]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/bpf/verifier.c
device_cgroup: prepare code for bpf-based device controller
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
802 int size)
803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
5722569b 807 if (off < 0 || size <= 0 || off + size > map->value_size) {
61bd5218 808 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
809 map->value_size, off, size);
810 return -EACCES;
811 }
812 return 0;
813}
814
f1174f77
EC
815/* check read/write into a map element with possible variable offset */
816static int check_map_access(struct bpf_verifier_env *env, u32 regno,
638f5b90 817 int off, int size)
dbcfe5f7 818{
638f5b90 819 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
820 struct bpf_reg_state *reg = &state->regs[regno];
821 int err;
822
f1174f77
EC
823 /* We may have adjusted the register to this map value, so we
824 * need to try adding each of min_value and max_value to off
825 * to make sure our theoretical access will be safe.
dbcfe5f7 826 */
61bd5218
JK
827 if (env->log.level)
828 print_verifier_state(env, state);
dbcfe5f7
GB
829 /* The minimum value is only important with signed
830 * comparisons where we can't assume the floor of a
831 * value is 0. If we are using signed variables for our
832 * index'es we need to make sure that whatever we use
833 * will have a set floor within our range.
834 */
b03c9f9f 835 if (reg->smin_value < 0) {
61bd5218 836 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
837 regno);
838 return -EACCES;
839 }
b03c9f9f 840 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 841 if (err) {
61bd5218
JK
842 verbose(env, "R%d min value is outside of the array range\n",
843 regno);
dbcfe5f7
GB
844 return err;
845 }
846
b03c9f9f
EC
847 /* If we haven't set a max value then we need to bail since we can't be
848 * sure we won't do bad things.
849 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 850 */
b03c9f9f 851 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 852 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
853 regno);
854 return -EACCES;
855 }
b03c9f9f 856 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77 857 if (err)
61bd5218
JK
858 verbose(env, "R%d max value is outside of the array range\n",
859 regno);
f1174f77 860 return err;
dbcfe5f7
GB
861}
862
969bf05e
AS
863#define MAX_PACKET_OFF 0xffff
864
58e2af8b 865static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
866 const struct bpf_call_arg_meta *meta,
867 enum bpf_access_type t)
4acf6c0b 868{
36bbef52 869 switch (env->prog->type) {
3a0af8fd
TG
870 case BPF_PROG_TYPE_LWT_IN:
871 case BPF_PROG_TYPE_LWT_OUT:
872 /* dst_input() and dst_output() can't write for now */
873 if (t == BPF_WRITE)
874 return false;
7e57fbb2 875 /* fallthrough */
36bbef52
DB
876 case BPF_PROG_TYPE_SCHED_CLS:
877 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 878 case BPF_PROG_TYPE_XDP:
3a0af8fd 879 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 880 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
881 if (meta)
882 return meta->pkt_access;
883
884 env->seen_direct_write = true;
4acf6c0b
BB
885 return true;
886 default:
887 return false;
888 }
889}
890
f1174f77
EC
891static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
892 int off, int size)
969bf05e 893{
638f5b90 894 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 895 struct bpf_reg_state *reg = &regs[regno];
969bf05e 896
f1174f77 897 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
61bd5218 898 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 899 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
900 return -EACCES;
901 }
902 return 0;
903}
904
f1174f77
EC
905static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
906 int size)
907{
638f5b90 908 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
909 struct bpf_reg_state *reg = &regs[regno];
910 int err;
911
912 /* We may have added a variable offset to the packet pointer; but any
913 * reg->range we have comes after that. We are only checking the fixed
914 * offset.
915 */
916
917 /* We don't allow negative numbers, because we aren't tracking enough
918 * detail to prove they're safe.
919 */
b03c9f9f 920 if (reg->smin_value < 0) {
61bd5218 921 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
922 regno);
923 return -EACCES;
924 }
925 err = __check_packet_access(env, regno, off, size);
926 if (err) {
61bd5218 927 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
928 return err;
929 }
930 return err;
931}
932
933/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 934static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 935 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 936{
f96da094
DB
937 struct bpf_insn_access_aux info = {
938 .reg_type = *reg_type,
939 };
31fd8581 940
4f9218aa
JK
941 if (env->ops->is_valid_access &&
942 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
943 /* A non zero info.ctx_field_size indicates that this field is a
944 * candidate for later verifier transformation to load the whole
945 * field and then apply a mask when accessed with a narrower
946 * access than actual ctx access size. A zero info.ctx_field_size
947 * will only allow for whole field access and rejects any other
948 * type of narrower access.
31fd8581 949 */
23994631 950 *reg_type = info.reg_type;
31fd8581 951
4f9218aa 952 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
953 /* remember the offset of last byte accessed in ctx */
954 if (env->prog->aux->max_ctx_offset < off + size)
955 env->prog->aux->max_ctx_offset = off + size;
17a52670 956 return 0;
32bbe007 957 }
17a52670 958
61bd5218 959 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
960 return -EACCES;
961}
962
4cabc5b1
DB
963static bool __is_pointer_value(bool allow_ptr_leaks,
964 const struct bpf_reg_state *reg)
1be7f75d 965{
4cabc5b1 966 if (allow_ptr_leaks)
1be7f75d
AS
967 return false;
968
f1174f77 969 return reg->type != SCALAR_VALUE;
1be7f75d
AS
970}
971
4cabc5b1
DB
972static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
973{
638f5b90 974 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
975}
976
61bd5218
JK
977static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
978 const struct bpf_reg_state *reg,
d1174416 979 int off, int size, bool strict)
969bf05e 980{
f1174f77 981 struct tnum reg_off;
e07b98d9 982 int ip_align;
d1174416
DM
983
984 /* Byte size accesses are always allowed. */
985 if (!strict || size == 1)
986 return 0;
987
e4eda884
DM
988 /* For platforms that do not have a Kconfig enabling
989 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
990 * NET_IP_ALIGN is universally set to '2'. And on platforms
991 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
992 * to this code only in strict mode where we want to emulate
993 * the NET_IP_ALIGN==2 checking. Therefore use an
994 * unconditional IP align value of '2'.
e07b98d9 995 */
e4eda884 996 ip_align = 2;
f1174f77
EC
997
998 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
999 if (!tnum_is_aligned(reg_off, size)) {
1000 char tn_buf[48];
1001
1002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1003 verbose(env,
1004 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1005 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1006 return -EACCES;
1007 }
79adffcd 1008
969bf05e
AS
1009 return 0;
1010}
1011
61bd5218
JK
1012static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1013 const struct bpf_reg_state *reg,
f1174f77
EC
1014 const char *pointer_desc,
1015 int off, int size, bool strict)
79adffcd 1016{
f1174f77
EC
1017 struct tnum reg_off;
1018
1019 /* Byte size accesses are always allowed. */
1020 if (!strict || size == 1)
1021 return 0;
1022
1023 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1024 if (!tnum_is_aligned(reg_off, size)) {
1025 char tn_buf[48];
1026
1027 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1028 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1029 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1030 return -EACCES;
1031 }
1032
969bf05e
AS
1033 return 0;
1034}
1035
e07b98d9
DM
1036static int check_ptr_alignment(struct bpf_verifier_env *env,
1037 const struct bpf_reg_state *reg,
79adffcd
DB
1038 int off, int size)
1039{
e07b98d9 1040 bool strict = env->strict_alignment;
f1174f77 1041 const char *pointer_desc = "";
d1174416 1042
79adffcd
DB
1043 switch (reg->type) {
1044 case PTR_TO_PACKET:
de8f3a83
DB
1045 case PTR_TO_PACKET_META:
1046 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1047 * right in front, treat it the very same way.
1048 */
61bd5218 1049 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1050 case PTR_TO_MAP_VALUE:
1051 pointer_desc = "value ";
1052 break;
1053 case PTR_TO_CTX:
1054 pointer_desc = "context ";
1055 break;
1056 case PTR_TO_STACK:
1057 pointer_desc = "stack ";
1058 break;
79adffcd 1059 default:
f1174f77 1060 break;
79adffcd 1061 }
61bd5218
JK
1062 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1063 strict);
79adffcd
DB
1064}
1065
17a52670
AS
1066/* check whether memory at (regno + off) is accessible for t = (read | write)
1067 * if t==write, value_regno is a register which value is stored into memory
1068 * if t==read, value_regno is a register which will receive the value from memory
1069 * if t==write && value_regno==-1, some unknown value is stored into memory
1070 * if t==read && value_regno==-1, don't care what we read from memory
1071 */
31fd8581 1072static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1073 int bpf_size, enum bpf_access_type t,
1074 int value_regno)
1075{
638f5b90
AS
1076 struct bpf_verifier_state *state = env->cur_state;
1077 struct bpf_reg_state *regs = cur_regs(env);
1078 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1079 int size, err = 0;
1080
1081 size = bpf_size_to_bytes(bpf_size);
1082 if (size < 0)
1083 return size;
1084
f1174f77 1085 /* alignment checks will add in reg->off themselves */
e07b98d9 1086 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1087 if (err)
1088 return err;
17a52670 1089
f1174f77
EC
1090 /* for access checks, reg->off is just part of off */
1091 off += reg->off;
1092
1093 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1094 if (t == BPF_WRITE && value_regno >= 0 &&
1095 is_pointer_value(env, value_regno)) {
61bd5218 1096 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1097 return -EACCES;
1098 }
48461135 1099
f1174f77 1100 err = check_map_access(env, regno, off, size);
17a52670 1101 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1102 mark_reg_unknown(env, regs, value_regno);
17a52670 1103
1a0dc1ac 1104 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1105 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1106
1be7f75d
AS
1107 if (t == BPF_WRITE && value_regno >= 0 &&
1108 is_pointer_value(env, value_regno)) {
61bd5218 1109 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1110 return -EACCES;
1111 }
f1174f77
EC
1112 /* ctx accesses must be at a fixed offset, so that we can
1113 * determine what type of data were returned.
1114 */
28e33f9d 1115 if (reg->off) {
f8ddadc4
DM
1116 verbose(env,
1117 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1118 regno, reg->off, off - reg->off);
1119 return -EACCES;
1120 }
1121 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1122 char tn_buf[48];
1123
1124 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1125 verbose(env,
1126 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1127 tn_buf, off, size);
1128 return -EACCES;
1129 }
31fd8581 1130 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1131 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1132 /* ctx access returns either a scalar, or a
de8f3a83
DB
1133 * PTR_TO_PACKET[_META,_END]. In the latter
1134 * case, we know the offset is zero.
f1174f77
EC
1135 */
1136 if (reg_type == SCALAR_VALUE)
638f5b90 1137 mark_reg_unknown(env, regs, value_regno);
f1174f77 1138 else
638f5b90 1139 mark_reg_known_zero(env, regs,
61bd5218 1140 value_regno);
638f5b90
AS
1141 regs[value_regno].id = 0;
1142 regs[value_regno].off = 0;
1143 regs[value_regno].range = 0;
1144 regs[value_regno].type = reg_type;
969bf05e 1145 }
17a52670 1146
f1174f77
EC
1147 } else if (reg->type == PTR_TO_STACK) {
1148 /* stack accesses must be at a fixed offset, so that we can
1149 * determine what type of data were returned.
1150 * See check_stack_read().
1151 */
1152 if (!tnum_is_const(reg->var_off)) {
1153 char tn_buf[48];
1154
1155 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1156 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1157 tn_buf, off, size);
1158 return -EACCES;
1159 }
1160 off += reg->var_off.value;
17a52670 1161 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1162 verbose(env, "invalid stack off=%d size=%d\n", off,
1163 size);
17a52670
AS
1164 return -EACCES;
1165 }
8726679a
AS
1166
1167 if (env->prog->aux->stack_depth < -off)
1168 env->prog->aux->stack_depth = -off;
1169
638f5b90 1170 if (t == BPF_WRITE)
61bd5218
JK
1171 err = check_stack_write(env, state, off, size,
1172 value_regno);
638f5b90 1173 else
61bd5218
JK
1174 err = check_stack_read(env, state, off, size,
1175 value_regno);
de8f3a83 1176 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1177 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1178 verbose(env, "cannot write into packet\n");
969bf05e
AS
1179 return -EACCES;
1180 }
4acf6c0b
BB
1181 if (t == BPF_WRITE && value_regno >= 0 &&
1182 is_pointer_value(env, value_regno)) {
61bd5218
JK
1183 verbose(env, "R%d leaks addr into packet\n",
1184 value_regno);
4acf6c0b
BB
1185 return -EACCES;
1186 }
969bf05e
AS
1187 err = check_packet_access(env, regno, off, size);
1188 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1189 mark_reg_unknown(env, regs, value_regno);
17a52670 1190 } else {
61bd5218
JK
1191 verbose(env, "R%d invalid mem access '%s'\n", regno,
1192 reg_type_str[reg->type]);
17a52670
AS
1193 return -EACCES;
1194 }
969bf05e 1195
f1174f77 1196 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1197 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1198 /* b/h/w load zero-extends, mark upper bits as known 0 */
638f5b90
AS
1199 regs[value_regno].var_off =
1200 tnum_cast(regs[value_regno].var_off, size);
1201 __update_reg_bounds(&regs[value_regno]);
969bf05e 1202 }
17a52670
AS
1203 return err;
1204}
1205
31fd8581 1206static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1207{
17a52670
AS
1208 int err;
1209
1210 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1211 insn->imm != 0) {
61bd5218 1212 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1213 return -EINVAL;
1214 }
1215
1216 /* check src1 operand */
dc503a8a 1217 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1218 if (err)
1219 return err;
1220
1221 /* check src2 operand */
dc503a8a 1222 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1223 if (err)
1224 return err;
1225
6bdf6abc 1226 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1227 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1228 return -EACCES;
1229 }
1230
17a52670 1231 /* check whether atomic_add can read the memory */
31fd8581 1232 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1233 BPF_SIZE(insn->code), BPF_READ, -1);
1234 if (err)
1235 return err;
1236
1237 /* check whether atomic_add can write into the same memory */
31fd8581 1238 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1239 BPF_SIZE(insn->code), BPF_WRITE, -1);
1240}
1241
f1174f77
EC
1242/* Does this register contain a constant zero? */
1243static bool register_is_null(struct bpf_reg_state reg)
1244{
1245 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1246}
1247
17a52670
AS
1248/* when register 'regno' is passed into function that will read 'access_size'
1249 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1250 * and all elements of stack are initialized.
1251 * Unlike most pointer bounds-checking functions, this one doesn't take an
1252 * 'off' argument, so it has to add in reg->off itself.
