]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
bpf: fix missing error return in check_stack_boundary()
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 802 int size, bool zero_size_allowed)
17a52670 803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
9fd29c08
YS
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
61bd5218 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814}
815
f1174f77
EC
816/* check read/write into a map element with possible variable offset */
817static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 818 int off, int size, bool zero_size_allowed)
dbcfe5f7 819{
638f5b90 820 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
f1174f77
EC
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
dbcfe5f7 827 */
61bd5218
JK
828 if (env->log.level)
829 print_verifier_state(env, state);
dbcfe5f7
GB
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
b03c9f9f 836 if (reg->smin_value < 0) {
61bd5218 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
838 regno);
839 return -EACCES;
840 }
9fd29c08
YS
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
dbcfe5f7 843 if (err) {
61bd5218
JK
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
dbcfe5f7
GB
846 return err;
847 }
848
b03c9f9f
EC
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 852 */
b03c9f9f 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
855 regno);
856 return -EACCES;
857 }
9fd29c08
YS
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
f1174f77 860 if (err)
61bd5218
JK
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
f1174f77 863 return err;
dbcfe5f7
GB
864}
865
969bf05e
AS
866#define MAX_PACKET_OFF 0xffff
867
58e2af8b 868static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
4acf6c0b 871{
36bbef52 872 switch (env->prog->type) {
3a0af8fd
TG
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
7e57fbb2 878 /* fallthrough */
36bbef52
DB
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 881 case BPF_PROG_TYPE_XDP:
3a0af8fd 882 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 883 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
4acf6c0b
BB
888 return true;
889 default:
890 return false;
891 }
892}
893
f1174f77 894static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 895 int off, int size, bool zero_size_allowed)
969bf05e 896{
638f5b90 897 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 898 struct bpf_reg_state *reg = &regs[regno];
969bf05e 899
9fd29c08
YS
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
61bd5218 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 910 int size, bool zero_size_allowed)
f1174f77 911{
638f5b90 912 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
61bd5218 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
926 regno);
927 return -EACCES;
928 }
9fd29c08 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 930 if (err) {
61bd5218 931 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
4f9218aa
JK
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
31fd8581 953 */
23994631 954 *reg_type = info.reg_type;
31fd8581 955
4f9218aa 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
17a52670 960 return 0;
32bbe007 961 }
17a52670 962
61bd5218 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
964 return -EACCES;
965}
966
4cabc5b1
DB
967static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
1be7f75d 969{
4cabc5b1 970 if (allow_ptr_leaks)
1be7f75d
AS
971 return false;
972
f1174f77 973 return reg->type != SCALAR_VALUE;
1be7f75d
AS
974}
975
4cabc5b1
DB
976static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977{
638f5b90 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
979}
980
61bd5218
JK
981static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
d1174416 983 int off, int size, bool strict)
969bf05e 984{
f1174f77 985 struct tnum reg_off;
e07b98d9 986 int ip_align;
d1174416
DM
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
e4eda884
DM
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
e07b98d9 999 */
e4eda884 1000 ip_align = 2;
f1174f77
EC
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1009 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1010 return -EACCES;
1011 }
79adffcd 1012
969bf05e
AS
1013 return 0;
1014}
1015
61bd5218
JK
1016static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
f1174f77
EC
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
79adffcd 1020{
f1174f77
EC
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1033 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1034 return -EACCES;
1035 }
1036
969bf05e
AS
1037 return 0;
1038}
1039
e07b98d9
DM
1040static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
79adffcd
DB
1042 int off, int size)
1043{
e07b98d9 1044 bool strict = env->strict_alignment;
f1174f77 1045 const char *pointer_desc = "";
d1174416 1046
79adffcd
DB
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
de8f3a83
DB
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
61bd5218 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
1062 break;
79adffcd 1063 default:
f1174f77 1064 break;
79adffcd 1065 }
61bd5218
JK
1066 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1067 strict);
79adffcd
DB
1068}
1069
0c17d1d2
JH
1070/* truncate register to smaller size (in bytes)
1071 * must be called with size < BPF_REG_SIZE
1072 */
1073static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1074{
1075 u64 mask;
1076
1077 /* clear high bits in bit representation */
1078 reg->var_off = tnum_cast(reg->var_off, size);
1079
1080 /* fix arithmetic bounds */
1081 mask = ((u64)1 << (size * 8)) - 1;
1082 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1083 reg->umin_value &= mask;
1084 reg->umax_value &= mask;
1085 } else {
1086 reg->umin_value = 0;
1087 reg->umax_value = mask;
1088 }
1089 reg->smin_value = reg->umin_value;
1090 reg->smax_value = reg->umax_value;
1091}
1092
17a52670
AS
1093/* check whether memory at (regno + off) is accessible for t = (read | write)
1094 * if t==write, value_regno is a register which value is stored into memory
1095 * if t==read, value_regno is a register which will receive the value from memory
1096 * if t==write && value_regno==-1, some unknown value is stored into memory
1097 * if t==read && value_regno==-1, don't care what we read from memory
1098 */
31fd8581 1099static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1100 int bpf_size, enum bpf_access_type t,
1101 int value_regno)
1102{
638f5b90
AS
1103 struct bpf_verifier_state *state = env->cur_state;
1104 struct bpf_reg_state *regs = cur_regs(env);
1105 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1106 int size, err = 0;
1107
1108 size = bpf_size_to_bytes(bpf_size);
1109 if (size < 0)
1110 return size;
1111
f1174f77 1112 /* alignment checks will add in reg->off themselves */
e07b98d9 1113 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1114 if (err)
1115 return err;
17a52670 1116
f1174f77
EC
1117 /* for access checks, reg->off is just part of off */
1118 off += reg->off;
1119
1120 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1121 if (t == BPF_WRITE && value_regno >= 0 &&
1122 is_pointer_value(env, value_regno)) {
61bd5218 1123 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1124 return -EACCES;
1125 }
48461135 1126
9fd29c08 1127 err = check_map_access(env, regno, off, size, false);
17a52670 1128 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1129 mark_reg_unknown(env, regs, value_regno);
17a52670 1130
1a0dc1ac 1131 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1132 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1133
1be7f75d
AS
1134 if (t == BPF_WRITE && value_regno >= 0 &&
1135 is_pointer_value(env, value_regno)) {
61bd5218 1136 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1137 return -EACCES;
1138 }
f1174f77
EC
1139 /* ctx accesses must be at a fixed offset, so that we can
1140 * determine what type of data were returned.
1141 */
28e33f9d 1142 if (reg->off) {
f8ddadc4
DM
1143 verbose(env,
1144 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1145 regno, reg->off, off - reg->off);
1146 return -EACCES;
1147 }
1148 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1149 char tn_buf[48];
1150
1151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1152 verbose(env,
1153 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1154 tn_buf, off, size);
1155 return -EACCES;
1156 }
31fd8581 1157 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1158 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1159 /* ctx access returns either a scalar, or a
de8f3a83
DB
1160 * PTR_TO_PACKET[_META,_END]. In the latter
1161 * case, we know the offset is zero.
f1174f77
EC
1162 */
1163 if (reg_type == SCALAR_VALUE)
638f5b90 1164 mark_reg_unknown(env, regs, value_regno);
f1174f77 1165 else
638f5b90 1166 mark_reg_known_zero(env, regs,
61bd5218 1167 value_regno);
638f5b90
AS
1168 regs[value_regno].id = 0;
1169 regs[value_regno].off = 0;
1170 regs[value_regno].range = 0;
1171 regs[value_regno].type = reg_type;
969bf05e 1172 }
17a52670 1173
f1174f77
EC
1174 } else if (reg->type == PTR_TO_STACK) {
1175 /* stack accesses must be at a fixed offset, so that we can
1176 * determine what type of data were returned.
1177 * See check_stack_read().
1178 */
1179 if (!tnum_is_const(reg->var_off)) {
1180 char tn_buf[48];
1181
1182 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1183 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1184 tn_buf, off, size);
1185 return -EACCES;
1186 }
1187 off += reg->var_off.value;
17a52670 1188 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1189 verbose(env, "invalid stack off=%d size=%d\n", off,
1190 size);
17a52670
AS
1191 return -EACCES;
1192 }
8726679a
AS
1193
1194 if (env->prog->aux->stack_depth < -off)
1195 env->prog->aux->stack_depth = -off;
1196
638f5b90 1197 if (t == BPF_WRITE)
61bd5218
JK
1198 err = check_stack_write(env, state, off, size,
1199 value_regno);
638f5b90 1200 else
61bd5218
JK
1201 err = check_stack_read(env, state, off, size,
1202 value_regno);
de8f3a83 1203 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1204 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1205 verbose(env, "cannot write into packet\n");
969bf05e
AS
1206 return -EACCES;
1207 }
4acf6c0b
BB
1208 if (t == BPF_WRITE && value_regno >= 0 &&
1209 is_pointer_value(env, value_regno)) {
61bd5218
JK
1210 verbose(env, "R%d leaks addr into packet\n",
1211 value_regno);
4acf6c0b
BB
1212 return -EACCES;
1213 }
9fd29c08 1214 err = check_packet_access(env, regno, off, size, false);
969bf05e 1215 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1216 mark_reg_unknown(env, regs, value_regno);
17a52670 1217 } else {
61bd5218
JK
1218 verbose(env, "R%d invalid mem access '%s'\n", regno,
1219 reg_type_str[reg->type]);
17a52670
AS
1220 return -EACCES;
1221 }
969bf05e 1222
f1174f77 1223 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1224 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1225 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1226 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1227 }
17a52670
AS
1228 return err;
1229}
1230
31fd8581 1231static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1232{
17a52670
AS
1233 int err;
1234
1235 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1236 insn->imm != 0) {
61bd5218 1237 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1238 return -EINVAL;
1239 }
1240
1241 /* check src1 operand */
dc503a8a 1242 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1243 if (err)
1244 return err;
1245
1246 /* check src2 operand */
dc503a8a 1247 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1248 if (err)
1249 return err;
1250
6bdf6abc 1251 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1252 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1253 return -EACCES;
1254 }
1255
17a52670 1256 /* check whether atomic_add can read the memory */
31fd8581 1257 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1258 BPF_SIZE(insn->code), BPF_READ, -1);
1259 if (err)
1260 return err;
1261
1262 /* check whether atomic_add can write into the same memory */
31fd8581 1263 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1264 BPF_SIZE(insn->code), BPF_WRITE, -1);
1265}
1266
f1174f77
EC
1267/* Does this register contain a constant zero? */
1268static bool register_is_null(struct bpf_reg_state reg)
1269{
1270 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1271}
1272
17a52670
AS
1273/* when register 'regno' is passed into function that will read 'access_size'
1274 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1275 * and all elements of stack are initialized.
1276 * Unlike most pointer bounds-checking functions, this one doesn't take an
1277 * 'off' argument, so it has to add in reg->off itself.
17a52670 1278 */
58e2af8b 1279static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1280 int access_size, bool zero_size_allowed,
1281 struct bpf_call_arg_meta *meta)
17a52670 1282{
638f5b90 1283 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1284 struct bpf_reg_state *regs = state->regs;
638f5b90 1285 int off, i, slot, spi;
17a52670 1286
8e2fe1d9 1287 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1288 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1289 if (zero_size_allowed && access_size == 0 &&
f1174f77 1290 register_is_null(regs[regno]))
8e2fe1d9
DB
1291 return 0;
1292
61bd5218 1293 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1294 reg_type_str[regs[regno].type],
1295 reg_type_str[PTR_TO_STACK]);
17a52670 1296 return -EACCES;
8e2fe1d9 1297 }
17a52670 1298
f1174f77
EC
1299 /* Only allow fixed-offset stack reads */
1300 if (!tnum_is_const(regs[regno].var_off)) {
1301 char tn_buf[48];
1302
1303 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1304 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1305 regno, tn_buf);
ea25f914 1306 return -EACCES;
f1174f77
EC
1307 }
1308 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1309 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1310 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1311 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1312 regno, off, access_size);
1313 return -EACCES;
1314 }
1315
8726679a
AS
1316 if (env->prog->aux->stack_depth < -off)
1317 env->prog->aux->stack_depth = -off;
1318
435faee1
DB
1319 if (meta && meta->raw_mode) {
1320 meta->access_size = access_size;
1321 meta->regno = regno;
1322 return 0;
1323 }
1324
17a52670 1325 for (i = 0; i < access_size; i++) {
638f5b90
AS
1326 slot = -(off + i) - 1;
1327 spi = slot / BPF_REG_SIZE;
1328 if (state->allocated_stack <= slot ||
1329 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1330 STACK_MISC) {
61bd5218 1331 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1332 off, i, access_size);
1333 return -EACCES;
1334 }
1335 }
1336 return 0;
1337}
1338
06c1c049
GB
1339static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1340 int access_size, bool zero_size_allowed,
1341 struct bpf_call_arg_meta *meta)
1342{
638f5b90 1343 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1344
f1174f77 1345 switch (reg->type) {
06c1c049 1346 case PTR_TO_PACKET:
de8f3a83 1347 case PTR_TO_PACKET_META:
9fd29c08
YS
1348 return check_packet_access(env, regno, reg->off, access_size,
1349 zero_size_allowed);
06c1c049 1350 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1351 return check_map_access(env, regno, reg->off, access_size,
1352 zero_size_allowed);
f1174f77 1353 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1354 return check_stack_boundary(env, regno, access_size,
1355 zero_size_allowed, meta);
1356 }
1357}
1358
58e2af8b 1359static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1360 enum bpf_arg_type arg_type,
1361 struct bpf_call_arg_meta *meta)
17a52670 1362{
638f5b90 1363 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1364 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1365 int err = 0;
1366
80f1d68c 1367 if (arg_type == ARG_DONTCARE)
17a52670
AS
1368 return 0;
1369
dc503a8a
EC
1370 err = check_reg_arg(env, regno, SRC_OP);
1371 if (err)
1372 return err;
17a52670 1373
1be7f75d
AS
1374 if (arg_type == ARG_ANYTHING) {
1375 if (is_pointer_value(env, regno)) {
61bd5218
JK
1376 verbose(env, "R%d leaks addr into helper function\n",
1377 regno);
1be7f75d
AS
1378 return -EACCES;
1379 }
80f1d68c 1380 return 0;
1be7f75d 1381 }
80f1d68c 1382
de8f3a83 1383 if (type_is_pkt_pointer(type) &&
3a0af8fd 1384 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1385 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1386 return -EACCES;
1387 }
1388
8e2fe1d9 1389 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1390 arg_type == ARG_PTR_TO_MAP_VALUE) {
1391 expected_type = PTR_TO_STACK;
de8f3a83
DB
1392 if (!type_is_pkt_pointer(type) &&
1393 type != expected_type)
6841de8b 1394 goto err_type;
39f19ebb
AS
1395 } else if (arg_type == ARG_CONST_SIZE ||
1396 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1397 expected_type = SCALAR_VALUE;
1398 if (type != expected_type)
6841de8b 1399 goto err_type;
17a52670
AS
1400 } else if (arg_type == ARG_CONST_MAP_PTR) {
1401 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1402 if (type != expected_type)
1403 goto err_type;
608cd71a
AS
1404 } else if (arg_type == ARG_PTR_TO_CTX) {
1405 expected_type = PTR_TO_CTX;
6841de8b
AS
1406 if (type != expected_type)
1407 goto err_type;
39f19ebb 1408 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1409 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1410 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1411 expected_type = PTR_TO_STACK;
1412 /* One exception here. In case function allows for NULL to be
f1174f77 1413 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1414 * happens during stack boundary checking.
