5514 struct bpf_verifier_state *vstate = env->cur_state;
5515 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5516 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5517 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5518 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5519 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5520 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5521 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5522 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5523 u8 opcode = BPF_OP(insn->code);
979d63d5 5524 int ret;
969bf05e 5525
f1174f77 5526 dst_reg = &regs[dst];
969bf05e 5527
6f16101e
DB
5528 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5529 smin_val > smax_val || umin_val > umax_val) {
5530 /* Taint dst register if offset had invalid bounds derived from
5531 * e.g. dead branches.
5532 */
f54c7898 5533 __mark_reg_unknown(env, dst_reg);
6f16101e 5534 return 0;
f1174f77
EC
5535 }
5536
5537 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5538 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5539 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5540 __mark_reg_unknown(env, dst_reg);
5541 return 0;
5542 }
5543
82abbf8d
AS
5544 verbose(env,
5545 "R%d 32-bit pointer arithmetic prohibited\n",
5546 dst);
f1174f77 5547 return -EACCES;
969bf05e
AS
5548 }
5549
aad2eeaf
JS
5550 switch (ptr_reg->type) {
5551 case PTR_TO_MAP_VALUE_OR_NULL:
5552 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5553 dst, reg_type_str[ptr_reg->type]);
f1174f77 5554 return -EACCES;
aad2eeaf 5555 case CONST_PTR_TO_MAP:
7c696732
YS
5556 /* smin_val represents the known value */
5557 if (known && smin_val == 0 && opcode == BPF_ADD)
5558 break;
8731745e 5559 fallthrough;
aad2eeaf 5560 case PTR_TO_PACKET_END:
c64b7983
JS
5561 case PTR_TO_SOCKET:
5562 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5563 case PTR_TO_SOCK_COMMON:
5564 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5565 case PTR_TO_TCP_SOCK:
5566 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5567 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5568 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5569 dst, reg_type_str[ptr_reg->type]);
f1174f77 5570 return -EACCES;
9d7eceed
DB
5571 case PTR_TO_MAP_VALUE:
5572 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5573 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5574 off_reg == dst_reg ? dst : src);
5575 return -EACCES;
5576 }
df561f66 5577 fallthrough;
aad2eeaf
JS
5578 default:
5579 break;
f1174f77
EC
5580 }
5581
5582 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5583 * The id may be overwritten later if we create a new variable offset.
969bf05e 5584 */
f1174f77
EC
5585 dst_reg->type = ptr_reg->type;
5586 dst_reg->id = ptr_reg->id;
969bf05e 5587
bb7f0f98
AS
5588 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5589 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5590 return -EINVAL;
5591
3f50f132
JF
5592 /* pointer types do not carry 32-bit bounds at the moment. */
5593 __mark_reg32_unbounded(dst_reg);
5594
f1174f77
EC
5595 switch (opcode) {
5596 case BPF_ADD:
979d63d5
DB
5597 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5598 if (ret < 0) {
5599 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5600 return ret;
5601 }
f1174f77
EC
5602 /* We can take a fixed offset as long as it doesn't overflow
5603 * the s32 'off' field
969bf05e 5604 */
b03c9f9f
EC
5605 if (known && (ptr_reg->off + smin_val ==
5606 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5607 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5608 dst_reg->smin_value = smin_ptr;
5609 dst_reg->smax_value = smax_ptr;
5610 dst_reg->umin_value = umin_ptr;
5611 dst_reg->umax_value = umax_ptr;
f1174f77 5612 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5613 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5614 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5615 break;
5616 }
f1174f77
EC
5617 /* A new variable offset is created. Note that off_reg->off
5618 * == 0, since it's a scalar.
5619 * dst_reg gets the pointer type and since some positive
5620 * integer value was added to the pointer, give it a new 'id'
5621 * if it's a PTR_TO_PACKET.
5622 * this creates a new 'base' pointer, off_reg (variable) gets
5623 * added into the variable offset, and we copy the fixed offset
5624 * from ptr_reg.
969bf05e 5625 */
b03c9f9f
EC
5626 if (signed_add_overflows(smin_ptr, smin_val) ||
5627 signed_add_overflows(smax_ptr, smax_val)) {
5628 dst_reg->smin_value = S64_MIN;
5629 dst_reg->smax_value = S64_MAX;
5630 } else {
5631 dst_reg->smin_value = smin_ptr + smin_val;
5632 dst_reg->smax_value = smax_ptr + smax_val;
5633 }
5634 if (umin_ptr + umin_val < umin_ptr ||
5635 umax_ptr + umax_val < umax_ptr) {
5636 dst_reg->umin_value = 0;
5637 dst_reg->umax_value = U64_MAX;
5638 } else {
5639 dst_reg->umin_value = umin_ptr + umin_val;
5640 dst_reg->umax_value = umax_ptr + umax_val;
5641 }
f1174f77
EC
5642 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5643 dst_reg->off = ptr_reg->off;
0962590e 5644 dst_reg->raw = ptr_reg->raw;
de8f3a83 5645 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5646 dst_reg->id = ++env->id_gen;
5647 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 5648 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
5649 }
5650 break;
5651 case BPF_SUB:
979d63d5
DB
5652 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5653 if (ret < 0) {
5654 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5655 return ret;
5656 }
f1174f77
EC
5657 if (dst_reg == off_reg) {
5658 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5659 verbose(env, "R%d tried to subtract pointer from scalar\n",
5660 dst);
f1174f77
EC
5661 return -EACCES;
5662 }
5663 /* We don't allow subtraction from FP, because (according to
5664 * test_verifier.c test "invalid fp arithmetic", JITs might not
5665 * be able to deal with it.
969bf05e 5666 */
f1174f77 5667 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5668 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5669 dst);
f1174f77
EC
5670 return -EACCES;
5671 }
b03c9f9f
EC
5672 if (known && (ptr_reg->off - smin_val ==
5673 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5674 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5675 dst_reg->smin_value = smin_ptr;
5676 dst_reg->smax_value = smax_ptr;
5677 dst_reg->umin_value = umin_ptr;
5678 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5679 dst_reg->var_off = ptr_reg->var_off;
5680 dst_reg->id = ptr_reg->id;
b03c9f9f 5681 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5682 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5683 break;
5684 }
f1174f77
EC
5685 /* A new variable offset is created. If the subtrahend is known
5686 * nonnegative, then any reg->range we had before is still good.
969bf05e 5687 */
b03c9f9f
EC
5688 if (signed_sub_overflows(smin_ptr, smax_val) ||
5689 signed_sub_overflows(smax_ptr, smin_val)) {
5690 /* Overflow possible, we know nothing */
5691 dst_reg->smin_value = S64_MIN;
5692 dst_reg->smax_value = S64_MAX;
5693 } else {
5694 dst_reg->smin_value = smin_ptr - smax_val;
5695 dst_reg->smax_value = smax_ptr - smin_val;
5696 }
5697 if (umin_ptr < umax_val) {
5698 /* Overflow possible, we know nothing */
5699 dst_reg->umin_value = 0;
5700 dst_reg->umax_value = U64_MAX;
5701 } else {
5702 /* Cannot overflow (as long as bounds are consistent) */
5703 dst_reg->umin_value = umin_ptr - umax_val;
5704 dst_reg->umax_value = umax_ptr - umin_val;
5705 }
f1174f77
EC
5706 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5707 dst_reg->off = ptr_reg->off;
0962590e 5708 dst_reg->raw = ptr_reg->raw;
de8f3a83 5709 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5710 dst_reg->id = ++env->id_gen;
5711 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5712 if (smin_val < 0)
22dc4a0f 5713 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 5714 }
f1174f77
EC
5715 break;
5716 case BPF_AND:
5717 case BPF_OR:
5718 case BPF_XOR:
82abbf8d
AS
5719 /* bitwise ops on pointers are troublesome, prohibit. */
5720 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5721 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5722 return -EACCES;
5723 default:
5724 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5725 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5726 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5727 return -EACCES;
43188702
JF
5728 }
5729
bb7f0f98
AS
5730 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5731 return -EINVAL;
5732
b03c9f9f
EC
5733 __update_reg_bounds(dst_reg);
5734 __reg_deduce_bounds(dst_reg);
5735 __reg_bound_offset(dst_reg);
0d6303db
DB
5736
5737 /* For unprivileged we require that resulting offset must be in bounds
5738 * in order to be able to sanitize access later on.
5739 */
2c78ee89 5740 if (!env->bypass_spec_v1) {
e4298d25
DB
5741 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5742 check_map_access(env, dst, dst_reg->off, 1, false)) {
5743 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5744 "prohibited for !root\n", dst);
5745 return -EACCES;
5746 } else if (dst_reg->type == PTR_TO_STACK &&
5747 check_stack_access(env, dst_reg, dst_reg->off +
5748 dst_reg->var_off.value, 1)) {
5749 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5750 "prohibited for !root\n", dst);
5751 return -EACCES;
5752 }
0d6303db
DB
5753 }
5754
43188702
JF
5755 return 0;
5756}
5757
3f50f132
JF
5758static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5759 struct bpf_reg_state *src_reg)
5760{
5761 s32 smin_val = src_reg->s32_min_value;
5762 s32 smax_val = src_reg->s32_max_value;
5763 u32 umin_val = src_reg->u32_min_value;
5764 u32 umax_val = src_reg->u32_max_value;
5765
5766 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5767 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5768 dst_reg->s32_min_value = S32_MIN;
5769 dst_reg->s32_max_value = S32_MAX;
5770 } else {
5771 dst_reg->s32_min_value += smin_val;
5772 dst_reg->s32_max_value += smax_val;
5773 }
5774 if (dst_reg->u32_min_value + umin_val < umin_val ||
5775 dst_reg->u32_max_value + umax_val < umax_val) {
5776 dst_reg->u32_min_value = 0;
5777 dst_reg->u32_max_value = U32_MAX;
5778 } else {
5779 dst_reg->u32_min_value += umin_val;
5780 dst_reg->u32_max_value += umax_val;
5781 }
5782}
5783
07cd2631
JF
5784static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5785 struct bpf_reg_state *src_reg)
5786{
5787 s64 smin_val = src_reg->smin_value;
5788 s64 smax_val = src_reg->smax_value;
5789 u64 umin_val = src_reg->umin_value;
5790 u64 umax_val = src_reg->umax_value;
5791
5792 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5793 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5794 dst_reg->smin_value = S64_MIN;
5795 dst_reg->smax_value = S64_MAX;
5796 } else {
5797 dst_reg->smin_value += smin_val;
5798 dst_reg->smax_value += smax_val;
5799 }
5800 if (dst_reg->umin_value + umin_val < umin_val ||
5801 dst_reg->umax_value + umax_val < umax_val) {
5802 dst_reg->umin_value = 0;
5803 dst_reg->umax_value = U64_MAX;
5804 } else {
5805 dst_reg->umin_value += umin_val;
5806 dst_reg->umax_value += umax_val;
5807 }
3f50f132
JF
5808}
5809
5810static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5811 struct bpf_reg_state *src_reg)
5812{
5813 s32 smin_val = src_reg->s32_min_value;
5814 s32 smax_val = src_reg->s32_max_value;
5815 u32 umin_val = src_reg->u32_min_value;
5816 u32 umax_val = src_reg->u32_max_value;
5817
5818 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5819 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5820 /* Overflow possible, we know nothing */
5821 dst_reg->s32_min_value = S32_MIN;
5822 dst_reg->s32_max_value = S32_MAX;
5823 } else {
5824 dst_reg->s32_min_value -= smax_val;
5825 dst_reg->s32_max_value -= smin_val;
5826 }
5827 if (dst_reg->u32_min_value < umax_val) {
5828 /* Overflow possible, we know nothing */
5829 dst_reg->u32_min_value = 0;
5830 dst_reg->u32_max_value = U32_MAX;
5831 } else {
5832 /* Cannot overflow (as long as bounds are consistent) */
5833 dst_reg->u32_min_value -= umax_val;
5834 dst_reg->u32_max_value -= umin_val;
5835 }
07cd2631
JF
5836}
5837
5838static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5839 struct bpf_reg_state *src_reg)
5840{
5841 s64 smin_val = src_reg->smin_value;
5842 s64 smax_val = src_reg->smax_value;
5843 u64 umin_val = src_reg->umin_value;
5844 u64 umax_val = src_reg->umax_value;
5845
5846 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5847 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5848 /* Overflow possible, we know nothing */
5849 dst_reg->smin_value = S64_MIN;
5850 dst_reg->smax_value = S64_MAX;
5851 } else {
5852 dst_reg->smin_value -= smax_val;
5853 dst_reg->smax_value -= smin_val;
5854 }
5855 if (dst_reg->umin_value < umax_val) {
5856 /* Overflow possible, we know nothing */
5857 dst_reg->umin_value = 0;
5858 dst_reg->umax_value = U64_MAX;
5859 } else {
5860 /* Cannot overflow (as long as bounds are consistent) */
5861 dst_reg->umin_value -= umax_val;
5862 dst_reg->umax_value -= umin_val;
5863 }
3f50f132
JF
5864}
5865
5866static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5867 struct bpf_reg_state *src_reg)
5868{
5869 s32 smin_val = src_reg->s32_min_value;
5870 u32 umin_val = src_reg->u32_min_value;
5871 u32 umax_val = src_reg->u32_max_value;
5872
5873 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5874 /* Ain't nobody got time to multiply that sign */
5875 __mark_reg32_unbounded(dst_reg);
5876 return;
5877 }
5878 /* Both values are positive, so we can work with unsigned and
5879 * copy the result to signed (unless it exceeds S32_MAX).
5880 */
5881 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5882 /* Potential overflow, we know nothing */
5883 __mark_reg32_unbounded(dst_reg);
5884 return;
5885 }
5886 dst_reg->u32_min_value *= umin_val;
5887 dst_reg->u32_max_value *= umax_val;
5888 if (dst_reg->u32_max_value > S32_MAX) {
5889 /* Overflow possible, we know nothing */
5890 dst_reg->s32_min_value = S32_MIN;
5891 dst_reg->s32_max_value = S32_MAX;
5892 } else {
5893 dst_reg->s32_min_value = dst_reg->u32_min_value;
5894 dst_reg->s32_max_value = dst_reg->u32_max_value;
5895 }
07cd2631
JF
5896}
5897
5898static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5899 struct bpf_reg_state *src_reg)
5900{
5901 s64 smin_val = src_reg->smin_value;
5902 u64 umin_val = src_reg->umin_value;
5903 u64 umax_val = src_reg->umax_value;
5904
07cd2631
JF
5905 if (smin_val < 0 || dst_reg->smin_value < 0) {
5906 /* Ain't nobody got time to multiply that sign */
3f50f132 5907 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5908 return;
5909 }
5910 /* Both values are positive, so we can work with unsigned and
5911 * copy the result to signed (unless it exceeds S64_MAX).
5912 */
5913 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5914 /* Potential overflow, we know nothing */
3f50f132 5915 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5916 return;
5917 }
5918 dst_reg->umin_value *= umin_val;
5919 dst_reg->umax_value *= umax_val;
5920 if (dst_reg->umax_value > S64_MAX) {
5921 /* Overflow possible, we know nothing */
5922 dst_reg->smin_value = S64_MIN;
5923 dst_reg->smax_value = S64_MAX;
5924 } else {
5925 dst_reg->smin_value = dst_reg->umin_value;
5926 dst_reg->smax_value = dst_reg->umax_value;
5927 }
5928}
5929
3f50f132
JF
5930static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5931 struct bpf_reg_state *src_reg)
5932{
5933 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5934 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5935 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5936 s32 smin_val = src_reg->s32_min_value;
5937 u32 umax_val = src_reg->u32_max_value;
5938
5939 /* Assuming scalar64_min_max_and will be called so its safe
5940 * to skip updating register for known 32-bit case.
5941 */
5942 if (src_known && dst_known)
5943 return;
5944
5945 /* We get our minimum from the var_off, since that's inherently
5946 * bitwise. Our maximum is the minimum of the operands' maxima.
5947 */
5948 dst_reg->u32_min_value = var32_off.value;
5949 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5950 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5951 /* Lose signed bounds when ANDing negative numbers,
5952 * ain't nobody got time for that.
5953 */
5954 dst_reg->s32_min_value = S32_MIN;
5955 dst_reg->s32_max_value = S32_MAX;
5956 } else {
5957 /* ANDing two positives gives a positive, so safe to
5958 * cast result into s64.
5959 */
5960 dst_reg->s32_min_value = dst_reg->u32_min_value;
5961 dst_reg->s32_max_value = dst_reg->u32_max_value;
5962 }
5963
5964}
5965
07cd2631
JF
5966static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5967 struct bpf_reg_state *src_reg)
5968{
3f50f132
JF
5969 bool src_known = tnum_is_const(src_reg->var_off);
5970 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5971 s64 smin_val = src_reg->smin_value;
5972 u64 umax_val = src_reg->umax_value;
5973
3f50f132 5974 if (src_known && dst_known) {
4fbb38a3 5975 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5976 return;
5977 }
5978
07cd2631
JF
5979 /* We get our minimum from the var_off, since that's inherently
5980 * bitwise. Our maximum is the minimum of the operands' maxima.
5981 */
07cd2631
JF
5982 dst_reg->umin_value = dst_reg->var_off.value;
5983 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5984 if (dst_reg->smin_value < 0 || smin_val < 0) {
5985 /* Lose signed bounds when ANDing negative numbers,
5986 * ain't nobody got time for that.
5987 */
5988 dst_reg->smin_value = S64_MIN;
5989 dst_reg->smax_value = S64_MAX;
5990 } else {
5991 /* ANDing two positives gives a positive, so safe to
5992 * cast result into s64.
5993 */
5994 dst_reg->smin_value = dst_reg->umin_value;
5995 dst_reg->smax_value = dst_reg->umax_value;
5996 }
5997 /* We may learn something more from the var_off */
5998 __update_reg_bounds(dst_reg);
5999}
6000
3f50f132
JF
6001static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6002 struct bpf_reg_state *src_reg)
6003{
6004 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6005 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6006 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
6007 s32 smin_val = src_reg->s32_min_value;
6008 u32 umin_val = src_reg->u32_min_value;
3f50f132
JF
6009
6010 /* Assuming scalar64_min_max_or will be called so it is safe
6011 * to skip updating register for known case.
6012 */
6013 if (src_known && dst_known)
6014 return;
6015
6016 /* We get our maximum from the var_off, and our minimum is the
6017 * maximum of the operands' minima
6018 */
6019 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6020 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6021 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6022 /* Lose signed bounds when ORing negative numbers,
6023 * ain't nobody got time for that.
6024 */
6025 dst_reg->s32_min_value = S32_MIN;
6026 dst_reg->s32_max_value = S32_MAX;
6027 } else {
6028 /* ORing two positives gives a positive, so safe to
6029 * cast result into s64.
6030 */
5b9fbeb7
DB
6031 dst_reg->s32_min_value = dst_reg->u32_min_value;
6032 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
6033 }
6034}
6035
07cd2631
JF
6036static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6037 struct bpf_reg_state *src_reg)
6038{
3f50f132
JF
6039 bool src_known = tnum_is_const(src_reg->var_off);
6040 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
6041 s64 smin_val = src_reg->smin_value;
6042 u64 umin_val = src_reg->umin_value;
6043
3f50f132 6044 if (src_known && dst_known) {
4fbb38a3 6045 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
6046 return;
6047 }
6048
07cd2631
JF
6049 /* We get our maximum from the var_off, and our minimum is the
6050 * maximum of the operands' minima
6051 */
07cd2631
JF
6052 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6053 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6054 if (dst_reg->smin_value < 0 || smin_val < 0) {
6055 /* Lose signed bounds when ORing negative numbers,
6056 * ain't nobody got time for that.
6057 */
6058 dst_reg->smin_value = S64_MIN;
6059 dst_reg->smax_value = S64_MAX;
6060 } else {
6061 /* ORing two positives gives a positive, so safe to
6062 * cast result into s64.
6063 */
6064 dst_reg->smin_value = dst_reg->umin_value;
6065 dst_reg->smax_value = dst_reg->umax_value;
6066 }
6067 /* We may learn something more from the var_off */
6068 __update_reg_bounds(dst_reg);
6069}
6070
2921c90d
YS
6071static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6072 struct bpf_reg_state *src_reg)
6073{
6074 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6075 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6076 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6077 s32 smin_val = src_reg->s32_min_value;
6078
6079 /* Assuming scalar64_min_max_xor will be called so it is safe
6080 * to skip updating register for known case.
6081 */
6082 if (src_known && dst_known)
6083 return;
6084
6085 /* We get both minimum and maximum from the var32_off. */
6086 dst_reg->u32_min_value = var32_off.value;
6087 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6088
6089 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6090 /* XORing two positive sign numbers gives a positive,
6091 * so safe to cast u32 result into s32.
6092 */
6093 dst_reg->s32_min_value = dst_reg->u32_min_value;
6094 dst_reg->s32_max_value = dst_reg->u32_max_value;
6095 } else {
6096 dst_reg->s32_min_value = S32_MIN;
6097 dst_reg->s32_max_value = S32_MAX;
6098 }
6099}
6100
6101static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6102 struct bpf_reg_state *src_reg)
6103{
6104 bool src_known = tnum_is_const(src_reg->var_off);
6105 bool dst_known = tnum_is_const(dst_reg->var_off);
6106 s64 smin_val = src_reg->smin_value;
6107
6108 if (src_known && dst_known) {
6109 /* dst_reg->var_off.value has been updated earlier */
6110 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6111 return;
6112 }
6113
6114 /* We get both minimum and maximum from the var_off. */
6115 dst_reg->umin_value = dst_reg->var_off.value;
6116 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6117
6118 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6119 /* XORing two positive sign numbers gives a positive,
6120 * so safe to cast u64 result into s64.
6121 */
6122 dst_reg->smin_value = dst_reg->umin_value;
6123 dst_reg->smax_value = dst_reg->umax_value;
6124 } else {
6125 dst_reg->smin_value = S64_MIN;
6126 dst_reg->smax_value = S64_MAX;
6127 }
6128
6129 __update_reg_bounds(dst_reg);
6130}
6131
3f50f132
JF
6132static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6133 u64 umin_val, u64 umax_val)
07cd2631 6134{
07cd2631
JF
6135 /* We lose all sign bit information (except what we can pick
6136 * up from var_off)
6137 */
3f50f132
JF
6138 dst_reg->s32_min_value = S32_MIN;
6139 dst_reg->s32_max_value = S32_MAX;
6140 /* If we might shift our top bit out, then we know nothing */
6141 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6142 dst_reg->u32_min_value = 0;
6143 dst_reg->u32_max_value = U32_MAX;
6144 } else {
6145 dst_reg->u32_min_value <<= umin_val;
6146 dst_reg->u32_max_value <<= umax_val;
6147 }
6148}
6149
6150static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6151 struct bpf_reg_state *src_reg)
6152{
6153 u32 umax_val = src_reg->u32_max_value;
6154 u32 umin_val = src_reg->u32_min_value;
6155 /* u32 alu operation will zext upper bits */
6156 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6157
6158 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6159 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6160 /* Not required but being careful mark reg64 bounds as unknown so
6161 * that we are forced to pick them up from tnum and zext later and
6162 * if some path skips this step we are still safe.
6163 */
6164 __mark_reg64_unbounded(dst_reg);
6165 __update_reg32_bounds(dst_reg);
6166}
6167
6168static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6169 u64 umin_val, u64 umax_val)
6170{
6171 /* Special case <<32 because it is a common compiler pattern to sign
6172 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6173 * positive we know this shift will also be positive so we can track
6174 * bounds correctly. Otherwise we lose all sign bit information except
6175 * what we can pick up from var_off. Perhaps we can generalize this
6176 * later to shifts of any length.
6177 */
6178 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6179 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6180 else
6181 dst_reg->smax_value = S64_MAX;
6182
6183 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6184 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6185 else
6186 dst_reg->smin_value = S64_MIN;
6187
07cd2631
JF
6188 /* If we might shift our top bit out, then we know nothing */
6189 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6190 dst_reg->umin_value = 0;
6191 dst_reg->umax_value = U64_MAX;
6192 } else {
6193 dst_reg->umin_value <<= umin_val;
6194 dst_reg->umax_value <<= umax_val;
6195 }
3f50f132
JF
6196}
6197
6198static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6199 struct bpf_reg_state *src_reg)
6200{
6201 u64 umax_val = src_reg->umax_value;
6202 u64 umin_val = src_reg->umin_value;
6203
6204 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6205 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6206 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6207
07cd2631
JF
6208 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6209 /* We may learn something more from the var_off */
6210 __update_reg_bounds(dst_reg);
6211}
6212
3f50f132
JF
6213static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6214 struct bpf_reg_state *src_reg)
6215{
6216 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6217 u32 umax_val = src_reg->u32_max_value;
6218 u32 umin_val = src_reg->u32_min_value;
6219
6220 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6221 * be negative, then either:
6222 * 1) src_reg might be zero, so the sign bit of the result is
6223 * unknown, so we lose our signed bounds
6224 * 2) it's known negative, thus the unsigned bounds capture the
6225 * signed bounds
6226 * 3) the signed bounds cross zero, so they tell us nothing
6227 * about the result
6228 * If the value in dst_reg is known nonnegative, then again the
6229 * unsigned bounts capture the signed bounds.
6230 * Thus, in all cases it suffices to blow away our signed bounds
6231 * and rely on inferring new ones from the unsigned bounds and
6232 * var_off of the result.
6233 */
6234 dst_reg->s32_min_value = S32_MIN;
6235 dst_reg->s32_max_value = S32_MAX;
6236
6237 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6238 dst_reg->u32_min_value >>= umax_val;
6239 dst_reg->u32_max_value >>= umin_val;
6240
6241 __mark_reg64_unbounded(dst_reg);
6242 __update_reg32_bounds(dst_reg);
6243}
6244
07cd2631
JF
6245static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6246 struct bpf_reg_state *src_reg)
6247{
6248 u64 umax_val = src_reg->umax_value;
6249 u64 umin_val = src_reg->umin_value;
6250
6251 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6252 * be negative, then either:
6253 * 1) src_reg might be zero, so the sign bit of the result is
6254 * unknown, so we lose our signed bounds
6255 * 2) it's known negative, thus the unsigned bounds capture the
6256 * signed bounds
6257 * 3) the signed bounds cross zero, so they tell us nothing
6258 * about the result
6259 * If the value in dst_reg is known nonnegative, then again the
6260 * unsigned bounts capture the signed bounds.
6261 * Thus, in all cases it suffices to blow away our signed bounds
6262 * and rely on inferring new ones from the unsigned bounds and
6263 * var_off of the result.
6264 */
6265 dst_reg->smin_value = S64_MIN;
6266 dst_reg->smax_value = S64_MAX;
6267 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6268 dst_reg->umin_value >>= umax_val;
6269 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6270
6271 /* Its not easy to operate on alu32 bounds here because it depends
6272 * on bits being shifted in. Take easy way out and mark unbounded
6273 * so we can recalculate later from tnum.
6274 */
6275 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6276 __update_reg_bounds(dst_reg);
6277}
6278
3f50f132
JF
6279static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6280 struct bpf_reg_state *src_reg)
07cd2631 6281{
3f50f132 6282 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6283
6284 /* Upon reaching here, src_known is true and
6285 * umax_val is equal to umin_val.