17a52670 1253 */
58e2af8b 1254static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1255 int access_size, bool zero_size_allowed,
1256 struct bpf_call_arg_meta *meta)
17a52670 1257{
638f5b90 1258 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1259 struct bpf_reg_state *regs = state->regs;
638f5b90 1260 int off, i, slot, spi;
17a52670 1261
8e2fe1d9 1262 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1263 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1264 if (zero_size_allowed && access_size == 0 &&
f1174f77 1265 register_is_null(regs[regno]))
8e2fe1d9
DB
1266 return 0;
1267
61bd5218 1268 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1269 reg_type_str[regs[regno].type],
1270 reg_type_str[PTR_TO_STACK]);
17a52670 1271 return -EACCES;
8e2fe1d9 1272 }
17a52670 1273
f1174f77
EC
1274 /* Only allow fixed-offset stack reads */
1275 if (!tnum_is_const(regs[regno].var_off)) {
1276 char tn_buf[48];
1277
1278 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1279 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77
EC
1280 regno, tn_buf);
1281 }
1282 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1283 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1284 access_size <= 0) {
61bd5218 1285 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1286 regno, off, access_size);
1287 return -EACCES;
1288 }
1289
8726679a
AS
1290 if (env->prog->aux->stack_depth < -off)
1291 env->prog->aux->stack_depth = -off;
1292
435faee1
DB
1293 if (meta && meta->raw_mode) {
1294 meta->access_size = access_size;
1295 meta->regno = regno;
1296 return 0;
1297 }
1298
17a52670 1299 for (i = 0; i < access_size; i++) {
638f5b90
AS
1300 slot = -(off + i) - 1;
1301 spi = slot / BPF_REG_SIZE;
1302 if (state->allocated_stack <= slot ||
1303 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1304 STACK_MISC) {
61bd5218 1305 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1306 off, i, access_size);
1307 return -EACCES;
1308 }
1309 }
1310 return 0;
1311}
1312
06c1c049
GB
1313static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1314 int access_size, bool zero_size_allowed,
1315 struct bpf_call_arg_meta *meta)
1316{
638f5b90 1317 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1318
f1174f77 1319 switch (reg->type) {
06c1c049 1320 case PTR_TO_PACKET:
de8f3a83 1321 case PTR_TO_PACKET_META:
f1174f77 1322 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1323 case PTR_TO_MAP_VALUE:
f1174f77
EC
1324 return check_map_access(env, regno, reg->off, access_size);
1325 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1326 return check_stack_boundary(env, regno, access_size,
1327 zero_size_allowed, meta);
1328 }
1329}
1330
58e2af8b 1331static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1332 enum bpf_arg_type arg_type,
1333 struct bpf_call_arg_meta *meta)
17a52670 1334{
638f5b90 1335 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1336 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1337 int err = 0;
1338
80f1d68c 1339 if (arg_type == ARG_DONTCARE)
17a52670
AS
1340 return 0;
1341
dc503a8a
EC
1342 err = check_reg_arg(env, regno, SRC_OP);
1343 if (err)
1344 return err;
17a52670 1345
1be7f75d
AS
1346 if (arg_type == ARG_ANYTHING) {
1347 if (is_pointer_value(env, regno)) {
61bd5218
JK
1348 verbose(env, "R%d leaks addr into helper function\n",
1349 regno);
1be7f75d
AS
1350 return -EACCES;
1351 }
80f1d68c 1352 return 0;
1be7f75d 1353 }
80f1d68c 1354
de8f3a83 1355 if (type_is_pkt_pointer(type) &&
3a0af8fd 1356 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1357 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1358 return -EACCES;
1359 }
1360
8e2fe1d9 1361 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1362 arg_type == ARG_PTR_TO_MAP_VALUE) {
1363 expected_type = PTR_TO_STACK;
de8f3a83
DB
1364 if (!type_is_pkt_pointer(type) &&
1365 type != expected_type)
6841de8b 1366 goto err_type;
39f19ebb
AS
1367 } else if (arg_type == ARG_CONST_SIZE ||
1368 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1369 expected_type = SCALAR_VALUE;
1370 if (type != expected_type)
6841de8b 1371 goto err_type;
17a52670
AS
1372 } else if (arg_type == ARG_CONST_MAP_PTR) {
1373 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1374 if (type != expected_type)
1375 goto err_type;
608cd71a
AS
1376 } else if (arg_type == ARG_PTR_TO_CTX) {
1377 expected_type = PTR_TO_CTX;
6841de8b
AS
1378 if (type != expected_type)
1379 goto err_type;
39f19ebb
AS
1380 } else if (arg_type == ARG_PTR_TO_MEM ||
1381 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1382 expected_type = PTR_TO_STACK;
1383 /* One exception here. In case function allows for NULL to be
f1174f77 1384 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1385 * happens during stack boundary checking.
1386 */
f1174f77 1387 if (register_is_null(*reg))
6841de8b 1388 /* final test in check_stack_boundary() */;
de8f3a83
DB
1389 else if (!type_is_pkt_pointer(type) &&
1390 type != PTR_TO_MAP_VALUE &&
f1174f77 1391 type != expected_type)
6841de8b 1392 goto err_type;
39f19ebb 1393 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1394 } else {
61bd5218 1395 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1396 return -EFAULT;
1397 }
1398
17a52670
AS
1399 if (arg_type == ARG_CONST_MAP_PTR) {
1400 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1401 meta->map_ptr = reg->map_ptr;
17a52670
AS
1402 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1403 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1404 * check that [key, key + map->key_size) are within
1405 * stack limits and initialized
1406 */
33ff9823 1407 if (!meta->map_ptr) {
17a52670
AS
1408 /* in function declaration map_ptr must come before
1409 * map_key, so that it's verified and known before
1410 * we have to check map_key here. Otherwise it means
1411 * that kernel subsystem misconfigured verifier
1412 */
61bd5218 1413 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1414 return -EACCES;
1415 }
de8f3a83 1416 if (type_is_pkt_pointer(type))
f1174f77 1417 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1418 meta->map_ptr->key_size);
1419 else
1420 err = check_stack_boundary(env, regno,
1421 meta->map_ptr->key_size,
1422 false, NULL);
17a52670
AS
1423 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1424 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1425 * check [value, value + map->value_size) validity
1426 */
33ff9823 1427 if (!meta->map_ptr) {
17a52670 1428 /* kernel subsystem misconfigured verifier */
61bd5218 1429 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1430 return -EACCES;
1431 }
de8f3a83 1432 if (type_is_pkt_pointer(type))
f1174f77 1433 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1434 meta->map_ptr->value_size);
1435 else
1436 err = check_stack_boundary(env, regno,
1437 meta->map_ptr->value_size,
1438 false, NULL);
39f19ebb
AS
1439 } else if (arg_type == ARG_CONST_SIZE ||
1440 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1441 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1442
17a52670
AS
1443 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1444 * from stack pointer 'buf'. Check it
1445 * note: regno == len, regno - 1 == buf
1446 */
1447 if (regno == 0) {
1448 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1449 verbose(env,
1450 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1451 return -EACCES;
1452 }
06c1c049 1453
f1174f77
EC
1454 /* The register is SCALAR_VALUE; the access check
1455 * happens using its boundaries.
06c1c049 1456 */
f1174f77
EC
1457
1458 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1459 /* For unprivileged variable accesses, disable raw
1460 * mode so that the program is required to
1461 * initialize all the memory that the helper could
1462 * just partially fill up.
1463 */
1464 meta = NULL;
1465
b03c9f9f 1466 if (reg->smin_value < 0) {
61bd5218 1467 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1468 regno);
1469 return -EACCES;
1470 }
06c1c049 1471
b03c9f9f 1472 if (reg->umin_value == 0) {
f1174f77
EC
1473 err = check_helper_mem_access(env, regno - 1, 0,
1474 zero_size_allowed,
1475 meta);
06c1c049
GB
1476 if (err)
1477 return err;
06c1c049 1478 }
f1174f77 1479
b03c9f9f 1480 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1481 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1482 regno);
1483 return -EACCES;
1484 }
1485 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1486 reg->umax_value,
f1174f77 1487 zero_size_allowed, meta);
17a52670
AS
1488 }
1489
1490 return err;
6841de8b 1491err_type:
61bd5218 1492 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1493 reg_type_str[type], reg_type_str[expected_type]);
1494 return -EACCES;
17a52670
AS
1495}
1496
61bd5218
JK
1497static int check_map_func_compatibility(struct bpf_verifier_env *env,
1498 struct bpf_map *map, int func_id)
35578d79 1499{
35578d79
KX
1500 if (!map)
1501 return 0;
1502
6aff67c8
AS
1503 /* We need a two way check, first is from map perspective ... */
1504 switch (map->map_type) {
1505 case BPF_MAP_TYPE_PROG_ARRAY:
1506 if (func_id != BPF_FUNC_tail_call)
1507 goto error;
1508 break;
1509 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1510 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1511 func_id != BPF_FUNC_perf_event_output &&
1512 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1513 goto error;
1514 break;
1515 case BPF_MAP_TYPE_STACK_TRACE:
1516 if (func_id != BPF_FUNC_get_stackid)
1517 goto error;
1518 break;
4ed8ec52 1519 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1520 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1521 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1522 goto error;
1523 break;
546ac1ff
JF
1524 /* devmap returns a pointer to a live net_device ifindex that we cannot
1525 * allow to be modified from bpf side. So do not allow lookup elements
1526 * for now.
1527 */
1528 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1529 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1530 goto error;
1531 break;
6710e112
JDB
1532 /* Restrict bpf side of cpumap, open when use-cases appear */
1533 case BPF_MAP_TYPE_CPUMAP:
1534 if (func_id != BPF_FUNC_redirect_map)
1535 goto error;
1536 break;
56f668df 1537 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1538 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1539 if (func_id != BPF_FUNC_map_lookup_elem)
1540 goto error;
16a43625 1541 break;
174a79ff
JF
1542 case BPF_MAP_TYPE_SOCKMAP:
1543 if (func_id != BPF_FUNC_sk_redirect_map &&
1544 func_id != BPF_FUNC_sock_map_update &&
1545 func_id != BPF_FUNC_map_delete_elem)
1546 goto error;
1547 break;
6aff67c8
AS
1548 default:
1549 break;
1550 }
1551
1552 /* ... and second from the function itself. */
1553 switch (func_id) {
1554 case BPF_FUNC_tail_call:
1555 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1556 goto error;
1557 break;
1558 case BPF_FUNC_perf_event_read:
1559 case BPF_FUNC_perf_event_output:
908432ca 1560 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1561 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1562 goto error;
1563 break;
1564 case BPF_FUNC_get_stackid:
1565 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1566 goto error;
1567 break;
60d20f91 1568 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1569 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1570 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1571 goto error;
1572 break;
97f91a7c 1573 case BPF_FUNC_redirect_map:
9c270af3
JDB
1574 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1575 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1576 goto error;
1577 break;
174a79ff
JF
1578 case BPF_FUNC_sk_redirect_map:
1579 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1580 goto error;
1581 break;
1582 case BPF_FUNC_sock_map_update:
1583 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1584 goto error;
1585 break;
6aff67c8
AS
1586 default:
1587 break;
35578d79
KX
1588 }
1589
1590 return 0;
6aff67c8 1591error:
61bd5218 1592 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1593 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1594 return -EINVAL;
35578d79
KX
1595}
1596
435faee1
DB
1597static int check_raw_mode(const struct bpf_func_proto *fn)
1598{
1599 int count = 0;
1600
39f19ebb 1601 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1602 count++;
39f19ebb 1603 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1604 count++;
39f19ebb 1605 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1606 count++;
39f19ebb 1607 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1608 count++;
39f19ebb 1609 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1610 count++;
1611
1612 return count > 1 ? -EINVAL : 0;
1613}
1614
de8f3a83
DB
1615/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1616 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1617 */
58e2af8b 1618static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1619{
638f5b90 1620 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1621 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1622 int i;
1623
1624 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1625 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1626 mark_reg_unknown(env, regs, i);
969bf05e 1627
638f5b90
AS
1628 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1629 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1630 continue;
638f5b90 1631 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1632 if (reg_is_pkt_pointer_any(reg))
1633 __mark_reg_unknown(reg);
969bf05e
AS
1634 }
1635}
1636
81ed18ab 1637static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1638{
17a52670 1639 const struct bpf_func_proto *fn = NULL;
638f5b90 1640 struct bpf_reg_state *regs;
33ff9823 1641 struct bpf_call_arg_meta meta;
969bf05e 1642 bool changes_data;
17a52670
AS
1643 int i, err;
1644
1645 /* find function prototype */
1646 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1647 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1648 func_id);
17a52670
AS
1649 return -EINVAL;
1650 }
1651
00176a34
JK
1652 if (env->ops->get_func_proto)
1653 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1654
1655 if (!fn) {
61bd5218
JK
1656 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1657 func_id);
17a52670
AS
1658 return -EINVAL;
1659 }
1660
1661 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1662 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1663 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1664 return -EINVAL;
1665 }
1666
17bedab2 1667 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1668
33ff9823 1669 memset(&meta, 0, sizeof(meta));
36bbef52 1670 meta.pkt_access = fn->pkt_access;
33ff9823 1671
435faee1
DB
1672 /* We only support one arg being in raw mode at the moment, which
1673 * is sufficient for the helper functions we have right now.
1674 */
1675 err = check_raw_mode(fn);
1676 if (err) {
61bd5218 1677 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1678 func_id_name(func_id), func_id);
435faee1
DB
1679 return err;
1680 }
1681
17a52670 1682 /* check args */
33ff9823 1683 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1684 if (err)
1685 return err;
33ff9823 1686 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1687 if (err)
1688 return err;
33ff9823 1689 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1690 if (err)
1691 return err;
33ff9823 1692 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1693 if (err)
1694 return err;
33ff9823 1695 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1696 if (err)
1697 return err;
1698
435faee1
DB
1699 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1700 * is inferred from register state.
1701 */
1702 for (i = 0; i < meta.access_size; i++) {
31fd8581 1703 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1704 if (err)
1705 return err;
1706 }
1707
638f5b90 1708 regs = cur_regs(env);
17a52670 1709 /* reset caller saved regs */
dc503a8a 1710 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1711 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1712 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1713 }
17a52670 1714
dc503a8a 1715 /* update return register (already marked as written above) */
17a52670 1716 if (fn->ret_type == RET_INTEGER) {
f1174f77 1717 /* sets type to SCALAR_VALUE */
61bd5218 1718 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1719 } else if (fn->ret_type == RET_VOID) {
1720 regs[BPF_REG_0].type = NOT_INIT;
1721 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1722 struct bpf_insn_aux_data *insn_aux;
1723
17a52670 1724 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1725 /* There is no offset yet applied, variable or fixed */
61bd5218 1726 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1727 regs[BPF_REG_0].off = 0;
17a52670
AS
1728 /* remember map_ptr, so that check_map_access()
1729 * can check 'value_size' boundary of memory access
1730 * to map element returned from bpf_map_lookup_elem()
1731 */
33ff9823 1732 if (meta.map_ptr == NULL) {
61bd5218
JK
1733 verbose(env,
1734 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1735 return -EINVAL;
1736 }
33ff9823 1737 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1738 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1739 insn_aux = &env->insn_aux_data[insn_idx];
1740 if (!insn_aux->map_ptr)
1741 insn_aux->map_ptr = meta.map_ptr;
1742 else if (insn_aux->map_ptr != meta.map_ptr)
1743 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1744 } else {
61bd5218 1745 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1746 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1747 return -EINVAL;
1748 }
04fd61ab 1749
61bd5218 1750 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1751 if (err)
1752 return err;
04fd61ab 1753
969bf05e
AS
1754 if (changes_data)
1755 clear_all_pkt_pointers(env);
1756 return 0;
1757}
1758
f1174f77
EC
1759static void coerce_reg_to_32(struct bpf_reg_state *reg)
1760{
f1174f77
EC
1761 /* clear high 32 bits */
1762 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1763 /* Update bounds */
1764 __update_reg_bounds(reg);
1765}
1766
1767static bool signed_add_overflows(s64 a, s64 b)
1768{
1769 /* Do the add in u64, where overflow is well-defined */
1770 s64 res = (s64)((u64)a + (u64)b);
1771
1772 if (b < 0)
1773 return res > a;
1774 return res < a;
1775}
1776
1777static bool signed_sub_overflows(s64 a, s64 b)
1778{
1779 /* Do the sub in u64, where overflow is well-defined */
1780 s64 res = (s64)((u64)a - (u64)b);
1781
1782 if (b < 0)
1783 return res < a;
1784 return res > a;
969bf05e
AS
1785}
1786
f1174f77 1787/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1788 * Caller should also handle BPF_MOV case separately.
