]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: Add tcp_notsent_lowat bpf setsockopt
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
33ff9823
DB
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
435faee1 233 bool raw_mode;
36bbef52 234 bool pkt_access;
435faee1
DB
235 int regno;
236 int access_size;
457f4436 237 int mem_size;
10060503 238 u64 msize_max_value;
1b986589 239 int ref_obj_id;
d83525ca 240 int func_id;
eaa6bcb7
HL
241 u32 btf_id;
242 u32 ret_btf_id;
33ff9823
DB
243};
244
8580ac94
AS
245struct btf *btf_vmlinux;
246
cbd35700
AS
247static DEFINE_MUTEX(bpf_verifier_lock);
248
d9762e84
MKL
249static const struct bpf_line_info *
250find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251{
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268}
269
77d2e05a
MKL
270void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
cbd35700 272{
a2a7d570 273 unsigned int n;
cbd35700 274
a2a7d570 275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
8580ac94
AS
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
a2a7d570
JK
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
cbd35700 291}
abe08840 292
6f8a57cc
AN
293static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294{
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303}
304
abe08840
JO
305/* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
430e68d1 308 */
abe08840
JO
309__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311{
312 va_list args;
313
77d2e05a
MKL
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
abe08840 317 va_start(args, fmt);
77d2e05a 318 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
319 va_end(args);
320}
321EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
323__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324{
77d2e05a 325 struct bpf_verifier_env *env = private_data;
abe08840
JO
326 va_list args;
327
77d2e05a
MKL
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
abe08840 331 va_start(args, fmt);
77d2e05a 332 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
333 va_end(args);
334}
cbd35700 335
9e15db66
AS
336__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338{
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347}
348
d9762e84
MKL
349static const char *ltrim(const char *s)
350{
351 while (isspace(*s))
352 s++;
353
354 return s;
355}
356
357__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360{
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383}
384
de8f3a83
DB
385static bool type_is_pkt_pointer(enum bpf_reg_type type)
386{
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389}
390
46f8bc92
MKL
391static bool type_is_sk_pointer(enum bpf_reg_type type)
392{
393 return type == PTR_TO_SOCKET ||
655a51e5 394 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
397}
398
cac616db
JF
399static bool reg_type_not_null(enum bpf_reg_type type)
400{
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
01c66c48 404 type == PTR_TO_SOCK_COMMON;
cac616db
JF
405}
406
840b9615
JS
407static bool reg_type_may_be_null(enum bpf_reg_type type)
408{
fd978bf7 409 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 410 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 411 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 412 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 413 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
414 type == PTR_TO_MEM_OR_NULL ||
415 type == PTR_TO_RDONLY_BUF_OR_NULL ||
416 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
417}
418
d83525ca
AS
419static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
420{
421 return reg->type == PTR_TO_MAP_VALUE &&
422 map_value_has_spin_lock(reg->map_ptr);
423}
424
cba368c1
MKL
425static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
426{
427 return type == PTR_TO_SOCKET ||
428 type == PTR_TO_SOCKET_OR_NULL ||
429 type == PTR_TO_TCP_SOCK ||
457f4436
AN
430 type == PTR_TO_TCP_SOCK_OR_NULL ||
431 type == PTR_TO_MEM ||
432 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
433}
434
1b986589 435static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 436{
1b986589 437 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
438}
439
fd1b0d60
LB
440static bool arg_type_may_be_null(enum bpf_arg_type type)
441{
442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
443 type == ARG_PTR_TO_MEM_OR_NULL ||
444 type == ARG_PTR_TO_CTX_OR_NULL ||
445 type == ARG_PTR_TO_SOCKET_OR_NULL ||
446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
447}
448
fd978bf7
JS
449/* Determine whether the function releases some resources allocated by another
450 * function call. The first reference type argument will be assumed to be
451 * released by release_reference().
452 */
453static bool is_release_function(enum bpf_func_id func_id)
454{
457f4436
AN
455 return func_id == BPF_FUNC_sk_release ||
456 func_id == BPF_FUNC_ringbuf_submit ||
457 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
458}
459
64d85290 460static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
461{
462 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 463 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 464 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
465 func_id == BPF_FUNC_map_lookup_elem ||
466 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
467}
468
469static bool is_acquire_function(enum bpf_func_id func_id,
470 const struct bpf_map *map)
471{
472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
473
474 if (func_id == BPF_FUNC_sk_lookup_tcp ||
475 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
476 func_id == BPF_FUNC_skc_lookup_tcp ||
477 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
478 return true;
479
480 if (func_id == BPF_FUNC_map_lookup_elem &&
481 (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 map_type == BPF_MAP_TYPE_SOCKHASH))
483 return true;
484
485 return false;
46f8bc92
MKL
486}
487
1b986589
MKL
488static bool is_ptr_cast_function(enum bpf_func_id func_id)
489{
490 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
491 func_id == BPF_FUNC_sk_fullsock ||
492 func_id == BPF_FUNC_skc_to_tcp_sock ||
493 func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 func_id == BPF_FUNC_skc_to_udp6_sock ||
495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
496 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
497}
498
17a52670
AS
499/* string representation of 'enum bpf_reg_type' */
500static const char * const reg_type_str[] = {
501 [NOT_INIT] = "?",
f1174f77 502 [SCALAR_VALUE] = "inv",
17a52670
AS
503 [PTR_TO_CTX] = "ctx",
504 [CONST_PTR_TO_MAP] = "map_ptr",
505 [PTR_TO_MAP_VALUE] = "map_value",
506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 507 [PTR_TO_STACK] = "fp",
969bf05e 508 [PTR_TO_PACKET] = "pkt",
de8f3a83 509 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 510 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 511 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
512 [PTR_TO_SOCKET] = "sock",
513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
514 [PTR_TO_SOCK_COMMON] = "sock_common",
515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
516 [PTR_TO_TCP_SOCK] = "tcp_sock",
517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 518 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 519 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 520 [PTR_TO_BTF_ID] = "ptr_",
b121b341 521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
523 [PTR_TO_MEM] = "mem",
524 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
525 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
527 [PTR_TO_RDWR_BUF] = "rdwr_buf",
528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
529};
530
8efea21d
EC
531static char slot_type_char[] = {
532 [STACK_INVALID] = '?',
533 [STACK_SPILL] = 'r',
534 [STACK_MISC] = 'm',
535 [STACK_ZERO] = '0',
536};
537
4e92024a
AS
538static void print_liveness(struct bpf_verifier_env *env,
539 enum bpf_reg_liveness live)
540{
9242b5f5 541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
542 verbose(env, "_");
543 if (live & REG_LIVE_READ)
544 verbose(env, "r");
545 if (live & REG_LIVE_WRITTEN)
546 verbose(env, "w");
9242b5f5
AS
547 if (live & REG_LIVE_DONE)
548 verbose(env, "D");
4e92024a
AS
549}
550
f4d7e40a
AS
551static struct bpf_func_state *func(struct bpf_verifier_env *env,
552 const struct bpf_reg_state *reg)
553{
554 struct bpf_verifier_state *cur = env->cur_state;
555
556 return cur->frame[reg->frameno];
557}
558
9e15db66
AS
559const char *kernel_type_name(u32 id)
560{
561 return btf_name_by_offset(btf_vmlinux,
562 btf_type_by_id(btf_vmlinux, id)->name_off);
563}
564
61bd5218 565static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 566 const struct bpf_func_state *state)
17a52670 567{
f4d7e40a 568 const struct bpf_reg_state *reg;
17a52670
AS
569 enum bpf_reg_type t;
570 int i;
571
f4d7e40a
AS
572 if (state->frameno)
573 verbose(env, " frame%d:", state->frameno);
17a52670 574 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
575 reg = &state->regs[i];
576 t = reg->type;
17a52670
AS
577 if (t == NOT_INIT)
578 continue;
4e92024a
AS
579 verbose(env, " R%d", i);
580 print_liveness(env, reg->live);
581 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
582 if (t == SCALAR_VALUE && reg->precise)
583 verbose(env, "P");
f1174f77
EC
584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
585 tnum_is_const(reg->var_off)) {
586 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 587 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 588 } else {
eaa6bcb7
HL
589 if (t == PTR_TO_BTF_ID ||
590 t == PTR_TO_BTF_ID_OR_NULL ||
591 t == PTR_TO_PERCPU_BTF_ID)
9e15db66 592 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
593 verbose(env, "(id=%d", reg->id);
594 if (reg_type_may_be_refcounted_or_null(t))
595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 596 if (t != SCALAR_VALUE)
61bd5218 597 verbose(env, ",off=%d", reg->off);
de8f3a83 598 if (type_is_pkt_pointer(t))
61bd5218 599 verbose(env, ",r=%d", reg->range);
f1174f77
EC
600 else if (t == CONST_PTR_TO_MAP ||
601 t == PTR_TO_MAP_VALUE ||
602 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 603 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
604 reg->map_ptr->key_size,
605 reg->map_ptr->value_size);
7d1238f2
EC
606 if (tnum_is_const(reg->var_off)) {
607 /* Typically an immediate SCALAR_VALUE, but
608 * could be a pointer whose offset is too big
609 * for reg->off
610 */
61bd5218 611 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
612 } else {
613 if (reg->smin_value != reg->umin_value &&
614 reg->smin_value != S64_MIN)
61bd5218 615 verbose(env, ",smin_value=%lld",
7d1238f2
EC
616 (long long)reg->smin_value);
617 if (reg->smax_value != reg->umax_value &&
618 reg->smax_value != S64_MAX)
61bd5218 619 verbose(env, ",smax_value=%lld",
7d1238f2
EC
620 (long long)reg->smax_value);
621 if (reg->umin_value != 0)
61bd5218 622 verbose(env, ",umin_value=%llu",
7d1238f2
EC
623 (unsigned long long)reg->umin_value);
624 if (reg->umax_value != U64_MAX)
61bd5218 625 verbose(env, ",umax_value=%llu",
7d1238f2
EC
626 (unsigned long long)reg->umax_value);
627 if (!tnum_is_unknown(reg->var_off)) {
628 char tn_buf[48];
f1174f77 629
7d1238f2 630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 631 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 632 }
3f50f132
JF
633 if (reg->s32_min_value != reg->smin_value &&
634 reg->s32_min_value != S32_MIN)
635 verbose(env, ",s32_min_value=%d",
636 (int)(reg->s32_min_value));
637 if (reg->s32_max_value != reg->smax_value &&
638 reg->s32_max_value != S32_MAX)
639 verbose(env, ",s32_max_value=%d",
640 (int)(reg->s32_max_value));
641 if (reg->u32_min_value != reg->umin_value &&
642 reg->u32_min_value != U32_MIN)
643 verbose(env, ",u32_min_value=%d",
644 (int)(reg->u32_min_value));
645 if (reg->u32_max_value != reg->umax_value &&
646 reg->u32_max_value != U32_MAX)
647 verbose(env, ",u32_max_value=%d",
648 (int)(reg->u32_max_value));
f1174f77 649 }
61bd5218 650 verbose(env, ")");
f1174f77 651 }
17a52670 652 }
638f5b90 653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
654 char types_buf[BPF_REG_SIZE + 1];
655 bool valid = false;
656 int j;
657
658 for (j = 0; j < BPF_REG_SIZE; j++) {
659 if (state->stack[i].slot_type[j] != STACK_INVALID)
660 valid = true;
661 types_buf[j] = slot_type_char[
662 state->stack[i].slot_type[j]];
663 }
664 types_buf[BPF_REG_SIZE] = 0;
665 if (!valid)
666 continue;
667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
668 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
669 if (state->stack[i].slot_type[0] == STACK_SPILL) {
670 reg = &state->stack[i].spilled_ptr;
671 t = reg->type;
672 verbose(env, "=%s", reg_type_str[t]);
673 if (t == SCALAR_VALUE && reg->precise)
674 verbose(env, "P");
675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
676 verbose(env, "%lld", reg->var_off.value + reg->off);
677 } else {
8efea21d 678 verbose(env, "=%s", types_buf);
b5dc0163 679 }
17a52670 680 }
fd978bf7
JS
681 if (state->acquired_refs && state->refs[0].id) {
682 verbose(env, " refs=%d", state->refs[0].id);
683 for (i = 1; i < state->acquired_refs; i++)
684 if (state->refs[i].id)
685 verbose(env, ",%d", state->refs[i].id);
686 }
61bd5218 687 verbose(env, "\n");
17a52670
AS
688}
689
84dbf350
JS
690#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
691static int copy_##NAME##_state(struct bpf_func_state *dst, \
692 const struct bpf_func_state *src) \
693{ \
694 if (!src->FIELD) \
695 return 0; \
696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
697 /* internal bug, make state invalid to reject the program */ \
698 memset(dst, 0, sizeof(*dst)); \
699 return -EFAULT; \
700 } \
701 memcpy(dst->FIELD, src->FIELD, \
702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
703 return 0; \
638f5b90 704}
fd978bf7
JS
705/* copy_reference_state() */
706COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
707/* copy_stack_state() */
708COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
709#undef COPY_STATE_FN
710
711#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
712static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
713 bool copy_old) \
714{ \
715 u32 old_size = state->COUNT; \
716 struct bpf_##NAME##_state *new_##FIELD; \
717 int slot = size / SIZE; \
718 \
719 if (size <= old_size || !size) { \
720 if (copy_old) \
721 return 0; \
722 state->COUNT = slot * SIZE; \
723 if (!size && old_size) { \
724 kfree(state->FIELD); \
725 state->FIELD = NULL; \
726 } \
727 return 0; \
728 } \
729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
730 GFP_KERNEL); \
731 if (!new_##FIELD) \
732 return -ENOMEM; \
733 if (copy_old) { \
734 if (state->FIELD) \
735 memcpy(new_##FIELD, state->FIELD, \
736 sizeof(*new_##FIELD) * (old_size / SIZE)); \
737 memset(new_##FIELD + old_size / SIZE, 0, \
738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
739 } \
740 state->COUNT = slot * SIZE; \
741 kfree(state->FIELD); \
742 state->FIELD = new_##FIELD; \
743 return 0; \
744}
fd978bf7
JS
745/* realloc_reference_state() */
746REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
747/* realloc_stack_state() */
748REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
749#undef REALLOC_STATE_FN
638f5b90
AS
750
751/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
752 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 753 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
755 * which realloc_stack_state() copies over. It points to previous
756 * bpf_verifier_state which is never reallocated.
638f5b90 757 */
fd978bf7
JS
758static int realloc_func_state(struct bpf_func_state *state, int stack_size,
759 int refs_size, bool copy_old)
638f5b90 760{
fd978bf7
JS
761 int err = realloc_reference_state(state, refs_size, copy_old);
762 if (err)
763 return err;
764 return realloc_stack_state(state, stack_size, copy_old);
765}
766
767/* Acquire a pointer id from the env and update the state->refs to include
768 * this new pointer reference.
769 * On success, returns a valid pointer id to associate with the register
770 * On failure, returns a negative errno.
638f5b90 771 */
fd978bf7 772static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 773{
fd978bf7
JS
774 struct bpf_func_state *state = cur_func(env);
775 int new_ofs = state->acquired_refs;
776 int id, err;
777
778 err = realloc_reference_state(state, state->acquired_refs + 1, true);
779 if (err)
780 return err;
781 id = ++env->id_gen;
782 state->refs[new_ofs].id = id;
783 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 784
fd978bf7
JS
785 return id;
786}
787
788/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 789static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
790{
791 int i, last_idx;
792
fd978bf7
JS
793 last_idx = state->acquired_refs - 1;
794 for (i = 0; i < state->acquired_refs; i++) {
795 if (state->refs[i].id == ptr_id) {
796 if (last_idx && i != last_idx)
797 memcpy(&state->refs[i], &state->refs[last_idx],
798 sizeof(*state->refs));
799 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
800 state->acquired_refs--;
638f5b90 801 return 0;
638f5b90 802 }
638f5b90 803 }
46f8bc92 804 return -EINVAL;
fd978bf7
JS
805}
806
807static int transfer_reference_state(struct bpf_func_state *dst,
808 struct bpf_func_state *src)
809{
810 int err = realloc_reference_state(dst, src->acquired_refs, false);
811 if (err)
812 return err;
813 err = copy_reference_state(dst, src);
814 if (err)
815 return err;
638f5b90
AS
816 return 0;
817}
818
f4d7e40a
AS
819static void free_func_state(struct bpf_func_state *state)
820{
5896351e
AS
821 if (!state)
822 return;
fd978bf7 823 kfree(state->refs);
f4d7e40a
AS
824 kfree(state->stack);
825 kfree(state);
826}
827
b5dc0163
AS
828static void clear_jmp_history(struct bpf_verifier_state *state)
829{
830 kfree(state->jmp_history);
831 state->jmp_history = NULL;
832 state->jmp_history_cnt = 0;
833}
834
1969db47
AS
835static void free_verifier_state(struct bpf_verifier_state *state,
836 bool free_self)
638f5b90 837{
f4d7e40a
AS
838 int i;
839
840 for (i = 0; i <= state->curframe; i++) {
841 free_func_state(state->frame[i]);
842 state->frame[i] = NULL;
843 }
b5dc0163 844 clear_jmp_history(state);
1969db47
AS
845 if (free_self)
846 kfree(state);
638f5b90
AS
847}
848
849/* copy verifier state from src to dst growing dst stack space
850 * when necessary to accommodate larger src stack
851 */
f4d7e40a
AS
852static int copy_func_state(struct bpf_func_state *dst,
853 const struct bpf_func_state *src)
638f5b90
AS
854{
855 int err;
856
fd978bf7
JS
857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
858 false);
859 if (err)
860 return err;
861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
862 err = copy_reference_state(dst, src);
638f5b90
AS
863 if (err)
864 return err;
638f5b90
AS
865 return copy_stack_state(dst, src);
866}
867
f4d7e40a
AS
868static int copy_verifier_state(struct bpf_verifier_state *dst_state,
869 const struct bpf_verifier_state *src)
870{
871 struct bpf_func_state *dst;
b5dc0163 872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
873 int i, err;
874
b5dc0163
AS
875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
876 kfree(dst_state->jmp_history);
877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
878 if (!dst_state->jmp_history)
879 return -ENOMEM;
880 }
881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
882 dst_state->jmp_history_cnt = src->jmp_history_cnt;
883
f4d7e40a
AS
884 /* if dst has more stack frames then src frame, free them */
885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
886 free_func_state(dst_state->frame[i]);
887 dst_state->frame[i] = NULL;
888 }
979d63d5 889 dst_state->speculative = src->speculative;
f4d7e40a 890 dst_state->curframe = src->curframe;
d83525ca 891 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
892 dst_state->branches = src->branches;
893 dst_state->parent = src->parent;
b5dc0163
AS
894 dst_state->first_insn_idx = src->first_insn_idx;
895 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
896 for (i = 0; i <= src->curframe; i++) {
897 dst = dst_state->frame[i];
898 if (!dst) {
899 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
900 if (!dst)
901 return -ENOMEM;
902 dst_state->frame[i] = dst;
903 }
904 err = copy_func_state(dst, src->frame[i]);
905 if (err)
906 return err;
907 }
908 return 0;
909}
910
2589726d
AS
911static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
912{
913 while (st) {
914 u32 br = --st->branches;
915
916 /* WARN_ON(br > 1) technically makes sense here,
917 * but see comment in push_stack(), hence:
918 */
919 WARN_ONCE((int)br < 0,
920 "BUG update_branch_counts:branches_to_explore=%d\n",
921 br);
922 if (br)
923 break;
924 st = st->parent;
925 }
926}
927
638f5b90 928static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 929 int *insn_idx, bool pop_log)
638f5b90
AS
930{
931 struct bpf_verifier_state *cur = env->cur_state;
932 struct bpf_verifier_stack_elem *elem, *head = env->head;
933 int err;
17a52670
AS
934
935 if (env->head == NULL)
638f5b90 936 return -ENOENT;
17a52670 937
638f5b90
AS
938 if (cur) {
939 err = copy_verifier_state(cur, &head->st);
940 if (err)
941 return err;
942 }
6f8a57cc
AN
943 if (pop_log)
944 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
945 if (insn_idx)
946 *insn_idx = head->insn_idx;
17a52670 947 if (prev_insn_idx)
638f5b90
AS
948 *prev_insn_idx = head->prev_insn_idx;
949 elem = head->next;
1969db47 950 free_verifier_state(&head->st, false);
638f5b90 951 kfree(head);
17a52670
AS
952 env->head = elem;
953 env->stack_size--;
638f5b90 954 return 0;
17a52670
AS
955}
956
58e2af8b 957static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
958 int insn_idx, int prev_insn_idx,
959 bool speculative)
17a52670 960{
638f5b90 961 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 962 struct bpf_verifier_stack_elem *elem;
638f5b90 963 int err;
17a52670 964
638f5b90 965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
966 if (!elem)
967 goto err;
968
17a52670
AS
969 elem->insn_idx = insn_idx;
970 elem->prev_insn_idx = prev_insn_idx;
971 elem->next = env->head;
6f8a57cc 972 elem->log_pos = env->log.len_used;
17a52670
AS
973 env->head = elem;
974 env->stack_size++;
1969db47
AS
975 err = copy_verifier_state(&elem->st, cur);
976 if (err)
977 goto err;
979d63d5 978 elem->st.speculative |= speculative;
b285fcb7
AS
979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
980 verbose(env, "The sequence of %d jumps is too complex.\n",
981 env->stack_size);
17a52670
AS
982 goto err;
983 }
2589726d
AS
984 if (elem->st.parent) {
985 ++elem->st.parent->branches;
986 /* WARN_ON(branches > 2) technically makes sense here,
987 * but
988 * 1. speculative states will bump 'branches' for non-branch
989 * instructions
990 * 2. is_state_visited() heuristics may decide not to create
991 * a new state for a sequence of branches and all such current
992 * and cloned states will be pointing to a single parent state
993 * which might have large 'branches' count.
994 */
995 }
17a52670
AS
996 return &elem->st;
997err:
5896351e
AS
998 free_verifier_state(env->cur_state, true);
999 env->cur_state = NULL;
17a52670 1000 /* pop all elements and return */
6f8a57cc 1001 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1002 return NULL;
1003}
1004
1005#define CALLER_SAVED_REGS 6
1006static const int caller_saved[CALLER_SAVED_REGS] = {
1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1008};
1009
f54c7898
DB
1010static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1011 struct bpf_reg_state *reg);
f1174f77 1012
b03c9f9f
EC
1013/* Mark the unknown part of a register (variable offset or scalar value) as
1014 * known to have the value @imm.
1015 */
1016static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1017{
a9c676bc
AS
1018 /* Clear id, off, and union(map_ptr, range) */
1019 memset(((u8 *)reg) + sizeof(reg->type), 0,
1020 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
1021 reg->var_off = tnum_const(imm);
1022 reg->smin_value = (s64)imm;
1023 reg->smax_value = (s64)imm;
1024 reg->umin_value = imm;
1025 reg->umax_value = imm;
3f50f132
JF
1026
1027 reg->s32_min_value = (s32)imm;
1028 reg->s32_max_value = (s32)imm;
1029 reg->u32_min_value = (u32)imm;
1030 reg->u32_max_value = (u32)imm;
1031}
1032
1033static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1034{
1035 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1036 reg->s32_min_value = (s32)imm;
1037 reg->s32_max_value = (s32)imm;
1038 reg->u32_min_value = (u32)imm;
1039 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1040}
1041
f1174f77
EC
1042/* Mark the 'variable offset' part of a register as zero. This should be
1043 * used only on registers holding a pointer type.
1044 */
1045static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1046{
b03c9f9f 1047 __mark_reg_known(reg, 0);
f1174f77 1048}
a9789ef9 1049
cc2b14d5
AS
1050static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1051{
1052 __mark_reg_known(reg, 0);
cc2b14d5
AS
1053 reg->type = SCALAR_VALUE;
1054}
1055
61bd5218
JK
1056static void mark_reg_known_zero(struct bpf_verifier_env *env,
1057 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1058{
1059 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1060 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1061 /* Something bad happened, let's kill all regs */
1062 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1063 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1064 return;
1065 }
1066 __mark_reg_known_zero(regs + regno);
1067}
1068
de8f3a83
DB
1069static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1070{
1071 return type_is_pkt_pointer(reg->type);
1072}
1073
1074static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1075{
1076 return reg_is_pkt_pointer(reg) ||
1077 reg->type == PTR_TO_PACKET_END;
1078}
1079
1080/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1081static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1082 enum bpf_reg_type which)
1083{
1084 /* The register can already have a range from prior markings.
1085 * This is fine as long as it hasn't been advanced from its
1086 * origin.
1087 */
1088 return reg->type == which &&
1089 reg->id == 0 &&
1090 reg->off == 0 &&
1091 tnum_equals_const(reg->var_off, 0);
1092}
1093
3f50f132
JF
1094/* Reset the min/max bounds of a register */
1095static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1096{
1097 reg->smin_value = S64_MIN;
1098 reg->smax_value = S64_MAX;
1099 reg->umin_value = 0;
1100 reg->umax_value = U64_MAX;
1101
1102 reg->s32_min_value = S32_MIN;
1103 reg->s32_max_value = S32_MAX;
1104 reg->u32_min_value = 0;
1105 reg->u32_max_value = U32_MAX;
1106}
1107
1108static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1109{
1110 reg->smin_value = S64_MIN;
1111 reg->smax_value = S64_MAX;
1112 reg->umin_value = 0;
1113 reg->umax_value = U64_MAX;
1114}
1115
1116static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1117{
1118 reg->s32_min_value = S32_MIN;
1119 reg->s32_max_value = S32_MAX;
1120 reg->u32_min_value = 0;
1121 reg->u32_max_value = U32_MAX;
1122}
1123
1124static void __update_reg32_bounds(struct bpf_reg_state *reg)
1125{
1126 struct tnum var32_off = tnum_subreg(reg->var_off);
1127
1128 /* min signed is max(sign bit) | min(other bits) */
1129 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1130 var32_off.value | (var32_off.mask & S32_MIN));
1131 /* max signed is min(sign bit) | max(other bits) */
1132 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1133 var32_off.value | (var32_off.mask & S32_MAX));
1134 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1135 reg->u32_max_value = min(reg->u32_max_value,
1136 (u32)(var32_off.value | var32_off.mask));
1137}
1138
1139static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1140{
1141 /* min signed is max(sign bit) | min(other bits) */
1142 reg->smin_value = max_t(s64, reg->smin_value,
1143 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1144 /* max signed is min(sign bit) | max(other bits) */
1145 reg->smax_value = min_t(s64, reg->smax_value,
1146 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1147 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1148 reg->umax_value = min(reg->umax_value,
1149 reg->var_off.value | reg->var_off.mask);
1150}
1151
3f50f132
JF
1152static void __update_reg_bounds(struct bpf_reg_state *reg)
1153{
1154 __update_reg32_bounds(reg);
1155 __update_reg64_bounds(reg);
1156}
1157
b03c9f9f 1158/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1159static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1160{
1161 /* Learn sign from signed bounds.
1162 * If we cannot cross the sign boundary, then signed and unsigned bounds
1163 * are the same, so combine. This works even in the negative case, e.g.
1164 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1165 */
1166 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1167 reg->s32_min_value = reg->u32_min_value =
1168 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1169 reg->s32_max_value = reg->u32_max_value =
1170 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1171 return;
1172 }
1173 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1174 * boundary, so we must be careful.
1175 */
1176 if ((s32)reg->u32_max_value >= 0) {
1177 /* Positive. We can't learn anything from the smin, but smax
1178 * is positive, hence safe.
1179 */
1180 reg->s32_min_value = reg->u32_min_value;
1181 reg->s32_max_value = reg->u32_max_value =
1182 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1183 } else if ((s32)reg->u32_min_value < 0) {
1184 /* Negative. We can't learn anything from the smax, but smin
1185 * is negative, hence safe.
1186 */
1187 reg->s32_min_value = reg->u32_min_value =
1188 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1189 reg->s32_max_value = reg->u32_max_value;
1190 }
1191}
1192
1193static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1194{
1195 /* Learn sign from signed bounds.
1196 * If we cannot cross the sign boundary, then signed and unsigned bounds
1197 * are the same, so combine. This works even in the negative case, e.g.
1198 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1199 */
1200 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1201 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1202 reg->umin_value);
1203 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1204 reg->umax_value);
1205 return;
1206 }
1207 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1208 * boundary, so we must be careful.
1209 */
1210 if ((s64)reg->umax_value >= 0) {
1211 /* Positive. We can't learn anything from the smin, but smax
1212 * is positive, hence safe.
1213 */
1214 reg->smin_value = reg->umin_value;
1215 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1216 reg->umax_value);
1217 } else if ((s64)reg->umin_value < 0) {
1218 /* Negative. We can't learn anything from the smax, but smin
1219 * is negative, hence safe.
1220 */
1221 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1222 reg->umin_value);
1223 reg->smax_value = reg->umax_value;
1224 }
1225}
1226
3f50f132
JF
1227static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1228{
1229 __reg32_deduce_bounds(reg);
1230 __reg64_deduce_bounds(reg);
1231}
1232
b03c9f9f
EC
1233/* Attempts to improve var_off based on unsigned min/max information */
1234static void __reg_bound_offset(struct bpf_reg_state *reg)
1235{
3f50f132
JF
1236 struct tnum var64_off = tnum_intersect(reg->var_off,
1237 tnum_range(reg->umin_value,
1238 reg->umax_value));
1239 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1240 tnum_range(reg->u32_min_value,
1241 reg->u32_max_value));
1242
1243 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1244}
1245
3f50f132 1246static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1247{
3f50f132
JF
1248 reg->umin_value = reg->u32_min_value;
1249 reg->umax_value = reg->u32_max_value;
1250 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1251 * but must be positive otherwise set to worse case bounds
1252 * and refine later from tnum.
1253 */
3a71dc36 1254 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1255 reg->smax_value = reg->s32_max_value;
1256 else
1257 reg->smax_value = U32_MAX;
3a71dc36
JF
1258 if (reg->s32_min_value >= 0)
1259 reg->smin_value = reg->s32_min_value;
1260 else
1261 reg->smin_value = 0;
3f50f132
JF
1262}
1263
1264static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1265{
1266 /* special case when 64-bit register has upper 32-bit register
1267 * zeroed. Typically happens after zext or <<32, >>32 sequence
1268 * allowing us to use 32-bit bounds directly,
1269 */
1270 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1271 __reg_assign_32_into_64(reg);
1272 } else {
1273 /* Otherwise the best we can do is push lower 32bit known and
1274 * unknown bits into register (var_off set from jmp logic)
1275 * then learn as much as possible from the 64-bit tnum
1276 * known and unknown bits. The previous smin/smax bounds are
1277 * invalid here because of jmp32 compare so mark them unknown
1278 * so they do not impact tnum bounds calculation.
1279 */
1280 __mark_reg64_unbounded(reg);
1281 __update_reg_bounds(reg);
1282 }
1283
1284 /* Intersecting with the old var_off might have improved our bounds
1285 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1286 * then new var_off is (0; 0x7f...fc) which improves our umax.
1287 */
1288 __reg_deduce_bounds(reg);
1289 __reg_bound_offset(reg);
1290 __update_reg_bounds(reg);
1291}
1292
1293static bool __reg64_bound_s32(s64 a)
1294{
1295 if (a > S32_MIN && a < S32_MAX)
1296 return true;
1297 return false;
1298}
1299
1300static bool __reg64_bound_u32(u64 a)
1301{
1302 if (a > U32_MIN && a < U32_MAX)
1303 return true;
1304 return false;
1305}
1306
1307static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1308{
1309 __mark_reg32_unbounded(reg);
1310
1311 if (__reg64_bound_s32(reg->smin_value))
1312 reg->s32_min_value = (s32)reg->smin_value;
1313 if (__reg64_bound_s32(reg->smax_value))
1314 reg->s32_max_value = (s32)reg->smax_value;
1315 if (__reg64_bound_u32(reg->umin_value))
1316 reg->u32_min_value = (u32)reg->umin_value;
1317 if (__reg64_bound_u32(reg->umax_value))
1318 reg->u32_max_value = (u32)reg->umax_value;
1319
1320 /* Intersecting with the old var_off might have improved our bounds
1321 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1322 * then new var_off is (0; 0x7f...fc) which improves our umax.
1323 */
1324 __reg_deduce_bounds(reg);
1325 __reg_bound_offset(reg);
1326 __update_reg_bounds(reg);
b03c9f9f
EC
1327}
1328
f1174f77 1329/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1330static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1331 struct bpf_reg_state *reg)
f1174f77 1332{
a9c676bc
AS
1333 /*
1334 * Clear type, id, off, and union(map_ptr, range) and
1335 * padding between 'type' and union
1336 */
1337 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1338 reg->type = SCALAR_VALUE;
f1174f77 1339 reg->var_off = tnum_unknown;
f4d7e40a 1340 reg->frameno = 0;
2c78ee89 1341 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1342 __mark_reg_unbounded(reg);
f1174f77
EC
1343}
1344
61bd5218
JK
1345static void mark_reg_unknown(struct bpf_verifier_env *env,
1346 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1347{
1348 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1349 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1350 /* Something bad happened, let's kill all regs except FP */
1351 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1352 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1353 return;
1354 }
f54c7898 1355 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1356}
1357
f54c7898
DB
1358static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1359 struct bpf_reg_state *reg)
f1174f77 1360{
f54c7898 1361 __mark_reg_unknown(env, reg);
f1174f77
EC
1362 reg->type = NOT_INIT;
1363}
1364
61bd5218
JK
1365static void mark_reg_not_init(struct bpf_verifier_env *env,
1366 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1367{
1368 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1369 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1370 /* Something bad happened, let's kill all regs except FP */
1371 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1372 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1373 return;
1374 }
f54c7898 1375 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1376}
1377
41c48f3a
AI
1378static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1379 struct bpf_reg_state *regs, u32 regno,
1380 enum bpf_reg_type reg_type, u32 btf_id)
1381{
1382 if (reg_type == SCALAR_VALUE) {
1383 mark_reg_unknown(env, regs, regno);
1384 return;
1385 }
1386 mark_reg_known_zero(env, regs, regno);
1387 regs[regno].type = PTR_TO_BTF_ID;
1388 regs[regno].btf_id = btf_id;
1389}
1390
5327ed3d 1391#define DEF_NOT_SUBREG (0)
61bd5218 1392static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1393 struct bpf_func_state *state)
17a52670 1394{
f4d7e40a 1395 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1396 int i;
1397
dc503a8a 1398 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1399 mark_reg_not_init(env, regs, i);
dc503a8a 1400 regs[i].live = REG_LIVE_NONE;
679c782d 1401 regs[i].parent = NULL;
5327ed3d 1402 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1403 }
17a52670
AS
1404
1405 /* frame pointer */
f1174f77 1406 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1407 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1408 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1409}
1410
f4d7e40a
AS
1411#define BPF_MAIN_FUNC (-1)
1412static void init_func_state(struct bpf_verifier_env *env,
1413 struct bpf_func_state *state,
1414 int callsite, int frameno, int subprogno)
1415{
1416 state->callsite = callsite;
1417 state->frameno = frameno;
1418 state->subprogno = subprogno;
1419 init_reg_state(env, state);
1420}
1421
17a52670
AS
1422enum reg_arg_type {
1423 SRC_OP, /* register is used as source operand */
1424 DST_OP, /* register is used as destination operand */
1425 DST_OP_NO_MARK /* same as above, check only, don't mark */
1426};
1427
cc8b0b92
AS
1428static int cmp_subprogs(const void *a, const void *b)
1429{
9c8105bd
JW
1430 return ((struct bpf_subprog_info *)a)->start -
1431 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1432}
1433
1434static int find_subprog(struct bpf_verifier_env *env, int off)
1435{
9c8105bd 1436 struct bpf_subprog_info *p;
cc8b0b92 1437
9c8105bd
JW
1438 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1439 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1440 if (!p)
1441 return -ENOENT;
9c8105bd 1442 return p - env->subprog_info;
cc8b0b92
AS
1443
1444}
1445
1446static int add_subprog(struct bpf_verifier_env *env, int off)
1447{
1448 int insn_cnt = env->prog->len;
1449 int ret;
1450
1451 if (off >= insn_cnt || off < 0) {
1452 verbose(env, "call to invalid destination\n");
1453 return -EINVAL;
1454 }
1455 ret = find_subprog(env, off);
1456 if (ret >= 0)
1457 return 0;
4cb3d99c 1458 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1459 verbose(env, "too many subprograms\n");
1460 return -E2BIG;
1461 }
9c8105bd
JW
1462 env->subprog_info[env->subprog_cnt++].start = off;
1463 sort(env->subprog_info, env->subprog_cnt,
1464 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1465 return 0;
1466}
1467
1468static int check_subprogs(struct bpf_verifier_env *env)
1469{
1470 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1471 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1472 struct bpf_insn *insn = env->prog->insnsi;
1473 int insn_cnt = env->prog->len;
1474
f910cefa
JW
1475 /* Add entry function. */
1476 ret = add_subprog(env, 0);
1477 if (ret < 0)
1478 return ret;
1479
cc8b0b92
AS
1480 /* determine subprog starts. The end is one before the next starts */
1481 for (i = 0; i < insn_cnt; i++) {
1482 if (insn[i].code != (BPF_JMP | BPF_CALL))
1483 continue;
1484 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1485 continue;
2c78ee89
AS
1486 if (!env->bpf_capable) {
1487 verbose(env,
1488 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1489 return -EPERM;
1490 }
cc8b0b92
AS
1491 ret = add_subprog(env, i + insn[i].imm + 1);
1492 if (ret < 0)
1493 return ret;
1494 }
1495
4cb3d99c
JW
1496 /* Add a fake 'exit' subprog which could simplify subprog iteration
1497 * logic. 'subprog_cnt' should not be increased.
1498 */
1499 subprog[env->subprog_cnt].start = insn_cnt;
1500
06ee7115 1501 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1502 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1503 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1504
1505 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1506 subprog_start = subprog[cur_subprog].start;
1507 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1508 for (i = 0; i < insn_cnt; i++) {
1509 u8 code = insn[i].code;
1510
7f6e4312
MF
1511 if (code == (BPF_JMP | BPF_CALL) &&
1512 insn[i].imm == BPF_FUNC_tail_call &&
1513 insn[i].src_reg != BPF_PSEUDO_CALL)
1514 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1515 if (BPF_CLASS(code) == BPF_LD &&
1516 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1517 subprog[cur_subprog].has_ld_abs = true;
092ed096 1518 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1519 goto next;
1520 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1521 goto next;
1522 off = i + insn[i].off + 1;
1523 if (off < subprog_start || off >= subprog_end) {
1524 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1525 return -EINVAL;
1526 }
1527next:
1528 if (i == subprog_end - 1) {
1529 /* to avoid fall-through from one subprog into another
1530 * the last insn of the subprog should be either exit
1531 * or unconditional jump back
1532 */
1533 if (code != (BPF_JMP | BPF_EXIT) &&
1534 code != (BPF_JMP | BPF_JA)) {
1535 verbose(env, "last insn is not an exit or jmp\n");
1536 return -EINVAL;
1537 }
1538 subprog_start = subprog_end;
4cb3d99c
JW
1539 cur_subprog++;
1540 if (cur_subprog < env->subprog_cnt)
9c8105bd 1541 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1542 }
1543 }
1544 return 0;
1545}
1546
679c782d
EC
1547/* Parentage chain of this register (or stack slot) should take care of all
1548 * issues like callee-saved registers, stack slot allocation time, etc.
1549 */
f4d7e40a 1550static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1551 const struct bpf_reg_state *state,
5327ed3d 1552 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1553{
1554 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1555 int cnt = 0;
dc503a8a
EC
1556
1557 while (parent) {
1558 /* if read wasn't screened by an earlier write ... */
679c782d 1559 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1560 break;
9242b5f5
AS
1561 if (parent->live & REG_LIVE_DONE) {
1562 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1563 reg_type_str[parent->type],
1564 parent->var_off.value, parent->off);
1565 return -EFAULT;
1566 }
5327ed3d
JW
1567 /* The first condition is more likely to be true than the
1568 * second, checked it first.
1569 */
1570 if ((parent->live & REG_LIVE_READ) == flag ||
1571 parent->live & REG_LIVE_READ64)
25af32da
AS
1572 /* The parentage chain never changes and
1573 * this parent was already marked as LIVE_READ.
1574 * There is no need to keep walking the chain again and
1575 * keep re-marking all parents as LIVE_READ.
1576 * This case happens when the same register is read
1577 * multiple times without writes into it in-between.
5327ed3d
JW
1578 * Also, if parent has the stronger REG_LIVE_READ64 set,
1579 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1580 */
1581 break;
dc503a8a 1582 /* ... then we depend on parent's value */
5327ed3d
JW
1583 parent->live |= flag;
1584 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1585 if (flag == REG_LIVE_READ64)
1586 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1587 state = parent;
1588 parent = state->parent;
f4d7e40a 1589 writes = true;
06ee7115 1590 cnt++;
dc503a8a 1591 }
06ee7115
AS
1592
1593 if (env->longest_mark_read_walk < cnt)
1594 env->longest_mark_read_walk = cnt;
f4d7e40a 1595 return 0;
dc503a8a
EC
1596}
1597
5327ed3d
JW
1598/* This function is supposed to be used by the following 32-bit optimization
1599 * code only. It returns TRUE if the source or destination register operates
1600 * on 64-bit, otherwise return FALSE.
1601 */
1602static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1603 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1604{
1605 u8 code, class, op;
1606
1607 code = insn->code;
1608 class = BPF_CLASS(code);
1609 op = BPF_OP(code);
1610 if (class == BPF_JMP) {
1611 /* BPF_EXIT for "main" will reach here. Return TRUE
1612 * conservatively.
1613 */
1614 if (op == BPF_EXIT)
1615 return true;
1616 if (op == BPF_CALL) {
1617 /* BPF to BPF call will reach here because of marking
1618 * caller saved clobber with DST_OP_NO_MARK for which we
1619 * don't care the register def because they are anyway
1620 * marked as NOT_INIT already.
1621 */
1622 if (insn->src_reg == BPF_PSEUDO_CALL)
1623 return false;
1624 /* Helper call will reach here because of arg type
1625 * check, conservatively return TRUE.
1626 */
1627 if (t == SRC_OP)
1628 return true;
1629
1630 return false;
1631 }
1632 }
1633
1634 if (class == BPF_ALU64 || class == BPF_JMP ||
1635 /* BPF_END always use BPF_ALU class. */
1636 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1637 return true;
1638
1639 if (class == BPF_ALU || class == BPF_JMP32)
1640 return false;
1641
1642 if (class == BPF_LDX) {
1643 if (t != SRC_OP)
1644 return BPF_SIZE(code) == BPF_DW;
1645 /* LDX source must be ptr. */
1646 return true;
1647 }
1648
1649 if (class == BPF_STX) {
1650 if (reg->type != SCALAR_VALUE)
1651 return true;
1652 return BPF_SIZE(code) == BPF_DW;
1653 }
1654
1655 if (class == BPF_LD) {
1656 u8 mode = BPF_MODE(code);
1657
1658 /* LD_IMM64 */
1659 if (mode == BPF_IMM)
1660 return true;
1661
1662 /* Both LD_IND and LD_ABS return 32-bit data. */
1663 if (t != SRC_OP)
1664 return false;
1665
1666 /* Implicit ctx ptr. */
1667 if (regno == BPF_REG_6)
1668 return true;
1669
1670 /* Explicit source could be any width. */
1671 return true;
1672 }
1673
1674 if (class == BPF_ST)
1675 /* The only source register for BPF_ST is a ptr. */
1676 return true;
1677
1678 /* Conservatively return true at default. */
1679 return true;
1680}
1681
b325fbca
JW
1682/* Return TRUE if INSN doesn't have explicit value define. */
1683static bool insn_no_def(struct bpf_insn *insn)
1684{
1685 u8 class = BPF_CLASS(insn->code);
1686
1687 return (class == BPF_JMP || class == BPF_JMP32 ||
1688 class == BPF_STX || class == BPF_ST);
1689}
1690
1691/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1692static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1693{
1694 if (insn_no_def(insn))
1695 return false;
1696
1697 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1698}
1699
5327ed3d
JW
1700static void mark_insn_zext(struct bpf_verifier_env *env,
1701 struct bpf_reg_state *reg)
1702{
1703 s32 def_idx = reg->subreg_def;
1704
1705 if (def_idx == DEF_NOT_SUBREG)
1706 return;
1707
1708 env->insn_aux_data[def_idx - 1].zext_dst = true;
1709 /* The dst will be zero extended, so won't be sub-register anymore. */
1710 reg->subreg_def = DEF_NOT_SUBREG;
1711}
1712
dc503a8a 1713static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1714 enum reg_arg_type t)
1715{
f4d7e40a
AS
1716 struct bpf_verifier_state *vstate = env->cur_state;
1717 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1718 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1719 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1720 bool rw64;
dc503a8a 1721
17a52670 1722 if (regno >= MAX_BPF_REG) {
61bd5218 1723 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1724 return -EINVAL;
1725 }
1726
c342dc10 1727 reg = &regs[regno];
5327ed3d 1728 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1729 if (t == SRC_OP) {
1730 /* check whether register used as source operand can be read */
c342dc10 1731 if (reg->type == NOT_INIT) {
61bd5218 1732 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1733 return -EACCES;
1734 }
679c782d 1735 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1736 if (regno == BPF_REG_FP)
1737 return 0;
1738
5327ed3d
JW
1739 if (rw64)
1740 mark_insn_zext(env, reg);
1741
1742 return mark_reg_read(env, reg, reg->parent,
1743 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1744 } else {
1745 /* check whether register used as dest operand can be written to */
1746 if (regno == BPF_REG_FP) {
61bd5218 1747 verbose(env, "frame pointer is read only\n");
17a52670
AS
1748 return -EACCES;
1749 }
c342dc10 1750 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1751 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1752 if (t == DST_OP)
61bd5218 1753 mark_reg_unknown(env, regs, regno);
17a52670
AS
1754 }
1755 return 0;
1756}
1757
b5dc0163
AS
1758/* for any branch, call, exit record the history of jmps in the given state */
1759static int push_jmp_history(struct bpf_verifier_env *env,
1760 struct bpf_verifier_state *cur)
1761{
1762 u32 cnt = cur->jmp_history_cnt;
1763 struct bpf_idx_pair *p;
1764
1765 cnt++;
1766 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1767 if (!p)
1768 return -ENOMEM;
1769 p[cnt - 1].idx = env->insn_idx;
1770 p[cnt - 1].prev_idx = env->prev_insn_idx;
1771 cur->jmp_history = p;
1772 cur->jmp_history_cnt = cnt;
1773 return 0;
1774}
1775
1776/* Backtrack one insn at a time. If idx is not at the top of recorded
1777 * history then previous instruction came from straight line execution.