6286 */
3f50f132
JF
6287 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6288 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6289
3f50f132
JF
6290 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6291
6292 /* blow away the dst_reg umin_value/umax_value and rely on
6293 * dst_reg var_off to refine the result.
6294 */
6295 dst_reg->u32_min_value = 0;
6296 dst_reg->u32_max_value = U32_MAX;
6297
6298 __mark_reg64_unbounded(dst_reg);
6299 __update_reg32_bounds(dst_reg);
6300}
6301
6302static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6303 struct bpf_reg_state *src_reg)
6304{
6305 u64 umin_val = src_reg->umin_value;
6306
6307 /* Upon reaching here, src_known is true and umax_val is equal
6308 * to umin_val.
6309 */
6310 dst_reg->smin_value >>= umin_val;
6311 dst_reg->smax_value >>= umin_val;
6312
6313 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6314
6315 /* blow away the dst_reg umin_value/umax_value and rely on
6316 * dst_reg var_off to refine the result.
6317 */
6318 dst_reg->umin_value = 0;
6319 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6320
6321 /* Its not easy to operate on alu32 bounds here because it depends
6322 * on bits being shifted in from upper 32-bits. Take easy way out
6323 * and mark unbounded so we can recalculate later from tnum.
6324 */
6325 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6326 __update_reg_bounds(dst_reg);
6327}
6328
468f6eaf
JH
6329/* WARNING: This function does calculations on 64-bit values, but the actual
6330 * execution may occur on 32-bit values. Therefore, things like bitshifts
6331 * need extra checks in the 32-bit case.
6332 */
f1174f77
EC
6333static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6334 struct bpf_insn *insn,
6335 struct bpf_reg_state *dst_reg,
6336 struct bpf_reg_state src_reg)
969bf05e 6337{
638f5b90 6338 struct bpf_reg_state *regs = cur_regs(env);
48461135 6339 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6340 bool src_known;
b03c9f9f
EC
6341 s64 smin_val, smax_val;
6342 u64 umin_val, umax_val;
3f50f132
JF
6343 s32 s32_min_val, s32_max_val;
6344 u32 u32_min_val, u32_max_val;
468f6eaf 6345 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6346 u32 dst = insn->dst_reg;
6347 int ret;
3f50f132 6348 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6349
b03c9f9f
EC
6350 smin_val = src_reg.smin_value;
6351 smax_val = src_reg.smax_value;
6352 umin_val = src_reg.umin_value;
6353 umax_val = src_reg.umax_value;
f23cc643 6354
3f50f132
JF
6355 s32_min_val = src_reg.s32_min_value;
6356 s32_max_val = src_reg.s32_max_value;
6357 u32_min_val = src_reg.u32_min_value;
6358 u32_max_val = src_reg.u32_max_value;
6359
6360 if (alu32) {
6361 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6362 if ((src_known &&
6363 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6364 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6365 /* Taint dst register if offset had invalid bounds
6366 * derived from e.g. dead branches.
6367 */
6368 __mark_reg_unknown(env, dst_reg);
6369 return 0;
6370 }
6371 } else {
6372 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6373 if ((src_known &&
6374 (smin_val != smax_val || umin_val != umax_val)) ||
6375 smin_val > smax_val || umin_val > umax_val) {
6376 /* Taint dst register if offset had invalid bounds
6377 * derived from e.g. dead branches.
6378 */
6379 __mark_reg_unknown(env, dst_reg);
6380 return 0;
6381 }
6f16101e
DB
6382 }
6383
bb7f0f98
AS
6384 if (!src_known &&
6385 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6386 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6387 return 0;
6388 }
6389
3f50f132
JF
6390 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6391 * There are two classes of instructions: The first class we track both
6392 * alu32 and alu64 sign/unsigned bounds independently this provides the
6393 * greatest amount of precision when alu operations are mixed with jmp32
6394 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6395 * and BPF_OR. This is possible because these ops have fairly easy to
6396 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6397 * See alu32 verifier tests for examples. The second class of
6398 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6399 * with regards to tracking sign/unsigned bounds because the bits may
6400 * cross subreg boundaries in the alu64 case. When this happens we mark
6401 * the reg unbounded in the subreg bound space and use the resulting
6402 * tnum to calculate an approximation of the sign/unsigned bounds.
6403 */
48461135
JB
6404 switch (opcode) {
6405 case BPF_ADD:
d3bd7413
DB
6406 ret = sanitize_val_alu(env, insn);
6407 if (ret < 0) {
6408 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6409 return ret;
6410 }
3f50f132 6411 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6412 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6413 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6414 break;
6415 case BPF_SUB:
d3bd7413
DB
6416 ret = sanitize_val_alu(env, insn);
6417 if (ret < 0) {
6418 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6419 return ret;
6420 }
3f50f132 6421 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6422 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6423 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6424 break;
6425 case BPF_MUL:
3f50f132
JF
6426 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6427 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6428 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6429 break;
6430 case BPF_AND:
3f50f132
JF
6431 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6432 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6433 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6434 break;
6435 case BPF_OR:
3f50f132
JF
6436 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6437 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6438 scalar_min_max_or(dst_reg, &src_reg);
48461135 6439 break;
2921c90d
YS
6440 case BPF_XOR:
6441 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6442 scalar32_min_max_xor(dst_reg, &src_reg);
6443 scalar_min_max_xor(dst_reg, &src_reg);
6444 break;
48461135 6445 case BPF_LSH:
468f6eaf
JH
6446 if (umax_val >= insn_bitness) {
6447 /* Shifts greater than 31 or 63 are undefined.
6448 * This includes shifts by a negative number.
b03c9f9f 6449 */
61bd5218 6450 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6451 break;
6452 }
3f50f132
JF
6453 if (alu32)
6454 scalar32_min_max_lsh(dst_reg, &src_reg);
6455 else
6456 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6457 break;
6458 case BPF_RSH:
468f6eaf
JH
6459 if (umax_val >= insn_bitness) {
6460 /* Shifts greater than 31 or 63 are undefined.
6461 * This includes shifts by a negative number.
b03c9f9f 6462 */
61bd5218 6463 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6464 break;
6465 }
3f50f132
JF
6466 if (alu32)
6467 scalar32_min_max_rsh(dst_reg, &src_reg);
6468 else
6469 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6470 break;
9cbe1f5a
YS
6471 case BPF_ARSH:
6472 if (umax_val >= insn_bitness) {
6473 /* Shifts greater than 31 or 63 are undefined.
6474 * This includes shifts by a negative number.
6475 */
6476 mark_reg_unknown(env, regs, insn->dst_reg);
6477 break;
6478 }
3f50f132
JF
6479 if (alu32)
6480 scalar32_min_max_arsh(dst_reg, &src_reg);
6481 else
6482 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6483 break;
48461135 6484 default:
61bd5218 6485 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6486 break;
6487 }
6488
3f50f132
JF
6489 /* ALU32 ops are zero extended into 64bit register */
6490 if (alu32)
6491 zext_32_to_64(dst_reg);
468f6eaf 6492
294f2fc6 6493 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6494 __reg_deduce_bounds(dst_reg);
6495 __reg_bound_offset(dst_reg);
f1174f77
EC
6496 return 0;
6497}
6498
6499/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6500 * and var_off.
6501 */
6502static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6503 struct bpf_insn *insn)
6504{
f4d7e40a
AS
6505 struct bpf_verifier_state *vstate = env->cur_state;
6506 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6507 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6508 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6509 u8 opcode = BPF_OP(insn->code);
b5dc0163 6510 int err;
f1174f77
EC
6511
6512 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6513 src_reg = NULL;
6514 if (dst_reg->type != SCALAR_VALUE)
6515 ptr_reg = dst_reg;
75748837
AS
6516 else
6517 /* Make sure ID is cleared otherwise dst_reg min/max could be
6518 * incorrectly propagated into other registers by find_equal_scalars()
6519 */
6520 dst_reg->id = 0;
f1174f77
EC
6521 if (BPF_SRC(insn->code) == BPF_X) {
6522 src_reg = &regs[insn->src_reg];
f1174f77
EC
6523 if (src_reg->type != SCALAR_VALUE) {
6524 if (dst_reg->type != SCALAR_VALUE) {
6525 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6526 * an arbitrary scalar. Disallow all math except
6527 * pointer subtraction
f1174f77 6528 */
dd066823 6529 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6530 mark_reg_unknown(env, regs, insn->dst_reg);
6531 return 0;
f1174f77 6532 }
82abbf8d
AS
6533 verbose(env, "R%d pointer %s pointer prohibited\n",
6534 insn->dst_reg,
6535 bpf_alu_string[opcode >> 4]);
6536 return -EACCES;
f1174f77
EC
6537 } else {
6538 /* scalar += pointer
6539 * This is legal, but we have to reverse our
6540 * src/dest handling in computing the range
6541 */
b5dc0163
AS
6542 err = mark_chain_precision(env, insn->dst_reg);
6543 if (err)
6544 return err;
82abbf8d
AS
6545 return adjust_ptr_min_max_vals(env, insn,
6546 src_reg, dst_reg);
f1174f77
EC
6547 }
6548 } else if (ptr_reg) {
6549 /* pointer += scalar */
b5dc0163
AS
6550 err = mark_chain_precision(env, insn->src_reg);
6551 if (err)
6552 return err;
82abbf8d
AS
6553 return adjust_ptr_min_max_vals(env, insn,
6554 dst_reg, src_reg);
f1174f77
EC
6555 }
6556 } else {
6557 /* Pretend the src is a reg with a known value, since we only
6558 * need to be able to read from this state.
6559 */
6560 off_reg.type = SCALAR_VALUE;
b03c9f9f 6561 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6562 src_reg = &off_reg;
82abbf8d
AS
6563 if (ptr_reg) /* pointer += K */
6564 return adjust_ptr_min_max_vals(env, insn,
6565 ptr_reg, src_reg);
f1174f77
EC
6566 }
6567
6568 /* Got here implies adding two SCALAR_VALUEs */
6569 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6570 print_verifier_state(env, state);
61bd5218 6571 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6572 return -EINVAL;
6573 }
6574 if (WARN_ON(!src_reg)) {
f4d7e40a 6575 print_verifier_state(env, state);
61bd5218 6576 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6577 return -EINVAL;
6578 }
6579 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6580}
6581
17a52670 6582/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6583static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6584{
638f5b90 6585 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6586 u8 opcode = BPF_OP(insn->code);
6587 int err;
6588
6589 if (opcode == BPF_END || opcode == BPF_NEG) {
6590 if (opcode == BPF_NEG) {
6591 if (BPF_SRC(insn->code) != 0 ||
6592 insn->src_reg != BPF_REG_0 ||
6593 insn->off != 0 || insn->imm != 0) {
61bd5218 6594 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6595 return -EINVAL;
6596 }
6597 } else {
6598 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6599 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6600 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6601 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6602 return -EINVAL;
6603 }
6604 }
6605
6606 /* check src operand */
dc503a8a 6607 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6608 if (err)
6609 return err;
6610
1be7f75d 6611 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6612 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6613 insn->dst_reg);
6614 return -EACCES;
6615 }
6616
17a52670 6617 /* check dest operand */
dc503a8a 6618 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6619 if (err)
6620 return err;
6621
6622 } else if (opcode == BPF_MOV) {
6623
6624 if (BPF_SRC(insn->code) == BPF_X) {
6625 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6626 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6627 return -EINVAL;
6628 }
6629
6630 /* check src operand */
dc503a8a 6631 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6632 if (err)
6633 return err;
6634 } else {
6635 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6636 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6637 return -EINVAL;
6638 }
6639 }
6640
fbeb1603
AF
6641 /* check dest operand, mark as required later */
6642 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6643 if (err)
6644 return err;
6645
6646 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6647 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6648 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6649
17a52670
AS
6650 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6651 /* case: R1 = R2
6652 * copy register state to dest reg
6653 */
75748837
AS
6654 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6655 /* Assign src and dst registers the same ID
6656 * that will be used by find_equal_scalars()
6657 * to propagate min/max range.
6658 */
6659 src_reg->id = ++env->id_gen;
e434b8cd
JW
6660 *dst_reg = *src_reg;
6661 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6662 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6663 } else {
f1174f77 6664 /* R1 = (u32) R2 */
1be7f75d 6665 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6666 verbose(env,
6667 "R%d partial copy of pointer\n",
1be7f75d
AS
6668 insn->src_reg);
6669 return -EACCES;
e434b8cd
JW
6670 } else if (src_reg->type == SCALAR_VALUE) {
6671 *dst_reg = *src_reg;
75748837
AS
6672 /* Make sure ID is cleared otherwise
6673 * dst_reg min/max could be incorrectly
6674 * propagated into src_reg by find_equal_scalars()
6675 */
6676 dst_reg->id = 0;
e434b8cd 6677 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6678 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6679 } else {
6680 mark_reg_unknown(env, regs,
6681 insn->dst_reg);
1be7f75d 6682 }
3f50f132 6683 zext_32_to_64(dst_reg);
17a52670
AS
6684 }
6685 } else {
6686 /* case: R = imm
6687 * remember the value we stored into this reg
6688 */
fbeb1603
AF
6689 /* clear any state __mark_reg_known doesn't set */
6690 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6691 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6692 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6693 __mark_reg_known(regs + insn->dst_reg,
6694 insn->imm);
6695 } else {
6696 __mark_reg_known(regs + insn->dst_reg,
6697 (u32)insn->imm);
6698 }
17a52670
AS
6699 }
6700
6701 } else if (opcode > BPF_END) {
61bd5218 6702 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6703 return -EINVAL;
6704
6705 } else { /* all other ALU ops: and, sub, xor, add, ... */
6706
17a52670
AS
6707 if (BPF_SRC(insn->code) == BPF_X) {
6708 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6709 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6710 return -EINVAL;
6711 }
6712 /* check src1 operand */
dc503a8a 6713 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6714 if (err)
6715 return err;
6716 } else {
6717 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6718 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6719 return -EINVAL;
6720 }
6721 }
6722
6723 /* check src2 operand */
dc503a8a 6724 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6725 if (err)
6726 return err;
6727
6728 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6729 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6730 verbose(env, "div by zero\n");
17a52670
AS
6731 return -EINVAL;
6732 }
6733
229394e8
RV
6734 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6735 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6736 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6737
6738 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6739 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6740 return -EINVAL;
6741 }
6742 }
6743
1a0dc1ac 6744 /* check dest operand */
dc503a8a 6745 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6746 if (err)
6747 return err;
6748
f1174f77 6749 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6750 }
6751
6752 return 0;
6753}
6754
c6a9efa1
PC
6755static void __find_good_pkt_pointers(struct bpf_func_state *state,
6756 struct bpf_reg_state *dst_reg,
6d94e741 6757 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
6758{
6759 struct bpf_reg_state *reg;
6760 int i;
6761
6762 for (i = 0; i < MAX_BPF_REG; i++) {
6763 reg = &state->regs[i];
6764 if (reg->type == type && reg->id == dst_reg->id)
6765 /* keep the maximum range already checked */
6766 reg->range = max(reg->range, new_range);
6767 }
6768
6769 bpf_for_each_spilled_reg(i, state, reg) {
6770 if (!reg)
6771 continue;
6772 if (reg->type == type && reg->id == dst_reg->id)
6773 reg->range = max(reg->range, new_range);
6774 }
6775}
6776
f4d7e40a 6777static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6778 struct bpf_reg_state *dst_reg,
f8ddadc4 6779 enum bpf_reg_type type,
fb2a311a 6780 bool range_right_open)
969bf05e 6781{
6d94e741 6782 int new_range, i;
2d2be8ca 6783
fb2a311a
DB
6784 if (dst_reg->off < 0 ||
6785 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6786 /* This doesn't give us any range */
6787 return;
6788
b03c9f9f
EC
6789 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6790 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6791 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6792 * than pkt_end, but that's because it's also less than pkt.
6793 */
6794 return;
6795
fb2a311a
DB
6796 new_range = dst_reg->off;
6797 if (range_right_open)
6798 new_range--;
6799
6800 /* Examples for register markings:
2d2be8ca 6801 *
fb2a311a 6802 * pkt_data in dst register:
2d2be8ca
DB
6803 *
6804 * r2 = r3;
6805 * r2 += 8;
6806 * if (r2 > pkt_end) goto <handle exception>
6807 * <access okay>
6808 *
b4e432f1
DB
6809 * r2 = r3;
6810 * r2 += 8;
6811 * if (r2 < pkt_end) goto <access okay>
6812 * <handle exception>
6813 *
2d2be8ca
DB
6814 * Where:
6815 * r2 == dst_reg, pkt_end == src_reg
6816 * r2=pkt(id=n,off=8,r=0)
6817 * r3=pkt(id=n,off=0,r=0)
6818 *
fb2a311a 6819 * pkt_data in src register:
2d2be8ca
DB
6820 *
6821 * r2 = r3;
6822 * r2 += 8;
6823 * if (pkt_end >= r2) goto <access okay>
6824 * <handle exception>
6825 *
b4e432f1
DB
6826 * r2 = r3;
6827 * r2 += 8;
6828 * if (pkt_end <= r2) goto <handle exception>
6829 * <access okay>
6830 *
2d2be8ca
DB
6831 * Where:
6832 * pkt_end == dst_reg, r2 == src_reg
6833 * r2=pkt(id=n,off=8,r=0)
6834 * r3=pkt(id=n,off=0,r=0)
6835 *
6836 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6837 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6838 * and [r3, r3 + 8-1) respectively is safe to access depending on
6839 * the check.
969bf05e 6840 */
2d2be8ca 6841
f1174f77
EC
6842 /* If our ids match, then we must have the same max_value. And we
6843 * don't care about the other reg's fixed offset, since if it's too big
6844 * the range won't allow anything.
6845 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6846 */
c6a9efa1
PC
6847 for (i = 0; i <= vstate->curframe; i++)
6848 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6849 new_range);
969bf05e
AS
6850}
6851
3f50f132 6852static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6853{
3f50f132
JF
6854 struct tnum subreg = tnum_subreg(reg->var_off);
6855 s32 sval = (s32)val;
a72dafaf 6856
3f50f132
JF
6857 switch (opcode) {
6858 case BPF_JEQ:
6859 if (tnum_is_const(subreg))
6860 return !!tnum_equals_const(subreg, val);
6861 break;
6862 case BPF_JNE:
6863 if (tnum_is_const(subreg))
6864 return !tnum_equals_const(subreg, val);
6865 break;
6866 case BPF_JSET:
6867 if ((~subreg.mask & subreg.value) & val)
6868 return 1;
6869 if (!((subreg.mask | subreg.value) & val))
6870 return 0;
6871 break;
6872 case BPF_JGT:
6873 if (reg->u32_min_value > val)
6874 return 1;
6875 else if (reg->u32_max_value <= val)
6876 return 0;
6877 break;
6878 case BPF_JSGT:
6879 if (reg->s32_min_value > sval)
6880 return 1;
ee114dd6 6881 else if (reg->s32_max_value <= sval)
3f50f132
JF
6882 return 0;
6883 break;
6884 case BPF_JLT:
6885 if (reg->u32_max_value < val)
6886 return 1;
6887 else if (reg->u32_min_value >= val)
6888 return 0;
6889 break;
6890 case BPF_JSLT:
6891 if (reg->s32_max_value < sval)
6892 return 1;
6893 else if (reg->s32_min_value >= sval)
6894 return 0;
6895 break;
6896 case BPF_JGE:
6897 if (reg->u32_min_value >= val)
6898 return 1;
6899 else if (reg->u32_max_value < val)
6900 return 0;
6901 break;
6902 case BPF_JSGE:
6903 if (reg->s32_min_value >= sval)
6904 return 1;
6905 else if (reg->s32_max_value < sval)
6906 return 0;
6907 break;
6908 case BPF_JLE:
6909 if (reg->u32_max_value <= val)
6910 return 1;
6911 else if (reg->u32_min_value > val)
6912 return 0;
6913 break;
6914 case BPF_JSLE:
6915 if (reg->s32_max_value <= sval)
6916 return 1;
6917 else if (reg->s32_min_value > sval)
6918 return 0;
6919 break;
6920 }
4f7b3e82 6921
3f50f132
JF
6922 return -1;
6923}
092ed096 6924
3f50f132
JF
6925
6926static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6927{
6928 s64 sval = (s64)val;
a72dafaf 6929
4f7b3e82
AS
6930 switch (opcode) {
6931 case BPF_JEQ:
6932 if (tnum_is_const(reg->var_off))
6933 return !!tnum_equals_const(reg->var_off, val);
6934 break;
6935 case BPF_JNE:
6936 if (tnum_is_const(reg->var_off))
6937 return !tnum_equals_const(reg->var_off, val);
6938 break;
960ea056
JK
6939 case BPF_JSET:
6940 if ((~reg->var_off.mask & reg->var_off.value) & val)
6941 return 1;
6942 if (!((reg->var_off.mask | reg->var_off.value) & val))
6943 return 0;
6944 break;
4f7b3e82
AS
6945 case BPF_JGT:
6946 if (reg->umin_value > val)
6947 return 1;
6948 else if (reg->umax_value <= val)
6949 return 0;
6950 break;
6951 case BPF_JSGT:
a72dafaf 6952 if (reg->smin_value > sval)
4f7b3e82 6953 return 1;
ee114dd6 6954 else if (reg->smax_value <= sval)
4f7b3e82
AS
6955 return 0;
6956 break;
6957 case BPF_JLT:
6958 if (reg->umax_value < val)
6959 return 1;
6960 else if (reg->umin_value >= val)
6961 return 0;
6962 break;
6963 case BPF_JSLT:
a72dafaf 6964 if (reg->smax_value < sval)
4f7b3e82 6965 return 1;
a72dafaf 6966 else if (reg->smin_value >= sval)
4f7b3e82
AS
6967 return 0;
6968 break;
6969 case BPF_JGE:
6970 if (reg->umin_value >= val)
6971 return 1;
6972 else if (reg->umax_value < val)
6973 return 0;
6974 break;
6975 case BPF_JSGE:
a72dafaf 6976 if (reg->smin_value >= sval)
4f7b3e82 6977 return 1;
a72dafaf 6978 else if (reg->smax_value < sval)
4f7b3e82
AS
6979 return 0;
6980 break;
6981 case BPF_JLE:
6982 if (reg->umax_value <= val)
6983 return 1;
6984 else if (reg->umin_value > val)
6985 return 0;
6986 break;
6987 case BPF_JSLE:
a72dafaf 6988 if (reg->smax_value <= sval)
4f7b3e82 6989 return 1;
a72dafaf 6990 else if (reg->smin_value > sval)
4f7b3e82
AS
6991 return 0;
6992 break;
6993 }
6994
6995 return -1;
6996}
6997
3f50f132
JF
6998/* compute branch direction of the expression "if (reg opcode val) goto target;"
6999 * and return:
7000 * 1 - branch will be taken and "goto target" will be executed
7001 * 0 - branch will not be taken and fall-through to next insn
7002 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7003 * range [0,10]
604dca5e 7004 */
3f50f132
JF
7005static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7006 bool is_jmp32)
604dca5e 7007{
cac616db
JF
7008 if (__is_pointer_value(false, reg)) {
7009 if (!reg_type_not_null(reg->type))
7010 return -1;
7011
7012 /* If pointer is valid tests against zero will fail so we can
7013 * use this to direct branch taken.
7014 */
7015 if (val != 0)
7016 return -1;
7017
7018 switch (opcode) {
7019 case BPF_JEQ:
7020 return 0;
7021 case BPF_JNE:
7022 return 1;
7023 default:
7024 return -1;
7025 }
7026 }
604dca5e 7027
3f50f132
JF
7028 if (is_jmp32)
7029 return is_branch32_taken(reg, val, opcode);
7030 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
7031}
7032
6d94e741
AS
7033static int flip_opcode(u32 opcode)
7034{
7035 /* How can we transform "a <op> b" into "b <op> a"? */
7036 static const u8 opcode_flip[16] = {
7037 /* these stay the same */
7038 [BPF_JEQ >> 4] = BPF_JEQ,
7039 [BPF_JNE >> 4] = BPF_JNE,
7040 [BPF_JSET >> 4] = BPF_JSET,
7041 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7042 [BPF_JGE >> 4] = BPF_JLE,
7043 [BPF_JGT >> 4] = BPF_JLT,
7044 [BPF_JLE >> 4] = BPF_JGE,
7045 [BPF_JLT >> 4] = BPF_JGT,
7046 [BPF_JSGE >> 4] = BPF_JSLE,
7047 [BPF_JSGT >> 4] = BPF_JSLT,
7048 [BPF_JSLE >> 4] = BPF_JSGE,
7049 [BPF_JSLT >> 4] = BPF_JSGT
7050 };
7051 return opcode_flip[opcode >> 4];
7052}
7053
7054static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7055 struct bpf_reg_state *src_reg,
7056 u8 opcode)
7057{
7058 struct bpf_reg_state *pkt;
7059
7060 if (src_reg->type == PTR_TO_PACKET_END) {
7061 pkt = dst_reg;
7062 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7063 pkt = src_reg;
7064 opcode = flip_opcode(opcode);
7065 } else {
7066 return -1;
7067 }
7068
7069 if (pkt->range >= 0)
7070 return -1;
7071
7072 switch (opcode) {
7073 case BPF_JLE:
7074 /* pkt <= pkt_end */
7075 fallthrough;
7076 case BPF_JGT:
7077 /* pkt > pkt_end */
7078 if (pkt->range == BEYOND_PKT_END)
7079 /* pkt has at last one extra byte beyond pkt_end */
7080 return opcode == BPF_JGT;
7081 break;
7082 case BPF_JLT:
7083 /* pkt < pkt_end */
7084 fallthrough;
7085 case BPF_JGE:
7086 /* pkt >= pkt_end */
7087 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7088 return opcode == BPF_JGE;
7089 break;
7090 }
7091 return -1;
7092}
7093
48461135
JB
7094/* Adjusts the register min/max values in the case that the dst_reg is the
7095 * variable register that we are working on, and src_reg is a constant or we're
7096 * simply doing a BPF_K check.
f1174f77 7097 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
7098 */
7099static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
7100 struct bpf_reg_state *false_reg,
7101 u64 val, u32 val32,
092ed096 7102 u8 opcode, bool is_jmp32)
48461135 7103{
3f50f132
JF
7104 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7105 struct tnum false_64off = false_reg->var_off;
7106 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7107 struct tnum true_64off = true_reg->var_off;
7108 s64 sval = (s64)val;
7109 s32 sval32 = (s32)val32;
a72dafaf 7110
f1174f77
EC
7111 /* If the dst_reg is a pointer, we can't learn anything about its
7112 * variable offset from the compare (unless src_reg were a pointer into
7113 * the same object, but we don't bother with that.
7114 * Since false_reg and true_reg have the same type by construction, we
7115 * only need to check one of them for pointerness.
7116 */
7117 if (__is_pointer_value(false, false_reg))
7118 return;
4cabc5b1 7119
48461135
JB
7120 switch (opcode) {
7121 case BPF_JEQ:
48461135 7122 case BPF_JNE:
a72dafaf
JW
7123 {
7124 struct bpf_reg_state *reg =
7125 opcode == BPF_JEQ ? true_reg : false_reg;
7126
e688c3db
AS
7127 /* JEQ/JNE comparison doesn't change the register equivalence.