1789 * If we return -EACCES, caller may want to try again treating pointer as a
1790 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1791 */
1792static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1793 struct bpf_insn *insn,
1794 const struct bpf_reg_state *ptr_reg,
1795 const struct bpf_reg_state *off_reg)
969bf05e 1796{
638f5b90 1797 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1798 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1799 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1800 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1801 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1802 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1803 u8 opcode = BPF_OP(insn->code);
f1174f77 1804 u32 dst = insn->dst_reg;
969bf05e 1805
f1174f77 1806 dst_reg = &regs[dst];
969bf05e 1807
b03c9f9f 1808 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1809 print_verifier_state(env, env->cur_state);
61bd5218
JK
1810 verbose(env,
1811 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1812 return -EINVAL;
1813 }
1814 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1815 print_verifier_state(env, env->cur_state);
61bd5218
JK
1816 verbose(env,
1817 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1818 return -EINVAL;
1819 }
1820
1821 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1822 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1823 if (!env->allow_ptr_leaks)
61bd5218
JK
1824 verbose(env,
1825 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1826 dst);
1827 return -EACCES;
969bf05e
AS
1828 }
1829
f1174f77
EC
1830 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1831 if (!env->allow_ptr_leaks)
61bd5218 1832 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1833 dst);
1834 return -EACCES;
1835 }
1836 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1837 if (!env->allow_ptr_leaks)
61bd5218 1838 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1839 dst);
1840 return -EACCES;
1841 }
1842 if (ptr_reg->type == PTR_TO_PACKET_END) {
1843 if (!env->allow_ptr_leaks)
61bd5218 1844 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1845 dst);
1846 return -EACCES;
1847 }
1848
1849 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1850 * The id may be overwritten later if we create a new variable offset.
969bf05e 1851 */
f1174f77
EC
1852 dst_reg->type = ptr_reg->type;
1853 dst_reg->id = ptr_reg->id;
969bf05e 1854
f1174f77
EC
1855 switch (opcode) {
1856 case BPF_ADD:
1857 /* We can take a fixed offset as long as it doesn't overflow
1858 * the s32 'off' field
969bf05e 1859 */
b03c9f9f
EC
1860 if (known && (ptr_reg->off + smin_val ==
1861 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1862 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1863 dst_reg->smin_value = smin_ptr;
1864 dst_reg->smax_value = smax_ptr;
1865 dst_reg->umin_value = umin_ptr;
1866 dst_reg->umax_value = umax_ptr;
f1174f77 1867 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1868 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1869 dst_reg->range = ptr_reg->range;
1870 break;
1871 }
f1174f77
EC
1872 /* A new variable offset is created. Note that off_reg->off
1873 * == 0, since it's a scalar.
1874 * dst_reg gets the pointer type and since some positive
1875 * integer value was added to the pointer, give it a new 'id'
1876 * if it's a PTR_TO_PACKET.
1877 * this creates a new 'base' pointer, off_reg (variable) gets
1878 * added into the variable offset, and we copy the fixed offset
1879 * from ptr_reg.
969bf05e 1880 */
b03c9f9f
EC
1881 if (signed_add_overflows(smin_ptr, smin_val) ||
1882 signed_add_overflows(smax_ptr, smax_val)) {
1883 dst_reg->smin_value = S64_MIN;
1884 dst_reg->smax_value = S64_MAX;
1885 } else {
1886 dst_reg->smin_value = smin_ptr + smin_val;
1887 dst_reg->smax_value = smax_ptr + smax_val;
1888 }
1889 if (umin_ptr + umin_val < umin_ptr ||
1890 umax_ptr + umax_val < umax_ptr) {
1891 dst_reg->umin_value = 0;
1892 dst_reg->umax_value = U64_MAX;
1893 } else {
1894 dst_reg->umin_value = umin_ptr + umin_val;
1895 dst_reg->umax_value = umax_ptr + umax_val;
1896 }
f1174f77
EC
1897 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1898 dst_reg->off = ptr_reg->off;
de8f3a83 1899 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1900 dst_reg->id = ++env->id_gen;
1901 /* something was added to pkt_ptr, set range to zero */
1902 dst_reg->range = 0;
1903 }
1904 break;
1905 case BPF_SUB:
1906 if (dst_reg == off_reg) {
1907 /* scalar -= pointer. Creates an unknown scalar */
1908 if (!env->allow_ptr_leaks)
61bd5218 1909 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1910 dst);
1911 return -EACCES;
1912 }
1913 /* We don't allow subtraction from FP, because (according to
1914 * test_verifier.c test "invalid fp arithmetic", JITs might not
1915 * be able to deal with it.
969bf05e 1916 */
f1174f77
EC
1917 if (ptr_reg->type == PTR_TO_STACK) {
1918 if (!env->allow_ptr_leaks)
61bd5218 1919 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1920 dst);
1921 return -EACCES;
1922 }
b03c9f9f
EC
1923 if (known && (ptr_reg->off - smin_val ==
1924 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1925 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1926 dst_reg->smin_value = smin_ptr;
1927 dst_reg->smax_value = smax_ptr;
1928 dst_reg->umin_value = umin_ptr;
1929 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1930 dst_reg->var_off = ptr_reg->var_off;
1931 dst_reg->id = ptr_reg->id;
b03c9f9f 1932 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1933 dst_reg->range = ptr_reg->range;
1934 break;
1935 }
f1174f77
EC
1936 /* A new variable offset is created. If the subtrahend is known
1937 * nonnegative, then any reg->range we had before is still good.
969bf05e 1938 */
b03c9f9f
EC
1939 if (signed_sub_overflows(smin_ptr, smax_val) ||
1940 signed_sub_overflows(smax_ptr, smin_val)) {
1941 /* Overflow possible, we know nothing */
1942 dst_reg->smin_value = S64_MIN;
1943 dst_reg->smax_value = S64_MAX;
1944 } else {
1945 dst_reg->smin_value = smin_ptr - smax_val;
1946 dst_reg->smax_value = smax_ptr - smin_val;
1947 }
1948 if (umin_ptr < umax_val) {
1949 /* Overflow possible, we know nothing */
1950 dst_reg->umin_value = 0;
1951 dst_reg->umax_value = U64_MAX;
1952 } else {
1953 /* Cannot overflow (as long as bounds are consistent) */
1954 dst_reg->umin_value = umin_ptr - umax_val;
1955 dst_reg->umax_value = umax_ptr - umin_val;
1956 }
f1174f77
EC
1957 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1958 dst_reg->off = ptr_reg->off;
de8f3a83 1959 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1960 dst_reg->id = ++env->id_gen;
1961 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1962 if (smin_val < 0)
f1174f77 1963 dst_reg->range = 0;
43188702 1964 }
f1174f77
EC
1965 break;
1966 case BPF_AND:
1967 case BPF_OR:
1968 case BPF_XOR:
1969 /* bitwise ops on pointers are troublesome, prohibit for now.
1970 * (However, in principle we could allow some cases, e.g.
1971 * ptr &= ~3 which would reduce min_value by 3.)
1972 */
1973 if (!env->allow_ptr_leaks)
61bd5218 1974 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
1975 dst, bpf_alu_string[opcode >> 4]);
1976 return -EACCES;
1977 default:
1978 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1979 if (!env->allow_ptr_leaks)
61bd5218 1980 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
1981 dst, bpf_alu_string[opcode >> 4]);
1982 return -EACCES;
43188702
JF
1983 }
1984
b03c9f9f
EC
1985 __update_reg_bounds(dst_reg);
1986 __reg_deduce_bounds(dst_reg);
1987 __reg_bound_offset(dst_reg);
43188702
JF
1988 return 0;
1989}
1990
f1174f77
EC
1991static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1992 struct bpf_insn *insn,
1993 struct bpf_reg_state *dst_reg,
1994 struct bpf_reg_state src_reg)
969bf05e 1995{
638f5b90 1996 struct bpf_reg_state *regs = cur_regs(env);
48461135 1997 u8 opcode = BPF_OP(insn->code);
f1174f77 1998 bool src_known, dst_known;
b03c9f9f
EC
1999 s64 smin_val, smax_val;
2000 u64 umin_val, umax_val;
48461135 2001
f1174f77
EC
2002 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2003 /* 32-bit ALU ops are (32,32)->64 */
2004 coerce_reg_to_32(dst_reg);
2005 coerce_reg_to_32(&src_reg);
9305706c 2006 }
b03c9f9f
EC
2007 smin_val = src_reg.smin_value;
2008 smax_val = src_reg.smax_value;
2009 umin_val = src_reg.umin_value;
2010 umax_val = src_reg.umax_value;
f1174f77
EC
2011 src_known = tnum_is_const(src_reg.var_off);
2012 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2013
48461135
JB
2014 switch (opcode) {
2015 case BPF_ADD:
b03c9f9f
EC
2016 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2017 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2018 dst_reg->smin_value = S64_MIN;
2019 dst_reg->smax_value = S64_MAX;
2020 } else {
2021 dst_reg->smin_value += smin_val;
2022 dst_reg->smax_value += smax_val;
2023 }
2024 if (dst_reg->umin_value + umin_val < umin_val ||
2025 dst_reg->umax_value + umax_val < umax_val) {
2026 dst_reg->umin_value = 0;
2027 dst_reg->umax_value = U64_MAX;
2028 } else {
2029 dst_reg->umin_value += umin_val;
2030 dst_reg->umax_value += umax_val;
2031 }
f1174f77 2032 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2033 break;
2034 case BPF_SUB:
b03c9f9f
EC
2035 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2036 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2037 /* Overflow possible, we know nothing */
2038 dst_reg->smin_value = S64_MIN;
2039 dst_reg->smax_value = S64_MAX;
2040 } else {
2041 dst_reg->smin_value -= smax_val;
2042 dst_reg->smax_value -= smin_val;
2043 }
2044 if (dst_reg->umin_value < umax_val) {
2045 /* Overflow possible, we know nothing */
2046 dst_reg->umin_value = 0;
2047 dst_reg->umax_value = U64_MAX;
2048 } else {
2049 /* Cannot overflow (as long as bounds are consistent) */
2050 dst_reg->umin_value -= umax_val;
2051 dst_reg->umax_value -= umin_val;
2052 }
f1174f77 2053 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2054 break;
2055 case BPF_MUL:
b03c9f9f
EC
2056 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2057 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2058 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2059 __mark_reg_unbounded(dst_reg);
2060 __update_reg_bounds(dst_reg);
f1174f77
EC
2061 break;
2062 }
b03c9f9f
EC
2063 /* Both values are positive, so we can work with unsigned and
2064 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2065 */
b03c9f9f
EC
2066 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2067 /* Potential overflow, we know nothing */
2068 __mark_reg_unbounded(dst_reg);
2069 /* (except what we can learn from the var_off) */
2070 __update_reg_bounds(dst_reg);
2071 break;
2072 }
2073 dst_reg->umin_value *= umin_val;
2074 dst_reg->umax_value *= umax_val;
2075 if (dst_reg->umax_value > S64_MAX) {
2076 /* Overflow possible, we know nothing */
2077 dst_reg->smin_value = S64_MIN;
2078 dst_reg->smax_value = S64_MAX;
2079 } else {
2080 dst_reg->smin_value = dst_reg->umin_value;
2081 dst_reg->smax_value = dst_reg->umax_value;
2082 }
48461135
JB
2083 break;
2084 case BPF_AND:
f1174f77 2085 if (src_known && dst_known) {
b03c9f9f
EC
2086 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2087 src_reg.var_off.value);
f1174f77
EC
2088 break;
2089 }
b03c9f9f
EC
2090 /* We get our minimum from the var_off, since that's inherently
2091 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2092 */
f1174f77 2093 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2094 dst_reg->umin_value = dst_reg->var_off.value;
2095 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2096 if (dst_reg->smin_value < 0 || smin_val < 0) {
2097 /* Lose signed bounds when ANDing negative numbers,
2098 * ain't nobody got time for that.
2099 */
2100 dst_reg->smin_value = S64_MIN;
2101 dst_reg->smax_value = S64_MAX;
2102 } else {
2103 /* ANDing two positives gives a positive, so safe to
2104 * cast result into s64.
2105 */
2106 dst_reg->smin_value = dst_reg->umin_value;
2107 dst_reg->smax_value = dst_reg->umax_value;
2108 }
2109 /* We may learn something more from the var_off */
2110 __update_reg_bounds(dst_reg);
f1174f77
EC
2111 break;
2112 case BPF_OR:
2113 if (src_known && dst_known) {
b03c9f9f
EC
2114 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2115 src_reg.var_off.value);
f1174f77
EC
2116 break;
2117 }
b03c9f9f
EC
2118 /* We get our maximum from the var_off, and our minimum is the
2119 * maximum of the operands' minima
f1174f77
EC
2120 */
2121 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2122 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2123 dst_reg->umax_value = dst_reg->var_off.value |
2124 dst_reg->var_off.mask;
2125 if (dst_reg->smin_value < 0 || smin_val < 0) {
2126 /* Lose signed bounds when ORing negative numbers,
2127 * ain't nobody got time for that.
2128 */
2129 dst_reg->smin_value = S64_MIN;
2130 dst_reg->smax_value = S64_MAX;
f1174f77 2131 } else {
b03c9f9f
EC
2132 /* ORing two positives gives a positive, so safe to
2133 * cast result into s64.
2134 */
2135 dst_reg->smin_value = dst_reg->umin_value;
2136 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2137 }
b03c9f9f
EC
2138 /* We may learn something more from the var_off */
2139 __update_reg_bounds(dst_reg);
48461135
JB
2140 break;
2141 case BPF_LSH:
b03c9f9f
EC
2142 if (umax_val > 63) {
2143 /* Shifts greater than 63 are undefined. This includes
2144 * shifts by a negative number.
2145 */
61bd5218 2146 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2147 break;
2148 }
b03c9f9f
EC
2149 /* We lose all sign bit information (except what we can pick
2150 * up from var_off)
48461135 2151 */
b03c9f9f
EC
2152 dst_reg->smin_value = S64_MIN;
2153 dst_reg->smax_value = S64_MAX;
2154 /* If we might shift our top bit out, then we know nothing */
2155 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2156 dst_reg->umin_value = 0;
2157 dst_reg->umax_value = U64_MAX;
d1174416 2158 } else {
b03c9f9f
EC
2159 dst_reg->umin_value <<= umin_val;
2160 dst_reg->umax_value <<= umax_val;
d1174416 2161 }
b03c9f9f
EC
2162 if (src_known)
2163 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2164 else
2165 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2166 /* We may learn something more from the var_off */
2167 __update_reg_bounds(dst_reg);
48461135
JB
2168 break;
2169 case BPF_RSH:
b03c9f9f
EC
2170 if (umax_val > 63) {
2171 /* Shifts greater than 63 are undefined. This includes
2172 * shifts by a negative number.