1778 */
1779static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1780 u32 *history)
1781{
1782 u32 cnt = *history;
1783
1784 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1785 i = st->jmp_history[cnt - 1].prev_idx;
1786 (*history)--;
1787 } else {
1788 i--;
1789 }
1790 return i;
1791}
1792
1793/* For given verifier state backtrack_insn() is called from the last insn to
1794 * the first insn. Its purpose is to compute a bitmask of registers and
1795 * stack slots that needs precision in the parent verifier state.
1796 */
1797static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1798 u32 *reg_mask, u64 *stack_mask)
1799{
1800 const struct bpf_insn_cbs cbs = {
1801 .cb_print = verbose,
1802 .private_data = env,
1803 };
1804 struct bpf_insn *insn = env->prog->insnsi + idx;
1805 u8 class = BPF_CLASS(insn->code);
1806 u8 opcode = BPF_OP(insn->code);
1807 u8 mode = BPF_MODE(insn->code);
1808 u32 dreg = 1u << insn->dst_reg;
1809 u32 sreg = 1u << insn->src_reg;
1810 u32 spi;
1811
1812 if (insn->code == 0)
1813 return 0;
1814 if (env->log.level & BPF_LOG_LEVEL) {
1815 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1816 verbose(env, "%d: ", idx);
1817 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1818 }
1819
1820 if (class == BPF_ALU || class == BPF_ALU64) {
1821 if (!(*reg_mask & dreg))
1822 return 0;
1823 if (opcode == BPF_MOV) {
1824 if (BPF_SRC(insn->code) == BPF_X) {
1825 /* dreg = sreg
1826 * dreg needs precision after this insn
1827 * sreg needs precision before this insn
1828 */
1829 *reg_mask &= ~dreg;
1830 *reg_mask |= sreg;
1831 } else {
1832 /* dreg = K
1833 * dreg needs precision after this insn.
1834 * Corresponding register is already marked
1835 * as precise=true in this verifier state.
1836 * No further markings in parent are necessary
1837 */
1838 *reg_mask &= ~dreg;
1839 }
1840 } else {
1841 if (BPF_SRC(insn->code) == BPF_X) {
1842 /* dreg += sreg
1843 * both dreg and sreg need precision
1844 * before this insn
1845 */
1846 *reg_mask |= sreg;
1847 } /* else dreg += K
1848 * dreg still needs precision before this insn
1849 */
1850 }
1851 } else if (class == BPF_LDX) {
1852 if (!(*reg_mask & dreg))
1853 return 0;
1854 *reg_mask &= ~dreg;
1855
1856 /* scalars can only be spilled into stack w/o losing precision.
1857 * Load from any other memory can be zero extended.
1858 * The desire to keep that precision is already indicated
1859 * by 'precise' mark in corresponding register of this state.
1860 * No further tracking necessary.
1861 */
1862 if (insn->src_reg != BPF_REG_FP)
1863 return 0;
1864 if (BPF_SIZE(insn->code) != BPF_DW)
1865 return 0;
1866
1867 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1868 * that [fp - off] slot contains scalar that needs to be
1869 * tracked with precision
1870 */
1871 spi = (-insn->off - 1) / BPF_REG_SIZE;
1872 if (spi >= 64) {
1873 verbose(env, "BUG spi %d\n", spi);
1874 WARN_ONCE(1, "verifier backtracking bug");
1875 return -EFAULT;
1876 }
1877 *stack_mask |= 1ull << spi;
b3b50f05 1878 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1879 if (*reg_mask & dreg)
b3b50f05 1880 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1881 * to access memory. It means backtracking
1882 * encountered a case of pointer subtraction.
1883 */
1884 return -ENOTSUPP;
1885 /* scalars can only be spilled into stack */
1886 if (insn->dst_reg != BPF_REG_FP)
1887 return 0;
1888 if (BPF_SIZE(insn->code) != BPF_DW)
1889 return 0;
1890 spi = (-insn->off - 1) / BPF_REG_SIZE;
1891 if (spi >= 64) {
1892 verbose(env, "BUG spi %d\n", spi);
1893 WARN_ONCE(1, "verifier backtracking bug");
1894 return -EFAULT;
1895 }
1896 if (!(*stack_mask & (1ull << spi)))
1897 return 0;
1898 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1899 if (class == BPF_STX)
1900 *reg_mask |= sreg;
b5dc0163
AS
1901 } else if (class == BPF_JMP || class == BPF_JMP32) {
1902 if (opcode == BPF_CALL) {
1903 if (insn->src_reg == BPF_PSEUDO_CALL)
1904 return -ENOTSUPP;
1905 /* regular helper call sets R0 */
1906 *reg_mask &= ~1;
1907 if (*reg_mask & 0x3f) {
1908 /* if backtracing was looking for registers R1-R5
1909 * they should have been found already.
1910 */
1911 verbose(env, "BUG regs %x\n", *reg_mask);
1912 WARN_ONCE(1, "verifier backtracking bug");
1913 return -EFAULT;
1914 }
1915 } else if (opcode == BPF_EXIT) {
1916 return -ENOTSUPP;
1917 }
1918 } else if (class == BPF_LD) {
1919 if (!(*reg_mask & dreg))
1920 return 0;
1921 *reg_mask &= ~dreg;
1922 /* It's ld_imm64 or ld_abs or ld_ind.
1923 * For ld_imm64 no further tracking of precision
1924 * into parent is necessary
1925 */
1926 if (mode == BPF_IND || mode == BPF_ABS)
1927 /* to be analyzed */
1928 return -ENOTSUPP;
b5dc0163
AS
1929 }
1930 return 0;
1931}
1932
1933/* the scalar precision tracking algorithm:
1934 * . at the start all registers have precise=false.
1935 * . scalar ranges are tracked as normal through alu and jmp insns.
1936 * . once precise value of the scalar register is used in:
1937 * . ptr + scalar alu
1938 * . if (scalar cond K|scalar)
1939 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1940 * backtrack through the verifier states and mark all registers and
1941 * stack slots with spilled constants that these scalar regisers
1942 * should be precise.
1943 * . during state pruning two registers (or spilled stack slots)
1944 * are equivalent if both are not precise.
1945 *
1946 * Note the verifier cannot simply walk register parentage chain,
1947 * since many different registers and stack slots could have been
1948 * used to compute single precise scalar.
1949 *
1950 * The approach of starting with precise=true for all registers and then
1951 * backtrack to mark a register as not precise when the verifier detects
1952 * that program doesn't care about specific value (e.g., when helper
1953 * takes register as ARG_ANYTHING parameter) is not safe.
1954 *
1955 * It's ok to walk single parentage chain of the verifier states.
1956 * It's possible that this backtracking will go all the way till 1st insn.
1957 * All other branches will be explored for needing precision later.
1958 *
1959 * The backtracking needs to deal with cases like:
1960 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1961 * r9 -= r8
1962 * r5 = r9
1963 * if r5 > 0x79f goto pc+7
1964 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1965 * r5 += 1
1966 * ...
1967 * call bpf_perf_event_output#25
1968 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1969 *
1970 * and this case:
1971 * r6 = 1
1972 * call foo // uses callee's r6 inside to compute r0
1973 * r0 += r6
1974 * if r0 == 0 goto
1975 *
1976 * to track above reg_mask/stack_mask needs to be independent for each frame.
1977 *
1978 * Also if parent's curframe > frame where backtracking started,
1979 * the verifier need to mark registers in both frames, otherwise callees
1980 * may incorrectly prune callers. This is similar to
1981 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1982 *
1983 * For now backtracking falls back into conservative marking.
1984 */
1985static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1986 struct bpf_verifier_state *st)
1987{
1988 struct bpf_func_state *func;
1989 struct bpf_reg_state *reg;
1990 int i, j;
1991
1992 /* big hammer: mark all scalars precise in this path.
1993 * pop_stack may still get !precise scalars.
1994 */
1995 for (; st; st = st->parent)
1996 for (i = 0; i <= st->curframe; i++) {
1997 func = st->frame[i];
1998 for (j = 0; j < BPF_REG_FP; j++) {
1999 reg = &func->regs[j];
2000 if (reg->type != SCALAR_VALUE)
2001 continue;
2002 reg->precise = true;
2003 }
2004 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2005 if (func->stack[j].slot_type[0] != STACK_SPILL)
2006 continue;
2007 reg = &func->stack[j].spilled_ptr;
2008 if (reg->type != SCALAR_VALUE)
2009 continue;
2010 reg->precise = true;
2011 }
2012 }
2013}
2014
a3ce685d
AS
2015static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2016 int spi)
b5dc0163
AS
2017{
2018 struct bpf_verifier_state *st = env->cur_state;
2019 int first_idx = st->first_insn_idx;
2020 int last_idx = env->insn_idx;
2021 struct bpf_func_state *func;
2022 struct bpf_reg_state *reg;
a3ce685d
AS
2023 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2024 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2025 bool skip_first = true;
a3ce685d 2026 bool new_marks = false;
b5dc0163
AS
2027 int i, err;
2028
2c78ee89 2029 if (!env->bpf_capable)
b5dc0163
AS
2030 return 0;
2031
2032 func = st->frame[st->curframe];
a3ce685d
AS
2033 if (regno >= 0) {
2034 reg = &func->regs[regno];
2035 if (reg->type != SCALAR_VALUE) {
2036 WARN_ONCE(1, "backtracing misuse");
2037 return -EFAULT;
2038 }
2039 if (!reg->precise)
2040 new_marks = true;
2041 else
2042 reg_mask = 0;
2043 reg->precise = true;
b5dc0163 2044 }
b5dc0163 2045
a3ce685d
AS
2046 while (spi >= 0) {
2047 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2048 stack_mask = 0;
2049 break;
2050 }
2051 reg = &func->stack[spi].spilled_ptr;
2052 if (reg->type != SCALAR_VALUE) {
2053 stack_mask = 0;
2054 break;
2055 }
2056 if (!reg->precise)
2057 new_marks = true;
2058 else
2059 stack_mask = 0;
2060 reg->precise = true;
2061 break;
2062 }
2063
2064 if (!new_marks)
2065 return 0;
2066 if (!reg_mask && !stack_mask)
2067 return 0;
b5dc0163
AS
2068 for (;;) {
2069 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2070 u32 history = st->jmp_history_cnt;
2071
2072 if (env->log.level & BPF_LOG_LEVEL)
2073 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2074 for (i = last_idx;;) {
2075 if (skip_first) {
2076 err = 0;
2077 skip_first = false;
2078 } else {
2079 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2080 }
2081 if (err == -ENOTSUPP) {
2082 mark_all_scalars_precise(env, st);
2083 return 0;
2084 } else if (err) {
2085 return err;
2086 }
2087 if (!reg_mask && !stack_mask)
2088 /* Found assignment(s) into tracked register in this state.
2089 * Since this state is already marked, just return.
2090 * Nothing to be tracked further in the parent state.
2091 */
2092 return 0;
2093 if (i == first_idx)
2094 break;
2095 i = get_prev_insn_idx(st, i, &history);
2096 if (i >= env->prog->len) {
2097 /* This can happen if backtracking reached insn 0
2098 * and there are still reg_mask or stack_mask
2099 * to backtrack.
2100 * It means the backtracking missed the spot where
2101 * particular register was initialized with a constant.
2102 */
2103 verbose(env, "BUG backtracking idx %d\n", i);
2104 WARN_ONCE(1, "verifier backtracking bug");
2105 return -EFAULT;
2106 }
2107 }
2108 st = st->parent;
2109 if (!st)
2110 break;
2111
a3ce685d 2112 new_marks = false;
b5dc0163
AS
2113 func = st->frame[st->curframe];
2114 bitmap_from_u64(mask, reg_mask);
2115 for_each_set_bit(i, mask, 32) {
2116 reg = &func->regs[i];
a3ce685d
AS
2117 if (reg->type != SCALAR_VALUE) {
2118 reg_mask &= ~(1u << i);
b5dc0163 2119 continue;
a3ce685d 2120 }
b5dc0163
AS
2121 if (!reg->precise)
2122 new_marks = true;
2123 reg->precise = true;
2124 }
2125
2126 bitmap_from_u64(mask, stack_mask);
2127 for_each_set_bit(i, mask, 64) {
2128 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2129 /* the sequence of instructions:
2130 * 2: (bf) r3 = r10
2131 * 3: (7b) *(u64 *)(r3 -8) = r0
2132 * 4: (79) r4 = *(u64 *)(r10 -8)
2133 * doesn't contain jmps. It's backtracked
2134 * as a single block.
2135 * During backtracking insn 3 is not recognized as
2136 * stack access, so at the end of backtracking
2137 * stack slot fp-8 is still marked in stack_mask.
2138 * However the parent state may not have accessed
2139 * fp-8 and it's "unallocated" stack space.
2140 * In such case fallback to conservative.
b5dc0163 2141 */
2339cd6c
AS
2142 mark_all_scalars_precise(env, st);
2143 return 0;
b5dc0163
AS
2144 }
2145
a3ce685d
AS
2146 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2147 stack_mask &= ~(1ull << i);
b5dc0163 2148 continue;
a3ce685d 2149 }
b5dc0163 2150 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2151 if (reg->type != SCALAR_VALUE) {
2152 stack_mask &= ~(1ull << i);
b5dc0163 2153 continue;
a3ce685d 2154 }
b5dc0163
AS
2155 if (!reg->precise)
2156 new_marks = true;
2157 reg->precise = true;
2158 }
2159 if (env->log.level & BPF_LOG_LEVEL) {
2160 print_verifier_state(env, func);
2161 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2162 new_marks ? "didn't have" : "already had",
2163 reg_mask, stack_mask);
2164 }
2165
a3ce685d
AS
2166 if (!reg_mask && !stack_mask)
2167 break;
b5dc0163
AS
2168 if (!new_marks)
2169 break;
2170
2171 last_idx = st->last_insn_idx;
2172 first_idx = st->first_insn_idx;
2173 }
2174 return 0;
2175}
2176
a3ce685d
AS
2177static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2178{
2179 return __mark_chain_precision(env, regno, -1);
2180}
2181
2182static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2183{
2184 return __mark_chain_precision(env, -1, spi);
2185}
b5dc0163 2186
1be7f75d
AS
2187static bool is_spillable_regtype(enum bpf_reg_type type)
2188{
2189 switch (type) {
2190 case PTR_TO_MAP_VALUE:
2191 case PTR_TO_MAP_VALUE_OR_NULL:
2192 case PTR_TO_STACK:
2193 case PTR_TO_CTX:
969bf05e 2194 case PTR_TO_PACKET:
de8f3a83 2195 case PTR_TO_PACKET_META:
969bf05e 2196 case PTR_TO_PACKET_END:
d58e468b 2197 case PTR_TO_FLOW_KEYS:
1be7f75d 2198 case CONST_PTR_TO_MAP:
c64b7983
JS
2199 case PTR_TO_SOCKET:
2200 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2201 case PTR_TO_SOCK_COMMON:
2202 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2203 case PTR_TO_TCP_SOCK:
2204 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2205 case PTR_TO_XDP_SOCK:
65726b5b 2206 case PTR_TO_BTF_ID:
b121b341 2207 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2208 case PTR_TO_RDONLY_BUF:
2209 case PTR_TO_RDONLY_BUF_OR_NULL:
2210 case PTR_TO_RDWR_BUF:
2211 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2212 case PTR_TO_PERCPU_BTF_ID:
1be7f75d
AS
2213 return true;
2214 default:
2215 return false;
2216 }
2217}
2218
cc2b14d5
AS
2219/* Does this register contain a constant zero? */
2220static bool register_is_null(struct bpf_reg_state *reg)
2221{
2222 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2223}
2224
f7cf25b2
AS
2225static bool register_is_const(struct bpf_reg_state *reg)
2226{
2227 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2228}
2229
6e7e63cb
JH
2230static bool __is_pointer_value(bool allow_ptr_leaks,
2231 const struct bpf_reg_state *reg)
2232{
2233 if (allow_ptr_leaks)
2234 return false;
2235
2236 return reg->type != SCALAR_VALUE;
2237}
2238
f7cf25b2
AS
2239static void save_register_state(struct bpf_func_state *state,
2240 int spi, struct bpf_reg_state *reg)
2241{
2242 int i;
2243
2244 state->stack[spi].spilled_ptr = *reg;
2245 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2246
2247 for (i = 0; i < BPF_REG_SIZE; i++)
2248 state->stack[spi].slot_type[i] = STACK_SPILL;
2249}
2250
17a52670
AS
2251/* check_stack_read/write functions track spill/fill of registers,
2252 * stack boundary and alignment are checked in check_mem_access()
2253 */
61bd5218 2254static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2255 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2256 int off, int size, int value_regno, int insn_idx)
17a52670 2257{
f4d7e40a 2258 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2259 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2260 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2261 struct bpf_reg_state *reg = NULL;
638f5b90 2262
f4d7e40a 2263 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2264 state->acquired_refs, true);
638f5b90
AS
2265 if (err)
2266 return err;
9c399760
AS
2267 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2268 * so it's aligned access and [off, off + size) are within stack limits
2269 */
638f5b90
AS
2270 if (!env->allow_ptr_leaks &&
2271 state->stack[spi].slot_type[0] == STACK_SPILL &&
2272 size != BPF_REG_SIZE) {
2273 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2274 return -EACCES;
2275 }
17a52670 2276
f4d7e40a 2277 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2278 if (value_regno >= 0)
2279 reg = &cur->regs[value_regno];
17a52670 2280
f7cf25b2 2281 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2c78ee89 2282 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2283 if (dst_reg != BPF_REG_FP) {
2284 /* The backtracking logic can only recognize explicit
2285 * stack slot address like [fp - 8]. Other spill of
2286 * scalar via different register has to be conervative.
2287 * Backtrack from here and mark all registers as precise
2288 * that contributed into 'reg' being a constant.
2289 */
2290 err = mark_chain_precision(env, value_regno);
2291 if (err)
2292 return err;
2293 }
f7cf25b2
AS
2294 save_register_state(state, spi, reg);
2295 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2296 /* register containing pointer is being spilled into stack */
9c399760 2297 if (size != BPF_REG_SIZE) {
f7cf25b2 2298 verbose_linfo(env, insn_idx, "; ");
61bd5218 2299 verbose(env, "invalid size of register spill\n");
17a52670
AS
2300 return -EACCES;
2301 }
2302
f7cf25b2 2303 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2304 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2305 return -EINVAL;
2306 }
2307
2c78ee89 2308 if (!env->bypass_spec_v4) {
f7cf25b2 2309 bool sanitize = false;
17a52670 2310
f7cf25b2
AS
2311 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2312 register_is_const(&state->stack[spi].spilled_ptr))
2313 sanitize = true;
2314 for (i = 0; i < BPF_REG_SIZE; i++)
2315 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2316 sanitize = true;
2317 break;
2318 }
2319 if (sanitize) {
af86ca4e
AS
2320 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2321 int soff = (-spi - 1) * BPF_REG_SIZE;
2322
2323 /* detected reuse of integer stack slot with a pointer
2324 * which means either llvm is reusing stack slot or
2325 * an attacker is trying to exploit CVE-2018-3639
2326 * (speculative store bypass)
2327 * Have to sanitize that slot with preemptive
2328 * store of zero.
2329 */
2330 if (*poff && *poff != soff) {
2331 /* disallow programs where single insn stores
2332 * into two different stack slots, since verifier
2333 * cannot sanitize them
2334 */
2335 verbose(env,
2336 "insn %d cannot access two stack slots fp%d and fp%d",
2337 insn_idx, *poff, soff);
2338 return -EINVAL;
2339 }
2340 *poff = soff;
2341 }
af86ca4e 2342 }
f7cf25b2 2343 save_register_state(state, spi, reg);
9c399760 2344 } else {
cc2b14d5
AS
2345 u8 type = STACK_MISC;
2346
679c782d
EC
2347 /* regular write of data into stack destroys any spilled ptr */
2348 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2349 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2350 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2351 for (i = 0; i < BPF_REG_SIZE; i++)
2352 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2353
cc2b14d5
AS
2354 /* only mark the slot as written if all 8 bytes were written
2355 * otherwise read propagation may incorrectly stop too soon
2356 * when stack slots are partially written.
2357 * This heuristic means that read propagation will be
2358 * conservative, since it will add reg_live_read marks
2359 * to stack slots all the way to first state when programs
2360 * writes+reads less than 8 bytes
2361 */
2362 if (size == BPF_REG_SIZE)
2363 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2364
2365 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2366 if (reg && register_is_null(reg)) {
2367 /* backtracking doesn't work for STACK_ZERO yet. */
2368 err = mark_chain_precision(env, value_regno);
2369 if (err)
2370 return err;
cc2b14d5 2371 type = STACK_ZERO;
b5dc0163 2372 }
cc2b14d5 2373
0bae2d4d 2374 /* Mark slots affected by this stack write. */
9c399760 2375 for (i = 0; i < size; i++)
638f5b90 2376 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2377 type;
17a52670
AS
2378 }
2379 return 0;
2380}
2381
61bd5218 2382static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2383 struct bpf_func_state *reg_state /* func where register points to */,
2384 int off, int size, int value_regno)
17a52670 2385{
f4d7e40a
AS
2386 struct bpf_verifier_state *vstate = env->cur_state;
2387 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2388 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2389 struct bpf_reg_state *reg;
638f5b90 2390 u8 *stype;
17a52670 2391
f4d7e40a 2392 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2393 verbose(env, "invalid read from stack off %d+0 size %d\n",
2394 off, size);
2395 return -EACCES;
2396 }
f4d7e40a 2397 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2398 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2399
638f5b90 2400 if (stype[0] == STACK_SPILL) {
9c399760 2401 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2402 if (reg->type != SCALAR_VALUE) {
2403 verbose_linfo(env, env->insn_idx, "; ");
2404 verbose(env, "invalid size of register fill\n");
2405 return -EACCES;
2406 }
2407 if (value_regno >= 0) {
2408 mark_reg_unknown(env, state->regs, value_regno);
2409 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2410 }
2411 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2412 return 0;
17a52670 2413 }
9c399760 2414 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2415 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2416 verbose(env, "corrupted spill memory\n");
17a52670
AS
2417 return -EACCES;
2418 }
2419 }
2420
dc503a8a 2421 if (value_regno >= 0) {
17a52670 2422 /* restore register state from stack */
f7cf25b2 2423 state->regs[value_regno] = *reg;
2f18f62e
AS
2424 /* mark reg as written since spilled pointer state likely
2425 * has its liveness marks cleared by is_state_visited()
2426 * which resets stack/reg liveness for state transitions
2427 */
2428 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2429 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2430 /* If value_regno==-1, the caller is asking us whether
2431 * it is acceptable to use this value as a SCALAR_VALUE
2432 * (e.g. for XADD).
2433 * We must not allow unprivileged callers to do that
2434 * with spilled pointers.
2435 */
2436 verbose(env, "leaking pointer from stack off %d\n",
2437 off);
2438 return -EACCES;
dc503a8a 2439 }
f7cf25b2 2440 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2441 } else {
cc2b14d5
AS
2442 int zeros = 0;
2443
17a52670 2444 for (i = 0; i < size; i++) {
cc2b14d5
AS
2445 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2446 continue;
2447 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2448 zeros++;
2449 continue;
17a52670 2450 }
cc2b14d5
AS
2451 verbose(env, "invalid read from stack off %d+%d size %d\n",
2452 off, i, size);
2453 return -EACCES;
2454 }
f7cf25b2 2455 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2456 if (value_regno >= 0) {
2457 if (zeros == size) {
2458 /* any size read into register is zero extended,
2459 * so the whole register == const_zero
2460 */
2461 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2462 /* backtracking doesn't support STACK_ZERO yet,
2463 * so mark it precise here, so that later
2464 * backtracking can stop here.
2465 * Backtracking may not need this if this register
2466 * doesn't participate in pointer adjustment.
2467 * Forward propagation of precise flag is not
2468 * necessary either. This mark is only to stop
2469 * backtracking. Any register that contributed
2470 * to const 0 was marked precise before spill.
2471 */
2472 state->regs[value_regno].precise = true;
cc2b14d5
AS
2473 } else {
2474 /* have read misc data from the stack */
2475 mark_reg_unknown(env, state->regs, value_regno);
2476 }
2477 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2478 }
17a52670 2479 }
f7cf25b2 2480 return 0;
17a52670
AS
2481}
2482
e4298d25
DB
2483static int check_stack_access(struct bpf_verifier_env *env,
2484 const struct bpf_reg_state *reg,
2485 int off, int size)
2486{
2487 /* Stack accesses must be at a fixed offset, so that we
2488 * can determine what type of data were returned. See
2489 * check_stack_read().
2490 */
2491 if (!tnum_is_const(reg->var_off)) {
2492 char tn_buf[48];
2493
2494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2495 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2496 tn_buf, off, size);
2497 return -EACCES;
2498 }
2499
2500 if (off >= 0 || off < -MAX_BPF_STACK) {
2501 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2502 return -EACCES;
2503 }
2504
2505 return 0;
2506}
2507
591fe988
DB
2508static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2509 int off, int size, enum bpf_access_type type)
2510{
2511 struct bpf_reg_state *regs = cur_regs(env);
2512 struct bpf_map *map = regs[regno].map_ptr;
2513 u32 cap = bpf_map_flags_to_cap(map);
2514
2515 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2516 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2517 map->value_size, off, size);
2518 return -EACCES;
2519 }
2520
2521 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2522 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2523 map->value_size, off, size);
2524 return -EACCES;
2525 }
2526
2527 return 0;
2528}
2529
457f4436
AN
2530/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2531static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2532 int off, int size, u32 mem_size,
2533 bool zero_size_allowed)
17a52670 2534{
457f4436
AN
2535 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2536 struct bpf_reg_state *reg;
2537
2538 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2539 return 0;
17a52670 2540
457f4436
AN
2541 reg = &cur_regs(env)[regno];
2542 switch (reg->type) {
2543 case PTR_TO_MAP_VALUE:
61bd5218 2544 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2545 mem_size, off, size);
2546 break;
2547 case PTR_TO_PACKET:
2548 case PTR_TO_PACKET_META:
2549 case PTR_TO_PACKET_END:
2550 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2551 off, size, regno, reg->id, off, mem_size);
2552 break;
2553 case PTR_TO_MEM:
2554 default:
2555 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2556 mem_size, off, size);
17a52670 2557 }
457f4436
AN
2558
2559 return -EACCES;
17a52670
AS
2560}
2561
457f4436
AN
2562/* check read/write into a memory region with possible variable offset */
2563static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2564 int off, int size, u32 mem_size,
2565 bool zero_size_allowed)
dbcfe5f7 2566{
f4d7e40a
AS
2567 struct bpf_verifier_state *vstate = env->cur_state;
2568 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2569 struct bpf_reg_state *reg = &state->regs[regno];
2570 int err;
2571
457f4436 2572 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2573 * need to try adding each of min_value and max_value to off
2574 * to make sure our theoretical access will be safe.
dbcfe5f7 2575 */
06ee7115 2576 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2577 print_verifier_state(env, state);
b7137c4e 2578
dbcfe5f7
GB
2579 /* The minimum value is only important with signed
2580 * comparisons where we can't assume the floor of a
2581 * value is 0. If we are using signed variables for our
2582 * index'es we need to make sure that whatever we use
2583 * will have a set floor within our range.
2584 */
b7137c4e
DB
2585 if (reg->smin_value < 0 &&
2586 (reg->smin_value == S64_MIN ||
2587 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2588 reg->smin_value + off < 0)) {
61bd5218 2589 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2590 regno);
2591 return -EACCES;
2592 }
457f4436
AN
2593 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2594 mem_size, zero_size_allowed);
dbcfe5f7 2595 if (err) {
457f4436 2596 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2597 regno);
dbcfe5f7
GB
2598 return err;
2599 }
2600
b03c9f9f
EC
2601 /* If we haven't set a max value then we need to bail since we can't be
2602 * sure we won't do bad things.
2603 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2604 */
b03c9f9f 2605 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2606 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2607 regno);
2608 return -EACCES;
2609 }
457f4436
AN
2610 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2611 mem_size, zero_size_allowed);
2612 if (err) {
2613 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2614 regno);
457f4436
AN
2615 return err;
2616 }
2617
2618 return 0;
2619}
d83525ca 2620
457f4436
AN
2621/* check read/write into a map element with possible variable offset */
2622static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2623 int off, int size, bool zero_size_allowed)
2624{
2625 struct bpf_verifier_state *vstate = env->cur_state;
2626 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2627 struct bpf_reg_state *reg = &state->regs[regno];
2628 struct bpf_map *map = reg->map_ptr;
2629 int err;
2630
2631 err = check_mem_region_access(env, regno, off, size, map->value_size,
2632 zero_size_allowed);
2633 if (err)
2634 return err;
2635
2636 if (map_value_has_spin_lock(map)) {
2637 u32 lock = map->spin_lock_off;
d83525ca
AS
2638
2639 /* if any part of struct bpf_spin_lock can be touched by
2640 * load/store reject this program.
2641 * To check that [x1, x2) overlaps with [y1, y2)
2642 * it is sufficient to check x1 < y2 && y1 < x2.
2643 */
2644 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2645 lock < reg->umax_value + off + size) {
2646 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2647 return -EACCES;
2648 }
2649 }
f1174f77 2650 return err;
dbcfe5f7
GB
2651}
2652
969bf05e
AS
2653#define MAX_PACKET_OFF 0xffff
2654
7e40781c
UP
2655static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2656{
3aac1ead 2657 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
2658}
2659
58e2af8b 2660static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2661 const struct bpf_call_arg_meta *meta,
2662 enum bpf_access_type t)
4acf6c0b 2663{
7e40781c
UP
2664 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2665
2666 switch (prog_type) {
5d66fa7d 2667 /* Program types only with direct read access go here! */
3a0af8fd
TG
2668 case BPF_PROG_TYPE_LWT_IN:
2669 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2670 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2671 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2672 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2673 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2674 if (t == BPF_WRITE)
2675 return false;
8731745e 2676 fallthrough;
5d66fa7d
DB
2677
2678 /* Program types with direct read + write access go here! */
36bbef52
DB
2679 case BPF_PROG_TYPE_SCHED_CLS:
2680 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2681 case BPF_PROG_TYPE_XDP:
3a0af8fd 2682 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2683 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2684 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2685 if (meta)
2686 return meta->pkt_access;
2687
2688 env->seen_direct_write = true;
4acf6c0b 2689 return true;
0d01da6a
SF
2690
2691 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2692 if (t == BPF_WRITE)
2693 env->seen_direct_write = true;
2694
2695 return true;
2696
4acf6c0b
BB
2697 default:
2698 return false;
2699 }
2700}
2701
f1174f77 2702static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2703 int size, bool zero_size_allowed)
f1174f77 2704{
638f5b90 2705 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2706 struct bpf_reg_state *reg = &regs[regno];
2707 int err;
2708
2709 /* We may have added a variable offset to the packet pointer; but any
2710 * reg->range we have comes after that. We are only checking the fixed
2711 * offset.
2712 */
2713
2714 /* We don't allow negative numbers, because we aren't tracking enough
2715 * detail to prove they're safe.
2716 */
b03c9f9f 2717 if (reg->smin_value < 0) {
61bd5218 2718 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2719 regno);
2720 return -EACCES;
2721 }
457f4436
AN
2722 err = __check_mem_access(env, regno, off, size, reg->range,
2723 zero_size_allowed);
f1174f77 2724 if (err) {
61bd5218 2725 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2726 return err;
2727 }
e647815a 2728
457f4436 2729 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2730 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2731 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2732 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2733 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2734 */
2735 env->prog->aux->max_pkt_offset =
2736 max_t(u32, env->prog->aux->max_pkt_offset,
2737 off + reg->umax_value + size - 1);
2738
f1174f77
EC
2739 return err;
2740}
2741
2742/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2743static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2744 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2745 u32 *btf_id)
17a52670 2746{
f96da094
DB
2747 struct bpf_insn_access_aux info = {
2748 .reg_type = *reg_type,
9e15db66 2749 .log = &env->log,
f96da094 2750 };
31fd8581 2751
4f9218aa 2752 if (env->ops->is_valid_access &&
5e43f899 2753 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2754 /* A non zero info.ctx_field_size indicates that this field is a
2755 * candidate for later verifier transformation to load the whole
2756 * field and then apply a mask when accessed with a narrower
2757 * access than actual ctx access size. A zero info.ctx_field_size
2758 * will only allow for whole field access and rejects any other
2759 * type of narrower access.
31fd8581 2760 */
23994631 2761 *reg_type = info.reg_type;
31fd8581 2762
b121b341 2763 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2764 *btf_id = info.btf_id;
2765 else
2766 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2767 /* remember the offset of last byte accessed in ctx */
2768 if (env->prog->aux->max_ctx_offset < off + size)
2769 env->prog->aux->max_ctx_offset = off + size;
17a52670 2770 return 0;
32bbe007 2771 }
17a52670 2772
61bd5218 2773 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2774 return -EACCES;
2775}
2776
d58e468b
PP
2777static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2778 int size)
2779{
2780 if (size < 0 || off < 0 ||
2781 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2782 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2783 off, size);
2784 return -EACCES;
2785 }
2786 return 0;
2787}
2788
5f456649
MKL
2789static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2790 u32 regno, int off, int size,
2791 enum bpf_access_type t)
c64b7983
JS
2792{
2793 struct bpf_reg_state *regs = cur_regs(env);
2794 struct bpf_reg_state *reg = &regs[regno];
5f456649 2795 struct bpf_insn_access_aux info = {};
46f8bc92 2796 bool valid;
c64b7983
JS
2797
2798 if (reg->smin_value < 0) {
2799 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2800 regno);
2801 return -EACCES;
2802 }
2803
46f8bc92
MKL
2804 switch (reg->type) {
2805 case PTR_TO_SOCK_COMMON:
2806 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2807 break;
2808 case PTR_TO_SOCKET:
2809 valid = bpf_sock_is_valid_access(off, size, t, &info);
2810 break;
655a51e5
MKL
2811 case PTR_TO_TCP_SOCK:
2812 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2813 break;
fada7fdc
JL
2814 case PTR_TO_XDP_SOCK:
2815 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2816 break;
46f8bc92
MKL
2817 default:
2818 valid = false;
c64b7983
JS
2819 }
2820
5f456649 2821
46f8bc92
MKL
2822 if (valid) {
2823 env->insn_aux_data[insn_idx].ctx_field_size =
2824 info.ctx_field_size;
2825 return 0;
2826 }
2827
2828 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2829 regno, reg_type_str[reg->type], off, size);
2830
2831 return -EACCES;
c64b7983
JS
2832}
2833
2a159c6f
DB
2834static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2835{
2836 return cur_regs(env) + regno;
2837}
2838
4cabc5b1
DB
2839static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2840{
2a159c6f 2841 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2842}
2843
f37a8cb8
DB
2844static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2845{
2a159c6f 2846 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2847
46f8bc92
MKL
2848 return reg->type == PTR_TO_CTX;
2849}
2850
2851static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2852{
2853 const struct bpf_reg_state *reg = reg_state(env, regno);
2854
2855 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2856}
2857
ca369602
DB
2858static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2859{
2a159c6f 2860 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2861
2862 return type_is_pkt_pointer(reg->type);
2863}
2864
4b5defde
DB
2865static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2866{
2867 const struct bpf_reg_state *reg = reg_state(env, regno);
2868
2869 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2870 return reg->type == PTR_TO_FLOW_KEYS;
2871}
2872
61bd5218
JK
2873static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2874 const struct bpf_reg_state *reg,
d1174416 2875 int off, int size, bool strict)
969bf05e 2876{
f1174f77 2877 struct tnum reg_off;
e07b98d9 2878 int ip_align;
d1174416
DM
2879
2880 /* Byte size accesses are always allowed. */
2881 if (!strict || size == 1)
2882 return 0;
2883
e4eda884
DM
2884 /* For platforms that do not have a Kconfig enabling
2885 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2886 * NET_IP_ALIGN is universally set to '2'. And on platforms
2887 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2888 * to this code only in strict mode where we want to emulate
2889 * the NET_IP_ALIGN==2 checking. Therefore use an
2890 * unconditional IP align value of '2'.
e07b98d9 2891 */
e4eda884 2892 ip_align = 2;
f1174f77
EC
2893
2894 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2895 if (!tnum_is_aligned(reg_off, size)) {
2896 char tn_buf[48];
2897
2898 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2899 verbose(env,
2900 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2901 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2902 return -EACCES;
2903 }
79adffcd 2904
969bf05e
AS
2905 return 0;
2906}
2907
61bd5218
JK
2908static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2909 const struct bpf_reg_state *reg,
f1174f77
EC
2910 const char *pointer_desc,
2911 int off, int size, bool strict)
79adffcd 2912{
f1174f77
EC
2913 struct tnum reg_off;
2914
2915 /* Byte size accesses are always allowed. */
2916 if (!strict || size == 1)
2917 return 0;
2918
2919 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2920 if (!tnum_is_aligned(reg_off, size)) {
2921 char tn_buf[48];
2922
2923 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2924 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2925 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2926 return -EACCES;
2927 }
2928
969bf05e
AS
2929 return 0;
2930}
2931
e07b98d9 2932static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2933 const struct bpf_reg_state *reg, int off,
2934 int size, bool strict_alignment_once)
79adffcd 2935{
ca369602 2936 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2937 const char *pointer_desc = "";
d1174416 2938
79adffcd
DB
2939 switch (reg->type) {
2940 case PTR_TO_PACKET:
de8f3a83
DB
2941 case PTR_TO_PACKET_META:
2942 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2943 * right in front, treat it the very same way.
2944 */
61bd5218 2945 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2946 case PTR_TO_FLOW_KEYS:
2947 pointer_desc = "flow keys ";
2948 break;
f1174f77
EC
2949 case PTR_TO_MAP_VALUE:
2950 pointer_desc = "value ";
2951 break;
2952 case PTR_TO_CTX:
2953 pointer_desc = "context ";
2954 break;
2955 case PTR_TO_STACK:
2956 pointer_desc = "stack ";
a5ec6ae1
JH
2957 /* The stack spill tracking logic in check_stack_write()
2958 * and check_stack_read() relies on stack accesses being
2959 * aligned.
2960 */
2961 strict = true;
f1174f77 2962 break;
c64b7983
JS
2963 case PTR_TO_SOCKET:
2964 pointer_desc = "sock ";
2965 break;
46f8bc92
MKL
2966 case PTR_TO_SOCK_COMMON:
2967 pointer_desc = "sock_common ";
2968 break;
655a51e5
MKL
2969 case PTR_TO_TCP_SOCK:
2970 pointer_desc = "tcp_sock ";
2971 break;
fada7fdc
JL
2972 case PTR_TO_XDP_SOCK:
2973 pointer_desc = "xdp_sock ";
2974 break;
79adffcd 2975 default:
f1174f77 2976 break;
79adffcd 2977 }
61bd5218
JK
2978 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2979 strict);
79adffcd
DB
2980}
2981
f4d7e40a
AS
2982static int update_stack_depth(struct bpf_verifier_env *env,
2983 const struct bpf_func_state *func,
2984 int off)
2985{
9c8105bd 2986 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2987
2988 if (stack >= -off)
2989 return 0;
2990
2991 /* update known max for given subprogram */
9c8105bd 2992 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2993 return 0;
2994}
f4d7e40a 2995
70a87ffe
AS
2996/* starting from main bpf function walk all instructions of the function
2997 * and recursively walk all callees that given function can call.
2998 * Ignore jump and exit insns.
2999 * Since recursion is prevented by check_cfg() this algorithm
3000 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3001 */
3002static int check_max_stack_depth(struct bpf_verifier_env *env)
3003{
9c8105bd
JW
3004 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3005 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3006 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3007 bool tail_call_reachable = false;
70a87ffe
AS
3008 int ret_insn[MAX_CALL_FRAMES];
3009 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3010 int j;
f4d7e40a 3011
70a87ffe 3012process_func:
7f6e4312
MF
3013 /* protect against potential stack overflow that might happen when
3014 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3015 * depth for such case down to 256 so that the worst case scenario
3016 * would result in 8k stack size (32 which is tailcall limit * 256 =
3017 * 8k).
3018 *
3019 * To get the idea what might happen, see an example:
3020 * func1 -> sub rsp, 128
3021 * subfunc1 -> sub rsp, 256
3022 * tailcall1 -> add rsp, 256
3023 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3024 * subfunc2 -> sub rsp, 64
3025 * subfunc22 -> sub rsp, 128
3026 * tailcall2 -> add rsp, 128
3027 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3028 *
3029 * tailcall will unwind the current stack frame but it will not get rid
3030 * of caller's stack as shown on the example above.
3031 */
3032 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3033 verbose(env,
3034 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3035 depth);
3036 return -EACCES;
3037 }
70a87ffe
AS
3038 /* round up to 32-bytes, since this is granularity
3039 * of interpreter stack size
3040 */
9c8105bd 3041 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3042 if (depth > MAX_BPF_STACK) {
f4d7e40a 3043 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3044 frame + 1, depth);
f4d7e40a
AS
3045 return -EACCES;
3046 }
70a87ffe 3047continue_func:
4cb3d99c 3048 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
3049 for (; i < subprog_end; i++) {
3050 if (insn[i].code != (BPF_JMP | BPF_CALL))
3051 continue;
3052 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3053 continue;
3054 /* remember insn and function to return to */
3055 ret_insn[frame] = i + 1;
9c8105bd 3056 ret_prog[frame] = idx;
70a87ffe
AS
3057
3058 /* find the callee */
3059 i = i + insn[i].imm + 1;
9c8105bd
JW
3060 idx = find_subprog(env, i);
3061 if (idx < 0) {
70a87ffe
AS
3062 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3063 i);
3064 return -EFAULT;
3065 }
ebf7d1f5
MF
3066
3067 if (subprog[idx].has_tail_call)
3068 tail_call_reachable = true;
3069
70a87ffe
AS
3070 frame++;
3071 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3072 verbose(env, "the call stack of %d frames is too deep !\n",
3073 frame);
3074 return -E2BIG;
70a87ffe
AS
3075 }
3076 goto process_func;
3077 }
ebf7d1f5
MF
3078 /* if tail call got detected across bpf2bpf calls then mark each of the
3079 * currently present subprog frames as tail call reachable subprogs;
3080 * this info will be utilized by JIT so that we will be preserving the
3081 * tail call counter throughout bpf2bpf calls combined with tailcalls
3082 */
3083 if (tail_call_reachable)
3084 for (j = 0; j < frame; j++)
3085 subprog[ret_prog[j]].tail_call_reachable = true;
3086
70a87ffe
AS
3087 /* end of for() loop means the last insn of the 'subprog'
3088 * was reached. Doesn't matter whether it was JA or EXIT
3089 */
3090 if (frame == 0)
3091 return 0;
9c8105bd 3092 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3093 frame--;
3094 i = ret_insn[frame];
9c8105bd 3095 idx = ret_prog[frame];
70a87ffe 3096 goto continue_func;
f4d7e40a
AS
3097}
3098
19d28fbd 3099#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3100static int get_callee_stack_depth(struct bpf_verifier_env *env,
3101 const struct bpf_insn *insn, int idx)
3102{
3103 int start = idx + insn->imm + 1, subprog;
3104
3105 subprog = find_subprog(env, start);
3106 if (subprog < 0) {
3107 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3108 start);
3109 return -EFAULT;
3110 }
9c8105bd 3111 return env->subprog_info[subprog].stack_depth;
1ea47e01 3112}
19d28fbd 3113#endif
1ea47e01 3114
51c39bb1
AS
3115int check_ctx_reg(struct bpf_verifier_env *env,
3116 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3117{
3118 /* Access to ctx or passing it to a helper is only allowed in
3119 * its original, unmodified form.
3120 */
3121
3122 if (reg->off) {
3123 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3124 regno, reg->off);
3125 return -EACCES;
3126 }
3127
3128 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3129 char tn_buf[48];
3130
3131 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3132 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3133 return -EACCES;
3134 }
3135
3136 return 0;
3137}
3138
afbf21dc
YS
3139static int __check_buffer_access(struct bpf_verifier_env *env,
3140 const char *buf_info,
3141 const struct bpf_reg_state *reg,
3142 int regno, int off, int size)
9df1c28b
MM
3143{
3144 if (off < 0) {
3145 verbose(env,
4fc00b79 3146 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3147 regno, buf_info, off, size);
9df1c28b
MM
3148 return -EACCES;
3149 }
3150 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3151 char tn_buf[48];
3152
3153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3154 verbose(env,
4fc00b79 3155 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3156 regno, off, tn_buf);
3157 return -EACCES;
3158 }
afbf21dc
YS
3159
3160 return 0;
3161}
3162
3163static int check_tp_buffer_access(struct bpf_verifier_env *env,
3164 const struct bpf_reg_state *reg,
3165 int regno, int off, int size)
3166{
3167 int err;
3168
3169 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3170 if (err)
3171 return err;
3172
9df1c28b
MM
3173 if (off + size > env->prog->aux->max_tp_access)
3174 env->prog->aux->max_tp_access = off + size;
3175
3176 return 0;
3177}
3178
afbf21dc
YS
3179static int check_buffer_access(struct bpf_verifier_env *env,
3180 const struct bpf_reg_state *reg,
3181 int regno, int off, int size,
3182 bool zero_size_allowed,
3183 const char *buf_info,
3184 u32 *max_access)
3185{
3186 int err;
3187
3188 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3189 if (err)
3190 return err;
3191
3192 if (off + size > *max_access)
3193 *max_access = off + size;
3194
3195 return 0;
3196}
3197
3f50f132
JF
3198/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3199static void zext_32_to_64(struct bpf_reg_state *reg)
3200{
3201 reg->var_off = tnum_subreg(reg->var_off);
3202 __reg_assign_32_into_64(reg);
3203}
9df1c28b 3204
0c17d1d2
JH
3205/* truncate register to smaller size (in bytes)
3206 * must be called with size < BPF_REG_SIZE
3207 */
3208static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3209{
3210 u64 mask;
3211
3212 /* clear high bits in bit representation */
3213 reg->var_off = tnum_cast(reg->var_off, size);
3214
3215 /* fix arithmetic bounds */
3216 mask = ((u64)1 << (size * 8)) - 1;
3217 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3218 reg->umin_value &= mask;
3219 reg->umax_value &= mask;
3220 } else {
3221 reg->umin_value = 0;
3222 reg->umax_value = mask;
3223 }
3224 reg->smin_value = reg->umin_value;
3225 reg->smax_value = reg->umax_value;
3f50f132
JF
3226
3227 /* If size is smaller than 32bit register the 32bit register
3228 * values are also truncated so we push 64-bit bounds into
3229 * 32-bit bounds. Above were truncated < 32-bits already.
