]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
net: cls_bpf: add support for marking filters as hardware-only
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
17#include <linux/filter.h>
18#include <net/netlink.h>
19#include <linux/file.h>
20#include <linux/vmalloc.h>
21
22/* bpf_check() is a static code analyzer that walks eBPF program
23 * instruction by instruction and updates register/stack state.
24 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
25 *
26 * The first pass is depth-first-search to check that the program is a DAG.
27 * It rejects the following programs:
28 * - larger than BPF_MAXINSNS insns
29 * - if loop is present (detected via back-edge)
30 * - unreachable insns exist (shouldn't be a forest. program = one function)
31 * - out of bounds or malformed jumps
32 * The second pass is all possible path descent from the 1st insn.
33 * Since it's analyzing all pathes through the program, the length of the
34 * analysis is limited to 32k insn, which may be hit even if total number of
35 * insn is less then 4K, but there are too many branches that change stack/regs.
36 * Number of 'branches to be analyzed' is limited to 1k
37 *
38 * On entry to each instruction, each register has a type, and the instruction
39 * changes the types of the registers depending on instruction semantics.
40 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
41 * copied to R1.
42 *
43 * All registers are 64-bit.
44 * R0 - return register
45 * R1-R5 argument passing registers
46 * R6-R9 callee saved registers
47 * R10 - frame pointer read-only
48 *
49 * At the start of BPF program the register R1 contains a pointer to bpf_context
50 * and has type PTR_TO_CTX.
51 *
52 * Verifier tracks arithmetic operations on pointers in case:
53 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
54 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
55 * 1st insn copies R10 (which has FRAME_PTR) type into R1
56 * and 2nd arithmetic instruction is pattern matched to recognize
57 * that it wants to construct a pointer to some element within stack.
58 * So after 2nd insn, the register R1 has type PTR_TO_STACK
59 * (and -20 constant is saved for further stack bounds checking).
60 * Meaning that this reg is a pointer to stack plus known immediate constant.
61 *
62 * Most of the time the registers have UNKNOWN_VALUE type, which
63 * means the register has some value, but it's not a valid pointer.
64 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
65 *
66 * When verifier sees load or store instructions the type of base register
67 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
68 * types recognized by check_mem_access() function.
69 *
70 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
71 * and the range of [ptr, ptr + map's value_size) is accessible.
72 *
73 * registers used to pass values to function calls are checked against
74 * function argument constraints.
75 *
76 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
77 * It means that the register type passed to this function must be
78 * PTR_TO_STACK and it will be used inside the function as
79 * 'pointer to map element key'
80 *
81 * For example the argument constraints for bpf_map_lookup_elem():
82 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
83 * .arg1_type = ARG_CONST_MAP_PTR,
84 * .arg2_type = ARG_PTR_TO_MAP_KEY,
85 *
86 * ret_type says that this function returns 'pointer to map elem value or null'
87 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
88 * 2nd argument should be a pointer to stack, which will be used inside
89 * the helper function as a pointer to map element key.
90 *
91 * On the kernel side the helper function looks like:
92 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
93 * {
94 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
95 * void *key = (void *) (unsigned long) r2;
96 * void *value;
97 *
98 * here kernel can access 'key' and 'map' pointers safely, knowing that
99 * [key, key + map->key_size) bytes are valid and were initialized on
100 * the stack of eBPF program.
101 * }
102 *
103 * Corresponding eBPF program may look like:
104 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
105 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
106 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
107 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
108 * here verifier looks at prototype of map_lookup_elem() and sees:
109 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
110 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
111 *
112 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
113 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
114 * and were initialized prior to this call.
115 * If it's ok, then verifier allows this BPF_CALL insn and looks at
116 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
117 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
118 * returns ether pointer to map value or NULL.
119 *
120 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
121 * insn, the register holding that pointer in the true branch changes state to
122 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
123 * branch. See check_cond_jmp_op().
124 *
125 * After the call R0 is set to return type of the function and registers R1-R5
126 * are set to NOT_INIT to indicate that they are no longer readable.
127 */
128
17a52670
AS
129struct reg_state {
130 enum bpf_reg_type type;
131 union {
969bf05e
AS
132 /* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
133 s64 imm;
134
135 /* valid when type == PTR_TO_PACKET* */
136 struct {
137 u32 id;
138 u16 off;
139 u16 range;
140 };
17a52670
AS
141
142 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
143 * PTR_TO_MAP_VALUE_OR_NULL
144 */
145 struct bpf_map *map_ptr;
146 };
147};
148
149enum bpf_stack_slot_type {
150 STACK_INVALID, /* nothing was stored in this stack slot */
9c399760 151 STACK_SPILL, /* register spilled into stack */
17a52670
AS
152 STACK_MISC /* BPF program wrote some data into this slot */
153};
154
9c399760 155#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
17a52670
AS
156
157/* state of the program:
158 * type of all registers and stack info
159 */
160struct verifier_state {
161 struct reg_state regs[MAX_BPF_REG];
9c399760
AS
162 u8 stack_slot_type[MAX_BPF_STACK];
163 struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
17a52670
AS
164};
165
166/* linked list of verifier states used to prune search */
167struct verifier_state_list {
168 struct verifier_state state;
169 struct verifier_state_list *next;
170};
171
172/* verifier_state + insn_idx are pushed to stack when branch is encountered */
173struct verifier_stack_elem {
174 /* verifer state is 'st'
175 * before processing instruction 'insn_idx'
176 * and after processing instruction 'prev_insn_idx'
177 */
178 struct verifier_state st;
179 int insn_idx;
180 int prev_insn_idx;
181 struct verifier_stack_elem *next;
182};
183
0246e64d
AS
184#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
185
cbd35700
AS
186/* single container for all structs
187 * one verifier_env per bpf_check() call
188 */
189struct verifier_env {
0246e64d 190 struct bpf_prog *prog; /* eBPF program being verified */
17a52670
AS
191 struct verifier_stack_elem *head; /* stack of verifier states to be processed */
192 int stack_size; /* number of states to be processed */
193 struct verifier_state cur_state; /* current verifier state */
f1bca824 194 struct verifier_state_list **explored_states; /* search pruning optimization */
0246e64d
AS
195 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
196 u32 used_map_cnt; /* number of used maps */
1f415a74 197 u32 id_gen; /* used to generate unique reg IDs */
1be7f75d 198 bool allow_ptr_leaks;
36bbef52 199 bool seen_direct_write;
cbd35700
AS
200};
201
07016151
DB
202#define BPF_COMPLEXITY_LIMIT_INSNS 65536
203#define BPF_COMPLEXITY_LIMIT_STACK 1024
204
33ff9823
DB
205struct bpf_call_arg_meta {
206 struct bpf_map *map_ptr;
435faee1 207 bool raw_mode;
36bbef52 208 bool pkt_access;
435faee1
DB
209 int regno;
210 int access_size;
33ff9823
DB
211};
212
cbd35700
AS
213/* verbose verifier prints what it's seeing
214 * bpf_check() is called under lock, so no race to access these global vars
215 */
216static u32 log_level, log_size, log_len;
217static char *log_buf;
218
219static DEFINE_MUTEX(bpf_verifier_lock);
220
221/* log_level controls verbosity level of eBPF verifier.
222 * verbose() is used to dump the verification trace to the log, so the user
223 * can figure out what's wrong with the program
224 */
1d056d9c 225static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
226{
227 va_list args;
228
229 if (log_level == 0 || log_len >= log_size - 1)
230 return;
231
232 va_start(args, fmt);
233 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
234 va_end(args);
235}
236
17a52670
AS
237/* string representation of 'enum bpf_reg_type' */
238static const char * const reg_type_str[] = {
239 [NOT_INIT] = "?",
240 [UNKNOWN_VALUE] = "inv",
241 [PTR_TO_CTX] = "ctx",
242 [CONST_PTR_TO_MAP] = "map_ptr",
243 [PTR_TO_MAP_VALUE] = "map_value",
244 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
245 [FRAME_PTR] = "fp",
246 [PTR_TO_STACK] = "fp",
247 [CONST_IMM] = "imm",
969bf05e
AS
248 [PTR_TO_PACKET] = "pkt",
249 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
250};
251
1a0dc1ac 252static void print_verifier_state(struct verifier_state *state)
17a52670 253{
1a0dc1ac 254 struct reg_state *reg;
17a52670
AS
255 enum bpf_reg_type t;
256 int i;
257
258 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
259 reg = &state->regs[i];
260 t = reg->type;
17a52670
AS
261 if (t == NOT_INIT)
262 continue;
263 verbose(" R%d=%s", i, reg_type_str[t]);
264 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
265 verbose("%lld", reg->imm);
266 else if (t == PTR_TO_PACKET)
267 verbose("(id=%d,off=%d,r=%d)",
268 reg->id, reg->off, reg->range);
269 else if (t == UNKNOWN_VALUE && reg->imm)
270 verbose("%lld", reg->imm);
17a52670
AS
271 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
272 t == PTR_TO_MAP_VALUE_OR_NULL)
273 verbose("(ks=%d,vs=%d)",
1a0dc1ac
AS
274 reg->map_ptr->key_size,
275 reg->map_ptr->value_size);
17a52670 276 }
9c399760 277 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 278 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 279 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 280 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
281 }
282 verbose("\n");
283}
284
cbd35700
AS
285static const char *const bpf_class_string[] = {
286 [BPF_LD] = "ld",
287 [BPF_LDX] = "ldx",
288 [BPF_ST] = "st",
289 [BPF_STX] = "stx",
290 [BPF_ALU] = "alu",
291 [BPF_JMP] = "jmp",
292 [BPF_RET] = "BUG",
293 [BPF_ALU64] = "alu64",
294};
295
687f0715 296static const char *const bpf_alu_string[16] = {