2173 */
61bd5218 2174 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2175 break;
2176 }
2177 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2178 if (dst_reg->smin_value < 0) {
2179 if (umin_val) {
f1174f77 2180 /* Sign bit will be cleared */
b03c9f9f
EC
2181 dst_reg->smin_value = 0;
2182 } else {
2183 /* Lost sign bit information */
2184 dst_reg->smin_value = S64_MIN;
2185 dst_reg->smax_value = S64_MAX;
2186 }
d1174416 2187 } else {
b03c9f9f
EC
2188 dst_reg->smin_value =
2189 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2190 }
f1174f77 2191 if (src_known)
b03c9f9f
EC
2192 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2193 umin_val);
f1174f77 2194 else
b03c9f9f
EC
2195 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2196 dst_reg->umin_value >>= umax_val;
2197 dst_reg->umax_value >>= umin_val;
2198 /* We may learn something more from the var_off */
2199 __update_reg_bounds(dst_reg);
48461135
JB
2200 break;
2201 default:
61bd5218 2202 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2203 break;
2204 }
2205
b03c9f9f
EC
2206 __reg_deduce_bounds(dst_reg);
2207 __reg_bound_offset(dst_reg);
f1174f77
EC
2208 return 0;
2209}
2210
2211/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2212 * and var_off.
2213 */
2214static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2215 struct bpf_insn *insn)
2216{
638f5b90 2217 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2218 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2219 u8 opcode = BPF_OP(insn->code);
2220 int rc;
2221
2222 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2223 src_reg = NULL;
2224 if (dst_reg->type != SCALAR_VALUE)
2225 ptr_reg = dst_reg;
2226 if (BPF_SRC(insn->code) == BPF_X) {
2227 src_reg = &regs[insn->src_reg];
f1174f77
EC
2228 if (src_reg->type != SCALAR_VALUE) {
2229 if (dst_reg->type != SCALAR_VALUE) {
2230 /* Combining two pointers by any ALU op yields
2231 * an arbitrary scalar.
2232 */
2233 if (!env->allow_ptr_leaks) {
61bd5218 2234 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2235 insn->dst_reg,
2236 bpf_alu_string[opcode >> 4]);
2237 return -EACCES;
2238 }
61bd5218 2239 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2240 return 0;
2241 } else {
2242 /* scalar += pointer
2243 * This is legal, but we have to reverse our
2244 * src/dest handling in computing the range
2245 */
2246 rc = adjust_ptr_min_max_vals(env, insn,
2247 src_reg, dst_reg);
2248 if (rc == -EACCES && env->allow_ptr_leaks) {
2249 /* scalar += unknown scalar */
2250 __mark_reg_unknown(&off_reg);
2251 return adjust_scalar_min_max_vals(
2252 env, insn,
2253 dst_reg, off_reg);
2254 }
2255 return rc;
2256 }
2257 } else if (ptr_reg) {
2258 /* pointer += scalar */
2259 rc = adjust_ptr_min_max_vals(env, insn,
2260 dst_reg, src_reg);
2261 if (rc == -EACCES && env->allow_ptr_leaks) {
2262 /* unknown scalar += scalar */
2263 __mark_reg_unknown(dst_reg);
2264 return adjust_scalar_min_max_vals(
2265 env, insn, dst_reg, *src_reg);
2266 }
2267 return rc;
2268 }
2269 } else {
2270 /* Pretend the src is a reg with a known value, since we only
2271 * need to be able to read from this state.
2272 */
2273 off_reg.type = SCALAR_VALUE;
b03c9f9f 2274 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2275 src_reg = &off_reg;
f1174f77
EC
2276 if (ptr_reg) { /* pointer += K */
2277 rc = adjust_ptr_min_max_vals(env, insn,
2278 ptr_reg, src_reg);
2279 if (rc == -EACCES && env->allow_ptr_leaks) {
2280 /* unknown scalar += K */
2281 __mark_reg_unknown(dst_reg);
2282 return adjust_scalar_min_max_vals(
2283 env, insn, dst_reg, off_reg);
2284 }
2285 return rc;
2286 }
2287 }
2288
2289 /* Got here implies adding two SCALAR_VALUEs */
2290 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2291 print_verifier_state(env, env->cur_state);
61bd5218 2292 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2293 return -EINVAL;
2294 }
2295 if (WARN_ON(!src_reg)) {
638f5b90 2296 print_verifier_state(env, env->cur_state);
61bd5218 2297 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2298 return -EINVAL;
2299 }
2300 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2301}
2302
17a52670 2303/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2304static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2305{
638f5b90 2306 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2307 u8 opcode = BPF_OP(insn->code);
2308 int err;
2309
2310 if (opcode == BPF_END || opcode == BPF_NEG) {
2311 if (opcode == BPF_NEG) {
2312 if (BPF_SRC(insn->code) != 0 ||
2313 insn->src_reg != BPF_REG_0 ||
2314 insn->off != 0 || insn->imm != 0) {
61bd5218 2315 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2316 return -EINVAL;
2317 }
2318 } else {
2319 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2320 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2321 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2322 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2323 return -EINVAL;
2324 }
2325 }
2326
2327 /* check src operand */
dc503a8a 2328 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2329 if (err)
2330 return err;
2331
1be7f75d 2332 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2333 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2334 insn->dst_reg);
2335 return -EACCES;
2336 }
2337
17a52670 2338 /* check dest operand */
dc503a8a 2339 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2340 if (err)
2341 return err;
2342
2343 } else if (opcode == BPF_MOV) {
2344
2345 if (BPF_SRC(insn->code) == BPF_X) {
2346 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2347 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2348 return -EINVAL;
2349 }
2350
2351 /* check src operand */
dc503a8a 2352 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2353 if (err)
2354 return err;
2355 } else {
2356 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2357 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2358 return -EINVAL;
2359 }
2360 }
2361
2362 /* check dest operand */
dc503a8a 2363 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2364 if (err)
2365 return err;
2366
2367 if (BPF_SRC(insn->code) == BPF_X) {
2368 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2369 /* case: R1 = R2
2370 * copy register state to dest reg
2371 */
2372 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2373 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2374 } else {
f1174f77 2375 /* R1 = (u32) R2 */
1be7f75d 2376 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2377 verbose(env,
2378 "R%d partial copy of pointer\n",
1be7f75d
AS
2379 insn->src_reg);
2380 return -EACCES;
2381 }
61bd5218 2382 mark_reg_unknown(env, regs, insn->dst_reg);
b03c9f9f 2383 /* high 32 bits are known zero. */
f1174f77
EC
2384 regs[insn->dst_reg].var_off = tnum_cast(
2385 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2386 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2387 }
2388 } else {
2389 /* case: R = imm
2390 * remember the value we stored into this reg
2391 */
f1174f77 2392 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2393 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2394 }
2395
2396 } else if (opcode > BPF_END) {
61bd5218 2397 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2398 return -EINVAL;
2399
2400 } else { /* all other ALU ops: and, sub, xor, add, ... */
2401
17a52670
AS
2402 if (BPF_SRC(insn->code) == BPF_X) {
2403 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2404 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2405 return -EINVAL;
2406 }
2407 /* check src1 operand */
dc503a8a 2408 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2409 if (err)
2410 return err;
2411 } else {
2412 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2413 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2414 return -EINVAL;
2415 }
2416 }
2417
2418 /* check src2 operand */
dc503a8a 2419 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2420 if (err)
2421 return err;
2422
2423 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2424 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2425 verbose(env, "div by zero\n");
17a52670
AS
2426 return -EINVAL;
2427 }
2428
229394e8
RV
2429 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2430 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2431 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2432
2433 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2434 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2435 return -EINVAL;
2436 }
2437 }
2438
1a0dc1ac 2439 /* check dest operand */
dc503a8a 2440 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2441 if (err)
2442 return err;
2443
f1174f77 2444 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2445 }
2446
2447 return 0;
2448}
2449
58e2af8b 2450static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2451 struct bpf_reg_state *dst_reg,
f8ddadc4 2452 enum bpf_reg_type type,
fb2a311a 2453 bool range_right_open)
969bf05e 2454{
58e2af8b 2455 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2456 u16 new_range;
969bf05e 2457 int i;
2d2be8ca 2458
fb2a311a
DB
2459 if (dst_reg->off < 0 ||
2460 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2461 /* This doesn't give us any range */
2462 return;
2463
b03c9f9f
EC
2464 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2465 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2466 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2467 * than pkt_end, but that's because it's also less than pkt.
2468 */
2469 return;
2470
fb2a311a
DB
2471 new_range = dst_reg->off;
2472 if (range_right_open)
2473 new_range--;
2474
2475 /* Examples for register markings:
2d2be8ca 2476 *
fb2a311a 2477 * pkt_data in dst register:
2d2be8ca
DB
2478 *
2479 * r2 = r3;
2480 * r2 += 8;
2481 * if (r2 > pkt_end) goto <handle exception>
2482 * <access okay>
2483 *
b4e432f1
DB
2484 * r2 = r3;
2485 * r2 += 8;
2486 * if (r2 < pkt_end) goto <access okay>
2487 * <handle exception>
2488 *
2d2be8ca
DB
2489 * Where:
2490 * r2 == dst_reg, pkt_end == src_reg
2491 * r2=pkt(id=n,off=8,r=0)
2492 * r3=pkt(id=n,off=0,r=0)
2493 *
fb2a311a 2494 * pkt_data in src register:
2d2be8ca
DB
2495 *
2496 * r2 = r3;
2497 * r2 += 8;
2498 * if (pkt_end >= r2) goto <access okay>
2499 * <handle exception>
2500 *
b4e432f1
DB
2501 * r2 = r3;
2502 * r2 += 8;
2503 * if (pkt_end <= r2) goto <handle exception>
2504 * <access okay>
2505 *
2d2be8ca
DB
2506 * Where:
2507 * pkt_end == dst_reg, r2 == src_reg
2508 * r2=pkt(id=n,off=8,r=0)
2509 * r3=pkt(id=n,off=0,r=0)
2510 *
2511 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2512 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2513 * and [r3, r3 + 8-1) respectively is safe to access depending on
2514 * the check.
969bf05e 2515 */
2d2be8ca 2516
f1174f77
EC
2517 /* If our ids match, then we must have the same max_value. And we
2518 * don't care about the other reg's fixed offset, since if it's too big
2519 * the range won't allow anything.
2520 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2521 */
969bf05e 2522 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2523 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2524 /* keep the maximum range already checked */
fb2a311a 2525 regs[i].range = max(regs[i].range, new_range);
969bf05e 2526
638f5b90
AS
2527 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2528 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2529 continue;
638f5b90 2530 reg = &state->stack[i].spilled_ptr;
de8f3a83 2531 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2532 reg->range = max(reg->range, new_range);
969bf05e
AS
2533 }
2534}
2535
48461135
JB
2536/* Adjusts the register min/max values in the case that the dst_reg is the
2537 * variable register that we are working on, and src_reg is a constant or we're
2538 * simply doing a BPF_K check.
f1174f77 2539 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2540 */
2541static void reg_set_min_max(struct bpf_reg_state *true_reg,
2542 struct bpf_reg_state *false_reg, u64 val,
2543 u8 opcode)
2544{
f1174f77
EC
2545 /* If the dst_reg is a pointer, we can't learn anything about its
2546 * variable offset from the compare (unless src_reg were a pointer into
2547 * the same object, but we don't bother with that.
2548 * Since false_reg and true_reg have the same type by construction, we
2549 * only need to check one of them for pointerness.
2550 */
2551 if (__is_pointer_value(false, false_reg))
2552 return;
4cabc5b1 2553
48461135
JB
2554 switch (opcode) {
2555 case BPF_JEQ:
2556 /* If this is false then we know nothing Jon Snow, but if it is
2557 * true then we know for sure.
2558 */
b03c9f9f 2559 __mark_reg_known(true_reg, val);
48461135
JB
2560 break;
2561 case BPF_JNE:
2562 /* If this is true we know nothing Jon Snow, but if it is false
2563 * we know the value for sure;
2564 */
b03c9f9f 2565 __mark_reg_known(false_reg, val);
48461135
JB
2566 break;
2567 case BPF_JGT:
b03c9f9f
EC
2568 false_reg->umax_value = min(false_reg->umax_value, val);
2569 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2570 break;
48461135 2571 case BPF_JSGT:
b03c9f9f
EC
2572 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2573 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2574 break;
b4e432f1
DB
2575 case BPF_JLT:
2576 false_reg->umin_value = max(false_reg->umin_value, val);
2577 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2578 break;
2579 case BPF_JSLT:
2580 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2581 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2582 break;
48461135 2583 case BPF_JGE:
b03c9f9f
EC
2584 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2585 true_reg->umin_value = max(true_reg->umin_value, val);
2586 break;
48461135 2587 case BPF_JSGE:
b03c9f9f
EC
2588 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2589 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2590 break;
b4e432f1
DB
2591 case BPF_JLE:
2592 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2593 true_reg->umax_value = min(true_reg->umax_value, val);
2594 break;
2595 case BPF_JSLE:
2596 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2597 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2598 break;
48461135
JB
2599 default:
2600 break;
2601 }
2602
b03c9f9f
EC
2603 __reg_deduce_bounds(false_reg);
2604 __reg_deduce_bounds(true_reg);
2605 /* We might have learned some bits from the bounds. */
2606 __reg_bound_offset(false_reg);
2607 __reg_bound_offset(true_reg);
2608 /* Intersecting with the old var_off might have improved our bounds
2609 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2610 * then new var_off is (0; 0x7f...fc) which improves our umax.
2611 */
2612 __update_reg_bounds(false_reg);
2613 __update_reg_bounds(true_reg);
48461135
JB
2614}
2615
f1174f77
EC
2616/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2617 * the variable reg.
48461135
JB
2618 */
2619static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2620 struct bpf_reg_state *false_reg, u64 val,
2621 u8 opcode)
2622{
f1174f77
EC
2623 if (__is_pointer_value(false, false_reg))
2624 return;
4cabc5b1 2625
48461135
JB
2626 switch (opcode) {
2627 case BPF_JEQ:
2628 /* If this is false then we know nothing Jon Snow, but if it is
2629 * true then we know for sure.