3230 */
3231 if (size >= 4)
3232 return;
3233 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3234}
3235
a23740ec
AN
3236static bool bpf_map_is_rdonly(const struct bpf_map *map)
3237{
3238 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3239}
3240
3241static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3242{
3243 void *ptr;
3244 u64 addr;
3245 int err;
3246
3247 err = map->ops->map_direct_value_addr(map, &addr, off);
3248 if (err)
3249 return err;
2dedd7d2 3250 ptr = (void *)(long)addr + off;
a23740ec
AN
3251
3252 switch (size) {
3253 case sizeof(u8):
3254 *val = (u64)*(u8 *)ptr;
3255 break;
3256 case sizeof(u16):
3257 *val = (u64)*(u16 *)ptr;
3258 break;
3259 case sizeof(u32):
3260 *val = (u64)*(u32 *)ptr;
3261 break;
3262 case sizeof(u64):
3263 *val = *(u64 *)ptr;
3264 break;
3265 default:
3266 return -EINVAL;
3267 }
3268 return 0;
3269}
3270
9e15db66
AS
3271static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3272 struct bpf_reg_state *regs,
3273 int regno, int off, int size,
3274 enum bpf_access_type atype,
3275 int value_regno)
3276{
3277 struct bpf_reg_state *reg = regs + regno;
3278 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3279 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3280 u32 btf_id;
3281 int ret;
3282
9e15db66
AS
3283 if (off < 0) {
3284 verbose(env,
3285 "R%d is ptr_%s invalid negative access: off=%d\n",
3286 regno, tname, off);
3287 return -EACCES;
3288 }
3289 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3290 char tn_buf[48];
3291
3292 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3293 verbose(env,
3294 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3295 regno, tname, off, tn_buf);
3296 return -EACCES;
3297 }
3298
27ae7997
MKL
3299 if (env->ops->btf_struct_access) {
3300 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3301 atype, &btf_id);
3302 } else {
3303 if (atype != BPF_READ) {
3304 verbose(env, "only read is supported\n");
3305 return -EACCES;
3306 }
3307
3308 ret = btf_struct_access(&env->log, t, off, size, atype,
3309 &btf_id);
3310 }
3311
9e15db66
AS
3312 if (ret < 0)
3313 return ret;
3314
41c48f3a
AI
3315 if (atype == BPF_READ && value_regno >= 0)
3316 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3317
3318 return 0;
3319}
3320
3321static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3322 struct bpf_reg_state *regs,
3323 int regno, int off, int size,
3324 enum bpf_access_type atype,
3325 int value_regno)
3326{
3327 struct bpf_reg_state *reg = regs + regno;
3328 struct bpf_map *map = reg->map_ptr;
3329 const struct btf_type *t;
3330 const char *tname;
3331 u32 btf_id;
3332 int ret;
3333
3334 if (!btf_vmlinux) {
3335 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3336 return -ENOTSUPP;
3337 }
3338
3339 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3340 verbose(env, "map_ptr access not supported for map type %d\n",
3341 map->map_type);
3342 return -ENOTSUPP;
3343 }
3344
3345 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3346 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3347
3348 if (!env->allow_ptr_to_map_access) {
3349 verbose(env,
3350 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3351 tname);
3352 return -EPERM;
9e15db66 3353 }
27ae7997 3354
41c48f3a
AI
3355 if (off < 0) {
3356 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3357 regno, tname, off);
3358 return -EACCES;
3359 }
3360
3361 if (atype != BPF_READ) {
3362 verbose(env, "only read from %s is supported\n", tname);
3363 return -EACCES;
3364 }
3365
3366 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3367 if (ret < 0)
3368 return ret;
3369
3370 if (value_regno >= 0)
3371 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3372
9e15db66
AS
3373 return 0;
3374}
3375
41c48f3a 3376
17a52670
AS
3377/* check whether memory at (regno + off) is accessible for t = (read | write)
3378 * if t==write, value_regno is a register which value is stored into memory
3379 * if t==read, value_regno is a register which will receive the value from memory
3380 * if t==write && value_regno==-1, some unknown value is stored into memory
3381 * if t==read && value_regno==-1, don't care what we read from memory
3382 */
ca369602
DB
3383static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3384 int off, int bpf_size, enum bpf_access_type t,
3385 int value_regno, bool strict_alignment_once)
17a52670 3386{
638f5b90
AS
3387 struct bpf_reg_state *regs = cur_regs(env);
3388 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3389 struct bpf_func_state *state;
17a52670
AS
3390 int size, err = 0;
3391
3392 size = bpf_size_to_bytes(bpf_size);
3393 if (size < 0)
3394 return size;
3395
f1174f77 3396 /* alignment checks will add in reg->off themselves */
ca369602 3397 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3398 if (err)
3399 return err;
17a52670 3400
f1174f77
EC
3401 /* for access checks, reg->off is just part of off */
3402 off += reg->off;
3403
3404 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3405 if (t == BPF_WRITE && value_regno >= 0 &&
3406 is_pointer_value(env, value_regno)) {
61bd5218 3407 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3408 return -EACCES;
3409 }
591fe988
DB
3410 err = check_map_access_type(env, regno, off, size, t);
3411 if (err)
3412 return err;
9fd29c08 3413 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3414 if (!err && t == BPF_READ && value_regno >= 0) {
3415 struct bpf_map *map = reg->map_ptr;
3416
3417 /* if map is read-only, track its contents as scalars */
3418 if (tnum_is_const(reg->var_off) &&
3419 bpf_map_is_rdonly(map) &&
3420 map->ops->map_direct_value_addr) {
3421 int map_off = off + reg->var_off.value;
3422 u64 val = 0;
3423
3424 err = bpf_map_direct_read(map, map_off, size,
3425 &val);
3426 if (err)
3427 return err;
3428
3429 regs[value_regno].type = SCALAR_VALUE;
3430 __mark_reg_known(&regs[value_regno], val);
3431 } else {
3432 mark_reg_unknown(env, regs, value_regno);
3433 }
3434 }
457f4436
AN
3435 } else if (reg->type == PTR_TO_MEM) {
3436 if (t == BPF_WRITE && value_regno >= 0 &&
3437 is_pointer_value(env, value_regno)) {
3438 verbose(env, "R%d leaks addr into mem\n", value_regno);
3439 return -EACCES;
3440 }
3441 err = check_mem_region_access(env, regno, off, size,
3442 reg->mem_size, false);
3443 if (!err && t == BPF_READ && value_regno >= 0)
3444 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3445 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3446 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3447 u32 btf_id = 0;
19de99f7 3448
1be7f75d
AS
3449 if (t == BPF_WRITE && value_regno >= 0 &&
3450 is_pointer_value(env, value_regno)) {
61bd5218 3451 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3452 return -EACCES;
3453 }
f1174f77 3454
58990d1f
DB
3455 err = check_ctx_reg(env, reg, regno);
3456 if (err < 0)
3457 return err;
3458
9e15db66
AS
3459 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3460 if (err)
3461 verbose_linfo(env, insn_idx, "; ");
969bf05e 3462 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3463 /* ctx access returns either a scalar, or a
de8f3a83
DB
3464 * PTR_TO_PACKET[_META,_END]. In the latter
3465 * case, we know the offset is zero.
f1174f77 3466 */
46f8bc92 3467 if (reg_type == SCALAR_VALUE) {
638f5b90 3468 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3469 } else {
638f5b90 3470 mark_reg_known_zero(env, regs,
61bd5218 3471 value_regno);
46f8bc92
MKL
3472 if (reg_type_may_be_null(reg_type))
3473 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3474 /* A load of ctx field could have different
3475 * actual load size with the one encoded in the
3476 * insn. When the dst is PTR, it is for sure not
3477 * a sub-register.
3478 */
3479 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3480 if (reg_type == PTR_TO_BTF_ID ||
3481 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3482 regs[value_regno].btf_id = btf_id;
46f8bc92 3483 }
638f5b90 3484 regs[value_regno].type = reg_type;
969bf05e 3485 }
17a52670 3486
f1174f77 3487 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3488 off += reg->var_off.value;
e4298d25
DB
3489 err = check_stack_access(env, reg, off, size);
3490 if (err)
3491 return err;
8726679a 3492
f4d7e40a
AS
3493 state = func(env, reg);
3494 err = update_stack_depth(env, state, off);
3495 if (err)
3496 return err;
8726679a 3497
638f5b90 3498 if (t == BPF_WRITE)
61bd5218 3499 err = check_stack_write(env, state, off, size,
af86ca4e 3500 value_regno, insn_idx);
638f5b90 3501 else
61bd5218
JK
3502 err = check_stack_read(env, state, off, size,
3503 value_regno);
de8f3a83 3504 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3505 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3506 verbose(env, "cannot write into packet\n");
969bf05e
AS
3507 return -EACCES;
3508 }
4acf6c0b
BB
3509 if (t == BPF_WRITE && value_regno >= 0 &&
3510 is_pointer_value(env, value_regno)) {
61bd5218
JK
3511 verbose(env, "R%d leaks addr into packet\n",
3512 value_regno);
4acf6c0b
BB
3513 return -EACCES;
3514 }
9fd29c08 3515 err = check_packet_access(env, regno, off, size, false);
969bf05e 3516 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3517 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3518 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3519 if (t == BPF_WRITE && value_regno >= 0 &&
3520 is_pointer_value(env, value_regno)) {
3521 verbose(env, "R%d leaks addr into flow keys\n",
3522 value_regno);
3523 return -EACCES;
3524 }
3525
3526 err = check_flow_keys_access(env, off, size);
3527 if (!err && t == BPF_READ && value_regno >= 0)
3528 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3529 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3530 if (t == BPF_WRITE) {
46f8bc92
MKL
3531 verbose(env, "R%d cannot write into %s\n",
3532 regno, reg_type_str[reg->type]);
c64b7983
JS
3533 return -EACCES;
3534 }
5f456649 3535 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3536 if (!err && value_regno >= 0)
3537 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3538 } else if (reg->type == PTR_TO_TP_BUFFER) {
3539 err = check_tp_buffer_access(env, reg, regno, off, size);
3540 if (!err && t == BPF_READ && value_regno >= 0)
3541 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3542 } else if (reg->type == PTR_TO_BTF_ID) {
3543 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3544 value_regno);
41c48f3a
AI
3545 } else if (reg->type == CONST_PTR_TO_MAP) {
3546 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3547 value_regno);
afbf21dc
YS
3548 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3549 if (t == BPF_WRITE) {
3550 verbose(env, "R%d cannot write into %s\n",
3551 regno, reg_type_str[reg->type]);
3552 return -EACCES;
3553 }
f6dfbe31
CIK
3554 err = check_buffer_access(env, reg, regno, off, size, false,
3555 "rdonly",
afbf21dc
YS
3556 &env->prog->aux->max_rdonly_access);
3557 if (!err && value_regno >= 0)
3558 mark_reg_unknown(env, regs, value_regno);
3559 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3560 err = check_buffer_access(env, reg, regno, off, size, false,
3561 "rdwr",
afbf21dc
YS
3562 &env->prog->aux->max_rdwr_access);
3563 if (!err && t == BPF_READ && value_regno >= 0)
3564 mark_reg_unknown(env, regs, value_regno);
17a52670 3565 } else {
61bd5218
JK
3566 verbose(env, "R%d invalid mem access '%s'\n", regno,
3567 reg_type_str[reg->type]);
17a52670
AS
3568 return -EACCES;
3569 }
969bf05e 3570
f1174f77 3571 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3572 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3573 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3574 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3575 }
17a52670
AS
3576 return err;
3577}
3578
31fd8581 3579static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3580{
17a52670
AS
3581 int err;
3582
3583 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3584 insn->imm != 0) {
61bd5218 3585 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3586 return -EINVAL;
3587 }
3588
3589 /* check src1 operand */
dc503a8a 3590 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3591 if (err)
3592 return err;
3593
3594 /* check src2 operand */
dc503a8a 3595 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3596 if (err)
3597 return err;
3598
6bdf6abc 3599 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3600 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3601 return -EACCES;
3602 }
3603
ca369602 3604 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3605 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3606 is_flow_key_reg(env, insn->dst_reg) ||
3607 is_sk_reg(env, insn->dst_reg)) {
ca369602 3608 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3609 insn->dst_reg,
3610 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3611 return -EACCES;
3612 }
3613
17a52670 3614 /* check whether atomic_add can read the memory */
31fd8581 3615 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3616 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3617 if (err)
3618 return err;
3619
3620 /* check whether atomic_add can write into the same memory */
31fd8581 3621 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3622 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3623}
3624
2011fccf
AI
3625static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3626 int off, int access_size,
3627 bool zero_size_allowed)
3628{
3629 struct bpf_reg_state *reg = reg_state(env, regno);
3630
3631 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3632 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3633 if (tnum_is_const(reg->var_off)) {
3634 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3635 regno, off, access_size);
3636 } else {
3637 char tn_buf[48];
3638
3639 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3640 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3641 regno, tn_buf, access_size);
3642 }
3643 return -EACCES;
3644 }
3645 return 0;
3646}
3647
17a52670
AS
3648/* when register 'regno' is passed into function that will read 'access_size'
3649 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3650 * and all elements of stack are initialized.
3651 * Unlike most pointer bounds-checking functions, this one doesn't take an
3652 * 'off' argument, so it has to add in reg->off itself.
17a52670 3653 */
58e2af8b 3654static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3655 int access_size, bool zero_size_allowed,
3656 struct bpf_call_arg_meta *meta)
17a52670 3657{
2a159c6f 3658 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3659 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3660 int err, min_off, max_off, i, j, slot, spi;
17a52670 3661
2011fccf
AI
3662 if (tnum_is_const(reg->var_off)) {
3663 min_off = max_off = reg->var_off.value + reg->off;
3664 err = __check_stack_boundary(env, regno, min_off, access_size,
3665 zero_size_allowed);
3666 if (err)
3667 return err;
3668 } else {
088ec26d
AI
3669 /* Variable offset is prohibited for unprivileged mode for
3670 * simplicity since it requires corresponding support in
3671 * Spectre masking for stack ALU.
3672 * See also retrieve_ptr_limit().
3673 */
2c78ee89 3674 if (!env->bypass_spec_v1) {
088ec26d 3675 char tn_buf[48];
f1174f77 3676
088ec26d
AI
3677 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3678 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3679 regno, tn_buf);
3680 return -EACCES;
3681 }
f2bcd05e
AI
3682 /* Only initialized buffer on stack is allowed to be accessed
3683 * with variable offset. With uninitialized buffer it's hard to
3684 * guarantee that whole memory is marked as initialized on
3685 * helper return since specific bounds are unknown what may
3686 * cause uninitialized stack leaking.
3687 */
3688 if (meta && meta->raw_mode)
3689 meta = NULL;
3690
107c26a7
AI
3691 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3692 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3693 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3694 regno);
3695 return -EACCES;
3696 }
2011fccf 3697 min_off = reg->smin_value + reg->off;
107c26a7 3698 max_off = reg->smax_value + reg->off;
2011fccf
AI
3699 err = __check_stack_boundary(env, regno, min_off, access_size,
3700 zero_size_allowed);
107c26a7
AI
3701 if (err) {
3702 verbose(env, "R%d min value is outside of stack bound\n",
3703 regno);
2011fccf 3704 return err;
107c26a7 3705 }
2011fccf
AI
3706 err = __check_stack_boundary(env, regno, max_off, access_size,
3707 zero_size_allowed);
107c26a7
AI
3708 if (err) {
3709 verbose(env, "R%d max value is outside of stack bound\n",
3710 regno);
2011fccf 3711 return err;
107c26a7 3712 }
17a52670
AS
3713 }
3714
435faee1
DB
3715 if (meta && meta->raw_mode) {
3716 meta->access_size = access_size;
3717 meta->regno = regno;
3718 return 0;
3719 }
3720
2011fccf 3721 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3722 u8 *stype;
3723
2011fccf 3724 slot = -i - 1;
638f5b90 3725 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3726 if (state->allocated_stack <= slot)
3727 goto err;
3728 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3729 if (*stype == STACK_MISC)
3730 goto mark;
3731 if (*stype == STACK_ZERO) {
3732 /* helper can write anything into the stack */
3733 *stype = STACK_MISC;
3734 goto mark;
17a52670 3735 }
1d68f22b
YS
3736
3737 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3738 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3739 goto mark;
3740
f7cf25b2
AS
3741 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3742 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3743 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3744 for (j = 0; j < BPF_REG_SIZE; j++)
3745 state->stack[spi].slot_type[j] = STACK_MISC;
3746 goto mark;
3747 }
3748
cc2b14d5 3749err:
2011fccf
AI
3750 if (tnum_is_const(reg->var_off)) {
3751 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3752 min_off, i - min_off, access_size);
3753 } else {
3754 char tn_buf[48];
3755
3756 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3757 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3758 tn_buf, i - min_off, access_size);
3759 }
cc2b14d5
AS
3760 return -EACCES;
3761mark:
3762 /* reading any byte out of 8-byte 'spill_slot' will cause
3763 * the whole slot to be marked as 'read'
3764 */
679c782d 3765 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3766 state->stack[spi].spilled_ptr.parent,
3767 REG_LIVE_READ64);
17a52670 3768 }
2011fccf 3769 return update_stack_depth(env, state, min_off);
17a52670
AS
3770}
3771
06c1c049
GB
3772static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3773 int access_size, bool zero_size_allowed,
3774 struct bpf_call_arg_meta *meta)
3775{
638f5b90 3776 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3777
f1174f77 3778 switch (reg->type) {
06c1c049 3779 case PTR_TO_PACKET:
de8f3a83 3780 case PTR_TO_PACKET_META:
9fd29c08
YS
3781 return check_packet_access(env, regno, reg->off, access_size,
3782 zero_size_allowed);
06c1c049 3783 case PTR_TO_MAP_VALUE:
591fe988
DB
3784 if (check_map_access_type(env, regno, reg->off, access_size,
3785 meta && meta->raw_mode ? BPF_WRITE :
3786 BPF_READ))
3787 return -EACCES;
9fd29c08
YS
3788 return check_map_access(env, regno, reg->off, access_size,
3789 zero_size_allowed);
457f4436
AN
3790 case PTR_TO_MEM:
3791 return check_mem_region_access(env, regno, reg->off,
3792 access_size, reg->mem_size,
3793 zero_size_allowed);
afbf21dc
YS
3794 case PTR_TO_RDONLY_BUF:
3795 if (meta && meta->raw_mode)
3796 return -EACCES;
3797 return check_buffer_access(env, reg, regno, reg->off,
3798 access_size, zero_size_allowed,
3799 "rdonly",
3800 &env->prog->aux->max_rdonly_access);
3801 case PTR_TO_RDWR_BUF:
3802 return check_buffer_access(env, reg, regno, reg->off,
3803 access_size, zero_size_allowed,
3804 "rdwr",
3805 &env->prog->aux->max_rdwr_access);
0d004c02 3806 case PTR_TO_STACK:
06c1c049
GB
3807 return check_stack_boundary(env, regno, access_size,
3808 zero_size_allowed, meta);
0d004c02
LB
3809 default: /* scalar_value or invalid ptr */
3810 /* Allow zero-byte read from NULL, regardless of pointer type */
3811 if (zero_size_allowed && access_size == 0 &&
3812 register_is_null(reg))
3813 return 0;
3814
3815 verbose(env, "R%d type=%s expected=%s\n", regno,
3816 reg_type_str[reg->type],
3817 reg_type_str[PTR_TO_STACK]);
3818 return -EACCES;
06c1c049
GB
3819 }
3820}
3821
d83525ca
AS
3822/* Implementation details:
3823 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3824 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3825 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3826 * value_or_null->value transition, since the verifier only cares about
3827 * the range of access to valid map value pointer and doesn't care about actual
3828 * address of the map element.
3829 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3830 * reg->id > 0 after value_or_null->value transition. By doing so
3831 * two bpf_map_lookups will be considered two different pointers that
3832 * point to different bpf_spin_locks.
3833 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3834 * dead-locks.
3835 * Since only one bpf_spin_lock is allowed the checks are simpler than
3836 * reg_is_refcounted() logic. The verifier needs to remember only
3837 * one spin_lock instead of array of acquired_refs.
3838 * cur_state->active_spin_lock remembers which map value element got locked
3839 * and clears it after bpf_spin_unlock.
3840 */
3841static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3842 bool is_lock)
3843{
3844 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3845 struct bpf_verifier_state *cur = env->cur_state;
3846 bool is_const = tnum_is_const(reg->var_off);
3847 struct bpf_map *map = reg->map_ptr;
3848 u64 val = reg->var_off.value;
3849
d83525ca
AS
3850 if (!is_const) {
3851 verbose(env,
3852 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3853 regno);
3854 return -EINVAL;
3855 }
3856 if (!map->btf) {
3857 verbose(env,
3858 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3859 map->name);
3860 return -EINVAL;
3861 }
3862 if (!map_value_has_spin_lock(map)) {
3863 if (map->spin_lock_off == -E2BIG)
3864 verbose(env,
3865 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3866 map->name);
3867 else if (map->spin_lock_off == -ENOENT)
3868 verbose(env,
3869 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3870 map->name);
3871 else
3872 verbose(env,
3873 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3874 map->name);
3875 return -EINVAL;
3876 }
3877 if (map->spin_lock_off != val + reg->off) {
3878 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3879 val + reg->off);
3880 return -EINVAL;
3881 }
3882 if (is_lock) {
3883 if (cur->active_spin_lock) {
3884 verbose(env,
3885 "Locking two bpf_spin_locks are not allowed\n");
3886 return -EINVAL;
3887 }
3888 cur->active_spin_lock = reg->id;
3889 } else {
3890 if (!cur->active_spin_lock) {
3891 verbose(env, "bpf_spin_unlock without taking a lock\n");
3892 return -EINVAL;
3893 }
3894 if (cur->active_spin_lock != reg->id) {
3895 verbose(env, "bpf_spin_unlock of different lock\n");
3896 return -EINVAL;
3897 }
3898 cur->active_spin_lock = 0;
3899 }
3900 return 0;
3901}
3902
90133415
DB
3903static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3904{
3905 return type == ARG_PTR_TO_MEM ||
3906 type == ARG_PTR_TO_MEM_OR_NULL ||
3907 type == ARG_PTR_TO_UNINIT_MEM;
3908}
3909
3910static bool arg_type_is_mem_size(enum bpf_arg_type type)
3911{
3912 return type == ARG_CONST_SIZE ||
3913 type == ARG_CONST_SIZE_OR_ZERO;
3914}
3915
457f4436
AN
3916static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3917{
3918 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3919}
3920
57c3bb72
AI
3921static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3922{
3923 return type == ARG_PTR_TO_INT ||
3924 type == ARG_PTR_TO_LONG;
3925}
3926
3927static int int_ptr_type_to_size(enum bpf_arg_type type)
3928{
3929 if (type == ARG_PTR_TO_INT)
3930 return sizeof(u32);
3931 else if (type == ARG_PTR_TO_LONG)
3932 return sizeof(u64);
3933
3934 return -EINVAL;
3935}
3936
912f442c
LB
3937static int resolve_map_arg_type(struct bpf_verifier_env *env,
3938 const struct bpf_call_arg_meta *meta,
3939 enum bpf_arg_type *arg_type)
3940{
3941 if (!meta->map_ptr) {
3942 /* kernel subsystem misconfigured verifier */
3943 verbose(env, "invalid map_ptr to access map->type\n");
3944 return -EACCES;
3945 }
3946
3947 switch (meta->map_ptr->map_type) {
3948 case BPF_MAP_TYPE_SOCKMAP:
3949 case BPF_MAP_TYPE_SOCKHASH:
3950 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 3951 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
3952 } else {
3953 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3954 return -EINVAL;
3955 }
3956 break;
3957
3958 default:
3959 break;
3960 }
3961 return 0;
3962}
3963
f79e7ea5
LB
3964struct bpf_reg_types {
3965 const enum bpf_reg_type types[10];
1df8f55a 3966 u32 *btf_id;
f79e7ea5
LB
3967};
3968
3969static const struct bpf_reg_types map_key_value_types = {
3970 .types = {
3971 PTR_TO_STACK,
3972 PTR_TO_PACKET,
3973 PTR_TO_PACKET_META,
3974 PTR_TO_MAP_VALUE,
3975 },
3976};
3977
3978static const struct bpf_reg_types sock_types = {
3979 .types = {
3980 PTR_TO_SOCK_COMMON,
3981 PTR_TO_SOCKET,
3982 PTR_TO_TCP_SOCK,
3983 PTR_TO_XDP_SOCK,
3984 },
3985};
3986
49a2a4d4 3987#ifdef CONFIG_NET
1df8f55a
MKL
3988static const struct bpf_reg_types btf_id_sock_common_types = {
3989 .types = {
3990 PTR_TO_SOCK_COMMON,
3991 PTR_TO_SOCKET,
3992 PTR_TO_TCP_SOCK,
3993 PTR_TO_XDP_SOCK,
3994 PTR_TO_BTF_ID,
3995 },
3996 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
3997};
49a2a4d4 3998#endif
1df8f55a 3999
f79e7ea5
LB
4000static const struct bpf_reg_types mem_types = {
4001 .types = {
4002 PTR_TO_STACK,
4003 PTR_TO_PACKET,
4004 PTR_TO_PACKET_META,
4005 PTR_TO_MAP_VALUE,
4006 PTR_TO_MEM,
4007 PTR_TO_RDONLY_BUF,
4008 PTR_TO_RDWR_BUF,
4009 },
4010};
4011
4012static const struct bpf_reg_types int_ptr_types = {
4013 .types = {
4014 PTR_TO_STACK,
4015 PTR_TO_PACKET,
4016 PTR_TO_PACKET_META,
4017 PTR_TO_MAP_VALUE,
4018 },
4019};
4020
4021static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4022static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4023static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4024static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4025static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4026static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4027static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 4028static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
f79e7ea5 4029
0789e13b 4030static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4031 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4032 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4033 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4034 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4035 [ARG_CONST_SIZE] = &scalar_types,
4036 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4037 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4038 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4039 [ARG_PTR_TO_CTX] = &context_types,
4040 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4041 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 4042#ifdef CONFIG_NET
1df8f55a 4043 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 4044#endif
f79e7ea5
LB
4045 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4046 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4047 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4048 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4049 [ARG_PTR_TO_MEM] = &mem_types,
4050 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4051 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4052 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4053 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4054 [ARG_PTR_TO_INT] = &int_ptr_types,
4055 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 4056 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
f79e7ea5
LB
4057};
4058
4059static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4060 enum bpf_arg_type arg_type,
4061 const u32 *arg_btf_id)
f79e7ea5
LB
4062{
4063 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4064 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4065 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4066 int i, j;
4067
a968d5e2
MKL
4068 compatible = compatible_reg_types[arg_type];
4069 if (!compatible) {
4070 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4071 return -EFAULT;
4072 }
4073
f79e7ea5
LB
4074 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4075 expected = compatible->types[i];
4076 if (expected == NOT_INIT)
4077 break;
4078
4079 if (type == expected)
a968d5e2 4080 goto found;
f79e7ea5
LB
4081 }
4082
4083 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4084 for (j = 0; j + 1 < i; j++)
4085 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4086 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4087 return -EACCES;
a968d5e2
MKL
4088
4089found:
4090 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4091 if (!arg_btf_id) {
4092 if (!compatible->btf_id) {
4093 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4094 return -EFAULT;
4095 }
4096 arg_btf_id = compatible->btf_id;
4097 }
4098
a968d5e2
MKL
4099 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4100 *arg_btf_id)) {
4101 verbose(env, "R%d is of type %s but %s is expected\n",
4102 regno, kernel_type_name(reg->btf_id),
4103 kernel_type_name(*arg_btf_id));
4104 return -EACCES;
4105 }
4106
4107 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4108 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4109 regno);
4110 return -EACCES;
4111 }
4112 }
4113
4114 return 0;
f79e7ea5
LB
4115}
4116
af7ec138
YS
4117static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4118 struct bpf_call_arg_meta *meta,
4119 const struct bpf_func_proto *fn)
17a52670 4120{
af7ec138 4121 u32 regno = BPF_REG_1 + arg;
638f5b90 4122 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4123 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4124 enum bpf_reg_type type = reg->type;
17a52670
AS
4125 int err = 0;
4126
80f1d68c 4127 if (arg_type == ARG_DONTCARE)
17a52670
AS
4128 return 0;
4129
dc503a8a
EC
4130 err = check_reg_arg(env, regno, SRC_OP);
4131 if (err)
4132 return err;
17a52670 4133
1be7f75d
AS
4134 if (arg_type == ARG_ANYTHING) {
4135 if (is_pointer_value(env, regno)) {
61bd5218
JK
4136 verbose(env, "R%d leaks addr into helper function\n",
4137 regno);
1be7f75d
AS
4138 return -EACCES;
4139 }
80f1d68c 4140 return 0;
1be7f75d 4141 }
80f1d68c 4142
de8f3a83 4143 if (type_is_pkt_pointer(type) &&
3a0af8fd 4144 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4145 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4146 return -EACCES;
4147 }
4148
912f442c
LB
4149 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4150 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4151 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4152 err = resolve_map_arg_type(env, meta, &arg_type);
4153 if (err)
4154 return err;
4155 }
4156
fd1b0d60
LB
4157 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4158 /* A NULL register has a SCALAR_VALUE type, so skip
4159 * type checking.
4160 */
4161 goto skip_type_check;
4162
a968d5e2 4163 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4164 if (err)
4165 return err;
4166
a968d5e2 4167 if (type == PTR_TO_CTX) {
feec7040
LB
4168 err = check_ctx_reg(env, reg, regno);
4169 if (err < 0)
4170 return err;
d7b9454a
LB
4171 }
4172
fd1b0d60 4173skip_type_check:
02f7c958 4174 if (reg->ref_obj_id) {
457f4436
AN
4175 if (meta->ref_obj_id) {
4176 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4177 regno, reg->ref_obj_id,
4178 meta->ref_obj_id);
4179 return -EFAULT;
4180 }
4181 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4182 }
4183
17a52670
AS
4184 if (arg_type == ARG_CONST_MAP_PTR) {
4185 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4186 meta->map_ptr = reg->map_ptr;
17a52670
AS
4187 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4188 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4189 * check that [key, key + map->key_size) are within
4190 * stack limits and initialized
4191 */
33ff9823 4192 if (!meta->map_ptr) {
17a52670
AS
4193 /* in function declaration map_ptr must come before
4194 * map_key, so that it's verified and known before
4195 * we have to check map_key here. Otherwise it means
4196 * that kernel subsystem misconfigured verifier
4197 */
61bd5218 4198 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4199 return -EACCES;
4200 }
d71962f3
PC
4201 err = check_helper_mem_access(env, regno,
4202 meta->map_ptr->key_size, false,
4203 NULL);
2ea864c5 4204 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4205 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4206 !register_is_null(reg)) ||
2ea864c5 4207 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4208 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4209 * check [value, value + map->value_size) validity
4210 */
33ff9823 4211 if (!meta->map_ptr) {
17a52670 4212 /* kernel subsystem misconfigured verifier */
61bd5218 4213 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4214 return -EACCES;
4215 }
2ea864c5 4216 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4217 err = check_helper_mem_access(env, regno,
4218 meta->map_ptr->value_size, false,
2ea864c5 4219 meta);
eaa6bcb7
HL
4220 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4221 if (!reg->btf_id) {
4222 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4223 return -EACCES;
4224 }
4225 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
4226 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4227 if (meta->func_id == BPF_FUNC_spin_lock) {
4228 if (process_spin_lock(env, regno, true))
4229 return -EACCES;
4230 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4231 if (process_spin_lock(env, regno, false))
4232 return -EACCES;
4233 } else {
4234 verbose(env, "verifier internal error\n");
4235 return -EFAULT;
4236 }
a2bbe7cc
LB
4237 } else if (arg_type_is_mem_ptr(arg_type)) {
4238 /* The access to this pointer is only checked when we hit the
4239 * next is_mem_size argument below.
4240 */
4241 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 4242 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4243 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4244
10060503
JF
4245 /* This is used to refine r0 return value bounds for helpers
4246 * that enforce this value as an upper bound on return values.
4247 * See do_refine_retval_range() for helpers that can refine
4248 * the return value. C type of helper is u32 so we pull register
4249 * bound from umax_value however, if negative verifier errors
4250 * out. Only upper bounds can be learned because retval is an
4251 * int type and negative retvals are allowed.
849fa506 4252 */
10060503 4253 meta->msize_max_value = reg->umax_value;
849fa506 4254
f1174f77
EC
4255 /* The register is SCALAR_VALUE; the access check
4256 * happens using its boundaries.
06c1c049 4257 */
f1174f77 4258 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4259 /* For unprivileged variable accesses, disable raw
4260 * mode so that the program is required to
4261 * initialize all the memory that the helper could
4262 * just partially fill up.
4263 */
4264 meta = NULL;
4265
b03c9f9f 4266 if (reg->smin_value < 0) {
61bd5218 4267 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4268 regno);
4269 return -EACCES;
4270 }
06c1c049 4271
b03c9f9f 4272 if (reg->umin_value == 0) {
f1174f77
EC
4273 err = check_helper_mem_access(env, regno - 1, 0,
4274 zero_size_allowed,
4275 meta);
06c1c049
GB
4276 if (err)
4277 return err;
06c1c049 4278 }
f1174f77 4279
b03c9f9f 4280 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4281 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4282 regno);
4283 return -EACCES;
4284 }
4285 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4286 reg->umax_value,
f1174f77 4287 zero_size_allowed, meta);
b5dc0163
AS
4288 if (!err)
4289 err = mark_chain_precision(env, regno);
457f4436
AN
4290 } else if (arg_type_is_alloc_size(arg_type)) {
4291 if (!tnum_is_const(reg->var_off)) {
4292 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4293 regno);
4294 return -EACCES;
4295 }
4296 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4297 } else if (arg_type_is_int_ptr(arg_type)) {
4298 int size = int_ptr_type_to_size(arg_type);
4299
4300 err = check_helper_mem_access(env, regno, size, false, meta);
4301 if (err)
4302 return err;
4303 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4304 }
4305
4306 return err;
4307}
4308
0126240f
LB
4309static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4310{
4311 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4312 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4313
4314 if (func_id != BPF_FUNC_map_update_elem)
4315 return false;
4316
4317 /* It's not possible to get access to a locked struct sock in these
4318 * contexts, so updating is safe.
4319 */
4320 switch (type) {
4321 case BPF_PROG_TYPE_TRACING:
4322 if (eatype == BPF_TRACE_ITER)
4323 return true;
4324 break;
4325 case BPF_PROG_TYPE_SOCKET_FILTER:
4326 case BPF_PROG_TYPE_SCHED_CLS:
4327 case BPF_PROG_TYPE_SCHED_ACT:
4328 case BPF_PROG_TYPE_XDP:
4329 case BPF_PROG_TYPE_SK_REUSEPORT:
4330 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4331 case BPF_PROG_TYPE_SK_LOOKUP:
4332 return true;
4333 default:
4334 break;
4335 }
4336
4337 verbose(env, "cannot update sockmap in this context\n");
4338 return false;
4339}
4340
e411901c
MF
4341static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4342{
4343 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4344}
4345
61bd5218
JK
4346static int check_map_func_compatibility(struct bpf_verifier_env *env,
4347 struct bpf_map *map, int func_id)
35578d79 4348{
35578d79
KX
4349 if (!map)
4350 return 0;
4351
6aff67c8
AS
4352 /* We need a two way check, first is from map perspective ... */
4353 switch (map->map_type) {
4354 case BPF_MAP_TYPE_PROG_ARRAY:
4355 if (func_id != BPF_FUNC_tail_call)
4356 goto error;
4357 break;
4358 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4359 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4360 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4361 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4362 func_id != BPF_FUNC_perf_event_read_value &&
4363 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4364 goto error;
4365 break;
457f4436
AN
4366 case BPF_MAP_TYPE_RINGBUF:
4367 if (func_id != BPF_FUNC_ringbuf_output &&
4368 func_id != BPF_FUNC_ringbuf_reserve &&
4369 func_id != BPF_FUNC_ringbuf_submit &&
4370 func_id != BPF_FUNC_ringbuf_discard &&
4371 func_id != BPF_FUNC_ringbuf_query)
4372 goto error;
4373 break;
6aff67c8
AS
4374 case BPF_MAP_TYPE_STACK_TRACE:
4375 if (func_id != BPF_FUNC_get_stackid)
4376 goto error;
4377 break;
4ed8ec52 4378 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4379 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4380 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4381 goto error;
4382 break;
cd339431 4383 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4384 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4385 if (func_id != BPF_FUNC_get_local_storage)
4386 goto error;
4387 break;
546ac1ff 4388 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4389 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4390 if (func_id != BPF_FUNC_redirect_map &&
4391 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4392 goto error;
4393 break;
fbfc504a
BT
4394 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4395 * appear.
4396 */
6710e112
JDB
4397 case BPF_MAP_TYPE_CPUMAP:
4398 if (func_id != BPF_FUNC_redirect_map)
4399 goto error;
4400 break;
fada7fdc
JL
4401 case BPF_MAP_TYPE_XSKMAP:
4402 if (func_id != BPF_FUNC_redirect_map &&
4403 func_id != BPF_FUNC_map_lookup_elem)
4404 goto error;
4405 break;
56f668df 4406 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4407 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4408 if (func_id != BPF_FUNC_map_lookup_elem)
4409 goto error;
16a43625 4410 break;
174a79ff
JF
4411 case BPF_MAP_TYPE_SOCKMAP:
4412 if (func_id != BPF_FUNC_sk_redirect_map &&
4413 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4414 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4415 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4416 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4417 func_id != BPF_FUNC_map_lookup_elem &&
4418 !may_update_sockmap(env, func_id))
174a79ff
JF
4419 goto error;
4420 break;
81110384
JF
4421 case BPF_MAP_TYPE_SOCKHASH:
4422 if (func_id != BPF_FUNC_sk_redirect_hash &&
4423 func_id != BPF_FUNC_sock_hash_update &&
4424 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4425 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4426 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4427 func_id != BPF_FUNC_map_lookup_elem &&
4428 !may_update_sockmap(env, func_id))
81110384
JF
4429 goto error;
4430 break;
2dbb9b9e
MKL
4431 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4432 if (func_id != BPF_FUNC_sk_select_reuseport)
4433 goto error;
4434 break;
f1a2e44a
MV
4435 case BPF_MAP_TYPE_QUEUE:
4436 case BPF_MAP_TYPE_STACK:
4437 if (func_id != BPF_FUNC_map_peek_elem &&
4438 func_id != BPF_FUNC_map_pop_elem &&
4439 func_id != BPF_FUNC_map_push_elem)
4440 goto error;
4441 break;
6ac99e8f
MKL
4442 case BPF_MAP_TYPE_SK_STORAGE:
4443 if (func_id != BPF_FUNC_sk_storage_get &&
4444 func_id != BPF_FUNC_sk_storage_delete)
4445 goto error;
4446 break;
8ea63684
KS
4447 case BPF_MAP_TYPE_INODE_STORAGE:
4448 if (func_id != BPF_FUNC_inode_storage_get &&
4449 func_id != BPF_FUNC_inode_storage_delete)
4450 goto error;
4451 break;
6aff67c8
AS
4452 default:
4453 break;
4454 }
4455
4456 /* ... and second from the function itself. */
4457 switch (func_id) {
4458 case BPF_FUNC_tail_call:
4459 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4460 goto error;
e411901c
MF
4461 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4462 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
4463 return -EINVAL;
4464 }
6aff67c8
AS
4465 break;
4466 case BPF_FUNC_perf_event_read:
4467 case BPF_FUNC_perf_event_output:
908432ca 4468 case BPF_FUNC_perf_event_read_value:
a7658e1a 4469 case BPF_FUNC_skb_output:
d831ee84 4470 case BPF_FUNC_xdp_output:
6aff67c8
AS
4471 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4472 goto error;
4473 break;
4474 case BPF_FUNC_get_stackid:
4475 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4476 goto error;
4477 break;
60d20f91 4478 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4479 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4480 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4481 goto error;
4482 break;
97f91a7c 4483 case BPF_FUNC_redirect_map:
9c270af3 4484 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4485 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4486 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4487 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4488 goto error;
4489 break;
174a79ff 4490 case BPF_FUNC_sk_redirect_map:
4f738adb 4491 case BPF_FUNC_msg_redirect_map:
81110384 4492 case BPF_FUNC_sock_map_update:
174a79ff
JF
4493 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4494 goto error;
4495 break;
81110384
JF
4496 case BPF_FUNC_sk_redirect_hash:
4497 case BPF_FUNC_msg_redirect_hash:
4498 case BPF_FUNC_sock_hash_update:
4499 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4500 goto error;
4501 break;
cd339431 4502 case BPF_FUNC_get_local_storage:
b741f163
RG
4503 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4504 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4505 goto error;
4506 break;
2dbb9b9e 4507 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4508 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4509 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4510 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4511 goto error;
4512 break;
f1a2e44a
MV
4513 case BPF_FUNC_map_peek_elem:
4514 case BPF_FUNC_map_pop_elem:
4515 case BPF_FUNC_map_push_elem:
4516 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4517 map->map_type != BPF_MAP_TYPE_STACK)
4518 goto error;
4519 break;
6ac99e8f
MKL
4520 case BPF_FUNC_sk_storage_get:
4521 case BPF_FUNC_sk_storage_delete:
4522 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4523 goto error;
4524 break;
8ea63684
KS
4525 case BPF_FUNC_inode_storage_get:
4526 case BPF_FUNC_inode_storage_delete:
4527 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4528 goto error;
4529 break;
6aff67c8
AS
4530 default:
4531 break;
35578d79
KX
4532 }
4533
4534 return 0;
6aff67c8 4535error:
61bd5218 4536 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4537 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4538 return -EINVAL;
35578d79
KX
4539}
4540
90133415 4541static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4542{
4543 int count = 0;
4544
39f19ebb 4545 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4546 count++;
39f19ebb 4547 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4548 count++;
39f19ebb 4549 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4550 count++;
39f19ebb 4551 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4552 count++;
39f19ebb 4553 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4554 count++;
4555
90133415
DB
4556 /* We only support one arg being in raw mode at the moment,
4557 * which is sufficient for the helper functions we have
4558 * right now.
4559 */
4560 return count <= 1;
4561}
4562
4563static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4564 enum bpf_arg_type arg_next)
4565{
4566 return (arg_type_is_mem_ptr(arg_curr) &&
4567 !arg_type_is_mem_size(arg_next)) ||
4568 (!arg_type_is_mem_ptr(arg_curr) &&
4569 arg_type_is_mem_size(arg_next));
4570}
4571
4572static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4573{
4574 /* bpf_xxx(..., buf, len) call will access 'len'
4575 * bytes from memory 'buf'. Both arg types need
4576 * to be paired, so make sure there's no buggy
4577 * helper function specification.
4578 */
4579 if (arg_type_is_mem_size(fn->arg1_type) ||
4580 arg_type_is_mem_ptr(fn->arg5_type) ||
4581 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4582 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4583 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4584 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4585 return false;
4586
4587 return true;
4588}
4589
1b986589 4590static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4591{
4592 int count = 0;
4593
1b986589 4594 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4595 count++;
1b986589 4596 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4597 count++;
1b986589 4598 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4599 count++;
1b986589 4600 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4601 count++;
1b986589 4602 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4603 count++;
4604
1b986589
MKL
4605 /* A reference acquiring function cannot acquire
4606 * another refcounted ptr.
4607 */
64d85290 4608 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4609 return false;
4610
fd978bf7
JS
4611 /* We only support one arg being unreferenced at the moment,
4612 * which is sufficient for the helper functions we have right now.
4613 */
4614 return count <= 1;
4615}
4616
9436ef6e
LB
4617static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4618{
4619 int i;
4620
1df8f55a 4621 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
4622 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4623 return false;
4624
1df8f55a
MKL
4625 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4626 return false;
4627 }
4628
9436ef6e
LB
4629 return true;
4630}
4631
1b986589 4632static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4633{
4634 return check_raw_mode_ok(fn) &&
fd978bf7 4635 check_arg_pair_ok(fn) &&
9436ef6e 4636 check_btf_id_ok(fn) &&
1b986589 4637 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4638}
4639
de8f3a83
DB
4640/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4641 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4642 */
f4d7e40a
AS
4643static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4644 struct bpf_func_state *state)
969bf05e 4645{
58e2af8b 4646 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4647 int i;
4648
4649 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4650 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4651 mark_reg_unknown(env, regs, i);
969bf05e 4652
f3709f69
JS
4653 bpf_for_each_spilled_reg(i, state, reg) {
4654 if (!reg)
969bf05e 4655 continue;
de8f3a83 4656 if (reg_is_pkt_pointer_any(reg))
f54c7898 4657 __mark_reg_unknown(env, reg);
969bf05e
AS
4658 }
4659}
4660
f4d7e40a
AS
4661static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4662{
4663 struct bpf_verifier_state *vstate = env->cur_state;
4664 int i;
4665
4666 for (i = 0; i <= vstate->curframe; i++)
4667 __clear_all_pkt_pointers(env, vstate->frame[i]);
4668}
4669
fd978bf7 4670static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4671 struct bpf_func_state *state,
4672 int ref_obj_id)
fd978bf7
JS
4673{
4674 struct bpf_reg_state *regs = state->regs, *reg;
4675 int i;
4676
4677 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4678 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4679 mark_reg_unknown(env, regs, i);
4680
4681 bpf_for_each_spilled_reg(i, state, reg) {
4682 if (!reg)
4683 continue;
1b986589 4684 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4685 __mark_reg_unknown(env, reg);
fd978bf7
JS
4686 }
4687}
4688
4689/* The pointer with the specified id has released its reference to kernel
4690 * resources. Identify all copies of the same pointer and clear the reference.
4691 */
4692static int release_reference(struct bpf_verifier_env *env,
1b986589 4693 int ref_obj_id)
fd978bf7
JS
4694{
4695 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4696 int err;
fd978bf7
JS
4697 int i;
4698
1b986589
MKL
4699 err = release_reference_state(cur_func(env), ref_obj_id);
4700 if (err)
4701 return err;
4702
fd978bf7 4703 for (i = 0; i <= vstate->curframe; i++)
1b986589 4704 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4705
1b986589 4706 return 0;
fd978bf7
JS
4707}
4708
51c39bb1
AS
4709static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4710 struct bpf_reg_state *regs)
4711{
4712 int i;
4713
4714 /* after the call registers r0 - r5 were scratched */
4715 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4716 mark_reg_not_init(env, regs, caller_saved[i]);
4717 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4718 }
4719}
4720
f4d7e40a
AS
4721static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4722 int *insn_idx)
4723{
4724 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4725 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4726 struct bpf_func_state *caller, *callee;
fd978bf7 4727 int i, err, subprog, target_insn;
51c39bb1 4728 bool is_global = false;
f4d7e40a 4729
aada9ce6 4730 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4731 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4732 state->curframe + 2);
f4d7e40a
AS
4733 return -E2BIG;
4734 }
4735
4736 target_insn = *insn_idx + insn->imm;
4737 subprog = find_subprog(env, target_insn + 1);
4738 if (subprog < 0) {
4739 verbose(env, "verifier bug. No program starts at insn %d\n",
4740 target_insn + 1);
4741 return -EFAULT;
4742 }
4743
4744 caller = state->frame[state->curframe];
4745 if (state->frame[state->curframe + 1]) {
4746 verbose(env, "verifier bug. Frame %d already allocated\n",
4747 state->curframe + 1);
4748 return -EFAULT;
4749 }
4750
51c39bb1
AS
4751 func_info_aux = env->prog->aux->func_info_aux;
4752 if (func_info_aux)
4753 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4754 err = btf_check_func_arg_match(env, subprog, caller->regs);
4755 if (err == -EFAULT)
4756 return err;
4757 if (is_global) {
4758 if (err) {
4759 verbose(env, "Caller passes invalid args into func#%d\n",
4760 subprog);
4761 return err;
4762 } else {
4763 if (env->log.level & BPF_LOG_LEVEL)
4764 verbose(env,
4765 "Func#%d is global and valid. Skipping.\n",
4766 subprog);
4767 clear_caller_saved_regs(env, caller->regs);
4768
4769 /* All global functions return SCALAR_VALUE */
4770 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4771
4772 /* continue with next insn after call */
4773 return 0;
4774 }
4775 }
4776
f4d7e40a
AS
4777 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4778 if (!callee)
4779 return -ENOMEM;
4780 state->frame[state->curframe + 1] = callee;
4781
4782 /* callee cannot access r0, r6 - r9 for reading and has to write
4783 * into its own stack before reading from it.