cbd35700
AS
297 [BPF_ADD >> 4] = "+=",
298 [BPF_SUB >> 4] = "-=",
299 [BPF_MUL >> 4] = "*=",
300 [BPF_DIV >> 4] = "/=",
301 [BPF_OR >> 4] = "|=",
302 [BPF_AND >> 4] = "&=",
303 [BPF_LSH >> 4] = "<<=",
304 [BPF_RSH >> 4] = ">>=",
305 [BPF_NEG >> 4] = "neg",
306 [BPF_MOD >> 4] = "%=",
307 [BPF_XOR >> 4] = "^=",
308 [BPF_MOV >> 4] = "=",
309 [BPF_ARSH >> 4] = "s>>=",
310 [BPF_END >> 4] = "endian",
311};
312
313static const char *const bpf_ldst_string[] = {
314 [BPF_W >> 3] = "u32",
315 [BPF_H >> 3] = "u16",
316 [BPF_B >> 3] = "u8",
317 [BPF_DW >> 3] = "u64",
318};
319
687f0715 320static const char *const bpf_jmp_string[16] = {
cbd35700
AS
321 [BPF_JA >> 4] = "jmp",
322 [BPF_JEQ >> 4] = "==",
323 [BPF_JGT >> 4] = ">",
324 [BPF_JGE >> 4] = ">=",
325 [BPF_JSET >> 4] = "&",
326 [BPF_JNE >> 4] = "!=",
327 [BPF_JSGT >> 4] = "s>",
328 [BPF_JSGE >> 4] = "s>=",
329 [BPF_CALL >> 4] = "call",
330 [BPF_EXIT >> 4] = "exit",
331};
332
333static void print_bpf_insn(struct bpf_insn *insn)
334{
335 u8 class = BPF_CLASS(insn->code);
336
337 if (class == BPF_ALU || class == BPF_ALU64) {
338 if (BPF_SRC(insn->code) == BPF_X)
339 verbose("(%02x) %sr%d %s %sr%d\n",
340 insn->code, class == BPF_ALU ? "(u32) " : "",
341 insn->dst_reg,
342 bpf_alu_string[BPF_OP(insn->code) >> 4],
343 class == BPF_ALU ? "(u32) " : "",
344 insn->src_reg);
345 else
346 verbose("(%02x) %sr%d %s %s%d\n",
347 insn->code, class == BPF_ALU ? "(u32) " : "",
348 insn->dst_reg,
349 bpf_alu_string[BPF_OP(insn->code) >> 4],
350 class == BPF_ALU ? "(u32) " : "",
351 insn->imm);
352 } else if (class == BPF_STX) {
353 if (BPF_MODE(insn->code) == BPF_MEM)
354 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->dst_reg,
358 insn->off, insn->src_reg);
359 else if (BPF_MODE(insn->code) == BPF_XADD)
360 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
361 insn->code,
362 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
363 insn->dst_reg, insn->off,
364 insn->src_reg);
365 else
366 verbose("BUG_%02x\n", insn->code);
367 } else if (class == BPF_ST) {
368 if (BPF_MODE(insn->code) != BPF_MEM) {
369 verbose("BUG_st_%02x\n", insn->code);
370 return;
371 }
372 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
373 insn->code,
374 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
375 insn->dst_reg,
376 insn->off, insn->imm);
377 } else if (class == BPF_LDX) {
378 if (BPF_MODE(insn->code) != BPF_MEM) {
379 verbose("BUG_ldx_%02x\n", insn->code);
380 return;
381 }
382 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
383 insn->code, insn->dst_reg,
384 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
385 insn->src_reg, insn->off);
386 } else if (class == BPF_LD) {
387 if (BPF_MODE(insn->code) == BPF_ABS) {
388 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
389 insn->code,
390 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
391 insn->imm);
392 } else if (BPF_MODE(insn->code) == BPF_IND) {
393 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
394 insn->code,
395 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
396 insn->src_reg, insn->imm);
397 } else if (BPF_MODE(insn->code) == BPF_IMM) {
398 verbose("(%02x) r%d = 0x%x\n",
399 insn->code, insn->dst_reg, insn->imm);
400 } else {
401 verbose("BUG_ld_%02x\n", insn->code);
402 return;
403 }
404 } else if (class == BPF_JMP) {
405 u8 opcode = BPF_OP(insn->code);
406
407 if (opcode == BPF_CALL) {
408 verbose("(%02x) call %d\n", insn->code, insn->imm);
409 } else if (insn->code == (BPF_JMP | BPF_JA)) {
410 verbose("(%02x) goto pc%+d\n",
411 insn->code, insn->off);
412 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
413 verbose("(%02x) exit\n", insn->code);
414 } else if (BPF_SRC(insn->code) == BPF_X) {
415 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
416 insn->code, insn->dst_reg,
417 bpf_jmp_string[BPF_OP(insn->code) >> 4],
418 insn->src_reg, insn->off);
419 } else {
420 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
421 insn->code, insn->dst_reg,
422 bpf_jmp_string[BPF_OP(insn->code) >> 4],
423 insn->imm, insn->off);
424 }
425 } else {
426 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
427 }
428}
429
17a52670
AS
430static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
431{
432 struct verifier_stack_elem *elem;
433 int insn_idx;
434
435 if (env->head == NULL)
436 return -1;
437
438 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
439 insn_idx = env->head->insn_idx;
440 if (prev_insn_idx)
441 *prev_insn_idx = env->head->prev_insn_idx;
442 elem = env->head->next;
443 kfree(env->head);
444 env->head = elem;
445 env->stack_size--;
446 return insn_idx;
447}
448
449static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
450 int prev_insn_idx)
451{
452 struct verifier_stack_elem *elem;
453
454 elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
455 if (!elem)
456 goto err;
457
458 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
459 elem->insn_idx = insn_idx;
460 elem->prev_insn_idx = prev_insn_idx;
461 elem->next = env->head;
462 env->head = elem;
463 env->stack_size++;
07016151 464 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
465 verbose("BPF program is too complex\n");
466 goto err;
467 }
468 return &elem->st;
469err:
470 /* pop all elements and return */
471 while (pop_stack(env, NULL) >= 0);
472 return NULL;
473}
474
475#define CALLER_SAVED_REGS 6
476static const int caller_saved[CALLER_SAVED_REGS] = {
477 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
478};
479
480static void init_reg_state(struct reg_state *regs)
481{
482 int i;
483
484 for (i = 0; i < MAX_BPF_REG; i++) {
485 regs[i].type = NOT_INIT;
486 regs[i].imm = 0;
17a52670
AS
487 }
488
489 /* frame pointer */
490 regs[BPF_REG_FP].type = FRAME_PTR;
491
492 /* 1st arg to a function */
493 regs[BPF_REG_1].type = PTR_TO_CTX;
494}
495
496static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
497{
498 BUG_ON(regno >= MAX_BPF_REG);
499 regs[regno].type = UNKNOWN_VALUE;
500 regs[regno].imm = 0;
17a52670
AS
501}
502
503enum reg_arg_type {
504 SRC_OP, /* register is used as source operand */
505 DST_OP, /* register is used as destination operand */
506 DST_OP_NO_MARK /* same as above, check only, don't mark */
507};
508
509static int check_reg_arg(struct reg_state *regs, u32 regno,
510 enum reg_arg_type t)
511{
512 if (regno >= MAX_BPF_REG) {
513 verbose("R%d is invalid\n", regno);
514 return -EINVAL;
515 }
516
517 if (t == SRC_OP) {
518 /* check whether register used as source operand can be read */
519 if (regs[regno].type == NOT_INIT) {
520 verbose("R%d !read_ok\n", regno);
521 return -EACCES;
522 }
523 } else {
524 /* check whether register used as dest operand can be written to */
525 if (regno == BPF_REG_FP) {
526 verbose("frame pointer is read only\n");
527 return -EACCES;
528 }
529 if (t == DST_OP)
530 mark_reg_unknown_value(regs, regno);
531 }
532 return 0;
533}
534
535static int bpf_size_to_bytes(int bpf_size)
536{
537 if (bpf_size == BPF_W)
538 return 4;
539 else if (bpf_size == BPF_H)
540 return 2;
541 else if (bpf_size == BPF_B)
542 return 1;
543 else if (bpf_size == BPF_DW)
544 return 8;
545 else
546 return -EINVAL;
547}
548
1be7f75d
AS
549static bool is_spillable_regtype(enum bpf_reg_type type)
550{
551 switch (type) {
552 case PTR_TO_MAP_VALUE:
553 case PTR_TO_MAP_VALUE_OR_NULL:
554 case PTR_TO_STACK:
555 case PTR_TO_CTX:
969bf05e
AS
556 case PTR_TO_PACKET:
557 case PTR_TO_PACKET_END:
1be7f75d
AS
558 case FRAME_PTR:
559 case CONST_PTR_TO_MAP:
560 return true;
561 default:
562 return false;
563 }
564}
565
17a52670
AS
566/* check_stack_read/write functions track spill/fill of registers,
567 * stack boundary and alignment are checked in check_mem_access()
568 */
569static int check_stack_write(struct verifier_state *state, int off, int size,
570 int value_regno)
571{
17a52670 572 int i;
9c399760
AS
573 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
574 * so it's aligned access and [off, off + size) are within stack limits
575 */
17a52670
AS
576
577 if (value_regno >= 0 &&
1be7f75d 578 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
579
580 /* register containing pointer is being spilled into stack */
9c399760 581 if (size != BPF_REG_SIZE) {
17a52670
AS
582 verbose("invalid size of register spill\n");
583 return -EACCES;
584 }
585
17a52670 586 /* save register state */
9c399760
AS
587 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
588 state->regs[value_regno];
17a52670 589
9c399760
AS
590 for (i = 0; i < BPF_REG_SIZE; i++)
591 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
592 } else {
17a52670 593 /* regular write of data into stack */
9c399760
AS
594 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
595 (struct reg_state) {};
596
597 for (i = 0; i < size; i++)
598 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
599 }
600 return 0;
601}
602
603static int check_stack_read(struct verifier_state *state, int off, int size,
604 int value_regno)
605{
9c399760 606 u8 *slot_type;
17a52670 607 int i;
17a52670 608
9c399760 609 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 610
9c399760
AS
611 if (slot_type[0] == STACK_SPILL) {
612 if (size != BPF_REG_SIZE) {
17a52670
AS
613 verbose("invalid size of register spill\n");
614 return -EACCES;
615 }
9c399760
AS
616 for (i = 1; i < BPF_REG_SIZE; i++) {
617 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
618 verbose("corrupted spill memory\n");
619 return -EACCES;
620 }
621 }
622
623 if (value_regno >= 0)
624 /* restore register state from stack */
9c399760
AS
625 state->regs[value_regno] =
626 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
627 return 0;
628 } else {
629 for (i = 0; i < size; i++) {
9c399760 630 if (slot_type[i] != STACK_MISC) {
17a52670
AS
631 verbose("invalid read from stack off %d+%d size %d\n",
632 off, i, size);
633 return -EACCES;
634 }
635 }
636 if (value_regno >= 0)
637 /* have read misc data from the stack */
638 mark_reg_unknown_value(state->regs, value_regno);
639 return 0;
640 }
641}
642
643/* check read/write into map element returned by bpf_map_lookup_elem() */
644static int check_map_access(struct verifier_env *env, u32 regno, int off,
645 int size)
646{
647 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
648
649 if (off < 0 || off + size > map->value_size) {
650 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
651 map->value_size, off, size);
652 return -EACCES;
653 }
654 return 0;
655}
656
969bf05e
AS
657#define MAX_PACKET_OFF 0xffff
658
36bbef52
DB
659static bool may_access_direct_pkt_data(struct verifier_env *env,
660 const struct bpf_call_arg_meta *meta)
4acf6c0b 661{
36bbef52
DB
662 switch (env->prog->type) {
663 case BPF_PROG_TYPE_SCHED_CLS:
664 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 665 case BPF_PROG_TYPE_XDP:
36bbef52
DB
666 if (meta)
667 return meta->pkt_access;