1415 */
db1ac496
GB
1416 if (register_is_null(*reg) &&
1417 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1418 /* final test in check_stack_boundary() */;
de8f3a83
DB
1419 else if (!type_is_pkt_pointer(type) &&
1420 type != PTR_TO_MAP_VALUE &&
f1174f77 1421 type != expected_type)
6841de8b 1422 goto err_type;
39f19ebb 1423 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1424 } else {
61bd5218 1425 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1426 return -EFAULT;
1427 }
1428
17a52670
AS
1429 if (arg_type == ARG_CONST_MAP_PTR) {
1430 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1431 meta->map_ptr = reg->map_ptr;
17a52670
AS
1432 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1433 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1434 * check that [key, key + map->key_size) are within
1435 * stack limits and initialized
1436 */
33ff9823 1437 if (!meta->map_ptr) {
17a52670
AS
1438 /* in function declaration map_ptr must come before
1439 * map_key, so that it's verified and known before
1440 * we have to check map_key here. Otherwise it means
1441 * that kernel subsystem misconfigured verifier
1442 */
61bd5218 1443 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1444 return -EACCES;
1445 }
de8f3a83 1446 if (type_is_pkt_pointer(type))
f1174f77 1447 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1448 meta->map_ptr->key_size,
1449 false);
6841de8b
AS
1450 else
1451 err = check_stack_boundary(env, regno,
1452 meta->map_ptr->key_size,
1453 false, NULL);
17a52670
AS
1454 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1455 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1456 * check [value, value + map->value_size) validity
1457 */
33ff9823 1458 if (!meta->map_ptr) {
17a52670 1459 /* kernel subsystem misconfigured verifier */
61bd5218 1460 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1461 return -EACCES;
1462 }
de8f3a83 1463 if (type_is_pkt_pointer(type))
f1174f77 1464 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1465 meta->map_ptr->value_size,
1466 false);
6841de8b
AS
1467 else
1468 err = check_stack_boundary(env, regno,
1469 meta->map_ptr->value_size,
1470 false, NULL);
39f19ebb
AS
1471 } else if (arg_type == ARG_CONST_SIZE ||
1472 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1473 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1474
17a52670
AS
1475 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1476 * from stack pointer 'buf'. Check it
1477 * note: regno == len, regno - 1 == buf
1478 */
1479 if (regno == 0) {
1480 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1481 verbose(env,
1482 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1483 return -EACCES;
1484 }
06c1c049 1485
f1174f77
EC
1486 /* The register is SCALAR_VALUE; the access check
1487 * happens using its boundaries.
06c1c049 1488 */
f1174f77
EC
1489
1490 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1491 /* For unprivileged variable accesses, disable raw
1492 * mode so that the program is required to
1493 * initialize all the memory that the helper could
1494 * just partially fill up.
1495 */
1496 meta = NULL;
1497
b03c9f9f 1498 if (reg->smin_value < 0) {
61bd5218 1499 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1500 regno);
1501 return -EACCES;
1502 }
06c1c049 1503
b03c9f9f 1504 if (reg->umin_value == 0) {
f1174f77
EC
1505 err = check_helper_mem_access(env, regno - 1, 0,
1506 zero_size_allowed,
1507 meta);
06c1c049
GB
1508 if (err)
1509 return err;
06c1c049 1510 }
f1174f77 1511
b03c9f9f 1512 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1513 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1514 regno);
1515 return -EACCES;
1516 }
1517 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1518 reg->umax_value,
f1174f77 1519 zero_size_allowed, meta);
17a52670
AS
1520 }
1521
1522 return err;
6841de8b 1523err_type:
61bd5218 1524 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1525 reg_type_str[type], reg_type_str[expected_type]);
1526 return -EACCES;
17a52670
AS
1527}
1528
61bd5218
JK
1529static int check_map_func_compatibility(struct bpf_verifier_env *env,
1530 struct bpf_map *map, int func_id)
35578d79 1531{
35578d79
KX
1532 if (!map)
1533 return 0;
1534
6aff67c8
AS
1535 /* We need a two way check, first is from map perspective ... */
1536 switch (map->map_type) {
1537 case BPF_MAP_TYPE_PROG_ARRAY:
1538 if (func_id != BPF_FUNC_tail_call)
1539 goto error;
1540 break;
1541 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1542 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1543 func_id != BPF_FUNC_perf_event_output &&
1544 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1545 goto error;
1546 break;
1547 case BPF_MAP_TYPE_STACK_TRACE:
1548 if (func_id != BPF_FUNC_get_stackid)
1549 goto error;
1550 break;
4ed8ec52 1551 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1552 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1553 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1554 goto error;
1555 break;
546ac1ff
JF
1556 /* devmap returns a pointer to a live net_device ifindex that we cannot
1557 * allow to be modified from bpf side. So do not allow lookup elements
1558 * for now.
1559 */
1560 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1561 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1562 goto error;
1563 break;
6710e112
JDB
1564 /* Restrict bpf side of cpumap, open when use-cases appear */
1565 case BPF_MAP_TYPE_CPUMAP:
1566 if (func_id != BPF_FUNC_redirect_map)
1567 goto error;
1568 break;
56f668df 1569 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1570 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1571 if (func_id != BPF_FUNC_map_lookup_elem)
1572 goto error;
16a43625 1573 break;
174a79ff
JF
1574 case BPF_MAP_TYPE_SOCKMAP:
1575 if (func_id != BPF_FUNC_sk_redirect_map &&
1576 func_id != BPF_FUNC_sock_map_update &&
1577 func_id != BPF_FUNC_map_delete_elem)
1578 goto error;
1579 break;
6aff67c8
AS
1580 default:
1581 break;
1582 }
1583
1584 /* ... and second from the function itself. */
1585 switch (func_id) {
1586 case BPF_FUNC_tail_call:
1587 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1588 goto error;
1589 break;
1590 case BPF_FUNC_perf_event_read:
1591 case BPF_FUNC_perf_event_output:
908432ca 1592 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1593 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1594 goto error;
1595 break;
1596 case BPF_FUNC_get_stackid:
1597 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1598 goto error;
1599 break;
60d20f91 1600 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1601 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1602 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1603 goto error;
1604 break;
97f91a7c 1605 case BPF_FUNC_redirect_map:
9c270af3
JDB
1606 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1607 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1608 goto error;
1609 break;
174a79ff
JF
1610 case BPF_FUNC_sk_redirect_map:
1611 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1612 goto error;
1613 break;
1614 case BPF_FUNC_sock_map_update:
1615 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1616 goto error;
1617 break;
6aff67c8
AS
1618 default:
1619 break;
35578d79
KX
1620 }
1621
1622 return 0;
6aff67c8 1623error:
61bd5218 1624 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1625 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1626 return -EINVAL;
35578d79
KX
1627}
1628
435faee1
DB
1629static int check_raw_mode(const struct bpf_func_proto *fn)
1630{
1631 int count = 0;
1632
39f19ebb 1633 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1634 count++;
39f19ebb 1635 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1636 count++;
39f19ebb 1637 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1638 count++;
39f19ebb 1639 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1640 count++;
39f19ebb 1641 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1642 count++;
1643
1644 return count > 1 ? -EINVAL : 0;
1645}
1646
de8f3a83
DB
1647/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1648 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1649 */
58e2af8b 1650static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1651{
638f5b90 1652 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1653 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1654 int i;
1655
1656 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1657 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1658 mark_reg_unknown(env, regs, i);
969bf05e 1659
638f5b90
AS
1660 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1661 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1662 continue;
638f5b90 1663 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1664 if (reg_is_pkt_pointer_any(reg))
1665 __mark_reg_unknown(reg);
969bf05e
AS
1666 }
1667}
1668
81ed18ab 1669static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1670{
17a52670 1671 const struct bpf_func_proto *fn = NULL;
638f5b90 1672 struct bpf_reg_state *regs;
33ff9823 1673 struct bpf_call_arg_meta meta;
969bf05e 1674 bool changes_data;
17a52670
AS
1675 int i, err;
1676
1677 /* find function prototype */
1678 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1679 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1680 func_id);
17a52670
AS
1681 return -EINVAL;
1682 }
1683
00176a34
JK
1684 if (env->ops->get_func_proto)
1685 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1686
1687 if (!fn) {
61bd5218
JK
1688 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1689 func_id);
17a52670
AS
1690 return -EINVAL;
1691 }
1692
1693 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1694 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1695 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1696 return -EINVAL;
1697 }
1698
04514d13 1699 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1700 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1701 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1702 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1703 func_id_name(func_id), func_id);
1704 return -EINVAL;
1705 }
969bf05e 1706
33ff9823 1707 memset(&meta, 0, sizeof(meta));
36bbef52 1708 meta.pkt_access = fn->pkt_access;
33ff9823 1709
435faee1
DB
1710 /* We only support one arg being in raw mode at the moment, which
1711 * is sufficient for the helper functions we have right now.
1712 */
1713 err = check_raw_mode(fn);
1714 if (err) {
61bd5218 1715 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1716 func_id_name(func_id), func_id);
435faee1
DB
1717 return err;
1718 }
1719
17a52670 1720 /* check args */
33ff9823 1721 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1722 if (err)
1723 return err;
33ff9823 1724 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1725 if (err)
1726 return err;
33ff9823 1727 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1728 if (err)
1729 return err;
33ff9823 1730 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1731 if (err)
1732 return err;
33ff9823 1733 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1734 if (err)
1735 return err;
1736
435faee1
DB
1737 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1738 * is inferred from register state.
1739 */
1740 for (i = 0; i < meta.access_size; i++) {
31fd8581 1741 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1742 if (err)
1743 return err;
1744 }
1745
638f5b90 1746 regs = cur_regs(env);
17a52670 1747 /* reset caller saved regs */
dc503a8a 1748 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1749 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1750 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1751 }
17a52670 1752
dc503a8a 1753 /* update return register (already marked as written above) */
17a52670 1754 if (fn->ret_type == RET_INTEGER) {
f1174f77 1755 /* sets type to SCALAR_VALUE */
61bd5218 1756 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1757 } else if (fn->ret_type == RET_VOID) {
1758 regs[BPF_REG_0].type = NOT_INIT;
1759 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1760 struct bpf_insn_aux_data *insn_aux;
1761
17a52670 1762 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1763 /* There is no offset yet applied, variable or fixed */
61bd5218 1764 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1765 regs[BPF_REG_0].off = 0;
17a52670
AS
1766 /* remember map_ptr, so that check_map_access()
1767 * can check 'value_size' boundary of memory access
1768 * to map element returned from bpf_map_lookup_elem()
1769 */
33ff9823 1770 if (meta.map_ptr == NULL) {
61bd5218
JK
1771 verbose(env,
1772 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1773 return -EINVAL;
1774 }
33ff9823 1775 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1776 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1777 insn_aux = &env->insn_aux_data[insn_idx];
1778 if (!insn_aux->map_ptr)
1779 insn_aux->map_ptr = meta.map_ptr;
1780 else if (insn_aux->map_ptr != meta.map_ptr)
1781 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1782 } else {
61bd5218 1783 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1784 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1785 return -EINVAL;
1786 }
04fd61ab 1787
61bd5218 1788 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1789 if (err)
1790 return err;
04fd61ab 1791
969bf05e
AS
1792 if (changes_data)
1793 clear_all_pkt_pointers(env);
1794 return 0;
1795}
1796
b03c9f9f
EC
1797static bool signed_add_overflows(s64 a, s64 b)
1798{
1799 /* Do the add in u64, where overflow is well-defined */
1800 s64 res = (s64)((u64)a + (u64)b);
1801
1802 if (b < 0)
1803 return res > a;
1804 return res < a;
1805}
1806
1807static bool signed_sub_overflows(s64 a, s64 b)
1808{
1809 /* Do the sub in u64, where overflow is well-defined */
1810 s64 res = (s64)((u64)a - (u64)b);
1811
1812 if (b < 0)
1813 return res < a;
1814 return res > a;
969bf05e
AS
1815}
1816
f1174f77 1817/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1818 * Caller should also handle BPF_MOV case separately.
1819 * If we return -EACCES, caller may want to try again treating pointer as a
1820 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1821 */
1822static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1823 struct bpf_insn *insn,
1824 const struct bpf_reg_state *ptr_reg,
1825 const struct bpf_reg_state *off_reg)
969bf05e 1826{
638f5b90 1827 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1828 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1829 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1830 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1831 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1832 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1833 u8 opcode = BPF_OP(insn->code);
f1174f77 1834 u32 dst = insn->dst_reg;
969bf05e 1835
f1174f77 1836 dst_reg = &regs[dst];
969bf05e 1837
b03c9f9f 1838 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1839 print_verifier_state(env, env->cur_state);
61bd5218
JK
1840 verbose(env,
1841 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1842 return -EINVAL;
1843 }
1844 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1845 print_verifier_state(env, env->cur_state);
61bd5218
JK
1846 verbose(env,
1847 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1848 return -EINVAL;
1849 }
1850
1851 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1852 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1853 if (!env->allow_ptr_leaks)
61bd5218
JK
1854 verbose(env,
1855 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1856 dst);
1857 return -EACCES;
969bf05e
AS
1858 }
1859
f1174f77
EC
1860 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1861 if (!env->allow_ptr_leaks)
61bd5218 1862 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1863 dst);
1864 return -EACCES;
1865 }
1866 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1867 if (!env->allow_ptr_leaks)
61bd5218 1868 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1869 dst);
1870 return -EACCES;
1871 }
1872 if (ptr_reg->type == PTR_TO_PACKET_END) {
1873 if (!env->allow_ptr_leaks)
61bd5218 1874 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1875 dst);
1876 return -EACCES;
1877 }
1878
1879 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1880 * The id may be overwritten later if we create a new variable offset.
969bf05e 1881 */
f1174f77
EC
1882 dst_reg->type = ptr_reg->type;
1883 dst_reg->id = ptr_reg->id;
969bf05e 1884
f1174f77
EC
1885 switch (opcode) {
1886 case BPF_ADD:
1887 /* We can take a fixed offset as long as it doesn't overflow
1888 * the s32 'off' field
969bf05e 1889 */
b03c9f9f
EC
1890 if (known && (ptr_reg->off + smin_val ==
1891 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1892 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1893 dst_reg->smin_value = smin_ptr;
1894 dst_reg->smax_value = smax_ptr;
1895 dst_reg->umin_value = umin_ptr;
1896 dst_reg->umax_value = umax_ptr;
f1174f77 1897 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1898 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1899 dst_reg->range = ptr_reg->range;
1900 break;
1901 }
f1174f77
EC
1902 /* A new variable offset is created. Note that off_reg->off
1903 * == 0, since it's a scalar.