4784 * callee can read/write into caller's stack
4785 */
4786 init_func_state(env, callee,
4787 /* remember the callsite, it will be used by bpf_exit */
4788 *insn_idx /* callsite */,
4789 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4790 subprog /* subprog number within this prog */);
f4d7e40a 4791
fd978bf7
JS
4792 /* Transfer references to the callee */
4793 err = transfer_reference_state(callee, caller);
4794 if (err)
4795 return err;
4796
679c782d
EC
4797 /* copy r1 - r5 args that callee can access. The copy includes parent
4798 * pointers, which connects us up to the liveness chain
4799 */
f4d7e40a
AS
4800 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4801 callee->regs[i] = caller->regs[i];
4802
51c39bb1 4803 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4804
4805 /* only increment it after check_reg_arg() finished */
4806 state->curframe++;
4807
4808 /* and go analyze first insn of the callee */
4809 *insn_idx = target_insn;
4810
06ee7115 4811 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4812 verbose(env, "caller:\n");
4813 print_verifier_state(env, caller);
4814 verbose(env, "callee:\n");
4815 print_verifier_state(env, callee);
4816 }
4817 return 0;
4818}
4819
4820static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4821{
4822 struct bpf_verifier_state *state = env->cur_state;
4823 struct bpf_func_state *caller, *callee;
4824 struct bpf_reg_state *r0;
fd978bf7 4825 int err;
f4d7e40a
AS
4826
4827 callee = state->frame[state->curframe];
4828 r0 = &callee->regs[BPF_REG_0];
4829 if (r0->type == PTR_TO_STACK) {
4830 /* technically it's ok to return caller's stack pointer
4831 * (or caller's caller's pointer) back to the caller,
4832 * since these pointers are valid. Only current stack
4833 * pointer will be invalid as soon as function exits,
4834 * but let's be conservative
4835 */
4836 verbose(env, "cannot return stack pointer to the caller\n");
4837 return -EINVAL;
4838 }
4839
4840 state->curframe--;
4841 caller = state->frame[state->curframe];
4842 /* return to the caller whatever r0 had in the callee */
4843 caller->regs[BPF_REG_0] = *r0;
4844
fd978bf7
JS
4845 /* Transfer references to the caller */
4846 err = transfer_reference_state(caller, callee);
4847 if (err)
4848 return err;
4849
f4d7e40a 4850 *insn_idx = callee->callsite + 1;
06ee7115 4851 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4852 verbose(env, "returning from callee:\n");
4853 print_verifier_state(env, callee);
4854 verbose(env, "to caller at %d:\n", *insn_idx);
4855 print_verifier_state(env, caller);
4856 }
4857 /* clear everything in the callee */
4858 free_func_state(callee);
4859 state->frame[state->curframe + 1] = NULL;
4860 return 0;
4861}
4862
849fa506
YS
4863static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4864 int func_id,
4865 struct bpf_call_arg_meta *meta)
4866{
4867 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4868
4869 if (ret_type != RET_INTEGER ||
4870 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4871 func_id != BPF_FUNC_probe_read_str &&
4872 func_id != BPF_FUNC_probe_read_kernel_str &&
4873 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4874 return;
4875
10060503 4876 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4877 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4878 __reg_deduce_bounds(ret_reg);
4879 __reg_bound_offset(ret_reg);
10060503 4880 __update_reg_bounds(ret_reg);
849fa506
YS
4881}
4882
c93552c4
DB
4883static int
4884record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4885 int func_id, int insn_idx)
4886{
4887 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4888 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4889
4890 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4891 func_id != BPF_FUNC_map_lookup_elem &&
4892 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4893 func_id != BPF_FUNC_map_delete_elem &&
4894 func_id != BPF_FUNC_map_push_elem &&
4895 func_id != BPF_FUNC_map_pop_elem &&
4896 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4897 return 0;
09772d92 4898
591fe988 4899 if (map == NULL) {
c93552c4
DB
4900 verbose(env, "kernel subsystem misconfigured verifier\n");
4901 return -EINVAL;
4902 }
4903
591fe988
DB
4904 /* In case of read-only, some additional restrictions
4905 * need to be applied in order to prevent altering the
4906 * state of the map from program side.
4907 */
4908 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4909 (func_id == BPF_FUNC_map_delete_elem ||
4910 func_id == BPF_FUNC_map_update_elem ||
4911 func_id == BPF_FUNC_map_push_elem ||
4912 func_id == BPF_FUNC_map_pop_elem)) {
4913 verbose(env, "write into map forbidden\n");
4914 return -EACCES;
4915 }
4916
d2e4c1e6 4917 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4918 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4919 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4920 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4921 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4922 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4923 return 0;
4924}
4925
d2e4c1e6
DB
4926static int
4927record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4928 int func_id, int insn_idx)
4929{
4930 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4931 struct bpf_reg_state *regs = cur_regs(env), *reg;
4932 struct bpf_map *map = meta->map_ptr;
4933 struct tnum range;
4934 u64 val;
cc52d914 4935 int err;
d2e4c1e6
DB
4936
4937 if (func_id != BPF_FUNC_tail_call)
4938 return 0;
4939 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4940 verbose(env, "kernel subsystem misconfigured verifier\n");
4941 return -EINVAL;
4942 }
4943
4944 range = tnum_range(0, map->max_entries - 1);
4945 reg = &regs[BPF_REG_3];
4946
4947 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4948 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4949 return 0;
4950 }
4951
cc52d914
DB
4952 err = mark_chain_precision(env, BPF_REG_3);
4953 if (err)
4954 return err;
4955
d2e4c1e6
DB
4956 val = reg->var_off.value;
4957 if (bpf_map_key_unseen(aux))
4958 bpf_map_key_store(aux, val);
4959 else if (!bpf_map_key_poisoned(aux) &&
4960 bpf_map_key_immediate(aux) != val)
4961 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4962 return 0;
4963}
4964
fd978bf7
JS
4965static int check_reference_leak(struct bpf_verifier_env *env)
4966{
4967 struct bpf_func_state *state = cur_func(env);
4968 int i;
4969
4970 for (i = 0; i < state->acquired_refs; i++) {
4971 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4972 state->refs[i].id, state->refs[i].insn_idx);
4973 }
4974 return state->acquired_refs ? -EINVAL : 0;
4975}
4976
f4d7e40a 4977static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4978{
17a52670 4979 const struct bpf_func_proto *fn = NULL;
638f5b90 4980 struct bpf_reg_state *regs;
33ff9823 4981 struct bpf_call_arg_meta meta;
969bf05e 4982 bool changes_data;
17a52670
AS
4983 int i, err;
4984
4985 /* find function prototype */
4986 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4987 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4988 func_id);
17a52670
AS
4989 return -EINVAL;
4990 }
4991
00176a34 4992 if (env->ops->get_func_proto)
5e43f899 4993 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4994 if (!fn) {
61bd5218
JK
4995 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4996 func_id);
17a52670
AS
4997 return -EINVAL;
4998 }
4999
5000 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 5001 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 5002 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
5003 return -EINVAL;
5004 }
5005
eae2e83e
JO
5006 if (fn->allowed && !fn->allowed(env->prog)) {
5007 verbose(env, "helper call is not allowed in probe\n");
5008 return -EINVAL;
5009 }
5010
04514d13 5011 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 5012 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
5013 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5014 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5015 func_id_name(func_id), func_id);
5016 return -EINVAL;
5017 }
969bf05e 5018
33ff9823 5019 memset(&meta, 0, sizeof(meta));
36bbef52 5020 meta.pkt_access = fn->pkt_access;
33ff9823 5021
1b986589 5022 err = check_func_proto(fn, func_id);
435faee1 5023 if (err) {
61bd5218 5024 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 5025 func_id_name(func_id), func_id);
435faee1
DB
5026 return err;
5027 }
5028
d83525ca 5029 meta.func_id = func_id;
17a52670 5030 /* check args */
a7658e1a 5031 for (i = 0; i < 5; i++) {
af7ec138 5032 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
5033 if (err)
5034 return err;
5035 }
17a52670 5036
c93552c4
DB
5037 err = record_func_map(env, &meta, func_id, insn_idx);
5038 if (err)
5039 return err;
5040
d2e4c1e6
DB
5041 err = record_func_key(env, &meta, func_id, insn_idx);
5042 if (err)
5043 return err;
5044
435faee1
DB
5045 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5046 * is inferred from register state.
5047 */
5048 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
5049 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5050 BPF_WRITE, -1, false);
435faee1
DB
5051 if (err)
5052 return err;
5053 }
5054
fd978bf7
JS
5055 if (func_id == BPF_FUNC_tail_call) {
5056 err = check_reference_leak(env);
5057 if (err) {
5058 verbose(env, "tail_call would lead to reference leak\n");
5059 return err;
5060 }
5061 } else if (is_release_function(func_id)) {
1b986589 5062 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
5063 if (err) {
5064 verbose(env, "func %s#%d reference has not been acquired before\n",
5065 func_id_name(func_id), func_id);
fd978bf7 5066 return err;
46f8bc92 5067 }
fd978bf7
JS
5068 }
5069
638f5b90 5070 regs = cur_regs(env);
cd339431
RG
5071
5072 /* check that flags argument in get_local_storage(map, flags) is 0,
5073 * this is required because get_local_storage() can't return an error.
5074 */
5075 if (func_id == BPF_FUNC_get_local_storage &&
5076 !register_is_null(&regs[BPF_REG_2])) {
5077 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5078 return -EINVAL;
5079 }
5080
17a52670 5081 /* reset caller saved regs */
dc503a8a 5082 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5083 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5084 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5085 }
17a52670 5086
5327ed3d
JW
5087 /* helper call returns 64-bit value. */
5088 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5089
dc503a8a 5090 /* update return register (already marked as written above) */
17a52670 5091 if (fn->ret_type == RET_INTEGER) {
f1174f77 5092 /* sets type to SCALAR_VALUE */
61bd5218 5093 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
5094 } else if (fn->ret_type == RET_VOID) {
5095 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
5096 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5097 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 5098 /* There is no offset yet applied, variable or fixed */
61bd5218 5099 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
5100 /* remember map_ptr, so that check_map_access()
5101 * can check 'value_size' boundary of memory access
5102 * to map element returned from bpf_map_lookup_elem()
5103 */
33ff9823 5104 if (meta.map_ptr == NULL) {
61bd5218
JK
5105 verbose(env,
5106 "kernel subsystem misconfigured verifier\n");
17a52670
AS
5107 return -EINVAL;
5108 }
33ff9823 5109 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
5110 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5111 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
5112 if (map_value_has_spin_lock(meta.map_ptr))
5113 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
5114 } else {
5115 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5116 regs[BPF_REG_0].id = ++env->id_gen;
5117 }
c64b7983
JS
5118 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5119 mark_reg_known_zero(env, regs, BPF_REG_0);
5120 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 5121 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
5122 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5123 mark_reg_known_zero(env, regs, BPF_REG_0);
5124 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5125 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
5126 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5127 mark_reg_known_zero(env, regs, BPF_REG_0);
5128 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5129 regs[BPF_REG_0].id = ++env->id_gen;
457f4436
AN
5130 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5131 mark_reg_known_zero(env, regs, BPF_REG_0);
5132 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5133 regs[BPF_REG_0].id = ++env->id_gen;
5134 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
5135 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5136 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
5137 const struct btf_type *t;
5138
5139 mark_reg_known_zero(env, regs, BPF_REG_0);
5140 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5141 if (!btf_type_is_struct(t)) {
5142 u32 tsize;
5143 const struct btf_type *ret;
5144 const char *tname;
5145
5146 /* resolve the type size of ksym. */
5147 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5148 if (IS_ERR(ret)) {
5149 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5150 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5151 tname, PTR_ERR(ret));
5152 return -EINVAL;
5153 }
63d9b80d
HL
5154 regs[BPF_REG_0].type =
5155 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5156 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
5157 regs[BPF_REG_0].mem_size = tsize;
5158 } else {
63d9b80d
HL
5159 regs[BPF_REG_0].type =
5160 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5161 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
eaa6bcb7
HL
5162 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5163 }
af7ec138
YS
5164 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5165 int ret_btf_id;
5166
5167 mark_reg_known_zero(env, regs, BPF_REG_0);
5168 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5169 ret_btf_id = *fn->ret_btf_id;
5170 if (ret_btf_id == 0) {
5171 verbose(env, "invalid return type %d of func %s#%d\n",
5172 fn->ret_type, func_id_name(func_id), func_id);
5173 return -EINVAL;
5174 }
5175 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5176 } else {
61bd5218 5177 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5178 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5179 return -EINVAL;
5180 }
04fd61ab 5181
0f3adc28 5182 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5183 /* For release_reference() */
5184 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5185 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5186 int id = acquire_reference_state(env, insn_idx);
5187
5188 if (id < 0)
5189 return id;
5190 /* For mark_ptr_or_null_reg() */
5191 regs[BPF_REG_0].id = id;
5192 /* For release_reference() */
5193 regs[BPF_REG_0].ref_obj_id = id;
5194 }
1b986589 5195
849fa506
YS
5196 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5197
61bd5218 5198 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5199 if (err)
5200 return err;
04fd61ab 5201
fa28dcb8
SL
5202 if ((func_id == BPF_FUNC_get_stack ||
5203 func_id == BPF_FUNC_get_task_stack) &&
5204 !env->prog->has_callchain_buf) {
c195651e
YS
5205 const char *err_str;
5206
5207#ifdef CONFIG_PERF_EVENTS
5208 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5209 err_str = "cannot get callchain buffer for func %s#%d\n";
5210#else
5211 err = -ENOTSUPP;
5212 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5213#endif
5214 if (err) {
5215 verbose(env, err_str, func_id_name(func_id), func_id);
5216 return err;
5217 }
5218
5219 env->prog->has_callchain_buf = true;
5220 }
5221
5d99cb2c
SL
5222 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5223 env->prog->call_get_stack = true;
5224
969bf05e
AS
5225 if (changes_data)
5226 clear_all_pkt_pointers(env);
5227 return 0;
5228}
5229
b03c9f9f
EC
5230static bool signed_add_overflows(s64 a, s64 b)
5231{
5232 /* Do the add in u64, where overflow is well-defined */
5233 s64 res = (s64)((u64)a + (u64)b);
5234
5235 if (b < 0)
5236 return res > a;
5237 return res < a;
5238}
5239
3f50f132
JF
5240static bool signed_add32_overflows(s64 a, s64 b)
5241{
5242 /* Do the add in u32, where overflow is well-defined */
5243 s32 res = (s32)((u32)a + (u32)b);
5244
5245 if (b < 0)
5246 return res > a;
5247 return res < a;
5248}
5249
5250static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
5251{
5252 /* Do the sub in u64, where overflow is well-defined */
5253 s64 res = (s64)((u64)a - (u64)b);
5254
5255 if (b < 0)
5256 return res < a;
5257 return res > a;
969bf05e
AS
5258}
5259
3f50f132
JF
5260static bool signed_sub32_overflows(s32 a, s32 b)
5261{
5262 /* Do the sub in u64, where overflow is well-defined */
5263 s32 res = (s32)((u32)a - (u32)b);
5264
5265 if (b < 0)
5266 return res < a;
5267 return res > a;
5268}
5269
bb7f0f98
AS
5270static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5271 const struct bpf_reg_state *reg,
5272 enum bpf_reg_type type)
5273{
5274 bool known = tnum_is_const(reg->var_off);
5275 s64 val = reg->var_off.value;
5276 s64 smin = reg->smin_value;
5277
5278 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5279 verbose(env, "math between %s pointer and %lld is not allowed\n",
5280 reg_type_str[type], val);
5281 return false;
5282 }
5283
5284 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5285 verbose(env, "%s pointer offset %d is not allowed\n",
5286 reg_type_str[type], reg->off);
5287 return false;
5288 }
5289
5290 if (smin == S64_MIN) {
5291 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5292 reg_type_str[type]);
5293 return false;
5294 }
5295
5296 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5297 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5298 smin, reg_type_str[type]);
5299 return false;
5300 }
5301
5302 return true;
5303}
5304
979d63d5
DB
5305static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5306{
5307 return &env->insn_aux_data[env->insn_idx];
5308}
5309
5310static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5311 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5312{
5313 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5314 (opcode == BPF_SUB && !off_is_neg);
5315 u32 off;
5316
5317 switch (ptr_reg->type) {
5318 case PTR_TO_STACK:
088ec26d
AI
5319 /* Indirect variable offset stack access is prohibited in
5320 * unprivileged mode so it's not handled here.
5321 */
979d63d5
DB
5322 off = ptr_reg->off + ptr_reg->var_off.value;
5323 if (mask_to_left)
5324 *ptr_limit = MAX_BPF_STACK + off;
5325 else
5326 *ptr_limit = -off;
5327 return 0;
5328 case PTR_TO_MAP_VALUE:
5329 if (mask_to_left) {
5330 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5331 } else {
5332 off = ptr_reg->smin_value + ptr_reg->off;
5333 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5334 }
5335 return 0;
5336 default:
5337 return -EINVAL;
5338 }
5339}
5340
d3bd7413
DB
5341static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5342 const struct bpf_insn *insn)
5343{
2c78ee89 5344 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5345}
5346
5347static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5348 u32 alu_state, u32 alu_limit)
5349{
5350 /* If we arrived here from different branches with different
5351 * state or limits to sanitize, then this won't work.
5352 */
5353 if (aux->alu_state &&
5354 (aux->alu_state != alu_state ||
5355 aux->alu_limit != alu_limit))
5356 return -EACCES;
5357
5358 /* Corresponding fixup done in fixup_bpf_calls(). */
5359 aux->alu_state = alu_state;
5360 aux->alu_limit = alu_limit;
5361 return 0;
5362}
5363
5364static int sanitize_val_alu(struct bpf_verifier_env *env,
5365 struct bpf_insn *insn)
5366{
5367 struct bpf_insn_aux_data *aux = cur_aux(env);
5368
5369 if (can_skip_alu_sanitation(env, insn))
5370 return 0;
5371
5372 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5373}
5374
979d63d5
DB
5375static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5376 struct bpf_insn *insn,
5377 const struct bpf_reg_state *ptr_reg,
5378 struct bpf_reg_state *dst_reg,
5379 bool off_is_neg)
5380{
5381 struct bpf_verifier_state *vstate = env->cur_state;
5382 struct bpf_insn_aux_data *aux = cur_aux(env);
5383 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5384 u8 opcode = BPF_OP(insn->code);
5385 u32 alu_state, alu_limit;
5386 struct bpf_reg_state tmp;
5387 bool ret;
5388
d3bd7413 5389 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5390 return 0;
5391
5392 /* We already marked aux for masking from non-speculative
5393 * paths, thus we got here in the first place. We only care
5394 * to explore bad access from here.
5395 */
5396 if (vstate->speculative)
5397 goto do_sim;
5398
5399 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5400 alu_state |= ptr_is_dst_reg ?
5401 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5402
5403 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5404 return 0;
d3bd7413 5405 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5406 return -EACCES;
979d63d5
DB
5407do_sim:
5408 /* Simulate and find potential out-of-bounds access under
5409 * speculative execution from truncation as a result of
5410 * masking when off was not within expected range. If off
5411 * sits in dst, then we temporarily need to move ptr there
5412 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5413 * for cases where we use K-based arithmetic in one direction
5414 * and truncated reg-based in the other in order to explore
5415 * bad access.
5416 */
5417 if (!ptr_is_dst_reg) {
5418 tmp = *dst_reg;
5419 *dst_reg = *ptr_reg;
5420 }
5421 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5422 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5423 *dst_reg = tmp;
5424 return !ret ? -EFAULT : 0;
5425}
5426
f1174f77 5427/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5428 * Caller should also handle BPF_MOV case separately.
5429 * If we return -EACCES, caller may want to try again treating pointer as a
5430 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5431 */
5432static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5433 struct bpf_insn *insn,
5434 const struct bpf_reg_state *ptr_reg,
5435 const struct bpf_reg_state *off_reg)
969bf05e 5436{
f4d7e40a
AS
5437 struct bpf_verifier_state *vstate = env->cur_state;
5438 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5439 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5440 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5441 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5442 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5443 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5444 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5445 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5446 u8 opcode = BPF_OP(insn->code);
979d63d5 5447 int ret;
969bf05e 5448
f1174f77 5449 dst_reg = &regs[dst];
969bf05e 5450
6f16101e
DB
5451 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5452 smin_val > smax_val || umin_val > umax_val) {
5453 /* Taint dst register if offset had invalid bounds derived from
5454 * e.g. dead branches.
5455 */
f54c7898 5456 __mark_reg_unknown(env, dst_reg);
6f16101e 5457 return 0;
f1174f77
EC
5458 }
5459
5460 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5461 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5462 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5463 __mark_reg_unknown(env, dst_reg);
5464 return 0;
5465 }
5466
82abbf8d
AS
5467 verbose(env,
5468 "R%d 32-bit pointer arithmetic prohibited\n",
5469 dst);
f1174f77 5470 return -EACCES;
969bf05e
AS
5471 }
5472
aad2eeaf
JS
5473 switch (ptr_reg->type) {
5474 case PTR_TO_MAP_VALUE_OR_NULL:
5475 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5476 dst, reg_type_str[ptr_reg->type]);
f1174f77 5477 return -EACCES;
aad2eeaf 5478 case CONST_PTR_TO_MAP:
7c696732
YS
5479 /* smin_val represents the known value */
5480 if (known && smin_val == 0 && opcode == BPF_ADD)
5481 break;
8731745e 5482 fallthrough;
aad2eeaf 5483 case PTR_TO_PACKET_END:
c64b7983
JS
5484 case PTR_TO_SOCKET:
5485 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5486 case PTR_TO_SOCK_COMMON:
5487 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5488 case PTR_TO_TCP_SOCK:
5489 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5490 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5491 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5492 dst, reg_type_str[ptr_reg->type]);
f1174f77 5493 return -EACCES;
9d7eceed
DB
5494 case PTR_TO_MAP_VALUE:
5495 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5496 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5497 off_reg == dst_reg ? dst : src);
5498 return -EACCES;
5499 }
df561f66 5500 fallthrough;
aad2eeaf
JS
5501 default:
5502 break;
f1174f77
EC
5503 }
5504
5505 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5506 * The id may be overwritten later if we create a new variable offset.
969bf05e 5507 */
f1174f77
EC
5508 dst_reg->type = ptr_reg->type;
5509 dst_reg->id = ptr_reg->id;
969bf05e 5510
bb7f0f98
AS
5511 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5512 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5513 return -EINVAL;
5514
3f50f132
JF
5515 /* pointer types do not carry 32-bit bounds at the moment. */
5516 __mark_reg32_unbounded(dst_reg);
5517
f1174f77
EC
5518 switch (opcode) {
5519 case BPF_ADD:
979d63d5
DB
5520 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5521 if (ret < 0) {
5522 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5523 return ret;
5524 }
f1174f77
EC
5525 /* We can take a fixed offset as long as it doesn't overflow
5526 * the s32 'off' field
969bf05e 5527 */
b03c9f9f
EC
5528 if (known && (ptr_reg->off + smin_val ==
5529 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5530 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5531 dst_reg->smin_value = smin_ptr;
5532 dst_reg->smax_value = smax_ptr;
5533 dst_reg->umin_value = umin_ptr;
5534 dst_reg->umax_value = umax_ptr;
f1174f77 5535 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5536 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5537 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5538 break;
5539 }
f1174f77
EC
5540 /* A new variable offset is created. Note that off_reg->off
5541 * == 0, since it's a scalar.
5542 * dst_reg gets the pointer type and since some positive
5543 * integer value was added to the pointer, give it a new 'id'
5544 * if it's a PTR_TO_PACKET.
5545 * this creates a new 'base' pointer, off_reg (variable) gets
5546 * added into the variable offset, and we copy the fixed offset
5547 * from ptr_reg.
969bf05e 5548 */
b03c9f9f
EC
5549 if (signed_add_overflows(smin_ptr, smin_val) ||
5550 signed_add_overflows(smax_ptr, smax_val)) {
5551 dst_reg->smin_value = S64_MIN;
5552 dst_reg->smax_value = S64_MAX;
5553 } else {
5554 dst_reg->smin_value = smin_ptr + smin_val;
5555 dst_reg->smax_value = smax_ptr + smax_val;
5556 }
5557 if (umin_ptr + umin_val < umin_ptr ||
5558 umax_ptr + umax_val < umax_ptr) {
5559 dst_reg->umin_value = 0;
5560 dst_reg->umax_value = U64_MAX;
5561 } else {
5562 dst_reg->umin_value = umin_ptr + umin_val;
5563 dst_reg->umax_value = umax_ptr + umax_val;
5564 }
f1174f77
EC
5565 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5566 dst_reg->off = ptr_reg->off;
0962590e 5567 dst_reg->raw = ptr_reg->raw;
de8f3a83 5568 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5569 dst_reg->id = ++env->id_gen;
5570 /* something was added to pkt_ptr, set range to zero */
0962590e 5571 dst_reg->raw = 0;
f1174f77
EC
5572 }
5573 break;
5574 case BPF_SUB:
979d63d5
DB
5575 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5576 if (ret < 0) {
5577 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5578 return ret;
5579 }
f1174f77
EC
5580 if (dst_reg == off_reg) {
5581 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5582 verbose(env, "R%d tried to subtract pointer from scalar\n",
5583 dst);
f1174f77
EC
5584 return -EACCES;
5585 }
5586 /* We don't allow subtraction from FP, because (according to
5587 * test_verifier.c test "invalid fp arithmetic", JITs might not
5588 * be able to deal with it.
969bf05e 5589 */
f1174f77 5590 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5591 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5592 dst);
f1174f77
EC
5593 return -EACCES;
5594 }
b03c9f9f
EC
5595 if (known && (ptr_reg->off - smin_val ==
5596 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5597 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5598 dst_reg->smin_value = smin_ptr;
5599 dst_reg->smax_value = smax_ptr;
5600 dst_reg->umin_value = umin_ptr;
5601 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5602 dst_reg->var_off = ptr_reg->var_off;
5603 dst_reg->id = ptr_reg->id;
b03c9f9f 5604 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5605 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5606 break;
5607 }
f1174f77
EC
5608 /* A new variable offset is created. If the subtrahend is known
5609 * nonnegative, then any reg->range we had before is still good.
969bf05e 5610 */
b03c9f9f
EC
5611 if (signed_sub_overflows(smin_ptr, smax_val) ||
5612 signed_sub_overflows(smax_ptr, smin_val)) {
5613 /* Overflow possible, we know nothing */
5614 dst_reg->smin_value = S64_MIN;
5615 dst_reg->smax_value = S64_MAX;
5616 } else {
5617 dst_reg->smin_value = smin_ptr - smax_val;
5618 dst_reg->smax_value = smax_ptr - smin_val;
5619 }
5620 if (umin_ptr < umax_val) {
5621 /* Overflow possible, we know nothing */
5622 dst_reg->umin_value = 0;
5623 dst_reg->umax_value = U64_MAX;
5624 } else {
5625 /* Cannot overflow (as long as bounds are consistent) */
5626 dst_reg->umin_value = umin_ptr - umax_val;
5627 dst_reg->umax_value = umax_ptr - umin_val;
5628 }
f1174f77
EC
5629 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5630 dst_reg->off = ptr_reg->off;
0962590e 5631 dst_reg->raw = ptr_reg->raw;
de8f3a83 5632 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5633 dst_reg->id = ++env->id_gen;
5634 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5635 if (smin_val < 0)
0962590e 5636 dst_reg->raw = 0;
43188702 5637 }
f1174f77
EC
5638 break;
5639 case BPF_AND:
5640 case BPF_OR:
5641 case BPF_XOR:
82abbf8d
AS
5642 /* bitwise ops on pointers are troublesome, prohibit. */
5643 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5644 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5645 return -EACCES;
5646 default:
5647 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5648 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5649 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5650 return -EACCES;
43188702
JF
5651 }
5652
bb7f0f98
AS
5653 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5654 return -EINVAL;
5655
b03c9f9f
EC
5656 __update_reg_bounds(dst_reg);
5657 __reg_deduce_bounds(dst_reg);
5658 __reg_bound_offset(dst_reg);
0d6303db
DB
5659
5660 /* For unprivileged we require that resulting offset must be in bounds
5661 * in order to be able to sanitize access later on.
5662 */
2c78ee89 5663 if (!env->bypass_spec_v1) {
e4298d25
DB
5664 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5665 check_map_access(env, dst, dst_reg->off, 1, false)) {
5666 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5667 "prohibited for !root\n", dst);
5668 return -EACCES;
5669 } else if (dst_reg->type == PTR_TO_STACK &&
5670 check_stack_access(env, dst_reg, dst_reg->off +
5671 dst_reg->var_off.value, 1)) {
5672 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5673 "prohibited for !root\n", dst);
5674 return -EACCES;
5675 }
0d6303db
DB
5676 }
5677
43188702
JF
5678 return 0;
5679}
5680
3f50f132
JF
5681static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5682 struct bpf_reg_state *src_reg)
5683{
5684 s32 smin_val = src_reg->s32_min_value;
5685 s32 smax_val = src_reg->s32_max_value;
5686 u32 umin_val = src_reg->u32_min_value;
5687 u32 umax_val = src_reg->u32_max_value;
5688
5689 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5690 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5691 dst_reg->s32_min_value = S32_MIN;
5692 dst_reg->s32_max_value = S32_MAX;
5693 } else {
5694 dst_reg->s32_min_value += smin_val;
5695 dst_reg->s32_max_value += smax_val;
5696 }
5697 if (dst_reg->u32_min_value + umin_val < umin_val ||
5698 dst_reg->u32_max_value + umax_val < umax_val) {
5699 dst_reg->u32_min_value = 0;
5700 dst_reg->u32_max_value = U32_MAX;
5701 } else {
5702 dst_reg->u32_min_value += umin_val;
5703 dst_reg->u32_max_value += umax_val;
5704 }
5705}
5706
07cd2631
JF
5707static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5708 struct bpf_reg_state *src_reg)
5709{
5710 s64 smin_val = src_reg->smin_value;
5711 s64 smax_val = src_reg->smax_value;
5712 u64 umin_val = src_reg->umin_value;
5713 u64 umax_val = src_reg->umax_value;
5714
5715 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5716 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5717 dst_reg->smin_value = S64_MIN;
5718 dst_reg->smax_value = S64_MAX;
5719 } else {
5720 dst_reg->smin_value += smin_val;
5721 dst_reg->smax_value += smax_val;
5722 }
5723 if (dst_reg->umin_value + umin_val < umin_val ||
5724 dst_reg->umax_value + umax_val < umax_val) {
5725 dst_reg->umin_value = 0;
5726 dst_reg->umax_value = U64_MAX;
5727 } else {
5728 dst_reg->umin_value += umin_val;
5729 dst_reg->umax_value += umax_val;
5730 }
3f50f132
JF
5731}
5732
5733static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5734 struct bpf_reg_state *src_reg)
5735{
5736 s32 smin_val = src_reg->s32_min_value;
5737 s32 smax_val = src_reg->s32_max_value;
5738 u32 umin_val = src_reg->u32_min_value;
5739 u32 umax_val = src_reg->u32_max_value;
5740
5741 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5742 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5743 /* Overflow possible, we know nothing */
5744 dst_reg->s32_min_value = S32_MIN;
5745 dst_reg->s32_max_value = S32_MAX;
5746 } else {
5747 dst_reg->s32_min_value -= smax_val;
5748 dst_reg->s32_max_value -= smin_val;
5749 }
5750 if (dst_reg->u32_min_value < umax_val) {
5751 /* Overflow possible, we know nothing */
5752 dst_reg->u32_min_value = 0;
5753 dst_reg->u32_max_value = U32_MAX;
5754 } else {
5755 /* Cannot overflow (as long as bounds are consistent) */
5756 dst_reg->u32_min_value -= umax_val;
5757 dst_reg->u32_max_value -= umin_val;
5758 }
07cd2631
JF
5759}
5760
5761static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5762 struct bpf_reg_state *src_reg)
5763{
5764 s64 smin_val = src_reg->smin_value;
5765 s64 smax_val = src_reg->smax_value;
5766 u64 umin_val = src_reg->umin_value;
5767 u64 umax_val = src_reg->umax_value;
5768
5769 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5770 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5771 /* Overflow possible, we know nothing */
5772 dst_reg->smin_value = S64_MIN;
5773 dst_reg->smax_value = S64_MAX;
5774 } else {
5775 dst_reg->smin_value -= smax_val;
5776 dst_reg->smax_value -= smin_val;
5777 }
5778 if (dst_reg->umin_value < umax_val) {
5779 /* Overflow possible, we know nothing */
5780 dst_reg->umin_value = 0;
5781 dst_reg->umax_value = U64_MAX;
5782 } else {
5783 /* Cannot overflow (as long as bounds are consistent) */
5784 dst_reg->umin_value -= umax_val;
5785 dst_reg->umax_value -= umin_val;
5786 }
3f50f132
JF
5787}
5788
5789static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5790 struct bpf_reg_state *src_reg)
5791{
5792 s32 smin_val = src_reg->s32_min_value;
5793 u32 umin_val = src_reg->u32_min_value;
5794 u32 umax_val = src_reg->u32_max_value;
5795
5796 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5797 /* Ain't nobody got time to multiply that sign */
5798 __mark_reg32_unbounded(dst_reg);
5799 return;
5800 }
5801 /* Both values are positive, so we can work with unsigned and
5802 * copy the result to signed (unless it exceeds S32_MAX).
5803 */
5804 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5805 /* Potential overflow, we know nothing */
5806 __mark_reg32_unbounded(dst_reg);
5807 return;
5808 }
5809 dst_reg->u32_min_value *= umin_val;
5810 dst_reg->u32_max_value *= umax_val;
5811 if (dst_reg->u32_max_value > S32_MAX) {
5812 /* Overflow possible, we know nothing */
5813 dst_reg->s32_min_value = S32_MIN;
5814 dst_reg->s32_max_value = S32_MAX;
5815 } else {
5816 dst_reg->s32_min_value = dst_reg->u32_min_value;
5817 dst_reg->s32_max_value = dst_reg->u32_max_value;
5818 }
07cd2631
JF
5819}
5820
5821static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5822 struct bpf_reg_state *src_reg)
5823{
5824 s64 smin_val = src_reg->smin_value;
5825 u64 umin_val = src_reg->umin_value;
5826 u64 umax_val = src_reg->umax_value;
5827
07cd2631
JF
5828 if (smin_val < 0 || dst_reg->smin_value < 0) {
5829 /* Ain't nobody got time to multiply that sign */
3f50f132 5830 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5831 return;
5832 }
5833 /* Both values are positive, so we can work with unsigned and
5834 * copy the result to signed (unless it exceeds S64_MAX).
5835 */
5836 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5837 /* Potential overflow, we know nothing */
3f50f132 5838 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5839 return;
5840 }
5841 dst_reg->umin_value *= umin_val;
5842 dst_reg->umax_value *= umax_val;
5843 if (dst_reg->umax_value > S64_MAX) {
5844 /* Overflow possible, we know nothing */
5845 dst_reg->smin_value = S64_MIN;
5846 dst_reg->smax_value = S64_MAX;
5847 } else {
5848 dst_reg->smin_value = dst_reg->umin_value;
5849 dst_reg->smax_value = dst_reg->umax_value;
5850 }
5851}
5852
3f50f132
JF
5853static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5854 struct bpf_reg_state *src_reg)
5855{
5856 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5857 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5858 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5859 s32 smin_val = src_reg->s32_min_value;
5860 u32 umax_val = src_reg->u32_max_value;
5861
5862 /* Assuming scalar64_min_max_and will be called so its safe
5863 * to skip updating register for known 32-bit case.
5864 */
5865 if (src_known && dst_known)
5866 return;
5867
5868 /* We get our minimum from the var_off, since that's inherently
5869 * bitwise. Our maximum is the minimum of the operands' maxima.
5870 */
5871 dst_reg->u32_min_value = var32_off.value;
5872 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5873 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5874 /* Lose signed bounds when ANDing negative numbers,
5875 * ain't nobody got time for that.
5876 */
5877 dst_reg->s32_min_value = S32_MIN;
5878 dst_reg->s32_max_value = S32_MAX;
5879 } else {
5880 /* ANDing two positives gives a positive, so safe to
5881 * cast result into s64.
5882 */
5883 dst_reg->s32_min_value = dst_reg->u32_min_value;
5884 dst_reg->s32_max_value = dst_reg->u32_max_value;
5885 }
5886
5887}
5888
07cd2631
JF
5889static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5890 struct bpf_reg_state *src_reg)
5891{
3f50f132
JF
5892 bool src_known = tnum_is_const(src_reg->var_off);
5893 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5894 s64 smin_val = src_reg->smin_value;
5895 u64 umax_val = src_reg->umax_value;
5896
3f50f132 5897 if (src_known && dst_known) {
4fbb38a3 5898 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5899 return;
5900 }
5901
07cd2631
JF
5902 /* We get our minimum from the var_off, since that's inherently
5903 * bitwise. Our maximum is the minimum of the operands' maxima.
5904 */
07cd2631
JF
5905 dst_reg->umin_value = dst_reg->var_off.value;
5906 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5907 if (dst_reg->smin_value < 0 || smin_val < 0) {
5908 /* Lose signed bounds when ANDing negative numbers,
5909 * ain't nobody got time for that.
5910 */
5911 dst_reg->smin_value = S64_MIN;
5912 dst_reg->smax_value = S64_MAX;
5913 } else {
5914 /* ANDing two positives gives a positive, so safe to
5915 * cast result into s64.
5916 */
5917 dst_reg->smin_value = dst_reg->umin_value;
5918 dst_reg->smax_value = dst_reg->umax_value;
5919 }
5920 /* We may learn something more from the var_off */
5921 __update_reg_bounds(dst_reg);
5922}
5923
3f50f132
JF
5924static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5925 struct bpf_reg_state *src_reg)
5926{
5927 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5928 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5929 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5930 s32 smin_val = src_reg->smin_value;
5931 u32 umin_val = src_reg->umin_value;
5932
5933 /* Assuming scalar64_min_max_or will be called so it is safe
5934 * to skip updating register for known case.
5935 */
5936 if (src_known && dst_known)
5937 return;
5938
5939 /* We get our maximum from the var_off, and our minimum is the
5940 * maximum of the operands' minima
5941 */
5942 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5943 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5944 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5945 /* Lose signed bounds when ORing negative numbers,
5946 * ain't nobody got time for that.
5947 */
5948 dst_reg->s32_min_value = S32_MIN;
5949 dst_reg->s32_max_value = S32_MAX;
5950 } else {
5951 /* ORing two positives gives a positive, so safe to
5952 * cast result into s64.
5953 */
5954 dst_reg->s32_min_value = dst_reg->umin_value;
5955 dst_reg->s32_max_value = dst_reg->umax_value;
5956 }
5957}
5958
07cd2631
JF
5959static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5960 struct bpf_reg_state *src_reg)
5961{
3f50f132
JF
5962 bool src_known = tnum_is_const(src_reg->var_off);
5963 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5964 s64 smin_val = src_reg->smin_value;
5965 u64 umin_val = src_reg->umin_value;
5966
3f50f132 5967 if (src_known && dst_known) {
4fbb38a3 5968 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
5969 return;
5970 }
5971
07cd2631
JF
5972 /* We get our maximum from the var_off, and our minimum is the
5973 * maximum of the operands' minima
5974 */
07cd2631
JF
5975 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5976 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5977 if (dst_reg->smin_value < 0 || smin_val < 0) {
5978 /* Lose signed bounds when ORing negative numbers,
5979 * ain't nobody got time for that.
5980 */
5981 dst_reg->smin_value = S64_MIN;
5982 dst_reg->smax_value = S64_MAX;
5983 } else {
5984 /* ORing two positives gives a positive, so safe to
5985 * cast result into s64.
5986 */
5987 dst_reg->smin_value = dst_reg->umin_value;
5988 dst_reg->smax_value = dst_reg->umax_value;
5989 }
5990 /* We may learn something more from the var_off */
5991 __update_reg_bounds(dst_reg);
5992}
5993
2921c90d
YS
5994static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
5995 struct bpf_reg_state *src_reg)
5996{
5997 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5998 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5999 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6000 s32 smin_val = src_reg->s32_min_value;
6001
6002 /* Assuming scalar64_min_max_xor will be called so it is safe
6003 * to skip updating register for known case.
6004 */
6005 if (src_known && dst_known)
6006 return;
6007
6008 /* We get both minimum and maximum from the var32_off. */
6009 dst_reg->u32_min_value = var32_off.value;
6010 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6011
6012 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6013 /* XORing two positive sign numbers gives a positive,
6014 * so safe to cast u32 result into s32.
6015 */
6016 dst_reg->s32_min_value = dst_reg->u32_min_value;
6017 dst_reg->s32_max_value = dst_reg->u32_max_value;
6018 } else {
6019 dst_reg->s32_min_value = S32_MIN;
6020 dst_reg->s32_max_value = S32_MAX;
6021 }
6022}
6023
6024static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6025 struct bpf_reg_state *src_reg)
6026{
6027 bool src_known = tnum_is_const(src_reg->var_off);
6028 bool dst_known = tnum_is_const(dst_reg->var_off);
6029 s64 smin_val = src_reg->smin_value;
6030
6031 if (src_known && dst_known) {
6032 /* dst_reg->var_off.value has been updated earlier */
6033 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6034 return;
6035 }
6036
6037 /* We get both minimum and maximum from the var_off. */
6038 dst_reg->umin_value = dst_reg->var_off.value;
6039 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6040
6041 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6042 /* XORing two positive sign numbers gives a positive,
6043 * so safe to cast u64 result into s64.
6044 */
6045 dst_reg->smin_value = dst_reg->umin_value;
6046 dst_reg->smax_value = dst_reg->umax_value;
6047 } else {
6048 dst_reg->smin_value = S64_MIN;
6049 dst_reg->smax_value = S64_MAX;
6050 }
6051
6052 __update_reg_bounds(dst_reg);
6053}
6054
3f50f132
JF
6055static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6056 u64 umin_val, u64 umax_val)
07cd2631 6057{
07cd2631
JF
6058 /* We lose all sign bit information (except what we can pick
6059 * up from var_off)
6060 */
3f50f132
JF
6061 dst_reg->s32_min_value = S32_MIN;
6062 dst_reg->s32_max_value = S32_MAX;
6063 /* If we might shift our top bit out, then we know nothing */
6064 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6065 dst_reg->u32_min_value = 0;
6066 dst_reg->u32_max_value = U32_MAX;
6067 } else {
6068 dst_reg->u32_min_value <<= umin_val;
6069 dst_reg->u32_max_value <<= umax_val;
6070 }
6071}
6072
6073static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6074 struct bpf_reg_state *src_reg)
6075{
6076 u32 umax_val = src_reg->u32_max_value;
6077 u32 umin_val = src_reg->u32_min_value;
6078 /* u32 alu operation will zext upper bits */
6079 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6080
6081 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6082 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6083 /* Not required but being careful mark reg64 bounds as unknown so
6084 * that we are forced to pick them up from tnum and zext later and
6085 * if some path skips this step we are still safe.
6086 */
6087 __mark_reg64_unbounded(dst_reg);
6088 __update_reg32_bounds(dst_reg);
6089}
6090
6091static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6092 u64 umin_val, u64 umax_val)
6093{
6094 /* Special case <<32 because it is a common compiler pattern to sign
6095 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6096 * positive we know this shift will also be positive so we can track
6097 * bounds correctly. Otherwise we lose all sign bit information except
6098 * what we can pick up from var_off. Perhaps we can generalize this
6099 * later to shifts of any length.
6100 */
6101 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6102 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6103 else
6104 dst_reg->smax_value = S64_MAX;
6105
6106 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6107 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6108 else
6109 dst_reg->smin_value = S64_MIN;
6110
07cd2631
JF
6111 /* If we might shift our top bit out, then we know nothing */
6112 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6113 dst_reg->umin_value = 0;
6114 dst_reg->umax_value = U64_MAX;
6115 } else {
6116 dst_reg->umin_value <<= umin_val;
6117 dst_reg->umax_value <<= umax_val;
6118 }
3f50f132
JF
6119}
6120
6121static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6122 struct bpf_reg_state *src_reg)
6123{
6124 u64 umax_val = src_reg->umax_value;
6125 u64 umin_val = src_reg->umin_value;
6126
6127 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6128 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6129 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6130
07cd2631
JF
6131 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6132 /* We may learn something more from the var_off */
6133 __update_reg_bounds(dst_reg);
6134}
6135
3f50f132
JF
6136static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6137 struct bpf_reg_state *src_reg)
6138{
6139 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6140 u32 umax_val = src_reg->u32_max_value;
6141 u32 umin_val = src_reg->u32_min_value;
6142
6143 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6144 * be negative, then either:
6145 * 1) src_reg might be zero, so the sign bit of the result is
6146 * unknown, so we lose our signed bounds
6147 * 2) it's known negative, thus the unsigned bounds capture the
6148 * signed bounds
6149 * 3) the signed bounds cross zero, so they tell us nothing
6150 * about the result
6151 * If the value in dst_reg is known nonnegative, then again the
6152 * unsigned bounts capture the signed bounds.
6153 * Thus, in all cases it suffices to blow away our signed bounds
6154 * and rely on inferring new ones from the unsigned bounds and
6155 * var_off of the result.