668
669 env->seen_direct_write = true;
4acf6c0b
BB
670 return true;
671 default:
672 return false;
673 }
674}
675
969bf05e
AS
676static int check_packet_access(struct verifier_env *env, u32 regno, int off,
677 int size)
678{
679 struct reg_state *regs = env->cur_state.regs;
680 struct reg_state *reg = &regs[regno];
969bf05e 681
d91b28ed 682 off += reg->off;
b399cf64 683 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
684 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
685 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
686 return -EACCES;
687 }
688 return 0;
689}
690
17a52670
AS
691/* check access to 'struct bpf_context' fields */
692static int check_ctx_access(struct verifier_env *env, int off, int size,
19de99f7 693 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670
AS
694{
695 if (env->prog->aux->ops->is_valid_access &&
19de99f7 696 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
697 /* remember the offset of last byte accessed in ctx */
698 if (env->prog->aux->max_ctx_offset < off + size)
699 env->prog->aux->max_ctx_offset = off + size;
17a52670 700 return 0;
32bbe007 701 }
17a52670
AS
702
703 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
704 return -EACCES;
705}
706
1be7f75d
AS
707static bool is_pointer_value(struct verifier_env *env, int regno)
708{
709 if (env->allow_ptr_leaks)
710 return false;
711
712 switch (env->cur_state.regs[regno].type) {
713 case UNKNOWN_VALUE:
714 case CONST_IMM:
715 return false;
716 default:
717 return true;
718 }
719}
720
969bf05e
AS
721static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
722 int off, int size)
723{
724 if (reg->type != PTR_TO_PACKET) {
725 if (off % size != 0) {
726 verbose("misaligned access off %d size %d\n", off, size);
727 return -EACCES;
728 } else {
729 return 0;
730 }
731 }
732
733 switch (env->prog->type) {
734 case BPF_PROG_TYPE_SCHED_CLS:
735 case BPF_PROG_TYPE_SCHED_ACT:
6a773a15 736 case BPF_PROG_TYPE_XDP:
969bf05e
AS
737 break;
738 default:
739 verbose("verifier is misconfigured\n");
740 return -EACCES;
741 }
742
743 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
744 /* misaligned access to packet is ok on x86,arm,arm64 */
745 return 0;
746
747 if (reg->id && size != 1) {
748 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
749 return -EACCES;
750 }
751
752 /* skb->data is NET_IP_ALIGN-ed */
753 if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
754 verbose("misaligned packet access off %d+%d+%d size %d\n",
755 NET_IP_ALIGN, reg->off, off, size);
756 return -EACCES;
757 }
758 return 0;
759}
760
17a52670
AS
761/* check whether memory at (regno + off) is accessible for t = (read | write)
762 * if t==write, value_regno is a register which value is stored into memory
763 * if t==read, value_regno is a register which will receive the value from memory
764 * if t==write && value_regno==-1, some unknown value is stored into memory
765 * if t==read && value_regno==-1, don't care what we read from memory
766 */
767static int check_mem_access(struct verifier_env *env, u32 regno, int off,
768 int bpf_size, enum bpf_access_type t,
769 int value_regno)
770{
771 struct verifier_state *state = &env->cur_state;
1a0dc1ac 772 struct reg_state *reg = &state->regs[regno];
17a52670
AS
773 int size, err = 0;
774
1a0dc1ac
AS
775 if (reg->type == PTR_TO_STACK)
776 off += reg->imm;
24b4d2ab 777
17a52670
AS
778 size = bpf_size_to_bytes(bpf_size);
779 if (size < 0)
780 return size;
781
969bf05e
AS
782 err = check_ptr_alignment(env, reg, off, size);
783 if (err)
784 return err;
17a52670 785
1a0dc1ac 786 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
787 if (t == BPF_WRITE && value_regno >= 0 &&
788 is_pointer_value(env, value_regno)) {
789 verbose("R%d leaks addr into map\n", value_regno);
790 return -EACCES;
791 }
17a52670
AS
792 err = check_map_access(env, regno, off, size);
793 if (!err && t == BPF_READ && value_regno >= 0)
794 mark_reg_unknown_value(state->regs, value_regno);
795
1a0dc1ac 796 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
797 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
798
1be7f75d
AS
799 if (t == BPF_WRITE && value_regno >= 0 &&
800 is_pointer_value(env, value_regno)) {
801 verbose("R%d leaks addr into ctx\n", value_regno);
802 return -EACCES;
803 }
19de99f7 804 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 805 if (!err && t == BPF_READ && value_regno >= 0) {
17a52670 806 mark_reg_unknown_value(state->regs, value_regno);
19de99f7 807 if (env->allow_ptr_leaks)
969bf05e 808 /* note that reg.[id|off|range] == 0 */
19de99f7 809 state->regs[value_regno].type = reg_type;
969bf05e 810 }
17a52670 811
1a0dc1ac 812 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
813 if (off >= 0 || off < -MAX_BPF_STACK) {
814 verbose("invalid stack off=%d size=%d\n", off, size);
815 return -EACCES;
816 }
1be7f75d
AS
817 if (t == BPF_WRITE) {
818 if (!env->allow_ptr_leaks &&
819 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
820 size != BPF_REG_SIZE) {
821 verbose("attempt to corrupt spilled pointer on stack\n");
822 return -EACCES;
823 }
17a52670 824 err = check_stack_write(state, off, size, value_regno);
1be7f75d 825 } else {
17a52670 826 err = check_stack_read(state, off, size, value_regno);
1be7f75d 827 }
969bf05e 828 } else if (state->regs[regno].type == PTR_TO_PACKET) {
36bbef52 829 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL)) {
969bf05e
AS
830 verbose("cannot write into packet\n");
831 return -EACCES;
832 }
4acf6c0b
BB
833 if (t == BPF_WRITE && value_regno >= 0 &&
834 is_pointer_value(env, value_regno)) {
835 verbose("R%d leaks addr into packet\n", value_regno);
836 return -EACCES;
837 }
969bf05e
AS
838 err = check_packet_access(env, regno, off, size);
839 if (!err && t == BPF_READ && value_regno >= 0)
840 mark_reg_unknown_value(state->regs, value_regno);
17a52670
AS
841 } else {
842 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 843 regno, reg_type_str[reg->type]);
17a52670
AS
844 return -EACCES;
845 }
969bf05e
AS
846
847 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
848 state->regs[value_regno].type == UNKNOWN_VALUE) {
849 /* 1 or 2 byte load zero-extends, determine the number of
850 * zero upper bits. Not doing it fo 4 byte load, since
851 * such values cannot be added to ptr_to_packet anyway.
852 */
853 state->regs[value_regno].imm = 64 - size * 8;
854 }
17a52670
AS
855 return err;
856}
857
858static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
859{
860 struct reg_state *regs = env->cur_state.regs;
861 int err;
862
863 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
864 insn->imm != 0) {
865 verbose("BPF_XADD uses reserved fields\n");
866 return -EINVAL;
867 }
868
869 /* check src1 operand */
870 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
871 if (err)
872 return err;
873
874 /* check src2 operand */
875 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
876 if (err)
877 return err;
878
879 /* check whether atomic_add can read the memory */
880 err = check_mem_access(env, insn->dst_reg, insn->off,
881 BPF_SIZE(insn->code), BPF_READ, -1);
882 if (err)
883 return err;
884
885 /* check whether atomic_add can write into the same memory */
886 return check_mem_access(env, insn->dst_reg, insn->off,
887 BPF_SIZE(insn->code), BPF_WRITE, -1);
888}
889
890/* when register 'regno' is passed into function that will read 'access_size'
891 * bytes from that pointer, make sure that it's within stack boundary
892 * and all elements of stack are initialized
893 */
8e2fe1d9 894static int check_stack_boundary(struct verifier_env *env, int regno,
435faee1
DB
895 int access_size, bool zero_size_allowed,
896 struct bpf_call_arg_meta *meta)
17a52670
AS
897{
898 struct verifier_state *state = &env->cur_state;
899 struct reg_state *regs = state->regs;
900 int off, i;
901
8e2fe1d9
DB
902 if (regs[regno].type != PTR_TO_STACK) {
903 if (zero_size_allowed && access_size == 0 &&
904 regs[regno].type == CONST_IMM &&
905 regs[regno].imm == 0)
906 return 0;
907
908 verbose("R%d type=%s expected=%s\n", regno,
909 reg_type_str[regs[regno].type],
910 reg_type_str[PTR_TO_STACK]);
17a52670 911 return -EACCES;
8e2fe1d9 912 }
17a52670
AS
913
914 off = regs[regno].imm;
915 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
916 access_size <= 0) {
917 verbose("invalid stack type R%d off=%d access_size=%d\n",
918 regno, off, access_size);
919 return -EACCES;
920 }
921
435faee1
DB
922 if (meta && meta->raw_mode) {
923 meta->access_size = access_size;
924 meta->regno = regno;
925 return 0;
926 }
927
17a52670 928 for (i = 0; i < access_size; i++) {
9c399760 929 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
930 verbose("invalid indirect read from stack off %d+%d size %d\n",
931 off, i, access_size);
932 return -EACCES;
933 }
934 }
935 return 0;
936}
937
938static int check_func_arg(struct verifier_env *env, u32 regno,
33ff9823
DB
939 enum bpf_arg_type arg_type,
940 struct bpf_call_arg_meta *meta)
17a52670 941{
6841de8b
AS
942 struct reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
943 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
944 int err = 0;
945
80f1d68c 946 if (arg_type == ARG_DONTCARE)
17a52670
AS
947 return 0;
948
6841de8b 949 if (type == NOT_INIT) {
17a52670
AS
950 verbose("R%d !read_ok\n", regno);
951 return -EACCES;
952 }
953
1be7f75d
AS
954 if (arg_type == ARG_ANYTHING) {
955 if (is_pointer_value(env, regno)) {
956 verbose("R%d leaks addr into helper function\n", regno);
957 return -EACCES;
958 }
80f1d68c 959 return 0;
1be7f75d 960 }
80f1d68c 961
36bbef52
DB
962 if (type == PTR_TO_PACKET && !may_access_direct_pkt_data(env, meta)) {
963 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
964 return -EACCES;
965 }
966
8e2fe1d9 967 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
968 arg_type == ARG_PTR_TO_MAP_VALUE) {
969 expected_type = PTR_TO_STACK;
6841de8b
AS
970 if (type != PTR_TO_PACKET && type != expected_type)
971 goto err_type;
8e2fe1d9
DB
972 } else if (arg_type == ARG_CONST_STACK_SIZE ||
973 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 974 expected_type = CONST_IMM;
6841de8b
AS
975 if (type != expected_type)
976 goto err_type;
17a52670
AS
977 } else if (arg_type == ARG_CONST_MAP_PTR) {
978 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
979 if (type != expected_type)
980 goto err_type;
608cd71a
AS
981 } else if (arg_type == ARG_PTR_TO_CTX) {
982 expected_type = PTR_TO_CTX;
6841de8b
AS
983 if (type != expected_type)
984 goto err_type;
435faee1
DB
985 } else if (arg_type == ARG_PTR_TO_STACK ||
986 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
987 expected_type = PTR_TO_STACK;
988 /* One exception here. In case function allows for NULL to be
989 * passed in as argument, it's a CONST_IMM type. Final test
990 * happens during stack boundary checking.