7128 * r1 = r2;
7129 * if (r1 == 42) goto label;
7130 * ...
7131 * label: // here both r1 and r2 are known to be 42.
7132 *
7133 * Hence when marking register as known preserve it's ID.
48461135 7134 */
3f50f132
JF
7135 if (is_jmp32)
7136 __mark_reg32_known(reg, val32);
7137 else
e688c3db 7138 ___mark_reg_known(reg, val);
48461135 7139 break;
a72dafaf 7140 }
960ea056 7141 case BPF_JSET:
3f50f132
JF
7142 if (is_jmp32) {
7143 false_32off = tnum_and(false_32off, tnum_const(~val32));
7144 if (is_power_of_2(val32))
7145 true_32off = tnum_or(true_32off,
7146 tnum_const(val32));
7147 } else {
7148 false_64off = tnum_and(false_64off, tnum_const(~val));
7149 if (is_power_of_2(val))
7150 true_64off = tnum_or(true_64off,
7151 tnum_const(val));
7152 }
960ea056 7153 break;
48461135 7154 case BPF_JGE:
a72dafaf
JW
7155 case BPF_JGT:
7156 {
3f50f132
JF
7157 if (is_jmp32) {
7158 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7159 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7160
7161 false_reg->u32_max_value = min(false_reg->u32_max_value,
7162 false_umax);
7163 true_reg->u32_min_value = max(true_reg->u32_min_value,
7164 true_umin);
7165 } else {
7166 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7167 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7168
7169 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7170 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7171 }
b03c9f9f 7172 break;
a72dafaf 7173 }
48461135 7174 case BPF_JSGE:
a72dafaf
JW
7175 case BPF_JSGT:
7176 {
3f50f132
JF
7177 if (is_jmp32) {
7178 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7179 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 7180
3f50f132
JF
7181 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7182 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7183 } else {
7184 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7185 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7186
7187 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7188 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7189 }
48461135 7190 break;
a72dafaf 7191 }
b4e432f1 7192 case BPF_JLE:
a72dafaf
JW
7193 case BPF_JLT:
7194 {
3f50f132
JF
7195 if (is_jmp32) {
7196 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7197 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7198
7199 false_reg->u32_min_value = max(false_reg->u32_min_value,
7200 false_umin);
7201 true_reg->u32_max_value = min(true_reg->u32_max_value,
7202 true_umax);
7203 } else {
7204 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7205 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7206
7207 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7208 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7209 }
b4e432f1 7210 break;
a72dafaf 7211 }
b4e432f1 7212 case BPF_JSLE:
a72dafaf
JW
7213 case BPF_JSLT:
7214 {
3f50f132
JF
7215 if (is_jmp32) {
7216 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7217 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 7218
3f50f132
JF
7219 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7220 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7221 } else {
7222 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7223 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7224
7225 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7226 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7227 }
b4e432f1 7228 break;
a72dafaf 7229 }
48461135 7230 default:
0fc31b10 7231 return;
48461135
JB
7232 }
7233
3f50f132
JF
7234 if (is_jmp32) {
7235 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7236 tnum_subreg(false_32off));
7237 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7238 tnum_subreg(true_32off));
7239 __reg_combine_32_into_64(false_reg);
7240 __reg_combine_32_into_64(true_reg);
7241 } else {
7242 false_reg->var_off = false_64off;
7243 true_reg->var_off = true_64off;
7244 __reg_combine_64_into_32(false_reg);
7245 __reg_combine_64_into_32(true_reg);
7246 }
48461135
JB
7247}
7248
f1174f77
EC
7249/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7250 * the variable reg.
48461135
JB
7251 */
7252static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
7253 struct bpf_reg_state *false_reg,
7254 u64 val, u32 val32,
092ed096 7255 u8 opcode, bool is_jmp32)
48461135 7256{
6d94e741 7257 opcode = flip_opcode(opcode);
0fc31b10
JH
7258 /* This uses zero as "not present in table"; luckily the zero opcode,
7259 * BPF_JA, can't get here.
b03c9f9f 7260 */
0fc31b10 7261 if (opcode)
3f50f132 7262 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
7263}
7264
7265/* Regs are known to be equal, so intersect their min/max/var_off */
7266static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7267 struct bpf_reg_state *dst_reg)
7268{
b03c9f9f
EC
7269 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7270 dst_reg->umin_value);
7271 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7272 dst_reg->umax_value);
7273 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7274 dst_reg->smin_value);
7275 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7276 dst_reg->smax_value);
f1174f77
EC
7277 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7278 dst_reg->var_off);
b03c9f9f
EC
7279 /* We might have learned new bounds from the var_off. */
7280 __update_reg_bounds(src_reg);
7281 __update_reg_bounds(dst_reg);
7282 /* We might have learned something about the sign bit. */
7283 __reg_deduce_bounds(src_reg);
7284 __reg_deduce_bounds(dst_reg);
7285 /* We might have learned some bits from the bounds. */
7286 __reg_bound_offset(src_reg);
7287 __reg_bound_offset(dst_reg);
7288 /* Intersecting with the old var_off might have improved our bounds
7289 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7290 * then new var_off is (0; 0x7f...fc) which improves our umax.
7291 */
7292 __update_reg_bounds(src_reg);
7293 __update_reg_bounds(dst_reg);
f1174f77
EC
7294}
7295
7296static void reg_combine_min_max(struct bpf_reg_state *true_src,
7297 struct bpf_reg_state *true_dst,
7298 struct bpf_reg_state *false_src,
7299 struct bpf_reg_state *false_dst,
7300 u8 opcode)
7301{
7302 switch (opcode) {
7303 case BPF_JEQ:
7304 __reg_combine_min_max(true_src, true_dst);
7305 break;
7306 case BPF_JNE:
7307 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7308 break;
4cabc5b1 7309 }
48461135
JB
7310}
7311
fd978bf7
JS
7312static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7313 struct bpf_reg_state *reg, u32 id,
840b9615 7314 bool is_null)
57a09bf0 7315{
93c230e3
MKL
7316 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7317 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
7318 /* Old offset (both fixed and variable parts) should
7319 * have been known-zero, because we don't allow pointer
7320 * arithmetic on pointers that might be NULL.
7321 */
b03c9f9f
EC
7322 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7323 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7324 reg->off)) {
b03c9f9f
EC
7325 __mark_reg_known_zero(reg);
7326 reg->off = 0;
f1174f77
EC
7327 }
7328 if (is_null) {
7329 reg->type = SCALAR_VALUE;
840b9615 7330 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7331 const struct bpf_map *map = reg->map_ptr;
7332
7333 if (map->inner_map_meta) {
840b9615 7334 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7335 reg->map_ptr = map->inner_map_meta;
7336 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7337 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7338 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7339 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7340 reg->type = PTR_TO_SOCKET;
840b9615
JS
7341 } else {
7342 reg->type = PTR_TO_MAP_VALUE;
7343 }
c64b7983
JS
7344 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7345 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7346 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7347 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7348 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7349 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7350 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7351 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7352 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7353 reg->type = PTR_TO_MEM;
afbf21dc
YS
7354 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7355 reg->type = PTR_TO_RDONLY_BUF;
7356 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7357 reg->type = PTR_TO_RDWR_BUF;
56f668df 7358 }
1b986589
MKL
7359 if (is_null) {
7360 /* We don't need id and ref_obj_id from this point
7361 * onwards anymore, thus we should better reset it,
7362 * so that state pruning has chances to take effect.
7363 */
7364 reg->id = 0;
7365 reg->ref_obj_id = 0;
7366 } else if (!reg_may_point_to_spin_lock(reg)) {
7367 /* For not-NULL ptr, reg->ref_obj_id will be reset
7368 * in release_reg_references().
7369 *
7370 * reg->id is still used by spin_lock ptr. Other
7371 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7372 */
7373 reg->id = 0;
56f668df 7374 }
57a09bf0
TG
7375 }
7376}
7377
c6a9efa1
PC
7378static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7379 bool is_null)
7380{
7381 struct bpf_reg_state *reg;
7382 int i;
7383
7384 for (i = 0; i < MAX_BPF_REG; i++)
7385 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7386
7387 bpf_for_each_spilled_reg(i, state, reg) {
7388 if (!reg)
7389 continue;
7390 mark_ptr_or_null_reg(state, reg, id, is_null);
7391 }
7392}
7393
57a09bf0
TG
7394/* The logic is similar to find_good_pkt_pointers(), both could eventually
7395 * be folded together at some point.
7396 */
840b9615
JS
7397static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7398 bool is_null)
57a09bf0 7399{
f4d7e40a 7400 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7401 struct bpf_reg_state *regs = state->regs;
1b986589 7402 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7403 u32 id = regs[regno].id;
c6a9efa1 7404 int i;
57a09bf0 7405
1b986589
MKL
7406 if (ref_obj_id && ref_obj_id == id && is_null)
7407 /* regs[regno] is in the " == NULL" branch.
7408 * No one could have freed the reference state before
7409 * doing the NULL check.
7410 */
7411 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7412
c6a9efa1
PC
7413 for (i = 0; i <= vstate->curframe; i++)
7414 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7415}
7416
5beca081
DB
7417static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7418 struct bpf_reg_state *dst_reg,
7419 struct bpf_reg_state *src_reg,
7420 struct bpf_verifier_state *this_branch,
7421 struct bpf_verifier_state *other_branch)
7422{
7423 if (BPF_SRC(insn->code) != BPF_X)
7424 return false;
7425
092ed096
JW
7426 /* Pointers are always 64-bit. */
7427 if (BPF_CLASS(insn->code) == BPF_JMP32)
7428 return false;
7429
5beca081
DB
7430 switch (BPF_OP(insn->code)) {
7431 case BPF_JGT:
7432 if ((dst_reg->type == PTR_TO_PACKET &&
7433 src_reg->type == PTR_TO_PACKET_END) ||
7434 (dst_reg->type == PTR_TO_PACKET_META &&
7435 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7436 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7437 find_good_pkt_pointers(this_branch, dst_reg,
7438 dst_reg->type, false);
6d94e741 7439 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
7440 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7441 src_reg->type == PTR_TO_PACKET) ||
7442 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7443 src_reg->type == PTR_TO_PACKET_META)) {
7444 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7445 find_good_pkt_pointers(other_branch, src_reg,
7446 src_reg->type, true);
6d94e741 7447 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
7448 } else {
7449 return false;
7450 }
7451 break;
7452 case BPF_JLT:
7453 if ((dst_reg->type == PTR_TO_PACKET &&
7454 src_reg->type == PTR_TO_PACKET_END) ||
7455 (dst_reg->type == PTR_TO_PACKET_META &&
7456 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7457 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7458 find_good_pkt_pointers(other_branch, dst_reg,
7459 dst_reg->type, true);
6d94e741 7460 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
7461 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7462 src_reg->type == PTR_TO_PACKET) ||
7463 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7464 src_reg->type == PTR_TO_PACKET_META)) {
7465 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7466 find_good_pkt_pointers(this_branch, src_reg,
7467 src_reg->type, false);
6d94e741 7468 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
7469 } else {
7470 return false;
7471 }
7472 break;
7473 case BPF_JGE:
7474 if ((dst_reg->type == PTR_TO_PACKET &&
7475 src_reg->type == PTR_TO_PACKET_END) ||
7476 (dst_reg->type == PTR_TO_PACKET_META &&
7477 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7478 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7479 find_good_pkt_pointers(this_branch, dst_reg,
7480 dst_reg->type, true);
6d94e741 7481 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
7482 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7483 src_reg->type == PTR_TO_PACKET) ||
7484 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7485 src_reg->type == PTR_TO_PACKET_META)) {
7486 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7487 find_good_pkt_pointers(other_branch, src_reg,
7488 src_reg->type, false);
6d94e741 7489 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
7490 } else {
7491 return false;
7492 }
7493 break;
7494 case BPF_JLE:
7495 if ((dst_reg->type == PTR_TO_PACKET &&
7496 src_reg->type == PTR_TO_PACKET_END) ||
7497 (dst_reg->type == PTR_TO_PACKET_META &&
7498 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7499 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7500 find_good_pkt_pointers(other_branch, dst_reg,
7501 dst_reg->type, false);
6d94e741 7502 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
7503 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7504 src_reg->type == PTR_TO_PACKET) ||
7505 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7506 src_reg->type == PTR_TO_PACKET_META)) {
7507 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7508 find_good_pkt_pointers(this_branch, src_reg,
7509 src_reg->type, true);
6d94e741 7510 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
7511 } else {
7512 return false;
7513 }
7514 break;
7515 default:
7516 return false;
7517 }
7518
7519 return true;
7520}
7521
75748837
AS
7522static void find_equal_scalars(struct bpf_verifier_state *vstate,
7523 struct bpf_reg_state *known_reg)
7524{
7525 struct bpf_func_state *state;
7526 struct bpf_reg_state *reg;
7527 int i, j;
7528
7529 for (i = 0; i <= vstate->curframe; i++) {
7530 state = vstate->frame[i];
7531 for (j = 0; j < MAX_BPF_REG; j++) {
7532 reg = &state->regs[j];
7533 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7534 *reg = *known_reg;
7535 }
7536
7537 bpf_for_each_spilled_reg(j, state, reg) {
7538 if (!reg)
7539 continue;
7540 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7541 *reg = *known_reg;
7542 }
7543 }
7544}
7545
58e2af8b 7546static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7547 struct bpf_insn *insn, int *insn_idx)
7548{
f4d7e40a
AS
7549 struct bpf_verifier_state *this_branch = env->cur_state;
7550 struct bpf_verifier_state *other_branch;
7551 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7552 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7553 u8 opcode = BPF_OP(insn->code);
092ed096 7554 bool is_jmp32;
fb8d251e 7555 int pred = -1;
17a52670
AS
7556 int err;
7557
092ed096
JW
7558 /* Only conditional jumps are expected to reach here. */
7559 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7560 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7561 return -EINVAL;
7562 }
7563
7564 if (BPF_SRC(insn->code) == BPF_X) {
7565 if (insn->imm != 0) {
092ed096 7566 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7567 return -EINVAL;
7568 }
7569
7570 /* check src1 operand */
dc503a8a 7571 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7572 if (err)
7573 return err;
1be7f75d
AS
7574
7575 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7576 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7577 insn->src_reg);
7578 return -EACCES;
7579 }
fb8d251e 7580 src_reg = &regs[insn->src_reg];
17a52670
AS
7581 } else {
7582 if (insn->src_reg != BPF_REG_0) {
092ed096 7583 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7584 return -EINVAL;
7585 }
7586 }
7587
7588 /* check src2 operand */
dc503a8a 7589 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7590 if (err)
7591 return err;
7592
1a0dc1ac 7593 dst_reg = &regs[insn->dst_reg];
092ed096 7594 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7595
3f50f132
JF
7596 if (BPF_SRC(insn->code) == BPF_K) {
7597 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7598 } else if (src_reg->type == SCALAR_VALUE &&
7599 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7600 pred = is_branch_taken(dst_reg,
7601 tnum_subreg(src_reg->var_off).value,
7602 opcode,
7603 is_jmp32);
7604 } else if (src_reg->type == SCALAR_VALUE &&
7605 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7606 pred = is_branch_taken(dst_reg,
7607 src_reg->var_off.value,
7608 opcode,
7609 is_jmp32);
6d94e741
AS
7610 } else if (reg_is_pkt_pointer_any(dst_reg) &&
7611 reg_is_pkt_pointer_any(src_reg) &&
7612 !is_jmp32) {
7613 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
7614 }
7615
b5dc0163 7616 if (pred >= 0) {
cac616db
JF
7617 /* If we get here with a dst_reg pointer type it is because
7618 * above is_branch_taken() special cased the 0 comparison.
7619 */
7620 if (!__is_pointer_value(false, dst_reg))
7621 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
7622 if (BPF_SRC(insn->code) == BPF_X && !err &&
7623 !__is_pointer_value(false, src_reg))
b5dc0163
AS
7624 err = mark_chain_precision(env, insn->src_reg);
7625 if (err)
7626 return err;
7627 }
fb8d251e
AS
7628 if (pred == 1) {
7629 /* only follow the goto, ignore fall-through */
7630 *insn_idx += insn->off;
7631 return 0;
7632 } else if (pred == 0) {
7633 /* only follow fall-through branch, since
7634 * that's where the program will go
7635 */
7636 return 0;
17a52670
AS
7637 }
7638
979d63d5
DB
7639 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7640 false);
17a52670
AS
7641 if (!other_branch)
7642 return -EFAULT;
f4d7e40a 7643 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7644
48461135
JB
7645 /* detect if we are comparing against a constant value so we can adjust
7646 * our min/max values for our dst register.
f1174f77
EC
7647 * this is only legit if both are scalars (or pointers to the same
7648 * object, I suppose, but we don't support that right now), because
7649 * otherwise the different base pointers mean the offsets aren't
7650 * comparable.
48461135
JB
7651 */
7652 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7653 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7654
f1174f77 7655 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7656 src_reg->type == SCALAR_VALUE) {
7657 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7658 (is_jmp32 &&
7659 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7660 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7661 dst_reg,
3f50f132
JF
7662 src_reg->var_off.value,
7663 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7664 opcode, is_jmp32);
7665 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7666 (is_jmp32 &&
7667 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7668 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7669 src_reg,
3f50f132
JF
7670 dst_reg->var_off.value,
7671 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7672 opcode, is_jmp32);
7673 else if (!is_jmp32 &&
7674 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7675 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7676 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7677 &other_branch_regs[insn->dst_reg],
092ed096 7678 src_reg, dst_reg, opcode);
e688c3db
AS
7679 if (src_reg->id &&
7680 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
7681 find_equal_scalars(this_branch, src_reg);
7682 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7683 }
7684
f1174f77
EC
7685 }
7686 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7687 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7688 dst_reg, insn->imm, (u32)insn->imm,
7689 opcode, is_jmp32);
48461135
JB
7690 }
7691
e688c3db
AS
7692 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7693 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
7694 find_equal_scalars(this_branch, dst_reg);
7695 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7696 }
7697
092ed096
JW
7698 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7699 * NOTE: these optimizations below are related with pointer comparison
7700 * which will never be JMP32.
7701 */
7702 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7703 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7704 reg_type_may_be_null(dst_reg->type)) {
7705 /* Mark all identical registers in each branch as either
57a09bf0
TG
7706 * safe or unknown depending R == 0 or R != 0 conditional.
7707 */
840b9615
JS
7708 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7709 opcode == BPF_JNE);
7710 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7711 opcode == BPF_JEQ);
5beca081
DB
7712 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7713 this_branch, other_branch) &&
7714 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7715 verbose(env, "R%d pointer comparison prohibited\n",
7716 insn->dst_reg);
1be7f75d 7717 return -EACCES;
17a52670 7718 }
06ee7115 7719 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7720 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7721 return 0;
7722}
7723
17a52670 7724/* verify BPF_LD_IMM64 instruction */
58e2af8b 7725static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7726{
d8eca5bb 7727 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7728 struct bpf_reg_state *regs = cur_regs(env);
4976b718 7729 struct bpf_reg_state *dst_reg;
d8eca5bb 7730 struct bpf_map *map;
17a52670
AS
7731 int err;
7732
7733 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7734 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7735 return -EINVAL;
7736 }
7737 if (insn->off != 0) {
61bd5218 7738 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7739 return -EINVAL;
7740 }
7741
dc503a8a 7742 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7743 if (err)
7744 return err;
7745
4976b718 7746 dst_reg = &regs[insn->dst_reg];
6b173873 7747 if (insn->src_reg == 0) {
6b173873
JK
7748 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7749
4976b718 7750 dst_reg->type = SCALAR_VALUE;
b03c9f9f 7751 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7752 return 0;
6b173873 7753 }
17a52670 7754
4976b718
HL
7755 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7756 mark_reg_known_zero(env, regs, insn->dst_reg);
7757
7758 dst_reg->type = aux->btf_var.reg_type;
7759 switch (dst_reg->type) {
7760 case PTR_TO_MEM:
7761 dst_reg->mem_size = aux->btf_var.mem_size;
7762 break;
7763 case PTR_TO_BTF_ID:
eaa6bcb7 7764 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 7765 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
7766 dst_reg->btf_id = aux->btf_var.btf_id;
7767 break;
7768 default:
7769 verbose(env, "bpf verifier is misconfigured\n");
7770 return -EFAULT;
7771 }
7772 return 0;
7773 }
7774
d8eca5bb
DB
7775 map = env->used_maps[aux->map_index];
7776 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 7777 dst_reg->map_ptr = map;
d8eca5bb
DB
7778
7779 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
4976b718
HL
7780 dst_reg->type = PTR_TO_MAP_VALUE;
7781 dst_reg->off = aux->map_off;
d8eca5bb 7782 if (map_value_has_spin_lock(map))
4976b718 7783 dst_reg->id = ++env->id_gen;
d8eca5bb 7784 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
4976b718 7785 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
7786 } else {
7787 verbose(env, "bpf verifier is misconfigured\n");
7788 return -EINVAL;
7789 }
17a52670 7790
17a52670
AS
7791 return 0;
7792}
7793
96be4325
DB
7794static bool may_access_skb(enum bpf_prog_type type)
7795{
7796 switch (type) {
7797 case BPF_PROG_TYPE_SOCKET_FILTER:
7798 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7799 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7800 return true;
7801 default:
7802 return false;
7803 }
7804}
7805
ddd872bc
AS
7806/* verify safety of LD_ABS|LD_IND instructions:
7807 * - they can only appear in the programs where ctx == skb
7808 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7809 * preserve R6-R9, and store return value into R0
7810 *
7811 * Implicit input:
7812 * ctx == skb == R6 == CTX
7813 *
7814 * Explicit input:
7815 * SRC == any register
7816 * IMM == 32-bit immediate
7817 *
7818 * Output:
7819 * R0 - 8/16/32-bit skb data converted to cpu endianness
7820 */
58e2af8b 7821static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7822{
638f5b90 7823 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7824 static const int ctx_reg = BPF_REG_6;
ddd872bc 7825 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7826 int i, err;
7827
7e40781c 7828 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7829 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7830 return -EINVAL;
7831 }
7832
e0cea7ce
DB
7833 if (!env->ops->gen_ld_abs) {
7834 verbose(env, "bpf verifier is misconfigured\n");
7835 return -EINVAL;
7836 }
7837
ddd872bc 7838 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7839 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7840 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7841 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7842 return -EINVAL;
7843 }
7844
7845 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7846 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7847 if (err)
7848 return err;
7849
fd978bf7
JS
7850 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7851 * gen_ld_abs() may terminate the program at runtime, leading to
7852 * reference leak.
7853 */
7854 err = check_reference_leak(env);
7855 if (err) {
7856 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7857 return err;
7858 }
7859
d83525ca
AS
7860 if (env->cur_state->active_spin_lock) {
7861 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7862 return -EINVAL;
7863 }
7864
6d4f151a 7865 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7866 verbose(env,
7867 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7868 return -EINVAL;
7869 }
7870
7871 if (mode == BPF_IND) {
7872 /* check explicit source operand */
dc503a8a 7873 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7874 if (err)
7875 return err;
7876 }
7877
6d4f151a
DB
7878 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7879 if (err < 0)
7880 return err;
7881
ddd872bc 7882 /* reset caller saved regs to unreadable */
dc503a8a 7883 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7884 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7885 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7886 }
ddd872bc
AS
7887
7888 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7889 * the value fetched from the packet.
7890 * Already marked as written above.
ddd872bc 7891 */
61bd5218 7892 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7893 /* ld_abs load up to 32-bit skb data. */
7894 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7895 return 0;
7896}
7897
390ee7e2
AS
7898static int check_return_code(struct bpf_verifier_env *env)
7899{
5cf1e914 7900 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7901 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7902 struct bpf_reg_state *reg;
7903 struct tnum range = tnum_range(0, 1);
7e40781c 7904 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 7905 int err;
f782e2c3 7906 const bool is_subprog = env->cur_state->frame[0]->subprogno;
27ae7997 7907
9e4e01df 7908 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
7909 if (!is_subprog &&
7910 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 7911 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7912 !prog->aux->attach_func_proto->type)
7913 return 0;
7914
7915 /* eBPF calling convetion is such that R0 is used
7916 * to return the value from eBPF program.
7917 * Make sure that it's readable at this time
7918 * of bpf_exit, which means that program wrote
7919 * something into it earlier
7920 */
7921 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7922 if (err)
7923 return err;
7924
7925 if (is_pointer_value(env, BPF_REG_0)) {
7926 verbose(env, "R0 leaks addr as return value\n");
7927 return -EACCES;
7928 }
390ee7e2 7929
f782e2c3
DB
7930 reg = cur_regs(env) + BPF_REG_0;
7931 if (is_subprog) {
7932 if (reg->type != SCALAR_VALUE) {
7933 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7934 reg_type_str[reg->type]);
7935 return -EINVAL;
7936 }
7937 return 0;
7938 }
7939
7e40781c 7940 switch (prog_type) {
983695fa
DB
7941 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7942 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7943 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7944 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7945 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7946 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7947 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7948 range = tnum_range(1, 1);
ed4ed404 7949 break;
390ee7e2 7950 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7951 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7952 range = tnum_range(0, 3);
7953 enforce_attach_type_range = tnum_range(2, 3);
7954 }
ed4ed404 7955 break;
390ee7e2
AS
7956 case BPF_PROG_TYPE_CGROUP_SOCK:
7957 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7958 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7959 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7960 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7961 break;
15ab09bd
AS
7962 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7963 if (!env->prog->aux->attach_btf_id)
7964 return 0;
7965 range = tnum_const(0);
7966 break;
15d83c4d 7967 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7968 switch (env->prog->expected_attach_type) {
7969 case BPF_TRACE_FENTRY:
7970 case BPF_TRACE_FEXIT:
7971 range = tnum_const(0);
7972 break;
7973 case BPF_TRACE_RAW_TP:
7974 case BPF_MODIFY_RETURN:
15d83c4d 7975 return 0;
2ec0616e
DB
7976 case BPF_TRACE_ITER:
7977 break;
e92888c7
YS
7978 default:
7979 return -ENOTSUPP;
7980 }
15d83c4d 7981 break;
e9ddbb77
JS
7982 case BPF_PROG_TYPE_SK_LOOKUP:
7983 range = tnum_range(SK_DROP, SK_PASS);
7984 break;
e92888c7
YS
7985 case BPF_PROG_TYPE_EXT:
7986 /* freplace program can return anything as its return value
7987 * depends on the to-be-replaced kernel func or bpf program.