6156 */
6157 dst_reg->s32_min_value = S32_MIN;
6158 dst_reg->s32_max_value = S32_MAX;
6159
6160 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6161 dst_reg->u32_min_value >>= umax_val;
6162 dst_reg->u32_max_value >>= umin_val;
6163
6164 __mark_reg64_unbounded(dst_reg);
6165 __update_reg32_bounds(dst_reg);
6166}
6167
07cd2631
JF
6168static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6169 struct bpf_reg_state *src_reg)
6170{
6171 u64 umax_val = src_reg->umax_value;
6172 u64 umin_val = src_reg->umin_value;
6173
6174 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6175 * be negative, then either:
6176 * 1) src_reg might be zero, so the sign bit of the result is
6177 * unknown, so we lose our signed bounds
6178 * 2) it's known negative, thus the unsigned bounds capture the
6179 * signed bounds
6180 * 3) the signed bounds cross zero, so they tell us nothing
6181 * about the result
6182 * If the value in dst_reg is known nonnegative, then again the
6183 * unsigned bounts capture the signed bounds.
6184 * Thus, in all cases it suffices to blow away our signed bounds
6185 * and rely on inferring new ones from the unsigned bounds and
6186 * var_off of the result.
6187 */
6188 dst_reg->smin_value = S64_MIN;
6189 dst_reg->smax_value = S64_MAX;
6190 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6191 dst_reg->umin_value >>= umax_val;
6192 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6193
6194 /* Its not easy to operate on alu32 bounds here because it depends
6195 * on bits being shifted in. Take easy way out and mark unbounded
6196 * so we can recalculate later from tnum.
6197 */
6198 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6199 __update_reg_bounds(dst_reg);
6200}
6201
3f50f132
JF
6202static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6203 struct bpf_reg_state *src_reg)
07cd2631 6204{
3f50f132 6205 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6206
6207 /* Upon reaching here, src_known is true and
6208 * umax_val is equal to umin_val.
6209 */
3f50f132
JF
6210 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6211 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6212
3f50f132
JF
6213 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6214
6215 /* blow away the dst_reg umin_value/umax_value and rely on
6216 * dst_reg var_off to refine the result.
6217 */
6218 dst_reg->u32_min_value = 0;
6219 dst_reg->u32_max_value = U32_MAX;
6220
6221 __mark_reg64_unbounded(dst_reg);
6222 __update_reg32_bounds(dst_reg);
6223}
6224
6225static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6226 struct bpf_reg_state *src_reg)
6227{
6228 u64 umin_val = src_reg->umin_value;
6229
6230 /* Upon reaching here, src_known is true and umax_val is equal
6231 * to umin_val.
6232 */
6233 dst_reg->smin_value >>= umin_val;
6234 dst_reg->smax_value >>= umin_val;
6235
6236 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6237
6238 /* blow away the dst_reg umin_value/umax_value and rely on
6239 * dst_reg var_off to refine the result.
6240 */
6241 dst_reg->umin_value = 0;
6242 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6243
6244 /* Its not easy to operate on alu32 bounds here because it depends
6245 * on bits being shifted in from upper 32-bits. Take easy way out
6246 * and mark unbounded so we can recalculate later from tnum.
6247 */
6248 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6249 __update_reg_bounds(dst_reg);
6250}
6251
468f6eaf
JH
6252/* WARNING: This function does calculations on 64-bit values, but the actual
6253 * execution may occur on 32-bit values. Therefore, things like bitshifts
6254 * need extra checks in the 32-bit case.
6255 */
f1174f77
EC
6256static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6257 struct bpf_insn *insn,
6258 struct bpf_reg_state *dst_reg,
6259 struct bpf_reg_state src_reg)
969bf05e 6260{
638f5b90 6261 struct bpf_reg_state *regs = cur_regs(env);
48461135 6262 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6263 bool src_known;
b03c9f9f
EC
6264 s64 smin_val, smax_val;
6265 u64 umin_val, umax_val;
3f50f132
JF
6266 s32 s32_min_val, s32_max_val;
6267 u32 u32_min_val, u32_max_val;
468f6eaf 6268 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6269 u32 dst = insn->dst_reg;
6270 int ret;
3f50f132 6271 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6272
b03c9f9f
EC
6273 smin_val = src_reg.smin_value;
6274 smax_val = src_reg.smax_value;
6275 umin_val = src_reg.umin_value;
6276 umax_val = src_reg.umax_value;
f23cc643 6277
3f50f132
JF
6278 s32_min_val = src_reg.s32_min_value;
6279 s32_max_val = src_reg.s32_max_value;
6280 u32_min_val = src_reg.u32_min_value;
6281 u32_max_val = src_reg.u32_max_value;
6282
6283 if (alu32) {
6284 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6285 if ((src_known &&
6286 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6287 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6288 /* Taint dst register if offset had invalid bounds
6289 * derived from e.g. dead branches.
6290 */
6291 __mark_reg_unknown(env, dst_reg);
6292 return 0;
6293 }
6294 } else {
6295 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6296 if ((src_known &&
6297 (smin_val != smax_val || umin_val != umax_val)) ||
6298 smin_val > smax_val || umin_val > umax_val) {
6299 /* Taint dst register if offset had invalid bounds
6300 * derived from e.g. dead branches.
6301 */
6302 __mark_reg_unknown(env, dst_reg);
6303 return 0;
6304 }
6f16101e
DB
6305 }
6306
bb7f0f98
AS
6307 if (!src_known &&
6308 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6309 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6310 return 0;
6311 }
6312
3f50f132
JF
6313 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6314 * There are two classes of instructions: The first class we track both
6315 * alu32 and alu64 sign/unsigned bounds independently this provides the
6316 * greatest amount of precision when alu operations are mixed with jmp32
6317 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6318 * and BPF_OR. This is possible because these ops have fairly easy to
6319 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6320 * See alu32 verifier tests for examples. The second class of
6321 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6322 * with regards to tracking sign/unsigned bounds because the bits may
6323 * cross subreg boundaries in the alu64 case. When this happens we mark
6324 * the reg unbounded in the subreg bound space and use the resulting
6325 * tnum to calculate an approximation of the sign/unsigned bounds.
6326 */
48461135
JB
6327 switch (opcode) {
6328 case BPF_ADD:
d3bd7413
DB
6329 ret = sanitize_val_alu(env, insn);
6330 if (ret < 0) {
6331 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6332 return ret;
6333 }
3f50f132 6334 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6335 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6336 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6337 break;
6338 case BPF_SUB:
d3bd7413
DB
6339 ret = sanitize_val_alu(env, insn);
6340 if (ret < 0) {
6341 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6342 return ret;
6343 }
3f50f132 6344 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6345 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6346 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6347 break;
6348 case BPF_MUL:
3f50f132
JF
6349 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6350 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6351 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6352 break;
6353 case BPF_AND:
3f50f132
JF
6354 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6355 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6356 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6357 break;
6358 case BPF_OR:
3f50f132
JF
6359 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6360 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6361 scalar_min_max_or(dst_reg, &src_reg);
48461135 6362 break;
2921c90d
YS
6363 case BPF_XOR:
6364 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6365 scalar32_min_max_xor(dst_reg, &src_reg);
6366 scalar_min_max_xor(dst_reg, &src_reg);
6367 break;
48461135 6368 case BPF_LSH:
468f6eaf
JH
6369 if (umax_val >= insn_bitness) {
6370 /* Shifts greater than 31 or 63 are undefined.
6371 * This includes shifts by a negative number.
b03c9f9f 6372 */
61bd5218 6373 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6374 break;
6375 }
3f50f132
JF
6376 if (alu32)
6377 scalar32_min_max_lsh(dst_reg, &src_reg);
6378 else
6379 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6380 break;
6381 case BPF_RSH:
468f6eaf
JH
6382 if (umax_val >= insn_bitness) {
6383 /* Shifts greater than 31 or 63 are undefined.
6384 * This includes shifts by a negative number.
b03c9f9f 6385 */
61bd5218 6386 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6387 break;
6388 }
3f50f132
JF
6389 if (alu32)
6390 scalar32_min_max_rsh(dst_reg, &src_reg);
6391 else
6392 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6393 break;
9cbe1f5a
YS
6394 case BPF_ARSH:
6395 if (umax_val >= insn_bitness) {
6396 /* Shifts greater than 31 or 63 are undefined.
6397 * This includes shifts by a negative number.
6398 */
6399 mark_reg_unknown(env, regs, insn->dst_reg);
6400 break;
6401 }
3f50f132
JF
6402 if (alu32)
6403 scalar32_min_max_arsh(dst_reg, &src_reg);
6404 else
6405 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6406 break;
48461135 6407 default:
61bd5218 6408 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6409 break;
6410 }
6411
3f50f132
JF
6412 /* ALU32 ops are zero extended into 64bit register */
6413 if (alu32)
6414 zext_32_to_64(dst_reg);
468f6eaf 6415
294f2fc6 6416 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6417 __reg_deduce_bounds(dst_reg);
6418 __reg_bound_offset(dst_reg);
f1174f77
EC
6419 return 0;
6420}
6421
6422/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6423 * and var_off.
6424 */
6425static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6426 struct bpf_insn *insn)
6427{
f4d7e40a
AS
6428 struct bpf_verifier_state *vstate = env->cur_state;
6429 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6430 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6431 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6432 u8 opcode = BPF_OP(insn->code);
b5dc0163 6433 int err;
f1174f77
EC
6434
6435 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6436 src_reg = NULL;
6437 if (dst_reg->type != SCALAR_VALUE)
6438 ptr_reg = dst_reg;
6439 if (BPF_SRC(insn->code) == BPF_X) {
6440 src_reg = &regs[insn->src_reg];
f1174f77
EC
6441 if (src_reg->type != SCALAR_VALUE) {
6442 if (dst_reg->type != SCALAR_VALUE) {
6443 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6444 * an arbitrary scalar. Disallow all math except
6445 * pointer subtraction
f1174f77 6446 */
dd066823 6447 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6448 mark_reg_unknown(env, regs, insn->dst_reg);
6449 return 0;
f1174f77 6450 }
82abbf8d
AS
6451 verbose(env, "R%d pointer %s pointer prohibited\n",
6452 insn->dst_reg,
6453 bpf_alu_string[opcode >> 4]);
6454 return -EACCES;
f1174f77
EC
6455 } else {
6456 /* scalar += pointer
6457 * This is legal, but we have to reverse our
6458 * src/dest handling in computing the range
6459 */
b5dc0163
AS
6460 err = mark_chain_precision(env, insn->dst_reg);
6461 if (err)
6462 return err;
82abbf8d
AS
6463 return adjust_ptr_min_max_vals(env, insn,
6464 src_reg, dst_reg);
f1174f77
EC
6465 }
6466 } else if (ptr_reg) {
6467 /* pointer += scalar */
b5dc0163
AS
6468 err = mark_chain_precision(env, insn->src_reg);
6469 if (err)
6470 return err;
82abbf8d
AS
6471 return adjust_ptr_min_max_vals(env, insn,
6472 dst_reg, src_reg);
f1174f77
EC
6473 }
6474 } else {
6475 /* Pretend the src is a reg with a known value, since we only
6476 * need to be able to read from this state.
6477 */
6478 off_reg.type = SCALAR_VALUE;
b03c9f9f 6479 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6480 src_reg = &off_reg;
82abbf8d
AS
6481 if (ptr_reg) /* pointer += K */
6482 return adjust_ptr_min_max_vals(env, insn,
6483 ptr_reg, src_reg);
f1174f77
EC
6484 }
6485
6486 /* Got here implies adding two SCALAR_VALUEs */
6487 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6488 print_verifier_state(env, state);
61bd5218 6489 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6490 return -EINVAL;
6491 }
6492 if (WARN_ON(!src_reg)) {
f4d7e40a 6493 print_verifier_state(env, state);
61bd5218 6494 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6495 return -EINVAL;
6496 }
6497 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6498}
6499
17a52670 6500/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6501static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6502{
638f5b90 6503 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6504 u8 opcode = BPF_OP(insn->code);
6505 int err;
6506
6507 if (opcode == BPF_END || opcode == BPF_NEG) {
6508 if (opcode == BPF_NEG) {
6509 if (BPF_SRC(insn->code) != 0 ||
6510 insn->src_reg != BPF_REG_0 ||
6511 insn->off != 0 || insn->imm != 0) {
61bd5218 6512 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6513 return -EINVAL;
6514 }
6515 } else {
6516 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6517 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6518 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6519 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6520 return -EINVAL;
6521 }
6522 }
6523
6524 /* check src operand */
dc503a8a 6525 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6526 if (err)
6527 return err;
6528
1be7f75d 6529 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6530 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6531 insn->dst_reg);
6532 return -EACCES;
6533 }
6534
17a52670 6535 /* check dest operand */
dc503a8a 6536 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6537 if (err)
6538 return err;
6539
6540 } else if (opcode == BPF_MOV) {
6541
6542 if (BPF_SRC(insn->code) == BPF_X) {
6543 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6544 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6545 return -EINVAL;
6546 }
6547
6548 /* check src operand */
dc503a8a 6549 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6550 if (err)
6551 return err;
6552 } else {
6553 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6554 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6555 return -EINVAL;
6556 }
6557 }
6558
fbeb1603
AF
6559 /* check dest operand, mark as required later */
6560 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6561 if (err)
6562 return err;
6563
6564 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6565 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6566 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6567
17a52670
AS
6568 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6569 /* case: R1 = R2
6570 * copy register state to dest reg
6571 */
e434b8cd
JW
6572 *dst_reg = *src_reg;
6573 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6574 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6575 } else {
f1174f77 6576 /* R1 = (u32) R2 */
1be7f75d 6577 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6578 verbose(env,
6579 "R%d partial copy of pointer\n",
1be7f75d
AS
6580 insn->src_reg);
6581 return -EACCES;
e434b8cd
JW
6582 } else if (src_reg->type == SCALAR_VALUE) {
6583 *dst_reg = *src_reg;
6584 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6585 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6586 } else {
6587 mark_reg_unknown(env, regs,
6588 insn->dst_reg);
1be7f75d 6589 }
3f50f132 6590 zext_32_to_64(dst_reg);
17a52670
AS
6591 }
6592 } else {
6593 /* case: R = imm
6594 * remember the value we stored into this reg
6595 */
fbeb1603
AF
6596 /* clear any state __mark_reg_known doesn't set */
6597 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6598 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6599 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6600 __mark_reg_known(regs + insn->dst_reg,
6601 insn->imm);
6602 } else {
6603 __mark_reg_known(regs + insn->dst_reg,
6604 (u32)insn->imm);
6605 }
17a52670
AS
6606 }
6607
6608 } else if (opcode > BPF_END) {
61bd5218 6609 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6610 return -EINVAL;
6611
6612 } else { /* all other ALU ops: and, sub, xor, add, ... */
6613
17a52670
AS
6614 if (BPF_SRC(insn->code) == BPF_X) {
6615 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6616 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6617 return -EINVAL;
6618 }
6619 /* check src1 operand */
dc503a8a 6620 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6621 if (err)
6622 return err;
6623 } else {
6624 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6625 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6626 return -EINVAL;
6627 }
6628 }
6629
6630 /* check src2 operand */
dc503a8a 6631 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6632 if (err)
6633 return err;
6634
6635 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6636 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6637 verbose(env, "div by zero\n");
17a52670
AS
6638 return -EINVAL;
6639 }
6640
229394e8
RV
6641 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6642 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6643 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6644
6645 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6646 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6647 return -EINVAL;
6648 }
6649 }
6650
1a0dc1ac 6651 /* check dest operand */
dc503a8a 6652 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6653 if (err)
6654 return err;
6655
f1174f77 6656 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6657 }
6658
6659 return 0;
6660}
6661
c6a9efa1
PC
6662static void __find_good_pkt_pointers(struct bpf_func_state *state,
6663 struct bpf_reg_state *dst_reg,
6664 enum bpf_reg_type type, u16 new_range)
6665{
6666 struct bpf_reg_state *reg;
6667 int i;
6668
6669 for (i = 0; i < MAX_BPF_REG; i++) {
6670 reg = &state->regs[i];
6671 if (reg->type == type && reg->id == dst_reg->id)
6672 /* keep the maximum range already checked */
6673 reg->range = max(reg->range, new_range);
6674 }
6675
6676 bpf_for_each_spilled_reg(i, state, reg) {
6677 if (!reg)
6678 continue;
6679 if (reg->type == type && reg->id == dst_reg->id)
6680 reg->range = max(reg->range, new_range);
6681 }
6682}
6683
f4d7e40a 6684static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6685 struct bpf_reg_state *dst_reg,
f8ddadc4 6686 enum bpf_reg_type type,
fb2a311a 6687 bool range_right_open)
969bf05e 6688{
fb2a311a 6689 u16 new_range;
c6a9efa1 6690 int i;
2d2be8ca 6691
fb2a311a
DB
6692 if (dst_reg->off < 0 ||
6693 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6694 /* This doesn't give us any range */
6695 return;
6696
b03c9f9f
EC
6697 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6698 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6699 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6700 * than pkt_end, but that's because it's also less than pkt.
6701 */
6702 return;
6703
fb2a311a
DB
6704 new_range = dst_reg->off;
6705 if (range_right_open)
6706 new_range--;
6707
6708 /* Examples for register markings:
2d2be8ca 6709 *
fb2a311a 6710 * pkt_data in dst register:
2d2be8ca
DB
6711 *
6712 * r2 = r3;
6713 * r2 += 8;
6714 * if (r2 > pkt_end) goto <handle exception>
6715 * <access okay>
6716 *
b4e432f1
DB
6717 * r2 = r3;
6718 * r2 += 8;
6719 * if (r2 < pkt_end) goto <access okay>
6720 * <handle exception>
6721 *
2d2be8ca
DB
6722 * Where:
6723 * r2 == dst_reg, pkt_end == src_reg
6724 * r2=pkt(id=n,off=8,r=0)
6725 * r3=pkt(id=n,off=0,r=0)
6726 *
fb2a311a 6727 * pkt_data in src register:
2d2be8ca
DB
6728 *
6729 * r2 = r3;
6730 * r2 += 8;
6731 * if (pkt_end >= r2) goto <access okay>
6732 * <handle exception>
6733 *
b4e432f1
DB
6734 * r2 = r3;
6735 * r2 += 8;
6736 * if (pkt_end <= r2) goto <handle exception>
6737 * <access okay>
6738 *
2d2be8ca
DB
6739 * Where:
6740 * pkt_end == dst_reg, r2 == src_reg
6741 * r2=pkt(id=n,off=8,r=0)
6742 * r3=pkt(id=n,off=0,r=0)
6743 *
6744 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6745 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6746 * and [r3, r3 + 8-1) respectively is safe to access depending on
6747 * the check.
969bf05e 6748 */
2d2be8ca 6749
f1174f77
EC
6750 /* If our ids match, then we must have the same max_value. And we
6751 * don't care about the other reg's fixed offset, since if it's too big
6752 * the range won't allow anything.
6753 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6754 */
c6a9efa1
PC
6755 for (i = 0; i <= vstate->curframe; i++)
6756 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6757 new_range);
969bf05e
AS
6758}
6759
3f50f132 6760static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6761{
3f50f132
JF
6762 struct tnum subreg = tnum_subreg(reg->var_off);
6763 s32 sval = (s32)val;
a72dafaf 6764
3f50f132
JF
6765 switch (opcode) {
6766 case BPF_JEQ:
6767 if (tnum_is_const(subreg))
6768 return !!tnum_equals_const(subreg, val);
6769 break;
6770 case BPF_JNE:
6771 if (tnum_is_const(subreg))
6772 return !tnum_equals_const(subreg, val);
6773 break;
6774 case BPF_JSET:
6775 if ((~subreg.mask & subreg.value) & val)
6776 return 1;
6777 if (!((subreg.mask | subreg.value) & val))
6778 return 0;
6779 break;
6780 case BPF_JGT:
6781 if (reg->u32_min_value > val)
6782 return 1;
6783 else if (reg->u32_max_value <= val)
6784 return 0;
6785 break;
6786 case BPF_JSGT:
6787 if (reg->s32_min_value > sval)
6788 return 1;
6789 else if (reg->s32_max_value < sval)
6790 return 0;
6791 break;
6792 case BPF_JLT:
6793 if (reg->u32_max_value < val)
6794 return 1;
6795 else if (reg->u32_min_value >= val)
6796 return 0;
6797 break;
6798 case BPF_JSLT:
6799 if (reg->s32_max_value < sval)
6800 return 1;
6801 else if (reg->s32_min_value >= sval)
6802 return 0;
6803 break;
6804 case BPF_JGE:
6805 if (reg->u32_min_value >= val)
6806 return 1;
6807 else if (reg->u32_max_value < val)
6808 return 0;
6809 break;
6810 case BPF_JSGE:
6811 if (reg->s32_min_value >= sval)
6812 return 1;
6813 else if (reg->s32_max_value < sval)
6814 return 0;
6815 break;
6816 case BPF_JLE:
6817 if (reg->u32_max_value <= val)
6818 return 1;
6819 else if (reg->u32_min_value > val)
6820 return 0;
6821 break;
6822 case BPF_JSLE:
6823 if (reg->s32_max_value <= sval)
6824 return 1;
6825 else if (reg->s32_min_value > sval)
6826 return 0;
6827 break;
6828 }
4f7b3e82 6829
3f50f132
JF
6830 return -1;
6831}
092ed096 6832
3f50f132
JF
6833
6834static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6835{
6836 s64 sval = (s64)val;
a72dafaf 6837
4f7b3e82
AS
6838 switch (opcode) {
6839 case BPF_JEQ:
6840 if (tnum_is_const(reg->var_off))
6841 return !!tnum_equals_const(reg->var_off, val);
6842 break;
6843 case BPF_JNE:
6844 if (tnum_is_const(reg->var_off))
6845 return !tnum_equals_const(reg->var_off, val);
6846 break;
960ea056
JK
6847 case BPF_JSET:
6848 if ((~reg->var_off.mask & reg->var_off.value) & val)
6849 return 1;
6850 if (!((reg->var_off.mask | reg->var_off.value) & val))
6851 return 0;
6852 break;
4f7b3e82
AS
6853 case BPF_JGT:
6854 if (reg->umin_value > val)
6855 return 1;
6856 else if (reg->umax_value <= val)
6857 return 0;
6858 break;
6859 case BPF_JSGT:
a72dafaf 6860 if (reg->smin_value > sval)
4f7b3e82 6861 return 1;
a72dafaf 6862 else if (reg->smax_value < sval)
4f7b3e82
AS
6863 return 0;
6864 break;
6865 case BPF_JLT:
6866 if (reg->umax_value < val)
6867 return 1;
6868 else if (reg->umin_value >= val)
6869 return 0;
6870 break;
6871 case BPF_JSLT:
a72dafaf 6872 if (reg->smax_value < sval)
4f7b3e82 6873 return 1;
a72dafaf 6874 else if (reg->smin_value >= sval)
4f7b3e82
AS
6875 return 0;
6876 break;
6877 case BPF_JGE:
6878 if (reg->umin_value >= val)
6879 return 1;
6880 else if (reg->umax_value < val)
6881 return 0;
6882 break;
6883 case BPF_JSGE:
a72dafaf 6884 if (reg->smin_value >= sval)
4f7b3e82 6885 return 1;
a72dafaf 6886 else if (reg->smax_value < sval)
4f7b3e82
AS
6887 return 0;
6888 break;
6889 case BPF_JLE:
6890 if (reg->umax_value <= val)
6891 return 1;
6892 else if (reg->umin_value > val)
6893 return 0;
6894 break;
6895 case BPF_JSLE:
a72dafaf 6896 if (reg->smax_value <= sval)
4f7b3e82 6897 return 1;
a72dafaf 6898 else if (reg->smin_value > sval)
4f7b3e82
AS
6899 return 0;
6900 break;
6901 }
6902
6903 return -1;
6904}
6905
3f50f132
JF
6906/* compute branch direction of the expression "if (reg opcode val) goto target;"
6907 * and return:
6908 * 1 - branch will be taken and "goto target" will be executed
6909 * 0 - branch will not be taken and fall-through to next insn
6910 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6911 * range [0,10]
604dca5e 6912 */
3f50f132
JF
6913static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6914 bool is_jmp32)
604dca5e 6915{
cac616db
JF
6916 if (__is_pointer_value(false, reg)) {
6917 if (!reg_type_not_null(reg->type))
6918 return -1;
6919
6920 /* If pointer is valid tests against zero will fail so we can
6921 * use this to direct branch taken.
6922 */
6923 if (val != 0)
6924 return -1;
6925
6926 switch (opcode) {
6927 case BPF_JEQ:
6928 return 0;
6929 case BPF_JNE:
6930 return 1;
6931 default:
6932 return -1;
6933 }
6934 }
604dca5e 6935
3f50f132
JF
6936 if (is_jmp32)
6937 return is_branch32_taken(reg, val, opcode);
6938 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6939}
6940
48461135
JB
6941/* Adjusts the register min/max values in the case that the dst_reg is the
6942 * variable register that we are working on, and src_reg is a constant or we're
6943 * simply doing a BPF_K check.
f1174f77 6944 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6945 */
6946static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6947 struct bpf_reg_state *false_reg,
6948 u64 val, u32 val32,
092ed096 6949 u8 opcode, bool is_jmp32)
48461135 6950{
3f50f132
JF
6951 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6952 struct tnum false_64off = false_reg->var_off;
6953 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6954 struct tnum true_64off = true_reg->var_off;
6955 s64 sval = (s64)val;
6956 s32 sval32 = (s32)val32;
a72dafaf 6957
f1174f77
EC
6958 /* If the dst_reg is a pointer, we can't learn anything about its
6959 * variable offset from the compare (unless src_reg were a pointer into
6960 * the same object, but we don't bother with that.
6961 * Since false_reg and true_reg have the same type by construction, we
6962 * only need to check one of them for pointerness.
6963 */
6964 if (__is_pointer_value(false, false_reg))
6965 return;
4cabc5b1 6966
48461135
JB
6967 switch (opcode) {
6968 case BPF_JEQ:
48461135 6969 case BPF_JNE:
a72dafaf
JW
6970 {
6971 struct bpf_reg_state *reg =
6972 opcode == BPF_JEQ ? true_reg : false_reg;
6973
6974 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6975 * if it is true we know the value for sure. Likewise for
6976 * BPF_JNE.
48461135 6977 */
3f50f132
JF
6978 if (is_jmp32)
6979 __mark_reg32_known(reg, val32);
6980 else
092ed096 6981 __mark_reg_known(reg, val);
48461135 6982 break;
a72dafaf 6983 }
960ea056 6984 case BPF_JSET:
3f50f132
JF
6985 if (is_jmp32) {
6986 false_32off = tnum_and(false_32off, tnum_const(~val32));
6987 if (is_power_of_2(val32))
6988 true_32off = tnum_or(true_32off,
6989 tnum_const(val32));
6990 } else {
6991 false_64off = tnum_and(false_64off, tnum_const(~val));
6992 if (is_power_of_2(val))
6993 true_64off = tnum_or(true_64off,
6994 tnum_const(val));
6995 }
960ea056 6996 break;
48461135 6997 case BPF_JGE:
a72dafaf
JW
6998 case BPF_JGT:
6999 {
3f50f132
JF
7000 if (is_jmp32) {
7001 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7002 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7003
7004 false_reg->u32_max_value = min(false_reg->u32_max_value,
7005 false_umax);
7006 true_reg->u32_min_value = max(true_reg->u32_min_value,
7007 true_umin);
7008 } else {
7009 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7010 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7011
7012 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7013 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7014 }
b03c9f9f 7015 break;
a72dafaf 7016 }
48461135 7017 case BPF_JSGE:
a72dafaf
JW
7018 case BPF_JSGT:
7019 {
3f50f132
JF
7020 if (is_jmp32) {
7021 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7022 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 7023
3f50f132
JF
7024 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7025 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7026 } else {
7027 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7028 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7029
7030 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7031 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7032 }
48461135 7033 break;
a72dafaf 7034 }
b4e432f1 7035 case BPF_JLE:
a72dafaf
JW
7036 case BPF_JLT:
7037 {
3f50f132
JF
7038 if (is_jmp32) {
7039 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7040 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7041
7042 false_reg->u32_min_value = max(false_reg->u32_min_value,
7043 false_umin);
7044 true_reg->u32_max_value = min(true_reg->u32_max_value,
7045 true_umax);
7046 } else {
7047 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7048 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7049
7050 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7051 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7052 }
b4e432f1 7053 break;
a72dafaf 7054 }
b4e432f1 7055 case BPF_JSLE:
a72dafaf
JW
7056 case BPF_JSLT:
7057 {
3f50f132
JF
7058 if (is_jmp32) {
7059 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7060 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 7061
3f50f132
JF
7062 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7063 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7064 } else {
7065 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7066 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7067
7068 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7069 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7070 }
b4e432f1 7071 break;
a72dafaf 7072 }
48461135 7073 default:
0fc31b10 7074 return;
48461135
JB
7075 }
7076
3f50f132
JF
7077 if (is_jmp32) {
7078 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7079 tnum_subreg(false_32off));
7080 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7081 tnum_subreg(true_32off));
7082 __reg_combine_32_into_64(false_reg);
7083 __reg_combine_32_into_64(true_reg);
7084 } else {
7085 false_reg->var_off = false_64off;
7086 true_reg->var_off = true_64off;
7087 __reg_combine_64_into_32(false_reg);
7088 __reg_combine_64_into_32(true_reg);
7089 }
48461135
JB
7090}
7091
f1174f77
EC
7092/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7093 * the variable reg.
48461135
JB
7094 */
7095static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
7096 struct bpf_reg_state *false_reg,
7097 u64 val, u32 val32,
092ed096 7098 u8 opcode, bool is_jmp32)
48461135 7099{
0fc31b10
JH
7100 /* How can we transform "a <op> b" into "b <op> a"? */
7101 static const u8 opcode_flip[16] = {
7102 /* these stay the same */
7103 [BPF_JEQ >> 4] = BPF_JEQ,
7104 [BPF_JNE >> 4] = BPF_JNE,
7105 [BPF_JSET >> 4] = BPF_JSET,
7106 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7107 [BPF_JGE >> 4] = BPF_JLE,
7108 [BPF_JGT >> 4] = BPF_JLT,
7109 [BPF_JLE >> 4] = BPF_JGE,
7110 [BPF_JLT >> 4] = BPF_JGT,
7111 [BPF_JSGE >> 4] = BPF_JSLE,
7112 [BPF_JSGT >> 4] = BPF_JSLT,
7113 [BPF_JSLE >> 4] = BPF_JSGE,
7114 [BPF_JSLT >> 4] = BPF_JSGT
7115 };
7116 opcode = opcode_flip[opcode >> 4];
7117 /* This uses zero as "not present in table"; luckily the zero opcode,
7118 * BPF_JA, can't get here.
b03c9f9f 7119 */
0fc31b10 7120 if (opcode)
3f50f132 7121 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
7122}
7123
7124/* Regs are known to be equal, so intersect their min/max/var_off */
7125static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7126 struct bpf_reg_state *dst_reg)
7127{
b03c9f9f
EC
7128 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7129 dst_reg->umin_value);
7130 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7131 dst_reg->umax_value);
7132 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7133 dst_reg->smin_value);
7134 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7135 dst_reg->smax_value);
f1174f77
EC
7136 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7137 dst_reg->var_off);
b03c9f9f
EC
7138 /* We might have learned new bounds from the var_off. */
7139 __update_reg_bounds(src_reg);
7140 __update_reg_bounds(dst_reg);
7141 /* We might have learned something about the sign bit. */
7142 __reg_deduce_bounds(src_reg);
7143 __reg_deduce_bounds(dst_reg);
7144 /* We might have learned some bits from the bounds. */
7145 __reg_bound_offset(src_reg);
7146 __reg_bound_offset(dst_reg);
7147 /* Intersecting with the old var_off might have improved our bounds
7148 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7149 * then new var_off is (0; 0x7f...fc) which improves our umax.
7150 */
7151 __update_reg_bounds(src_reg);
7152 __update_reg_bounds(dst_reg);
f1174f77
EC
7153}
7154
7155static void reg_combine_min_max(struct bpf_reg_state *true_src,
7156 struct bpf_reg_state *true_dst,
7157 struct bpf_reg_state *false_src,
7158 struct bpf_reg_state *false_dst,
7159 u8 opcode)
7160{
7161 switch (opcode) {
7162 case BPF_JEQ:
7163 __reg_combine_min_max(true_src, true_dst);
7164 break;
7165 case BPF_JNE:
7166 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7167 break;
4cabc5b1 7168 }
48461135
JB
7169}
7170
fd978bf7
JS
7171static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7172 struct bpf_reg_state *reg, u32 id,
840b9615 7173 bool is_null)
57a09bf0 7174{
840b9615 7175 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
7176 /* Old offset (both fixed and variable parts) should
7177 * have been known-zero, because we don't allow pointer
7178 * arithmetic on pointers that might be NULL.
7179 */
b03c9f9f
EC
7180 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7181 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7182 reg->off)) {
b03c9f9f
EC
7183 __mark_reg_known_zero(reg);
7184 reg->off = 0;
f1174f77
EC
7185 }
7186 if (is_null) {
7187 reg->type = SCALAR_VALUE;
840b9615 7188 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7189 const struct bpf_map *map = reg->map_ptr;
7190
7191 if (map->inner_map_meta) {
840b9615 7192 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7193 reg->map_ptr = map->inner_map_meta;
7194 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7195 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7196 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7197 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7198 reg->type = PTR_TO_SOCKET;
840b9615
JS
7199 } else {
7200 reg->type = PTR_TO_MAP_VALUE;
7201 }
c64b7983
JS
7202 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7203 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7204 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7205 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7206 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7207 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7208 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7209 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7210 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7211 reg->type = PTR_TO_MEM;
afbf21dc
YS
7212 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7213 reg->type = PTR_TO_RDONLY_BUF;
7214 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7215 reg->type = PTR_TO_RDWR_BUF;
56f668df 7216 }
1b986589
MKL
7217 if (is_null) {
7218 /* We don't need id and ref_obj_id from this point
7219 * onwards anymore, thus we should better reset it,
7220 * so that state pruning has chances to take effect.
7221 */
7222 reg->id = 0;
7223 reg->ref_obj_id = 0;
7224 } else if (!reg_may_point_to_spin_lock(reg)) {
7225 /* For not-NULL ptr, reg->ref_obj_id will be reset
7226 * in release_reg_references().
7227 *
7228 * reg->id is still used by spin_lock ptr. Other
7229 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7230 */
7231 reg->id = 0;
56f668df 7232 }
57a09bf0
TG
7233 }
7234}
7235
c6a9efa1
PC
7236static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7237 bool is_null)
7238{
7239 struct bpf_reg_state *reg;
7240 int i;
7241
7242 for (i = 0; i < MAX_BPF_REG; i++)
7243 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7244
7245 bpf_for_each_spilled_reg(i, state, reg) {
7246 if (!reg)
7247 continue;
7248 mark_ptr_or_null_reg(state, reg, id, is_null);
7249 }
7250}
7251
57a09bf0
TG
7252/* The logic is similar to find_good_pkt_pointers(), both could eventually
7253 * be folded together at some point.
7254 */
840b9615
JS
7255static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7256 bool is_null)
57a09bf0 7257{
f4d7e40a 7258 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7259 struct bpf_reg_state *regs = state->regs;
1b986589 7260 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7261 u32 id = regs[regno].id;
c6a9efa1 7262 int i;
57a09bf0 7263
1b986589
MKL
7264 if (ref_obj_id && ref_obj_id == id && is_null)
7265 /* regs[regno] is in the " == NULL" branch.
7266 * No one could have freed the reference state before
7267 * doing the NULL check.
7268 */
7269 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7270
c6a9efa1
PC
7271 for (i = 0; i <= vstate->curframe; i++)
7272 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7273}
7274
5beca081
DB
7275static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7276 struct bpf_reg_state *dst_reg,
7277 struct bpf_reg_state *src_reg,
7278 struct bpf_verifier_state *this_branch,
7279 struct bpf_verifier_state *other_branch)
7280{
7281 if (BPF_SRC(insn->code) != BPF_X)
7282 return false;
7283
092ed096
JW
7284 /* Pointers are always 64-bit. */
7285 if (BPF_CLASS(insn->code) == BPF_JMP32)
7286 return false;
7287
5beca081
DB
7288 switch (BPF_OP(insn->code)) {
7289 case BPF_JGT:
7290 if ((dst_reg->type == PTR_TO_PACKET &&
7291 src_reg->type == PTR_TO_PACKET_END) ||
7292 (dst_reg->type == PTR_TO_PACKET_META &&
7293 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7294 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7295 find_good_pkt_pointers(this_branch, dst_reg,
7296 dst_reg->type, false);
7297 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7298 src_reg->type == PTR_TO_PACKET) ||
7299 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7300 src_reg->type == PTR_TO_PACKET_META)) {
7301 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7302 find_good_pkt_pointers(other_branch, src_reg,
7303 src_reg->type, true);
7304 } else {
7305 return false;
7306 }
7307 break;
7308 case BPF_JLT:
7309 if ((dst_reg->type == PTR_TO_PACKET &&
7310 src_reg->type == PTR_TO_PACKET_END) ||
7311 (dst_reg->type == PTR_TO_PACKET_META &&
7312 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7313 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7314 find_good_pkt_pointers(other_branch, dst_reg,
7315 dst_reg->type, true);
7316 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7317 src_reg->type == PTR_TO_PACKET) ||
7318 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7319 src_reg->type == PTR_TO_PACKET_META)) {
7320 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7321 find_good_pkt_pointers(this_branch, src_reg,
7322 src_reg->type, false);
7323 } else {
7324 return false;
7325 }
7326 break;
7327 case BPF_JGE:
7328 if ((dst_reg->type == PTR_TO_PACKET &&
7329 src_reg->type == PTR_TO_PACKET_END) ||
7330 (dst_reg->type == PTR_TO_PACKET_META &&
7331 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7332 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7333 find_good_pkt_pointers(this_branch, dst_reg,
7334 dst_reg->type, true);
7335 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7336 src_reg->type == PTR_TO_PACKET) ||
7337 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7338 src_reg->type == PTR_TO_PACKET_META)) {
7339 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7340 find_good_pkt_pointers(other_branch, src_reg,
7341 src_reg->type, false);
7342 } else {
7343 return false;
7344 }
7345 break;
7346 case BPF_JLE:
7347 if ((dst_reg->type == PTR_TO_PACKET &&
7348 src_reg->type == PTR_TO_PACKET_END) ||
7349 (dst_reg->type == PTR_TO_PACKET_META &&
7350 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7351 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7352 find_good_pkt_pointers(other_branch, dst_reg,
7353 dst_reg->type, false);
7354 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7355 src_reg->type == PTR_TO_PACKET) ||
7356 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7357 src_reg->type == PTR_TO_PACKET_META)) {
7358 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7359 find_good_pkt_pointers(this_branch, src_reg,
7360 src_reg->type, true);
7361 } else {
7362 return false;
7363 }
7364 break;
7365 default:
7366 return false;
7367 }
7368
7369 return true;
7370}
7371
58e2af8b 7372static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7373 struct bpf_insn *insn, int *insn_idx)
7374{
f4d7e40a
AS
7375 struct bpf_verifier_state *this_branch = env->cur_state;
7376 struct bpf_verifier_state *other_branch;
7377 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7378 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7379 u8 opcode = BPF_OP(insn->code);
092ed096 7380 bool is_jmp32;
fb8d251e 7381 int pred = -1;
17a52670
AS
7382 int err;
7383
092ed096
JW
7384 /* Only conditional jumps are expected to reach here. */
7385 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7386 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7387 return -EINVAL;
7388 }
7389
7390 if (BPF_SRC(insn->code) == BPF_X) {
7391 if (insn->imm != 0) {
092ed096 7392 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7393 return -EINVAL;
7394 }
7395
7396 /* check src1 operand */
dc503a8a 7397 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7398 if (err)
7399 return err;
1be7f75d
AS
7400
7401 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7402 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7403 insn->src_reg);
7404 return -EACCES;
7405 }
fb8d251e 7406 src_reg = &regs[insn->src_reg];
17a52670
AS
7407 } else {
7408 if (insn->src_reg != BPF_REG_0) {
092ed096 7409 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7410 return -EINVAL;
7411 }
7412 }
7413
7414 /* check src2 operand */
dc503a8a 7415 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7416 if (err)
7417 return err;
7418
1a0dc1ac 7419 dst_reg = &regs[insn->dst_reg];
092ed096 7420 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7421
3f50f132
JF
7422 if (BPF_SRC(insn->code) == BPF_K) {
7423 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7424 } else if (src_reg->type == SCALAR_VALUE &&
7425 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7426 pred = is_branch_taken(dst_reg,
7427 tnum_subreg(src_reg->var_off).value,
7428 opcode,
7429 is_jmp32);
7430 } else if (src_reg->type == SCALAR_VALUE &&
7431 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7432 pred = is_branch_taken(dst_reg,
7433 src_reg->var_off.value,
7434 opcode,
7435 is_jmp32);
7436 }
7437
b5dc0163 7438 if (pred >= 0) {
cac616db
JF
7439 /* If we get here with a dst_reg pointer type it is because
7440 * above is_branch_taken() special cased the 0 comparison.
7441 */
7442 if (!__is_pointer_value(false, dst_reg))
7443 err = mark_chain_precision(env, insn->dst_reg);
b5dc0163
AS
7444 if (BPF_SRC(insn->code) == BPF_X && !err)
7445 err = mark_chain_precision(env, insn->src_reg);
7446 if (err)
7447 return err;
7448 }
fb8d251e
AS
7449 if (pred == 1) {
7450 /* only follow the goto, ignore fall-through */
7451 *insn_idx += insn->off;
7452 return 0;
7453 } else if (pred == 0) {
7454 /* only follow fall-through branch, since
7455 * that's where the program will go
7456 */
7457 return 0;
17a52670
AS
7458 }
7459
979d63d5
DB
7460 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7461 false);
17a52670
AS
7462 if (!other_branch)
7463 return -EFAULT;
f4d7e40a 7464 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7465
48461135
JB
7466 /* detect if we are comparing against a constant value so we can adjust
7467 * our min/max values for our dst register.
f1174f77
EC
7468 * this is only legit if both are scalars (or pointers to the same
7469 * object, I suppose, but we don't support that right now), because
7470 * otherwise the different base pointers mean the offsets aren't
7471 * comparable.
48461135
JB
7472 */
7473 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7474 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7475
f1174f77 7476 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7477 src_reg->type == SCALAR_VALUE) {
7478 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7479 (is_jmp32 &&
7480 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7481 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7482 dst_reg,
3f50f132
JF
7483 src_reg->var_off.value,
7484 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7485 opcode, is_jmp32);
7486 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7487 (is_jmp32 &&
7488 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7489 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7490 src_reg,
3f50f132
JF
7491 dst_reg->var_off.value,
7492 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7493 opcode, is_jmp32);
7494 else if (!is_jmp32 &&
7495 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7496 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7497 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7498 &other_branch_regs[insn->dst_reg],
092ed096 7499 src_reg, dst_reg, opcode);
f1174f77
EC
7500 }
7501 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7502 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7503 dst_reg, insn->imm, (u32)insn->imm,
7504 opcode, is_jmp32);
48461135
JB
7505 }
7506
092ed096
JW
7507 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7508 * NOTE: these optimizations below are related with pointer comparison
7509 * which will never be JMP32.
7510 */
7511 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7512 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7513 reg_type_may_be_null(dst_reg->type)) {
7514 /* Mark all identical registers in each branch as either
57a09bf0
TG
7515 * safe or unknown depending R == 0 or R != 0 conditional.
7516 */
840b9615
JS
7517 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7518 opcode == BPF_JNE);
7519 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7520 opcode == BPF_JEQ);
5beca081
DB
7521 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7522 this_branch, other_branch) &&
7523 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7524 verbose(env, "R%d pointer comparison prohibited\n",
7525 insn->dst_reg);
1be7f75d 7526 return -EACCES;
17a52670 7527 }
06ee7115 7528 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7529 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7530 return 0;
7531}
7532
17a52670 7533/* verify BPF_LD_IMM64 instruction */
58e2af8b 7534static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7535{
d8eca5bb 7536 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7537 struct bpf_reg_state *regs = cur_regs(env);
4976b718 7538 struct bpf_reg_state *dst_reg;
d8eca5bb 7539 struct bpf_map *map;
17a52670
AS
7540 int err;
7541
7542 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7543 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7544 return -EINVAL;
7545 }
7546 if (insn->off != 0) {
61bd5218 7547 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7548 return -EINVAL;
7549 }
7550
dc503a8a 7551 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7552 if (err)
7553 return err;
7554
4976b718 7555 dst_reg = &regs[insn->dst_reg];
6b173873 7556 if (insn->src_reg == 0) {
6b173873
JK
7557 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7558
4976b718 7559 dst_reg->type = SCALAR_VALUE;
b03c9f9f 7560 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7561 return 0;
6b173873 7562 }
17a52670 7563
4976b718
HL
7564 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7565 mark_reg_known_zero(env, regs, insn->dst_reg);
7566
7567 dst_reg->type = aux->btf_var.reg_type;
7568 switch (dst_reg->type) {
7569 case PTR_TO_MEM:
7570 dst_reg->mem_size = aux->btf_var.mem_size;
7571 break;
7572 case PTR_TO_BTF_ID:
eaa6bcb7 7573 case PTR_TO_PERCPU_BTF_ID:
4976b718
HL
7574 dst_reg->btf_id = aux->btf_var.btf_id;
7575 break;
7576 default:
7577 verbose(env, "bpf verifier is misconfigured\n");
7578 return -EFAULT;
7579 }
7580 return 0;
7581 }
7582
d8eca5bb
DB
7583 map = env->used_maps[aux->map_index];
7584 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 7585 dst_reg->map_ptr = map;
d8eca5bb
DB
7586
7587 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
4976b718
HL
7588 dst_reg->type = PTR_TO_MAP_VALUE;
7589 dst_reg->off = aux->map_off;
d8eca5bb 7590 if (map_value_has_spin_lock(map))
4976b718 7591 dst_reg->id = ++env->id_gen;
d8eca5bb 7592 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
4976b718 7593 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
7594 } else {
7595 verbose(env, "bpf verifier is misconfigured\n");
7596 return -EINVAL;
7597 }
17a52670 7598
17a52670
AS
7599 return 0;
7600}
7601
96be4325
DB
7602static bool may_access_skb(enum bpf_prog_type type)
7603{
7604 switch (type) {
7605 case BPF_PROG_TYPE_SOCKET_FILTER:
7606 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7607 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7608 return true;
7609 default:
7610 return false;
7611 }
7612}
7613
ddd872bc
AS
7614/* verify safety of LD_ABS|LD_IND instructions:
7615 * - they can only appear in the programs where ctx == skb
7616 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7617 * preserve R6-R9, and store return value into R0
7618 *
7619 * Implicit input:
7620 * ctx == skb == R6 == CTX
7621 *
7622 * Explicit input:
7623 * SRC == any register
7624 * IMM == 32-bit immediate
7625 *
7626 * Output:
7627 * R0 - 8/16/32-bit skb data converted to cpu endianness
7628 */
58e2af8b 7629static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7630{
638f5b90 7631 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7632 static const int ctx_reg = BPF_REG_6;
ddd872bc 7633 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7634 int i, err;
7635
7e40781c 7636 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7637 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7638 return -EINVAL;
7639 }
7640
e0cea7ce
DB
7641 if (!env->ops->gen_ld_abs) {
7642 verbose(env, "bpf verifier is misconfigured\n");
7643 return -EINVAL;
7644 }
7645
ddd872bc 7646 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7647 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7648 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7649 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7650 return -EINVAL;
7651 }
7652
7653 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7654 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7655 if (err)
7656 return err;
7657
fd978bf7
JS
7658 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7659 * gen_ld_abs() may terminate the program at runtime, leading to
7660 * reference leak.