1904 * dst_reg gets the pointer type and since some positive
1905 * integer value was added to the pointer, give it a new 'id'
1906 * if it's a PTR_TO_PACKET.
1907 * this creates a new 'base' pointer, off_reg (variable) gets
1908 * added into the variable offset, and we copy the fixed offset
1909 * from ptr_reg.
969bf05e 1910 */
b03c9f9f
EC
1911 if (signed_add_overflows(smin_ptr, smin_val) ||
1912 signed_add_overflows(smax_ptr, smax_val)) {
1913 dst_reg->smin_value = S64_MIN;
1914 dst_reg->smax_value = S64_MAX;
1915 } else {
1916 dst_reg->smin_value = smin_ptr + smin_val;
1917 dst_reg->smax_value = smax_ptr + smax_val;
1918 }
1919 if (umin_ptr + umin_val < umin_ptr ||
1920 umax_ptr + umax_val < umax_ptr) {
1921 dst_reg->umin_value = 0;
1922 dst_reg->umax_value = U64_MAX;
1923 } else {
1924 dst_reg->umin_value = umin_ptr + umin_val;
1925 dst_reg->umax_value = umax_ptr + umax_val;
1926 }
f1174f77
EC
1927 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1928 dst_reg->off = ptr_reg->off;
de8f3a83 1929 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1930 dst_reg->id = ++env->id_gen;
1931 /* something was added to pkt_ptr, set range to zero */
1932 dst_reg->range = 0;
1933 }
1934 break;
1935 case BPF_SUB:
1936 if (dst_reg == off_reg) {
1937 /* scalar -= pointer. Creates an unknown scalar */
1938 if (!env->allow_ptr_leaks)
61bd5218 1939 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1940 dst);
1941 return -EACCES;
1942 }
1943 /* We don't allow subtraction from FP, because (according to
1944 * test_verifier.c test "invalid fp arithmetic", JITs might not
1945 * be able to deal with it.
969bf05e 1946 */
f1174f77
EC
1947 if (ptr_reg->type == PTR_TO_STACK) {
1948 if (!env->allow_ptr_leaks)
61bd5218 1949 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1950 dst);
1951 return -EACCES;
1952 }
b03c9f9f
EC
1953 if (known && (ptr_reg->off - smin_val ==
1954 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1955 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1956 dst_reg->smin_value = smin_ptr;
1957 dst_reg->smax_value = smax_ptr;
1958 dst_reg->umin_value = umin_ptr;
1959 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1960 dst_reg->var_off = ptr_reg->var_off;
1961 dst_reg->id = ptr_reg->id;
b03c9f9f 1962 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1963 dst_reg->range = ptr_reg->range;
1964 break;
1965 }
f1174f77
EC
1966 /* A new variable offset is created. If the subtrahend is known
1967 * nonnegative, then any reg->range we had before is still good.
969bf05e 1968 */
b03c9f9f
EC
1969 if (signed_sub_overflows(smin_ptr, smax_val) ||
1970 signed_sub_overflows(smax_ptr, smin_val)) {
1971 /* Overflow possible, we know nothing */
1972 dst_reg->smin_value = S64_MIN;
1973 dst_reg->smax_value = S64_MAX;
1974 } else {
1975 dst_reg->smin_value = smin_ptr - smax_val;
1976 dst_reg->smax_value = smax_ptr - smin_val;
1977 }
1978 if (umin_ptr < umax_val) {
1979 /* Overflow possible, we know nothing */
1980 dst_reg->umin_value = 0;
1981 dst_reg->umax_value = U64_MAX;
1982 } else {
1983 /* Cannot overflow (as long as bounds are consistent) */
1984 dst_reg->umin_value = umin_ptr - umax_val;
1985 dst_reg->umax_value = umax_ptr - umin_val;
1986 }
f1174f77
EC
1987 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1988 dst_reg->off = ptr_reg->off;
de8f3a83 1989 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1990 dst_reg->id = ++env->id_gen;
1991 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1992 if (smin_val < 0)
f1174f77 1993 dst_reg->range = 0;
43188702 1994 }
f1174f77
EC
1995 break;
1996 case BPF_AND:
1997 case BPF_OR:
1998 case BPF_XOR:
1999 /* bitwise ops on pointers are troublesome, prohibit for now.
2000 * (However, in principle we could allow some cases, e.g.
2001 * ptr &= ~3 which would reduce min_value by 3.)
2002 */
2003 if (!env->allow_ptr_leaks)
61bd5218 2004 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
2005 dst, bpf_alu_string[opcode >> 4]);
2006 return -EACCES;
2007 default:
2008 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2009 if (!env->allow_ptr_leaks)
61bd5218 2010 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
2011 dst, bpf_alu_string[opcode >> 4]);
2012 return -EACCES;
43188702
JF
2013 }
2014
b03c9f9f
EC
2015 __update_reg_bounds(dst_reg);
2016 __reg_deduce_bounds(dst_reg);
2017 __reg_bound_offset(dst_reg);
43188702
JF
2018 return 0;
2019}
2020
468f6eaf
JH
2021/* WARNING: This function does calculations on 64-bit values, but the actual
2022 * execution may occur on 32-bit values. Therefore, things like bitshifts
2023 * need extra checks in the 32-bit case.
2024 */
f1174f77
EC
2025static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2026 struct bpf_insn *insn,
2027 struct bpf_reg_state *dst_reg,
2028 struct bpf_reg_state src_reg)
969bf05e 2029{
638f5b90 2030 struct bpf_reg_state *regs = cur_regs(env);
48461135 2031 u8 opcode = BPF_OP(insn->code);
f1174f77 2032 bool src_known, dst_known;
b03c9f9f
EC
2033 s64 smin_val, smax_val;
2034 u64 umin_val, umax_val;
468f6eaf 2035 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2036
b03c9f9f
EC
2037 smin_val = src_reg.smin_value;
2038 smax_val = src_reg.smax_value;
2039 umin_val = src_reg.umin_value;
2040 umax_val = src_reg.umax_value;
f1174f77
EC
2041 src_known = tnum_is_const(src_reg.var_off);
2042 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2043
48461135
JB
2044 switch (opcode) {
2045 case BPF_ADD:
b03c9f9f
EC
2046 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2047 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2048 dst_reg->smin_value = S64_MIN;
2049 dst_reg->smax_value = S64_MAX;
2050 } else {
2051 dst_reg->smin_value += smin_val;
2052 dst_reg->smax_value += smax_val;
2053 }
2054 if (dst_reg->umin_value + umin_val < umin_val ||
2055 dst_reg->umax_value + umax_val < umax_val) {
2056 dst_reg->umin_value = 0;
2057 dst_reg->umax_value = U64_MAX;
2058 } else {
2059 dst_reg->umin_value += umin_val;
2060 dst_reg->umax_value += umax_val;
2061 }
f1174f77 2062 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2063 break;
2064 case BPF_SUB:
b03c9f9f
EC
2065 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2066 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2067 /* Overflow possible, we know nothing */
2068 dst_reg->smin_value = S64_MIN;
2069 dst_reg->smax_value = S64_MAX;
2070 } else {
2071 dst_reg->smin_value -= smax_val;
2072 dst_reg->smax_value -= smin_val;
2073 }
2074 if (dst_reg->umin_value < umax_val) {
2075 /* Overflow possible, we know nothing */
2076 dst_reg->umin_value = 0;
2077 dst_reg->umax_value = U64_MAX;
2078 } else {
2079 /* Cannot overflow (as long as bounds are consistent) */
2080 dst_reg->umin_value -= umax_val;
2081 dst_reg->umax_value -= umin_val;
2082 }
f1174f77 2083 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2084 break;
2085 case BPF_MUL:
b03c9f9f
EC
2086 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2087 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2088 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2089 __mark_reg_unbounded(dst_reg);
2090 __update_reg_bounds(dst_reg);
f1174f77
EC
2091 break;
2092 }
b03c9f9f
EC
2093 /* Both values are positive, so we can work with unsigned and
2094 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2095 */
b03c9f9f
EC
2096 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2097 /* Potential overflow, we know nothing */
2098 __mark_reg_unbounded(dst_reg);
2099 /* (except what we can learn from the var_off) */
2100 __update_reg_bounds(dst_reg);
2101 break;
2102 }
2103 dst_reg->umin_value *= umin_val;
2104 dst_reg->umax_value *= umax_val;
2105 if (dst_reg->umax_value > S64_MAX) {
2106 /* Overflow possible, we know nothing */
2107 dst_reg->smin_value = S64_MIN;
2108 dst_reg->smax_value = S64_MAX;
2109 } else {
2110 dst_reg->smin_value = dst_reg->umin_value;
2111 dst_reg->smax_value = dst_reg->umax_value;
2112 }
48461135
JB
2113 break;
2114 case BPF_AND:
f1174f77 2115 if (src_known && dst_known) {
b03c9f9f
EC
2116 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2117 src_reg.var_off.value);
f1174f77
EC
2118 break;
2119 }
b03c9f9f
EC
2120 /* We get our minimum from the var_off, since that's inherently
2121 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2122 */
f1174f77 2123 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2124 dst_reg->umin_value = dst_reg->var_off.value;
2125 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2126 if (dst_reg->smin_value < 0 || smin_val < 0) {
2127 /* Lose signed bounds when ANDing negative numbers,
2128 * ain't nobody got time for that.
2129 */
2130 dst_reg->smin_value = S64_MIN;
2131 dst_reg->smax_value = S64_MAX;
2132 } else {
2133 /* ANDing two positives gives a positive, so safe to
2134 * cast result into s64.
2135 */
2136 dst_reg->smin_value = dst_reg->umin_value;
2137 dst_reg->smax_value = dst_reg->umax_value;
2138 }
2139 /* We may learn something more from the var_off */
2140 __update_reg_bounds(dst_reg);
f1174f77
EC
2141 break;
2142 case BPF_OR:
2143 if (src_known && dst_known) {
b03c9f9f
EC
2144 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2145 src_reg.var_off.value);
f1174f77
EC
2146 break;
2147 }
b03c9f9f
EC
2148 /* We get our maximum from the var_off, and our minimum is the
2149 * maximum of the operands' minima
f1174f77
EC
2150 */
2151 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2152 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2153 dst_reg->umax_value = dst_reg->var_off.value |
2154 dst_reg->var_off.mask;
2155 if (dst_reg->smin_value < 0 || smin_val < 0) {
2156 /* Lose signed bounds when ORing negative numbers,
2157 * ain't nobody got time for that.
2158 */
2159 dst_reg->smin_value = S64_MIN;
2160 dst_reg->smax_value = S64_MAX;
f1174f77 2161 } else {
b03c9f9f
EC
2162 /* ORing two positives gives a positive, so safe to
2163 * cast result into s64.
2164 */
2165 dst_reg->smin_value = dst_reg->umin_value;
2166 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2167 }
b03c9f9f
EC
2168 /* We may learn something more from the var_off */
2169 __update_reg_bounds(dst_reg);
48461135
JB
2170 break;
2171 case BPF_LSH:
468f6eaf
JH
2172 if (umax_val >= insn_bitness) {
2173 /* Shifts greater than 31 or 63 are undefined.
2174 * This includes shifts by a negative number.
b03c9f9f 2175 */
61bd5218 2176 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2177 break;
2178 }
b03c9f9f
EC
2179 /* We lose all sign bit information (except what we can pick
2180 * up from var_off)
48461135 2181 */
b03c9f9f
EC
2182 dst_reg->smin_value = S64_MIN;
2183 dst_reg->smax_value = S64_MAX;
2184 /* If we might shift our top bit out, then we know nothing */
2185 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2186 dst_reg->umin_value = 0;
2187 dst_reg->umax_value = U64_MAX;
d1174416 2188 } else {
b03c9f9f
EC
2189 dst_reg->umin_value <<= umin_val;
2190 dst_reg->umax_value <<= umax_val;
d1174416 2191 }
b03c9f9f
EC
2192 if (src_known)
2193 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2194 else
2195 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2196 /* We may learn something more from the var_off */
2197 __update_reg_bounds(dst_reg);
48461135
JB
2198 break;
2199 case BPF_RSH:
468f6eaf
JH
2200 if (umax_val >= insn_bitness) {
2201 /* Shifts greater than 31 or 63 are undefined.
2202 * This includes shifts by a negative number.
b03c9f9f 2203 */
61bd5218 2204 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2205 break;
2206 }
4374f256
EC
2207 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2208 * be negative, then either:
2209 * 1) src_reg might be zero, so the sign bit of the result is
2210 * unknown, so we lose our signed bounds
2211 * 2) it's known negative, thus the unsigned bounds capture the
2212 * signed bounds
2213 * 3) the signed bounds cross zero, so they tell us nothing
2214 * about the result
2215 * If the value in dst_reg is known nonnegative, then again the
2216 * unsigned bounts capture the signed bounds.
2217 * Thus, in all cases it suffices to blow away our signed bounds
2218 * and rely on inferring new ones from the unsigned bounds and
2219 * var_off of the result.
2220 */
2221 dst_reg->smin_value = S64_MIN;
2222 dst_reg->smax_value = S64_MAX;
f1174f77 2223 if (src_known)
b03c9f9f
EC
2224 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2225 umin_val);
f1174f77 2226 else
b03c9f9f
EC
2227 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2228 dst_reg->umin_value >>= umax_val;
2229 dst_reg->umax_value >>= umin_val;
2230 /* We may learn something more from the var_off */
2231 __update_reg_bounds(dst_reg);
48461135
JB
2232 break;
2233 default:
61bd5218 2234 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2235 break;
2236 }
2237
468f6eaf
JH
2238 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2239 /* 32-bit ALU ops are (32,32)->32 */
2240 coerce_reg_to_size(dst_reg, 4);
2241 coerce_reg_to_size(&src_reg, 4);
2242 }
2243
b03c9f9f
EC
2244 __reg_deduce_bounds(dst_reg);
2245 __reg_bound_offset(dst_reg);
f1174f77
EC
2246 return 0;
2247}
2248
2249/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2250 * and var_off.
2251 */
2252static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2253 struct bpf_insn *insn)
2254{
638f5b90 2255 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2256 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2257 u8 opcode = BPF_OP(insn->code);
2258 int rc;
2259
2260 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2261 src_reg = NULL;
2262 if (dst_reg->type != SCALAR_VALUE)
2263 ptr_reg = dst_reg;
2264 if (BPF_SRC(insn->code) == BPF_X) {
2265 src_reg = &regs[insn->src_reg];
f1174f77
EC
2266 if (src_reg->type != SCALAR_VALUE) {
2267 if (dst_reg->type != SCALAR_VALUE) {
2268 /* Combining two pointers by any ALU op yields
2269 * an arbitrary scalar.