7988 */
390ee7e2
AS
7989 default:
7990 return 0;
7991 }
7992
390ee7e2 7993 if (reg->type != SCALAR_VALUE) {
61bd5218 7994 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7995 reg_type_str[reg->type]);
7996 return -EINVAL;
7997 }
7998
7999 if (!tnum_in(range, reg->var_off)) {
5cf1e914 8000 char tn_buf[48];
8001
61bd5218 8002 verbose(env, "At program exit the register R0 ");
390ee7e2 8003 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 8004 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 8005 verbose(env, "has value %s", tn_buf);
390ee7e2 8006 } else {
61bd5218 8007 verbose(env, "has unknown scalar value");
390ee7e2 8008 }
5cf1e914 8009 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 8010 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
8011 return -EINVAL;
8012 }
5cf1e914 8013
8014 if (!tnum_is_unknown(enforce_attach_type_range) &&
8015 tnum_in(enforce_attach_type_range, reg->var_off))
8016 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
8017 return 0;
8018}
8019
475fb78f
AS
8020/* non-recursive DFS pseudo code
8021 * 1 procedure DFS-iterative(G,v):
8022 * 2 label v as discovered
8023 * 3 let S be a stack
8024 * 4 S.push(v)
8025 * 5 while S is not empty
8026 * 6 t <- S.pop()
8027 * 7 if t is what we're looking for:
8028 * 8 return t
8029 * 9 for all edges e in G.adjacentEdges(t) do
8030 * 10 if edge e is already labelled
8031 * 11 continue with the next edge
8032 * 12 w <- G.adjacentVertex(t,e)
8033 * 13 if vertex w is not discovered and not explored
8034 * 14 label e as tree-edge
8035 * 15 label w as discovered
8036 * 16 S.push(w)
8037 * 17 continue at 5
8038 * 18 else if vertex w is discovered
8039 * 19 label e as back-edge
8040 * 20 else
8041 * 21 // vertex w is explored
8042 * 22 label e as forward- or cross-edge
8043 * 23 label t as explored
8044 * 24 S.pop()
8045 *
8046 * convention:
8047 * 0x10 - discovered
8048 * 0x11 - discovered and fall-through edge labelled
8049 * 0x12 - discovered and fall-through and branch edges labelled
8050 * 0x20 - explored
8051 */
8052
8053enum {
8054 DISCOVERED = 0x10,
8055 EXPLORED = 0x20,
8056 FALLTHROUGH = 1,
8057 BRANCH = 2,
8058};
8059
dc2a4ebc
AS
8060static u32 state_htab_size(struct bpf_verifier_env *env)
8061{
8062 return env->prog->len;
8063}
8064
5d839021
AS
8065static struct bpf_verifier_state_list **explored_state(
8066 struct bpf_verifier_env *env,
8067 int idx)
8068{
dc2a4ebc
AS
8069 struct bpf_verifier_state *cur = env->cur_state;
8070 struct bpf_func_state *state = cur->frame[cur->curframe];
8071
8072 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
8073}
8074
8075static void init_explored_state(struct bpf_verifier_env *env, int idx)
8076{
a8f500af 8077 env->insn_aux_data[idx].prune_point = true;
5d839021 8078}
f1bca824 8079
59e2e27d
WAF
8080enum {
8081 DONE_EXPLORING = 0,
8082 KEEP_EXPLORING = 1,
8083};
8084
475fb78f
AS
8085/* t, w, e - match pseudo-code above:
8086 * t - index of current instruction
8087 * w - next instruction
8088 * e - edge
8089 */
2589726d
AS
8090static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8091 bool loop_ok)
475fb78f 8092{
7df737e9
AS
8093 int *insn_stack = env->cfg.insn_stack;
8094 int *insn_state = env->cfg.insn_state;
8095
475fb78f 8096 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 8097 return DONE_EXPLORING;
475fb78f
AS
8098
8099 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 8100 return DONE_EXPLORING;
475fb78f
AS
8101
8102 if (w < 0 || w >= env->prog->len) {
d9762e84 8103 verbose_linfo(env, t, "%d: ", t);
61bd5218 8104 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
8105 return -EINVAL;
8106 }
8107
f1bca824
AS
8108 if (e == BRANCH)
8109 /* mark branch target for state pruning */
5d839021 8110 init_explored_state(env, w);
f1bca824 8111
475fb78f
AS
8112 if (insn_state[w] == 0) {
8113 /* tree-edge */
8114 insn_state[t] = DISCOVERED | e;
8115 insn_state[w] = DISCOVERED;
7df737e9 8116 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 8117 return -E2BIG;
7df737e9 8118 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 8119 return KEEP_EXPLORING;
475fb78f 8120 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 8121 if (loop_ok && env->bpf_capable)
59e2e27d 8122 return DONE_EXPLORING;
d9762e84
MKL
8123 verbose_linfo(env, t, "%d: ", t);
8124 verbose_linfo(env, w, "%d: ", w);
61bd5218 8125 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
8126 return -EINVAL;
8127 } else if (insn_state[w] == EXPLORED) {
8128 /* forward- or cross-edge */
8129 insn_state[t] = DISCOVERED | e;
8130 } else {
61bd5218 8131 verbose(env, "insn state internal bug\n");
475fb78f
AS
8132 return -EFAULT;
8133 }
59e2e27d
WAF
8134 return DONE_EXPLORING;
8135}
8136
8137/* Visits the instruction at index t and returns one of the following:
8138 * < 0 - an error occurred
8139 * DONE_EXPLORING - the instruction was fully explored
8140 * KEEP_EXPLORING - there is still work to be done before it is fully explored
8141 */
8142static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8143{
8144 struct bpf_insn *insns = env->prog->insnsi;
8145 int ret;
8146
8147 /* All non-branch instructions have a single fall-through edge. */
8148 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8149 BPF_CLASS(insns[t].code) != BPF_JMP32)
8150 return push_insn(t, t + 1, FALLTHROUGH, env, false);
8151
8152 switch (BPF_OP(insns[t].code)) {
8153 case BPF_EXIT:
8154 return DONE_EXPLORING;
8155
8156 case BPF_CALL:
8157 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8158 if (ret)
8159 return ret;
8160
8161 if (t + 1 < insn_cnt)
8162 init_explored_state(env, t + 1);
8163 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8164 init_explored_state(env, t);
8165 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8166 env, false);
8167 }
8168 return ret;
8169
8170 case BPF_JA:
8171 if (BPF_SRC(insns[t].code) != BPF_K)
8172 return -EINVAL;
8173
8174 /* unconditional jump with single edge */
8175 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8176 true);
8177 if (ret)
8178 return ret;
8179
8180 /* unconditional jmp is not a good pruning point,
8181 * but it's marked, since backtracking needs
8182 * to record jmp history in is_state_visited().
8183 */
8184 init_explored_state(env, t + insns[t].off + 1);
8185 /* tell verifier to check for equivalent states
8186 * after every call and jump
8187 */
8188 if (t + 1 < insn_cnt)
8189 init_explored_state(env, t + 1);
8190
8191 return ret;
8192
8193 default:
8194 /* conditional jump with two edges */
8195 init_explored_state(env, t);
8196 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8197 if (ret)
8198 return ret;
8199
8200 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8201 }
475fb78f
AS
8202}
8203
8204/* non-recursive depth-first-search to detect loops in BPF program
8205 * loop == back-edge in directed graph
8206 */
58e2af8b 8207static int check_cfg(struct bpf_verifier_env *env)
475fb78f 8208{
475fb78f 8209 int insn_cnt = env->prog->len;
7df737e9 8210 int *insn_stack, *insn_state;
475fb78f 8211 int ret = 0;
59e2e27d 8212 int i;
475fb78f 8213
7df737e9 8214 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
8215 if (!insn_state)
8216 return -ENOMEM;
8217
7df737e9 8218 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 8219 if (!insn_stack) {
71dde681 8220 kvfree(insn_state);
475fb78f
AS
8221 return -ENOMEM;
8222 }
8223
8224 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8225 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 8226 env->cfg.cur_stack = 1;
475fb78f 8227
59e2e27d
WAF
8228 while (env->cfg.cur_stack > 0) {
8229 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 8230
59e2e27d
WAF
8231 ret = visit_insn(t, insn_cnt, env);
8232 switch (ret) {
8233 case DONE_EXPLORING:
8234 insn_state[t] = EXPLORED;
8235 env->cfg.cur_stack--;
8236 break;
8237 case KEEP_EXPLORING:
8238 break;
8239 default:
8240 if (ret > 0) {
8241 verbose(env, "visit_insn internal bug\n");
8242 ret = -EFAULT;
475fb78f 8243 }
475fb78f 8244 goto err_free;
59e2e27d 8245 }
475fb78f
AS
8246 }
8247
59e2e27d 8248 if (env->cfg.cur_stack < 0) {
61bd5218 8249 verbose(env, "pop stack internal bug\n");
475fb78f
AS
8250 ret = -EFAULT;
8251 goto err_free;
8252 }
475fb78f 8253
475fb78f
AS
8254 for (i = 0; i < insn_cnt; i++) {
8255 if (insn_state[i] != EXPLORED) {
61bd5218 8256 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
8257 ret = -EINVAL;
8258 goto err_free;
8259 }
8260 }
8261 ret = 0; /* cfg looks good */
8262
8263err_free:
71dde681
AS
8264 kvfree(insn_state);
8265 kvfree(insn_stack);
7df737e9 8266 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
8267 return ret;
8268}
8269
09b28d76
AS
8270static int check_abnormal_return(struct bpf_verifier_env *env)
8271{
8272 int i;
8273
8274 for (i = 1; i < env->subprog_cnt; i++) {
8275 if (env->subprog_info[i].has_ld_abs) {
8276 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8277 return -EINVAL;
8278 }
8279 if (env->subprog_info[i].has_tail_call) {
8280 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8281 return -EINVAL;
8282 }
8283 }
8284 return 0;
8285}
8286
838e9690
YS
8287/* The minimum supported BTF func info size */
8288#define MIN_BPF_FUNCINFO_SIZE 8
8289#define MAX_FUNCINFO_REC_SIZE 252
8290
c454a46b
MKL
8291static int check_btf_func(struct bpf_verifier_env *env,
8292 const union bpf_attr *attr,
8293 union bpf_attr __user *uattr)
838e9690 8294{
09b28d76 8295 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 8296 u32 i, nfuncs, urec_size, min_size;
838e9690 8297 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 8298 struct bpf_func_info *krecord;
8c1b6e69 8299 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
8300 struct bpf_prog *prog;
8301 const struct btf *btf;
838e9690 8302 void __user *urecord;
d0b2818e 8303 u32 prev_offset = 0;
09b28d76 8304 bool scalar_return;
e7ed83d6 8305 int ret = -ENOMEM;
838e9690
YS
8306
8307 nfuncs = attr->func_info_cnt;
09b28d76
AS
8308 if (!nfuncs) {
8309 if (check_abnormal_return(env))
8310 return -EINVAL;
838e9690 8311 return 0;
09b28d76 8312 }
838e9690
YS
8313
8314 if (nfuncs != env->subprog_cnt) {
8315 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8316 return -EINVAL;
8317 }
8318
8319 urec_size = attr->func_info_rec_size;
8320 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8321 urec_size > MAX_FUNCINFO_REC_SIZE ||
8322 urec_size % sizeof(u32)) {
8323 verbose(env, "invalid func info rec size %u\n", urec_size);
8324 return -EINVAL;
8325 }
8326
c454a46b
MKL
8327 prog = env->prog;
8328 btf = prog->aux->btf;
838e9690
YS
8329
8330 urecord = u64_to_user_ptr(attr->func_info);
8331 min_size = min_t(u32, krec_size, urec_size);
8332
ba64e7d8 8333 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
8334 if (!krecord)
8335 return -ENOMEM;
8c1b6e69
AS
8336 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8337 if (!info_aux)
8338 goto err_free;
ba64e7d8 8339
838e9690
YS
8340 for (i = 0; i < nfuncs; i++) {
8341 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8342 if (ret) {
8343 if (ret == -E2BIG) {
8344 verbose(env, "nonzero tailing record in func info");
8345 /* set the size kernel expects so loader can zero
8346 * out the rest of the record.
8347 */
8348 if (put_user(min_size, &uattr->func_info_rec_size))
8349 ret = -EFAULT;
8350 }
c454a46b 8351 goto err_free;
838e9690
YS
8352 }
8353
ba64e7d8 8354 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 8355 ret = -EFAULT;
c454a46b 8356 goto err_free;
838e9690
YS
8357 }
8358
d30d42e0 8359 /* check insn_off */
09b28d76 8360 ret = -EINVAL;
838e9690 8361 if (i == 0) {
d30d42e0 8362 if (krecord[i].insn_off) {
838e9690 8363 verbose(env,
d30d42e0
MKL
8364 "nonzero insn_off %u for the first func info record",
8365 krecord[i].insn_off);
c454a46b 8366 goto err_free;
838e9690 8367 }
d30d42e0 8368 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
8369 verbose(env,
8370 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 8371 krecord[i].insn_off, prev_offset);
c454a46b 8372 goto err_free;
838e9690
YS
8373 }
8374
d30d42e0 8375 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 8376 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 8377 goto err_free;
838e9690
YS
8378 }
8379
8380 /* check type_id */
ba64e7d8 8381 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 8382 if (!type || !btf_type_is_func(type)) {
838e9690 8383 verbose(env, "invalid type id %d in func info",
ba64e7d8 8384 krecord[i].type_id);
c454a46b 8385 goto err_free;
838e9690 8386 }
51c39bb1 8387 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
8388
8389 func_proto = btf_type_by_id(btf, type->type);
8390 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8391 /* btf_func_check() already verified it during BTF load */
8392 goto err_free;
8393 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8394 scalar_return =
8395 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8396 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8397 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8398 goto err_free;
8399 }
8400 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8401 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8402 goto err_free;
8403 }
8404
d30d42e0 8405 prev_offset = krecord[i].insn_off;
838e9690
YS
8406 urecord += urec_size;
8407 }
8408
ba64e7d8
YS
8409 prog->aux->func_info = krecord;
8410 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 8411 prog->aux->func_info_aux = info_aux;
838e9690
YS
8412 return 0;
8413
c454a46b 8414err_free:
ba64e7d8 8415 kvfree(krecord);
8c1b6e69 8416 kfree(info_aux);
838e9690
YS
8417 return ret;
8418}
8419
ba64e7d8
YS
8420static void adjust_btf_func(struct bpf_verifier_env *env)
8421{
8c1b6e69 8422 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8423 int i;
8424
8c1b6e69 8425 if (!aux->func_info)
ba64e7d8
YS
8426 return;
8427
8428 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8429 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8430}
8431
c454a46b
MKL
8432#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8433 sizeof(((struct bpf_line_info *)(0))->line_col))
8434#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8435
8436static int check_btf_line(struct bpf_verifier_env *env,
8437 const union bpf_attr *attr,
8438 union bpf_attr __user *uattr)
8439{
8440 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8441 struct bpf_subprog_info *sub;
8442 struct bpf_line_info *linfo;
8443 struct bpf_prog *prog;
8444 const struct btf *btf;
8445 void __user *ulinfo;
8446 int err;
8447
8448 nr_linfo = attr->line_info_cnt;
8449 if (!nr_linfo)
8450 return 0;
8451
8452 rec_size = attr->line_info_rec_size;
8453 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8454 rec_size > MAX_LINEINFO_REC_SIZE ||
8455 rec_size & (sizeof(u32) - 1))
8456 return -EINVAL;
8457
8458 /* Need to zero it in case the userspace may
8459 * pass in a smaller bpf_line_info object.
8460 */
8461 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8462 GFP_KERNEL | __GFP_NOWARN);
8463 if (!linfo)
8464 return -ENOMEM;
8465
8466 prog = env->prog;
8467 btf = prog->aux->btf;
8468
8469 s = 0;
8470 sub = env->subprog_info;
8471 ulinfo = u64_to_user_ptr(attr->line_info);
8472 expected_size = sizeof(struct bpf_line_info);
8473 ncopy = min_t(u32, expected_size, rec_size);
8474 for (i = 0; i < nr_linfo; i++) {
8475 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8476 if (err) {
8477 if (err == -E2BIG) {
8478 verbose(env, "nonzero tailing record in line_info");
8479 if (put_user(expected_size,
8480 &uattr->line_info_rec_size))
8481 err = -EFAULT;
8482 }
8483 goto err_free;
8484 }
8485
8486 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8487 err = -EFAULT;
8488 goto err_free;
8489 }
8490
8491 /*
8492 * Check insn_off to ensure
8493 * 1) strictly increasing AND
8494 * 2) bounded by prog->len
8495 *
8496 * The linfo[0].insn_off == 0 check logically falls into
8497 * the later "missing bpf_line_info for func..." case
8498 * because the first linfo[0].insn_off must be the
8499 * first sub also and the first sub must have
8500 * subprog_info[0].start == 0.
8501 */
8502 if ((i && linfo[i].insn_off <= prev_offset) ||
8503 linfo[i].insn_off >= prog->len) {
8504 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8505 i, linfo[i].insn_off, prev_offset,
8506 prog->len);
8507 err = -EINVAL;
8508 goto err_free;
8509 }
8510
fdbaa0be
MKL
8511 if (!prog->insnsi[linfo[i].insn_off].code) {
8512 verbose(env,
8513 "Invalid insn code at line_info[%u].insn_off\n",
8514 i);
8515 err = -EINVAL;
8516 goto err_free;
8517 }
8518
23127b33
MKL
8519 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8520 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8521 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8522 err = -EINVAL;
8523 goto err_free;
8524 }
8525
8526 if (s != env->subprog_cnt) {
8527 if (linfo[i].insn_off == sub[s].start) {
8528 sub[s].linfo_idx = i;
8529 s++;
8530 } else if (sub[s].start < linfo[i].insn_off) {
8531 verbose(env, "missing bpf_line_info for func#%u\n", s);
8532 err = -EINVAL;
8533 goto err_free;
8534 }
8535 }
8536
8537 prev_offset = linfo[i].insn_off;
8538 ulinfo += rec_size;
8539 }
8540
8541 if (s != env->subprog_cnt) {
8542 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8543 env->subprog_cnt - s, s);
8544 err = -EINVAL;
8545 goto err_free;
8546 }
8547
8548 prog->aux->linfo = linfo;
8549 prog->aux->nr_linfo = nr_linfo;
8550
8551 return 0;
8552
8553err_free:
8554 kvfree(linfo);
8555 return err;
8556}
8557
8558static int check_btf_info(struct bpf_verifier_env *env,
8559 const union bpf_attr *attr,
8560 union bpf_attr __user *uattr)
8561{
8562 struct btf *btf;
8563 int err;
8564
09b28d76
AS
8565 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8566 if (check_abnormal_return(env))
8567 return -EINVAL;
c454a46b 8568 return 0;
09b28d76 8569 }
c454a46b
MKL
8570
8571 btf = btf_get_by_fd(attr->prog_btf_fd);
8572 if (IS_ERR(btf))
8573 return PTR_ERR(btf);
8574 env->prog->aux->btf = btf;
8575
8576 err = check_btf_func(env, attr, uattr);
8577 if (err)
8578 return err;
8579
8580 err = check_btf_line(env, attr, uattr);
8581 if (err)
8582 return err;
8583
8584 return 0;
ba64e7d8
YS
8585}
8586
f1174f77
EC
8587/* check %cur's range satisfies %old's */
8588static bool range_within(struct bpf_reg_state *old,
8589 struct bpf_reg_state *cur)
8590{
b03c9f9f
EC
8591 return old->umin_value <= cur->umin_value &&
8592 old->umax_value >= cur->umax_value &&
8593 old->smin_value <= cur->smin_value &&
fd675184
DB
8594 old->smax_value >= cur->smax_value &&
8595 old->u32_min_value <= cur->u32_min_value &&
8596 old->u32_max_value >= cur->u32_max_value &&
8597 old->s32_min_value <= cur->s32_min_value &&
8598 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
8599}
8600
8601/* Maximum number of register states that can exist at once */
8602#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8603struct idpair {
8604 u32 old;
8605 u32 cur;
8606};
8607
8608/* If in the old state two registers had the same id, then they need to have
8609 * the same id in the new state as well. But that id could be different from
8610 * the old state, so we need to track the mapping from old to new ids.
8611 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8612 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8613 * regs with a different old id could still have new id 9, we don't care about
8614 * that.
8615 * So we look through our idmap to see if this old id has been seen before. If
8616 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8617 */
f1174f77 8618static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8619{
f1174f77 8620 unsigned int i;
969bf05e 8621
f1174f77
EC
8622 for (i = 0; i < ID_MAP_SIZE; i++) {
8623 if (!idmap[i].old) {
8624 /* Reached an empty slot; haven't seen this id before */
8625 idmap[i].old = old_id;
8626 idmap[i].cur = cur_id;
8627 return true;
8628 }
8629 if (idmap[i].old == old_id)
8630 return idmap[i].cur == cur_id;
8631 }
8632 /* We ran out of idmap slots, which should be impossible */
8633 WARN_ON_ONCE(1);
8634 return false;
8635}
8636
9242b5f5
AS
8637static void clean_func_state(struct bpf_verifier_env *env,
8638 struct bpf_func_state *st)
8639{
8640 enum bpf_reg_liveness live;
8641 int i, j;
8642
8643 for (i = 0; i < BPF_REG_FP; i++) {
8644 live = st->regs[i].live;
8645 /* liveness must not touch this register anymore */
8646 st->regs[i].live |= REG_LIVE_DONE;
8647 if (!(live & REG_LIVE_READ))
8648 /* since the register is unused, clear its state
8649 * to make further comparison simpler
8650 */
f54c7898 8651 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8652 }
8653
8654 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8655 live = st->stack[i].spilled_ptr.live;
8656 /* liveness must not touch this stack slot anymore */
8657 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8658 if (!(live & REG_LIVE_READ)) {
f54c7898 8659 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8660 for (j = 0; j < BPF_REG_SIZE; j++)
8661 st->stack[i].slot_type[j] = STACK_INVALID;
8662 }
8663 }
8664}
8665
8666static void clean_verifier_state(struct bpf_verifier_env *env,
8667 struct bpf_verifier_state *st)
8668{
8669 int i;
8670
8671 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8672 /* all regs in this state in all frames were already marked */
8673 return;
8674
8675 for (i = 0; i <= st->curframe; i++)
8676 clean_func_state(env, st->frame[i]);
8677}
8678
8679/* the parentage chains form a tree.
8680 * the verifier states are added to state lists at given insn and
8681 * pushed into state stack for future exploration.
8682 * when the verifier reaches bpf_exit insn some of the verifer states
8683 * stored in the state lists have their final liveness state already,
8684 * but a lot of states will get revised from liveness point of view when
8685 * the verifier explores other branches.
8686 * Example:
8687 * 1: r0 = 1
8688 * 2: if r1 == 100 goto pc+1
8689 * 3: r0 = 2
8690 * 4: exit
8691 * when the verifier reaches exit insn the register r0 in the state list of
8692 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8693 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8694 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8695 *
8696 * Since the verifier pushes the branch states as it sees them while exploring
8697 * the program the condition of walking the branch instruction for the second
8698 * time means that all states below this branch were already explored and
8699 * their final liveness markes are already propagated.
8700 * Hence when the verifier completes the search of state list in is_state_visited()
8701 * we can call this clean_live_states() function to mark all liveness states
8702 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8703 * will not be used.
8704 * This function also clears the registers and stack for states that !READ
8705 * to simplify state merging.
8706 *
8707 * Important note here that walking the same branch instruction in the callee
8708 * doesn't meant that the states are DONE. The verifier has to compare
8709 * the callsites
8710 */
8711static void clean_live_states(struct bpf_verifier_env *env, int insn,
8712 struct bpf_verifier_state *cur)
8713{
8714 struct bpf_verifier_state_list *sl;
8715 int i;
8716
5d839021 8717 sl = *explored_state(env, insn);
a8f500af 8718 while (sl) {
2589726d
AS
8719 if (sl->state.branches)
8720 goto next;
dc2a4ebc
AS
8721 if (sl->state.insn_idx != insn ||
8722 sl->state.curframe != cur->curframe)
9242b5f5
AS
8723 goto next;
8724 for (i = 0; i <= cur->curframe; i++)
8725 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8726 goto next;
8727 clean_verifier_state(env, &sl->state);
8728next:
8729 sl = sl->next;
8730 }
8731}
8732
f1174f77 8733/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8734static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8735 struct idpair *idmap)
f1174f77 8736{
f4d7e40a
AS
8737 bool equal;
8738
dc503a8a
EC
8739 if (!(rold->live & REG_LIVE_READ))
8740 /* explored state didn't use this */
8741 return true;
8742
679c782d 8743 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8744
8745 if (rold->type == PTR_TO_STACK)
8746 /* two stack pointers are equal only if they're pointing to
8747 * the same stack frame, since fp-8 in foo != fp-8 in bar
8748 */
8749 return equal && rold->frameno == rcur->frameno;
8750
8751 if (equal)
969bf05e
AS
8752 return true;
8753
f1174f77
EC
8754 if (rold->type == NOT_INIT)
8755 /* explored state can't have used this */
969bf05e 8756 return true;
f1174f77
EC
8757 if (rcur->type == NOT_INIT)
8758 return false;
8759 switch (rold->type) {
8760 case SCALAR_VALUE:
8761 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8762 if (!rold->precise && !rcur->precise)
8763 return true;
f1174f77
EC
8764 /* new val must satisfy old val knowledge */
8765 return range_within(rold, rcur) &&
8766 tnum_in(rold->var_off, rcur->var_off);
8767 } else {
179d1c56
JH
8768 /* We're trying to use a pointer in place of a scalar.
8769 * Even if the scalar was unbounded, this could lead to
8770 * pointer leaks because scalars are allowed to leak
8771 * while pointers are not. We could make this safe in
8772 * special cases if root is calling us, but it's
8773 * probably not worth the hassle.
f1174f77 8774 */
179d1c56 8775 return false;
f1174f77
EC
8776 }
8777 case PTR_TO_MAP_VALUE:
1b688a19
EC
8778 /* If the new min/max/var_off satisfy the old ones and
8779 * everything else matches, we are OK.
d83525ca
AS
8780 * 'id' is not compared, since it's only used for maps with
8781 * bpf_spin_lock inside map element and in such cases if
8782 * the rest of the prog is valid for one map element then
8783 * it's valid for all map elements regardless of the key
8784 * used in bpf_map_lookup()
1b688a19
EC
8785 */
8786 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8787 range_within(rold, rcur) &&
8788 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8789 case PTR_TO_MAP_VALUE_OR_NULL:
8790 /* a PTR_TO_MAP_VALUE could be safe to use as a
8791 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8792 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8793 * checked, doing so could have affected others with the same
8794 * id, and we can't check for that because we lost the id when
8795 * we converted to a PTR_TO_MAP_VALUE.
8796 */
8797 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8798 return false;
8799 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8800 return false;
8801 /* Check our ids match any regs they're supposed to */
8802 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8803 case PTR_TO_PACKET_META:
f1174f77 8804 case PTR_TO_PACKET:
de8f3a83 8805 if (rcur->type != rold->type)
f1174f77
EC
8806 return false;
8807 /* We must have at least as much range as the old ptr
8808 * did, so that any accesses which were safe before are
8809 * still safe. This is true even if old range < old off,
8810 * since someone could have accessed through (ptr - k), or
8811 * even done ptr -= k in a register, to get a safe access.
8812 */
8813 if (rold->range > rcur->range)
8814 return false;
8815 /* If the offsets don't match, we can't trust our alignment;
8816 * nor can we be sure that we won't fall out of range.