7661 */
7662 err = check_reference_leak(env);
7663 if (err) {
7664 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7665 return err;
7666 }
7667
d83525ca
AS
7668 if (env->cur_state->active_spin_lock) {
7669 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7670 return -EINVAL;
7671 }
7672
6d4f151a 7673 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7674 verbose(env,
7675 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7676 return -EINVAL;
7677 }
7678
7679 if (mode == BPF_IND) {
7680 /* check explicit source operand */
dc503a8a 7681 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7682 if (err)
7683 return err;
7684 }
7685
6d4f151a
DB
7686 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7687 if (err < 0)
7688 return err;
7689
ddd872bc 7690 /* reset caller saved regs to unreadable */
dc503a8a 7691 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7692 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7693 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7694 }
ddd872bc
AS
7695
7696 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7697 * the value fetched from the packet.
7698 * Already marked as written above.
ddd872bc 7699 */
61bd5218 7700 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7701 /* ld_abs load up to 32-bit skb data. */
7702 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7703 return 0;
7704}
7705
390ee7e2
AS
7706static int check_return_code(struct bpf_verifier_env *env)
7707{
5cf1e914 7708 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7709 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7710 struct bpf_reg_state *reg;
7711 struct tnum range = tnum_range(0, 1);
7e40781c 7712 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997
MKL
7713 int err;
7714
9e4e01df 7715 /* LSM and struct_ops func-ptr's return type could be "void" */
7e40781c
UP
7716 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7717 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7718 !prog->aux->attach_func_proto->type)
7719 return 0;
7720
7721 /* eBPF calling convetion is such that R0 is used
7722 * to return the value from eBPF program.
7723 * Make sure that it's readable at this time
7724 * of bpf_exit, which means that program wrote
7725 * something into it earlier
7726 */
7727 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7728 if (err)
7729 return err;
7730
7731 if (is_pointer_value(env, BPF_REG_0)) {
7732 verbose(env, "R0 leaks addr as return value\n");
7733 return -EACCES;
7734 }
390ee7e2 7735
7e40781c 7736 switch (prog_type) {
983695fa
DB
7737 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7738 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7739 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7740 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7741 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7742 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7743 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7744 range = tnum_range(1, 1);
ed4ed404 7745 break;
390ee7e2 7746 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7747 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7748 range = tnum_range(0, 3);
7749 enforce_attach_type_range = tnum_range(2, 3);
7750 }
ed4ed404 7751 break;
390ee7e2
AS
7752 case BPF_PROG_TYPE_CGROUP_SOCK:
7753 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7754 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7755 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7756 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7757 break;
15ab09bd
AS
7758 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7759 if (!env->prog->aux->attach_btf_id)
7760 return 0;
7761 range = tnum_const(0);
7762 break;
15d83c4d 7763 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7764 switch (env->prog->expected_attach_type) {
7765 case BPF_TRACE_FENTRY:
7766 case BPF_TRACE_FEXIT:
7767 range = tnum_const(0);
7768 break;
7769 case BPF_TRACE_RAW_TP:
7770 case BPF_MODIFY_RETURN:
15d83c4d 7771 return 0;
2ec0616e
DB
7772 case BPF_TRACE_ITER:
7773 break;
e92888c7
YS
7774 default:
7775 return -ENOTSUPP;
7776 }
15d83c4d 7777 break;
e9ddbb77
JS
7778 case BPF_PROG_TYPE_SK_LOOKUP:
7779 range = tnum_range(SK_DROP, SK_PASS);
7780 break;
e92888c7
YS
7781 case BPF_PROG_TYPE_EXT:
7782 /* freplace program can return anything as its return value
7783 * depends on the to-be-replaced kernel func or bpf program.
7784 */
390ee7e2
AS
7785 default:
7786 return 0;
7787 }
7788
638f5b90 7789 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7790 if (reg->type != SCALAR_VALUE) {
61bd5218 7791 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7792 reg_type_str[reg->type]);
7793 return -EINVAL;
7794 }
7795
7796 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7797 char tn_buf[48];
7798
61bd5218 7799 verbose(env, "At program exit the register R0 ");
390ee7e2 7800 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7801 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7802 verbose(env, "has value %s", tn_buf);
390ee7e2 7803 } else {
61bd5218 7804 verbose(env, "has unknown scalar value");
390ee7e2 7805 }
5cf1e914 7806 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7807 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7808 return -EINVAL;
7809 }
5cf1e914 7810
7811 if (!tnum_is_unknown(enforce_attach_type_range) &&
7812 tnum_in(enforce_attach_type_range, reg->var_off))
7813 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7814 return 0;
7815}
7816
475fb78f
AS
7817/* non-recursive DFS pseudo code
7818 * 1 procedure DFS-iterative(G,v):
7819 * 2 label v as discovered
7820 * 3 let S be a stack
7821 * 4 S.push(v)
7822 * 5 while S is not empty
7823 * 6 t <- S.pop()
7824 * 7 if t is what we're looking for:
7825 * 8 return t
7826 * 9 for all edges e in G.adjacentEdges(t) do
7827 * 10 if edge e is already labelled
7828 * 11 continue with the next edge
7829 * 12 w <- G.adjacentVertex(t,e)
7830 * 13 if vertex w is not discovered and not explored
7831 * 14 label e as tree-edge
7832 * 15 label w as discovered
7833 * 16 S.push(w)
7834 * 17 continue at 5
7835 * 18 else if vertex w is discovered
7836 * 19 label e as back-edge
7837 * 20 else
7838 * 21 // vertex w is explored
7839 * 22 label e as forward- or cross-edge
7840 * 23 label t as explored
7841 * 24 S.pop()
7842 *
7843 * convention:
7844 * 0x10 - discovered
7845 * 0x11 - discovered and fall-through edge labelled
7846 * 0x12 - discovered and fall-through and branch edges labelled
7847 * 0x20 - explored
7848 */
7849
7850enum {
7851 DISCOVERED = 0x10,
7852 EXPLORED = 0x20,
7853 FALLTHROUGH = 1,
7854 BRANCH = 2,
7855};
7856
dc2a4ebc
AS
7857static u32 state_htab_size(struct bpf_verifier_env *env)
7858{
7859 return env->prog->len;
7860}
7861
5d839021
AS
7862static struct bpf_verifier_state_list **explored_state(
7863 struct bpf_verifier_env *env,
7864 int idx)
7865{
dc2a4ebc
AS
7866 struct bpf_verifier_state *cur = env->cur_state;
7867 struct bpf_func_state *state = cur->frame[cur->curframe];
7868
7869 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7870}
7871
7872static void init_explored_state(struct bpf_verifier_env *env, int idx)
7873{
a8f500af 7874 env->insn_aux_data[idx].prune_point = true;
5d839021 7875}
f1bca824 7876
475fb78f
AS
7877/* t, w, e - match pseudo-code above:
7878 * t - index of current instruction
7879 * w - next instruction
7880 * e - edge
7881 */
2589726d
AS
7882static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7883 bool loop_ok)
475fb78f 7884{
7df737e9
AS
7885 int *insn_stack = env->cfg.insn_stack;
7886 int *insn_state = env->cfg.insn_state;
7887
475fb78f
AS
7888 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7889 return 0;
7890
7891 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7892 return 0;
7893
7894 if (w < 0 || w >= env->prog->len) {
d9762e84 7895 verbose_linfo(env, t, "%d: ", t);
61bd5218 7896 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7897 return -EINVAL;
7898 }
7899
f1bca824
AS
7900 if (e == BRANCH)
7901 /* mark branch target for state pruning */
5d839021 7902 init_explored_state(env, w);
f1bca824 7903
475fb78f
AS
7904 if (insn_state[w] == 0) {
7905 /* tree-edge */
7906 insn_state[t] = DISCOVERED | e;
7907 insn_state[w] = DISCOVERED;
7df737e9 7908 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7909 return -E2BIG;
7df737e9 7910 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7911 return 1;
7912 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7913 if (loop_ok && env->bpf_capable)
2589726d 7914 return 0;
d9762e84
MKL
7915 verbose_linfo(env, t, "%d: ", t);
7916 verbose_linfo(env, w, "%d: ", w);
61bd5218 7917 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7918 return -EINVAL;
7919 } else if (insn_state[w] == EXPLORED) {
7920 /* forward- or cross-edge */
7921 insn_state[t] = DISCOVERED | e;
7922 } else {
61bd5218 7923 verbose(env, "insn state internal bug\n");
475fb78f
AS
7924 return -EFAULT;
7925 }
7926 return 0;
7927}
7928
7929/* non-recursive depth-first-search to detect loops in BPF program
7930 * loop == back-edge in directed graph
7931 */
58e2af8b 7932static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
7933{
7934 struct bpf_insn *insns = env->prog->insnsi;
7935 int insn_cnt = env->prog->len;
7df737e9 7936 int *insn_stack, *insn_state;
475fb78f
AS
7937 int ret = 0;
7938 int i, t;
7939
7df737e9 7940 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
7941 if (!insn_state)
7942 return -ENOMEM;
7943
7df737e9 7944 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 7945 if (!insn_stack) {
71dde681 7946 kvfree(insn_state);
475fb78f
AS
7947 return -ENOMEM;
7948 }
7949
7950 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7951 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 7952 env->cfg.cur_stack = 1;
475fb78f
AS
7953
7954peek_stack:
7df737e9 7955 if (env->cfg.cur_stack == 0)
475fb78f 7956 goto check_state;
7df737e9 7957 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 7958
092ed096
JW
7959 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7960 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
7961 u8 opcode = BPF_OP(insns[t].code);
7962
7963 if (opcode == BPF_EXIT) {
7964 goto mark_explored;
7965 } else if (opcode == BPF_CALL) {
2589726d 7966 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7967 if (ret == 1)
7968 goto peek_stack;
7969 else if (ret < 0)
7970 goto err_free;
07016151 7971 if (t + 1 < insn_cnt)
5d839021 7972 init_explored_state(env, t + 1);
cc8b0b92 7973 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 7974 init_explored_state(env, t);
2589726d
AS
7975 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7976 env, false);
cc8b0b92
AS
7977 if (ret == 1)
7978 goto peek_stack;
7979 else if (ret < 0)
7980 goto err_free;
7981 }
475fb78f
AS
7982 } else if (opcode == BPF_JA) {
7983 if (BPF_SRC(insns[t].code) != BPF_K) {
7984 ret = -EINVAL;
7985 goto err_free;
7986 }
7987 /* unconditional jump with single edge */
7988 ret = push_insn(t, t + insns[t].off + 1,
2589726d 7989 FALLTHROUGH, env, true);
475fb78f
AS
7990 if (ret == 1)
7991 goto peek_stack;
7992 else if (ret < 0)
7993 goto err_free;
b5dc0163
AS
7994 /* unconditional jmp is not a good pruning point,
7995 * but it's marked, since backtracking needs
7996 * to record jmp history in is_state_visited().
7997 */
7998 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
7999 /* tell verifier to check for equivalent states
8000 * after every call and jump
8001 */
c3de6317 8002 if (t + 1 < insn_cnt)
5d839021 8003 init_explored_state(env, t + 1);
475fb78f
AS
8004 } else {
8005 /* conditional jump with two edges */
5d839021 8006 init_explored_state(env, t);
2589726d 8007 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
8008 if (ret == 1)
8009 goto peek_stack;
8010 else if (ret < 0)
8011 goto err_free;
8012
2589726d 8013 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
8014 if (ret == 1)
8015 goto peek_stack;
8016 else if (ret < 0)
8017 goto err_free;
8018 }
8019 } else {
8020 /* all other non-branch instructions with single
8021 * fall-through edge
8022 */
2589726d 8023 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
8024 if (ret == 1)
8025 goto peek_stack;
8026 else if (ret < 0)
8027 goto err_free;
8028 }
8029
8030mark_explored:
8031 insn_state[t] = EXPLORED;
7df737e9 8032 if (env->cfg.cur_stack-- <= 0) {
61bd5218 8033 verbose(env, "pop stack internal bug\n");
475fb78f
AS
8034 ret = -EFAULT;
8035 goto err_free;
8036 }
8037 goto peek_stack;
8038
8039check_state:
8040 for (i = 0; i < insn_cnt; i++) {
8041 if (insn_state[i] != EXPLORED) {
61bd5218 8042 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
8043 ret = -EINVAL;
8044 goto err_free;
8045 }
8046 }
8047 ret = 0; /* cfg looks good */
8048
8049err_free:
71dde681
AS
8050 kvfree(insn_state);
8051 kvfree(insn_stack);
7df737e9 8052 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
8053 return ret;
8054}
8055
09b28d76
AS
8056static int check_abnormal_return(struct bpf_verifier_env *env)
8057{
8058 int i;
8059
8060 for (i = 1; i < env->subprog_cnt; i++) {
8061 if (env->subprog_info[i].has_ld_abs) {
8062 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8063 return -EINVAL;
8064 }
8065 if (env->subprog_info[i].has_tail_call) {
8066 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8067 return -EINVAL;
8068 }
8069 }
8070 return 0;
8071}
8072
838e9690
YS
8073/* The minimum supported BTF func info size */
8074#define MIN_BPF_FUNCINFO_SIZE 8
8075#define MAX_FUNCINFO_REC_SIZE 252
8076
c454a46b
MKL
8077static int check_btf_func(struct bpf_verifier_env *env,
8078 const union bpf_attr *attr,
8079 union bpf_attr __user *uattr)
838e9690 8080{
09b28d76 8081 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 8082 u32 i, nfuncs, urec_size, min_size;
838e9690 8083 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 8084 struct bpf_func_info *krecord;
8c1b6e69 8085 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
8086 struct bpf_prog *prog;
8087 const struct btf *btf;
838e9690 8088 void __user *urecord;
d0b2818e 8089 u32 prev_offset = 0;
09b28d76 8090 bool scalar_return;
e7ed83d6 8091 int ret = -ENOMEM;
838e9690
YS
8092
8093 nfuncs = attr->func_info_cnt;
09b28d76
AS
8094 if (!nfuncs) {
8095 if (check_abnormal_return(env))
8096 return -EINVAL;
838e9690 8097 return 0;
09b28d76 8098 }
838e9690
YS
8099
8100 if (nfuncs != env->subprog_cnt) {
8101 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8102 return -EINVAL;
8103 }
8104
8105 urec_size = attr->func_info_rec_size;
8106 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8107 urec_size > MAX_FUNCINFO_REC_SIZE ||
8108 urec_size % sizeof(u32)) {
8109 verbose(env, "invalid func info rec size %u\n", urec_size);
8110 return -EINVAL;
8111 }
8112
c454a46b
MKL
8113 prog = env->prog;
8114 btf = prog->aux->btf;
838e9690
YS
8115
8116 urecord = u64_to_user_ptr(attr->func_info);
8117 min_size = min_t(u32, krec_size, urec_size);
8118
ba64e7d8 8119 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
8120 if (!krecord)
8121 return -ENOMEM;
8c1b6e69
AS
8122 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8123 if (!info_aux)
8124 goto err_free;
ba64e7d8 8125
838e9690
YS
8126 for (i = 0; i < nfuncs; i++) {
8127 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8128 if (ret) {
8129 if (ret == -E2BIG) {
8130 verbose(env, "nonzero tailing record in func info");
8131 /* set the size kernel expects so loader can zero
8132 * out the rest of the record.
8133 */
8134 if (put_user(min_size, &uattr->func_info_rec_size))
8135 ret = -EFAULT;
8136 }
c454a46b 8137 goto err_free;
838e9690
YS
8138 }
8139
ba64e7d8 8140 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 8141 ret = -EFAULT;
c454a46b 8142 goto err_free;
838e9690
YS
8143 }
8144
d30d42e0 8145 /* check insn_off */
09b28d76 8146 ret = -EINVAL;
838e9690 8147 if (i == 0) {
d30d42e0 8148 if (krecord[i].insn_off) {
838e9690 8149 verbose(env,
d30d42e0
MKL
8150 "nonzero insn_off %u for the first func info record",
8151 krecord[i].insn_off);
c454a46b 8152 goto err_free;
838e9690 8153 }
d30d42e0 8154 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
8155 verbose(env,
8156 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 8157 krecord[i].insn_off, prev_offset);
c454a46b 8158 goto err_free;
838e9690
YS
8159 }
8160
d30d42e0 8161 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 8162 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 8163 goto err_free;
838e9690
YS
8164 }
8165
8166 /* check type_id */
ba64e7d8 8167 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 8168 if (!type || !btf_type_is_func(type)) {
838e9690 8169 verbose(env, "invalid type id %d in func info",
ba64e7d8 8170 krecord[i].type_id);
c454a46b 8171 goto err_free;
838e9690 8172 }
51c39bb1 8173 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
8174
8175 func_proto = btf_type_by_id(btf, type->type);
8176 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8177 /* btf_func_check() already verified it during BTF load */
8178 goto err_free;
8179 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8180 scalar_return =
8181 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8182 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8183 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8184 goto err_free;
8185 }
8186 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8187 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8188 goto err_free;
8189 }
8190
d30d42e0 8191 prev_offset = krecord[i].insn_off;
838e9690
YS
8192 urecord += urec_size;
8193 }
8194
ba64e7d8
YS
8195 prog->aux->func_info = krecord;
8196 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 8197 prog->aux->func_info_aux = info_aux;
838e9690
YS
8198 return 0;
8199
c454a46b 8200err_free:
ba64e7d8 8201 kvfree(krecord);
8c1b6e69 8202 kfree(info_aux);
838e9690
YS
8203 return ret;
8204}
8205
ba64e7d8
YS
8206static void adjust_btf_func(struct bpf_verifier_env *env)
8207{
8c1b6e69 8208 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8209 int i;
8210
8c1b6e69 8211 if (!aux->func_info)
ba64e7d8
YS
8212 return;
8213
8214 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8215 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8216}
8217
c454a46b
MKL
8218#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8219 sizeof(((struct bpf_line_info *)(0))->line_col))
8220#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8221
8222static int check_btf_line(struct bpf_verifier_env *env,
8223 const union bpf_attr *attr,
8224 union bpf_attr __user *uattr)
8225{
8226 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8227 struct bpf_subprog_info *sub;
8228 struct bpf_line_info *linfo;
8229 struct bpf_prog *prog;
8230 const struct btf *btf;
8231 void __user *ulinfo;
8232 int err;
8233
8234 nr_linfo = attr->line_info_cnt;
8235 if (!nr_linfo)
8236 return 0;
8237
8238 rec_size = attr->line_info_rec_size;
8239 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8240 rec_size > MAX_LINEINFO_REC_SIZE ||
8241 rec_size & (sizeof(u32) - 1))
8242 return -EINVAL;
8243
8244 /* Need to zero it in case the userspace may
8245 * pass in a smaller bpf_line_info object.
8246 */
8247 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8248 GFP_KERNEL | __GFP_NOWARN);
8249 if (!linfo)
8250 return -ENOMEM;
8251
8252 prog = env->prog;
8253 btf = prog->aux->btf;
8254
8255 s = 0;
8256 sub = env->subprog_info;
8257 ulinfo = u64_to_user_ptr(attr->line_info);
8258 expected_size = sizeof(struct bpf_line_info);
8259 ncopy = min_t(u32, expected_size, rec_size);
8260 for (i = 0; i < nr_linfo; i++) {
8261 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8262 if (err) {
8263 if (err == -E2BIG) {
8264 verbose(env, "nonzero tailing record in line_info");
8265 if (put_user(expected_size,
8266 &uattr->line_info_rec_size))
8267 err = -EFAULT;
8268 }
8269 goto err_free;
8270 }
8271
8272 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8273 err = -EFAULT;
8274 goto err_free;
8275 }
8276
8277 /*
8278 * Check insn_off to ensure
8279 * 1) strictly increasing AND
8280 * 2) bounded by prog->len
8281 *
8282 * The linfo[0].insn_off == 0 check logically falls into
8283 * the later "missing bpf_line_info for func..." case
8284 * because the first linfo[0].insn_off must be the
8285 * first sub also and the first sub must have
8286 * subprog_info[0].start == 0.
8287 */
8288 if ((i && linfo[i].insn_off <= prev_offset) ||
8289 linfo[i].insn_off >= prog->len) {
8290 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8291 i, linfo[i].insn_off, prev_offset,
8292 prog->len);
8293 err = -EINVAL;
8294 goto err_free;
8295 }
8296
fdbaa0be
MKL
8297 if (!prog->insnsi[linfo[i].insn_off].code) {
8298 verbose(env,
8299 "Invalid insn code at line_info[%u].insn_off\n",
8300 i);
8301 err = -EINVAL;
8302 goto err_free;
8303 }
8304
23127b33
MKL
8305 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8306 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8307 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8308 err = -EINVAL;
8309 goto err_free;
8310 }
8311
8312 if (s != env->subprog_cnt) {
8313 if (linfo[i].insn_off == sub[s].start) {
8314 sub[s].linfo_idx = i;
8315 s++;
8316 } else if (sub[s].start < linfo[i].insn_off) {
8317 verbose(env, "missing bpf_line_info for func#%u\n", s);
8318 err = -EINVAL;
8319 goto err_free;
8320 }
8321 }
8322
8323 prev_offset = linfo[i].insn_off;
8324 ulinfo += rec_size;
8325 }
8326
8327 if (s != env->subprog_cnt) {
8328 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8329 env->subprog_cnt - s, s);
8330 err = -EINVAL;
8331 goto err_free;
8332 }
8333
8334 prog->aux->linfo = linfo;
8335 prog->aux->nr_linfo = nr_linfo;
8336
8337 return 0;
8338
8339err_free:
8340 kvfree(linfo);
8341 return err;
8342}
8343
8344static int check_btf_info(struct bpf_verifier_env *env,
8345 const union bpf_attr *attr,
8346 union bpf_attr __user *uattr)
8347{
8348 struct btf *btf;
8349 int err;
8350
09b28d76
AS
8351 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8352 if (check_abnormal_return(env))
8353 return -EINVAL;
c454a46b 8354 return 0;
09b28d76 8355 }
c454a46b
MKL
8356
8357 btf = btf_get_by_fd(attr->prog_btf_fd);
8358 if (IS_ERR(btf))
8359 return PTR_ERR(btf);
8360 env->prog->aux->btf = btf;
8361
8362 err = check_btf_func(env, attr, uattr);
8363 if (err)
8364 return err;
8365
8366 err = check_btf_line(env, attr, uattr);
8367 if (err)
8368 return err;
8369
8370 return 0;
ba64e7d8
YS
8371}
8372
f1174f77
EC
8373/* check %cur's range satisfies %old's */
8374static bool range_within(struct bpf_reg_state *old,
8375 struct bpf_reg_state *cur)
8376{
b03c9f9f
EC
8377 return old->umin_value <= cur->umin_value &&
8378 old->umax_value >= cur->umax_value &&
8379 old->smin_value <= cur->smin_value &&
8380 old->smax_value >= cur->smax_value;
f1174f77
EC
8381}
8382
8383/* Maximum number of register states that can exist at once */
8384#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8385struct idpair {
8386 u32 old;
8387 u32 cur;
8388};
8389
8390/* If in the old state two registers had the same id, then they need to have
8391 * the same id in the new state as well. But that id could be different from
8392 * the old state, so we need to track the mapping from old to new ids.
8393 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8394 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8395 * regs with a different old id could still have new id 9, we don't care about
8396 * that.
8397 * So we look through our idmap to see if this old id has been seen before. If
8398 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8399 */
f1174f77 8400static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8401{
f1174f77 8402 unsigned int i;
969bf05e 8403
f1174f77
EC
8404 for (i = 0; i < ID_MAP_SIZE; i++) {
8405 if (!idmap[i].old) {
8406 /* Reached an empty slot; haven't seen this id before */
8407 idmap[i].old = old_id;
8408 idmap[i].cur = cur_id;
8409 return true;
8410 }
8411 if (idmap[i].old == old_id)
8412 return idmap[i].cur == cur_id;
8413 }
8414 /* We ran out of idmap slots, which should be impossible */
8415 WARN_ON_ONCE(1);
8416 return false;
8417}
8418
9242b5f5
AS
8419static void clean_func_state(struct bpf_verifier_env *env,
8420 struct bpf_func_state *st)
8421{
8422 enum bpf_reg_liveness live;
8423 int i, j;
8424
8425 for (i = 0; i < BPF_REG_FP; i++) {
8426 live = st->regs[i].live;
8427 /* liveness must not touch this register anymore */
8428 st->regs[i].live |= REG_LIVE_DONE;
8429 if (!(live & REG_LIVE_READ))
8430 /* since the register is unused, clear its state
8431 * to make further comparison simpler
8432 */
f54c7898 8433 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8434 }
8435
8436 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8437 live = st->stack[i].spilled_ptr.live;
8438 /* liveness must not touch this stack slot anymore */
8439 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8440 if (!(live & REG_LIVE_READ)) {
f54c7898 8441 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8442 for (j = 0; j < BPF_REG_SIZE; j++)
8443 st->stack[i].slot_type[j] = STACK_INVALID;
8444 }
8445 }
8446}
8447
8448static void clean_verifier_state(struct bpf_verifier_env *env,
8449 struct bpf_verifier_state *st)
8450{
8451 int i;
8452
8453 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8454 /* all regs in this state in all frames were already marked */
8455 return;
8456
8457 for (i = 0; i <= st->curframe; i++)
8458 clean_func_state(env, st->frame[i]);
8459}
8460
8461/* the parentage chains form a tree.
8462 * the verifier states are added to state lists at given insn and
8463 * pushed into state stack for future exploration.
8464 * when the verifier reaches bpf_exit insn some of the verifer states
8465 * stored in the state lists have their final liveness state already,
8466 * but a lot of states will get revised from liveness point of view when
8467 * the verifier explores other branches.
8468 * Example:
8469 * 1: r0 = 1
8470 * 2: if r1 == 100 goto pc+1
8471 * 3: r0 = 2
8472 * 4: exit
8473 * when the verifier reaches exit insn the register r0 in the state list of
8474 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8475 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8476 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8477 *
8478 * Since the verifier pushes the branch states as it sees them while exploring
8479 * the program the condition of walking the branch instruction for the second
8480 * time means that all states below this branch were already explored and
8481 * their final liveness markes are already propagated.
8482 * Hence when the verifier completes the search of state list in is_state_visited()
8483 * we can call this clean_live_states() function to mark all liveness states
8484 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8485 * will not be used.
8486 * This function also clears the registers and stack for states that !READ
8487 * to simplify state merging.
8488 *
8489 * Important note here that walking the same branch instruction in the callee
8490 * doesn't meant that the states are DONE. The verifier has to compare
8491 * the callsites
8492 */
8493static void clean_live_states(struct bpf_verifier_env *env, int insn,
8494 struct bpf_verifier_state *cur)
8495{
8496 struct bpf_verifier_state_list *sl;
8497 int i;
8498
5d839021 8499 sl = *explored_state(env, insn);
a8f500af 8500 while (sl) {
2589726d
AS
8501 if (sl->state.branches)
8502 goto next;
dc2a4ebc
AS
8503 if (sl->state.insn_idx != insn ||
8504 sl->state.curframe != cur->curframe)
9242b5f5
AS
8505 goto next;
8506 for (i = 0; i <= cur->curframe; i++)
8507 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8508 goto next;
8509 clean_verifier_state(env, &sl->state);
8510next:
8511 sl = sl->next;
8512 }
8513}
8514
f1174f77 8515/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8516static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8517 struct idpair *idmap)
f1174f77 8518{
f4d7e40a
AS
8519 bool equal;
8520
dc503a8a
EC
8521 if (!(rold->live & REG_LIVE_READ))
8522 /* explored state didn't use this */
8523 return true;
8524
679c782d 8525 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8526
8527 if (rold->type == PTR_TO_STACK)
8528 /* two stack pointers are equal only if they're pointing to
8529 * the same stack frame, since fp-8 in foo != fp-8 in bar
8530 */
8531 return equal && rold->frameno == rcur->frameno;
8532
8533 if (equal)
969bf05e
AS
8534 return true;
8535
f1174f77
EC
8536 if (rold->type == NOT_INIT)
8537 /* explored state can't have used this */
969bf05e 8538 return true;
f1174f77
EC
8539 if (rcur->type == NOT_INIT)
8540 return false;
8541 switch (rold->type) {
8542 case SCALAR_VALUE:
8543 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8544 if (!rold->precise && !rcur->precise)
8545 return true;
f1174f77
EC
8546 /* new val must satisfy old val knowledge */
8547 return range_within(rold, rcur) &&
8548 tnum_in(rold->var_off, rcur->var_off);
8549 } else {
179d1c56
JH
8550 /* We're trying to use a pointer in place of a scalar.
8551 * Even if the scalar was unbounded, this could lead to
8552 * pointer leaks because scalars are allowed to leak
8553 * while pointers are not. We could make this safe in
8554 * special cases if root is calling us, but it's
8555 * probably not worth the hassle.
f1174f77 8556 */
179d1c56 8557 return false;
f1174f77
EC
8558 }
8559 case PTR_TO_MAP_VALUE:
1b688a19
EC
8560 /* If the new min/max/var_off satisfy the old ones and
8561 * everything else matches, we are OK.
d83525ca
AS
8562 * 'id' is not compared, since it's only used for maps with
8563 * bpf_spin_lock inside map element and in such cases if
8564 * the rest of the prog is valid for one map element then
8565 * it's valid for all map elements regardless of the key
8566 * used in bpf_map_lookup()
1b688a19
EC
8567 */
8568 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8569 range_within(rold, rcur) &&
8570 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8571 case PTR_TO_MAP_VALUE_OR_NULL:
8572 /* a PTR_TO_MAP_VALUE could be safe to use as a
8573 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8574 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8575 * checked, doing so could have affected others with the same
8576 * id, and we can't check for that because we lost the id when
8577 * we converted to a PTR_TO_MAP_VALUE.
8578 */
8579 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8580 return false;
8581 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8582 return false;
8583 /* Check our ids match any regs they're supposed to */
8584 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8585 case PTR_TO_PACKET_META:
f1174f77 8586 case PTR_TO_PACKET:
de8f3a83 8587 if (rcur->type != rold->type)
f1174f77
EC
8588 return false;
8589 /* We must have at least as much range as the old ptr
8590 * did, so that any accesses which were safe before are
8591 * still safe. This is true even if old range < old off,
8592 * since someone could have accessed through (ptr - k), or
8593 * even done ptr -= k in a register, to get a safe access.
8594 */
8595 if (rold->range > rcur->range)
8596 return false;
8597 /* If the offsets don't match, we can't trust our alignment;
8598 * nor can we be sure that we won't fall out of range.
8599 */
8600 if (rold->off != rcur->off)
8601 return false;
8602 /* id relations must be preserved */
8603 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8604 return false;
8605 /* new val must satisfy old val knowledge */
8606 return range_within(rold, rcur) &&
8607 tnum_in(rold->var_off, rcur->var_off);
8608 case PTR_TO_CTX:
8609 case CONST_PTR_TO_MAP:
f1174f77 8610 case PTR_TO_PACKET_END:
d58e468b 8611 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8612 case PTR_TO_SOCKET:
8613 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8614 case PTR_TO_SOCK_COMMON:
8615 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8616 case PTR_TO_TCP_SOCK:
8617 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8618 case PTR_TO_XDP_SOCK:
f1174f77
EC
8619 /* Only valid matches are exact, which memcmp() above
8620 * would have accepted
8621 */
8622 default:
8623 /* Don't know what's going on, just say it's not safe */
8624 return false;
8625 }
969bf05e 8626
f1174f77
EC
8627 /* Shouldn't get here; if we do, say it's not safe */
8628 WARN_ON_ONCE(1);
969bf05e
AS
8629 return false;
8630}
8631
f4d7e40a
AS
8632static bool stacksafe(struct bpf_func_state *old,
8633 struct bpf_func_state *cur,
638f5b90
AS
8634 struct idpair *idmap)
8635{
8636 int i, spi;
8637
638f5b90
AS
8638 /* walk slots of the explored stack and ignore any additional
8639 * slots in the current stack, since explored(safe) state
8640 * didn't use them
8641 */
8642 for (i = 0; i < old->allocated_stack; i++) {
8643 spi = i / BPF_REG_SIZE;
8644
b233920c
AS
8645 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8646 i += BPF_REG_SIZE - 1;
cc2b14d5 8647 /* explored state didn't use this */
fd05e57b 8648 continue;
b233920c 8649 }
cc2b14d5 8650
638f5b90
AS
8651 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8652 continue;
19e2dbb7
AS
8653
8654 /* explored stack has more populated slots than current stack
8655 * and these slots were used
8656 */
8657 if (i >= cur->allocated_stack)
8658 return false;
8659
cc2b14d5
AS
8660 /* if old state was safe with misc data in the stack
8661 * it will be safe with zero-initialized stack.
8662 * The opposite is not true
8663 */
8664 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8665 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8666 continue;
638f5b90
AS
8667 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8668 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8669 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8670 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8671 * this verifier states are not equivalent,
8672 * return false to continue verification of this path
8673 */
8674 return false;
8675 if (i % BPF_REG_SIZE)
8676 continue;
8677 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8678 continue;
8679 if (!regsafe(&old->stack[spi].spilled_ptr,
8680 &cur->stack[spi].spilled_ptr,
8681 idmap))
8682 /* when explored and current stack slot are both storing
8683 * spilled registers, check that stored pointers types
8684 * are the same as well.
8685 * Ex: explored safe path could have stored
8686 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8687 * but current path has stored:
8688 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8689 * such verifier states are not equivalent.
8690 * return false to continue verification of this path
8691 */
8692 return false;
8693 }
8694 return true;
8695}
8696
fd978bf7
JS
8697static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8698{
8699 if (old->acquired_refs != cur->acquired_refs)
8700 return false;
8701 return !memcmp(old->refs, cur->refs,
8702 sizeof(*old->refs) * old->acquired_refs);
8703}
8704
f1bca824
AS
8705/* compare two verifier states
8706 *
8707 * all states stored in state_list are known to be valid, since
8708 * verifier reached 'bpf_exit' instruction through them
8709 *
8710 * this function is called when verifier exploring different branches of
8711 * execution popped from the state stack. If it sees an old state that has
8712 * more strict register state and more strict stack state then this execution
8713 * branch doesn't need to be explored further, since verifier already
8714 * concluded that more strict state leads to valid finish.
8715 *
8716 * Therefore two states are equivalent if register state is more conservative
8717 * and explored stack state is more conservative than the current one.
8718 * Example:
8719 * explored current
8720 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8721 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8722 *
8723 * In other words if current stack state (one being explored) has more
8724 * valid slots than old one that already passed validation, it means
8725 * the verifier can stop exploring and conclude that current state is valid too
8726 *
8727 * Similarly with registers. If explored state has register type as invalid
8728 * whereas register type in current state is meaningful, it means that
8729 * the current state will reach 'bpf_exit' instruction safely
8730 */
f4d7e40a
AS
8731static bool func_states_equal(struct bpf_func_state *old,
8732 struct bpf_func_state *cur)
f1bca824 8733{
f1174f77
EC
8734 struct idpair *idmap;
8735 bool ret = false;
f1bca824
AS
8736 int i;
8737
f1174f77
EC
8738 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8739 /* If we failed to allocate the idmap, just say it's not safe */
8740 if (!idmap)
1a0dc1ac 8741 return false;
f1174f77
EC
8742
8743 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8744 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8745 goto out_free;
f1bca824
AS
8746 }
8747
638f5b90
AS
8748 if (!stacksafe(old, cur, idmap))
8749 goto out_free;
fd978bf7
JS
8750
8751 if (!refsafe(old, cur))
8752 goto out_free;
f1174f77
EC
8753 ret = true;
8754out_free:
8755 kfree(idmap);
8756 return ret;
f1bca824
AS
8757}
8758
f4d7e40a
AS
8759static bool states_equal(struct bpf_verifier_env *env,
8760 struct bpf_verifier_state *old,
8761 struct bpf_verifier_state *cur)
8762{
8763 int i;
8764
8765 if (old->curframe != cur->curframe)
8766 return false;
8767
979d63d5
DB
8768 /* Verification state from speculative execution simulation
8769 * must never prune a non-speculative execution one.
8770 */
8771 if (old->speculative && !cur->speculative)
8772 return false;
8773
d83525ca
AS
8774 if (old->active_spin_lock != cur->active_spin_lock)
8775 return false;
8776
f4d7e40a
AS
8777 /* for states to be equal callsites have to be the same
8778 * and all frame states need to be equivalent
8779 */
8780 for (i = 0; i <= old->curframe; i++) {
8781 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8782 return false;
8783 if (!func_states_equal(old->frame[i], cur->frame[i]))
8784 return false;
8785 }
8786 return true;
8787}
8788
5327ed3d
JW
8789/* Return 0 if no propagation happened. Return negative error code if error
8790 * happened. Otherwise, return the propagated bit.
8791 */
55e7f3b5
JW
8792static int propagate_liveness_reg(struct bpf_verifier_env *env,
8793 struct bpf_reg_state *reg,
8794 struct bpf_reg_state *parent_reg)
8795{
5327ed3d
JW
8796 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8797 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8798 int err;
8799
5327ed3d
JW
8800 /* When comes here, read flags of PARENT_REG or REG could be any of
8801 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8802 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8803 */
8804 if (parent_flag == REG_LIVE_READ64 ||
8805 /* Or if there is no read flag from REG. */
8806 !flag ||
8807 /* Or if the read flag from REG is the same as PARENT_REG. */
8808 parent_flag == flag)
55e7f3b5
JW
8809 return 0;
8810
5327ed3d 8811 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8812 if (err)
8813 return err;
8814
5327ed3d 8815 return flag;
55e7f3b5
JW
8816}
8817
8e9cd9ce 8818/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8819 * straight-line code between a state and its parent. When we arrive at an
8820 * equivalent state (jump target or such) we didn't arrive by the straight-line
8821 * code, so read marks in the state must propagate to the parent regardless
8822 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8823 * in mark_reg_read() is for.
8e9cd9ce 8824 */
f4d7e40a
AS
8825static int propagate_liveness(struct bpf_verifier_env *env,
8826 const struct bpf_verifier_state *vstate,
8827 struct bpf_verifier_state *vparent)
dc503a8a 8828{
3f8cafa4 8829 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8830 struct bpf_func_state *state, *parent;
3f8cafa4 8831 int i, frame, err = 0;
dc503a8a 8832
f4d7e40a
AS
8833 if (vparent->curframe != vstate->curframe) {
8834 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8835 vparent->curframe, vstate->curframe);
8836 return -EFAULT;
8837 }
dc503a8a
EC
8838 /* Propagate read liveness of registers... */
8839 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8840 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8841 parent = vparent->frame[frame];
8842 state = vstate->frame[frame];
8843 parent_reg = parent->regs;
8844 state_reg = state->regs;
83d16312
JK
8845 /* We don't need to worry about FP liveness, it's read-only */
8846 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8847 err = propagate_liveness_reg(env, &state_reg[i],
8848 &parent_reg[i]);
5327ed3d 8849 if (err < 0)
3f8cafa4 8850 return err;
5327ed3d
JW
8851 if (err == REG_LIVE_READ64)
8852 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8853 }
f4d7e40a 8854
1b04aee7 8855 /* Propagate stack slots. */
f4d7e40a
AS
8856 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8857 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8858 parent_reg = &parent->stack[i].spilled_ptr;
8859 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8860 err = propagate_liveness_reg(env, state_reg,
8861 parent_reg);
5327ed3d 8862 if (err < 0)
3f8cafa4 8863 return err;
dc503a8a
EC
8864 }
8865 }
5327ed3d 8866 return 0;
dc503a8a
EC
8867}
8868
a3ce685d
AS
8869/* find precise scalars in the previous equivalent state and
8870 * propagate them into the current state
8871 */
8872static int propagate_precision(struct bpf_verifier_env *env,
8873 const struct bpf_verifier_state *old)
8874{
8875 struct bpf_reg_state *state_reg;
8876 struct bpf_func_state *state;
8877 int i, err = 0;
8878
8879 state = old->frame[old->curframe];
8880 state_reg = state->regs;
8881 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8882 if (state_reg->type != SCALAR_VALUE ||
8883 !state_reg->precise)
8884 continue;
8885 if (env->log.level & BPF_LOG_LEVEL2)
8886 verbose(env, "propagating r%d\n", i);
8887 err = mark_chain_precision(env, i);
8888 if (err < 0)
8889 return err;
8890 }
8891
8892 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8893 if (state->stack[i].slot_type[0] != STACK_SPILL)
8894 continue;
8895 state_reg = &state->stack[i].spilled_ptr;
8896 if (state_reg->type != SCALAR_VALUE ||
8897 !state_reg->precise)
8898 continue;
8899 if (env->log.level & BPF_LOG_LEVEL2)
8900 verbose(env, "propagating fp%d\n",
8901 (-i - 1) * BPF_REG_SIZE);
8902 err = mark_chain_precision_stack(env, i);
8903 if (err < 0)
8904 return err;
8905 }
8906 return 0;
8907}
8908
2589726d
AS
8909static bool states_maybe_looping(struct bpf_verifier_state *old,
8910 struct bpf_verifier_state *cur)
8911{
8912 struct bpf_func_state *fold, *fcur;
8913 int i, fr = cur->curframe;
8914
8915 if (old->curframe != fr)
8916 return false;
8917
8918 fold = old->frame[fr];
8919 fcur = cur->frame[fr];
8920 for (i = 0; i < MAX_BPF_REG; i++)
8921 if (memcmp(&fold->regs[i], &fcur->regs[i],
8922 offsetof(struct bpf_reg_state, parent)))
8923 return false;
8924 return true;
8925}
8926
8927
58e2af8b 8928static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 8929{
58e2af8b 8930 struct bpf_verifier_state_list *new_sl;
9f4686c4 8931 struct bpf_verifier_state_list *sl, **pprev;
679c782d 8932 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 8933 int i, j, err, states_cnt = 0;
10d274e8 8934 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 8935
b5dc0163 8936 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 8937 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
8938 /* this 'insn_idx' instruction wasn't marked, so we will not
8939 * be doing state search here
8940 */
8941 return 0;
8942
2589726d
AS
8943 /* bpf progs typically have pruning point every 4 instructions
8944 * http://vger.kernel.org/bpfconf2019.html#session-1
8945 * Do not add new state for future pruning if the verifier hasn't seen
8946 * at least 2 jumps and at least 8 instructions.
8947 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8948 * In tests that amounts to up to 50% reduction into total verifier
8949 * memory consumption and 20% verifier time speedup.
8950 */
8951 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8952 env->insn_processed - env->prev_insn_processed >= 8)
8953 add_new_state = true;
8954
a8f500af
AS
8955 pprev = explored_state(env, insn_idx);
8956 sl = *pprev;
8957
9242b5f5
AS
8958 clean_live_states(env, insn_idx, cur);
8959
a8f500af 8960 while (sl) {
dc2a4ebc
AS
8961 states_cnt++;
8962 if (sl->state.insn_idx != insn_idx)
8963 goto next;
2589726d
AS
8964 if (sl->state.branches) {
8965 if (states_maybe_looping(&sl->state, cur) &&
8966 states_equal(env, &sl->state, cur)) {
8967 verbose_linfo(env, insn_idx, "; ");
8968 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8969 return -EINVAL;
8970 }
8971 /* if the verifier is processing a loop, avoid adding new state
8972 * too often, since different loop iterations have distinct
8973 * states and may not help future pruning.
8974 * This threshold shouldn't be too low to make sure that
8975 * a loop with large bound will be rejected quickly.
8976 * The most abusive loop will be:
8977 * r1 += 1
8978 * if r1 < 1000000 goto pc-2
8979 * 1M insn_procssed limit / 100 == 10k peak states.
8980 * This threshold shouldn't be too high either, since states
8981 * at the end of the loop are likely to be useful in pruning.
8982 */
8983 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8984 env->insn_processed - env->prev_insn_processed < 100)
8985 add_new_state = false;
8986 goto miss;
8987 }
638f5b90 8988 if (states_equal(env, &sl->state, cur)) {
9f4686c4 8989 sl->hit_cnt++;
f1bca824 8990 /* reached equivalent register/stack state,
dc503a8a
EC
8991 * prune the search.
8992 * Registers read by the continuation are read by us.
8e9cd9ce
EC
8993 * If we have any write marks in env->cur_state, they
8994 * will prevent corresponding reads in the continuation
8995 * from reaching our parent (an explored_state). Our
8996 * own state will get the read marks recorded, but
8997 * they'll be immediately forgotten as we're pruning
8998 * this state and will pop a new one.
f1bca824 8999 */
f4d7e40a 9000 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
9001
9002 /* if previous state reached the exit with precision and
9003 * current state is equivalent to it (except precsion marks)
9004 * the precision needs to be propagated back in
9005 * the current state.
9006 */
9007 err = err ? : push_jmp_history(env, cur);
9008 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
9009 if (err)
9010 return err;
f1bca824 9011 return 1;
dc503a8a 9012 }
2589726d
AS
9013miss:
9014 /* when new state is not going to be added do not increase miss count.
9015 * Otherwise several loop iterations will remove the state
9016 * recorded earlier. The goal of these heuristics is to have
9017 * states from some iterations of the loop (some in the beginning
9018 * and some at the end) to help pruning.
9019 */
9020 if (add_new_state)
9021 sl->miss_cnt++;
9f4686c4
AS
9022 /* heuristic to determine whether this state is beneficial
9023 * to keep checking from state equivalence point of view.
9024 * Higher numbers increase max_states_per_insn and verification time,
9025 * but do not meaningfully decrease insn_processed.