2630 */
b03c9f9f 2631 __mark_reg_known(true_reg, val);
48461135
JB
2632 break;
2633 case BPF_JNE:
2634 /* If this is true we know nothing Jon Snow, but if it is false
2635 * we know the value for sure;
2636 */
b03c9f9f 2637 __mark_reg_known(false_reg, val);
48461135
JB
2638 break;
2639 case BPF_JGT:
b03c9f9f
EC
2640 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2641 false_reg->umin_value = max(false_reg->umin_value, val);
2642 break;
48461135 2643 case BPF_JSGT:
b03c9f9f
EC
2644 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2645 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2646 break;
b4e432f1
DB
2647 case BPF_JLT:
2648 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2649 false_reg->umax_value = min(false_reg->umax_value, val);
2650 break;
2651 case BPF_JSLT:
2652 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2653 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2654 break;
48461135 2655 case BPF_JGE:
b03c9f9f
EC
2656 true_reg->umax_value = min(true_reg->umax_value, val);
2657 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2658 break;
48461135 2659 case BPF_JSGE:
b03c9f9f
EC
2660 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2661 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2662 break;
b4e432f1
DB
2663 case BPF_JLE:
2664 true_reg->umin_value = max(true_reg->umin_value, val);
2665 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2666 break;
2667 case BPF_JSLE:
2668 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2669 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2670 break;
48461135
JB
2671 default:
2672 break;
2673 }
2674
b03c9f9f
EC
2675 __reg_deduce_bounds(false_reg);
2676 __reg_deduce_bounds(true_reg);
2677 /* We might have learned some bits from the bounds. */
2678 __reg_bound_offset(false_reg);
2679 __reg_bound_offset(true_reg);
2680 /* Intersecting with the old var_off might have improved our bounds
2681 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2682 * then new var_off is (0; 0x7f...fc) which improves our umax.
2683 */
2684 __update_reg_bounds(false_reg);
2685 __update_reg_bounds(true_reg);
f1174f77
EC
2686}
2687
2688/* Regs are known to be equal, so intersect their min/max/var_off */
2689static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2690 struct bpf_reg_state *dst_reg)
2691{
b03c9f9f
EC
2692 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2693 dst_reg->umin_value);
2694 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2695 dst_reg->umax_value);
2696 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2697 dst_reg->smin_value);
2698 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2699 dst_reg->smax_value);
f1174f77
EC
2700 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2701 dst_reg->var_off);
b03c9f9f
EC
2702 /* We might have learned new bounds from the var_off. */
2703 __update_reg_bounds(src_reg);
2704 __update_reg_bounds(dst_reg);
2705 /* We might have learned something about the sign bit. */
2706 __reg_deduce_bounds(src_reg);
2707 __reg_deduce_bounds(dst_reg);
2708 /* We might have learned some bits from the bounds. */
2709 __reg_bound_offset(src_reg);
2710 __reg_bound_offset(dst_reg);
2711 /* Intersecting with the old var_off might have improved our bounds
2712 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2713 * then new var_off is (0; 0x7f...fc) which improves our umax.
2714 */
2715 __update_reg_bounds(src_reg);
2716 __update_reg_bounds(dst_reg);
f1174f77
EC
2717}
2718
2719static void reg_combine_min_max(struct bpf_reg_state *true_src,
2720 struct bpf_reg_state *true_dst,
2721 struct bpf_reg_state *false_src,
2722 struct bpf_reg_state *false_dst,
2723 u8 opcode)
2724{
2725 switch (opcode) {
2726 case BPF_JEQ:
2727 __reg_combine_min_max(true_src, true_dst);
2728 break;
2729 case BPF_JNE:
2730 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2731 break;
4cabc5b1 2732 }
48461135
JB
2733}
2734
57a09bf0 2735static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2736 bool is_null)
57a09bf0
TG
2737{
2738 struct bpf_reg_state *reg = &regs[regno];
2739
2740 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2741 /* Old offset (both fixed and variable parts) should
2742 * have been known-zero, because we don't allow pointer
2743 * arithmetic on pointers that might be NULL.
2744 */
b03c9f9f
EC
2745 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2746 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2747 reg->off)) {
b03c9f9f
EC
2748 __mark_reg_known_zero(reg);
2749 reg->off = 0;
f1174f77
EC
2750 }
2751 if (is_null) {
2752 reg->type = SCALAR_VALUE;
56f668df
MKL
2753 } else if (reg->map_ptr->inner_map_meta) {
2754 reg->type = CONST_PTR_TO_MAP;
2755 reg->map_ptr = reg->map_ptr->inner_map_meta;
2756 } else {
f1174f77 2757 reg->type = PTR_TO_MAP_VALUE;
56f668df 2758 }
a08dd0da
DB
2759 /* We don't need id from this point onwards anymore, thus we
2760 * should better reset it, so that state pruning has chances
2761 * to take effect.
2762 */
2763 reg->id = 0;
57a09bf0
TG
2764 }
2765}
2766
2767/* The logic is similar to find_good_pkt_pointers(), both could eventually
2768 * be folded together at some point.
2769 */
2770static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2771 bool is_null)
57a09bf0
TG
2772{
2773 struct bpf_reg_state *regs = state->regs;
a08dd0da 2774 u32 id = regs[regno].id;
57a09bf0
TG
2775 int i;
2776
2777 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2778 mark_map_reg(regs, i, id, is_null);
57a09bf0 2779
638f5b90
AS
2780 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2781 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2782 continue;
638f5b90 2783 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2784 }
2785}
2786
5beca081
DB
2787static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2788 struct bpf_reg_state *dst_reg,
2789 struct bpf_reg_state *src_reg,
2790 struct bpf_verifier_state *this_branch,
2791 struct bpf_verifier_state *other_branch)
2792{
2793 if (BPF_SRC(insn->code) != BPF_X)
2794 return false;
2795
2796 switch (BPF_OP(insn->code)) {
2797 case BPF_JGT:
2798 if ((dst_reg->type == PTR_TO_PACKET &&
2799 src_reg->type == PTR_TO_PACKET_END) ||
2800 (dst_reg->type == PTR_TO_PACKET_META &&
2801 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2802 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2803 find_good_pkt_pointers(this_branch, dst_reg,
2804 dst_reg->type, false);
2805 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2806 src_reg->type == PTR_TO_PACKET) ||
2807 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2808 src_reg->type == PTR_TO_PACKET_META)) {
2809 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2810 find_good_pkt_pointers(other_branch, src_reg,
2811 src_reg->type, true);
2812 } else {
2813 return false;
2814 }
2815 break;
2816 case BPF_JLT:
2817 if ((dst_reg->type == PTR_TO_PACKET &&
2818 src_reg->type == PTR_TO_PACKET_END) ||
2819 (dst_reg->type == PTR_TO_PACKET_META &&
2820 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2821 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2822 find_good_pkt_pointers(other_branch, dst_reg,
2823 dst_reg->type, true);
2824 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2825 src_reg->type == PTR_TO_PACKET) ||
2826 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2827 src_reg->type == PTR_TO_PACKET_META)) {
2828 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2829 find_good_pkt_pointers(this_branch, src_reg,
2830 src_reg->type, false);
2831 } else {
2832 return false;
2833 }
2834 break;
2835 case BPF_JGE:
2836 if ((dst_reg->type == PTR_TO_PACKET &&
2837 src_reg->type == PTR_TO_PACKET_END) ||
2838 (dst_reg->type == PTR_TO_PACKET_META &&
2839 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2840 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2841 find_good_pkt_pointers(this_branch, dst_reg,
2842 dst_reg->type, true);
2843 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2844 src_reg->type == PTR_TO_PACKET) ||
2845 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2846 src_reg->type == PTR_TO_PACKET_META)) {
2847 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2848 find_good_pkt_pointers(other_branch, src_reg,
2849 src_reg->type, false);
2850 } else {
2851 return false;
2852 }
2853 break;
2854 case BPF_JLE:
2855 if ((dst_reg->type == PTR_TO_PACKET &&
2856 src_reg->type == PTR_TO_PACKET_END) ||
2857 (dst_reg->type == PTR_TO_PACKET_META &&
2858 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2859 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2860 find_good_pkt_pointers(other_branch, dst_reg,
2861 dst_reg->type, false);
2862 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2863 src_reg->type == PTR_TO_PACKET) ||
2864 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2865 src_reg->type == PTR_TO_PACKET_META)) {
2866 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2867 find_good_pkt_pointers(this_branch, src_reg,
2868 src_reg->type, true);
2869 } else {
2870 return false;
2871 }
2872 break;
2873 default:
2874 return false;
2875 }
2876
2877 return true;
2878}
2879
58e2af8b 2880static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2881 struct bpf_insn *insn, int *insn_idx)
2882{
638f5b90 2883 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2884 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2885 u8 opcode = BPF_OP(insn->code);
2886 int err;
2887
b4e432f1 2888 if (opcode > BPF_JSLE) {
61bd5218 2889 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2890 return -EINVAL;
2891 }
2892
2893 if (BPF_SRC(insn->code) == BPF_X) {
2894 if (insn->imm != 0) {
61bd5218 2895 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2896 return -EINVAL;
2897 }
2898
2899 /* check src1 operand */
dc503a8a 2900 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2901 if (err)
2902 return err;
1be7f75d
AS
2903
2904 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2905 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2906 insn->src_reg);
2907 return -EACCES;
2908 }
17a52670
AS
2909 } else {
2910 if (insn->src_reg != BPF_REG_0) {
61bd5218 2911 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2912 return -EINVAL;
2913 }
2914 }
2915
2916 /* check src2 operand */
dc503a8a 2917 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2918 if (err)
2919 return err;
2920
1a0dc1ac
AS
2921 dst_reg = &regs[insn->dst_reg];
2922
17a52670
AS
2923 /* detect if R == 0 where R was initialized to zero earlier */
2924 if (BPF_SRC(insn->code) == BPF_K &&
2925 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2926 dst_reg->type == SCALAR_VALUE &&
2927 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2928 if (opcode == BPF_JEQ) {
2929 /* if (imm == imm) goto pc+off;
2930 * only follow the goto, ignore fall-through
2931 */
2932 *insn_idx += insn->off;
2933 return 0;
2934 } else {
2935 /* if (imm != imm) goto pc+off;
2936 * only follow fall-through branch, since
2937 * that's where the program will go
2938 */
2939 return 0;
2940 }
2941 }
2942
2943 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2944 if (!other_branch)
2945 return -EFAULT;
2946
48461135
JB
2947 /* detect if we are comparing against a constant value so we can adjust
2948 * our min/max values for our dst register.
f1174f77
EC
2949 * this is only legit if both are scalars (or pointers to the same
2950 * object, I suppose, but we don't support that right now), because
2951 * otherwise the different base pointers mean the offsets aren't
2952 * comparable.
48461135
JB
2953 */
2954 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2955 if (dst_reg->type == SCALAR_VALUE &&
2956 regs[insn->src_reg].type == SCALAR_VALUE) {
2957 if (tnum_is_const(regs[insn->src_reg].var_off))
2958 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2959 dst_reg, regs[insn->src_reg].var_off.value,
2960 opcode);
2961 else if (tnum_is_const(dst_reg->var_off))
2962 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2963 &regs[insn->src_reg],
2964 dst_reg->var_off.value, opcode);
2965 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2966 /* Comparing for equality, we can combine knowledge */
2967 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2968 &other_branch->regs[insn->dst_reg],
2969 &regs[insn->src_reg],
2970 &regs[insn->dst_reg], opcode);
2971 }
2972 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2973 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2974 dst_reg, insn->imm, opcode);
2975 }
2976
58e2af8b 2977 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2978 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2979 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2980 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2981 /* Mark all identical map registers in each branch as either
2982 * safe or unknown depending R == 0 or R != 0 conditional.
2983 */
f1174f77
EC
2984 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2985 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
2986 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2987 this_branch, other_branch) &&
2988 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
2989 verbose(env, "R%d pointer comparison prohibited\n",
2990 insn->dst_reg);
1be7f75d 2991 return -EACCES;
17a52670 2992 }
61bd5218
JK
2993 if (env->log.level)
2994 print_verifier_state(env, this_branch);
17a52670
AS
2995 return 0;
2996}
2997
0246e64d
AS
2998/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2999static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3000{
3001 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3002
3003 return (struct bpf_map *) (unsigned long) imm64;
3004}
3005
17a52670 3006/* verify BPF_LD_IMM64 instruction */
58e2af8b 3007static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3008{
638f5b90 3009 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3010 int err;
3011
3012 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3013 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3014 return -EINVAL;
3015 }
3016 if (insn->off != 0) {
61bd5218 3017 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3018 return -EINVAL;
3019 }
3020
dc503a8a 3021 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3022 if (err)
3023 return err;
3024
6b173873 3025 if (insn->src_reg == 0) {
6b173873
JK
3026 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3027
f1174f77 3028 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3029 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3030 return 0;
6b173873 3031 }
17a52670
AS
3032
3033 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3034 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3035
3036 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3037 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3038 return 0;
3039}
3040
96be4325
DB
3041static bool may_access_skb(enum bpf_prog_type type)
3042{
3043 switch (type) {
3044 case BPF_PROG_TYPE_SOCKET_FILTER:
3045 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3046 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3047 return true;
3048 default:
3049 return false;
3050 }
3051}
3052
ddd872bc
AS
3053/* verify safety of LD_ABS|LD_IND instructions:
3054 * - they can only appear in the programs where ctx == skb
3055 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3056 * preserve R6-R9, and store return value into R0
3057 *
3058 * Implicit input:
3059 * ctx == skb == R6 == CTX
3060 *
3061 * Explicit input:
3062 * SRC == any register
3063 * IMM == 32-bit immediate
3064 *
3065 * Output:
3066 * R0 - 8/16/32-bit skb data converted to cpu endianness
3067 */
58e2af8b 3068static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3069{
638f5b90 3070 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3071 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3072 int i, err;
3073
24701ece 3074 if (!may_access_skb(env->prog->type)) {
61bd5218 3075 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3076 return -EINVAL;
3077 }
3078
3079 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3080 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3081 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3082 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3083 return -EINVAL;
3084 }
3085
3086 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3087 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3088 if (err)
3089 return err;
3090
3091 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3092 verbose(env,
3093 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3094 return -EINVAL;
3095 }
3096
3097 if (mode == BPF_IND) {
3098 /* check explicit source operand */
dc503a8a 3099 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3100 if (err)
3101 return err;
3102 }
3103
3104 /* reset caller saved regs to unreadable */
dc503a8a 3105 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3106 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3107 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3108 }
ddd872bc
AS
3109
3110 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3111 * the value fetched from the packet.