8817 */
8818 if (rold->off != rcur->off)
8819 return false;
8820 /* id relations must be preserved */
8821 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8822 return false;
8823 /* new val must satisfy old val knowledge */
8824 return range_within(rold, rcur) &&
8825 tnum_in(rold->var_off, rcur->var_off);
8826 case PTR_TO_CTX:
8827 case CONST_PTR_TO_MAP:
f1174f77 8828 case PTR_TO_PACKET_END:
d58e468b 8829 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8830 case PTR_TO_SOCKET:
8831 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8832 case PTR_TO_SOCK_COMMON:
8833 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8834 case PTR_TO_TCP_SOCK:
8835 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8836 case PTR_TO_XDP_SOCK:
f1174f77
EC
8837 /* Only valid matches are exact, which memcmp() above
8838 * would have accepted
8839 */
8840 default:
8841 /* Don't know what's going on, just say it's not safe */
8842 return false;
8843 }
969bf05e 8844
f1174f77
EC
8845 /* Shouldn't get here; if we do, say it's not safe */
8846 WARN_ON_ONCE(1);
969bf05e
AS
8847 return false;
8848}
8849
f4d7e40a
AS
8850static bool stacksafe(struct bpf_func_state *old,
8851 struct bpf_func_state *cur,
638f5b90
AS
8852 struct idpair *idmap)
8853{
8854 int i, spi;
8855
638f5b90
AS
8856 /* walk slots of the explored stack and ignore any additional
8857 * slots in the current stack, since explored(safe) state
8858 * didn't use them
8859 */
8860 for (i = 0; i < old->allocated_stack; i++) {
8861 spi = i / BPF_REG_SIZE;
8862
b233920c
AS
8863 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8864 i += BPF_REG_SIZE - 1;
cc2b14d5 8865 /* explored state didn't use this */
fd05e57b 8866 continue;
b233920c 8867 }
cc2b14d5 8868
638f5b90
AS
8869 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8870 continue;
19e2dbb7
AS
8871
8872 /* explored stack has more populated slots than current stack
8873 * and these slots were used
8874 */
8875 if (i >= cur->allocated_stack)
8876 return false;
8877
cc2b14d5
AS
8878 /* if old state was safe with misc data in the stack
8879 * it will be safe with zero-initialized stack.
8880 * The opposite is not true
8881 */
8882 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8883 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8884 continue;
638f5b90
AS
8885 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8886 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8887 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8888 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8889 * this verifier states are not equivalent,
8890 * return false to continue verification of this path
8891 */
8892 return false;
8893 if (i % BPF_REG_SIZE)
8894 continue;
8895 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8896 continue;
8897 if (!regsafe(&old->stack[spi].spilled_ptr,
8898 &cur->stack[spi].spilled_ptr,
8899 idmap))
8900 /* when explored and current stack slot are both storing
8901 * spilled registers, check that stored pointers types
8902 * are the same as well.
8903 * Ex: explored safe path could have stored
8904 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8905 * but current path has stored:
8906 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8907 * such verifier states are not equivalent.
8908 * return false to continue verification of this path
8909 */
8910 return false;
8911 }
8912 return true;
8913}
8914
fd978bf7
JS
8915static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8916{
8917 if (old->acquired_refs != cur->acquired_refs)
8918 return false;
8919 return !memcmp(old->refs, cur->refs,
8920 sizeof(*old->refs) * old->acquired_refs);
8921}
8922
f1bca824
AS
8923/* compare two verifier states
8924 *
8925 * all states stored in state_list are known to be valid, since
8926 * verifier reached 'bpf_exit' instruction through them
8927 *
8928 * this function is called when verifier exploring different branches of
8929 * execution popped from the state stack. If it sees an old state that has
8930 * more strict register state and more strict stack state then this execution
8931 * branch doesn't need to be explored further, since verifier already
8932 * concluded that more strict state leads to valid finish.
8933 *
8934 * Therefore two states are equivalent if register state is more conservative
8935 * and explored stack state is more conservative than the current one.
8936 * Example:
8937 * explored current
8938 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8939 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8940 *
8941 * In other words if current stack state (one being explored) has more
8942 * valid slots than old one that already passed validation, it means
8943 * the verifier can stop exploring and conclude that current state is valid too
8944 *
8945 * Similarly with registers. If explored state has register type as invalid
8946 * whereas register type in current state is meaningful, it means that
8947 * the current state will reach 'bpf_exit' instruction safely
8948 */
f4d7e40a
AS
8949static bool func_states_equal(struct bpf_func_state *old,
8950 struct bpf_func_state *cur)
f1bca824 8951{
f1174f77
EC
8952 struct idpair *idmap;
8953 bool ret = false;
f1bca824
AS
8954 int i;
8955
f1174f77
EC
8956 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8957 /* If we failed to allocate the idmap, just say it's not safe */
8958 if (!idmap)
1a0dc1ac 8959 return false;
f1174f77
EC
8960
8961 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8962 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8963 goto out_free;
f1bca824
AS
8964 }
8965
638f5b90
AS
8966 if (!stacksafe(old, cur, idmap))
8967 goto out_free;
fd978bf7
JS
8968
8969 if (!refsafe(old, cur))
8970 goto out_free;
f1174f77
EC
8971 ret = true;
8972out_free:
8973 kfree(idmap);
8974 return ret;
f1bca824
AS
8975}
8976
f4d7e40a
AS
8977static bool states_equal(struct bpf_verifier_env *env,
8978 struct bpf_verifier_state *old,
8979 struct bpf_verifier_state *cur)
8980{
8981 int i;
8982
8983 if (old->curframe != cur->curframe)
8984 return false;
8985
979d63d5
DB
8986 /* Verification state from speculative execution simulation
8987 * must never prune a non-speculative execution one.
8988 */
8989 if (old->speculative && !cur->speculative)
8990 return false;
8991
d83525ca
AS
8992 if (old->active_spin_lock != cur->active_spin_lock)
8993 return false;
8994
f4d7e40a
AS
8995 /* for states to be equal callsites have to be the same
8996 * and all frame states need to be equivalent
8997 */
8998 for (i = 0; i <= old->curframe; i++) {
8999 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9000 return false;
9001 if (!func_states_equal(old->frame[i], cur->frame[i]))
9002 return false;
9003 }
9004 return true;
9005}
9006
5327ed3d
JW
9007/* Return 0 if no propagation happened. Return negative error code if error
9008 * happened. Otherwise, return the propagated bit.
9009 */
55e7f3b5
JW
9010static int propagate_liveness_reg(struct bpf_verifier_env *env,
9011 struct bpf_reg_state *reg,
9012 struct bpf_reg_state *parent_reg)
9013{
5327ed3d
JW
9014 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9015 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
9016 int err;
9017
5327ed3d
JW
9018 /* When comes here, read flags of PARENT_REG or REG could be any of
9019 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9020 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9021 */
9022 if (parent_flag == REG_LIVE_READ64 ||
9023 /* Or if there is no read flag from REG. */
9024 !flag ||
9025 /* Or if the read flag from REG is the same as PARENT_REG. */
9026 parent_flag == flag)
55e7f3b5
JW
9027 return 0;
9028
5327ed3d 9029 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
9030 if (err)
9031 return err;
9032
5327ed3d 9033 return flag;
55e7f3b5
JW
9034}
9035
8e9cd9ce 9036/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
9037 * straight-line code between a state and its parent. When we arrive at an
9038 * equivalent state (jump target or such) we didn't arrive by the straight-line
9039 * code, so read marks in the state must propagate to the parent regardless
9040 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 9041 * in mark_reg_read() is for.
8e9cd9ce 9042 */
f4d7e40a
AS
9043static int propagate_liveness(struct bpf_verifier_env *env,
9044 const struct bpf_verifier_state *vstate,
9045 struct bpf_verifier_state *vparent)
dc503a8a 9046{
3f8cafa4 9047 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 9048 struct bpf_func_state *state, *parent;
3f8cafa4 9049 int i, frame, err = 0;
dc503a8a 9050
f4d7e40a
AS
9051 if (vparent->curframe != vstate->curframe) {
9052 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9053 vparent->curframe, vstate->curframe);
9054 return -EFAULT;
9055 }
dc503a8a
EC
9056 /* Propagate read liveness of registers... */
9057 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 9058 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
9059 parent = vparent->frame[frame];
9060 state = vstate->frame[frame];
9061 parent_reg = parent->regs;
9062 state_reg = state->regs;
83d16312
JK
9063 /* We don't need to worry about FP liveness, it's read-only */
9064 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
9065 err = propagate_liveness_reg(env, &state_reg[i],
9066 &parent_reg[i]);
5327ed3d 9067 if (err < 0)
3f8cafa4 9068 return err;
5327ed3d
JW
9069 if (err == REG_LIVE_READ64)
9070 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 9071 }
f4d7e40a 9072
1b04aee7 9073 /* Propagate stack slots. */
f4d7e40a
AS
9074 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9075 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
9076 parent_reg = &parent->stack[i].spilled_ptr;
9077 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
9078 err = propagate_liveness_reg(env, state_reg,
9079 parent_reg);
5327ed3d 9080 if (err < 0)
3f8cafa4 9081 return err;
dc503a8a
EC
9082 }
9083 }
5327ed3d 9084 return 0;
dc503a8a
EC
9085}
9086
a3ce685d
AS
9087/* find precise scalars in the previous equivalent state and
9088 * propagate them into the current state
9089 */
9090static int propagate_precision(struct bpf_verifier_env *env,
9091 const struct bpf_verifier_state *old)
9092{
9093 struct bpf_reg_state *state_reg;
9094 struct bpf_func_state *state;
9095 int i, err = 0;
9096
9097 state = old->frame[old->curframe];
9098 state_reg = state->regs;
9099 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9100 if (state_reg->type != SCALAR_VALUE ||
9101 !state_reg->precise)
9102 continue;
9103 if (env->log.level & BPF_LOG_LEVEL2)
9104 verbose(env, "propagating r%d\n", i);
9105 err = mark_chain_precision(env, i);
9106 if (err < 0)
9107 return err;
9108 }
9109
9110 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9111 if (state->stack[i].slot_type[0] != STACK_SPILL)
9112 continue;
9113 state_reg = &state->stack[i].spilled_ptr;
9114 if (state_reg->type != SCALAR_VALUE ||
9115 !state_reg->precise)
9116 continue;
9117 if (env->log.level & BPF_LOG_LEVEL2)
9118 verbose(env, "propagating fp%d\n",
9119 (-i - 1) * BPF_REG_SIZE);
9120 err = mark_chain_precision_stack(env, i);
9121 if (err < 0)
9122 return err;
9123 }
9124 return 0;
9125}
9126
2589726d
AS
9127static bool states_maybe_looping(struct bpf_verifier_state *old,
9128 struct bpf_verifier_state *cur)
9129{
9130 struct bpf_func_state *fold, *fcur;
9131 int i, fr = cur->curframe;
9132
9133 if (old->curframe != fr)
9134 return false;
9135
9136 fold = old->frame[fr];
9137 fcur = cur->frame[fr];
9138 for (i = 0; i < MAX_BPF_REG; i++)
9139 if (memcmp(&fold->regs[i], &fcur->regs[i],
9140 offsetof(struct bpf_reg_state, parent)))
9141 return false;
9142 return true;
9143}
9144
9145
58e2af8b 9146static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 9147{
58e2af8b 9148 struct bpf_verifier_state_list *new_sl;
9f4686c4 9149 struct bpf_verifier_state_list *sl, **pprev;
679c782d 9150 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 9151 int i, j, err, states_cnt = 0;
10d274e8 9152 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 9153
b5dc0163 9154 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 9155 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
9156 /* this 'insn_idx' instruction wasn't marked, so we will not
9157 * be doing state search here
9158 */
9159 return 0;
9160
2589726d
AS
9161 /* bpf progs typically have pruning point every 4 instructions
9162 * http://vger.kernel.org/bpfconf2019.html#session-1
9163 * Do not add new state for future pruning if the verifier hasn't seen
9164 * at least 2 jumps and at least 8 instructions.
9165 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9166 * In tests that amounts to up to 50% reduction into total verifier
9167 * memory consumption and 20% verifier time speedup.
9168 */
9169 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9170 env->insn_processed - env->prev_insn_processed >= 8)
9171 add_new_state = true;
9172
a8f500af
AS
9173 pprev = explored_state(env, insn_idx);
9174 sl = *pprev;
9175
9242b5f5
AS
9176 clean_live_states(env, insn_idx, cur);
9177
a8f500af 9178 while (sl) {
dc2a4ebc
AS
9179 states_cnt++;
9180 if (sl->state.insn_idx != insn_idx)
9181 goto next;
2589726d
AS
9182 if (sl->state.branches) {
9183 if (states_maybe_looping(&sl->state, cur) &&
9184 states_equal(env, &sl->state, cur)) {
9185 verbose_linfo(env, insn_idx, "; ");
9186 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9187 return -EINVAL;
9188 }
9189 /* if the verifier is processing a loop, avoid adding new state
9190 * too often, since different loop iterations have distinct
9191 * states and may not help future pruning.
9192 * This threshold shouldn't be too low to make sure that
9193 * a loop with large bound will be rejected quickly.
9194 * The most abusive loop will be:
9195 * r1 += 1
9196 * if r1 < 1000000 goto pc-2
9197 * 1M insn_procssed limit / 100 == 10k peak states.
9198 * This threshold shouldn't be too high either, since states
9199 * at the end of the loop are likely to be useful in pruning.
9200 */
9201 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9202 env->insn_processed - env->prev_insn_processed < 100)
9203 add_new_state = false;
9204 goto miss;
9205 }
638f5b90 9206 if (states_equal(env, &sl->state, cur)) {
9f4686c4 9207 sl->hit_cnt++;
f1bca824 9208 /* reached equivalent register/stack state,
dc503a8a
EC
9209 * prune the search.
9210 * Registers read by the continuation are read by us.
8e9cd9ce
EC
9211 * If we have any write marks in env->cur_state, they
9212 * will prevent corresponding reads in the continuation
9213 * from reaching our parent (an explored_state). Our
9214 * own state will get the read marks recorded, but
9215 * they'll be immediately forgotten as we're pruning
9216 * this state and will pop a new one.
f1bca824 9217 */
f4d7e40a 9218 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
9219
9220 /* if previous state reached the exit with precision and
9221 * current state is equivalent to it (except precsion marks)
9222 * the precision needs to be propagated back in
9223 * the current state.
9224 */
9225 err = err ? : push_jmp_history(env, cur);
9226 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
9227 if (err)
9228 return err;
f1bca824 9229 return 1;
dc503a8a 9230 }
2589726d
AS
9231miss:
9232 /* when new state is not going to be added do not increase miss count.
9233 * Otherwise several loop iterations will remove the state
9234 * recorded earlier. The goal of these heuristics is to have
9235 * states from some iterations of the loop (some in the beginning
9236 * and some at the end) to help pruning.
9237 */
9238 if (add_new_state)
9239 sl->miss_cnt++;
9f4686c4
AS
9240 /* heuristic to determine whether this state is beneficial
9241 * to keep checking from state equivalence point of view.
9242 * Higher numbers increase max_states_per_insn and verification time,
9243 * but do not meaningfully decrease insn_processed.
9244 */
9245 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9246 /* the state is unlikely to be useful. Remove it to
9247 * speed up verification
9248 */
9249 *pprev = sl->next;
9250 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
9251 u32 br = sl->state.branches;
9252
9253 WARN_ONCE(br,
9254 "BUG live_done but branches_to_explore %d\n",
9255 br);
9f4686c4
AS
9256 free_verifier_state(&sl->state, false);
9257 kfree(sl);
9258 env->peak_states--;
9259 } else {
9260 /* cannot free this state, since parentage chain may
9261 * walk it later. Add it for free_list instead to
9262 * be freed at the end of verification
9263 */
9264 sl->next = env->free_list;
9265 env->free_list = sl;
9266 }
9267 sl = *pprev;
9268 continue;
9269 }
dc2a4ebc 9270next:
9f4686c4
AS
9271 pprev = &sl->next;
9272 sl = *pprev;
f1bca824
AS
9273 }
9274
06ee7115
AS
9275 if (env->max_states_per_insn < states_cnt)
9276 env->max_states_per_insn = states_cnt;
9277
2c78ee89 9278 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 9279 return push_jmp_history(env, cur);
ceefbc96 9280
2589726d 9281 if (!add_new_state)
b5dc0163 9282 return push_jmp_history(env, cur);
ceefbc96 9283
2589726d
AS
9284 /* There were no equivalent states, remember the current one.
9285 * Technically the current state is not proven to be safe yet,
f4d7e40a 9286 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 9287 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 9288 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
9289 * again on the way to bpf_exit.
9290 * When looping the sl->state.branches will be > 0 and this state
9291 * will not be considered for equivalence until branches == 0.
f1bca824 9292 */
638f5b90 9293 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
9294 if (!new_sl)
9295 return -ENOMEM;
06ee7115
AS
9296 env->total_states++;
9297 env->peak_states++;
2589726d
AS
9298 env->prev_jmps_processed = env->jmps_processed;
9299 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
9300
9301 /* add new state to the head of linked list */
679c782d
EC
9302 new = &new_sl->state;
9303 err = copy_verifier_state(new, cur);
1969db47 9304 if (err) {
679c782d 9305 free_verifier_state(new, false);
1969db47
AS
9306 kfree(new_sl);
9307 return err;
9308 }
dc2a4ebc 9309 new->insn_idx = insn_idx;
2589726d
AS
9310 WARN_ONCE(new->branches != 1,
9311 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 9312
2589726d 9313 cur->parent = new;
b5dc0163
AS
9314 cur->first_insn_idx = insn_idx;
9315 clear_jmp_history(cur);
5d839021
AS
9316 new_sl->next = *explored_state(env, insn_idx);
9317 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
9318 /* connect new state to parentage chain. Current frame needs all
9319 * registers connected. Only r6 - r9 of the callers are alive (pushed
9320 * to the stack implicitly by JITs) so in callers' frames connect just
9321 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9322 * the state of the call instruction (with WRITTEN set), and r0 comes
9323 * from callee with its full parentage chain, anyway.
9324 */
8e9cd9ce
EC
9325 /* clear write marks in current state: the writes we did are not writes
9326 * our child did, so they don't screen off its reads from us.
9327 * (There are no read marks in current state, because reads always mark
9328 * their parent and current state never has children yet. Only
9329 * explored_states can get read marks.)
9330 */
eea1c227
AS
9331 for (j = 0; j <= cur->curframe; j++) {
9332 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9333 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9334 for (i = 0; i < BPF_REG_FP; i++)
9335 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9336 }
f4d7e40a
AS
9337
9338 /* all stack frames are accessible from callee, clear them all */
9339 for (j = 0; j <= cur->curframe; j++) {
9340 struct bpf_func_state *frame = cur->frame[j];
679c782d 9341 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 9342
679c782d 9343 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 9344 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
9345 frame->stack[i].spilled_ptr.parent =
9346 &newframe->stack[i].spilled_ptr;
9347 }
f4d7e40a 9348 }
f1bca824
AS
9349 return 0;
9350}
9351
c64b7983
JS
9352/* Return true if it's OK to have the same insn return a different type. */
9353static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9354{
9355 switch (type) {
9356 case PTR_TO_CTX:
9357 case PTR_TO_SOCKET:
9358 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9359 case PTR_TO_SOCK_COMMON:
9360 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9361 case PTR_TO_TCP_SOCK:
9362 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9363 case PTR_TO_XDP_SOCK:
2a02759e 9364 case PTR_TO_BTF_ID:
b121b341 9365 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
9366 return false;
9367 default:
9368 return true;
9369 }
9370}
9371
9372/* If an instruction was previously used with particular pointer types, then we
9373 * need to be careful to avoid cases such as the below, where it may be ok
9374 * for one branch accessing the pointer, but not ok for the other branch:
9375 *
9376 * R1 = sock_ptr
9377 * goto X;
9378 * ...
9379 * R1 = some_other_valid_ptr;
9380 * goto X;
9381 * ...
9382 * R2 = *(u32 *)(R1 + 0);
9383 */
9384static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9385{
9386 return src != prev && (!reg_type_mismatch_ok(src) ||
9387 !reg_type_mismatch_ok(prev));
9388}
9389
58e2af8b 9390static int do_check(struct bpf_verifier_env *env)
17a52670 9391{
6f8a57cc 9392 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 9393 struct bpf_verifier_state *state = env->cur_state;
17a52670 9394 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 9395 struct bpf_reg_state *regs;
06ee7115 9396 int insn_cnt = env->prog->len;
17a52670 9397 bool do_print_state = false;
b5dc0163 9398 int prev_insn_idx = -1;
17a52670 9399
17a52670
AS
9400 for (;;) {
9401 struct bpf_insn *insn;
9402 u8 class;
9403 int err;
9404
b5dc0163 9405 env->prev_insn_idx = prev_insn_idx;
c08435ec 9406 if (env->insn_idx >= insn_cnt) {
61bd5218 9407 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 9408 env->insn_idx, insn_cnt);
17a52670
AS
9409 return -EFAULT;
9410 }
9411
c08435ec 9412 insn = &insns[env->insn_idx];
17a52670
AS
9413 class = BPF_CLASS(insn->code);
9414
06ee7115 9415 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
9416 verbose(env,
9417 "BPF program is too large. Processed %d insn\n",
06ee7115 9418 env->insn_processed);
17a52670
AS
9419 return -E2BIG;
9420 }
9421
c08435ec 9422 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
9423 if (err < 0)
9424 return err;
9425 if (err == 1) {
9426 /* found equivalent state, can prune the search */
06ee7115 9427 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9428 if (do_print_state)
979d63d5
DB
9429 verbose(env, "\nfrom %d to %d%s: safe\n",
9430 env->prev_insn_idx, env->insn_idx,
9431 env->cur_state->speculative ?
9432 " (speculative execution)" : "");
f1bca824 9433 else
c08435ec 9434 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9435 }
9436 goto process_bpf_exit;
9437 }
9438
c3494801
AS
9439 if (signal_pending(current))
9440 return -EAGAIN;
9441
3c2ce60b
DB
9442 if (need_resched())
9443 cond_resched();
9444
06ee7115
AS
9445 if (env->log.level & BPF_LOG_LEVEL2 ||
9446 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9447 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9448 verbose(env, "%d:", env->insn_idx);
c5fc9692 9449 else
979d63d5
DB
9450 verbose(env, "\nfrom %d to %d%s:",
9451 env->prev_insn_idx, env->insn_idx,
9452 env->cur_state->speculative ?
9453 " (speculative execution)" : "");
f4d7e40a 9454 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9455 do_print_state = false;
9456 }
9457
06ee7115 9458 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9459 const struct bpf_insn_cbs cbs = {
9460 .cb_print = verbose,
abe08840 9461 .private_data = env,
7105e828
DB
9462 };
9463
c08435ec
DB
9464 verbose_linfo(env, env->insn_idx, "; ");
9465 verbose(env, "%d: ", env->insn_idx);
abe08840 9466 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9467 }
9468
cae1927c 9469 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9470 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9471 env->prev_insn_idx);
cae1927c
JK
9472 if (err)
9473 return err;
9474 }
13a27dfc 9475
638f5b90 9476 regs = cur_regs(env);
51c39bb1 9477 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9478 prev_insn_idx = env->insn_idx;
fd978bf7 9479
17a52670 9480 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9481 err = check_alu_op(env, insn);
17a52670
AS
9482 if (err)
9483 return err;
9484
9485 } else if (class == BPF_LDX) {
3df126f3 9486 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9487
9488 /* check for reserved fields is already done */
9489
17a52670 9490 /* check src operand */
dc503a8a 9491 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9492 if (err)
9493 return err;
9494
dc503a8a 9495 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9496 if (err)
9497 return err;
9498
725f9dcd
AS
9499 src_reg_type = regs[insn->src_reg].type;
9500
17a52670
AS
9501 /* check that memory (src_reg + off) is readable,
9502 * the state of dst_reg will be updated by this func
9503 */
c08435ec
DB
9504 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9505 insn->off, BPF_SIZE(insn->code),
9506 BPF_READ, insn->dst_reg, false);
17a52670
AS
9507 if (err)
9508 return err;
9509
c08435ec 9510 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9511
9512 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9513 /* saw a valid insn
9514 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9515 * save type to validate intersecting paths
9bac3d6d 9516 */
3df126f3 9517 *prev_src_type = src_reg_type;
9bac3d6d 9518
c64b7983 9519 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9520 /* ABuser program is trying to use the same insn
9521 * dst_reg = *(u32*) (src_reg + off)
9522 * with different pointer types:
9523 * src_reg == ctx in one branch and
9524 * src_reg == stack|map in some other branch.
9525 * Reject it.