991 */
6841de8b
AS
992 if (type == CONST_IMM && reg->imm == 0)
993 /* final test in check_stack_boundary() */;
994 else if (type != PTR_TO_PACKET && type != expected_type)
995 goto err_type;
435faee1 996 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
997 } else {
998 verbose("unsupported arg_type %d\n", arg_type);
999 return -EFAULT;
1000 }
1001
17a52670
AS
1002 if (arg_type == ARG_CONST_MAP_PTR) {
1003 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1004 meta->map_ptr = reg->map_ptr;
17a52670
AS
1005 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1006 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1007 * check that [key, key + map->key_size) are within
1008 * stack limits and initialized
1009 */
33ff9823 1010 if (!meta->map_ptr) {
17a52670
AS
1011 /* in function declaration map_ptr must come before
1012 * map_key, so that it's verified and known before
1013 * we have to check map_key here. Otherwise it means
1014 * that kernel subsystem misconfigured verifier
1015 */
1016 verbose("invalid map_ptr to access map->key\n");
1017 return -EACCES;
1018 }
6841de8b
AS
1019 if (type == PTR_TO_PACKET)
1020 err = check_packet_access(env, regno, 0,
1021 meta->map_ptr->key_size);
1022 else
1023 err = check_stack_boundary(env, regno,
1024 meta->map_ptr->key_size,
1025 false, NULL);
17a52670
AS
1026 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1027 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1028 * check [value, value + map->value_size) validity
1029 */
33ff9823 1030 if (!meta->map_ptr) {
17a52670
AS
1031 /* kernel subsystem misconfigured verifier */
1032 verbose("invalid map_ptr to access map->value\n");
1033 return -EACCES;
1034 }
6841de8b
AS
1035 if (type == PTR_TO_PACKET)
1036 err = check_packet_access(env, regno, 0,
1037 meta->map_ptr->value_size);
1038 else
1039 err = check_stack_boundary(env, regno,
1040 meta->map_ptr->value_size,
1041 false, NULL);
8e2fe1d9
DB
1042 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1043 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1044 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1045
17a52670
AS
1046 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1047 * from stack pointer 'buf'. Check it
1048 * note: regno == len, regno - 1 == buf
1049 */
1050 if (regno == 0) {
1051 /* kernel subsystem misconfigured verifier */
1052 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1053 return -EACCES;
1054 }
6841de8b
AS
1055 if (regs[regno - 1].type == PTR_TO_PACKET)
1056 err = check_packet_access(env, regno - 1, 0, reg->imm);
1057 else
1058 err = check_stack_boundary(env, regno - 1, reg->imm,
1059 zero_size_allowed, meta);
17a52670
AS
1060 }
1061
1062 return err;
6841de8b
AS
1063err_type:
1064 verbose("R%d type=%s expected=%s\n", regno,
1065 reg_type_str[type], reg_type_str[expected_type]);
1066 return -EACCES;
17a52670
AS
1067}
1068
35578d79
KX
1069static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1070{
35578d79
KX
1071 if (!map)
1072 return 0;
1073
6aff67c8
AS
1074 /* We need a two way check, first is from map perspective ... */
1075 switch (map->map_type) {
1076 case BPF_MAP_TYPE_PROG_ARRAY:
1077 if (func_id != BPF_FUNC_tail_call)
1078 goto error;
1079 break;
1080 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1081 if (func_id != BPF_FUNC_perf_event_read &&
1082 func_id != BPF_FUNC_perf_event_output)
1083 goto error;
1084 break;
1085 case BPF_MAP_TYPE_STACK_TRACE:
1086 if (func_id != BPF_FUNC_get_stackid)
1087 goto error;
1088 break;
4ed8ec52 1089 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1090 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1091 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1092 goto error;
1093 break;
6aff67c8
AS
1094 default:
1095 break;
1096 }
1097
1098 /* ... and second from the function itself. */
1099 switch (func_id) {
1100 case BPF_FUNC_tail_call:
1101 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1102 goto error;
1103 break;
1104 case BPF_FUNC_perf_event_read:
1105 case BPF_FUNC_perf_event_output:
1106 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1107 goto error;
1108 break;
1109 case BPF_FUNC_get_stackid:
1110 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1111 goto error;
1112 break;
60d20f91 1113 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1114 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1115 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1116 goto error;
1117 break;
6aff67c8
AS
1118 default:
1119 break;
35578d79
KX
1120 }
1121
1122 return 0;
6aff67c8
AS
1123error:
1124 verbose("cannot pass map_type %d into func %d\n",
1125 map->map_type, func_id);
1126 return -EINVAL;
35578d79
KX
1127}
1128
435faee1
DB
1129static int check_raw_mode(const struct bpf_func_proto *fn)
1130{
1131 int count = 0;
1132
1133 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1134 count++;
1135 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1136 count++;
1137 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1138 count++;
1139 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1140 count++;
1141 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1142 count++;
1143
1144 return count > 1 ? -EINVAL : 0;
1145}
1146
969bf05e
AS
1147static void clear_all_pkt_pointers(struct verifier_env *env)
1148{
1149 struct verifier_state *state = &env->cur_state;
1150 struct reg_state *regs = state->regs, *reg;
1151 int i;
1152
1153 for (i = 0; i < MAX_BPF_REG; i++)
1154 if (regs[i].type == PTR_TO_PACKET ||
1155 regs[i].type == PTR_TO_PACKET_END)
1156 mark_reg_unknown_value(regs, i);
1157
1158 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1159 if (state->stack_slot_type[i] != STACK_SPILL)
1160 continue;
1161 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1162 if (reg->type != PTR_TO_PACKET &&
1163 reg->type != PTR_TO_PACKET_END)
1164 continue;
1165 reg->type = UNKNOWN_VALUE;
1166 reg->imm = 0;
1167 }
1168}
1169
17a52670
AS
1170static int check_call(struct verifier_env *env, int func_id)
1171{
1172 struct verifier_state *state = &env->cur_state;
1173 const struct bpf_func_proto *fn = NULL;
1174 struct reg_state *regs = state->regs;
17a52670 1175 struct reg_state *reg;
33ff9823 1176 struct bpf_call_arg_meta meta;
969bf05e 1177 bool changes_data;
17a52670
AS
1178 int i, err;
1179
1180 /* find function prototype */
1181 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1182 verbose("invalid func %d\n", func_id);
1183 return -EINVAL;
1184 }
1185
1186 if (env->prog->aux->ops->get_func_proto)
1187 fn = env->prog->aux->ops->get_func_proto(func_id);
1188
1189 if (!fn) {
1190 verbose("unknown func %d\n", func_id);
1191 return -EINVAL;
1192 }
1193
1194 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1195 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1196 verbose("cannot call GPL only function from proprietary program\n");
1197 return -EINVAL;
1198 }
1199
969bf05e
AS
1200 changes_data = bpf_helper_changes_skb_data(fn->func);
1201
33ff9823 1202 memset(&meta, 0, sizeof(meta));
36bbef52 1203 meta.pkt_access = fn->pkt_access;
33ff9823 1204
435faee1
DB
1205 /* We only support one arg being in raw mode at the moment, which
1206 * is sufficient for the helper functions we have right now.
1207 */
1208 err = check_raw_mode(fn);
1209 if (err) {
1210 verbose("kernel subsystem misconfigured func %d\n", func_id);
1211 return err;
1212 }
1213
17a52670 1214 /* check args */
33ff9823 1215 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1216 if (err)
1217 return err;
33ff9823 1218 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1219 if (err)
1220 return err;
33ff9823 1221 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1222 if (err)
1223 return err;
33ff9823 1224 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1225 if (err)
1226 return err;
33ff9823 1227 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1228 if (err)
1229 return err;
1230
435faee1
DB
1231 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1232 * is inferred from register state.
1233 */
1234 for (i = 0; i < meta.access_size; i++) {
1235 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1236 if (err)
1237 return err;
1238 }
1239
17a52670
AS
1240 /* reset caller saved regs */
1241 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1242 reg = regs + caller_saved[i];
1243 reg->type = NOT_INIT;
1244 reg->imm = 0;
1245 }
1246
1247 /* update return register */
1248 if (fn->ret_type == RET_INTEGER) {
1249 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1250 } else if (fn->ret_type == RET_VOID) {
1251 regs[BPF_REG_0].type = NOT_INIT;
1252 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1253 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1254 /* remember map_ptr, so that check_map_access()
1255 * can check 'value_size' boundary of memory access
1256 * to map element returned from bpf_map_lookup_elem()
1257 */
33ff9823 1258 if (meta.map_ptr == NULL) {
17a52670
AS
1259 verbose("kernel subsystem misconfigured verifier\n");
1260 return -EINVAL;
1261 }
33ff9823 1262 regs[BPF_REG_0].map_ptr = meta.map_ptr;
17a52670
AS
1263 } else {
1264 verbose("unknown return type %d of func %d\n",
1265 fn->ret_type, func_id);
1266 return -EINVAL;
1267 }
04fd61ab 1268
33ff9823 1269 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1270 if (err)
1271 return err;
04fd61ab 1272
969bf05e
AS
1273 if (changes_data)
1274 clear_all_pkt_pointers(env);
1275 return 0;
1276}
1277
1278static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
1279{
1280 struct reg_state *regs = env->cur_state.regs;
1281 struct reg_state *dst_reg = &regs[insn->dst_reg];
1282 struct reg_state *src_reg = &regs[insn->src_reg];
1b9b69ec 1283 struct reg_state tmp_reg;
969bf05e
AS
1284 s32 imm;
1285
1286 if (BPF_SRC(insn->code) == BPF_K) {
1287 /* pkt_ptr += imm */
1288 imm = insn->imm;
1289
1290add_imm:
1291 if (imm <= 0) {
1292 verbose("addition of negative constant to packet pointer is not allowed\n");
1293 return -EACCES;
1294 }
1295 if (imm >= MAX_PACKET_OFF ||
1296 imm + dst_reg->off >= MAX_PACKET_OFF) {
1297 verbose("constant %d is too large to add to packet pointer\n",
1298 imm);
1299 return -EACCES;
1300 }
1301 /* a constant was added to pkt_ptr.
1302 * Remember it while keeping the same 'id'
1303 */
1304 dst_reg->off += imm;
1305 } else {
1b9b69ec
AS
1306 if (src_reg->type == PTR_TO_PACKET) {
1307 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1308 tmp_reg = *dst_reg; /* save r7 state */
1309 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1310 src_reg = &tmp_reg; /* pretend it's src_reg state */
1311 /* if the checks below reject it, the copy won't matter,
1312 * since we're rejecting the whole program. If all ok,
1313 * then imm22 state will be added to r7
1314 * and r7 will be pkt(id=0,off=22,r=62) while
1315 * r6 will stay as pkt(id=0,off=0,r=62)
1316 */
1317 }
1318
969bf05e
AS
1319 if (src_reg->type == CONST_IMM) {
1320 /* pkt_ptr += reg where reg is known constant */
1321 imm = src_reg->imm;
1322 goto add_imm;
1323 }
1324 /* disallow pkt_ptr += reg
1325 * if reg is not uknown_value with guaranteed zero upper bits
1326 * otherwise pkt_ptr may overflow and addition will become
1327 * subtraction which is not allowed
1328 */
1329 if (src_reg->type != UNKNOWN_VALUE) {
1330 verbose("cannot add '%s' to ptr_to_packet\n",
1331 reg_type_str[src_reg->type]);
1332 return -EACCES;
1333 }
1334 if (src_reg->imm < 48) {
1335 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1336 src_reg->imm);
1337 return -EACCES;
1338 }
1339 /* dst_reg stays as pkt_ptr type and since some positive
1340 * integer value was added to the pointer, increment its 'id'
1341 */
1f415a74 1342 dst_reg->id = ++env->id_gen;
969bf05e
AS
1343
1344 /* something was added to pkt_ptr, set range and off to zero */
1345 dst_reg->off = 0;
1346 dst_reg->range = 0;
1347 }
1348 return 0;
1349}
1350
1351static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
1352{
1353 struct reg_state *regs = env->cur_state.regs;
1354 struct reg_state *dst_reg = &regs[insn->dst_reg];
1355 u8 opcode = BPF_OP(insn->code);
1356 s64 imm_log2;
1357
1358 /* for type == UNKNOWN_VALUE:
1359 * imm > 0 -> number of zero upper bits
1360 * imm == 0 -> don't track which is the same as all bits can be non-zero
1361 */
1362
1363 if (BPF_SRC(insn->code) == BPF_X) {
1364 struct reg_state *src_reg = &regs[insn->src_reg];
1365
1366 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1367 dst_reg->imm && opcode == BPF_ADD) {
1368 /* dreg += sreg
1369 * where both have zero upper bits. Adding them
1370 * can only result making one more bit non-zero
1371 * in the larger value.
1372 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1373 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1374 */
1375 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1376 dst_reg->imm--;
1377 return 0;
1378 }
1379 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1380 dst_reg->imm && opcode == BPF_ADD) {
1381 /* dreg += sreg
1382 * where dreg has zero upper bits and sreg is const.
1383 * Adding them can only result making one more bit
1384 * non-zero in the larger value.
1385 */
1386 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1387 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1388 dst_reg->imm--;
1389 return 0;
1390 }
1391 /* all other cases non supported yet, just mark dst_reg */
1392 dst_reg->imm = 0;
1393 return 0;
1394 }
1395
1396 /* sign extend 32-bit imm into 64-bit to make sure that
1397 * negative values occupy bit 63. Note ilog2() would have
1398 * been incorrect, since sizeof(insn->imm) == 4
1399 */
1400 imm_log2 = __ilog2_u64((long long)insn->imm);
1401
1402 if (dst_reg->imm && opcode == BPF_LSH) {
1403 /* reg <<= imm
1404 * if reg was a result of 2 byte load, then its imm == 48
1405 * which means that upper 48 bits are zero and shifting this reg
1406 * left by 4 would mean that upper 44 bits are still zero
1407 */
1408 dst_reg->imm -= insn->imm;
1409 } else if (dst_reg->imm && opcode == BPF_MUL) {
1410 /* reg *= imm
1411 * if multiplying by 14 subtract 4
1412 * This is conservative calculation of upper zero bits.