9026 */
9027 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9028 /* the state is unlikely to be useful. Remove it to
9029 * speed up verification
9030 */
9031 *pprev = sl->next;
9032 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
9033 u32 br = sl->state.branches;
9034
9035 WARN_ONCE(br,
9036 "BUG live_done but branches_to_explore %d\n",
9037 br);
9f4686c4
AS
9038 free_verifier_state(&sl->state, false);
9039 kfree(sl);
9040 env->peak_states--;
9041 } else {
9042 /* cannot free this state, since parentage chain may
9043 * walk it later. Add it for free_list instead to
9044 * be freed at the end of verification
9045 */
9046 sl->next = env->free_list;
9047 env->free_list = sl;
9048 }
9049 sl = *pprev;
9050 continue;
9051 }
dc2a4ebc 9052next:
9f4686c4
AS
9053 pprev = &sl->next;
9054 sl = *pprev;
f1bca824
AS
9055 }
9056
06ee7115
AS
9057 if (env->max_states_per_insn < states_cnt)
9058 env->max_states_per_insn = states_cnt;
9059
2c78ee89 9060 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 9061 return push_jmp_history(env, cur);
ceefbc96 9062
2589726d 9063 if (!add_new_state)
b5dc0163 9064 return push_jmp_history(env, cur);
ceefbc96 9065
2589726d
AS
9066 /* There were no equivalent states, remember the current one.
9067 * Technically the current state is not proven to be safe yet,
f4d7e40a 9068 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 9069 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 9070 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
9071 * again on the way to bpf_exit.
9072 * When looping the sl->state.branches will be > 0 and this state
9073 * will not be considered for equivalence until branches == 0.
f1bca824 9074 */
638f5b90 9075 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
9076 if (!new_sl)
9077 return -ENOMEM;
06ee7115
AS
9078 env->total_states++;
9079 env->peak_states++;
2589726d
AS
9080 env->prev_jmps_processed = env->jmps_processed;
9081 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
9082
9083 /* add new state to the head of linked list */
679c782d
EC
9084 new = &new_sl->state;
9085 err = copy_verifier_state(new, cur);
1969db47 9086 if (err) {
679c782d 9087 free_verifier_state(new, false);
1969db47
AS
9088 kfree(new_sl);
9089 return err;
9090 }
dc2a4ebc 9091 new->insn_idx = insn_idx;
2589726d
AS
9092 WARN_ONCE(new->branches != 1,
9093 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 9094
2589726d 9095 cur->parent = new;
b5dc0163
AS
9096 cur->first_insn_idx = insn_idx;
9097 clear_jmp_history(cur);
5d839021
AS
9098 new_sl->next = *explored_state(env, insn_idx);
9099 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
9100 /* connect new state to parentage chain. Current frame needs all
9101 * registers connected. Only r6 - r9 of the callers are alive (pushed
9102 * to the stack implicitly by JITs) so in callers' frames connect just
9103 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9104 * the state of the call instruction (with WRITTEN set), and r0 comes
9105 * from callee with its full parentage chain, anyway.
9106 */
8e9cd9ce
EC
9107 /* clear write marks in current state: the writes we did are not writes
9108 * our child did, so they don't screen off its reads from us.
9109 * (There are no read marks in current state, because reads always mark
9110 * their parent and current state never has children yet. Only
9111 * explored_states can get read marks.)
9112 */
eea1c227
AS
9113 for (j = 0; j <= cur->curframe; j++) {
9114 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9115 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9116 for (i = 0; i < BPF_REG_FP; i++)
9117 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9118 }
f4d7e40a
AS
9119
9120 /* all stack frames are accessible from callee, clear them all */
9121 for (j = 0; j <= cur->curframe; j++) {
9122 struct bpf_func_state *frame = cur->frame[j];
679c782d 9123 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 9124
679c782d 9125 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 9126 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
9127 frame->stack[i].spilled_ptr.parent =
9128 &newframe->stack[i].spilled_ptr;
9129 }
f4d7e40a 9130 }
f1bca824
AS
9131 return 0;
9132}
9133
c64b7983
JS
9134/* Return true if it's OK to have the same insn return a different type. */
9135static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9136{
9137 switch (type) {
9138 case PTR_TO_CTX:
9139 case PTR_TO_SOCKET:
9140 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9141 case PTR_TO_SOCK_COMMON:
9142 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9143 case PTR_TO_TCP_SOCK:
9144 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9145 case PTR_TO_XDP_SOCK:
2a02759e 9146 case PTR_TO_BTF_ID:
b121b341 9147 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
9148 return false;
9149 default:
9150 return true;
9151 }
9152}
9153
9154/* If an instruction was previously used with particular pointer types, then we
9155 * need to be careful to avoid cases such as the below, where it may be ok
9156 * for one branch accessing the pointer, but not ok for the other branch:
9157 *
9158 * R1 = sock_ptr
9159 * goto X;
9160 * ...
9161 * R1 = some_other_valid_ptr;
9162 * goto X;
9163 * ...
9164 * R2 = *(u32 *)(R1 + 0);
9165 */
9166static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9167{
9168 return src != prev && (!reg_type_mismatch_ok(src) ||
9169 !reg_type_mismatch_ok(prev));
9170}
9171
58e2af8b 9172static int do_check(struct bpf_verifier_env *env)
17a52670 9173{
6f8a57cc 9174 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 9175 struct bpf_verifier_state *state = env->cur_state;
17a52670 9176 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 9177 struct bpf_reg_state *regs;
06ee7115 9178 int insn_cnt = env->prog->len;
17a52670 9179 bool do_print_state = false;
b5dc0163 9180 int prev_insn_idx = -1;
17a52670 9181
17a52670
AS
9182 for (;;) {
9183 struct bpf_insn *insn;
9184 u8 class;
9185 int err;
9186
b5dc0163 9187 env->prev_insn_idx = prev_insn_idx;
c08435ec 9188 if (env->insn_idx >= insn_cnt) {
61bd5218 9189 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 9190 env->insn_idx, insn_cnt);
17a52670
AS
9191 return -EFAULT;
9192 }
9193
c08435ec 9194 insn = &insns[env->insn_idx];
17a52670
AS
9195 class = BPF_CLASS(insn->code);
9196
06ee7115 9197 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
9198 verbose(env,
9199 "BPF program is too large. Processed %d insn\n",
06ee7115 9200 env->insn_processed);
17a52670
AS
9201 return -E2BIG;
9202 }
9203
c08435ec 9204 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
9205 if (err < 0)
9206 return err;
9207 if (err == 1) {
9208 /* found equivalent state, can prune the search */
06ee7115 9209 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9210 if (do_print_state)
979d63d5
DB
9211 verbose(env, "\nfrom %d to %d%s: safe\n",
9212 env->prev_insn_idx, env->insn_idx,
9213 env->cur_state->speculative ?
9214 " (speculative execution)" : "");
f1bca824 9215 else
c08435ec 9216 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9217 }
9218 goto process_bpf_exit;
9219 }
9220
c3494801
AS
9221 if (signal_pending(current))
9222 return -EAGAIN;
9223
3c2ce60b
DB
9224 if (need_resched())
9225 cond_resched();
9226
06ee7115
AS
9227 if (env->log.level & BPF_LOG_LEVEL2 ||
9228 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9229 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9230 verbose(env, "%d:", env->insn_idx);
c5fc9692 9231 else
979d63d5
DB
9232 verbose(env, "\nfrom %d to %d%s:",
9233 env->prev_insn_idx, env->insn_idx,
9234 env->cur_state->speculative ?
9235 " (speculative execution)" : "");
f4d7e40a 9236 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9237 do_print_state = false;
9238 }
9239
06ee7115 9240 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9241 const struct bpf_insn_cbs cbs = {
9242 .cb_print = verbose,
abe08840 9243 .private_data = env,
7105e828
DB
9244 };
9245
c08435ec
DB
9246 verbose_linfo(env, env->insn_idx, "; ");
9247 verbose(env, "%d: ", env->insn_idx);
abe08840 9248 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9249 }
9250
cae1927c 9251 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9252 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9253 env->prev_insn_idx);
cae1927c
JK
9254 if (err)
9255 return err;
9256 }
13a27dfc 9257
638f5b90 9258 regs = cur_regs(env);
51c39bb1 9259 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9260 prev_insn_idx = env->insn_idx;
fd978bf7 9261
17a52670 9262 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9263 err = check_alu_op(env, insn);
17a52670
AS
9264 if (err)
9265 return err;
9266
9267 } else if (class == BPF_LDX) {
3df126f3 9268 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9269
9270 /* check for reserved fields is already done */
9271
17a52670 9272 /* check src operand */
dc503a8a 9273 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9274 if (err)
9275 return err;
9276
dc503a8a 9277 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9278 if (err)
9279 return err;
9280
725f9dcd
AS
9281 src_reg_type = regs[insn->src_reg].type;
9282
17a52670
AS
9283 /* check that memory (src_reg + off) is readable,
9284 * the state of dst_reg will be updated by this func
9285 */
c08435ec
DB
9286 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9287 insn->off, BPF_SIZE(insn->code),
9288 BPF_READ, insn->dst_reg, false);
17a52670
AS
9289 if (err)
9290 return err;
9291
c08435ec 9292 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9293
9294 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9295 /* saw a valid insn
9296 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9297 * save type to validate intersecting paths
9bac3d6d 9298 */
3df126f3 9299 *prev_src_type = src_reg_type;
9bac3d6d 9300
c64b7983 9301 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9302 /* ABuser program is trying to use the same insn
9303 * dst_reg = *(u32*) (src_reg + off)
9304 * with different pointer types:
9305 * src_reg == ctx in one branch and
9306 * src_reg == stack|map in some other branch.
9307 * Reject it.
9308 */
61bd5218 9309 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9310 return -EINVAL;
9311 }
9312
17a52670 9313 } else if (class == BPF_STX) {
3df126f3 9314 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9315
17a52670 9316 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 9317 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
9318 if (err)
9319 return err;
c08435ec 9320 env->insn_idx++;
17a52670
AS
9321 continue;
9322 }
9323
17a52670 9324 /* check src1 operand */
dc503a8a 9325 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9326 if (err)
9327 return err;
9328 /* check src2 operand */
dc503a8a 9329 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9330 if (err)
9331 return err;
9332
d691f9e8
AS
9333 dst_reg_type = regs[insn->dst_reg].type;
9334
17a52670 9335 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9336 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9337 insn->off, BPF_SIZE(insn->code),
9338 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9339 if (err)
9340 return err;
9341
c08435ec 9342 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9343
9344 if (*prev_dst_type == NOT_INIT) {
9345 *prev_dst_type = dst_reg_type;
c64b7983 9346 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9347 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9348 return -EINVAL;
9349 }
9350
17a52670
AS
9351 } else if (class == BPF_ST) {
9352 if (BPF_MODE(insn->code) != BPF_MEM ||
9353 insn->src_reg != BPF_REG_0) {
61bd5218 9354 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9355 return -EINVAL;
9356 }
9357 /* check src operand */
dc503a8a 9358 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9359 if (err)
9360 return err;
9361
f37a8cb8 9362 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9363 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9364 insn->dst_reg,
9365 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9366 return -EACCES;
9367 }
9368
17a52670 9369 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9370 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9371 insn->off, BPF_SIZE(insn->code),
9372 BPF_WRITE, -1, false);
17a52670
AS
9373 if (err)
9374 return err;
9375
092ed096 9376 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9377 u8 opcode = BPF_OP(insn->code);
9378
2589726d 9379 env->jmps_processed++;
17a52670
AS
9380 if (opcode == BPF_CALL) {
9381 if (BPF_SRC(insn->code) != BPF_K ||
9382 insn->off != 0 ||
f4d7e40a
AS
9383 (insn->src_reg != BPF_REG_0 &&
9384 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9385 insn->dst_reg != BPF_REG_0 ||
9386 class == BPF_JMP32) {
61bd5218 9387 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9388 return -EINVAL;
9389 }
9390
d83525ca
AS
9391 if (env->cur_state->active_spin_lock &&
9392 (insn->src_reg == BPF_PSEUDO_CALL ||
9393 insn->imm != BPF_FUNC_spin_unlock)) {
9394 verbose(env, "function calls are not allowed while holding a lock\n");
9395 return -EINVAL;
9396 }
f4d7e40a 9397 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9398 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9399 else
c08435ec 9400 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9401 if (err)
9402 return err;
9403
9404 } else if (opcode == BPF_JA) {
9405 if (BPF_SRC(insn->code) != BPF_K ||
9406 insn->imm != 0 ||
9407 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9408 insn->dst_reg != BPF_REG_0 ||
9409 class == BPF_JMP32) {
61bd5218 9410 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9411 return -EINVAL;
9412 }
9413
c08435ec 9414 env->insn_idx += insn->off + 1;
17a52670
AS
9415 continue;
9416
9417 } else if (opcode == BPF_EXIT) {
9418 if (BPF_SRC(insn->code) != BPF_K ||
9419 insn->imm != 0 ||
9420 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9421 insn->dst_reg != BPF_REG_0 ||
9422 class == BPF_JMP32) {
61bd5218 9423 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9424 return -EINVAL;
9425 }
9426
d83525ca
AS
9427 if (env->cur_state->active_spin_lock) {
9428 verbose(env, "bpf_spin_unlock is missing\n");
9429 return -EINVAL;
9430 }
9431
f4d7e40a
AS
9432 if (state->curframe) {
9433 /* exit from nested function */
c08435ec 9434 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9435 if (err)
9436 return err;
9437 do_print_state = true;
9438 continue;
9439 }
9440
fd978bf7
JS
9441 err = check_reference_leak(env);
9442 if (err)
9443 return err;
9444
390ee7e2
AS
9445 err = check_return_code(env);
9446 if (err)
9447 return err;
f1bca824 9448process_bpf_exit:
2589726d 9449 update_branch_counts(env, env->cur_state);
b5dc0163 9450 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9451 &env->insn_idx, pop_log);
638f5b90
AS
9452 if (err < 0) {
9453 if (err != -ENOENT)
9454 return err;
17a52670
AS
9455 break;
9456 } else {
9457 do_print_state = true;
9458 continue;
9459 }
9460 } else {
c08435ec 9461 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9462 if (err)
9463 return err;
9464 }
9465 } else if (class == BPF_LD) {
9466 u8 mode = BPF_MODE(insn->code);
9467
9468 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9469 err = check_ld_abs(env, insn);
9470 if (err)
9471 return err;
9472
17a52670
AS
9473 } else if (mode == BPF_IMM) {
9474 err = check_ld_imm(env, insn);
9475 if (err)
9476 return err;
9477
c08435ec 9478 env->insn_idx++;
51c39bb1 9479 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9480 } else {
61bd5218 9481 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9482 return -EINVAL;
9483 }
9484 } else {
61bd5218 9485 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9486 return -EINVAL;
9487 }
9488
c08435ec 9489 env->insn_idx++;
17a52670
AS
9490 }
9491
9492 return 0;
9493}
9494
4976b718
HL
9495/* replace pseudo btf_id with kernel symbol address */
9496static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9497 struct bpf_insn *insn,
9498 struct bpf_insn_aux_data *aux)
9499{
eaa6bcb7
HL
9500 u32 datasec_id, type, id = insn->imm;
9501 const struct btf_var_secinfo *vsi;
9502 const struct btf_type *datasec;
4976b718
HL
9503 const struct btf_type *t;
9504 const char *sym_name;
eaa6bcb7 9505 bool percpu = false;
4976b718 9506 u64 addr;
eaa6bcb7 9507 int i;
4976b718
HL
9508
9509 if (!btf_vmlinux) {
9510 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9511 return -EINVAL;
9512 }
9513
9514 if (insn[1].imm != 0) {
9515 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9516 return -EINVAL;
9517 }
9518
9519 t = btf_type_by_id(btf_vmlinux, id);
9520 if (!t) {
9521 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9522 return -ENOENT;
9523 }
9524
9525 if (!btf_type_is_var(t)) {
9526 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9527 id);
9528 return -EINVAL;
9529 }
9530
9531 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9532 addr = kallsyms_lookup_name(sym_name);
9533 if (!addr) {
9534 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9535 sym_name);
9536 return -ENOENT;
9537 }
9538
eaa6bcb7
HL
9539 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9540 BTF_KIND_DATASEC);
9541 if (datasec_id > 0) {
9542 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9543 for_each_vsi(i, datasec, vsi) {
9544 if (vsi->type == id) {
9545 percpu = true;
9546 break;
9547 }
9548 }
9549 }
9550
4976b718
HL
9551 insn[0].imm = (u32)addr;
9552 insn[1].imm = addr >> 32;
9553
9554 type = t->type;
9555 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
eaa6bcb7
HL
9556 if (percpu) {
9557 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9558 aux->btf_var.btf_id = type;
9559 } else if (!btf_type_is_struct(t)) {
4976b718
HL
9560 const struct btf_type *ret;
9561 const char *tname;
9562 u32 tsize;
9563
9564 /* resolve the type size of ksym. */
9565 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9566 if (IS_ERR(ret)) {
9567 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9568 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9569 tname, PTR_ERR(ret));
9570 return -EINVAL;
9571 }
9572 aux->btf_var.reg_type = PTR_TO_MEM;
9573 aux->btf_var.mem_size = tsize;
9574 } else {
9575 aux->btf_var.reg_type = PTR_TO_BTF_ID;
9576 aux->btf_var.btf_id = type;
9577 }
9578 return 0;
9579}
9580
56f668df
MKL
9581static int check_map_prealloc(struct bpf_map *map)
9582{
9583 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9584 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9585 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9586 !(map->map_flags & BPF_F_NO_PREALLOC);
9587}
9588
d83525ca
AS
9589static bool is_tracing_prog_type(enum bpf_prog_type type)
9590{
9591 switch (type) {
9592 case BPF_PROG_TYPE_KPROBE:
9593 case BPF_PROG_TYPE_TRACEPOINT:
9594 case BPF_PROG_TYPE_PERF_EVENT:
9595 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9596 return true;
9597 default:
9598 return false;
9599 }
9600}
9601
94dacdbd
TG
9602static bool is_preallocated_map(struct bpf_map *map)
9603{
9604 if (!check_map_prealloc(map))
9605 return false;
9606 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9607 return false;
9608 return true;
9609}
9610
61bd5218
JK
9611static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9612 struct bpf_map *map,
fdc15d38
AS
9613 struct bpf_prog *prog)
9614
9615{
7e40781c 9616 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9617 /*
9618 * Validate that trace type programs use preallocated hash maps.
9619 *
9620 * For programs attached to PERF events this is mandatory as the
9621 * perf NMI can hit any arbitrary code sequence.
9622 *
9623 * All other trace types using preallocated hash maps are unsafe as
9624 * well because tracepoint or kprobes can be inside locked regions
9625 * of the memory allocator or at a place where a recursion into the
9626 * memory allocator would see inconsistent state.
9627 *
2ed905c5
TG
9628 * On RT enabled kernels run-time allocation of all trace type
9629 * programs is strictly prohibited due to lock type constraints. On
9630 * !RT kernels it is allowed for backwards compatibility reasons for
9631 * now, but warnings are emitted so developers are made aware of
9632 * the unsafety and can fix their programs before this is enforced.
56f668df 9633 */
7e40781c
UP
9634 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9635 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9636 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9637 return -EINVAL;
9638 }
2ed905c5
TG
9639 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9640 verbose(env, "trace type programs can only use preallocated hash map\n");
9641 return -EINVAL;
9642 }
94dacdbd
TG
9643 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9644 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9645 }
a3884572 9646
7e40781c
UP
9647 if ((is_tracing_prog_type(prog_type) ||
9648 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
d83525ca
AS
9649 map_value_has_spin_lock(map)) {
9650 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9651 return -EINVAL;
9652 }
9653
a3884572 9654 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9655 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9656 verbose(env, "offload device mismatch between prog and map\n");
9657 return -EINVAL;
9658 }
9659
85d33df3
MKL
9660 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9661 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9662 return -EINVAL;
9663 }
9664
1e6c62a8
AS
9665 if (prog->aux->sleepable)
9666 switch (map->map_type) {
9667 case BPF_MAP_TYPE_HASH:
9668 case BPF_MAP_TYPE_LRU_HASH:
9669 case BPF_MAP_TYPE_ARRAY:
9670 if (!is_preallocated_map(map)) {
9671 verbose(env,
9672 "Sleepable programs can only use preallocated hash maps\n");
9673 return -EINVAL;
9674 }
9675 break;
9676 default:
9677 verbose(env,
9678 "Sleepable programs can only use array and hash maps\n");
9679 return -EINVAL;
9680 }
9681
fdc15d38
AS
9682 return 0;
9683}
9684
b741f163
RG
9685static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9686{
9687 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9688 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9689}
9690
4976b718
HL
9691/* find and rewrite pseudo imm in ld_imm64 instructions:
9692 *
9693 * 1. if it accesses map FD, replace it with actual map pointer.
9694 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9695 *
9696 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 9697 */
4976b718 9698static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
9699{
9700 struct bpf_insn *insn = env->prog->insnsi;
9701 int insn_cnt = env->prog->len;
fdc15d38 9702 int i, j, err;
0246e64d 9703
f1f7714e 9704 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9705 if (err)
9706 return err;
9707
0246e64d 9708 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9709 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9710 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9711 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9712 return -EINVAL;
9713 }
9714
d691f9e8
AS
9715 if (BPF_CLASS(insn->code) == BPF_STX &&
9716 ((BPF_MODE(insn->code) != BPF_MEM &&
9717 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9718 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9719 return -EINVAL;
9720 }
9721
0246e64d 9722 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9723 struct bpf_insn_aux_data *aux;
0246e64d
AS
9724 struct bpf_map *map;
9725 struct fd f;
d8eca5bb 9726 u64 addr;
0246e64d
AS
9727
9728 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9729 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9730 insn[1].off != 0) {
61bd5218 9731 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9732 return -EINVAL;
9733 }
9734
d8eca5bb 9735 if (insn[0].src_reg == 0)
0246e64d
AS
9736 /* valid generic load 64-bit imm */
9737 goto next_insn;
9738
4976b718
HL
9739 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9740 aux = &env->insn_aux_data[i];
9741 err = check_pseudo_btf_id(env, insn, aux);
9742 if (err)
9743 return err;
9744 goto next_insn;
9745 }
9746
d8eca5bb
DB
9747 /* In final convert_pseudo_ld_imm64() step, this is
9748 * converted into regular 64-bit imm load insn.
9749 */
9750 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9751 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9752 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9753 insn[1].imm != 0)) {
9754 verbose(env,
9755 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9756 return -EINVAL;
9757 }
9758
20182390 9759 f = fdget(insn[0].imm);
c2101297 9760 map = __bpf_map_get(f);
0246e64d 9761 if (IS_ERR(map)) {
61bd5218 9762 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9763 insn[0].imm);
0246e64d
AS
9764 return PTR_ERR(map);
9765 }
9766
61bd5218 9767 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9768 if (err) {
9769 fdput(f);
9770 return err;
9771 }
9772
d8eca5bb
DB
9773 aux = &env->insn_aux_data[i];
9774 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9775 addr = (unsigned long)map;
9776 } else {
9777 u32 off = insn[1].imm;
9778
9779 if (off >= BPF_MAX_VAR_OFF) {
9780 verbose(env, "direct value offset of %u is not allowed\n", off);
9781 fdput(f);
9782 return -EINVAL;
9783 }
9784
9785 if (!map->ops->map_direct_value_addr) {
9786 verbose(env, "no direct value access support for this map type\n");
9787 fdput(f);
9788 return -EINVAL;
9789 }
9790
9791 err = map->ops->map_direct_value_addr(map, &addr, off);
9792 if (err) {
9793 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9794 map->value_size, off);
9795 fdput(f);
9796 return err;
9797 }
9798
9799 aux->map_off = off;
9800 addr += off;
9801 }
9802
9803 insn[0].imm = (u32)addr;
9804 insn[1].imm = addr >> 32;
0246e64d
AS
9805
9806 /* check whether we recorded this map already */
d8eca5bb 9807 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9808 if (env->used_maps[j] == map) {
d8eca5bb 9809 aux->map_index = j;
0246e64d
AS
9810 fdput(f);
9811 goto next_insn;
9812 }
d8eca5bb 9813 }
0246e64d
AS
9814
9815 if (env->used_map_cnt >= MAX_USED_MAPS) {
9816 fdput(f);
9817 return -E2BIG;
9818 }
9819
0246e64d
AS
9820 /* hold the map. If the program is rejected by verifier,
9821 * the map will be released by release_maps() or it
9822 * will be used by the valid program until it's unloaded
ab7f5bf0 9823 * and all maps are released in free_used_maps()
0246e64d 9824 */
1e0bd5a0 9825 bpf_map_inc(map);
d8eca5bb
DB
9826
9827 aux->map_index = env->used_map_cnt;
92117d84
AS
9828 env->used_maps[env->used_map_cnt++] = map;
9829
b741f163 9830 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9831 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9832 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9833 fdput(f);
9834 return -EBUSY;
9835 }
9836
0246e64d
AS
9837 fdput(f);
9838next_insn:
9839 insn++;
9840 i++;
5e581dad
DB
9841 continue;
9842 }
9843
9844 /* Basic sanity check before we invest more work here. */
9845 if (!bpf_opcode_in_insntable(insn->code)) {
9846 verbose(env, "unknown opcode %02x\n", insn->code);
9847 return -EINVAL;
0246e64d
AS
9848 }
9849 }
9850
9851 /* now all pseudo BPF_LD_IMM64 instructions load valid
9852 * 'struct bpf_map *' into a register instead of user map_fd.
9853 * These pointers will be used later by verifier to validate map access.
9854 */
9855 return 0;
9856}
9857
9858/* drop refcnt of maps used by the rejected program */
58e2af8b 9859static void release_maps(struct bpf_verifier_env *env)
0246e64d 9860{
a2ea0746
DB
9861 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9862 env->used_map_cnt);
0246e64d
AS
9863}
9864
9865/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9866static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9867{
9868 struct bpf_insn *insn = env->prog->insnsi;
9869 int insn_cnt = env->prog->len;
9870 int i;
9871
9872 for (i = 0; i < insn_cnt; i++, insn++)
9873 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9874 insn->src_reg = 0;
9875}
9876
8041902d
AS
9877/* single env->prog->insni[off] instruction was replaced with the range
9878 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9879 * [0, off) and [off, end) to new locations, so the patched range stays zero
9880 */
b325fbca
JW
9881static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9882 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9883{
9884 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9885 struct bpf_insn *insn = new_prog->insnsi;
9886 u32 prog_len;
c131187d 9887 int i;
8041902d 9888
b325fbca
JW
9889 /* aux info at OFF always needs adjustment, no matter fast path
9890 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9891 * original insn at old prog.
9892 */
9893 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9894
8041902d
AS
9895 if (cnt == 1)
9896 return 0;
b325fbca 9897 prog_len = new_prog->len;
fad953ce
KC
9898 new_data = vzalloc(array_size(prog_len,
9899 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9900 if (!new_data)
9901 return -ENOMEM;
9902 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9903 memcpy(new_data + off + cnt - 1, old_data + off,
9904 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9905 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9906 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9907 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9908 }
8041902d
AS
9909 env->insn_aux_data = new_data;
9910 vfree(old_data);
9911 return 0;
9912}
9913
cc8b0b92
AS
9914static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9915{
9916 int i;
9917
9918 if (len == 1)
9919 return;
4cb3d99c
JW
9920 /* NOTE: fake 'exit' subprog should be updated as well. */
9921 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 9922 if (env->subprog_info[i].start <= off)
cc8b0b92 9923 continue;
9c8105bd 9924 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
9925 }
9926}
9927
a748c697
MF
9928static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
9929{
9930 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
9931 int i, sz = prog->aux->size_poke_tab;
9932 struct bpf_jit_poke_descriptor *desc;
9933
9934 for (i = 0; i < sz; i++) {
9935 desc = &tab[i];
9936 desc->insn_idx += len - 1;
9937 }
9938}
9939
8041902d
AS
9940static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9941 const struct bpf_insn *patch, u32 len)
9942{
9943 struct bpf_prog *new_prog;
9944
9945 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
9946 if (IS_ERR(new_prog)) {
9947 if (PTR_ERR(new_prog) == -ERANGE)
9948 verbose(env,
9949 "insn %d cannot be patched due to 16-bit range\n",
9950 env->insn_aux_data[off].orig_idx);
8041902d 9951 return NULL;
4f73379e 9952 }
b325fbca 9953 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 9954 return NULL;
cc8b0b92 9955 adjust_subprog_starts(env, off, len);
a748c697 9956 adjust_poke_descs(new_prog, len);
8041902d
AS
9957 return new_prog;
9958}
9959
52875a04
JK
9960static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9961 u32 off, u32 cnt)
9962{
9963 int i, j;
9964
9965 /* find first prog starting at or after off (first to remove) */
9966 for (i = 0; i < env->subprog_cnt; i++)
9967 if (env->subprog_info[i].start >= off)
9968 break;
9969 /* find first prog starting at or after off + cnt (first to stay) */
9970 for (j = i; j < env->subprog_cnt; j++)
9971 if (env->subprog_info[j].start >= off + cnt)
9972 break;
9973 /* if j doesn't start exactly at off + cnt, we are just removing
9974 * the front of previous prog
9975 */
9976 if (env->subprog_info[j].start != off + cnt)
9977 j--;
9978
9979 if (j > i) {
9980 struct bpf_prog_aux *aux = env->prog->aux;
9981 int move;
9982
9983 /* move fake 'exit' subprog as well */
9984 move = env->subprog_cnt + 1 - j;
9985
9986 memmove(env->subprog_info + i,
9987 env->subprog_info + j,
9988 sizeof(*env->subprog_info) * move);
9989 env->subprog_cnt -= j - i;
9990
9991 /* remove func_info */
9992 if (aux->func_info) {
9993 move = aux->func_info_cnt - j;
9994
9995 memmove(aux->func_info + i,
9996 aux->func_info + j,
9997 sizeof(*aux->func_info) * move);
9998 aux->func_info_cnt -= j - i;
9999 /* func_info->insn_off is set after all code rewrites,
10000 * in adjust_btf_func() - no need to adjust
10001 */
10002 }
10003 } else {
10004 /* convert i from "first prog to remove" to "first to adjust" */
10005 if (env->subprog_info[i].start == off)
10006 i++;
10007 }
10008
10009 /* update fake 'exit' subprog as well */
10010 for (; i <= env->subprog_cnt; i++)
10011 env->subprog_info[i].start -= cnt;
10012
10013 return 0;
10014}
10015
10016static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10017 u32 cnt)
10018{
10019 struct bpf_prog *prog = env->prog;
10020 u32 i, l_off, l_cnt, nr_linfo;
10021 struct bpf_line_info *linfo;
10022
10023 nr_linfo = prog->aux->nr_linfo;
10024 if (!nr_linfo)
10025 return 0;
10026
10027 linfo = prog->aux->linfo;
10028
10029 /* find first line info to remove, count lines to be removed */
10030 for (i = 0; i < nr_linfo; i++)
10031 if (linfo[i].insn_off >= off)
10032 break;
10033
10034 l_off = i;
10035 l_cnt = 0;
10036 for (; i < nr_linfo; i++)
10037 if (linfo[i].insn_off < off + cnt)
10038 l_cnt++;
10039 else
10040 break;
10041
10042 /* First live insn doesn't match first live linfo, it needs to "inherit"
10043 * last removed linfo. prog is already modified, so prog->len == off
10044 * means no live instructions after (tail of the program was removed).
10045 */
10046 if (prog->len != off && l_cnt &&
10047 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10048 l_cnt--;
10049 linfo[--i].insn_off = off + cnt;
10050 }
10051
10052 /* remove the line info which refer to the removed instructions */
10053 if (l_cnt) {
10054 memmove(linfo + l_off, linfo + i,
10055 sizeof(*linfo) * (nr_linfo - i));
10056
10057 prog->aux->nr_linfo -= l_cnt;
10058 nr_linfo = prog->aux->nr_linfo;
10059 }
10060
10061 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10062 for (i = l_off; i < nr_linfo; i++)
10063 linfo[i].insn_off -= cnt;
10064
10065 /* fix up all subprogs (incl. 'exit') which start >= off */
10066 for (i = 0; i <= env->subprog_cnt; i++)
10067 if (env->subprog_info[i].linfo_idx > l_off) {
10068 /* program may have started in the removed region but
10069 * may not be fully removed
10070 */
10071 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10072 env->subprog_info[i].linfo_idx -= l_cnt;
10073 else
10074 env->subprog_info[i].linfo_idx = l_off;
10075 }
10076
10077 return 0;
10078}
10079
10080static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10081{
10082 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10083 unsigned int orig_prog_len = env->prog->len;
10084 int err;
10085
08ca90af
JK
10086 if (bpf_prog_is_dev_bound(env->prog->aux))
10087 bpf_prog_offload_remove_insns(env, off, cnt);
10088
52875a04
JK
10089 err = bpf_remove_insns(env->prog, off, cnt);
10090 if (err)
10091 return err;
10092
10093 err = adjust_subprog_starts_after_remove(env, off, cnt);
10094 if (err)
10095 return err;
10096
10097 err = bpf_adj_linfo_after_remove(env, off, cnt);
10098 if (err)
10099 return err;
10100
10101 memmove(aux_data + off, aux_data + off + cnt,
10102 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10103
10104 return 0;
10105}
10106
2a5418a1
DB
10107/* The verifier does more data flow analysis than llvm and will not
10108 * explore branches that are dead at run time. Malicious programs can
10109 * have dead code too. Therefore replace all dead at-run-time code
10110 * with 'ja -1'.
10111 *
10112 * Just nops are not optimal, e.g. if they would sit at the end of the
10113 * program and through another bug we would manage to jump there, then
10114 * we'd execute beyond program memory otherwise. Returning exception
10115 * code also wouldn't work since we can have subprogs where the dead
10116 * code could be located.
c131187d
AS
10117 */
10118static void sanitize_dead_code(struct bpf_verifier_env *env)
10119{
10120 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 10121 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
10122 struct bpf_insn *insn = env->prog->insnsi;
10123 const int insn_cnt = env->prog->len;
10124 int i;
10125
10126 for (i = 0; i < insn_cnt; i++) {
10127 if (aux_data[i].seen)
10128 continue;
2a5418a1 10129 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
10130 }
10131}
10132
e2ae4ca2
JK
10133static bool insn_is_cond_jump(u8 code)
10134{
10135 u8 op;
10136
092ed096
JW
10137 if (BPF_CLASS(code) == BPF_JMP32)
10138 return true;
10139
e2ae4ca2
JK
10140 if (BPF_CLASS(code) != BPF_JMP)
10141 return false;
10142
10143 op = BPF_OP(code);
10144 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10145}
10146
10147static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10148{
10149 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10150 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10151 struct bpf_insn *insn = env->prog->insnsi;
10152 const int insn_cnt = env->prog->len;
10153 int i;
10154
10155 for (i = 0; i < insn_cnt; i++, insn++) {
10156 if (!insn_is_cond_jump(insn->code))
10157 continue;
10158
10159 if (!aux_data[i + 1].seen)
10160 ja.off = insn->off;
10161 else if (!aux_data[i + 1 + insn->off].seen)
10162 ja.off = 0;
10163 else
10164 continue;
10165
08ca90af
JK
10166 if (bpf_prog_is_dev_bound(env->prog->aux))
10167 bpf_prog_offload_replace_insn(env, i, &ja);
10168
e2ae4ca2
JK
10169 memcpy(insn, &ja, sizeof(ja));
10170 }
10171}
10172
52875a04
JK
10173static int opt_remove_dead_code(struct bpf_verifier_env *env)
10174{
10175 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10176 int insn_cnt = env->prog->len;
10177 int i, err;
10178
10179 for (i = 0; i < insn_cnt; i++) {
10180 int j;
10181
10182 j = 0;
10183 while (i + j < insn_cnt && !aux_data[i + j].seen)
10184 j++;
10185 if (!j)
10186 continue;
10187
10188 err = verifier_remove_insns(env, i, j);
10189 if (err)
10190 return err;
10191 insn_cnt = env->prog->len;
10192 }
10193
10194 return 0;
10195}
10196
a1b14abc
JK
10197static int opt_remove_nops(struct bpf_verifier_env *env)
10198{
10199 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10200 struct bpf_insn *insn = env->prog->insnsi;
10201 int insn_cnt = env->prog->len;
10202 int i, err;
10203
10204 for (i = 0; i < insn_cnt; i++) {
10205 if (memcmp(&insn[i], &ja, sizeof(ja)))
10206 continue;
10207
10208 err = verifier_remove_insns(env, i, 1);
10209 if (err)
10210 return err;
10211 insn_cnt--;
10212 i--;
10213 }
10214
10215 return 0;
10216}
10217
d6c2308c
JW
10218static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10219 const union bpf_attr *attr)
a4b1d3c1 10220{
d6c2308c 10221 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 10222 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 10223 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 10224 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 10225 struct bpf_prog *new_prog;
d6c2308c 10226 bool rnd_hi32;
a4b1d3c1 10227
d6c2308c 10228 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 10229 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
10230 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10231 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10232 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
10233 for (i = 0; i < len; i++) {
10234 int adj_idx = i + delta;
10235 struct bpf_insn insn;
10236
d6c2308c
JW
10237 insn = insns[adj_idx];
10238 if (!aux[adj_idx].zext_dst) {
10239 u8 code, class;
10240 u32 imm_rnd;
10241
10242 if (!rnd_hi32)
10243 continue;
10244
10245 code = insn.code;
10246 class = BPF_CLASS(code);
10247 if (insn_no_def(&insn))
10248 continue;
10249
10250 /* NOTE: arg "reg" (the fourth one) is only used for
10251 * BPF_STX which has been ruled out in above
10252 * check, it is safe to pass NULL here.
10253 */
10254 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10255 if (class == BPF_LD &&
10256 BPF_MODE(code) == BPF_IMM)
10257 i++;
10258 continue;
10259 }
10260
10261 /* ctx load could be transformed into wider load. */
10262 if (class == BPF_LDX &&
10263 aux[adj_idx].ptr_type == PTR_TO_CTX)
10264 continue;
10265
10266 imm_rnd = get_random_int();
10267 rnd_hi32_patch[0] = insn;
10268 rnd_hi32_patch[1].imm = imm_rnd;
10269 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10270 patch = rnd_hi32_patch;
10271 patch_len = 4;
10272 goto apply_patch_buffer;
10273 }
10274
10275 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
10276 continue;
10277
a4b1d3c1
JW
10278 zext_patch[0] = insn;
10279 zext_patch[1].dst_reg = insn.dst_reg;
10280 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
10281 patch = zext_patch;
10282 patch_len = 2;
10283apply_patch_buffer:
10284 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
10285 if (!new_prog)
10286 return -ENOMEM;
10287 env->prog = new_prog;
10288 insns = new_prog->insnsi;
10289 aux = env->insn_aux_data;
d6c2308c 10290 delta += patch_len - 1;
a4b1d3c1
JW
10291 }
10292
10293 return 0;
10294}
10295
c64b7983
JS
10296/* convert load instructions that access fields of a context type into a
10297 * sequence of instructions that access fields of the underlying structure:
10298 * struct __sk_buff -> struct sk_buff
10299 * struct bpf_sock_ops -> struct sock
9bac3d6d 10300 */
58e2af8b 10301static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 10302{
00176a34 10303 const struct bpf_verifier_ops *ops = env->ops;
f96da094 10304 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 10305 const int insn_cnt = env->prog->len;
36bbef52 10306 struct bpf_insn insn_buf[16], *insn;
46f53a65 10307 u32 target_size, size_default, off;
9bac3d6d 10308 struct bpf_prog *new_prog;
d691f9e8 10309 enum bpf_access_type type;
f96da094 10310 bool is_narrower_load;
9bac3d6d 10311
b09928b9
DB
10312 if (ops->gen_prologue || env->seen_direct_write) {
10313 if (!ops->gen_prologue) {
10314 verbose(env, "bpf verifier is misconfigured\n");
10315 return -EINVAL;
10316 }
36bbef52
DB
10317 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10318 env->prog);
10319 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 10320 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
10321 return -EINVAL;
10322 } else if (cnt) {
8041902d 10323 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
10324 if (!new_prog)
10325 return -ENOMEM;
8041902d 10326
36bbef52 10327 env->prog = new_prog;
3df126f3 10328 delta += cnt - 1;
36bbef52
DB
10329 }
10330 }
10331
c64b7983 10332 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
10333 return 0;
10334
3df126f3 10335 insn = env->prog->insnsi + delta;
36bbef52 10336
9bac3d6d 10337 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10338 bpf_convert_ctx_access_t convert_ctx_access;
10339
62c7989b
DB
10340 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10341 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10342 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10343 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10344 type = BPF_READ;
62c7989b
DB
10345 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10346 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10347 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10348 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10349 type = BPF_WRITE;
10350 else
9bac3d6d
AS
10351 continue;
10352
af86ca4e
AS
10353 if (type == BPF_WRITE &&
10354 env->insn_aux_data[i + delta].sanitize_stack_off) {
10355 struct bpf_insn patch[] = {
10356 /* Sanitize suspicious stack slot with zero.
10357 * There are no memory dependencies for this store,
10358 * since it's only using frame pointer and immediate
10359 * constant of zero
10360 */
10361 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10362 env->insn_aux_data[i + delta].sanitize_stack_off,
10363 0),
10364 /* the original STX instruction will immediately
10365 * overwrite the same stack slot with appropriate value
10366 */
10367 *insn,
10368 };
10369
10370 cnt = ARRAY_SIZE(patch);
10371 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10372 if (!new_prog)
10373 return -ENOMEM;
10374
10375 delta += cnt - 1;
10376 env->prog = new_prog;
10377 insn = new_prog->insnsi + i + delta;
10378 continue;
10379 }
10380
c64b7983
JS
10381 switch (env->insn_aux_data[i + delta].ptr_type) {
10382 case PTR_TO_CTX:
10383 if (!ops->convert_ctx_access)
10384 continue;
10385 convert_ctx_access = ops->convert_ctx_access;
10386 break;
10387 case PTR_TO_SOCKET:
46f8bc92 10388 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10389 convert_ctx_access = bpf_sock_convert_ctx_access;
10390 break;
655a51e5
MKL
10391 case PTR_TO_TCP_SOCK:
10392 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10393 break;
fada7fdc
JL
10394 case PTR_TO_XDP_SOCK:
10395 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10396 break;
2a02759e 10397 case PTR_TO_BTF_ID:
27ae7997
MKL
10398 if (type == BPF_READ) {
10399 insn->code = BPF_LDX | BPF_PROBE_MEM |
10400 BPF_SIZE((insn)->code);
10401 env->prog->aux->num_exentries++;
7e40781c 10402 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10403 verbose(env, "Writes through BTF pointers are not allowed\n");
10404 return -EINVAL;
10405 }
2a02759e 10406 continue;
c64b7983 10407 default:
9bac3d6d 10408 continue;
c64b7983 10409 }
9bac3d6d 10410
31fd8581 10411 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10412 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10413
10414 /* If the read access is a narrower load of the field,
10415 * convert to a 4/8-byte load, to minimum program type specific
10416 * convert_ctx_access changes. If conversion is successful,
10417 * we will apply proper mask to the result.
10418 */
f96da094 10419 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10420 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10421 off = insn->off;
31fd8581 10422 if (is_narrower_load) {
f96da094
DB
10423 u8 size_code;
10424
10425 if (type == BPF_WRITE) {
61bd5218 10426 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10427 return -EINVAL;
10428 }
31fd8581 10429
f96da094 10430 size_code = BPF_H;
31fd8581
YS
10431 if (ctx_field_size == 4)
10432 size_code = BPF_W;
10433 else if (ctx_field_size == 8)
10434 size_code = BPF_DW;
f96da094 10435
bc23105c 10436 insn->off = off & ~(size_default - 1);
31fd8581
YS
10437 insn->code = BPF_LDX | BPF_MEM | size_code;
10438 }
f96da094
DB
10439
10440 target_size = 0;
c64b7983
JS
10441 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10442 &target_size);
f96da094
DB
10443 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10444 (ctx_field_size && !target_size)) {
61bd5218 10445 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10446 return -EINVAL;
10447 }
f96da094
DB
10448
10449 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10450 u8 shift = bpf_ctx_narrow_access_offset(
10451 off, size, size_default) * 8;
46f53a65
AI
10452 if (ctx_field_size <= 4) {
10453 if (shift)
10454 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10455 insn->dst_reg,
10456 shift);
31fd8581 10457 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10458 (1 << size * 8) - 1);
46f53a65
AI
10459 } else {
10460 if (shift)
10461 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10462 insn->dst_reg,
10463 shift);
31fd8581 10464 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10465 (1ULL << size * 8) - 1);
46f53a65 10466 }
31fd8581 10467 }
9bac3d6d 10468
8041902d 10469 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10470 if (!new_prog)
10471 return -ENOMEM;
10472
3df126f3 10473 delta += cnt - 1;
9bac3d6d
AS
10474
10475 /* keep walking new program and skip insns we just inserted */
10476 env->prog = new_prog;
3df126f3 10477 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10478 }
10479
10480 return 0;
10481}
10482
1c2a088a
AS
10483static int jit_subprogs(struct bpf_verifier_env *env)
10484{
10485 struct bpf_prog *prog = env->prog, **func, *tmp;
10486 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 10487 struct bpf_map *map_ptr;
7105e828 10488 struct bpf_insn *insn;
1c2a088a 10489 void *old_bpf_func;
c4c0bdc0 10490 int err, num_exentries;
1c2a088a 10491
f910cefa 10492 if (env->subprog_cnt <= 1)
1c2a088a
AS
10493 return 0;
10494
7105e828 10495 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10496 if (insn->code != (BPF_JMP | BPF_CALL) ||
10497 insn->src_reg != BPF_PSEUDO_CALL)
10498 continue;
c7a89784
DB
10499 /* Upon error here we cannot fall back to interpreter but
10500 * need a hard reject of the program. Thus -EFAULT is
10501 * propagated in any case.
10502 */
1c2a088a
AS
10503 subprog = find_subprog(env, i + insn->imm + 1);
10504 if (subprog < 0) {
10505 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10506 i + insn->imm + 1);
10507 return -EFAULT;
10508 }
10509 /* temporarily remember subprog id inside insn instead of
10510 * aux_data, since next loop will split up all insns into funcs
10511 */
f910cefa 10512 insn->off = subprog;
1c2a088a
AS
10513 /* remember original imm in case JIT fails and fallback
10514 * to interpreter will be needed
10515 */
10516 env->insn_aux_data[i].call_imm = insn->imm;
10517 /* point imm to __bpf_call_base+1 from JITs point of view */
10518 insn->imm = 1;
10519 }
10520
c454a46b
MKL
10521 err = bpf_prog_alloc_jited_linfo(prog);
10522 if (err)
10523 goto out_undo_insn;
10524
10525 err = -ENOMEM;
6396bb22 10526 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10527 if (!func)
c7a89784 10528 goto out_undo_insn;
1c2a088a 10529
f910cefa 10530 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10531 subprog_start = subprog_end;
4cb3d99c 10532 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10533
10534 len = subprog_end - subprog_start;
492ecee8
AS
10535 /* BPF_PROG_RUN doesn't call subprogs directly,
10536 * hence main prog stats include the runtime of subprogs.