9526 */
61bd5218 9527 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9528 return -EINVAL;
9529 }
9530
17a52670 9531 } else if (class == BPF_STX) {
3df126f3 9532 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9533
17a52670 9534 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 9535 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
9536 if (err)
9537 return err;
c08435ec 9538 env->insn_idx++;
17a52670
AS
9539 continue;
9540 }
9541
17a52670 9542 /* check src1 operand */
dc503a8a 9543 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9544 if (err)
9545 return err;
9546 /* check src2 operand */
dc503a8a 9547 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9548 if (err)
9549 return err;
9550
d691f9e8
AS
9551 dst_reg_type = regs[insn->dst_reg].type;
9552
17a52670 9553 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9554 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9555 insn->off, BPF_SIZE(insn->code),
9556 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9557 if (err)
9558 return err;
9559
c08435ec 9560 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9561
9562 if (*prev_dst_type == NOT_INIT) {
9563 *prev_dst_type = dst_reg_type;
c64b7983 9564 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9565 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9566 return -EINVAL;
9567 }
9568
17a52670
AS
9569 } else if (class == BPF_ST) {
9570 if (BPF_MODE(insn->code) != BPF_MEM ||
9571 insn->src_reg != BPF_REG_0) {
61bd5218 9572 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9573 return -EINVAL;
9574 }
9575 /* check src operand */
dc503a8a 9576 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9577 if (err)
9578 return err;
9579
f37a8cb8 9580 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9581 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9582 insn->dst_reg,
9583 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9584 return -EACCES;
9585 }
9586
17a52670 9587 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9588 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9589 insn->off, BPF_SIZE(insn->code),
9590 BPF_WRITE, -1, false);
17a52670
AS
9591 if (err)
9592 return err;
9593
092ed096 9594 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9595 u8 opcode = BPF_OP(insn->code);
9596
2589726d 9597 env->jmps_processed++;
17a52670
AS
9598 if (opcode == BPF_CALL) {
9599 if (BPF_SRC(insn->code) != BPF_K ||
9600 insn->off != 0 ||
f4d7e40a
AS
9601 (insn->src_reg != BPF_REG_0 &&
9602 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9603 insn->dst_reg != BPF_REG_0 ||
9604 class == BPF_JMP32) {
61bd5218 9605 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9606 return -EINVAL;
9607 }
9608
d83525ca
AS
9609 if (env->cur_state->active_spin_lock &&
9610 (insn->src_reg == BPF_PSEUDO_CALL ||
9611 insn->imm != BPF_FUNC_spin_unlock)) {
9612 verbose(env, "function calls are not allowed while holding a lock\n");
9613 return -EINVAL;
9614 }
f4d7e40a 9615 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9616 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9617 else
c08435ec 9618 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9619 if (err)
9620 return err;
9621
9622 } else if (opcode == BPF_JA) {
9623 if (BPF_SRC(insn->code) != BPF_K ||
9624 insn->imm != 0 ||
9625 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9626 insn->dst_reg != BPF_REG_0 ||
9627 class == BPF_JMP32) {
61bd5218 9628 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9629 return -EINVAL;
9630 }
9631
c08435ec 9632 env->insn_idx += insn->off + 1;
17a52670
AS
9633 continue;
9634
9635 } else if (opcode == BPF_EXIT) {
9636 if (BPF_SRC(insn->code) != BPF_K ||
9637 insn->imm != 0 ||
9638 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9639 insn->dst_reg != BPF_REG_0 ||
9640 class == BPF_JMP32) {
61bd5218 9641 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9642 return -EINVAL;
9643 }
9644
d83525ca
AS
9645 if (env->cur_state->active_spin_lock) {
9646 verbose(env, "bpf_spin_unlock is missing\n");
9647 return -EINVAL;
9648 }
9649
f4d7e40a
AS
9650 if (state->curframe) {
9651 /* exit from nested function */
c08435ec 9652 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9653 if (err)
9654 return err;
9655 do_print_state = true;
9656 continue;
9657 }
9658
fd978bf7
JS
9659 err = check_reference_leak(env);
9660 if (err)
9661 return err;
9662
390ee7e2
AS
9663 err = check_return_code(env);
9664 if (err)
9665 return err;
f1bca824 9666process_bpf_exit:
2589726d 9667 update_branch_counts(env, env->cur_state);
b5dc0163 9668 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9669 &env->insn_idx, pop_log);
638f5b90
AS
9670 if (err < 0) {
9671 if (err != -ENOENT)
9672 return err;
17a52670
AS
9673 break;
9674 } else {
9675 do_print_state = true;
9676 continue;
9677 }
9678 } else {
c08435ec 9679 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9680 if (err)
9681 return err;
9682 }
9683 } else if (class == BPF_LD) {
9684 u8 mode = BPF_MODE(insn->code);
9685
9686 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9687 err = check_ld_abs(env, insn);
9688 if (err)
9689 return err;
9690
17a52670
AS
9691 } else if (mode == BPF_IMM) {
9692 err = check_ld_imm(env, insn);
9693 if (err)
9694 return err;
9695
c08435ec 9696 env->insn_idx++;
51c39bb1 9697 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9698 } else {
61bd5218 9699 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9700 return -EINVAL;
9701 }
9702 } else {
61bd5218 9703 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9704 return -EINVAL;
9705 }
9706
c08435ec 9707 env->insn_idx++;
17a52670
AS
9708 }
9709
9710 return 0;
9711}
9712
4976b718
HL
9713/* replace pseudo btf_id with kernel symbol address */
9714static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9715 struct bpf_insn *insn,
9716 struct bpf_insn_aux_data *aux)
9717{
eaa6bcb7
HL
9718 const struct btf_var_secinfo *vsi;
9719 const struct btf_type *datasec;
4976b718
HL
9720 const struct btf_type *t;
9721 const char *sym_name;
eaa6bcb7 9722 bool percpu = false;
f16e6313
KX
9723 u32 type, id = insn->imm;
9724 s32 datasec_id;
4976b718 9725 u64 addr;
eaa6bcb7 9726 int i;
4976b718
HL
9727
9728 if (!btf_vmlinux) {
9729 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9730 return -EINVAL;
9731 }
9732
9733 if (insn[1].imm != 0) {
9734 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9735 return -EINVAL;
9736 }
9737
9738 t = btf_type_by_id(btf_vmlinux, id);
9739 if (!t) {
9740 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9741 return -ENOENT;
9742 }
9743
9744 if (!btf_type_is_var(t)) {
9745 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9746 id);
9747 return -EINVAL;
9748 }
9749
9750 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9751 addr = kallsyms_lookup_name(sym_name);
9752 if (!addr) {
9753 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9754 sym_name);
9755 return -ENOENT;
9756 }
9757
eaa6bcb7
HL
9758 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9759 BTF_KIND_DATASEC);
9760 if (datasec_id > 0) {
9761 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9762 for_each_vsi(i, datasec, vsi) {
9763 if (vsi->type == id) {
9764 percpu = true;
9765 break;
9766 }
9767 }
9768 }
9769
4976b718
HL
9770 insn[0].imm = (u32)addr;
9771 insn[1].imm = addr >> 32;
9772
9773 type = t->type;
9774 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
eaa6bcb7
HL
9775 if (percpu) {
9776 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
22dc4a0f 9777 aux->btf_var.btf = btf_vmlinux;
eaa6bcb7
HL
9778 aux->btf_var.btf_id = type;
9779 } else if (!btf_type_is_struct(t)) {
4976b718
HL
9780 const struct btf_type *ret;
9781 const char *tname;
9782 u32 tsize;
9783
9784 /* resolve the type size of ksym. */
9785 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9786 if (IS_ERR(ret)) {
9787 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9788 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9789 tname, PTR_ERR(ret));
9790 return -EINVAL;
9791 }
9792 aux->btf_var.reg_type = PTR_TO_MEM;
9793 aux->btf_var.mem_size = tsize;
9794 } else {
9795 aux->btf_var.reg_type = PTR_TO_BTF_ID;
22dc4a0f 9796 aux->btf_var.btf = btf_vmlinux;
4976b718
HL
9797 aux->btf_var.btf_id = type;
9798 }
9799 return 0;
9800}
9801
56f668df
MKL
9802static int check_map_prealloc(struct bpf_map *map)
9803{
9804 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9805 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9806 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9807 !(map->map_flags & BPF_F_NO_PREALLOC);
9808}
9809
d83525ca
AS
9810static bool is_tracing_prog_type(enum bpf_prog_type type)
9811{
9812 switch (type) {
9813 case BPF_PROG_TYPE_KPROBE:
9814 case BPF_PROG_TYPE_TRACEPOINT:
9815 case BPF_PROG_TYPE_PERF_EVENT:
9816 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9817 return true;
9818 default:
9819 return false;
9820 }
9821}
9822
94dacdbd
TG
9823static bool is_preallocated_map(struct bpf_map *map)
9824{
9825 if (!check_map_prealloc(map))
9826 return false;
9827 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9828 return false;
9829 return true;
9830}
9831
61bd5218
JK
9832static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9833 struct bpf_map *map,
fdc15d38
AS
9834 struct bpf_prog *prog)
9835
9836{
7e40781c 9837 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9838 /*
9839 * Validate that trace type programs use preallocated hash maps.
9840 *
9841 * For programs attached to PERF events this is mandatory as the
9842 * perf NMI can hit any arbitrary code sequence.
9843 *
9844 * All other trace types using preallocated hash maps are unsafe as
9845 * well because tracepoint or kprobes can be inside locked regions
9846 * of the memory allocator or at a place where a recursion into the
9847 * memory allocator would see inconsistent state.
9848 *
2ed905c5
TG
9849 * On RT enabled kernels run-time allocation of all trace type
9850 * programs is strictly prohibited due to lock type constraints. On
9851 * !RT kernels it is allowed for backwards compatibility reasons for
9852 * now, but warnings are emitted so developers are made aware of
9853 * the unsafety and can fix their programs before this is enforced.
56f668df 9854 */
7e40781c
UP
9855 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9856 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9857 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9858 return -EINVAL;
9859 }
2ed905c5
TG
9860 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9861 verbose(env, "trace type programs can only use preallocated hash map\n");
9862 return -EINVAL;
9863 }
94dacdbd
TG
9864 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9865 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9866 }
a3884572 9867
9e7a4d98
KS
9868 if (map_value_has_spin_lock(map)) {
9869 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9870 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9871 return -EINVAL;
9872 }
9873
9874 if (is_tracing_prog_type(prog_type)) {
9875 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9876 return -EINVAL;
9877 }
9878
9879 if (prog->aux->sleepable) {
9880 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9881 return -EINVAL;
9882 }
d83525ca
AS
9883 }
9884
a3884572 9885 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9886 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9887 verbose(env, "offload device mismatch between prog and map\n");
9888 return -EINVAL;
9889 }
9890
85d33df3
MKL
9891 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9892 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9893 return -EINVAL;
9894 }
9895
1e6c62a8
AS
9896 if (prog->aux->sleepable)
9897 switch (map->map_type) {
9898 case BPF_MAP_TYPE_HASH:
9899 case BPF_MAP_TYPE_LRU_HASH:
9900 case BPF_MAP_TYPE_ARRAY:
9901 if (!is_preallocated_map(map)) {
9902 verbose(env,
9903 "Sleepable programs can only use preallocated hash maps\n");
9904 return -EINVAL;
9905 }
9906 break;
9907 default:
9908 verbose(env,
9909 "Sleepable programs can only use array and hash maps\n");
9910 return -EINVAL;
9911 }
9912
fdc15d38
AS
9913 return 0;
9914}
9915
b741f163
RG
9916static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9917{
9918 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9919 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9920}
9921
4976b718
HL
9922/* find and rewrite pseudo imm in ld_imm64 instructions:
9923 *
9924 * 1. if it accesses map FD, replace it with actual map pointer.
9925 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9926 *
9927 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 9928 */
4976b718 9929static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
9930{
9931 struct bpf_insn *insn = env->prog->insnsi;
9932 int insn_cnt = env->prog->len;
fdc15d38 9933 int i, j, err;
0246e64d 9934
f1f7714e 9935 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9936 if (err)
9937 return err;
9938
0246e64d 9939 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9940 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9941 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9942 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9943 return -EINVAL;
9944 }
9945
d691f9e8
AS
9946 if (BPF_CLASS(insn->code) == BPF_STX &&
9947 ((BPF_MODE(insn->code) != BPF_MEM &&
9948 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9949 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9950 return -EINVAL;
9951 }
9952
0246e64d 9953 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9954 struct bpf_insn_aux_data *aux;
0246e64d
AS
9955 struct bpf_map *map;
9956 struct fd f;
d8eca5bb 9957 u64 addr;
0246e64d
AS
9958
9959 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9960 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9961 insn[1].off != 0) {
61bd5218 9962 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9963 return -EINVAL;
9964 }
9965
d8eca5bb 9966 if (insn[0].src_reg == 0)
0246e64d
AS
9967 /* valid generic load 64-bit imm */
9968 goto next_insn;
9969
4976b718
HL
9970 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9971 aux = &env->insn_aux_data[i];
9972 err = check_pseudo_btf_id(env, insn, aux);
9973 if (err)
9974 return err;
9975 goto next_insn;
9976 }
9977
d8eca5bb
DB
9978 /* In final convert_pseudo_ld_imm64() step, this is
9979 * converted into regular 64-bit imm load insn.
9980 */
9981 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9982 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9983 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9984 insn[1].imm != 0)) {
9985 verbose(env,
9986 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9987 return -EINVAL;
9988 }
9989
20182390 9990 f = fdget(insn[0].imm);
c2101297 9991 map = __bpf_map_get(f);
0246e64d 9992 if (IS_ERR(map)) {
61bd5218 9993 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9994 insn[0].imm);
0246e64d
AS
9995 return PTR_ERR(map);
9996 }
9997
61bd5218 9998 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9999 if (err) {
10000 fdput(f);
10001 return err;
10002 }
10003
d8eca5bb
DB
10004 aux = &env->insn_aux_data[i];
10005 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10006 addr = (unsigned long)map;
10007 } else {
10008 u32 off = insn[1].imm;
10009
10010 if (off >= BPF_MAX_VAR_OFF) {
10011 verbose(env, "direct value offset of %u is not allowed\n", off);
10012 fdput(f);
10013 return -EINVAL;
10014 }
10015
10016 if (!map->ops->map_direct_value_addr) {
10017 verbose(env, "no direct value access support for this map type\n");
10018 fdput(f);
10019 return -EINVAL;
10020 }
10021
10022 err = map->ops->map_direct_value_addr(map, &addr, off);
10023 if (err) {
10024 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10025 map->value_size, off);
10026 fdput(f);
10027 return err;
10028 }
10029
10030 aux->map_off = off;
10031 addr += off;
10032 }
10033
10034 insn[0].imm = (u32)addr;
10035 insn[1].imm = addr >> 32;
0246e64d
AS
10036
10037 /* check whether we recorded this map already */
d8eca5bb 10038 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 10039 if (env->used_maps[j] == map) {
d8eca5bb 10040 aux->map_index = j;
0246e64d
AS
10041 fdput(f);
10042 goto next_insn;
10043 }
d8eca5bb 10044 }
0246e64d
AS
10045
10046 if (env->used_map_cnt >= MAX_USED_MAPS) {
10047 fdput(f);
10048 return -E2BIG;
10049 }
10050
0246e64d
AS
10051 /* hold the map. If the program is rejected by verifier,
10052 * the map will be released by release_maps() or it
10053 * will be used by the valid program until it's unloaded
ab7f5bf0 10054 * and all maps are released in free_used_maps()
0246e64d 10055 */
1e0bd5a0 10056 bpf_map_inc(map);
d8eca5bb
DB
10057
10058 aux->map_index = env->used_map_cnt;
92117d84
AS
10059 env->used_maps[env->used_map_cnt++] = map;
10060
b741f163 10061 if (bpf_map_is_cgroup_storage(map) &&
e4730423 10062 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 10063 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
10064 fdput(f);
10065 return -EBUSY;
10066 }
10067
0246e64d
AS
10068 fdput(f);
10069next_insn:
10070 insn++;
10071 i++;
5e581dad
DB
10072 continue;
10073 }
10074
10075 /* Basic sanity check before we invest more work here. */
10076 if (!bpf_opcode_in_insntable(insn->code)) {
10077 verbose(env, "unknown opcode %02x\n", insn->code);
10078 return -EINVAL;
0246e64d
AS
10079 }
10080 }
10081
10082 /* now all pseudo BPF_LD_IMM64 instructions load valid
10083 * 'struct bpf_map *' into a register instead of user map_fd.
10084 * These pointers will be used later by verifier to validate map access.
10085 */
10086 return 0;
10087}
10088
10089/* drop refcnt of maps used by the rejected program */
58e2af8b 10090static void release_maps(struct bpf_verifier_env *env)
0246e64d 10091{
a2ea0746
DB
10092 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10093 env->used_map_cnt);
0246e64d
AS
10094}
10095
10096/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 10097static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
10098{
10099 struct bpf_insn *insn = env->prog->insnsi;
10100 int insn_cnt = env->prog->len;
10101 int i;
10102
10103 for (i = 0; i < insn_cnt; i++, insn++)
10104 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10105 insn->src_reg = 0;
10106}
10107
8041902d
AS
10108/* single env->prog->insni[off] instruction was replaced with the range
10109 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10110 * [0, off) and [off, end) to new locations, so the patched range stays zero
10111 */
b325fbca
JW
10112static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10113 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
10114{
10115 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
10116 struct bpf_insn *insn = new_prog->insnsi;
10117 u32 prog_len;
c131187d 10118 int i;
8041902d 10119
b325fbca
JW
10120 /* aux info at OFF always needs adjustment, no matter fast path
10121 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10122 * original insn at old prog.
10123 */
10124 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10125
8041902d
AS
10126 if (cnt == 1)
10127 return 0;
b325fbca 10128 prog_len = new_prog->len;
fad953ce
KC
10129 new_data = vzalloc(array_size(prog_len,
10130 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
10131 if (!new_data)
10132 return -ENOMEM;
10133 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10134 memcpy(new_data + off + cnt - 1, old_data + off,
10135 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 10136 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 10137 new_data[i].seen = env->pass_cnt;
b325fbca
JW
10138 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10139 }
8041902d
AS
10140 env->insn_aux_data = new_data;
10141 vfree(old_data);
10142 return 0;
10143}
10144
cc8b0b92
AS
10145static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10146{
10147 int i;
10148
10149 if (len == 1)
10150 return;
4cb3d99c
JW
10151 /* NOTE: fake 'exit' subprog should be updated as well. */
10152 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 10153 if (env->subprog_info[i].start <= off)
cc8b0b92 10154 continue;
9c8105bd 10155 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
10156 }
10157}
10158
a748c697
MF
10159static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10160{
10161 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10162 int i, sz = prog->aux->size_poke_tab;
10163 struct bpf_jit_poke_descriptor *desc;
10164
10165 for (i = 0; i < sz; i++) {
10166 desc = &tab[i];
10167 desc->insn_idx += len - 1;
10168 }
10169}
10170
8041902d
AS
10171static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10172 const struct bpf_insn *patch, u32 len)
10173{
10174 struct bpf_prog *new_prog;
10175
10176 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
10177 if (IS_ERR(new_prog)) {
10178 if (PTR_ERR(new_prog) == -ERANGE)
10179 verbose(env,
10180 "insn %d cannot be patched due to 16-bit range\n",
10181 env->insn_aux_data[off].orig_idx);
8041902d 10182 return NULL;
4f73379e 10183 }
b325fbca 10184 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 10185 return NULL;
cc8b0b92 10186 adjust_subprog_starts(env, off, len);
a748c697 10187 adjust_poke_descs(new_prog, len);
8041902d
AS
10188 return new_prog;
10189}
10190
52875a04
JK
10191static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10192 u32 off, u32 cnt)
10193{
10194 int i, j;
10195
10196 /* find first prog starting at or after off (first to remove) */
10197 for (i = 0; i < env->subprog_cnt; i++)
10198 if (env->subprog_info[i].start >= off)
10199 break;
10200 /* find first prog starting at or after off + cnt (first to stay) */
10201 for (j = i; j < env->subprog_cnt; j++)
10202 if (env->subprog_info[j].start >= off + cnt)
10203 break;
10204 /* if j doesn't start exactly at off + cnt, we are just removing
10205 * the front of previous prog
10206 */
10207 if (env->subprog_info[j].start != off + cnt)
10208 j--;
10209
10210 if (j > i) {
10211 struct bpf_prog_aux *aux = env->prog->aux;
10212 int move;
10213
10214 /* move fake 'exit' subprog as well */
10215 move = env->subprog_cnt + 1 - j;
10216
10217 memmove(env->subprog_info + i,
10218 env->subprog_info + j,
10219 sizeof(*env->subprog_info) * move);
10220 env->subprog_cnt -= j - i;
10221
10222 /* remove func_info */
10223 if (aux->func_info) {
10224 move = aux->func_info_cnt - j;
10225
10226 memmove(aux->func_info + i,
10227 aux->func_info + j,
10228 sizeof(*aux->func_info) * move);
10229 aux->func_info_cnt -= j - i;
10230 /* func_info->insn_off is set after all code rewrites,
10231 * in adjust_btf_func() - no need to adjust
10232 */
10233 }
10234 } else {
10235 /* convert i from "first prog to remove" to "first to adjust" */
10236 if (env->subprog_info[i].start == off)
10237 i++;
10238 }
10239
10240 /* update fake 'exit' subprog as well */
10241 for (; i <= env->subprog_cnt; i++)
10242 env->subprog_info[i].start -= cnt;
10243
10244 return 0;
10245}
10246
10247static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10248 u32 cnt)
10249{
10250 struct bpf_prog *prog = env->prog;
10251 u32 i, l_off, l_cnt, nr_linfo;
10252 struct bpf_line_info *linfo;
10253
10254 nr_linfo = prog->aux->nr_linfo;
10255 if (!nr_linfo)
10256 return 0;
10257
10258 linfo = prog->aux->linfo;
10259
10260 /* find first line info to remove, count lines to be removed */
10261 for (i = 0; i < nr_linfo; i++)
10262 if (linfo[i].insn_off >= off)
10263 break;
10264
10265 l_off = i;
10266 l_cnt = 0;
10267 for (; i < nr_linfo; i++)
10268 if (linfo[i].insn_off < off + cnt)
10269 l_cnt++;
10270 else
10271 break;
10272
10273 /* First live insn doesn't match first live linfo, it needs to "inherit"
10274 * last removed linfo. prog is already modified, so prog->len == off
10275 * means no live instructions after (tail of the program was removed).
10276 */
10277 if (prog->len != off && l_cnt &&
10278 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10279 l_cnt--;
10280 linfo[--i].insn_off = off + cnt;
10281 }
10282
10283 /* remove the line info which refer to the removed instructions */
10284 if (l_cnt) {
10285 memmove(linfo + l_off, linfo + i,
10286 sizeof(*linfo) * (nr_linfo - i));
10287
10288 prog->aux->nr_linfo -= l_cnt;
10289 nr_linfo = prog->aux->nr_linfo;
10290 }
10291
10292 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10293 for (i = l_off; i < nr_linfo; i++)
10294 linfo[i].insn_off -= cnt;
10295
10296 /* fix up all subprogs (incl. 'exit') which start >= off */
10297 for (i = 0; i <= env->subprog_cnt; i++)
10298 if (env->subprog_info[i].linfo_idx > l_off) {
10299 /* program may have started in the removed region but
10300 * may not be fully removed
10301 */
10302 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10303 env->subprog_info[i].linfo_idx -= l_cnt;
10304 else
10305 env->subprog_info[i].linfo_idx = l_off;
10306 }
10307
10308 return 0;
10309}
10310
10311static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10312{
10313 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10314 unsigned int orig_prog_len = env->prog->len;
10315 int err;
10316
08ca90af
JK
10317 if (bpf_prog_is_dev_bound(env->prog->aux))
10318 bpf_prog_offload_remove_insns(env, off, cnt);
10319
52875a04
JK
10320 err = bpf_remove_insns(env->prog, off, cnt);
10321 if (err)
10322 return err;
10323
10324 err = adjust_subprog_starts_after_remove(env, off, cnt);
10325 if (err)
10326 return err;
10327
10328 err = bpf_adj_linfo_after_remove(env, off, cnt);
10329 if (err)
10330 return err;
10331
10332 memmove(aux_data + off, aux_data + off + cnt,
10333 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10334
10335 return 0;
10336}
10337
2a5418a1
DB
10338/* The verifier does more data flow analysis than llvm and will not
10339 * explore branches that are dead at run time. Malicious programs can
10340 * have dead code too. Therefore replace all dead at-run-time code
10341 * with 'ja -1'.
10342 *
10343 * Just nops are not optimal, e.g. if they would sit at the end of the
10344 * program and through another bug we would manage to jump there, then
10345 * we'd execute beyond program memory otherwise. Returning exception
10346 * code also wouldn't work since we can have subprogs where the dead
10347 * code could be located.
c131187d
AS
10348 */
10349static void sanitize_dead_code(struct bpf_verifier_env *env)
10350{
10351 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 10352 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
10353 struct bpf_insn *insn = env->prog->insnsi;
10354 const int insn_cnt = env->prog->len;
10355 int i;
10356
10357 for (i = 0; i < insn_cnt; i++) {
10358 if (aux_data[i].seen)
10359 continue;
2a5418a1 10360 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
10361 }
10362}
10363
e2ae4ca2
JK
10364static bool insn_is_cond_jump(u8 code)
10365{
10366 u8 op;
10367
092ed096
JW
10368 if (BPF_CLASS(code) == BPF_JMP32)
10369 return true;
10370
e2ae4ca2
JK
10371 if (BPF_CLASS(code) != BPF_JMP)
10372 return false;
10373
10374 op = BPF_OP(code);
10375 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10376}
10377
10378static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10379{
10380 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10381 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10382 struct bpf_insn *insn = env->prog->insnsi;
10383 const int insn_cnt = env->prog->len;
10384 int i;
10385
10386 for (i = 0; i < insn_cnt; i++, insn++) {
10387 if (!insn_is_cond_jump(insn->code))
10388 continue;
10389
10390 if (!aux_data[i + 1].seen)
10391 ja.off = insn->off;
10392 else if (!aux_data[i + 1 + insn->off].seen)
10393 ja.off = 0;
10394 else
10395 continue;
10396
08ca90af
JK
10397 if (bpf_prog_is_dev_bound(env->prog->aux))
10398 bpf_prog_offload_replace_insn(env, i, &ja);
10399
e2ae4ca2
JK
10400 memcpy(insn, &ja, sizeof(ja));
10401 }
10402}
10403
52875a04
JK
10404static int opt_remove_dead_code(struct bpf_verifier_env *env)
10405{
10406 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10407 int insn_cnt = env->prog->len;
10408 int i, err;
10409
10410 for (i = 0; i < insn_cnt; i++) {
10411 int j;
10412
10413 j = 0;
10414 while (i + j < insn_cnt && !aux_data[i + j].seen)
10415 j++;
10416 if (!j)
10417 continue;
10418
10419 err = verifier_remove_insns(env, i, j);
10420 if (err)
10421 return err;
10422 insn_cnt = env->prog->len;
10423 }
10424
10425 return 0;
10426}
10427
a1b14abc
JK
10428static int opt_remove_nops(struct bpf_verifier_env *env)
10429{
10430 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10431 struct bpf_insn *insn = env->prog->insnsi;
10432 int insn_cnt = env->prog->len;
10433 int i, err;
10434
10435 for (i = 0; i < insn_cnt; i++) {
10436 if (memcmp(&insn[i], &ja, sizeof(ja)))
10437 continue;
10438
10439 err = verifier_remove_insns(env, i, 1);
10440 if (err)
10441 return err;
10442 insn_cnt--;
10443 i--;
10444 }
10445
10446 return 0;
10447}
10448
d6c2308c
JW
10449static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10450 const union bpf_attr *attr)
a4b1d3c1 10451{
d6c2308c 10452 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 10453 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 10454 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 10455 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 10456 struct bpf_prog *new_prog;
d6c2308c 10457 bool rnd_hi32;
a4b1d3c1 10458
d6c2308c 10459 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 10460 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
10461 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10462 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10463 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
10464 for (i = 0; i < len; i++) {
10465 int adj_idx = i + delta;
10466 struct bpf_insn insn;
10467
d6c2308c
JW
10468 insn = insns[adj_idx];
10469 if (!aux[adj_idx].zext_dst) {
10470 u8 code, class;
10471 u32 imm_rnd;
10472
10473 if (!rnd_hi32)
10474 continue;
10475
10476 code = insn.code;
10477 class = BPF_CLASS(code);
10478 if (insn_no_def(&insn))
10479 continue;
10480
10481 /* NOTE: arg "reg" (the fourth one) is only used for
10482 * BPF_STX which has been ruled out in above
10483 * check, it is safe to pass NULL here.