2270 */
2271 if (!env->allow_ptr_leaks) {
61bd5218 2272 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2273 insn->dst_reg,
2274 bpf_alu_string[opcode >> 4]);
2275 return -EACCES;
2276 }
61bd5218 2277 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2278 return 0;
2279 } else {
2280 /* scalar += pointer
2281 * This is legal, but we have to reverse our
2282 * src/dest handling in computing the range
2283 */
2284 rc = adjust_ptr_min_max_vals(env, insn,
2285 src_reg, dst_reg);
2286 if (rc == -EACCES && env->allow_ptr_leaks) {
2287 /* scalar += unknown scalar */
2288 __mark_reg_unknown(&off_reg);
2289 return adjust_scalar_min_max_vals(
2290 env, insn,
2291 dst_reg, off_reg);
2292 }
2293 return rc;
2294 }
2295 } else if (ptr_reg) {
2296 /* pointer += scalar */
2297 rc = adjust_ptr_min_max_vals(env, insn,
2298 dst_reg, src_reg);
2299 if (rc == -EACCES && env->allow_ptr_leaks) {
2300 /* unknown scalar += scalar */
2301 __mark_reg_unknown(dst_reg);
2302 return adjust_scalar_min_max_vals(
2303 env, insn, dst_reg, *src_reg);
2304 }
2305 return rc;
2306 }
2307 } else {
2308 /* Pretend the src is a reg with a known value, since we only
2309 * need to be able to read from this state.
2310 */
2311 off_reg.type = SCALAR_VALUE;
b03c9f9f 2312 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2313 src_reg = &off_reg;
f1174f77
EC
2314 if (ptr_reg) { /* pointer += K */
2315 rc = adjust_ptr_min_max_vals(env, insn,
2316 ptr_reg, src_reg);
2317 if (rc == -EACCES && env->allow_ptr_leaks) {
2318 /* unknown scalar += K */
2319 __mark_reg_unknown(dst_reg);
2320 return adjust_scalar_min_max_vals(
2321 env, insn, dst_reg, off_reg);
2322 }
2323 return rc;
2324 }
2325 }
2326
2327 /* Got here implies adding two SCALAR_VALUEs */
2328 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2329 print_verifier_state(env, env->cur_state);
61bd5218 2330 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2331 return -EINVAL;
2332 }
2333 if (WARN_ON(!src_reg)) {
638f5b90 2334 print_verifier_state(env, env->cur_state);
61bd5218 2335 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2336 return -EINVAL;
2337 }
2338 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2339}
2340
17a52670 2341/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2342static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2343{
638f5b90 2344 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2345 u8 opcode = BPF_OP(insn->code);
2346 int err;
2347
2348 if (opcode == BPF_END || opcode == BPF_NEG) {
2349 if (opcode == BPF_NEG) {
2350 if (BPF_SRC(insn->code) != 0 ||
2351 insn->src_reg != BPF_REG_0 ||
2352 insn->off != 0 || insn->imm != 0) {
61bd5218 2353 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2354 return -EINVAL;
2355 }
2356 } else {
2357 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2358 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2359 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2360 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2361 return -EINVAL;
2362 }
2363 }
2364
2365 /* check src operand */
dc503a8a 2366 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2367 if (err)
2368 return err;
2369
1be7f75d 2370 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2371 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2372 insn->dst_reg);
2373 return -EACCES;
2374 }
2375
17a52670 2376 /* check dest operand */
dc503a8a 2377 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2378 if (err)
2379 return err;
2380
2381 } else if (opcode == BPF_MOV) {
2382
2383 if (BPF_SRC(insn->code) == BPF_X) {
2384 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2385 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2386 return -EINVAL;
2387 }
2388
2389 /* check src operand */
dc503a8a 2390 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2391 if (err)
2392 return err;
2393 } else {
2394 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2395 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2396 return -EINVAL;
2397 }
2398 }
2399
2400 /* check dest operand */
dc503a8a 2401 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2402 if (err)
2403 return err;
2404
2405 if (BPF_SRC(insn->code) == BPF_X) {
2406 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2407 /* case: R1 = R2
2408 * copy register state to dest reg
2409 */
2410 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2411 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2412 } else {
f1174f77 2413 /* R1 = (u32) R2 */
1be7f75d 2414 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2415 verbose(env,
2416 "R%d partial copy of pointer\n",
1be7f75d
AS
2417 insn->src_reg);
2418 return -EACCES;
2419 }
61bd5218 2420 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2421 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2422 }
2423 } else {
2424 /* case: R = imm
2425 * remember the value we stored into this reg
2426 */
f1174f77 2427 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2428 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2429 __mark_reg_known(regs + insn->dst_reg,
2430 insn->imm);
2431 } else {
2432 __mark_reg_known(regs + insn->dst_reg,
2433 (u32)insn->imm);
2434 }
17a52670
AS
2435 }
2436
2437 } else if (opcode > BPF_END) {
61bd5218 2438 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2439 return -EINVAL;
2440
2441 } else { /* all other ALU ops: and, sub, xor, add, ... */
2442
17a52670
AS
2443 if (BPF_SRC(insn->code) == BPF_X) {
2444 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2445 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2446 return -EINVAL;
2447 }
2448 /* check src1 operand */
dc503a8a 2449 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2450 if (err)
2451 return err;
2452 } else {
2453 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2454 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2455 return -EINVAL;
2456 }
2457 }
2458
2459 /* check src2 operand */
dc503a8a 2460 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2461 if (err)
2462 return err;
2463
2464 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2465 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2466 verbose(env, "div by zero\n");
17a52670
AS
2467 return -EINVAL;
2468 }
2469
229394e8
RV
2470 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2471 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2472 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2473
2474 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2475 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2476 return -EINVAL;
2477 }
2478 }
2479
1a0dc1ac 2480 /* check dest operand */
dc503a8a 2481 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2482 if (err)
2483 return err;
2484
f1174f77 2485 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2486 }
2487
2488 return 0;
2489}
2490
58e2af8b 2491static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2492 struct bpf_reg_state *dst_reg,
f8ddadc4 2493 enum bpf_reg_type type,
fb2a311a 2494 bool range_right_open)
969bf05e 2495{
58e2af8b 2496 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2497 u16 new_range;
969bf05e 2498 int i;
2d2be8ca 2499
fb2a311a
DB
2500 if (dst_reg->off < 0 ||
2501 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2502 /* This doesn't give us any range */
2503 return;
2504
b03c9f9f
EC
2505 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2506 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2507 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2508 * than pkt_end, but that's because it's also less than pkt.
2509 */
2510 return;
2511
fb2a311a
DB
2512 new_range = dst_reg->off;
2513 if (range_right_open)
2514 new_range--;
2515
2516 /* Examples for register markings:
2d2be8ca 2517 *
fb2a311a 2518 * pkt_data in dst register:
2d2be8ca
DB
2519 *
2520 * r2 = r3;
2521 * r2 += 8;
2522 * if (r2 > pkt_end) goto <handle exception>
2523 * <access okay>
2524 *
b4e432f1
DB
2525 * r2 = r3;
2526 * r2 += 8;
2527 * if (r2 < pkt_end) goto <access okay>
2528 * <handle exception>
2529 *
2d2be8ca
DB
2530 * Where:
2531 * r2 == dst_reg, pkt_end == src_reg
2532 * r2=pkt(id=n,off=8,r=0)
2533 * r3=pkt(id=n,off=0,r=0)
2534 *
fb2a311a 2535 * pkt_data in src register:
2d2be8ca
DB
2536 *
2537 * r2 = r3;
2538 * r2 += 8;
2539 * if (pkt_end >= r2) goto <access okay>
2540 * <handle exception>
2541 *
b4e432f1
DB
2542 * r2 = r3;
2543 * r2 += 8;
2544 * if (pkt_end <= r2) goto <handle exception>
2545 * <access okay>
2546 *
2d2be8ca
DB
2547 * Where:
2548 * pkt_end == dst_reg, r2 == src_reg
2549 * r2=pkt(id=n,off=8,r=0)
2550 * r3=pkt(id=n,off=0,r=0)
2551 *
2552 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2553 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2554 * and [r3, r3 + 8-1) respectively is safe to access depending on
2555 * the check.
969bf05e 2556 */
2d2be8ca 2557
f1174f77
EC
2558 /* If our ids match, then we must have the same max_value. And we
2559 * don't care about the other reg's fixed offset, since if it's too big
2560 * the range won't allow anything.
2561 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2562 */
969bf05e 2563 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2564 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2565 /* keep the maximum range already checked */
fb2a311a 2566 regs[i].range = max(regs[i].range, new_range);
969bf05e 2567
638f5b90
AS
2568 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2569 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2570 continue;
638f5b90 2571 reg = &state->stack[i].spilled_ptr;
de8f3a83 2572 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2573 reg->range = max(reg->range, new_range);
969bf05e
AS
2574 }
2575}
2576
48461135
JB
2577/* Adjusts the register min/max values in the case that the dst_reg is the
2578 * variable register that we are working on, and src_reg is a constant or we're
2579 * simply doing a BPF_K check.
f1174f77 2580 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2581 */
2582static void reg_set_min_max(struct bpf_reg_state *true_reg,
2583 struct bpf_reg_state *false_reg, u64 val,
2584 u8 opcode)
2585{
f1174f77
EC
2586 /* If the dst_reg is a pointer, we can't learn anything about its
2587 * variable offset from the compare (unless src_reg were a pointer into
2588 * the same object, but we don't bother with that.
2589 * Since false_reg and true_reg have the same type by construction, we
2590 * only need to check one of them for pointerness.
2591 */
2592 if (__is_pointer_value(false, false_reg))
2593 return;
4cabc5b1 2594
48461135
JB
2595 switch (opcode) {
2596 case BPF_JEQ:
2597 /* If this is false then we know nothing Jon Snow, but if it is
2598 * true then we know for sure.
2599 */
b03c9f9f 2600 __mark_reg_known(true_reg, val);
48461135
JB
2601 break;
2602 case BPF_JNE:
2603 /* If this is true we know nothing Jon Snow, but if it is false
2604 * we know the value for sure;
2605 */
b03c9f9f 2606 __mark_reg_known(false_reg, val);
48461135
JB
2607 break;
2608 case BPF_JGT:
b03c9f9f
EC
2609 false_reg->umax_value = min(false_reg->umax_value, val);
2610 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2611 break;
48461135 2612 case BPF_JSGT:
b03c9f9f
EC
2613 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2614 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2615 break;
b4e432f1
DB
2616 case BPF_JLT:
2617 false_reg->umin_value = max(false_reg->umin_value, val);
2618 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2619 break;
2620 case BPF_JSLT:
2621 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2622 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2623 break;
48461135 2624 case BPF_JGE:
b03c9f9f
EC
2625 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2626 true_reg->umin_value = max(true_reg->umin_value, val);
2627 break;
48461135 2628 case BPF_JSGE:
b03c9f9f
EC
2629 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2630 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2631 break;
b4e432f1
DB
2632 case BPF_JLE:
2633 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2634 true_reg->umax_value = min(true_reg->umax_value, val);
2635 break;
2636 case BPF_JSLE:
2637 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2638 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2639 break;
48461135
JB
2640 default:
2641 break;
2642 }
2643
b03c9f9f
EC
2644 __reg_deduce_bounds(false_reg);
2645 __reg_deduce_bounds(true_reg);
2646 /* We might have learned some bits from the bounds. */
2647 __reg_bound_offset(false_reg);
2648 __reg_bound_offset(true_reg);
2649 /* Intersecting with the old var_off might have improved our bounds
2650 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2651 * then new var_off is (0; 0x7f...fc) which improves our umax.
2652 */
2653 __update_reg_bounds(false_reg);
2654 __update_reg_bounds(true_reg);
48461135
JB
2655}
2656
f1174f77
EC
2657/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2658 * the variable reg.
48461135
JB
2659 */
2660static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2661 struct bpf_reg_state *false_reg, u64 val,
2662 u8 opcode)
2663{
f1174f77
EC
2664 if (__is_pointer_value(false, false_reg))
2665 return;
4cabc5b1 2666
48461135
JB
2667 switch (opcode) {
2668 case BPF_JEQ:
2669 /* If this is false then we know nothing Jon Snow, but if it is
2670 * true then we know for sure.
2671 */
b03c9f9f 2672 __mark_reg_known(true_reg, val);
48461135
JB
2673 break;
2674 case BPF_JNE:
2675 /* If this is true we know nothing Jon Snow, but if it is false
2676 * we know the value for sure;
2677 */
b03c9f9f 2678 __mark_reg_known(false_reg, val);
48461135
JB
2679 break;
2680 case BPF_JGT:
b03c9f9f
EC
2681 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2682 false_reg->umin_value = max(false_reg->umin_value, val);
2683 break;
48461135 2684 case BPF_JSGT:
b03c9f9f
EC
2685 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2686 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2687 break;
b4e432f1
DB
2688 case BPF_JLT:
2689 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2690 false_reg->umax_value = min(false_reg->umax_value, val);
2691 break;
2692 case BPF_JSLT:
2693 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2694 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2695 break;
48461135 2696 case BPF_JGE:
b03c9f9f
EC
2697 true_reg->umax_value = min(true_reg->umax_value, val);
2698 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2699 break;
48461135 2700 case BPF_JSGE:
b03c9f9f
EC
2701 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2702 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2703 break;
b4e432f1
DB
2704 case BPF_JLE:
2705 true_reg->umin_value = max(true_reg->umin_value, val);
2706 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2707 break;
2708 case BPF_JSLE:
2709 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2710 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2711 break;
48461135
JB
2712 default:
2713 break;
2714 }
2715
b03c9f9f
EC
2716 __reg_deduce_bounds(false_reg);
2717 __reg_deduce_bounds(true_reg);
2718 /* We might have learned some bits from the bounds. */
2719 __reg_bound_offset(false_reg);
2720 __reg_bound_offset(true_reg);
2721 /* Intersecting with the old var_off might have improved our bounds
2722 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2723 * then new var_off is (0; 0x7f...fc) which improves our umax.
2724 */
2725 __update_reg_bounds(false_reg);
2726 __update_reg_bounds(true_reg);
f1174f77
EC
2727}
2728
2729/* Regs are known to be equal, so intersect their min/max/var_off */
2730static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2731 struct bpf_reg_state *dst_reg)
2732{
b03c9f9f
EC
2733 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2734 dst_reg->umin_value);
2735 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2736 dst_reg->umax_value);
2737 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2738 dst_reg->smin_value);
2739 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2740 dst_reg->smax_value);
f1174f77
EC
2741 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2742 dst_reg->var_off);
b03c9f9f
EC
2743 /* We might have learned new bounds from the var_off. */
2744 __update_reg_bounds(src_reg);
2745 __update_reg_bounds(dst_reg);
2746 /* We might have learned something about the sign bit. */
2747 __reg_deduce_bounds(src_reg);
2748 __reg_deduce_bounds(dst_reg);
2749 /* We might have learned some bits from the bounds. */
2750 __reg_bound_offset(src_reg);
2751 __reg_bound_offset(dst_reg);
2752 /* Intersecting with the old var_off might have improved our bounds
2753 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2754 * then new var_off is (0; 0x7f...fc) which improves our umax.