10537 * subprogs don't have IDs and not reachable via prog_get_next_id
10538 * func[i]->aux->stats will never be accessed and stays NULL
10539 */
10540 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10541 if (!func[i])
10542 goto out_free;
10543 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10544 len * sizeof(struct bpf_insn));
4f74d809 10545 func[i]->type = prog->type;
1c2a088a 10546 func[i]->len = len;
4f74d809
DB
10547 if (bpf_prog_calc_tag(func[i]))
10548 goto out_free;
1c2a088a 10549 func[i]->is_func = 1;
ba64e7d8
YS
10550 func[i]->aux->func_idx = i;
10551 /* the btf and func_info will be freed only at prog->aux */
10552 func[i]->aux->btf = prog->aux->btf;
10553 func[i]->aux->func_info = prog->aux->func_info;
10554
a748c697
MF
10555 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10556 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10557 int ret;
10558
10559 if (!(insn_idx >= subprog_start &&
10560 insn_idx <= subprog_end))
10561 continue;
10562
10563 ret = bpf_jit_add_poke_descriptor(func[i],
10564 &prog->aux->poke_tab[j]);
10565 if (ret < 0) {
10566 verbose(env, "adding tail call poke descriptor failed\n");
10567 goto out_free;
10568 }
10569
10570 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10571
10572 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10573 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10574 if (ret < 0) {
10575 verbose(env, "tracking tail call prog failed\n");
10576 goto out_free;
10577 }
10578 }
10579
1c2a088a
AS
10580 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10581 * Long term would need debug info to populate names
10582 */
10583 func[i]->aux->name[0] = 'F';
9c8105bd 10584 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10585 func[i]->jit_requested = 1;
c454a46b
MKL
10586 func[i]->aux->linfo = prog->aux->linfo;
10587 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10588 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10589 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10590 num_exentries = 0;
10591 insn = func[i]->insnsi;
10592 for (j = 0; j < func[i]->len; j++, insn++) {
10593 if (BPF_CLASS(insn->code) == BPF_LDX &&
10594 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10595 num_exentries++;
10596 }
10597 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 10598 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
10599 func[i] = bpf_int_jit_compile(func[i]);
10600 if (!func[i]->jited) {
10601 err = -ENOTSUPP;
10602 goto out_free;
10603 }
10604 cond_resched();
10605 }
a748c697
MF
10606
10607 /* Untrack main program's aux structs so that during map_poke_run()
10608 * we will not stumble upon the unfilled poke descriptors; each
10609 * of the main program's poke descs got distributed across subprogs
10610 * and got tracked onto map, so we are sure that none of them will
10611 * be missed after the operation below
10612 */
10613 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10614 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10615
10616 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10617 }
10618
1c2a088a
AS
10619 /* at this point all bpf functions were successfully JITed
10620 * now populate all bpf_calls with correct addresses and
10621 * run last pass of JIT
10622 */
f910cefa 10623 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10624 insn = func[i]->insnsi;
10625 for (j = 0; j < func[i]->len; j++, insn++) {
10626 if (insn->code != (BPF_JMP | BPF_CALL) ||
10627 insn->src_reg != BPF_PSEUDO_CALL)
10628 continue;
10629 subprog = insn->off;
0d306c31
PB
10630 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10631 __bpf_call_base;
1c2a088a 10632 }
2162fed4
SD
10633
10634 /* we use the aux data to keep a list of the start addresses
10635 * of the JITed images for each function in the program
10636 *
10637 * for some architectures, such as powerpc64, the imm field
10638 * might not be large enough to hold the offset of the start
10639 * address of the callee's JITed image from __bpf_call_base
10640 *
10641 * in such cases, we can lookup the start address of a callee
10642 * by using its subprog id, available from the off field of
10643 * the call instruction, as an index for this list
10644 */
10645 func[i]->aux->func = func;
10646 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10647 }
f910cefa 10648 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10649 old_bpf_func = func[i]->bpf_func;
10650 tmp = bpf_int_jit_compile(func[i]);
10651 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10652 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10653 err = -ENOTSUPP;
1c2a088a
AS
10654 goto out_free;
10655 }
10656 cond_resched();
10657 }
10658
10659 /* finally lock prog and jit images for all functions and
10660 * populate kallsysm
10661 */
f910cefa 10662 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10663 bpf_prog_lock_ro(func[i]);
10664 bpf_prog_kallsyms_add(func[i]);
10665 }
7105e828
DB
10666
10667 /* Last step: make now unused interpreter insns from main
10668 * prog consistent for later dump requests, so they can
10669 * later look the same as if they were interpreted only.
10670 */
10671 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10672 if (insn->code != (BPF_JMP | BPF_CALL) ||
10673 insn->src_reg != BPF_PSEUDO_CALL)
10674 continue;
10675 insn->off = env->insn_aux_data[i].call_imm;
10676 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10677 insn->imm = subprog;
7105e828
DB
10678 }
10679
1c2a088a
AS
10680 prog->jited = 1;
10681 prog->bpf_func = func[0]->bpf_func;
10682 prog->aux->func = func;
f910cefa 10683 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10684 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10685 return 0;
10686out_free:
a748c697
MF
10687 for (i = 0; i < env->subprog_cnt; i++) {
10688 if (!func[i])
10689 continue;
10690
10691 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10692 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10693 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10694 }
10695 bpf_jit_free(func[i]);
10696 }
1c2a088a 10697 kfree(func);
c7a89784 10698out_undo_insn:
1c2a088a
AS
10699 /* cleanup main prog to be interpreted */
10700 prog->jit_requested = 0;
10701 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10702 if (insn->code != (BPF_JMP | BPF_CALL) ||
10703 insn->src_reg != BPF_PSEUDO_CALL)
10704 continue;
10705 insn->off = 0;
10706 insn->imm = env->insn_aux_data[i].call_imm;
10707 }
c454a46b 10708 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10709 return err;
10710}
10711
1ea47e01
AS
10712static int fixup_call_args(struct bpf_verifier_env *env)
10713{
19d28fbd 10714#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10715 struct bpf_prog *prog = env->prog;
10716 struct bpf_insn *insn = prog->insnsi;
10717 int i, depth;
19d28fbd 10718#endif
e4052d06 10719 int err = 0;
1ea47e01 10720
e4052d06
QM
10721 if (env->prog->jit_requested &&
10722 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10723 err = jit_subprogs(env);
10724 if (err == 0)
1c2a088a 10725 return 0;
c7a89784
DB
10726 if (err == -EFAULT)
10727 return err;
19d28fbd
DM
10728 }
10729#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e411901c
MF
10730 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10731 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10732 * have to be rejected, since interpreter doesn't support them yet.
10733 */
10734 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10735 return -EINVAL;
10736 }
1ea47e01
AS
10737 for (i = 0; i < prog->len; i++, insn++) {
10738 if (insn->code != (BPF_JMP | BPF_CALL) ||
10739 insn->src_reg != BPF_PSEUDO_CALL)
10740 continue;
10741 depth = get_callee_stack_depth(env, insn, i);
10742 if (depth < 0)
10743 return depth;
10744 bpf_patch_call_args(insn, depth);
10745 }
19d28fbd
DM
10746 err = 0;
10747#endif
10748 return err;
1ea47e01
AS
10749}
10750
79741b3b 10751/* fixup insn->imm field of bpf_call instructions
81ed18ab 10752 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10753 *
10754 * this function is called after eBPF program passed verification
10755 */
79741b3b 10756static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10757{
79741b3b 10758 struct bpf_prog *prog = env->prog;
d2e4c1e6 10759 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10760 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10761 const struct bpf_func_proto *fn;
79741b3b 10762 const int insn_cnt = prog->len;
09772d92 10763 const struct bpf_map_ops *ops;
c93552c4 10764 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10765 struct bpf_insn insn_buf[16];
10766 struct bpf_prog *new_prog;
10767 struct bpf_map *map_ptr;
d2e4c1e6 10768 int i, ret, cnt, delta = 0;
e245c5c6 10769
79741b3b 10770 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
10771 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10772 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10773 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 10774 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
10775 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10776 struct bpf_insn mask_and_div[] = {
10777 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10778 /* Rx div 0 -> 0 */
10779 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10780 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10781 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10782 *insn,
10783 };
10784 struct bpf_insn mask_and_mod[] = {
10785 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10786 /* Rx mod 0 -> Rx */
10787 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10788 *insn,
10789 };
10790 struct bpf_insn *patchlet;
10791
10792 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10793 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10794 patchlet = mask_and_div + (is64 ? 1 : 0);
10795 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10796 } else {
10797 patchlet = mask_and_mod + (is64 ? 1 : 0);
10798 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10799 }
10800
10801 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
10802 if (!new_prog)
10803 return -ENOMEM;
10804
10805 delta += cnt - 1;
10806 env->prog = prog = new_prog;
10807 insn = new_prog->insnsi + i + delta;
10808 continue;
10809 }
10810
e0cea7ce
DB
10811 if (BPF_CLASS(insn->code) == BPF_LD &&
10812 (BPF_MODE(insn->code) == BPF_ABS ||
10813 BPF_MODE(insn->code) == BPF_IND)) {
10814 cnt = env->ops->gen_ld_abs(insn, insn_buf);
10815 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10816 verbose(env, "bpf verifier is misconfigured\n");
10817 return -EINVAL;
10818 }
10819
10820 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10821 if (!new_prog)
10822 return -ENOMEM;
10823
10824 delta += cnt - 1;
10825 env->prog = prog = new_prog;
10826 insn = new_prog->insnsi + i + delta;
10827 continue;
10828 }
10829
979d63d5
DB
10830 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10831 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10832 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10833 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10834 struct bpf_insn insn_buf[16];
10835 struct bpf_insn *patch = &insn_buf[0];
10836 bool issrc, isneg;
10837 u32 off_reg;
10838
10839 aux = &env->insn_aux_data[i + delta];
3612af78
DB
10840 if (!aux->alu_state ||
10841 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
10842 continue;
10843
10844 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10845 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10846 BPF_ALU_SANITIZE_SRC;
10847
10848 off_reg = issrc ? insn->src_reg : insn->dst_reg;
10849 if (isneg)
10850 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10851 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10852 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10853 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10854 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10855 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10856 if (issrc) {
10857 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10858 off_reg);
10859 insn->src_reg = BPF_REG_AX;
10860 } else {
10861 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10862 BPF_REG_AX);
10863 }
10864 if (isneg)
10865 insn->code = insn->code == code_add ?
10866 code_sub : code_add;
10867 *patch++ = *insn;
10868 if (issrc && isneg)
10869 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10870 cnt = patch - insn_buf;
10871
10872 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10873 if (!new_prog)
10874 return -ENOMEM;
10875
10876 delta += cnt - 1;
10877 env->prog = prog = new_prog;
10878 insn = new_prog->insnsi + i + delta;
10879 continue;
10880 }
10881
79741b3b
AS
10882 if (insn->code != (BPF_JMP | BPF_CALL))
10883 continue;
cc8b0b92
AS
10884 if (insn->src_reg == BPF_PSEUDO_CALL)
10885 continue;
e245c5c6 10886
79741b3b
AS
10887 if (insn->imm == BPF_FUNC_get_route_realm)
10888 prog->dst_needed = 1;
10889 if (insn->imm == BPF_FUNC_get_prandom_u32)
10890 bpf_user_rnd_init_once();
9802d865
JB
10891 if (insn->imm == BPF_FUNC_override_return)
10892 prog->kprobe_override = 1;
79741b3b 10893 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10894 /* If we tail call into other programs, we
10895 * cannot make any assumptions since they can
10896 * be replaced dynamically during runtime in
10897 * the program array.
10898 */
10899 prog->cb_access = 1;
e411901c
MF
10900 if (!allow_tail_call_in_subprogs(env))
10901 prog->aux->stack_depth = MAX_BPF_STACK;
10902 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10903
79741b3b
AS
10904 /* mark bpf_tail_call as different opcode to avoid
10905 * conditional branch in the interpeter for every normal
10906 * call and to prevent accidental JITing by JIT compiler
10907 * that doesn't support bpf_tail_call yet
e245c5c6 10908 */
79741b3b 10909 insn->imm = 0;
71189fa9 10910 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10911
c93552c4 10912 aux = &env->insn_aux_data[i + delta];
2c78ee89 10913 if (env->bpf_capable && !expect_blinding &&
cc52d914 10914 prog->jit_requested &&
d2e4c1e6
DB
10915 !bpf_map_key_poisoned(aux) &&
10916 !bpf_map_ptr_poisoned(aux) &&
10917 !bpf_map_ptr_unpriv(aux)) {
10918 struct bpf_jit_poke_descriptor desc = {
10919 .reason = BPF_POKE_REASON_TAIL_CALL,
10920 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10921 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 10922 .insn_idx = i + delta,
d2e4c1e6
DB
10923 };
10924
10925 ret = bpf_jit_add_poke_descriptor(prog, &desc);
10926 if (ret < 0) {
10927 verbose(env, "adding tail call poke descriptor failed\n");
10928 return ret;
10929 }
10930
10931 insn->imm = ret + 1;
10932 continue;
10933 }
10934
c93552c4
DB
10935 if (!bpf_map_ptr_unpriv(aux))
10936 continue;
10937
b2157399
AS
10938 /* instead of changing every JIT dealing with tail_call
10939 * emit two extra insns:
10940 * if (index >= max_entries) goto out;
10941 * index &= array->index_mask;
10942 * to avoid out-of-bounds cpu speculation
10943 */
c93552c4 10944 if (bpf_map_ptr_poisoned(aux)) {
40950343 10945 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
10946 return -EINVAL;
10947 }
c93552c4 10948
d2e4c1e6 10949 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
10950 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10951 map_ptr->max_entries, 2);
10952 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10953 container_of(map_ptr,
10954 struct bpf_array,
10955 map)->index_mask);
10956 insn_buf[2] = *insn;
10957 cnt = 3;
10958 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10959 if (!new_prog)
10960 return -ENOMEM;
10961
10962 delta += cnt - 1;
10963 env->prog = prog = new_prog;
10964 insn = new_prog->insnsi + i + delta;
79741b3b
AS
10965 continue;
10966 }
e245c5c6 10967
89c63074 10968 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
10969 * and other inlining handlers are currently limited to 64 bit
10970 * only.
89c63074 10971 */
60b58afc 10972 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
10973 (insn->imm == BPF_FUNC_map_lookup_elem ||
10974 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
10975 insn->imm == BPF_FUNC_map_delete_elem ||
10976 insn->imm == BPF_FUNC_map_push_elem ||
10977 insn->imm == BPF_FUNC_map_pop_elem ||
10978 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
10979 aux = &env->insn_aux_data[i + delta];
10980 if (bpf_map_ptr_poisoned(aux))
10981 goto patch_call_imm;
10982
d2e4c1e6 10983 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
10984 ops = map_ptr->ops;
10985 if (insn->imm == BPF_FUNC_map_lookup_elem &&
10986 ops->map_gen_lookup) {
10987 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10988 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10989 verbose(env, "bpf verifier is misconfigured\n");
10990 return -EINVAL;
10991 }
81ed18ab 10992
09772d92
DB
10993 new_prog = bpf_patch_insn_data(env, i + delta,
10994 insn_buf, cnt);
10995 if (!new_prog)
10996 return -ENOMEM;
81ed18ab 10997
09772d92
DB
10998 delta += cnt - 1;
10999 env->prog = prog = new_prog;
11000 insn = new_prog->insnsi + i + delta;
11001 continue;
11002 }
81ed18ab 11003
09772d92
DB
11004 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11005 (void *(*)(struct bpf_map *map, void *key))NULL));
11006 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11007 (int (*)(struct bpf_map *map, void *key))NULL));
11008 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11009 (int (*)(struct bpf_map *map, void *key, void *value,
11010 u64 flags))NULL));
84430d42
DB
11011 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11012 (int (*)(struct bpf_map *map, void *value,
11013 u64 flags))NULL));
11014 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11015 (int (*)(struct bpf_map *map, void *value))NULL));
11016 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11017 (int (*)(struct bpf_map *map, void *value))NULL));
11018
09772d92
DB
11019 switch (insn->imm) {
11020 case BPF_FUNC_map_lookup_elem:
11021 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11022 __bpf_call_base;
11023 continue;
11024 case BPF_FUNC_map_update_elem:
11025 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11026 __bpf_call_base;
11027 continue;
11028 case BPF_FUNC_map_delete_elem:
11029 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11030 __bpf_call_base;
11031 continue;
84430d42
DB
11032 case BPF_FUNC_map_push_elem:
11033 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11034 __bpf_call_base;
11035 continue;
11036 case BPF_FUNC_map_pop_elem:
11037 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11038 __bpf_call_base;
11039 continue;
11040 case BPF_FUNC_map_peek_elem:
11041 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11042 __bpf_call_base;
11043 continue;
09772d92 11044 }
81ed18ab 11045
09772d92 11046 goto patch_call_imm;
81ed18ab
AS
11047 }
11048
5576b991
MKL
11049 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11050 insn->imm == BPF_FUNC_jiffies64) {
11051 struct bpf_insn ld_jiffies_addr[2] = {
11052 BPF_LD_IMM64(BPF_REG_0,
11053 (unsigned long)&jiffies),
11054 };
11055
11056 insn_buf[0] = ld_jiffies_addr[0];
11057 insn_buf[1] = ld_jiffies_addr[1];
11058 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11059 BPF_REG_0, 0);
11060 cnt = 3;
11061
11062 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11063 cnt);
11064 if (!new_prog)
11065 return -ENOMEM;
11066
11067 delta += cnt - 1;
11068 env->prog = prog = new_prog;
11069 insn = new_prog->insnsi + i + delta;
11070 continue;
11071 }
11072
81ed18ab 11073patch_call_imm:
5e43f899 11074 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
11075 /* all functions that have prototype and verifier allowed
11076 * programs to call them, must be real in-kernel functions
11077 */
11078 if (!fn->func) {
61bd5218
JK
11079 verbose(env,
11080 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
11081 func_id_name(insn->imm), insn->imm);
11082 return -EFAULT;
e245c5c6 11083 }
79741b3b 11084 insn->imm = fn->func - __bpf_call_base;
e245c5c6 11085 }
e245c5c6 11086
d2e4c1e6
DB
11087 /* Since poke tab is now finalized, publish aux to tracker. */
11088 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11089 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11090 if (!map_ptr->ops->map_poke_track ||
11091 !map_ptr->ops->map_poke_untrack ||
11092 !map_ptr->ops->map_poke_run) {
11093 verbose(env, "bpf verifier is misconfigured\n");
11094 return -EINVAL;
11095 }
11096
11097 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11098 if (ret < 0) {
11099 verbose(env, "tracking tail call prog failed\n");
11100 return ret;
11101 }
11102 }
11103
79741b3b
AS
11104 return 0;
11105}
e245c5c6 11106
58e2af8b 11107static void free_states(struct bpf_verifier_env *env)
f1bca824 11108{
58e2af8b 11109 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
11110 int i;
11111
9f4686c4
AS
11112 sl = env->free_list;
11113 while (sl) {
11114 sln = sl->next;
11115 free_verifier_state(&sl->state, false);
11116 kfree(sl);
11117 sl = sln;
11118 }
51c39bb1 11119 env->free_list = NULL;
9f4686c4 11120
f1bca824
AS
11121 if (!env->explored_states)
11122 return;
11123
dc2a4ebc 11124 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
11125 sl = env->explored_states[i];
11126
a8f500af
AS
11127 while (sl) {
11128 sln = sl->next;
11129 free_verifier_state(&sl->state, false);
11130 kfree(sl);
11131 sl = sln;
11132 }
51c39bb1 11133 env->explored_states[i] = NULL;
f1bca824 11134 }
51c39bb1 11135}
f1bca824 11136
51c39bb1
AS
11137/* The verifier is using insn_aux_data[] to store temporary data during
11138 * verification and to store information for passes that run after the
11139 * verification like dead code sanitization. do_check_common() for subprogram N
11140 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11141 * temporary data after do_check_common() finds that subprogram N cannot be
11142 * verified independently. pass_cnt counts the number of times
11143 * do_check_common() was run and insn->aux->seen tells the pass number
11144 * insn_aux_data was touched. These variables are compared to clear temporary
11145 * data from failed pass. For testing and experiments do_check_common() can be
11146 * run multiple times even when prior attempt to verify is unsuccessful.
11147 */
11148static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11149{
11150 struct bpf_insn *insn = env->prog->insnsi;
11151 struct bpf_insn_aux_data *aux;
11152 int i, class;
11153
11154 for (i = 0; i < env->prog->len; i++) {
11155 class = BPF_CLASS(insn[i].code);
11156 if (class != BPF_LDX && class != BPF_STX)
11157 continue;
11158 aux = &env->insn_aux_data[i];
11159 if (aux->seen != env->pass_cnt)
11160 continue;
11161 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11162 }
f1bca824
AS
11163}
11164
51c39bb1
AS
11165static int do_check_common(struct bpf_verifier_env *env, int subprog)
11166{
6f8a57cc 11167 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
11168 struct bpf_verifier_state *state;
11169 struct bpf_reg_state *regs;
11170 int ret, i;
11171
11172 env->prev_linfo = NULL;
11173 env->pass_cnt++;
11174
11175 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11176 if (!state)
11177 return -ENOMEM;
11178 state->curframe = 0;
11179 state->speculative = false;
11180 state->branches = 1;
11181 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11182 if (!state->frame[0]) {
11183 kfree(state);
11184 return -ENOMEM;
11185 }
11186 env->cur_state = state;
11187 init_func_state(env, state->frame[0],
11188 BPF_MAIN_FUNC /* callsite */,
11189 0 /* frameno */,
11190 subprog);
11191
11192 regs = state->frame[state->curframe]->regs;
be8704ff 11193 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
11194 ret = btf_prepare_func_args(env, subprog, regs);
11195 if (ret)
11196 goto out;
11197 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11198 if (regs[i].type == PTR_TO_CTX)
11199 mark_reg_known_zero(env, regs, i);
11200 else if (regs[i].type == SCALAR_VALUE)
11201 mark_reg_unknown(env, regs, i);
11202 }
11203 } else {
11204 /* 1st arg to a function */
11205 regs[BPF_REG_1].type = PTR_TO_CTX;
11206 mark_reg_known_zero(env, regs, BPF_REG_1);
11207 ret = btf_check_func_arg_match(env, subprog, regs);
11208 if (ret == -EFAULT)
11209 /* unlikely verifier bug. abort.
11210 * ret == 0 and ret < 0 are sadly acceptable for
11211 * main() function due to backward compatibility.
11212 * Like socket filter program may be written as:
11213 * int bpf_prog(struct pt_regs *ctx)
11214 * and never dereference that ctx in the program.
11215 * 'struct pt_regs' is a type mismatch for socket
11216 * filter that should be using 'struct __sk_buff'.
11217 */
11218 goto out;
11219 }
11220
11221 ret = do_check(env);
11222out:
f59bbfc2
AS
11223 /* check for NULL is necessary, since cur_state can be freed inside
11224 * do_check() under memory pressure.
11225 */
11226 if (env->cur_state) {
11227 free_verifier_state(env->cur_state, true);
11228 env->cur_state = NULL;
11229 }
6f8a57cc
AN
11230 while (!pop_stack(env, NULL, NULL, false));
11231 if (!ret && pop_log)
11232 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
11233 free_states(env);
11234 if (ret)
11235 /* clean aux data in case subprog was rejected */
11236 sanitize_insn_aux_data(env);
11237 return ret;
11238}
11239
11240/* Verify all global functions in a BPF program one by one based on their BTF.
11241 * All global functions must pass verification. Otherwise the whole program is rejected.
11242 * Consider:
11243 * int bar(int);
11244 * int foo(int f)
11245 * {
11246 * return bar(f);
11247 * }
11248 * int bar(int b)
11249 * {
11250 * ...
11251 * }
11252 * foo() will be verified first for R1=any_scalar_value. During verification it
11253 * will be assumed that bar() already verified successfully and call to bar()
11254 * from foo() will be checked for type match only. Later bar() will be verified
11255 * independently to check that it's safe for R1=any_scalar_value.
11256 */
11257static int do_check_subprogs(struct bpf_verifier_env *env)
11258{
11259 struct bpf_prog_aux *aux = env->prog->aux;
11260 int i, ret;
11261
11262 if (!aux->func_info)
11263 return 0;
11264
11265 for (i = 1; i < env->subprog_cnt; i++) {
11266 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11267 continue;
11268 env->insn_idx = env->subprog_info[i].start;
11269 WARN_ON_ONCE(env->insn_idx == 0);
11270 ret = do_check_common(env, i);
11271 if (ret) {
11272 return ret;
11273 } else if (env->log.level & BPF_LOG_LEVEL) {
11274 verbose(env,
11275 "Func#%d is safe for any args that match its prototype\n",
11276 i);
11277 }
11278 }
11279 return 0;
11280}
11281
11282static int do_check_main(struct bpf_verifier_env *env)
11283{
11284 int ret;
11285
11286 env->insn_idx = 0;
11287 ret = do_check_common(env, 0);
11288 if (!ret)
11289 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11290 return ret;
11291}
11292
11293
06ee7115
AS
11294static void print_verification_stats(struct bpf_verifier_env *env)
11295{
11296 int i;
11297
11298 if (env->log.level & BPF_LOG_STATS) {
11299 verbose(env, "verification time %lld usec\n",
11300 div_u64(env->verification_time, 1000));
11301 verbose(env, "stack depth ");
11302 for (i = 0; i < env->subprog_cnt; i++) {
11303 u32 depth = env->subprog_info[i].stack_depth;
11304
11305 verbose(env, "%d", depth);
11306 if (i + 1 < env->subprog_cnt)
11307 verbose(env, "+");
11308 }
11309 verbose(env, "\n");
11310 }
11311 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11312 "total_states %d peak_states %d mark_read %d\n",
11313 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11314 env->max_states_per_insn, env->total_states,
11315 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
11316}
11317
27ae7997
MKL
11318static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11319{
11320 const struct btf_type *t, *func_proto;
11321 const struct bpf_struct_ops *st_ops;
11322 const struct btf_member *member;
11323 struct bpf_prog *prog = env->prog;
11324 u32 btf_id, member_idx;
11325 const char *mname;
11326
11327 btf_id = prog->aux->attach_btf_id;
11328 st_ops = bpf_struct_ops_find(btf_id);
11329 if (!st_ops) {
11330 verbose(env, "attach_btf_id %u is not a supported struct\n",
11331 btf_id);
11332 return -ENOTSUPP;
11333 }
11334
11335 t = st_ops->type;
11336 member_idx = prog->expected_attach_type;
11337 if (member_idx >= btf_type_vlen(t)) {
11338 verbose(env, "attach to invalid member idx %u of struct %s\n",
11339 member_idx, st_ops->name);
11340 return -EINVAL;
11341 }
11342
11343 member = &btf_type_member(t)[member_idx];
11344 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11345 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11346 NULL);
11347 if (!func_proto) {
11348 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11349 mname, member_idx, st_ops->name);
11350 return -EINVAL;
11351 }
11352
11353 if (st_ops->check_member) {
11354 int err = st_ops->check_member(t, member);
11355
11356 if (err) {
11357 verbose(env, "attach to unsupported member %s of struct %s\n",
11358 mname, st_ops->name);
11359 return err;
11360 }
11361 }
11362
11363 prog->aux->attach_func_proto = func_proto;
11364 prog->aux->attach_func_name = mname;
11365 env->ops = st_ops->verifier_ops;
11366
11367 return 0;
11368}
6ba43b76
KS
11369#define SECURITY_PREFIX "security_"
11370
f7b12b6f 11371static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 11372{
69191754 11373 if (within_error_injection_list(addr) ||
f7b12b6f 11374 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 11375 return 0;
6ba43b76 11376
6ba43b76
KS
11377 return -EINVAL;
11378}
27ae7997 11379
1e6c62a8
AS
11380/* non exhaustive list of sleepable bpf_lsm_*() functions */
11381BTF_SET_START(btf_sleepable_lsm_hooks)
11382#ifdef CONFIG_BPF_LSM
1e6c62a8 11383BTF_ID(func, bpf_lsm_bprm_committed_creds)
29523c5e
AS
11384#else
11385BTF_ID_UNUSED
1e6c62a8
AS
11386#endif
11387BTF_SET_END(btf_sleepable_lsm_hooks)
11388
11389static int check_sleepable_lsm_hook(u32 btf_id)
11390{
11391 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11392}
11393
11394/* list of non-sleepable functions that are otherwise on
11395 * ALLOW_ERROR_INJECTION list
11396 */
11397BTF_SET_START(btf_non_sleepable_error_inject)
11398/* Three functions below can be called from sleepable and non-sleepable context.
11399 * Assume non-sleepable from bpf safety point of view.
11400 */
11401BTF_ID(func, __add_to_page_cache_locked)
11402BTF_ID(func, should_fail_alloc_page)
11403BTF_ID(func, should_failslab)
11404BTF_SET_END(btf_non_sleepable_error_inject)
11405
11406static int check_non_sleepable_error_inject(u32 btf_id)
11407{
11408 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11409}
11410
f7b12b6f
THJ
11411int bpf_check_attach_target(struct bpf_verifier_log *log,
11412 const struct bpf_prog *prog,
11413 const struct bpf_prog *tgt_prog,
11414 u32 btf_id,
11415 struct bpf_attach_target_info *tgt_info)
38207291 11416{
be8704ff 11417 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 11418 const char prefix[] = "btf_trace_";
5b92a28a 11419 int ret = 0, subprog = -1, i;
38207291 11420 const struct btf_type *t;
5b92a28a 11421 bool conservative = true;
38207291 11422 const char *tname;
5b92a28a 11423 struct btf *btf;
f7b12b6f 11424 long addr = 0;
38207291 11425
f1b9509c 11426 if (!btf_id) {
efc68158 11427 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
11428 return -EINVAL;
11429 }
f7b12b6f 11430 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
5b92a28a 11431 if (!btf) {
efc68158 11432 bpf_log(log,
5b92a28a
AS
11433 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11434 return -EINVAL;
11435 }
11436 t = btf_type_by_id(btf, btf_id);
f1b9509c 11437 if (!t) {
efc68158 11438 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
11439 return -EINVAL;
11440 }
5b92a28a 11441 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 11442 if (!tname) {
efc68158 11443 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
11444 return -EINVAL;
11445 }
5b92a28a
AS
11446 if (tgt_prog) {
11447 struct bpf_prog_aux *aux = tgt_prog->aux;
11448
11449 for (i = 0; i < aux->func_info_cnt; i++)
11450 if (aux->func_info[i].type_id == btf_id) {
11451 subprog = i;
11452 break;
11453 }
11454 if (subprog == -1) {
efc68158 11455 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
11456 return -EINVAL;
11457 }
11458 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11459 if (prog_extension) {
11460 if (conservative) {
efc68158 11461 bpf_log(log,
be8704ff
AS
11462 "Cannot replace static functions\n");
11463 return -EINVAL;
11464 }
11465 if (!prog->jit_requested) {
efc68158 11466 bpf_log(log,
be8704ff
AS
11467 "Extension programs should be JITed\n");
11468 return -EINVAL;
11469 }
be8704ff
AS
11470 }
11471 if (!tgt_prog->jited) {
efc68158 11472 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
11473 return -EINVAL;
11474 }
11475 if (tgt_prog->type == prog->type) {
11476 /* Cannot fentry/fexit another fentry/fexit program.
11477 * Cannot attach program extension to another extension.
11478 * It's ok to attach fentry/fexit to extension program.
11479 */
efc68158 11480 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
11481 return -EINVAL;
11482 }
11483 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11484 prog_extension &&
11485 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11486 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11487 /* Program extensions can extend all program types
11488 * except fentry/fexit. The reason is the following.
11489 * The fentry/fexit programs are used for performance
11490 * analysis, stats and can be attached to any program
11491 * type except themselves. When extension program is
11492 * replacing XDP function it is necessary to allow
11493 * performance analysis of all functions. Both original
11494 * XDP program and its program extension. Hence
11495 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11496 * allowed. If extending of fentry/fexit was allowed it
11497 * would be possible to create long call chain
11498 * fentry->extension->fentry->extension beyond
11499 * reasonable stack size. Hence extending fentry is not
11500 * allowed.
11501 */
efc68158 11502 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
11503 return -EINVAL;
11504 }
5b92a28a 11505 } else {
be8704ff 11506 if (prog_extension) {
efc68158 11507 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
11508 return -EINVAL;
11509 }
5b92a28a 11510 }
f1b9509c
AS
11511
11512 switch (prog->expected_attach_type) {
11513 case BPF_TRACE_RAW_TP:
5b92a28a 11514 if (tgt_prog) {
efc68158 11515 bpf_log(log,
5b92a28a
AS
11516 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11517 return -EINVAL;
11518 }
38207291 11519 if (!btf_type_is_typedef(t)) {
efc68158 11520 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
11521 btf_id);
11522 return -EINVAL;
11523 }
f1b9509c 11524 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 11525 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
11526 btf_id, tname);
11527 return -EINVAL;
11528 }
11529 tname += sizeof(prefix) - 1;
5b92a28a 11530 t = btf_type_by_id(btf, t->type);
38207291
MKL
11531 if (!btf_type_is_ptr(t))
11532 /* should never happen in valid vmlinux build */
11533 return -EINVAL;
5b92a28a 11534 t = btf_type_by_id(btf, t->type);
38207291
MKL
11535 if (!btf_type_is_func_proto(t))
11536 /* should never happen in valid vmlinux build */
11537 return -EINVAL;
11538
f7b12b6f 11539 break;
15d83c4d
YS
11540 case BPF_TRACE_ITER:
11541 if (!btf_type_is_func(t)) {
efc68158 11542 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
11543 btf_id);
11544 return -EINVAL;
11545 }
11546 t = btf_type_by_id(btf, t->type);
11547 if (!btf_type_is_func_proto(t))
11548 return -EINVAL;
f7b12b6f
THJ
11549 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11550 if (ret)
11551 return ret;
11552 break;
be8704ff
AS
11553 default:
11554 if (!prog_extension)
11555 return -EINVAL;
df561f66 11556 fallthrough;
ae240823 11557 case BPF_MODIFY_RETURN:
9e4e01df 11558 case BPF_LSM_MAC:
fec56f58
AS
11559 case BPF_TRACE_FENTRY:
11560 case BPF_TRACE_FEXIT:
11561 if (!btf_type_is_func(t)) {
efc68158 11562 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
11563 btf_id);
11564 return -EINVAL;
11565 }
be8704ff 11566 if (prog_extension &&
efc68158 11567 btf_check_type_match(log, prog, btf, t))
be8704ff 11568 return -EINVAL;
5b92a28a 11569 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11570 if (!btf_type_is_func_proto(t))
11571 return -EINVAL;
f7b12b6f 11572
4a1e7c0c
THJ
11573 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11574 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11575 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11576 return -EINVAL;
11577
f7b12b6f 11578 if (tgt_prog && conservative)
5b92a28a 11579 t = NULL;
f7b12b6f
THJ
11580
11581 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 11582 if (ret < 0)
f7b12b6f
THJ
11583 return ret;
11584
5b92a28a 11585 if (tgt_prog) {
e9eeec58
YS
11586 if (subprog == 0)
11587 addr = (long) tgt_prog->bpf_func;
11588 else
11589 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11590 } else {
11591 addr = kallsyms_lookup_name(tname);
11592 if (!addr) {
efc68158 11593 bpf_log(log,
5b92a28a
AS
11594 "The address of function %s cannot be found\n",
11595 tname);
f7b12b6f 11596 return -ENOENT;
5b92a28a 11597 }
fec56f58 11598 }
18644cec 11599
1e6c62a8
AS
11600 if (prog->aux->sleepable) {
11601 ret = -EINVAL;
11602 switch (prog->type) {
11603 case BPF_PROG_TYPE_TRACING:
11604 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11605 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11606 */
11607 if (!check_non_sleepable_error_inject(btf_id) &&
11608 within_error_injection_list(addr))
11609 ret = 0;
11610 break;
11611 case BPF_PROG_TYPE_LSM:
11612 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11613 * Only some of them are sleepable.
11614 */
11615 if (check_sleepable_lsm_hook(btf_id))
11616 ret = 0;
11617 break;
11618 default:
11619 break;
11620 }
f7b12b6f
THJ
11621 if (ret) {
11622 bpf_log(log, "%s is not sleepable\n", tname);
11623 return ret;
11624 }
1e6c62a8 11625 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 11626 if (tgt_prog) {
efc68158 11627 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
11628 return -EINVAL;
11629 }
11630 ret = check_attach_modify_return(addr, tname);
11631 if (ret) {
11632 bpf_log(log, "%s() is not modifiable\n", tname);
11633 return ret;
1af9270e 11634 }
18644cec 11635 }
f7b12b6f
THJ
11636
11637 break;
11638 }
11639 tgt_info->tgt_addr = addr;
11640 tgt_info->tgt_name = tname;
11641 tgt_info->tgt_type = t;
11642 return 0;
11643}
11644
11645static int check_attach_btf_id(struct bpf_verifier_env *env)
11646{
11647 struct bpf_prog *prog = env->prog;
3aac1ead 11648 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
11649 struct bpf_attach_target_info tgt_info = {};
11650 u32 btf_id = prog->aux->attach_btf_id;
11651 struct bpf_trampoline *tr;
11652 int ret;
11653 u64 key;
11654
11655 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11656 prog->type != BPF_PROG_TYPE_LSM) {
11657 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11658 return -EINVAL;
11659 }
11660
11661 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11662 return check_struct_ops_btf_id(env);
11663
11664 if (prog->type != BPF_PROG_TYPE_TRACING &&
11665 prog->type != BPF_PROG_TYPE_LSM &&
11666 prog->type != BPF_PROG_TYPE_EXT)
11667 return 0;
11668
11669 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11670 if (ret)
fec56f58 11671 return ret;
f7b12b6f
THJ
11672
11673 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
11674 /* to make freplace equivalent to their targets, they need to
11675 * inherit env->ops and expected_attach_type for the rest of the
11676 * verification
11677 */
f7b12b6f
THJ
11678 env->ops = bpf_verifier_ops[tgt_prog->type];
11679 prog->expected_attach_type = tgt_prog->expected_attach_type;
11680 }
11681
11682 /* store info about the attachment target that will be used later */
11683 prog->aux->attach_func_proto = tgt_info.tgt_type;
11684 prog->aux->attach_func_name = tgt_info.tgt_name;
11685
4a1e7c0c
THJ
11686 if (tgt_prog) {
11687 prog->aux->saved_dst_prog_type = tgt_prog->type;
11688 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11689 }
11690
f7b12b6f
THJ
11691 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11692 prog->aux->attach_btf_trace = true;
11693 return 0;
11694 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11695 if (!bpf_iter_prog_supported(prog))
11696 return -EINVAL;
11697 return 0;
11698 }
11699
11700 if (prog->type == BPF_PROG_TYPE_LSM) {
11701 ret = bpf_lsm_verify_prog(&env->log, prog);
11702 if (ret < 0)
11703 return ret;
38207291 11704 }
f7b12b6f
THJ
11705
11706 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
11707 tr = bpf_trampoline_get(key, &tgt_info);
11708 if (!tr)
11709 return -ENOMEM;
11710
3aac1ead 11711 prog->aux->dst_trampoline = tr;
f7b12b6f 11712 return 0;
38207291
MKL
11713}
11714
76654e67
AM
11715struct btf *bpf_get_btf_vmlinux(void)
11716{
11717 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11718 mutex_lock(&bpf_verifier_lock);
11719 if (!btf_vmlinux)
11720 btf_vmlinux = btf_parse_vmlinux();
11721 mutex_unlock(&bpf_verifier_lock);
11722 }
11723 return btf_vmlinux;
11724}
11725
838e9690
YS
11726int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11727 union bpf_attr __user *uattr)
51580e79 11728{
06ee7115 11729 u64 start_time = ktime_get_ns();
58e2af8b 11730 struct bpf_verifier_env *env;
b9193c1b 11731 struct bpf_verifier_log *log;
9e4c24e7 11732 int i, len, ret = -EINVAL;
e2ae4ca2 11733 bool is_priv;
51580e79 11734
eba0c929
AB
11735 /* no program is valid */
11736 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11737 return -EINVAL;
11738
58e2af8b 11739 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11740 * allocate/free it every time bpf_check() is called
11741 */
58e2af8b 11742 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11743 if (!env)
11744 return -ENOMEM;
61bd5218 11745 log = &env->log;
cbd35700 11746
9e4c24e7 11747 len = (*prog)->len;
fad953ce 11748 env->insn_aux_data =
9e4c24e7 11749 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11750 ret = -ENOMEM;
11751 if (!env->insn_aux_data)
11752 goto err_free_env;
9e4c24e7
JK
11753 for (i = 0; i < len; i++)
11754 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11755 env->prog = *prog;
00176a34 11756 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11757 is_priv = bpf_capable();
0246e64d 11758
76654e67 11759 bpf_get_btf_vmlinux();
8580ac94 11760
cbd35700 11761 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11762 if (!is_priv)
11763 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11764
11765 if (attr->log_level || attr->log_buf || attr->log_size) {
11766 /* user requested verbose verifier output
11767 * and supplied buffer to store the verification trace
11768 */
e7bf8249
JK
11769 log->level = attr->log_level;
11770 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11771 log->len_total = attr->log_size;
cbd35700
AS
11772
11773 ret = -EINVAL;
e7bf8249 11774 /* log attributes have to be sane */
7a9f5c65 11775 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11776 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11777 goto err_unlock;
cbd35700 11778 }
1ad2f583 11779
8580ac94
AS
11780 if (IS_ERR(btf_vmlinux)) {
11781 /* Either gcc or pahole or kernel are broken. */
11782 verbose(env, "in-kernel BTF is malformed\n");
11783 ret = PTR_ERR(btf_vmlinux);
38207291 11784 goto skip_full_check;
8580ac94
AS
11785 }
11786
1ad2f583
DB
11787 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11788 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 11789 env->strict_alignment = true;
e9ee9efc
DM
11790 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11791 env->strict_alignment = false;
cbd35700 11792
2c78ee89 11793 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 11794 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
11795 env->bypass_spec_v1 = bpf_bypass_spec_v1();
11796 env->bypass_spec_v4 = bpf_bypass_spec_v4();
11797 env->bpf_capable = bpf_capable();
e2ae4ca2 11798
10d274e8
AS
11799 if (is_priv)
11800 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11801
cae1927c 11802 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 11803 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 11804 if (ret)
f4e3ec0d 11805 goto skip_full_check;
ab3f0063
JK
11806 }
11807
dc2a4ebc 11808 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 11809 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
11810 GFP_USER);
11811 ret = -ENOMEM;
11812 if (!env->explored_states)
11813 goto skip_full_check;
11814
d9762e84 11815 ret = check_subprogs(env);
475fb78f
AS
11816 if (ret < 0)
11817 goto skip_full_check;
11818
c454a46b 11819 ret = check_btf_info(env, attr, uattr);
838e9690
YS
11820 if (ret < 0)
11821 goto skip_full_check;
11822
be8704ff
AS
11823 ret = check_attach_btf_id(env);
11824 if (ret)
11825 goto skip_full_check;
11826
4976b718
HL
11827 ret = resolve_pseudo_ldimm64(env);
11828 if (ret < 0)
11829 goto skip_full_check;
11830
d9762e84
MKL
11831 ret = check_cfg(env);
11832 if (ret < 0)
11833 goto skip_full_check;
11834
51c39bb1
AS
11835 ret = do_check_subprogs(env);
11836 ret = ret ?: do_check_main(env);
cbd35700 11837
c941ce9c
QM
11838 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11839 ret = bpf_prog_offload_finalize(env);
11840
0246e64d 11841skip_full_check:
51c39bb1 11842 kvfree(env->explored_states);
0246e64d 11843
c131187d 11844 if (ret == 0)
9b38c405 11845 ret = check_max_stack_depth(env);
c131187d 11846
9b38c405 11847 /* instruction rewrites happen after this point */
e2ae4ca2
JK
11848 if (is_priv) {
11849 if (ret == 0)
11850 opt_hard_wire_dead_code_branches(env);
52875a04
JK
11851 if (ret == 0)
11852 ret = opt_remove_dead_code(env);
a1b14abc
JK
11853 if (ret == 0)
11854 ret = opt_remove_nops(env);
52875a04
JK
11855 } else {
11856 if (ret == 0)
11857 sanitize_dead_code(env);
e2ae4ca2
JK
11858 }
11859
9bac3d6d
AS
11860 if (ret == 0)
11861 /* program is valid, convert *(u32*)(ctx + off) accesses */
11862 ret = convert_ctx_accesses(env);
11863
e245c5c6 11864 if (ret == 0)
79741b3b 11865 ret = fixup_bpf_calls(env);
e245c5c6 11866
a4b1d3c1
JW
11867 /* do 32-bit optimization after insn patching has done so those patched
11868 * insns could be handled correctly.
11869 */
d6c2308c
JW
11870 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11871 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11872 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11873 : false;
a4b1d3c1
JW
11874 }
11875
1ea47e01
AS
11876 if (ret == 0)
11877 ret = fixup_call_args(env);
11878
06ee7115
AS
11879 env->verification_time = ktime_get_ns() - start_time;
11880 print_verification_stats(env);
11881
a2a7d570 11882 if (log->level && bpf_verifier_log_full(log))
cbd35700 11883 ret = -ENOSPC;
a2a7d570 11884 if (log->level && !log->ubuf) {
cbd35700 11885 ret = -EFAULT;
a2a7d570 11886 goto err_release_maps;
cbd35700
AS
11887 }
11888
0246e64d
AS
11889 if (ret == 0 && env->used_map_cnt) {
11890 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
11891 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11892 sizeof(env->used_maps[0]),
11893 GFP_KERNEL);
0246e64d 11894
9bac3d6d 11895 if (!env->prog->aux->used_maps) {
0246e64d 11896 ret = -ENOMEM;
a2a7d570 11897 goto err_release_maps;
0246e64d
AS
11898 }
11899
9bac3d6d 11900 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 11901 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 11902 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
11903
11904 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11905 * bpf_ld_imm64 instructions
11906 */
11907 convert_pseudo_ld_imm64(env);
11908 }
cbd35700 11909
ba64e7d8
YS
11910 if (ret == 0)
11911 adjust_btf_func(env);
11912
a2a7d570 11913err_release_maps:
9bac3d6d 11914 if (!env->prog->aux->used_maps)
0246e64d 11915 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 11916 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
11917 */
11918 release_maps(env);
03f87c0b
THJ
11919
11920 /* extension progs temporarily inherit the attach_type of their targets
11921 for verification purposes, so set it back to zero before returning
11922 */
11923 if (env->prog->type == BPF_PROG_TYPE_EXT)
11924 env->prog->expected_attach_type = 0;
11925
9bac3d6d 11926 *prog = env->prog;
3df126f3 11927err_unlock:
45a73c17
AS
11928 if (!is_priv)
11929 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
11930 vfree(env->insn_aux_data);
11931err_free_env:
11932 kfree(env);
51580e79
AS
11933 return ret;
11934}