10484 */
10485 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10486 if (class == BPF_LD &&
10487 BPF_MODE(code) == BPF_IMM)
10488 i++;
10489 continue;
10490 }
10491
10492 /* ctx load could be transformed into wider load. */
10493 if (class == BPF_LDX &&
10494 aux[adj_idx].ptr_type == PTR_TO_CTX)
10495 continue;
10496
10497 imm_rnd = get_random_int();
10498 rnd_hi32_patch[0] = insn;
10499 rnd_hi32_patch[1].imm = imm_rnd;
10500 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10501 patch = rnd_hi32_patch;
10502 patch_len = 4;
10503 goto apply_patch_buffer;
10504 }
10505
10506 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
10507 continue;
10508
a4b1d3c1
JW
10509 zext_patch[0] = insn;
10510 zext_patch[1].dst_reg = insn.dst_reg;
10511 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
10512 patch = zext_patch;
10513 patch_len = 2;
10514apply_patch_buffer:
10515 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
10516 if (!new_prog)
10517 return -ENOMEM;
10518 env->prog = new_prog;
10519 insns = new_prog->insnsi;
10520 aux = env->insn_aux_data;
d6c2308c 10521 delta += patch_len - 1;
a4b1d3c1
JW
10522 }
10523
10524 return 0;
10525}
10526
c64b7983
JS
10527/* convert load instructions that access fields of a context type into a
10528 * sequence of instructions that access fields of the underlying structure:
10529 * struct __sk_buff -> struct sk_buff
10530 * struct bpf_sock_ops -> struct sock
9bac3d6d 10531 */
58e2af8b 10532static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 10533{
00176a34 10534 const struct bpf_verifier_ops *ops = env->ops;
f96da094 10535 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 10536 const int insn_cnt = env->prog->len;
36bbef52 10537 struct bpf_insn insn_buf[16], *insn;
46f53a65 10538 u32 target_size, size_default, off;
9bac3d6d 10539 struct bpf_prog *new_prog;
d691f9e8 10540 enum bpf_access_type type;
f96da094 10541 bool is_narrower_load;
9bac3d6d 10542
b09928b9
DB
10543 if (ops->gen_prologue || env->seen_direct_write) {
10544 if (!ops->gen_prologue) {
10545 verbose(env, "bpf verifier is misconfigured\n");
10546 return -EINVAL;
10547 }
36bbef52
DB
10548 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10549 env->prog);
10550 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 10551 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
10552 return -EINVAL;
10553 } else if (cnt) {
8041902d 10554 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
10555 if (!new_prog)
10556 return -ENOMEM;
8041902d 10557
36bbef52 10558 env->prog = new_prog;
3df126f3 10559 delta += cnt - 1;
36bbef52
DB
10560 }
10561 }
10562
c64b7983 10563 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
10564 return 0;
10565
3df126f3 10566 insn = env->prog->insnsi + delta;
36bbef52 10567
9bac3d6d 10568 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10569 bpf_convert_ctx_access_t convert_ctx_access;
10570
62c7989b
DB
10571 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10572 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10573 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10574 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10575 type = BPF_READ;
62c7989b
DB
10576 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10577 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10578 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10579 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10580 type = BPF_WRITE;
10581 else
9bac3d6d
AS
10582 continue;
10583
af86ca4e
AS
10584 if (type == BPF_WRITE &&
10585 env->insn_aux_data[i + delta].sanitize_stack_off) {
10586 struct bpf_insn patch[] = {
10587 /* Sanitize suspicious stack slot with zero.
10588 * There are no memory dependencies for this store,
10589 * since it's only using frame pointer and immediate
10590 * constant of zero
10591 */
10592 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10593 env->insn_aux_data[i + delta].sanitize_stack_off,
10594 0),
10595 /* the original STX instruction will immediately
10596 * overwrite the same stack slot with appropriate value
10597 */
10598 *insn,
10599 };
10600
10601 cnt = ARRAY_SIZE(patch);
10602 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10603 if (!new_prog)
10604 return -ENOMEM;
10605
10606 delta += cnt - 1;
10607 env->prog = new_prog;
10608 insn = new_prog->insnsi + i + delta;
10609 continue;
10610 }
10611
c64b7983
JS
10612 switch (env->insn_aux_data[i + delta].ptr_type) {
10613 case PTR_TO_CTX:
10614 if (!ops->convert_ctx_access)
10615 continue;
10616 convert_ctx_access = ops->convert_ctx_access;
10617 break;
10618 case PTR_TO_SOCKET:
46f8bc92 10619 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10620 convert_ctx_access = bpf_sock_convert_ctx_access;
10621 break;
655a51e5
MKL
10622 case PTR_TO_TCP_SOCK:
10623 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10624 break;
fada7fdc
JL
10625 case PTR_TO_XDP_SOCK:
10626 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10627 break;
2a02759e 10628 case PTR_TO_BTF_ID:
27ae7997
MKL
10629 if (type == BPF_READ) {
10630 insn->code = BPF_LDX | BPF_PROBE_MEM |
10631 BPF_SIZE((insn)->code);
10632 env->prog->aux->num_exentries++;
7e40781c 10633 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10634 verbose(env, "Writes through BTF pointers are not allowed\n");
10635 return -EINVAL;
10636 }
2a02759e 10637 continue;
c64b7983 10638 default:
9bac3d6d 10639 continue;
c64b7983 10640 }
9bac3d6d 10641
31fd8581 10642 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10643 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10644
10645 /* If the read access is a narrower load of the field,
10646 * convert to a 4/8-byte load, to minimum program type specific
10647 * convert_ctx_access changes. If conversion is successful,
10648 * we will apply proper mask to the result.
10649 */
f96da094 10650 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10651 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10652 off = insn->off;
31fd8581 10653 if (is_narrower_load) {
f96da094
DB
10654 u8 size_code;
10655
10656 if (type == BPF_WRITE) {
61bd5218 10657 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10658 return -EINVAL;
10659 }
31fd8581 10660
f96da094 10661 size_code = BPF_H;
31fd8581
YS
10662 if (ctx_field_size == 4)
10663 size_code = BPF_W;
10664 else if (ctx_field_size == 8)
10665 size_code = BPF_DW;
f96da094 10666
bc23105c 10667 insn->off = off & ~(size_default - 1);
31fd8581
YS
10668 insn->code = BPF_LDX | BPF_MEM | size_code;
10669 }
f96da094
DB
10670
10671 target_size = 0;
c64b7983
JS
10672 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10673 &target_size);
f96da094
DB
10674 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10675 (ctx_field_size && !target_size)) {
61bd5218 10676 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10677 return -EINVAL;
10678 }
f96da094
DB
10679
10680 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10681 u8 shift = bpf_ctx_narrow_access_offset(
10682 off, size, size_default) * 8;
46f53a65
AI
10683 if (ctx_field_size <= 4) {
10684 if (shift)
10685 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10686 insn->dst_reg,
10687 shift);
31fd8581 10688 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10689 (1 << size * 8) - 1);
46f53a65
AI
10690 } else {
10691 if (shift)
10692 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10693 insn->dst_reg,
10694 shift);
31fd8581 10695 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10696 (1ULL << size * 8) - 1);
46f53a65 10697 }
31fd8581 10698 }
9bac3d6d 10699
8041902d 10700 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10701 if (!new_prog)
10702 return -ENOMEM;
10703
3df126f3 10704 delta += cnt - 1;
9bac3d6d
AS
10705
10706 /* keep walking new program and skip insns we just inserted */
10707 env->prog = new_prog;
3df126f3 10708 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10709 }
10710
10711 return 0;
10712}
10713
1c2a088a
AS
10714static int jit_subprogs(struct bpf_verifier_env *env)
10715{
10716 struct bpf_prog *prog = env->prog, **func, *tmp;
10717 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 10718 struct bpf_map *map_ptr;
7105e828 10719 struct bpf_insn *insn;
1c2a088a 10720 void *old_bpf_func;
c4c0bdc0 10721 int err, num_exentries;
1c2a088a 10722
f910cefa 10723 if (env->subprog_cnt <= 1)
1c2a088a
AS
10724 return 0;
10725
7105e828 10726 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10727 if (insn->code != (BPF_JMP | BPF_CALL) ||
10728 insn->src_reg != BPF_PSEUDO_CALL)
10729 continue;
c7a89784
DB
10730 /* Upon error here we cannot fall back to interpreter but
10731 * need a hard reject of the program. Thus -EFAULT is
10732 * propagated in any case.
10733 */
1c2a088a
AS
10734 subprog = find_subprog(env, i + insn->imm + 1);
10735 if (subprog < 0) {
10736 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10737 i + insn->imm + 1);
10738 return -EFAULT;
10739 }
10740 /* temporarily remember subprog id inside insn instead of
10741 * aux_data, since next loop will split up all insns into funcs
10742 */
f910cefa 10743 insn->off = subprog;
1c2a088a
AS
10744 /* remember original imm in case JIT fails and fallback
10745 * to interpreter will be needed
10746 */
10747 env->insn_aux_data[i].call_imm = insn->imm;
10748 /* point imm to __bpf_call_base+1 from JITs point of view */
10749 insn->imm = 1;
10750 }
10751
c454a46b
MKL
10752 err = bpf_prog_alloc_jited_linfo(prog);
10753 if (err)
10754 goto out_undo_insn;
10755
10756 err = -ENOMEM;
6396bb22 10757 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10758 if (!func)
c7a89784 10759 goto out_undo_insn;
1c2a088a 10760
f910cefa 10761 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10762 subprog_start = subprog_end;
4cb3d99c 10763 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10764
10765 len = subprog_end - subprog_start;
492ecee8
AS
10766 /* BPF_PROG_RUN doesn't call subprogs directly,
10767 * hence main prog stats include the runtime of subprogs.
10768 * subprogs don't have IDs and not reachable via prog_get_next_id
10769 * func[i]->aux->stats will never be accessed and stays NULL
10770 */
10771 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10772 if (!func[i])
10773 goto out_free;
10774 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10775 len * sizeof(struct bpf_insn));
4f74d809 10776 func[i]->type = prog->type;
1c2a088a 10777 func[i]->len = len;
4f74d809
DB
10778 if (bpf_prog_calc_tag(func[i]))
10779 goto out_free;
1c2a088a 10780 func[i]->is_func = 1;
ba64e7d8
YS
10781 func[i]->aux->func_idx = i;
10782 /* the btf and func_info will be freed only at prog->aux */
10783 func[i]->aux->btf = prog->aux->btf;
10784 func[i]->aux->func_info = prog->aux->func_info;
10785
a748c697
MF
10786 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10787 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10788 int ret;
10789
10790 if (!(insn_idx >= subprog_start &&
10791 insn_idx <= subprog_end))
10792 continue;
10793
10794 ret = bpf_jit_add_poke_descriptor(func[i],
10795 &prog->aux->poke_tab[j]);
10796 if (ret < 0) {
10797 verbose(env, "adding tail call poke descriptor failed\n");
10798 goto out_free;
10799 }
10800
10801 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10802
10803 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10804 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10805 if (ret < 0) {
10806 verbose(env, "tracking tail call prog failed\n");
10807 goto out_free;
10808 }
10809 }
10810
1c2a088a
AS
10811 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10812 * Long term would need debug info to populate names
10813 */
10814 func[i]->aux->name[0] = 'F';
9c8105bd 10815 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10816 func[i]->jit_requested = 1;
c454a46b
MKL
10817 func[i]->aux->linfo = prog->aux->linfo;
10818 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10819 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10820 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10821 num_exentries = 0;
10822 insn = func[i]->insnsi;
10823 for (j = 0; j < func[i]->len; j++, insn++) {
10824 if (BPF_CLASS(insn->code) == BPF_LDX &&
10825 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10826 num_exentries++;
10827 }
10828 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 10829 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
10830 func[i] = bpf_int_jit_compile(func[i]);
10831 if (!func[i]->jited) {
10832 err = -ENOTSUPP;
10833 goto out_free;
10834 }
10835 cond_resched();
10836 }
a748c697
MF
10837
10838 /* Untrack main program's aux structs so that during map_poke_run()
10839 * we will not stumble upon the unfilled poke descriptors; each
10840 * of the main program's poke descs got distributed across subprogs
10841 * and got tracked onto map, so we are sure that none of them will
10842 * be missed after the operation below
10843 */
10844 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10845 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10846
10847 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10848 }
10849
1c2a088a
AS
10850 /* at this point all bpf functions were successfully JITed
10851 * now populate all bpf_calls with correct addresses and
10852 * run last pass of JIT
10853 */
f910cefa 10854 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10855 insn = func[i]->insnsi;
10856 for (j = 0; j < func[i]->len; j++, insn++) {
10857 if (insn->code != (BPF_JMP | BPF_CALL) ||
10858 insn->src_reg != BPF_PSEUDO_CALL)
10859 continue;
10860 subprog = insn->off;
0d306c31
PB
10861 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10862 __bpf_call_base;
1c2a088a 10863 }
2162fed4
SD
10864
10865 /* we use the aux data to keep a list of the start addresses
10866 * of the JITed images for each function in the program
10867 *
10868 * for some architectures, such as powerpc64, the imm field
10869 * might not be large enough to hold the offset of the start
10870 * address of the callee's JITed image from __bpf_call_base
10871 *
10872 * in such cases, we can lookup the start address of a callee
10873 * by using its subprog id, available from the off field of
10874 * the call instruction, as an index for this list
10875 */
10876 func[i]->aux->func = func;
10877 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10878 }
f910cefa 10879 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10880 old_bpf_func = func[i]->bpf_func;
10881 tmp = bpf_int_jit_compile(func[i]);
10882 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10883 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10884 err = -ENOTSUPP;
1c2a088a
AS
10885 goto out_free;
10886 }
10887 cond_resched();
10888 }
10889
10890 /* finally lock prog and jit images for all functions and
10891 * populate kallsysm
10892 */
f910cefa 10893 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10894 bpf_prog_lock_ro(func[i]);
10895 bpf_prog_kallsyms_add(func[i]);
10896 }
7105e828
DB
10897
10898 /* Last step: make now unused interpreter insns from main
10899 * prog consistent for later dump requests, so they can
10900 * later look the same as if they were interpreted only.
10901 */
10902 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10903 if (insn->code != (BPF_JMP | BPF_CALL) ||
10904 insn->src_reg != BPF_PSEUDO_CALL)
10905 continue;
10906 insn->off = env->insn_aux_data[i].call_imm;
10907 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10908 insn->imm = subprog;
7105e828
DB
10909 }
10910
1c2a088a
AS
10911 prog->jited = 1;
10912 prog->bpf_func = func[0]->bpf_func;
10913 prog->aux->func = func;
f910cefa 10914 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10915 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10916 return 0;
10917out_free:
a748c697
MF
10918 for (i = 0; i < env->subprog_cnt; i++) {
10919 if (!func[i])
10920 continue;
10921
10922 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10923 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10924 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10925 }
10926 bpf_jit_free(func[i]);
10927 }
1c2a088a 10928 kfree(func);
c7a89784 10929out_undo_insn:
1c2a088a
AS
10930 /* cleanup main prog to be interpreted */
10931 prog->jit_requested = 0;
10932 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10933 if (insn->code != (BPF_JMP | BPF_CALL) ||
10934 insn->src_reg != BPF_PSEUDO_CALL)
10935 continue;
10936 insn->off = 0;
10937 insn->imm = env->insn_aux_data[i].call_imm;
10938 }
c454a46b 10939 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10940 return err;
10941}
10942
1ea47e01
AS
10943static int fixup_call_args(struct bpf_verifier_env *env)
10944{
19d28fbd 10945#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10946 struct bpf_prog *prog = env->prog;
10947 struct bpf_insn *insn = prog->insnsi;
10948 int i, depth;
19d28fbd 10949#endif
e4052d06 10950 int err = 0;
1ea47e01 10951
e4052d06
QM
10952 if (env->prog->jit_requested &&
10953 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10954 err = jit_subprogs(env);
10955 if (err == 0)
1c2a088a 10956 return 0;
c7a89784
DB
10957 if (err == -EFAULT)
10958 return err;
19d28fbd
DM
10959 }
10960#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e411901c
MF
10961 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10962 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10963 * have to be rejected, since interpreter doesn't support them yet.
10964 */
10965 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10966 return -EINVAL;
10967 }
1ea47e01
AS
10968 for (i = 0; i < prog->len; i++, insn++) {
10969 if (insn->code != (BPF_JMP | BPF_CALL) ||
10970 insn->src_reg != BPF_PSEUDO_CALL)
10971 continue;
10972 depth = get_callee_stack_depth(env, insn, i);
10973 if (depth < 0)
10974 return depth;
10975 bpf_patch_call_args(insn, depth);
10976 }
19d28fbd
DM
10977 err = 0;
10978#endif
10979 return err;
1ea47e01
AS
10980}
10981
79741b3b 10982/* fixup insn->imm field of bpf_call instructions
81ed18ab 10983 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10984 *
10985 * this function is called after eBPF program passed verification
10986 */
79741b3b 10987static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10988{
79741b3b 10989 struct bpf_prog *prog = env->prog;
d2e4c1e6 10990 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10991 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10992 const struct bpf_func_proto *fn;
79741b3b 10993 const int insn_cnt = prog->len;
09772d92 10994 const struct bpf_map_ops *ops;
c93552c4 10995 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10996 struct bpf_insn insn_buf[16];
10997 struct bpf_prog *new_prog;
10998 struct bpf_map *map_ptr;
d2e4c1e6 10999 int i, ret, cnt, delta = 0;
e245c5c6 11000
79741b3b 11001 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
11002 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11003 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11004 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 11005 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 11006 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
11007 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11008 struct bpf_insn *patchlet;
11009 struct bpf_insn chk_and_div[] = {
f62c9df2 11010 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
11011 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11012 BPF_JNE | BPF_K, insn->src_reg,
11013 0, 2, 0),
f6b1b3bf
DB
11014 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11015 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11016 *insn,
11017 };
e88b2c6e 11018 struct bpf_insn chk_and_mod[] = {
f62c9df2 11019 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
11020 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11021 BPF_JEQ | BPF_K, insn->src_reg,
f62c9df2 11022 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 11023 *insn,
f62c9df2
DB
11024 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11025 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 11026 };
f6b1b3bf 11027
e88b2c6e
DB
11028 patchlet = isdiv ? chk_and_div : chk_and_mod;
11029 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
f62c9df2 11030 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
11031
11032 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
11033 if (!new_prog)
11034 return -ENOMEM;
11035
11036 delta += cnt - 1;
11037 env->prog = prog = new_prog;
11038 insn = new_prog->insnsi + i + delta;
11039 continue;
11040 }
11041
e0cea7ce
DB
11042 if (BPF_CLASS(insn->code) == BPF_LD &&
11043 (BPF_MODE(insn->code) == BPF_ABS ||
11044 BPF_MODE(insn->code) == BPF_IND)) {
11045 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11046 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11047 verbose(env, "bpf verifier is misconfigured\n");
11048 return -EINVAL;
11049 }
11050
11051 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11052 if (!new_prog)
11053 return -ENOMEM;
11054
11055 delta += cnt - 1;
11056 env->prog = prog = new_prog;
11057 insn = new_prog->insnsi + i + delta;
11058 continue;
11059 }
11060
979d63d5
DB
11061 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11062 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11063 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11064 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11065 struct bpf_insn insn_buf[16];
11066 struct bpf_insn *patch = &insn_buf[0];
11067 bool issrc, isneg;
11068 u32 off_reg;
11069
11070 aux = &env->insn_aux_data[i + delta];
3612af78
DB
11071 if (!aux->alu_state ||
11072 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
11073 continue;
11074
11075 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11076 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11077 BPF_ALU_SANITIZE_SRC;
11078
11079 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11080 if (isneg)
11081 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11082 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11083 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11084 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11085 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11086 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11087 if (issrc) {
11088 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11089 off_reg);
11090 insn->src_reg = BPF_REG_AX;
11091 } else {
11092 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11093 BPF_REG_AX);
11094 }
11095 if (isneg)
11096 insn->code = insn->code == code_add ?
11097 code_sub : code_add;
11098 *patch++ = *insn;
11099 if (issrc && isneg)
11100 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11101 cnt = patch - insn_buf;
11102
11103 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11104 if (!new_prog)
11105 return -ENOMEM;
11106
11107 delta += cnt - 1;
11108 env->prog = prog = new_prog;
11109 insn = new_prog->insnsi + i + delta;
11110 continue;
11111 }
11112
79741b3b
AS
11113 if (insn->code != (BPF_JMP | BPF_CALL))
11114 continue;
cc8b0b92
AS
11115 if (insn->src_reg == BPF_PSEUDO_CALL)
11116 continue;
e245c5c6 11117
79741b3b
AS
11118 if (insn->imm == BPF_FUNC_get_route_realm)
11119 prog->dst_needed = 1;
11120 if (insn->imm == BPF_FUNC_get_prandom_u32)
11121 bpf_user_rnd_init_once();
9802d865
JB
11122 if (insn->imm == BPF_FUNC_override_return)
11123 prog->kprobe_override = 1;
79741b3b 11124 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
11125 /* If we tail call into other programs, we
11126 * cannot make any assumptions since they can
11127 * be replaced dynamically during runtime in
11128 * the program array.
11129 */
11130 prog->cb_access = 1;
e411901c
MF
11131 if (!allow_tail_call_in_subprogs(env))
11132 prog->aux->stack_depth = MAX_BPF_STACK;
11133 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 11134
79741b3b
AS
11135 /* mark bpf_tail_call as different opcode to avoid
11136 * conditional branch in the interpeter for every normal
11137 * call and to prevent accidental JITing by JIT compiler
11138 * that doesn't support bpf_tail_call yet
e245c5c6 11139 */
79741b3b 11140 insn->imm = 0;
71189fa9 11141 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 11142
c93552c4 11143 aux = &env->insn_aux_data[i + delta];
2c78ee89 11144 if (env->bpf_capable && !expect_blinding &&
cc52d914 11145 prog->jit_requested &&
d2e4c1e6
DB
11146 !bpf_map_key_poisoned(aux) &&
11147 !bpf_map_ptr_poisoned(aux) &&
11148 !bpf_map_ptr_unpriv(aux)) {
11149 struct bpf_jit_poke_descriptor desc = {
11150 .reason = BPF_POKE_REASON_TAIL_CALL,
11151 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11152 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 11153 .insn_idx = i + delta,
d2e4c1e6
DB
11154 };
11155
11156 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11157 if (ret < 0) {
11158 verbose(env, "adding tail call poke descriptor failed\n");
11159 return ret;
11160 }
11161
11162 insn->imm = ret + 1;
11163 continue;
11164 }
11165
c93552c4
DB
11166 if (!bpf_map_ptr_unpriv(aux))
11167 continue;
11168
b2157399
AS
11169 /* instead of changing every JIT dealing with tail_call
11170 * emit two extra insns:
11171 * if (index >= max_entries) goto out;
11172 * index &= array->index_mask;
11173 * to avoid out-of-bounds cpu speculation
11174 */
c93552c4 11175 if (bpf_map_ptr_poisoned(aux)) {
40950343 11176 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
11177 return -EINVAL;
11178 }
c93552c4 11179
d2e4c1e6 11180 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
11181 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11182 map_ptr->max_entries, 2);
11183 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11184 container_of(map_ptr,
11185 struct bpf_array,
11186 map)->index_mask);
11187 insn_buf[2] = *insn;
11188 cnt = 3;
11189 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11190 if (!new_prog)
11191 return -ENOMEM;
11192
11193 delta += cnt - 1;
11194 env->prog = prog = new_prog;
11195 insn = new_prog->insnsi + i + delta;
79741b3b
AS
11196 continue;
11197 }
e245c5c6 11198
89c63074 11199 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
11200 * and other inlining handlers are currently limited to 64 bit
11201 * only.
89c63074 11202 */
60b58afc 11203 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
11204 (insn->imm == BPF_FUNC_map_lookup_elem ||
11205 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
11206 insn->imm == BPF_FUNC_map_delete_elem ||
11207 insn->imm == BPF_FUNC_map_push_elem ||
11208 insn->imm == BPF_FUNC_map_pop_elem ||
11209 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
11210 aux = &env->insn_aux_data[i + delta];
11211 if (bpf_map_ptr_poisoned(aux))
11212 goto patch_call_imm;
11213
d2e4c1e6 11214 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
11215 ops = map_ptr->ops;
11216 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11217 ops->map_gen_lookup) {
11218 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
11219 if (cnt == -EOPNOTSUPP)
11220 goto patch_map_ops_generic;
11221 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
11222 verbose(env, "bpf verifier is misconfigured\n");
11223 return -EINVAL;
11224 }
81ed18ab 11225
09772d92
DB
11226 new_prog = bpf_patch_insn_data(env, i + delta,
11227 insn_buf, cnt);
11228 if (!new_prog)
11229 return -ENOMEM;
81ed18ab 11230
09772d92
DB
11231 delta += cnt - 1;
11232 env->prog = prog = new_prog;
11233 insn = new_prog->insnsi + i + delta;
11234 continue;
11235 }
81ed18ab 11236
09772d92
DB
11237 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11238 (void *(*)(struct bpf_map *map, void *key))NULL));
11239 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11240 (int (*)(struct bpf_map *map, void *key))NULL));
11241 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11242 (int (*)(struct bpf_map *map, void *key, void *value,
11243 u64 flags))NULL));
84430d42
DB
11244 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11245 (int (*)(struct bpf_map *map, void *value,
11246 u64 flags))NULL));
11247 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11248 (int (*)(struct bpf_map *map, void *value))NULL));
11249 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11250 (int (*)(struct bpf_map *map, void *value))NULL));
4a8f87e6 11251patch_map_ops_generic:
09772d92
DB
11252 switch (insn->imm) {
11253 case BPF_FUNC_map_lookup_elem:
11254 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11255 __bpf_call_base;
11256 continue;
11257 case BPF_FUNC_map_update_elem:
11258 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11259 __bpf_call_base;
11260 continue;
11261 case BPF_FUNC_map_delete_elem:
11262 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11263 __bpf_call_base;
11264 continue;
84430d42
DB
11265 case BPF_FUNC_map_push_elem:
11266 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11267 __bpf_call_base;
11268 continue;
11269 case BPF_FUNC_map_pop_elem:
11270 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11271 __bpf_call_base;
11272 continue;
11273 case BPF_FUNC_map_peek_elem:
11274 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11275 __bpf_call_base;
11276 continue;
09772d92 11277 }
81ed18ab 11278
09772d92 11279 goto patch_call_imm;
81ed18ab
AS
11280 }
11281
5576b991
MKL
11282 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11283 insn->imm == BPF_FUNC_jiffies64) {
11284 struct bpf_insn ld_jiffies_addr[2] = {
11285 BPF_LD_IMM64(BPF_REG_0,
11286 (unsigned long)&jiffies),
11287 };
11288
11289 insn_buf[0] = ld_jiffies_addr[0];
11290 insn_buf[1] = ld_jiffies_addr[1];
11291 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11292 BPF_REG_0, 0);
11293 cnt = 3;
11294
11295 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11296 cnt);
11297 if (!new_prog)
11298 return -ENOMEM;
11299
11300 delta += cnt - 1;
11301 env->prog = prog = new_prog;
11302 insn = new_prog->insnsi + i + delta;
11303 continue;
11304 }
11305
81ed18ab 11306patch_call_imm:
5e43f899 11307 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
11308 /* all functions that have prototype and verifier allowed
11309 * programs to call them, must be real in-kernel functions
11310 */
11311 if (!fn->func) {
61bd5218
JK
11312 verbose(env,
11313 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
11314 func_id_name(insn->imm), insn->imm);
11315 return -EFAULT;
e245c5c6 11316 }
79741b3b 11317 insn->imm = fn->func - __bpf_call_base;
e245c5c6 11318 }
e245c5c6 11319
d2e4c1e6
DB
11320 /* Since poke tab is now finalized, publish aux to tracker. */
11321 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11322 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11323 if (!map_ptr->ops->map_poke_track ||
11324 !map_ptr->ops->map_poke_untrack ||
11325 !map_ptr->ops->map_poke_run) {
11326 verbose(env, "bpf verifier is misconfigured\n");
11327 return -EINVAL;
11328 }
11329
11330 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11331 if (ret < 0) {
11332 verbose(env, "tracking tail call prog failed\n");
11333 return ret;
11334 }
11335 }
11336
79741b3b
AS
11337 return 0;
11338}
e245c5c6 11339
58e2af8b 11340static void free_states(struct bpf_verifier_env *env)
f1bca824 11341{
58e2af8b 11342 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
11343 int i;
11344
9f4686c4
AS
11345 sl = env->free_list;
11346 while (sl) {
11347 sln = sl->next;
11348 free_verifier_state(&sl->state, false);
11349 kfree(sl);
11350 sl = sln;
11351 }
51c39bb1 11352 env->free_list = NULL;
9f4686c4 11353
f1bca824
AS
11354 if (!env->explored_states)
11355 return;
11356
dc2a4ebc 11357 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
11358 sl = env->explored_states[i];
11359
a8f500af
AS
11360 while (sl) {
11361 sln = sl->next;
11362 free_verifier_state(&sl->state, false);
11363 kfree(sl);
11364 sl = sln;
11365 }
51c39bb1 11366 env->explored_states[i] = NULL;
f1bca824 11367 }
51c39bb1 11368}
f1bca824 11369
51c39bb1
AS
11370/* The verifier is using insn_aux_data[] to store temporary data during
11371 * verification and to store information for passes that run after the
11372 * verification like dead code sanitization. do_check_common() for subprogram N
11373 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11374 * temporary data after do_check_common() finds that subprogram N cannot be
11375 * verified independently. pass_cnt counts the number of times
11376 * do_check_common() was run and insn->aux->seen tells the pass number
11377 * insn_aux_data was touched. These variables are compared to clear temporary
11378 * data from failed pass. For testing and experiments do_check_common() can be
11379 * run multiple times even when prior attempt to verify is unsuccessful.