3112 * Already marked as written above.
ddd872bc 3113 */
61bd5218 3114 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3115 return 0;
3116}
3117
390ee7e2
AS
3118static int check_return_code(struct bpf_verifier_env *env)
3119{
3120 struct bpf_reg_state *reg;
3121 struct tnum range = tnum_range(0, 1);
3122
3123 switch (env->prog->type) {
3124 case BPF_PROG_TYPE_CGROUP_SKB:
3125 case BPF_PROG_TYPE_CGROUP_SOCK:
3126 case BPF_PROG_TYPE_SOCK_OPS:
3127 break;
3128 default:
3129 return 0;
3130 }
3131
638f5b90 3132 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3133 if (reg->type != SCALAR_VALUE) {
61bd5218 3134 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3135 reg_type_str[reg->type]);
3136 return -EINVAL;
3137 }
3138
3139 if (!tnum_in(range, reg->var_off)) {
61bd5218 3140 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3141 if (!tnum_is_unknown(reg->var_off)) {
3142 char tn_buf[48];
3143
3144 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3145 verbose(env, "has value %s", tn_buf);
390ee7e2 3146 } else {
61bd5218 3147 verbose(env, "has unknown scalar value");
390ee7e2 3148 }
61bd5218 3149 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3150 return -EINVAL;
3151 }
3152 return 0;
3153}
3154
475fb78f
AS
3155/* non-recursive DFS pseudo code
3156 * 1 procedure DFS-iterative(G,v):
3157 * 2 label v as discovered
3158 * 3 let S be a stack
3159 * 4 S.push(v)
3160 * 5 while S is not empty
3161 * 6 t <- S.pop()
3162 * 7 if t is what we're looking for:
3163 * 8 return t
3164 * 9 for all edges e in G.adjacentEdges(t) do
3165 * 10 if edge e is already labelled
3166 * 11 continue with the next edge
3167 * 12 w <- G.adjacentVertex(t,e)
3168 * 13 if vertex w is not discovered and not explored
3169 * 14 label e as tree-edge
3170 * 15 label w as discovered
3171 * 16 S.push(w)
3172 * 17 continue at 5
3173 * 18 else if vertex w is discovered
3174 * 19 label e as back-edge
3175 * 20 else
3176 * 21 // vertex w is explored
3177 * 22 label e as forward- or cross-edge
3178 * 23 label t as explored
3179 * 24 S.pop()
3180 *
3181 * convention:
3182 * 0x10 - discovered
3183 * 0x11 - discovered and fall-through edge labelled
3184 * 0x12 - discovered and fall-through and branch edges labelled
3185 * 0x20 - explored
3186 */
3187
3188enum {
3189 DISCOVERED = 0x10,
3190 EXPLORED = 0x20,
3191 FALLTHROUGH = 1,
3192 BRANCH = 2,
3193};
3194
58e2af8b 3195#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3196
475fb78f
AS
3197static int *insn_stack; /* stack of insns to process */
3198static int cur_stack; /* current stack index */
3199static int *insn_state;
3200
3201/* t, w, e - match pseudo-code above:
3202 * t - index of current instruction
3203 * w - next instruction
3204 * e - edge
3205 */
58e2af8b 3206static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3207{
3208 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3209 return 0;
3210
3211 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3212 return 0;
3213
3214 if (w < 0 || w >= env->prog->len) {
61bd5218 3215 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3216 return -EINVAL;
3217 }
3218
f1bca824
AS
3219 if (e == BRANCH)
3220 /* mark branch target for state pruning */
3221 env->explored_states[w] = STATE_LIST_MARK;
3222
475fb78f
AS
3223 if (insn_state[w] == 0) {
3224 /* tree-edge */
3225 insn_state[t] = DISCOVERED | e;
3226 insn_state[w] = DISCOVERED;
3227 if (cur_stack >= env->prog->len)
3228 return -E2BIG;
3229 insn_stack[cur_stack++] = w;
3230 return 1;
3231 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3232 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3233 return -EINVAL;
3234 } else if (insn_state[w] == EXPLORED) {
3235 /* forward- or cross-edge */
3236 insn_state[t] = DISCOVERED | e;
3237 } else {
61bd5218 3238 verbose(env, "insn state internal bug\n");
475fb78f
AS
3239 return -EFAULT;
3240 }
3241 return 0;
3242}
3243
3244/* non-recursive depth-first-search to detect loops in BPF program
3245 * loop == back-edge in directed graph
3246 */
58e2af8b 3247static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3248{
3249 struct bpf_insn *insns = env->prog->insnsi;
3250 int insn_cnt = env->prog->len;
3251 int ret = 0;
3252 int i, t;
3253
3254 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3255 if (!insn_state)
3256 return -ENOMEM;
3257
3258 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3259 if (!insn_stack) {
3260 kfree(insn_state);
3261 return -ENOMEM;
3262 }
3263
3264 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3265 insn_stack[0] = 0; /* 0 is the first instruction */
3266 cur_stack = 1;
3267
3268peek_stack:
3269 if (cur_stack == 0)
3270 goto check_state;
3271 t = insn_stack[cur_stack - 1];
3272
3273 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3274 u8 opcode = BPF_OP(insns[t].code);
3275
3276 if (opcode == BPF_EXIT) {
3277 goto mark_explored;
3278 } else if (opcode == BPF_CALL) {
3279 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3280 if (ret == 1)
3281 goto peek_stack;
3282 else if (ret < 0)
3283 goto err_free;
07016151
DB
3284 if (t + 1 < insn_cnt)
3285 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3286 } else if (opcode == BPF_JA) {
3287 if (BPF_SRC(insns[t].code) != BPF_K) {
3288 ret = -EINVAL;
3289 goto err_free;
3290 }
3291 /* unconditional jump with single edge */
3292 ret = push_insn(t, t + insns[t].off + 1,
3293 FALLTHROUGH, env);
3294 if (ret == 1)
3295 goto peek_stack;
3296 else if (ret < 0)
3297 goto err_free;
f1bca824
AS
3298 /* tell verifier to check for equivalent states
3299 * after every call and jump
3300 */
c3de6317
AS
3301 if (t + 1 < insn_cnt)
3302 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3303 } else {
3304 /* conditional jump with two edges */
3c2ce60b 3305 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3306 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3307 if (ret == 1)
3308 goto peek_stack;
3309 else if (ret < 0)
3310 goto err_free;
3311
3312 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3313 if (ret == 1)
3314 goto peek_stack;
3315 else if (ret < 0)
3316 goto err_free;
3317 }
3318 } else {
3319 /* all other non-branch instructions with single
3320 * fall-through edge
3321 */
3322 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3323 if (ret == 1)
3324 goto peek_stack;
3325 else if (ret < 0)
3326 goto err_free;
3327 }
3328
3329mark_explored:
3330 insn_state[t] = EXPLORED;
3331 if (cur_stack-- <= 0) {
61bd5218 3332 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3333 ret = -EFAULT;
3334 goto err_free;
3335 }
3336 goto peek_stack;
3337
3338check_state:
3339 for (i = 0; i < insn_cnt; i++) {
3340 if (insn_state[i] != EXPLORED) {
61bd5218 3341 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3342 ret = -EINVAL;
3343 goto err_free;
3344 }
3345 }
3346 ret = 0; /* cfg looks good */
3347
3348err_free:
3349 kfree(insn_state);
3350 kfree(insn_stack);
3351 return ret;
3352}
3353
f1174f77
EC
3354/* check %cur's range satisfies %old's */
3355static bool range_within(struct bpf_reg_state *old,
3356 struct bpf_reg_state *cur)
3357{
b03c9f9f
EC
3358 return old->umin_value <= cur->umin_value &&
3359 old->umax_value >= cur->umax_value &&
3360 old->smin_value <= cur->smin_value &&
3361 old->smax_value >= cur->smax_value;
f1174f77
EC
3362}
3363
3364/* Maximum number of register states that can exist at once */
3365#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3366struct idpair {
3367 u32 old;
3368 u32 cur;
3369};
3370
3371/* If in the old state two registers had the same id, then they need to have
3372 * the same id in the new state as well. But that id could be different from
3373 * the old state, so we need to track the mapping from old to new ids.
3374 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3375 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3376 * regs with a different old id could still have new id 9, we don't care about
3377 * that.
3378 * So we look through our idmap to see if this old id has been seen before. If
3379 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3380 */
f1174f77 3381static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3382{
f1174f77 3383 unsigned int i;
969bf05e 3384
f1174f77
EC
3385 for (i = 0; i < ID_MAP_SIZE; i++) {
3386 if (!idmap[i].old) {
3387 /* Reached an empty slot; haven't seen this id before */
3388 idmap[i].old = old_id;
3389 idmap[i].cur = cur_id;
3390 return true;
3391 }
3392 if (idmap[i].old == old_id)
3393 return idmap[i].cur == cur_id;
3394 }
3395 /* We ran out of idmap slots, which should be impossible */
3396 WARN_ON_ONCE(1);
3397 return false;
3398}
3399
3400/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3401static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3402 struct idpair *idmap)
f1174f77 3403{
dc503a8a
EC
3404 if (!(rold->live & REG_LIVE_READ))
3405 /* explored state didn't use this */
3406 return true;
3407
3408 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3409 return true;
3410
f1174f77
EC
3411 if (rold->type == NOT_INIT)
3412 /* explored state can't have used this */
969bf05e 3413 return true;
f1174f77
EC
3414 if (rcur->type == NOT_INIT)
3415 return false;
3416 switch (rold->type) {
3417 case SCALAR_VALUE:
3418 if (rcur->type == SCALAR_VALUE) {
3419 /* new val must satisfy old val knowledge */
3420 return range_within(rold, rcur) &&
3421 tnum_in(rold->var_off, rcur->var_off);
3422 } else {
3423 /* if we knew anything about the old value, we're not
3424 * equal, because we can't know anything about the
3425 * scalar value of the pointer in the new value.
3426 */
b03c9f9f
EC
3427 return rold->umin_value == 0 &&
3428 rold->umax_value == U64_MAX &&
3429 rold->smin_value == S64_MIN &&
3430 rold->smax_value == S64_MAX &&
f1174f77
EC
3431 tnum_is_unknown(rold->var_off);
3432 }
3433 case PTR_TO_MAP_VALUE:
1b688a19
EC
3434 /* If the new min/max/var_off satisfy the old ones and
3435 * everything else matches, we are OK.
3436 * We don't care about the 'id' value, because nothing
3437 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3438 */
3439 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3440 range_within(rold, rcur) &&
3441 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3442 case PTR_TO_MAP_VALUE_OR_NULL:
3443 /* a PTR_TO_MAP_VALUE could be safe to use as a
3444 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3445 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3446 * checked, doing so could have affected others with the same
3447 * id, and we can't check for that because we lost the id when
3448 * we converted to a PTR_TO_MAP_VALUE.
3449 */
3450 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3451 return false;
3452 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3453 return false;
3454 /* Check our ids match any regs they're supposed to */
3455 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3456 case PTR_TO_PACKET_META:
f1174f77 3457 case PTR_TO_PACKET:
de8f3a83 3458 if (rcur->type != rold->type)
f1174f77
EC
3459 return false;
3460 /* We must have at least as much range as the old ptr
3461 * did, so that any accesses which were safe before are
3462 * still safe. This is true even if old range < old off,
3463 * since someone could have accessed through (ptr - k), or
3464 * even done ptr -= k in a register, to get a safe access.
3465 */
3466 if (rold->range > rcur->range)
3467 return false;
3468 /* If the offsets don't match, we can't trust our alignment;
3469 * nor can we be sure that we won't fall out of range.
3470 */
3471 if (rold->off != rcur->off)
3472 return false;
3473 /* id relations must be preserved */
3474 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3475 return false;
3476 /* new val must satisfy old val knowledge */
3477 return range_within(rold, rcur) &&
3478 tnum_in(rold->var_off, rcur->var_off);
3479 case PTR_TO_CTX:
3480 case CONST_PTR_TO_MAP:
3481 case PTR_TO_STACK:
3482 case PTR_TO_PACKET_END:
3483 /* Only valid matches are exact, which memcmp() above
3484 * would have accepted
3485 */
3486 default:
3487 /* Don't know what's going on, just say it's not safe */
3488 return false;
3489 }
969bf05e 3490
f1174f77
EC
3491 /* Shouldn't get here; if we do, say it's not safe */
3492 WARN_ON_ONCE(1);
969bf05e
AS
3493 return false;
3494}
3495
638f5b90
AS
3496static bool stacksafe(struct bpf_verifier_state *old,
3497 struct bpf_verifier_state *cur,
3498 struct idpair *idmap)
3499{
3500 int i, spi;
3501
3502 /* if explored stack has more populated slots than current stack
3503 * such stacks are not equivalent
3504 */
3505 if (old->allocated_stack > cur->allocated_stack)
3506 return false;
3507
3508 /* walk slots of the explored stack and ignore any additional
3509 * slots in the current stack, since explored(safe) state
3510 * didn't use them
3511 */
3512 for (i = 0; i < old->allocated_stack; i++) {
3513 spi = i / BPF_REG_SIZE;
3514
3515 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3516 continue;
3517 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3518 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3519 /* Ex: old explored (safe) state has STACK_SPILL in
3520 * this stack slot, but current has has STACK_MISC ->
3521 * this verifier states are not equivalent,
3522 * return false to continue verification of this path
3523 */
3524 return false;
3525 if (i % BPF_REG_SIZE)
3526 continue;
3527 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3528 continue;
3529 if (!regsafe(&old->stack[spi].spilled_ptr,
3530 &cur->stack[spi].spilled_ptr,
3531 idmap))
3532 /* when explored and current stack slot are both storing
3533 * spilled registers, check that stored pointers types
3534 * are the same as well.
3535 * Ex: explored safe path could have stored
3536 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3537 * but current path has stored:
3538 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3539 * such verifier states are not equivalent.
3540 * return false to continue verification of this path
3541 */
3542 return false;
3543 }
3544 return true;
3545}
3546
f1bca824
AS
3547/* compare two verifier states
3548 *
3549 * all states stored in state_list are known to be valid, since
3550 * verifier reached 'bpf_exit' instruction through them
3551 *
3552 * this function is called when verifier exploring different branches of
3553 * execution popped from the state stack. If it sees an old state that has
3554 * more strict register state and more strict stack state then this execution
3555 * branch doesn't need to be explored further, since verifier already
3556 * concluded that more strict state leads to valid finish.
3557 *
3558 * Therefore two states are equivalent if register state is more conservative
3559 * and explored stack state is more conservative than the current one.
3560 * Example:
3561 * explored current
3562 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3563 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3564 *
3565 * In other words if current stack state (one being explored) has more
3566 * valid slots than old one that already passed validation, it means
3567 * the verifier can stop exploring and conclude that current state is valid too
3568 *
3569 * Similarly with registers. If explored state has register type as invalid
3570 * whereas register type in current state is meaningful, it means that
3571 * the current state will reach 'bpf_exit' instruction safely
3572 */
48461135
JB
3573static bool states_equal(struct bpf_verifier_env *env,
3574 struct bpf_verifier_state *old,
58e2af8b 3575 struct bpf_verifier_state *cur)
f1bca824 3576{
f1174f77
EC
3577 struct idpair *idmap;
3578 bool ret = false;
f1bca824
AS
3579 int i;
3580
f1174f77
EC
3581 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3582 /* If we failed to allocate the idmap, just say it's not safe */
3583 if (!idmap)
1a0dc1ac 3584 return false;
f1174f77
EC
3585
3586 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3587 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3588 goto out_free;
f1bca824
AS
3589 }
3590
638f5b90
AS
3591 if (!stacksafe(old, cur, idmap))
3592 goto out_free;
f1174f77
EC
3593 ret = true;
3594out_free:
3595 kfree(idmap);
3596 return ret;
f1bca824
AS
3597}
3598
8e9cd9ce
EC
3599/* A write screens off any subsequent reads; but write marks come from the
3600 * straight-line code between a state and its parent. When we arrive at a
3601 * jump target (in the first iteration of the propagate_liveness() loop),
3602 * we didn't arrive by the straight-line code, so read marks in state must
3603 * propagate to parent regardless of state's write marks.