2755 */
2756 __update_reg_bounds(src_reg);
2757 __update_reg_bounds(dst_reg);
f1174f77
EC
2758}
2759
2760static void reg_combine_min_max(struct bpf_reg_state *true_src,
2761 struct bpf_reg_state *true_dst,
2762 struct bpf_reg_state *false_src,
2763 struct bpf_reg_state *false_dst,
2764 u8 opcode)
2765{
2766 switch (opcode) {
2767 case BPF_JEQ:
2768 __reg_combine_min_max(true_src, true_dst);
2769 break;
2770 case BPF_JNE:
2771 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2772 break;
4cabc5b1 2773 }
48461135
JB
2774}
2775
57a09bf0 2776static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2777 bool is_null)
57a09bf0
TG
2778{
2779 struct bpf_reg_state *reg = &regs[regno];
2780
2781 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2782 /* Old offset (both fixed and variable parts) should
2783 * have been known-zero, because we don't allow pointer
2784 * arithmetic on pointers that might be NULL.
2785 */
b03c9f9f
EC
2786 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2787 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2788 reg->off)) {
b03c9f9f
EC
2789 __mark_reg_known_zero(reg);
2790 reg->off = 0;
f1174f77
EC
2791 }
2792 if (is_null) {
2793 reg->type = SCALAR_VALUE;
56f668df
MKL
2794 } else if (reg->map_ptr->inner_map_meta) {
2795 reg->type = CONST_PTR_TO_MAP;
2796 reg->map_ptr = reg->map_ptr->inner_map_meta;
2797 } else {
f1174f77 2798 reg->type = PTR_TO_MAP_VALUE;
56f668df 2799 }
a08dd0da
DB
2800 /* We don't need id from this point onwards anymore, thus we
2801 * should better reset it, so that state pruning has chances
2802 * to take effect.
2803 */
2804 reg->id = 0;
57a09bf0
TG
2805 }
2806}
2807
2808/* The logic is similar to find_good_pkt_pointers(), both could eventually
2809 * be folded together at some point.
2810 */
2811static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2812 bool is_null)
57a09bf0
TG
2813{
2814 struct bpf_reg_state *regs = state->regs;
a08dd0da 2815 u32 id = regs[regno].id;
57a09bf0
TG
2816 int i;
2817
2818 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2819 mark_map_reg(regs, i, id, is_null);
57a09bf0 2820
638f5b90
AS
2821 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2822 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2823 continue;
638f5b90 2824 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2825 }
2826}
2827
5beca081
DB
2828static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2829 struct bpf_reg_state *dst_reg,
2830 struct bpf_reg_state *src_reg,
2831 struct bpf_verifier_state *this_branch,
2832 struct bpf_verifier_state *other_branch)
2833{
2834 if (BPF_SRC(insn->code) != BPF_X)
2835 return false;
2836
2837 switch (BPF_OP(insn->code)) {
2838 case BPF_JGT:
2839 if ((dst_reg->type == PTR_TO_PACKET &&
2840 src_reg->type == PTR_TO_PACKET_END) ||
2841 (dst_reg->type == PTR_TO_PACKET_META &&
2842 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2843 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2844 find_good_pkt_pointers(this_branch, dst_reg,
2845 dst_reg->type, false);
2846 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2847 src_reg->type == PTR_TO_PACKET) ||
2848 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2849 src_reg->type == PTR_TO_PACKET_META)) {
2850 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2851 find_good_pkt_pointers(other_branch, src_reg,
2852 src_reg->type, true);
2853 } else {
2854 return false;
2855 }
2856 break;
2857 case BPF_JLT:
2858 if ((dst_reg->type == PTR_TO_PACKET &&
2859 src_reg->type == PTR_TO_PACKET_END) ||
2860 (dst_reg->type == PTR_TO_PACKET_META &&
2861 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2862 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2863 find_good_pkt_pointers(other_branch, dst_reg,
2864 dst_reg->type, true);
2865 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2866 src_reg->type == PTR_TO_PACKET) ||
2867 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2868 src_reg->type == PTR_TO_PACKET_META)) {
2869 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2870 find_good_pkt_pointers(this_branch, src_reg,
2871 src_reg->type, false);
2872 } else {
2873 return false;
2874 }
2875 break;
2876 case BPF_JGE:
2877 if ((dst_reg->type == PTR_TO_PACKET &&
2878 src_reg->type == PTR_TO_PACKET_END) ||
2879 (dst_reg->type == PTR_TO_PACKET_META &&
2880 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2881 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2882 find_good_pkt_pointers(this_branch, dst_reg,
2883 dst_reg->type, true);
2884 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2885 src_reg->type == PTR_TO_PACKET) ||
2886 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2887 src_reg->type == PTR_TO_PACKET_META)) {
2888 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2889 find_good_pkt_pointers(other_branch, src_reg,
2890 src_reg->type, false);
2891 } else {
2892 return false;
2893 }
2894 break;
2895 case BPF_JLE:
2896 if ((dst_reg->type == PTR_TO_PACKET &&
2897 src_reg->type == PTR_TO_PACKET_END) ||
2898 (dst_reg->type == PTR_TO_PACKET_META &&
2899 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2900 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2901 find_good_pkt_pointers(other_branch, dst_reg,
2902 dst_reg->type, false);
2903 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2904 src_reg->type == PTR_TO_PACKET) ||
2905 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2906 src_reg->type == PTR_TO_PACKET_META)) {
2907 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2908 find_good_pkt_pointers(this_branch, src_reg,
2909 src_reg->type, true);
2910 } else {
2911 return false;
2912 }
2913 break;
2914 default:
2915 return false;
2916 }
2917
2918 return true;
2919}
2920
58e2af8b 2921static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2922 struct bpf_insn *insn, int *insn_idx)
2923{
638f5b90 2924 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2925 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2926 u8 opcode = BPF_OP(insn->code);
2927 int err;
2928
b4e432f1 2929 if (opcode > BPF_JSLE) {
61bd5218 2930 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2931 return -EINVAL;
2932 }
2933
2934 if (BPF_SRC(insn->code) == BPF_X) {
2935 if (insn->imm != 0) {
61bd5218 2936 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2937 return -EINVAL;
2938 }
2939
2940 /* check src1 operand */
dc503a8a 2941 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2942 if (err)
2943 return err;
1be7f75d
AS
2944
2945 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2946 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2947 insn->src_reg);
2948 return -EACCES;
2949 }
17a52670
AS
2950 } else {
2951 if (insn->src_reg != BPF_REG_0) {
61bd5218 2952 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2953 return -EINVAL;
2954 }
2955 }
2956
2957 /* check src2 operand */
dc503a8a 2958 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2959 if (err)
2960 return err;
2961
1a0dc1ac
AS
2962 dst_reg = &regs[insn->dst_reg];
2963
17a52670
AS
2964 /* detect if R == 0 where R was initialized to zero earlier */
2965 if (BPF_SRC(insn->code) == BPF_K &&
2966 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2967 dst_reg->type == SCALAR_VALUE &&
2968 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2969 if (opcode == BPF_JEQ) {
2970 /* if (imm == imm) goto pc+off;
2971 * only follow the goto, ignore fall-through
2972 */
2973 *insn_idx += insn->off;
2974 return 0;
2975 } else {
2976 /* if (imm != imm) goto pc+off;
2977 * only follow fall-through branch, since
2978 * that's where the program will go
2979 */
2980 return 0;
2981 }
2982 }
2983
2984 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2985 if (!other_branch)
2986 return -EFAULT;
2987
48461135
JB
2988 /* detect if we are comparing against a constant value so we can adjust
2989 * our min/max values for our dst register.
f1174f77
EC
2990 * this is only legit if both are scalars (or pointers to the same
2991 * object, I suppose, but we don't support that right now), because
2992 * otherwise the different base pointers mean the offsets aren't
2993 * comparable.
48461135
JB
2994 */
2995 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2996 if (dst_reg->type == SCALAR_VALUE &&
2997 regs[insn->src_reg].type == SCALAR_VALUE) {
2998 if (tnum_is_const(regs[insn->src_reg].var_off))
2999 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3000 dst_reg, regs[insn->src_reg].var_off.value,
3001 opcode);
3002 else if (tnum_is_const(dst_reg->var_off))
3003 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3004 &regs[insn->src_reg],
3005 dst_reg->var_off.value, opcode);
3006 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3007 /* Comparing for equality, we can combine knowledge */
3008 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3009 &other_branch->regs[insn->dst_reg],
3010 &regs[insn->src_reg],
3011 &regs[insn->dst_reg], opcode);
3012 }
3013 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3014 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3015 dst_reg, insn->imm, opcode);
3016 }
3017
58e2af8b 3018 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3019 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3020 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3021 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3022 /* Mark all identical map registers in each branch as either
3023 * safe or unknown depending R == 0 or R != 0 conditional.
3024 */
f1174f77
EC
3025 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3026 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3027 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3028 this_branch, other_branch) &&
3029 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3030 verbose(env, "R%d pointer comparison prohibited\n",
3031 insn->dst_reg);
1be7f75d 3032 return -EACCES;
17a52670 3033 }
61bd5218
JK
3034 if (env->log.level)
3035 print_verifier_state(env, this_branch);
17a52670
AS
3036 return 0;
3037}
3038
0246e64d
AS
3039/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3040static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3041{
3042 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3043
3044 return (struct bpf_map *) (unsigned long) imm64;
3045}
3046
17a52670 3047/* verify BPF_LD_IMM64 instruction */
58e2af8b 3048static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3049{
638f5b90 3050 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3051 int err;
3052
3053 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3054 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3055 return -EINVAL;
3056 }
3057 if (insn->off != 0) {
61bd5218 3058 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3059 return -EINVAL;
3060 }
3061
dc503a8a 3062 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3063 if (err)
3064 return err;
3065
6b173873 3066 if (insn->src_reg == 0) {
6b173873
JK
3067 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3068
f1174f77 3069 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3070 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3071 return 0;
6b173873 3072 }
17a52670
AS
3073
3074 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3075 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3076
3077 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3078 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3079 return 0;
3080}
3081
96be4325
DB
3082static bool may_access_skb(enum bpf_prog_type type)
3083{
3084 switch (type) {
3085 case BPF_PROG_TYPE_SOCKET_FILTER:
3086 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3087 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3088 return true;
3089 default:
3090 return false;
3091 }
3092}
3093
ddd872bc
AS
3094/* verify safety of LD_ABS|LD_IND instructions:
3095 * - they can only appear in the programs where ctx == skb
3096 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3097 * preserve R6-R9, and store return value into R0
3098 *
3099 * Implicit input:
3100 * ctx == skb == R6 == CTX
3101 *
3102 * Explicit input:
3103 * SRC == any register
3104 * IMM == 32-bit immediate
3105 *
3106 * Output:
3107 * R0 - 8/16/32-bit skb data converted to cpu endianness
3108 */
58e2af8b 3109static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3110{
638f5b90 3111 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3112 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3113 int i, err;
3114
24701ece 3115 if (!may_access_skb(env->prog->type)) {
61bd5218 3116 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3117 return -EINVAL;
3118 }
3119
3120 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3121 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3122 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3123 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3124 return -EINVAL;
3125 }
3126
3127 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3128 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3129 if (err)
3130 return err;
3131
3132 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3133 verbose(env,
3134 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3135 return -EINVAL;
3136 }
3137
3138 if (mode == BPF_IND) {
3139 /* check explicit source operand */
dc503a8a 3140 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3141 if (err)
3142 return err;
3143 }
3144
3145 /* reset caller saved regs to unreadable */
dc503a8a 3146 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3147 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3148 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3149 }
ddd872bc
AS
3150
3151 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3152 * the value fetched from the packet.
3153 * Already marked as written above.