1413 * It's not trying to special case insn->imm == 1 or 0 cases
1414 */
1415 dst_reg->imm -= imm_log2 + 1;
1416 } else if (opcode == BPF_AND) {
1417 /* reg &= imm */
1418 dst_reg->imm = 63 - imm_log2;
1419 } else if (dst_reg->imm && opcode == BPF_ADD) {
1420 /* reg += imm */
1421 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1422 dst_reg->imm--;
1423 } else if (opcode == BPF_RSH) {
1424 /* reg >>= imm
1425 * which means that after right shift, upper bits will be zero
1426 * note that verifier already checked that
1427 * 0 <= imm < 64 for shift insn
1428 */
1429 dst_reg->imm += insn->imm;
1430 if (unlikely(dst_reg->imm > 64))
1431 /* some dumb code did:
1432 * r2 = *(u32 *)mem;
1433 * r2 >>= 32;
1434 * and all bits are zero now */
1435 dst_reg->imm = 64;
1436 } else {
1437 /* all other alu ops, means that we don't know what will
1438 * happen to the value, mark it with unknown number of zero bits
1439 */
1440 dst_reg->imm = 0;
1441 }
1442
1443 if (dst_reg->imm < 0) {
1444 /* all 64 bits of the register can contain non-zero bits
1445 * and such value cannot be added to ptr_to_packet, since it
1446 * may overflow, mark it as unknown to avoid further eval
1447 */
1448 dst_reg->imm = 0;
1449 }
1450 return 0;
1451}
1452
1453static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
1454{
1455 struct reg_state *regs = env->cur_state.regs;
1456 struct reg_state *dst_reg = &regs[insn->dst_reg];
1457 struct reg_state *src_reg = &regs[insn->src_reg];
1458 u8 opcode = BPF_OP(insn->code);
1459
1460 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1461 * Don't care about overflow or negative values, just add them
1462 */
1463 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1464 dst_reg->imm += insn->imm;
1465 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1466 src_reg->type == CONST_IMM)
1467 dst_reg->imm += src_reg->imm;
1468 else
1469 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1470 return 0;
1471}
1472
1473/* check validity of 32-bit and 64-bit arithmetic operations */
1be7f75d 1474static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
17a52670 1475{
1a0dc1ac 1476 struct reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1477 u8 opcode = BPF_OP(insn->code);
1478 int err;
1479
1480 if (opcode == BPF_END || opcode == BPF_NEG) {
1481 if (opcode == BPF_NEG) {
1482 if (BPF_SRC(insn->code) != 0 ||
1483 insn->src_reg != BPF_REG_0 ||
1484 insn->off != 0 || insn->imm != 0) {
1485 verbose("BPF_NEG uses reserved fields\n");
1486 return -EINVAL;
1487 }
1488 } else {
1489 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1490 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1491 verbose("BPF_END uses reserved fields\n");
1492 return -EINVAL;
1493 }
1494 }
1495
1496 /* check src operand */
1497 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1498 if (err)
1499 return err;
1500
1be7f75d
AS
1501 if (is_pointer_value(env, insn->dst_reg)) {
1502 verbose("R%d pointer arithmetic prohibited\n",
1503 insn->dst_reg);
1504 return -EACCES;
1505 }
1506
17a52670
AS
1507 /* check dest operand */
1508 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1509 if (err)
1510 return err;
1511
1512 } else if (opcode == BPF_MOV) {
1513
1514 if (BPF_SRC(insn->code) == BPF_X) {
1515 if (insn->imm != 0 || insn->off != 0) {
1516 verbose("BPF_MOV uses reserved fields\n");
1517 return -EINVAL;
1518 }
1519
1520 /* check src operand */
1521 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1522 if (err)
1523 return err;
1524 } else {
1525 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1526 verbose("BPF_MOV uses reserved fields\n");
1527 return -EINVAL;
1528 }
1529 }
1530
1531 /* check dest operand */
1532 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1533 if (err)
1534 return err;
1535
1536 if (BPF_SRC(insn->code) == BPF_X) {
1537 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1538 /* case: R1 = R2
1539 * copy register state to dest reg
1540 */
1541 regs[insn->dst_reg] = regs[insn->src_reg];
1542 } else {
1be7f75d
AS
1543 if (is_pointer_value(env, insn->src_reg)) {
1544 verbose("R%d partial copy of pointer\n",
1545 insn->src_reg);
1546 return -EACCES;
1547 }
17a52670
AS
1548 regs[insn->dst_reg].type = UNKNOWN_VALUE;
1549 regs[insn->dst_reg].map_ptr = NULL;
1550 }
1551 } else {
1552 /* case: R = imm
1553 * remember the value we stored into this reg
1554 */
1555 regs[insn->dst_reg].type = CONST_IMM;
1556 regs[insn->dst_reg].imm = insn->imm;
1557 }
1558
1559 } else if (opcode > BPF_END) {
1560 verbose("invalid BPF_ALU opcode %x\n", opcode);
1561 return -EINVAL;
1562
1563 } else { /* all other ALU ops: and, sub, xor, add, ... */
1564
17a52670
AS
1565 if (BPF_SRC(insn->code) == BPF_X) {
1566 if (insn->imm != 0 || insn->off != 0) {
1567 verbose("BPF_ALU uses reserved fields\n");
1568 return -EINVAL;
1569 }
1570 /* check src1 operand */
1571 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1572 if (err)
1573 return err;
1574 } else {
1575 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1576 verbose("BPF_ALU uses reserved fields\n");
1577 return -EINVAL;
1578 }
1579 }
1580
1581 /* check src2 operand */
1582 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1583 if (err)
1584 return err;
1585
1586 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1587 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1588 verbose("div by zero\n");
1589 return -EINVAL;
1590 }
1591
229394e8
RV
1592 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1593 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1594 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1595
1596 if (insn->imm < 0 || insn->imm >= size) {
1597 verbose("invalid shift %d\n", insn->imm);
1598 return -EINVAL;
1599 }
1600 }
1601
1a0dc1ac
AS
1602 /* check dest operand */
1603 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1604 if (err)
1605 return err;
1606
1607 dst_reg = &regs[insn->dst_reg];
1608
17a52670
AS
1609 /* pattern match 'bpf_add Rx, imm' instruction */
1610 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1611 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1612 dst_reg->type = PTR_TO_STACK;
1613 dst_reg->imm = insn->imm;
1614 return 0;
969bf05e
AS
1615 } else if (opcode == BPF_ADD &&
1616 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1617 (dst_reg->type == PTR_TO_PACKET ||
1618 (BPF_SRC(insn->code) == BPF_X &&
1619 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1620 /* ptr_to_packet += K|X */
1621 return check_packet_ptr_add(env, insn);
1622 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1623 dst_reg->type == UNKNOWN_VALUE &&
1624 env->allow_ptr_leaks) {
1625 /* unknown += K|X */
1626 return evaluate_reg_alu(env, insn);
1627 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1628 dst_reg->type == CONST_IMM &&
1629 env->allow_ptr_leaks) {
1630 /* reg_imm += K|X */
1631 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1632 } else if (is_pointer_value(env, insn->dst_reg)) {
1633 verbose("R%d pointer arithmetic prohibited\n",
1634 insn->dst_reg);
1635 return -EACCES;
1636 } else if (BPF_SRC(insn->code) == BPF_X &&
1637 is_pointer_value(env, insn->src_reg)) {
1638 verbose("R%d pointer arithmetic prohibited\n",
1639 insn->src_reg);
1640 return -EACCES;
1641 }
17a52670 1642
1a0dc1ac
AS
1643 /* mark dest operand */
1644 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1645 }
1646
1647 return 0;
1648}
1649
2d2be8ca
DB
1650static void find_good_pkt_pointers(struct verifier_state *state,
1651 const struct reg_state *dst_reg)
969bf05e 1652{
969bf05e
AS
1653 struct reg_state *regs = state->regs, *reg;
1654 int i;
2d2be8ca
DB
1655
1656 /* LLVM can generate two kind of checks:
1657 *
1658 * Type 1:
1659 *
1660 * r2 = r3;
1661 * r2 += 8;
1662 * if (r2 > pkt_end) goto <handle exception>
1663 * <access okay>
1664 *
1665 * Where:
1666 * r2 == dst_reg, pkt_end == src_reg
1667 * r2=pkt(id=n,off=8,r=0)
1668 * r3=pkt(id=n,off=0,r=0)
1669 *
1670 * Type 2:
1671 *
1672 * r2 = r3;
1673 * r2 += 8;
1674 * if (pkt_end >= r2) goto <access okay>
1675 * <handle exception>
1676 *
1677 * Where:
1678 * pkt_end == dst_reg, r2 == src_reg
1679 * r2=pkt(id=n,off=8,r=0)
1680 * r3=pkt(id=n,off=0,r=0)
1681 *
1682 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1683 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1684 */
2d2be8ca 1685
969bf05e
AS
1686 for (i = 0; i < MAX_BPF_REG; i++)
1687 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1688 regs[i].range = dst_reg->off;
1689
1690 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1691 if (state->stack_slot_type[i] != STACK_SPILL)
1692 continue;
1693 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1694 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1695 reg->range = dst_reg->off;
1696 }
1697}
1698
17a52670
AS
1699static int check_cond_jmp_op(struct verifier_env *env,
1700 struct bpf_insn *insn, int *insn_idx)
1701{
2d2be8ca
DB
1702 struct verifier_state *other_branch, *this_branch = &env->cur_state;
1703 struct reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
1704 u8 opcode = BPF_OP(insn->code);
1705 int err;
1706
1707 if (opcode > BPF_EXIT) {
1708 verbose("invalid BPF_JMP opcode %x\n", opcode);
1709 return -EINVAL;
1710 }
1711
1712 if (BPF_SRC(insn->code) == BPF_X) {
1713 if (insn->imm != 0) {
1714 verbose("BPF_JMP uses reserved fields\n");
1715 return -EINVAL;
1716 }
1717
1718 /* check src1 operand */
1719 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1720 if (err)
1721 return err;
1be7f75d
AS
1722
1723 if (is_pointer_value(env, insn->src_reg)) {
1724 verbose("R%d pointer comparison prohibited\n",
1725 insn->src_reg);
1726 return -EACCES;
1727 }
17a52670
AS
1728 } else {
1729 if (insn->src_reg != BPF_REG_0) {
1730 verbose("BPF_JMP uses reserved fields\n");
1731 return -EINVAL;
1732 }
1733 }
1734
1735 /* check src2 operand */
1736 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1737 if (err)
1738 return err;
1739
1a0dc1ac
AS
1740 dst_reg = &regs[insn->dst_reg];
1741
17a52670
AS
1742 /* detect if R == 0 where R was initialized to zero earlier */
1743 if (BPF_SRC(insn->code) == BPF_K &&
1744 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 1745 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
1746 if (opcode == BPF_JEQ) {
1747 /* if (imm == imm) goto pc+off;
1748 * only follow the goto, ignore fall-through
1749 */
1750 *insn_idx += insn->off;
1751 return 0;
1752 } else {
1753 /* if (imm != imm) goto pc+off;
1754 * only follow fall-through branch, since
1755 * that's where the program will go
1756 */
1757 return 0;
1758 }
1759 }
1760
1761 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1762 if (!other_branch)
1763 return -EFAULT;
1764
1765 /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1766 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
1767 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1768 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
17a52670
AS
1769 if (opcode == BPF_JEQ) {
1770 /* next fallthrough insn can access memory via
1771 * this register
1772 */
1773 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1774 /* branch targer cannot access it, since reg == 0 */
735b4333
AS
1775 mark_reg_unknown_value(other_branch->regs,
1776 insn->dst_reg);
17a52670
AS
1777 } else {
1778 other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
735b4333 1779 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670 1780 }
969bf05e
AS
1781 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
1782 dst_reg->type == PTR_TO_PACKET &&
1783 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
1784 find_good_pkt_pointers(this_branch, dst_reg);
1785 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
1786 dst_reg->type == PTR_TO_PACKET_END &&
1787 regs[insn->src_reg].type == PTR_TO_PACKET) {
1788 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
1789 } else if (is_pointer_value(env, insn->dst_reg)) {