3604 */
dc503a8a
EC
3605static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3606 struct bpf_verifier_state *parent)
3607{
63f45f84 3608 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3609 bool touched = false; /* any changes made? */
3610 int i;
3611
3612 if (!parent)
3613 return touched;
3614 /* Propagate read liveness of registers... */
3615 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3616 /* We don't need to worry about FP liveness because it's read-only */
3617 for (i = 0; i < BPF_REG_FP; i++) {
3618 if (parent->regs[i].live & REG_LIVE_READ)
3619 continue;
63f45f84
EC
3620 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3621 continue;
3622 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3623 parent->regs[i].live |= REG_LIVE_READ;
3624 touched = true;
3625 }
3626 }
3627 /* ... and stack slots */
638f5b90
AS
3628 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3629 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3630 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3631 continue;
638f5b90 3632 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3633 continue;
638f5b90 3634 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3635 continue;
638f5b90
AS
3636 if (writes &&
3637 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3638 continue;
638f5b90
AS
3639 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3640 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3641 touched = true;
3642 }
3643 }
3644 return touched;
3645}
3646
8e9cd9ce
EC
3647/* "parent" is "a state from which we reach the current state", but initially
3648 * it is not the state->parent (i.e. "the state whose straight-line code leads
3649 * to the current state"), instead it is the state that happened to arrive at
3650 * a (prunable) equivalent of the current state. See comment above
3651 * do_propagate_liveness() for consequences of this.
3652 * This function is just a more efficient way of calling mark_reg_read() or
3653 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3654 * though it requires that parent != state->parent in the call arguments.
3655 */
dc503a8a
EC
3656static void propagate_liveness(const struct bpf_verifier_state *state,
3657 struct bpf_verifier_state *parent)
3658{
3659 while (do_propagate_liveness(state, parent)) {
3660 /* Something changed, so we need to feed those changes onward */
3661 state = parent;
3662 parent = state->parent;
3663 }
3664}
3665
58e2af8b 3666static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3667{
58e2af8b
JK
3668 struct bpf_verifier_state_list *new_sl;
3669 struct bpf_verifier_state_list *sl;
638f5b90 3670 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3671 int i, err;
f1bca824
AS
3672
3673 sl = env->explored_states[insn_idx];
3674 if (!sl)
3675 /* this 'insn_idx' instruction wasn't marked, so we will not
3676 * be doing state search here
3677 */
3678 return 0;
3679
3680 while (sl != STATE_LIST_MARK) {
638f5b90 3681 if (states_equal(env, &sl->state, cur)) {
f1bca824 3682 /* reached equivalent register/stack state,
dc503a8a
EC
3683 * prune the search.
3684 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3685 * If we have any write marks in env->cur_state, they
3686 * will prevent corresponding reads in the continuation
3687 * from reaching our parent (an explored_state). Our
3688 * own state will get the read marks recorded, but
3689 * they'll be immediately forgotten as we're pruning
3690 * this state and will pop a new one.
f1bca824 3691 */
638f5b90 3692 propagate_liveness(&sl->state, cur);
f1bca824 3693 return 1;
dc503a8a 3694 }
f1bca824
AS
3695 sl = sl->next;
3696 }
3697
3698 /* there were no equivalent states, remember current one.
3699 * technically the current state is not proven to be safe yet,
3700 * but it will either reach bpf_exit (which means it's safe) or
3701 * it will be rejected. Since there are no loops, we won't be
3702 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3703 */
638f5b90 3704 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3705 if (!new_sl)
3706 return -ENOMEM;
3707
3708 /* add new state to the head of linked list */
1969db47
AS
3709 err = copy_verifier_state(&new_sl->state, cur);
3710 if (err) {
3711 free_verifier_state(&new_sl->state, false);
3712 kfree(new_sl);
3713 return err;
3714 }
f1bca824
AS
3715 new_sl->next = env->explored_states[insn_idx];
3716 env->explored_states[insn_idx] = new_sl;
dc503a8a 3717 /* connect new state to parentage chain */
638f5b90 3718 cur->parent = &new_sl->state;
8e9cd9ce
EC
3719 /* clear write marks in current state: the writes we did are not writes
3720 * our child did, so they don't screen off its reads from us.
3721 * (There are no read marks in current state, because reads always mark
3722 * their parent and current state never has children yet. Only
3723 * explored_states can get read marks.)
3724 */
dc503a8a 3725 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3726 cur->regs[i].live = REG_LIVE_NONE;
3727 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3728 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3729 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3730 return 0;
3731}
3732
13a27dfc
JK
3733static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3734 int insn_idx, int prev_insn_idx)
3735{
ab3f0063
JK
3736 if (env->dev_ops && env->dev_ops->insn_hook)
3737 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3738
ab3f0063 3739 return 0;
13a27dfc
JK
3740}
3741
58e2af8b 3742static int do_check(struct bpf_verifier_env *env)
17a52670 3743{
638f5b90 3744 struct bpf_verifier_state *state;
17a52670 3745 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3746 struct bpf_reg_state *regs;
17a52670
AS
3747 int insn_cnt = env->prog->len;
3748 int insn_idx, prev_insn_idx = 0;
3749 int insn_processed = 0;
3750 bool do_print_state = false;
3751
638f5b90
AS
3752 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3753 if (!state)
3754 return -ENOMEM;
3755 env->cur_state = state;
3756 init_reg_state(env, state->regs);
dc503a8a 3757 state->parent = NULL;
17a52670
AS
3758 insn_idx = 0;
3759 for (;;) {
3760 struct bpf_insn *insn;
3761 u8 class;
3762 int err;
3763
3764 if (insn_idx >= insn_cnt) {
61bd5218 3765 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3766 insn_idx, insn_cnt);
3767 return -EFAULT;
3768 }
3769
3770 insn = &insns[insn_idx];
3771 class = BPF_CLASS(insn->code);
3772
07016151 3773 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3774 verbose(env,
3775 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3776 insn_processed);
3777 return -E2BIG;
3778 }
3779
f1bca824
AS
3780 err = is_state_visited(env, insn_idx);
3781 if (err < 0)
3782 return err;
3783 if (err == 1) {
3784 /* found equivalent state, can prune the search */
61bd5218 3785 if (env->log.level) {
f1bca824 3786 if (do_print_state)
61bd5218 3787 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3788 prev_insn_idx, insn_idx);
3789 else
61bd5218 3790 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3791 }
3792 goto process_bpf_exit;
3793 }
3794
3c2ce60b
DB
3795 if (need_resched())
3796 cond_resched();
3797
61bd5218
JK
3798 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3799 if (env->log.level > 1)
3800 verbose(env, "%d:", insn_idx);
c5fc9692 3801 else
61bd5218 3802 verbose(env, "\nfrom %d to %d:",
c5fc9692 3803 prev_insn_idx, insn_idx);
638f5b90 3804 print_verifier_state(env, state);
17a52670
AS
3805 do_print_state = false;
3806 }
3807
61bd5218
JK
3808 if (env->log.level) {
3809 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3810 print_bpf_insn(verbose, env, insn,
3811 env->allow_ptr_leaks);
17a52670
AS
3812 }
3813
13a27dfc
JK
3814 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3815 if (err)
3816 return err;
3817
638f5b90 3818 regs = cur_regs(env);
17a52670 3819 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3820 err = check_alu_op(env, insn);
17a52670
AS
3821 if (err)
3822 return err;
3823
3824 } else if (class == BPF_LDX) {
3df126f3 3825 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3826
3827 /* check for reserved fields is already done */
3828
17a52670 3829 /* check src operand */
dc503a8a 3830 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3831 if (err)
3832 return err;
3833
dc503a8a 3834 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3835 if (err)
3836 return err;
3837
725f9dcd
AS
3838 src_reg_type = regs[insn->src_reg].type;
3839
17a52670
AS
3840 /* check that memory (src_reg + off) is readable,
3841 * the state of dst_reg will be updated by this func
3842 */
31fd8581 3843 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3844 BPF_SIZE(insn->code), BPF_READ,
3845 insn->dst_reg);
3846 if (err)
3847 return err;
3848
3df126f3
JK
3849 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3850
3851 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3852 /* saw a valid insn
3853 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3854 * save type to validate intersecting paths
9bac3d6d 3855 */
3df126f3 3856 *prev_src_type = src_reg_type;
9bac3d6d 3857
3df126f3 3858 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3859 (src_reg_type == PTR_TO_CTX ||
3df126f3 3860 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3861 /* ABuser program is trying to use the same insn
3862 * dst_reg = *(u32*) (src_reg + off)
3863 * with different pointer types:
3864 * src_reg == ctx in one branch and
3865 * src_reg == stack|map in some other branch.
3866 * Reject it.
3867 */
61bd5218 3868 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3869 return -EINVAL;
3870 }
3871
17a52670 3872 } else if (class == BPF_STX) {
3df126f3 3873 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3874
17a52670 3875 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3876 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3877 if (err)
3878 return err;
3879 insn_idx++;
3880 continue;
3881 }
3882
17a52670 3883 /* check src1 operand */
dc503a8a 3884 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3885 if (err)
3886 return err;
3887 /* check src2 operand */
dc503a8a 3888 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3889 if (err)
3890 return err;
3891
d691f9e8
AS
3892 dst_reg_type = regs[insn->dst_reg].type;
3893
17a52670 3894 /* check that memory (dst_reg + off) is writeable */
31fd8581 3895 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3896 BPF_SIZE(insn->code), BPF_WRITE,
3897 insn->src_reg);
3898 if (err)
3899 return err;
3900
3df126f3
JK
3901 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3902
3903 if (*prev_dst_type == NOT_INIT) {
3904 *prev_dst_type = dst_reg_type;
3905 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3906 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3907 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3908 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3909 return -EINVAL;
3910 }
3911
17a52670
AS
3912 } else if (class == BPF_ST) {
3913 if (BPF_MODE(insn->code) != BPF_MEM ||
3914 insn->src_reg != BPF_REG_0) {
61bd5218 3915 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3916 return -EINVAL;
3917 }
3918 /* check src operand */
dc503a8a 3919 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3920 if (err)
3921 return err;
3922
3923 /* check that memory (dst_reg + off) is writeable */
31fd8581 3924 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3925 BPF_SIZE(insn->code), BPF_WRITE,
3926 -1);
3927 if (err)
3928 return err;
3929
3930 } else if (class == BPF_JMP) {
3931 u8 opcode = BPF_OP(insn->code);
3932
3933 if (opcode == BPF_CALL) {
3934 if (BPF_SRC(insn->code) != BPF_K ||
3935 insn->off != 0 ||
3936 insn->src_reg != BPF_REG_0 ||
3937 insn->dst_reg != BPF_REG_0) {
61bd5218 3938 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3939 return -EINVAL;
3940 }
3941
81ed18ab 3942 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3943 if (err)
3944 return err;
3945
3946 } else if (opcode == BPF_JA) {
3947 if (BPF_SRC(insn->code) != BPF_K ||
3948 insn->imm != 0 ||
3949 insn->src_reg != BPF_REG_0 ||
3950 insn->dst_reg != BPF_REG_0) {
61bd5218 3951 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
3952 return -EINVAL;
3953 }
3954
3955 insn_idx += insn->off + 1;
3956 continue;
3957
3958 } else if (opcode == BPF_EXIT) {
3959 if (BPF_SRC(insn->code) != BPF_K ||
3960 insn->imm != 0 ||
3961 insn->src_reg != BPF_REG_0 ||
3962 insn->dst_reg != BPF_REG_0) {
61bd5218 3963 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
3964 return -EINVAL;
3965 }
3966
3967 /* eBPF calling convetion is such that R0 is used
3968 * to return the value from eBPF program.
3969 * Make sure that it's readable at this time
3970 * of bpf_exit, which means that program wrote
3971 * something into it earlier
3972 */
dc503a8a 3973 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3974 if (err)
3975 return err;
3976
1be7f75d 3977 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 3978 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
3979 return -EACCES;
3980 }
3981
390ee7e2
AS
3982 err = check_return_code(env);
3983 if (err)
3984 return err;
f1bca824 3985process_bpf_exit:
638f5b90
AS
3986 err = pop_stack(env, &prev_insn_idx, &insn_idx);
3987 if (err < 0) {
3988 if (err != -ENOENT)
3989 return err;
17a52670
AS
3990 break;
3991 } else {
3992 do_print_state = true;
3993 continue;
3994 }
3995 } else {
3996 err = check_cond_jmp_op(env, insn, &insn_idx);
3997 if (err)
3998 return err;
3999 }
4000 } else if (class == BPF_LD) {
4001 u8 mode = BPF_MODE(insn->code);
4002
4003 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4004 err = check_ld_abs(env, insn);
4005 if (err)
4006 return err;
4007
17a52670
AS
4008 } else if (mode == BPF_IMM) {
4009 err = check_ld_imm(env, insn);
4010 if (err)
4011 return err;
4012
4013 insn_idx++;
4014 } else {
61bd5218 4015 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4016 return -EINVAL;
4017 }
4018 } else {
61bd5218 4019 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4020 return -EINVAL;
4021 }
4022
4023 insn_idx++;
4024 }
4025
61bd5218
JK
4026 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4027 env->prog->aux->stack_depth);
17a52670
AS
4028 return 0;
4029}
4030
56f668df
MKL
4031static int check_map_prealloc(struct bpf_map *map)
4032{
4033 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4034 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4035 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4036 !(map->map_flags & BPF_F_NO_PREALLOC);
4037}
4038
61bd5218
JK
4039static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4040 struct bpf_map *map,
fdc15d38
AS
4041 struct bpf_prog *prog)
4042
4043{
56f668df
MKL
4044 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4045 * preallocated hash maps, since doing memory allocation
4046 * in overflow_handler can crash depending on where nmi got
4047 * triggered.