ddd872bc 3154 */
61bd5218 3155 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3156 return 0;
3157}
3158
390ee7e2
AS
3159static int check_return_code(struct bpf_verifier_env *env)
3160{
3161 struct bpf_reg_state *reg;
3162 struct tnum range = tnum_range(0, 1);
3163
3164 switch (env->prog->type) {
3165 case BPF_PROG_TYPE_CGROUP_SKB:
3166 case BPF_PROG_TYPE_CGROUP_SOCK:
3167 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3168 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3169 break;
3170 default:
3171 return 0;
3172 }
3173
638f5b90 3174 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3175 if (reg->type != SCALAR_VALUE) {
61bd5218 3176 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3177 reg_type_str[reg->type]);
3178 return -EINVAL;
3179 }
3180
3181 if (!tnum_in(range, reg->var_off)) {
61bd5218 3182 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3183 if (!tnum_is_unknown(reg->var_off)) {
3184 char tn_buf[48];
3185
3186 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3187 verbose(env, "has value %s", tn_buf);
390ee7e2 3188 } else {
61bd5218 3189 verbose(env, "has unknown scalar value");
390ee7e2 3190 }
61bd5218 3191 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3192 return -EINVAL;
3193 }
3194 return 0;
3195}
3196
475fb78f
AS
3197/* non-recursive DFS pseudo code
3198 * 1 procedure DFS-iterative(G,v):
3199 * 2 label v as discovered
3200 * 3 let S be a stack
3201 * 4 S.push(v)
3202 * 5 while S is not empty
3203 * 6 t <- S.pop()
3204 * 7 if t is what we're looking for:
3205 * 8 return t
3206 * 9 for all edges e in G.adjacentEdges(t) do
3207 * 10 if edge e is already labelled
3208 * 11 continue with the next edge
3209 * 12 w <- G.adjacentVertex(t,e)
3210 * 13 if vertex w is not discovered and not explored
3211 * 14 label e as tree-edge
3212 * 15 label w as discovered
3213 * 16 S.push(w)
3214 * 17 continue at 5
3215 * 18 else if vertex w is discovered
3216 * 19 label e as back-edge
3217 * 20 else
3218 * 21 // vertex w is explored
3219 * 22 label e as forward- or cross-edge
3220 * 23 label t as explored
3221 * 24 S.pop()
3222 *
3223 * convention:
3224 * 0x10 - discovered
3225 * 0x11 - discovered and fall-through edge labelled
3226 * 0x12 - discovered and fall-through and branch edges labelled
3227 * 0x20 - explored
3228 */
3229
3230enum {
3231 DISCOVERED = 0x10,
3232 EXPLORED = 0x20,
3233 FALLTHROUGH = 1,
3234 BRANCH = 2,
3235};
3236
58e2af8b 3237#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3238
475fb78f
AS
3239static int *insn_stack; /* stack of insns to process */
3240static int cur_stack; /* current stack index */
3241static int *insn_state;
3242
3243/* t, w, e - match pseudo-code above:
3244 * t - index of current instruction
3245 * w - next instruction
3246 * e - edge
3247 */
58e2af8b 3248static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3249{
3250 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3251 return 0;
3252
3253 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3254 return 0;
3255
3256 if (w < 0 || w >= env->prog->len) {
61bd5218 3257 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3258 return -EINVAL;
3259 }
3260
f1bca824
AS
3261 if (e == BRANCH)
3262 /* mark branch target for state pruning */
3263 env->explored_states[w] = STATE_LIST_MARK;
3264
475fb78f
AS
3265 if (insn_state[w] == 0) {
3266 /* tree-edge */
3267 insn_state[t] = DISCOVERED | e;
3268 insn_state[w] = DISCOVERED;
3269 if (cur_stack >= env->prog->len)
3270 return -E2BIG;
3271 insn_stack[cur_stack++] = w;
3272 return 1;
3273 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3274 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3275 return -EINVAL;
3276 } else if (insn_state[w] == EXPLORED) {
3277 /* forward- or cross-edge */
3278 insn_state[t] = DISCOVERED | e;
3279 } else {
61bd5218 3280 verbose(env, "insn state internal bug\n");
475fb78f
AS
3281 return -EFAULT;
3282 }
3283 return 0;
3284}
3285
3286/* non-recursive depth-first-search to detect loops in BPF program
3287 * loop == back-edge in directed graph
3288 */
58e2af8b 3289static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3290{
3291 struct bpf_insn *insns = env->prog->insnsi;
3292 int insn_cnt = env->prog->len;
3293 int ret = 0;
3294 int i, t;
3295
3296 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3297 if (!insn_state)
3298 return -ENOMEM;
3299
3300 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3301 if (!insn_stack) {
3302 kfree(insn_state);
3303 return -ENOMEM;
3304 }
3305
3306 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3307 insn_stack[0] = 0; /* 0 is the first instruction */
3308 cur_stack = 1;
3309
3310peek_stack:
3311 if (cur_stack == 0)
3312 goto check_state;
3313 t = insn_stack[cur_stack - 1];
3314
3315 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3316 u8 opcode = BPF_OP(insns[t].code);
3317
3318 if (opcode == BPF_EXIT) {
3319 goto mark_explored;
3320 } else if (opcode == BPF_CALL) {
3321 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3322 if (ret == 1)
3323 goto peek_stack;
3324 else if (ret < 0)
3325 goto err_free;
07016151
DB
3326 if (t + 1 < insn_cnt)
3327 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3328 } else if (opcode == BPF_JA) {
3329 if (BPF_SRC(insns[t].code) != BPF_K) {
3330 ret = -EINVAL;
3331 goto err_free;
3332 }
3333 /* unconditional jump with single edge */
3334 ret = push_insn(t, t + insns[t].off + 1,
3335 FALLTHROUGH, env);
3336 if (ret == 1)
3337 goto peek_stack;
3338 else if (ret < 0)
3339 goto err_free;
f1bca824
AS
3340 /* tell verifier to check for equivalent states
3341 * after every call and jump
3342 */
c3de6317
AS
3343 if (t + 1 < insn_cnt)
3344 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3345 } else {
3346 /* conditional jump with two edges */
3c2ce60b 3347 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3348 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3349 if (ret == 1)
3350 goto peek_stack;
3351 else if (ret < 0)
3352 goto err_free;
3353
3354 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3355 if (ret == 1)
3356 goto peek_stack;
3357 else if (ret < 0)
3358 goto err_free;
3359 }
3360 } else {
3361 /* all other non-branch instructions with single
3362 * fall-through edge
3363 */
3364 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3365 if (ret == 1)
3366 goto peek_stack;
3367 else if (ret < 0)
3368 goto err_free;
3369 }
3370
3371mark_explored:
3372 insn_state[t] = EXPLORED;
3373 if (cur_stack-- <= 0) {
61bd5218 3374 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3375 ret = -EFAULT;
3376 goto err_free;
3377 }
3378 goto peek_stack;
3379
3380check_state:
3381 for (i = 0; i < insn_cnt; i++) {
3382 if (insn_state[i] != EXPLORED) {
61bd5218 3383 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3384 ret = -EINVAL;
3385 goto err_free;
3386 }
3387 }
3388 ret = 0; /* cfg looks good */
3389
3390err_free:
3391 kfree(insn_state);
3392 kfree(insn_stack);
3393 return ret;
3394}
3395
f1174f77
EC
3396/* check %cur's range satisfies %old's */
3397static bool range_within(struct bpf_reg_state *old,
3398 struct bpf_reg_state *cur)
3399{
b03c9f9f
EC
3400 return old->umin_value <= cur->umin_value &&
3401 old->umax_value >= cur->umax_value &&
3402 old->smin_value <= cur->smin_value &&
3403 old->smax_value >= cur->smax_value;
f1174f77
EC
3404}
3405
3406/* Maximum number of register states that can exist at once */
3407#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3408struct idpair {
3409 u32 old;
3410 u32 cur;
3411};
3412
3413/* If in the old state two registers had the same id, then they need to have
3414 * the same id in the new state as well. But that id could be different from
3415 * the old state, so we need to track the mapping from old to new ids.
3416 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3417 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3418 * regs with a different old id could still have new id 9, we don't care about
3419 * that.
3420 * So we look through our idmap to see if this old id has been seen before. If
3421 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3422 */
f1174f77 3423static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3424{
f1174f77 3425 unsigned int i;
969bf05e 3426
f1174f77
EC
3427 for (i = 0; i < ID_MAP_SIZE; i++) {
3428 if (!idmap[i].old) {
3429 /* Reached an empty slot; haven't seen this id before */
3430 idmap[i].old = old_id;
3431 idmap[i].cur = cur_id;
3432 return true;
3433 }
3434 if (idmap[i].old == old_id)
3435 return idmap[i].cur == cur_id;
3436 }
3437 /* We ran out of idmap slots, which should be impossible */
3438 WARN_ON_ONCE(1);
3439 return false;
3440}
3441
3442/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3443static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3444 struct idpair *idmap)
f1174f77 3445{
dc503a8a
EC
3446 if (!(rold->live & REG_LIVE_READ))
3447 /* explored state didn't use this */
3448 return true;
3449
3450 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3451 return true;
3452
f1174f77
EC
3453 if (rold->type == NOT_INIT)
3454 /* explored state can't have used this */
969bf05e 3455 return true;
f1174f77
EC
3456 if (rcur->type == NOT_INIT)
3457 return false;
3458 switch (rold->type) {
3459 case SCALAR_VALUE:
3460 if (rcur->type == SCALAR_VALUE) {
3461 /* new val must satisfy old val knowledge */
3462 return range_within(rold, rcur) &&
3463 tnum_in(rold->var_off, rcur->var_off);
3464 } else {
3465 /* if we knew anything about the old value, we're not
3466 * equal, because we can't know anything about the
3467 * scalar value of the pointer in the new value.
3468 */
b03c9f9f
EC
3469 return rold->umin_value == 0 &&
3470 rold->umax_value == U64_MAX &&
3471 rold->smin_value == S64_MIN &&
3472 rold->smax_value == S64_MAX &&
f1174f77
EC
3473 tnum_is_unknown(rold->var_off);
3474 }
3475 case PTR_TO_MAP_VALUE:
1b688a19
EC
3476 /* If the new min/max/var_off satisfy the old ones and
3477 * everything else matches, we are OK.
3478 * We don't care about the 'id' value, because nothing
3479 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3480 */
3481 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3482 range_within(rold, rcur) &&
3483 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3484 case PTR_TO_MAP_VALUE_OR_NULL:
3485 /* a PTR_TO_MAP_VALUE could be safe to use as a
3486 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3487 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3488 * checked, doing so could have affected others with the same
3489 * id, and we can't check for that because we lost the id when
3490 * we converted to a PTR_TO_MAP_VALUE.
3491 */
3492 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3493 return false;
3494 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3495 return false;
3496 /* Check our ids match any regs they're supposed to */
3497 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3498 case PTR_TO_PACKET_META:
f1174f77 3499 case PTR_TO_PACKET:
de8f3a83 3500 if (rcur->type != rold->type)
f1174f77
EC
3501 return false;
3502 /* We must have at least as much range as the old ptr
3503 * did, so that any accesses which were safe before are
3504 * still safe. This is true even if old range < old off,
3505 * since someone could have accessed through (ptr - k), or
3506 * even done ptr -= k in a register, to get a safe access.
3507 */
3508 if (rold->range > rcur->range)
3509 return false;
3510 /* If the offsets don't match, we can't trust our alignment;
3511 * nor can we be sure that we won't fall out of range.
3512 */
3513 if (rold->off != rcur->off)
3514 return false;
3515 /* id relations must be preserved */
3516 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3517 return false;
3518 /* new val must satisfy old val knowledge */
3519 return range_within(rold, rcur) &&
3520 tnum_in(rold->var_off, rcur->var_off);
3521 case PTR_TO_CTX:
3522 case CONST_PTR_TO_MAP:
3523 case PTR_TO_STACK:
3524 case PTR_TO_PACKET_END:
3525 /* Only valid matches are exact, which memcmp() above
3526 * would have accepted
3527 */
3528 default:
3529 /* Don't know what's going on, just say it's not safe */
3530 return false;
3531 }
969bf05e 3532
f1174f77
EC
3533 /* Shouldn't get here; if we do, say it's not safe */
3534 WARN_ON_ONCE(1);
969bf05e
AS
3535 return false;
3536}
3537
638f5b90
AS
3538static bool stacksafe(struct bpf_verifier_state *old,
3539 struct bpf_verifier_state *cur,
3540 struct idpair *idmap)
3541{
3542 int i, spi;
3543
3544 /* if explored stack has more populated slots than current stack
3545 * such stacks are not equivalent
3546 */
3547 if (old->allocated_stack > cur->allocated_stack)
3548 return false;
3549
3550 /* walk slots of the explored stack and ignore any additional
3551 * slots in the current stack, since explored(safe) state
3552 * didn't use them
3553 */
3554 for (i = 0; i < old->allocated_stack; i++) {
3555 spi = i / BPF_REG_SIZE;
3556
3557 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3558 continue;
3559 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3560 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3561 /* Ex: old explored (safe) state has STACK_SPILL in
3562 * this stack slot, but current has has STACK_MISC ->
3563 * this verifier states are not equivalent,
3564 * return false to continue verification of this path
3565 */
3566 return false;
3567 if (i % BPF_REG_SIZE)
3568 continue;
3569 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3570 continue;
3571 if (!regsafe(&old->stack[spi].spilled_ptr,
3572 &cur->stack[spi].spilled_ptr,
3573 idmap))
3574 /* when explored and current stack slot are both storing
3575 * spilled registers, check that stored pointers types
3576 * are the same as well.
3577 * Ex: explored safe path could have stored
3578 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3579 * but current path has stored:
3580 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3581 * such verifier states are not equivalent.
3582 * return false to continue verification of this path
3583 */
3584 return false;
3585 }
3586 return true;
3587}
3588
f1bca824
AS
3589/* compare two verifier states
3590 *
3591 * all states stored in state_list are known to be valid, since
3592 * verifier reached 'bpf_exit' instruction through them
3593 *
3594 * this function is called when verifier exploring different branches of
3595 * execution popped from the state stack. If it sees an old state that has
3596 * more strict register state and more strict stack state then this execution
3597 * branch doesn't need to be explored further, since verifier already
3598 * concluded that more strict state leads to valid finish.
3599 *
3600 * Therefore two states are equivalent if register state is more conservative
3601 * and explored stack state is more conservative than the current one.
3602 * Example:
3603 * explored current
3604 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3605 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3606 *
3607 * In other words if current stack state (one being explored) has more
3608 * valid slots than old one that already passed validation, it means
3609 * the verifier can stop exploring and conclude that current state is valid too
3610 *
3611 * Similarly with registers. If explored state has register type as invalid
3612 * whereas register type in current state is meaningful, it means that
3613 * the current state will reach 'bpf_exit' instruction safely
3614 */
48461135
JB
3615static bool states_equal(struct bpf_verifier_env *env,
3616 struct bpf_verifier_state *old,
58e2af8b 3617 struct bpf_verifier_state *cur)
f1bca824 3618{
f1174f77
EC
3619 struct idpair *idmap;
3620 bool ret = false;
f1bca824
AS
3621 int i;
3622
f1174f77
EC
3623 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3624 /* If we failed to allocate the idmap, just say it's not safe */
3625 if (!idmap)
1a0dc1ac 3626 return false;
f1174f77
EC
3627
3628 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3629 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3630 goto out_free;
f1bca824
AS
3631 }
3632
638f5b90
AS
3633 if (!stacksafe(old, cur, idmap))
3634 goto out_free;
f1174f77
EC
3635 ret = true;
3636out_free:
3637 kfree(idmap);
3638 return ret;
f1bca824
AS
3639}
3640
8e9cd9ce
EC
3641/* A write screens off any subsequent reads; but write marks come from the
3642 * straight-line code between a state and its parent. When we arrive at a
3643 * jump target (in the first iteration of the propagate_liveness() loop),
3644 * we didn't arrive by the straight-line code, so read marks in state must
3645 * propagate to parent regardless of state's write marks.
3646 */
dc503a8a
EC
3647static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3648 struct bpf_verifier_state *parent)
3649{
63f45f84 3650 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3651 bool touched = false; /* any changes made? */
3652 int i;
3653
3654 if (!parent)
3655 return touched;
3656 /* Propagate read liveness of registers... */
3657 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3658 /* We don't need to worry about FP liveness because it's read-only */
3659 for (i = 0; i < BPF_REG_FP; i++) {
3660 if (parent->regs[i].live & REG_LIVE_READ)
3661 continue;
63f45f84
EC
3662 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3663 continue;
3664 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3665 parent->regs[i].live |= REG_LIVE_READ;
3666 touched = true;
3667 }
3668 }
3669 /* ... and stack slots */
638f5b90
AS
3670 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3671 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3672 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3673 continue;
638f5b90 3674 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3675 continue;
638f5b90 3676 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3677 continue;
638f5b90
AS
3678 if (writes &&
3679 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3680 continue;
638f5b90
AS
3681 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3682 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3683 touched = true;
3684 }
3685 }
3686 return touched;
3687}
3688
8e9cd9ce
EC
3689/* "parent" is "a state from which we reach the current state", but initially
3690 * it is not the state->parent (i.e. "the state whose straight-line code leads
3691 * to the current state"), instead it is the state that happened to arrive at
3692 * a (prunable) equivalent of the current state. See comment above
3693 * do_propagate_liveness() for consequences of this.
3694 * This function is just a more efficient way of calling mark_reg_read() or
3695 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3696 * though it requires that parent != state->parent in the call arguments.