1790 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1791 return -EACCES;
17a52670
AS
1792 }
1793 if (log_level)
2d2be8ca 1794 print_verifier_state(this_branch);
17a52670
AS
1795 return 0;
1796}
1797
0246e64d
AS
1798/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1799static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1800{
1801 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1802
1803 return (struct bpf_map *) (unsigned long) imm64;
1804}
1805
17a52670
AS
1806/* verify BPF_LD_IMM64 instruction */
1807static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1808{
1809 struct reg_state *regs = env->cur_state.regs;
1810 int err;
1811
1812 if (BPF_SIZE(insn->code) != BPF_DW) {
1813 verbose("invalid BPF_LD_IMM insn\n");
1814 return -EINVAL;
1815 }
1816 if (insn->off != 0) {
1817 verbose("BPF_LD_IMM64 uses reserved fields\n");
1818 return -EINVAL;
1819 }
1820
1821 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1822 if (err)
1823 return err;
1824
1825 if (insn->src_reg == 0)
1826 /* generic move 64-bit immediate into a register */
1827 return 0;
1828
1829 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1830 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1831
1832 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1833 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1834 return 0;
1835}
1836
96be4325
DB
1837static bool may_access_skb(enum bpf_prog_type type)
1838{
1839 switch (type) {
1840 case BPF_PROG_TYPE_SOCKET_FILTER:
1841 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 1842 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
1843 return true;
1844 default:
1845 return false;
1846 }
1847}
1848
ddd872bc
AS
1849/* verify safety of LD_ABS|LD_IND instructions:
1850 * - they can only appear in the programs where ctx == skb
1851 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1852 * preserve R6-R9, and store return value into R0
1853 *
1854 * Implicit input:
1855 * ctx == skb == R6 == CTX
1856 *
1857 * Explicit input:
1858 * SRC == any register
1859 * IMM == 32-bit immediate
1860 *
1861 * Output:
1862 * R0 - 8/16/32-bit skb data converted to cpu endianness
1863 */
1864static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1865{
1866 struct reg_state *regs = env->cur_state.regs;
1867 u8 mode = BPF_MODE(insn->code);
1868 struct reg_state *reg;
1869 int i, err;
1870
24701ece 1871 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 1872 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
1873 return -EINVAL;
1874 }
1875
1876 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 1877 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 1878 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 1879 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
1880 return -EINVAL;
1881 }
1882
1883 /* check whether implicit source operand (register R6) is readable */
1884 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1885 if (err)
1886 return err;
1887
1888 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1889 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1890 return -EINVAL;
1891 }
1892
1893 if (mode == BPF_IND) {
1894 /* check explicit source operand */
1895 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1896 if (err)
1897 return err;
1898 }
1899
1900 /* reset caller saved regs to unreadable */
1901 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1902 reg = regs + caller_saved[i];
1903 reg->type = NOT_INIT;
1904 reg->imm = 0;
1905 }
1906
1907 /* mark destination R0 register as readable, since it contains
1908 * the value fetched from the packet
1909 */
1910 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1911 return 0;
1912}
1913
475fb78f
AS
1914/* non-recursive DFS pseudo code
1915 * 1 procedure DFS-iterative(G,v):
1916 * 2 label v as discovered
1917 * 3 let S be a stack
1918 * 4 S.push(v)
1919 * 5 while S is not empty
1920 * 6 t <- S.pop()
1921 * 7 if t is what we're looking for:
1922 * 8 return t
1923 * 9 for all edges e in G.adjacentEdges(t) do
1924 * 10 if edge e is already labelled
1925 * 11 continue with the next edge
1926 * 12 w <- G.adjacentVertex(t,e)
1927 * 13 if vertex w is not discovered and not explored
1928 * 14 label e as tree-edge
1929 * 15 label w as discovered
1930 * 16 S.push(w)
1931 * 17 continue at 5
1932 * 18 else if vertex w is discovered
1933 * 19 label e as back-edge
1934 * 20 else
1935 * 21 // vertex w is explored
1936 * 22 label e as forward- or cross-edge
1937 * 23 label t as explored
1938 * 24 S.pop()
1939 *
1940 * convention:
1941 * 0x10 - discovered
1942 * 0x11 - discovered and fall-through edge labelled
1943 * 0x12 - discovered and fall-through and branch edges labelled
1944 * 0x20 - explored
1945 */
1946
1947enum {
1948 DISCOVERED = 0x10,
1949 EXPLORED = 0x20,
1950 FALLTHROUGH = 1,
1951 BRANCH = 2,
1952};
1953
f1bca824
AS
1954#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1955
475fb78f
AS
1956static int *insn_stack; /* stack of insns to process */
1957static int cur_stack; /* current stack index */
1958static int *insn_state;
1959
1960/* t, w, e - match pseudo-code above:
1961 * t - index of current instruction
1962 * w - next instruction
1963 * e - edge
1964 */
1965static int push_insn(int t, int w, int e, struct verifier_env *env)
1966{
1967 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1968 return 0;
1969
1970 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1971 return 0;
1972
1973 if (w < 0 || w >= env->prog->len) {
1974 verbose("jump out of range from insn %d to %d\n", t, w);
1975 return -EINVAL;
1976 }
1977
f1bca824
AS
1978 if (e == BRANCH)
1979 /* mark branch target for state pruning */
1980 env->explored_states[w] = STATE_LIST_MARK;
1981
475fb78f
AS
1982 if (insn_state[w] == 0) {
1983 /* tree-edge */
1984 insn_state[t] = DISCOVERED | e;
1985 insn_state[w] = DISCOVERED;
1986 if (cur_stack >= env->prog->len)
1987 return -E2BIG;
1988 insn_stack[cur_stack++] = w;
1989 return 1;
1990 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1991 verbose("back-edge from insn %d to %d\n", t, w);
1992 return -EINVAL;
1993 } else if (insn_state[w] == EXPLORED) {
1994 /* forward- or cross-edge */
1995 insn_state[t] = DISCOVERED | e;
1996 } else {
1997 verbose("insn state internal bug\n");
1998 return -EFAULT;
1999 }
2000 return 0;
2001}
2002
2003/* non-recursive depth-first-search to detect loops in BPF program
2004 * loop == back-edge in directed graph
2005 */
2006static int check_cfg(struct verifier_env *env)
2007{
2008 struct bpf_insn *insns = env->prog->insnsi;
2009 int insn_cnt = env->prog->len;
2010 int ret = 0;
2011 int i, t;
2012
2013 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2014 if (!insn_state)
2015 return -ENOMEM;
2016
2017 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2018 if (!insn_stack) {
2019 kfree(insn_state);
2020 return -ENOMEM;
2021 }
2022
2023 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2024 insn_stack[0] = 0; /* 0 is the first instruction */
2025 cur_stack = 1;
2026
2027peek_stack:
2028 if (cur_stack == 0)
2029 goto check_state;
2030 t = insn_stack[cur_stack - 1];
2031
2032 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2033 u8 opcode = BPF_OP(insns[t].code);
2034
2035 if (opcode == BPF_EXIT) {
2036 goto mark_explored;
2037 } else if (opcode == BPF_CALL) {
2038 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2039 if (ret == 1)
2040 goto peek_stack;
2041 else if (ret < 0)
2042 goto err_free;
07016151
DB
2043 if (t + 1 < insn_cnt)
2044 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2045 } else if (opcode == BPF_JA) {
2046 if (BPF_SRC(insns[t].code) != BPF_K) {
2047 ret = -EINVAL;
2048 goto err_free;
2049 }
2050 /* unconditional jump with single edge */
2051 ret = push_insn(t, t + insns[t].off + 1,
2052 FALLTHROUGH, env);
2053 if (ret == 1)
2054 goto peek_stack;
2055 else if (ret < 0)
2056 goto err_free;
f1bca824
AS
2057 /* tell verifier to check for equivalent states
2058 * after every call and jump
2059 */
c3de6317
AS
2060 if (t + 1 < insn_cnt)
2061 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2062 } else {
2063 /* conditional jump with two edges */
2064 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2065 if (ret == 1)
2066 goto peek_stack;
2067 else if (ret < 0)
2068 goto err_free;
2069
2070 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2071 if (ret == 1)
2072 goto peek_stack;
2073 else if (ret < 0)
2074 goto err_free;
2075 }
2076 } else {
2077 /* all other non-branch instructions with single
2078 * fall-through edge
2079 */
2080 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2081 if (ret == 1)
2082 goto peek_stack;
2083 else if (ret < 0)
2084 goto err_free;
2085 }
2086
2087mark_explored:
2088 insn_state[t] = EXPLORED;
2089 if (cur_stack-- <= 0) {
2090 verbose("pop stack internal bug\n");
2091 ret = -EFAULT;
2092 goto err_free;
2093 }
2094 goto peek_stack;
2095
2096check_state:
2097 for (i = 0; i < insn_cnt; i++) {
2098 if (insn_state[i] != EXPLORED) {
2099 verbose("unreachable insn %d\n", i);
2100 ret = -EINVAL;
2101 goto err_free;
2102 }
2103 }
2104 ret = 0; /* cfg looks good */
2105
2106err_free:
2107 kfree(insn_state);
2108 kfree(insn_stack);
2109 return ret;
2110}
2111
969bf05e
AS
2112/* the following conditions reduce the number of explored insns
2113 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2114 */
2115static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
2116{
2117 if (old->id != cur->id)
2118 return false;
2119
2120 /* old ptr_to_packet is more conservative, since it allows smaller
2121 * range. Ex:
2122 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2123 * old(off=0,r=10) means that with range=10 the verifier proceeded
2124 * further and found no issues with the program. Now we're in the same
2125 * spot with cur(off=0,r=20), so we're safe too, since anything further
2126 * will only be looking at most 10 bytes after this pointer.
2127 */
2128 if (old->off == cur->off && old->range < cur->range)
2129 return true;
2130
2131 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2132 * since both cannot be used for packet access and safe(old)
2133 * pointer has smaller off that could be used for further
2134 * 'if (ptr > data_end)' check
2135 * Ex:
2136 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2137 * that we cannot access the packet.
2138 * The safe range is:
2139 * [ptr, ptr + range - off)
2140 * so whenever off >=range, it means no safe bytes from this pointer.
2141 * When comparing old->off <= cur->off, it means that older code
2142 * went with smaller offset and that offset was later
2143 * used to figure out the safe range after 'if (ptr > data_end)' check
2144 * Say, 'old' state was explored like:
2145 * ... R3(off=0, r=0)
2146 * R4 = R3 + 20
2147 * ... now R4(off=20,r=0) <-- here
2148 * if (R4 > data_end)
2149 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2150 * ... the code further went all the way to bpf_exit.
2151 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2152 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2153 * goes further, such cur_R4 will give larger safe packet range after
2154 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2155 * so they will be good with r=30 and we can prune the search.
2156 */
2157 if (old->off <= cur->off &&
2158 old->off >= old->range && cur->off >= cur->range)
2159 return true;
2160
2161 return false;
2162}
2163
f1bca824
AS
2164/* compare two verifier states
2165 *
2166 * all states stored in state_list are known to be valid, since
2167 * verifier reached 'bpf_exit' instruction through them
2168 *
2169 * this function is called when verifier exploring different branches of
2170 * execution popped from the state stack. If it sees an old state that has
2171 * more strict register state and more strict stack state then this execution
2172 * branch doesn't need to be explored further, since verifier already
2173 * concluded that more strict state leads to valid finish.