4048 */
4049 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4050 if (!check_map_prealloc(map)) {
61bd5218 4051 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4052 return -EINVAL;
4053 }
4054 if (map->inner_map_meta &&
4055 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4056 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4057 return -EINVAL;
4058 }
fdc15d38
AS
4059 }
4060 return 0;
4061}
4062
0246e64d
AS
4063/* look for pseudo eBPF instructions that access map FDs and
4064 * replace them with actual map pointers
4065 */
58e2af8b 4066static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4067{
4068 struct bpf_insn *insn = env->prog->insnsi;
4069 int insn_cnt = env->prog->len;
fdc15d38 4070 int i, j, err;
0246e64d 4071
f1f7714e 4072 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4073 if (err)
4074 return err;
4075
0246e64d 4076 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4077 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4078 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4079 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4080 return -EINVAL;
4081 }
4082
d691f9e8
AS
4083 if (BPF_CLASS(insn->code) == BPF_STX &&
4084 ((BPF_MODE(insn->code) != BPF_MEM &&
4085 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4086 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4087 return -EINVAL;
4088 }
4089
0246e64d
AS
4090 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4091 struct bpf_map *map;
4092 struct fd f;
4093
4094 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4095 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4096 insn[1].off != 0) {
61bd5218 4097 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4098 return -EINVAL;
4099 }
4100
4101 if (insn->src_reg == 0)
4102 /* valid generic load 64-bit imm */
4103 goto next_insn;
4104
4105 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4106 verbose(env,
4107 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4108 return -EINVAL;
4109 }
4110
4111 f = fdget(insn->imm);
c2101297 4112 map = __bpf_map_get(f);
0246e64d 4113 if (IS_ERR(map)) {
61bd5218 4114 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4115 insn->imm);
0246e64d
AS
4116 return PTR_ERR(map);
4117 }
4118
61bd5218 4119 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4120 if (err) {
4121 fdput(f);
4122 return err;
4123 }
4124
0246e64d
AS
4125 /* store map pointer inside BPF_LD_IMM64 instruction */
4126 insn[0].imm = (u32) (unsigned long) map;
4127 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4128
4129 /* check whether we recorded this map already */
4130 for (j = 0; j < env->used_map_cnt; j++)
4131 if (env->used_maps[j] == map) {
4132 fdput(f);
4133 goto next_insn;
4134 }
4135
4136 if (env->used_map_cnt >= MAX_USED_MAPS) {
4137 fdput(f);
4138 return -E2BIG;
4139 }
4140
0246e64d
AS
4141 /* hold the map. If the program is rejected by verifier,
4142 * the map will be released by release_maps() or it
4143 * will be used by the valid program until it's unloaded
4144 * and all maps are released in free_bpf_prog_info()
4145 */
92117d84
AS
4146 map = bpf_map_inc(map, false);
4147 if (IS_ERR(map)) {
4148 fdput(f);
4149 return PTR_ERR(map);
4150 }
4151 env->used_maps[env->used_map_cnt++] = map;
4152
0246e64d
AS
4153 fdput(f);
4154next_insn:
4155 insn++;
4156 i++;
4157 }
4158 }
4159
4160 /* now all pseudo BPF_LD_IMM64 instructions load valid
4161 * 'struct bpf_map *' into a register instead of user map_fd.
4162 * These pointers will be used later by verifier to validate map access.
4163 */
4164 return 0;
4165}
4166
4167/* drop refcnt of maps used by the rejected program */
58e2af8b 4168static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4169{
4170 int i;
4171
4172 for (i = 0; i < env->used_map_cnt; i++)
4173 bpf_map_put(env->used_maps[i]);
4174}
4175
4176/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4177static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4178{
4179 struct bpf_insn *insn = env->prog->insnsi;
4180 int insn_cnt = env->prog->len;
4181 int i;
4182
4183 for (i = 0; i < insn_cnt; i++, insn++)
4184 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4185 insn->src_reg = 0;
4186}
4187
8041902d
AS
4188/* single env->prog->insni[off] instruction was replaced with the range
4189 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4190 * [0, off) and [off, end) to new locations, so the patched range stays zero
4191 */
4192static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4193 u32 off, u32 cnt)
4194{
4195 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4196
4197 if (cnt == 1)
4198 return 0;
4199 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4200 if (!new_data)
4201 return -ENOMEM;
4202 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4203 memcpy(new_data + off + cnt - 1, old_data + off,
4204 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4205 env->insn_aux_data = new_data;
4206 vfree(old_data);
4207 return 0;
4208}
4209
4210static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4211 const struct bpf_insn *patch, u32 len)
4212{
4213 struct bpf_prog *new_prog;
4214
4215 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4216 if (!new_prog)
4217 return NULL;
4218 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4219 return NULL;
4220 return new_prog;
4221}
4222
9bac3d6d
AS
4223/* convert load instructions that access fields of 'struct __sk_buff'
4224 * into sequence of instructions that access fields of 'struct sk_buff'
4225 */
58e2af8b 4226static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4227{
00176a34 4228 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4229 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4230 const int insn_cnt = env->prog->len;
36bbef52 4231 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4232 struct bpf_prog *new_prog;
d691f9e8 4233 enum bpf_access_type type;
f96da094
DB
4234 bool is_narrower_load;
4235 u32 target_size;
9bac3d6d 4236
36bbef52
DB
4237 if (ops->gen_prologue) {
4238 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4239 env->prog);
4240 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4241 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4242 return -EINVAL;
4243 } else if (cnt) {
8041902d 4244 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4245 if (!new_prog)
4246 return -ENOMEM;
8041902d 4247
36bbef52 4248 env->prog = new_prog;
3df126f3 4249 delta += cnt - 1;
36bbef52
DB
4250 }
4251 }
4252
4253 if (!ops->convert_ctx_access)
9bac3d6d
AS
4254 return 0;
4255
3df126f3 4256 insn = env->prog->insnsi + delta;
36bbef52 4257
9bac3d6d 4258 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4259 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4260 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4261 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4262 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4263 type = BPF_READ;
62c7989b
DB
4264 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4265 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4266 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4267 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4268 type = BPF_WRITE;
4269 else
9bac3d6d
AS
4270 continue;
4271
8041902d 4272 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4273 continue;
9bac3d6d 4274
31fd8581 4275 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4276 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4277
4278 /* If the read access is a narrower load of the field,
4279 * convert to a 4/8-byte load, to minimum program type specific
4280 * convert_ctx_access changes. If conversion is successful,
4281 * we will apply proper mask to the result.
4282 */
f96da094 4283 is_narrower_load = size < ctx_field_size;
31fd8581 4284 if (is_narrower_load) {
f96da094
DB
4285 u32 off = insn->off;
4286 u8 size_code;
4287
4288 if (type == BPF_WRITE) {
61bd5218 4289 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4290 return -EINVAL;
4291 }
31fd8581 4292
f96da094 4293 size_code = BPF_H;
31fd8581
YS
4294 if (ctx_field_size == 4)
4295 size_code = BPF_W;
4296 else if (ctx_field_size == 8)
4297 size_code = BPF_DW;
f96da094 4298
31fd8581
YS
4299 insn->off = off & ~(ctx_field_size - 1);
4300 insn->code = BPF_LDX | BPF_MEM | size_code;
4301 }
f96da094
DB
4302
4303 target_size = 0;
4304 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4305 &target_size);
4306 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4307 (ctx_field_size && !target_size)) {
61bd5218 4308 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4309 return -EINVAL;
4310 }
f96da094
DB
4311
4312 if (is_narrower_load && size < target_size) {
31fd8581
YS
4313 if (ctx_field_size <= 4)
4314 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4315 (1 << size * 8) - 1);
31fd8581
YS
4316 else
4317 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4318 (1 << size * 8) - 1);
31fd8581 4319 }
9bac3d6d 4320
8041902d 4321 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4322 if (!new_prog)
4323 return -ENOMEM;
4324
3df126f3 4325 delta += cnt - 1;
9bac3d6d
AS
4326
4327 /* keep walking new program and skip insns we just inserted */
4328 env->prog = new_prog;
3df126f3 4329 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4330 }
4331
4332 return 0;
4333}
4334
79741b3b 4335/* fixup insn->imm field of bpf_call instructions
81ed18ab 4336 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4337 *
4338 * this function is called after eBPF program passed verification
4339 */
79741b3b 4340static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4341{
79741b3b
AS
4342 struct bpf_prog *prog = env->prog;
4343 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4344 const struct bpf_func_proto *fn;
79741b3b 4345 const int insn_cnt = prog->len;
81ed18ab
AS
4346 struct bpf_insn insn_buf[16];
4347 struct bpf_prog *new_prog;
4348 struct bpf_map *map_ptr;
4349 int i, cnt, delta = 0;
e245c5c6 4350
79741b3b
AS
4351 for (i = 0; i < insn_cnt; i++, insn++) {
4352 if (insn->code != (BPF_JMP | BPF_CALL))
4353 continue;
e245c5c6 4354
79741b3b
AS
4355 if (insn->imm == BPF_FUNC_get_route_realm)
4356 prog->dst_needed = 1;
4357 if (insn->imm == BPF_FUNC_get_prandom_u32)
4358 bpf_user_rnd_init_once();
79741b3b 4359 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4360 /* If we tail call into other programs, we
4361 * cannot make any assumptions since they can
4362 * be replaced dynamically during runtime in
4363 * the program array.
4364 */
4365 prog->cb_access = 1;
80a58d02 4366 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4367
79741b3b
AS
4368 /* mark bpf_tail_call as different opcode to avoid
4369 * conditional branch in the interpeter for every normal
4370 * call and to prevent accidental JITing by JIT compiler
4371 * that doesn't support bpf_tail_call yet
e245c5c6 4372 */
79741b3b 4373 insn->imm = 0;
71189fa9 4374 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4375 continue;
4376 }
e245c5c6 4377
89c63074
DB
4378 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4379 * handlers are currently limited to 64 bit only.
4380 */
4381 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4382 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4383 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4384 if (map_ptr == BPF_MAP_PTR_POISON ||
4385 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4386 goto patch_call_imm;
4387
4388 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4389 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4390 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4391 return -EINVAL;
4392 }
4393
4394 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4395 cnt);
4396 if (!new_prog)
4397 return -ENOMEM;
4398
4399 delta += cnt - 1;
4400
4401 /* keep walking new program and skip insns we just inserted */
4402 env->prog = prog = new_prog;
4403 insn = new_prog->insnsi + i + delta;
4404 continue;
4405 }
4406
109980b8 4407 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4408 /* Note, we cannot use prog directly as imm as subsequent
4409 * rewrites would still change the prog pointer. The only
4410 * stable address we can use is aux, which also works with
4411 * prog clones during blinding.
4412 */
4413 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4414 struct bpf_insn r4_ld[] = {
4415 BPF_LD_IMM64(BPF_REG_4, addr),
4416 *insn,
4417 };
4418 cnt = ARRAY_SIZE(r4_ld);
4419
4420 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4421 if (!new_prog)
4422 return -ENOMEM;
4423
4424 delta += cnt - 1;
4425 env->prog = prog = new_prog;
4426 insn = new_prog->insnsi + i + delta;
4427 }
81ed18ab 4428patch_call_imm:
00176a34 4429 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4430 /* all functions that have prototype and verifier allowed
4431 * programs to call them, must be real in-kernel functions
4432 */
4433 if (!fn->func) {
61bd5218
JK
4434 verbose(env,
4435 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4436 func_id_name(insn->imm), insn->imm);
4437 return -EFAULT;
e245c5c6 4438 }
79741b3b 4439 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4440 }
e245c5c6 4441
79741b3b
AS
4442 return 0;
4443}
e245c5c6 4444
58e2af8b 4445static void free_states(struct bpf_verifier_env *env)
f1bca824 4446{
58e2af8b 4447 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4448 int i;
4449
4450 if (!env->explored_states)
4451 return;
4452
4453 for (i = 0; i < env->prog->len; i++) {
4454 sl = env->explored_states[i];
4455
4456 if (sl)
4457 while (sl != STATE_LIST_MARK) {
4458 sln = sl->next;
1969db47 4459 free_verifier_state(&sl->state, false);
f1bca824
AS
4460 kfree(sl);
4461 sl = sln;
4462 }
4463 }
4464
4465 kfree(env->explored_states);
4466}
4467
9bac3d6d 4468int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4469{
58e2af8b 4470 struct bpf_verifier_env *env;
61bd5218 4471 struct bpf_verifer_log *log;
51580e79
AS
4472 int ret = -EINVAL;
4473
eba0c929
AB
4474 /* no program is valid */
4475 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4476 return -EINVAL;
4477
58e2af8b 4478 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4479 * allocate/free it every time bpf_check() is called
4480 */
58e2af8b 4481 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4482 if (!env)
4483 return -ENOMEM;
61bd5218 4484 log = &env->log;
cbd35700 4485
3df126f3
JK
4486 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4487 (*prog)->len);
4488 ret = -ENOMEM;
4489 if (!env->insn_aux_data)
4490 goto err_free_env;
9bac3d6d 4491 env->prog = *prog;
00176a34 4492 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4493
cbd35700
AS
4494 /* grab the mutex to protect few globals used by verifier */
4495 mutex_lock(&bpf_verifier_lock);
4496
4497 if (attr->log_level || attr->log_buf || attr->log_size) {
4498 /* user requested verbose verifier output
4499 * and supplied buffer to store the verification trace
4500 */
e7bf8249
JK
4501 log->level = attr->log_level;
4502 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4503 log->len_total = attr->log_size;
cbd35700
AS
4504
4505 ret = -EINVAL;
e7bf8249
JK
4506 /* log attributes have to be sane */
4507 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4508 !log->level || !log->ubuf)
3df126f3 4509 goto err_unlock;
cbd35700 4510 }
1ad2f583
DB
4511
4512 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4513 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4514 env->strict_alignment = true;
cbd35700 4515
ab3f0063
JK
4516 if (env->prog->aux->offload) {
4517 ret = bpf_prog_offload_verifier_prep(env);
4518 if (ret)
4519 goto err_unlock;
4520 }
4521
0246e64d
AS
4522 ret = replace_map_fd_with_map_ptr(env);
4523 if (ret < 0)
4524 goto skip_full_check;
4525
9bac3d6d 4526 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4527 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4528 GFP_USER);
4529 ret = -ENOMEM;
4530 if (!env->explored_states)
4531 goto skip_full_check;
4532
475fb78f
AS
4533 ret = check_cfg(env);
4534 if (ret < 0)
4535 goto skip_full_check;
4536
1be7f75d
AS
4537 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4538
17a52670 4539 ret = do_check(env);
8c01c4f8
CG
4540 if (env->cur_state) {
4541 free_verifier_state(env->cur_state, true);
4542 env->cur_state = NULL;
4543 }
cbd35700 4544
0246e64d 4545skip_full_check:
638f5b90 4546 while (!pop_stack(env, NULL, NULL));
f1bca824 4547 free_states(env);
0246e64d 4548
9bac3d6d
AS
4549 if (ret == 0)
4550 /* program is valid, convert *(u32*)(ctx + off) accesses */
4551 ret = convert_ctx_accesses(env);
4552
e245c5c6 4553 if (ret == 0)
79741b3b 4554 ret = fixup_bpf_calls(env);
e245c5c6 4555
a2a7d570 4556 if (log->level && bpf_verifier_log_full(log))
cbd35700 4557 ret = -ENOSPC;
a2a7d570 4558 if (log->level && !log->ubuf) {
cbd35700 4559 ret = -EFAULT;
a2a7d570 4560 goto err_release_maps;
cbd35700
AS
4561 }
4562
0246e64d
AS
4563 if (ret == 0 && env->used_map_cnt) {
4564 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4565 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4566 sizeof(env->used_maps[0]),
4567 GFP_KERNEL);
0246e64d 4568
9bac3d6d 4569 if (!env->prog->aux->used_maps) {
0246e64d 4570 ret = -ENOMEM;
a2a7d570 4571 goto err_release_maps;
0246e64d
AS
4572 }
4573
9bac3d6d 4574 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4575 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4576 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4577
4578 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4579 * bpf_ld_imm64 instructions
4580 */
4581 convert_pseudo_ld_imm64(env);
4582 }
cbd35700 4583
a2a7d570 4584err_release_maps:
9bac3d6d 4585 if (!env->prog->aux->used_maps)
0246e64d
AS
4586 /* if we didn't copy map pointers into bpf_prog_info, release
4587 * them now. Otherwise free_bpf_prog_info() will release them.
4588 */
4589 release_maps(env);
9bac3d6d 4590 *prog = env->prog;
3df126f3 4591err_unlock:
cbd35700 4592 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4593 vfree(env->insn_aux_data);
4594err_free_env:
4595 kfree(env);
51580e79
AS
4596 return ret;
4597}