3697 */
dc503a8a
EC
3698static void propagate_liveness(const struct bpf_verifier_state *state,
3699 struct bpf_verifier_state *parent)
3700{
3701 while (do_propagate_liveness(state, parent)) {
3702 /* Something changed, so we need to feed those changes onward */
3703 state = parent;
3704 parent = state->parent;
3705 }
3706}
3707
58e2af8b 3708static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3709{
58e2af8b
JK
3710 struct bpf_verifier_state_list *new_sl;
3711 struct bpf_verifier_state_list *sl;
638f5b90 3712 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3713 int i, err;
f1bca824
AS
3714
3715 sl = env->explored_states[insn_idx];
3716 if (!sl)
3717 /* this 'insn_idx' instruction wasn't marked, so we will not
3718 * be doing state search here
3719 */
3720 return 0;
3721
3722 while (sl != STATE_LIST_MARK) {
638f5b90 3723 if (states_equal(env, &sl->state, cur)) {
f1bca824 3724 /* reached equivalent register/stack state,
dc503a8a
EC
3725 * prune the search.
3726 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3727 * If we have any write marks in env->cur_state, they
3728 * will prevent corresponding reads in the continuation
3729 * from reaching our parent (an explored_state). Our
3730 * own state will get the read marks recorded, but
3731 * they'll be immediately forgotten as we're pruning
3732 * this state and will pop a new one.
f1bca824 3733 */
638f5b90 3734 propagate_liveness(&sl->state, cur);
f1bca824 3735 return 1;
dc503a8a 3736 }
f1bca824
AS
3737 sl = sl->next;
3738 }
3739
3740 /* there were no equivalent states, remember current one.
3741 * technically the current state is not proven to be safe yet,
3742 * but it will either reach bpf_exit (which means it's safe) or
3743 * it will be rejected. Since there are no loops, we won't be
3744 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3745 */
638f5b90 3746 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3747 if (!new_sl)
3748 return -ENOMEM;
3749
3750 /* add new state to the head of linked list */
1969db47
AS
3751 err = copy_verifier_state(&new_sl->state, cur);
3752 if (err) {
3753 free_verifier_state(&new_sl->state, false);
3754 kfree(new_sl);
3755 return err;
3756 }
f1bca824
AS
3757 new_sl->next = env->explored_states[insn_idx];
3758 env->explored_states[insn_idx] = new_sl;
dc503a8a 3759 /* connect new state to parentage chain */
638f5b90 3760 cur->parent = &new_sl->state;
8e9cd9ce
EC
3761 /* clear write marks in current state: the writes we did are not writes
3762 * our child did, so they don't screen off its reads from us.
3763 * (There are no read marks in current state, because reads always mark
3764 * their parent and current state never has children yet. Only
3765 * explored_states can get read marks.)
3766 */
dc503a8a 3767 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3768 cur->regs[i].live = REG_LIVE_NONE;
3769 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3770 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3771 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3772 return 0;
3773}
3774
13a27dfc
JK
3775static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3776 int insn_idx, int prev_insn_idx)
3777{
ab3f0063
JK
3778 if (env->dev_ops && env->dev_ops->insn_hook)
3779 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3780
ab3f0063 3781 return 0;
13a27dfc
JK
3782}
3783
58e2af8b 3784static int do_check(struct bpf_verifier_env *env)
17a52670 3785{
638f5b90 3786 struct bpf_verifier_state *state;
17a52670 3787 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3788 struct bpf_reg_state *regs;
17a52670
AS
3789 int insn_cnt = env->prog->len;
3790 int insn_idx, prev_insn_idx = 0;
3791 int insn_processed = 0;
3792 bool do_print_state = false;
3793
638f5b90
AS
3794 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3795 if (!state)
3796 return -ENOMEM;
3797 env->cur_state = state;
3798 init_reg_state(env, state->regs);
dc503a8a 3799 state->parent = NULL;
17a52670
AS
3800 insn_idx = 0;
3801 for (;;) {
3802 struct bpf_insn *insn;
3803 u8 class;
3804 int err;
3805
3806 if (insn_idx >= insn_cnt) {
61bd5218 3807 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3808 insn_idx, insn_cnt);
3809 return -EFAULT;
3810 }
3811
3812 insn = &insns[insn_idx];
3813 class = BPF_CLASS(insn->code);
3814
07016151 3815 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3816 verbose(env,
3817 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3818 insn_processed);
3819 return -E2BIG;
3820 }
3821
f1bca824
AS
3822 err = is_state_visited(env, insn_idx);
3823 if (err < 0)
3824 return err;
3825 if (err == 1) {
3826 /* found equivalent state, can prune the search */
61bd5218 3827 if (env->log.level) {
f1bca824 3828 if (do_print_state)
61bd5218 3829 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3830 prev_insn_idx, insn_idx);
3831 else
61bd5218 3832 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3833 }
3834 goto process_bpf_exit;
3835 }
3836
3c2ce60b
DB
3837 if (need_resched())
3838 cond_resched();
3839
61bd5218
JK
3840 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3841 if (env->log.level > 1)
3842 verbose(env, "%d:", insn_idx);
c5fc9692 3843 else
61bd5218 3844 verbose(env, "\nfrom %d to %d:",
c5fc9692 3845 prev_insn_idx, insn_idx);
638f5b90 3846 print_verifier_state(env, state);
17a52670
AS
3847 do_print_state = false;
3848 }
3849
61bd5218
JK
3850 if (env->log.level) {
3851 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3852 print_bpf_insn(verbose, env, insn,
3853 env->allow_ptr_leaks);
17a52670
AS
3854 }
3855
13a27dfc
JK
3856 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3857 if (err)
3858 return err;
3859
638f5b90 3860 regs = cur_regs(env);
c131187d 3861 env->insn_aux_data[insn_idx].seen = true;
17a52670 3862 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3863 err = check_alu_op(env, insn);
17a52670
AS
3864 if (err)
3865 return err;
3866
3867 } else if (class == BPF_LDX) {
3df126f3 3868 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3869
3870 /* check for reserved fields is already done */
3871
17a52670 3872 /* check src operand */
dc503a8a 3873 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3874 if (err)
3875 return err;
3876
dc503a8a 3877 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3878 if (err)
3879 return err;
3880
725f9dcd
AS
3881 src_reg_type = regs[insn->src_reg].type;
3882
17a52670
AS
3883 /* check that memory (src_reg + off) is readable,
3884 * the state of dst_reg will be updated by this func
3885 */
31fd8581 3886 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3887 BPF_SIZE(insn->code), BPF_READ,
3888 insn->dst_reg);
3889 if (err)
3890 return err;
3891
3df126f3
JK
3892 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3893
3894 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3895 /* saw a valid insn
3896 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3897 * save type to validate intersecting paths
9bac3d6d 3898 */
3df126f3 3899 *prev_src_type = src_reg_type;
9bac3d6d 3900
3df126f3 3901 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3902 (src_reg_type == PTR_TO_CTX ||
3df126f3 3903 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3904 /* ABuser program is trying to use the same insn
3905 * dst_reg = *(u32*) (src_reg + off)
3906 * with different pointer types:
3907 * src_reg == ctx in one branch and
3908 * src_reg == stack|map in some other branch.
3909 * Reject it.
3910 */
61bd5218 3911 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3912 return -EINVAL;
3913 }
3914
17a52670 3915 } else if (class == BPF_STX) {
3df126f3 3916 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3917
17a52670 3918 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3919 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3920 if (err)
3921 return err;
3922 insn_idx++;
3923 continue;
3924 }
3925
17a52670 3926 /* check src1 operand */
dc503a8a 3927 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3928 if (err)
3929 return err;
3930 /* check src2 operand */
dc503a8a 3931 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3932 if (err)
3933 return err;
3934
d691f9e8
AS
3935 dst_reg_type = regs[insn->dst_reg].type;
3936
17a52670 3937 /* check that memory (dst_reg + off) is writeable */
31fd8581 3938 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3939 BPF_SIZE(insn->code), BPF_WRITE,
3940 insn->src_reg);
3941 if (err)
3942 return err;
3943
3df126f3
JK
3944 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3945
3946 if (*prev_dst_type == NOT_INIT) {
3947 *prev_dst_type = dst_reg_type;
3948 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3949 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3950 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3951 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3952 return -EINVAL;
3953 }
3954
17a52670
AS
3955 } else if (class == BPF_ST) {
3956 if (BPF_MODE(insn->code) != BPF_MEM ||
3957 insn->src_reg != BPF_REG_0) {
61bd5218 3958 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3959 return -EINVAL;
3960 }
3961 /* check src operand */
dc503a8a 3962 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3963 if (err)
3964 return err;
3965
3966 /* check that memory (dst_reg + off) is writeable */
31fd8581 3967 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3968 BPF_SIZE(insn->code), BPF_WRITE,
3969 -1);
3970 if (err)
3971 return err;
3972
3973 } else if (class == BPF_JMP) {
3974 u8 opcode = BPF_OP(insn->code);
3975
3976 if (opcode == BPF_CALL) {
3977 if (BPF_SRC(insn->code) != BPF_K ||
3978 insn->off != 0 ||
3979 insn->src_reg != BPF_REG_0 ||
3980 insn->dst_reg != BPF_REG_0) {
61bd5218 3981 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3982 return -EINVAL;
3983 }
3984
81ed18ab 3985 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3986 if (err)
3987 return err;
3988
3989 } else if (opcode == BPF_JA) {
3990 if (BPF_SRC(insn->code) != BPF_K ||
3991 insn->imm != 0 ||
3992 insn->src_reg != BPF_REG_0 ||
3993 insn->dst_reg != BPF_REG_0) {
61bd5218 3994 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
3995 return -EINVAL;
3996 }
3997
3998 insn_idx += insn->off + 1;
3999 continue;
4000
4001 } else if (opcode == BPF_EXIT) {
4002 if (BPF_SRC(insn->code) != BPF_K ||
4003 insn->imm != 0 ||
4004 insn->src_reg != BPF_REG_0 ||
4005 insn->dst_reg != BPF_REG_0) {
61bd5218 4006 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4007 return -EINVAL;
4008 }
4009
4010 /* eBPF calling convetion is such that R0 is used
4011 * to return the value from eBPF program.
4012 * Make sure that it's readable at this time
4013 * of bpf_exit, which means that program wrote
4014 * something into it earlier
4015 */
dc503a8a 4016 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4017 if (err)
4018 return err;
4019
1be7f75d 4020 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4021 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4022 return -EACCES;
4023 }
4024
390ee7e2
AS
4025 err = check_return_code(env);
4026 if (err)
4027 return err;
f1bca824 4028process_bpf_exit:
638f5b90
AS
4029 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4030 if (err < 0) {
4031 if (err != -ENOENT)
4032 return err;
17a52670
AS
4033 break;
4034 } else {
4035 do_print_state = true;
4036 continue;
4037 }
4038 } else {
4039 err = check_cond_jmp_op(env, insn, &insn_idx);
4040 if (err)
4041 return err;
4042 }
4043 } else if (class == BPF_LD) {
4044 u8 mode = BPF_MODE(insn->code);
4045
4046 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4047 err = check_ld_abs(env, insn);
4048 if (err)
4049 return err;
4050
17a52670
AS
4051 } else if (mode == BPF_IMM) {
4052 err = check_ld_imm(env, insn);
4053 if (err)
4054 return err;
4055
4056 insn_idx++;
c131187d 4057 env->insn_aux_data[insn_idx].seen = true;
17a52670 4058 } else {
61bd5218 4059 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4060 return -EINVAL;
4061 }
4062 } else {
61bd5218 4063 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4064 return -EINVAL;
4065 }
4066
4067 insn_idx++;
4068 }
4069
61bd5218
JK
4070 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4071 env->prog->aux->stack_depth);
17a52670
AS
4072 return 0;
4073}
4074
56f668df
MKL
4075static int check_map_prealloc(struct bpf_map *map)
4076{
4077 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4078 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4079 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4080 !(map->map_flags & BPF_F_NO_PREALLOC);
4081}
4082
61bd5218
JK
4083static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4084 struct bpf_map *map,
fdc15d38
AS
4085 struct bpf_prog *prog)
4086
4087{
56f668df
MKL
4088 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4089 * preallocated hash maps, since doing memory allocation
4090 * in overflow_handler can crash depending on where nmi got
4091 * triggered.
4092 */
4093 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4094 if (!check_map_prealloc(map)) {
61bd5218 4095 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4096 return -EINVAL;
4097 }
4098 if (map->inner_map_meta &&
4099 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4100 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4101 return -EINVAL;
4102 }
fdc15d38
AS
4103 }
4104 return 0;
4105}
4106
0246e64d
AS
4107/* look for pseudo eBPF instructions that access map FDs and
4108 * replace them with actual map pointers
4109 */
58e2af8b 4110static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4111{
4112 struct bpf_insn *insn = env->prog->insnsi;
4113 int insn_cnt = env->prog->len;
fdc15d38 4114 int i, j, err;
0246e64d 4115
f1f7714e 4116 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4117 if (err)
4118 return err;
4119
0246e64d 4120 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4121 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4122 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4123 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4124 return -EINVAL;
4125 }
4126
d691f9e8
AS
4127 if (BPF_CLASS(insn->code) == BPF_STX &&
4128 ((BPF_MODE(insn->code) != BPF_MEM &&
4129 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4130 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4131 return -EINVAL;
4132 }
4133
0246e64d
AS
4134 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4135 struct bpf_map *map;
4136 struct fd f;
4137
4138 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4139 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4140 insn[1].off != 0) {
61bd5218 4141 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4142 return -EINVAL;
4143 }
4144
4145 if (insn->src_reg == 0)
4146 /* valid generic load 64-bit imm */
4147 goto next_insn;
4148
4149 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4150 verbose(env,
4151 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4152 return -EINVAL;
4153 }
4154
4155 f = fdget(insn->imm);
c2101297 4156 map = __bpf_map_get(f);
0246e64d 4157 if (IS_ERR(map)) {
61bd5218 4158 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4159 insn->imm);
0246e64d
AS
4160 return PTR_ERR(map);
4161 }
4162
61bd5218 4163 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4164 if (err) {
4165 fdput(f);
4166 return err;
4167 }
4168
0246e64d
AS
4169 /* store map pointer inside BPF_LD_IMM64 instruction */
4170 insn[0].imm = (u32) (unsigned long) map;
4171 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4172
4173 /* check whether we recorded this map already */
4174 for (j = 0; j < env->used_map_cnt; j++)
4175 if (env->used_maps[j] == map) {
4176 fdput(f);
4177 goto next_insn;
4178 }
4179
4180 if (env->used_map_cnt >= MAX_USED_MAPS) {
4181 fdput(f);
4182 return -E2BIG;
4183 }
4184
0246e64d
AS
4185 /* hold the map. If the program is rejected by verifier,
4186 * the map will be released by release_maps() or it
4187 * will be used by the valid program until it's unloaded
4188 * and all maps are released in free_bpf_prog_info()
4189 */
92117d84
AS
4190 map = bpf_map_inc(map, false);
4191 if (IS_ERR(map)) {
4192 fdput(f);
4193 return PTR_ERR(map);
4194 }
4195 env->used_maps[env->used_map_cnt++] = map;
4196
0246e64d
AS
4197 fdput(f);
4198next_insn:
4199 insn++;
4200 i++;
4201 }
4202 }
4203
4204 /* now all pseudo BPF_LD_IMM64 instructions load valid
4205 * 'struct bpf_map *' into a register instead of user map_fd.