2174 *
2175 * Therefore two states are equivalent if register state is more conservative
2176 * and explored stack state is more conservative than the current one.
2177 * Example:
2178 * explored current
2179 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2180 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2181 *
2182 * In other words if current stack state (one being explored) has more
2183 * valid slots than old one that already passed validation, it means
2184 * the verifier can stop exploring and conclude that current state is valid too
2185 *
2186 * Similarly with registers. If explored state has register type as invalid
2187 * whereas register type in current state is meaningful, it means that
2188 * the current state will reach 'bpf_exit' instruction safely
2189 */
2190static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
2191{
1a0dc1ac 2192 struct reg_state *rold, *rcur;
f1bca824
AS
2193 int i;
2194
2195 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2196 rold = &old->regs[i];
2197 rcur = &cur->regs[i];
2198
2199 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2200 continue;
2201
2202 if (rold->type == NOT_INIT ||
2203 (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2204 continue;
2205
969bf05e
AS
2206 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2207 compare_ptrs_to_packet(rold, rcur))
2208 continue;
2209
1a0dc1ac 2210 return false;
f1bca824
AS
2211 }
2212
2213 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2214 if (old->stack_slot_type[i] == STACK_INVALID)
2215 continue;
2216 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2217 /* Ex: old explored (safe) state has STACK_SPILL in
2218 * this stack slot, but current has has STACK_MISC ->
2219 * this verifier states are not equivalent,
2220 * return false to continue verification of this path
2221 */
f1bca824 2222 return false;
9c399760
AS
2223 if (i % BPF_REG_SIZE)
2224 continue;
2225 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2226 &cur->spilled_regs[i / BPF_REG_SIZE],
2227 sizeof(old->spilled_regs[0])))
2228 /* when explored and current stack slot types are
2229 * the same, check that stored pointers types
2230 * are the same as well.
2231 * Ex: explored safe path could have stored
2232 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
2233 * but current path has stored:
2234 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
2235 * such verifier states are not equivalent.
2236 * return false to continue verification of this path
2237 */
2238 return false;
2239 else
2240 continue;
f1bca824
AS
2241 }
2242 return true;
2243}
2244
2245static int is_state_visited(struct verifier_env *env, int insn_idx)
2246{
2247 struct verifier_state_list *new_sl;
2248 struct verifier_state_list *sl;
2249
2250 sl = env->explored_states[insn_idx];
2251 if (!sl)
2252 /* this 'insn_idx' instruction wasn't marked, so we will not
2253 * be doing state search here
2254 */
2255 return 0;
2256
2257 while (sl != STATE_LIST_MARK) {
2258 if (states_equal(&sl->state, &env->cur_state))
2259 /* reached equivalent register/stack state,
2260 * prune the search
2261 */
2262 return 1;
2263 sl = sl->next;
2264 }
2265
2266 /* there were no equivalent states, remember current one.
2267 * technically the current state is not proven to be safe yet,
2268 * but it will either reach bpf_exit (which means it's safe) or
2269 * it will be rejected. Since there are no loops, we won't be
2270 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2271 */
2272 new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
2273 if (!new_sl)
2274 return -ENOMEM;
2275
2276 /* add new state to the head of linked list */
2277 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2278 new_sl->next = env->explored_states[insn_idx];
2279 env->explored_states[insn_idx] = new_sl;
2280 return 0;
2281}
2282
17a52670
AS
2283static int do_check(struct verifier_env *env)
2284{
2285 struct verifier_state *state = &env->cur_state;
2286 struct bpf_insn *insns = env->prog->insnsi;
2287 struct reg_state *regs = state->regs;
2288 int insn_cnt = env->prog->len;
2289 int insn_idx, prev_insn_idx = 0;
2290 int insn_processed = 0;
2291 bool do_print_state = false;
2292
2293 init_reg_state(regs);
2294 insn_idx = 0;
2295 for (;;) {
2296 struct bpf_insn *insn;
2297 u8 class;
2298 int err;
2299
2300 if (insn_idx >= insn_cnt) {
2301 verbose("invalid insn idx %d insn_cnt %d\n",
2302 insn_idx, insn_cnt);
2303 return -EFAULT;
2304 }
2305
2306 insn = &insns[insn_idx];
2307 class = BPF_CLASS(insn->code);
2308
07016151 2309 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2310 verbose("BPF program is too large. Proccessed %d insn\n",
2311 insn_processed);
2312 return -E2BIG;
2313 }
2314
f1bca824
AS
2315 err = is_state_visited(env, insn_idx);
2316 if (err < 0)
2317 return err;
2318 if (err == 1) {
2319 /* found equivalent state, can prune the search */
2320 if (log_level) {
2321 if (do_print_state)
2322 verbose("\nfrom %d to %d: safe\n",
2323 prev_insn_idx, insn_idx);
2324 else
2325 verbose("%d: safe\n", insn_idx);
2326 }
2327 goto process_bpf_exit;
2328 }
2329
17a52670
AS
2330 if (log_level && do_print_state) {
2331 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2332 print_verifier_state(&env->cur_state);
17a52670
AS
2333 do_print_state = false;
2334 }
2335
2336 if (log_level) {
2337 verbose("%d: ", insn_idx);
2338 print_bpf_insn(insn);
2339 }
2340
2341 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2342 err = check_alu_op(env, insn);
17a52670
AS
2343 if (err)
2344 return err;
2345
2346 } else if (class == BPF_LDX) {
9bac3d6d
AS
2347 enum bpf_reg_type src_reg_type;
2348
2349 /* check for reserved fields is already done */
2350
17a52670
AS
2351 /* check src operand */
2352 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2353 if (err)
2354 return err;
2355
2356 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2357 if (err)
2358 return err;
2359
725f9dcd
AS
2360 src_reg_type = regs[insn->src_reg].type;
2361
17a52670
AS
2362 /* check that memory (src_reg + off) is readable,
2363 * the state of dst_reg will be updated by this func
2364 */
2365 err = check_mem_access(env, insn->src_reg, insn->off,
2366 BPF_SIZE(insn->code), BPF_READ,
2367 insn->dst_reg);
2368 if (err)
2369 return err;
2370
ea2e7ce5
AS
2371 if (BPF_SIZE(insn->code) != BPF_W &&
2372 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2373 insn_idx++;
2374 continue;
2375 }
9bac3d6d 2376
725f9dcd 2377 if (insn->imm == 0) {
9bac3d6d
AS
2378 /* saw a valid insn
2379 * dst_reg = *(u32 *)(src_reg + off)
2380 * use reserved 'imm' field to mark this insn
2381 */
2382 insn->imm = src_reg_type;
2383
2384 } else if (src_reg_type != insn->imm &&
2385 (src_reg_type == PTR_TO_CTX ||
2386 insn->imm == PTR_TO_CTX)) {
2387 /* ABuser program is trying to use the same insn
2388 * dst_reg = *(u32*) (src_reg + off)
2389 * with different pointer types:
2390 * src_reg == ctx in one branch and
2391 * src_reg == stack|map in some other branch.
2392 * Reject it.
2393 */
2394 verbose("same insn cannot be used with different pointers\n");
2395 return -EINVAL;
2396 }
2397
17a52670 2398 } else if (class == BPF_STX) {
d691f9e8
AS
2399 enum bpf_reg_type dst_reg_type;
2400
17a52670
AS
2401 if (BPF_MODE(insn->code) == BPF_XADD) {
2402 err = check_xadd(env, insn);
2403 if (err)
2404 return err;
2405 insn_idx++;
2406 continue;
2407 }
2408
17a52670
AS
2409 /* check src1 operand */
2410 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2411 if (err)
2412 return err;
2413 /* check src2 operand */
2414 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2415 if (err)
2416 return err;
2417
d691f9e8
AS
2418 dst_reg_type = regs[insn->dst_reg].type;
2419
17a52670
AS
2420 /* check that memory (dst_reg + off) is writeable */
2421 err = check_mem_access(env, insn->dst_reg, insn->off,
2422 BPF_SIZE(insn->code), BPF_WRITE,
2423 insn->src_reg);
2424 if (err)
2425 return err;
2426
d691f9e8
AS
2427 if (insn->imm == 0) {
2428 insn->imm = dst_reg_type;
2429 } else if (dst_reg_type != insn->imm &&
2430 (dst_reg_type == PTR_TO_CTX ||
2431 insn->imm == PTR_TO_CTX)) {
2432 verbose("same insn cannot be used with different pointers\n");
2433 return -EINVAL;
2434 }
2435
17a52670
AS
2436 } else if (class == BPF_ST) {
2437 if (BPF_MODE(insn->code) != BPF_MEM ||
2438 insn->src_reg != BPF_REG_0) {
2439 verbose("BPF_ST uses reserved fields\n");
2440 return -EINVAL;
2441 }
2442 /* check src operand */
2443 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2444 if (err)
2445 return err;
2446
2447 /* check that memory (dst_reg + off) is writeable */
2448 err = check_mem_access(env, insn->dst_reg, insn->off,
2449 BPF_SIZE(insn->code), BPF_WRITE,
2450 -1);
2451 if (err)
2452 return err;
2453
2454 } else if (class == BPF_JMP) {
2455 u8 opcode = BPF_OP(insn->code);
2456
2457 if (opcode == BPF_CALL) {
2458 if (BPF_SRC(insn->code) != BPF_K ||
2459 insn->off != 0 ||
2460 insn->src_reg != BPF_REG_0 ||
2461 insn->dst_reg != BPF_REG_0) {
2462 verbose("BPF_CALL uses reserved fields\n");
2463 return -EINVAL;
2464 }
2465
2466 err = check_call(env, insn->imm);
2467 if (err)
2468 return err;
2469
2470 } else if (opcode == BPF_JA) {
2471 if (BPF_SRC(insn->code) != BPF_K ||
2472 insn->imm != 0 ||
2473 insn->src_reg != BPF_REG_0 ||
2474 insn->dst_reg != BPF_REG_0) {
2475 verbose("BPF_JA uses reserved fields\n");
2476 return -EINVAL;
2477 }
2478
2479 insn_idx += insn->off + 1;
2480 continue;
2481
2482 } else if (opcode == BPF_EXIT) {
2483 if (BPF_SRC(insn->code) != BPF_K ||
2484 insn->imm != 0 ||
2485 insn->src_reg != BPF_REG_0 ||
2486 insn->dst_reg != BPF_REG_0) {
2487 verbose("BPF_EXIT uses reserved fields\n");
2488 return -EINVAL;
2489 }
2490
2491 /* eBPF calling convetion is such that R0 is used
2492 * to return the value from eBPF program.