11380 */
11381static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11382{
11383 struct bpf_insn *insn = env->prog->insnsi;
11384 struct bpf_insn_aux_data *aux;
11385 int i, class;
11386
11387 for (i = 0; i < env->prog->len; i++) {
11388 class = BPF_CLASS(insn[i].code);
11389 if (class != BPF_LDX && class != BPF_STX)
11390 continue;
11391 aux = &env->insn_aux_data[i];
11392 if (aux->seen != env->pass_cnt)
11393 continue;
11394 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11395 }
f1bca824
AS
11396}
11397
51c39bb1
AS
11398static int do_check_common(struct bpf_verifier_env *env, int subprog)
11399{
6f8a57cc 11400 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
11401 struct bpf_verifier_state *state;
11402 struct bpf_reg_state *regs;
11403 int ret, i;
11404
11405 env->prev_linfo = NULL;
11406 env->pass_cnt++;
11407
11408 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11409 if (!state)
11410 return -ENOMEM;
11411 state->curframe = 0;
11412 state->speculative = false;
11413 state->branches = 1;
11414 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11415 if (!state->frame[0]) {
11416 kfree(state);
11417 return -ENOMEM;
11418 }
11419 env->cur_state = state;
11420 init_func_state(env, state->frame[0],
11421 BPF_MAIN_FUNC /* callsite */,
11422 0 /* frameno */,
11423 subprog);
11424
11425 regs = state->frame[state->curframe]->regs;
be8704ff 11426 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
11427 ret = btf_prepare_func_args(env, subprog, regs);
11428 if (ret)
11429 goto out;
11430 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11431 if (regs[i].type == PTR_TO_CTX)
11432 mark_reg_known_zero(env, regs, i);
11433 else if (regs[i].type == SCALAR_VALUE)
11434 mark_reg_unknown(env, regs, i);
11435 }
11436 } else {
11437 /* 1st arg to a function */
11438 regs[BPF_REG_1].type = PTR_TO_CTX;
11439 mark_reg_known_zero(env, regs, BPF_REG_1);
11440 ret = btf_check_func_arg_match(env, subprog, regs);
11441 if (ret == -EFAULT)
11442 /* unlikely verifier bug. abort.
11443 * ret == 0 and ret < 0 are sadly acceptable for
11444 * main() function due to backward compatibility.
11445 * Like socket filter program may be written as:
11446 * int bpf_prog(struct pt_regs *ctx)
11447 * and never dereference that ctx in the program.
11448 * 'struct pt_regs' is a type mismatch for socket
11449 * filter that should be using 'struct __sk_buff'.
11450 */
11451 goto out;
11452 }
11453
11454 ret = do_check(env);
11455out:
f59bbfc2
AS
11456 /* check for NULL is necessary, since cur_state can be freed inside
11457 * do_check() under memory pressure.
11458 */
11459 if (env->cur_state) {
11460 free_verifier_state(env->cur_state, true);
11461 env->cur_state = NULL;
11462 }
6f8a57cc
AN
11463 while (!pop_stack(env, NULL, NULL, false));
11464 if (!ret && pop_log)
11465 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
11466 free_states(env);
11467 if (ret)
11468 /* clean aux data in case subprog was rejected */
11469 sanitize_insn_aux_data(env);
11470 return ret;
11471}
11472
11473/* Verify all global functions in a BPF program one by one based on their BTF.
11474 * All global functions must pass verification. Otherwise the whole program is rejected.
11475 * Consider:
11476 * int bar(int);
11477 * int foo(int f)
11478 * {
11479 * return bar(f);
11480 * }
11481 * int bar(int b)
11482 * {
11483 * ...
11484 * }
11485 * foo() will be verified first for R1=any_scalar_value. During verification it
11486 * will be assumed that bar() already verified successfully and call to bar()
11487 * from foo() will be checked for type match only. Later bar() will be verified
11488 * independently to check that it's safe for R1=any_scalar_value.
11489 */
11490static int do_check_subprogs(struct bpf_verifier_env *env)
11491{
11492 struct bpf_prog_aux *aux = env->prog->aux;
11493 int i, ret;
11494
11495 if (!aux->func_info)
11496 return 0;
11497
11498 for (i = 1; i < env->subprog_cnt; i++) {
11499 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11500 continue;
11501 env->insn_idx = env->subprog_info[i].start;
11502 WARN_ON_ONCE(env->insn_idx == 0);
11503 ret = do_check_common(env, i);
11504 if (ret) {
11505 return ret;
11506 } else if (env->log.level & BPF_LOG_LEVEL) {
11507 verbose(env,
11508 "Func#%d is safe for any args that match its prototype\n",
11509 i);
11510 }
11511 }
11512 return 0;
11513}
11514
11515static int do_check_main(struct bpf_verifier_env *env)
11516{
11517 int ret;
11518
11519 env->insn_idx = 0;
11520 ret = do_check_common(env, 0);
11521 if (!ret)
11522 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11523 return ret;
11524}
11525
11526
06ee7115
AS
11527static void print_verification_stats(struct bpf_verifier_env *env)
11528{
11529 int i;
11530
11531 if (env->log.level & BPF_LOG_STATS) {
11532 verbose(env, "verification time %lld usec\n",
11533 div_u64(env->verification_time, 1000));
11534 verbose(env, "stack depth ");
11535 for (i = 0; i < env->subprog_cnt; i++) {
11536 u32 depth = env->subprog_info[i].stack_depth;
11537
11538 verbose(env, "%d", depth);
11539 if (i + 1 < env->subprog_cnt)
11540 verbose(env, "+");
11541 }
11542 verbose(env, "\n");
11543 }
11544 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11545 "total_states %d peak_states %d mark_read %d\n",
11546 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11547 env->max_states_per_insn, env->total_states,
11548 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
11549}
11550
27ae7997
MKL
11551static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11552{
11553 const struct btf_type *t, *func_proto;
11554 const struct bpf_struct_ops *st_ops;
11555 const struct btf_member *member;
11556 struct bpf_prog *prog = env->prog;
11557 u32 btf_id, member_idx;
11558 const char *mname;
11559
11560 btf_id = prog->aux->attach_btf_id;
11561 st_ops = bpf_struct_ops_find(btf_id);
11562 if (!st_ops) {
11563 verbose(env, "attach_btf_id %u is not a supported struct\n",
11564 btf_id);
11565 return -ENOTSUPP;
11566 }
11567
11568 t = st_ops->type;
11569 member_idx = prog->expected_attach_type;
11570 if (member_idx >= btf_type_vlen(t)) {
11571 verbose(env, "attach to invalid member idx %u of struct %s\n",
11572 member_idx, st_ops->name);
11573 return -EINVAL;
11574 }
11575
11576 member = &btf_type_member(t)[member_idx];
11577 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11578 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11579 NULL);
11580 if (!func_proto) {
11581 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11582 mname, member_idx, st_ops->name);
11583 return -EINVAL;
11584 }
11585
11586 if (st_ops->check_member) {
11587 int err = st_ops->check_member(t, member);
11588
11589 if (err) {
11590 verbose(env, "attach to unsupported member %s of struct %s\n",
11591 mname, st_ops->name);
11592 return err;
11593 }
11594 }
11595
11596 prog->aux->attach_func_proto = func_proto;
11597 prog->aux->attach_func_name = mname;
11598 env->ops = st_ops->verifier_ops;
11599
11600 return 0;
11601}
6ba43b76
KS
11602#define SECURITY_PREFIX "security_"
11603
f7b12b6f 11604static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 11605{
69191754 11606 if (within_error_injection_list(addr) ||
f7b12b6f 11607 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 11608 return 0;
6ba43b76 11609
6ba43b76
KS
11610 return -EINVAL;
11611}
27ae7997 11612
1e6c62a8
AS
11613/* list of non-sleepable functions that are otherwise on
11614 * ALLOW_ERROR_INJECTION list
11615 */
11616BTF_SET_START(btf_non_sleepable_error_inject)
11617/* Three functions below can be called from sleepable and non-sleepable context.
11618 * Assume non-sleepable from bpf safety point of view.
11619 */
11620BTF_ID(func, __add_to_page_cache_locked)
11621BTF_ID(func, should_fail_alloc_page)
11622BTF_ID(func, should_failslab)
11623BTF_SET_END(btf_non_sleepable_error_inject)
11624
11625static int check_non_sleepable_error_inject(u32 btf_id)
11626{
11627 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11628}
11629
f7b12b6f
THJ
11630int bpf_check_attach_target(struct bpf_verifier_log *log,
11631 const struct bpf_prog *prog,
11632 const struct bpf_prog *tgt_prog,
11633 u32 btf_id,
11634 struct bpf_attach_target_info *tgt_info)
38207291 11635{
be8704ff 11636 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 11637 const char prefix[] = "btf_trace_";
5b92a28a 11638 int ret = 0, subprog = -1, i;
38207291 11639 const struct btf_type *t;
5b92a28a 11640 bool conservative = true;
38207291 11641 const char *tname;
5b92a28a 11642 struct btf *btf;
f7b12b6f 11643 long addr = 0;
38207291 11644
f1b9509c 11645 if (!btf_id) {
efc68158 11646 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
11647 return -EINVAL;
11648 }
22dc4a0f 11649 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 11650 if (!btf) {
efc68158 11651 bpf_log(log,
5b92a28a
AS
11652 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11653 return -EINVAL;
11654 }
11655 t = btf_type_by_id(btf, btf_id);
f1b9509c 11656 if (!t) {
efc68158 11657 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
11658 return -EINVAL;
11659 }
5b92a28a 11660 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 11661 if (!tname) {
efc68158 11662 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
11663 return -EINVAL;
11664 }
5b92a28a
AS
11665 if (tgt_prog) {
11666 struct bpf_prog_aux *aux = tgt_prog->aux;
11667
11668 for (i = 0; i < aux->func_info_cnt; i++)
11669 if (aux->func_info[i].type_id == btf_id) {
11670 subprog = i;
11671 break;
11672 }
11673 if (subprog == -1) {
efc68158 11674 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
11675 return -EINVAL;
11676 }
11677 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11678 if (prog_extension) {
11679 if (conservative) {
efc68158 11680 bpf_log(log,
be8704ff
AS
11681 "Cannot replace static functions\n");
11682 return -EINVAL;
11683 }
11684 if (!prog->jit_requested) {
efc68158 11685 bpf_log(log,
be8704ff
AS
11686 "Extension programs should be JITed\n");
11687 return -EINVAL;
11688 }
be8704ff
AS
11689 }
11690 if (!tgt_prog->jited) {
efc68158 11691 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
11692 return -EINVAL;
11693 }
11694 if (tgt_prog->type == prog->type) {
11695 /* Cannot fentry/fexit another fentry/fexit program.
11696 * Cannot attach program extension to another extension.
11697 * It's ok to attach fentry/fexit to extension program.
11698 */
efc68158 11699 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
11700 return -EINVAL;
11701 }
11702 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11703 prog_extension &&
11704 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11705 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11706 /* Program extensions can extend all program types
11707 * except fentry/fexit. The reason is the following.
11708 * The fentry/fexit programs are used for performance
11709 * analysis, stats and can be attached to any program
11710 * type except themselves. When extension program is
11711 * replacing XDP function it is necessary to allow
11712 * performance analysis of all functions. Both original
11713 * XDP program and its program extension. Hence
11714 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11715 * allowed. If extending of fentry/fexit was allowed it
11716 * would be possible to create long call chain
11717 * fentry->extension->fentry->extension beyond
11718 * reasonable stack size. Hence extending fentry is not
11719 * allowed.
11720 */
efc68158 11721 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
11722 return -EINVAL;
11723 }
5b92a28a 11724 } else {
be8704ff 11725 if (prog_extension) {
efc68158 11726 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
11727 return -EINVAL;
11728 }
5b92a28a 11729 }
f1b9509c
AS
11730
11731 switch (prog->expected_attach_type) {
11732 case BPF_TRACE_RAW_TP:
5b92a28a 11733 if (tgt_prog) {
efc68158 11734 bpf_log(log,
5b92a28a
AS
11735 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11736 return -EINVAL;
11737 }
38207291 11738 if (!btf_type_is_typedef(t)) {
efc68158 11739 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
11740 btf_id);
11741 return -EINVAL;
11742 }
f1b9509c 11743 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 11744 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
11745 btf_id, tname);
11746 return -EINVAL;
11747 }
11748 tname += sizeof(prefix) - 1;
5b92a28a 11749 t = btf_type_by_id(btf, t->type);
38207291
MKL
11750 if (!btf_type_is_ptr(t))
11751 /* should never happen in valid vmlinux build */
11752 return -EINVAL;
5b92a28a 11753 t = btf_type_by_id(btf, t->type);
38207291
MKL
11754 if (!btf_type_is_func_proto(t))
11755 /* should never happen in valid vmlinux build */
11756 return -EINVAL;
11757
f7b12b6f 11758 break;
15d83c4d
YS
11759 case BPF_TRACE_ITER:
11760 if (!btf_type_is_func(t)) {
efc68158 11761 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
11762 btf_id);
11763 return -EINVAL;
11764 }
11765 t = btf_type_by_id(btf, t->type);
11766 if (!btf_type_is_func_proto(t))
11767 return -EINVAL;
f7b12b6f
THJ
11768 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11769 if (ret)
11770 return ret;
11771 break;
be8704ff
AS
11772 default:
11773 if (!prog_extension)
11774 return -EINVAL;
df561f66 11775 fallthrough;
ae240823 11776 case BPF_MODIFY_RETURN:
9e4e01df 11777 case BPF_LSM_MAC:
fec56f58
AS
11778 case BPF_TRACE_FENTRY:
11779 case BPF_TRACE_FEXIT:
11780 if (!btf_type_is_func(t)) {
efc68158 11781 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
11782 btf_id);
11783 return -EINVAL;
11784 }
be8704ff 11785 if (prog_extension &&
efc68158 11786 btf_check_type_match(log, prog, btf, t))
be8704ff 11787 return -EINVAL;
5b92a28a 11788 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11789 if (!btf_type_is_func_proto(t))
11790 return -EINVAL;
f7b12b6f 11791
4a1e7c0c
THJ
11792 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11793 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11794 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11795 return -EINVAL;
11796
f7b12b6f 11797 if (tgt_prog && conservative)
5b92a28a 11798 t = NULL;
f7b12b6f
THJ
11799
11800 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 11801 if (ret < 0)
f7b12b6f
THJ
11802 return ret;
11803
5b92a28a 11804 if (tgt_prog) {
e9eeec58
YS
11805 if (subprog == 0)
11806 addr = (long) tgt_prog->bpf_func;
11807 else
11808 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11809 } else {
11810 addr = kallsyms_lookup_name(tname);
11811 if (!addr) {
efc68158 11812 bpf_log(log,
5b92a28a
AS
11813 "The address of function %s cannot be found\n",
11814 tname);
f7b12b6f 11815 return -ENOENT;
5b92a28a 11816 }
fec56f58 11817 }
18644cec 11818
1e6c62a8
AS
11819 if (prog->aux->sleepable) {
11820 ret = -EINVAL;
11821 switch (prog->type) {
11822 case BPF_PROG_TYPE_TRACING:
11823 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11824 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11825 */
11826 if (!check_non_sleepable_error_inject(btf_id) &&
11827 within_error_injection_list(addr))
11828 ret = 0;
11829 break;
11830 case BPF_PROG_TYPE_LSM:
11831 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11832 * Only some of them are sleepable.
11833 */
423f1610 11834 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
11835 ret = 0;
11836 break;
11837 default:
11838 break;
11839 }
f7b12b6f
THJ
11840 if (ret) {
11841 bpf_log(log, "%s is not sleepable\n", tname);
11842 return ret;
11843 }
1e6c62a8 11844 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 11845 if (tgt_prog) {
efc68158 11846 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
11847 return -EINVAL;
11848 }
11849 ret = check_attach_modify_return(addr, tname);
11850 if (ret) {
11851 bpf_log(log, "%s() is not modifiable\n", tname);
11852 return ret;
1af9270e 11853 }
18644cec 11854 }
f7b12b6f
THJ
11855
11856 break;
11857 }
11858 tgt_info->tgt_addr = addr;
11859 tgt_info->tgt_name = tname;
11860 tgt_info->tgt_type = t;
11861 return 0;
11862}
11863
11864static int check_attach_btf_id(struct bpf_verifier_env *env)
11865{
11866 struct bpf_prog *prog = env->prog;
3aac1ead 11867 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
11868 struct bpf_attach_target_info tgt_info = {};
11869 u32 btf_id = prog->aux->attach_btf_id;
11870 struct bpf_trampoline *tr;
11871 int ret;
11872 u64 key;
11873
11874 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11875 prog->type != BPF_PROG_TYPE_LSM) {
11876 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11877 return -EINVAL;
11878 }
11879
11880 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11881 return check_struct_ops_btf_id(env);
11882
11883 if (prog->type != BPF_PROG_TYPE_TRACING &&
11884 prog->type != BPF_PROG_TYPE_LSM &&
11885 prog->type != BPF_PROG_TYPE_EXT)
11886 return 0;
11887
11888 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11889 if (ret)
fec56f58 11890 return ret;
f7b12b6f
THJ
11891
11892 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
11893 /* to make freplace equivalent to their targets, they need to
11894 * inherit env->ops and expected_attach_type for the rest of the
11895 * verification
11896 */
f7b12b6f
THJ
11897 env->ops = bpf_verifier_ops[tgt_prog->type];
11898 prog->expected_attach_type = tgt_prog->expected_attach_type;
11899 }
11900
11901 /* store info about the attachment target that will be used later */
11902 prog->aux->attach_func_proto = tgt_info.tgt_type;
11903 prog->aux->attach_func_name = tgt_info.tgt_name;
11904
4a1e7c0c
THJ
11905 if (tgt_prog) {
11906 prog->aux->saved_dst_prog_type = tgt_prog->type;
11907 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11908 }
11909
f7b12b6f
THJ
11910 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11911 prog->aux->attach_btf_trace = true;
11912 return 0;
11913 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11914 if (!bpf_iter_prog_supported(prog))
11915 return -EINVAL;
11916 return 0;
11917 }
11918
11919 if (prog->type == BPF_PROG_TYPE_LSM) {
11920 ret = bpf_lsm_verify_prog(&env->log, prog);
11921 if (ret < 0)
11922 return ret;
38207291 11923 }
f7b12b6f 11924
22dc4a0f 11925 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
11926 tr = bpf_trampoline_get(key, &tgt_info);
11927 if (!tr)
11928 return -ENOMEM;
11929
3aac1ead 11930 prog->aux->dst_trampoline = tr;
f7b12b6f 11931 return 0;
38207291
MKL
11932}
11933
76654e67
AM
11934struct btf *bpf_get_btf_vmlinux(void)
11935{
11936 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11937 mutex_lock(&bpf_verifier_lock);
11938 if (!btf_vmlinux)
11939 btf_vmlinux = btf_parse_vmlinux();
11940 mutex_unlock(&bpf_verifier_lock);
11941 }
11942 return btf_vmlinux;
11943}
11944
838e9690
YS
11945int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11946 union bpf_attr __user *uattr)
51580e79 11947{
06ee7115 11948 u64 start_time = ktime_get_ns();
58e2af8b 11949 struct bpf_verifier_env *env;
b9193c1b 11950 struct bpf_verifier_log *log;
9e4c24e7 11951 int i, len, ret = -EINVAL;
e2ae4ca2 11952 bool is_priv;
51580e79 11953
eba0c929
AB
11954 /* no program is valid */
11955 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11956 return -EINVAL;
11957
58e2af8b 11958 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11959 * allocate/free it every time bpf_check() is called
11960 */
58e2af8b 11961 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11962 if (!env)
11963 return -ENOMEM;
61bd5218 11964 log = &env->log;
cbd35700 11965
9e4c24e7 11966 len = (*prog)->len;
fad953ce 11967 env->insn_aux_data =
9e4c24e7 11968 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11969 ret = -ENOMEM;
11970 if (!env->insn_aux_data)
11971 goto err_free_env;
9e4c24e7
JK
11972 for (i = 0; i < len; i++)
11973 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11974 env->prog = *prog;
00176a34 11975 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11976 is_priv = bpf_capable();
0246e64d 11977
76654e67 11978 bpf_get_btf_vmlinux();
8580ac94 11979
cbd35700 11980 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11981 if (!is_priv)
11982 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11983
11984 if (attr->log_level || attr->log_buf || attr->log_size) {
11985 /* user requested verbose verifier output
11986 * and supplied buffer to store the verification trace
11987 */
e7bf8249
JK
11988 log->level = attr->log_level;
11989 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11990 log->len_total = attr->log_size;
cbd35700
AS
11991
11992 ret = -EINVAL;
e7bf8249 11993 /* log attributes have to be sane */
7a9f5c65 11994 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11995 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11996 goto err_unlock;
cbd35700 11997 }
1ad2f583 11998
8580ac94
AS
11999 if (IS_ERR(btf_vmlinux)) {
12000 /* Either gcc or pahole or kernel are broken. */
12001 verbose(env, "in-kernel BTF is malformed\n");
12002 ret = PTR_ERR(btf_vmlinux);
38207291 12003 goto skip_full_check;
8580ac94
AS
12004 }
12005
1ad2f583
DB
12006 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12007 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 12008 env->strict_alignment = true;
e9ee9efc
DM
12009 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12010 env->strict_alignment = false;
cbd35700 12011
2c78ee89 12012 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 12013 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
12014 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12015 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12016 env->bpf_capable = bpf_capable();
e2ae4ca2 12017
10d274e8
AS
12018 if (is_priv)
12019 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12020
cae1927c 12021 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 12022 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 12023 if (ret)
f4e3ec0d 12024 goto skip_full_check;
ab3f0063
JK
12025 }
12026
dc2a4ebc 12027 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 12028 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
12029 GFP_USER);
12030 ret = -ENOMEM;
12031 if (!env->explored_states)
12032 goto skip_full_check;
12033
d9762e84 12034 ret = check_subprogs(env);
475fb78f
AS
12035 if (ret < 0)
12036 goto skip_full_check;
12037
c454a46b 12038 ret = check_btf_info(env, attr, uattr);
838e9690
YS
12039 if (ret < 0)
12040 goto skip_full_check;
12041
be8704ff
AS
12042 ret = check_attach_btf_id(env);
12043 if (ret)
12044 goto skip_full_check;
12045
4976b718
HL
12046 ret = resolve_pseudo_ldimm64(env);
12047 if (ret < 0)
12048 goto skip_full_check;
12049
d9762e84
MKL
12050 ret = check_cfg(env);
12051 if (ret < 0)
12052 goto skip_full_check;
12053
51c39bb1
AS
12054 ret = do_check_subprogs(env);
12055 ret = ret ?: do_check_main(env);
cbd35700 12056
c941ce9c
QM
12057 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12058 ret = bpf_prog_offload_finalize(env);
12059
0246e64d 12060skip_full_check:
51c39bb1 12061 kvfree(env->explored_states);
0246e64d 12062
c131187d 12063 if (ret == 0)
9b38c405 12064 ret = check_max_stack_depth(env);
c131187d 12065
9b38c405 12066 /* instruction rewrites happen after this point */
e2ae4ca2
JK
12067 if (is_priv) {
12068 if (ret == 0)
12069 opt_hard_wire_dead_code_branches(env);
52875a04
JK
12070 if (ret == 0)
12071 ret = opt_remove_dead_code(env);
a1b14abc
JK
12072 if (ret == 0)
12073 ret = opt_remove_nops(env);
52875a04
JK
12074 } else {
12075 if (ret == 0)
12076 sanitize_dead_code(env);
e2ae4ca2
JK
12077 }
12078
9bac3d6d
AS
12079 if (ret == 0)
12080 /* program is valid, convert *(u32*)(ctx + off) accesses */
12081 ret = convert_ctx_accesses(env);
12082
e245c5c6 12083 if (ret == 0)
79741b3b 12084 ret = fixup_bpf_calls(env);
e245c5c6 12085
a4b1d3c1
JW
12086 /* do 32-bit optimization after insn patching has done so those patched
12087 * insns could be handled correctly.
12088 */
d6c2308c
JW
12089 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12090 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12091 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12092 : false;
a4b1d3c1
JW
12093 }
12094
1ea47e01
AS
12095 if (ret == 0)
12096 ret = fixup_call_args(env);
12097
06ee7115
AS
12098 env->verification_time = ktime_get_ns() - start_time;
12099 print_verification_stats(env);
12100
a2a7d570 12101 if (log->level && bpf_verifier_log_full(log))
cbd35700 12102 ret = -ENOSPC;
a2a7d570 12103 if (log->level && !log->ubuf) {
cbd35700 12104 ret = -EFAULT;
a2a7d570 12105 goto err_release_maps;
cbd35700
AS
12106 }
12107
0246e64d
AS
12108 if (ret == 0 && env->used_map_cnt) {
12109 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
12110 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12111 sizeof(env->used_maps[0]),
12112 GFP_KERNEL);
0246e64d 12113
9bac3d6d 12114 if (!env->prog->aux->used_maps) {
0246e64d 12115 ret = -ENOMEM;
a2a7d570 12116 goto err_release_maps;
0246e64d
AS
12117 }
12118
9bac3d6d 12119 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 12120 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 12121 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
12122
12123 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12124 * bpf_ld_imm64 instructions
12125 */
12126 convert_pseudo_ld_imm64(env);
12127 }
cbd35700 12128
ba64e7d8
YS
12129 if (ret == 0)
12130 adjust_btf_func(env);
12131
a2a7d570 12132err_release_maps:
9bac3d6d 12133 if (!env->prog->aux->used_maps)
0246e64d 12134 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 12135 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
12136 */
12137 release_maps(env);
03f87c0b
THJ
12138
12139 /* extension progs temporarily inherit the attach_type of their targets
12140 for verification purposes, so set it back to zero before returning
12141 */
12142 if (env->prog->type == BPF_PROG_TYPE_EXT)
12143 env->prog->expected_attach_type = 0;
12144
9bac3d6d 12145 *prog = env->prog;
3df126f3 12146err_unlock:
45a73c17
AS
12147 if (!is_priv)
12148 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
12149 vfree(env->insn_aux_data);
12150err_free_env:
12151 kfree(env);
51580e79
AS
12152 return ret;
12153}