4206 * These pointers will be used later by verifier to validate map access.
4207 */
4208 return 0;
4209}
4210
4211/* drop refcnt of maps used by the rejected program */
58e2af8b 4212static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4213{
4214 int i;
4215
4216 for (i = 0; i < env->used_map_cnt; i++)
4217 bpf_map_put(env->used_maps[i]);
4218}
4219
4220/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4221static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4222{
4223 struct bpf_insn *insn = env->prog->insnsi;
4224 int insn_cnt = env->prog->len;
4225 int i;
4226
4227 for (i = 0; i < insn_cnt; i++, insn++)
4228 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4229 insn->src_reg = 0;
4230}
4231
8041902d
AS
4232/* single env->prog->insni[off] instruction was replaced with the range
4233 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4234 * [0, off) and [off, end) to new locations, so the patched range stays zero
4235 */
4236static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4237 u32 off, u32 cnt)
4238{
4239 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4240 int i;
8041902d
AS
4241
4242 if (cnt == 1)
4243 return 0;
4244 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4245 if (!new_data)
4246 return -ENOMEM;
4247 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4248 memcpy(new_data + off + cnt - 1, old_data + off,
4249 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4250 for (i = off; i < off + cnt - 1; i++)
4251 new_data[i].seen = true;
8041902d
AS
4252 env->insn_aux_data = new_data;
4253 vfree(old_data);
4254 return 0;
4255}
4256
4257static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4258 const struct bpf_insn *patch, u32 len)
4259{
4260 struct bpf_prog *new_prog;
4261
4262 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4263 if (!new_prog)
4264 return NULL;
4265 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4266 return NULL;
4267 return new_prog;
4268}
4269
c131187d
AS
4270/* The verifier does more data flow analysis than llvm and will not explore
4271 * branches that are dead at run time. Malicious programs can have dead code
4272 * too. Therefore replace all dead at-run-time code with nops.
4273 */
4274static void sanitize_dead_code(struct bpf_verifier_env *env)
4275{
4276 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4277 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4278 struct bpf_insn *insn = env->prog->insnsi;
4279 const int insn_cnt = env->prog->len;
4280 int i;
4281
4282 for (i = 0; i < insn_cnt; i++) {
4283 if (aux_data[i].seen)
4284 continue;
4285 memcpy(insn + i, &nop, sizeof(nop));
4286 }
4287}
4288
9bac3d6d
AS
4289/* convert load instructions that access fields of 'struct __sk_buff'
4290 * into sequence of instructions that access fields of 'struct sk_buff'
4291 */
58e2af8b 4292static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4293{
00176a34 4294 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4295 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4296 const int insn_cnt = env->prog->len;
36bbef52 4297 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4298 struct bpf_prog *new_prog;
d691f9e8 4299 enum bpf_access_type type;
f96da094
DB
4300 bool is_narrower_load;
4301 u32 target_size;
9bac3d6d 4302
36bbef52
DB
4303 if (ops->gen_prologue) {
4304 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4305 env->prog);
4306 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4307 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4308 return -EINVAL;
4309 } else if (cnt) {
8041902d 4310 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4311 if (!new_prog)
4312 return -ENOMEM;
8041902d 4313
36bbef52 4314 env->prog = new_prog;
3df126f3 4315 delta += cnt - 1;
36bbef52
DB
4316 }
4317 }
4318
4319 if (!ops->convert_ctx_access)
9bac3d6d
AS
4320 return 0;
4321
3df126f3 4322 insn = env->prog->insnsi + delta;
36bbef52 4323
9bac3d6d 4324 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4325 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4326 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4327 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4328 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4329 type = BPF_READ;
62c7989b
DB
4330 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4331 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4332 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4333 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4334 type = BPF_WRITE;
4335 else
9bac3d6d
AS
4336 continue;
4337
8041902d 4338 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4339 continue;
9bac3d6d 4340
31fd8581 4341 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4342 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4343
4344 /* If the read access is a narrower load of the field,
4345 * convert to a 4/8-byte load, to minimum program type specific
4346 * convert_ctx_access changes. If conversion is successful,
4347 * we will apply proper mask to the result.
4348 */
f96da094 4349 is_narrower_load = size < ctx_field_size;
31fd8581 4350 if (is_narrower_load) {
f96da094
DB
4351 u32 off = insn->off;
4352 u8 size_code;
4353
4354 if (type == BPF_WRITE) {
61bd5218 4355 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4356 return -EINVAL;
4357 }
31fd8581 4358
f96da094 4359 size_code = BPF_H;
31fd8581
YS
4360 if (ctx_field_size == 4)
4361 size_code = BPF_W;
4362 else if (ctx_field_size == 8)
4363 size_code = BPF_DW;
f96da094 4364
31fd8581
YS
4365 insn->off = off & ~(ctx_field_size - 1);
4366 insn->code = BPF_LDX | BPF_MEM | size_code;
4367 }
f96da094
DB
4368
4369 target_size = 0;
4370 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4371 &target_size);
4372 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4373 (ctx_field_size && !target_size)) {
61bd5218 4374 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4375 return -EINVAL;
4376 }
f96da094
DB
4377
4378 if (is_narrower_load && size < target_size) {
31fd8581
YS
4379 if (ctx_field_size <= 4)
4380 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4381 (1 << size * 8) - 1);
31fd8581
YS
4382 else
4383 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4384 (1 << size * 8) - 1);
31fd8581 4385 }
9bac3d6d 4386
8041902d 4387 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4388 if (!new_prog)
4389 return -ENOMEM;
4390
3df126f3 4391 delta += cnt - 1;
9bac3d6d
AS
4392
4393 /* keep walking new program and skip insns we just inserted */
4394 env->prog = new_prog;
3df126f3 4395 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4396 }
4397
4398 return 0;
4399}
4400
79741b3b 4401/* fixup insn->imm field of bpf_call instructions
81ed18ab 4402 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4403 *
4404 * this function is called after eBPF program passed verification
4405 */
79741b3b 4406static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4407{
79741b3b
AS
4408 struct bpf_prog *prog = env->prog;
4409 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4410 const struct bpf_func_proto *fn;
79741b3b 4411 const int insn_cnt = prog->len;
81ed18ab
AS
4412 struct bpf_insn insn_buf[16];
4413 struct bpf_prog *new_prog;
4414 struct bpf_map *map_ptr;
4415 int i, cnt, delta = 0;
e245c5c6 4416
79741b3b
AS
4417 for (i = 0; i < insn_cnt; i++, insn++) {
4418 if (insn->code != (BPF_JMP | BPF_CALL))
4419 continue;
e245c5c6 4420
79741b3b
AS
4421 if (insn->imm == BPF_FUNC_get_route_realm)
4422 prog->dst_needed = 1;
4423 if (insn->imm == BPF_FUNC_get_prandom_u32)
4424 bpf_user_rnd_init_once();
79741b3b 4425 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4426 /* If we tail call into other programs, we
4427 * cannot make any assumptions since they can
4428 * be replaced dynamically during runtime in
4429 * the program array.
4430 */
4431 prog->cb_access = 1;
80a58d02 4432 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4433
79741b3b
AS
4434 /* mark bpf_tail_call as different opcode to avoid
4435 * conditional branch in the interpeter for every normal
4436 * call and to prevent accidental JITing by JIT compiler
4437 * that doesn't support bpf_tail_call yet
e245c5c6 4438 */
79741b3b 4439 insn->imm = 0;
71189fa9 4440 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4441 continue;
4442 }
e245c5c6 4443
89c63074
DB
4444 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4445 * handlers are currently limited to 64 bit only.
4446 */
4447 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4448 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4449 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4450 if (map_ptr == BPF_MAP_PTR_POISON ||
4451 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4452 goto patch_call_imm;
4453
4454 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4455 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4456 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4457 return -EINVAL;
4458 }
4459
4460 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4461 cnt);
4462 if (!new_prog)
4463 return -ENOMEM;
4464
4465 delta += cnt - 1;
4466
4467 /* keep walking new program and skip insns we just inserted */
4468 env->prog = prog = new_prog;
4469 insn = new_prog->insnsi + i + delta;
4470 continue;
4471 }
4472
109980b8 4473 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4474 /* Note, we cannot use prog directly as imm as subsequent
4475 * rewrites would still change the prog pointer. The only
4476 * stable address we can use is aux, which also works with
4477 * prog clones during blinding.
4478 */
4479 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4480 struct bpf_insn r4_ld[] = {
4481 BPF_LD_IMM64(BPF_REG_4, addr),
4482 *insn,
4483 };
4484 cnt = ARRAY_SIZE(r4_ld);
4485
4486 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4487 if (!new_prog)
4488 return -ENOMEM;
4489
4490 delta += cnt - 1;
4491 env->prog = prog = new_prog;
4492 insn = new_prog->insnsi + i + delta;
4493 }
81ed18ab 4494patch_call_imm:
00176a34 4495 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4496 /* all functions that have prototype and verifier allowed
4497 * programs to call them, must be real in-kernel functions
4498 */
4499 if (!fn->func) {
61bd5218
JK
4500 verbose(env,
4501 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4502 func_id_name(insn->imm), insn->imm);
4503 return -EFAULT;
e245c5c6 4504 }
79741b3b 4505 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4506 }
e245c5c6 4507
79741b3b
AS
4508 return 0;
4509}
e245c5c6 4510
58e2af8b 4511static void free_states(struct bpf_verifier_env *env)
f1bca824 4512{
58e2af8b 4513 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4514 int i;
4515
4516 if (!env->explored_states)
4517 return;
4518
4519 for (i = 0; i < env->prog->len; i++) {
4520 sl = env->explored_states[i];
4521
4522 if (sl)
4523 while (sl != STATE_LIST_MARK) {
4524 sln = sl->next;
1969db47 4525 free_verifier_state(&sl->state, false);
f1bca824
AS
4526 kfree(sl);
4527 sl = sln;
4528 }
4529 }
4530
4531 kfree(env->explored_states);
4532}
4533
9bac3d6d 4534int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4535{
58e2af8b 4536 struct bpf_verifier_env *env;
61bd5218 4537 struct bpf_verifer_log *log;
51580e79
AS
4538 int ret = -EINVAL;
4539
eba0c929
AB
4540 /* no program is valid */
4541 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4542 return -EINVAL;
4543
58e2af8b 4544 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4545 * allocate/free it every time bpf_check() is called
4546 */
58e2af8b 4547 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4548 if (!env)
4549 return -ENOMEM;
61bd5218 4550 log = &env->log;
cbd35700 4551
3df126f3
JK
4552 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4553 (*prog)->len);
4554 ret = -ENOMEM;
4555 if (!env->insn_aux_data)
4556 goto err_free_env;
9bac3d6d 4557 env->prog = *prog;
00176a34 4558 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4559
cbd35700
AS
4560 /* grab the mutex to protect few globals used by verifier */
4561 mutex_lock(&bpf_verifier_lock);
4562
4563 if (attr->log_level || attr->log_buf || attr->log_size) {
4564 /* user requested verbose verifier output
4565 * and supplied buffer to store the verification trace
4566 */
e7bf8249
JK
4567 log->level = attr->log_level;
4568 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4569 log->len_total = attr->log_size;
cbd35700
AS
4570
4571 ret = -EINVAL;
e7bf8249
JK
4572 /* log attributes have to be sane */
4573 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4574 !log->level || !log->ubuf)
3df126f3 4575 goto err_unlock;
cbd35700 4576 }
1ad2f583
DB
4577
4578 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4579 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4580 env->strict_alignment = true;
cbd35700 4581
ab3f0063
JK
4582 if (env->prog->aux->offload) {
4583 ret = bpf_prog_offload_verifier_prep(env);
4584 if (ret)
4585 goto err_unlock;
4586 }
4587
0246e64d
AS
4588 ret = replace_map_fd_with_map_ptr(env);
4589 if (ret < 0)
4590 goto skip_full_check;
4591
9bac3d6d 4592 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4593 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4594 GFP_USER);
4595 ret = -ENOMEM;
4596 if (!env->explored_states)
4597 goto skip_full_check;
4598
475fb78f
AS
4599 ret = check_cfg(env);
4600 if (ret < 0)
4601 goto skip_full_check;
4602
1be7f75d
AS
4603 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4604
17a52670 4605 ret = do_check(env);
8c01c4f8
CG
4606 if (env->cur_state) {
4607 free_verifier_state(env->cur_state, true);
4608 env->cur_state = NULL;
4609 }
cbd35700 4610
0246e64d 4611skip_full_check:
638f5b90 4612 while (!pop_stack(env, NULL, NULL));
f1bca824 4613 free_states(env);
0246e64d 4614
c131187d
AS
4615 if (ret == 0)
4616 sanitize_dead_code(env);
4617
9bac3d6d
AS
4618 if (ret == 0)
4619 /* program is valid, convert *(u32*)(ctx + off) accesses */
4620 ret = convert_ctx_accesses(env);
4621
e245c5c6 4622 if (ret == 0)
79741b3b 4623 ret = fixup_bpf_calls(env);
e245c5c6 4624
a2a7d570 4625 if (log->level && bpf_verifier_log_full(log))
cbd35700 4626 ret = -ENOSPC;
a2a7d570 4627 if (log->level && !log->ubuf) {
cbd35700 4628 ret = -EFAULT;
a2a7d570 4629 goto err_release_maps;
cbd35700
AS
4630 }
4631
0246e64d
AS
4632 if (ret == 0 && env->used_map_cnt) {
4633 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4634 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4635 sizeof(env->used_maps[0]),
4636 GFP_KERNEL);
0246e64d 4637
9bac3d6d 4638 if (!env->prog->aux->used_maps) {
0246e64d 4639 ret = -ENOMEM;
a2a7d570 4640 goto err_release_maps;
0246e64d
AS
4641 }
4642
9bac3d6d 4643 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4644 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4645 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4646
4647 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4648 * bpf_ld_imm64 instructions
4649 */
4650 convert_pseudo_ld_imm64(env);
4651 }
cbd35700 4652
a2a7d570 4653err_release_maps:
9bac3d6d 4654 if (!env->prog->aux->used_maps)
0246e64d
AS
4655 /* if we didn't copy map pointers into bpf_prog_info, release
4656 * them now. Otherwise free_bpf_prog_info() will release them.
4657 */
4658 release_maps(env);
9bac3d6d 4659 *prog = env->prog;
3df126f3 4660err_unlock:
cbd35700 4661 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4662 vfree(env->insn_aux_data);
4663err_free_env:
4664 kfree(env);
51580e79
AS
4665 return ret;
4666}