2493 * Make sure that it's readable at this time
2494 * of bpf_exit, which means that program wrote
2495 * something into it earlier
2496 */
2497 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2498 if (err)
2499 return err;
2500
1be7f75d
AS
2501 if (is_pointer_value(env, BPF_REG_0)) {
2502 verbose("R0 leaks addr as return value\n");
2503 return -EACCES;
2504 }
2505
f1bca824 2506process_bpf_exit:
17a52670
AS
2507 insn_idx = pop_stack(env, &prev_insn_idx);
2508 if (insn_idx < 0) {
2509 break;
2510 } else {
2511 do_print_state = true;
2512 continue;
2513 }
2514 } else {
2515 err = check_cond_jmp_op(env, insn, &insn_idx);
2516 if (err)
2517 return err;
2518 }
2519 } else if (class == BPF_LD) {
2520 u8 mode = BPF_MODE(insn->code);
2521
2522 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2523 err = check_ld_abs(env, insn);
2524 if (err)
2525 return err;
2526
17a52670
AS
2527 } else if (mode == BPF_IMM) {
2528 err = check_ld_imm(env, insn);
2529 if (err)
2530 return err;
2531
2532 insn_idx++;
2533 } else {
2534 verbose("invalid BPF_LD mode\n");
2535 return -EINVAL;
2536 }
2537 } else {
2538 verbose("unknown insn class %d\n", class);
2539 return -EINVAL;
2540 }
2541
2542 insn_idx++;
2543 }
2544
1a0dc1ac 2545 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2546 return 0;
2547}
2548
fdc15d38
AS
2549static int check_map_prog_compatibility(struct bpf_map *map,
2550 struct bpf_prog *prog)
2551
2552{
2553 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2554 (map->map_type == BPF_MAP_TYPE_HASH ||
2555 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2556 (map->map_flags & BPF_F_NO_PREALLOC)) {
2557 verbose("perf_event programs can only use preallocated hash map\n");
2558 return -EINVAL;
2559 }
2560 return 0;
2561}
2562
0246e64d
AS
2563/* look for pseudo eBPF instructions that access map FDs and
2564 * replace them with actual map pointers
2565 */
2566static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2567{
2568 struct bpf_insn *insn = env->prog->insnsi;
2569 int insn_cnt = env->prog->len;
fdc15d38 2570 int i, j, err;
0246e64d
AS
2571
2572 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2573 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2574 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2575 verbose("BPF_LDX uses reserved fields\n");
2576 return -EINVAL;
2577 }
2578
d691f9e8
AS
2579 if (BPF_CLASS(insn->code) == BPF_STX &&
2580 ((BPF_MODE(insn->code) != BPF_MEM &&
2581 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2582 verbose("BPF_STX uses reserved fields\n");
2583 return -EINVAL;
2584 }
2585
0246e64d
AS
2586 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2587 struct bpf_map *map;
2588 struct fd f;
2589
2590 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2591 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2592 insn[1].off != 0) {
2593 verbose("invalid bpf_ld_imm64 insn\n");
2594 return -EINVAL;
2595 }
2596
2597 if (insn->src_reg == 0)
2598 /* valid generic load 64-bit imm */
2599 goto next_insn;
2600
2601 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2602 verbose("unrecognized bpf_ld_imm64 insn\n");
2603 return -EINVAL;
2604 }
2605
2606 f = fdget(insn->imm);
c2101297 2607 map = __bpf_map_get(f);
0246e64d
AS
2608 if (IS_ERR(map)) {
2609 verbose("fd %d is not pointing to valid bpf_map\n",
2610 insn->imm);
0246e64d
AS
2611 return PTR_ERR(map);
2612 }
2613
fdc15d38
AS
2614 err = check_map_prog_compatibility(map, env->prog);
2615 if (err) {
2616 fdput(f);
2617 return err;
2618 }
2619
0246e64d
AS
2620 /* store map pointer inside BPF_LD_IMM64 instruction */
2621 insn[0].imm = (u32) (unsigned long) map;
2622 insn[1].imm = ((u64) (unsigned long) map) >> 32;
2623
2624 /* check whether we recorded this map already */
2625 for (j = 0; j < env->used_map_cnt; j++)
2626 if (env->used_maps[j] == map) {
2627 fdput(f);
2628 goto next_insn;
2629 }
2630
2631 if (env->used_map_cnt >= MAX_USED_MAPS) {
2632 fdput(f);
2633 return -E2BIG;
2634 }
2635
0246e64d
AS
2636 /* hold the map. If the program is rejected by verifier,
2637 * the map will be released by release_maps() or it
2638 * will be used by the valid program until it's unloaded
2639 * and all maps are released in free_bpf_prog_info()
2640 */
92117d84
AS
2641 map = bpf_map_inc(map, false);
2642 if (IS_ERR(map)) {
2643 fdput(f);
2644 return PTR_ERR(map);
2645 }
2646 env->used_maps[env->used_map_cnt++] = map;
2647
0246e64d
AS
2648 fdput(f);
2649next_insn:
2650 insn++;
2651 i++;
2652 }
2653 }
2654
2655 /* now all pseudo BPF_LD_IMM64 instructions load valid
2656 * 'struct bpf_map *' into a register instead of user map_fd.
2657 * These pointers will be used later by verifier to validate map access.
2658 */
2659 return 0;
2660}
2661
2662/* drop refcnt of maps used by the rejected program */
2663static void release_maps(struct verifier_env *env)
2664{
2665 int i;
2666
2667 for (i = 0; i < env->used_map_cnt; i++)
2668 bpf_map_put(env->used_maps[i]);
2669}
2670
2671/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2672static void convert_pseudo_ld_imm64(struct verifier_env *env)
2673{
2674 struct bpf_insn *insn = env->prog->insnsi;
2675 int insn_cnt = env->prog->len;
2676 int i;
2677
2678 for (i = 0; i < insn_cnt; i++, insn++)
2679 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2680 insn->src_reg = 0;
2681}
2682
9bac3d6d
AS
2683/* convert load instructions that access fields of 'struct __sk_buff'
2684 * into sequence of instructions that access fields of 'struct sk_buff'
2685 */
2686static int convert_ctx_accesses(struct verifier_env *env)
2687{
36bbef52
DB
2688 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
2689 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 2690 struct bpf_prog *new_prog;
d691f9e8 2691 enum bpf_access_type type;
36bbef52 2692 int i, insn_cnt, cnt;
9bac3d6d 2693
36bbef52
DB
2694 if (ops->gen_prologue) {
2695 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
2696 env->prog);
2697 if (cnt >= ARRAY_SIZE(insn_buf)) {
2698 verbose("bpf verifier is misconfigured\n");
2699 return -EINVAL;
2700 } else if (cnt) {
2701 new_prog = bpf_patch_insn_single(env->prog, 0,
2702 insn_buf, cnt);
2703 if (!new_prog)
2704 return -ENOMEM;
2705 env->prog = new_prog;
2706 }
2707 }
2708
2709 if (!ops->convert_ctx_access)
9bac3d6d
AS
2710 return 0;
2711
36bbef52
DB
2712 insn_cnt = env->prog->len;
2713 insn = env->prog->insnsi;
2714
9bac3d6d 2715 for (i = 0; i < insn_cnt; i++, insn++) {
36bbef52 2716 u32 insn_delta;
c237ee5e 2717
ea2e7ce5
AS
2718 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2719 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 2720 type = BPF_READ;
ea2e7ce5
AS
2721 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
2722 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
2723 type = BPF_WRITE;
2724 else
9bac3d6d
AS
2725 continue;
2726
2727 if (insn->imm != PTR_TO_CTX) {
2728 /* clear internal mark */
2729 insn->imm = 0;
2730 continue;
2731 }
2732
36bbef52
DB
2733 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2734 insn->off, insn_buf, env->prog);
9bac3d6d
AS
2735 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2736 verbose("bpf verifier is misconfigured\n");
2737 return -EINVAL;
2738 }
2739
c237ee5e 2740 new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
9bac3d6d
AS
2741 if (!new_prog)
2742 return -ENOMEM;
2743
c237ee5e 2744 insn_delta = cnt - 1;
9bac3d6d
AS
2745
2746 /* keep walking new program and skip insns we just inserted */
2747 env->prog = new_prog;
c237ee5e
DB
2748 insn = new_prog->insnsi + i + insn_delta;
2749
2750 insn_cnt += insn_delta;
2751 i += insn_delta;
9bac3d6d
AS
2752 }
2753
2754 return 0;
2755}
2756
f1bca824
AS
2757static void free_states(struct verifier_env *env)
2758{
2759 struct verifier_state_list *sl, *sln;
2760 int i;
2761
2762 if (!env->explored_states)
2763 return;
2764
2765 for (i = 0; i < env->prog->len; i++) {
2766 sl = env->explored_states[i];
2767
2768 if (sl)
2769 while (sl != STATE_LIST_MARK) {
2770 sln = sl->next;
2771 kfree(sl);
2772 sl = sln;
2773 }
2774 }
2775
2776 kfree(env->explored_states);
2777}
2778
9bac3d6d 2779int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 2780{
cbd35700
AS
2781 char __user *log_ubuf = NULL;
2782 struct verifier_env *env;
51580e79
AS
2783 int ret = -EINVAL;
2784
9bac3d6d 2785 if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
cbd35700
AS
2786 return -E2BIG;
2787
2788 /* 'struct verifier_env' can be global, but since it's not small,
2789 * allocate/free it every time bpf_check() is called
2790 */
2791 env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2792 if (!env)
2793 return -ENOMEM;
2794
9bac3d6d 2795 env->prog = *prog;
0246e64d 2796
cbd35700
AS
2797 /* grab the mutex to protect few globals used by verifier */
2798 mutex_lock(&bpf_verifier_lock);
2799
2800 if (attr->log_level || attr->log_buf || attr->log_size) {
2801 /* user requested verbose verifier output
2802 * and supplied buffer to store the verification trace
2803 */
2804 log_level = attr->log_level;
2805 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2806 log_size = attr->log_size;
2807 log_len = 0;
2808
2809 ret = -EINVAL;
2810 /* log_* values have to be sane */
2811 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2812 log_level == 0 || log_ubuf == NULL)
2813 goto free_env;
2814
2815 ret = -ENOMEM;
2816 log_buf = vmalloc(log_size);
2817 if (!log_buf)
2818 goto free_env;
2819 } else {
2820 log_level = 0;
2821 }
2822
0246e64d
AS
2823 ret = replace_map_fd_with_map_ptr(env);
2824 if (ret < 0)
2825 goto skip_full_check;
2826
9bac3d6d 2827 env->explored_states = kcalloc(env->prog->len,
f1bca824
AS
2828 sizeof(struct verifier_state_list *),
2829 GFP_USER);
2830 ret = -ENOMEM;
2831 if (!env->explored_states)
2832 goto skip_full_check;
2833
475fb78f
AS
2834 ret = check_cfg(env);
2835 if (ret < 0)
2836 goto skip_full_check;
2837
1be7f75d
AS
2838 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2839
17a52670 2840 ret = do_check(env);
cbd35700 2841
0246e64d 2842skip_full_check:
17a52670 2843 while (pop_stack(env, NULL) >= 0);
f1bca824 2844 free_states(env);
0246e64d 2845
9bac3d6d
AS
2846 if (ret == 0)
2847 /* program is valid, convert *(u32*)(ctx + off) accesses */
2848 ret = convert_ctx_accesses(env);
2849
cbd35700
AS
2850 if (log_level && log_len >= log_size - 1) {
2851 BUG_ON(log_len >= log_size);
2852 /* verifier log exceeded user supplied buffer */
2853 ret = -ENOSPC;
2854 /* fall through to return what was recorded */
2855 }
2856
2857 /* copy verifier log back to user space including trailing zero */
2858 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2859 ret = -EFAULT;
2860 goto free_log_buf;
2861 }
2862
0246e64d
AS
2863 if (ret == 0 && env->used_map_cnt) {
2864 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
2865 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2866 sizeof(env->used_maps[0]),
2867 GFP_KERNEL);
0246e64d 2868
9bac3d6d 2869 if (!env->prog->aux->used_maps) {
0246e64d
AS
2870 ret = -ENOMEM;
2871 goto free_log_buf;
2872 }
2873
9bac3d6d 2874 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 2875 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 2876 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
2877
2878 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
2879 * bpf_ld_imm64 instructions
2880 */
2881 convert_pseudo_ld_imm64(env);
2882 }
cbd35700
AS
2883
2884free_log_buf:
2885 if (log_level)
2886 vfree(log_buf);
2887free_env:
9bac3d6d 2888 if (!env->prog->aux->used_maps)
0246e64d
AS
2889 /* if we didn't copy map pointers into bpf_prog_info, release
2890 * them now. Otherwise free_bpf_prog_info() will release them.
2891 */
2892 release_maps(env);
9bac3d6d 2893 *prog = env->prog;
cbd35700
AS
2894 kfree(env);
2895 mutex_unlock(&bpf_verifier_lock);
51580e79
AS
2896 return ret;
2897}